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THE CLASSIFICATION OF FOUR-END SOLUTIONS TO THE ALLEN–CAHN
EQUATION ON THE PLANE

MICHAŁ KOWALCZYK, YONG LIU AND FRANK PACARD

An entire solution of the Allen–Cahn equation 1u = f (u), where f is an odd function and has exactly
three zeros at ±1 and 0, for example, f (u) = u(u2

− 1), is called a 2k-end solution if its nodal set
is asymptotic to 2k half lines, and if along each of these half lines the function u looks like the one-
dimensional, heteroclinic solution. In this paper we consider the family of four-end solutions whose ends
are almost parallel at∞. We show that this family can be parametrized by the family of solutions of
the Toda system. As a result we obtain the uniqueness of four-end solutions with almost parallel ends.
Combining this result with the classification of connected components in the moduli space of the four-end
solutions, we can classify all such solutions. Thus we show that four-end solutions form, up to rigid
motions, a one parameter family. This family contains the saddle solution, for which the angle between
the nodal lines is π/2, as well as solutions for which the angle between the asymptotic half lines of the
nodal set is any θ ∈ (0, π/2).

1. Introduction

Some entire solutions to the Allen–Cahn equation in R2. This paper deals with the problem of classifi-
cation of the family of four-end solutions (precise definition will follow) to the Allen–Cahn equation:

1u = F ′(u) in R2. (1-1)

The function F is a smooth double well potential, which means that we assume the following conditions
for F : F is even, nonnegative, and has only two zeros at ±1, F ′(t) 6= 0, t ∈ (0, 1). We also suppose
F ′′(1) 6= 0, F ′′(0) 6= 0. For convenience, we assume that F is such that F ′′(1)= 2. A standard example
is F(u)= 1

4(1− u2)2.
It is known that (1-1) has a solution whose nodal set is a straight line. This will be called a planar

solution. It is obtained simply by taking the unique, odd, heteroclinic solution connecting −1 to 1

H ′′ = F ′(H), H(±∞)=±1, H(0)= 0, (1-2)

and letting u(x, y)= H(ax+by+c) for some constants a, b, c such that a2
+b2
= 1. We note that if a> 0,

then ∂x u = aH ′ > 0. The De Giorgi conjecture says that if u with |u|< 1 is a smooth solution of (1-1)
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such that ∂eu > 0 for a certain fixed direction e, then u must in fact be a planar solution. Indeed, this
conjecture holds in RN , N ≤ 8 (see [Ghoussoub and Gui 1998] when N = 2, [Ambrosio and Cabré 2000]
when N = 3, and [Savin 2009] for 4≤ N ≤ 8 under an additional limit condition), while a counterexample
can be given when N ≥ 9 [del Pino et al. 2011]. It is worth mentioning that the De Giorgi conjecture is a
direct analogue of the famous Bernstein conjecture in the theory of minimal surfaces.

In order to proceed with the statement of our results, we will define the family of four-end solutions of
(1-1), which is a particular example of a more general family of 2k-end solutions [del Pino et al. 2013].
Intuitively, a four-end solution u is characterized by the fact that its nodal set N (u) is asymptotic at
infinity to four half lines, and along each of these half lines it looks locally like the heteroclinic solution.
To describe this precisely, we introduce the set 34 of oriented and ordered four affine lines in R2. Thus
34 consists of 4-tuples (λ1, . . . , λ4) such that each λ j can be uniquely written as

λ j := r j e⊥j +Re j

for some r j ∈ R and some unit vector e j = ( cos θ j , sin θ j ) ∈ S1, which defines the orientation of the
line. Here, the symbol ⊥ refers to the rotation of angle π/2 in R2. Observe that the affine lines are
oriented, and hence we do not identify the line corresponding to (r j , θ j ) and the line corresponding to
(−r j , θ j +π). Additionally we require that these lines are ordered, which means

θ1 < θ2 < θ3 < θ4 < 2π + θ1.

For future purposes we denote by

θλ :=
1
2 min{θ2− θ1, θ3− θ2, θ4− θ3, 2π + θ1− θ4} (1-3)

the half of the minimum of the angles between any two consecutive oriented affine lines of λ1, . . . , λ4.
Assume that we are given a 4-tuple of oriented affine lines λ= (λ1, . . . , λ4). It is easy to check that

for all R > 0 large enough and for all j = 1, . . . , 4, there exists s j ∈ R such that

(i) the point x j := r j e⊥j + s j e j belongs to the circle ∂BR , with R > 0;

(ii) the half lines

λ+j := x j +R+e j (1-4)

are disjoint and included in R2
\ BR;

(iii) the minimum of the distance between two distinct half lines λ+i and λ+j is larger than 4.

The set of affine half lines λ+1 , . . . , λ
+

4 together with the circle ∂BR induces a decomposition of R2

into five slightly overlapping connected components

R2
=�0 ∪�1 ∪ · · · ∪�4,

where

�0 := BR+1,



THE CLASSIFICATION OF FOUR-END SOLUTIONS 1677

and where, for j = 1, . . . , 4,

� j := {x ∈ R2
: |x|> R− 1 and dist(x, λ+j ) < dist(x, λ+i )+ 2 for all i 6= j}, (1-5)

where dist(x, λ+j ) denotes the distance of x to λ+j . Observe that, for all j = 1, . . . , 4, the set � j contains
the half line λ+j .

We consider a smooth partition of unity of R2 given by the functions I0, I1, . . . , I4, which is subordinate
to the above decomposition of R2. Hence

4∑
j=0

I j ≡ 1,

and the support of I j is included in � j for j = 0, . . . , 4. Without loss of generality, we can also assume
that I0 ≡ 1 in

�′0 := BR−1,

and I j ≡ 1 in

�′j := {x ∈ R2
: |x|> R+ 1 and dist(x, λ+j ) < dist(x, λ+i )− 2 for all i 6= j}

for j = 1, . . . , 4. Finally, we assume that

‖I j‖C2(R2) ≤ C.

We now take λ= (λ1, . . . , λ4) ∈34 with λ+j = x j +R+e j and we define

uλ(x) :=
4∑

j=1

(−1) j I j (x)H((x− x j ) · e⊥j ). (1-6)

Observe that, by construction, the function uλ is, away from a compact set, asymptotic to copies of
planar solutions whose nodal set is the affine half lines λ+1 , . . . , λ

+

4 . A simple computation shows that
uλ is not far from being a solution of (1-1) in the sense that 1uλ− F ′(uλ) is a function which decays
exponentially to 0 at infinity (this uses the fact that θλ > 0).

In this paper we are interested in four-end solutions of (1-1), which means that they are asymptotic to
a function uλ for some choice of λ ∈34. More precisely, we have:

Definition 1.1. Let S4 denote the set of functions u which are defined in R2 and which satisfy

u− uλ ∈W 2,2(R2) (1-7)

for some λ ∈34. We also define the decomposition operator J by

J : S4→W 2,2(R2)×34, u 7→ (u− uλ, λ).

The topology on S4 is the one for which the operator J is continuous (the target space being endowed
with the product topology). We define the set M4 of four-end solutions of the Allen–Cahn equation to be
the set of solutions u of (1-1) which belong to S4.
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The set M4 is nonempty. Indeed, it is known [Dang et al. 1992] that (1-1) has a saddle solution U ,
which is bounded and symmetric:

U (x, y)=U (x,−y)=U (−x, y).

Moreover, the nodal set of U coincides with the lines y = ±x . Along these two lines, U converges
exponentially fast to the “heteroclinic” solution. In addition, in [del Pino et al. 2010] it is shown that
there exists a small number ε0 such that, for all 0< θ with tan θ < ε0, there exists a four-end solution
with corresponding angles of the half lines λ+j , j = 1, . . . , 4 given by

θ1 = θ, θ2 = π − θ, θ3 = θ +π, θ4 = 2π − θ.

Observe that the fact that θ is small implies that the ends of this solution are almost parallel and their
slopes, given by ±ε, ε = tan θ , are small as well. Clearly, by symmetry, it is easy to see that there also
exist solutions with almost parallel ends whose angles are given by

θ1 = π/2− θ, θ2 = π/2+ θ, θ3 =−θ + 3π/2, θ4 = 3π/2+ θ.

In this case we have tan θ1 > 1/ε0.
Clearly, any four-end solution can be translated and rotated and multiplied by −1, yielding another

four-end solution. In fact, from [Gui 2012] we know that any u ∈ M4 is (modulo rigid motions and
multiplication of a solution by −1) even in its variables, monotonic in x in the set x > 0, and monotonic
in y in the set y < 0:

u(x, y)= u(−x, y)= u(x,−y), ux(x, y) > 0, x > 0, u y(x, y) > 0, y < 0. (1-8)

Thus, when studying four-end solutions, it is natural to consider the set Meven
4 ⊂M4, consisting precisely

of functions satisfying (1-8). With each such function u we may associate in a unique way the angle that
the asymptotic line of its nodal set in the first quadrant makes with the x-axis. Thus we can define the
angle map

θ : Meven
4 → (0, π/2), u 7→ θ(u). (1-9)

In principle the value of the angle map is not enough to identify in a unique way a solution to (1-1) in
Meven

4 . However, for solutions with almost parallel ends, we have:

Theorem 1.2. There exists a small number ε0 such that, for any two solutions u1, u2 ∈Meven
4 satisfying

tan θ(u1)= tan θ(u2) < ε0, we necessarily have u1 ≡ u2.

This result, in some sense, gives a classification of the subfamily of the family of four-end solutions
which contains solutions with almost parallel ends. It says that this subfamily consists precisely of the
solutions constructed in [del Pino et al. 2010]. Let us explain the importance of this statement from the
point of view of classification of all four-end solutions. We will appeal to the following theorem.

Theorem 1.3 [Kowalczyk et al. 2012]. Let M be any connected component of Meven
4 . Then the angle map

θ : M→ (0, π/2) is surjective.
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Consider, for example, the connected component M0 ⊂Meven
4 which contains the saddle solution U .

Theorem 1.3 implies that U can be deformed along M0 to a solution with the value of the angle map
arbitrarily close to 0 or to π/2, thus yielding a solution in the subfamily of the solutions with almost
parallel ends. But these solutions are uniquely determined by the value of the angle map, which follows
from the uniqueness statement in Theorem 1.2. As a result we obtain the following classification theorem.

Theorem 1.4. Any solution u ∈ Meven
4 belongs to M0 and is a continuous deformation of the saddle

solution U.

We observe that, according to the conjecture of De Giorgi, in two dimensions, any solution u with
|u|< 1 which is monotone in one direction must be one-dimensional and equal to u(x)= H(a · x+ b),
that is, it is a planar solution. In the language of multiple end solutions, this solution has two (heteroclinic,
planar) ends. Theorem 1.4, on the other hand, gives the classification of the family of solutions with four
planar ends. Since the number of ends of a solution to (1-1) must be even, the family of four-end solutions
is the natural object to study. In this context, one may wonder if it is possible to classify solutions to (1-1)
assuming, for instance, that the nodal sets of ux and u y have just one component. This question is beyond
the scope of this paper, however, since partial derivatives of four-end solutions satisfy this assumption,
it seems reasonable to conjecture that a result similar to Theorem 1.4 should hold in this more general
setting. We should mention here that it is, in principle, possible to study the problem of classification of
solutions assuming, for example, that their Morse index is 1. This is natural since the Morse index of u
and the number of the nodal domains of ux and u y are related. We recall here that the heteroclinic is
stable, and, from [Dancer 2005], we know that in dimension N = 2, stability of a solution implies that it
is necessarily a one-dimensional solution (for the related minimality conjecture, see, for example, [Pacard
and Wei 2013; Savin 2009]. We expect that in fact the family of four-end solutions should contain all
multiple end solutions with Morse index 1. We recall here that the Morse index of the saddle solution is
indeed 1 [Schatzman 1995].

Let us now explain the analogy of Theorem 1.4 with some aspects of the theory of minimal surfaces
in R3. In 1834, Scherk discovered an example of a singly periodic, embedded, minimal surface in R3

which, in a complement of a vertical cylinder, is asymptotic to 4 half-planes with angle π/2 between
them. This surface, after a rigid motion, has two planes of symmetry, say {x2 = 0} and {x1 = 0}, and it is
periodic, with period 1 in the x3 direction. If θ is the angle between the asymptotic end of the Scherk
surface contained in {x1 > 0, x2 > 0} and the {x2 = 0} plane, then θ = π/4. This is the so-called second
Scherk surface and it will be denoted here by Sπ/4. Karcher [1988] found Scherk surfaces other than
the original example in the sense that the corresponding angle between their asymptotic planes and the
{x2 = 0} plane can be any θ ∈ (0, π/2). The one parameter family {Sθ }{0<θ<π/2} of these surfaces is
the family of Scherk singly periodic minimal surfaces. Thus, accepting that the saddle solution of the
Allen–Cahn equation U corresponds to the Scherk surface Sπ/4, Theorem 1.3 can be understood as an
analogue of the result of Karcher. We note that, unlike in the case of the Allen–Cahn equation, the Scherk
family is given explicitly. For example, it can be represented as the zero level set of the function

Fθ (x1, x2, x3)= cos2 θ cosh
x1

cos θ
− sin2 θ cosh

x2

cos θ
− cos x3.
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From this, it follows immediately that the angle map in this context Sθ 7→ θ is a diffeomorphism. A
corresponding result for the family Meven

4 is of course more difficult, since no explicit formula is available
in this case.

We will further explore the analogy of our result with the theory of minimal surfaces in R3, now in the
context of the classification of the four-end solutions in Theorem 1.4. The corresponding problem can
be stated as follows: if S is an embedded, singly periodic, minimal surface with 4 Scherk ends, what
can be said about this surface? It is proven by Meeks and Wolf [2007] that S must be one of the Scherk
surfaces Sθ described above (a similar result is proven in [Pérez and Traizet 2007] assuming additionally
that the genus of S in the quotient R3/Z is 0). The key results to prove this general statement are in fact
the counterparts of Theorem 1.2 and Theorem 1.3.

We now sketch the basic elements in the proof of Theorem 1.2. First of all, let us explain the existence
result in [del Pino et al. 2010]. The starting point of the construction is the Toda system:{

q ′′1 =−c∗e
√

2(q1−q2),

q ′′2 = c∗e
√

2(q1−q2),
(1-10)

for which q1 < 0 < q2 and q1(x) = −q2(x), as well as q j (x) = q j (−x), j = 1, 2. Here c∗ is a fixed
constant depending only on F (when F(u)= 1

4(1− u2)2, c∗ = 12
√

2), and
√

2 appears because we have
assumed F ′′(1)= 2. Any solution of this system is asymptotically linear, namely,

q j (x)= (−1) j (m|x | + b)+O(e−2
√

2m|x |), x→∞,

where m > 0 is the slope of the asymptotic straight line in the first quadrant. On the other hand, given
that we only consider solutions whose trajectories are symmetric with respect to the x-axis, the value of
the slope m determines the unique solution of (1-10). When the asymptotic lines become parallel, m→ 0
or m→∞. By symmetry, it suffices to consider the case m→ 0, and in this paper we will denote small
slopes by m = ε and the corresponding solutions by qε, j . Note that if by q1, j we denote a solution with
m = 1, then

qε, j (x)= q1, j (εx)+
(−1) j
√

2
ln

1
ε
.

