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L p ESTIMATES FOR THE HILBERT TRANSFORMS
ALONG A ONE-VARIABLE VECTOR FIELD

MICHAEL BATEMAN AND CHRISTOPH THIELE

Stein conjectured that the Hilbert transform in the direction of a vector field v is bounded on, say,
L2 whenever v is Lipschitz. We establish a wide range of L p estimates for this operator when v is a
measurable, nonvanishing, one-variable vector field in R2. Aside from an L2 estimate following from a
simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely
related to a recent paper of the first author (Rev. Mat. Iberoam. 29:3 (2013), 1021–1069).

1. Introduction

Given a nonvanishing measurable vector field v : R2
→ R2, define for f : R2

→ R2

Hv f (x, y)= p.v.
∫

f ((x, y)− tv(x, y))
t

dt. (1-1)

In this paper we prove:

Theorem 1. Suppose v is a nonvanishing measurable vector field such that for all x , y ∈ R,

v(x, y)= v(x, 0),

and suppose p ∈
( 3

2 ,∞
)
. Then

‖Hv f ‖p . ‖ f ‖p.

The estimate is understood as an a priori estimate for all f in an appropriate dense subclass of L p(R2),
say the Schwartz class, on which the Hilbert transform Hv is initially defined. One can then use the
estimate to extend Hv to all of L p(R2).

If the vector field is constant, then this follows from classical estimates for the one-dimensional Hilbert
transform by evaluating the L p norm as an iterated integral, with inner integration in the direction of the
vector field. Theorem 1 follows from the special case for vector fields mapping to vectors of unit length,
because the Hilbert transforms along v and v/|v| are equal by a simple change of variables in (1-1). To
prove the theorem for unit-length vector fields, it suffices to do so for vector fields with nonvanishing
first component, because we can apply the result for constant vector fields to the restriction of Hv to the
set where v takes the value (0, 1) and the set where it takes the value (0,−1). Dividing v by its first
component, we may then assume it is of the form (1, u(x)); multiplying v by a negative number merely
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changes the sign of (1-1). We call u the slope of the vector field. The Hilbert transform (1-1) then takes
the form

Hv f (x, y)= p.v.
∫

f (x − t, y− tu(x))
t

dt. (1-2)

1.1. Remarks and related work. The case p = 2 of Theorem 1 is equivalent to the Carleson–Hunt
theorem in L2. This observation is attributed (without reference) to Coifman in [Lacey and Li 2010]
and to Coifman and El Kohen in [Carbery et al. 1999]. We briefly explain how to deduce Theorem 1
for p = 2 from the Carleson–Hunt theorem. Denote by F2 the Fourier transform in the second variable.
Then we formally have for (1-2), ignoring principal value notation,∫

e2π iηy
∫

F2 f (x − t, η)
e−2π iu(x)ηt

t
dt dη.

As the inner integral is independent of y, it suffices, by Plancherel, to prove∥∥∥∥∫ F2 f (x − t, η)
e−2π iu(x)ηt

t
dt
∥∥∥∥

L2(x,η)
. ‖F2 f ‖2.

For each fixed η, applying the Carleson–Hunt theorem in the form∥∥∥∥∫ g(x − t)
e−2π i N (x)t

t
dt
∥∥∥∥

2
. ‖g‖2

for g ∈ L2(R) and measurable function N , proves the desired estimate.
For any regular linear transformation of the plane, we have the identity

(HT ◦v◦T−1 f ) ◦ T = H( f ◦ T ).

The class of vector fields depending on the first variable is invariant under linear transformations that
preserve the vertical direction. This symmetry group is generated by the isotropic dilations

(x, y)→ (λx, λy),

nonisotropic dilations
(x, y)→ (x, λy),

and shearing transformations
(x, y)→ (x, y+ λx)

for λ 6= 0. By a simple limiting argument, it suffices to prove Theorem 1 under the assumption that ‖u‖∞
is finite. By the above nonisotropic scaling, the operator norm is independent of ‖u‖∞, and we may
therefore assume without loss of generality that

‖u‖∞ ≤ 10−2. (1-3)

Following general principles of wave packet analysis, it is natural to decompose Hv into wave packet
components, where the wave packets are obtained from a generating function φ via application of elements
of the symmetry group of the operator. These wave packets can be visualized by acting with the same
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group element on the unit square in the plane. The shapes obtained under the above linear symmetry
group of Hv are parallelograms with a pair of vertical edges. All parallelograms in this paper will be of
this special type. Under the assumption (1-3), it suffices to consider parallelograms whose nonvertical
edges are close to horizontal. Such parallelograms are well approximated by rectangles, which are used
in [Bateman 2013b; Lacey and Li 2010].

Theorem 2 [Bateman 2013b]. Assume ‖u‖∞ ≤ 1 and 1< p <∞. Assume f̂ (ξ, η) vanishes outside an
annulus A < |(ξ, η)| ≤ 2A for some A > 0. Then

‖Hv f ‖p . ‖ f ‖p.

Actually, the theorem is stated in that reference for functions such that f̂ vanishes outside a trapezoidal
region inside an annulus, but this is inessential, as can be seen from the commentary below. This theorem
is weaker than Theorem 1 in the region p > 3

2 , but holds in the full region 1< p <∞. The width of the
annulus can be altered by finite superposition of different annuli, at the expense of an implicit constant
depending on the conformal width of the annulus. The case p > 2 and a weak-type endpoint at p = 2 of
Theorem 2 are due to Lacey and Li [2006b], and hold for arbitrary measurable vector fields.

We reformulate Theorem 2 in a form invariant under the above linear transformation group. The adjoint
linear transformations of this group leave the horizontal direction invariant.

Theorem 3. Assume 1< p<∞. Assume f̂ (ξ, η) is supported in a horizontal pair of strips A< |η|< 2A
for some A > 0. Then

‖Hv f ‖p . ‖ f ‖p.

To deduce Theorem 3 from Theorem 2, we use the nonisotropic dilation (x, y)→ (λx, y) to stretch the
annulus in the ξ direction until in the limit it degenerates to a pair of strips A < |η|< 2A. The restriction
‖u‖∞ ≤ λ−1 becomes void in the limit λ→ 0. This proves Theorem 3. For the converse direction, we use
a bounded number of dilated strips to cover the annulus except for two thin annular sectors around the
ξ -axis. It remains to prove bounds on functions supported in these sectors. For fixed constant vector v,
the operator Hv is given by a Fourier multiplier that is constant on two half-planes separated by a line
through the origin perpendicular to v. If ‖u‖∞ ≤ 1, then this line does not intersect the thin annular
sectors, and we have, with the constant vector field (1, 0),

Hv f (x, y)= H(1,0) f (x, y). (1-4)

But H(1,0) is trivially bounded, and this completes the deduction of Theorem 2 from Theorem 3.
Sharpness of the exponent 3

2 in Theorem 1 is not known. In Remark 9 we mention a potential covering
lemma that, when combined with the methods in this paper, would push the exponent down to 4

3 . The
truth of this covering lemma is unknown, however. If f is an elementary tensor,

f (x, y)= g(x)h(y),
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then a similar calculation to the above turns Hv f into∫
ĥ(η)e2π iηy

∫
g(x − t)

e−2π iu(x)ηt

t
dt dη.

