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PSEUDOPARABOLIC REGULARIZATION OF FORWARD-BACKWARD
PARABOLIC EQUATIONS: A LOGARITHMIC NONLINEARITY

MICHIEL BERTSCH, FLAVIA SMARRAZZO AND ALBERTO TESEI

We study the initial-boundary value problem
ut =1ϕ(u)+ ε1[ψ(u)]t in Q :=�× (0, T ],
ϕ(u)+ ε[ψ(u)]t = 0 in ∂�× (0, T ],
u = u0 ≥ 0 in �×{0},

with measure-valued initial data, assuming that the regularizing term ψ has logarithmic growth (the case
of power-type ψ was dealt with in an earlier work). We prove that this case is intermediate between the
case of power-type ψ and that of bounded ψ , to be addressed in a forthcoming paper. Specifically, the
support of the singular part of the solution with respect to the Lebesgue measure remains constant in time
(as in the case of power-type ψ), although the singular part itself need not be constant (as in the case
of bounded ψ , where the support of the singular part can also increase). However, it turns out that the
concentrated part of the solution with respect to the Newtonian capacity remains constant.

1. Introduction

In this paper we study the initial-boundary value problem
ut =1ϕ(u)+ ε1[ψ(u)]t in Q :=�× (0, T ],
ϕ(u)+ ε[ψ(u)]t = 0 in ∂�× (0, T ],
u = u0 ≥ 0 in �×{0},

(1-1)

where ε and T are positive constants,

ψ(u)= log(1+ u) for u ≥ 0, (1-2)

ϕ : [0,∞)→ [0,∞) is nonmonotone, u0 is a nonnegative Radon measure on �, and �⊂ RN (N ≥ 1) is
a bounded and connected domain, with smooth boundary ∂� if N ≥ 2. More precisely, ϕ ∈ C∞([0,∞))
is a Perona–Malik type nonlinearity which satisfies, for some α > 0 and q ∈ (1,∞),

ϕ(0)= ϕ(∞)= 0, ϕ′ > 0 in [0, α), ϕ′ < 0 in (α,∞), ϕ′′(α) 6= 0, (1-3)

ϕ ∈ Lq((0,∞)), ϕ( j)
∈ L∞((0,∞)) for any j ∈ N, (1-4)
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and, for some C > 0,

|ϕ′(u)| ≤ Cψ ′(u)= C
1+u

for u ≥ 0. (1-5)

In particular, 0< ϕ(u)≤ ϕ(α) holds for u > 0. A typical example is

ϕ(u)= u
1+u2 .

The partial differential equation in problem (1-1) can be regarded as the regularization of the forward-
backward parabolic equation

ut =1ϕ(u),

which leads to ill-posed problems. The latter equation and its regularizations arise in several applications,
such as edge detection in image processing [Perona and Malik 1990], aggregation models in population
dynamics [Padrón 1998], and stratified turbulent shear flow [Barenblatt et al. 1993a].

This paper is the second of a series where we address problem (1-1) with measure-valued initial data;
see [Bertsch et al. ≥ 2013]. It is natural to consider flows which allow measure-valued solutions, since
it is known that initially smooth solutions may develop a singular part in finite time, if N = 1 and ψ is
uniformly bounded [Barenblatt et al. 1993b]. On the other hand we have shown [Bertsch et al. ≥ 2013]
that in the case of power-type nonlinearities,

ψ(u)= (1+ u)θ − 1 (u ≥ 0, θ ∈ (0, 1]), (1-6)

the singular part of the solutions does not evolve in time, and initially smooth functions remain smooth
for each later time. Therefore, the qualitative behavior of measure-valued solutions turns out to depend
critically on the behavior of the nonlinearity ψ(u) as u→∞.

Our purpose is to make a detailed analysis of this dependence. Therefore we distinguish three cases
in this series of papers: mild degeneracies (power-type ψ), strong degeneracies (bounded ψ), and the
intermediate case of logarithmic ψ . Observe that if ψ ′ vanishes at infinity, the partial differential equation
in problem (1-1) is of degenerate pseudoparabolic type. In the present paper we focus on the intermediate
case of functions ψ with logarithmic growth, and we take (1-2) as a model case.

It turns out that the logarithmic ψ can be considered as a truly intermediate case, in the sense that

(i) as in the case of power-type ψ , singularities cannot appear spontaneously;

(ii) as in the case of bounded ψ , the singular part of u need not be constant with respect to t .

Specifically, in all three cases the singular part of the solution is nondecreasing in time: it is constant for
a power-type ψ (see [Bertsch et al. ≥ 2013, Theorem 2.1]), whereas its support can expand (that is, new
singularities can appear) in the case of bounded ψ . Instead, in the logarithmic case the support of the
singular part is constant, yet the singular part can increase; see Theorem 3.5 and equalities (3-13)–(3-14).

To explain the above claims, let us discuss heuristically the behavior of solutions to problem (1-1)
for a logarithmic ψ as in (1-2) or a power-type ψ as in (1-6); see [Bertsch et al. ≥ 2013]. By a suitable
approximation procedure, which plays a key role in our approach (see Section 6), we prove in both cases
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that the entropy solution u( · , t) at time t of problem (1-1) and the corresponding value v( · , t) of the
chemical potential

v := ϕ(ur )+ ε[ψ(ur )]t (1-7)

satisfy a suitable elliptic problem. Here ur ( · , t) denotes the density of the absolutely continuous part of
u( · , t); see after (2-5). When ψ is of power-type, (1-7) becomes−ε1v( · , t)+

v( · , t)
ψ ′(ur ( · , t))

=
ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v = 0 on ∂�
(1-8)

for a.e. t ∈ (0, T ). Instead, for a logarithmic ψ the elliptic problem is−ε1v( · , t)+
1

ψ ′([u( · , t)]d,2)
v( · , t)=

ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v( · , t)= 0 on ∂�,
(1-9)

where [u( · , t)]d,2 denotes the diffuse part of u( · , t) with respect to the Newtonian C2-capacity. Recalling
that 1/ψ ′(u)= 1+ u, the first equation of problem (1-9) is meant in the sense that

−ε〈1[v( · , t)], ρ〉�+
〈
{1+ ur ( · , t)+ [us( · , t)]d,2}, v( · , t)ρ

〉
�

=

∫
�

[1+ ur (x, t)]ϕ(ur (x, t))ρ(x) dx (1-10)

for any ρ ∈ Cc(�); here us( · , t) denotes the singular part of u( · , t) and, as we shall make precise in
Section 2 (see (2-2) and Remark 2.1), 〈 · , · 〉� denotes an extension of the duality map between the space
M(�) of finite Radon measures on � and the space Cc(�) of continuous functions with compact support.
Notice that

0≤ (1+ ur )ϕ(ur )≤ ϕ(α)(1+ ur ) ∈ L1(Q).

The presence of the singular term 〈[us( · , t)]d,2, v( · , t)ρ〉� in the left-hand side of (1-10), which does not
appear in the power-type case (see (1-8)), depends on the weaker regularization properties of a logarithmic
ψ with respect to a power-type ψ .

By the above definition of the chemical potential, the partial differential equation in (1-1) reads

ut =1v. (1-11)

The coupling of the above evolutionary equation with the corresponding elliptic problem (either (1-8) or
(1-9), depending on the choice of ψ) suggests that we could study the time evolution of ur ( · , t) and that
of us( · , t) separately. For both choices of ψ our definition of the solution of problem (1-1) implies that
v ∈ L1(Q); see Definition 3.1 and [Bertsch et al. ≥ 2013, Definition 2.1]. Then for a power-type ψ we
obtain from (1-8) that 1v ∈ L1(Q), which, by (1-11), implies

us( · , t)= u0s, [ur ]t( · , t)= ut( · , t)=1v( · , t), (1-12)

namely, the singular part us does not evolve with time; see [Bertsch et al. ≥ 2013, Theorem 2.1].
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Now consider a logarithmic ψ as in (1-2). By (1-11) and the arbitrariness of ρ, (1-10) gives

−εut( · , t)+{1+ ur ( · , t)+ [us( · , t)]d,2}v( · , t)= [1+ ur ( · , t)]ϕ(ur ( · , t)). (1-13)

On the other hand, by definition of the chemical potential, we have

ε[ur ]t( · , t)= [1+ ur ( · , t)][v( · , t)−ϕ(ur )( · , t)], (1-14)

which can be regarded as the equation governing the evolution of the regular part ur , since v ∈ L1(Q).
From (1-13)–(1-14) we obtain the following equation for the evolution of the singular part us :

ε[us]t( · , t)= [us]d,2( · , t)v( · , t), (1-15)

namely,

ε〈[us]t( · , t), ρ〉� = 〈[us( · , t)]d,2, v( · , t)ρ〉�

for any ρ ∈ Cc(�). Since

us = uc,2+ [us]d,2 (1-16)

(see (2-7)–(2-8)), from Equation (1-15) we obtain

uc,2( · , t)= [u0]c,2

(see Theorem 3.1 below) and

〈[us]d,2( · , t), ρ〉� =
〈
[u0s]d,2, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

, (1-17)

which imply (see (3-1))

〈us( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉�

for any t ≥ 0 and ρ ∈ Cc(�).
If N = 1, since every Radon measure is C2-diffuse (see page 1725), problem (1-9) becomes−ε[v( · , t)]xx +

1
ψ ′(u( · , t))

v( · , t)=
ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in �,

v( · , t)= 0 on ∂�.
(1-18)

Now the evolution of the singular part us is described by the equation

ε[us]t( · , t)= us( · , t)v( · , t), (1-19)

whence we obtain

〈us( · , t), ρ〉� =
〈
u0s, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

(1-20)

for any ρ ∈ Cc(�).
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In view of the above considerations, whether or not us( · , t) evolves in time clearly depends on the
positivity of the chemical potential; see (1-17), (1-20). This point will be addressed by a generalized
strong maximum principle (see Proposition 3.15). We shall also construct a solution of the form

u( · , t)= ur ( · , t)+ A(t)δx0, A(0)= 1,

δx0 denoting the Dirac mass centered at x0 ∈ � (see Remark 3.20), to point out the importance of the
elliptic problem (1-9) for ensuring uniqueness of the solutions of problem (1-1); see Theorem 3.11; a
similar example was given in [Porzio et al. 2013, Remark 2.4]. Finally, in Theorem 3.17 we prove the
existence of an entropy solution of (1-1) (see Definition 3.4), whereas in Theorem 3.18 we show that
under suitable conditions this solution and the associated chemical potential satisfy problem (1-9).

2. Preliminaries

Nonnegative finite Radon measures. We denote by M(�) the space of finite Radon measures on �, and
by M+(�) the cone of positive (finite) Radon measures on �. By M+ac(�) and M+s (�) we denote the
subsets of M+(�) whose elements are, respectively, absolutely continuous and singular with respect
to the Lebesgue measure on �. We have M+ac(�)∩M+s (�)= {0}, and for every µ ∈M+(�) there is a
unique pair (µac ∈M+ac(�), µs ∈M+s (�)) such that

µ= µac+µs . (2-1)

For every µ ∈ M+(�), we shall denote by µr the density of the absolutely continuous part µac of µ;
namely, according to the Radon–Nikodym Theorem, µr is the unique function in L1(�) such that

µac(E)=
∫

E
µr dx

for every Borel set E ⊆�.
Given µ ∈M(�) and a Borel set E ⊆�, the restriction µ E of µ to E is defined by

(µ E)(A) := µ(E ∩ A)

for every Borel set A ⊆�. We denote by 〈 · , · 〉� the duality map between M(�) and the space Cc(�)

of continuous functions with compact support. For µ ∈ M(�) and ρ ∈ L1(�,µ) we set, by abuse of
notation,

〈µ, ρ〉� :=

∫
�

ρ(x) dµ(x) and ‖µ‖M(�) := |µ|(�). (2-2)

Similar notations will be used for the space of Radon measures on Q := �× (0, T ). The Lebesgue
measure of any Borel set E ⊆� or E ⊆ Q, will be denoted by |E |. A Borel set E such that |E | = 0 is
called a null set. By the expression “almost everywhere”, henceforth abbreviated a.e., we always mean
“up to null sets”.