Then, the existence result in [del Pino et al. 2010] implies that given a small ε, there exists a four-end
solution u to (1-1) whose nodal set N (u) is close to the trajectories of the Toda system given by the
graphs of y = qε, j (x). It turns out that the idea of relating solutions of the Toda system and the four-end
solutions of (1-1) [ibid.] is very important. In fact, what we want to achieve is to parametrize the manifold
of four-end solutions with almost parallel ends using corresponding solutions of the Toda system as
parameters. To do this, in Sections 3–5 we obtain a very precise control of the nodal sets of the four-end
solutions. The key observation is that in every quadrant the nodal set N (u) of any four-end solution is a
bigraph, and if we assume that the slope of its asymptotic lines is small, it is a graph of a smooth function,
both in the lower and in the upper half-plane. We then have

N (u)= {(x, y) ∈ R2
: y = fε, j (x), j = 1, 2, fε,1(x) < 0, fε,2(x)=− fε,1(x)}
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for any u ∈Meven
4 , with ε = tan θ(u). Our main result in Section 4 says that, for each ε small,

fε,1(x)− qε,1(x)= Cεα +O(εαe−εβ|x |)

with some positive constants α, β. Next, we define (Section 6) a suitable approximate four-end solution
based on the solution of the Toda system with slope ε. To explain this, by Ñε,1 we denote the graph of
the function y = qε,1(x), which is contained in the lower half-plane. In a suitable neighborhood of the
curve Ñε,1, we introduce Fermi coordinates x = (x, y) 7→ (x1, y1), where y1 denotes the signed distance
to Ñε,1, and x1 is the x coordinate of the projection of the point x onto Ñε,1. With this notation, we write
locally the solution u, with ε = tan θ(u) in the form

u(x)= H(y1− hε(x1))+φ.

This definition is suitably adjusted to yield a globally defined function. Here the function hε is required
to satisfy an orthogonality condition. Then it is proven in Section 6 that hε : R→ R and φ : R2

→ R are
small functions of order O(εα) in some weighted norms.

Finally, starting on page 1715 we prove the Lipschitz dependence of the solution u on the function hε
and conclude the proof of Theorem 1.2 using the mapping property of the linearized operator of the Toda
equation.

2. Preliminaries

In this section we collect some facts about the Allen–Cahn equation which will be used later on.

Refined asymptotics theorem for four-end solutions. Let H(x) be the heteroclinic solution of the Allen–
Cahn equation. Recall that F ′′(1)= 2. Then it is known that we have asymptotically

H(x)= 1− aF e−
√

2x
+O(e−2

√
2x), H ′(x)= aF

√
2e−
√

2x
+O(e−2

√
2x), x→∞, (2-1)

with similar estimates when x→−∞, where aF is a constant depending on F .
We consider the linearized operator

L0φ =−φ
′′
+ F ′′(H)φ.

It is known that the principal eigenvalue of this operator is µ0 = 0 and the corresponding eigenfunction is
H ′. In general, the operator L0 has possibly infinite, discrete spectrum 0< µ1 < · · · ≤ α

2
0 , and essential

spectrum which is [α2
0,∞), α0 =

√
F ′′(1). It may also happen that L0 has just one eigenvalue, µ0 = 0

and continuous spectrum, in which case we will set µ1 = α
2
0 .

Next, we recall some facts about the moduli space theory developed in [del Pino et al. 2013]. We will
mostly use this theory in the case of four-end solutions. Thus we will restrict the presentation to this
situation only. We keep the notations introduced above. Thus we let

λ= (λ1, . . . , λ4) ∈34,

and we write λ+j = x j +R+e j as in (1-4). We denote by �0, . . . , �4 the decomposition of R2 associated
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to these four affine half lines and I0, . . . , I4 the partition of unity subordinate to this partition. Given
γ, δ ∈ R, we define a weight function 0γ,δ by

0γ,δ(x) := I0(x)+
4∑

j=1

I j (x)eγ (x−x j )·e j (cosh((x− x j ) · e⊥j ))
δ, (2-2)

so that, by construction, γ is the rate of decay or blow up along the half lines λ+j , and δ is the rate of
decay or blow up in the direction orthogonal to λ+j .

With this definition in mind, we define the weighted Lebesgue space

L2
γ,δ(R

2) := 0γ,δL2(R2), (2-3)

and the weighted Sobolev space

W 2,2
γ,δ (R

2) := 0γ,δW 2,2(R2). (2-4)

Observe that, even though this does not appear in the notation, the partition of unity, the weight function,
and the induced weighted spaces all depend on the choice of λ ∈34.

Our first result shows that, if u is a solution of (1-1) which is close to uλ (in W 2,2 topology), then
u− uλ tends to 0 exponentially fast at infinity.

Proposition 2.1 (refined asymptotics). Assume that u ∈ S4 is a solution of (1-1) and define λ ∈34, so
that

u− uλ ∈W 2,2(R2).

Then there exist δ ∈ (0, α0), α0 =
√

F ′′(1) and γ > 0 such that

u− uλ ∈W 2,2
−γ,−δ(R

2). (2-5)

More precisely, δ > 0 and γ > 0 can be chosen so that

γ ∈ (0,
√
µ1), γ 2

+ δ2 < α2
0 and α0 > δ+ γ cot θλ, (2-6)

where θλ is equal to the half of the minimum of the angles between two consecutive oriented affine lines
λ1, . . . , λ4 (see (1-3)), and µ1 is the second eigenvalue of the operator L0 (or µ1 = α

2
0 if 0 is the only

eigenvalue).

We recall here that in this paper for convenience we have assumed α0 =
√

F ′′(1)=
√

2.
It is well known that for any solution of (1-1) the following is true: if by N (u) we denote the nodal set

of u and by d(N (u), x) the distance of x to N (u), then

|u(x)2− 1| + |∇u(x)| + |D2u(x)| ≤ Ce−βd(N (u),x), (2-7)

where β > 0. This type of estimate is relatively easy to obtain using a comparison argument; see
[Berestycki et al. 1997; Kowalczyk et al. 2012]. On the other hand, the estimate (2-5) is nontrivial.
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The balancing formulas. We will now briefly describe the balancing formulas for four-end solutions in
the form they were introduced in [del Pino et al. 2013]. Assume that u is a solution of (1-1) which is
defined in R2. Assume that X and Y are two vector fields also defined in R2. In coordinates, we can write

X =
∑

j

X j∂x j , Y =
∑

j

Y j∂x j ,

and, if f is a smooth function, we use the notations

X ( f ) :=
∑

j

X j∂x j f, ∇ f :=
∑

j

∂x j f ∂x j , div X :=
∑

i

∂xi X i ,

and
d∗X := 1

2

∑
i, j

(∂xi X j
+ ∂x j X i ) dxi ⊗ dx j ,

so that
d∗X (Y, Y )=

∑
i, j

∂xi X j Y i Y j .

We will need the following balancing formula, which is proved by direct computation:

div
((1

2 |∇u|2+ F(u)
)
X − X (u)∇u

)
=
( 1

2 |∇u|2+ F(u)
)

div X − d∗X (∇u,∇u). (2-8)

Translations of R2 correspond to the constant vector field

X := X0,

where X0 is a fixed vector, while rotations correspond to the vector field

X := x∂y − y∂x .

In either case, we have div X = 0 and d∗X = 0. Therefore, we conclude that

div
(( 1

2 |∇u|2+ F(u)
)
X − X (u)∇u

)
= 0

for these two vector fields. The divergence theorem implies that∫
∂�

((1
2 |∇u|2+ F(u)

)
X − X (u)∇u

)
· ν ds = 0, (2-9)

where ν is the (outward pointing) unit normal vector field to ∂�.
To see how this identity is applied let us fix a unit vector e ∈ R2 and let X = e. For any s ∈ R we

consider a straight line Ls = {x ∈ R2
: x = se+ te⊥, t ∈ R}. Then we get∫

Ls

[1
2 |∇u|2− |∇u · e|2+ F(u)

]
dS = const

for any 4 end solution u of (1-1), as long as the direction of Ls does not coincide with that of any end,
that is, e 6= e j , j = 1, . . . , 4. In a particular case e= (0, 1) we get a Hamiltonian identity [Gui 2008]:∫

y=s

[ 1
2(∂x u)2− 1

2(∂yu)2+ F(u)
]

dx = const. (2-10)
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Summary of the existence result for small angles in [del Pino et al. 2010]. To state the existence result
precisely, we assume that we are given an even symmetric solution of the Toda system (1-10) represented
by a pair of functions q1(t) < 0< q2(t), where q1(t)=−q2(t) as well as q1(t)= q1(−t). In addition let
us assume that the slope of q1 at∞ is −1. Then, asymptotically we have

q j (x)= (−1) j (|x | + b)+O(e−2
√

2|x |), x→∞.

Given ε > 0, we define the vector valued function qε, whose components are given by

q j,ε(x) := q j (εx)+
(−1) j
√

2
ln

1
ε
. (2-11)

It is easy to check that the q j,ε are again solutions of (1-10).
Observe that, according to the asymptotic description of the functions q j , the graphs of the functions

q j,ε are asymptotic to oriented half lines with slopes ±ε at infinity. In addition, for ε > 0 small enough,
these graphs are disjoint and in fact their mutual distance is given by

√
2 ln 1

ε
+O(1) as ε tends to 0.

It will be convenient to agree that χ+ (respectively χ−) is a smooth cutoff function defined on R

which is identically equal to 1 for x > 1 (respectively for x <−1) and identically equal to 0 for x <−1
(respectively for x > 1), and additionally χ−+χ+ ≡ 1. With these cutoff functions at hand, we define
the four-dimensional space

D := Span{x 7→ χ±(x), x 7→ xχ±(x)}, (2-12)

and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C
2,µ
τ (R) of C2,µ functions r which satisfy

‖r‖
C
`,µ
τ (R)
:= ‖(cosh x)τr‖C`,µ(R) <∞.

Theorem 2.2. For all ε > 0 sufficiently small, there exists an entire solution uε of the Allen–Cahn equation
(1-1) whose nodal set is the union of 2 disjoint curves 0̃1,ε, 0̃2,ε which are the graphs of the functions

x 7→ q j,ε(x)+ r j,ε(εx)

for some functions r j,ε ∈ C
2,µ
τ (R)⊕ D satisfying

‖r j,ε‖C
2,µ
τ (R)⊕D ≤ Cεα

for some constants C, α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one parameter family of four-end
solutions of (1-1) which depend on a small parameter ε > 0. As ε tends to 0, the nodal sets of the solutions
we construct become close to the graphs of the functions q j,ε.

Going through the proof, one can be more precise about the description of the solution uε. If 0 ⊂ R2

is a curve in R2 which is the graph over the x-axis of some function, we denote by Y( · , 0) the signed
distance to 0 which is positive in the upper half of R2

\0 and is negative in the lower half of R2
\0.
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Proposition 2.3. The solution of (1-1) provided by Theorem 2.2 satisfies

‖eεα̂|x|(uε − u∗ε)‖L∞(R2) ≤ Cεᾱ

for some constants C, ᾱ, α̂ > 0 independent of ε, where x = (x, y) and

u∗ε =
2∑

j=1

(−1) j+1 H(Y( · , 0̃ j,ε))− 1, (2-13)

in the set

V =
{
(x, y) : |y| ≤ Cε−1

√
1+ x2

}
,

with some positive constant C (depending on 0̃ j,ε), and outside of this set u∗ is defined by smoothly
interpolating with 1 in the upper half-plane and with −1 in the lower half-plane.

3. The nodal sets of solutions

After a rigid motion, any four-end solution is even symmetric [Gui 2012], and thus we will always consider
solutions in Meven

4 which in particular satisfy (1-8). Note that Meven
4 is a one-dimensional manifold, possibly

with more than one connected component. For any solution u ∈Meven
4 , the angle map θ(u) is defined

to be the asymptotic angle at∞ between the nodal set of u in the first quadrant and the x-axis. By the
results proven in [Kowalczyk et al. 2012], the angle map on any connected component of the moduli
space Meven

4 of four-end, even solutions is surjective, and in particular it contains solutions whose nodal
lines are almost parallel (θ(u)≈ 0 or π/2− θ(u)≈ 0).

By N (u) we will denote in this paper the nodal set of u ∈Meven
4 . We are interested in solutions whose

nodal lines are almost parallel at∞, and, by symmetry, we can restrict our considerations to the case
θ(u)≈ 0. In this case N (u) will consist of two components, one of them is a graph of a smooth function
in the lower half-plane and the other one is contained in the upper half-plane.

Basic properties of solutions with almost parallel ends. It is expected that as θ(u)→ 0, the distance
between the upper and the lower nodal line of u will tend to infinity. This is the content of Lemma 3.1
below. In the sequel we will denote the first quadrant in R2 by Q1.

Lemma 3.1. Suppose {un}
∞

n=1 is a sequence of four-end solutions such that θ(un)→ 0 and pn ∈ N (un)∩

∂Q1. Then |pn| → +∞, as n→+∞. Moreover, pn is point on the y axis for n large.

Proof. To show that |pn| →∞, we suppose by contradiction that pn→ p∗, |p∗| <∞. We know that,
up to a subsequence, un converges in C2

loc(R
2) to a solution u∗ of the Allen–Cahn equation. By similar

arguments as in [Kowalczyk et al. 2012, Lemma 5.1], we know that u∗ cannot be identically zero. Since
|p∗| <∞, u∗ cannot be the constant solution 1 or −1. Therefore, by the maximum principle, u∗x > 0,
x > 0, u∗y < 0, y > 0. Then, by [Gui 2008, Theorem 4.4], u∗ must be a solution to (1-1), whose nodal set
in the first quadrant is asymptotically a straight line with positive slope equal to tan θ∗ 6= 0. It can also
be proven using the refined asymptotic theorem (Proposition 2.1), that u∗ ∈Meven

4 . By the Hamiltonian
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identity, ∫
R

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx = 2eF sin θ(un)→ 0, (3-1)

where eF =
∫

R
(H ′)2. But on the other hand, for any fixed r > 0,∫ r

−r

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx→
∫ r

−r

(
1
2

∣∣∣∣∂u∗(x, 0)
∂x

∣∣∣∣2+ F(u∗(x, 0))
)

dx > δ > 0.

This is a contradiction.
It remains to show that pn is in the y axis when n is large enough. To this end, we argue by contradiction

and assume that pn is in the x axis for large n. Observe that as pn goes to infinity, locally around the
nodal line, un will resemble the heteroclinic solution. Therefore, for any ε > 0, if n is large enough,∫

R

(
1
2

∣∣∣∣∂un(x, 0)
∂x

∣∣∣∣2+ F(un(x, 0))
)

dx > 2eF − ε.