This expression can be read as a family of Fourier multipliers acting on h. Assuming the norm of h is
normalized to ‖h‖p = 1, we can estimate the last display by∥∥∥∥∥∥∥∥∫ g(x − t)

e−2π iu(x)ηt

t
dt
∥∥∥∥

M p(η)

∥∥∥∥
L p(x)

,

where Mp(η) denotes the operator norm of the Fourier multiplier acting on L p. By scaling invariance
of the multiplier norm, the factor u(x) in the phase can be ignored. As shown in [Coifman et al. 1988],
multiplier norms are controlled by variation norms. Hence we may estimate the last display by∥∥∥∥∥∥∥∥∫ g(x − t)

e−2π iηt

t
dt
∥∥∥∥

V r (η)

∥∥∥∥
L p(x)

,

provided
∣∣ 1

2 − 1/p
∣∣≤ 1/r . The bounds on the variation norm Carleson operator in [Oberlin et al. 2012]

imply that for p> 4
3 and r > p′, the last display is bounded by a constant times ‖g‖p. Hence the exponent

in Theorem 1 can be improved to 4
3 under the additional assumption that the function f is an elementary

tensor. The authors learned this argument from Ciprian Demeter. Related multiplier theorems in [Demeter
et al. 2008; Demeter 2012] also show a phase transition at this exponent.

The Hilbert transform along a one-variable vector field was studied by Carbery, Seeger, Wainger, and
Wright in [Carbery et al. 1999]. There, boundedness in L p for 1< p is proved under additional conditions
on the vector field.

In a different direction, Stein conjectured that a truncation of Hv is bounded on L2 under the assumption
that the two-variable vector field v is Lipschitz with sufficiently small Lipschitz constant depending on
the truncation. Stein’s conjecture is related to a well-known conjecture of Zygmund on the differentiation
of Lipschitz vector fields. Define

Mv f (x, y)= sup
0<L<1

1
2L

∫ L

−L
f
(
(x, y)− v(x, y)t

)
dt.

Zygmund conjectured that Mv is (say) weak-type (2, 2) if ‖v‖∞ is bounded and the Lipschitz norm
‖∇v‖∞ is small enough. Proving a weak-type estimate on this operator would yield corresponding
differentiation results analogous to the Lebesgue differentiation theorem, except the averaging takes place
over line segments instead of balls. Estimates on Mv are unknown on any L p space, except for the trivial
p =∞ case, unless more stringent requirements are placed on v; for example, Bourgain [1989] proved
Mv is bounded on L p, p > 1, when v is real-analytic and the operator is restricted to a bounded domain.
The corresponding result for the Hilbert transform was announced in [Stein and Street 2011], although
the p = 2 case follows from work of Lacey and Li [2010]. Previously the Hilbert transform case in such
a range of exponents was only known under the additional assumption that no integral curve of the vector
field forms a straight line [Christ et al. 1999].
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There is some history of using singular integral and time-frequency methods to control positive maximal
operators. See Lacey’s bilinear maximal theorem [2000] or the extension of Bourgain’s return times
theorem by Demeter, Lacey, Tao, and Thiele [Demeter et al. 2008].

This paper is structured as follows: Section 2 contains the main approach, a separation of frequency
space into horizontal dyadic strips and application of Littlewood–Paley theory in the second variable to
reduce to some vector-valued inequality; this step uses the one-variable property of the vector field to
ensure that the strips are invariant under Hv. This fact was brought to our attention by Ciprian Demeter.
The vector-valued inequality is proved by restricted weak-type interpolation, a tool that allows us to
localize the operator to some benign sets G and H and prove strong L2 bounds on these sets.

Section 3 gives the crucial construction of the sets G and H , relying on two covering lemmas. One is
essentially an argument by Cordoba and R. Fefferman [1975], while the other is essentially an argument
by Lacey and Li [2006a].

Section 4 outlines the proof of the L2 bounds on the sets G and H , using time-frequency analysis as
in [Bateman 2013b]. The operator that we estimate at this point is a refinement of the operator in that
paper. We refer to the decomposition of this operator there without recalling details. The terms in this
decomposition satisfy Estimates 16 through 20, which are also taken from the same paper. To complete
the proof of Theorem 1, we need the additional Estimates 21 and 22, which depend on the sets G and H .
These additional estimates are proved in Section 5, again with much reference to [Bateman 2013b].

Throughout the paper, we write x . y to mean there is a universal constant C such that x ≤ Cy. We
write x ∼ y to mean x . y and y . x . We write 1E to denote the characteristic function of a set E .

2. Reduction to estimates for a single frequency band

We fix the vector field v with the normalization (1-2) and assume bounded slope as in (1-3). Let Pc be
the Fourier restriction operator to a double cone:

P̂c f (ξ, η)= 110|ξ |≤|η| f̂ (ξ, η).

It suffices to estimate HvPc in place of Hv because, similarly to (1-4),

Hv(1− Pc) f (ξ, η)= H(1,0)(1− Pc) f (ξ, η),

due to the restriction on the slope of v. Define the horizontal pair of bands

Bk :=
{
(ξ, η) ∈ R2

: |η| ∈
[
2k, 2k+1/100)},

and define the corresponding Fourier restriction operator P̂k f = 1Bk f̂ . Since the Hilbert transform in a
constant direction is given by a Fourier multiplier, and the vector field v is constant on vertical lines, we
can formally write, for a family of multipliers parametrized by x ,

Hv f (x, y)=
∫∫

mx(ξ, η) f̂ (ξ, η)e2π i(xξ+yη) dξ dη.
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Then it is clear that

Hv(Pk f )(x, y)=
∫

1[2k ,2k+1/100)(η)e
2π iyη

[∫
mx(ξ, η) f̂ (ξ, η)e2π i xξ dξ

]
dη = Pk(Hv f )(x, y).

Define
Hk := Pk HvPc = Pk HvPc Pk .

Littlewood–Paley theory implies

‖HvPc f ‖p .

∥∥∥∥( ∑
k∈Z/100

|Hk f |2
)1/2 ∥∥∥∥

p
,

where the summation is over integer multiples of 1
100 . Using Littlewood–Paley theory once more, it

suffices to prove ∥∥∥∥( ∑
k∈Z/100

|Hk(Pk f )|2
)1/2 ∥∥∥∥

p
.

∥∥∥∥( ∑
k∈Z/100

|Pk f |2
)1/2 ∥∥∥∥

p
,

which follows from the more general estimate∥∥∥∥( ∑
k∈Z/100

|Hk fk |
2
)1/2 ∥∥∥∥

p
.