We denote by L∞((0, T );M+(�)) the set of positive Radon measures u ∈M+(Q) such that for a.e.
t ∈ (0, T ) there exists a measure u( · , t) ∈M+(�) satisfying the following conditions:
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(i) For every ζ ∈ C(Q) the map t→ 〈u( · , t), ζ( · , t)〉� is Lebesgue measurable, and

〈u, ζ 〉Q =
∫ T

0
〈u( · , t), ζ( · , t)〉� dt. (2-3)

(ii) ess supt∈(0,T ) ‖u( · , t)‖M(�) <∞.

If u ∈ L∞((0, T );M+(�)), both uac and us belong to L∞((0, T );M+(�)). By (2-3), for all ζ ∈C(Q),

〈uac, ζ 〉Q =

∫∫
Q

urζ dx dt and 〈us, ζ 〉Q =

∫ T

0
〈us( · , t), ζ( · , t)〉� dt.

It is easily checked that for a.e. t ∈ (0, T ) the measures [u( · , t)]ac, [u( · , t)]s ∈ M+(�) satisfy the
equalities

uac( · , t)= [u( · , t)]ac, us( · , t)= [u( · , t)]s . (2-4)

Observe that the first equality above implies

ur ( · , t)= [u( · , t)]r , (2-5)

where [u( · , t)]r denotes the density of the measure [u( · , t)]ac:

〈[u( · , t)]ac, ζ 〉� =

∫
�

ur ( · , t)ζ dx for ζ ∈ C(�) and a.e. t.

C p-capacity. Let p ∈ [1,∞). The C p-capacity in � of a Borel set E ⊆� is defined as

C p(E) := inf
v∈UE

�

∫
�

|∇v|p dx,

where UE
� is the set of all functions v ∈ H 1,p

0 (�) such that 0 ≤ v ≤ 1 a.e. in � and v = 1 a.e. in a
neighborhood of E (analogous definitions can be given in RN ). If UE

� =∅ we adopt the usual convention
that inf∅=∞. We use the notation C p(E, �) when we want to stress the dependence on �. If K ⊆�
is compact, then

C p(K ) := inf
v∈FK

�

∫
�

|∇v|p dx,

where FK
� is the set of all functions v ∈ C∞0 (�) such that 0≤ v ≤ 1 in � and v = 1 in K . Moreover, if

p ∈ [1,∞), for every Borel set E ⊆�,

C p(E)= inf{C p(U ) |U ⊆� open, E ⊆U },

and, if 1< p <∞, for every open set U ⊆�,

C p(U )= sup{C p(K ) | K compact, K ⊆U }.

For any p ∈ [1,∞) define

M+d,p(�) := {µ ∈M+(�) | µ(E)= 0 for every Borel set E ⊆�, C p(E)= 0},
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the set of finite (positive) Radon measures on � which are absolutely continuous with respect to the
C p-capacity. Analogously,

M+c,p(�) := {µ ∈M+(�) | ∃ a Borel set E ⊆� s.t. C p(E)= 0 and µ= µ E}

is the set of finite (positive) Radon measures on � which are singular with respect to the C p-capacity.
Clearly, M+c,p(�) ∩M+d,p(�) = {0}. Observe that M+d,p1

(�) ⊆ M+d,p2
(�) and M+c,p2

(�) ⊂ M+c,p1
(�) if

p1 < p2.
Recall that every subset E ⊆ � such that C p(E) = 0 for p ∈ [1,∞) is Lebesgue measurable and

satisfies |E | = 0. This plainly implies

M+c,p(�)⊆M+s (�), M+ac(�)⊆M+d,p(�) for every p ∈ [1,∞). (2-6)

In connection with the first inclusion in (2-6), observe that if N = 1, then M+c,p(�) = ∅ for any
p ∈ [1,∞). In fact, for singletons E = {x} (x ∈�), we have

C p({x}, �) > 0 if either p > N or p = N = 1.

Therefore, if N = 1, by monotonicity, we have C p(E) > 0 (p ∈ [1,∞)) for every nonempty Borel set
E ⊆�. The claim follows.

For any p ∈ (1,∞) it is known that a measure µ ∈M+(�) belongs to M+d,p(�) if and only if

µ ∈ L1(�)+W−1,p′(�)

(where W−1,p′(�) denotes the dual space of the Sobolev space W 1,p
0 (�)). Then the duality symbol

〈µ, ϕ〉� makes sense for any µ ∈M+d,p(�) and ϕ ∈W 1,p
0 (�)∩ L∞(�). Moreover, if µ ∈M+d,p(�), every

function v ∈W 1,p
0 (�)∩ L∞(�) also belongs to L∞(�,µ); for example, see [Evans and Gariepy 1992].

For every µ ∈M+(�), p ∈ [1,∞), we define the concentrated and diffuse parts of µ with respect to
C p-capacity as the (unique, mutually singular) measures µc,p ∈M+c,p(�) and µd,p ∈M+d,p(�) such that

µ= µc,p +µd,p. (2-7)

Combining the decompositions in (2-1) and (2-7) and using (2-6) gives

µc,p = [µs]c,p, (2-8)

µd,p = µac+ [µs]d,p, (2-9)

for every µ ∈M+(�). From (2-7)–(2-9) we obtain

µ= µac+ [µs]d,p +µc,p, (2-10)

which in the case N = 1 reduces to (2-1).
Finally, recall that a function f :�→ R is C p-quasicontinuous in � if for any ε > 0 there exists a set

E⊆�, with C p(E)<ε, such that the restriction f
∣∣
�\E is continuous in�\E (it is not restrictive to assume

that the set E is open). It can be proven (for example, see [Evans and Gariepy 1992]) that every function
u ∈W 1,p(�) has a C p-quasicontinuous representative ũ; moreover, if ū is another C p-quasicontinuous
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representative of u, then the equality ū = ũ holds C p-almost everywhere in �. In the following, every
function u ∈W 1,p(�) will be identified with its unique C p-quasicontinuous representative.

Remark 2.1. Recalling that v( · , t) ∈ H 1
0 (�) ∩ L∞(�) for a.e. t ∈ (0, T ) (see Definition 3.1) and

[us( · , t)]d,2 ∈ L1(�)+ H−1(�) by the characterization of the diffuse measures, it is apparent that the
singular term 〈[us( · , t)]d,2, v( · , t)ρ〉� in the left-hand side of (1-10) is well defined for any ρ ∈ C1

c (�).
Let us show that the same quantity is well defined for any ρ ∈ Cc(�).

In fact, let µ ∈M+d,2(�), v ∈ H 1
0 (�)∩ L∞(�), and let ṽ be its C2-quasicontinuous representative. Let

us show that ṽρ belongs to L1(�,µ), so that the quantity

〈µ, vρ〉� =

∫
�

ṽ(x)ρ(x) dµ(x)

is well defined.
Let {ρn} ⊆ C∞c (�) be any sequence such that

ρn→ ρ in C(�). (2-11)

Since ṽ is defined C2-almost everywhere in � and µ ∈M+d,2(�),

ṽ(x)ρn(x)→ ṽ(x)ρ(x) for µ-a.e. x ∈�. (2-12)

Moreover, by (2-11) there exists C > 0 such that for every n ∈ N we have

|ṽρn| ≤ C |ṽ| ∈ L1(�,µ).

Then by the dominated convergence theorem the claim follows.

3. Main results

Definitions.

Definition 3.1. Given u0 ∈M+(�), a measure u ∈ L∞((0, T );M+(�)) is called a solution of problem
(1-1) if the following holds:

(i) [ψ(ur )]t ∈ L∞(Q), the chemical potential v defined by (1-7) belongs to L∞((0, T ); H 1
0 (�)),

1v ∈ L∞((0, T );M(�)),

and

0≤ v ≤ ϕ(α) a.e. in Q. (3-1)

(ii) for every ζ ∈ C1([0, T ];Cc(�)) with ζ( · , T )= 0 in �,∫ T

0
〈u( · , t), ζt( · , t)〉� dt +

∫ T

0
〈1v( · , t), ζ( · , t)〉� dt =−〈u0, ζ( · , 0)〉�. (3-2)

Observe that the assumption 1v ∈ L∞((0, T );M(�)) implies u ∈ C([0, T ];M+(�)).
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Remark 3.2. Since 0≤ ϕ(u)≤ ϕ(α) for u ≥ 0 by (1-3), it follows from (1-7) and (3-1) that

|[ψ(ur )]t | ≤
ϕ(α)

ε
a.e. in Q. (3-3)

Remark 3.3. Since v ∈ L∞((0, T ); H 1
0 (�)) and 1v ∈ L∞((0, T );M(�)), for a.e. t ∈ (0, T ) we have

that v( · , t) ∈ H 1
0 (�) and 1v( · , t) := [1v]( · , t) ∈M(�). Observe that

1v( · , t)=1[v( · , t)] ∈ H−1(�) (3-4)

for a.e. t ∈ (0, T ). In fact, let jσ (σ > 0) be a standard mollifier. Then

〈[1v( · , t)] ∗ jσ , ρ〉� = 〈1[v( · , t)] ∗ jσ ], ρ〉� = 〈v( · , t) ∗ jσ ,1ρ〉�

for any ρ ∈ C2
c (�). Letting σ → 0 we obtain

〈1v( · , t), ρ〉� = 〈v( · , t),1ρ〉�,

which shows that 1v( · , t) is the distributional Laplacian of v( · , t) ∈ H 1
0 (�). Hence (3-4) follows.

Given g ∈ C1([0, ϕ(α)]), we set

G(z) :=
∫ z

0
g(ϕ(u)) du for z ≥ 0. (3-5)

Definition 3.4. Let u0 ∈M+(�). A solution u of problem (1-1) is called an entropy solution if for all
g ∈ C1([0, ϕ(α)]) such that g′ ≥ 0 and g(0) = 0, and for all ζ ∈ C1([0, T ];C1

c (�)) such that ζ ≥ 0,
ζ( · , T )= 0 in �, the following entropy inequality holds:∫∫

Q
{G(ur )ζt − g(v)∇v∇ζ − g′(v)|∇v|2ζ } dx dt ≥−

∫
�

G(u0r )ζ(x, 0) dx, (3-6)

where G is defined by (3-5).

Inequality (3-6) is called the entropy inequality for problem (1-1) by analogy with the entropy inequality
for viscous conservation laws; see [Evans 2004; Serre 1999]. Such an inequality is known to hold

(i) when u0 ∈ L∞(�) and ψ(u)= u (this is the so-called Sobolev regularization), both for a cubic-like
ϕ and for a ϕ of Perona–Malik type (see [Novick-Cohen and Pego 1991; Smarrazzo 2008]);

(ii) for problem (1-1) if N = 1 and ψ ′(u)→ 0 as u→∞ (see [Smarrazzo and Tesei 2012]).