But on the other hand, by (3-1), the left side is equal to 2eF sin θ(un), which tends to zero. This is a
contradiction. �

We know that when the angle of un is small, the nodal set N (un) in the upper half-plane is a graph of
a smooth function y = fn(x). For this function, we have the following.

Lemma 3.2. Suppose {un} is a sequence of solutions in Meven
4 such that θ(un)→ 0, as n→∞. We have

lim
n→+∞

‖ f ′n‖C0(R) = 0.

Proof. Using the monotonicity of un in the upper half-plane and the validity of the De Giorgi conjecture
in dimension 2, one can show that, for any r > 0,

lim
n→+∞

‖ f ′n‖C0([−r,r ]) = 0.

Now, we claim that for each δ > 0, there exists r(δ) > 0 such that

| f ′n(x)− tan θ(un))|< δ for all x > r(δ) and n ∈ N.

Indeed, if this were not true, then, using the fact that

lim
x→+∞

f ′n(x)= tan θ(un)→ 0 as n→+∞,

we could find sequences {nk}, {xk}, {yk}, all tending to infinity and xk < yk , such that

δ

4
≤ | f ′nk

(x)| ≤ C, x ∈ [xk, yk],

and

| f ′nk
(xk)− f ′nk

(yk)| =
δ

2
. (3-2)
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Now we consider two lines L1,nk and L2,nk with slopes −1 passing though the points (xk, fnk (xk)) and
(yk, fnk (yk)), respectively. Note that since the nodal lines N (unk ) are bigraphs, the lines L i,nk must be
transversal to N (unk ) at their points of intersection.

Next, consider the domain �nk ⊂ Q1 bounded by the two axes and the lines L i,nk , i = 1, 2. Let X be
the vector field (0, 1). The balancing formula (2-9) tells us∫

∂�nk

((1
2 |∇unk |

2
+ F(unk )

)
X − X (unk )∇unk

)
· ν dS = 0.

Note that the integral over the segment ∂�nk ∩{x = 0} is automatically 0 by the choice of the vector field
X and the evenness of unk .

Following similar arguments as in [Kowalczyk et al. 2012, Lemma 5.2], one can show suitable
exponential decay of |un| − 1 along the x axis, and it follows that, as k→+∞,∫

∂�nk∩{y=0}
((1

2 |∇unk |
2
+ F(unk ))X − X (unk )∇unk ) · ν dS→ 0. (3-3)

Now we estimate the integrals along the segments ∂�nk ∩ L i,nk . For this purpose it is convenient to
denote

α1,nk = arctan f ′nk
(xk), α2,nk = arctan f ′nk

(yk),

and

e⊥1,nk
= (sinα1,nk ,−cosα1,nk ).

By the validity of the De Giorgi conjecture in dimension 2, we know that locally around (xk, fnk (xk)),
as k goes to infinity, the function unk converges to

H(e⊥1,nk
· (x − xk, y− fnk (xk)).

Moreover, by (2-7), on the segment ∂�nk ∩ L1,nk ,

|u2
nk
(x)− 1| + |∇unk (x)| ≤ Ce−β|xk−x |, x = (x, y).

Similar results hold around (yk, fnk (yk)). Using these facts, after some calculation, we get∫
∂�nk∩L i,nk

((1
2 |∇unk |

2
+ F(unk )

)
X − X (unk )∇unk

)
· ν dS = (−1)i+1 sinαi,nk eF + o(1),

where o(1) is a term that goes to 0 as k→+∞. Combining all the above estimates, we infer

sinα1,nk − sinα2,nk = o(1),

which is a contradiction. �



1688 MICHAŁ KOWALCZYK, YONG LIU AND FRANK PACARD

A refinement of the asymptotic behavior of the nodal set. Let u be a four-end solution with small angle
θ(u). We set ε = tan θ(u) and, for simplicity, use ε as a small parameter. To obtain more precise
information about this solution, our first step is to define a good approximate solution and estimate the
corresponding error term. As we will see later, this enables us to know more precisely the behavior of the
nodal lines.

The nodal set N (u) in the lower half-plane is the graph of a function y = f (x). Strictly speaking the
function f depends on u, but we will not indicate this dependence. We have shown that ‖ f ′‖C0(R)→ 0
as θ(u)→ 0. Recall that by the validity of the De Giorgi conjecture in dimension 2, locally around the
nodal line, u behaves like the heteroclinic solution. Using this fact and that u(x, f (x)) = 0, it is not
difficult to show that ‖ f ′‖C1(R)→ 0 as θ(u)→ 0. For future reference, we finally observe that, in general,
N (u)∩ Q1 is at least a C3(R) function and, bootstrapping the above argument, it is not hard to show that
‖ f ′‖C2(R) = o(1) as θ(u)→ 0.

To fix attention, we will always work with the solution whose nodal lines have a small slope ε= tan θ(u)
at∞. This means that these lines are asymptotically parallel, as ε→ 0, to the x axis, and one of them is
contained in the lower half-plane and the other in the upper half-plane. We know that they are symmetric
with respect to the x axis. In the sequel it will be convenient to denote the component of the nodal set
N (u) in the lower half-plane by Nε,1, and the one in the upper half-plane by Nε,2. Due to the evenness of
u, the nodal lines are obviously graphs of some even functions: Nε,i = {(x, y)|y = fε,i (x)}.

To introduce the functional analytic tools used in this paper, we first define the weight functions

Wa(x) := (cosh x)a, x = (x, y), a ≥ 0.

For `= 0, 1, 2, let C
`,µ
a (R2) :=W−1

a C`,µ(R2), endowed with the weighted norm

‖φ‖
C
`,µ
a (R2)

:= sup
x∈R2

Wa(x)‖φ‖C`,µ(B(x,1)).

Likewise, we let W a(x)= (cosh x)a and define the weighted space C
`,µ
a (R) by

‖ f ‖
C
`,µ
a (R)
:= sup

x∈R

W a(x)‖ f ‖C`,µ((x−1,x+1)).

In what follows we will measure the size of various functions involved in the C
2,µ
a (R2), and in the C

2,µ
a (R)

norms. Mostly we will have µ ∈ (0, 1), a ∼ ε, or a = 0.

Remark 3.3. In this paper, we will frequently estimate the usual C`,µ norm, as well as the C
`,µ
a norm

(a ∼ ε) of various functions. In many cases, the argument for the weighted norms and the usual C`,µ

norm is almost identical. Therefore, for notational convenience, the symbol C
`,µ
a , with a = 0, will just

denote the space C`,µ, rather than the space of compactly supported functions.

Let us recall that a four-end solution u is asymptotic to a model solution uλ defined in the introduction.
Using Proposition 2.1, we know that u− uλ ∈ W 2,2

−ετ0,−δ
(R2) with some small τ0 > 0 and δ > 0, which

can be chosen independent of the small parameter ε. It follows that

u− uλ ∈ C2,µ
ετ0
(R2). (3-4)
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To see this, we denote by e the asymptotic direction of the end of u in Q1. Then, by definition of the
weight function 0ετ0,δ in (2-2), taking R large, we see that when δ ≥ ετ0,

0ετ0,δ(x)∼ (cosh((x− xε,1) · e))ετ0(cosh((x− xε,1) · e⊥))δ ≥ C(cosh x)ετ0, x ∈ Q1 \ BR.

From this, u − uλ ∈ C
0,µ
ετ0 (R

2) follows immediately. This estimate can be bootstrapped to yield the
C

2,µ
ετ0 (R

2) estimate as claimed.
Additionally, using (3-4) and the fact that u(x, fε,2(x))= 0, we get that, with some constant Aε,

H(( fε,2(x)− εx −Aε) cos(θ(u)))= O
C

2,µ
ετ0 (R)

(e−ετ0|x |), x→+∞, (3-5)

from which one can show

‖ fε,2− ε|x | −Aε‖C
0,µ
ετ0 (R)
+‖ f ′ε,2− ε sign(x)‖

C
0,µ
ετ0 (R)
+‖ f ′′ε,2‖C

0,µ
ετ0 (R)

<∞. (3-6)

Fermi coordinates near the nodal lines. We will now describe some neighborhoods of the nodal lines
Nε,i , i = 1, 2, where one can define the Fermi coordinates of x ∈ R2 as the unique (xi , yi ) such that

x = (xi , fε,i (xi ))+ yi nε,i (xi ), nε,i (x) :=
(− f ′ε,i (x), 1)√
1+ ( f ′ε,i (x))2

.

We will first find a large, expanding neighborhood of Nε,i in which the map x 7→ (xi , yi ) is a diffeomor-
phism. Because of symmetry, it suffices to consider a neighborhood of Nε,1.

We define the (multivalued) projection of a point x ∈ R2 onto Nε,1 to be the set of points that realize
the distance between x and Nε,1:

πε,1(x) := {(x1, fε,1(x1)) : dist(x, (x1, fε,1(x1)))= dist(x,Nε,1)}.

Let (−m̄ε(x1), m̄ε(x1)) be the maximal interval where the projection function is single valued:

m̄ε(x1) := sup{m : πε,1((x1, fε,1(x1))+ tnε,1(x1))= (x1, fε,1(x1)) for |t | ≤ m}.

In a certain sense, we can regard the function m̄ε as the measure of the size of the maximal neighborhood
of Nε,1 where the Fermi coordinate could be defined. Finally, for technical reasons, for any x1 ∈ R, let us
define

mε(x1) :=min
{

1
√

| f ′′ε,1(x1)|
, m̄ε(x1)

}
.

Lemma 3.4. Let τ be 0 or τ0. Then there exists a constant C0 such that

e−mε(x)(cosh x)ετ ≤ C0‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). (3-7)

Proof. Given x1 ∈ R, if mε(x1)= 1/
√

| f ′′ε,1(x1)|, then

e−mε(x1)(cosh x1)
ετ
≤ C | f ′′ε,1(x1)|

2(cosh x1)
ετ
≤ C‖ f ′′ε,1‖C0

ετ (R)
‖ f ′′ε,1‖C0(R).

Therefore estimate (3-7) holds in this case.
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If mε(x1) < 1/
√

| f ′′ε,1(x1)| by definition mε(x1) = m̄ε(x1), and therefore one could find points x1 =

(x1, fε,1(x1)), x2 = (x2, fε,1(x2)), and x0 with x1, x2 ∈ πε,1(x0) and

‖x0− x1‖ = ‖x0− x2‖ = mε(x1).

In particular, x j , j = 1, 2 lie on the circle S whose center is x0.
We observe that, by the choice of x0, the distance from x0 to Nε,1 is mε(x1), and therefore Nε,1 is

tangent with S at x1 and x2. Since Nε,1 is a graph, it is easy to see that the shorter arc of S between x1

and x2 is the graph of a function y = g(x), x ∈ [x1, x2].
Now an elementary calculation yields

min
x∈[x1,x2]

|g′′(x)| ≥
1

mε(x1)
.

On the other hand,
|g′(x2)− g′(x1)| = | f ′ε,1(x2)− f ′ε,1(x1)|.

Therefore, one can find a point x3 = (x3, fε,1(x3)) ∈ Nε,1, with x3 ∈ [x1, x2], which satisfies

| f ′′ε,1(x3)| ≥ min
x∈[x1,x2]

|g′′(x)| ≥
1

mε(x1)
. (3-8)

Observe that x3 ∈ (x1− 2mε(x1), x1+ 2mε(x1)). Therefore, as ε is small,

e−mε(x1)(cosh x1)
ετ
≤ Ce−mε(x1)e2mε(x1)ετ (cosh x3)

ετ

≤ e−(1/2)mε(x1)(cosh x3)
ετ .

Then, using (3-8), we also get the desired estimate:

e−mε(x1)(cosh x1)
ετ
≤ e−1/(2| f ′′ε,1(x3)|)(cosh x3)

ετ

≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). �

By the above lemma, we know that mε satisfies

mε(x)≥ ετ ln cosh x − ln(C0‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R)),

where τ is either 0 or τ0, and, in particular, when τ = 0,

mε(x)≥− ln(C0‖ f ′′ε,1‖
2
C0(R)

).

Now we set

d̂ε(x)=max{ετ0 ln cosh x − ln(C0‖ f ′′ε,1‖C0
ετ0
(R)‖ f ′′ε,1‖C0(R)),− ln(C0‖ f ′′ε,1‖

2
C0(R)

)}− 1.

Recall that ‖ f ′′ε,1‖C0(R)→ 0 as ε→ 0. Therefore d̂ε(x) is positive. Modifying d̂ε(x) in a neighborhood of
the point where it is not smooth, we get a smooth positive function dε(x) satisfying dε(x)≤ d̂ε(x)+ 1

2 ,
‖d′ε‖C1(R) ≤ C , and a similar estimate as (3-7):

e−dε(x)(cosh x)ετ ≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R). (3-9)
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With this choice, the change of variables x = (x, y)= xε,1(x1, y1) given by

(x1, y1) 7→ (x1, fε,1(x1))+ y1nε,1(x1)= (x, y)

is a diffeomorphism in the set {(x1, y1) : |y1|< dε(x1)}. Denote the corresponding neighborhood of Nε,1

by O1. Note that the transformation xε,1 is given explicitly by

x = x1−
f ′ε,1(x1)

√

1+ ( f ′ε,1(x1))
2

y1, y = fε,1(x1)+
y1

√

1+ ( f ′ε,1(x1))
2
. (3-10)

Similarly, for the graph of y = fε,2(x) = − fε,1(x), which is the symmetric image Nε,2 of Nε,1 with
respect to the x axis in the upper half-plane one can associate a Fermi coordinate (x2, y2)∈R× (−dε, dε),
in O2, which is the symmetric image of O1 defined above, and y2 is the signed distance, positive in the
upper part of Nε,2. Also, we use xε,2 to denote the corresponding diffeomorphism

(x2, y2) 7→ (x2, fε,2(x2))+ y2nε,2(x2).

Furthermore, for any function w : Oi → R, we will define its pullback by xε,i by setting (x∗ε,iw)(xi , yi )=

w ◦ xε,i (xi , yi ).

4. Asymptotic profile of a solution near its nodal line

An approximate solution of (1-1). We will now define an approximate solution to (1-1) which accounts
accurately for the asymptotic behavior of the true solution as ε→ 0. We will use the nodal lines Nε,i as
the point of departure and will base our construction on the neighborhoods Oi , which are expanding as
x→∞.

