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L p AND SCHAUDER ESTIMATES FOR NONVARIATIONAL OPERATORS
STRUCTURED ON HÖRMANDER VECTOR FIELDS WITH DRIFT

MARCO BRAMANTI AND MAOCHUN ZHU

Let

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0,

where X0, X1, . . . , Xq are real smooth vector fields satisfying Hörmander’s condition in some bounded
domain � ⊂ Rn (n > q + 1), and the coefficients ai j = a j i , a0 are real valued, bounded measurable
functions defined in �, satisfying the uniform positivity conditions

µ|ξ |2 ≤

q∑
i, j=1

ai j (x)ξiξ j ≤ µ
−1
|ξ |2, µ≤ a0(x)≤ µ−1,

for a.e. x ∈�, every ξ ∈ Rq , and some constant µ > 0.
We prove that if the coefficients ai j , a0 belong to the Hölder space Cα

X (�) with respect to the distance
induced by the vector fields, local Schauder estimates of the following kind hold:

‖X i X j u‖CαX (�
′)+‖X0u‖CαX (�

′) ≤ c{‖Lu‖CαX (�)
+‖u‖L∞(�)}

for any �′ b�.
If the coefficients ai j , a0 belong to the space VMOX,loc(�) with respect to the distance induced by the

vector fields, local L p estimates of the following kind hold, for every p ∈ (1,∞):

‖X i X j u‖L p(�′)+‖X0u‖L p(�′) ≤ c{‖Lu‖L p(�)+‖u‖L p(�)}.
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1. Introduction

Let us consider a family of real smooth vector fields

X i =

n∑
j=1

bi j (x)∂x j , i = 0, 1, 2, . . . , q

(here q+1< n), defined in some bounded domain � of Rn and satisfying Hörmander’s condition: the Lie
algebra generated by the X i at any point of � spans Rn . Under these assumptions, Hörmander’s operators

L=

q∑
i=1

X2
i + X0

have been studied since the late 1960s. Hörmander [1967] proved that L is hypoelliptic, while Rothschild
and Stein [1976] proved that, for these operators, a priori estimates of L p type for second order derivatives
with respect to the vector fields hold, namely,

q∑
i, j=1

‖X i X j u‖L p(�′)+‖X0u‖L p(�′) ≤ c
{
‖Lu‖L p(�)+‖u‖L p(�)+

q∑
i=1

‖X i u‖L p(�)

}
(1-1)

for any p ∈ (1,∞), �′ b�.
Note that the “drift” vector field X0 has weight two, compared with the vector fields

X i for i = 1, 2, . . . , q.

Many more results have been proved in the literature for operators without the drift term (“sum of squares”
of Hörmander type) than for complete Hörmander’s operators. On the other hand, complete operators owe
their interest, for instance, to the class of Kolmogorov–Fokker–Planck operators, which arise naturally in
many fields of physics, natural sciences, and finance as the transport-diffusion equations satisfied by the
transition probability density of stochastic systems of ODEs which describe some real system governed by
a basically deterministic law perturbed by some kind of white noise. The study of Kolmogorov–Fokker–
Planck operators in the framework of Hörmander’s operators received a strong impulse from [Lanconelli
and Polidoro 1994], which started a lively line of research. We refer to [Lanconelli et al. 2002] for a good
survey of this field, with further motivations for the study of these equations and related references.

Let us also note that the study of Hörmander’s operators is considerably easier when L is left invariant
with respect to a suitable Lie group of translations and homogeneous of degree two with respect to a
suitable family of dilations (which are group automorphisms of the corresponding group of translations).
In this case we say that L has an underlying structure of homogeneous group and, by a famous result due
to Folland [1975], L possesses a homogeneous left invariant global fundamental solution, which turns
out to be a precious tool in proving a priori estimates.
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In the last ten years, more general classes of nonvariational operators structured on Hörmander’s vector
fields have been studied, namely,

L=

q∑
i, j=1

ai j (x)X i X j , (1-2)

L=

q∑
i, j=1

ai j (x, t)X i X j − ∂t , (1-3)

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0, (1-4)

where the matrix {ai j ( · )}
q
i, j=1 is symmetric positive definite and the coefficients are bounded (a0 is

bounded away from zero) and satisfy suitable mild regularity assumptions; for instance, they belong
to Hölder or VMO spaces defined with respect to the distance induced by the vector fields. Since the
ai j ’s are not C∞, these operators are no longer hypoelliptic. Nevertheless, a priori estimates on second
order derivatives with respect to the vector fields are a natural result which does not in principle require
smoothness of the coefficients. Namely, a priori estimates in L p (with coefficients ai j in VMOX ∩ L∞)
have been proved for operators (1-2) [Bramanti and Brandolini 2000a] and for operators (1-4) [Bramanti
and Brandolini 2000b] but in homogeneous groups; a priori estimates in Cα

X spaces (with coefficients
ai j in Cα

X ) have been proved for operators (1-3) [Bramanti and Brandolini 2007] and for operators (1-4)
[Gutiérrez and Lanconelli 2009] but in homogeneous groups. Here the Hölder space Cα

X and the VMOX

space are defined with respect to the distance induced by the vector fields (see Section 3D for precise
definitions).

In the particular case of Kolmogorov–Fokker–Planck operators, which can be written as

L=

q∑
i, j=1

ai j (x)∂2
xi x j
+ X0

for a suitable drift X0, L p estimates (when ai j are VMO) have been proved [Bramanti et al. 1996] in
homogeneous groups, while Schauder estimates (when ai j are Hölder continuous) have been proved
[Di Francesco and Polidoro 2006] under more general assumptions (namely, assuming the existence of
translations but not necessarily dilations, adapted to the operator). We recall that the idea of proving
L p estimates for nonvariational operators with leading coefficients in VMO∩ L∞ (instead of assuming
their uniform continuity) appeared for the first time in [Chiarenza et al. 1991; Chiarenza et al. 1993] by
Chiarenza, Frasca, and Longo, in the uniformly elliptic case.

The aim of the present paper is to prove both L p and Cα local estimates for general operators (1-4)
structured on Hörmander’s vector fields “with drift”, without assuming the existence of any group structure,
under the appropriate assumptions on the coefficients ai j , a0. Namely, our basic estimates read as follows:

‖u‖S2,p
X (�′)

≤ c{‖Lu‖L p(�)+‖u‖L p(�)} (1-5)
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for p ∈ (1,∞) and any �′ b� if the coefficients are VMOX,loc(�), and

‖u‖C2,α
X (�′)

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)} (1-6)

for α ∈ (0, 1) and �′ b � if the coefficients are Cα
X (�). The related Sobolev and Hölder spaces S2,p

X ,
C2,α

X are those induced by the vector fields X i , and will be precisely defined in Section 3D. Clearly, these
estimates are more general than those contained in all the aforementioned papers.

At first sight, this kind of result could seem a straightforward generalization of existing theories.
However, several difficulties exist, some hidden in subtle details. We are going to describe some of them.
First of all, we have to remark that in [Rothschild and Stein 1976], although S2,p

X estimates are stated
for both sum of squares and complete Hörmander’s operators, proofs are given only in the first case.
While some adaptations are quite straightforward, this is not always the case. Therefore, some results
proved in the present paper can be seen also as a detailed proof of results stated in [Rothschild and Stein
1976], in the drift case. One of the new difficulties in the drift case is related to the proof of suitable
representation formulas for second order derivatives X i X j u of a test function, in terms of u and Lu, via
singular integrals and commutators of singular integrals. In turn, the reason why these representation
formulas are harder to prove in the presence of a drift relies on the fact that a technical result which allows
us to exchange, in a suitable sense, the action of X i -derivatives with that of suitable integral operators
assumes a more involved form when the drift is present.

Once the suitable representation formulas are established, a real variable machinery similar to that used
in [Bramanti and Brandolini 2000a; 2007] can be applied, and this is the reason why we have chosen to
give in a single paper a unified treatment of L p and Cα

X estimates. More specifically, one considers a
bounded domain � endowed with the control distance induced by the vector fields X i , which has been
defined, in the drift case, by Nagel, Stein, and Wainger [Nagel et al. 1985], and the Lebesgue measure,
which is locally doubling with respect to these metric balls, as proved in [Nagel et al. 1985]. However,
a problem arises when trying to apply to this context known results about singular integrals in metric
doubling spaces (or “spaces of homogeneous type”, after [Coifman and Weiss 1971]). Namely, what we
should know to apply this theory on some domain �′ b� is a doubling property such as

µ(B(x, 2r)∩�′)≤ cµ(B(x, r)∩�′) for any x ∈�′ b�, r > 0 (1-7)

while what we actually know, in view of [Nagel et al. 1985], is

µ(B(x, 2r))≤ cµ(B(x, r)) for any x ∈�′ b�, 0< r < r0. (1-8)

It has been known since [Franchi and Lanconelli 1983] that, when �′ is for instance a metric ball,
condition (1-7) follows from (1-8) as soon as the distance satisfies a kind of segment property which
reads as follows: for any couple of points x1, x2 at distance r and for any number δ < r and ε > 0, there
exists a point x0 having distance ≤ δ from x1 and ≤ r − δ+ ε from x2 (this fact explicitly appears, for
instance, from the proof given in [Bramanti and Brandolini 2005, Lemma 4.2]). However, while when
the drift term is lacking, the distance induced by the X i is easily seen to satisfy this property, this is no
longer the case when the field X0 with weight two enters the definition of distance, and, as far as we



L p AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HÖRMANDER VECTOR FIELDS 1797

know, a condition of kind (1-7) has never been proved in this context for a metric ball �′, or for any other
special kind of bounded domain �. Thus we are forced to apply a theory of singular integrals which
does not require the full strength of the global doubling condition (1-7). A first possibility is to consider
the context of nondoubling spaces, as studied by Tolsa, Nazarov, Treil, and Volberg, and other authors
(see, for instance, [Tolsa 2001; Nazarov et al. 2003] and the references therein). Results of L p and Cα

continuity for singular integrals of this kind, applicable to our context, have been proved in [Bramanti
2010]. However, to prove our L p estimates (1-5), we also need some commutator estimates, of the kind
of the well-known result proved by [Coifman et al. 1976], which, as far as we know, are not presently
available in the framework of general nondoubling quasimetric (or metric) spaces. For this reason, we
have recently developed [Bramanti and Zhu 2012] a theory of locally homogeneous spaces which is quite
a natural framework where all the results we need about singular integrals and their commutators with
BMO functions can be proved. To give a unified treatment of both L p and Cα estimates, here we have
decided to prove both by exploiting the results in [Bramanti and Zhu 2012]. We note that our Schauder
estimates could also be obtained by applying the results in [Bramanti 2010], while L p estimates could
not.

Once the basic estimates on second order derivatives are established, a natural, but nontrivial, extension
consists in proving similar estimates for derivatives of (weighted) order k+ 2, in terms of k derivatives of
Lu (assuming, of course, that the coefficients of the operator possess the corresponding further regularity).
In the presence of a drift, it is reasonable to restrict this study to the case of k even, as already appears
from the analog result proved in homogeneous groups [Bramanti and Brandolini 2000b]. Even in this
case, a proof of this extension seems to be a difficult task, and we have decided not to lengthen the paper
to address this problem.

2. Assumptions and main results

We now state precisely our assumptions and main results. All the function spaces involved in the statements
below will be precisely defined in Section 3D. Our basic assumption is as follows.

Assumption (H). Let

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0,

where the X0, X1, . . . , Xq are real smooth vector fields satisfying Hörmander’s condition (see Section 3A)
in some bounded domain �⊂ Rn and the coefficients ai j = a j i , a0 are real valued, bounded measurable
functions defined in �, satisfying the uniform positivity conditions

µ|ξ |2 ≤

q∑
i, j=1

ai j (x)ξiξ j ≤ µ
−1
|ξ |2, µ≤ a0(x)≤ µ−1,

for a.e. x ∈�, every ξ ∈ Rq , and some constant µ > 0.

Our main results are contained in the next two theorems.
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Theorem 2.1. In addition to (H), assume that the coefficients ai j , a0 belong to Cα
X (�) for some α ∈ (0, 1).

Then, for every domain �′ b�, there exists a constant c > 0 depending on �′, �, X i , α, µ, ‖ai j‖Cα
X (�)

,
and ‖a0‖Cα

X (�)
such that, for every u ∈ C2,α

X (�), one has

‖u‖C2,α
X (�′)

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)}.

Theorem 2.2. In addition to (H), assume that the coefficients ai j , a0 belong to the space VMOX,loc(�).
Then, for every p ∈ (1,∞), any �′ b�, there exists a constant c depending on X i , n, q , p, µ, �′, �, and
the VMO moduli of ai j and a0 such that, for every u ∈ S2,p

X (�),

‖u‖S2,p
X (�′)

≤ c{‖Lu‖L p(�)+‖u‖L p(�)}.

Remark 2.3. Under the assumptions of the previous theorems, it is not restrictive to assume a0(x) to be
equal to 1, for we can always rewrite (1-4) in the form

q∑
i, j=1

ai j

a0
X i X j + X0 =

f
a0

and apply the a priori estimates to this equation, controlling Cα
X or VMO moduli of the new coefficients

ai j/a0 in terms of the analogous moduli of ai j , a0, and the constant µ. Therefore, throughout the following
we will always take a0 ≡ 1.

3. Known results and preparatory results from real analysis and geometry of vector fields

3A. Hörmander’s vector fields, lifting, and approximation. Let X0, X1, . . . , Xq be a system of real
smooth vector fields

X i =

n∑
j=1

bi j (x)∂x j , i = 0, 1, 2, . . . , q

(q + 1< n) defined in some bounded, open and connected subset � of Rn . Let us assign to each X i a
weight pi , saying that

p0 = 2 and pi = 1 for i = 1, 2, . . . , q.

For any multiindex
I = (i1, i2, . . . , ik), 0≤ i j ≤ q,

we define the weight of I as

|I | =
k∑

j=1

pi j

and we set
X I = X i1 X i2 · · · X ik ,

X[I ] = [X i1, [X i2, . . . [X ik−1, X ik ] . . .]],

where [X, Y ] = XY − Y X for any couple of vector fields X, Y .
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We will say that X[I ] is a commutator of weight |I |. As usual, X[I ] can be seen either as a differential
operator or as a vector field. We will write

X[I ] f

to denote the differential operator X[I ] acting on a function f , and

(X[I ])x

to denote the vector field X[I ] evaluated at the point x ∈�.
We shall say that X = {X0, X1, . . . , Xq} satisfies Hörmander’s condition of weight s if these vector

fields, together with their commutators of weight ≤ s, span the tangent space at every point x ∈�.
Let ` be the free Lie algebra of weight s on q+1 generators, that is, the quotient of the free Lie algebra

with q + 1 generators by the ideal generated by the commutators of weight at least s+ 1. We say that the
vector fields X0, . . . , Xq , which satisfy Hörmander’s condition of weight s at some point x0 ∈ Rn , are
free up to order s at x0 if n = dim `, as a vector space (note that inequality ≤ always holds). The famous
lifting theorem proved by Rothschild and Stein [1976, p. 272] reads as follows.

Theorem 3.1. Let X = (X0, X1, . . . , Xq) be C∞ real vector fields on a domain � ⊂ Rn satisfying
Hörmander’s condition of weight s in �. Then, for any x̄ ∈�, in terms of new variables, hn+1, . . . , hN ,
there exist smooth functions λil(x, h) (0 ≤ i ≤ q, n + 1 ≤ l ≤ N ) defined in a neighborhood Ũ of
ξ̄ = (x̄, 0) ∈ RN such that the vector fields X̃ i given by

X̃ i = X i +

N∑
l=n+1

λil(x, h)
∂

∂hl
, i = 0, . . . , q,

satisfy Hörmander’s condition of weight s and are free up to weight s at every point in Ũ .

Let X̃ = (X̃0, X̃1, . . . , X̃q) be the lifted vector fields which are free up to weight s at some point
ξ ∈ RN and let ` be the free Lie algebra generated by X̃ . For each j , 1≤ j ≤ s, we can select a family
{X̃ j,k}k of commutators of weight j , with X̃1,k = X̃k , X̃2,1 = X̃0, k = 1, 2, . . . , q , such that {X̃ j,k} jk is a
basis of `, that is to say, there exists a set A of double-indices α such that {X̃α}α∈A is a basis of `. Note
that Card A = N , which allows us to identify ` with RN .

Now, in RN we can consider the group structure of N (q + 1, s), which is the simply connected Lie
group associated to `. We will write ◦ for the Lie group operation (which we think of as a translation)
and assume that the group identity is the origin. It is also possible to assume that u−1

=−u (the group
inverse is the Euclidean opposite). We can naturally define dilations in N (q + 1, s) by

D(λ)((uα)α∈A)= (λ
|α|uα)α∈A (3-1)

with | j, k| = j . These are group automorphisms, hence N (q+ 1, s) is a homogeneous group, in the sense
of Stein [1993, pp. 618–622]. We will call this group G, leaving the numbers q, s implicitly understood.

We can define in G a homogeneous norm ‖ · ‖ as follows. For any u ∈ G, u 6= 0, set

‖u‖ = r ⇔
∣∣∣D(1

r

)
u
∣∣∣= 1,
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where | · | denotes the Euclidean norm.
The function

dG(u, v)= ‖v−1
◦ u‖

is a quasidistance, that is

dG(u, v)≥ 0 and dG(u, v)= 0 if and only if u = v,

dG(u, v)= dG(v, u),

dG(u, v)≤ c(dG(u, z)+ dG(z, v))

(3-2)

for every u, v, z ∈ G and some positive constant c(G)≥ 1. We define the balls with respect to dG as

B(u, r) := {v ∈ RN
: dG(u, v) < r}.

It can be proved [Stein 1993, p. 619] that the Lebesgue measure in RN is the Haar measure of G.
Therefore, by (3-1),

|B(u, r)| = |B(u, 1)|r Q

for every u ∈ G and r > 0, where Q =
∑

α∈A |α|. We will call Q the homogeneous dimension of G.
Let τu be the left translation operator acting on functions: (τu f )(v)= f (u◦v). We say that a differential

operator P on G is left invariant if P(τu f )= τu(P f ) for every smooth function f .
We say that a differential operator P on G is homogeneous of degree δ > 0 if

P( f (D(λ)u))= λδ(P f )(D(λ)u)

for every test function f and every λ > 0, u ∈G. We also say that a function f is homogeneous of degree
δ ∈ R if

f (D(λ)u)= λδ f (u) for every λ > 0, u ∈ G.

Clearly, if P is a differential operator homogeneous of degree δ1 and f is a homogeneous function
of degree δ2, then P f is a homogeneous function of degree δ2− δ1, while f P is a differential operator,
homogeneous of degree δ1− δ2.

Let Yα be the left invariant vector field which agrees with ∂/(∂uα) at 0 and set Y1,k = Yk, k = 1, . . . , q ,
Y2,1 = Y0. The differential operator Yi,k is homogeneous of degree i , and {Yα}α∈A is a basis of the free
Lie algebra `.

A differential operator on G is said to have local degree less than or equal to λ if, after taking the
Taylor expansion at 0 of its coefficients, each term obtained is a differential operator homogeneous of
degree ≤ λ.

Also, a function on G is said to have local degree greater than or equal to λ if, after taking the Taylor
expansion at 0 of its coefficients, each term obtained is a homogeneous function of degree ≥ λ. For
ξ, η ∈ Ũ , define the map

2η(ξ)= (uα)α∈A

with ξ = exp
(∑
α∈A

uα X̃α
)
η. We will also write 2(η, ξ)=2η(ξ).
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We can now state Rothschild and Stein’s approximation theorem [1976, p. 273].

Theorem 3.2. In the coordinates given by 2(η, · ) we can write X̃ i = Yi + Rηi on an open neighborhood
of 0, where Rηi is a vector field of local degree at most 0 for i = 1, . . . , q (and at most 1 for i = 0)
depending smoothly on η. Explicitly, this means that, for every f ∈ C∞0 (G),

X̃ i [ f (2(η, · ))](ξ)= (Yi f + Rηi f )(2(η, ξ)). (3-3)

More generally, for every double-index (i, k) ∈ A, we can write

X̃ i,k[ f (2(η, · ))](ξ)= (Yi,k f + Rηi,k f )(2(η, ξ)), (3-4)

where Rηi,k is a vector field of local degree ≤ i − 1 depending smoothly on η.

Some other important properties of the map 2 are stated in the next theorem (see [Rothschild and
Stein 1976, pp. 284–287]).

Theorem 3.3. Let ξ̄ ∈ RN and Ũ be a neighborhood of ξ̄ such that for any η ∈ Ũ the map 2(η, · ) is well
defined in Ũ . For ξ, η ∈ Ũ , define

ρ(η, ξ)= ‖2(η, ξ)‖, (3-5)

where ‖ · ‖ is the homogeneous norm defined above. Then

(a) 2(η, ξ)=2(ξ, η)−1
=−2(ξ, η) for every ξ, η ∈ Ũ ;

(b) ρ is a quasidistance in Ũ (that is satisfies the three properties (3-2));

(c) under the change of coordinates u = 2ξ (η), the measure element becomes

dη = c(ξ) · (1+ω(ξ, u)) du, (3-6)

where c(ξ) is a smooth function, bounded and bounded away from zero in Ũ , ω(ξ, u) is a smooth
function in both variables with

|ω(ξ, u)| ≤ c‖u‖,

and an analogous statement is true for the change of coordinates u = 2η(ξ).

Remark 3.4. As we recalled in the introduction, in [Rothschild and Stein 1976] detailed proofs are given
only when the drift term X0 is lacking. A proof of the lifting and approximation results explicitly covering
the drift case can be found in [Bramanti et al. 2010], where the theory is also extended to the case of
nonsmooth Hörmander’s vector fields. We refer to the introduction of [Bramanti et al. 2010] for further
bibliographic remarks about existing alternative proofs of the lifting and approximation theorems.

3B. Metric induced by vector fields. Let us start by recalling the definition of control distance given by
Nagel, Stein, Wainger [Nagel et al. 1985] for Hörmander’s vector fields with drift.

Definition 3.5. For any δ > 0, let C(δ) be the class of absolutely continuous mappings ϕ: [0, 1] → �

which satisfy
ϕ′(t)=

∑
|I |≤s

λI (t)(X[I ])ϕ(t) for a.e. t ∈ (0, 1) (3-7)
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with |λI (t)| ≤ δ|I |. We define

d(x, y)= inf{δ : there exists ϕ ∈ C(δ) with ϕ(0)= x, ϕ(1)= y}.

The finiteness of d immediately follows by Hörmander’s condition: since the vector fields {X[I ]}|I |≤s

span Rn , we can always join any two points x, y with a curve ϕ of the kind (3-7); moreover, d turns
out to be a distance. Analogously to what Nagel, Stein, and Wainger [Nagel et al. 1985] do when X0 is
lacking, in [Bramanti et al. 2013] the following notion is introduced.

Definition 3.6. For any δ > 0, let C1(δ) be the class of absolutely continuous mappings ϕ : [0, 1] →�

which satisfy

ϕ′(t)=
q∑

i=0

λi (t)(X i )ϕ(t) for a.e. t ∈ (0, 1)

with |λ0(t)| ≤ δ2 and |λ j (t)| ≤ δ for j = 1, . . . , q . We define

dX (x, y)= inf{δ : there exists ϕ ∈ C1(δ) with ϕ(0)= x, ϕ(1)= y}.

Note that the finiteness of dX (x, y) for any two points x, y ∈� is not a trivial fact, but depends on a
connectivity result (“Chow’s theorem”); moreover, it can be proved that d and dX are locally equivalent,
and that dX is still a distance (see [Bramanti et al. 2013], where these results are proved in the more
general setting of nonsmooth vector fields). From now on we will always refer to dX as the control
distance induced by the system of Hörmander’s vector fields X . It is well-known that this distance is
topologically equivalent to the Euclidean one. For any x ∈�, we set

B(x, r)= {y ∈� : dX (x, y) < r}.

The basic result about the measure of metric balls is the famous local doubling condition.

Theorem 3.7 [Nagel et al. 1985]. For every �′ b� there exist positive constants c, r0 such that, for any
x ∈�′, r ≤ r0,

|B(x, 2r)| ≤ c|B(x, r)|.

As already pointed out in the introduction, the distance dX does not satisfy the segment property: given
two points at distance r , it is generally impossible to find a third point at distance r/2 from both. A
weaker property which this distance actually satisfies is contained in the next lemma, and will be useful
when dealing with the properties of Hölder spaces Cα

X .

Lemma 3.8. For any x, y ∈�, positive integer n, ε > 0, we can join x to y with a curve γ and find n+ 1
points p0 = x, p1, p2, . . . , pn = y on γ , such that

dX (p j , p j+1)≤
1+ ε
√

n
dX (x, y) for j = 0, 2, . . . , n− 1.
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Proof. For any x, y ∈ � with dX (x, y) = R, any ε > 0, by Definition 3.6 we can join x and y with a
curve γ (t) satisfying

γ (0)= x, γ (1)= y, γ ′(t)=
q∑

i=0

λi (t)(X i )γ (t),

with |λi (t)| ≤ R(1+ ε), for i = 1, . . . , q and |λ0(t)| ≤ (R(1+ ε))2.
Let γ j (t)= γ ((t + j)/n) for j = 0, 1, 2, . . . , n− 1. Then γ j (t) satisfies

γ j (0)= γ
(

j
n

)
=: p j , γ j (1)= γ

(
j + 1

n

)
= p j+1.

In particular, p0 = x and pn = y. Moreover,

γ ′j (t)=
1
n

q∑
i=0

λi

(
t + j

n

)
(X i )γ j (t)

with ∣∣∣∣1nλ0

(
t + j

n

)∣∣∣∣≤ ( R(1+ ε)
√

n

)2

,

∣∣∣∣1nλi

(
t + j

n

)∣∣∣∣< R(1+ ε)
√

n

for i = 1, . . . , q , j = 0, 2, . . . , n− 1. Thus

dX (p j , p j+1)≤
R(1+ ε)
√

n

for j = 0, 2, . . . , n− 1, so we are done. �

The free lifted vector fields X̃ i induce, in the neighborhood where they are defined, a control distance
dX̃ ; we will denote by B̃(ξ, r) the corresponding metric balls. In this lifted setting we can also consider
the quasidistance ρ defined in (3-5). The two functions turn out to be equivalent.

Lemma 3.9. Let ξ̄ , Ũ be as in Theorem 3.3. There exists B̃(ξ̄ , R) ⊂ Ũ such that the distance dX̃ is
equivalent to the quasidistance ρ in (3-5) in B̃(ξ̄ , R), and both are greater than the Euclidean distance;
namely, there exist positive constants c1, c2, c3 such that

c1|ξ − η| ≤ c2ρ(η, ξ)≤ dX̃ (η, ξ)≤ c3ρ(η, ξ) for every ξ, η ∈ B̃(ξ̄ , R).

This fact is proved in [Nagel et al. 1985]; see also [Bramanti et al. 2010, Proposition 22].

3C. Locally homogeneous spaces. We are now going to recall the notion of locally homogeneous space,
introduced in [Bramanti and Zhu 2012]. Roughly speaking, a locally homogeneous space is a set �
endowed with a function d which is a quasidistance on any compact subset, and a measure µ which
is locally doubling, in a sense which will be made precise below. In our concrete situation, our set is
endowed with a function d which is a distance in �, and a locally doubling measure. We can therefore
give the following definition, which is simpler than that given in [Bramanti and Zhu 2012].
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Definition 3.10. Let (�, d) be a metric space, and let µ be a positive regular Borel measure in �.
Assume there exists an increasing sequence {�n}

∞

n=1 of bounded measurable subsets of � such that

∞⋃
n=1

�n =� (3-8)

and, for any n = 1, 2, 3, . . . ,

(i) the closure of �n in � is compact,

(ii) there exists εn > 0 such that

{x ∈� : d(x, y) < 2εn for some y ∈�n} ⊂�n+1, (3-9)

(iii) there exists Cn > 1 such that, for any x ∈�n , 0< r ≤ εn , we have

0< µ(B(x, 2r))≤ Cnµ(B(x, r)) <∞. (3-10)

(Note that for x ∈�n and r ≤ εn we also have B(x, 2r)⊂�n+1.)

We say that (�, {�n}
∞

n=1, d, µ) is a (metric) locally homogeneous space if the above assumptions hold.

Any space satisfying the above definition a fortiori satisfies the definition of locally homogeneous
space given in [Bramanti and Zhu 2012].

Next, we discuss some facts about local singular kernels. For fixed�n , �n+1, and a fixed ball B(x̄, R0),
with x̄ ∈�n and R0 < 2εn (hence B(x̄, R0)⊂�n+1), let K (x, y) be a measurable function defined for
x, y ∈ B(x̄, R0), x 6= y. We now list a series of possible assumptions on the kernel K which are involved
in the theorems that we will apply in the following.

(i) We say that K satisfies the standard estimates for some ν ∈ [0, 1) if the following hold:

|K (x, y)| ≤
Ad(x, y)ν

µ(B(x, d(x, y)))
(3-11)

for x, y ∈ B(x̄, R0) with x 6= y, and

|K (x0, y)− K (x, y)| + |K (y, x0)− K (y, x)| ≤
Bd(x0, y)ν

µ(B(x0, d(x0, y)))

(
d(x0, x)
d(x0, y)

)β
(3-12)

for any x0, x, y ∈ B(x̄, R0) with d(x0, y) > 2d(x0, x), and some β > 0.

(ii) We say that K satisfies the cancellation property if the following holds: there exists C > 0 such that,
for a.e. x ∈ B(x̄, R0) and every ε1, ε2 such that 0< ε1 < ε2 and Bρ(x, ε2)⊂�n+1,∣∣∣∣∫

�n+1,ε1<ρ(x,y)<ε2

K (x, y) dµ(y)
∣∣∣∣+ ∣∣∣∣∫

�n+1,ε1<ρ(x,z)<ε2

K (z, x) dµ(z)
∣∣∣∣≤ C, (3-13)

where ρ is any quasidistance (see (3-2)) equivalent to d in �n+1 and Bρ denotes ρ-balls.
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(iii) We say that K satisfies the convergence condition if the following holds: for a.e. x ∈ B(x̄, R0) such
that Bρ(x, R)⊂�n+1, there exists

h R(x)≡ lim
ε→0

∫
�n+1,ε<ρ(x,y)<R

K (x, y) dµ(y), (3-14)

where ρ is any quasidistance equivalent to d in �n+1.

Application of the abstract theory to our setting. Let’s now explain how this abstract setting will be
used to describe our concrete situation. The a priori estimates we will prove in Theorems 2.1 and 2.2
involve a fixed subdomain �′ b�. Let us fix this �′ once and for all. For any x̄ ∈�′ we can perform in
a suitable neighborhood of x̄ the lifting and approximation procedure as explained in Section 3A. Let
ξ̄ = (x̄, 0) ∈ RN and B̃(ξ̄ , R) be as in Lemma 3.9. Then we can choose

�̃= B̃(ξ̄ , R); �̃k = B̃
(
ξ̄ ,

k R
k+ 1

)
for k = 1, 2, 3, . . . .

By the properties of dX̃ that we have listed in Section 3B, and particularly Theorem 3.7, we see that

(�̃, {�̃k}
∞

k=1, dX̃ , dξ)

is a metric locally homogeneous space. The function ρ(ξ, η) = ‖2(η, ξ)‖ will play the role of the
quasidistance appearing in conditions (3-13) and (3-14), in view of Lemma 3.9. This is the basic setting
where we will apply several results about singular integrals in locally homogeneous spaces, which have
been proved in [Bramanti and Zhu 2012]. Here we do not repeat the statements of all those theorems.
Instead, we will give a precise reference to [Bramanti and Zhu 2012] for each one. We just note that,
since in our situation we are dealing with a metric locally homogeneous space, the constants which are
called Bn in [Bramanti and Zhu 2012], here are equal to 1.

In the space of the original variables (�, dX , dx), instead, we will not apply singular integral estimates,
but we will again use the local doubling condition when we establish some important properties of
function spaces Cα and VMO (see Section 3D). Note that if �k is an increasing sequence of domains
with �k b�k+1 b�, we can say that

(�, {�k}k, dX , dx)

is a metric locally homogeneous space.

3D. Function spaces. The aim of this section is twofold. First, we want to define the basic function
spaces we will need and point out their main properties; second, we want to find a relation between
function spaces defined over a ball B(x̄, r) ⊂ � ⊂ Rn and those over the corresponding lifted ball
B̃(ξ̄ , r)⊂ RN . More precisely, we need to know that f (x) belongs to some function space on B if and
only if f̃ (x, h)= f (x) belongs to the analogous function space on B̃. This last fact relies on the following
known result; see [Nagel et al. 1985, Lemmas 3.1 and 3.2, p. 139].
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Theorem 3.11. Let us denote by B and B̃ the balls defined with respect to dX and dX̃ , respectively. There
exist constants δ0 ∈ (0, 1), r0, c1, c2 > 0 such that

c1 vol(B̃r (x, h))≤ vol(Br (x)) · vol{h′ ∈ RN−n
: (z, h′) ∈ B̃r (x, h)} ≤ c2 vol(B̃r (x, h)) (3-15)

for every x ∈�, z ∈ Bδ0r (x), and r ≤ r0. (Here “vol” stands for the Lebesgue measure in the appropriate
dimension, x denotes a point in Rn , and h a point in RN−n). More precisely, the condition z ∈ Bδ0r (x) is
needed only for the validity of the first inequality in (3-15). Moreover,

dX̃ ((x, h), (x ′, h′))≥ dX (x, x ′). (3-16)

Finally, the projection of the lifted ball B̃r (x, h) on Rn is just the ball B(x, r), and this projection is onto.

A consequence of the above theorem is the following.

Corollary 3.12. For any positive function g defined in Br (x)⊂�, r ≤ r0, one has

c1

|Bδ0r (x)|

∫
Bδ0r (x)

g(y) dy ≤
1

|B̃r (x, h)|

∫
B̃r (x,h)

g(y) dy dh′ ≤
c2

|Br (x)|

∫
Br (x)

g(y) dy, (3-17)

where δ0 is the constant in Theorem 3.11.

Proof. By (3-15) and the locally doubling condition, we have, for some fixed δ0 < 1 as in Theorem 3.11,

1
|B̃r (x, h)|

∫
B̃r (x,h)

g(y) dy dh′ =
1

|B̃r (x, h)|

∫
Br (x)

g(y) dy
∫
{h′∈RN−n :(y,h′)∈B̃r (x,h)}

dh′

≥
c1

|B̃r (x, h)|

∫
Bδ0r (x)

|B̃r (x, h)|
|Br (x)|

g(y) dy ≥
c

|Bδ0r (x)|

∫
Bδ0r (x)

g(y) dy,

where in the last inequality we exploited the doubling condition |Br (x)| ≤ c|Bδ0r (x)|, which holds because
Br (x) ⊂ � and r ≤ r0. The proof of the second inequality in (3-17) is analogous but easier, since it
involves the second inequality in (3-15), which does not require the condition y ∈ Bδ0r (x). �

3D.1. Hölder spaces.

Definition 3.13. For any 0< α < 1, u :�→ R, let

|u|Cα
X (�)
= sup

{
|u(x)− u(y)|

dX (x, y)α
: x, y ∈�, x 6= y

}
,

‖u‖Cα
X (�)
= |u|Cα(�)+‖u‖L∞(�),

Cα
X (�)= {u :�→ R : ‖u‖Cα(�) <∞}.

Also, for any positive integer k, let

Ck,α
X (�)= {u :�→ R : ‖u‖Ck,α(�) <∞},

with

‖u‖Ck,α
X (�)

=

k∑
|I |=1

q∑
ji=0

‖X j1 · · · X jl u‖Cα(�)+‖u‖Cα(�),



L p AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HÖRMANDER VECTOR FIELDS 1807

where I = ( j1, j2, . . . , jl).
We will set Cα

X,0(�) and Ck,α
X,0(�) for the subspaces of Cα

X (�) and Ck,α
X (�) of functions which are

compactly supported in �, and set Cα

X̃
(B̃), Ck,α

X̃
(B̃), Cα

X̃ ,0
(B̃), and Ck,α

X̃ ,0
(B̃) for the analogous function

spaces over B̃ defined by the X̃ i .
We will also write Ck,0

X (�) to denote the space of functions with continuous X -derivatives up to
weight k.

Let us note that we will sometimes also need to use the classical spaces of (possibly compactly
supported) continuously differentiable functions, denoted as usual by C1 (or C1

0 ).
The next proposition, adapted from [Bramanti and Brandolini 2007, Proposition 4.2], collects some

properties of Cα functions which will be useful later. We will apply these properties mainly in the context
of lifted variables, that is, for the vector fields X̃ i on a ball B̃(ξ̄ , R).

Proposition 3.14. Let B(x̄, 2R) be a fixed ball where the vector fields X i and the control distance d are
well defined.