In such cases, entropy inequalities play an important role both to describe the time evolution of solutions
of (1-1) and to address the “vanishing viscosity limit” of the problem as ε→ 0.

Persistence and monotonicity. Given any solution u of problem (1-1), we prove in Section 4 that the
C2-concentrated part [u( · , t)]c,2 does not evolve in time if N ≥ 2 (recall that M+c,2(�)=∅ if N = 1).

Theorem 3.5. Let N ≥ 2 and let u be a solution to problem (1-1). Then

[u( · , t)]c,2 = [u0]c,2 for a.e. t ∈ (0, T ). (3-7)
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Therefore, with respect to the case of a power-type ψ in which the first equality of (1-12) holds, in
the present case it is only the concentrated part [u( · , t)]c,2 = [us( · , t)]c,2 of the solution which remains
constant.

Concerning the density of the absolutely continuous part of an entropy solution, the following holds.
The proof is the same as that of [Bertsch et al. ≥ 2013, Proposition 2.5], thus we omit it.

Proposition 3.6. Let u be an entropy solution of problem (1-1). Then there exists a null set F∗ ⊂ (0, T )
such that, for any t0 ∈ (0, T ) \ F∗ and any Borel set E ⊆�,

ur ( · , t0)≤ α a.e. in E =⇒ ur ( · , t)≤ α a.e. in E for every t ∈ (t0, T ) \ F∗.

The singular part of an entropy solution does not decrease if time evolves.

Proposition 3.7. Let u be an entropy solution of problem (1-1), and let ρ ∈ Cc(�), ρ ≥ 0. Then, for a.e.
0≤ t1 ≤ t2 ≤ T ,

〈us( · , t1), ρ〉� ≤ 〈us( · , t2), ρ〉� (3-8)

and, for a.e. t ∈ (0, T ),

〈u0s, ρ〉� ≤ 〈us( · , t), ρ〉�. (3-9)

Remark 3.8. If u is a solution of problem (1-1) satisfying (1-9), inequalities (3-8)–(3-9) immediately
follow from (3-7) and (3-13) below. The relationship between entropy solutions and solutions satisfying
(1-9) is addressed in Theorem 3.18.

Proposition 3.7 implies that a solution (satisfying estimate (3-10) below) with trivial absolutely
continuous part is a steady state.

Corollary 3.9. Let u0 ∈M+(�), let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5), and let u be an entropy solution
of problem (1-1) such that, for a.e. t ∈ (0, T ),

‖u( · , t)‖M(�) ≤ ‖u0‖M(�). (3-10)

Then

u0r = 0 a.e. in � =⇒ ur ( · , t)= 0 a.e. in �, us( · , t)= u0 for a.e. t ∈ (0, T ).

Proposition 3.7 and Corollary 3.9 will be proved in Section 4.

Remark 3.10. By the considerations above,

ur ( · , t)= 0 a.e. t ∈ (0, T ) ⇐⇒ us( · , t)= u0 for a.e. t ∈ (0, T ).

In fact, if ur ( · , t)= 0 for a.e. t ∈ (0, T ), by (1-7) we have v = 0 a.e. in Q, hence u( · , t)= us( · , t)= u0

by equality (3-2). Conversely, if us( · , t)= u0 for a.e. t ∈ (0, T ), we have u0 = u0s , thus u0r = 0 a.e. in
� which implies ur ( · , t)= 0 by (3-10).
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Uniqueness. In this subsection we consider solutions u of problem (1-1) such that for a.e. t ∈ (0, T ) the
trace v( · , t) of the chemical potential solves the elliptic problem (1-9). This means that for a.e. t ∈ (0, T ),
v( · , t) ∈ H 1

0 (�), 1[v( · , t)] ∈M(�), and equality (1-10) is satisfied for every ρ ∈ Cc(�). The results
described in this subsection will be proved in Section 5.

Satisfying problem (1-9) guarantees uniqueness of solutions.

Theorem 3.11. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Let there exist C > 0 such that∣∣∣∣( ϕψ ′
)′
(u)
∣∣∣∣≤ C for u ≥ 0. (3-11)

Then problem (1-1) has at most one solution satisfying (1-9).

Below we consider in more detail the qualitative properties of solutions of problem (1-1) which satisfy
(1-9). In fact, it turns out that the logarithmic form of ψ makes it possible to give precise estimates of the
time evolution both for ur and for us .

Proposition 3.12. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4), and let u be a solution of problem (1-1)
satisfying (1-9). Then, for a.e. t ∈ (0, T ) and for any ρ ∈ Cc(�), ρ ≥ 0,∫

�

[1+ ur (x, t)]ρ(x) dx ≤ exp
{
ϕ(α)t
ε

}∫
�

[1+ u0r (x)]ρ(x) dx, (3-12)

〈[us]d,2( · , t), ρ〉� = 〈[u0s]d,2, exp
{

1
ε

∫ t

0
v( · , s) ds

}
ρ〉�, (3-13)

〈us( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉�. (3-14)

In particular, us( · , t) is absolutely continuous with respect to u0s , for a.e. t ∈ (0, T ).

The last statement above entails a regularity result: no singularity can arise at some positive time.
Going into detail, we have the following remark.

Remark 3.13. By inequality (3-14), for any solution of problem (1-1) satisfying (1-9), we have:

(i) u0 ∈ L1(�), u0 ≥ 0 =⇒ u ∈ L1(Q), u ≥ 0.

(ii) u0s ∈M+c,p(�) =⇒ us( · , t) ∈M+c,p(�) for a.e. t ∈ (0, T ).

(iii) u0 ∈M+d,p(�) =⇒ u( · , t) ∈M+d,p(�) for a.e. t ∈ (0, T ) (p ∈ [1,∞)).

Remark 3.14. By the arbitrariness of ρ in (3-12)–(3-14), for every Borel set E ⊆� and a.e. t ∈ (0, T ),
we have ∫

E
[1+ ur (x, t)] dx ≤ exp

{
ϕ(α)t
ε

}∫
E
[1+ u0r (x)] dx,

us( · , t)(E)≤ exp
{
ϕ(α)t
ε

}
u0s(E).

Also observe that (3-12) and (3-14) imply

〈[1+ u( · , t)], ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈[1+ u0], ρ〉� (3-15)
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for every ρ ∈ Cc(�), ρ ≥ 0, thus

u( · , t)(E)≤ exp
{
ϕ(α)t
ε

}
u0(E)+

(
exp

{
ϕ(α)t
ε

}
− 1

)
|E |

for every Borel set E ⊆�.

Observe that by equalities (2-8) and (2-10)

us( · , t)= [us( · , t)]d,2+ [u( · , t)]c,2

for a.e. t ∈ (0, T ). Then from (3-7), (3-13) it is apparent that to describe the time evolution of us( · , t)
it is important to know whether v( · , t) vanishes in �. In this sense the following maximum principle,
which generalizes in a certain sense [Brezis and Ponce 2003, Theorem 1], is expedient.

Proposition 3.15. Let µ ∈M+(�) be C2-diffuse. Let v ∈ H 1
0 (�)∩ L∞(�) satisfy

−1v+µv ≥ 0 in �,

in the sense that ∫
�

∇v · ∇ρ dx +〈µ, vρ〉� ≥ 0 for any ρ ∈ H 1
0 (�)∩ L∞(�), ρ ≥ 0. (3-16)

Then v ≥ 0 a.e. in �, and v = 0 a.e. in � if v = 0 a.e. on a subset E ⊆� such that C2(E) > 0.

If N = 1, we have the following.

Proposition 3.16. Let N = 1, and let u be a solution of problem (1-1) satisfying (1-18). Then, for a.e.
t ∈ (0, T ), either v( · , t) > 0 in � or v( · , t)≡ 0 in �.

Existence. Set
ψn(u) := ψ(u)+

u
n
= log(1+ u)+ u

n
for u ≥ 0. (3-17)

Observe that ψn → ψ as n →∞ and ψ ′n ≥ 1/n > 0, thus the nonlinearities ψn are nondegenerate.
Consider the regularized problems

unt =1vn in Q,
vn = 0 on ∂�× (0, T ),
un = u0n ≥ 0 in �×{0},

(Pn)

where
vn := ϕ(un)+ ε[ψn(un)]t (3-18)

and {u0n} is a sequence of smooth nonnegative functions with the properties stated in Lemma 6.1 (Section 6
is dedicated to the approximating problem Pn).

Theorem 3.17. Let u0 ∈M+(�) and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Then problem (1-1) has an
entropy solution u, which is a limiting point as n→∞ of the family of solutions of the approximating
problems (Pn). Moreover:

(i) For a.e. t ∈ (0, T ), inequality (3-10) holds.
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(ii) For a.e. t ∈ (0, T ) and for every Borel set E ⊆�, inequalities (3-12) and (3-14) hold. In particular,
us( · , t) is absolutely continuous with respect to u0s .

In Theorem 3.18 below we show that the entropy solution given in Theorem 3.17 satisfies the elliptic
problem (1-9) if N = 1; the same holds if N ≥ 2 for a suitable class of initial data u0 ∈M+(�). In these
cases claim (ii) of Theorem 3.17 follows directly from Proposition 3.12.

Theorem 3.18. Let u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the entropy
solution of problem (1-1) given in Theorem 3.17 and let v be the chemical potential defined in (1-7).

(a) If N = 1, the pair (u, v) satisfies problem (1-18).

(b) Let N ≥ 2, and let u0 satisfy the following assumptions:

(i) [u0]c,2 is concentrated on some compact K0 ⊂� such that C2(K0)= 0;
(ii) [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2).

Then the pair (u, v) satisfies problem (1-9).

Theorems 3.17 and 3.18 will be proved in Sections 7 and 8, respectively.
For N = 1, from the above theorem we deduce that an entropy solution of problem (1-1) satisfying

problem (1-9) (or equivalently (1-18)) can be obtained as a limiting point as n→∞ of the family of
solutions to the approximating problems (Pn).

If N ≥ 2, the same result holds for a suitable class of initial data u0, subject to technical conditions
involving both [u0]d,2 and [u0]c,2 (see Theorem 3.18-(b)). Assumption (ii) on [u0]d,2 is rather mild, yet
the problem of removing it is open. On the other hand, the existence of an entropy solution of (1-1)
satisfying (1-9) can also be proven without assumption (i). In fact, for every u0 ∈M+(�),

u0 = [u0]d,2+ [u0]c,2,

with [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2), it suffices to consider the measure u ∈ L∞((0, T );M+(�))
defined by setting

u( · , t) := ũ( · , t)+ [u0]c,2 for a.e. t ∈ (0, T );

here ũ denotes a solution of (1-1) with initial data [u0]d,2 which satisfies the elliptic problem (1-9) (the
existence of such a solution is ensured by Theorem 3.18 above). Clearly, the solution u (whose uniqueness
is ensured by Theorem 3.11, if (3-11) holds) need not be obtained by letting n→∞ in the associated
problems (Pn).

Corollary 3.19. Let u0 ∈M+(�), and let ϕ ∈C∞([0,∞)) satisfy (1-3)–(1-5) and (3-11). If either N = 1,
or N ≥ 2 and [u0]d,2 ∈ M+d,p(�) for some p ∈ [1, 2), there is exactly one entropy solution of problem
(1-1) satisfying problem (1-9).