To be precise, we let ηi be a smooth cutoff function satisfying ηi (x)= 0, x 6∈ Oi , and ηi (x)= 1 for any
point x ∈ Oi such that dist(x, ∂Oi ) > 1. Moreover, ηi could be chosen in such a way that ‖ηi‖C3(R2) ≤ C .
We will use (xi , yi ) to denote the Fermi coordinates associated to Nε,i , i = 1, 2. Finally, we introduce an
unknown function hε : R→ R, which a priori is of class C3, and we let Hε,1 : R2

→ R be a C3 function
that, outside of O1, is equal to 1 (above Nε,1) and −1 (below Nε,1), and otherwise is given by

(x∗ε,1 Hε,1)(x1, y1)= (x∗ε,1η1)H(y1− hε(x1))+ (1− x∗ε,1η1)
H(y1− hε(x1))

|H(y1− hε(x1))|
. (4-1)

Furthermore, we define

Hε,2(x, y)=−Hε,1(x,−y), ūε = Hε,1− Hε,2− 1.

The function hε is called the modulation function and it will be defined (Lemma 5.1) through the
orthogonality condition: ∫

R

x∗ε,i [(u− ūε)ρε,i H ′ε,i ] dyi = 0 for all xi ∈ R,

where
(x∗ε,i H ′ε,i )(xi , yi )= (x∗ε,iηi )H ′(yi − (−1)i+1hε(xi )), i = 1, 2,
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and the smooth cutoff functions ρε,i are defined by

(x∗ε,iρε,i )(xi , yi )= ρ(yi − (−1)i+1hε(xi )),

where ρ is an even function satisfying

ρ(t)=


1, |t | ≤min{dε(0), fε,2(0)}− 2,
0, |t | ≥min{dε(0), fε,2(0)}− 1,
0< ρ < 1, otherwise.

The proof of existence of the modulation function hε will be given later on, but, anticipating it, we
observe that due to the exponential decay in x of the functions involved, we have hε ∈ C

2,µ
ετ (R), and in

fact we will show

‖hε‖C
2,µ
ετ (R)
≤ Cε2. (4-2)

If we let φ = u− ūε, we have

L ūεφ := −1φ+ F ′′(ūε)φ = E(ūε)− P(φ),

where E(ūε)=1ūε−F ′(ūε) and P(φ)= F ′(ūε+φ)−F ′(ūε)−F ′′(ūε)φ. Our first result is the following.

Proposition 4.1. Let τ be 0 or τ0. For all µ ∈ (0, 1), the following estimate holds:

‖hε‖C
2,µ
ετ (R)
+‖φ‖C2,µ

ετ (R2)
+‖ f ′′ε,1‖C

0,µ
ετ (R)
≤ Cε2.

The proof of this proposition, which is based on the a priori estimates for the linear operator L ūε and
careful estimates of the error E(ūε) of the approximation function is postponed for now and will be given
in Section 5. However, it is not hard to show that, a priori, we have ‖φ‖C0(R2) = o(1) as ε→ 0. A proof
of this fact is based on the validity of the De Giorgi conjecture in R2.

Precise asymptotics of the nodal lines. The point of this section is to describe precisely, and in particular
uniformly as ε→ 0, estimates for the function fε,i . Our curve of reference will be given by a solution of
the Toda system: {

q ′′1 =−c∗e
√

2(q1−q2),

q ′′2 = c∗e
√

2(q1−q2),
(4-3)

for which q1(x)=−q2(x), as well as q j (x)= q j (−x), j = 1, 2, and

c∗ =
aF
∫

R
[F ′′(1)− F ′′(H(y))]H ′(y)e

√
2y dy∫

R
(H ′(y))2 dy

.

Here aF is the constant appearing in the asymptotic expansion (2-1) of H . Keep in mind that we have
assumed for convenience F ′′(1)= 2.

To find all solutions to (4-3) with the properties described above, we only need to solve

q ′′1 =−c∗e2
√

2q1 (4-4)
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in the class of even functions. It is easy to see that solutions of (4-4) form a one parameter family, and
each solution of this family has asymptotically linear behavior. In fact this family can be parametrized by
the slope of the asymptotic line. To describe this family precisely, let us consider the unique solution
U0(x) of (4-4), whose slope at∞ is −1. We have explicitly

U0(x)=
1

2
√

2
ln

√
2

c∗ cosh2(
√

2x)
. (4-5)

Asymptotically, as |x | →∞, we have

U0(x)=−|x | + b0+O(e−2
√

2|x |),

where b0 is a fixed constant. Then the family of solutions can be written as

qε,1(x)=U0(εx)−
1
√

2
ln

1
ε
.

Thus, given the nodal line Nε,1 of a solution u, with ε = tan θ(u), by qε,1 we will denote the solution of
(4-4) whose slope at infinity is −ε. Respectively, we set

qε,2 =−qε,1.

We will denote by Ñε,1 the curve y = qε,1(x) in the lower half-plane and by Ñε,2 the graph of y = qε,2( · ).
The hope is that the nodal set in the lower half plane of a four-end solution u, with ε = tan θ(u) small,
and Ñε,1 should be close to each other. To quantify this, we state the next result.

Proposition 4.2. Let u be a four-end solution of (1-1) such that ε = tan θ(u) is small, let Nε,1 be the
nodal line of this solution in the lower half-plane, given as the graph of the function y = fε,1(x), and let
hε ∈ C2,µ(R) be the modulation function described above. Then there exist α, τ̂ > 0 and a constant jε,
with | jε| ≤ Cεα, such that the following estimates hold for the function ωε,1 := fε,1+ hε + jε − qε,1:

‖ωε,1‖C0
ετ̂
(R) ≤ Cεα,

‖ω′ε,1‖C0
ετ̂
(R) ≤ Cε1+α,

‖ω′′ε,1‖C
0,µ
ετ̂
(R)
≤ Cε2+α.

(4-6)

This proposition is the main technical tool needed to prove the uniqueness and will be proven in the
next section.

5. Proof of Propositions 4.1 and 4.2

We recall that by definition hε is required to be such that the following orthogonality condition is satisfied:∫
R

x∗ε,i [(u− ūε)ρε,i H ′ε,i ] dyi = 0 for all xi ∈ R, i = 1, 2. (5-1)

We will refer to hε as the modulation function, and we keep in mind that hε is required to be small. Our
first objective is to show that the modulation function hε indeed exists.
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Lemma 5.1. For each sufficiently small ε there exists a function hε ∈ C3(R) such that (5-1) holds.

Proof. To find hε such that the orthogonality condition (5-1) is satisfied, we first replace the function hε in
the definition of the functions Hε,1 and Hε,2 by two undetermined, bounded functions hε,1 and hε,2. More
precisely, given a function hε,2 in a suitable function space, we have a function Hε,2 which, in the Fermi
coordinate (x2, y2), is equal to H(y2+hε,2(x2)), at least near Nε,2. Given this, we want to find the function
hε,1, corresponding to the modulation of the nodal line Nε,1 such that, for the resulting approximate
function Hε,1, the orthogonality condition (5-1) is satisfied for i = 1. So far the orthogonality condition
for i = 2 still may not hold. However, if it happens that hε,2 = hε,1, then, by symmetry, the orthogonality
condition is also satisfied for i = 2 and this will yield the desired modulation function hε. To find an
hε,2 such that hε,1 = hε,2, we will use a fixed point argument. Now we give more details for this strategy.

Obviously, ∫
R

x∗ε,1[ūερε,1 H ′ε,1] dy1 =−

∫
R

x∗ε,1[(Hε,2+ 1)ρε,1 H ′ε,1] dy1.

This identity suggests that we should consider the function

kε(s, x1) :=

∫
R

ρ(y1− s)H ′(y1− s)x∗ε,1(u+ Hε,2+ 1)(x1, y1) dy1, s, x1 ∈ R.

Note that the orthogonality condition (5-1) for i = 1 is equivalent to kε(s, x1)= 0 with s = hε,1(x1). Let
us calculate

−∂skε(s, x1)=

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]x∗ε,1(u+ Hε,2+ 1)(x1, y1) dy1

=

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]H(y1) dy1︸ ︷︷ ︸
l1

+

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)]x∗ε,1(Hε,2+ 1)(x1, y1) dy1︸ ︷︷ ︸
l2

+

∫
R

[ρ ′(y1− s)H ′(y1− s)+ ρ(y1− s)H ′′(y1− s)][x∗ε,1u(x1, y1)− H(y1)] dy1︸ ︷︷ ︸
l3

.

Fix a small constant a. It is easy to see that there exists constant δ > 0, independent of ε, such that l1 > δ

for s ∈ (−a, a). Obviously, the second term l2 tends to 0 as ε→ 0. Moreover, since u converges locally
as ε→ 0 to the heteroclinic solution, we have

l3→ 0 as ε→ 0.

Therefore ∂skε(s, x1) > δ/2 for s ∈ (−a, a), and x1 ∈ R, when ε is small enough.
Next let us write
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kε(s, x1)=

∫
R

ρ(y1− s)H ′(y1− s)H(y1) dy1︸ ︷︷ ︸
l4

+

∫
R

ρ(y1− s)H ′(y1− s)x∗ε,1(Hε,2+ 1)(x1, y1) dy1︸ ︷︷ ︸
l5

+

∫
R

ρ(y1− s)H ′(y1− s)[x∗ε,1u(x1, y1)− H(y1)] dy1︸ ︷︷ ︸
l6

.

We have
l4(s)= s

∫
R

ρ(y1)(H ′(y1))
2 dy1+ b(s), b(s)∼ s2, (5-2)

while
l5, l6→ 0, ε→ 0. (5-3)

Hence, taking a smaller if necessary, we may assume kε(a, x1) > 0 and kε(−a, x1) < 0 for small ε.
This together with the monotonicity of kε ensures the existence of hε,1, which fulfills the orthogonality
condition (5-1) for i = 1 and fixed hε,2.

The above argument implies that, for any hε,2 ∈ C0(R), ‖hε,2‖C0(R) < a, we have a nonlinear map T
defined by hε,2 7→ hε,1. The map T satisfies

T B(0, a)⊂ B(0, a), B(0, a)= {h ∈ C0(R) : ‖h‖C0(R) < a}.

The proof that T is a contraction map is standard and is omitted. At the end we obtain the existence of
a fixed point hε = hε,1 = hε,2.

One can verify that although hε,2 is only of class C0, the function kε is of class C1. Therefore, by the
implicit function theorem, hε is also of class C1. It then follows that kε is C2. Therefore the regularity
of hε can be bootstrapped. This ends the proof. �

Corollary 5.2. The modulation function hε satisfies

‖hε‖C2,µ(R) = o(1), ε→ 0. (5-4)

We also have hε ∈ C
2,µ
ετ (R).

Proof. The fact that ‖hε‖C0(R) tends to 0 as ε→ 0 essentially follows from (5-2) and (5-3). Then the
same can be shown for the higher order derivatives. Once the existence of small hε is established, one
can again use (5-2) and the fact that, a priori, u ∈ C

2,µ
ετ (R

2) to show that hε ∈ C
2,µ
ετ (R). �

Now let us recall that for a four-end solution with small angle, we have written u = ūε + φ. The
linearization of the Allen–Cahn equation around ūε is L ūε =−1+ F ′′(ūε). The function φ satisfies

L ūεφ =1ūε − F ′(ūε)− P(φ), (5-5)

and
P(φ)= F ′(ūε +φ)− F ′(ūε)− F ′′(ūε)φ ∼ φ2

is a higher order term in φ. Note that our definition of ūε and the construction of the function hε imply
that φ = u− ūε satisfies the orthogonality condition (5-1). Our strategy to get suitable estimates for φ
relies on the a priori estimates for the operator L ūε , taking into account this orthogonality condition.
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To carry out the analysis, we will study the error term E(ūε)=1ūε − F ′(ūε). First we consider the
projection of E(ūε) onto the two-dimensional space K = span{H ′ε,iρε,i , i = 1, 2}, which we will denote
by E(ūε)‖. Explicitly, E(ūε)‖ = E(ūε)

‖

1+ E(ūε)
‖

2, where E(ūε)
‖

i is equal to 0 outside Oi and

x∗ε,i E(ūε)
‖

i (xi , yi ) := cεx∗ε,i (ρε,i H ′ε,i )
∫

R

x∗ε,i [E(ūε)ρε,i H ′ε,i ] dyi in Oi , i = 1, 2.

Here

cε =
(∫

R

[x∗ε,1(ρε,1 Hε,1)]2 dy
)−1

=

(∫
R

(ρH)2 dy
)−1

.

Furthermore we set E(ūε)⊥ = E(ūε)− E(ūε)‖. The main idea in what follows is that the size of the
function f ′′ε,1 is related to E(ūε)‖, while the size of u− ūε = φ is controlled by E(ūε)⊥. Of course, both
projections of the error E(ūε) are coupled, in the sense that the dependence on fε,1 and φ appears in both
of them, but, as we will see, this coupling is relatively easy to deal with.

As we said, we wish to analyze the error E(ūε). Observe that

−F ′(Hε,2)− F ′(Hε,1− Hε,2− 1)=−F ′(Hε,2)− F ′(Hε,1)+ F ′′(Hε,1)(Hε,2+ 1)+O((Hε,2+ 1)2)

=−F ′(Hε,1)− [F ′′(1)− F ′′(Hε,1)](Hε,2+ 1)+O((Hε,2+ 1)2).

It follows that

E(ūε)=−1(Hε,1− Hε,2− 1)+ F ′(Hε,1− Hε,2− 1)

=−1Hε,1+ F ′(Hε,1)+1Hε,2− F ′(Hε,2)+ [F ′′(1)− F ′′(Hε,1)](Hε,2+ 1)+O((Hε,2+ 1)2).

The expression of the Laplace operator in Nε,i is

1=
1
Ai
∂2

xi
+ ∂2

yi
+

1
2
∂yi Ai

Ai
∂yi −

1
2
∂xi Ai

A2
i
∂xi , (5-6)

where

Ai = 1+ ( f ′ε,i (xi ))
2
− 2yi

f ′′ε,i (xi )
√

1+ ( f ′ε,i (xi ))
2
+ y2

i
( f ′′ε,i (xi ))

2

(1+ ( f ′ε,i (xi ))2)2
.

Using these formulas, we can write down the explicit expression of E(ūε). Because of symmetry, it
suffices to carry out the calculation in the lower half plane. The same calculation as that of [del Pino et al.
2010, (5.65)] shows that in the portion of the lower half-plane where both cutoff functions ηε,i equal 1,
we have, for i = 1, 2,

E(ūε)=
(

1
2
∂y1 A1

A1
−

h′′ε(x1)

A1
+

1
2
∂x1 A1

A2
1

h′ε(x1)

)
H ′(y1− hε(x1))

−

(
1
2
∂y2 A2

A2
+

h′′ε(x2)

A2
−

1
2
∂x2 A2

A2
2

h′ε(x2)

)
H ′(y2− hε(x2))

+

(
(h′ε(x1))

2

A1
H ′′(y1− hε(x1))−

(h′ε(x2))
2

A2
H ′′(y2+ hε(x2))

)
− (F ′′(1)− F ′′(Hε,1))(Hε,2+ 1)+O((Hε,2+ 1)2). (5-7)
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Lemma 5.3. Suppose τ is equal to 0 or τ0, and define D(x) := dist(x,Nε,1)+ dist(x,Nε,2). Then, for
any µ ∈ (0, 1),

‖E(ūε)⊥‖C
0,µ
ετ (R2)

= o(‖ f ′′ε,1‖C
0,µ
ετ (R)
+‖hε‖C

2,µ
ετ (R)

)+O(‖exp(−
√

2D)‖C0
ετ (R

2)), (5-8)

Proof. First we note that, outside of the set O1 ∪O2, ūε is equal to 1 or −1, hence the estimate is trivial
in this region. Secondly, if x ∈ Oi and dist(x, ∂Oi ) < 1, then, using the asymptotic behavior of the
heteroclinic solution, it is not difficult to see that

‖−1Hε,i + F ′(Hε,i )‖C0,µ(B(x,1)) ≤ Ce−
√

2dε(xi ),

where (xi , yi ) is the Fermi coordinate of x. Let (x, y) be the Euclidean coordinate of the point x. Then
elementary geometry tells us

|xi − x | ≤ | f ′ε,i (xi )|dε(xi ).