(i) For any δ ∈ (0, 1) and any f ∈ C1(B(x̄, (1+ δ)R)), one has

| f (x)− f (y)| ≤
c
δ

dX (x, y)
( q∑

i=1

sup
B(x̄,(1+δ)R)

|X i f | + dX (x, y) sup
B(x̄,(1+δ)R)

|X0 f |
)

(3-18)

for any x, y ∈ B(x̄, R).
If f ∈ C1

0(B(x̄, R)), one can simply write, for any x, y ∈ B(x̄, R),

| f (x)− f (y)| ≤ cdX (x, y)
( q∑

i=1

sup
B(x̄,R)

|X i f | + dX (x, y) sup
B(x̄,R)

|X0 f |
)
. (3-19)

In particular, for f ∈ C1
0(B(x̄, R)),

| f |Cα(B(x̄,R)) ≤ cR1−α
·

( q∑
i=1

sup
B(x̄,R)

|X i f | + R sup
B(x̄,R)

|X0 f |
)
. (3-20)

The assumption f ∈ C1 (or C1
0 ) can be replaced by f ∈ C2

X (or C2
X,0, respectively).

(ii) For any couple of functions f, g ∈ Cα
X (B(x̄, R)), one has

| f g|Cα
X (B(x̄,R)) ≤ | f |Cα

X (B(x̄,R))‖g‖L∞(B(x̄,R))+ |g|Cα
X (B(x̄,R))‖ f ‖L∞(B(x̄,R))

and

‖ f g‖Cα
X (B(x̄,R)) ≤ 2‖ f ‖Cα

X (B(x̄,R))‖g‖Cα
X (B(x̄,R)). (3-21)

Moreover, if both f and g vanish at least at a point of B(x̄, R), then

| f g|Cα
X (B(x̄,R)) ≤ cRα| f |Cα

X (B(x̄,R))|g|Cα
X (B(x̄,R)). (3-22)



1808 MARCO BRAMANTI AND MAOCHUN ZHU

(iii) Let B(xi , r) (i=1, 2, . . . , k) be a finite family of balls of the same radius r such that
⋃k

i=1 B(xi , 2r)⊂
�. Then, for any f ∈ Cα

X (�),

‖ f ‖Cα
X (
⋃k

i=1 B(xi ,r))
≤ c

k∑
i=1

‖ f ‖Cα
X (B(xi ,2r)) (3-23)

with c depending on the family of balls, but not on f .

(iv) There exists r0 > 0 such that, for any f ∈ C2,α
X,0(B(x̄, R)) and 0< r ≤ r0, we have the interpolation

inequality

‖X0 f ‖L∞(B(x̄,R)) ≤ rα/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R)). (3-24)

Proof. The proof of (ii)–(iii) is similar to that in [Bramanti and Brandolini 2007, Proposition 4.2], hence
we will only prove (i) and (iv).

Throughout this proof we will write d for dX . (Actually, we will apply this proposition both to dX and
to dX̃ ).

(i) Fix δ ∈ (0, 1) and let R′ = (1+ δ)R. Let us distinguish two cases.

Case 1: d(x, y) < R′−max(d(x̄, x), d(x̄, y)). Let ε > 0 be such that

d(x, y)+ ε < R′−max(d(x̄, x), d(x̄, y)), (3-25)

hence, by Definition 3.6, there exists a curve ϕ(t) such that ϕ(0)= x, ϕ(1)= y, and

ϕ′(t)=
q∑

i=0

λi (t)(X i )ϕ(t)

with |λi (t)| ≤ (d(x, y)+ ε), |λ0(t)| ≤ (d(x, y)+ ε)2 for i = 1, . . . , q. By (3-25),

B(x, d(x, y)+ ε)⊂ B(x̄, R′),

hence every point γ (t) for t ∈ (0, 1) belongs to B(x̄, R′). Then we can write

| f (x)− f (y)| =
∣∣∣∣∫ 1

0

d
dt

f (ϕ(t)) dt
∣∣∣∣= ∣∣∣∣∫ 1

0

q∑
i=0

λi (t)(X i f )ϕ(t) dt
∣∣∣∣

≤ (d(x, y)+ ε)
q∑

i=1

sup
B(x̄,R′)

|X i f | + (d(x, y)+ ε)2 sup
B(x̄,R′)

|X0 f |,

and since ε is arbitrary, this implies (3-19) and, in particular, (3-18). We note that the above argu-
ment relies on the differentiability of f along the curve ϕ, which holds under either the assumption
f ∈ C1(B(x̄, (1+ δ)R)) or f ∈ C2

X (B(x̄, (1+ δ)R)) (since X0 has weight two).

Case 2: d(x, y)≥ R′−max(d(x̄, x), d(x̄, y)). Let us write

| f (x)− f (y)| ≤ | f (x)− f (x̄)| + | f (x̄)− f (y)| = A+ B.
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Each of the terms A, B can be bounded by an argument similar to that in Case 1 (since both x and y can
be joined to x̄ by curves contained in B(x̄, R)), giving

| f (x)− f (y)| ≤ [d(x, x̄)+ d(y, x̄)] ·
{ q∑

i=1

sup
B(x̄,R)

|X i f | + [d(x, x̄)+ d(y, x̄)] sup
B(x̄,R)

|X0 f |
}
.

Now it is enough to show that
d(x, x̄)+ d(y, x̄)≤

c
δ

d(x, y).

To show this, let r :=max(d(x̄, x), d(x̄, y)). Then

d(x, x̄)+ d(y, x̄)≤ 2r ≤
2
δ
(R′− r)≤

2
δ

d(x, y),

where the second inequality holds since r < R and R′= (1+δ)R, and the last inequality is the assumption
d(x, y) ≥ R′−max(d(x̄, x), d(x̄, y)). This completes the proof of (3-18), which immediately implies
(3-19) and (3-20).

(iv) Let f ∈ C2,α
X,0(B(x̄, R)). For any x ∈ B(x̄, R), let γ (t) be the curve such that

γ ′(t)= (X0)γ (t), γ (0)= x .

This γ (t) will be defined at least for t ∈ [0, r0] where r0 > 0 is a number only depending on B(x̄, R) and
X0. Then, for any r ∈ (0, r0), we can write, for some θ ∈ (0, 1),

f (γ (r))− f (γ (0))= r
d
dt
[ f (γ (t))]t=θr = r(X0 f )(γ (θr)),

hence
(X0 f )(x)= (X0 f )(γ (0))− (X0 f )(γ (θr))+

1
r
[ f (γ (r))− f (γ (0))]

and since, by definition of γ and d, d(γ (0), γ (θr))≤ (θr)1/2, we get

|(X0 f )(x)| ≤ |(X0 f )(γ (0))− (X0 f )(γ (θr))| +
2
r
‖ f ‖L∞

≤ (θr)α/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R))

≤ rα/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R)),

so we are done. �

Next, we are going to study the relation between the spaces Cα
X (BR) and Cα

X̃
(B̃R).

Proposition 3.15. Let B̃(ξ̄ , R) be a lifted ball (see the end of Section 3C), with ξ̄ = (x̄, 0). If f is a
function defined in B(x̄, R) and f̃ (x, h) = f (x) is regarded as a function defined on B̃R(ξ̄ , R), the
following inequalities hold (whenever the right-hand side is finite):

| f̃ |Cα

X̃
(B̃(ξ̄ ,R)) ≤ | f |Cα

X (B(x̄,R)),

| f |Cα
X (B(x̄,s)) ≤

c
(t − s)2

| f̃ |Cα

X̃
(B̃(ξ̄ ,t)) for 0< s < t < R, (3-26)
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where c also depends on R. Moreover,

|X̃ i1 X̃ i2 · · · X̃ ik f̃ |Cα

X̃
(B̃(ξ̄ ,R)) ≤ |X i1 X i2 · · · X ik f |Cα

X (B(x̄,R)), (3-27)

|X i1 X i2 · · · X ik f |Cα
X (B(x̄,s)) ≤

c
(t − s)2

|X̃ i1 X̃ i2 · · · X̃ ik f̃ |Cα

X̃
(B̃(ξ̄ ,t)) (3-28)

for 0< s < t < R and i j = 0, 1, 2, . . . , q.

As already done in [Bramanti and Brandolini 2007, Proposition 8.3], to prove the above relation
between Hölder spaces over B and B̃ we have to exploit an equivalent integral characterization of
Hölder continuous functions, analogous to the one established in the classical case by Campanato [1963].
However, to avoid integration over sets of the kind �∩ B(x, r) (with the related problem of assuring a
suitable doubling condition), we need to apply the local version of this result which has been established
in [Bramanti and Zhu 2012].

Definition 3.16. For x̄ ∈�′, B(x̄, R)⊂�, f ∈ L1(B(x̄, R)), α ∈ (0, 1), and 0< s < t ≤ 1, let

Mα,Bs R,Bt R ( f )= sup
x∈B(x̄,s R),r≤(t−s)R

inf
c∈R

1
rα|Br (x)|

∫
Br (x)
| f (y)− c| dy.

If f ∈ Cα
X (B(x̄, R)), then

Mα,Bs R ,Bt R ( f )≤ | f |Cα(BR(x0)).

Moreover, we get the following.

Lemma 3.17. For x̄ ∈ �′, B(x̄, 2R0)⊂ �, R < R0, α ∈ (0, 1), and 0< s < t ≤ 1, if f ∈ L1(B(x̄, t R))
is a function such that Mα,Bs R,Bt R ( f ) <∞, then there exists a function f ∗, a.e. equal to f , such that
f ∗ ∈ Cα

X (B(x̄, s R)) and

| f ∗|Cα
X (B(x̄,s R)) ≤

c
(t − s)2

Mα,Bs R ,Bt R ( f )

for some c independent of f , s, t .

Proof. We can apply [Bramanti and Zhu 2012, Theorem 9.2] choosing �k = B(x̄, s R), �k+1 = B(x̄, t R),
εn = R(t − s). The locally doubling constant can be chosen independently of R, since B(x̄, 2R0)⊂�,
R < R0. We conclude that there exists a function f ∗, a.e. equal to f , such that

| f ∗(x)− f ∗(y)| ≤ cMα,Bs R ,Bt R ( f )dX (x, y)α

for any x, y ∈ B(x̄, s R) with dX (x, y)≤ R(t − s)/2.
Now if x, y are any two points in Bs R(x0), and r = dX (x, y), by Lemma 3.8 we can find n+ 1 points

x0 = x, x1, x2, . . . , xn = y in Bs R(x0) such that

dX (xi , xi−1)≤
2r
√

n
.
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Let n be the least integer such that 2r/
√

n ≤ R(t − s)/2. Then

| f ∗(x)− f ∗(y)| ≤
n∑

i=1

| f ∗(xi )− f ∗(xi−1)| ≤

n∑
i=1

cMα,Bs R ,Bt R ( f )dX (xi , xi−1)
α

≤ ncMα,Bs R ,Bt R ( f )dX (x, y)α.

Let us find an upper bound on n. We know that

√
n ≤ c

dX (x, y)
R(t − s)

≤
c

t − s
,

since dX (x, y)≤ 2R for x, y ∈ Bt R(x0). Hence n ≤ c/(t − s)2 and the lemma is proved. �

Proof of Proposition 3.15. The first inequality immediately follows by (3-16). To prove the second one,
let 0< s < t < 1 and x ∈ B(x̄, δ0s R), where δ0 is the number in Theorem 3.11, r ≤ R(t − s), ξ̄ = (x̄, 0).
Since the projection π : B̃((x, s), δ)→ B(x, δ) is onto (see Theorem 3.11), there exists h ∈ RN−n such
that ξ = (x, h) ∈ B̃(ξ̄ , δ0s R). Then, by Corollary 3.12, we have

1
rα

c
|Bδ0r (x)|

∫
Bδ0r (x)

| f (y)− k| dy ≤
c

rα
1

|B̃(ξ, r)|

∫
B̃(ξ,r)

| f̃ (η)− k| dη; (3-29)

choosing k = f (x)= f̃ (ξ), the latter quantity is

≤
c

rα
| f̃ |Cα

X̃
(B̃(ξ,r))r

α
= c| f̃ |Cα

X̃
(B̃(ξ,r)).

Since r ≤ R(t − s) and d(ξ, ξ̄ ) < δ0s R, we have the inclusion

B̃(ξ, r)⊂ B̃(ξ̄ , δ0s R+ R(t − s))=: B̃(ξ̄ , R′)

so that (3-29) implies

Mα,B(x̄,δ0s R),B(x̄,δ0t R)( f )≤ c| f̃ |Cα

X̃
(B̃(ξ̄ ,R′)),

and, by Lemma 3.17, we conclude

| f ∗|Cα
X (B(x̄,δ0s R)) ≤

c
(t − s)2

| f̃ |Cα

X̃
(B̃(ξ̄ ,R′)).

Note that R′− δ0s R = R(t − s), hence, changing our notation to

δ0s R = s ′, R′ = t ′,

we get

| f ∗|Cα
X (B(x̄,s

′)) ≤
c

(t ′− s ′)2
| f̃ |Cα

X̃
(B̃(ξ̄ ,t ′))

for 0< s ′ < t ′ < R, with c also depending on R. This is (3-26).
Now inequalities (3-27) and (3-28) also follow, because X̃ i f̃ = X̃ i f , hence the same reasoning can be

iterated to higher order derivatives. �
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3D.2. Sobolev spaces.

Definition 3.18. If X = (X0, X1, . . . , Xq) is any system of smooth vector fields satisfying Hörmander’s
condition in a domain �⊂ Rn , the Sobolev space S2,p

X (�) (1< p <∞) consists of L p-functions with 2
(weighted) derivatives with respect to the vector fields X i , in L p. Explicitly,

‖u‖S2,p
X (�)

= ‖u‖L p(�)+

2∑
i=1

‖Di u‖L p(�),

where ‖D1u‖L p(�) =

q∑
i=1

‖X i u‖L p(�); ‖D2u‖L p(�) = ‖X0u‖L p(�)+

q∑
i, j=1

‖X i X j u‖L p(�).

Also, we can define the spaces of functions vanishing at the boundary saying that u ∈ S2,p
0,X (�) if there

exists a sequence {uk} of C∞0 (�) functions converging to u in S2,p
X (�). Similarly, we can define the

Sobolev spaces S2,p
X̃
(B̃), S2,p

X̃ ,0
(B̃) over a lifted ball B̃, induced by the X̃ .

The following has been proved [Bramanti and Brandolini 2000a, Proposition 3.5].

Proposition 3.19. If u ∈ S2,p
X (�) and ϕ ∈ C∞0 (�), then uϕ ∈ S2,p

0,X (�), and an analogous property holds

for the space S2,p
0,X̃
(B̃).

Moreover, we have the following.

Theorem 3.20. Let f ∈ L p(B(x, r), f̃ (x, h) = f (x), and B̃(ξ, r) be the lifted ball of B(x, r), with
ξ = (x, 0) ∈ RN . Then

c1‖ f ‖L p(B(x,δ0r)) ≤ ‖ f̃ ‖L p(B̃(ξ,r)) ≤ c2‖ f ‖L p(B(x,r)),

c1‖ f ‖S2,p
X (B(x,δ0r)) ≤ ‖ f̃ ‖S2,p

X̃
(B̃(ξ,r)) ≤ c2‖ f ‖S2,p

X (B(x,r)),

where δ0 < 1 is the number appearing in Theorem 3.11.

Proof. The first inequality follows by Theorem 3.11; the second follows by the first, since

X̃ i f̃ = X i f̃ = (̃X i f ). �

3D.3. Vanishing mean oscillation. Let us recall the following abstract definition.

Definition 3.21 [Bramanti and Zhu 2012, Definition 6.1]. Let (�, {�n}
∞

n=1, d, µ) be a metric locally
homogeneous space (see Section 3C). For any function u ∈ L1(�n+1) and r > 0 with r ≤ εn , set

η∗u,�n,�n+1
(r)= sup

t≤r
sup

x0∈�n

1
µ(B(x0, t))

∫
B(x0,t)

|u(x)− u B | dµ(x),

where u B = µ(B(x0, t))−1
∫

B(x0,t)
u. We say that u ∈ BMOloc(�n, �n+1) if

‖u‖BMOloc(�n,�n+1) = sup
r≤εn

η∗u,�n,�n+1
(r) <∞.
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We say that u ∈ VMOloc(�n, �n+1) if u ∈ BMOloc(�n, �n+1) and

η∗u,�n,�n+1
(r)→ 0 as r→ 0.

The function η∗u,�n,�n+1
will be called the VMO local modulus of u in (�n, �n+1).

We need to specialize this definition to our concrete situation. First, let us endow our domain � with
the structure

(�, {�k}k, dX , dx)

of locally homogeneous space described at the end of Section 3C. Then:

Definition 3.22 (local VMO). We say that a ∈ VMOX,loc(�) if

a ∈ VMOloc(�k, �k+1) for every k.

More explicitly, this means that, for any fixed �′ b�, the function

η∗u,�′,�(r)= sup
t≤r

sup
x0∈�′

1
|Bt(x0)|

∫
Bt (x0)

|u(x)− u Bt (x0)| dx,

is finite for r ≤ r0 and vanishes for r→ 0, where r0 is the number such that the local doubling condition
of Theorem 3.7 holds:

|B(x, 2r)| ≤ c|B(x, r)| for any x ∈�′, r ≤ r0.

As for Hölder continuous and Sobolev functions, we need a comparison result for VMO functions in
the original variables and the lifted ones. By Corollary 3.12 we immediately have the following.

Proposition 3.23. Let a ∈ VMOX,loc(�). Then, for any �′ b �, x0 ∈ �
′, B(x0, R), and �̃k =

B̃(ξ0, k R/(k + 1)) as before, we have that ã(x, h) = a(x) belongs to the class VMOloc(�̃k, �̃k) for
every k, with

η∗ã,�̃k ,�̃k+1
(r)≤ cη∗a,�′,�(r).

In other words, the VMOloc modulus of the original function a controls the VMOloc modulus of its
lifted version.

4. Operators of type λ and representation formulas

4A. Differential operators and fundamental solutions. We now define various differential operators
that we will handle in the following. Our main interest is to study the operator

L=

q∑
i, j=1

ai j (x)X i X j + X0,

under the assumption (H) in Section 2. Recall that, in view of Remark 2.3, we have set a0(x)≡ 1.
For any x̄ ∈ �, we can apply the “lifting theorem” to the vector fields X i (see Section 3A for

the statement and notation), obtaining new vector fields X̃ i which are free up to weight s and satisfy
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Hörmander’s condition of weight s in a neighborhood of ξ̄ = (x̄, 0) ∈ RN . For ξ = (x, t) ∈ B̃(ξ̄ , R), with
B̃(ξ̄ , R) as in Lemma 3.9, set

ãi j (x, t)= ai j (x),

and let

L̃=

q∑
i, j=1

ãi j (ξ)X̃ i X̃ j + X̃0 (4-1)

be the lifted operator, defined in B̃(ξ̄ , R). Next, we freeze L̃ at some point ξ0 ∈ B̃(ξ̄ , R), and consider
the frozen lifted operator

L̃0 =

q∑
i, j=1

ãi j (ξ0)X̃ i X̃ j + X̃0. (4-2)

To study L̃0, in view of the “approximation theorem” (Theorem 3.2), we will consider the approximating
operator, defined on the homogeneous group G,

L∗0 =

q∑
i, j=1

ãi j (ξ0)Yi Y j + Y0,

and its transpose,

L∗T0 =

q∑
i, j=1

ãi j (ξ0)Yi Y j − Y0,

where {Yi } are the left invariant vector fields on the group G defined in Section 3A.
We will apply to L∗0 and L∗T0 several results proved in [Bramanti and Brandolini 2000b], which in turn

are based on [Folland 1975, Theorem 2.1 and Corollary 2.8; Folland and Stein 1974, Proposition 8.5].
They are collected in the following theorem.

Theorem 4.1. Assume that the homogeneous dimension of G is Q ≥ 3. For every ξ0 ∈ B̃(ξ̄ , R), the
operator L∗0 has a unique fundamental solution 0(ξ0; · ) such that

(a) 0(ξ0; · ) ∈ C∞(RN
\ {0});

(b) 0(ξ0; · ) is homogeneous of degree (2− Q);

(c) for every test function f and every v ∈ RN ,

f (v)=
∫

RN
0(ξ0; u−1

◦ v)L∗0 f (u) du;

moreover, for every i, j = 1, . . . , q , there exist constants αi j (ξ0) such that

Yi Y j f (v)= PV
∫

RN
Yi Y j0(ξ0; u−1

◦ v)L∗0 f (u) du+αi j (ξ0) ·L
∗

0 f (v); (4-3)

(d) Yi Y j0(ξ0; · ) is homogeneous of degree −Q;
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(e) for every R > r > 0,∫
r<‖u‖<R

Yi Y j0(ξ0; u) du =
∫
‖u‖=1

Yi Y j0(ξ0; u) dσ(u)= 0.

In (4-3) the notation PV
∫

RN · · · du stands for limε→0
∫
‖u−1◦v‖>ε

· · · du.

Remark 4.2. By [Folland 1975, remark on p. 174], we know that the fundamental solution of the
transposed operator L∗T0 is

0T (ξ0; u)= 0(ξ0; u−1)= 0(ξ0;−u).

(However, beware that Yi0
T (ξ0; u) 6= ±Yi0(ξ0;−u).)

Throughout the following, we will set, for i, j = 1, . . . , q,

0i j (ξ0; u)= Yi Y j [0(ξ0; · )](u),

0T
i j (ξ0; u)= Yi Y j [0

T (ξ0; · )](u).

A second fundamental result we need contains a bound on the derivatives of 0, uniform with respect
to ξ0.

Theorem 4.3 [Bramanti and Brandolini 2000b, Theorem 12]. For every multi-index β, there exists a
constant c = c(β,G, µ) such that, for any i, j = 1, . . . , q,

sup
ξ∈B̃(ξ̄ ,R)
‖u‖=1

∣∣∣∣( ∂

∂u

)β
0i j (ξ ; u)

∣∣∣∣≤ c;

moreover, for the αi j appearing in (4-3), the uniform bound

sup
ξ∈B̃(ξ̄ ,R)

|αi j (ξ)| ≤ c2

holds for some constant c2 = c2(G, µ).

Remark 4.4. Theorems 4.1 and 4.3 still hold replacing 0 by 0T and 0i j by 0T
i j .

4B. Operators of type λ. As in [Rothschild and Stein 1976; Bramanti and Brandolini 2000a], we are
going to build a parametrix for L̃ shaped on the homogeneous fundamental solution of L∗0. More generally,
we need to define a class of integral operators with different degrees of singularity. The next definition is
adapted from [Bramanti and Brandolini 2000a], the difference being the necessity, in the present case, to
consider integral kernels shaped on the fundamental solutions of both L∗0 and L∗T0 .

Definition 4.5. For any ξ0 ∈ B̃(ξ̄ , R), we say that k(ξ0; ξ, η) is a frozen kernel of type λ (over the ball
B̃(ξ̄ , R)) for some nonnegative integer λ (we will use λ= 0, 1, 2) if, for every positive integer m, we can
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write, for ξ, η ∈ B̃(ξ̄ , R),

k(ξ0; ξ, η)= k ′(ξ0; ξ, η)+ k ′′(ξ0; ξ, η)

=

{ Hm∑
i=1

ai (ξ)bi (η)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ))

+

{ Hm∑
i=1

a′i (ξ)b
′

i (η)D
′

i0
T (ξ0; · )+ a′0(ξ)b

′

0(η)D
′

00
T (ξ0; · )

}
(2(η, ξ)),

where ai , bi , a′i , b′i ∈C∞0 (B̃(ξ̄ , R)) (i = 0, 1, . . . , Hm), and Di and D′i are differential operators such that,
for i = 1, . . . , Hm , Di and D′i are homogeneous of degree ≤ 2− λ (so that Di0(ξ0; · ), and D′i0

T (ξ0; · )

are homogeneous functions of degree ≥ λ−Q); D0 and D′0 are differential operators such that D00(ξ0; · )

and D′00
T (ξ0; · ) have m (weighted) derivatives with respect to the vector fields Yi (i = 0, 1, . . . , q).

Moreover, the coefficients of the differential operators Di , D′i for i = 0, 1, . . . , Hm possibly depend also
on the variables ξ, η, in such a way that the joint dependence on (ξ, η, u) is smooth.

In order to simplify notation, we will not always express explicitly this dependence of the coefficients
of Di on ξ, η. Only if necessary will we write, for instance, ai (ξ)bi (η)D

ξ,η

i 0(ξ0;2(η, ξ)) to recall this
dependence.

Remark 4.6. Note that if a smooth function c(ξ, η, u) is D(λ)-homogeneous of some degree β with
respect to u, any ξ or η derivative of c has the same homogeneity with respect to u, since

c(ξ, η, D(λ)u)= λβc(ξ, η, u) implies
∂c
∂ξi
(ξ, η, D(λ)u)= λβ

∂c
∂ξi
(ξ, η, u).

Hence any derivative (
∂

∂ξi
Dξ,η

i

)
0(ξ0; · ),

(
∂

∂ηi
Dξ,η

i

)
0(ξ0; · )

has the same homogeneity as
Dξ,η

i 0(ξ0; · ).

Here and in the following, the symbol ((∂/∂ξi )D
ξ,η

i ) f means that we have taken the ξi -derivative of the
coefficients of the differential operator Dξ,η

i , which acts on the u variables but contains ξ , η as parameters;
the resulting differential operator acts on the function f (u).

Definition 4.7. For any ξ0 ∈ B̃(ξ̄ , R), we say that T (ξ0) is a frozen operator of type λ≥ 1 (over the ball
B̃(ξ̄ , R)) if k(ξ0; ξ, η) is a frozen kernel of type λ and

T (ξ0) f (ξ)=
∫

B̃
k(ξ0; ξ, η) f (η) dη

for f ∈ C∞0 (B̃(ξ̄ , R)). We say that T (ξ0) is a frozen operator of type 0 if k(ξ0; ξ, η) is a frozen kernel of
type 0 and

T (ξ0) f (ξ)= PV
∫

B̃
k(ξ0; ξ, η) f (η) dη+α(ξ0, ξ) f (ξ),
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where α is a bounded measurable function, smooth in ξ , and the principal value integral exists. Explicitly,
this principal value is defined by

PV
∫

B̃
k(ξ0; ξ, η) f (η), dη = lim

ε→0

∫
‖2(η,ξ)‖>ε

k(ξ0; ξ, η) f (η) dη.

Definition 4.8. If k(ξ0; ξ, η) is a frozen kernel of type λ≥ 0, we say that k(ξ ; ξ, η) is a variable kernel
of type λ (over the ball B̃(ξ̄ , R)), and

T f (ξ)=
∫

B̃
k(ξ ; ξ, η) f (η) dη

is a variable operator of type λ. If λ= 0, the integral must be taken in principal value sense and a term
α(ξ, ξ) f (ξ) must be added.

In reference to Definition 4.5, we will call the k ′ and k ′′ parts of k “the frozen kernels of type λ modeled
on 0 and 0T ”, respectively. Analogously we will sometimes speak of frozen operators of type λ modeled
on 0 or 0T , to denote that the kernel has this special form.

A common operation on frozen operators is transposition.

Definition 4.9. If T (ξ0) is a frozen operator of type λ≥ 0 over B̃(ξ̄ , R), we will denote by T (ξ0)
T the

transposed operator, formally defined by∫
B̃

f (ξ)T (ξ0)
T g(ξ) dξ =

∫
B̃

g(ξ)T (ξ0) f (ξ) dξ

for any f, g ∈ C∞0 (B̃(ξ̄ , R)).

Clearly, if k(ξ0, ξ, η) is the kernel of T (ξ0), then k(ξ0, η, ξ) is the kernel of T (ξ0)
T . It is useful to note

the following.

Proposition 4.10. If T (ξ0) is a frozen operator of type λ ≥ 0 over B̃(ξ̄ , R), modeled on 0 or 0T , then
T (ξ0)

T is a frozen operator of type λ, modeled on 0T or 0, respectively. In particular, the transpose of a
frozen operator of type λ is still a frozen operator of type λ.

Proof. Let D be any differential operator on the group G. For any f ∈ C∞0 (B̃(ξ̄ , R)), let f ′(u)= f (−u).
Let D′ be the differential operator defined by the identity

D′ f = (D( f ′))′.

Clearly, if D is homogeneous of some degree β, the same is true for D′; if D0(ξ0; · ) or D0T (ξ0; · )

has m (weighted) derivatives with respect to the vector fields Yi (i = 0, 1, . . . , q), the same is true for
D′0(ξ0; · ) or D′0T (ξ0; · ). Also, recalling that 0T (ξ0; u)= 0(ξ0;−u), we have

(D′0)(u)= (D0T )(−u) and (D′0T )(u)= (D0)(−u).

Moreover, these identities can be iterated, for instance,

(D1 D20)(−u)= (D1(D20))(−u)= (D′1(D20)
′)(u)= (D′1 D′20

T )(u).
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Therefore, if

k ′(ξ0, ξ, η)=

{ Hm∑
i=1

ai (ξ)bi (η)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ))

is a frozen kernel of type λ modeled on 0, then

k ′(ξ0, η, ξ)=

{ Hm∑
i=1

ai (η)bi (ξ)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(−2(η, ξ))

=

{ Hm∑
i=1

ai (η)bi (ξ)D′i0
T (ξ0; · )+ a0(ξ)b0(η)D′00

T (ξ0; · )

}
(2(η, ξ))

is a frozen kernel of type λ modeled on 0T . Analogously one can prove the converse. �

We now have to deal with the relations between operators of type λ and the differential operators
represented by the vector fields X̃ i . This is a study which was carried out in [Rothschild and Stein 1976,
Section 14] and adapted to nonvariational operators in [Bramanti and Brandolini 2000a]. We are interested
in two main results. Roughly speaking, the first says that the composition, in any order, of an operator
of type λ with the X̃ i or X̃0 derivative is an operator of type λ− 1 or λ− 2, respectively. The second
says that the X̃ i derivative of an operator of type λ can be rewritten as the sum of other operators of type
λ, each acting on a different X̃ j derivative, plus a suitable remainder. In [Rothschild and Stein 1976]
these results are proved only for a system of Hörmander vector fields of weight one (that is, without the
drift), and several arguments are very condensed. Hence we need to extend and modify some arguments
in [Rothschild and Stein 1976, Section 14] to cover the present situation. Moreover, as in [Bramanti and
Brandolini 2000a], we need to keep under careful control the dependence of any quantity on the frozen
point ξ0 appearing in 0(ξ0, · ). For these and other technical reasons, we prefer to write complete proofs
of these properties. The first result is the following.

Theorem 4.11 [Rothschild and Stein 1976, Theorem 8]. Suppose T (ξ0) is a frozen operator of type λ≥ 1.
Then X̃k T (ξ0) and T (ξ0)X̃k (k = 1, 2, . . . , q) are operators of type λ− 1. If λ ≥ 2, then X̃0T (ξ0) and
T (ξ0)X̃0 are operators of type λ− 2.

To prove this, we begin by stating the following two lemmas.

Lemma 4.12. If k(ξ0; ξ, η) is a frozen kernel of type λ ≥ 1 over B̃(ξ̄ , R), then (X̃ j k)(ξ0; · , η)(ξ) ( j =
1, 2, . . . , q) is a frozen kernel of type λ− 1. If λ ≥ 2, then (X̃0k)(ξ0; · , η)(ξ) is a frozen kernel of type
λ− 2.

Proof. This basically follows by the definition of kernel of type λ and Theorem 3.2. When the X̃ j

derivative acts on the ξ variable of a kernel Dξ
i 0(ξ0, · ), one also has to take into account Remark 4.6.

Here we just want to point out the following fact. The prototype of a frozen kernel of type 2 is the
function

a(ξ)0(ξ0;2(η, ξ))b(η).
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Note that the computation

X̃ i [a( · )0(ξ0;2(η, · ))b(η)](ξ)= a(ξ)[(Yi + Rηi )0(ξ0; · )](2(η, ξ))b(η)+ (X̃ i a)(ξ)0(ξ0;2(η, ξ))b(η)

in particular generates the term

a(ξ)(Rηi 0)(ξ0; · )(2(η, ξ))b(η),

where the differential operator Rηi has coefficients depending on η. In the proof of Theorem 4.11 we will
see another basic computation on frozen kernels which generates differential operators with coefficients
also depending on ξ . This is the reason why Definition 4.5 allows for this kind of dependence. �

Lemma 4.13. If T (ξ0) is a frozen operator of type λ≥ 1 over B̃(ξ̄ , R), then X̃ i T (ξ0) (i = 1, 2, . . . , q) is
a frozen operator of type λ− 1. If λ≥ 2, then X̃0T (ξ0) is a frozen operator of type λ− 2.

Proof. With reference to Definition 4.5, it is enough to consider the part k ′ of the kernel of T , the proof
for k ′′ being completely analogous. So, let us consider the operator

X̃ i T (ξ0) (i = 1, 2, . . . , q),

where T (ξ0) has kernel k ′.
If λ > 1, the result immediately follows by the previous lemma. If λ= 1, then

T (ξ0) f (ξ)=
∫

B̃(ξ̄ ,R)
a(ξ)b(η)D10(ξ0;2(η, ξ)) f (η) dη+ T ′(ξ0) f (ξ),

where T ′(ξ0) is a frozen operator of type 2 and D1 is a 1-homogeneous differential operator. We already
know that X̃ i T ′(ξ0) is a frozen operator of type 1, so it remains to show that

X̃ i

∫
B̃(ξ̄ ,R)

a(ξ)b(η)D10(ξ0; (2(η, ξ))) f (η) dη

is a frozen operator of type 0. To do this, we have to apply a distributional argument, which will be used
several times in the following. Let us compute, for any ω ∈ C∞0 (B̃(ξ̄ , R)),∫

B̃(ξ̄ ,R)
X̃ T

i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)Dξ

10(ξ0; (2(η, ξ))) f (η) dη dξ

= lim
ε→0

∫
B̃(ξ̄ ,R)

X̃ T
i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) f (η) dη dξ,

where ϕε(u) = ϕ(D(ε−1)u) and ϕ ∈ C∞0 (R
N ), ϕ(u) = 0 for ‖u‖ < 1, ϕ(u) = 1 for ‖u‖ > 2. Here we

have written Dξ

1 to recall that the coefficients of the differential operator D1 also depend (smoothly) on ξ
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as a parameter. By Theorem 3.2,∫
B̃(ξ̄ ,R)

X̃ T
i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) f (η) dη dξ

=

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
(X̃ T

i ω)(ξ)a(ξ)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)(X̃ i a)(ξ)ϕε(2(η, ξ))D

ξ

10(ξ0; (2(η, ξ))) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)ϕε(2(η, ξ))(X̃ i Dξ

1 )0(ξ0; (2(η, ξ))) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[(Yi + Rηi )(ϕεDξ

10(ξ0; · ))](2(η, ξ)) dξ dη

=: Aε + Bε +Cε. (4-4)

(For the meaning of the symbol X̃ i Dξ

1 appearing in the term Bε, see Remark 4.6.) Now, for ε→ 0,

Aε→
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)(X̃ i a)(ξ)D10(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

f (η)S1(ξ0)ω(η) dη =
∫

B̃(ξ̄ ,R)
ω(η)S1(ξ0)

T f (η) dη, (4-5)

where S1(ξ0) is a frozen operator of type 1, and S1(ξ0)
T is still a frozen operator of type 1, by

Proposition 4.10. Next,

Bε→
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)a(ξ)(X̃ i Dξ

1 )0(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

f (η)S′1(ξ0)ω(η) dη =
∫

B̃(ξ̄ ,R)
ω(η)S′1(ξ0)

T f (η) dη, (4-6)

where, by Remark 4.6, S′1(ξ0) is a frozen operator of type 1, and the same is still true for S′1(ξ0)
T . Finally,

Cε =
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)a(ξ)[ϕεYi D10(ξ0; · )](2(η, ξ)) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[ϕεRηi D10(ξ0; · )](2(η, ξ)) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[(Yi + Rηi )ϕεD10(ξ0; · )](2(η, ξ)) dξ dη

=: C1
ε +C2

ε +C3
ε . (4-7)

Now

C1
ε→

∫
B̃(ξ̄ ,R)

ω(ξ)

{
PV
∫

B̃(ξ̄ ,R)
a(ξ)Yi D10(ξ0;2(η,ξ))b(η) f (η)dη

}
dξ =

∫
B̃(ξ̄ ,R)

ω(ξ)T (ξ0) f (ξ)dξ, (4-8)
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where T (ξ0) is a frozen operator of type 0. Note that the principal value exists because the kernel
Yi D10(ξ0; u) has a vanishing integral over spherical shells {u ∈ G : r1 < ‖u‖< r2} (see Theorem 4.1).