Remark 3.20. Problem (1-9) is essential to introduce a class of well-posedness for problem (1-1). In fact,
it is easy to exhibit a weak solution to problem (1-1) which does not satisfy (1-9) and which, therefore, is
different from the solution given by Theorem 3.17.

For this purpose, let N = 1 and � = (0, 1). Let û0 ∈ C∞([0, 1]) satisfy 0 < û0 < α in (0, 1),
û0(0) = û0(1) = 0. Let û be the solution of problem (1-1) with Cauchy data u0 = u0r = û0 given by
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Theorem 3.17 . Then û = ûr ∈ C∞([0, 1] × [0,∞)), 0 < û < α in [0, 1] × [0,∞), and ûs ≡ 0. By
Theorem 3.18(i) the pair (û, v̂), where v̂ := ϕ(û)+ ε[ψ(û)]t , satisfies the problem{

−εv̂xx + (1+ û)v̂ = (1+ û)ϕ(û) in [0, 1]× [0,∞),
v̂ = 0 in {0, 1}× [0,∞),

hence 0< v̂ < ϕ(α) in (0, 1)×[0,∞) by the maximum principle.
Let δx0 denote the Dirac mass centered at some point x0 ∈�, and set

u1 := û+ δx0 .

On the other hand, let u2 be the solution of problem (1-1) given by Theorem 3.17, with initial data
u0 := û0+ δx0 . We claim that

u1 is a solution of problem (1-1) different from u2.

It is easily seen that u1 is a solution of (1-1). Clearly, u1r = û, so the corresponding potential
v1 := ϕ(u1r )+ ε[ψ(u1r )]t coincides with v̂. Recalling that ût = v̂xx , we have∫ T

0
〈u(·,t),ζt(·,t)〉�dt=

∫ T

0

∫ 1

0
ûζt dx dt−ζ(x0,0)=−

∫ T

0

∫ 1

0
v̂xxζ dx dt=−

∫ 1

0
û0(x)ζ(x,0)dx−ζ(x0,0),

namely, equality (3-2) for every ζ ∈ C1([0, T ];Cc(�)) with ζ( · , T )= 0 in �.
On the other hand, by Theorem 3.18(i) the solution u2 and the corresponding chemical potential satisfy

the elliptic problem (1-18), whereas the pair (u1, v1) = (u1, v̂) does not. In fact, if it did, by equality
(3-13) we would have

〈u1s( · , t), ρ〉� = exp
{1
ε

∫ t

0
v̂(x0, s) ds

}
ρ(x0)

(since every Radon measure is C2-diffuse if N = 1), whereas the very definition of u1 implies that

〈u1s( · , t), ρ〉� = 〈δx0, ρ〉� = ρ(x0)

for every t > 0. Since v̂ > 0 in (0, 1)×[0,∞), this gives a contradiction if ρ(x0) 6= 0. The claim follows.

4. Proofs of persistence and monotonicity results

The proof of the following lemma is almost identical to that of [Bertsch et al. ≥ 2013, Lemma 3.1]; thus
we omit it.

Lemma 4.1. Let u be a solution of problem (1-1). Then there exists a null set F∗ ⊆ (0, T ) such that, for
every t ∈ (0, T ) \ F∗ and ρ ∈ Cc(�),

〈u( · , t), ρ〉�−〈u0, ρ〉� =

∫ t

0
〈1v( · , s), ρ〉� ds, (4-1)

lim
n→∞

n
2

∫ t+1/n

t−1/n
|〈us( · , s), ρ〉�−〈us( · , t), ρ〉�| ds = 0. (4-2)



PSEUDOPARABOLIC EQUATION WITH A LOGARITHMIC NONLINEARITY 1733

Proof of Theorem 3.5. Let F∗ ⊆ (0, T ) be the null set given by Lemma 4.1. For every t ∈ (0, T ) \ F∗

consider the map

Ft : Cc(�)→ R, ρ→

∫ t

0
〈1v( · , s), ρ〉� ds.

By (4-1) we have Ft ∈M(�). Moreover, Ft ∈ H−1(�) by Remark 3.3; thus Ft ∈Md,2(�). Then (4-1)
becomes

〈[u( · , t)]c,2, ρ〉�−〈[u0]c,2, ρ〉� = 〈Ft , ρ〉�−〈[u( · , t)]d,2− [u0]d,2, ρ〉�. (4-3)

By equality (4-3) the difference [u( · , t)]c,2− [u0]c,2 is both C2-diffuse and C2-concentrated; thus

[u( · , t)]c,2− [u0]c,2 = 0. �

Proof of Proposition 3.7. Let {gn} ⊆ Lip([0, ϕ(α)]) be defined by

gn(s) :=

ns if 0≤ s ≤ 1
n
,

1 if 1
n
< s ≤ ϕ(α),

and let Gn be the function (3-5) with g = gn . By standard approximation arguments, inequality (3-6) is
still valid with G = Gn . Therefore,∫∫

Q
{Gn(ur )ζt − gn(v)∇v∇ζ } dx dt ≥−

∫
�

Gn(u0r (x))ζ(x, 0) dx (4-4)

for ζ ∈ C1([0, T ];C1
c (�)), ζ ≥ 0, ζ( · , T )= 0 in �.

Since 0 ≤ Gn(ur ) ≤ ur a.e. in Q, 0 ≤ Gn(u0r ) ≤ u0r a.e. in �, and gn(s)→ 1 for any s ∈ (0, ϕ(α)],
as n→∞, by the dominated convergence theorem, we have

Gn(ur )→ ur in L1(Q), Gn(u0r )→ u0r in L1(�). (4-5)

Moreover,

gn(v)∇v =∇

(∫ v

0
gn(s) ds

)
a.e. in Q, (4-6)

and
‖gn(v)|∇v|‖L2(Q) ≤ ‖|∇v|‖L2(Q).

Therefore the sequence {gn(v)∇v} is weakly relatively compact in [L2(Q)]N . By (4-6), since∫ v(x,t)

0
gn(s) ds→ v(x, t) as n→∞ for a.e. (x, t) ∈ Q,

we obtain
gn(v)∇v ⇀ ∇v in [L2(Q)]N . (4-7)

By (4-5) and (4-7), letting n→∞ in inequality (4-4), we have∫∫
�

{urζt −∇v∇ζ } dx dt ≥−
∫
�

u0r (x)ζ(x, 0) dx, (4-8)
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whence, by (3-2),

−

∫ T

0
〈us( · , t), ζt( · , t)〉� dt ≥ 〈u0s, ζ( · , 0)〉� (4-9)

for any ζ as above.
To prove inequality (3-8), let t1, t2∈ (0, T )\F∗, where F∗⊆ (0, T ) is the null set defined by Lemma 4.1,

and set

h1(t) :=



0 if t < t1−
1
n
,

n
(

t − t1+
1
n

)
if t1−

1
n
≤ t ≤ t1,

1 if t1 < t < t2,

−n
(

t − t2−
1
n

)
if t2 ≤ t ≤ t2+

1
n
,

0 if t ≥ t2+
1
n
.

Choosing ζ(x, t)= ρ(x)h1(t) in (4-9), with any ρ ∈ C1
c (�), ρ ≥ 0, we obtain

n
∫ t2+1/n

t2
〈us( · , t), ρ〉� dt ≥ n

∫ t1

t1−1/n
〈us( · , t), ρ〉� dt.

Letting n→∞ in the above inequality and using (4-2), we obtain (3-8).
The proof of inequality (3-9) is similar. For any τ ∈ (0, T ) \ F∗ define

h2(t) :=


1 if t ≤ τ,

−n
(

t − τ − 1
n

)
if τ < t < τ + 1

n
,

0 if t ≥ τ + 1
n
.

Substitution of ζ(x, t)= ρ(x)h2(t) in (4-9) gives

n
∫ τ+1/n

τ

〈us( · , t), ρ〉� dt ≥ 〈u0s, ρ〉�,

whence we obtain (3-9) as n→∞. This completes the proof. �

Proof of Corollary 3.9. Since by assumption u0 = u0s , by inequality (3-10) we have

‖us( · , t)‖M(�) ≤ ‖u( · , t)‖M(�) ≤ ‖u0s‖M(�)

for a.e. t ∈ (0, T ). On the other hand, by inequality (3-9)

‖u0s‖M(�) = sup
ρ∈Cc(�),|ρ|≤1

〈u0s, ρ〉� ≤ sup
ρ∈Cc(�),|ρ|≤1

〈us( · , t), ρ〉� = ‖us( · , t)‖M(�).

The above inequalities imply

‖us( · , t)‖M(�) = ‖u( · , t)‖M(�) = ‖u0s‖M(�) = ‖u0‖M(�), (4-10)

whence ‖ur ( · , t)‖L1(�) = 0 for a.e. t ∈ (0, T ).
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It remains to prove that us( · , t)= u0 for a.e. t ∈ (0, T ). By inequality (3-9) and the arbitrariness of ρ,
for every Borel set E ⊆� and for a.e. t ∈ (0, T ),

us( · , t)(E)≥ u0s(E)= u0(E). (4-11)

So, arguing by contradiction, we suppose that there exists a Borel set Ẽ ⊆� such that

us( · , t)(Ẽ) > u0(Ẽ). (4-12)

By (4-10)–(4-12) and the identities

‖u0‖M(�) = u0(�), ‖us( · , t)‖M(�) = us( · , t)(�),

we obtain

u0(� \ Ẽ)≤ us( · , t)(� \ Ẽ)= us( · , t)(�)− us( · , t)(Ẽ) < u0(�)− u0(Ẽ)= u0(� \ Ẽ),

a contradiction. Hence the conclusion follows. �

5. Proof of uniqueness

Proof of Theorem 3.11. Let u1, u2 be two solutions of problem (1-1) satisfying (1-9), and let v1, v2 be the
corresponding potentials defined by (1-7). By Theorem 3.5 it is sufficient to prove that

[u1( · , t)]d,2 = [u2( · , t)]d,2 for a.e. t ∈ (0, T ).

By (3-2), for each ρ ∈ Cc(�) and for a.e. t ∈ (0, T ),

〈u1( ·,t)−u2(·,t),ρ〉� =
∫ t

0
〈1[v1(·,s)−v(·,s)],ρ〉�ds ≤ ‖ρ‖C(�)

∫ t

0
‖1[v1(·,s)−v2(·,s)]‖M(�)ds,

thus

‖u1(·,t)−u2(·,t)‖M(�)= sup
ρ∈Cc(�),|ρ|≤1

〈u1(·,t)−u2(·,t),ρ〉�≤
∫ t

0
‖1[v1(·,s)−v2(·,s)]‖M(�)ds. (5-1)

Let
w(x, t) := v1(x, t)− v2(x, t) ((x, t) ∈ Q).