Therefore, using (3-9), we get

e−
√

2dε(xi )eετ |x | ≤ e−
√

2dε(xi )eετ |xi |+ετ | f ′ε,i (xi )|dε(xi )

≤ e−dε(xi )eετ |xi |

≤ C‖ f ′′ε,1‖C0
ετ (R)
‖ f ′′ε,1‖C0(R).

Hence, to prove (5-8), it will suffice to consider the expression (5-7) for E(ūε).
By (5-7), we get, for instance, the following term in E(ūε)⊥:

T1 :=
∂y1 A1

A1
x∗ε,1 H ′ε,1− cεx∗ε,1(ρε,1 H ′ε,1)

∫
R

∂y1 A1

A1
ρε,1(H ′ε,1)

2 dy1.

Here we have used the fact that ρε,1 H ′ε,1 is supported in the lower half-plane and ρε,2 H ′ε,2 is supported in
the upper half-plane. Recall that the main order term of A1 is 1 and

∂y1 A1

A1
=−2

f ′′ε,1(x1)

A1
√

1+ ( f ′ε,1(x1))
2
+ 2

y1( f ′′ε,1(x1))
2

A1(1+ ( f ′ε,1(x1))2)2
,

whose main order term is, roughly speaking, −2 f ′′ε,1. Substituting this into the expression of T1 results in

T1=
∂y1 A1

A1
H ′ε,1+

2cερε,1 H ′ε,1 f ′′ε,1(x1)
√

1+ ( f ′ε,1(x1))
2

∫
R

ρε,1(H ′ε,1)
2

A1
dy1−

2cερε,1 H ′ε,1( f ′′ε,1(x1))
2

(1+ ( f ′ε,1(x1))2)2

∫
R

y1ρε,1(H ′ε,1)
2

A1
dy1.

We notice that although it appears at first that T1 carries a term of order O(‖ f ′′ε,1‖C0
ετ (R)

), there is a
cancelation between the first and the second term in T1. In estimating this term it is important to use
the properties of the cut off function ρε,1. Note also that although y1 appears in ∂y1 A1/A1, it is always
multiplied by f ′′ε,1(x1). Since in O1, |y1| ≤ dε(x1), we have |y1| ≤ 1/

√

f ′′ε,1(x1). Therefore y1 f ′′ε,1(x1) is
always a small order term.

It is worth mentioning that when we estimate C0
ετ (R) norms we need to take into account the relation

between the Fermi coordinate (x1, y1) and the Euclidean coordinate (x, y) of a point x ∈ O1. Typically,
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we have

|(cosh x)ετ f ′′ε,1(x1)| ≤ Ceετ |x1−x |
‖ f ′′ε,1‖C0

ετ (R)
≤ C exp{ετ |y1|O(‖ f ′ε,1‖C0(R))}‖ f ′′ε,1‖C0

ετ (R)
.

Any term of this form is additionally multiplied by o(1)H ′ε,1 or o(1)H ′′ε,1, thus yielding a term of order
o(‖ f ′′ε,1‖C0

ετ (R)
).

Now, using the fact that f ′ε,1 and f ′′ε,1 are of order o(1) as ε→ 0 and the definition of the cutoff function
ρε,1, we conclude

‖T1‖C
0,µ
ετ (R2)

= o(‖ f ′′ε,1‖C
0,µ
ετ (R)

).

Similar estimates hold for the terms involving h′′ε(x1). Regarding terms involving h′ε(x1), h′ε(x2), h′′ε(x2),
we note that they are all multiplied by small order terms. Finally, to estimate the norms of (Hε,2+1)H ′ε,1,
we use the fact that

(Hε,2+ 1)H ′ε,1 ∼ e−
√

2(|y1|+|y2|).

It follows immediately that

‖(Hε,2+ 1)H ′ε,1‖C0,µ
ετ (R2)

≤ C‖ exp(−
√

2D)‖C0
ετ (R

2). �

Observe that there are terms involving hε which appear in the right hand side of (5-8). This complicates
the situation somewhat. However, since the Fermi coordinates are defined using the nodal line, we have
the following.

Lemma 5.4. Let τ be 0 or τ0. We have

‖hε‖C
2,µ
ετ (R)
≤ C‖φ‖

C
2,µ
ετ (R2)

+C‖ exp(−
√

2D)‖C0
ετ (R

2). (5-9)

Proof. We first recall that if x ∈ O1 and dist(x, ∂O1) > 1, then

(x∗ε,1u)(x1, y1)= H(y1− hε(x1))− (x∗ε,1 Hε,2)(x1, y1)− 1+ (x∗ε,1φ)(x1, y1). (5-10)

Now let us consider any point x on the curve Nε,1. That is, the Fermi coordinate of x is (x1, 0). Since
the distance of x to Nε,2 is D(x), we have

|(x∗ε,1 Hε,2)(x1, 0)+ 1| ≤ C exp(−
√

2D(x)).

Then, from (x∗ε,1u)(x1, 0)= 0 and (5-10), one gets

‖hε‖C0
ετ (R)
≤ C‖φ‖C0

ετ (R
2)+C‖ exp(−

√
2D)‖C0

ετ (R
2).

This gives us the C0 estimate. To estimate the C1 norm of hε, we differentiate the relation (5-10) with
respect to x1 and let y1 = 0 in the resulting equation. Then we find that

−H ′(−hε(x1))h′ε(x1)−
∂

∂x1
(x∗ε,1 Hε,2)+

∂

∂x1
(x∗ε,1φ)= 0, (5-11)

from which the C1
ετ estimate follows. Similarly, we could differentiate (5-10) twice with respect to x1

and let y1 = 0 to estimate h′′ε .
Corresponding estimates for the Hölder norm are also straightforward. �
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To proceed, we need the following a priori estimate.

Proposition 5.5. Suppose ϕ is a solution of the equation

−1ϕ+ F ′′(ūε)ϕ = f +
∑

i=1,2

κε,iρε,i H ′ε,i in R2,

with some given functions f ∈ C
0,µ
ετ (R

2) and κε,i ∈ C
0,µ
ετ (R). Assume furthermore that the function ϕ

satisfies the orthogonality condition:∫
R

x∗ε,i (ϕρε,i H ′ε,i ) dyi = 0, i = 1, 2. (5-12)

Then we have
‖ϕ‖C2,µ

ετ (R2)
≤ C‖ f ‖C0,µ

ετ (R2)
, ‖κε,i‖C0,µ

ετ (R)
≤ C‖ f ‖C0,µ

ετ (R2)
,

provided ε is small enough.

Sketch of proof. The proof is by contradiction and is essentially the same as that of [del Pino et al. 2010,
Proposition 5.1]. First an a priori estimate is proven for a solution of the problem

−1ϕ+ F ′′(ūε)ϕ = f0 in R2,

where ϕ satisfies the orthogonality condition (5-12). Indeed, using the fact that H ′, where H is the
heteroclinic solution in R, is the only element of the kernel of the corresponding one-dimensional linear
operator d2/dt2

+ 1− 3H 2, one can prove that ϕ satisfies an estimate of the form claimed. This type of
argument can be found, for example, in [del Pino et al. 2011].

Second, we project the equation on the functions of the form ρε,i H ′ε,i , i = 1, 2, and get the identity∫
R

x∗ε,i {ρε,i H ′ε,i [−1ϕ+ F ′′(ūε)ϕ]} dyi −

∫
R

x∗ε,i (ρε,i H ′ε,i f ) dyi = κε,i

∫
R
(x∗ε,iρε,i H ′ε,i )

2 dyi .

After an integration by parts and some calculations, we can use the above identity to prove that the
C

0,µ
ετ (R) norm of the functions κε,i can be controlled by o(1)‖ϕ‖

C
0,µ
ετ (R2)

+C‖ f ‖
C

0,µ
ετ (R2)

. From this and
the first step the assertion follows. We omit the details. �

Lemma 5.6. Let φ = u− ūε be the solution of (5-5). The following estimate is true:

‖φ‖
C

2,µ
ετ (R2)

≤ o(‖ f ′′ε,1‖C
0,µ
ετ (R)

)+C‖ exp(−
√

2D)‖C0
ετ (R

2). (5-13)

Proof. We will use Proposition 5.5. Thus we write

−1φ+ F ′′(ūε)φ = E(ūε)⊥− P(φ)+ E(ūε)‖.

Because of Proposition 5.5, to control the size of the function φ, it suffices to control the size of E(ūε)⊥

(which we already do by Lemma 5.3) and the size of P(φ).
Next we observe that P(φ) is essentially quadratic in φ, and therefore it is not difficult to show

‖P(φ)‖
C

0,µ
ετ (R2)

= o(‖φ‖
C

2,µ
ετ (R2)

).
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Collecting all these estimates, we conclude (5-13). �

The above result indicates that we can control φ by exp(−
√

2D) and the second derivative of fε,1.
However, this is not quite enough for our later purpose. Note that for the solution constructed in [del Pino
et al. 2010], the corresponding error is, roughly speaking, controlled by Cε2, and ‖ fε,1−ε|x |‖C0(R)∼ ln 1

ε
.

For this purpose we first show the following:

Lemma 5.7. The following estimate holds:

‖φ‖
C

2,µ
ετ (R2)

+‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖ exp(−

√
2D)‖C0

ετ (R
2).

Proof. Consider the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1. We will show below (Step 1) that on the one

hand its C
0,µ
ετ (R) norm is controlled by o(‖φ‖C2,µ

ετ (R2)
). On the other hand (Step 2) we will show that this

integral is related to f ′′ε,1. The proof will follow by combining this with the previous estimates. (Step 1
can be avoided if we estimate the integral using Proposition 5.5. However, since the computations will be
used in the last part of the proof of uniqueness (page 1715), we choose to present them here.)

Step 1. We claim that the relevant norm of the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 is controlled by

o(‖φ‖C2,µ
ετ (R2)

).
In fact,∫

R

x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 =

∫
R

x∗ε,1{[−1φ+ F ′′(ūε)φ]ρε,1 H ′ε,1} dy1+

∫
R

x∗ε,1[P(φ)ρε,1 H ′ε,1] dy1.

To handle the first term appearing in the right side, we write 1(x1,y1) = ∂
2
x1
+ ∂2

y1
and

T2 :=

∫
R

[−1(x1,y1)x
∗

ε,1φ+ F ′′(H)x∗ε,1φ]x
∗

ε,1(ρε,1 H ′ε,1) dy1︸ ︷︷ ︸
T21

+

∫
R

[1(x1,y1)x
∗

ε,1φ− x∗ε,11φ+ x∗ε,1(F
′′(ūε)φ)− F ′′(H)x∗ε,1φ]x

∗

ε,1(ρε,1 H ′ε,1) dy1︸ ︷︷ ︸
T22

.

Since
∫

R
x∗ε,1(φρε,1 H ′ε,1) dy1 = 0, we have (d2/dx2

1)
∫

R
x∗ε,1(φρε,1 H ′ε,1) dy1 = 0. Using integration by

parts and the fact that −H ′′+ F ′(H)= 0, we find

T21 = 2
∫

R

∂(x∗ε,1φ)
∂x1

∂(x∗ε,1ρε,1 H ′ε,1)

∂x1
dy1+

∫
R

(x∗ε,1φ)
∂2(x∗ε,1ρε,1 H ′ε,1)

∂x2
1

dy1

−

∫
R

(x∗ε,1φ)
[
∂2(x∗ε,1ρε,1 H ′ε,1)

∂y2
1

− F ′′(H)(x∗ε,1ρε,1 H ′ε,1)
]

dy1

= 2
∫

R

∂x∗ε,1φ
∂x1

∂(x∗ε,1ρε,1 H ′ε,1)

∂x1
dy1+

∫
R

(x∗ε,1φ)
∂2(x∗ε,1ρε,1 H ′ε,1)

∂x2
1

dy1

−

∫
R

(x∗ε,1φ)
[
∂2(x∗ε,1ρε,1)

∂y2
1

(x∗ε,1 H ′ε,1)+ 2
∂(x∗ε,1ρε,1)

∂y1

∂(x∗ε,1 H ′ε,1)

∂y1

]
dy1.
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Due to the presence of the derivatives of x∗ε,1ρε,1 with respect to x1, y1, and also the presence of H ′ε,1 in
each term, we now obtain that

‖T21‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

). (5-14)

On the other hand,

T22 =−

∫
R

{(
1
A1
− 1

)
∂2

x1
(x∗ε,1φ)+

1
2
∂y1 A1

A1
∂y1(x

∗

ε,1φ)−
1
2
∂x1 A1

A2
1
∂x1(x

∗

ε,1φ)

}
(x∗ε,1ρε,1 H ′ε,1) dy1

+

∫
R

[x∗ε,1(F
′′(ūε))− F ′′(H)]x∗ε,1(φρε,1 H ′ε,1) dy1.

The desired estimate for T22 essentially follows from the fact that 1 − 1/A1, ∂y1 A1/A1, ∂x1 A1/A2
1,

x∗ε,1(F
′′(ūε))− F ′′(H) are small terms. Note that we should take into account the relation between the

Fermi coordinates and the Euclidean coordinates. For example, let us estimate the Hölder norm of a
typical term in T22. First, observe that if z1 = (s1, y1), z2 = (s2, y1) in the Fermi coordinates with respect
to Nε,1, then by the formula (3-10), it is easy to see that

|z1− z2| ≤ C |s1− s2|.

Therefore, denoting (1/A1− 1)∂2
x1
(x∗ε,1φ)x

∗

ε,1(ρε,1 H ′ε,1) by x∗ε,1G, we have

sup
|s1−s2|≤1

∣∣∣∣∫
R

x∗ε,1G(s1, y1)− x∗ε,1G(s2, y1)

|s1− s2|µ
dy1

∣∣∣∣≤ C sup
|s1−s2|≤1

∣∣∣∣∫
R

G(z1)−G(z2)

|z1− z2|µ
dy1

∣∣∣∣
= o(‖φ‖C2,µ(R)).

Other terms appearing in the definition of T22 can be checked similarly. Hence we obtain

‖T22‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

).