∥∥∥∥( ∑
k∈Z/100

| fk |
2
)1/2 ∥∥∥∥

p

for any sequence of functions fk ∈ L p. By a limiting argument, it suffices to prove, for all k0 > 0,∥∥∥∥(∑
|k|≤k0

|Hk fk |
2
)1/2 ∥∥∥∥

p
.

∥∥∥∥(∑
|k|≤k0

| fk |
2
)1/2 ∥∥∥∥

p
, (2-1)

with implicit constant independent of k0, where it is understood that k runs through elements of Z/100.
Compare this inequality with a vector-valued Carleson inequality as in [Grafakos et al. 2005].

Theorem 3 implies that Hk is bounded in L p for 1< p <∞ for each k. In particular, (2-1) is true for
p = 2 by interchanging the order of square summation and L2 norm.

Note that Hk is defined a priori on all of L p (by Theorem 3), and we may drop the assumption that
f is in the Schwartz class. By Marcinkiewicz interpolation for l2 vector valued functions, it suffices to
prove, for G, H ⊆ R2 and

∑
k | fk |

2
≤ 1H ,∣∣∣∣〈(∑

|k|≤k0

|Hk fk |
2
)1/2

, 1G

〉∣∣∣∣. |H |1/p
|G|1−1/p. (2-2)

By Lebesgue’s monotone convergence theorem, it suffices to prove this under the assumption that G
is supported on a large square [−N ′, N ′]2 as long as the implicit constant does not depend on N ′. By
another limiting argument using crude estimates in case the sets G and H have large distance, it suffices
to prove this under the assumption that H is supported in a much larger square [−N , N ], again with
bounds independent of N . Generalizing, we will only assume both G and H are supported on the larger
square.
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Since we already have (2-2) for p = 2, we immediately obtain this estimate for p > 2 provided
|H |. |G| and for p < 2 provided |G|. |H |. By a standard induction on the ratio of |H | and |G|, it then
suffices to prove the following lemma.

Lemma 4. Let G ′, H ′ ⊂ [−N , N ]2 be measurable and let 3
2 < p <∞.

If p > 2 and 10|G ′|< |H ′|, then there exists a subset H ⊂ H ′ depending only on p, G ′, and H ′ with
|H | ≥ |H ′|/2 such that (2-2) holds with G =G ′ and any sequence of functions fk with

∑
|k|≤k0

| fk |
2
≤ 1H .

If p < 2 and 10|H ′|< |G ′|, then there exists a subset G ⊂ G ′ depending only on p, G ′, and H ′ with
|G| ≥ |G ′|/2 such that (2-2) holds with H = H ′ and any sequence of functions fk with

∑
|k|≤k0

| fk |
2
≤ 1H .

For example, in case p > 2 and 10|G ′|< |H ′|, we split H ′ into H and H ′ \ H and apply the triangle
inequality. On H ′ \ H we apply the induction hypothesis, which yields an estimate better than the desired
one by a factor of 2−1/p because of the size estimate for H ′ \ H . On H we use the conclusion of the
lemma, which we may assume (by choosing the induction statement properly) to provide a bound no
more than 1− 2−1/p times the desired bound.

By Cauchy–Schwarz, (2-2) follows from∫ ∑
|k|≤k0

|Hk fk |
21G . |H |2/p

|G|1−2/p.

This in turn follows from ∫ ∑
|k|≤k0

|Hk fk |
21G .

(
|G|
|H |

)1−2/p∫ ∑
k

| fk |
2 (2-3)

by the assumption on the sequence fk . Now define the operator Hk,G,H by

Hk,G,H f = 1G Hk(1H f ).

Then (2-3) follows from the estimate

‖Hk,G,H f ‖2 .
(
|G|
|H |

)1/2−1/p

‖ f ‖2

for any f ∈ L2, and |k| ≤ k0, assuming the implicit constant does not depend on k or k0. We will prove
this L2 estimate again by Marcinkiewicz interpolation between weak-type estimates. More precisely, we
will prove:

Theorem 5. Let p be as in Theorem 1 and let G ′, H ′ ⊆ R2 be as in Lemma 4. Then there are sets G, H
as in Lemma 4 such that for any measurable sets E, F ⊂ R2 and each |k| ≤ k0, we have

|〈Hk,G,H 1F , 1E 〉|.

(
|G|
|H |

)1/2−1/p

|F |1/2|E |1/2. (2-4)

Again, [Bateman 2013b] proves

|〈Hk,G,H 1F , 1E 〉|. |F |1/q |E |1−1/q (2-5)
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for all 1 < q <∞. The refinement we need here is the localization to G and H , with corresponding
improvement in the estimate. The parameter k is irrelevant in proving (2-4), but it is crucial that the sets
H and G be constructed independent of k. By interpolating Theorem 5 with (2-5) for q near 1 and∞,
we obtain strong-type estimates

|〈Hk,G,H f, e〉|.
(
|G|
|H |

)1/2−1/r

‖ f ‖q‖e‖q ′,

where r is as close to p as we wish and q is in a small punctured neighborhood of 2 whose size depends
on r . Another interpolation allows q to be 2 as well, and we obtain (2-3) with power r instead of p, which
is no harm since we seek an open range of exponents. We have thus reduced Theorem 1 to Theorem 5.

3. Construction of the sets G and H

In this section we present the sets G and H of Lemma 4 and prove the size estimates |G| ≥ |G ′|/2 and
|H | ≥ |H ′|/2. Inequality (2-4) will be proved in subsequent sections.

We work with two shifted dyadic grids on the real line:

I1 =

{[
2k
(

n+
(−1)k

3

)
, 2k

(
n+ 1+

(−1)k

3

))
: k, n ∈ Z

}
,

I2 =

{[
2k
(

n−
(−1)k

3

)
, 2k

(
n+ 1−

(−1)k

3

))
: k, n ∈ Z

}
.

The exceptional sets will be the union of two sets:

H ′ \ H = H1 ∪ H2,

G ′ \G = G1 ∪G2.

Fix i ∈ {1, 2}. The sets Hi and Gi will be constructed using the grid Ii , and we will prove 4|Hi | ≤ |H ′|
and 4|Gi | ≤ |G ′|.

Given a parallelogram with two vertical edges, we define the height H(R) of the parallelogram to
be the common length of the two vertical edges. We define the shadow I (R) to be the projection of R
onto the x axis. The central line segment of R is the line segment that connects the midpoints of the two
vertical edges. If a line segment can be written

{(x, y) : x ∈ I (R) : y = ux + b},

then we call u the slope of the line segment. For each parallelogram R, let U (R) be the set of slopes of
lines that intersect both vertical edges. Maximal and minimal slopes in U (R) are attained by the diagonals
of the parallelogram. Hence U (R) is an interval of length 2H(R)/|I (R)| centered at the slope of the
central line of R.