C2
ε →

∫
B̃(ξ̄ ,R)

ω(ξ)

{∫
B̃(ξ̄ ,R)

a(ξ)Rηi D10(ξ0;2(η,ξ))b(η) f (η)dη
}

dξ =
∫

B̃(ξ̄ ,R)
ω(ξ)S(ξ0) f (ξ)dξ, (4-9)

where S(ξ0) is a frozen operator of type 1. To handle C3
ε , let us perform the change of variables u=2(η, ξ),

which, by Theorem 3.3, gives

C3
ε =

∫
B̃(ξ̄ ,R)

(b f )(η)
∫
‖u‖<R

(ωa)(2(η, · )−1(u))[(Yi + Rηi )ϕεD10(ξ0; · )](u) · c(η)(1+ O(‖u‖)) du dη.

On the other hand, Yiϕε(u)= (1/ε)Yiϕ(D(1/ε)u), while Rηi ϕε(u) is uniformly bounded in ε. Hence the
change of variables D(1/ε)u = v gives

C3
ε =

∫
B̃(ξ̄ ,R)

(b f )(η)
∫
‖v‖<R/ε

(ωa)(2(η, · )−1(D(ε)v))
[

1
ε

Yiϕ(v)+ O(1)
]

· c(η)ε1−Q Dη

10(ξ0; v)(1+ O(ε‖v‖))εQ dv dη

→

∫
B̃(ξ̄ ,R)

(bc f )(η)
∫
‖v‖≤2

(ωa)(2(η, · )−1(0))Yiϕ(v)D
η

10(ξ0; v) dv dη

=

∫
B̃(ξ̄ ,R)

(ωabc f )(η)
∫
‖v‖≤2

Yiϕ(v)D
η

10(ξ0; v) dv dη

=

∫
B̃(ξ̄ ,R)

(ωabc f )(η)α(ξ0, η) dη, (4-10)

which is the integral of ω times the multiplicative part of a frozen operator of type 0. It is worthwhile
(although not logically necessary to prove the theorem) to realize that the quantity α(ξ0, η) appearing
in (4-10) actually does not depend on the function ϕ. Namely, recalling that Yiϕ(v) is supported in the
spherical shell 1≤ ‖v‖ ≤ 2 with ϕ(u)= 1 for ‖u‖ = 2 and ϕ(u)= 0 for ‖u‖ = 1, an integration by parts
gives∫

1≤‖v‖≤2
Yiϕ(v)D

η

10(ξ0; v) dv =−
∫

1≤‖v‖≤2
ϕ(v)Yi Dη

10(ξ0; v) dv+
∫
‖v‖=2

Dη

10(ξ0; v)ni dσ(v)

with ni =
∑N

j=1 bi j (u)ν j , where Yi =
∑N

j=1 bi j (u)∂u j and ν is the outer normal on ‖v‖ = 2. The

vanishing property of the kernel Yi Dξ

10(ξ0; · ) implies that if ϕ is a radial function, the first integral
vanishes. Therefore,

α(ξ0, η)=

∫
‖v‖=2

Dη

10(ξ0; v)ni dσ(v),

which also shows that α(ξ0, η) smoothly depends on η and is bounded in ξ0 (by Theorem 4.3). By
(4-4)–(4-6) and (4-8)–(4-10) we have therefore proved that

X̃ i T (ξ0) f (ξ)= S1(ξ0)
T f (ξ)+ S′1(ξ0)

T f (ξ)+ T (ξ0) f (ξ)+α(ξ0, ξ)(abc f )(ξ),
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which is a frozen operator of type 0. This completes the proof of the first statement. The proof of the fact
that if λ≥ 2, then X̃0T (ξ0) is a frozen operator of type λ− 2 is completely analogous. �

The above two lemmas imply the assertion on X̃k T (ξ0) and X̃0T (ξ0) in Theorem 4.11. To prove the
assertions about T (ξ0)X̃k and T (ξ0)X̃0 we need a way to express ξ -derivatives of the integral kernel
in terms of η-derivatives of the kernel, in order to integrate by parts. This will involve the use of right
invariant vector fields on the group G: throughout the following, we will denote by

Y R
i,k

the right invariant vector field on G satisfying Y R
i,k f (0)= Yi,k f (0).

Lemma 4.14. For any f ∈C∞0 (G) and η, ξ in a neighborhood of ξ0, we can write, for any i = 1, 2, . . . , s,
k = 1, 2, . . . , ki (recall s is the step of the Lie algebra),

X̃ i,k[ f (2( · , ξ))](η)=−(Y R
i,k f )(2(η, ξ))+ ((Rξi,k)

′ f )(2(η, ξ)), (4-11)

where (Rξi,k)
′ is a vector field of local degree ≤ i − 1 smoothly depending on ξ .

Proof. We start with the following.

Claim. For any function f defined on G, let

f ′(u)= f (−u)

(recall that −u = u−1); then the following identities hold:

Yi,k( f ′)=−(Y R
i,k f )′. (4-12)

Proof. Let us define the vector fields Ŷi,k by

Yi,k( f ′)=−(Ŷi,k f )′. (4-13)

Then, for any a ∈ G, denoting by La, Ra the corresponding operators of left and right translation,
respectively (acting on functions), we have

(Ŷi,k Ra f )′=−Yi,k((Ra f )′)=−Yi,k(L−a f ′)=−L−aYi,k f ′= L−a(−Yi,k f ′)= L−a(Ŷi,k f )′=(RaŶi,k f )′,

hence Ŷi,k are right invariant vector fields. Also, note that, for any vector field Y =
∑

a j (u)∂u j , we have

Y ( f ′)(0)=−(Y f )(0),

because
Y ( f ′)(u)=

∑
a j (u)∂u j [ f (−u)] = −

∑
a j (u)(∂u j f )(−u) implies

Y ( f ′)(0)=−
∑

a j (0)(∂u j f )(0)=−(Y f )(0).

Hence, by (4-13), we know that Ŷk f (0)= Yk f (0). Therefore Ŷk is the right invariant vector field which
coincides with Yk at the origin, that is, Ŷk = Y R

k . �
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By (3-4) and (4-12),

X̃ i,k[ f (2( · , ξ))](η)

= X̃ i,k[ f ′(2(ξ, · ))](η)= (Yi,k f ′+ Rξi,k f ′)(2(ξ, η))

=−(Y R
i,k f )′(2(ξ, η))+ Rξi,k f ′(2(ξ, η))=−(Y R

i,k f )(2(η, ξ))+ ((Rξi,k)
′ f )(2(η, ξ)), (4-14)

where

((Rξi,k)
′ f )(u)= (Rξi,k f ′)(−u)

is a differential operator of degree ≤ i − 1. This proves (4-11). �

Proof of Theorem 4.11. As we noted after Lemma 4.13, we are left to prove the assertion about T (ξ0)X̃ i

and T (ξ0)X̃0. We only give the proof for the case λ≥ 1, i = 1, . . . , q. The proof for λ≥ 2, i = 0 being
very similar. Like in the proof of Lemma 4.13, it is enough to consider the part k ′ of the kernel of T , the
proof for k ′′ being completely analogous (see Definition 4.5). Let us expand

k ′(ξ0; ξ, η)=

{ Hm∑
j=1

a j (ξ)b j (η)D j0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ)),

where D00(ξ0; · ) has bounded Yi -derivatives (i = 1, 2, . . . , q). We can consider each of the terms

T j (ξ0)X̃ i f (ξ)≡
∫

a j (ξ)b j (η)D
η

j0(ξ0;2(η, ξ))X̃ i f (η) dη

(this time it is important to recall the η-dependence of the coefficients of D j ) and distinguish 2 cases:

(i) D j0 is homogeneous of degree ≥ 2− Q or it is regular (that is, D j0 has bounded Yi -derivatives);

(ii) T j (ξ0) is a frozen operator of type 1 and D j0 is homogeneous of degree 1− Q.

Case (i). We can integrate by parts, recalling that the transpose of X̃ i is

(X̃ i )
T g(η)=−X̃ i g(η)+ ci (η)g(η)

with ci smooth functions:

T j (ξ0)X̃ i f (ξ)

=

∫
ci (η)a j (ξ)b j (η)D

η

j0(ξ0;2(η, ξ)) f (η) dη−
∫

a j (ξ)(X̃ i b j )(η)D
η

j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)b j (η)X̃ i [D

η

j0(ξ0;2( · , ξ))](η) f (η) dη−
∫

a j (ξ)b j (η)(X̃
η

i Dη

j )0(ξ0;2(η, ξ)) f (η) dη

= A(ξ)+ B(ξ)+C(ξ)+ D(ξ).

Now, A(ξ)+ B(ξ) is still an operator of type λ, applied to f ; in particular, it can be seen as operator of
type λ−1; the same is true for D(ξ), by Remark 4.6. To study C(ξ), we apply Lemma 4.14, which gives

X̃ i [D
η

j0(ξ0;2( · , ξ))](η)=−(Y R
i Dη

j0)(ξ0,2(η, ξ))+ ((R
ξ
i )
′Dη

j0)(ξ0,2(η, ξ)).
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Since Y R
i is homogeneous of degree 1, a j (ξ)b j (η)Y R

i Dη

j0(ξ0,2(η, ξ)) is a kernel of type λ− 1. Since

(Rξi )
′ is a differential operator of degree ≤ 0, the kernel a j (ξ)b j (η)((R

ξ
i )
′Dη

j0)(ξ0,2(η, ξ)) is of type λ.
Note that, even when the coefficients of the differential operator D j (in the expression D j0(ξ0;2(η, ξ)))

do not depend on ξ and η, this procedure introduces, with the operator (Rξi )
′, a new ξ -dependence of the

coefficients. Compare this with our remark in the proof of Lemma 4.12.

Case (ii). In this case the kernel (Y R
i D j0) is singular, so that the computation must be handled with

more care. We can write

T j (ξ0)X̃ i f (ξ)= lim
ε→0

∫
a j (ξ)b j (η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ))X̃ i f (η) dη ≡ lim

ε→0
Tε(ξ)

with ϕε as in the proof of Lemma 4.13. Note that, choosing a radial ϕ, we have ϕε(2(ξ, η))=ϕε(2(η, ξ)).
Then

Tε(ξ)=
∫

ci (η)a j (ξ)b j (η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)(X̃ i b j )(η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)b j (η)X̃ i [ϕε(2( · , ξ))D j0(ξ0;2( · , ξ))](η) f (η) dη

−

∫
a j (ξ)b j (η)ϕε(2(ξ, η))(X̃

η

i Dη

j )0(ξ0;2(η, ξ)) f (η) dη

=: Aε(ξ)+ Bε(ξ)+Cε(ξ)+ Dε(ξ).

Now Aε(ξ)+Bε(ξ)+Dε(ξ) converge to an operator of type λ, as A(ξ), B(ξ), D(ξ) are in Case (i), while,
by Theorem 3.2 and Lemma 4.14,

Cε(ξ)= −
∫

a j (ξ)b j (η) f (η)(Yiϕε)(2(η, ξ))D j0(ξ0;2(η, ξ)) dη

−

∫
a j (ξ)b j (η) f (η)(Rξi ϕε)(2(η, ξ))D j0(ξ0;2(η, ξ)) dη

+

∫
a j (ξ)b j (η) f (η)ϕε(2(η, ξ))(Y R

i D j0)(ξ0,2(η, ξ)) dη

−

∫
a j (ξ)b j (η) f (η)ϕε(2(η, ξ))((R

ξ
i )
′D j0)(ξ0,2(η, ξ)) dη

=: Eε(ξ)+ Fε(ξ)+Gε(ξ)+ Hε(ξ).

Now Hε(ξ) tends to an operator of type 1 and Gε(ξ) tends to

PV
∫

a j (ξ)b j (η) f (η)(Y R
i D j0)(ξ0,2(η, ξ)) dη,

which is an operator of type 0. As to Eε(ξ), the same computation as in the proof of Lemma 4.13 gives

Eε(ξ)→ α(ξ0, ξ)(abc f )(ξ)
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with

α(ξ0, ξ)=

∫
Yiϕ(v)D

ξ

10(ξ0; v) dv,

which is the multiplicative part of an operator of type 0. A similar computation shows that Fε(ξ)→ 0. �

Let us come to the second main result of this section. In [Rothschild and Stein 1976, corollary on
p. 296], the following fact is proved for a family of Hörmander’s vector fields without the drift X̃0: for
any frozen operator T (ξ0) of type 1, i = 1, 2, . . . , q, there exist operators Ti j (ξ0), Ti (ξ0) of type 1 such
that

X̃ i T (ξ0)=

q∑
j=1

Ti j (ξ0)X̃ j + Ti (ξ0).

This possibility of exchanging the order of integral and differential operators will be crucial in the proof
of representation formulas. However, such an identity cannot be proved in this form when the drift X̃0 is
present. Instead, we are going to prove the following, which will be enough for our purposes.

Theorem 4.15. If T (ξ0) is a frozen operator of type λ≥ 1, i = 1, 2, . . . , q , then

X̃ i T (ξ0)=

q∑
k=1

T i
k (ξ0)X̃k +

q∑
h, j=1

ãhj (ξ0)T hi (ξ0)X̃ j + T i
0 (ξ0)+ T i (ξ0)L̃0, (4-15)

where T i
k (ξ0) (k = 0, 1, . . . , q) and T hi (ξ0) are frozen operators of type λ, T i (ξ0) are frozen operators of

type λ+ 1, and ãhj (ξ0) are the frozen coefficients of L̃0.
If T (ξ0) is a frozen operator of type λ≥ 2, then

X̃0T (ξ0)=

q∑
k=1

Tk(ξ0)X̃k +

q∑
h, j=1

ãhj (ξ0)T h(ξ0)X̃ j + T0(ξ0)+ T (ξ0)L̃0, (4-16)

where Tk(ξ0) (k = 0, 1, . . . , q) and T h(ξ0) are frozen operators of type λ− 1, T (ξ0) is a frozen operator
of type λ.

We start with the following lemma, similar to that proved in [Rothschild and Stein 1976, p. 296].

Lemma 4.16. For any vector field X̃ j0,k0 ( j0=1, 2, . . . , s, k0=1, 2, . . . , k j0), there exist smooth functions

{a j0k0η
jk } j=1,2,...,s

k=1,2,...,h j

having local degree ≥max{ j − j0, 0} and smoothly depending on η, such that, for any f ∈ C∞0 (G), one
can write

X̃ j0,k0[ f (2(η, · ))](ξ)=
∑

j=1,2,...,s
k=1,2,...,k j

a j0k0η
jk (2(η, ξ))X̃ j,k[ f (2( · , ξ))](η)+ (R

ξ,η

j0,k0
f )(2(η, ξ)), (4-17)

where Rξ,ηj0 is a vector field of local degree ≤ j0− 1, smoothly depending on ξ, η.
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Proof. By Theorem 3.2 we know that

X̃ j0,k0[ f (2(η, · ))](ξ)= (Y j0,k0 f + Rηj0,k0
f )(2(η, ξ))≡ (Zηj0,k0

f )(2(η, ξ)), (4-18)

where Zηj0,k0
is a vector field of local degree ≤ j0, smoothly depending on η. To rewrite (Zηj0,k0

f ) in a
suitable form, we start from the following identities:

Yi,k =
∂

∂uik
+

∑
i<l≤s

kl∑
r=1

gik
lr (u)

∂

∂ulr
(4-19)

for any i = 1, 2, . . . , s and k = 1, 2, . . . , ki ;

Yi,k =
∑

gik
lr (u)Y

R
l,r , (4-20)

where gik
lr (u) are homogeneous of degree l − i ; see [Rothschild and Stein 1976, p. 295]. Hence we can

write

Zηj0,k0
=

∑
aηjk(u)

∂

∂u jk
,

where a jk has local degree ≥ j − j0 and smoothly depends on η. By inverting (for any i, k) the triangular
system (4-19), we obtain

∂

∂u jk
= Y j,k +

∑
j<l≤s

kl∑
r=1

f jk
lr (u)Yl,r ,

where each f jk
lr (u) is homogeneous of degree l − j . Also using (4-20), we have

(Zηj0,k0
f )(u)=

∑
aηjk(u)[(Y j,k f )(u)+

∑
j<l≤s

f jk
lr (u)(Yl,r f )(u)] =

∑
bηlr (u)(Y

R
l,r f )(u), (4-21)

where

bηlr has local degree≥max{l − j0, 0} (4-22)

and smoothly depends on η. Then, by Lemma 4.14,

(Zηj0,k0
f )(2(η, ξ))=

∑
l,r

−bηlr (2(η, ξ))X̃l,r [ f (2( · , ξ))](η)+
∑
l,r

(bηlr (R
ξ
l,r )
′ f )(2(η, ξ)), (4-23)

where (Rξl,r )
′ is a differential operator of local degree ≤ l − 1, hence the differential operator on G

Rξ,ηj0,k0
≡

∑
l,r

bηlr (R
ξ
l,r )
′ has local degree≤ j0− 1 (4-24)

and depends smoothly on ξ, η. Collecting (4-18), (4-22), (4-23), (4-24), the lemma is proved, with
a j0k0η

jk =−bηjk . �

Thanks to this lemma, we can prove the following, which is similar to [Rothschild and Stein 1976,
Theorem 9].
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Theorem 4.17. (i) Suppose T (ξ0) is a frozen operator of type λ ≥ 1. Given a vector field X̃ i for
i = 1, 2, . . . , q, there exist frozen operators T i (ξ0) of type λ, and T i

jk(ξ0), frozen operators of type
λ+ j − 1, such that

X̃ i T (ξ0)=
∑
j,k

T i
jk(ξ0)X̃ j,k + T i (ξ0). (4-25)

(ii) Suppose T (ξ0) is a frozen operator of type λ≥ 2. There exist T 0(ξ0) and T 0
jk(ξ0), frozen operators of

type λ− 1 and λ+max{ j − 2, 0}, respectively, such that

X̃0T (ξ0)=
∑
j,k

T 0
jk(ξ0)X̃ j,k + T 0(ξ0). (4-26)

Proof. First of all, it is enough to consider the part k ′ of the kernel of T (ξ0), the proof for k ′′ being
completely analogous (see Definition 4.5).

(i) If T (ξ0) is a frozen operator of type λ≥ 1 with kernel k ′, we can write it as

T (ξ0) f (ξ)=
∫

a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη+ T ′(ξ0) f (ξ),

where D0(ξ0, · ) is homogeneous of degree λ− Q and T ′(ξ0) is a frozen operator of degree λ+ 1. Since
X̃ i T ′(ξ0) is a frozen operator of type λ, it already has the form T i (ξ0) required by the theorem, hence it
is enough to prove that

X̃ i

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

can be rewritten in the form ∑
j,k

T i
jk(ξ0)X̃ j,k f (ξ)+ T i (ξ0) f (ξ)

with T i
jk(ξ0) and T i (ξ0) frozen operators of type λ+ j−1 and λ, respectively. Next, we have to distinguish

two cases.

Case 1: λ≥ 2. In this case the X̃ i derivative can be taken under the integral sign, writing

X̃ i

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

=

∫
(X̃ i a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη+

∫
a(ξ)X̃ i [D0(2(η, · ))](ξ)b(η) f (η) dη

=: A(ξ)+ B(ξ).

Now A(ξ) is a frozen operator of type λ, while applying Lemma 4.16 with j0 = 1 we get

B(ξ)=
∫

a(ξ)
∑
l,r

ai
lr (2(η, ξ))X̃l,r [D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξi D0)(ξ0;2(η, ξ))b(η) f (η) dη

=: C(ξ)+ D(ξ),
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where Rξi are differential operators of local degree ≤ 0, and the ai
lr have local degree ≥ l−1. Hence D is

a frozen operator of type λ, while, since the transposed vector field of X̃l,r is

X̃ T
l,r =−X̃l,r + cl,r

with cl,r smooth functions,

C(ξ)= − a(ξ)
∑
l,r

∫
X̃l,r [ai

lr (2( · , ξ))b( · )](η)D0(ξ0;2(η, ξ)) f (η) dη

+ a(ξ)
∑
l,r

∫
ai

lr (2(η, ξ))D0(ξ0;2(η, ξ))cl,r (η)b(η) f (η) dη

− a(ξ)
∑
l,r

∫
ai

lr (2(η, ξ))D0(ξ0;2(η, ξ))b(η)X̃l,r f (η) dη.

The first two terms in the last expression are still frozen operators of type λ applied to f , while the third
is a sum of operators of type λ+ l − 1 applied to X̃l,r f , as required by the theorem.

Case 2: λ= 1. In this case we have to compute the derivative of the integral in a distributional sense, as
was already done in the proof of Lemma 4.13. With the same meaning of ϕε, let us compute

lim
ε→0

X̃ i

∫
a(ξ)ϕε(2(η, ξ))D0(ξ0;2(η, ξ))b(η) f (η) dη.

Actually, this gives exactly the same result as in case 1:

X̃ i

∫
a(ξ)ϕε(2(η,ξ))D0(ξ0;2(η,ξ))b(η) f (η)dη

=

∫
(X̃ i a)(ξ)ϕε(2(η,ξ))D0(ξ0;2(η,ξ))b(η) f (η)dη+

∫
a(ξ)X̃ i [(ϕεD0)(2(η,·))](ξ)b(η) f (η)dη

= Aε(ξ)+ Bε(ξ),

where Aε(ξ)→
∫
(X̃ i a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη and

Bε(ξ)=
∫

a(ξ)
∑
l,r

ai
lr (2(η, ξ))X̃l,r [ϕε(2( · , ξ))D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξi (ϕεD0))(ξ0;2(η, ξ))b(η) f (η) dη

=: Cε(ξ)+ Dε(ξ),

where Cε(ξ) converges to the expression called C(ξ) in the computation of case 1; as for Dε(ξ),

Rξi (ϕεD0)= (Rξi ϕε)D0+ϕεRξi D0.

Now, ϕεRξi D0→ Rξi D0 while (Rξi ϕε)D0→ 0, Rξi being a vector field of local degree ≤ 0. Hence
Dε(ξ) also converges to the expression called D(ξ) in the computation of case 1, and we are done.
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(ii) Now let T (ξ0) be a frozen operator of type λ≥ 2 with kernel k ′. As in (i), it is enough to prove that

X̃0

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη,

where D0 is homogeneous of degree λ− Q can be rewritten in the form∑
j,k

T 0
jk(ξ0)X̃ j,k f (ξ)+ T 0(ξ0) f (ξ)

with T 0
jk(ξ0) and T 0(ξ0) frozen operators of type λ+ j − 2 and λ− 1, respectively. Let us consider only

the case λ≥ 3, the case λ= 2 being handled with the modification seen in (i), Case 2. By Lemma 4.16,

X̃0

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

=

∫
(X̃0a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

+

∫
a(ξ)

∑
l,r

a0
lr (2(η, ξ))X̃l,r [D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξ0 D0)(ξ0;2(η, ξ))b(η) f (η) dη

=: A(ξ)+C(ξ)+ D(ξ),

where Rξ0 are now differential operators of local degree ≤ 1, and the a0
lr have local degree ≥max{ j−2, 0}.

Then A(ξ) is a frozen operator of type λ, applied to f ; D(ξ) is a frozen operator of type λ− 1, applied
to f . Moreover,

C(ξ)= − a(ξ)
∑
l,r

∫
X̃l,r [a0

lr (2( · , ξ))b( · )](η)D0(ξ0;2(η, ξ)) f (η) dη

+ a(ξ)
∑
l,r

∫
a0

lr (2(η, ξ))D0(ξ0;2(η, ξ))cl,r (η)b(η) f (η) dη

− a(ξ)
∑
l,r

∫
a0

lr (2(η, ξ))D0(ξ0;2(η, ξ))b(η)X̃l,r f (η) dη,

where the first two terms are still frozen operators of type λ, applied to f , while the third is the sum of
frozen operators of type λ+max{ j − 2, 0} applied to X̃l,r f . �

Proof of Theorem 4.15. It suffices to prove (4-15), since the proof of (4-16) is similar. So, if X̃ i T (ξ0) is
like in (4-15), let us apply Theorem 4.17 and rewrite X̃ i T (ξ0) like in (4-25). Now, let us consider one of
the terms T i

jk(ξ0)X̃ j,k appearing in (4-25).
If j = 1, the term is already in the form required by the theorem we are proving.
If j = 2, then X̃2,k can be written as a combination of commutators of the vector fields X̃1, X̃2, . . . , X̃q ,

plus (possibly) the field X̃0. Then T i
2k(ξ0)X̃2,k contains terms T i

2k(ξ0)X̃h X̃ j and possibly a term T i
2k(ξ0)X̃0.
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By Theorem 4.17, we know T i
2k is a frozen operator of type λ+ 1. Now

T i
2k(ξ0)X̃h X̃ j = (T i

2k(ξ0)X̃h)X̃ j = T i
k (ξ0)X̃ j ,

where, by Theorem 4.11, T i
k (ξ0) is a frozen operator of type λ; on the other hand, by (4-2),

T i
2k(ξ0)X̃0 = T i

2k(ξ0)

(
L̃0−

q∑
h, j=1

ãhj (ξ0)X̃h X̃ j

)

= T i
2k(ξ0)L̃0−

q∑
h, j=1

ãhj (ξ0)(T i
2k(ξ0)X̃h)X̃ j = T i

2k(ξ0)L̃0−

q∑
h, j=1

ãhj (ξ0)T i
h,k(ξ0)X̃ j ,

with T i
2k(ξ0) and T i

h,k(ξ0) frozen operators of type λ+ 1 and λ, respectively, which is in the form allowed
by the thesis of the theorem we are proving.

Finally, if j > 2, it is enough to look at the final part of the differential operator X̃ j,k . It is always
possible to rewrite X̃ j,k either as X̃ j−1,k X̃1,k or as X̃ j−2,k X̃2,k . In the first case, we have

T i
jk(ξ0)X̃ j,k = (T i

jk(ξ0)X̃ j−1,k)X̃1,k = T ′ijk(ξ0)X̃1,k,

with T ′ijk(ξ0) frozen operator of type λ, which is already in the proper form; in the second case, we have

T i
jk(ξ0)X̃ j,k = (T i

jk(ξ0)X̃ j−2,k)X̃2,k = T
′i
j (ξ0)X̃2,k

with T ′ijk(ξ0) frozen operator of type λ+ 1, and then we can proceed as in the case j = 2. �

4C. Parametrix and representation formulas. Throughout this subsection we will make extensive use
of computations on frozen operators of type λ. To make our formulas more readable, we will use the
symbols

T (ξ0), S(ξ0), P(ξ0)

(possibly with some indices) to denote frozen operators of type 0, 1, 2, respectively.
In order to prove representation formulas for second order derivatives, we start with the following

parametrix identities, analogous to [Rothschild and Stein 1976, Theorem 10; Bramanti and Brandolini
2000a, Theorem 3.1].

Theorem 4.18. Given a ∈ C∞0 (B̃(ξ̄ , R)), there exist Si j (ξ0), S0(ξ0), S∗i j (ξ0), S∗0 (ξ0), frozen operators of
type 1 and P(ξ0), P∗(ξ0), frozen operators of type 2 (over the ball B̃(ξ̄ , R)) such that

a I = L̃T
0 P∗(ξ0)+

q∑
i, j=1

ãi j (ξ0)S∗i j (ξ0)+ S∗0 (ξ0), (4-27)

aI = P(ξ0)L̃0+

q∑
i, j=1

ãi j (ξ0)Si j (ξ0)+ S0(ξ0), (4-28)
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where I denotes the identity. Moreover, S∗i j (ξ0), S∗0 (ξ0), P∗(ξ0) are modeled on 0T , while Si j (ξ0),
S0(ξ0), P(ξ0) are modeled on 0. Explicitly,

P∗(ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
0T (ξ0;2(η, ξ)) b(η) f (η) dη,

P(ξ0) f (ξ)=−b(ξ)
∫

B̃

a(η)
c(η)

0(ξ0;2(η, ξ)) f (η) dη,

where c is the function appearing in Theorem 3.3(c).

Sketch of the proof. Let us define

P∗(ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
0T (ξ0;2(η, ξ))b(η) f (η) dη,

where a, b ∈ C∞0 (B̃(ξ̄ , R)) such that ab = a and c(ξ) is the function appearing in the formula of change
of variables (3-6). Let us compute L̃T

0 P∗(ξ0) f for f ∈ C∞0 (B̃(ξ̄ , R)). We can apply a distributional
argument like in the proof of Lemma 4.13. For ω ∈ C∞0 (B̃(ξ̄ , R)), let us evaluate∫

B̃
L̃0ω(ξ)P∗(ξ0) f (ξ) dξ = lim

ε→0

∫
B̃

L̃0ω(ξ)P∗ε (ξ0) f (ξ) dξ,

where

P∗ε (ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
ϕε(2(η, ξ))0

T (ξ0;2(η, ξ))b(η) f (η) dη

with ϕε as in the proof of Lemma 4.13. Now, computing the integral∫
B̃

L̃0ω(ξ)P∗ε (ξ0) f (ξ) dξ

and taking its limit for ε→0, by the same techniques used in Section 4B, we can prove (4-27). Transposing
this identity, one finds (4-28). �

Now, starting from (4-28) and reasoning as in the proof of [Bramanti and Brandolini 2000a, Theo-
rem 3.2], applying Theorem 4.11 and Theorem 4.15, one can easily prove the next two theorems.

Theorem 4.19 (representation of X̃m X̃lu by frozen operators). Let a ∈ C∞0 (B̃(ξ̄ , R)), ξ0 ∈ B̃(ξ̄ , R).
Then, for any m, l = 1, 2, . . . , q, there exist frozen operators over the ball B̃(ξ̄ , R) such that, for any
u ∈ C∞0 (B̃(ξ̄ , R)),

X̃m X̃l(au)= Tlm(ξ0)L̃0u+
q∑

k=1

Tlm,k(ξ0)X̃ku+ T 0
lm(ξ0)u

+

q∑
i, j=1

ãi j (ξ0)

{ q∑
k=1

T i j
lm,k(ξ0)X̃ku+

q∑
h,k=1

ãhk(ξ0)T
′i j

lm,h(ξ0)X̃ku+ Si j
lm(ξ0)L̃0u+ T i j

lm(ξ0)u
}
. (4-29)
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(All the T···(ξ0) are frozen operators of type 0 and Si j
lm(ξ0) are of type 1.) Also,

X̃m X̃l(au)= Tlm(ξ0)L̃u+ Tlm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+

q∑
k=1

Tlm,k(ξ0)X̃ku+ T 0
lm(ξ0)u

+

q∑
i, j=1

ãi j (ξ0)

{ q∑
k=1

T i j
lm,k(ξ0)X̃ku+

q∑
h,k=1

ãhk(ξ0)T
′i j

lm,h(ξ0)X̃ku+ Si j
lm(ξ0)L̃u

+ Si j
lm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+ T i j

lm(ξ0)u
}
. (4-30)

Remark 4.20. The representation formulas of the above theorem have a cumbersome aspect, due to the
presence of the coefficients ãi j (ξ0) which appear several times as multiplicative factors. Anyway, if we
agree to leave implicitly understood in the symbol of frozen operators the possible multiplication by the
coefficients ãi j , our formulas assume the following more compact form

X̃m X̃l(au)= Tlm(ξ0)L̃0u+
q∑

k=1

T lm
k (ξ0)X̃ku+ T 0

lm(ξ0)u

and

X̃m X̃l(au)= Tlm(ξ0)L̃u+ Tlm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+

q∑
k=1

T lm
k (ξ0)X̃ku+ T 0

lm(ξ0)u.

In the proof of a priori estimates, when we take Cα

X̃
or L p norms of both sides of these identities, the

multiplicative factors ãhj will be simply bounded by taking, respectively, the Cα

X̃
or the L∞ norms of the

ãhj ; hence leaving these factors implicitly understood is harmless.

The above theorem is suited to the proof of Cα

X̃
estimates for X̃ i X̃ j u. In order to prove L p estimate for

X̃ i X̃ j u we need the following variation.

Theorem 4.21 (representation of X̃m X̃lu by variable operators). Given a ∈ C∞0 (B̃(ξ̄ , R)), for any
m, l=1, 2, . . . , q , there exist variable operators over the ball B̃(ξ̄ , R) such that, for any u∈C∞0 (B̃(ξ̄ , R)),

X̃m X̃l(au)

= TlmL̃u+
q∑

i, j=1

[ãi j , Tlm]X̃ i X̃ j u+
q∑

k=1

Tlm,k X̃ku+ T 0
lmu

+

q∑
i, j=1

ãi j

{ q∑
k=1

T i j
lm,k X̃ku+

q∑
h,k=1

ãhk T ′i j
lm,h X̃ku+ Si j

lmL̃u+
q∑

i, j=1

[ãi j , Si j
lm]X̃ i X̃ j u+ T i j

lmu
}
. (4-31)

Here all the T··· are variable operators of type 0, Si j
lm is of type 1, [a, T ] denotes the commutator of the

multiplication for a with the operator T , and ãi j are the coefficients of the operator L̃ (which are no
longer frozen at ξ0).
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Remark 4.22. The above representation formula can be written in a shorter way as

X̃m X̃l(au)= TlmL̃u+
q∑

i, j=1

[ãi j , Tlm] X̃ i X̃ j u+
q∑

k=1

Tlm,k X̃ku+ T 0
lmu

if we leave understood in the symbol of variable operators the possible multiplication by the coefficients
ãi j ; see the previous remark.

5. Singular integral estimates for operators of type zero

The proof of a priori estimates on the derivatives X̃ i X̃ j u will follow, as will be explained in Section 6 and
Section 7, combining the representation formulas proved in Section 4C with suitable Cα or L p estimates
for “operators of type zero”. To be more precise, the results we need are the Cα

X̃
(B̃(ξ̄ , R)) continuity

of a frozen operator of type zero and the L p(B̃(ξ̄ , R)) continuity of a variable operator of type zero,
together with the L p(B̃(ξ̄ , r)) estimate for the commutator of a variable operator of type zero with the
multiplication with a VMO function, implying that the L p(B̃(ξ̄ , r)) norm of the commutator vanishes
as r → 0. All these results will be derived in the present section, as an application of abstract results
proved in [Bramanti and Zhu 2012] in the context of locally homogeneous spaces (see Section 3C). To
apply them, we need to check that our kernels of type zero satisfy suitable properties. Moreover, to study
variable operators of type zero, we also have to resort to the classical technique of expansion in series of
spherical harmonics, dating back to Calderón and Zygmund [1957], and already applied in the framework
of vector fields in [Bramanti and Brandolini 2000b; 2000a]. This study will be split into two subsections,
the first devoted to frozen operators on Cα and the second to variable operators on L p.

5A. Cα

X̃
continuity of frozen operators of type 0. The goal of this section is the proof of the following.

Theorem 5.1. Let B̃(ξ̄ , R) be as before, ξ0 ∈ B̃(ξ̄ , R), and let T (ξ0) be a frozen operator of type λ≥ 0
over B̃(ξ̄ , R). Then there exists c > 0 depending on R, {X̃ i }, α, and µ, such that, for any r < R and
u ∈ Cα

X̃ ,0
(B̃(ξ̄ , r)),

‖T (ξ0)u‖Cα

X̃
(B̃(ξ̄ ,r)) ≤ c‖u‖Cα

X̃
(B̃(ξ̄ ,r)). (5-1)

To prove this, we will apply theorems proved in [Bramanti and Zhu 2012] about the Cα continuity of
singular and fractional integrals in spaces of locally homogeneous type, taking

�k = B̃
(
ξ̄ ,

k R
k+ 1

)
for k = 1, 2, 3, . . . . (5-2)

Following notation and assumptions in Definition 4.5, our frozen kernel of type zero can be written as

k(ξ0; ξ, η)= k ′(ξ0; ξ, η)+ k ′′(ξ0; ξ, η).
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We will prove Theorem 5.1 for the operator with kernel k ′, the proof for k ′′ being completely analogous.
Let us split k ′ as

k ′(ξ0;ξ,η)=a1(ξ)b1(η)D10(ξ0;2(η,ξ))+

{ Hm∑
i=2

ai (ξ)bi (η)Di0(ξ0;·)+a0(ξ)b0(η)D00(ξ0;·)

}
(2(η,ξ))

=: kS(ξ,η)+kF (ξ,η),

where D10(ξ0; u) is homogeneous of degree −Q while all the kernels Di0(ξ0; u) are homogeneous of
some degree ≥ 1− Q and D00(ξ0; u) is regular. Recall that all these kernels may also have an explicit
(smooth) dependence on ξ, η; we will write Dξ,η

i 0(ξ0;2(η, ξ)) to point out this fact when it is important.
We want to apply [Bramanti and Zhu 2012, Theorem 5.4] (about singular integrals) to the kernel kS

and [Bramanti and Zhu 2012, Theorem 5.8] (about fractional integrals) to each term of the kernel kF .
We start with the following result, very similar to [Bramanti and Brandolini 2000a, Proposition 2.17].