By (1-9), w ∈ L∞((0, T ); H 1
0 (�)∩L∞(�)), 1w ∈ L∞((0, T );M(�)), and w solves the elliptic equation

−ε1w( · , t)+ [u1( · , t)]d,2w( · , t)+w( · , t)

=−([u1( · , t)]d,2− [u2( · , t)]d,2)v2( · , t)+
[
ϕ(u1r )

ψ ′(u1r )
−
ϕ(u2r )

ψ ′(u2r )

]
( · , t) in M(�) (5-2)

for a.e. t ∈ (0, T ).
Let { f j } ⊆ C∞(R) satisfy{

f j (0)= 0, ‖ f j‖∞ ≤ 1, f ′j ≥ 0 in R,

| f ′j (s)s| ≤ 1 for every s ∈ R, f j (s)→
s
|s|

for every s 6= 0.
(5-3)
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Since f j (w) ∈ L∞((0, T ); H 1
0 (�)∩ L∞(�)) for every j ∈N, it makes sense to use [ f j (w)]( · , t) as test

function for equality (5-2). Using inequalities (3-1) and (3-11), this gives

ε

∫
�

f ′j (w)(x, t)|∇w|2(x, t) dx +〈[u1( · , t)]d,2, [ f j (w)w]( · , t)〉�+
∫
�

[ f j (w)w](x, t) dx

≤ ϕ(α)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)+

∫
�

∣∣∣∣ ϕ(u1r )

ψ ′(u1r )
−
ϕ(u2r )

ψ ′(u2r )

∣∣∣∣(x, t) f j (w)(x, t) dx

≤ ϕ(α)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)+C‖u1r ( · , t)− u2r ( · , t)‖L1(�)

≤ L‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�) (5-4)

for a.e. t ∈ (0, T ) with some constant L > 0. By the properties of { f j } (see (5-3)) we have

‖|∇[ f j (w)w]|‖L2(Q) ≤ 2‖|∇w|‖L2(Q) (5-5)

for every j ∈ N; hence the sequence {∇[ f j (w)w]} is weakly relatively compact in [L2(Q)]N . Since

[ f j (w)w]( · , t))→ |w( · , t)| a.e. in �

and ‖w‖L∞(Q) ≤ ϕ(α) by inequality (3-1), by the dominated convergence theorem we have

[ f j (w)w]( · , t))→ |w( · , t)| in L1(�), [ f j (w)w]( · , t))
∗

⇀ |w( · , t)| in L∞(�).

Moreover, by (5-5)
[ f j (w)w]( · , t)) ⇀ |w( · , t)| in H 1

0 (�).

Then, letting n→∞ in (5-4) and recalling that f ′j ≥ 0, we get

〈[u1( · , t)]d,2, |w( · , t)|〉�+
∫
�

|w(x, t)| dx ≤ L‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�).

On the other hand, since u1( · , t) is a nonnegative Radon measure, for any ρ ∈ Cc(�) we have

〈[u1( · , t)]d,2, |w( · , t)|ρ〉�+
∫
�

|w(x, t)|ρ(x)dx ≤ ‖ρ‖C(�)

{
〈[u1( · , t)]d,2, |w( · , t)|〉�+

∫
�

|w(x, t)|dx
}

≤ L‖ρ‖C(�)‖[u1( · , t)]d,2−[u2( · , t)]d,2‖M(�).

Then from (5-2), arguing as in the proof of (5-4), we obtain plainly

ε〈1w( · , t), ρ〉� ≤ L̃‖ρ‖C(�)‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)

for some constant L̃ > 0 and any ρ ∈ Cc(�), whence

ε‖1[v1( · , t)− v2( · , t)]‖M(�) = ε‖1w( · , t)‖M(�) ≤ L̃‖[u1( · , t)]d,2− [u2( · , t)]d,2‖M(�)

for a.e. t ∈ (0, T ). Combined with equality (5-1) this yields

ε‖u1( · , t)− u2( · , t)‖M(�) ≤ L̃
∫ t

0
‖u1( · , s)− u2( · , s)‖M(�) ds,
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and since u1( · , 0)= u2( · , 0)= u0, it follows from Gronwall’s inequality that

‖u1( · , t)− u2( · , t)‖M(�) = 0 for a.e. t ∈ (0, T ). �

Proof of Proposition 3.12. (i) Since [ψ(ur )]t ∈ L∞(Q) (see Remark 3.2), the map t→ ψ(ur )(x, t) is
Lipschitz continuous, and hence differentiable a.e. in (0, T ) for a.e. x ∈�. Differentiating the identity
ur ( · , t) = ψ−1

[ψ(ur )]( · , t), we obtain that the derivative ur t exists a.e. in (0, T ) and the equality
[ψ(ur )]t = ψ

′(ur )ur t holds, whence, by (1-7),

εur t = (1+ ur )[v−ϕ(ur )] ∈ L1(Q). (5-6)

Integrating the above equality in (0, t), we obtain

εur (x, t)− εu0r (x)=
∫ t

0
{(1+ ur )[v−ϕ(ur )]}(x, s) ds (5-7)

for a.e. x ∈�, whence, by inequality (3-1),

εur (x, t)− εu0r (x)≤ ϕ(α)
∫ t

0
(1+ ur )(x, s) ds.

Then by Gronwall’s inequality

1+ ur (x, t)≤ [1+ u0r (x)] exp
{
ϕ(α)t
ε

}
(t ∈ (0, T ))

for a.e. x ∈�, which implies (3-12).

(ii) By (4-1) and (1-10) we have

ε

∫
�

[ur (x, t)− u0r (x)]ρ(x) dx + ε〈[us( · , t)− u0s], ρ〉�

=

∫ t

0

∫
�

ρ(x){(1+ ur )[v−ϕ(ur )]}(x, s) dx ds+
∫ t

0
〈[us( · , s)]d,2, v( · , s)ρ〉� ds

(5-8)

for any ρ ∈ Cc(�). Then by (5-7)–(5-8) we get

ε〈[us( · , t)− u0s], ρ〉� =

∫ t

0
〈[us( · , s)]d,2, v( · , s)ρ〉� ds.

It follows that the map

g : (0, T )→M+d,2(�), g(t) := [us( · , t)]d,2 (t ∈ (0, T ))

satisfies the problem {
ε

d
dt
〈 f (t), ρ〉� = 〈 f (t), v( · , t)ρ〉� in (0, T ),

〈 f (0), ρ〉� = 〈[u0s]d,2, ρ〉�

(5-9)

for any ρ ∈ Cc(�).

Claim. The unique solution of problem (5-9) is

f : (0, T )→M+d,2(�), f (t) := [u0s]d,2 exp
{

1
ε

∫ t

0
v( · , s) ds

}
(t ∈ (0, T )).
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This implies that

[us( · , t)]d,2 = [u0s]d,2 exp
{

1
ε

∫ t

0
v( · , s) ds

}
in M+d,2(�) for any t ∈ (0, T ), (5-10)

whence equality (3-13) follows. Then inequality (3-14) follows by (3-7) and (3-13), which completes the
proof.

To prove the claim, observe preliminarily that

exp
{

1
ε

∫ t

0
v( · , s) ds

}
∈ H 1(�)∩ L∞(�),

thus

〈 f (t), ρ〉� :=
〈
[u0s]d,2, exp

{
1
ε

∫ t

0
v( · , s) ds

}
ρ

〉
�

is well defined for any ρ ∈ Cc(�). Then for any t0, t0+ h ∈ (0, T ) we have〈
f (t0+ h)− f (t0)−

h
ε
[u0s]d,2 exp

{
1
ε

∫ t0

0
v( · , s) ds

}
v( · , t0), ρ

〉
�

=
|h|2

ε2

〈
[u0s]d,2, exp

{
1
ε

∫ t0+θh

0
v( · , s) ds

}
v2( · , t0), ρ

〉
�

for some θ ∈ (0, 1) and any ρ ∈ Cc(�). Hence there exists C > 0, only depending on the norm of v in
L∞((0, T ); H 1

0 (�)∩ L∞(�)), such that∥∥∥∥ f (t0+ h)− f (t0)−
h
ε
[u0s]d,2 exp

{
1
ε

∫ t0

0
v( · , s) ds

}
v( · , t0)

∥∥∥∥
M(�)

≤
C
ε2 ‖u0‖M(�)|h|2.

This proves that f is differentiable and satisfies the first equation of problem (5-9). Since f (0)= [u0s]d,2,
f is a solution of the problem.

Let us show that no other solutions exist, so that equality (5-10) holds. In fact, if f1 and f2 both solve
problem (5-9), plainly we obtain

‖ f1(t)− f2(t)‖M(�) ≤
ϕ(α)

ε

∫ t

0
‖ f1(s)− f2(s)‖M(�) ds for any t ∈ (0, T ),

whence f1= f2 in (0, T ) by Gronwall’s inequality. This proves the claim, and Proposition 3.12 follows. �

Proof of Proposition 3.15. Writing v = v+− v− and choosing ρ = v− in (3-16), we get

−

∫
�

|∇v−|
2 dx −〈µ, v2

−
〉� ≥ 0,

whence v = v+ ≥ 0 a.e. in �. Therefore the function 1/(v+ δ) belongs to H 1(�)∩ L∞(�) and we can
choose in (3-16) ρ = χ2/(v+ δ) for any χ ∈ C∞c (�) and δ > 0, thus obtaining

−

∫
�

∇v · ∇

(
χ2

v+ δ

)
dx ≤

〈
µ,

v

v+δ
χ2
〉
�
. (5-11)
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Integrating by parts, we plainly get∫
�

∇v · ∇

(
χ2

v+ δ

)
dx =−

∫
�

|∇v|2

(v+ δ)2
χ2 dx + 2

∫
�

χ∇χ · ∇v

v+ δ
dx

≤−
1
2

∫
�

|∇v|2

(v+ δ)2
χ2 dx + 2

∫
�

|∇χ |2 dx .

(5-12)

Since
∇v

v+δ
=∇

[
log
(

1+ v
δ

)]
,

by (5-11)–(5-12) we have

1
2

∫
�

∣∣∣∇[log
(

1+ v
δ

)]∣∣∣2χ2 dx ≤ 〈µ, χ2
〉�+ 2

∫
�

|∇χ |2 dx .

Then, arguing as in the proof of [Brezis and Ponce 2003, Theorem 1], the conclusion follows. �

Proof of Proposition 3.16. Since N = 1, for a.e. t ∈ (0, T ) v( · , t) ∈ C(�) and every singleton E = {x0}

(x0 ∈�) has positive C2-capacity. The conclusion follows by Proposition 3.15. �

6. The approximating problems

Lemma 6.1. Let u0 ∈M+(�),

u0 = u0ac+ [u0s]d,2+ [u0]c,2 = u0ac+ u0s,

and let u0r denote the density of the absolutely continuous part u0ac. Then there exist sequences {u0rn},
{([u0s]d,2)n} {([u0]c,2)n} ⊆ C∞c (�) of nonnegative functions such that

‖u0rn‖L1(�) ≤ ‖u0r‖L1(�); (6-1)

‖([u0s]d,2)n‖L1(�) ≤ ‖[u0s]d,2‖M(�), ‖([u0]c,2)n‖L1(�) ≤ ‖[u0]c,2‖M(�); (6-2)

u0rn→ u0r in L1(�); (6-3)

([u0s]d,2)n
∗

⇀ [u0s]d,2, ([u0]c,2)n
∗

⇀ [u0]c,2, u0sn
∗

⇀ u0s in M(�), (6-4)

u0n→ u0r a.e. in �, u0n
∗

⇀ u0 in M(�), (6-5)

where u0sn := ([u0s]d,2)n + ([u0]c,2)n , u0n := u0rn + u0sn . In addition, there exists C > 0 such that

‖u0n‖L∞(�) ≤ C
√

n for all n. (6-6)

Proof. Define ũ0 ∈M+(RN ) by setting ũ0 := ũ0r + ũ0s , where

ũ0r (x) :=
{

u0r (x) if x ∈�,
0 otherwise

and

[ũ0s]d,2(E) := [u0s]d,2(�∩ E), [ũ0]c,2(E) := [u0]c,2(�∩ E), ũ0s(E) := [ũ0s]d,2(E)+ [ũ0]c,2(E)
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for every Borel set E ⊆ RN . Observe that by definition

ũ0 = ũ0 �, ũ0(E)= u0(E) for every Borel set E ⊆�.