For an interval U and a positive number C , define CU to be the interval with the same center but length
C |U |. If R is a parallelogram, define CR to be the parallelogram with the same central line segment as R
but height CH(R) (this definition of CR is used in Section 3 only). Note that CU (R)=U (CR). For an
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interval I ⊂ I (R), define
RI = R ∩ (I ×R).

Given N and k0 as in Lemma 4, we consider a finite set Ri of parallelograms R as follows: the
projection of both vertical edges of R onto the y-axis are in I1 ∪ I2, and I (R) ∈ Ii . Further, the
parallelogram is contained in the square [−102 N , 102 N ]2, the height is at least 2−k0 , and the slope is at
most 10−1. These assumptions imply also that |I (R)| is at least 2−k0 .

We will use the following simple geometric observation:

Lemma 6. Let R, R′ be two parallelograms and assume I (R)= I (R′), U (R)∩U (R′) 6=∅, R∩ R′ 6=∅,
and without loss of generality H(R) ≤ H(R′). Then we have R ⊆ 7R′. Moreover, if 7H(R) ≤ H(R′),
then 7R ⊆ 7R′.

Proof. Since U (R)∩U (R′) 6=∅, there exist two parallel lines, one intersecting both vertical edges of
R and the other intersecting both vertical edges of R′. Since R ∩ R′ 6=∅, the vertical displacement of
these lines is less than H(R)+ H(R′). If H(R)≤ H(R′), then the vertical edges of R have distance at
most 2H(R′) from the respective vertical edges of R′ and are contained in the vertical edges of 7R′. This
proves the first statement of the lemma. The second statement follows similarly. �

Let MV denote the Hardy–Littlewood maximal operator in the vertical direction:

MV f (x, y)= sup
y∈J

1
|J |

∫
J
| f (x, z)| dz,

where the supremum is taken over all intervals J containing y. For a measurable function u : R→ R

(which will be the slope function associated with the given vector field), define

E(R) := {(x, y) ∈ R : u(x) ∈U (R)}.

3.1. Construction of the set H. With the sets G ′, H ′ as in Lemma 4, we define

Hi =
⋃
{R ∈Ri : |E(R)∩G ′| ≥ δ|R|},

with

δ = Cα

(
|G ′|
|H ′|

)1−α

for some small α to be determined later through application of Estimate 22 and some constant Cα large
enough that the desired estimate 4|Hi | ≤ |H ′| follows from the following lemma, applied with G = G ′,
q = 1/(1−α). We are essentially eliminating all rectangles R with large density parameter, where density
has the meaning from [Bateman 2013b]. This will be used in the proof of Estimate 22 later in the paper.
Essentially, trees with density ≥ δ will have extremely small size, and will therefore be mostly negligible.

Lemma 7. Let δ > 0 and q > 1 and let G ⊂ R2 be a measurable set and u : R→ R be a measurable
function. Let R be a finite collection of parallelograms with vertical edges and dyadic shadow such that

|E(R)∩G| ≥ δ|R|
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for each R ∈R. Then ∣∣∣∣⋃
R∈R

R
∣∣∣∣. δ−q

|G|.

Proof. We will find a subset G⊂R such that ∣∣∣∣⋃
R∈R

R
∣∣∣∣.∑

R∈G

|R|, (3-1)

∫ (∑
R∈G

1E(R)

)q ′

.
∑
R∈G

|R|. (3-2)

Inequality (3-1) will complete the proof of Lemma 7, provided∑
R∈G

|R|. δ−q
|G|. (3-3)

But with the density assumption for the parallelograms in R, we have∑
R∈G

|R| ≤
∑
R∈G

1
δ
|E(R)∩G| =

1
δ

∥∥∥∥∑
R∈G

1E(R)1G

∥∥∥∥
1
.

1
δ

(∑
R∈G

|R|
)1/q ′

|G|1/q ,

where in the last line we have used Hölder’s inequality and (3-2). After division by the middle factor of
the right hand side, we obtain (3-3).

The following argument is essentially the one used in [Cordoba and Fefferman 1975] to prove endpoint
estimates for the strong maximal operator. We select parallelograms according to the following iterative
procedure. Initialize

STOCK←R,

G←∅,

B←∅.

While STOCK 6=∅, choose an R ∈ STOCK with maximal |I (R)|. If∑
R′∈G : E(R)∩E(R′)6=∅

|7R ∩ 7R′| ≥ 10−2
|R|, (3-4)

then update
STOCK← STOCK \ R,

G← G,

B←B∪ {R}.

Otherwise update
STOCK← STOCK \ R,

G← G∪ {R},

B←B.

It is clear that this procedure yields a partition R= GtB.
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To prove (3-1), let R ∈ B and let R′ be in the set G(R) of all elements in G that are chosen prior
to R and satisfy E(R) ∩ E(R′) 6= ∅. The last property implies U (R) ∩U (R′) 6= ∅ and R ∩ R′ 6= ∅.
Also, I (R)⊂ I (R′). By Lemma 6 applied to R and R′I (R), we have, for every vertical line L through the
interval I (R),

|L ∩ 7R ∩ 7R′| ≥min(H(R), H(R′))≥
|7R ∩ 7R′|

7|I (R)|
.

Comparing for (x, y) ∈ R and corresponding vertical line L the maximal function MV with an average
over the segment L ∩ 7R, we obtain

MV

( ∑
R′∈G(R)

17R′

)
(x, y)≥ 7−1 H(R)−1

∑
R′∈G(R)

|L ∩ 7R ∩ 7R′| ≥ 49−1
|R|−1

∑
R′∈G(R)

|7R ∩ 7R′| ≥ 10−4,

where the last estimate follows from (3-4). Hence∣∣∣∣⋃
R∈B

R
∣∣∣∣≤ ∣∣∣∣{x : MV

(∑
r∈G

1R

)
(x)≥ 10−4

}∣∣∣∣.∑
R∈G

|R|,

by the weak (1, 1) inequality for MV . This proves (3-1), because the corresponding estimate for the union
of elements in G is trivial.

To prove (3-2), consider R′, R ∈ G with E(R)∩ E(R′) 6= ∅. If R′ was selected first, then H(R) >
7H(R′), for otherwise we can use Lemma 6 as above to conclude, for (x, y) ∈ R,

MV (17R′)(x, y)≥ 7−1
|H(R)|−1

∑
R′∈G(R)

|L ∩ 7R ∩ 7R′| ≥ 49−1,

and hence R would have been put into B. Hence we have, by Lemma 6,

7R′I ⊂ 7RI (3-5)

for every I ⊂ I (R). Hence ∑
R′∈G(R)

|7R′I ∩ 7RI | =
∑

R′∈G(R)

|7R′I |

is proportional to |I | for I ⊂ I (R). Hence we have, for all such I ,∑
R′∈G(R)

|7R′I ∩ 7RI |. |RI |, (3-6)

since for I = I (R), this holds when condition (3-4) fails.
Let’s say an n-tuple (R1, R2, . . . , Rn) of elements in G is admissible if R j is selected after R j+1 for

each j and E(R j )∩ E(R j+1) 6=∅. Then we have



1588 MICHAEL BATEMAN AND CHRISTOPH THIELE∫ (∑
R∈G

1E(R)

)n

.
∑

R1,...,Rn

∣∣E(R1)∩ E(R2)∩ · · · ∩ E(Rn)
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣E(R1)∩ E(R2)∩ · · · ∩ E(Rn)
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣7R1
∩ 7R2

∩ · · · ∩ 7Rn
∣∣

.
∑

(R1,R2,...,Rn) adm.