Proposition 5.2. Let W ξ,η( · ) be a function defined on the homogeneous group G, smooth outside the
origin and homogeneous of degree `− Q for some nonnegative integer `, smoothly depending on the
parameters ξ, η ∈ B̃(ξ̄ , R), and let

K (ξ, η)=W ξ,η(2(η, ξ))

be defined for ξ, η ∈ B̃(ξ̄ , R). Then K satisfies the following.

(i) The growth condition: there exists a constant c such that

|K (ξ, η)| ≤ c · sup
‖u‖=1

|W ξ,η(u)| · dX̃ (ξ, η)
`−Q .

(ii) The mean value inequality: there exists a constant c> 0 such that, for every ξ0, ξ, η with dX̃ (ξ0, η)≥

2dX̃ (ξ0, ξ),

|K (ξ0, η)− K (ξ, η)| + |K (η, ξ0)− K (η, ξ)| ≤ C
dX̃ (ξ0, ξ)

dX̃ (ξ0, η)Q+1−` , (5-3)

where the constant C has the form

c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

{|∇u W ξ,η(u)| + |∇ξW ξ,η(u)| + |∇ηW ξ,η(u)|}.

(iii) The cancellation property: if `= 0 and W satisfies the vanishing property∫
r<‖u‖<R

W ξ,η(u) du = 0 for every R > r > 0 and ξ, η ∈ B̃(ξ̄ , R), (5-4)

then, for any positive integer k, for every ε2>ε1>0 and ξ ∈�k (see (5-2)) such that B̃(ξ, ε2)⊂�k+1,∣∣∣∣∫
�k+1,ε1<ρ(ξ,η)<ε2

K (ξ, η) dη
∣∣∣∣+ ∣∣∣∣∫

�k+1,ε1<ρ(ξ,η)<ε2

K (η, ξ) dη
∣∣∣∣≤ C · (ε2− ε1), (5-5)
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where the constant C has the form

c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

{|W ξ,η(u)| + |∇ξW ξ,η(u)| + |∇ηW ξ,η(u)|}.

Proof. (i) is trivial, by the homogeneity of W , and the equivalence between dX̃ and ρ (see Lemma 3.9).
In order to prove (ii), fix ξ0, η and let r = 1

2ρ(η, ξ0). Condition ρ(η, ξ0) > 2ρ(ξ, ξ0) means that ξ is a
point ranging in B̃r (ξ0). Applying (3-18) to the function

f (ξ)= K (ξ, η),

we can write

| f (ξ)− f (ξ0)| ≤ cdX̃ (ξ, ξ0)

( q∑
i=1

sup
ζ∈B̃(ξ0,

3
4 dX̃ (ξ0,η))

|X̃ i f (ζ )| + dX̃ (ξ, ξ0) sup
ζ∈B̃(ξ0,

3
4 dX̃ (ξ0,η))

|X̃0 f (ζ )|
)
.

Noting that, for ζ ∈ B̃(ξ0,
3
4 dX̃ (ξ0, η)),

|X̃ i K ( · , η)(ζ )| = |X̃ i (W ζ,η(2( · , η)))(ζ )+ (X̃ i W ·,η(2(ζ, η)))(ζ )|

≤ |(Yi W + Rηi W )(2(η, ζ ))| + |(X̃ i W ·,η(2(ζ, η)))(ζ )|

and recalling that, by Remark 4.6, ∇ζW ζ,η(u) has the same u homogeneity as W ζ,η(u), we get

|X̃ i K ( · , η)(ζ )| ≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

|∇u W ξ,η(u)|
c

ρ(ζ, η)Q−`+1 + sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

|∇ζW ζ,η(u)|
c

ρ(ζ, η)Q−`

≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}
c

dX̃ (ξ0, η)Q−`+1 .

Analogously,

|X̃0K ( · , η)(ζ )| ≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}
c

dX̃ (ξ0, η)Q−`+2 ,

hence

|K (ξ, η)− K (ξ0, η)| ≤ C
dX̃ (ξ, ξ0)

dX̃ (ξ0, η)Q−`+1

with
C = c sup

‖u‖=1
ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}.

To get the analogous bound for |K (η, ξ0)− K (η, ξ)|, it is enough to apply the previous estimate to the
function

K̃ (ξ, η)= W̃ ξ,η(2(η, ξ)) with W̃ ξ,η(u)=W η,ξ (u−1).

This completes the proof of (ii).
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To prove (iii), we first ignore the dependence on the parameters ξ, η, and then we will show how to
modify our argument to take them into account. By the change of variables u =2(η, ξ), Theorem 3.3(c)
gives ∫

�k+1,ε1<ρ(ξ,η)<ε2

W (2(η, ξ)) dη = c(ξ)
∫
ε1<‖u‖<ε2

W (u)(1+ω(ξ, u))) du,

which, by the vanishing property of W , equals

c(ξ)
∫
ε1<‖u‖<ε2

W (u)ω(ξ, u) du.

Then∣∣∣∣∫
�k+1,ε1<ρ(ξ,η)<ε2

W (2(η, ξ)) dη
∣∣∣∣≤ c ·

∫
ε1<‖u‖<ε2

|W (u)|‖u‖ du

≤ c · sup
‖u‖=1

|W | ·
∫
ε1<‖u‖<ε2

‖u‖1−Q du ≤ c · sup
‖u‖=1

|W | · (ε2− ε1).

Analogously, one can prove the bound on W (2(ξ, η)). Now, to keep track of the possible dependence of
W on the parameters ξ, η, let us write∫
�k+1,ε1<ρ(ξ,η)<ε2

W ξ,η(2(η, ξ)) dη

=

∫
�k+1,ε1<ρ(ξ,η)<ε2

W ξ,ξ (2(η, ξ)) dη+
∫
�k+1,ε1<ρ(ξ,η)<ε2

[W ξ,η(2(η, ξ))−W ξ,ξ (2(η, ξ)) ] dη

=: I + II.

The term I can be bounded as above, while

|W ξ,η(u)−W ξ,ξ (u)| ≤ |ξ − η||∇ηW ξ,η′(u)|

for some point η′ near ξ and η. Recalling again that the function ∇ηW ξ,η′( · ) has the same homogeneity
as W ξ,η′( · ), while

|ξ − η| ≤ cdX̃ (ξ, η)≤ cρ(ξ, η),

we have

|II| ≤ c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

|∇ηW ξ,η(u)|
∫
�k+1,ε1<‖u‖<ε2

‖u‖1−Q du

and the same reasoning as above applies. This proves the bound on |
∫

K (ξ, η) dη| in (5-5). The proof
of the bound on |

∫
K (η, ξ) dη| is analogous, since the vanishing property (5-4) also implies the same

bound for
∫

r<‖u‖<R W ξ,η(u−1) du. �

Proposition 5.2 implies that D10(ξ0;2(η, ξ)) satisfies the standard estimates, cancellation property,
and convergence condition stated in Section 3C. Note that (5-5) implies both the cancellation property
and the convergence condition.
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In order to apply [Bramanti and Zhu 2012, Theorem 5.4] to the kernel kS(ξ, η), we still need to prove
that the singular integral T with kernel kS(ξ, η) satisfies a condition T (1) ∈ Cγ

X̃
. This result is more

delicate than the previous conditions, and is contained in the following.

Proposition 5.3. Let

h̃(ξ) := lim
ε→0

∫
ρ(ξ,η)>ε

K̃ (ξ, η) dη

with
K̃ (ξ, η)= a1(ξ)b1(η)D

ξ,η

1 0(ξ0;2(η, ξ)),

Dξ,η

1 0(ξ0; · ) homogeneous of degree −Q and satisfying the vanishing property∫
r<‖u‖<R

Dξ,η

1 0(ξ0; u) du = 0 for every R > r > 0, any ξ, η ∈ B̃(ξ̄ , R).

Then
h̃ ∈ Cγ

X̃
(B̃(ξ̄ , R)) for any γ ∈ (0, 1). (5-6)

Proof. Since a1, b1 are compactly supported in B̃(ξ̄ , R), we can choose a radial cutoff function

φ(ξ, η)= f (ρ(ξ, η))

with
f (‖u‖)= 1 for ‖u‖ ≤ R, f (‖u‖)= 0 for ‖u‖ ≥ 2R,

so that K̃ (ξ, η)= K̃ (ξ, η)φ(ξ, η). To begin with, let us prove the assertion without taking into considera-
tion the dependence of Dξ,η

1 0(ξ0; u) on ξ, η. Then

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)D10(ξ0;2(η, ξ)) dη

+ a1(ξ)

∫
φ(ξ, η)D10(ξ0;2(η, ξ))[b1(η)− b1(ξ)] dη

=: I (ξ)+ II(ξ).

Now,

I (ξ)= a1(ξ)b1(ξ)c(ξ) lim
ε→0

∫
‖u‖>ε

f (‖u‖)D10(ξ0; u)(1+ω(ξ, u)) du

= a1(ξ)b1(ξ)c(ξ)
∫

f (‖u‖)D10(ξ0; u)ω(ξ, u) du,

by the vanishing property, with ω smoothly depending on ξ and uniformly bounded by c‖u‖. Hence I (ξ)
is Lipschitz continuous and, in particular, Hölder continuous of any exponent γ ∈ (0, 1). Moreover,

II(ξ)= a1(ξ)

∫
B̃(ξ̄ ,R)

κ(ξ, η) dη with κ(ξ, η)= φ(ξ, η)D10(ξ0;2(η, ξ))[b1(η)− b1(ξ)].

It is not difficult to check that the kernel κ(ξ, η) satisfies the standard estimates of fractional integrals (3-11)
and (3-12) for any ν ∈ (0, 1) (actually, for ν = 1). Hence, by [Bramanti and Zhu 2012, Theorem 5.8],
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the operator with kernel κ is continuous on Cγ (B̃(ξ̄ , R)); in particular, it maps the function 1 into
Cγ (B̃(ξ̄ , R)), which proves that II(ξ) is Hölder continuous.

To conclude the proof, we have to show how to take into account the possible dependence of
Dξ,η

1 0(ξ0; u) on ξ, η. Let us start with the η dependence.

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)Dη

10(ξ0;2(η, ξ)) dη

+ a1(ξ)

∫
φ(ξ, η)Dη

10(ξ0;2(η, ξ))[b1(η)− b1(ξ)] dη

=: I ′(ξ)+ II′(ξ).

The term II′(ξ) can be handled as the term II(ξ) above. As to I ′(ξ),

I ′(ξ)= a1(ξ)b1(ξ)c(ξ) lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du

+ a1(ξ)b1(ξ)c(ξ)
∫

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u)ω(ξ, u) du.

The second term can be handled as above, while the first one requires some care. By the vanishing
property of Dζ

10(ξ0; u) for any fixed ζ , we can write

lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du = lim

ε→0

∫
‖u‖>ε

f (‖u‖)[D2( · ,ξ)−1(u)
1 0(ξ0; u)− Dξ

10(ξ0; u)] du.

On the other hand,

D2( · ,ξ)−1(u)
1 0(ξ0; u)= Dξ

10(ξ0; u)+ Dξ

00(ξ0; u),

where Dξ

0 is a vector field of local weight ≤ 0, smoothly depending on ξ . Hence

lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du =

∫
f (‖u‖)Dξ

00(ξ0; u) du,

which can be handled as the term I (ξ) above.
Dependence on the variable ξ can be taken into account as follows. If

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)Dξ,η

1 0(ξ0;2(η, ξ)) dη

≡ lim
ε→0

∫
Fε(ξ, ξ, η) with Fε(ζ, ξ, η)= a1(ξ)b1(ξ)χρ(ξ,η)>ε(η)φ(ξ, η)D

ζ,η

1 0(ξ0;2(η, ξ)) dη,

then

h̃(ξ1)− h̃(ξ2)= lim
ε→0

∫
[Fε(ξ1, ξ1, η)− Fε(ξ2, ξ1, η)] dη+ lim

ε→0

∫
[Fε(ξ2, ξ1, η)− Fε(ξ2, ξ2, η)] dη

=: A(ξ1, ξ2)+ B(ξ1, ξ2).

Now,

|A(ξ1, ξ2)| ≤ cρ(ξ1, ξ2)
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by the smoothness of ξ 7→ Dξ,η

1 0(ξ0; u). As to B(ξ1, ξ2), it is enough to apply the previous reasoning to
Dζ,η

1 0(ξ0;2(η, ξ)), for any fixed ζ , to conclude that∣∣∣∣ limε→0

∫
[F(ζ, ξ1, η)− F(ζ, ξ2, η)] dη

∣∣∣∣≤ cρ(ξ1, ξ2)
γ

for some constant uniformly bounded in ζ , and then apply this inequality taking ζ = ξ2. �

Conclusion of the proof of Theorem 5.1. Recall that a frozen operator of type zero is written as

T (ξ0) f (ξ)= PV
∫

B̃
k(ξ0; ξ, η) f (η) dη+α(ξ0, ξ) f (ξ),

where α is a bounded measurable function, smooth in ξ . The multiplicative part

f (ξ) 7−→ α(ξ0, ξ) f (ξ)

clearly maps Cα

X̃
in Cα

X̃
, since α(ξ0, · ) is smooth, with operator norm bounded by some constant depending

on the vector fields and the ellipticity constant µ, by Theorem 4.3.
Let us now consider the integral part. With the notation introduced at the beginning of this section, let

us consider first

kS(ξ, η)= a1(ξ)b1(η)D
ξ,η

1 0(ξ0;2(η, ξ)),

where Dξ,η

1 0(ξ0; u) is homogeneous of degree −Q and satisfies the vanishing property (5-4). By
Proposition 5.2, kS(ξ, η) satisfies conditions (i), (ii), and (iii) in Section 3C, with constants bounded by

c sup
‖u‖=1
{|D20(ξ0, u)| + |D30(ξ0, u)|}, (5-7)

where the symbols D2, D3 denote standard derivatives of orders 2, 3, respectively, with respect to u,
and the constant c depends on the vector fields but not on the point ξ0. By Proposition 5.3, condition
(5-6) is also satisfied by kS(ξ, η), with the Cγ

X̃
norm bounded by a quantity of the kind (5-7). Hence, by

[Bramanti and Zhu 2012, Theorem 5.4], the operator with kernel kS(ξ, η) satisfies the assertion of the
theorem we are proving, with a constant bounded by a quantity like (5-7). In turn, by Theorem 4.3, this
quantity can be bounded by a constant depending on the vector fields and the ellipticity constant µ of the
matrix ai j (x).

Let us now come to the kernel

kF (ξ, η)=

{ H∑
i=2

ai (ξ)bi (η)D
ξ,η

i 0(ξ0; · )+ a0(ξ)b0(η)D
ξ,η

0 0(ξ0; · )

}
(2(η, ξ)),

where each function Dξ,η

i 0(ξ0; u) (i = 2, 3, . . . , H ) is homogeneous of some degree ≥ 1− Q, while
Dξ,η

0 0(ξ0; u) is bounded and smooth. By Proposition 5.2, each kernel

ai (ξ)bi (η)D
ξ,η

i 0(ξ0;2(η, ξ))
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satisfies the standard estimates (i) in Section 3C for some ν > 0, hence we can apply [Bramanti and Zhu
2012, Theorem 5.8] to the integral operators defined by these kernels, and conclude as above. Finally, the
integral operator with regular kernel is clearly Cγ continuous. �

5B. L p continuity of variable operators of type 0 and their commutators. In this subsection we are
going to prove the following.

Theorem 5.4. Let T be a variable operator of type 0 (see Section 4B) over the ball B̃(ξ̄ , R), and
p ∈ (1,∞). Then

(i) there exists c > 0, depending on p, R, {X̃ i }
q
i=0, and µ such that

‖T u‖L p(B̃(ξ̄ ,r)) ≤ c‖u‖L p(B̃(ξ̄ ,r))

for every u ∈ L p(B̃(ξ̄ , r)) and r ≤ R;

(ii) for every a ∈ VMOX,loc(�), any ε > 0, there exists r ≤ R such that, for every u ∈ L p(B̃(ξ̄ , r)),

‖T (ãu)− ã · T u‖L p(B̃(ξ̄ ,r)) ≤ ε‖u‖L p(B̃(ξ̄ ,r)), (5-8)

where ã(x, h)= a(x). The number r depends on p, R, {X̃ i }
q
i=0, µ, η∗a,�′,�, and ε (see Section 3D.3

for the definition of VMOX,loc(�) and η∗a,�′,�).

A basic difference between the context here and that of the previous section is that here we are
considering variable kernels and operators of type zero. To reduce the study of these operators to that
of constant operators of type zero we will make use of the classical technique of expansion in series of
spherical harmonics, as already done in [Bramanti and Brandolini 2000a].

Proof. This proof is similar to that of [Bramanti and Brandolini 2000a, Theorem 2.11]. Recall that a
variable operator of type zero is written as

T f (ξ)= PV
∫

B̃
k(ξ ; ξ, η) f (η) dη+α(ξ, ξ) f (ξ),

where α(ξ0, ξ) is a bounded measurable function in ξ0, smooth in ξ . The multiplicative part

f (ξ) 7−→ α(ξ, ξ) f (ξ)

clearly maps L p into L p, with operator norm bounded by some constant depending on the vector fields
and the ellipticity constant µ, by Theorem 4.3. Moreover, this part does not affect the commutator of T .

As to the integral part of T , let us split the variable kernel as

k(ξ ; ξ, η)= k ′(ξ ; ξ, η)+ k ′′(ξ ; ξ, η).

Like in the previous section, it is enough to prove our result for the kernel k ′. Let us expand it as

k ′(ξ ; ξ, η)=
H∑

i=1

ai (ξ)bi (η)D
ξ,η

i 0(ξ ;2(η, ξ))+ a0(ξ)b0(η)D
ξ,η

0 0(ξ ;2(η, ξ))

=: kU (ξ ; ξ, η)+ kB(ξ ; ξ, η),
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where the kernels Dξ,η

i 0(ξ ; u) (for i = 1, 2, 3, . . . , H ) are homogeneous of some degree ≥ −Q,
Dξ,η

i 0(ξ ; u) satisfies the cancellation property, and Dξ,η

0 0(ξ ; u) is bounded in u and smooth in ξ, η.
The kernels kU and kB are “unbounded” and “bounded”, respectively.

The operator with kernel kB is obviously L p continuous. Moreover, it satisfies the commutator estimate
(5-8) by [Bramanti and Zhu 2012, Theorem 7.3], since

|kB(ξ ; ξ, η)| ≤ ca0(ξ)b0(η)

and the constant function 1 obviously satisfies the standard estimates (3-11), (3-12) with ν = 1.
To handle the kernel kU , we expand each of its terms in series of spherical harmonics, exactly like in

[Bramanti and Brandolini 2000a, Section 2.4]:

Dξ,η

i 0(ξ ; u)=
∞∑

m=0

gm∑
k=1

cξ,ηi,km(ξ)Ki,km(u),

where Ki,km(u) are homogeneous kernels which, on the sphere ‖u‖ = 1, coincide with the spherical
harmonics, and cξ,ηi,km( · ) are the corresponding Fourier coefficients.

Let us first prove the assertion without taking into account the dependence of the coefficients cξ,ηi,km(ξ)

on η. Then the operator with kernel kU can be written as

S f (ξ)=
∞∑

m=0

gm∑
k=1

cξi,km(ξ)Si,km f (ξ) (5-9)

with

Si,km f (ξ)= ai (ξ)

∫
B̃

bi (η)Ki,km(2(η, ξ)) f (η) dη.

The number gm in (5-9) is the dimension of the space of spherical harmonics of degree m in RN ; it is
known that

gm ≤ c(N ) ·m N−2 for every m = 1, 2, . . . . (5-10)

For every p ∈ (1,∞) we can write

‖S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

gm∑
k=1

‖c·i,km( · )‖L∞(B̃(ξ̄ ,r))‖Si,km f ‖L p(B̃(ξ̄ ,r))

and

‖S(ã f )− ã · S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

gm∑
k=1

‖c·i,km( · )‖L∞(B̃(ξ̄ ,r))‖Si,km (̃a f )− ã · Si,km f ‖L p(B̃(ξ̄ ,r)).

Now each Si,km is a frozen operator of type λ≥ 0, and the same arguments as in the previous section show
that the kernel of Si,km satisfies the assumptions (i), (ii), and (iii) in Section 3C with constants bounded by

c · sup
‖u‖=1

|∇u Kkm(u)|,
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(with c depending on the vector fields); in turn, by known properties of spherical harmonics, we have

sup
‖u‖=1

|∇u Kkm(u)| ≤ c(N )m N/2,

so that, by [Bramanti and Zhu 2012, Theorems 5.3 and 5.7], we conclude as in [Bramanti and Brandolini
2000a, p. 807] that

‖Si,km f ‖L p(B̃(ξ̄ ,r)) ≤ c ·m N/2
‖ f ‖L p(B̃(ξ̄ ,r)) for i = 1, 2, . . . , H,

where we have also taken into account Remark 5.5 below.
Analogously, applying [Bramanti and Zhu 2012, Theorems 7.1 and 7.2], we have the commutator

estimate

‖Si,km(ã f )− ã · Si,km f ‖L p(B̃(ξ̄ ,r)) ≤ ε ·m
N/2
‖ f ‖L p(B̃(ξ̄ ,r)) for i = 1, 2, . . . , H,

for any ε > 0, provided r is small enough, depending on ε and η∗ã,�k+2,�k+3
(see (5-2) and Definition 3.21

for the meaning of symbols). Then, by Proposition 3.23, the constant r depends on the function a only
through the local VMO modulus η∗a,�′,�.

Next, again by known properties of spherical harmonics, we can say that, for any positive integer h,
there exists ch such that

|cζi,km(ξ)| ≤ ch ·m−2h sup
‖u‖=1,|β|=2h

∣∣∣( ∂
∂u

)β
Dζ

i 0(ξ ; u)
∣∣∣.

By the uniform estimates contained in Theorem 4.3, the last expression is bounded by Cm−2h , for some
constant C depending on h, the vector fields, and the ellipticity constant µ. Also taking into account
(5-10) and choosing h large enough, we conclude

‖S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

Cgmm−2hm N/2
‖ f ‖L p(B̃(ξ̄ ,r)) = c‖ f ‖L p(B̃(ξ̄ ,r))

and

‖S(ã f )− ã · S f ‖L p(B̃(ξ̄ ,r)) ≤ cε‖ f ‖L p(B̃(ξ̄ ,r))

for any ε > 0, provided r is small enough.
We are left to show how the previous argument needs to be modified to take into account the possible

dependence of Dξ,η

i 0(ξ ; u) (and then of cξ,ηi,km(ξ)) on η. Let us expand

Dζ,2( · ,ζ )−1(u)
i 0(ξ ; u)=

∞∑
m=0

gm∑
k=1

cζi,km(ξ)Ki,km(u)

so that

Dζ,η

i 0(ξ ;2(η, ζ ))=

∞∑
m=0

gm∑
k=1

cζi,km(ξ)Ki,km(2(η, ζ )).
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The kernels Ki,km are the same as above, hence the estimates on the operators Si,km and their commutators
remain unchanged. As to the coefficients cζi,km(ξ), we now have to write, for any positive integer h and
some constant ch ,

|cζi,km(ξ)| ≤ ch ·m−2h sup
‖u‖=1,|β|=2h

∣∣∣( ∂
∂u

)β
(Dζ,2( · ,ζ )−1(u)

i 0(ξ ; u))
∣∣∣.

Now, from the identity

∂

∂u j
(Dζ,2(·,ζ )−1(u)

i 0(ξ ;u))=
∂

∂u j
(Dζ,η

i 0(ξ ;u))/η=2(·,ζ )−1(u)+
∑

l

∂

∂ηl
(Dζ,η

i 0(ξ ;u))
∂

∂u j
(2(·,ζ )−1(u))l,

it is easy to see that we can still get a uniform bound of the kind

|cζi,km(ξ)| ≤ C ·m−2h

with C depending on h, the vector fields, and the ellipticity constant µ. �

Remark 5.5. In the statements of all the theorems about singular integrals proved in [Bramanti and
Zhu 2012], the constant depends on the kernel only through the constants involved in the assumptions.
Actually, we need some additional information about this dependence. A standard sublinearity argument
allows us to say that if, for example, our assumptions on the kernel are (3-11), (3-12), and (3-13), the
constant in our upper bound will have the form

c · (A+ B+C),

where A, B, and C are the constants appearing in (3-11), (3-12), and (3-13), and c does not depend on
the kernel. This fact has been used in the above proof and will be used again.

6. Schauder estimates

We are now in position to apply all the machinery presented in the previous sections to prove our main
results, that is, Cα

X and L p estimates on X i X j u in terms of u and Lu. We will prove Cα
X estimates

(Theorem 2.1) in this section, and L p estimates (Theorem 2.2) in Section 7.
Let us recall the setting described at the end of Section 3C. For a fixed subdomain �′ b � ⊂ Rn

and a fixed point x̄ ∈ �′, let us consider a lifted ball B̃(ξ̄ , R) ⊂ RN (with ξ̄ = (x̄, 0)) where the lifted
vector fields X̃ i are defined and satisfy Hörmander’s condition and the map 2 is defined and satisfies the
properties stated in Section 3A.

According to the procedure followed in [Bramanti and Brandolini 2007, Section 5], the proof of Cα
X

a priori estimates for second order derivatives will proceed in three steps: first, in the space of lifted
variables, for test functions supported in a ball B̃(ξ̄ , r) with r small enough; then for any function in
C2,α

X̃
(B̃(ξ̄ , r)) (not necessarily vanishing at the boundary); then for any function in C2,α

X (B(x̄, r)), that is
in the original space.

The first step in the proof of Schauder estimates is contained in the following.
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Theorem 6.1. Let B̃(ξ̄ , R) be as before. Then there exist R0 < R and c > 0 such that, for every
u ∈ C2,α

X̃ ,0
(B̃(ξ̄ , R0)),

‖u‖C2,α
X̃
(B̃(ξ̄ ,R0))

≤ c{‖L̃u‖Cα

X̃
(B̃(ξ̄ ,R0))

+‖u‖L∞(B̃(ξ̄ ,R0))
},

where c and R0 depend on R, {X̃ i }, α, µ, and ‖ãi j‖Cα(B̃(ξ̄ ,R)).

The proof is quite similar to that of [Bramanti and Brandolini 2007, Theorem 5.2] and will be omitted.
We just point out the facts which it relies upon:

• the representation formula proved in Theorem 4.19;

• Theorem 5.1 about singular integrals on Cα

X̃
;

• several properties of C2,α
X̃

functions, collected in Proposition 3.14.

The second step in the proof of Schauder estimates consists in establishing a priori estimates for
functions not necessarily compactly supported.

Theorem 6.2. There exist r0 < R0 and c, β > 0 (with R0 as in Theorem 6.1) such that, for every
u ∈ C2,α

X̃
(B̃(ξ̄ , r0)), 0< t < s < r0,

‖u‖C2,α
X̃
(B̃(ξ̄ ,t)) ≤

c
(s− t)β

{‖L̃u‖Cα

X̃
(B̃(ξ̄ ,s))+‖u‖L∞(B̃(ξ̄ ,s))},

where r0, c depend on R, {X̃ i }
q
i=1, α, µ, and ‖ãi j‖Cα

X̃
(B̃(ξ̄ ,R)) and β depends on {X̃ i }

q
i=0 and α.

As in [Bramanti and Brandolini 2007], this result relies on interpolation inequalities for Ck,α
X̃

norms
and the use of suitable cutoff function. The following result can be proved as [Bramanti and Brandolini
2007, Lemma 6.2] by the results in Proposition 3.14.

Lemma 6.3 (cutoff functions). For any 0 < ρ < r and ξ ∈ B̃(ξ̄ , R), there exists ϕ ∈ C∞0 (R
N ) with the

following properties.

(i) 06 ϕ 6 1, ϕ ≡ 1 on B̃(ξ, ρ), and sprtϕ ⊆ B̃(ξ, r).

(ii) For i, j = 1, 2, . . . , q,

|X̃ iϕ|6
c

r − ρ
; |X̃0ϕ|, |X̃ i X̃ jϕ|6

c
(r − ρ)2

. (6-1)

(iii) For any f ∈ Cα

X̃
(B̃(ξ̄ , R)) and r − ρ small enough,

‖ f X̃ iϕ‖Cα

X̃
(B̃(ξ̄ ,R)) 6

c
(r − ρ)2

‖ f ‖Cα

X̃
(B̃(ξ̄ ,R)),

‖ f X̃0ϕ‖Cα

X̃
(B̃(ξ̄ ,R)), ‖ f X̃ i X̃ jϕ‖Cα

X̃
(B̃(ξ̄ ,R)) 6

c
(r − ρ)3

‖ f ‖Cα

X̃
(B̃(ξ̄ ,R)).

(6-2)

We will write
B̃ρ(ξ)≺ ϕ ≺ B̃r (ξ)

to indicate that ϕ satisfies all the previous properties.
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Proposition 6.4 (interpolation inequality for test functions). Let

H =
q∑

i=1

X̃2
i + X̃0

and let B̃(ξ̄ , R) be as before. Then, for every α ∈ (0, 1), there exist constants γ ≥ 1 and c > 0, depending
on α, R and {X̃ i }, such that, for every ε ∈ (0, 1) and every f ∈ C∞0 (B̃(ξ̄ , R/2)),

‖X̃l f ‖Cα

X̃
(B̃(ξ̄ ,R/2)) ≤ ε‖H f ‖Cα

X̃
(B̃(ξ̄ ,R/2))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R/2)) (6-3)

for l = 1, 2, . . . , q; moreover, we have

‖D f ‖Cα

X̃
(B̃(ξ̄ ,R/2)) ≤ ε‖L̃ f ‖Cα

X̃
(B̃(ξ̄ ,R/2))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R/2)), (6-4)

where D is any vector field of local degree ≤ 1.

To prove Proposition 6.4, we need the following.

Lemma 6.5. Let P(ξ0) be a frozen operator of type λ≥ 1 over B̃(ξ̄ , R) and α ∈ (0, 1). Then there exist
positive constants γ > 1 and c, depending on α, µ, and {X̃ i }, such that, for every f ∈ C∞0 (B̃(ξ̄ , R)) and
ε ∈ (0, 1),

‖P H f ‖Cα

X̃
(B̃(ξ̄ ,R)) ≤ ε‖H f ‖Cα

X̃
(B̃(ξ̄ ,R))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R)). (6-5)

Moreover, (6-5) still holds if H is replaced by any differential operator of weight two, like X̃ i X̃ j or X̃0.

The proof of this lemma is very similar to that of [Bramanti and Brandolini 2007, Lemma 7.2]. It
exploits the properties of cutoff functions (Lemma 6.3 ), inequality (3-19), and fractional integral estimates,
relying on [Bramanti and Zhu 2012, Theorem 5.7] and Remark 5.5.

Proof of Proposition 6.4. By Theorem 4.18, we can write

a f = P H f (ξ)+ S f,

where P and S are frozen operators of type 2 and 1, respectively, over B̃(ξ̄ , R). More precisely, they
should be called “constant kernels of type 2 and 1”, since they satisfy the definition of frozen kernels
with the matrix {ãi j (ξ0)} replaced by the identity matrix.

If we assume a = 1 on B̃(ξ̄ , R/2), then, for f ∈ C∞0 (B̃(ξ̄ , R/2)), we obtain

f = P H f (ξ)+ S f, (6-6)

and therefore, by Theorem 4.11,

X̃ i f = S1 H f (ξ)+ T f, (6-7)

where S1 and T are frozen operators of type 1 and 0, respectively. Substituting (6-6) in (6-7) yields

X̃ i f = S1 H f (ξ)+ T P H f + T S f,
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and therefore, by Theorem 5.1 and Lemma 6.5,

‖X̃ i f ‖α ≤ ‖S1 H f ‖α + c{‖P H f ‖α +‖S f ‖α} ≤ c{ε‖H f ‖α + ε−γ ‖ f ‖∞+‖S f ‖α}, (6-8)

where all the norms are taken over B̃(ξ̄ , R/2). We end the proof by showing that, for an operator S of
type 1,

‖S f ‖α ≤ c‖ f ‖L∞,

which by (6-8) will complete the proof of the first inequality in the proposition. Indeed, if

S f (ξ)=
∫

B̃R

k(ξ, η) f (η) dη,

we have

|S f (ξ1)− S f (ξ2)| ≤ ‖ f ‖L∞(B̃R)

∫
B̃(ξ̄ ,R)

|k(ξ1, η)− k(ξ2, η)| dη. (6-9)

Moreover,∫
B̃R

|k(ξ1, η)− k(ξ2, η)| dη =
∫

B̃(ξ̄ ,R),ρ(ξ1,η)>Mρ(ξ1,ξ2)

|k(ξ1, η)− k(ξ2, η)| dη

+

∫
B̃(ξ̄ ,R),ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ1, η)− k(ξ2, η)| dη

=: I + II.

Then

I ≤
∫
ρ(ξ1,η)>Mρ(ξ1,ξ2)

c
ρ(ξ1, η)Q−1

ρ(ξ1, ξ2)

ρ(ξ1, η)
dη

= ρ(ξ1, ξ2)
α

∫
ρ(ξ1,η)>Mρ(ξ1,ξ2)

ρ(ξ1, η)
1−α

ρ(ξ1, η)Q

ρ(ξ1, ξ2)
1−α

ρ(ξ1, η)1−α
dη

≤ cρ(ξ1, ξ2)
α

∫
B̃R

ρ(ξ1, η)
1−α

ρ(ξ1, η)Q dη ≤ cρ(ξ1, ξ2)
αR1−α,

where in the last inequality we have used the following standard computation (which will be useful again):∫
B̃(ξ̄ ,R),ρ(ξ1,η)<r

dη
ρ(ξ1, η)Q−β ≤ crβ for any ξ1 ∈ B̃(ξ̄ , R). (6-10)

As to II,

II ≤
∫
ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ1, η)| dη+
∫
ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ2, η)| dη.

Since there exists M1 > 0 such that if ρ(ξ1, η)≤ Mρ(ξ1, ξ2), then ρ(ξ2, η)≤ M1ρ(ξ1, ξ2),

II ≤ c
{∫

ρ(ξ1,η)≤Mρ(ξ1,ξ2)

1
ρ(ξ1, η)Q−1 dη+

∫
ρ(ξ2,η)≤M1ρ(ξ1,ξ2)

1
ρ(ξ2, η)Q−1 dη

}
,

which, again by (6-10), is
≤ cρ(ξ1, ξ2)≤ cρ(ξ1, ξ2)

αR1−α.



L p AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HÖRMANDER VECTOR FIELDS 1847

Hence, for every α ∈ (0, 1),∫
B̃R

|k(ξ1, η)− k(ξ2, η)| dη ≤ cαρ(ξ1, ξ2)
αR1−α,

and, by (6-9),
|S f |α ≤ c‖ f ‖L∞ .

Moreover,

|S f (ξ)| ≤
∫

B̃R

|k(ξ, η) f (η)| dη ≤ ‖ f ‖L∞

∫
ρ(ξ,η)≤cR

c
ρ(ξ, η)Q−1 dη ≤ cR‖ f ‖L∞,

hence
‖S f ‖α ≤ c‖ f ‖L∞ .

This completes the proof of (6-3). A similar argument gives (6-4). �

Theorem 6.6 (interpolation inequality). There exist positive constants c, γ and r1 < R such that, for any
u ∈ C2,α

X̃
(B̃(ξ̄ , r1)), 0< ρ < r1, 0< δ < 1/3,

‖D̃u‖Cα

X̃
(B̃(ξ̄ ,ρ)) ≤ δ

q∑
i=1

‖D̃2u‖Cα

X̃
(B̃(ξ̄ ,r1))

+
c

δγ (r1− ρ)2γ
‖u‖L∞(B̃(ξ̄ ,r1))

,

where

‖D̃u‖ ≡
q∑

i=1

‖X̃ i u‖ and ‖D̃2u‖ ≡
q∑

i, j=1

‖X̃ i X̃ i u‖+‖X̃0u‖.

The constants c, r1, γ depend on α, {X̃ i }; γ is as in Proposition 6.4.

Proof. The proof can be carried out exactly as in [Bramanti and Brandolini 2007, Proposition 7.4],
exploiting the properties of cutoff functions (Lemma 6.3), the interpolation inequality for test functions
(Proposition 6.4), and (3-20) in Proposition 3.14. �

We are now ready to complete the second step in the proof of Schauder estimates.