This together with (5-14) tells us

‖T2‖C
0,µ
ετ (R)
= o(‖φ‖

C
2,µ
ετ (R2)

).

The desired estimate follows from this in a straightforward way.

Step 2. We want to relate the weighted norm of the integral
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 to f ′′ε,1. To do

this, we will now check more closely the above integral using the definition of ūε and the expression of
E(ūε). We see that one term appearing in the integral is

1
2

∫
R

∂y1 A1

A1
x∗ε,1(ρε,1 H ′2ε,1) dy1.

We will concentrate on this term since the C
0,µ
ετ (R) norm of other terms can be estimated by

C‖hε‖C2,µ
ετ (R)
+C‖e−

√
2D
‖C0

ετ (R)
,
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as we have seen in the proof of Lemma 5.3. Plugging the formula for A1 into the above integral, one gets

1
2

∫
R

∂y1 A1

A1
x∗ε,1(ρε,1 H ′2ε,1) dy1 =

∫
R

1
A1

(
y1

( f ′′ε,1(x1))
2

(1+ ( f ′ε,1(x1))2)2
−

f ′′ε,1(x1)
√

1+ ( f ′ε,1(x1))
2

)
(x∗ε,1ρε,1 H ′2ε,1) dy1

=−
1
cε

f ′′ε,1(x1)+ T4,

where T4 is a function such that

‖T4‖C
0,µ
ετ (R)
= o(‖ f ′′ε,1‖C

0,µ
ετ (R)

).

Consequently,

‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖

∫
R

x∗ε,1[E(ūε)ρε,1 H ′ε,1 dy1‖C
0,µ
ετ (R)

≤ C‖hε‖C
2,µ
ετ (R)
+ o(‖ f ′′ε,1‖C

0,µ
ετ (R)

)+C‖ exp(−
√

2D)‖C0
ετ (R)

.

This together with (5-9) and (5-13) implies that

‖ f ′′ε,1‖C
0,µ
ετ (R)
≤ C‖ exp(−

√
2D)‖C0

ετ (R)
. (5-15)

This combined with Lemma 5.6 yields

‖φ‖
C

2,µ
ετ (R2)

≤ C‖ exp(−
√

2D)‖C0
ετ (R)

. �

To proceed, let us observe that ‖ exp(−
√

2D)‖C0(R2) ≤ e−2
√

2| fε,1(0)|. Our next goal is to estimate the
quantity fε,1(0). To this end, we first need to obtain some exponential decay estimate of φ along the y
axis away from Nε,1. Note that, up to now, we have only analyzed the decay behavior of E(ūε) along the
x axis, but actually it also decays exponentially in the direction transversal to the nodal line Nε,1. The
next lemma gives us the necessary information.

Lemma 5.8. Fix a small constant ι0 > 0. We have

|φ(0, y)| ≤ Ce−(2
√

2−ι0)| fε,1(0)|e−ι0|y− fε,1(0)| for y ≤ 0.

Proof. This estimate follows from the maximum principle. We only sketch the proof for fε,1(0)≤ y ≤ 0,
since the case of y ≤ fε,1(0) is similar.

We write the equation satisfied by φ as

−1φ+

(
F ′′(ūε)+

P(φ)
φ

)
φ = E(ūε). (5-16)

Consider the region

� := {(x, y) ∈ R2
| fε,1(0)+ r0 < y <− fε,1(0)− r0},

where r0 is a fixed large constant satisfying

F ′′(ūε(x))+
P(φ)(x)
φ(x)

≥ 1, x ∈�.
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Let B(x, y) := C1e2
√

2 fε,1(0) cosh(ι0 y). Then

−1B+
(

F ′′(ūε)+
P(φ)
φ

)
B ≥ (1− ι20)B. (5-17)

Using (5-16), (5-17), and ‖E(ūε)‖C0(R2)+‖φ‖C0(R2) ≤ Ce−2
√

2| fε,1(0)|, we find that if the constant C1 in
the definition of B is large enough, φ− B < 0 in ∂� and

−1(φ− B)+
(

F ′′(ūε)+
P(φ)
φ

)
(φ− B)≤ 0 in �.

By the maximum principle, for fε,1(0)+ r0 < y < 0, we have

|φ(x, y)| ≤ C1e2
√

2 fε,1(0) cosh(ι0 y)

≤ C1e(2
√

2−ι0) fε,1(0)e−ι0| fε,1(0)−y|.

Therefore the lemma is true for fε,1(0)+r0 < y < 0. For fε,1(0) < y < fε,1(0)+r0, the lemma obviously
holds since ‖φ‖C0(R2) ≤ Ce−2

√
2| fε,1(0)|. �

Now let us go back to the Toda system (4-3) and recall that by qε,1(x)< 0<qε,2(x) we have denoted the
solution of this system whose slope at∞ is ε (this means the tangent of the angle between the asymptotic
line of y = qε,2(x) in the first quadrant and the x axis). We note that the curve Ñε,1 := {y = qε,1(x)} is
contained in the lower half-plane.

In the rest of the paper we will also use α, β to denote general positive constants, which may change
from step to step, but are always independent of ε.

Our aim is to show that the curves Nε,1 and Ñε,1 are close to each other. First of all, we prove the
following.

Lemma 5.9. There exists α1 > 0 such that | fε,1(0)− qε,1(0)| ≤ Cεα1 .

Proof. The idea of the proof is to relate the asymptotic behavior of u along vertical straight lines, as
ε→ 0, using the Hamiltonian identity,∫

R

{ 1
2 u2

y(0, y)− 1
2 u2

x(0, y)+ F(u(0, y))
}

dy =
∫

R

{1
2 u2

y(x, y)− 1
2 u2

x(x, y)+ F(u(x, y))
}

dy

for all x, (5-18)

and in particular take x →∞ on the right side of (5-18). Indeed, using the asymptotic behavior of a
four-end solution, it is not hard to show that

lim
x→∞

∫
R

{ 1
2 u2

y(x, y)− 1
2 u2

x(x, y)+ F(u(x, y))
}

dy = 2eF cos θ(u),

where eF =
∫

R
[

1
2(H

′)2+ F(H)]. Since u is an even function of x , we also have ux(0, y)= 0, and thus it
follows from (5-18) that ∫

R

{1
2 u2

y(0, y)+ F(u(0, y))
}

dy = 2eF cos θ(u).
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We will now calculate the left side of the above identity using the estimate of the error φ.
Recall that the heteroclinic solution has the asymptotic behavior

H(s)= 1− aF e−
√

2s
+O(e−2

√
2s) as s→+∞,

which can also be differentiated. Set t = fε,1(0)+ hε(0). Let η1, η2 be cut off functions appearing in the
definition of the approximate solution (4-1). For the points on the y-axis we have (x1, y1)= (0, y− fε,1(x)),
where (x1, y1) are their Fermi coordinates with respect to Nε,1. Then, abusing the notation slightly, we
can write

u(0, y)= H(y− t)− H(y+ t)− 1+φ(0, y)︸ ︷︷ ︸
u0(y)

+ (1− η1(0, y))
[

H(y− t)
|H(y− t)|

− H(y− t)
]

︸ ︷︷ ︸
ψ1(y)

− (1− η2(0, y))
[

H(y+ t)
|H(y+ t)|

− H(y+ t)
]

︸ ︷︷ ︸
ψ2(y)

.

We observe that ψ1(y)= 0 for |y1|< dε(0)− 1 and

|ψ1(y)| + |ψ ′1(y)| ≤ Ce−
√

2|y1| for |y1| ≥ dε(0)− 1.

Therefore ∫
R

[|ψ1(y)| + |ψ ′1(y)|] dy ≤ Ce−
√

2dε(0) ≤ ‖ f ′′ε,1‖
2
C0(R)
≤ Ce−4

√
2| fε,1(0)|.

Similarly, ∫
R

[|ψ2(y)| + |ψ ′2(y)|] dy ≤ Ce−4
√

2| fε,1(0)|.

This implies∫
R

[1
2 u2

y(0, y)+ F(u(0, y))
]

dy =
∫

R

[1
2(u
′

0(y))
2
+ F(u0(y))

]
dy+O(e−4

√
2| fε,1(0)|).

Now we calculate∫ 0

−∞

[ 1
2(u
′

0(y))
2
+F(u0(y))

]
dy =

∫ 0

−∞

[ 1
2(H

′(y−t))2+F(H(y−t))
]

dy︸ ︷︷ ︸
I1

+

∫ 0

−∞

[
H ′(y−t)(∂yφ−H ′(y+t))+F ′(H(y−t))(φ−H(y+t)−1)

]
dy︸ ︷︷ ︸

I2

+
1
2

∫ 0

−∞

[
(∂yφ−H ′(y+t))2+F ′′(H(y−t))(φ−H(y+t)−1)2

]
dy︸ ︷︷ ︸

I3

+ O

(∫ 0

−∞

(φ−H(y+t)−1)3 dy
)
. (5-19)
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The first term on the right side of (5-19) is equal to

I1 =

∫
−t

−∞

[1
2(H

′(y))2+ F(H(y))
]

dy

= eF −

∫
+∞

−t

[ 1
2(H

′(y))2+ F(H(y))
]

dy

= eF −

∫
+∞

−t
2a2

F e−2
√

2y dy+O(e−3
√

2|t |)

= eF −

√
2

2
a2

F e−2
√

2|t |
+O(e−3

√
2|t |).

Next we analyze the second term I2. We observe that after an integration by parts,

I2 = H ′(−t)(φ(0)− H(t)− 1)=−
√

2a2
F e−2

√
2|t |
+O(e−3

√
2|t |).

On the other hand, using Lemma 5.8, we can estimate

I3 =
1
2

∫ 0

−∞

[(H ′(y+ t))2+ F ′′(H(y− t))(H(y+ t)− 1)2] dy+O(e−(3
√

2−ι0)|t |)

=

√
2a2

F

4
e−2
√

2|t |
+

a2
F

2

∫ 0

−∞

[F ′′(H(y− t))e−2
√

2|y+t |
] dy+O(e−(3

√
2−ι0)|t |).

But we have∫ 0

−∞

[F ′′(H(y− t))e−2
√

2|y+t |
] dy =

∫ 0

−∞

2e2
√

2(y+t) dy+
∫ 0

−∞

{[F ′′(H(y− t))− F ′′(1)]e−2
√

2|y+t |
} dy

=

√
2

2
e−2
√

2|t |
+O(

∫ 0

−∞

e−
√

2|y−t |−2
√

2|y+t | dy)

=

√
2

2
e−2
√

2|t |
+O(e−3

√
2|t |).

Hence

I3 =

√
2a2

F

2
e−2
√

2|t |
+O(e−(3

√
2−ι0)|t |).

Consequently,

I0 :=

∫
R

[ 1
2 u2

y(0, y)+ F(u(0, y))
]

dy = 2eF − 2
√

2a2
F e−2

√
2| fε,1(0)+hε(0)|+O(e−3| fε,1(0)|).

According to the Hamiltonian identity (5-18),

I0 = 2eF cos θ(u).

Now, let uε with ε = tan θ(u) be a solution constructed in [del Pino et al. 2010] whose nodal line in the
lower half-plane is given by the curve y = qε,1(x)+rε,1(εx), where qε,1 is the solution of the Toda system
whose asymptotic angle at∞ is ε, and rε,1(x) satisfies, as we stated in Theorem 2.2, with some α > 0,

‖rε,1‖C
2,µ
τ (R)⊕D ≤ Cεα.
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We recall that since we are working in the class of even functions, |rε,1(x)| ≤ Cεα, which implies that
rε,1 is a bounded, small function. Now, the Hamiltonian identity (5-18) can be used for uε as well, and,
by a similar computation as for I0, we get

2eF cos θ(uε)= 2eF − 2
√

2a2
F e−2

√
2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|),

where rε,1(0)= O(εα). Therefore,

I0 = 2eF − 2
√

2a2
F e−2

√
2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|).

That is,

e−2
√

2| fε,1(0)+hε(0)|+O(e−3| fε,1(0)|)= e−2
√

2|qε,1(0)+rε,1(0)|+O(e−3|qε,1(0)+rε,1(0)|).

This yields

fε,1(0)+ hε(0)+O(e−(3−2
√

2)| fε,1(0)+hε(0)|)= qε,1(0)+O(εα).

Since qε,1(0)− (
√

2/2) ln ε = O(1), we get

fε,1(0)+ hε(0)=

√
2

2
ln ε+O(1),

which leads to

fε,1(0)+ hε(0)− qε,1(0)= O(εα),

as claimed. �

Now we are in a position to prove Proposition 4.2. As we will see, the proof of Proposition 4.1 is
obtained as an intermediate step.

Proof of Propositions 4.1 and 4.2. Our first goal is to show the estimate (4-6), and this will be done in a
few steps. For brevity let us denote pε,1 = fε,1+ hε and χε,1 = pε,1− qε,1.

Step 1. We want to show that, in the interval I := [ln ε/ε,− ln ε/ε],

|χε,1(x)| ≤ Cεα, |χ ′ε,1(x)| ≤ Cε1+α, and ‖χ ′′ε,1‖C0,µ(I ) ≤ Cε2+α.

Claim 1. If Ia := [−a, a] ⊂ I is an interval where

|pε,1(x)|< 2|ln ε|, |p′ε,1(x)|< 2ε, x ∈ Ia, (5-20)

then pε,1 satisfies a perturbed Toda equation in Ia , that is,

p′′ε,1(x)=−c∗e2
√

2pε,1(x)+ λ1(x), x ∈ Ia, (5-21)

where λ1 is a function satisfying
‖λ1‖C0,µ(Ia) ≤ Cε2+β1 (5-22)

for some constant β1 > 0.
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To begin the proof of the claim, let us consider a point x = (x1, y1) in the Fermi coordinates of 0ε,1
with |y1| ≤ | fε,1(0)|, and denote it’s Fermi coordinates relative to 0ε,2 by (x2, y2). Then, using (5-20)
and elementary geometry, one can show that if |x1| ≤ a, we have

y1− y2 =−2 fε,1(x1)(1+O(ε2)). (5-23)

Using this and (5-7) and calculating
∫

R
x∗ε,1[E(ūε)ρε,1 H ′ε,1] dy1 as in Lemma 5.7, we get

(1+OC0,µ(εα)) f ′′ε,1(x)+ (1+OC0,µ(εα))h′′ε(x)=−c∗e2
√

2pε,1(x)(1+OC0,µ(εα))+OC0,µ(ε2+α). (5-24)

This relation gives the claim. (For details, we refer the reader to [del Pino et al. 2010], where similar
calculations can be found.) We note here that the term e2

√
2pε,1(x) essentially comes from the integral∫

R

x∗1 [(F
′′(1)− F ′′(Hε,1))(Hε,2+ 1)ρε,1 H ′ε,1] dy1,

and to calculate this integral we have used (5-23).
Next we will use Claim 1 to show

|χε,1| ≤ Cεα in Ia. (5-25)

In fact, from (5-21) we deduce that in Ia , as long as χε,1 is small,

χ ′′ε,1 =−2
√

2c∗e2
√

2qε,1χ +O(χ2
ε,1)e

−2
√

2qε,1 + λ1(x)︸ ︷︷ ︸
λ2(x)

. (5-26)

Let ςi , i = 1, 2, be two linearly independent solutions of the linearized Toda equation

ς ′′i (x)=−2
√

2c∗e2
√

2qε,1(x)ςi (x).