∣∣7R1
∩ 7R2

I (R1)
∩ · · · ∩ 7Rn

I (R1)

∣∣.
Using (3-5), which implies that the sets 7R j

I (R1)
are nested, and the estimate (3-6) for the last pair of sets,

we can estimate the last display by

.
∑

(R1,R2,...,Rn−1) adm.

∣∣7R1
∩ 7R2

I (R1)
∩ · · · ∩ 7Rn−1

I (R1)

∣∣. (3-7)

Iterating the argument allows us to conclude (3-2) for q ′ an integer, which is clearly not a restriction, as
the estimate is harder for larger q ′. This completes the proof of Lemma 7. �

3.2. Construction of the set G. Let G ′, H ′, u be as in Lemma 4 and define

Gi =
⋃

k∈Z,k<0

{
R ∈Ri :

|E(R)|
|R|

≥ 2k and
|H ′ ∩ R|
|R|

≥ Cε2−(1/2+ε)k
(
|H ′|
|G ′|

)1/2}
for some small ε > 0, to be determined later through application of Estimate 21, and some constant Cε
large enough that we obtain, with Theorem 8 below,

|Gi | ≤
∑

k∈Z,k<0

C2−k
(

Cε2−(1/2+ε)k
(
|H ′|
|G ′|

)1/2)−2

|H ′| ≤
|G ′|

4
.

This construction essentially allows us to ignore trees with size and density both too large. This will be
used in the proof of Estimate 21.

The following theorem is a variant of the result in [Lacey and Li 2006a]. The theorem there is valid
for arbitrary Lipschitz vector fields. As stated here, the theorem is valid for vector fields depending on
one variable. In fact, the theorem holds for vector fields that are Lipschitz in the vertical direction only.
We recreate the proof given in [Lacey and Li 2006a] below in the one-variable case. The only use of the
one-variable property comes in the proof of Lemma 12 below.

Theorem 8. Let 0≤ δ, σ ≤ 1, let H be a measurable set, and let R be a finite collection of parallelograms
with vertical edges and dyadic shadow such that for each R ∈R, we have

|E(R)| ≥ δ|R|, |H ∩ R| ≥ σ |R|.

Then ∣∣∣∣⋃
R∈R

R
∣∣∣∣. δ−1σ−2

|H |.
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Remark 9. It is of interest whether a result like Theorem 8 holds with σ -power less than 2. In the single
height case, optimal results are already known with power all the way to 1+ ε; see [Bateman 2009;
Bateman 2013a]. However the important point is that the parallelograms in Theorem 8 can have arbitrary
height, which is necessary for creating the exceptional sets needed in the current paper.

Proof. It is enough to find a subset G⊂R such that∣∣∣∣⋃
R∈R

R
∣∣∣∣.∑

R∈G

|R|, (3-8)

∫ (∑
R∈G

1R

)2

. δ−1
∑
R∈G

|R|. (3-9)

Namely, with (3-9) we have∑
R∈G

|R| ≤ σ−1
∫ ∑

R∈G

1R(x)1H dx ≤ σ−1
‖H‖1/2

(∫ (∑
R∈G

1R(x)
)2

dx
)1/2

. σ−1δ−1/2
|H |1/2

(∑
R∈G

|R|
)1/2

,

and the desired estimate follows from (3-8).
We define the set G by a recursive procedure. Initialize

G←∅,

STOCK←R.

While STOCK is not empty, select R ∈ STOCK such that |I (R)| is maximal. Update

G← G∪ {R},

B←

{
R′ ∈ STOCK : R′ ⊂

{
x : MV

(∑
R∈G

1R

)
(x)≥ 10−3

}}
,

STOCK← STOCK \B.

This loop will terminate, because the collection R is finite and we remove at each step at least the
selected R from STOCK.

By the Hardy–Littlewood maximal bound, it is clear that (3-8) holds and it remains to show (3-9). By
expanding the square in (3-9) and using symmetry, it suffices to show∑

(R,R′)∈P

|R ∩ R′|. δ−1
∑
R∈G

|R|,

where P is the set of all pairs (R, R′) ∈ G×G with R∩ R′ 6=∅, and R is chosen prior to R′. We partition
P into

P′ = {(R, R′) ∈ P :U (R) 6⊂ 102U (R′)} and P′′ = {(R, R′) ∈ P :U (R)⊂ 102U (R′)}.

Theorem 8 is reduced to the following two lemmas:
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Lemma 10. For fixed R′ ∈ G, we have ∑
R∈R

(R,R′)∈P′′

|R ∩ R′|. |R′|.

Lemma 11. For fixed R ∈ G, we have ∑
R′∈R

(R,R′)∈P′

|R ∩ R′|. δ−1
|R|.

Proof of Lemma 10. We first argue by contradiction that P′′ does not contain a pair (R, R′) with
H(R′) < H(R). By definition of P′′, we have U (R)∩U (100R′) 6=∅. By Lemma 6 applied to 100RI (R′)

and 100R′, we conclude that R′ is contained in 700R. But then

R′ ⊂
{

MV 1R >
1

700

}
,

which contradicts the selection of R′ and completes the proof that we have H(R) ≤ H(R′) for all
(R, R′) ∈ P′′.

Now we use Lemma 6 again to conclude that for each (R, R′) ∈P′′, we have RI (R′) ⊂ 700R′. Hence
we have, for some point (x, y) in R′,

10−3
≥ MV

( ∑
R∈G:(R,R′)∈P′′

1R

)
(x, y)≥

1
700H(R′)

∑
R:(R,R′)∈P′′

H(R)≥
1

700

∑
R:(R,R′)∈P′′

|R ∩ R′|/|R′|.

This proves Lemma 10. �

There remains to give the proof of Lemma 11, which will occupy us through the end of the section.
Fix R ∈ G. We decompose {R′ : (R, R′) ∈ P′} by the following iterative procedure: Initialize

STOCK← {R′ : (R, R′) ∈ P′},

G′←∅.

While STOCK is nonempty, select R′ ∈ STOCK with maximal |IR′ |. Update

G′← G′ ∪ {R′},

B(R′)← {R′′ ∈ STOCK : 5E(R′′)∩5E(R′) 6=∅},

STOCK← STOCK \B(R′),

where5 denotes the projection onto the x axis. By construction, the sets5E(R′) with R′ ∈G′ are disjoint
and we have ∑

R′∈G′

|IR′ | ≤ δ
−1
∑
R′∈G′

|5E(R′)| ≤ δ−1
|I (R)|.