Hence, if ρ ∈ Cc(�) and ρ̃ ∈ Cc(R
N ) denotes its trivial extension to RN , we get

〈ũ0, ρ̃〉RN = 〈u0, ρ〉�.

Consider the sequence {ũ0n} ⊂ C∞c (R
N ) where

ũ0n := ũ0 ∗ jn,

{ jn} ⊆ C∞c (R
N ) being a regularizing sequence. We also define

ũ0rn := ũ0r ∗ jn, ([ũ0s]d,2)n := ([ũ0s]d,2) ∗ jn, ([ũ0]c,2)n := ([ũ0]c,2) ∗ jn, ũ0sn := ũ0s ∗ jn

with jn as above. To be specific, we choose

jn(x)=
nN∫

RN j (x) dx
ζ(nx) (x ∈ RN ),

where j ∈ C∞c (R
N ), j (x)= j (|x |) is a standard mollifier.

Next, choose any sequence {ηn} ⊆C∞c (R
N ) such that ηn ∈C∞c (�n+1), 0≤ ηn ≤ 1, ηn = 1 in �n; here

�n is open, �n ⊂ �n+1 ⊂� for every n ∈ N and
⋃
∞

n=1�n =�. Finally, set

u0rn := ũ0rnηn, ([u0s]d,2)n := ([ũ0s]d,2)nηn, ([u0]c,2)n := ([ũ0]c,2)nηn, u0sn := ũ0snηn.

It is easily checked that the sequences {u0rn}, {([u0s]d,2)n} {([u0]c,2)n}, {u0sn}, and {u0n} have the asserted
properties. �

Definition 6.2. A nonnegative function un ∈ C1([0, T ];C(�)) is called a solution of problem (Pn) if the
function vn defined by (3-17) belongs to C([0, T ];C0(�)∩ H 2,p(�)) for all p ∈ [1,∞), 1vn ∈ C(Q),
and the pair (un, vn) satisfies (Pn) in the strong sense.

Remark 6.3. If u is a solution of problem (Pn), then v ∈ C(Q) and vxi ∈ C(Q) for i ∈ {1, . . . , N }.
Moreover, v admits second order weak derivatives vxi x j ∈ L p(Q) for all p ∈ [1,∞), and for every
t ∈ [0, T ]

vxi x j ( · , t)= [v( · , t)]xi x j a.e. in �.

We omit the proof of the following result, as it is almost identical to those of [Bertsch et al. ≥ 2013,
Theorems 4.1–4.2].

Theorem 6.4. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Then, for any n ∈ N, problem (Pn) has a unique
solution un ≥ 0, and

un = [ψn(un)]t = 0 on ∂�×[0, T ].
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The function vn( · , t) defined by (3-18) satisfies, for a.e. t ∈ (0, T ),−− ε1[vn( · , t)] +
vn( · , t)

ψ ′n(un( · , t))
=
ϕ(un( · , t))
ψ ′n(un( · , t))

in �,

vn( · , t)= 0 on ∂�,
(6-7)

0≤ vn( · , t)≤ ϕ(α) in �, (6-8)

∂vn

∂ν
( · , t)≤ 0 on ∂�, (6-9)

where ∂/(∂ν) denotes the outer derivative at ∂�.
In addition, vn ∈ C1(QT ), vnt ∈ C([0, T ];C0(�)∩ H 2,p(�)) for p ∈ [1,∞) and, for a.e t ∈ (0, T ),

vnt( · , t) satisfies−ε1[vnt( · , t)] +
vnt( · , t)

ψ ′n(un( · , t))
=

[
ϕ′(un)unt + εψ

′′
n (un)u2

nt

ψ ′n(un)

]
( · , t) in �,

vnt( · , t)= 0 on ∂�.

The following result is analogous to [Bertsch et al. ≥ 2013, Proposition 4.3]. The proof is omitted.

Proposition 6.5. Let un be the solution of problem (Pn), let g ∈ C1([0, ϕ(α)]) with g′ ≥ 0, and let G be
defined by (3-5). Then, for any ζ ∈ C1([0, T ];C1

c (�)), ζ ≥ 0 and for any 0≤ t1 ≤ t2 ≤ T ,∫
�

G(un(x, t2))ζ(x, t2) dx −
∫
�

G(un(x, t1))ζ(x, t1) dx

≤

∫ t2

t1

∫
�

{G(un)ζt − g(vn)∇vn∇ζ − g′(vn)|∇vn|
2ζ } dx dt. (6-10)

Next, the following a priori estimates hold.

Proposition 6.6. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let un be the solution of problem (Pn). Then

‖un‖L∞((0,T );L1(�)) ≤ ‖u0‖M(�), (6-11)

‖[ψn(un)]t‖L∞(Q) ≤
ϕ(α)

ε
. (6-12)

Moreover, there exists C > 0 such that, for any n ∈ N,

‖vn‖L∞((0,T );H1
0 (�))
≤ C, (6-13)

‖vnt‖L∞((0,T );L1(�)) ≤ C, (6-14)

‖1vn‖L∞((0,T );L1(�)) ≤ C. (6-15)

For the proofs of inequalities (6-11)–(6-14) we refer the reader to those of the analogous statements in
[Bertsch et al. ≥ 2013, Proposition 5.1]. Let us only mention that in the proof of (6-13)–(6-14) we use
the inequalities

ϕ(un)vn

ψ ′n(un)
≤ [ϕ(α)]2(1+ un)
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and

|ψ ′′n (u)|
[ψ ′(u)]3

≤ (1+ u) for any u ≥ 0,

respectively.
Concerning inequality (6-15), observe that by, (6-7)–(6-8), we have

ε

∫
�

|1vn| dx ≤
∫
�

|vn −ϕ(un)|

ψ ′n(un)
dx ≤ ϕ(α)

∫
�

[1+ un] dx

for all t ∈ (0, T ). Then (6-15) follows from (6-11).
Finally, let us show that, for every t ∈ (0, T ), the sequence {1 + un( · , t)} satisfies an inequality

analogous to (3-12).

Proposition 6.7. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-4). Let un be the solution of problem (Pn). Then,
for any t ∈ (0, T ) and ρ ∈ Cc(�), ρ ≥ 0,∫

�

[1+ un(x, t)]ρ(x) dx ≤ exp
{
ϕ(α)t
ε

}∫
�

[1+ u0n(x)]ρ(x) dx . (6-16)

Proof. From (3-18) we obtain

εunt =
vn −ϕ(un)

ψ ′n(un)
.

Integrating the above equality in (0, t) and using inequality (6-8), we obtain, for every x ∈�,

ε[1+ un(x, t)] − ε[1+ u0n(x)] ≤ ϕ(α)
∫ t

0
[1+ un(x, s)] ds.

Then, by Gronwall’s inequality,

1+ un(x, t)≤ [1+ u0n(x)] exp
{
ϕ(α)t
ε

}
(t ∈ (0, T )) (6-17)

for every x ∈�, which implies (6-16). �

7. Proof of existence results

To prove Theorem 3.17 we need some preliminary results concerning convergence of solutions of the
sequences {un}, {vn}. From the estimates in Proposition 6.6 we obtain the following.

Proposition 7.1. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let un be the solution of problem (Pn) and
let vn be defined by (3-18). Then there exist u ∈ L∞((0, T );M+(�)), v ∈ L∞((0, T ); H 1

0 (�))∩ BV (Q)



PSEUDOPARABOLIC EQUATION WITH A LOGARITHMIC NONLINEARITY 1743

with 1v ∈ L∞((0, T );M(�)), and subsequences {unk }, {vnk } such that

unk ( · , t)
∗

⇀ u( · , t) in M(�), (7-1)

vnk → v a.e. in Q, (7-2)

1vnk

∗

⇀1v in M(Q), (7-3)

vnk ⇀v in L p((0, T ); H 1
0 (�)) (p ∈ [1,∞)), (7-4)

vn( · , t) ⇀ v( · , t) in H 1
0 (�) (7-5)

for a.e. t ∈ (0, T ). In addition,
‖u‖L∞((0,T );M(�)) ≤ ‖u0‖M(�) (7-6)

and v satisfies inequality (3-1).

Proof. The convergence in (7-1) and inequality (7-6) are proven as in [Bertsch et al. ≥ 2013, Proposi-
tion 5.3]. The convergence in (7-2)–(7-4) and inequality (3-1) follow from (6-13)–(6-15) and (6-8).

To prove the convergence in (7-5), observe that, by (7-2),

vnk ( · , t)→ v( · , t) a.e. in �

for a.e. t ∈ (0, T ). Hence, by inequality (6-8) and the dominated convergence theorem,

vnk ( · , t)→ v( · , t) in L1(�),

On the other hand, by inequality (6-13), the sequence {vn( · , t)} is contained in a weakly compact subset
of H 1

0 (�) for a.e. t ∈ (0, T ); hence the conclusion follows. �

The sequence {unk } converges a.e. in Q to the density ur of uac.

Proposition 7.2. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let {unk }, u, and v be as in Proposition 7.1,
and let ur ∈ L1(Q) be the density of the absolutely continuous part of u. Then

unk → ur a.e. in Q, (7-7)

[ψ(ur )]t ∈ L∞(Q), ur t ∈ L1(Q), (7-8)

[ψnk (unk )]t
∗

⇀ [ψ(ur )]t in L∞(Q). (7-9)

Moreover,

(i) we have

v = ϕ(ur )+ ε[ψ(ur )]t a.e. in Q, (7-10)

‖[ψ(ur )]t‖L∞(Q) ≤
ϕ(α)

ε
; (7-11)

(ii) ur ( · , t), us( · , t), u( · , t) satisfy inequalities (3-12), (3-14), (3-15), respectively, for a.e. t ∈ (0, T )
and for any ρ ∈ Cc(�), ρ ≥ 0.
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Proof. Arguing as in [Bertsch et al. ≥ 2013, Proposition 5.4], it can be proven that unk → z a.e. in Q for
some z ∈ L1(Q), z ≥ 0. Let us show that

z = ur a.e. in Q. (7-12)

For a.e. t ∈ (0, T ), we can assume without loss of generality that

unk ( · , t)→ z( · , t) a.e. in � (7-13)

and the convergence in (7-1) holds. As in the proof of [Bertsch et al. ≥ 2013, Proposition 5.5], there exist a
subsequence {unk j

( · , t)} (possibly depending on t) and a sequence of subsets {A j }, with A j+1 ⊆ A j ⊆�

for any j and |A j | → 0, such that the family {unk j
( · , t)χ�\A j } is uniformly integrable in � and

unk j
( · , t)χ�\A j ⇀ z( · , t) in L1(�).

For example, see [Valadier 1994]. Then, by (7-1), we have

unk j
( · , t)χA j

∗

⇀ u( · , t)− z( · , t)=: µ( · , t) in M(�). (7-14)

Since unk j
( · , t)χA j ≥ 0 in � for every j , the measure µ( · , t) is nonnegative.