Proof of Theorem 6.2. This proof can now be carried out exactly like in [Bramanti and Brandolini
2007, Theorem 5.3], exploiting Schauder estimates for functions with small support (Theorem 6.1), the
properties of Hölder continuous functions contained in (3-20), (3-21), and (3-24), the properties of cutoff
functions (Lemma 6.3), and the interpolation inequalities contained in Theorem 6.6 and (6-4). �

Proof of Theorem 2.1. We finally come back to our original context, which we are going to recall. We
have a bounded domain � where our vector fields and coefficients are defined, and a fixed subdomain
�′ b�. Fix x̄ ∈�′ and R such that in B(x̄, R)⊂� all the construction of the previous two subsections
(lifting to B̃(ξ̄ , R) and so on) can be performed. Let r0 be as in Theorem 6.2. To begin with, we want
to prove Schauder estimates for functions u ∈ C2,α

X (B(x̄, r0)). By Proposition 3.15 we know that the
function ũ(x, h)= u(x) belongs to C2,α

X̃
(B(ξ̄ , r0)), so we can apply to ũ Schauder estimates contained in

Theorem 6.2. Combining this fact with the two estimates in Proposition 3.15 and choosing t , s such that

r0 > t > s > 0 and t − s = r0− t,
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we get, for some exponent ω > 2,

‖u‖C2,α
X (B(x̄,s)) ≤

c
(t − s)2

‖ũ‖C2,α
X̃
(B̃(ξ̄ ,t))

≤
c

(r0− t)ω
(‖L̃ũ‖Cα

X̃
(B̃(ξ̄ ,r0))

+‖ũ‖L∞(B̃(ξ̄ ,r0))
)

≤
c

(r0− s)ω
(‖Lu‖Cα

X (B(x̄,r0))+‖u‖L∞(B(x̄,r0))), (6-11)

since L̃ũ = (̃Lu). Next, let us choose a family of balls B(xi , r0) in � such that

�′ ⊂

k⋃
i=1

B(xi , r0/2)⊂
k⋃

i=1

B(xi , r0)⊂�.

Then, by Proposition 3.14(v) and (6-11), with s = r0/2,

‖u‖C2,α
X (�′)

≤ ‖u‖C2,α
X (∪B(xi ,r0/2))

≤ c
k∑

i=1

‖u‖C2,α
X (B(xi ,r0))

≤ c
k∑

i=1

{‖Lu‖Cα
X (B(xi ,r0))+‖u‖L∞(B(xi ,r0))}

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)}

with c also depending on r0. Finally, let us note that the constant c depends on the coefficients ai j through
the norms

‖ãi j‖Cα

X̃
(B̃(ξ̄ ,R0))

,

which in turn are bounded by the norms

‖ai j‖Cα
X (B(x̄,R0))

(by Proposition 3.15), and hence by ‖ai j‖Cα
X (�)

(or more precisely, by ‖ai j‖Cα
X (�

′′) for some �′′ such that
�′ b�′′ b�). �

7. L p estimates

The logical structure of this section, as well as the general setting, is very similar to that of the previous
one, following as closely as possible the strategy of [Bramanti and Brandolini 2000a]. The basic difference
with the setting of Schauder estimates is the fact that here we start with representation formulas where
the “frozen” point has finally been unfrozen; therefore, singular integrals with variable kernels are now
involved, together with their commutators with VMO functions. This makes the singular integral part of
the theory more involved.

The first step is contained in the following.
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Theorem 7.1. Let B̃(ξ̄ , R) be as in the previous section, and p ∈ (1,∞). There exists R0 < R such that,
for every u ∈ C∞0 (B̃(ξ̄ , R0)),

‖u‖S2,p
X̃
(B̃(ξ̄ ,R0))

≤ c{‖L̃u‖L p(B̃(ξ̄ ,R0))
+‖u‖L p(B̃(ξ̄ ,R0))

} (7-1)

for some constant c depending on {X̃ i }
q
i=0, p, µ, and R; the number R0 also depends on the local VMO

moduli η∗ai j ,�′,�
.

The proof can be carried out exactly like in [Bramanti and Brandolini 2000a, Theorem 3.2], exploiting
the representation formula proved in Theorem 4.21 and the results about singular integrals and commutators
contained in Theorem 5.4.

Next, we have to remove the restriction to compactly supported functions.

Theorem 7.2. Let B̃(ξ̄ , R) be as before. There exists r0 < R and, for any r ≤ r0, there exists c > 0 such
that, for any u ∈ S2,p

X̃
(B̃(ξ̄ , r)), we have

‖u‖S2,p
X̃
(B̃(ξ̄ ,r/2)) ≤ c{‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))}.

The constants c, r0 depend on {X̃ i }
q
i=0, p, µ, R, and η∗ai j ,�′,�

; c also depends on r.

Analogously to what we have seen in Theorem 6.2, the proof of the above theorem relies on interpolation
inequalities for Sobolev norms and the use of cutoff functions. Regarding cutoff functions, we need the
following statement.

Lemma 7.3 (radial cutoff functions). For any σ ∈ ( 1
2 , 1), r > 0 and ξ ∈ B̃(ξ̄ , r), there exists ϕ ∈C∞0 (R

N )

with the following properties.

(i) B̃σr (ξ)≺ ϕ ≺ B̃σ ′r (ξ) with σ ′ = (1+ σ)/2 (this means that ϕ = 1 in B̃σr (ξ) and it is supported in
B̃σ ′r (ξ)).

(ii) For i, j = 1, . . . , q , we have

|X̃ iϕ| ≤
c

(1− σ)r
, |X̃0ϕ|, |X̃ i X̃ jϕ| ≤

c
(1− σ)2r2 . (7-2)

The above lemma, very similar to [Bramanti and Brandolini 2000a, Lemma 3.3], is actually contained
in Lemma 6.3, but we prefer to state it explicitly because it is formulated in a slightly different notation,
suitable to our application to L p estimates.

Theorem 7.4 (interpolation inequality for Sobolev norms). Let B̃(ξ̄ , R) be as before. For every p∈ (1,∞),
there exists c > 0 and r1 < R such that, for every 0< ε ≤ 4r1, u ∈ C∞0 (B̃(ξ̄ , r1)),

‖X̃ i u‖L p(B̃(ξ̄ ,r1))
≤ ε‖Hu‖L p(B̃(ξ̄ ,r1))

+
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

(7-3)

for every i = 1, . . . , q, where H :=
∑q

i=1 X̃2
i + X̃0.

Proof. The proof of this proposition is adapted from [Bramanti and Brandolini 2000a, Theorem 3.6], but
also improves that result, which is stated with a generic constant c(ε) instead of c/ε.
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Let r1 be a small number to be fixed later. Like in the proof of Proposition 6.4, we can write, for any
u ∈ C∞0 (B̃(ξ̄ , r1)) and ξ ∈ B̃(ξ̄ , r1),

X̃ i u(ξ)= SHu(ξ)+ T u(ξ),

where S and T are constant operators of type 1 and 0, respectively, over B̃(ξ̄ , 2r1), provided 2r1 < R.
(See the proof of Proposition 6.4 for the explanation of the term “constant operators of type λ”.) Since

‖T u‖L p(B̃(ξ̄ ,r1))
≤ c‖u‖L p(B̃(ξ̄ ,r1))

,

the result will follow if we prove that

‖SHu‖L p(B̃(ξ̄ ,r1))
≤ ε‖Hu‖L p(B̃(ξ̄ ,r1))

+
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

. (7-4)

Let k(ξ, η) be the kernel of S, and, for any fixed ξ ∈ B̃(ξ̄ , r1), let ϕε be a cutoff function (as in Lemma 7.3)
with

B̃ε/2(ξ)≺ ϕε ≺ B̃ε(ξ).

Let us split SHu(ξ) as

SHu(ξ)=
∫

B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2
k(ξ, η)[1−ϕε(η)]Hu(η) dη+

∫
B̃(ξ̄ ,r1),ρ(ξ,η)≤ε

k(ξ, η)Hu(η)ϕε(η) dη

=: I (ξ)+ II(ξ).

Then

|I (ξ)| =
∣∣∣∣∫

B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2
H T (k(ξ, · )[1−ϕε( · )])(η)u(η) dη

∣∣∣∣
≤

∫
B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2

{∣∣[1−ϕε]H T k(ξ, · )
∣∣+ c

∑∣∣X̃ i [1−ϕε] · X̃ j k(ξ, · )
∣∣

+
∣∣k(ξ, · )H T

[1−ϕε]|(η)|u(η)
∣∣ }dη

=: A(ξ)+ B(ξ)+C(ξ).

Recall that, for i, j = 1, 2, . . . , q ,

|k(ξ, η)| ≤
c

d(ξ, η)Q−1 ,

|X̃ i k(ξ, η)| ≤
c

d(ξ, η)Q ,

|H T k(ξ, · )(η)| ≤
c

d(ξ, η)Q+1 ,

|X̃ i (1−ϕε)(η)| ≤
c
ε
,

|H T (1−ϕε)(η)| ≤
c
ε2 ,
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and the derivatives of (1−ϕε) are supported in the annulus ε/2≤ d(ξ, η)≤ ε. Since ξ, η ∈ B̃(ξ̄ , r1), we
have d(ξ, η) < 2r1. Hence, letting k0 be the integer such that 2k0−1ε < 2r1 ≤ 2k0ε, we have

|A(ξ)| ≤ c
k0∑

k=0

∫
2k−1ε<ρ(ξ,η)≤2kε

c
d(ξ, η)Q+1 |u(η)| dη

≤ c
k0∑

k=0

1
2k−1ε

1
(ε2k−1)Q

∫
ρ(ξ,η)≤2kε

|u(η)| dη

≤
c
ε
· sup

r≤4r1

1
|B̃(ξ, r)|

∫
B̃(ξ,r)

|u(η)| dη. (7-5)

We now have to recall the definition of a local maximal function M in a (metric) locally homogeneous
space (�, {�n}, d, dµ), given in [Bramanti and Zhu 2012]. Fix�n, �n+1 (see Section 3C for the notation)
and, for any f ∈ L1(�n+1), define

M�n,�n+1 f (x)= sup
r≤rn

1
µ(B(x, r))

∫
B(x,r)

| f (y)| dµ(y) for x ∈�n,

where rn =
2
5εn . Applying this definition to our situation where 4r1 = rn =

2
5εn , we get εn = 10r1 and,

for ξ ∈ B̃(ξ̄ , r1), we have B̃(ξ, εn)⊂ B̃(ξ̄ , 11r1). Therefore, by (7-5), we can write

|A(ξ)| ≤
c
ε
·MB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)

u(ξ),

and, by [Bramanti and Zhu 2012, Theorem 8.3], we have

‖A‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,11r1))

=
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

,

since u ∈ C∞0 (B̃(ξ̄ , r1)), provided 11r1 < R. Also,

|B(ξ)| ≤ c
∫
ε
2<ρ(ξ,η)≤ε,

1
ε
·

1
d(ξ, η)Q |u(η)| dη ≤

c
εQ+1

∫
ρ(ξ,η)≤ε

|u(η)| dη

≤
c
ε
· sup

r≤ε

1
|B̃(ξ, r)|

∫
B̃(ξ,r)

|u(η)| dη ≤
c
ε
·MB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)

u(ξ)

provided ε < 4r1. As before, we have

‖B‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,r1))

.

Finally,

|C(ξ)| ≤ c
∫
ε/2<ρ(ξ,η)≤ε

1
ε2 ·

1
d(ξ, η)Q−1 |u(η)|η dy ≤

c
εQ+1

∫
ρ(ξ,η)≤ε

|u(η)| dη.

Therefore, as for the term B(ξ),

‖I‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,r1))

.
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Let us bound II:

|II(ξ)| ≤ c
∫
ρ(ξ,η)≤ε

|Hu(η)|
ρ(ξ, η)Q−1 dη.

Then a computation similar to that of C(ξ) gives

|II(ξ)| ≤ cεMB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)
u(ξ) and ‖II‖L p(B̃(ξ̄ ,r1))

≤ cε‖u‖L p(B̃(ξ̄ ,r1))
,

provided ε < 4r1. �

Theorem 7.5. For any u ∈ S2,p
X̃
(B̃(ξ̄ , r)), p ∈ [1,∞), 0< r < r1 (where r1 is the number in Theorem 7.4),

define the following quantities:

8k = sup
1/2<σ<1

((1− σ)kr k
‖D̃ku‖L p(B̃rσ )

) for k = 0, 1, 2.

Then, for any δ > 0 (small enough),

81 ≤ δ 82+
c
δ
80.

Proof. This result follows exactly as in [Bramanti and Brandolini 2000b, Theorem 21], exploiting the
interpolation result for compactly supported functions (Theorem 7.4), cutoff functions (Lemma 7.3), and
Proposition 3.19. �

Proof of Theorem 7.2. This proof is similar to that of theorem [Bramanti and Brandolini 2000b, Theorem 3].
Due to the different context, we include a complete proof for the convenience of the reader.

Pick r0=min(R0, r1) where R0 and r1 are the numbers appearing in Theorems 7.1 and 7.4, respectively.
For r ≤ r0, let u ∈ S2,p

X̃
(B̃(ξ̄ , r)). Let ϕ be a cutoff function as in Lemma 7.3:

B̃(ξ̄ , σr)≺ ϕ ≺ B̃(ξ̄ , σ ′r).

By Theorem 7.1, ϕu ∈ S2,p
X̃ ,0
(B̃(ξ̄ , r)); then, by density, we can apply Theorem 7.1 to ϕu:

‖ϕu‖S2,p(B̃(ξ̄ ,r)) ≤ c{‖L̃(ϕu)‖L p(B̃(ξ̄ ,r))+‖ϕu‖L p(B̃(ξ̄ ,r))}.

For 1≤ i, j ≤ q, from the above inequality we get

‖X̃ i X̃ j u‖L p(B̃σr )
≤ c{‖L̃u‖L p(B̃σ ′r )

+
1

(1− σ)r
‖D̃u‖L p(B̃σ ′r )

+
1

(1− σ)2r2 ‖u‖L p(B̃σ ′r )
}.

Multiplying both sides by (1− σ)2r2, we get

(1−σ)2r2
‖ X̃ i X̃ j u ‖L p(B̃σr )

≤ c{(1−σ)2r2
‖L̃u‖L p(B̃σ ′r )

+(1−σ)r(‖D̃u‖L p(B̃σ ′r )
)+‖u‖L p(B̃σ ′r )

}. (7-6)

Next, we compute (1− σ)2r2
‖X̃0u‖L p(B̃σr )

:

(1− σ)2r2
‖X̃0u‖L p(B̃σr )

= (1− σ)2r2
‖L̃u−

q∑
i, j=1

ãi j X̃ i X̃ j u‖L p(B̃σr )

≤ c(1− σ)2r2(‖L̃u‖L p(B̃σr )
+‖X̃ i X̃ j u‖L p(B̃σr )

). (7-7)
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Combining (7-6) and (7-7), we have

(1− σ)2r2
‖D̃2u‖L p(B̃σr )

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (1− σ)r‖D̃u‖L p(B̃σ ′r )
+‖u‖L p(B̃σ ′r )

}. (7-8)

Adding (1− σ)r‖D̃u‖L p(B̃σr )
to both sides of (7-8),

(1− σ)r‖D̃u‖L p(B̃σr )
+ (1− σ)2r2

‖D̃2u‖L p(B̃σr )

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (1− σ)r‖D̃u‖L p(B̃σ ′r )
+‖u‖L p(B̃σ ′r )

}, (7-9)

which, by Theorem 7.5, is

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (δ82+
c
δ
80)+‖u‖L p(B̃σ ′r )

}.

Choosing δ small enough, we have

82+81 ≤ c{r2
‖L̃u‖L p(B̃r )

+‖u‖L p(B̃r )
}.

Then

r2
‖D̃2u‖L p(B̃(ξ̄ ,r/2))+ r‖D̃u‖L p(B̃(ξ̄ ,r/2)) ≤ c{r2

‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))},

hence

‖u‖S2,p
X̃
(B̃(ξ̄ ,r/2)) ≤ c{‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))},

which is the desired result. �

Proof of Theorem 2.2. This follows from Theorem 7.2 in a way which is analogous to that followed in
Section 6 to prove Schauder estimates. Namely, fix x̄ ∈�′ b� and R such that in B(x̄, R)⊂� all the
construction of the previous two subsections (lifting to B̃(ξ̄ , R) and so on) can be performed. Let r0 < R
as in Theorem 7.2, and let u ∈ S2,p

X (B(x̄, r0)). By Theorem 3.20 we know that the function ũ(x, h)= u(x)
belongs to S2,p

X̃
(B(ξ̄ , r0)), so we can apply to ũ the L p estimates contained in Theorem 7.2. Combining

this fact with the two estimates in Theorem 3.20, we get

‖u‖S2,α
X (B(x̄,δ0r0/2))

≤ c‖ũ‖S2,α
X̃
(B̃(ξ̄ ,r0/2))

≤ c(‖L̃ũ‖L p(B̃(ξ̄ ,r0))
+‖ũ‖L p(B̃(ξ̄ ,r0))

)

≤ c(‖Lu‖L p(B(x̄,r0))+‖u‖L p(B(x̄,r0))),

since L̃ũ = (̃Lu). Next, let us choose a family of balls B(xi , r0) in � such that

�′ ⊂

k⋃
i=1

B(xi , δ0r0/2)⊂
k⋃

i=1

B(xi , r0)⊂�.
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Therefore,

‖u‖S2,p
X (�′)

≤ ‖u‖S2,p
X (∪B(xi ,δ0r0/2))

≤

k∑
i=1

‖u‖S2,p
X (B(xi ,δ0r0/2))

≤ c
k∑

i=1

{‖Lu‖L p(B(xi ,r0))+‖u‖L p(B(xi ,r0))}

≤ c{‖Lu‖L p(�)+‖u‖L p(�)}

with c also depending on r0. �
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STRICHARTZ ESTIMATES FOR SCHRÖDINGER EQUATIONS
WITH VARIABLE COEFFICIENTS AND UNBOUNDED POTENTIALS

HARUYA MIZUTANI

This paper is concerned with Schrödinger equations with variable coefficients and unbounded electro-
magnetic potentials, where the kinetic energy part is a long-range perturbation of the flat Laplacian and
the electric (respectively magnetic) potential can grow subquadratically (respectively sublinearly) at
spatial infinity. We prove sharp (local-in-time) Strichartz estimates, outside a large compact ball centered
at the origin, for any admissible pair including the endpoint. Under the nontrapping condition on the
Hamilton flow generated by the kinetic energy, global-in-space estimates are also studied. Finally, under
the nontrapping condition, we prove Strichartz estimates with an arbitrarily small derivative loss without
asymptotic flatness on the coefficients.

1. Introduction

We study sharp (local-in-time) Strichartz estimates for Schrödinger equations with variable coefficients
and unbounded electromagnetic potentials. More precisely, we consider the Schrödinger operator

H = 1
2

d∑
j,k=1

(−i∂ j − A j (x))g jk(x)(−i∂k − Ak(x))+ V (x), x ∈ Rd ,

where d ≥ 1 is the spatial dimension. Throughout the paper we assume that g jk, V , and A j are smooth
real-valued functions on Rd and that (g jk(x)) j,k is symmetric and positive definite:

d∑
j,k=1

g jk(x)ξ jξk ≥ c|ξ |2, x, ξ ∈ Rd ,

with some c > 0. Moreover, we suppose the following condition holds.

Assumption 1.1. There exists µ≥ 0 such that for any α ∈ Zd
+

,

|∂αx (g
jk(x)− δ jk)| ≤ Cα〈x〉−µ−|α|,

|∂αx A j (x)| ≤ Cα〈x〉1−µ−|α|,

|∂αx V (x)| ≤ Cα〈x〉2−µ−|α|, x ∈ Rd .

Then it is well known that H admits a unique self-adjoint realization on L2(Rd), which we denote by the

The author was partially supported by GCOE “Fostering top leaders in mathematics”, Kyoto University.
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same symbol H . By Stone’s theorem, H generates a unique unitary propagator e−i t H on L2(Rd) such
that u(t)= e−i t Hϕ is the solution to the Schrödinger equation

i∂t u(t)= Hu(t), t ∈ R,

u|t=0 = ϕ ∈ L2(Rd).

In order to explain the purpose of the paper, we recall some known results. Let us first recall well-known
properties of the free propagator e−i t H0 , where H0 =−1/2. The distribution kernel of e−i t H0 is given
explicitly by (2π i t)−d/2ei |x−y|2/(2t), and e−i t H0ϕ thus satisfies the dispersive estimate

‖e−i t H0ϕ‖L∞(Rd ) ≤ C |t |−d/2
‖ϕ‖L1(Rd ), t 6= 0.

Moreover, e−i t H0 enjoys the (global-in-time) Strichartz estimates

‖e−i t H0ϕ‖L p(R;Lq (Rd )) ≤ C‖ϕ‖L2(Rd ),

where (p, q) satisfies the admissible condition

p ≥ 2, 2
p
= d

(1
2
−

1
q

)
, (d, p, q) 6= (2, 2,∞). (1-1)

Strichartz estimates imply that, for any ϕ ∈ L2, e−i t H0ϕ ∈
⋂

q∈Qd
Lq for a.e. t ∈ R, where Q1 = [2,∞],

Q2 = [2,∞) and Qd = [2, 2d/(d − 2)] for d ≥ 3. These estimates can therefore be regarded as L p-type
smoothing properties of Schrödinger equations, and have been widely used in the study of nonlinear
Schrödinger equations; see, for example, [Cazenave 2003]. Strichartz estimates for e−i t H0 were first
proved in [Strichartz 1977] for a restricted pair of (p, q) with p = q = 2(d + 2)/d, and have been
generalized for (p, q) satisfying (1-1) and p 6= 2 in [Ginibre and Velo 1985]. The endpoint estimate
(p, q)= (2, 2d/(d − 2)) for d ≥ 3 was obtained in [Keel and Tao 1998].

For Schrödinger operators with electromagnetic potentials, that is, H = (1/2)(−i∂x − A)2+ V , (short-
time) dispersive and (local-in-time) Strichartz estimates have been extended with potentials decaying at
infinity [Yajima 1987] or growing at infinity [Fujiwara 1980; Yajima 1991]. In particular, it was shown in
the last two references that if g jk

= δ jk , V and A satisfy Assumption 1.1 with µ≥ 0, and all derivatives
of the magnetic field B = dA of short-range type, then e−i t Hϕ satisfies (short-time) dispersive estimate

‖e−i t Hϕ‖L∞(Rd ) ≤ C |t |−d/2
‖ϕ‖L1(Rd ),

for sufficiently small t 6= 0. Local-in-time Strichartz estimates, which have the form

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ), T > 0,

are immediate consequences of this estimate and the T T ∗-argument in [Ginibre and Velo 1985] (see [Keel
and Tao 1998] for the endpoint estimate). For the case with singular electric potentials or with supercritical
electromagnetic potentials, we refer to [Yajima 1987; 1998; Yajima and Zhang 2004; D’Ancona and
Fanelli 2009]. We mention that global-in-time dispersive and Strichartz estimates for scattering states
have also been studied under suitable decaying conditions on potentials and assumptions for zero energy;
see [Journé et al. 1991; Yajima 2005; Schlag 2007; Erdoğan et al. 2009; D’Ancona et al. 2010]. We also
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mention that there is no result on sharp global-in-time dispersive estimates for magnetic Schrödinger
equations.

On the other hand, the influence of the geometry on the behavior of solutions to linear and nonlinear
partial differential equations has been extensively studied. From this geometric viewpoint, sharp local-
in-time Strichartz estimates for Schrödinger equations with variable coefficients (or, more generally, on
manifolds) have recently been investigated by many authors under several conditions on the geometry;
see, for example, [Staffilani and Tataru 2002; Burq et al. 2004; Robbiano and Zuily 2005; Hassell et al.
2006; Bouclet and Tzvetkov 2007; Bouclet 2011b; Burq et al. 2010; Mizutani 2012]. In [Staffilani and
Tataru 2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007], the authors studied the case on the
Euclidean space with nontrapping asymptotically flat metrics. The case on the nontrapping asymptotically
conic manifold was studied in [Hassell et al. 2006; Mizutani 2012]. Bouclet [2011b] considered the
case of a nontrapping asymptotically hyperbolic manifold. For the trapping case, it was shown in [Burq
et al. 2004] that Strichartz estimates with a loss of derivative 1/p hold on any compact manifold without
boundaries. They also proved that the loss 1/p is optimal in the case of M = Sd . In [Bouclet and
Tzvetkov 2007; Bouclet 2011b; Mizutani 2012], the authors proved sharp Strichartz estimates, outside
a large compact set, without the nontrapping condition. It was shown in [Burq et al. 2010] that sharp
Strichartz estimates still hold for the case with hyperbolic trapped trajectories of sufficiently small fractal
dimension. We mention that there are also several works on global-in-time Strichartz estimates in the
case of long-range perturbations of the flat Laplacian on Rd [Bouclet and Tzvetkov 2008; Tataru 2008;
Marzuola et al. 2008].

While (local-in-time) Strichartz estimates are well studied for these two cases (at least under the
nontrapping condition), the literature is sparser for the mixed case. In this paper we give a unified
approach to a combination of these two kinds of results. More precisely, under Assumption 1.1 with
µ > 0, we prove

(1) sharp local-in-time Strichartz estimates, outside a large compact set centered at the origin, without
the nontrapping condition, and

(2) global-in-space estimates with the nontrapping condition.

Under the nontrapping condition and Assumption 1.1 with µ≥ 0, we also show local-in-time Strichartz
estimates with an arbitrarily small derivative loss. We mention that all results include the endpoint
estimates (p, q)= (2, 2d/(d− 2)) for d ≥ 3. This is a natural continuation of the author’s previous work
[Mizutani 2013], which was concerned with the nonendpoint estimates for the case with at most linearly
growing potentials.

In the sequel, F(∗) denotes the characteristic function designated by (∗). We now state the main result.

Theorem 1.2 (Strichartz estimates near infinity). Suppose that H satisfies Assumption 1.1 with µ > 0.
Then there exists R0 > 0 such that for any T > 0, p ≥ 2, q <∞, 2/p = d(1/2− 1/q), and R ≥ R0, we
have

‖F(|x |> R)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ), (1-2)

where CT > 0 may be taken uniformly with respect to R.
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To state the result on global-in-space estimates, we recall the nontrapping condition. We denote by

k(x, ξ)= 1
2

d∑
j,k=1

g jk(x)ξ jξk,

the classical kinetic energy, and by (y0(t, x, ξ), η0(t, x, ξ)) the Hamilton flow generated by k(x, ξ):

ẏ0(t)= ∂ξk(y0(t), η0(t)), η̇0(t)=−∂x k(y0(t), η0(t)), (y0(0), η0(0))= (x, ξ).

The Hamiltonian vector field Hk = ∂ξk · ∂x − ∂x k · ∂ξ generated by k is complete on R2d since (g jk)

satisfies the uniform elliptic condition. Hence (y0(t, x, ξ), η0(t, x, ξ)) exists for all t ∈ R.

Definition 1.3. We say that k(x, ξ) satisfies the nontrapping condition if, for any (x, ξ) ∈R2d with ξ 6= 0,

|y0(t, x, ξ)| → +∞ as t→±∞. (1-3)

To control the asymptotic behavior of the flow, we also impose the following condition, which is the
classical analogue of Mourre’s inequality.

Assumption 1.4 (convexity near infinity). There exists f ∈ C∞(Rd) satisfying f ≥ 1 and f →+∞ as
|x | → +∞ such that ∂α f ∈ L∞(Rd) for any |α| ≥ 2 and

Hk(Hk f )(x, ξ)≥ ck(x, ξ)

on {(x, ξ) ∈ R2d
: f (x)≥ R} for some positive constants c, R > 0.

Note that if |∂x g jk(x)| = o(|x |−1) as |x |→+∞, Assumption 1.4 holds with f (x)= 1+|x |2. In partic-
ular, Assumption 1.1 with µ> 0 implies Assumption 1.4. Moreover, if g jk(x)= (1+a1 sin(a2 log r))δ jk

for a1 ∈ R, a2 > 0 with a2
1(1 + a2

2) < 1 and for r = |x | � 1, then Assumption 1.4 holds with
f (r)= (

∫ r
0 (1+ a1 sin(a2 log t))−1 dt)2. For more examples, we refer to [Doi 2005, Section 2].

Theorem 1.5 (global-in-space Strichartz estimates). Suppose that H satisfies Assumption 1.1 with µ≥ 0.
Let T > 0, p ≥ 2, q <∞, and 2/p = d(1/2− 1/q). Then, for any r > 0, there exists CT,r > 0 such that

‖F(|x |< r)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,r‖〈H〉1/(2p)ϕ‖L2(Rd ). (1-4)

If we assume in addition that k(x, ξ) satisfies the nontrapping condition (1-3) and Assumption 1.4,

‖F(|x |< r)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,r‖ϕ‖L2(Rd ). (1-5)

In particular, combining with Theorem 1.2, we have the (global-in-space) Strichartz estimates

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ),

under the nontrapping condition (1-3), provided that µ > 0.

For the general case we have the following partial result.
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Theorem 1.6 (near sharp estimates without asymptotic flatness). Suppose H satisfies Assumption 1.1
with µ≥ 0 and k(x, ξ) satisfies the nontrapping condition (1-3). Assume also Assumption 1.4. Let T > 0,
p ≥ 2, q <∞, and 2/p = d(1/2− 1/q). Then, for any ε > 0, there exists CT,ε > 0 such that

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,ε‖〈H〉εϕ‖L2(Rd ).

Remark 1.7. (1) The estimates of forms (1-2), (1-4), and (1-5) have been proved [Staffilani and Tataru
2002; Bouclet and Tzvetkov 2007] when A ≡ 0 and V is of long-range type. Theorems 1.2 and 1.5 are
therefore regarded as generalizations of their results for the case with growing electromagnetic potential
perturbations.

(2) The only restriction for admissible pairs, in comparison to the flat case, is to exclude (p, q)= (4,∞)
for d = 1, which is due to the use of the Littlewood–Paley decomposition.

(3) The missing derivative loss 〈H〉ε in Theorem 1.6 is due to the use of the following local smoothing
effect, due to [Doi 2005]:

‖〈x〉−1/2−ε
〈D〉1/2e−i t Hϕ‖L2([−T,T ];L2(Rd )) ≤ CT,ε‖ϕ‖L2(Rd ).

It is well known that this estimate does not hold when ε = 0 even for H = H0. We would expect that
Theorem 1.2 still holds true for the case with critical electromagnetic potentials in the following sense:

〈x〉−1
|∂αx A j (x)| + 〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|,

(at least if g jk satisfies the bounds in Assumption 1.1 with µ> 0). However, this is beyond our techniques
(see also Remark 4.2).

The rest of the paper is devoted to the proofs of Theorems 1.2, 1.5, and 1.6. Throughout the paper we
use the following notations. 〈x〉 stands for

√
1+ |x |2. We write Lq

= Lq(Rd) if there is no confusion. For
Banach spaces X and Y , we denote by ‖ · ‖X→Y the operator norm from X to Y . We write Z+ =N∪{0}
and denote the set of multi-indices by Zd

+
. We denote by K the kinetic energy part of H and by H0 the

free Schrödinger operator:

K =−1
2

d∑
j,k=1

∂ j g jk(x)∂k, H0 =−
1
21=−

1
2

d∑
j=1

∂2
j .

We define the symbols p(x, ξ) and p1(x, ξ) by

p(x, ξ)= 1
2

d∑
j,k=1

g jk(x)(ξ j − A j (x))(ξk − Ak(x))+ V (x),

p1(x, ξ)=−
i
2

d∑
j,k=1

(
∂g jk

∂x j
(x)(ξk − Ak(x))− g jk(x)

∂Ak

∂x j
(x)
)
.

(1-6)
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Assumption 1.1 implies

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ〈x〉−|α|〈ξ〉−|β|(|ξ |2+〈x〉2−µ),

|∂αx ∂
β
ξ p1(x, ξ)| ≤ Cαβ〈x〉−|α|〈ξ〉−|β|(〈x〉−1−µ

|ξ | + 〈x〉−µ).
(1-7)

For h ∈ (0, 1] we consider H h
:= h2 H as a semiclassical Schrödinger operator with h-dependent

electromagnetic potentials h2V and h A j . The corresponding symbols ph and p1,h are also defined by

ph(x, ξ)=
1
2

d∑
j,k=1

g jk(x)(ξ j − h A j (x))(ξk − h Ak(x))+ h2V (x),

p1,h(x, ξ)=−
i
2

d∑
j,k=1

(
∂g jk

∂x j
(x)(ξk − h Ak(x))− hg jk(x)

∂Ak

∂x j
(x)
)
.

(1-8)

It is easy to see that H = Op(p)+Op(p1) and H h
= Oph(ph)+ h Oph(p1,h).

Before starting the details of the proofs, we describe the main ideas. First we note that, since our
Hamiltonian H is not bounded below, the Littlewood–Paley decomposition associated with H seems to
be false for p 6= 2 in general. To overcome this difficulty, we consider the following partition of unity on
the phase space R2d :

ψε(x, ξ)+χε(x, ξ)= 1,

where ψε is supported in {(x, ξ) : 〈x〉< ε|ξ |} for some sufficiently small constant ε > 0. It is easy to see
that the symbol p(x, ξ) is elliptic on suppψε:

C−1
|ξ |2 ≤ p(x, ξ)≤ C |ξ |2, (x, ξ) ∈ suppψε,

and we can therefore prove a Littlewood–Paley type decomposition of the form

‖Op(ψε)u‖Lq ≤ Cq‖u‖L2 +Cq

( ∑
h=2− j

j≥0

‖Oph(ah) f (h2 H)u‖
2
Lq

)1/2

,

where 2≤ q <∞, the sequence { f (h2
· ) : h = 2− j , j ≥ 0} is a 4-adic partition of unity on [1,∞), ah is

an appropriate h-dependent symbol supported in {|x |< 1/h, |ξ | ∈ I } for some open interval I b (0,∞),
and Op(ψε),Oph(ah) denote the corresponding pseudodifferential and semiclassical pseudodifferential
operators, respectively.

Then the idea of the proof of Theorem 1.2 is as follows. In view of the above Littlewood–Paley estimate,
the proof is reduced to proving Strichartz estimates for F(|x |> R)Oph(ah)e−i t H and Op(χε)e−i t H . In
order to prove Strichartz estimates for F(|x |> R)Oph(ah)e−i t H , we use semiclassical approximations
of Isozaki–Kitada type. However, we note that, because of the unboundedness of potentials with respect
to x , it is difficult to directly construct such approximations. To overcome this difficulty, we introduce
a modified Hamiltonian H̃ [Yajima and Zhang 2004] so that H̃ = H for |x | ≤ L/h and H̃ = K for
|x | ≥ 2L/h for some constant L ≥ 1. Then H̃ h

= h2 H̃ can be regarded as a “long-range perturbation” of
the semiclassical free Schrödinger operator H h

0 = h2 H0. We also introduce the corresponding modified
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symbol p̃h(x, ξ) so that p̃h(x, ξ)= ph(x, ξ) for |x | ≤ L/h and p̃h(x, ξ)= k(x, ξ) for |x | ≥ 2L/h. Let
a±h be supported in outgoing and incoming regions {R < |x |< 1/h, |ξ | ∈ I, ±x̂ · ξ̂ > 1/2}, respectively,
so that F(|x |> R)ah = a+h +a−h , where x̂ = x/|x |. Rescaling t 7→ th, we first construct the semiclassical
approximations for e−i t H̃ h/h Oph(a

±

h )
∗ of the forms

e−i t H̃ h/h Oph(a
±

h )
∗
= Jh(S±h , b±h )e

−i t H h
0 /h Jh(S±h , c±h )

∗
+ O(hN ), 0≤±t ≤ 1/h,

respectively, where S±h solves the eikonal equation associated to p̃h and Jh(S±h , b±h ) and Jh(S±h , c±h ) are
the associated semiclassical Fourier integral operators (FIOs). The method of the construction is similar
to that of [Robert 1994]. On the other hand, we will see that if L ≥ 1 is large enough, the Hamilton flow
generated by p̃h with initial conditions in supp a±h cannot escape from {|x | ≤ L/h} for 0 < ±t ≤ 1/h,
respectively, that is,

πx(exp t H p̃h ( supp a±h ))⊂ {|x | ≤ L/h}, 0<±t ≤ 1/h.

Since p̃h = ph for |x | ≤ L/h, we have

exp t H p̃h ( supp a±h )= exp t Hph ( supp a±h ), 0<±t ≤ 1/h.

We can thus expect (at least formally) that the corresponding two quantum evolutions are approximately
equivalent modulo some smoothing operator. We will prove the following rigorous justification of this
formal consideration:

‖(e−i t H h/h
− e−i t H̃ h/h)Oph(a

±

h )
∗
‖L2→L2 ≤ CM hM , 0≤±t ≤ 1/h, M ≥ 0,

where H h
=h2 H . By using such approximations for e−i t H h/h Oph(a

±

h )
∗, we prove local-in-time dispersive

estimates for Oph(a
±

h )e
−i t H Oph(a

±

h )
∗:

‖Oph(a
±

h )e
−i t H Oph(a

±

h )
∗
‖L1→L∞ ≤ C |t |−d/2, 0< h� 1, 0< |t |< 1.