As the sets B(R′) with R′ ∈ G′ partition the summation set of the left side of Lemma 11, it suffices to
show that, for each R′ ∈ G′, ∑

R′′∈B(R′)

|R′′ ∩ R|. |RI (R′)|.
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In what follows we fix R′ ∈ G′.

Lemma 12. There is an interval U of slopes (depending on R and R′) with

5|U (R)| ≤ |U |, (3-10)

U (R)∩ 5U =∅, (3-11)

U (R)⊂ 6U, (3-12)

U (R′′)⊂U (3-13)

for all R′′ ⊂B(R′).

Proof. We distinguish two cases: |U (R)| ≤ |U (R′)| and |U (R)|> |U (R′)|.

First case: |U (R)| ≤ |U (R′)|. In the first case we use the definition of P′ to conclude

U (R)∩ 25U (R′)=∅.

We then define U = KU (R′), where K ≥ 5 is the largest number (or very close to that) such that
U (R)∩ 5KU (R′) = ∅. Then we have immediately (3-10), (3-11) and (3-12). To see (3-13), assume
U (R′′) 6⊂U to get a contradiction.

By the construction of B(R′), we know that 5(E(R′′)) and 5(E(R′)) intersect, which implies that
U (R′′)∩U (R′) 6=∅, since the underlying vector field v is constant along vertical lines. Since U (R′) is
contained in the middle fifth of the interval U , we conclude |U | ≤ 3|U (R′′)| and U ⊂ 7U (R′′). But then
U (R)⊂ 102U (R′′), a contradiction to (R, R′′) ∈ P′.

Second case: |U (R)|> |U (R′)|. Then H(R)>H(R′) because |I (R′)|≤ |I (R)|. Since R′ is not contained
in the set {MV 1R > 10−3

} and thus not in 103 R, we conclude that U (R′) contains an element not in
400U (R). Hence

25
|U (R)|
|U (R′)|

U (R′)

does not intersect U (R). From there we may proceed as before, with U (R′) replaced by this bigger
interval. This completes the proof of Lemma 12. �

Lemma 13. Let I be a dyadic interval contained in IR′ . Then for all R′′ ∈B(R′) with H(R′′)≤ 20|U | |I |,
we have that

RI ∩ R′′ 6=∅ =⇒ R′′ I ⊂ 50
(
1+ |U | |I |H(R)−1)R (3-14)

and
|RI ∩ R′′| ≤ 10|U |−1 H(R′′)H(R). (3-15)

Proof. By a shearing transformation and translation we may assume that the central line segment of R is
on the x axis.

Statement (3-14) follows immediately from the central slope of R′′ being less than 10|U | and H(R′′)≤
20|U | |I |, and hence the vertical distance of any point in R′′ from R is at most 50|U | |I |. To see the
second statement, note that the central slope u0 of R′′ is at least 2|U |. Hence (3-15) follows, because
R ∩ R′′ is contained in a parallelogram of height H(R) and base H(R′′)u−1

0 . This proves Lemma 13. �
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Lemma 14. Let I be a dyadic interval contained in IR′ . If∑
R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′|> 10−1
|RI |,

then there does not exist R′′′ ∈B(R′) with IR′′′ ⊂ I , IR′′′ 6= I .

Proof. For every R′′′ ∈B(R′), we have U (R′′′)⊂U , and thus

H(R′′′)≤ 10U |IR′′′ |.

Hence if IR′′′ ⊂ I , then H(R′′′) ≤ 20U |I |. The parallelogram R′′′ has been selected for G after the
parallelogram R and the parallelograms R′′ ∈B(R′) with I ⊂ IR′′ . By Lemma 13, it suffices to show that
the maximal function

MV

(
1R +

∑
R′′∈B(R′)
s.t. I⊂IR′′

1R′′

)

is larger than 10−3 on the parallelogram

R̃ := 50
(
1+ |U | |I |H(R)−1)R.

First assume there exists R′′ ∈B(R′) with I ⊂ IR′′ and RI ∩ R′′ 6=∅ and H(R′′)≥ 20 |U | |I |. Note that
U (R′′) and U (R̃) have nonempty intersection because U (R′′)⊂U ⊂U (R̃). Applying Lemma 6 to the
rectangles R′′I and R̃I , we obtain similarly as before

MV (1R′′ + 1R)≥ 7−1 H(R̃)−1(min(H(R′′), H(R̃))+ H(R)
)
> 10−3

on R̃I , which proves Lemma 14 in the given case.
Hence we may assume

H(R′′)≤ 20 |U | |I |

for every R′′ ∈B(R′) with I ⊂ IR′′ and RI ∩ R′′ 6=∅. We then have on R̃I , by Lemma 13,

MV

(
1R +

∑
R′′∈B(R′)
s.t. I⊂IR′′

1R′′

)
≥ H(R̃)−1

(
H(R)+

∑
R′′∈B(R′)
s.t. I⊂IR′′

H(R′′)
)

≥ H(R̃)−1
(

H(R)+
∑

R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′||U |H(R)−1
)

≥ H(R̃)
(
H(R)+ |U |H(R)−110−1

|RI |
)
≥ 500−1.

This completes the proof of Lemma 14. �

We have used the hypothesis IR′′′ 6= I of Lemma 14 only to conclude that R′′′ has been selected last
to G. Consider the collection of all R′′ ∈B(R′) with I = IR′′ and let R′′′ be the parallelogram chosen last
in this collection. Since |RI ∩ R′′′| ≤ |RI |, the proof of the previous lemma also gives:
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Lemma 15. For every I ⊂ IR′ , ∑
R′′∈B(R′):I=IR′′

|RI ∩ R′′| ≤ 2|RI |.

Now let I be the set of maximal dyadic intervals contained in IR′ such that∑
R′′∈B(R′)
s.t. I⊂IR′′

|RI ∩ R′′|> 2|RI |.

By Lemma 15, we have IR′ /∈ I. Let I ∈ I and denote the parent of I by Ĩ . By Lemma 14 and by
maximality of I and Lemma 15, we have∑

R′′∈B(R′)

|RI ∩ R′′| =
∑

R′′∈B(R′): Ĩ⊂IR′′

|RI ∩ R′′| +
∑

R′′∈B(R′):I=IR′′

|RI ∩ R′′| ≤ 2|R Ĩ | + 2|RI | ≤ 6|RI |.

By adding over all I ∈ I, we obtain∑
I∈I′

∑
R′′∈B(R′)

|RI ∩ R′′| ≤ 6|RI (R′)|. (3-16)

Now let I′ be the set of maximal dyadic intervals that are contained in IR′ , disjoint from any interval
in I, and do not contain any I (R′′) with R′′ ∈R(R′). By construction of I, we have for each I ∈ I′∑

R′′∈R(R′)

|RI ∩ R′′| =
∑

R′′∈R(R′):I⊂IR′′

|RI ∩ R′′| ≤ 2|RI |.