By (6-16), for every ρ ∈ Cc(�), ρ ≥ 0, we get∫
A j

unk j
(x, t)ρ(x) dx ≤

∫
A j

[1+ unk j
(x, t)]ρ(x) dx ≤ exp

{
ϕ(α)t
ε

}∫
A j

[1+ u0nk j
(x)]ρ(x) dx

≤ exp
{
ϕ(α)t
ε

}{∫
A j

[1+ u0rnk j
(x)]ρ(x) dx +

∫
�

u0snk j
(x)ρ(x) dx

}
. (7-15)

Since u0rnk j
→ u0r in L1(�), |A j | → 0, and u0snk j

∗

⇀ u0s in M(�) as j→∞,

lim
j→∞

{∫
A j

[1+ u0rnk j
(x)]ρ(x) dx +

∫
�

u0snk j
(x)ρ(x) dx

}
= 〈u0s, ρ〉�.

Then, letting j→∞ in (7-15) and using (7-14), we have

〈µ( · , t), ρ〉� ≤ exp
{
ϕ(α)t
ε

}
〈u0s, ρ〉� (7-16)

for every ρ, as above.
Since µ( · , t) is nonnegative, by (7-16) it is absolutely continuous with respect to u0s , thus singular with

respect to the Lebesgue measure over �. Therefore, since z( · , t)∈ L1(�) and u( · , t)= z( · , t)+µ( · , t)
by definition, the uniqueness of the Lebesgue decomposition of u( · , t) ensures that

z( · , t)= [u( · , t)]r = [ur ( · , t)], µ( · , t)= [u( · , t)]s = [us( · , t)], (7-17)

(see (2-4)–(2-5)). This proves (7-12), whence (7-7) follows. By the same token, inequality (7-16) and the
second equality in (7-17) show that us( · , t) satisfies inequality (3-14).
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Let us prove the remaining claims. By inequality (6-11) and the convergence in (7-7), we have

ψnk (unk )→ ψ(ur ) in L1(Q). (7-18)

Then [ψ(ur )]t ∈ L∞(Q), by (7-18) and inequality (6-12). The convergence in (7-9) follows. Inequality
(7-11) follows by (6-12), (7-9), and the lower semicontinuity of the norm. By the continuity of ϕ, from
(7-7) and the results in Proposition 7.1, we obtain equality (7-10). On the other hand, the fact that
ur t ∈ L1(Q) follows as in the proof of Proposition 3.12.

Finally, arguing as in the proof of Proposition 3.12, from equality (5-6), we obtain that ur ( · , t) satisfies
inequality (3-12). As a consequence of (3-12) and (3-14), u( · , t) satisfies (3-15). This completes the
proof. �

The proof of the following result is the same as that of [Bertsch et al. ≥ 2013, Proposition 5.6], hence
we omit it.

Proposition 7.3. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). The pair (u, v) defined by Proposition 7.1
satisfies the entropy inequality (3-6).

Proof of Theorem 3.17. Let u and v be defined by Proposition 7.1. Then u ∈ L∞((0, T );M+(�)),
v ∈ L∞((0, T ); H 1

0 (�)), and 1v ∈ L∞((0, T );M(�)). Moreover, [ψ(ur )]t ∈ L∞(Q) by (7-11), equality
(7-10) holds, and inequality (3-1) is satisfied.

By (6-5), (6-11), (7-1), (7-3), and the dominated convergence theorem, letting n→∞ in the weak
formulation of (Pn) shows that the limiting measure u satisfies equality (3-2) for any ζ ∈C1([0, T ];Cc(�)).
The other claims follow by Propositions 7.1–7.2. This completes the proof. �

8. Proof of Theorem 3.18

Let us first prove Theorem 3.18 when N = 1. This is the content of the following proposition.

Proposition 8.1. Let N = 1, u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the
entropy solution of problem (1-1) given in Theorem 3.17 and v the chemical potential defined in (1-7).
Then the pair (u, v) satisfies problem (1-18).

Proof. Fix any t ∈ (0, T ) such that

unk ( · , t)
∗

⇀ u( · , t) in M(�),

unk ( · , t)→ ur ( · , t) a.e. in �,

vnk ( · , t) ⇀ v( · , t) in H 1
0 (�)

(see (7-1), (7-5), and (7-12)–(7-13)). By inequality (6-13) we can also assume

vnk ( · , t)→ v( · , t) in C(�).
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Given ρ ∈ C1
c (�), let us study the limit as k →∞ of the weak formulation of (6-7) with n = nk ,

namely,

ε

∫
�

vnk x(x, t)ρx(x) dx +
∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx . (8-1)

(i) Since ϕ ∈ Lq([α,∞)) (see (1-4)) and

{(1+ u)[ϕ(u)]q}′ = [ϕ(u)]q + q[(1+ u)[ϕ(u)]q−1
]ϕ′(u)≤ [ϕ(u)]q for any u ≥ α,

we have

(1+ u)[ϕ(u)]q ≤ (1+α)[ϕ(α)]q +
∫ u

α

[ϕ(u)]q ds = (1+α)[ϕ(α)]q +‖ϕ‖qLq (R+)
for any u ≥ α,

whence we get

[ϕ(u)] ≤ C(1+ u)−1/q for any u ≥ 0,

for some constant C > 0. It follows that

ϕ(unk )

ψ ′nk
(unk )

≤ (1+ unk )ϕ(unk )≤ C(1+ unk )
1−1/q a.e. in Q. (8-2)

Then, for every Borel set E ⊆� and for a.e. t ∈ (0, T ),∫
E

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
dx ≤ C

∫
E
[1+ unk (x, t)]1−1/q dx ≤ |E |1/q

(∫
E
[1+ unk (x, t)] dx

)1−1/q

. (8-3)

Inequalities (6-11) and (8-3) imply that the sequence{
ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))

}
is bounded in L1(�) and uniformly integrable in �. As a consequence, there exists a subsequence, for
simplicity, denoted again by {

ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))

}
,

such that
ϕ(unk ( · , t))
ψ ′nk

(unk ( · , t))
⇀

ϕ(ur ( · , t))
ψ ′(ur ( · , t))

in L1(�). (8-4)

(ii) By inequalities (6-6) and (6-17),

1+ unk ≤ exp
{
ϕ(α)T
ε

}
(1+
√

nk) a.e. in Q. (8-5)

Observe that ∣∣∣∣ 1
ψ ′nk

(u)
−

1
ψ ′(u)

∣∣∣∣= 1
nk

( 1+u
1/(1+u)+1/nk

)
≤
(1+u)2

nk
. (8-6)
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Then, by (6-11) and (8-5)–(8-6),∥∥∥ 1
ψ ′nk

(unk (·,t))
−

1
ψ ′(unk (·,t))

∥∥∥
L1(�)
≤

2
√

nk
exp

{
ϕ(α)T
ε

}∫
�

[1+unk (x,t)]dx

≤
2
√

nk
exp

{
ϕ(α)T
ε

}
[|�|+‖u0‖M(�)] → 0 as k→∞. (8-7)

Since vnk ( · , t)→ v( · , t) in C(�) and

1
ψ ′(unk ( · , t))

= 1+ unk ( · , t))
∗

⇀ 1+ u( · , t) in M(�),

we have ∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx→ 〈[1+ u( · , t)], v( · , t)ρ〉�. (8-8)

Now let k→∞ in equality (8-1). By (7-5), (8-4), and (8-8), we obtain

ε

∫
�

vx(x, t)ρx(x) dx +〈[1+ u( · , t)], ρv( · , t)〉� =
∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx .

Since by Definition 3.1, vxx ∈ L∞((0, T );M(�)), this implies

−ε〈vxx( · , t), ρ〉�+〈[1+ u( · , t)], ρv( · , t)〉� =
∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx

for a.e. t ∈ (0, T ) and any ρ ∈ Cc(�). Hence the result follows. �

To complete the proof of Theorem 3.18, let us prove the following result.

Proposition 8.2. Let u0 ∈ M+(�), and let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let u be the entropy
solution of problem (1-1) given in Theorem 3.17 and v the chemical potential defined in (1-7). Let N ≥ 2,
and let u0 satisfy the following assumptions:

(i) [u0]c,2 is concentrated on some compact K0 ⊂� such that C2(K0)= 0;

(ii) [u0]d,2 ∈M+d,p(�) for some p ∈ [1, 2).

Then the pair (u, v) satisfies problem (1-9).

The main step in the proof of Proposition 8.2 is given by the following lemma.

Lemma 8.3. Let ϕ ∈ C∞([0,∞)) satisfy (1-3)–(1-5). Let {unk }, {vnk } be the subsequences given by
Proposition 7.1. Then, for every ρ ∈ C1

c (�),

lim
k→∞

∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx = 〈[1+ u( · , t)]d,2, v( · , t)ρ〉�. (8-9)

Proof of Proposition 8.2. Fix any t ∈ (0, T ) such that the convergence in (7-1) and (7-5) hold, namely,

unk ( · , t)
∗

⇀ u( · , t) in M(�),

vnk ( · , t) ⇀ v( · , t) in H 1
0 (�),

unk ( · , t)→ ur ( · , t) a.e. in �
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(see (7-12)–(7-13)). Consider the weak formulation of (6-7) with n = nk , namely,

ε

∫
�

∇vnk (x, t) · ∇ρ(x) dx +
∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx (8-10)

where ρ ∈ C1
c (�). Arguing as in the proof of Proposition 8.1, it is easily seen that

lim
k→∞

∫
�

∇vnk (x, t) · ∇ρ(x) dx =
∫
�

∇v(x, t) · ∇ρ(x) dx;

lim
k→∞

∫
�

ϕ(unk (x, t))
ψ ′nk

(unk (x, t))
ρ(x) dx =

∫
�

ϕ(ur (x, t))
ψ ′(ur (x, t))

ρ(x) dx;

lim
k→∞

∥∥∥∥ 1
ψ ′nk

(unk ( · , t))
−

1
ψ ′(unk ( · , t))

∥∥∥∥
L1(�)

= 0.

thus
lim

k→∞

∫
�

vnk (x, t)
ψ ′nk

(unk (x, t))
ρ(x) dx = lim

k→∞

∫
�

vnk (x, t)
ψ ′(unk (x, t))

ρ(x) dx

(here we use (6-8)). Then, by Lemma 8.3, the conclusion follows. �

The proof of Lemma 8.3, which was used in the proof of Proposition 8.2, requires a few intermediate
steps. Let K0 ⊂ �, C2(K0) = 0, be a compact set where [u0]c,2 is concentrated. Then for every δ > 0
there exists an open set �c

δ ⊆� such that

K0 ⊂�
c
δ, C2(�

c
δ) < δ. (8-11)

Set

�d
δ :=� \�

c
δ. (8-12)

Moreover, observe that the convergence in (7-5) guarantees the existence of a compact set Eδ ⊆�d
δ such

that
C p(Ec

δ ) < δ, where Ec
δ :=�

d
δ \ Eδ (8-13)

and p ∈ [1, 2) is chosen so that [u0]d,2 ∈M+d,p(�), and

vnk ( · , t)→ v( · , t) uniformly in Eδ. (8-14)

By (8-12) and the definition in (8-13), we have the disjoint union

�=�c
δ ∪ Ec

δ ∪ Eδ.