Strichartz estimates follow from these estimates and the abstract theorem due to Keel and Tao [1998].
Strichartz estimates for Op(χε)e−i t H follow from the short-time dispersive estimate

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t |< tε� 1.

To prove this, we first construct an approximation for e−i t H Op(χε)∗ of the form

e−i t H Op(χε)∗ = J (9, a)+ OH−γ→Hγ (1), |t |< tε, γ > d/2,

where the phase function 9 =9(t, x, ξ) is a solution to the time-dependent Hamilton–Jacobi equation
associated to p(x, ξ) and J (9, a) is the corresponding Fourier integral operator. In the construction, the
fact that

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ, (x, ξ) ∈ suppχε, |α+β| ≥ 2,

plays an important role. We note that if (g jk) jk− Idd 6= 0 depends on x , these bounds do not hold without
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such a restriction of the support. Using these bounds, we construct the phase function 9(t, x, ξ) such that

|∂αx ∂
β
ξ (9(t, x, ξ)− x · ξ + p(x, ξ))| ≤ Cαβ |t |2〈x〉2−|α+β|.

Then we can follow a classical argument [Kitada and Kumano-go 1981] and construct the FIO J (9, a).
By the composition formula, Op(χε)J (9, a) is also an FIO and dispersive estimates for this operator
follow from the standard stationary phase method. Finally, using an Egorov-type lemma, we prove that
the remainder, Op(χε)(e−i t H Op(χε)∗− J (9, a)), has a smooth kernel for sufficiently small t .

The proof of Theorem 1.5 is based on a standard idea [Staffilani and Tataru 2002]; see also [Burq et al.
2004; Bouclet and Tzvetkov 2007]. Strichartz estimates with loss of derivatives 〈H〉1/(2p) follow from
semiclassical Strichartz estimates up to time scales of order h, which can be verified by the standard
argument. Moreover, under the nontrapping condition, we will prove that the missing 1/p derivative loss
can be recovered by using local smoothing effects [Doi 2005].

The proof of Theorem 1.6 is based on a slight modification of that of Theorem 1.5. By virtue of the
Strichartz estimates for Op(χε)e−i t H and the Littlewood–Paley decomposition, it suffices to show

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq ) ≤ CT h−ε‖ϕ‖L2, 0< h� 1.

To prove this estimate, we first prove semiclassical Strichartz estimates for e−i t H Oph(ah)
∗ up to time

scales of order h R, where R= inf |πx( supp ah)|. The proof is based on a refinement of the standard WKB
approximation for the semiclassical propagator e−i t H h/h Oph(ah)

∗. Combining semiclassical Strichartz
estimates with a partition of unity argument with respect to x , we will obtain the following Strichartz
estimate with an inhomogeneous error term:

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq ) ≤ CT ‖ϕ‖L2 +C‖〈x〉−1/2−εh−1/2−ε Oph(ah)e−i t Hϕ‖L2([−T,T ];L2),

for any ε > 0, which, combined with local smoothing effects, implies Theorem 1.6.
The paper is organized as follows. In Section 2 We record some known results on the semiclassical

pseudodifferential calculus and prove the above Littlewood–Paley decomposition. Using dispersive
estimates, which will be studied in Sections 4 and 5, we prove Theorem 1.2 in Section 3. We construct
approximations of Isozaki–Kitada type and prove dispersive estimates for Oph(a

±

h )e
−i t H Oph(a

±

h )
∗ in

Section 4. In Section 5 we discuss the dispersive estimates for Op(χε)e−i t H Op(χε)∗. The proofs of
Theorems 1.5 and 1.6 are given in Sections 6 and 7, respectively.

2. Semiclassical functional calculus

Throughout this section we assume Assumption 1.1 with µ≥ 0, that is,

|∂αx g jk(x)| + 〈x〉−1
|∂αx A j (x)| + 〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|. (2-1)

The goal of this section is to prove a Littlewood–Paley type decomposition under a suitable restriction on
the initial data. First we record (without proof) some known results on the pseudodifferential calculus
which will be used throughout the paper. We refer to [Robert 1987; Martinez 2002] for the details of the
proof.
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Pseudodifferential calculus. For the metric g = dx2/〈x〉2+ dξ 2/〈ξ〉2 and a weight function m(x, ξ) on
the phase space R2d , we use Hörmander’s symbol class notation S(m, g), that is, a ∈ S(m, g) if and only
if a ∈ C∞(R2d) and

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβm(x, ξ)〈x〉−|α|〈ξ〉−|β|, α, β ∈ Zd

+
.

To a symbol a ∈ C∞(R2d) and h ∈ (0, 1], we associate the semiclassical pseudodifferential operator
(h-PDO for short) Oph(a) defined by

Oph(a) f (x)= 1
(2πh)d

∫
ei(x−y)·ξ/ha(x, ξ) f (y) dy dξ, f ∈ S(Rd).

When h = 1 we write Op(a)= Oph(a) for simplicity. The Calderón–Vaillancourt theorem shows that for
any symbol a ∈ C∞(R2d) satisfying |∂αx ∂

β
ξ a(x, ξ)| ≤ Cαβ, Oph(a) is extended to a bounded operator on

L2(Rd) uniformly with respect to h ∈ (0, 1]. Moreover, for any symbol a satisfying

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉−γ , γ > d,

Oph(a) is extended to a bounded operator from Lq(Rd) to Lr (Rd) with the bounds

‖Oph(a)‖Lq→Lr ≤ Cqr h−d(1/q−1/r), 1≤ q ≤ r ≤∞, (2-2)

where Cqr > 0 is independent of h ∈ (0, 1]. These bounds follow from the Schur lemma and an
interpolation; see, for example, [Bouclet and Tzvetkov 2007, Proposition 2.4].

For two symbols a ∈ S(m1, g) and b ∈ S(m2, g), the composition Oph(a)Oph(b) is also an h-PDO
and is written in the form Oph(c) = Oph(a)Oph(b) with a symbol c ∈ S(m1m2, g) given by c(x, ξ) =
eih DηDz a(x, η)b(z, ξ)|z=x,η=ξ . Moreover, c(x, ξ) has the expansion

c =
N−1∑
|α|=0

h|α|

i |α|α!
∂αξ a · ∂αx b+ hN rN with rN ∈ S(〈x〉−N

〈ξ〉−N m1m2, g). (2-3)

The symbol of the adjoint Oph(a)
∗ is given by a∗(x, ξ)= eih DηDz a(z, η)|z=x,η=ξ ∈ S(m1, g) which has

the expansion

a∗ =
N−1∑
|α|=0

h|α|

i |α|α!
∂αξ ∂

α
x a+ hN r∗N with r∗N ∈ S(〈x〉−N

〈ξ〉−N m1, g). (2-4)

Littlewood–Paley decomposition. As we mentioned in the outline of the paper, H is not bounded below
in general and hence we cannot expect that the Littlewood–Paley decomposition associated with H , which
is of the form

‖u‖Lq ≤ Cq‖u‖L2 +Cq

( ∞∑
j=0

‖ f (2−2 j H)u‖
2
Lq

)1/2

,

to hold if q 6= 2. The standard Littlewood–Paley decomposition associated with H0 also does not work
well in our case, since the commutator of H with the Littlewood–Paley projection f (2−2 j H0) can grow
at spatial infinity. To overcome this difficulty, let us introduce an additional localization as follows. Given
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a parameter ε > 0 and a cut-off function ϕ ∈ C∞0 (R+) such that ϕ ≡ 1 on [0, 1/2] and suppϕ ⊂ [0, 1],
we define ψε(x, ξ) by

ψε(x, ξ)= ϕ
(
〈x〉
ε|ξ |

)
.

It is easy to see that, for each ε > 0, ψε ∈ S(1, g) and is supported in {(x, ξ)∈R2d
: 〈x〉<ε|ξ |}. Moreover,

for sufficiently small ε > 0, p(x, ξ) is uniformly elliptic on the support of ψε and thus Op(ψε)H is
essentially bounded below.

In this subsection we prove a Littlewood–Paley type decomposition on the range of Op(ψε). We begin
with the following proposition which tells us that, for any f ∈ C∞0 (R) and h ∈ (0, 1], Op(ψε) f (h2 H) is
well approximated in terms of the h-PDO.

Proposition 2.1. There exists ε > 0 such that, for any f ∈C∞0 (R) with supp f b (0,∞), we can construct
bounded families {ah, j }h∈(0,1] ⊂

⋂
M≥0 S(〈x〉− j

〈ξ〉−M , g), j ≥ 0, such that:

(1) ah,0 is given explicitly by ah,0(x, ξ)= ψε(x, ξ/h) f (ph(x, ξ)). Moreover,

supp ah, j ⊂ suppψε( · , · /h)∩ supp f (ph)⊂ {(x, ξ) ∈ R2d
: 〈x〉< 1/h, |ξ | ∈ I },

for some relatively compact open interval I b (0,∞). In particular, we have

‖Oph(ah, j )‖Lq′→Lq ≤ C jqq ′h−d(1/q ′−1/q), 1≤ q ′ ≤ q ≤∞,

uniformly in h ∈ (0, 1].

(2) For any integer N > d + 2, we set ah =
∑N−1

j=0 h j ah, j . Then

‖Op(ψε) f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N h2, 2≤ q ≤∞,

uniformly in h ∈ (0, 1].

The following is an immediate consequence of this proposition.

Corollary 2.2. For any 2 ≤ q ≤∞ and h ∈ (0, 1], Op(ψε) f (h2 H) is bounded from L2(Rd) to Lq(Rd)

and satisfies

‖Op(ψε) f (h2 H)‖L2→Lq ≤ Cqh−d(1/2−1/q),

where Cq > 0 is independent of h ∈ (0, 1].

For the low energy part we have the following.

Lemma 2.3. For any f0 ∈ C∞0 (R) and 2≤ q ≤∞, we have

‖Op(ψε) f0(H)‖L2→Lq ≤ Cq .

Remark 2.4. If V, A≡ 0, then Proposition 2.1, Corollary 2.2, and Lemma 2.3 hold without the additional
term Op(ψε). Moreover, in this case we see that the remainder satisfies

‖ f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N hN−d(1/2−1/q).
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We refer to [Burq et al. 2004] (for the case on compact manifolds without boundary) and to [Bouclet and
Tzvetkov 2007] (for the case with metric perturbations on Rd). For more general cases with Laplace–
Beltrami operators on noncompact manifolds with ends, we refer to [Bouclet 2010; 2011a]. Because of
this result, we believe Proposition 2.1 is far from sharp. However, the bounds

‖Op(ψε) f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N h, 2≤ q ≤∞,

are sufficient to obtain our Littlewood–Paley type decomposition (Proposition 2.5). For more details, we
refer to Burq, Gérard, and Tvzetkov [2004, Corollary 2.3].

Proof of Proposition 2.1. We write

Op(ψε)= Oph(ψε/h), h ∈ (0, 1],

where ψε/h(x, ξ)= ψε(x, ξ/h) satisfies suppψε/h ⊂ {h〈x〉< ε|ξ |} and

|∂αx ∂
β
ξ ψε/h(x, ξ)| ≤ Cαβεh−|β|〈x〉−|α|〈ξ/h〉−|β| ≤ Cαβε〈x〉−|α|(h+ |ξ |)−|β|. (2-5)

By using the Helffer–Sjöstrand formula [1989], we get

Oph(ψε/h) f (h2 H)=− 1
2π i

∫
C

∂ f̃
∂ z̄
(z)Oph(ψε/h)(h2 H − z)−1 dz ∧ dz̄,

where f̃ (z) is an almost analytic extension of f (λ). Since f ∈ C∞0 (R), f̃ (z) is also compactly supported
and satisfies

∂z̄ f̃ (z)= O(|Im z|M)

for any M > 0. We may assume |z| ≤ C on supp f̃ with some C > 0. In order to use this formula, we
shall construct a semiclassical approximation of Oph(ψε/h)(h2 H − z)−1, in terms of the h-PDO, for
z ∈ C \ [0,∞) with |z| ≤ C . Although the method is based on the standard semiclassical parametrix
construction (see, for example, [Robert 1987; Burq et al. 2004]), we give the details of the proof, since
ψε/h is not uniformly bounded in S(1, g) with respect to h ∈ (0, 1].

We first study the symbol of the resolvent (h2 H − z)−1. Let ph and p1,h be as in (1-8) so that
h2 H = Oph(ph)+ h Oph(p1,h). Since

h|A(x)|. |ξ |, h2
|V (x)|. |ξ |2,

on suppψε/h , we obtain by (1-7) that

|∂αx ∂
β
ξ ph(x, ξ)| ≤ Cαβ〈x〉−|α||ξ |2−|β| if |β| ≤ 2, (2-6)

|∂αx ∂
β
ξ p1,h(x, ξ)| ≤ Cαβ〈x〉−1−|α|

|ξ |1−|β| if |β| ≤ 1, (2-7)

uniformly in (x, ξ) ∈ suppψε/h and h ∈ (0, 1]. Moreover, if ε > 0 is sufficiently small, the uniform
ellipticity of k implies that ph is also uniformly elliptic on suppψε/h :

C−2
1 |ξ |

2
≤ ph(x, ξ)≤ C2

1 |ξ |
2 if h〈x〉< ε|ξ |,
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with some C1 > 0, which particularly implies

1
|ph(x, ξ)−z|

.

{
|Im z|−1 if |ξ | ≤ 2C2,

〈ξ〉−2 if |ξ | ≥ 2C2
(2-8)

for (x, ξ) ∈ suppψε/h , z /∈ R, and |z| ≤ C , with some C2 > 0.
Let us now consider a sequence of symbols qh

j = qh
j (z, x, ξ) (depending holomorphically on z /∈ R)

defined inductively by

qh
0 =

ψε/h

ph − z
,

qh
1 =−

1
ph−z

(∑
|α|=1

i−1∂αξ qh
0 · ∂

α
x ph + qh

0 · p1,h

)
,

qh
j =−

1
ph−z

( ∑
|α|+k= j
|α|≥1

i−|α|

α!
∂αξ qh

k · ∂
α
x ph +

∑
|α|+k= j−1

i−|α|

α!
∂αξ qh

k · ∂
α
x p1,h

)
, j ≥ 2.

We then learn by (2-5), (2-6), and (2-8) that

|∂αx ∂
β
ξ qh

0 (z, x, ξ)| ≤ Cαβε

{
〈x〉−|α|(h+ |ξ |)−|β||Im z|−1−|α+β| if |ξ | ≤ 2C2,

〈x〉−|α|〈ξ〉−|β|−2 if |ξ | ≥ 2C2,

≤ Cαβε〈x〉−|α|(h+ |ξ |)−|β||Im z|−1−|α+β| (2-9)

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. Similarly, by using (2-6), (2-7), and (2-9), we obtain that if
h|ξ | ≤ 2C2,

|∂αx ∂
β
ξ qh

1 (z, x, ξ)|

≤ Cαβε
(
〈x〉−1−|α|(h+ |ξ |)−1−|β|

|ξ |2|Im z|−3−|α+β|
+〈x〉−1−|α|(h+ |ξ |)−|β|(h+ |ξ |)|Im z|−2−|α+β|)

≤ Cαβε(h+ |ξ |)2〈x〉−1−|α|(h+ |ξ |)−1−|β|
|Im z|−3−|α+β|,

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. Here note that, in this case, (h+ |ξ |)−1 may have a singularity at
ξ = 0 as h→+0. In order to prove the remainder estimate, we will remove this singularity by using a
rescaling ξ 7→ hξ (see the estimates (2-12)). For h|ξ | ≥ 2C2, qh

1 does not have such a singularity and
satisfies

|∂αx ∂
β
ξ qh

1 (z, x, ξ)| ≤ Cαβε〈x〉−1−|α|
〈ξ〉−|β|−4

|ξ | ≤ Cαβε〈x〉−1−|α|
〈ξ〉−|β|−3

uniformly in z /∈ R with |z| ≤ C and h ∈ (0, 1]. Since 1. h+ |ξ | if h|ξ |& 1, summarizing these, we get

|∂αx ∂
β
ξ qh

1 (z, x, ξ)| ≤ Cαβε〈x〉−1−|α|(h+ |ξ |)1−|β||Im z|−3−|α+β|, z /∈ R, |z| ≤ C, h ∈ (0, 1].

The estimates (2-9) and a direct computation also show that qh
1 is of the form

qh
1 = qh

11(ph − z)−3
+ qh

10(ph − z)−2,

where qh
1k are supported in suppψε/h , are independent of z, and satisfy

|∂αx ∂
β
ξ qh

1k(x, ξ)| ≤ Cαβε〈x〉−1−|α|(h+ |ξ |)−|β|〈ξ〉N1(k), h ∈ (0, 1],
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with some positive integer N1(k) > 0. For j ≥ 2, an induction argument yields that

|∂αx ∂
β
ξ qh

j (z, x, ξ)| ≤ Cαβε〈x〉− j−|α|(h+ |ξ |)2− j−|β|
|Im z|−2 j−1−|α+β|, j ≥ 2, (2-10)

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. It also follows from an induction on j that there exists a sequence
of z-independent symbols (qh

jk)
j
k=0 supported in suppψε/h and satisfying

|∂αx ∂
β
ξ qh

jk(x, ξ)| ≤ Cαβε〈x〉− j−|α|(h+ |ξ |)−|β|〈ξ〉N j (k) (2-11)

with some N j (k) > 0, such that qh
j is of the form

qh
j =

j∑
k=0

qh
jk(ph − z)− j−k−1.

Rescaling ξ 7→ hξ , we learn by (2-9) and (2-10) that

qh
0 (z, x, hξ) ∈ S(1, g), h j qh

j (z, x, hξ) ∈ S(h2
〈x〉− j

〈ξ〉2− j , g),

with uniform bounds in h and polynomially bounds in |Im z|−1. Then, by the construction of qh
j , the

standard symbolic calculus (not in the semiclassical regime), and the fact that

Op(h j qh
j (z, x, hξ))= h j Oph(q

h
j ),

we obtain

Op(ψε)=
N−1∑
j=0

h j Oph(q
h
j )(h

2 H − z)+ h2 Op(rh,N ,z), N ≥ 1,

with some rh,N ,z ∈ S(〈x〉−N
〈ξ〉2−N , g) satisfying

|∂αx ∂
β
ξ rh,N ,z(x, ξ)| ≤ CαβεN 〈x〉−N−|α|

〈ξ〉2−N−|β|
|Im z|−2N−1−|α+β|, (2-12)

where CαβεN > 0 may be taken uniformly in h ∈ (0, 1], z ∈ C \R with |z| ≤ C and x, ξ ∈ Rd .
We now use the Helffer–Sjöstrand formula to obtain

Op(ψε) f (h2 H)=
N−1∑
j=0

h j Oph(ah, j )+ h2 R(h, N ),

where
ah,0(x, ξ)= ψε/h(x, ξ)( f ◦ ph)(x, ξ),

ah, j (x, ξ)=
j∑

k=0

(−1)k+ j

(k+ j)!
qh

jk(x, ξ)( f ( j+k)
◦ ph)(x, ξ), 1≤ j ≤ N − 1,

R(h, N )=− 1
2π i

∫
C

∂ f̃
∂ z̄
(z)Oph(rh,N ,z)(h2 H − z)−1 dz ∧ dz̄.

Since supp q jk ⊂ suppψε/h ⊂ {h〈x〉< ε|ξ |} and ph is uniformly elliptic (that is, ph ≈ |ξ |
2) on the latter

region, taking ε > 0 smaller if necessary, we have

ah, j ⊂ suppψε/h ∩ supp f (ph)⊂ {(x, ξ) : |x |< 1/h, C−1
0 ≤ |ξ | ≤ C0}
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with some positive constant C0 > 0, which, combined with (2-11), implies that {ah, j }h∈(0,1] is bounded in⋂
M≥0

S(〈x〉− j
〈ξ〉−M , g), since h+|ξ |& 〈ξ〉 on suppψε/h ∩ supp f (ph). By virtue of (2-2), we also obtain

‖Oph(ah, j )‖Lq′→Lq ≤ C jqq ′h−d(1/q ′−1/q), h ∈ (0, 1], 1≤ q ′ ≤ q ≤∞.

Finally, we prove the estimate on the remainder R(h, N ). If we choose N > d + 2, then (2-12) and
(2-2) (with h = 1) imply

‖Op(rh,N ,z)‖L2→Lq ≤ Cq N |Im z|−n(N ,q), 2≤ q ≤∞,

with some positive integer n(N , q) ≥ 2N + 1, where Cq N > 0 is independent of h. Using the bounds
‖(h2 H − z)−1

‖L2→L2 ≤ |Im z|−1, |∂z̄ f̃ (z)| ≤ CM |Im z|M for any M ≥ 0 and the fact that f̃ is compactly
supported, we conclude that

‖R(h, N )‖L2→Lq ≤ CM

∫
supp f̃

|Im z|M‖Op(rh,N ,z)‖L2→Lq‖(h2 H − z)−1
‖L2→L2 dz ∧ dz̄

≤ CM Nq

∫
supp f̃

|Im z|M−n(N ,q)−1 dz ∧ dz̄

≤ CM Nq ,

provided that M is large enough. This completes the proof. �

Proof of Lemma 2.3. By the same argument as above with h = 1, we can see that

Op(ψε) f0(H)=
N−1∑
j=0

Op(a j )+ R(N )

where a j ∈
⋂

M≥0 S(〈x〉− j
〈ξ〉−M , g) are supported in

suppψε ∩ supp f0(p)⊂ {(x, ξ) ∈ R2d
: 〈x〉< ε|ξ |, |ξ |. 1}

and R(N ) satisfies

‖R(h, N )‖L2→Lq ≤ CNq , 2≤ q ≤∞,

if N > d + 2. The assertion then follows from (2-2). �

Consider a 4-adic partition of unity

f0(λ)+
∑

h

f (h2λ)= 1, λ ∈ R,

where f0, f ∈ C∞0 (R) with supp f0 ⊂ [−1, 1], supp f ⊂ [1/4, 4] and
∑

h means that, in the sum, h
takes all negative powers of 2 as values, that is,

∑
h =

∑
h=2− j , j≥0. Let F ∈ C∞0 (R) be such that

supp F ⊂ [1/8, 8] and F ≡ 1 on supp f . The spectral decomposition theorem implies

1= f0(H)+
∑

h

f (h2 H)= f0(H)+
∑

h

F(h2 H) f (h2 H).
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Let ah ∈ S(1, g) be as in Proposition 2.1 with f = F . Using Proposition 2.1, we obtain a Littlewood–Paley
type estimates on a range of Op(ψε).

Proposition 2.5. For any 2≤ q <∞,

‖Op(ψε)u‖Lq (Rd ) ≤ Cq‖u‖L2(Rd )+Cq

(∑
h

‖Oph(ah) f (h2 H)u‖Lq (Rd )

)1/2

.

Proof. The proof is the same as that of [Burq et al. 2004, Corollary 2.3] and we omit the details. �

Corollary 2.6. Let ε > 0 and ψε be as above and χε = 1−ψε. Let ρ ∈ C∞(Rd) be such that

|∂αx ρ(x)| ≤ Cα〈x〉−|α|, α ∈ Zd
+
.

Then, for any T > 0 and any (p, q) satisfying p≥ 2, q <∞ and 2/p= d(1/2−1/q), there exists CT > 0
such that

‖ρe−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd )+C‖Op(χε)e−i t Hϕ‖L p([−T,T ];Lq (Rd ))

+C
(∑

h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq (Rd ))

)1/2

,

where ah is given by Proposition 2.1 with ψε replaced by ρψε. In particular, ah(x, ξ) is supported in
supp ρ(x)ψ(x, ξ/h)F(ph(x, ξ)).

Proof. This proposition follows from the L2-boundedness of e−i t H , Propositions 2.1 and 2.5 (with ψε
replaced by ρψε), and the Minkowski inequality. �

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 under Assumption 1.1 with µ > 0. We first state two key estimates
which we will prove in later sections. For R > 0, an open interval I b (0,∞) and σ ∈ (−1, 1), we define
the outgoing and incoming regions 0±(R, I, σ ) by

0±(R, I, σ ) :=
{
(x, ξ) ∈ R2d

: |x |> R, |ξ | ∈ I, ±
x · ξ
|x ||ξ |

>−σ

}
,

respectively. We then have the following (local-in-time) dispersive estimates.

Proposition 3.1. Suppose that H satisfies Assumption 1.1 with µ > 0. Let I b (0,∞) and σ ∈ (−1, 1).
Then, for sufficiently large R ≥ 1, small h0 > 0, and any symbols a±h ∈ S(1, g) supported in 0±(R, I, σ )∩
{x : |x |< 1/h}, we have

‖Oph(a
±

h )e
−i t H Oph(a

±

h )
∗
‖L1→L∞ ≤ C |t |−d/2, 0< |t | ≤ 1,

uniformly with respect to h ∈ (0, h0].

We prove this proposition in Section 4. In the region {|x |& |ξ |}, we have the following (short-time)
dispersive estimates.
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Proposition 3.2. Suppose that H satisfies Assumption 1.1 with µ≥ 0. Let us fix arbitrarily ε > 0. Then
there exists tε > 0 such that, for any symbol χε ∈ S(1, g) supported in {(x, ξ) : 〈x〉 ≥ ε|ξ |}, we have

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t | ≤ tε.

We prove this proposition in Section 5.

Proof of Theorem 1.2. Taking ρ ∈ C∞(Rd) so that 0≤ ρ(x)≤ 1, ρ(x)= 1 for |x | ≥ 1 and ρ(x)= 0 for
|x | ≤ 1/2, we set ρR(x)= ρ(x/R). In order to prove Theorem 1.2, it suffices to show

‖ρRe−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ),

for sufficiently large R ≥ 1. We may also assume without loss of generality that T > 0 is sufficiently
small. Indeed, if the above estimate holds on [−T0, T0] with some T0 > 0, we obtain by the unitarity of
e−i t H on L2 that, for any T > T0,

‖ρRe−i t Hϕ‖
p
L p([−T,T ];Lq (Rd )) .

[T/T0]+1∑
k=−[T/T0]

‖ρRe−i t H e−i(k+1)Hϕ‖
p
L p([−T0,T0];Lq (Rd ))

. (T/T0)C
p
T0
‖ϕ‖

p
L2(Rd )

.

Let ah be as in Proposition 2.1. Replacing ψε with ρRψε and taking ε > 0 smaller if necessary, we
may assume without loss of generality that supp ah ⊂ {(x, ξ) : R < |x | < 1/h, |ξ | ∈ I } for some
open interval I b (0,∞). Choosing θ± ∈ C∞([−1, 1]) so that θ+ + θ− = 1, θ+ = 1 on [1/2, 1] and
θ+ = 0 on [−1,−1/2], we set a±h (x, ξ)= ah(x, ξ)θ±(x̂ · ξ̂ ), where x̂ = x/|x |. It is clear that {a±h }h∈(0,1]
is bounded in S(1, g) and supp a±h ⊂ 0

±(R, I, 1/2)∩ {x : |x |< 1/h}, and that ah = a+h + a−h . We now
apply Proposition 3.1 to a±h and obtain the local-in-time dispersive estimate for Oph(a

±

h )e
−i t H Oph(a

±

h )
∗

(uniformly in h ∈ (0, h0]), which, combined with the L2-boundedness of Oph(a
±

h )e
−i t H and the abstract

theorem [Keel and Tao 1998], implies the following Strichartz estimates for Oph(ah)e−i t H :

‖Oph(ah)e−i t Hϕ‖L p([−1,1];Lq (Rd )) ≤

∑
±

‖Oph(a
±

h )e
−i t Hϕ‖L p([−1,1];Lq (Rd ))

≤ C‖ϕ‖L2(Rd ),

uniformly with respect to h ∈ (0, h0]. Since Oph(ah) is bounded from L2(Rd) to Lq(Rd) with the bound
of order O(h−d(1/2−1/q)), for h0 < h ≤ 1, we have∑

h0<h≤1

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−1,1];Lq (Rd )) ≤ C(h0)‖ϕ‖

2
L2(Rd )

with some C(h0) > 0. Using these two bounds, we obtain∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−1,1];Lq (Rd )) ≤ C

∑
0<h<h0

‖ f (h2 H)ϕ‖
2
L2(Rd ))+C(h0)‖ϕ‖

2
L2(Rd )

≤ C‖ϕ‖2L2(Rd )
.
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On the other hand, Strichartz estimates for Op(χε)e−i t H are an immediate consequence of Proposition 3.2.
Together with Corollary 2.6, this completes the proof. �

4. Semiclassical approximations for outgoing propagators

Throughout this section we assume Assumption 1.1 with µ > 0. Here we study the behavior of

e−i t H Oph(a
±

h )
∗,

where a±h ∈ S(1, g) are supported in 0±(R, I, σ ) ∩ {|x | < 1/h}, respectively. The main goal of this
section is to prove Proposition 3.1. For simplicity, we consider the outgoing propagator e−i t H Oph(a

+

h )
∗

for 0≤ t ≤ 1 only, and the proof for the incoming case is analogous.
In order to prove dispersive estimates, we construct a semiclassical approximation for the outgoing

propagator e−i t H Oph(a
+

h )
∗ by using the method of Isozaki–Kitada. Namely, rescaling t 7→ th and

setting H h
= h2 H , H h

0 = −h21/2, we consider an approximation for the semiclassical propagator
e−i t H h/h Oph(a

+

h )
∗ of the form

e−i t H h/h Oph(a
+

h )
∗
= Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ O(hN ), 0≤ t ≤ h−1,

where S+h solves a suitable eikonal equation in the outgoing region and J (S+h , w) is the corresponding
semiclassical Fourier integral operator (h-FIO for short):

Jh(S+h , w) f (x)= (2πh)−d
∫

ei(S+h (x,ξ)−y·ξ)/hw(x, ξ) f (y) dy dξ.

Such approximations (uniformly in time) have been studied for Schrödinger operators with long-range
potentials [Robert and Tamura 1987] and for the case of long-range metric perturbations [Robert 1987;
1994; Bouclet and Tzvetkov 2007]. We also refer to the original paper by Isozaki and Kitada [1985], in
which the existence and asymptotic completeness of modified wave operators (with time-independent
modifiers) were established for the case of Schrödinger operators with long-range potentials. We note
that, in these cases, we do not need the additional restriction of the initial data in {|x |< 1/h}. On the
other hand, in [Mizutani 2013], we constructed such approximations (locally in time) for the case with
long-range metric perturbations, combined with potentials growing subquadratically at infinity, under the
additional restriction on the initial data into {|x |< 1/h}.

As we mentioned in the outline of the paper, we first construct an approximation for the modified
propagator e−i t H̃ h/h , where H̃ h is defined as follows. Taking arbitrarily a cut-off function ψ ∈ C∞0 (R

d)

such that 0≤ψ ≤ 1, ψ ≡ 1 for |x | ≤ 1/2 and ψ ≡ 0 for |x | ≥ 1, we define truncated electric and magnetic
potentials, Vh and Ah = (Ah, j ) j by Vh(x) :=ψ(hx/L)V (x) and Ah, j (x)=ψ(hx/L)A j (x), respectively.
It is easy to see that

Vh ≡ V, Ah, j ≡ A j on {|x | ≤ L/(2h)}, supp Ah, j , supp Vh ⊂ {|x | ≤ L/h},

and that, for any α ∈ Zd
+

, there exists CL ,α > 0, independent of x, h, such that

h2
|∂αx Vh(x)| + h|∂αx Ah(x)| ≤ Cα,L〈x〉−µ−|α|. (4-1)



1874 HARUYA MIZUTANI

Let us define H̃ h by

H̃ h
=

1
2

d∑
j,k=1

(−ih∂ j − h Ah, j (x))g jk(x)(−ih∂k − h Ah,k(x))+ h2Vh(x).

We consider H̃ h as a “semiclassical” Schrödinger operator with h-dependent electromagnetic potentials
h2Vh and h Ah . By virtue of the estimates on g jk, Ah , and Vh , H̃ h can be regarded as a long-range
perturbation of the semiclassical free Schrödinger operator H h

0 = −h21/2. Such a type modification
has been used to prove Strichartz estimates and local smoothing effects (with loss of derivatives) for
Schrödinger equations with superquadratic potentials; see [Yajima and Zhang 2004, Section 4]. Let us
denote by p̃h the corresponding modified symbol

p̃h(x, ξ)=
1
2

d∑
j,k=1

g jk(x)(ξ j − h Ah, j (x))(ξk − h Ah,k(x))+ h2Vh(x). (4-2)

The following proposition provides the existence of the phase function of h-FIOs.

Proposition 4.1 [Robert 1994]. Fix an open interval I b (0,∞), −1 < σ < 1 and L > 0. Then there
exist R0, h0 > 0 and a family of smooth and real-valued functions

{S+h : 0< h ≤ h0, R ≥ R0} ⊂ C∞(R2d
: R)

satisfying the eikonal equation associated to p̃h :

p̃h(x, ∂x S+h (x, ξ))= |ξ |
2/2, (x, ξ) ∈ 0+(R, I, σ ), (4-3)

such that
|S+h (x, ξ)− x · ξ | ≤ C〈x〉1−µ, x, ξ ∈ Rd . (4-4)

Moreover, for any |α+β| ≥ 1,

|∂αx ∂
β
ξ (S
+

h (x, ξ)− x · ξ)| ≤ Cαβ min{R1−µ−|α|, 〈x〉1−µ−|α|}, x, ξ ∈ Rd . (4-5)

Here C,Cαβ > 0 are independent of x, ξ, R, and h.

Proof. Since h2Vh and h Ah are of long-range type uniformly with respect to h ∈ (0, 1] (the constant CL ,α

in (4-1) can be taken independently of h), the proof is the same as that of [Robert 1994, Proposition 4.1],
and we omit it. For the R dependence, we refer to [Bouclet and Tzvetkov 2007, Proposition 3.1]. �

Remark 4.2. The crucial point to obtain the estimates (4-4) and (4-5) is the uniform bound (4-1), and we
do not have to use the support properties of Ah and Vh . Suppose that A and V satisfy 〈x〉−1

|∂αx A(x)| +
〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|, and g jk satisfies Assumption 1.1 with µ ≥ 0. Then there exists L > 0,
independent of h, such that if 0< L ≤ L0, we can still construct the solution S+h to (4-3) by using the
support properties of Ah and Vh . However, in this case, S+h − x · ξ behaves like 〈x〉1−µh−1 as h→ 0, and
we cannot obtain the uniform L2-boundedness of the corresponding h-FIO. This is one of the reasons
why we exclude the critical case µ= 0.
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To the phase S+h and an amplitude a ∈ S(1, g), we associate the h-FIO defined by

Jh(S+h , a) f (x)= (2πh)−d
∫

ei(S+h (x,ξ)−y·ξ)/ha(x, ξ) f (y) dy dξ.

Using (4-5), for sufficiently large R > 0, we have

|∂ξ ⊗ ∂x S+h (x, ξ)− Id | ≤ C〈R〉−µ < 1
2 , |∂

α
x ∂

β
ξ S+h (x, ξ)| ≤ Cαβ for |α+β| ≥ 2,

uniformly in h ∈ (0, h0]. Therefore, the standard L2-boundedness of FIOs implies that Jh(S+h , a) is
uniformly bounded on L2(Rd) with respect to h ∈ (0, h0].

We now construct the outgoing approximation for e−i t H̃ h/h .

Theorem 4.3. Let us fix arbitrarily open intervals I b I0b I1b I2b (0,∞),−1<σ <σ0 <σ1 <σ2 < 1
and L > 0. Let R0 and h0 be as in Proposition 4.1 with I, σ replaced by I2, σ2, respectively. Then, for
every integer N ≥ 0, the following hold uniformly with respect to R ≥ R0 and h ∈ (0, h0].

(1) There exists a symbol

b+h =
N−1∑
j=0

h j b+h, j with b+h, j ∈ S(〈x〉− j
〈ξ〉− j , g), supp b+h, j ⊂ 0

+(R1/3, I1, σ1),

such that, for any a+ ∈ S(1, g) with supp a+ ⊂ 0+(R, I, σ ), we can find

c+h =
N−1∑
j=0

h j c+h, j with c+h, j ∈ S(〈x〉− j
〈ξ〉− j , g), supp c+h, j ⊂ 0

+(R1/2, I0, σ0),

such that, for all 0≤ t ≤ h−1, e−i t H̃ h/h Oph(a
+)∗ can be brought to the form

e−i t H̃ h/h Oph(a
+)∗ = Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ Q+IK(t, h, N ),

where Jh(S+h , w), w = b+h , c+h , are h-FIOs associated to the phase S+h defined in Proposition 4.1 with R,
I , and σ replaced by R1/4, I2, and σ2, respectively. Moreover, for any integer s ≥ 0 with 2s ≤ N − 1, the
remainder Q+IK(t, h, N ) satisfies

‖〈D〉s Q+IK(t, h, N )〈D〉s‖L2→L2 ≤ CNshN−2s−1, (4-6)

uniformly with respect to h ∈ (0, h0] and 0≤ t ≤ h−1.