We can assume that ς1 is even, ς2 is odd, ς1(0)= 1, ς ′2(0)= ε, and |ς ′i | ≤ Cε, i = 1, 2. Since χε,1 is an
even function, the variation of parameters formula tells us

χε,1(x)=
ς2(x)
ε

∫ x

0
ς1(s)λ2(s) ds−

ς1(x)
ε

∫ x

0
ς2(s)λ2(s) ds+ (pε,1(0)− qε,1(0))ς1(x),

and

χ ′ε,1(x)=
ς ′2(x)
ε

∫ x

0
ς1(s)λ2(s) ds−

ς ′1(x)
ε

∫ x

0
ς2(s)λ2(s) ds+ (pε,1(0)− qε,1(0))ς ′1(x).

Let β2 be a fixed constant satisfying 0 < β2 < min(β1, α1), where α1 is the constant appearing in the
assertion of Lemma 5.9. If Ia1 := [−a1, a1] ⊂ Ia is an interval where |χε,1| ≤ εβ2 , then, by (5-26),

‖λ2‖C0(Ia1 )
≤ Cε2+β1 +Cε2+2β2 .

Recall that |pε,1(0)− qε,1(0)| ≤ Cεα1 . Therefore

‖χε,1‖C0(Ia) ≤ Cε(εβ1 + ε2β2)

(
|ς2(x)|

∫ x

0
|ς1(s)| ds+ |ς1(x)|

∫ x

0
|ς2(s)| ds

)
+Cεα1 |ς1(x)|.
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Since |ς1(s)| ≤ Cε|s| and |ς2(s)| ≤ C , we find that, for x ∈ [ln ε/ε,− ln ε/ε],

|ς2(x)|
∫ x

0
|ς1(s)| ds+ |ς1(x)|

∫ x

0
|ς2(s)| ds ≤ C |ln ε|2/ε.

Therefore, in Ia1 , if ε is small enough,

‖χε,1‖C0(Ia1 )
≤ C(εβ1 + ε2β2)| ln ε|2+Cεα1 | ln ε| ≤

εβ2

2
.

From this we deduce ‖χε,1‖C0(Ia) ≤ ε
β2 , which proves (5-25).

Since |ς ′i (x)| ≤ Cε, it then follows that, for x ∈ Ia ,

|χ ′ε,1(x)| = Cε(εβ1 + ε2β2)

(
|ς ′2(x)|

∫ x

0
|ς1(s)| ds+ |ς ′1(x)|

∫ x

0
|ς2(s)| ds

)
+Cεα1 |ς ′1(x)|

≤ Cε(εβ1 + ε2β2)|ln ε|2+Cε1+α1 ≤ Cε1+β2 . (5-27)

Now recall that in I , |qε,1(x)| < 9
5 |ln ε| and |q ′ε,1(x)| <

3
2ε. It then follows from Claim 1, (5-25), and

(5-27) that, for ε small enough, the interval I satisfies the assumption of Claim 1. Therefore

|χε,1(x)| ≤ Cεα and |χ ′ε,1(x)| ≤ Cε1+α for x ∈ I.

Moreover, using (5-26), we get ‖χ ′′ε,1‖C0,µ(I ) ≤ Cε2+α.

Step 2. Next we will prove that ‖χε,1‖C0(R)→ 0 as ε→ 0. By Step 1, it suffices to show that

‖χε,1‖C0(R\I )→ 0 as ε→ 0.

Let the asymptotic line of u in the fourth quadrant be y =−εx −Aε. Define

aε := inf{t ≥ |ln ε|/ε : | fε,1(x)+ (εx +Aε)| ≤ 1 for x ∈ [t,+∞)}.

We wish to show that in fact aε = |ln ε|/ε. For this purpose, we consider the domain

�L :=

{
(x, y) : y < 0, x > aε, y > x

ε
− L

}
.

Here L > εaε is large and indeed we will finally let it go to +∞. We use the balancing formula in this
domain and with the vector field X := ( fε,1(aε)− y, x − aε). This formula tells us that∫

∂�L

{(1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS = 0.

Let us estimate the relevant boundary integrals. First,∫
∂�L∩{y=0}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS =

∫ εL

aε

( 1
2 u2

x + F(u)
)
(x − aε) dx

whose limit as L→∞ is ∫
∞

aε

( 1
2 u2

x + F(u)
)
(x − aε).
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To estimate this integral, let us recall that, by symmetry and (2-7), we have, for x = (x, y), y ≤ 0, with
some κ > 0,

|(u(x))2− 1| + |∇u(x)| ≤ Ce−κ dist(0ε,1,x).

Now, using this and the fact that

|εaε +Aε| ≥ | fε,1(aε)| − 1≥
(

1+
√

2
2

)
|ln ε| −C,

after some calculation, we deduce that, as ε→ 0,∫
∂�L∩{y=0}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
·ν dS→ 0.

On the other hand, using the asymptotic behavior of u in the lower half plane, we get

u = H + o(1)e−κ dist(0ε,1,x), (x∗ε,1 H)(x1, y1)= H(y1),

where (x1, y1) are the Fermi coordinates of the point x. Since on the line {x = aε} we have X =
( fε,1(aε)− y, 0), we get∫

∂�L∩{x=aε}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS = o(1).

Finally, we compute:∣∣∣∣∫
∂�L∩{y=x/ε−L}

{( 1
2 |∇u|2+ F(u)

)
X − X (u)∇u

}
· ν dS

∣∣∣∣= | fε,1(aε)+ εaε +Aε|
√

1+ ε2
+ o(1).

Collecting all these estimates, we conclude

| fε,1(aε)+ εaε +Aε| = o(1).

Appealing to the definition of aε, this implies that aε = |ln ε|/ε, and consequently,

| fε,1(x)+ εx +Aε| = o(1) for x ∈ [|ln ε|/ε,+∞).

This implies that outside this interval, Nε,1 is close to a straight line, which combined with the estimates
(4-6) yields the desired result. Indeed, now we have

qε,1(aε)= fε,1(aε)+ o(1)

=−εaε −Aε + o(1).

On the other hand, since qε,1 is the solution of the Toda equation, we have

qε,1(x)=−εx − Ãε + o(1) for x ≥ aε.

It follows that Aε = Ãε + o(1). This ends the proof of Step 2.
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Step 3. At this point we can use what we have just proven in Step 2 to get

fε,1(x)=

√
2

2
ln ε− ε|x | +O(1), |x | � 1.

As a consequence,

‖ exp(−
√

2D)‖C0
ετ (R)
≤ Cε2, (5-28)

which, together with Lemma 5.7, yields

‖φ‖
C

2,µ
ετ (R2)

+‖ f ′′ε,1‖C
0,µ
ετ (R)
+‖hε‖C

2,µ
ετ (R)
≤ Cε2. (5-29)

Then, by a similar calculation to that of (5-20), we find that, in the half line R\I = (|ln ε|/ε,+∞), the
function pε,1 satisfies

‖p′′ε,1‖C
0,µ
ετ̂
(R\I ) = O(ε2+α) (5-30)

for some τ̂ > 0 independent of ε. This implies that, in R\I ,

|p′ε,1(x)+ ε| ≤ C
∫
+∞

x
ε2+αe−ετ̂ |s| ds

= Cε1+αe−ετ̂ |x |.

Therefore,

|pε,1(x)+ εx +Aε| ≤ Cεαe−ετ̂ |x |, x ∈ R \ I. (5-31)

On the other hand, by Step 1 and the fact that

|qε,1(x)+ εx + Ãε| ≤ Cεαe−εβ|x |, x ∈ R \ I, (5-32)

we get

|pε,1(|ln ε|/ε)+ |ln ε| + Ãε| ≤ Cεα.

This together with (5-31) then yields |Aε − Ãε|< Cεα. Now, letting jε =Aε − Ãε, taking into account
Step 1, (5-31), (5-32), and reducing τ̂ if necessary, the assertion of Proposition 4.2 follows. The conclusion
of the proof of Proposition 4.1 is contained in (5-29). �

6. Uniqueness of solutions with almost parallel nodal lines

Parametrization of the family of solutions of (1-1) by the trajectories of the Toda system. Let us con-
sider the curve Ñε,i which is the graph of the function y = qε,i (x). When i = 1, it is contained in the
lower half-plane, and when i = 2, it is contained in the upper half-plane. We have qε,1(x)=−qε,2(x).
With these curves we will associate the Fermi coordinates (x̃i , ỹi ):

x = (x̃i , qε,i (x̃i ))+ ỹi ñε,i (x̃i ), ñε,i (x)=
(−q ′ε,i (x), 1)
√

1+ q ′ε,i (x)
2
, i = 1, 2.
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The change of variables (x̃i , ỹi ) 7→ x = (x, y) is a diffeomorphism in a neighborhood Õi of Ñε,i . We
denote this diffeomorphism by x̃ε,i so that

x̃ε,i (x̃i , ỹi )= x ∈ Õi .

For any function w : Õi → R by x̃∗ε,iw we denote its pullback by x̃ε,i :

(x̃∗ε,iw)(x̃i , ỹi )= (w ◦ x̃ε,i )(x̃i , ỹi ).

Using basic properties (linear growth, scaling) of the trajectories of the solutions of the Toda system, one
can check [del Pino et al. 2010] that there exists a constant C1 such that we can choose Õi , i=1,2, to be
the set

{(x, y) ∈ R2
: |y| ≤ C1ε

−1
√

1+ x2}.

With these preparations, we would like to write locally any solution u, with tan θ(u)= ε small, in the
Fermi coordinates with respect to Ñε,i . To this end, we will construct a suitable approximation of u in
Õi based on the fact that the true solution is locally close to the heteroclinic one. By symmetry we may
focus on the case i = 1, namely, consider the lower half plane. The nodal line Nε,1 of u in the lower
half plane is the graph of y = fε,1(x). Recall that qε,1(x) is the solution of the Toda equation such that
the assertions of Proposition 4.2 are satisfied. We let η̃ to be a smooth cut off function equal to 1 in
Õ1 ∩ { dist(x, ∂Õ1) > 1} and equal to 0 in R2

\ Õ1. A reasonable ansatz for an approximate solution is
built defining the function H̃ε,1 by

x̃∗ε,1 H̃ε,1(x̃1, ỹ1) := x̃∗ε,1η̃(x̃1, ỹ1)H(ỹ1− g̃ε(x̃1))+ (1− x̃∗ε,1η̃(x̃1, ỹ1))
H(ỹ1− g̃ε(x̃1))

|H(ỹ1− g̃ε(x̃1))|
,

which is extended to the whole R2 by ±1, setting H̃ε,2(x, y)=−H̃ε,1(x,−y), and finally defining

ũε := H̃ε,1− H̃ε,2− 1. (6-1)

Note that the function g̃ε has not been specified so far. It turns out that, in order to have a good
approximation of u by ũε, we should impose the orthogonality condition∫

R

x̃∗ε,i [(u− ũε)ρ̃ε,i H̃ ′ε,i ](x̃i , ỹi ) dỹi = 0 for all x̃i , i = 1, 2, (6-2)

where smooth cutoff functions ρ̃ε,i are defined through

(x̃∗ε,i ρ̃ε,i )(x̃i , ỹi )= ρ̃(ỹi − (−1)i+1g̃ε(x̃i )),

and ρ̃ is an even cutoff function equal to 1 in the interval (
√

2 ln ε/8,−
√

2 ln ε/8) and equal to 0 outside
(
√

2 ln ε/4,−
√

2 ln ε/4), while H̃ ′ε,i is defined by

x̃∗ε,i H̃ ′ε,i (x̃i , ỹi )= H ′(ỹi − (−1)i+1g̃ε(x̃i )).

To show the existence of the function g̃ε, one can use an argument similar to the one in Lemma 5.1.
However, since the graph of the function y = qε,i (x) does not converge to the nodal set of the solution at
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infinity, the function g̃ε does not decay exponentially. To determine the behavior of the function g̃ε more
precisely, we need the following.

Lemma 6.1. There exist constants τ̃ > 0 and vε such that |vε| ≤Cεα , and the function h̃ε(x) := g̃ε(x)+vε
satisfies

‖h̃ε‖C0
ετ̃
(R) ≤ Cεα,

‖h̃′ε‖C0
ετ̃
(R) ≤ Cε1+α,

‖h̃′′ε‖C
0,µ
ετ̃
(R)
≤ Cε2+α.

(6-3)

Proof. The function g̃ε is determined by∫
R

x̃∗ε,1[(u− ũε)ρ̃ε,1 H̃ ′ε,1] dỹ1 = 0.

Changing variables, this relation can also be written as∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1 = 0. (6-4)

For this integral, it suffices to consider the points in the support of ρ̃ε,1.
Recall that, by the definition of ũε,

x̃∗ε,1ũε(x̃1, ỹ1+ g̃ε(x̃1))= H(ỹ1)− x̃∗ε,1(H̃ε,2+ 1)(x̃1, ỹ1+ g̃ε(x̃1)).