Summing over all intervals in I′ gives∑
I∈I′

∑
R′′∈R(R′)

|RI ∩ R′′| ≤ 2|RI (R′)|. (3-17)

Together with (3-16) this completes the proof of Lemma 11, because I and I′ form a partition of I (R′). �

4. Outline of the proof of Theorem 5

Recall that we need to prove, for each |k| ≤ k0, the inequality

|〈Hk,G,H 1F , 1E 〉|.

(
|G|
|H |

)1/2−1/p

|F |1/2|E |1/2. (4-1)

We assume without loss of generality that E ⊂ G and F ⊂ H . Recall also that Theorem 2 implies, for
1< q <∞,

|〈Hk1F , 1E 〉|.

(
|E |
|F |

)1/2−1/q

|F |1/2|E |1/2. (4-2)

The left sides of (4-1) and (4-2) are identical. Hence our task is to strengthen the proof of Theorem 2
in [Bateman 2013b] in case the factor involving G and H in (4-1) is less than the corresponding factor
involving E and F in (4-2).
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We recall some details about the proof in [Bateman 2013b]. The form 〈Hk1F , 1E 〉 is written as a linear
combination of a bounded number of model forms∑

s∈Uk

〈Cs,k1F , 1E 〉,

where the index set Uk is a set of parallelograms with vertical edges and constant height (depending on k).
The paper proves the bound analogous to (4-2) for the absolute sum∑

s∈U′k

|〈Cs,k1F , 1E 〉|, (4-3)

where U′k is an arbitrary finite subset of Uk and the bound is independent of the choice of subset, which
may be assumed to only account for nonzero summands.

To estimate (4-3), one first proves estimates for the sum over certain subsets of U′k called trees. Each tree
T is assigned a parallelogram top(T ). It is also assigned a density δ(T ), which measures the contribution
of E to the tree, and a size σ(T ), which measures the contribution of F to the tree. One obtains, for each
tree T , ∑

s∈T

|〈Cs1F , 1E 〉|. δ(T )σ (T )|top(T )|.

The collection U′k is then written as a disjoint union of subcollections Uδ,σ , where δ and σ run through
the set of integer powers of two. Each Uδ,σ is written as a disjoint union of a collection Tδ,σ of trees with
density at most δ and size at most σ . With the above tree estimate, it remains to estimate

∑
δ,σ Sδ,σ with

Sδ,σ :=
∑

T∈Tδ,σ

δσ |top(T )|.

We list the estimates on Sδ,σ used in [Bateman 2013b]; we include an additional factor of δσ relative to
the corresponding expressions in [Bateman 2013b].

Estimate 16 (orthogonality). Sδ,σ . |F |δσ−1.

Estimate 17 (density). Sδ,σ . |E |σ .

Estimate 18 (maximal). For any ε > 0, Sδ,σ . |F |1−ε |E |εσ−ε .

Estimate 19 (trivial density restriction). If δ > 1, then Sδ,σ = 0.

Estimate 20 (trivial size restriction). There is a universal σ0 such that if σ > σ0, then Sδ,σ = 0.

Our improvement comes through two additional estimates depending on G and H that will be proved
in Section 5.

Estimate 21 (second maximal). If p < 2 and G, H are as in Theorem 5, then for every ε > 0,

Sδ,σ . |E |
(
|H |
|G|

)1/2

σ−εδ−1/2−ε .
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Estimate 22 (size restriction). Let p > 2 and let G, H be as in Theorem 5. Let n > 2 be a large integer
and α = 1/n and Cα be some constant. Then there is a constant σ1 such that if

σ ≥ σ1

(
δ̃

δ

)n

with

δ̃ = Cα

(
|G|
|H |

)1−α

,

then we have Sδ,σ = 0.

To obtain summability for small σ , it is convenient to take weighted geometric averages of Estimates
16, 18, and 21 with Estimate 17 to obtain positive powers of σ . We record these modified estimates,
where we simplify exponents using that we may assume universal upper bounds on δ and σ . We have, for
any ε > 0:

Estimate 23 (modified orthogonality). Sδ,σ . |E |1/2+ε |F |1/2−εδ1/2−εσ 2ε .

Estimate 24 (modified maximal). Sδ,σ . |F |1−4ε
|E |4εσ ε .

Estimate 25 (modified second maximal). Under the assumptions of Estimate 21,

Sδ,σ . |E |
(
|H |
|G|

)1/2−ε

σ εδ−1/2.

In the rest of this section we show how these estimates are used to estimate
∑

δ,σ Sδ,σ , and thereby
complete the proof of Theorem 5.

4.1. Case p < 2 and |H| ≤ |G|. Inequality (4-1) for 3
2 < p < 2 follows from inequality (4-2) for

1< q < 2 unless (
|H |
|G|

)1/3

≤
|F |
|E |

, (4-4)

which we shall therefore assume.
Pick ε > 0 small compared to the distance of p to 3

2 . We split the sum over δ at

δ0 =

(
|H |
|G|
|E |
|F |

)1/2

.

For δ ≤ δ0, we use Estimate 23 together with Estimate 20 to obtain∑
δ≤δ0

∑
σ

Sδ,σ . δ
1/2−ε
0 |E |1/2+ε |F |1/2−ε = |E |3/4+ε/2|F |1/4−ε/2

(
|H |
|G|

)1/4−ε/2

.

For δ ≥ δ0 we use Estimate 25 together with Estimate 20 to obtain∑
δ≥δ0

∑
σ

Sδ,σ . δ
−1/2
0 |E |

(
|H |
|G|

)1/2−ε

= |E |3/4|F |1/4
(
|H |
|G|

)1/4−ε

.
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Using (4-4) and |H | ≤ |G|, we may estimate both partial sums by

. |E |1/2|F |1/2
(
|H |
|G|

)1/6−3ε

.

This completes the proof of (4-1) in case p < 2.

4.2. Case p > 2 and |G| ≤ |H|. Pick ε very small compared to 1/p. Inequality (4-1) for 2< p <∞
follows from inequality (4-2) unless

|G|
|H |
≤

(
|E |
|F |

)1+ε

, (4-5)

which we shall therefore assume. Let α and 1/n be very small compared to ε, let Cα be as in the
construction of the set H , and let δ̃ be as in Estimate 22. We split the sum over δ at

δ1 := δ̃

(
1

δ̃

|E |
|F |

)1/n

.