Therefore∫
�

[1+unk(x, t)]vnk(x, t)ρ(x) dx=
∫
�c
δ

[1+unk(x, t)]vnk(x, t)ρ(x) dx+
∫

Ec
δ

[1+unk(x, t)]vnk(x, t)ρ(x) dx

+

∫
Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx . (8-15)

Concerning the first two integrals in the right-hand side of (8-15), we have the following two lemmata,
whose proofs will be given at the end of this section.
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Lemma 8.4. Let �c
δ ⊆� be the set in (8-11), and ρ ∈ C1

c (�). Then there exists a function

f1 = f1(δ)≥ 0

with f1(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ f1(δ). (8-16)

Lemma 8.5. Let Ec
δ be the set in (8-13), and ρ ∈ C1

c (�). Then there exists a function f2 = f2(δ) ≥ 0,
f2(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ f2(δ). (8-17)

We also prove the following result.

Lemma 8.6. Let ρ ∈ C1
c (�) and let φδ ∈ C∞c (�) such that

0≤ φδ ≤ 1 a.e. in �,
φδ = 1 a.e. in Eδ,
dist(K0, suppφδ) > 0.

(8-18)

Then there exists a function f3 = f3(δ)≥ 0, f3(δ)→ 0 as δ→ 0, such that

lim sup
k→∞

∫
�c
δ∪Ec

δ

[1+ unk (x, t)]v(x, t)φδ(x)|ρ(x)| dx ≤ f3(δ), (8-19)

Relying on the above results we can prove Lemma 8.3.

Proof of Lemma 8.3. For every k ∈ N we have∣∣∣∣∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
≤

∣∣∣∣∫
Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
+

∫
�c
δ∪Ec

δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤

∫
Eδ
[1+ unk (x, t)]|vnk (x, t)− v(x, t)||ρ(x)| dx

+

∣∣∣∣∫
�

[1+ unk (x, t)]v(x, t)φδ(x)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)φδρ〉�

∣∣∣∣
+

∫
�c
δ∪Ec

δ

[1+ unk (x, t)][vnk (x, t)+ v(x, t)φδ(x)]|ρ(x)| dx

+ |〈[1+ u( · , t)]d,2, (1−φδ)v( · , t)|ρ|〉�|; (8-20)

here we have used the equality (recall that φδ = 1 a.e. in Eδ)
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Eδ
[1+ unk (x, t)]vnk (x, t)ρ(x) dx =

∫
Eδ
[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx

=

∫
�

[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx −
∫
�c
δ∪Ec

δ

[1+ unk (x, t)]vnk (x, t)φδ(x)ρ(x) dx .

By (6-11) and (8-14), we have

lim
k→∞

∫
Eδ
[1+ unk (x, t)]|vnk (x, t)− v(x, t)|ρ(x) dx = 0;

while by (8-16)–(8-19),

lim sup
k→∞

∫
�c
δ∪Ec

δ

[1+ unk (x, t)][vnk (x, t)+ v(x, t)φδ(x)]|ρ(x)| dx ≤ f1(δ)+ f2(δ)+ f3(δ).

Moreover, observe that, by (8-11) and (8-13),

C p(�
δ
c ∪ Ec

δ )≤ C p(�
δ
c)+C p(Ec

δ )≤ AC2(�
c
δ)+C p(Ec

δ ) < (A+ 1)δ (8-21)

for some constant A> 0 (here we used the condition p < 2). Since the support of the function (1−φδ) is
contained in the set �δc ∪ Ec

δ , by (8-21) and the assumption [u0]d,2 ∈M+d,p(�), there exists a function
f4 = f4(δ)≥ 0, f4(δ)→ 0 as δ→ 0, such that∣∣〈[1+ u( · , t)]d,2, (1−φδ)v( · , t)|ρ|

〉
�

∣∣≤ f4(δ). (8-22)

In addition, we prove that

lim
k→∞

∫
�

[1+ unk (x, t)]v(x, t)φδ(x)ρ(x) dx = 〈[1+ u( · , t)]d,2, v( · , t)φδρ〉�. (8-23)

Then, from (8-20), we obtain

lim sup
k→∞

∣∣∣∣∫
�

[1+ unk (x, t)]vnk (x, t)ρ(x) dx −〈[1+ u( · , t)]d,2, v( · , t)ρ〉�

∣∣∣∣
≤ f1(δ)+ f2(δ)+ f3(δ)+ f4(δ) for any δ > 0. (8-24)

By the arbitrariness of δ the conclusion follows.
It remains to prove equality (8-23). By the weak formulation of (Pn), we have∫

�

unk (x, t)v(x, t)φδ(x)ρ(x) dx

=−

∫ t

0

∫
�

∇vnk (x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds+
∫
�

u0nk (x)v(x, t)φδ(x)ρ(x) dx, (8-25)

where ∫
�

u0nkv(x, t)φδ(x)ρ(x) dx =
∫
�

([u0]d,2)nkv(x, t)φδ(x)ρ(x) dx (8-26)

for every k large enough, since dist(K0, suppφδ) > 0 and K0 is the set where [u0]c,2 is concentrated.
Therefore, by (7-4), letting k→∞ in equality (8-25), we have
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lim
k→∞

∫
�

unk (x, t)v(x, t)φδ(x)ρ(x) dx

=−

∫ t

0

∫
�

∇v(x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds+〈[u0]d,2, v( · , t)φδρ〉�. (8-27)

On the other hand, in view of (3-7), equality (4-1) gives

〈[u( · , t)]d,2, ρ〉�−〈[u0]d,2, ρ〉� =

∫ t

0
〈1v( · , s), ρ〉� ds,

which makes sense for any ρ ∈ H 1
0 (�)∩ L∞(�). Therefore we can choose v( · , t)φδρ as a test function,

obtaining

〈[u( · , t)]d,2, v( · , t)φδρ〉�−〈[u0]d,2, v( · , t)φδρ〉� =−
∫ t

0

∫
�

∇v(x, s) · ∇[v(x, t)φδ(x)ρ(x)] dx ds.

Comparing this equality with (8-27), we obtain (8-23). This completes the proof. �

Finally, let us prove Lemmata 8.4–8.6.

Proof of Lemma 8.4. Since C2(�
δ
c) < δ, there exists ηδ ∈ H 1

0 (�) such that
‖ηδ‖H1

0 (�)
≤ 2δ,

0≤ ηδ ≤ 1 a.e. in �,
ηδ = 1 a.e. in �δc.

By (8-5)–(8-6), we have∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤

∫
�

∣∣∣ 1
ψ ′(unk )

−
1

ψ ′nk
(unk )

∣∣∣(x, t)vnk (x, t)|ρ(x)|ηδ(x) dx +
∫
�

vnk

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx

≤ C
∫
�

ηδ dx +
∫
�

vnk

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx .

Since |ρ|ηδ ∈ H 1
0 (�), by (6-7) we get∫

�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx

≤ ε

∫
�

|∇vnk (x, t)||∇(|ρ|ηδ)| dx +
∫
�

ϕ(unk )

ψ ′nk
(unk )

(x, t)|ρ(x)|ηδ(x) dx +C
∫
�

ηδ(x) dx,

whence we get∫
�c
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1‖|ρ|ηδ‖H1
0 (�)
+C2

∫
�

u1−1/q
nk

(x, t)ηδ(x) dx +C
∫
�

ηδ(x) dx

≤ C̃
[
‖|ρ|ηδ‖H1

0 (�)
+

(∫
�

η
q
δ (x) dx

)1/q

+

∫
�

ηδ(x) dx
]
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(here we used (6-11), (6-13), and (8-2)). Setting

f1(δ) := C̃
[
‖|ρ|ηδ‖H1

0 (�)
+

(∫
�

η
q
δ (x) dx

)1/q

+

∫
�

ηδ(x) dx
]
,

the conclusion follows. �

Proof of Lemma 8.5. By (6-16) (see also Remark 3.14) we obtain∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1

∫
Ec
δ

[1+ u0nk (x)]vnk (x, t)|ρ(x)| dx

≤ C1

∫
Ec
δ

u0nk (x)vnk (x, t)|ρ(x)| dx +C2|Ec
δ |. (8-28)

Moreover, by the definition of the sequence {u0n} in Lemma 6.1, we have

u0nk = ([u0]c,2)nk + ([u0]d,2)nk ,

where

([u0]d,2)nk := u0rnk + ([u0s]d,2)nk ,

and ∫
Ec
δ

([u0]c,2)nk (x) dx = 0 (8-29)

holds for every k large enough. In fact, recall that the sequence ([u0]c,2)n is defined by convolution,
[u0]c,2 is concentrated on the compact set K0 ⊂ �

c
δ, the set �c

δ is open, and Ec
δ ⊆ � \�

c
δ. Combining

(8-28) with (8-29) gives∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C1

∫
Ec
δ

([u0]d,2)nk (x)vnk (x, t)|ρ(x)| dx +C2|Ec
δ | (8-30)

for every k sufficiently large. Moreover, since C p(Ec
δ ) < δ (see (8-13)) there exists ρδ ∈ H 1,p

0 (�) such
that 

‖ρδ‖H1,p
0 (�)

≤ 2δ,

0≤ ρδ ≤ 1 a.e. in �,
ρδ = 1 a.e. in Ec

δ .

By the above remarks, using inequality (6-8), we obtain∫
Ec
δ

([u0]d,2)nk (x)vnk (x, t)|ρ(x)| dx ≤ C3

∫
�

([u0]d,2)nk (x)ρδ(x)|ρ(x)| dx . (8-31)

Since, by assumption, [u0]d,2 ∈M+d,p(�), by the first convergence in (6-4) we have

lim
k→∞

∫
�

([u0]d,2)nk (x)ρδ(x)|ρ(x)| dx = 〈[u0]d,2, ρδ|ρ|〉�.
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Hence, by (8-30) and (8-31), we obtain

lim sup
k→∞

∫
Ec
δ

[1+ unk (x, t)]vnk (x, t)|ρ(x)| dx ≤ C2|Ec
δ | +C3〈[u0]d,2, ρδ|ρ|〉�. (8-32)

Then, setting
f2(δ) := C2|Ec

δ | +C3〈[u0]d,2, ρδ|ρ|〉�,

by (8-32) and the assumption [u0]d,2 ∈M+d,p(�), the conclusion follows. �

Proof of Lemma 8.6. By (6-16) (see also Remark 3.14), for every k sufficiently large we have∫
�c
δ∪Ec

δ

[1+ unk (x, t)]v(x, t)φδ(x)|ρ(x)| dx ≤ C
∫
�c
δ∪Ec

δ

u0nk (x)v(x, t)φδ(x)|ρ(x)| dx

= C
∫
�c
δ∪Ec

δ

([u0]d,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx .
(8-33)

In fact, for k sufficiently large∫
�c
δ∪Ec

δ

([u0]c,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx = 0,

since dist(K0, suppφδ) > 0 and [u0]c,2 is concentrated on K0.
Let gδ ∈ H 1,p

0 (�) be any function such that
‖gδ‖H1,p

0 (�)
≤ 4δ,

0≤ gδ ≤ 1 a.e. in �,
gδ = 1 a.e. in � \ Eδ.

In view of (8-21), since [u0]d,2 ∈M+d,p(�), we have

lim sup
k→∞

∫
�c
δ∪Ec

δ

([u0]d,2)nk (x)v(x, t)φδ(x)|ρ(x)| dx ≤ C lim
k→∞

∫
�

([u0]d,2)nk (x)gδ(x) dx

= C〈[u0]d,2, gδ〉�. (8-34)

Since
f3(δ) := C〈[u0]d,2, gδ〉�→ 0 as δ→ 0,

by (8-33)–(8-34), the conclusion follows. �
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