It is not difficult to see that∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1(H̃ε,2+ 1)(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2

for some τ̃ > 0. This combined with (6-4) leads to∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2. (6-5)

On the other hand, u = ūε +φ with ‖φ‖
C

2,µ
ετ0 (R

2)
≤ Cε2. Hence, reducing τ̃ if necessary, we get∥∥∥∥∫

R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1ūε(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤

∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1φ(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ0
(R)

+Cε2
≤ Cε2. (6-6)

Now, in the support of ρ̃ε,1, ūε = H(y1− hε(x1))− H(y2+ hε(x2))− 1. Denoting the function (x, y)=
xε,1(x1, y1) 7→ H(y1− hε(x1)) by R, it follows from (6-6) that (reducing τ̃ if necessary)∥∥∥∥∫

R

ρ̃(ỹ1)H ′(ỹ1)x̃∗ε,1R(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cε2. (6-7)
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To proceed, let us investigate the relation between the Fermi coordinates (x1, y1) and (x̃1, ỹ1). Using
| f ′ε,1| ≤ Cε, | fε,1− qε,1| ≤ Cεα, |y1| ≤ C |ln ε|, and elementary geometry, one can verify that

|x̃1− x1| ≤ C ||y1| +Cεα|ε ≤ Cεα. (6-8)

Additionally, recall that by Proposition 4.2, ‖ fε,1− qε,1+ jε‖C0
ετ̂
(R) ≤ Cεα. Using (6-8) , one can show

y1 = ỹ1+
(√

1+ (q ′ε,1(x̃1))
2 )−1 jε +O(εαe−εβ|x̃1|). (6-9)

Inserting this into (6-7), we find (again reducing τ̃ if necessary)∥∥∥∥∫
R

ρ̃(ỹ1)H ′(ỹ1)H(ỹ1+ g̃ε(x̃1)+
(√

1+ (q ′ε,1(x̃1))
2 )−1 jε) dỹ1

∥∥∥∥
C0
ετ̃
(R)

≤ Cεα. (6-10)

As a consequence,

‖g̃ε +
(√

1+ (q ′ε,1)
2 )−1 jε‖C0

ετ̃
(R) ≤ Cεα, (6-11)

which together with the behavior of q ′ε,1 implies that

‖h̃ε‖C0
ετ̃
(R) ≤ Cεα, |vε| ≤ Cεα, (6-12)

where vε := jε/
√

1+ ε2 and

h̃ε(x) := g̃ε(x)+ vε. (6-13)

Next we need to estimate the weighted norm of the first derivative of h̃ε.
Let us denote the diffeomorphism x−1

ε,1 ◦ x̃ε,1 by 8ε,1 and denote x−1
ε,2 ◦ x̃ε,1 by 8ε,2. Then, using (6-8),

(6-9), and formulas (3-10), after direct calculations, we find that

|D8ε,1− Id2×2 | = O(ε1+αe−εβ|x̃1|), |D28ε,1| = O(ε2+αe−εβ|x̃1|), (6-14)

|D8ε,2− Id2×2 | = O(εe−εβ|x̃2|), |D28ε,2| = O(ε2e−εβ|x̃2|). (6-15)

We now differentiate (6-4) with respect to x̃1. Set

R1 := ∂x̃1 x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)),

R2 := ∂ỹ1 x̃∗ε,1u(x̃1, ỹ1+ g̃ε(x̃1)).

By estimate (6-15), one has∫
R

ρ̃(ỹ1)H ′(ỹ1){R1+R2g̃′ε(x̃1)} dỹ1 = O(ε2e−εβ|x̃1|).

Therefore, using (6-13),

h̃′ε(x̃1)=−

∫
R
ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1∫

R
ρ̃(ỹ1)H ′(ỹ1)R2 dỹ1

+O(ε2e−εβ|x̃1|). (6-16)



1714 MICHAŁ KOWALCZYK, YONG LIU AND FRANK PACARD

Keep in mind that∫
R

ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1

=

∫
R

ρ̃(ỹ1)H ′(ỹ1)∂x̃1 x̃∗ε,1ūε(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1+

∫
R

ρ̃(ỹ1)H ′(ỹ1)∂x̃1 x̃∗ε,1φ(x̃1, ỹ1+ g̃ε(x̃1)) dỹ1. (6-17)

Equations (6-14), (6-15) and (6-17), together with ‖φ‖C2
ετ0
(R2) ≤ Cε2, yield∫

R

ρ̃(ỹ1)H ′(ỹ1)R1 dỹ1 = O(ε1+αe−εβ|x̃1|).

It then follows from (6-16) that (reducing τ̃ if necessary)

‖h̃′ε‖C0
ετ̃
(R) ≤ Cε1+α.

It remains to estimate h̃′′ε . Setting

R3 = ∂
2
x̃1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R4 = ∂
2
x̃1 ỹ1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R5 = ∂
2
ỹ1

x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

R6 = ∂ỹ1 x̃∗ε,1(u− ũε)(x̃1, ỹ1+ g̃ε(x̃1)),

from (6-4), one gets

h̃′′ε(x̃1)=−

∫
R
ρ̃(ỹ1)H ′(ỹ1)[R3+ 2R4g̃′ε(x̃1)+R5(g̃′ε(x̃1))

2
] dỹ1∫

R
ρ̃(ỹ1)H ′(ỹ1)R6 dỹ1

. (6-18)

Recall that

‖φ‖
C

2,µ
ετ0 (R)
+‖hε‖C

2,µ
ετ0 (R)
≤ Cε2.

A refined argument which involves closer analysis of the main order of φ shows that in reality ∂2
xφ and

h′′ε have better estimates:

‖∂2
xφ‖C

0,µ
ετ0 (R)
+‖h′′ε‖C

0,µ
ετ0 (R)
≤ Cε2+α.

This estimate follows by observing first that the orthogonality relation for φ can be differentiated in x
twice. Then we note that, furthermore, differentiating the equation satisfied by φ twice, we gain powers
of ε in the main order term, namely, the right side will be of order at least O(ε2+α). Then ∂2

xφ and h′′ε
can be estimated using the same orthogonal decomposition as in Section 5. Combining this with (6-14),
(6-15), and (6-18), after some calculations, we get, reducing τ̃ if necessary,

‖h̃′′ε‖C
0,µ
ετ̃
(R)
≤ Cε2+α. �

Given a solution u of (1-1) such that tan θ(u)= ε, we can define an approximate solution ũε by (6-1)
using the solution of the Toda system with the asymptotic slope ε. Then we can write

u = ũε + φ̃.

By the definition of g̃ε, we know that φ̃ = u− ũε satisfies the orthogonality condition (6-2). This allows
us to control the size of φ̃ in the weighted norm in terms of the error of the approximation

E(ũε)=1ũε − F ′(ũε),
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following essentially the same approach as in Section 5, and, in particular, relying on a version of
Proposition 5.5. In fact, one can prove that

‖φ̃‖
C

2,µ
ετ̃
(R2)
≤ Cε2. (6-19)

Conclusion of the proof: the Lipschitz property of solutions. Based on the results of the previous section,
we know that any solution with a small angle can be written in the following way:

u( · ; g̃ε, φ̃)= ũε( · ; g̃ε)+ φ̃,

where ũε is the approximate solution defined in (6-1). Here and below we will indicate the dependence
of this solution on the modulation function g̃ε as well as on φ̃. Now let us consider two solutions u( j),
j = 1, 2, with the same asymptotic angle θ(u( j))= arctan ε. Since the asymptotic angle is the same for
both solutions, there is just one solution of the Toda system represented by the functions qε,1 =−qε,2. On
the other hand, it may happen that g̃(1)ε 6= g̃(2)ε and φ̃(1) 6= φ̃(2). In the notation of [del Pino et al. 2010],
we have that g̃( j)

ε ∈ C
2,µ
ετ̃
(R)⊕ D (see also the summary on pages 1684–1685). In the previous section we

have shown that ‖g̃( j)
ε ‖C0

ετ̃
(R)⊕D ≤ Cεα , with corresponding estimates for the higher-order derivatives. In

addition, for the functions φ̃( j), we have (6-19). Without loss of generality, we can assume that τ̃ is small
but independent of ε.

To prove the uniqueness of solutions with small angles, it is enough to prove “local uniqueness” in the
following sense. Given two four-end solutions associated to the same solution of the Toda system, we
have φ̃(1) = φ̃(2) and g̃(1)ε = g̃(2)ε . Our strategy to prove this fact follows in some sense the strategy used to
prove the existence of solutions with small angles employed in [del Pino et al. 2010]. To explain this, let
us introduce the scaled functions ĝ( j)

ε (x) := g̃( j)
ε (x/ε), j = 1, 2. We show the Lipschitz property of the

map ĝε 7→ E(ũε( · ; g̃ε)), and then we use the linearized equation to show that φ̃(1)−φ̃(2) can be controlled
by a small constant times ĝ(1)ε − ĝ(2)ε . As a final step we show that the function ĝ(1)ε − ĝ(2)ε satisfies the
linearized Toda system with the right side again controlled by a small constant times ĝ(1)ε − ĝ(2)ε . This
leads us to conclude that ĝ(1)ε − ĝ(2)ε = 0, and as a result we infer the uniqueness.

Now we will present some details of the argument outlined above. Many of the calculations are quite
similar to the ones in [del Pino et al. 2010].

Lemma 6.2. The following estimates hold:

‖E(ũ(1)( · ; g̃(1)ε ))− E(ũ(2)( · ; g̃(2)ε ))‖C
0,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D, (6-20)

‖φ̃(1)− φ̃(2)‖
C

2,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D. (6-21)

Remark 6.3. Essentially, up to some minor difference, this Lipschitz property has already been proven
in [del Pino et al. 2010]. Here we give a sketch of the proof for completeness.

Proof. To begin with, let us mention that, for a function g : R→ R, we have the obvious estimates:

‖g(ε· )‖C l,µ
ετ̃
(R)
≤ C‖g( · )‖C l,µ

τ̃
(R)
,

‖g( · )‖C l,µ
τ̃
(R)
≤ Cε−l−µ

‖g(ε· )‖C l,µ
ετ̃
(R)
.
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To prove (6-20) we use essentially the formula (5-7) for the error, replacing ūε by ũ( j)
ε , j = 1, 2, and

then take the difference of the resulting terms E(ũ( j)( · ; g̃( j)
ε )).

To show (6-21), we should consider the equation satisfied by the difference ψ̃ = φ̃(1)− φ̃(2) and use
Proposition 5.5. The slight technical problem is that ψ̃ does not satisfy the orthogonality condition as in
(6-2). To overcome this, we further define a function ψ̃⊥ by

ψ̃⊥ := ψ̃ −
∑

i=1,2

ψ̃
‖

i ,

where ψ̃‖i : R
2
→ R is equal to 0 outside Õi and

x̃∗ε,i ψ̃
‖

i (x̃i , ỹi ) := c̃ε x̃∗ε,i (ρ̃
(1)
ε,i H̃ (1)′

ε,i )

∫
R

x̃∗ε,i [ψ̃ρ̃
(1)
ε,i H̃ (1)′

ε,i ] dỹi in Õi ,

where c̃ε = {
∫

R
[ρ̃(y)H ′(y)]2 dy}−1.

Using the fact that ‖φ̃(2)‖
C

2,µ
ετ̃
(R2)
≤ Cε2 and∫

R

x̃∗ε,i [φ̃
(2)ρ̃

(2)
ε,i H̃ (2)′

ε,i ] dỹi = 0, i = 1, 2,

it is not hard to show that
‖ψ̃
‖

i ‖C
2,µ
ετ̃
(R2)
≤ Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D.

Hence
‖ψ̃⊥‖

C
2,µ
ετ̃
(R2)
≥ ‖ψ̃‖

C
2,µ
ετ̃
(R2)
−Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D. (6-22)

On the other hand, setting

L(i) =−1+ F ′′(ũ(i)ε ), P (i)(φ̃(i))= F ′(ũ(i)ε + φ̃
(i))− F ′(ũ(i)ε )− F ′′(ũ(i)ε )φ̃

(i), i = 1, 2,

we get

L(1)ψ̃⊥ = E(ũ(1)ε )− E(ũ(2)ε )− P (1)(φ̃(1))+ P (2)(φ̃(2))− (L(1)− L(2))φ̃(2)− L(1)(ψ̃‖1 + ψ̃
‖

2 )︸ ︷︷ ︸
f̃

. (6-23)

Applying Lemma 6.2, one can see that

‖ f̃ ‖
C

0,µ
ετ̃
(R2)
≤ o(1)‖ψ̃‖

C
2,µ
ετ̃
(R2)
+Cε2

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D.

From this and (6-22), the required estimate follows. �

As we have already seen, the Toda system appears in the projected equation. It turns out that we also
need to analyze the linearized Toda system. Recall that we are always working in the space of even
functions. Suppose q is an even solution of the Toda system

q ′′(t)=−c∗e2
√

2q(t),

and the linearized operator is

P : ϕ→ ϕ′′+ 2
√

2c∗e2
√

2qϕ.
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We want to know the mapping property of this operator. Let C
l,µ
τ̃
(R)e be the space of even functions in

C
l,µ
τ̃
(R), and let D0 be the one-dimensional deficiency space spanned by the constant function.

Lemma 6.4. For small τ̃ > 0, the map P : C2,µ
τ̃
(R)e⊕ D0→ C0,µ

τ̃
(R)e is an isomorphism and therefore

has a bounded inverse.

This result has already been proven in [del Pino et al. 2010] and we omit the proof. With all these
properties understood, we are ready to prove the uniqueness of solutions with given small angles.

Proof of Theorem 1.2. Let us consider the quantity (cf. the proof of Lemma 5.7)

T=

∫
R

x̃∗ε,1[E(ũ
(1)
ε )ρ̃

(1)
ε,1 H̃ (1)′

ε,1 ] dỹ1−

∫
R

x̃∗ε,1[E(ũ
(2)
ε )ρ̃

(2)
ε,1 H̃ (2)′

ε,1 ] dỹ1.

Recall that
E(ũ(i)ε )=−1φ̃

(i)
+ F ′′(ũ(i)ε )φ̃

(i)
+ P (i)(φ̃(i)).

Inserting this into the expression of T, calculating as in Step 1 in the proof of Lemma 5.7, using the
estimates in Lemma 6.2, we get

‖T‖
C

0,µ
ετ̃
(R)
≤ Cε2+α

‖ĝ(1)ε − ĝ(2)ε ‖C
2,µ
τ̃
(R)⊕D0

. (6-24)

For brevity set
g̃ε := g̃(1)ε − g̃(2)ε and ĝε := ĝ(1)ε − ĝ(2)ε .

Now we calculate T using the explicit expressions for ũ(i)ε in a manner similar to Step 2 of Lemma 5.7,
and, as a result, we get a formula similar to (5-24), which reads

T= (1+O
C

0,µ
ετ̃
(R)
(εα)) g̃′′ε + 2

√
2c∗(1+O

C
0,µ
ετ̃
(R)
(εα))e2

√
2qε,1 g̃ε +O

C
0,µ
ετ̃
(R)
(ε1+α) g̃′ε +O

C
0,µ
ετ̃
(R)
(ε2+α) g̃ε.

Thus, calculating T in two ways, we get at the end that

g̃′′ε + 2
√

2c∗e2
√

2qε,1 g̃ε = Gε, (6-25)

where the term Gε on the right satisfies

‖Gε‖C
0,µ
ετ̃
(R)
≤ Cε2+α

‖ ĝε‖C
2,µ
τ̃
(R)⊕D0

. (6-26)

(6-25) could be written as
ĝ′′ε + 2

√
2c∗e2

√
2q1 ĝε = ε−2Gε(ε

−1
· ),

where q = (q1, q2) is the even solution of the Toda system whose asymptotic lines have slopes ∓1 (cf. the
function U0 in (4-5)). Now we adapt Lemma 6.4 to the present context and use (6-26) to get

‖ ĝε‖C
2,µ
τ̃
(R)⊕D0

≤ Cε−2
‖Gε(ε

−1
· )‖

C
0,µ
τ̃
(R)
≤ Cεα−µ‖ ĝε‖C

2,µ
τ̃
(R)⊕D0

, (6-27)

from which it follows that ĝε = 0, provided that we choose µ < α and ε is taken small. This in turn
implies g̃(1)ε = g̃(2)ε and φ̃(1) = φ̃(2), hence we get uniqueness. This ends the proof of Theorem 1.2. �
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