(2) Let KS+h
(t, x, y) be the distribution kernel of Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗. Then KS+h
satisfies the

dispersive estimate
|KS+h

(t, x, y)| ≤ C |th|−d/2, (4-7)

uniformly with respect to h ∈ (0, h0], x, y ∈ Rd and 0≤ t ≤ h−1.

Proof. This theorem is basically known; hence we omit the proof. For the construction of the amplitudes
b+h and c+h , we refer to [Robert 1994, Section 4]; see also [Bouclet and Tzvetkov 2007, Section 3]. The
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remainder estimate (4-6) can be proved by the same argument as that in [Bouclet and Tzvetkov 2007,
Proposition 3.3, Lemma 3.4] combined with the simple estimate

‖〈D〉s(H̃ h
+C1)

−s/2
‖L2→L2 ≤ Csh−s, s ≥ 0.

where C1 > 0 is a large constant. Note that this estimate follow from the obvious bounds

‖〈D〉s〈h D〉−s
‖L2→L2 ≤ Csh−s, s ≥ 0,

and the fact that ( p̃h + h p̃1,h + C1)
−s/2
∈ S(〈ξ〉−s, g) since p̃h + h p̃1,h + C1 is uniformly elliptic for

sufficiently large C1 > 0. The dispersive estimate (4-7) can be verified by the same argument as that in
[Bouclet and Tzvetkov 2007, Lemma 4.4]. �

The following lemma, which has been essentially proved in [Mizutani 2013], tells us that we can still
construct the semiclassical approximation for the original propagator e−i t H h/h if we restrict the support
of initial data in the region 0+(R, J, σ )∩ {x : |x |< h−1

}.

Lemma 4.4. Suppose that {a+h }h∈(0,1] is a bounded set in S(1, g) with symbols supported in

0+(R, I, σ )∩ {x : |x |< h−1
}.

There exists L > 1 such that, for any M, s ≥ 0, h ∈ (0, h0] and 0≤ t ≤ h−1, we have

‖(e−i t H h/h
− e−i t H̃ h/h)Oph(a

+

h )
∗
〈D〉s‖L2→L2 ≤ CM,shM−s,

where CM,s > 0 is independent of h and t.

In order to prove this lemma, we need the following.

Lemma 4.5. Let fh ∈ C∞(Rd) be such that for any α ∈ Zd
+

,

|∂αx fh(x)| ≤ Cα

uniformly with respect to h ∈ (0, h0] and such that supp fh ⊂ {|x | ≥ L/(2h)}. Let L > 1 be large enough.
Then, under the conditions in Lemma 4.4, we have

‖ fh(x)〈D〉γ e−i t H̃ h/h Oph(a
+

h )
∗
〈D〉s‖L2→L2 ≤ CM,s,γ hM−s−γ ,

for any s, γ ≥ 0 and M ≥ 0, uniformly with respect h ∈ (0, h0] and 0≤ t ≤ 1/h.

Proof. We apply Theorem 4.3 to e−i t H̃ h/h Oph(a
+

h )
∗ and obtain

e−i t H̃ h/h Oph(a
+

h )
∗
= Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ Q+IK(t, h, N ).

By virtue of (4-6), the remainder fh(x)〈D〉γ Q+IK(t, h, N )〈D〉s is bounded on L2(Rd) with the norm
dominated by CNsγ hN−γ−s−1, uniformly with respect h ∈ (0, h0] and t ∈ [0, 1/h]. On the other hand, by
virtue of (4-5), the phase of KS+h

(t, x, y), which is given by

8+h (t, x, y, ξ)= S+h (x, ξ)−
1
2 t |ξ |2− S+h (y, ξ),

satisfies ∂ξ8+h (t, x, y, ξ)= (x − y)(Id+O(R−µ/4))− tξ. Here we recall that
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supp c+h ⊂ {(y, ξ) ∈ R2d
: a+h (y, ∂ξ S+h (y, ξ)) 6= 0};

see [Mizutani 2013, Lemma 3.2] and its proof. In particular, c+h (y, ξ) vanishes in the region {y : |y|≥ 1/h}.
We now set L = 4

√
sup I2+ 2, where I2 is given in Theorem 4.3. Since |x | ≥ L/(2h), |y| < 1/h, and

|ξ |2 ∈ I2 on the support of the amplitude fh(x)b+h (x, ξ)c
+

h (y, ξ), we obtain

|∂ξ8
+

h (t, x, y, ξ)|> c(1+ |x | + |y| + |ξ | + t + h−1), 0≤ t ≤ h−1,

for some universal constant c > 0. The assertion now follows from an integration by parts and the
L2-boundedness of h-FIOs. �

Proof of Lemma 4.4. The Duhamel formula yields

(e−i t H h/h
− e−i t H̃ h/h)

=−
i
h

∫ t

0
e−i(t−s)H h/h W h

0 e−is H̃ h/h ds

=−
i
h

∫ t

0
e−i(t−s)H h/he−is H̃ h/h W h

0 ds+ 1
h2

∫ t

0
e−i(t−s)H h/h

∫ s

0
e−i(s−τ)H̃ h/h

[H̃ h,W h
0 ]e
−iτ H̃ h/h dτ ds,

where W h
0 := H h

− H̃ h consists of two parts,

ih2

2

∑
j,k

(∂ j g jk(1−ψ(hx/L))Ak + (1−ψ(hx/L))A j g jk∂k)

and
h2

2

∑
j,k

(1−ψ(hx/L))2g jk A j Ak + h2(1−ψ(hx/L))V .

In particular, W h
0 is a first order differential operator of the form

h2
∑
|α|=1

f h
α (x)∂

α
x + h2 f h

0 (x),

where f h
α , f h

0 are supported in {|x | ≥ L/(2h)} and satisfy

|∂βx f h
α (x)| ≤ Cαβ〈x〉1−µ−|β|, |∂βx f h

0 (x)| ≤ Cαβ〈x〉2−µ−|β|. (4-8)

Since {|x | ≥ L/(2h)} ∩πx( supp a+h )=∅ if L > 1, we have

‖W h
0 Oph(a

+

h )
∗
〈D〉s‖L2→L2 ≤ CM,shM−s, M ≥ 0, s ∈ R.

Therefore, the first term of the right-hand side of the above Duhamel formula satisfies the desired estimates
since e−i t H h/h and e−i t Ĥ h/h are unitary on L2.

We next study the second term. Again by the Duhamel formula, we have

[H̃ h,W h
0 ]e
−iτ H̃ h/h

= e−iτ H̃ h/h
[H̃ h,W h

0 ] +
i
h

∫ τ

0
e−i(τ−u)H̃ h/h

[H̃ h, [H̃ h,W h
0 ]]e

−iu H̃ h/h du.
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Since the coefficients of the commutator [H̃ h,W h
0 ] are supported in {|x |≥ L/(2h)}, the support property of

a+h again implies that [H̃ h,W h
0 ]Oph(a

+

h )
∗
〈D〉s = OL2→L2(hM−s) for any M ≥ 0 and s ∈R. Furthermore,

by virtue of (4-1), (4-8), and the symbolic calculus, the coefficients of [H̃ h, [H̃ h,W h
0 ]] are uniformly

bounded in x and supported in {|x | ≥ L/(2h)}. We now apply Lemma 4.5 to

[H̃ h, [H̃ h,W h
0 ]]e

−iu H̃ h/h Oph(a
+

h )
∗

and obtain the assertion. �

Proof of Proposition 3.1. Rescaling t→ th, it suffices to show

‖Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
‖L1→L∞ ≤ Cε|th|−d/2, 0< |t | ≤ h−1,

where H h
= h2 H . Let Ah(x, y) be the distribution kernel of Oph(a

+

h ):

Ah(x, y)= (2πh)−d
∫

ei(x−y)·ξ/ha+h (x, ξ) dξ.

Since a+h ∈ S(1, g) is compactly supported in I with respect to ξ , we easily see that

sup
x

∫
|Ah(x, y)| dy+ sup

y

∫
|Ah(x, y)| dx ≤ C, h ∈ (0, 1].

Moreover, since 〈ξ〉sa+h 〈ξ〉
γ
∈ S(1, g) for any s, γ , we have

‖〈D〉s Oph(a
+

h )〈D〉
γ
‖L2→L2 ≤ Csh−s−γ . (4-9)

Combining these two estimates with Theorem 4.3 and Lemma 4.4, we can write

Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
= K1(t, h, N )+ K2(t, h, N ),

where

K1(t, h, N )= Oph(a
+

h )Jh(S+h , b+h )e
−i t H h

0 /h Jh(S+h , c+h )
∗,

K2(t, h, N )= Oph(a
+

h )Q
+

IK(t, h, N )+Oph(a
+

h )(e
−i t H h/h

− e−i t H̃ h/h)Oph(a
+

h )
∗.

By (4-7), the distribution kernel of K1(t, h, N ), which we denote by K1(t, x, y), satisfies

|K1(t, x, y)| ≤
∫
|Ah(x, z)||KS+h

(t, z, y)| dz ≤ CN |th|−d/2, 0< t ≤ h−1,

uniformly in h ∈ (0, h0]. On the other hand, (4-6), Lemma 4.4, and (4-9) imply

‖〈D〉s K2(t, h, N )〈D〉s‖L2→L2 ≤ CN ,shN−2s−1.

If we choose N ≥ d + 2 and s > d/2, it follows from the Sobolev embedding that the distribution kernel
of K2(t, h, N ) is uniformly bounded in R2d with respect to h ∈ (0, h0] and 0 < t ≤ h−1. Therefore,
Oph(a

+

h )e
−i t H h/h Oph(a

+

h )
∗ has the distribution kernel K (t, x, y) satisfying dispersive estimates for

0< t ≤ h−1:
|K (t, x, y)| ≤ CN |th|−d/2, x, y ∈ Rd . (4-10)
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Finally, using the relation

Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
= (Oph(a

+

h )e
i t H h/h Oph(a

+

h )
∗)∗,

we learn that K (t, x, y)= K (−t, y, x) and (4-10) also holds for 0<−t ≤ h−1. For the incoming case,
the proof is analogous and we omit it. �

5. Fourier integral operators with the time dependent phase

Throughout this section we assume Assumption 1.1 with µ≥ 0. Consider a symbol χε ∈ S(1, g) supported
in a region

�(ε) := {(x, ξ) ∈ R2d
: 〈x〉> ε|ξ |/2},

where ε > 0 is an arbitrarily small fixed constant. In this section we prove the dispersive estimate

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t | ≤ tε,

where tε > 0 is a small constant depending on ε. This estimate, combined with the L2-boundedness of
Op(χε) and e−i t H , implies the Strichartz estimates for Op(χε)e−i t H .

Let us give a short summary of the steps of the proof. Choose χ∗ε ∈ S(1, g) so that suppχ∗ε = suppχε
and Op(χε)∗ =Op(χ∗ε )+Op(rN ) with some rN ∈ S(〈x〉−N

〈ξ〉−N , g) for sufficiently large N > d/2. We
first construct an approximation for e−i t H Op(χ∗ε ) in terms of the FIO with a time dependent phase

J (9, bN ) f (x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)b(t, x, ξ) f (y) dy dξ,

where 9 is a generating function of the Hamilton flow associated to p(x, ξ) and (∂ξ9, ξ) 7→ (x, ∂x9) is
the corresponding canonical map, and the amplitude

b = b0+ b2+ · · ·+ bN−1

solves the corresponding transport equations. Although such parametrix constructions are well known
as WKB approximations (at least if χ∗ε is compactly supported in ξ and the time scale depends on the
size of frequency), we give the details of the proof since, in the present case, suppχ∗ε is not compact
with respect to ξ and tε is independent of the size of frequency. The crucial point is that p(x, ξ) is of
quadratic type on �(ε):

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ, (x, ξ) ∈�(ε), |α+β| ≥ 2,

which allows us to follow a classical argument (see, for example, [Kitada and Kumano-go 1981]) and
construct the approximation for |t | < tε if tε > 0 is small enough. The composition Op(χε)J (9, b) is
also an FIO with the same phase, and a standard stationary phase method can be used to prove dispersive
estimates for 0< |t |< tε. It remains to obtain the L1

→ L∞ bounds of the remainders Op(χε)e−i t H Op(rN )

and Op(χε)e−i t H (Op(χ∗ε )− J (9, bN )). If e−i t H maps from the Sobolev space H d/2(Rd) to itself, then
L1
→ L∞ bounds are direct consequences of the Sobolev embedding and L2-boundedness of PDOs.

However, our Hamiltonian H is not bounded below (on {|x |& |ξ |}) and such a property does not hold in
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general. To overcome this difficulty, we use an Egorov-type lemma as follows. By the Sobolev embedding
and the Littlewood–Paley decomposition, the proof is reduced to that of the estimate∑

j≥0

‖2 jγ S j (D)Op(χε)e−i t H Op(rN )〈D〉γ f ‖
2
L2 ≤ C‖ f ‖2L2, (5-1)

where γ >d/2 and S j is a dyadic partition of unity. Then we will prove that there exists η j (t, · , · )∈ S(1, g)
such that

2 j
≤ C(1+ |x | + |ξ |) on supp η j (t),

and that

S j (D)Op(χε)e−i t H
= e−i t H Op(η j (t))+ OL2→L2(2− j N ), |t |< tε� 1.

Choosing δ > 0 with γ + δ ≤ N/2, we learn that 2 j (γ+δ)η j (t)rN 〈ξ〉
γ
∈ S(1, g), and hence (5-1) holds.

Op(χε)e−i t H (Op(χ∗ε )− J (9, b)) can be controlled similarly.

Short-time behavior of the Hamilton flow. We now discuss the classical mechanics generated by p(x, ξ).
We denote by (X (t),4(t))= (X (t, x, ξ),4(t, x, ξ)) the solution to the Hamilton equations

Ẋ j =
∂p
∂ξ j

(X,4)=
∑

k

g jk(X)(4k − Ak(X)),

4̇ j =−
∂p
∂x j

(X,4)

=−
1
2

∑
k,l

∂gkl

∂x j
(X)(4k − Ak(X))(4l − Al(X))+

∑
k,l

gkl(X)
∂Ak

∂x j
(X)(4l − Al(X))−

∂V
∂x j

(X)

with the initial condition (X (0),4(0))= (x, ξ), where ḟ = ∂t f . We first observe that the flow conserves
the energy:

p(x, ξ)= p(X (t),4(t)),

which, combined with the uniform ellipticity of g jk , implies

|4(t)− A(X (t))|2 . p(X (t),4(t))− V (X (t))

= p(x, ξ)− V (X (t))

. |ξ − A(x)|2+ |V (x)| + |V (X (t))|,

and hence |4(t)|. |ξ | + 〈x〉+ 〈X (t)〉. By the Hamilton equation, we then have

|Ẋ(t)| + |4̇(t)| ≤ C(1+ |ξ | + |x | + |X (t)| + |4(t)|).

Applying Gronwall’s inequality to this estimate, we obtain an a priori bound:

|X (t)− x | + |4(t)− ξ | ≤ CT |t |(1+ |x | + |ξ |), |t | ≤ T, x, ξ ∈ Rd .

Using this estimate, we obtain more precise behavior of the flow with initial conditions in �(ε).
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Lemma 5.1. Let ε > 0. Then, for sufficiently small tε > 0 and all α, β ∈ Zd
+

,

|∂αx ∂
β
ξ (X (t, x, ξ)− x)| + |∂αx ∂

β
ξ (4(t, x, ξ)− ξ | ≤ Cαβε|t |〈x〉1−|α+β|,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×�(ε).

Proof. We only consider the case with t ≥ 0, the proof for the opposite case is similar. Let (x, ξ) ∈�(ε).
First we remark that, for sufficiently small tε > 0,

|x |/2≤ |X (t, x, ξ)| ≤ 2〈x〉, |t | ≤ tε. (5-2)

For |α+ β| = 0, the assertion is obvious. We let |α+ β| = 1 and differentiate the Hamilton equations
with respect to ∂αx ∂

β
ξ :

d
dt

(
∂αx ∂

β
ξ X

∂αx ∂
β
ξ 4

)
=

(
∂x∂ξ p(X, 4) ∂2

ξ p(X, 4)
−∂2

x p(X, 4) −∂ξ∂x p(X, 4)

)(
∂αx ∂

β
ξ X

∂αx ∂
β
ξ 4

)
. (5-3)

Using (5-2), we learn that p(X (t),4(t)) is of quadratic type in �(ε):

|(∂αx ∂
β
ξ p)(X (t),4(t))| ≤ Cαβε〈x〉2−|α+β|, (t, x, ξ) ∈ (−tε, tε)×�(ε).

Hence all entries of the above matrix are uniformly bounded in (t, x, ξ) ∈ (−tε, tε)×�(ε). Taking tε > 0
smaller if necessary, integrating (5-3) with respect to t , and applying Gronwall’s inequality, we have the
assertion with |α+β| = 1. For |α+β| ≥ 2, we prove the estimate for ∂2

ξ1
X (t) and ∂2

ξ1
4(t) only, where

ξ = (ξ1, ξ2, . . . , ξd). Proofs for other cases are similar, and proofs for higher derivatives follow from an
induction on |α+β|. By the Hamilton equation, we learn

d
dt
∂2
ξ1

X (t)= ∂x∂ξ p(X (t),4(t))∂2
ξ1

X (t)+ ∂2
ξ p(X (t),4(t))∂2

ξ1
4(t)+ Q(X (t),4(t)),

where Q(X (t),4(t)) satisfies

|Q(X (t),4(t))| ≤ Cε
∑

|α+β|=3,|β|≥1

|(∂αx ∂
β
ξ p)(X (t),4(t))||∂ξ1 X (t)||α||∂ξ14(t)|

|β|

≤ Cε〈x〉−1.

We similarly obtain

d
dt
∂2
ξ1
4(t)=−∂2

x p(X (t),4(t))∂2
ξ1

X (t)− ∂ξ∂x p(X (t),4(t))∂2
ξ1
4(t)+ O(〈x〉−1).

Applying Gronwall’s inequality, we have the desired estimates. �

Lemma 5.2. (1) Let tε > 0 be small enough. Then, for any |t |< tε, the map

g(t) : (x, ξ) 7→ (X (t, x, ξ), ξ)

is a diffeomorphism from �(ε/2) onto its range, and satisfies

�(ε)⊂ g(t, �(ε/2)) for all |t |< tε.
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(2) Let �(ε) 3 (x, ξ) 7→ (Y (t, x, ξ), ξ) ∈ �(ε/2) be the inverse map of g(t). Then Y (t, x, ξ) and
4(t, Y (t, x, ξ), ξ) satisfy the same estimates as those for X (t, x, ξ) and 4(t, x, ξ) of Lemma 5.1, respec-
tively:

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| + |∂αx ∂

β
ξ (4(t, Y (t, x, ξ), ξ)− ξ | ≤ Cαβε|t |〈x〉1−|α+β|,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×�(ε).

Proof. Choosing a cutoff function ρ ∈ S(1, g) such that 0 ≤ ρ ≤ 1, supp ρ ⊂ �(ε/3), and ρ ≡ 1 on
�(ε/2), we modify g(t) as follows:

gρ(t, x, ξ)= (Xρ(t, x, ξ), ξ), Xρ(t, x, ξ)= (1− ρ(x, ξ))x + ρ(x, ξ)X (t, x, ξ).

It is easy to see that, for (t, x, ξ) ∈ (−tε, tε)×�(ε/2), gρ(t, x, ξ) is smooth and Lemma 5.1 implies

|∂αx ∂
β
ξ gρ(t, x, ξ)| ≤ Cαβε, |α+β| ≥ 1,

|J (gρ)(t, x, ξ)− Id | ≤ Cεtε,

where J (gρ) is the Jacobi matrix with respect to (x, ξ) and the constant Cε > 0 is independent of t, x ,
and ξ . Choosing tε > 0 so small that Cεtε < 1/2, and applying the Hadamard global inverse mapping
theorem, we see that, for any fixed |t |< tε, gρ(t) is a diffeomorphism from R2d onto itself. By definition,
g(t) is diffeomorphic from �(ε/2) onto its range. Since gρ(t) is bijective, it remains to check that

�(ε)c ⊃ gρ(t, �(ε/2)c), |t |< tε.

Suppose that (x, ξ) ∈ �(ε/2)c. If (x, ξ) ∈ �(ε/3)c, the assertion is obvious since gρ(t) ≡ Id outside
�(ε/3). If (x, ξ) ∈�(ε/3) \�(ε/2), then, by Lemma 5.1 and the support property of ρ, we have

|Xρ(t, x, ξ)| ≤ |x | + ρ(x, ξ)|(X (t, x, ξ)− x)| ≤ (ε/2+C0tε)〈ξ〉

for some C0 > 0 independent of x, ξ , and tε. Choosing tε < ε/(2C0), we obtain the assertion.
We next prove the estimates on Y (t). Since (Y (t, x, ξ), ξ) ∈�(ε/2), we learn

|Y (t, x, ξ)− x | = |X (0, Y (t, x, ξ), ξ)− X (t, Y (t, x, ξ), ξ)|

≤ sup
(x,ξ)∈�(ε/2)

|X (t, x, ξ)− x |

≤ Cε|t |〈x〉.

For α, β ∈ Zd
+

with |α+ β| = 1, apply ∂αx ∂
β
ξ to the equality x = X (t, Y (t, x, ξ), ξ). We then have the

equality
A(t, Z(t, x, ξ))∂αx ∂

β
ξ (Y (t, x, ξ)− x)= ∂αy ∂

β
η (y− X (t, y, η))|(y,η)=Z(t,x,ξ),

where Z(t, x, ξ) = (Y (t, x, ξ), ξ) and A(t, Z) = (∂x X)(t, Z) is a d×d matrix. By Lemma 5.1 and
a similar argument to that in the proof of Lemma 5.2(1), we learn that A(t, Z(t, x, ξ)) is invertible
if tε > 0 is small enough, and that A(t, Z(t, x, ξ)) and A(t, Z(t, x, ξ))−1 are bounded uniformly in
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(t, x, ξ) ∈ (−tε, tε)×�(ε/2). Therefore,

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| ≤ Cαβ sup

(x,ξ)∈�(ε/2)
|∂αx ∂

β
ξ (x − X (t, x, ξ))|

≤ Cαβ |t |〈x〉1−|α+β|.

Proofs for higher derivatives are obtained by induction in |α+β| and proofs for 4(t, Y (t, x, ξ), ξ) are
similar. �

The parametrix for Op(χε)e−i t H Op(χε)∗. Before starting the construction of parametrix, we prepare
two lemmas. The following Egorov-type theorem will be used to control the remainder term. We write
exp t Hp(x, ξ)= (X (t, x, ξ),4(t, x, ξ)).

Lemma 5.3. For h ∈ (0, 1], consider a h-dependent symbol ηh ∈ S(1, g) such that supp ηh ⊂ �(ε) ∩

{1/(2h) < |ξ |< 2/h}. Then, for sufficiently small tε > 0, independent of h, and any integer N ≥ 0, there
exists a bounded family of symbols

{ηN
h (t, · , · ) : |t |< tε, 0< h ≤ 1} ⊂ S(1, g)

such that

supp ηN
h (t, · , · )⊂ exp(−t)Hp( supp ηh)

and

‖ei t H Op(ηh)e−i t H
−Op(ηN

h (t))‖L2→L2 ≤ CNεhN ,

uniformly with respect to 0< h ≤ 1 and |t |< tε.

Proof. Let η0
h(t, x, ξ)= ηh(exp t Hp(x, ξ))= ηh(X (t, x, ξ),4(t, x, ξ)). It is easy to see that

supp η0
h ⊂ exp(−t)Hp( supp ηh).

Moreover, Lemma 5.1 implies that {η0
h : |t |< tε, 0< h ≤ 1} is a bounded subset of S(1, g). By a direct

computation, η0
h solves

∂tη
0
h = {p, η

0
h}, η0

h|t=0 = ηh,

where { · , · } is the Poisson bracket. Then, by standard pseudodifferential calculus, there exists a bounded
set {r0

h (t, · , · ) : 0≤ t < tε, 0< h ≤ 1} ⊂ S(1, g) with supp r0
h ⊂ exp(−t)Hp( supp ηh) such that

d
dt

Op(η0
h)= i[H,Op(η0

h)] + h Op(r0
h ).

We next set

η1
h(t, x, ξ)=

∫ t

0
r0

h (s, X (t − s, x, ξ),4(t − s, x, ξ)) ds.

Again, we learn that {η1
h(t, · , · ) : |t |< tε, 0< h ≤ 1} ⊂ S(1, g) is also bounded and that

supp η1
h ⊂ exp(−t)Hp( supp ηh)
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for all |t |< tε and 0< h ≤ 1. Moreover, η1
h solves

∂tη
1
h = {p, η

1
h}+ r0

h , η1
h|t=0 = 0,

which implies
d
dt

Op(η0
h + hη1

h)= i[H,Op(η0
h + hη1

h)] + h2 Op(r1
h )

with some {r1
h : 0 ≤ t < tε, 0 < h ≤ 1} ⊂ S(1, g) and supp r1

h ⊂ exp(−t)Hp( supp ηh). Iterating this
procedure and putting ηN

h =
∑N−1

j=0 h jη
j
h , we obtain the assertion. �

Using this lemma, we have the following.

Lemma 5.4. Let ε > 0. Then, for any symbol χε ∈ S(1, g) with suppχε ⊂�(ε) and any integer N ≥ 1,
there exists χ∗ε ∈ S(1, g) with suppχ∗ε ⊂�(ε) such that for any γ < N/2,

sup
|t |<tε
‖Op(χε)e−i t H Op(χε)∗−Op(χε)e−i t H Op(χ∗ε )‖H−γ (Rd )→Hγ (Rd ) ≤ CNγ ε.

Proof. By the expansion formula (2-4), there exists χ∗ε ∈ S(1, g) with suppχ∗ε ⊂�(ε) such that

Op(χε)∗ = Op(χ∗ε )+Op(r0(N ))

with some r0(N ) ∈ S(〈x〉−N
〈ξ〉−N , g). For δ > 0 with 2γ + δ ≤ N , we split

〈D〉γ Op(χε)e−i t H Op(r0(N ))〈D〉γ=〈D〉γ Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ·〈x〉γ+δ〈D〉γ+δOp(r0(N ))〈D〉γ .

Since 〈x〉γ+δ〈ξ〉γ+δr0(N )〈ξ〉γ ∈ S(1, g), 〈x〉γ+δ〈D〉γ+δ Op(r0(N ))〈D〉γ is bounded on L2. In order to
prove the L2-boundedness of the first term of the right hand side, we use the standard Littlewood–Paley
decomposition and Lemma 5.3 as follows. Consider a dyadic partition of unity with respect to the
frequency:

∞∑
j=0

S j (D)= 1,

where S j (ξ)= S(2− jξ), j ≥ 1, with some S ∈ C∞0 (R
d) supported in {1/2< |ξ |< 2} and S0 ∈ C∞0 (R

d)

supported in {|ξ |< 1}. Then

‖〈D〉γ Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖L2≤C

( ∞∑
j=0

‖2 jγ S j (D)Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖

2
L2

)1/2

.

By the expansion formula (2-3), there exists a sequence of symbols η j ∈ S(1, g) supported in

�(ε)∩ {2 j−1 < |ξ |< 2 j+1
}

such that

S j (D)Op(χε)= Op(η j )+ Q1( j, N ), ‖Q1( j, N )‖L2→L2 = O(2− j N ).
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We then learn from Lemma 5.3 with h = 2− j that there exists {ηN
j (t) : |t |< tε} ⊂ S(1, g) such that

Op(η j )e−i t H
= e−i t H Op(ηN

j (t))+ Q2(t, j, N ), sup
|t |<tε
‖Q2(t, j, N )‖L2→L2 = O(2− j N ).

Since N ≥ γ + δ, the remainder satisfies

sup
|t |<tε
‖2 jγ (Q1( j, N )e−i t H

+ Q2(t, j, N ))〈D〉−γ−δ〈x〉−γ−δ f ‖
2
L2 ≤ C2−2 jδ

‖ f ‖2L2 .

Suppose that (x, ξ) ∈ supp ηN
j (t). Since supp ηN

j (t)⊂ exp(−t)Hp( supp η j ), we have

|X (t, x, ξ)|> ε〈4(t, x, ξ)〉, 2 j−1 < |4(t, x, ξ)|< 2 j+1.

Using Lemma 5.1 with the initial data (X (t, x, ξ),4(t, x, ξ)), we learn

|x − X (t, x, ξ)| + |ξ −4(t, x, ξ)| ≤ Ctε〈X (t, x, ξ)〉, |t |< tε.

Combining these two estimates, we see that

2 j
≤ C(1+ |x | + |ξ |), (x, ξ) ∈ supp ηN

j (t), |t |< tε,

where the constant C > 0 is independent of x , ξ , and t , provided that tε > 0 is small enough. Therefore,
2 j (γ+δ)ηN

j (t)〈ξ〉
−γ−δ
〈x〉−γ−δ ∈ S(1, g) and the corresponding PDO is bounded on L2. Finally, we obtain

∞∑
j=0

‖2 jγ Op(η j )e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖

2
L2

≤ C
∞∑
j=0

(
‖2− jδ2 j (γ+δ) Op(ηN

j (t))〈D〉
−γ−δ
〈x〉−γ−δ f ‖

2
L2 + 2−2 jδ

‖ f ‖2L2

)

≤ C
∞∑
j=0

2−2 jδ
‖ f ‖2L2

≤ C‖ f ‖2L2, �

We now consider a parametrix construction of Op(χε)e−i t H Op(χ∗ε ). Let us first make the following
ansatz:

v(t, x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)bN (t, x, ξ) f (y) dy dξ,

where bN
=
∑N−1

j=0 b j . In order to approximately solve the Schrödinger equation

i∂tv(t)= Hv(t), v|t=0 = Op(χ∗ε )ϕ,

the phase function 9 and the amplitude bN should satisfy respectively the Hamilton–Jacobi equation

∂t9 + p(x, ∂x9)= 0, 9|t=0 = x · ξ (5-4)
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and the transport equations{
∂t b0+X · ∂x b0+Yb0 = 0, b0|t=0 = χε,

∂t b j +X · ∂x b j +Yb j + i K b j−1 = 0, b j |t=0 = 0, 1≤ j ≤ N − 1,
(5-5)

where K is the kinetic part of H , and the vector field X and function Y are defined by

X j (t, x, ξ) := (∂ξ j p)(x, ∂x9(t, x, ξ)), j = 1, . . . , d,

Y(t, x, ξ) := [k(x, ∂x)9 + p1(x, ∂x9)](t, x, ξ).

Here p, p1 are given by (1-6). We first construct the phase function 9.

Proposition 5.5. Let us fix ε > 0 arbitrarily. Then, for sufficiently small tε > 0, we can construct a smooth
and real-valued function 9 ∈ C∞((−tε, tε)×R2d

;R) which solves the Hamilton–Jacobi equation (5-4)
for (x, ξ) ∈�(ε) and |t | ≤ tε. Moreover, for all α, β ∈ Zd

+
, x, ξ ∈ Rd and |t | ≤ tε,

|∂αx ∂
β
ξ (9(t, x, ξ)− x · ξ + tp(x, ξ)| ≤ Cαβε|t |2〈x〉2−|α+β|, (5-6)

where Cαβε > 0 is independent of x, ξ and t.

Proof. We consider the case when t ≥ 0, and the proof for t ≤ 0 is similar. We first define the action
integral 9̃(t, x, ξ) on [0, tε)×�(ε/2) by

9̃(t, x, ξ) := x · ξ +
∫ t

0
L(X (s, Y (t, x, ξ), ξ),4(s, Y (t, x, ξ), ξ)) ds,

where L(x, ξ) = ξ · ∂ξ p(x, ξ)− p(x, ξ) is the Lagrangian associated to p(x, ξ), and X, 4, and Y are
given by Lemma 5.2(2) with ε replaced by ε/2. The smoothness of 9̃(t, x, ξ) follows from corresponding
properties of X (t), 4(t), and Y (t). It is well known that 9̃(t, x, ξ) solves the Hamilton–Jacobi equation

∂t9̃(t, x, ξ)+ p(x, ∂x9̃(t, x, ξ))= 0, 9|t=0 = x · ξ,

for (x, ξ) ∈�(ε/2), and satisfies

∂x9̃(t, x, ξ)=4(t, Y (t, x, ξ), ξ), ∂ξ 9̃(t, x, ξ)= Y (t, x, ξ).

Lemma 5.2(2) shows that p(Y (t, x, ξ), ξ) is of quadratic type:

|∂αx ∂
β
ξ p(Y (t, x, ξ), ξ)| ≤ Cαβε〈x〉2−|α+β|, (t, x, ξ) ∈ [0, tε)×�(ε/2),

which, combined with the energy conservation

p(x, ∂x9̃(t, x, ξ))= p(Y (t, x, ξ), ξ),

implies

|∂αx ∂
β
ξ (9̃(t, x, ξ)− x · ξ)| ≤ Cαβε|t |〈x〉2−|α+β|, (t, x, ξ) ∈ [0, tε)×�(ε/2).
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We similarly obtain, for (t, x, ξ) ∈ [0, tε)×�(ε/2),

|p(x, ∂x9̃(t, x, ξ))− p(x, ξ)| =
∣∣∣∣(∂x9̃(t, x, ξ)− ξ) ·

∫ 1

0
(∂ξ p)(x, θ∂x9̃(t, x, ξ)+ (1− θ)ξ) dθ

∣∣∣∣
≤ Cε|t |〈x〉2,

and, more generally,

|∂αx ∂
β
ξ

(
p(x, ∂x9̃(t, x, ξ))− p(x, ξ)

)
| ≤ Cαβε|t |〈x〉2−|α+β|.

Therefore, integrating the Hamilton–Jacobi equation with respect to t , we have

|∂αx ∂
β
ξ (9̃(t, x, ξ)− x · ξ + tp(x, ξ))| ≤ Cαβε|t |2〈x〉2−|α+β|.

Finally, choosing a cutoff function ρ ∈ S(1, g) so that 0≤ ρ ≤ 1, ρ ≡ 1 on �(ε), and supp ρ ⊂�(ε/2),
we define

9(t, x, ξ) := x · ξ − tp(x, ξ)+ ρ(x, ξ)(9̃(t, x, ξ)− x · ξ + tp(x, ξ)).

9(t, x, ξ) clearly satisfies the statement of Proposition 5.5. �

Using the phase function constructed in Proposition 5.5, we can define the FIO J (9, a) : S→ S′ by

J (9, a) f (x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)a(x, ξ) f (y) dy dξ, f ∈ S(Rd),

where a ∈ S(1, g). Moreover, we have the following.

Lemma 5.6. Let tε > 0 be small enough. Then, for any bounded family of symbols

{a(t) : |t |< tε} ⊂ S(1, g),

J (9, a) is bounded on L2(Rd) uniformly with respect to |t |< tε:

sup
|t |≤tε
‖J (9, a)‖L2→L2 ≤ Cε.

Proof. For sufficiently small tε > 0, the estimates (5-6) imply

|(∂ξ ⊗ ∂x9)(t, x, ξ)− Id | ≤ Cεtε < 1
2 , |∂

α
x ∂

β
ξ 9(t, x, ξ)| ≤ Cαβε for |α+β| ≥ 2,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×R2d . Therefore, the assertion is a consequence of the
standard L2-boundedness of FIOs, or, equivalently, Kuranishi’s trick and the L2-boundedness of PDOs;
see, for example, [Robert 1987; Mizutani 2013, Lemma 4.2]. �

We next construct the amplitude.

Proposition 5.7. Let 9(t, x, ξ) be as in Proposition 5.5 with ε replaced by ε/3. Then, for any integer
N ≥ 0, there exist families of symbols {b j (t, · , · ) : |t |< tε} ⊂ S(〈x〉− j

〈ξ〉− j , g), j = 0, 1, 2, . . . , N − 1,
such that supp b j (t, · , · )⊂�(ε/2) and b j solve the transport equations (5-5).
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Proof. We consider the case t ≥ 0 only. Symbols b j can be constructed by a standard method of
characteristics along the flow generated by X(t, x, ξ) as follows. First note that Assumption 1.1 and (5-6)
imply that

|∂αx ∂
β
ξ X(t, x, ξ)| ≤ Cαβε〈x〉1−|α+β|, (5-7)

|∂αx ∂
β
ξ Y(t, x, ξ)| ≤ Cαβε〈x〉−|α+β|, (5-8)

uniformly with respect to 0≤ t ≤ tε and (x, ξ) ∈�(ε/3). For all 0≤ s, t ≤ tε, we consider the solution
to the ODE

∂t z(t, s, x, ξ)= X(t, z(t, s, x, ξ), ξ), z(s, s)= x .