For δ ≤ δ1 we use a weighted geometric mean of Estimates 23 and 24 together with Estimate 20 to
obtain ∑

δ≤δ1

∑
σ

Sδ,σ . δ
1/2−4ε
1 |E |1/2−ε |F |1/2+ε . δ̃(1−1/n)(1/2−4ε)

|E |1/2|F |1/2
(
|G|
|H |

)−2ε

,

where in the last line we have used (4-5) and |G| ≤ |H |. Using the definition of δ̃ in Estimate 22, we may
estimate the last display by

. |E |1/2|F |1/2
(
|G|
|H |

)1/2−10ε

. (4-6)

For δ ≥ δ1 we use Estimate 17 together with Estimate 22 to obtain∑
δ≥δ1

∑
σ

Sδ,σ .
∑
δ≥δ1

(δ̃/δ)n|E |. (δ̃/δ1)
n
|E |. δ̃|F |. |F |1/2|E |1/2

(
|G|
|H |

)1/2−10ε

,

where in the last line we have used (4-5) and |G| ≤ |H |. This completes the proof of (4-1) in case p > 2.

5. Proof of the additional Estimates 21 and 22

In this section we deviate from the notation in Section 3 as follows: for a parallelogram R we denote
by CR the isotropically scaled parallelogram with the same center and slope as R but with height
H(CR)= CH(R) and shadow I (CR)= CI (R).

We say that a set is approximated by a parallelogram R if it is contained in the parallelogram and the
parallelogram has at most one hundred times the area of the set. Any parallelogram R can be approximated
by a parallelogram R′ with I (R′) ∈ I1 ∪I2 and both vertical edges of R′ in I1 ∪I2. To see this, first
identify an interval I in I1 ∪I2 that contains I (R) and has at most three times the length; this interval
I will be the shadow of R′. Consider the extension of R that has same central line and height as R but
shadow I . Then find two intervals in I1 ∪I2 that have mutually equal length at most three times the
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height of R and that contain the respective vertical edges of the extended parallelogram. These intervals
define the vertical edges of R′.

We recall some details of the proof of Estimate 17 in [Bateman 2013b]. Given δ, σ , one constructs a
collection Rδ,σ of parallelograms of the same height as the parallelograms in U′k such that each tree T in
Tδ,σ is assigned a parallelogram R in Rδ,σ with top(T )⊂ C0 R and top(T ′)⊂ C0 R for every subtree T ′

of T , for some constant C0. If T(R) denotes the trees in Tδ,σ that are assigned a given parallelogram
R ∈Rδ,σ , then we have ∑

T∈T(R)

|top(T )| ≤ C1|R|

for some constant C1. Estimate 17 is then deduced from the inequality∑
R∈Rσ,δ

|R|. |E |δ−1, (5-1)

which follows essentially from pairwise incomparability of the parallelograms in Rδ,σ . (In other words, if
two parallelograms P1, P2 overlap, then they are pointed in different directions, resulting in disjointness
of the sets E(P1) and E(P2).) All parallelograms in Rδ,σ have height at least 2−k0 , length of shadow at
least 2−k0 , and slope at most 10−1.

Let Q = [−N , N ]2 be the large square with N as in Lemma 4. We claim that every set Q ∩ 2k R with
R ∈Rδ,σ and k ≥ 0 can be approximated by a parallelogram in R1 ∪R2. If Q ∩ 2k R is a parallelogram,
then this is clear by the remarks above. If Q ∩ 2k R is not a parallelogram, then we first extend it to the
minimal parallelogram containing it, which thanks to the bounded slope of R is not much larger than
Q ∩ 2k R, and then approximate the extension by a parallelogram in R1 ∪R2.

5.1. Proof of Estimate 21. We partition Rδ,σ into subset Rδ,σ, j consisting of all parallelograms in Rδ,σ

such that
C12− j−1

|R| ≤
∑

T∈T(R)

|top(T )|< C12− j
|R|.

We claim that Rδ,σ, j is empty unless j satisfies (5-3) below. Specifically, the number j0 used in the
following display is implicitly defined in (5-3); our present claim justifies that the summation immediately
below should only be over j & j0. This claim together with (5-1) will prove Estimate 21:

Sδ,σ . δσ
∑
j0. j

∑
Rδ,σ, j

2− j
|R|.

∑
j0. j

2− j
|E |σ . |E |σ−εδ−1/2ε

(
|H |
|G|

)1/2

.

It remains to prove the claim. Suppose there is a parallelogram R in R ∈Rσ,δ, j . It has large density as
defined and discussed in [Bateman 2013b], which implies that there is a k ≥ 0 with

|E(2k R)∩G| ≥ 220kδ|2k R|.

Since G is contained in Q, we may approximate Q ∩ 2k R by a parallelogram R′ of R1 ∪R2 and obtain

|E(R′)| ≥ |E(R′)∩G|& 220kδ|R′|. (5-2)



1598 MICHAEL BATEMAN AND CHRISTOPH THIELE

Now suppose first that 2k
≥ σ−ε . By Claim 18 in [Bateman 2013b], and using F ⊂ Q, we obtain

|F ∩ H ∩ R′|
|R′|

&
|F ∩ H ∩ 2k R|
|2k R|

& 2−2k2− jσ 1+ε .

On the other hand, (5-2) implies in particular R′ ∩G 6=∅, which by construction of G (see Section 3)
implies, using k ≥ 1,

2−2k2− jσ 1+ε . (220kδ)−(1/2+ε)
(
|H |
|G|

)1/2

,

2− j . 2− j0 := σ−1−εδ−1/2−ε
(
|H |
|G|

)1/2

. (5-3)

If 2k
≤ σ−ε , we use the variant

|F ∩ H ∩ σ−εR|
|σ−εR|

≥ 2− jσ 1+3ε

of Claim 18 in [Bateman 2013b] to obtain the same conclusion.

5.2. Proof of Estimate 22. By Estimates 19 and 20, we may assume C0δ̃ ≤ δ with C0 as above. Suppose
Tδ,σ is nonempty. Consider a tree T in Tδ,σ and let R ∈Rδ,σ be the associated parallelogram as above.
As above, for some k ≥ 0 we have

|E(2k R)∩G| ≥ 220kδ|2k R|.

Define m so that δ is within a factor of two of C2
02m δ̃ and note that m ≥ 0. Let R′ ∈ R1 ∪R2 be an

approximation of Q ∩max(2k,C02m)R. We then have

|E(R′)∩G| ≥ δ̃|R′|.

By construction, R′ is disjoint from H . Since top(T ) is contained in C0 R, we have that 2mtop(T ) is
contained in R′ ∪ Qc, and the same holds with T replaced by any subtree T ′ of T .

But by Lemma 29 of [Bateman 2013b] with f = 1F∩H , we obtain, with the notation in that lemma for
every subtree T ′ of T ,∑

s∈T ′
|〈 f, φs〉|

2
=

∑
m′≥m

∑
s∈T ′

∣∣〈 f 12m′+1top(T ′)\2m′ top(T ′), φs
〉∣∣2

.
∑

m′≥m

2−4nm′
∥∥ f 12m′+1top(T ′)

∥∥2
2 . 2−2nm

|top(T ′)|.

By the definition of σ(T ), this implies

σ(T )≤ 2−nm,

which in turn implies Estimate 22.
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