We learn from (5-7) and an argument as in the proof of Lemma 5.1 that z(t, s) is well defined for
0≤ s, t ≤ tε and (x, ξ) ∈�(ε/3), and that

|∂αx ∂
β
ξ (z(t, s, x, ξ)− x)| ≤ Cαβεtε〈x〉1−|α+β|, (x, ξ) ∈�(ε/3). (5-9)

Then b j (t) are defined inductively by

b0(t, x, ξ)= χ∗ε (z(0, t, x, ξ), ξ) exp
(∫ t

0
Y(s, z(s, t, x, ξ), ξ) ds

)
,

b j (t, x, ξ)=−
∫ t

0
(i K b j−1)(s, z(s, t, x, ξ), ξ) exp

(∫ t

u
Y(u, z(u, t, x, ξ), ξ) du

)
ds.

Since suppχ∗ε ⊂�(ε), by (5-9) and an argument as in the proof of Lemma 5.2(1), we see that b j (t, x, ξ)
is smooth with respect to (x, ξ) and that ∂αx ∂

β
ξ b j (t, x, ξ) are supported in �(ε/2) for all 0 ≤ t ≤ tε.

Thus, if we extend b j on R2d so that b j (t, x, ξ) = 0 outside �(ε/2), then b j is still smooth in (x, ξ).
Furthermore, we learn by (5-8) and (5-9) that {b j (t, · , · ) : t ∈ [0, tε], 0≤ j ≤ N − 1} is a bounded set
in S(〈x〉− j

〈ξ〉− j , g). Finally, a standard Hamilton–Jacobi theory shows that b j (t) solve the transport
equations (5-5). �

We now state the main result in this section.

Theorem 5.8. Fix ε > 0 arbitrarily. Then, for any sufficiently small tε > 0, any nonnegative integer
N ≥ 0 and any symbol χε ∈ S(1, g) supported in �(ε), we can find a bounded family of symbols
{aN (t, · , · ) : |t |< tε} ⊂ S(1, g) such that Op(χε)e−i t H Op(χε)∗ can be brought to the form

Op(χε)e−i t H Op(χε)∗ = J (9, aN )+ Q(t, N ),

where J (9, aN ) is the FIO with the phase 9(t, x, ξ) constructed in Proposition 5.5 with ε replaced by
ε/3. The distribution kernel of J (9, aN ), which we denote by K9,aN (t, x, y), satisfies the dispersive
estimate

|K9,aN (t, x, y)| ≤ CN ,ε|t |−d/2, 0< |t |< tε, x, ξ ∈ Rd .

Moreover, for any γ ≥ 0 with N > 2γ , the remainder Q(t, N ) satisfies

‖〈D〉γ Q(t, N )〈D〉γ ‖L2→L2 ≤ CNγ ε|t |, |t |< tε. (5-10)
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In particular, if we choose N ≥ d+1, the distribution kernel of Q(t, N ) is uniformly bounded in R2d with
respect to |t |< tε. Hence

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t |< tε.

Proof. We consider the case when t ≥ 0 and the proof for the opposite case is similar. By virtue of
Lemma 5.4, we may replace Op(χε)∗ by Op(χ∗ε ) for some χ∗ε ∈ S(1, g) supported in �(ε), without loss
of generality. Let bN

=
∑N−1

j=0 b j with b j constructed in Proposition 5.7. Since J (9, bN )|t=0 = Op(χ∗ε ),
we have the Duhamel formula

Op(χε)e−i t H Op(χ∗ε )= Op(χε)J (9, bN )− i
∫ t

0
Op(χε)e−i(t−s)H (Dt + H)J (9, bN )|t=s ds.

Estimates on the remainder. It suffices to show that

sup
|t |<tε
‖〈D〉γ Op(χε)e−i t H (Dt + H)J (9, bN )〈D〉γ ‖L2→L2 ≤ CNγ ε.

Since 9, b j solve the Hamilton–Jacobi equation (5-4) and transport equations (5-5), respectively, a direct
computation yields

e−i9(t,x,ξ)(Dt + H)
(

ei9(t,x,ξ)
N−1∑
j=0

b j (t, x, ξ)
)
= rN (t, x, ξ),

with some {rN (t, · , · ) : 0≤ t ≤ tε} ⊂ S(〈x〉−N
〈ξ〉−N , g). In particular,

(Dt + H)J (9, bN )= J (9, rN ).

A standard L2-boundedness of FIOs then implies

sup
|t |<tε
‖〈x〉γ+δ〈D〉γ+δ J (9, rN )〈D〉γ ‖L2→L2 ≤ CNγ δ,

for any γ, δ ≥ 0 with 2γ + δ ≤ N . Since, in the proof of Lemma 5.4, we already proved that

sup
|t |≤tε
‖〈D〉γ Op(χε)e−i t H

〈D〉−γ−δ〈x〉−γ−δ‖L2→L2 ≤ Cγ δ,

we obtain the desired estimate.

Dispersive estimates. By the composition formula of PDOs and FIOs (cf. [Robert 1987]),

Op(χε)J (9, bN )

is also an FIO with the same phase 9 and the amplitude

aN (t, x, ξ)= 1
(2π)d

∫
eiy·ηχε(x, η+ 4̃(t, x, y, ξ))bN (t, x + y, ξ) dy dη,

where 4̃(t, x, y, ξ)=
∫ 1

0 (∂x9)(t, y+ λ(x − y), ξ) dλ. By virtue of (5-6), 4̃ satisfies

|∂αx ∂
α′

y ∂
β
ξ (4̃(t, x, y, ξ)− ξ)| ≤ Cαα′β |t |, |α+α′+β| ≥ 1.
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Combining this with the relations χε, bN
∈ S(1, g), suppχε ⊂�(ε), and supp bN (t, · , · )⊂�(ε/2), we

see that {aN
: 0≤ t < tε} is bounded in S(1, g). The distribution kernel of J (9, aN ) is given by

K9,aN (t, x, y)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)aN (t, x, ξ) dξ.

By virtue of Proposition 5.5, we have

sup
|t |≤tε
|∂αx ∂

β
y ∂

γ

ξ (9(t, x, ξ)− y · ξ)| ≤ Cαβγ , |α+β + γ | ≥ 2,

∂2
ξ9(t, x, ξ)=−t (g jk(x)) j,k + O(t2), |t | → 0.

As a consequence, since g jk(x) is uniformly elliptic, the phase function 9(t, x, ξ)− y · ξ has a unique
nondegenerate critical point for all |t |< tε and we can apply the stationary phase method to K9,aN (t, x, y),
provided that tε > 0 is small enough. Therefore,

|K9,aN (t, x, y)| ≤ C |t |−d/2, 0< |t | ≤ tε, x, ξ ∈ Rd . �

6. Proof of Theorem 1.5

We now give the proof of Theorem 1.5. Suppose that H satisfies Assumption 1.1 with µ≥ 0. In view of
Corollary 2.6, (1-4) is a consequence of the following proposition.

Proposition 6.1. For any symbol a ∈ C∞0 (R
2d) and T > 0,

‖Oph(a)e
−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT h−1/p

‖ϕ‖L2(Rd ),

uniformly with respect to h ∈ (0, 1], provided that (p, q) satisfies (1-1).

Proof. This proposition follows from the standard WKB approximation for e−i t H Oph(a) up to time
scales of order 1/h. The proof is essentially the same as that in the case for the Laplace–Beltrami operator
on compact manifolds without boundaries [Burq et al. 2004, Section 2]. We omit the details. �

Using this proposition, we have the semiclassical Strichartz estimates with inhomogeneous error terms.

Proposition 6.2. Let a∈C∞0 (R
2d). Then, for any T >0 and any (p, q) satisfying the admissible condition

(1-1),

‖Oph(a)e
−i t Hϕ‖L p([−T,T ];Lq (Rd ))

≤ CT ‖Oph(a)ϕ‖L2(Rd )+CT h‖ϕ‖L2(Rd )+Ch−1/2
‖Oph(a)e

−i t Hϕ‖L2([−T,T ];L2(Rd ))

+Ch1/2
‖[Oph(a), H ]e−i t Hϕ‖L2([−T,T ];L2(Rd )),

uniformly with respect to h ∈ (0, 1].

This proposition has been proved by [Bouclet and Tzvetkov 2007] for the case with V, A ≡ 0. We
give a refinement of this proposition with its proof in Section 7.
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Next, we shall prove that if k(x, ξ) satisfies the nontrapping condition (1-3), the missing 1/p derivative
can be recovered. We first recall the local smoothing effects for Schrödinger operators proved by Doi
[2005]. For any s ∈R, we set Bs

:= { f ∈ L2(Rd) : 〈x〉s f, 〈D〉s f ∈ L2(Rd)}. Define a symbol es(x, ξ) by

es(x, ξ) := (k(x, ξ)+ |x |2+ L(s))s/2 ∈ S((1+ |x | + |ξ |)s, g),

where L(s) > 1 is a large constant depending on s. We denote by Es its Weyl quantization,

Es f (x)= Opw(es) f (x)= 1
(2π)d

∫
ei(x−y)·ξes

( x+y
2
, ξ
)

f (y) dy dξ.

Then, for any s ∈ R, there exists L(s) > 0 such that Es is a homeomorphism from Br+s to Br for all
r ∈ R, and (Es)

−1 is still a Weyl quantization of a symbol in S((1+ |x | + |ξ |)−s, g); see, [Doi 2005,
Lemma 4.1].

Proposition 6.3 (the local smoothing effects [Doi 2005]). Suppose that k(x, ξ) satisfies the nontrapping
condition (1-3) and Assumption 1.4. Then, for any T > 0 and σ > 0, there exists CT,σ > 0 such that

‖〈x〉−1/2−σ E1/2e−i t Hϕ‖L2([−T,T ];L2(Rd ))
≤ CT,σ‖ϕ‖L2(Rd ). (6-1)

Remark 6.4. (6-1) implies a standard local smoothing effect,

‖〈x〉−1/2−σ
〈D〉1/2e−i t Hϕ‖L2([−T,T ];L2(Rd )) ≤ CT,σ‖ϕ‖L2(Rd ). (6-2)

Indeed, we compute

〈x〉−1/2−σ
〈D〉1/2 = 〈D〉1/2〈x〉−1/2−σ

+ [〈D〉1/2, 〈x〉−1/2−σ
]

= 〈D〉1/2(E1/2)
−1 E1/2〈x〉−1/2−σ

+ [〈D〉1/2, 〈x〉−1/2−σ
]

= 〈D〉1/2(E1/2)
−1(〈x〉−1/2−σ E1/2+ [E1/2, 〈x〉−1/2−σ

])+ [〈D〉1/2, 〈x〉−1/2−σ
].

It is easy to see that 〈D〉1/2(E1/2)
−1, [E1/2, 〈x〉−1/2−σ

], and [〈D〉1/2, 〈x〉−1/2−σ
] are bounded on L2(Rd)

since their symbols belong to S(1, g). Therefore, (6-1) implies (6-2).

Proof of (1-5) of Theorem 1.5. It is clear that (1-5) follows from Proposition 6.2, (6-2), and Corollary 2.6,
since a is compactly supported with respect to x and {a, p} ∈ S(〈ξ〉, g), where p = p(x, ξ). �

7. Near sharp Strichartz estimates without asymptotic flatness

This section is devoted to proving Theorem 1.6. We may assume µ= 0 without loss of generality.

Proposition 7.1. Let I b (0,∞) be a relatively compact open interval and C0 > 1. Then there exist
δ0, h0 > 0 such that for any 0< δ ≤ δ0, 0< h ≤ h0, 1≤ R ≤ 1/h, and any symbol ah ∈ S(1, g) supported
in {(x, ξ) : R < |x |< C0/h, |ξ | ∈ I }, we have

‖Oph(ah)e−i t H Oph(ah)
∗
‖L1→L∞ ≤ Cδ|t |−d/2, 0< |t |< δh R, (7-1)

where Cδ > 0 may be taken uniformly with respect to h and R.



1892 HARUYA MIZUTANI

Remark 7.2. When |t | > 0 in (7-1) is small and independent of R, (7-1) is well known and the proof
is given by the standard method of the short-time WKB approximation for e−i t H h/h Oph(ah)

∗; see, for
example, [Burq et al. 2004].

For h ∈ (0, 1], R ≥ 1, an open interval I b (0,∞), and C0 > 1, we set

0(R, h, I ) := {(x, ξ) ∈ R2d
: R < |x |< C0/h, |ξ | ∈ I }.

Equation (7-1) is a consequence of the same argument as in the proof of Proposition 3.1 and the following
proposition.

Proposition 7.3. Let I b I1 b (0,∞) and C0 > 1. Then there exist δ0, h0 > 0 such that the following
hold for any 0< δ ≤ δ0, 0< h ≤ h0, and 1≤ R ≤ C0/h.

(1) There exists 8h(t, x, ξ) ∈ C∞((−δR, δR)×R2d) such that 8h solves the Hamilton–Jacobi equation{
∂t8h(t, x, ξ)=−ph(x, ∂x8h(t, x, ξ)), |t |< δR, (x, ξ) ∈ 0(R/2, h/2, I1),

8h(0, x, ξ)= x · ξ, (x, ξ) ∈ 0(R/2, h/2, I1).
(7-2)

Furthermore, we have

|∂αx ∂
β
ξ (8h(t, x, ξ)− x · ξ + tph(x, ξ))| ≤ CαβR−|α|h|t |2, α, β ∈ Zd

+
, (7-3)

uniformly with respect to x, ξ ∈ Rd , h ∈ (0, h0], 0≤ R ≤ C0/h, and |t |< δR.

(2) For any ah ∈ S(1, g) with supp ah⊂0(R, h, I ) and any integer N ≥0, we can find bN
h (t, · , · )∈ S(1, g)

such that
e−i t H̃ h/h Oph(ah)

∗
= Jh(8h, bN

h )+ QWKB(t, h, N ),

where Jh(8h, bN
h ) is the h-FIO with phase function 8h and amplitude bN

h , and its distribution kernel
satisfies

|KWKB(t, h, x, y)| ≤ C |th|−d/2, h ∈ (0, h0], 0< |t | ≤ δR, x, ξ ∈ Rd . (7-4)

Moreover the remainder QWKB(t, h, N ) satisfies

‖〈D〉s QWKB(t, h, N )〈D〉s‖L2→L2 ≤ CN ,shN−2s
|t |, h ∈ (0, h0], |t | ≤ δR.

Sketch of proof. The proof is similar to that of Theorem 5.8; in particular, the proof of the second claim is
completely the same. Thus, we just outline the construction of 8h . We may assume C0 = 1 without loss
of generality. Denote by (Xh, 4h) the Hamilton flow generated by ph . To construct the phase function,
the most important step is to study the inverse map of (x, ξ) 7→ (Xh(t, x, ξ), ξ). Choose an open interval
Ĩ1 so that I1 b Ĩ1 b (0,∞). The following bound was proved in [Mizutani 2013]:

|∂αx ∂
β
ξ (Xh(t, x, ξ)− x)| + 〈x〉|∂αx ∂

β
ξ (4h(t, x, ξ)− ξ)| ≤ Cαβ〈x〉−|α||t |

for (x, ξ) ∈ 0(R/3, h/3, Ĩ1) and |t | ≤ δR. For sufficiently small δ > 0 and for any fixed |t | ≤ δR, this
implies

|∂x Xh(t)− Id | ≤ C R−1
|t | ≤ Cδ < 1

2 .
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By the same argument as that in the proof of Lemma 5.2, the map (x, ξ) 7→ (Xh(t, x, ξ), ξ) is a diffeo-
morphism from 0(R/3, h/3, Ĩ1) onto its range and the corresponding inverse (x, ξ) 7→ (Yh(t, x, ξ), ξ) is
well-defined for |t |< δR and (x, ξ) ∈ 0(R/2, h/2, I1). Moreover, Yh(t) satisfies an estimate like the one
for Xh(t):

|∂αx ∂
β
ξ (Yh(t, x, ξ)− x)| ≤ Cαβ〈x〉−|α||t |, |t |< δR, (x, ξ) ∈ 0(R/2, h/2, I1).

We now define 8h by

8h(t, x, ξ) := x · ξ +
∫ t

0
Lh
(
Xh(s, Y (t, x, ξ), ξ),4(s, y(t, x, ξ), ξ)

)
ds,

where Lh = ξ · ∂ξ ph − ph . By the standard Hamilton–Jacobi theory, 8h solves (7-2). Moreover, using
the energy conservation ph(x, ∂x8h(t))= ph(Yh(t), ξ) and the above estimates on Xh, 4h , and Yh , we
see that

|ph(x, ∂x8h(t))− ph(x, ξ)| = |ph(Yh(t), ξ)− ph(x, ξ)|

≤ |Yh(t)− x |
∣∣∣∣∫ λ

0
(∂x ph)(λYh(t)− (1− λ)x, ξ) dλ

∣∣∣∣
≤ C |y(t)− x |(h+ h2

〈x〉2)

≤ Ch|t |

and that

|∂αx ∂
β
ξ (ph(x, ∂x8h)− ph(x, ξ))| ≤ Cαβ〈x〉−|α|h|t |.

Using these estimates, we can check that 8h satisfies (7-3). Finally, we extend 8h to the whole space so
that 8h(t, x, ξ)= x · ξ − tph(x, ξ) outside 0(R/3, h/3, Ĩ1). �

Using Proposition 7.1, we obtain a refinement of Proposition 6.2.

Proposition 7.4. Let 0< R ≤ 1/h and let ah ∈ S(1, g) be supported in {(x, ξ) : R < |x |< 1/h, |ξ | ∈ I }.
Then, for any T > 0 and (p, q) satisfying the admissible condition (1-1),

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq (Rd ))

≤ CT ‖Oph(ah)ϕ‖L2(Rd )+CT h‖ϕ‖L2(Rd )+CT (h R)−1/2
‖Oph(ah)e−i t Hϕ‖L2([−T,T ];L2(Rd ))

+CT (h R)1/2‖[H,Oph(ah)]e−i t Hϕ‖L2([−T,T ];L2(Rd )),

uniformly with respect to h ∈ (0, h0].

Proof. The proof is similar to that of [Bouclet and Tzvetkov 2007, Proposition 5.4]. By time reversal
invariance we can restrict our considerations to the interval [0, T ]. We may assume T ≥ h R without
loss of generality and split [0, T ] as follows: [0, T ] = J0 ∪ J1 ∪ · · · ∪ JN , where J j = [ jh R, ( j + 1)h R],
0≤ j ≤ N − 1, and JN = [T − δh R, T ]. For j = 0, we have the Duhamel formula

Oph(ah)e−i t H
= e−i t H Oph(ah)− i

∫ t

0
e−i(t−s)H

[Oph(ah), H ]e−is H ds, t ∈ J0.

Here we choose bh ∈ S(1, g) so that bh ≡ 1 on supp a and bh is supported in a sufficiently small
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neighborhood of supp ah . By Proposition 7.1, Oph(bh)e−i(t−s)H Oph(bh)
∗ satisfies dispersive estimates

(7-1) for 0< |t − s|< δh R with some δ > 0 small enough. Using the Keel–Tao theorem [1998] and the
unitarity of e−i t H , we then learn that for any interval JR of size |JR| ≤ 2h R, the following homogeneous
and inhomogeneous Strichartz estimates hold uniformly with respect to h ∈ (0, h0]:

‖Oph(bh)e−i t Hϕ‖L p(JR;Lq (Rd )) ≤ C‖ϕ‖L2(Rd ), (7-5)∥∥∥∥∫ t

0
F(s ∈ JR)Oph(bh)e−i(t−s)H Oph(bh)

∗g(s) ds
∥∥∥∥

L p(JR;Lq (Rd ))

≤ C‖g‖L1(JR;L2(Rd )), (7-6)

where F(s ∈ JR) is the characteristic function of JR and (p, q) satisfies the admissible condition (1-1).
On the other hand, using the expansions (2-3) and (2-4), we see that for any M ≥ 0,

Oph(ah)= Oph(bh)Oph(ah)+ hM Oph(r1,h)

= Oph(bh)
∗Oph(ah)+ hM Oph(r2,h),

[Oph(ah), H ] = Oph(bh)
∗
[Oph(ah), H ] + hM Oph(r3,h),

with some {rl,h}h∈(0,1], l = 1, 2, 3, which are bounded in S(〈x〉−M
〈ξ〉−M , g). Therefore, we can write

Oph(ah)e−i t H

= Oph(bh)e−i t H Oph(ah)− i
∫ t

0
Oph(bh)e−i(t−s)H Oph(bh)

∗
[Oph(ah), H ]e−is H ds+ Q(t, h,M),

where the remainder Q(t, h,M) satisfies

‖Q(t, h,M)‖L2→Lq ≤ CM hM−1−d(1/2−1/q), 2≤ q ≤∞,

uniformly in h ∈ (0, 1]. Combining this estimate with (7-5) and (7-6), we obtain

‖Oph(ah)e−i t Hϕ‖L p(J0;Lq ) ≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C‖[Oph(ah), H ]e−i t Hϕ‖L1(J0;L2)

≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2(J0;L2).

We similarly obtain the same bound for j = N :

‖Oph(ah)e−i t Hϕ‖L p(JN ;Lq ) ≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2(JN ;L2).

For j = 1, 2, . . . , N − 1, taking θ ∈ C∞0 (R) so that θ ≡ 1 on [−1/2, 1/2] and supp θ ⊂ [−1, 1], we set
θ j (t)= θ(t/(h R)− j−1/2)). It is easy to see that θ j ≡ 1 on J j and supp θ j ⊂ J̃ j = J j+[−h R/2, h R/2].
We consider v j = θ j (t)Oph(ah)e−i t Hϕ, which solves

i∂tv j = Hv j + θ
′

j Oph(ah)e−i t Hϕ+ θ j [Oph(ah), H ]e−i t Hϕ, v j |t=0 = 0.

An argument as above and the Duhamel formula then imply that, for any t ∈ J̃ j and M ≥ 0, v j satisfies

v j =−i
∫ t

0
Oph(bh)e−i(t−s)H Oph(bh)

∗
(
θ ′j (s)Oph(ah)+ θ j (s)[Oph(ah), H ]

)
e−is Hϕ ds+ Q̃(t, h,M),

where the remainder Q̃(t, h,M) satisfies

‖Q̃(t, h,M)‖L2→Lq ≤ CM hM−1−d(1/2−1/q), 2≤ q ≤∞,
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uniformly in h ∈ (0, 1] and t ∈ J̃ j . Taking M ≥ 0 large enough, we learn

‖v j‖L p(J j ;Lq )

≤ Ch2
‖ϕ‖L2 +C(h R)−1

‖Oph(ah)e−i t Hϕ‖L1( J̃ j ;L2)+C‖[Oph(ah), H ]e−i t Hϕ‖L1( J̃ j ;L2)

≤ Ch2
‖ϕ‖L2 +C(h R)−1/2

‖Oph(ah)e−i t Hϕ‖L2( J̃ j ;L2)+C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2( J̃ j ;L2).

Since N ≤ T/h and p ≥ 2, summing over j = 0, 1, . . . , N , we have the assertion by Minkowski’s
inequality. �

Proof of Theorem 1.6. In view of Corollary 2.6, Theorem 1.5, and Proposition 3.2, it suffices to show that,
for any ah ∈ S(1, g) with

supp ah ∈ {(x, ξ) : 2≤ |x | ≤ 1/h, |ξ | ∈ I }

and any ε > 0, ∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq ) ≤ CT,ε‖〈H〉εϕ‖

2
L2 .

Let us consider a dyadic partition of unity:∑
1≤ j≤ jh

χ(2− j x)= 1, 2≤ |x | ≤ 1/h,

where χ ∈ C∞0 (R
d) with

suppχ ⊂ {1/2< |x |< 2}

and jh ≤ [ log(1/h)] + 1. We set
χ j (x)= χ(2− j x).

Proposition 7.4 then implies

‖χ j Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq )

≤ CT ‖χ j Oph(ah)ϕ‖L2 +CT h‖ϕ‖L2 +CT (h2 j )−1/2
‖χ j Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)

+CT (h2 j )1/2‖[χ j Oph(ah), H ]e−i t Hϕ‖L2([−T,T ];L2)
.

Since 2 j−1
≤ |x | ≤ 2 j+1 and |x | ≤ 1/h on suppχ j ah , we have, for any ε ≥ 0,

(h2 j )−1/2
‖χ j Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)

≤ C‖χ j 〈x〉−1/2−εh−1/2−ε Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)
.

Since {χ j ah, p} ∈ S(〈x〉−1
〈ξ〉, g), we similarly obtain

(h2 j )1/2‖χ j [Oph(ah), H ]e−i t Hϕ‖L2([−T,T ];L2)

≤ ‖χ̃ j 〈x〉−1/2−εh−1/2−ε Oph(bh)e−i t Hϕ‖L2([−T,T ];L2)
+CT h‖ϕ‖L2,

where χ̃ j (x) = χ̃(2− j x) for some χ̃ ∈ C∞0 (R
d) satisfying χ̃ ≡ 1 on [1/2, 2] and supp χ̃ ⊂ [1/4, 4],

and bh ∈ S(1, g) is supported in a neighborhood of supp ah so that bh ≡ 1 on supp ah . Summing over
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1≤ j ≤ jh and using the local smoothing effect (6-2), since p, q ≥ 2, we obtain

‖Oph(ah)e−i t Hϕ‖
2
L p([−T,T ];Lq )

≤

∑
1≤ j≤ jh

‖χ j Oph(ah)e−i t Hϕ‖
2
L p([−T,T ];Lq )

≤ CT

∑
1≤ j≤ jh

(‖χ j Oph(ah)ϕ‖
2
L2 + h‖ϕ‖2L2)

+C
∑

1≤ j≤ jh

‖χ̃ j 〈x〉−1/2−εh−1/2−ε Oph(ah + bh)e−i t Hϕ‖
2
L2([−T,T ];L2)

≤ CT ‖ϕ‖
2
L2 +C‖〈x〉−1/2−εh−1/2−ε Oph(ah + bh)e−i t Hϕ‖

2
L2([−T,T ];L2)

≤ CT,εh−2ε
‖ϕ‖2L2,

which implies∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq ) ≤ CT,ε

∑
h

h−2ε
‖ f (h2 H)ϕ‖

2
L2 ≤ CT,ε‖〈H〉ε/2ϕ‖

2
L2 .

This completes the proof. �
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UNIFORMITY OF HARMONIC MAP HEAT FLOW AT INFINITE TIME

LONGZHI LIN

We show an energy convexity along any harmonic map heat flow with small initial energy and fixed
boundary data on the unit 2-disk. In particular, this gives an affirmative answer to a question raised by
W. Minicozzi asking whether such harmonic map heat flow converges uniformly in time strongly in the
W 1,2-topology, as time goes to infinity, to the unique limiting harmonic map.

1. Introduction

Given a compact Riemannian manifold M and a closed (that is, compact and without boundary) Riemannian
manifold N which is an isometrically embedded submanifold of Rn , we can define the Dirichlet energy
of a map u ∈W 1,2(M,N):

Energy(u)= E(u)= 1
2

∫
M
|∇u|2 dvM, (1-1)

where W 1,2(M,N) is the class of maps{
u ∈ L1

loc(M,Rn) :

∫
M
|∇u|2 dvM <+∞, u(x) ∈ N for a.e. x ∈M

}
.

The tension field τ(u) ∈ 0(u∗(T N)) is the vector field along u representing the negative L2-gradient of
E(u). A weakly harmonic map u from M to N is a critical point of the energy functional E(u) in the
distribution sense, that is, the tension field τ(u) vanishes, and it solves the Euler–Lagrange equation

−1Mu =5(u)(∇u,∇u), (1-2)

where u = (u1, . . . , un) and 5(u) denotes the second fundamental form of N ↪→ Rn at the point u. We
refer to this system of elliptic equations as the harmonic map equation.

A natural way to control the tension field for an energy minimizing sequence of maps and to get the
existence of harmonic maps from M to N is to consider the initial (-boundary) value problem:

ut −1Mu =5(u)(∇u,∇u) on M× (0, T ),
u(x, 0)= u0(x) for x ∈M,

u(x, t)= χ(x)= u0|∂M for all t ≥ 0, x ∈ ∂M if ∂M 6=∅,
(1-3)

MSC2010: 53C44, 58E20.
Keywords: harmonic map heat flow, energy convexity, uniform convergence.

1899

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-8
http://dx.doi.org/10.2140/apde.2013.6.1899
http://msp.org


1900 LONGZHI LIN

where u = (u1, . . . , un) and T > 0. We refer to this system of parabolic equations as the harmonic map
heat flow, to the map u0 as the initial data, and to the map χ as the boundary data. Given u0 ∈W 1,2(M,N)

and χ = u0|∂M ∈W 1/2,2(∂M,N), we define u ∈W 1,2(M×[0, T ],N) to be the weak solution of (1-3) if∫ T

0

∫
M
〈ut , ξ〉+ 〈∇u,∇ξ〉− 〈5(u)(∇u,∇u), ξ〉 dx dt = 0 (1-4)

for any ξ ∈ C∞c (M× (0, T ),Rn).
In the fundamental paper where the harmonic map heat flow was first introduced, Eells and Sampson

[1964] proved that the harmonic map heat flow exists for all time in the case where the source domain
M (of arbitrary dimensions) is without boundary and the target manifold N has nonpositive sectional
curvature. They also proved that there exists some sequence of times ti ↗+∞ such that

u∞ = lim
i→∞

u( · , ti )

is a harmonic map from M to N. The case in which the source domain M has boundary was dealt
with in [Hamilton 1975] under the same curvature assumption on N. The question of uniformity of the
convergence in time of the flow considered by Eells and Sampson was left open at that stage, but it was
settled later by Hartman. We shall state their results in the following theorem.

Theorem 1.1 [Eells and Sampson 1964; Hartman 1967]. Suppose that M and N are two closed Rie-
mannian manifolds and that N has nonpositive sectional curvature. Then, given any u0 ∈ C1(M,N), the
harmonic map heat flow has a unique solution u ∈C1(M×[0,∞),N)∩C∞(M× (0,∞),N). Moreover,

u∞ = lim
t→∞

u( · , t) (1-5)

exists uniformly in Ck-topology for all k ≥ 0 and u∞ is a harmonic map homotopic to u0.

Other similar uniformity results were obtainable under various assumptions on the target manifold N,
such as being real analytic [Simon 1983] or admitting a strictly convex function; see also the interesting
paper [Topping 1997] for harmonic map heat flow in a special case in which both the source and target
manifolds are 2-spheres S2.

When the dimension of the source domain M is two, things are particularly interesting because the energy
functional E(u) and the harmonic map equation (1-2) are conformally invariant in this critical dimension.
Regarding the harmonic map heat flow (1-3) from surfaces to a general closed target manifold N, the
first fundamental work was [Struwe 1985], dealing with the case ∂M=∅, where “bubbles” may occur
and have been analyzed in detail. This result was then extended to the case ∂M 6= ∅ with Dirichlet
boundary condition in [Chang 1989]. If the initial energy E(u0) is sufficiently small, it is well known
by now that the weak solution of (1-3) is smooth (in the interior) by the results of [Freire 1995; 1996]
using the so-called moving frame technique introduced by Hélein (see, for example, [Hélein 2002]).
We will state their ε-regularity theorem required in this paper, and include an alternative proof of it for
self-containedness; it uses the main tool of our current work, which we call Rivière’s gauge decomposition
(Theorem 3.7).
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Theorem 1.2 ([Freire 1995; 1996]; cf. [Struwe 1985; Chang 1989; Wang 2012]). Let M be a simply
connected compact Riemannian surface and N a closed Riemannian manifold. There exists ε0 > 0
depending only on M and N such that the following is true. For each initial data u0 ∈W 1,2(M,N) with
E(u0) < ε0 and the boundary data χ = u0|∂M in the case where ∂M 6= ∅, there exists a unique global
weak solution u ∈W 1,2(M×[0,∞),N) for which E(u( · , t)) is nonincreasing in t. Also, u is smooth in
M×[1,∞) and, for any t2 > t1 ≥ 1, we have

2
∫ t2

t1

∫
M
|ut |

2
=

∫
B1

|∇u( · , t1)|2−
∫

B1

|∇u( · , t2)|2. (1-6)

Moreover, there exists some sequence of times ti ↗+∞ such that

u∞ = lim
i→∞

u( · , ti ) (1-7)

exists in the Ck-topology for any k ≥ 0 and u∞ is a harmonic map from M to N.

Remark 1.3. In particular, in order to avoid the “bubble” (singularity) along the harmonic map heat flow,
a priori we may choose ε0 < K1+ K2 where

K1 = inf{E(v) | v ∈W 1,2(M,N) and v|∂M = χ}

and
K2 = inf{E(v) | v : S2

→ N is nonconstant and harmonic}> 0.

Remark 1.4. Freire’s regularity results for harmonic map heat flow represent a parabolic version of
the regularity theorem of Hélein stating that weakly harmonic maps from surfaces are regular; see, for
example, [Hélein 2002].

A tempting question to ask is whether, for a general closed target manifold N (without additional
geometric assumptions), one could establish uniformity results for the harmonic map heat flow similar to
Theorem 1.1. In particular, is the convergence (1-7) in Theorem 1.2 uniform for all time in the natural
W 1,2-topology, say? In view of the conformal invariance of the energy functional E(u) in dimension
two, the condition of small energy seems to be a natural candidate to work with in order to get such
uniformity of the convergence in time for the flow. We will show in the following that this is indeed the
case. In what follows we will concentrate on the case where the source domain M is a simply connected
compact Riemannian surface with boundary. More precisely, we focus on domains which are conformally
equivalent to the unit 2-disk B1 ⊂ R2. From now on we will only work on B1:

ut −1u =5(u)(∇u,∇u) on B1× (0, T ),
u(x, 0)= u0(x) for x ∈ B1,

u(x, t)= χ(x)= u0|∂B1 for all t ≥ 0 and x ∈ ∂B1,

(1-8)

where 1 is the usual Laplacian 1=
∑2

i=1 ∂
2/∂x2

i in R2. All the arguments could be easily modified to
apply to the general case.

Notation 1.5. In what follows, ∇ = (∂x , ∂y) is the gradient operator in R2 and ∇⊥ = (−∂y, ∂x) denotes
the orthogonal gradient (that is, ∇⊥ is the ∇-operator rotated by π/2).
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Now we state the main theorem of this paper.

Theorem 1.6. Let N be a closed Riemannian manifold. There exist ε0, T0 > 0 depending only on N such
that if u ∈ W 1,2(B1 × [0,∞),N) is a global weak solution to the harmonic map heat flow (1-8) with
E(u0) < ε0, E(u( · , t)) is nonincreasing in t , and u( · , t)|∂B1 = χ for all t ≥ 0, then, for all t2 > t1 ≥ T0,
we have the energy convexity

1
4

∫
B1

|∇u( · , t1)−∇u( · , t2)|2 ≤
∫

B1

|∇u( · , t1)|2−
∫

B1

|∇u( · , t2)|2. (1-9)

Remark 1.7. We do not know if the energy convexity (1-9) holds for all t2 > t1 ≥ 0. In the following
arguments we agree to let ε0 be sufficiently small and T0 be sufficiently large, as needed.

Our approach to the proof of Theorem 1.6 is based on the technique we call Rivière’s gauge decom-
position, introduced in [Rivière 2007]; see Section 3. Immediate applications of Theorem 1.6 are:

Corollary 1.8. Let N be a closed Riemannian manifold. There exists ε0 > 0 depending only on N such
that if u ∈ W 1,2(B1 × [0,∞),N) is a global weak solution to the harmonic map heat flow (1-8) with
E(u0) < ε0, E(u( · , t)) is nonincreasing in t , and u( · , t)|∂B1 = χ for all t ≥ 0, then

u( · , t)→ u∞ uniformly as t→+∞ strongly in W 1,2(B1,Rn), (1-10)

where u∞ is the unique harmonic map with E(u∞) < ε0 and boundary data χ .

Corollary 1.9. Let M be a two dimensional domain that is conformally equivalent to B1 and has smooth
boundary, and let N be a closed Riemannian manifold. Suppose the initial energy E(u0) < ε0. Then the
harmonic map heat flow (1-3) with initial data u0 ∈ C2,α(M,N) and boundary data χ ∈ C2,α(∂M,N),
considered by Chang [1989], converges uniformly in time strongly in W 1,2(M,N) to the unique harmonic
map u∞ ∈ C2,α

χ (M,N).

Remark 1.10. We do not know if a harmonic map heat flow can be nonuniform without the small energy
assumption. In view of the nonuniqueness results of Brezis and Coron [1983] and Jost [1984] for harmonic
maps (with large energy) sharing the same boundary data on ∂B1, it is quite possible that the small energy
assumption is necessary for the energy convexity and uniform convergence of the flow in Theorem 1.6
and Corollary 1.8 to hold.

Remark 1.11. Colding and Minicozzi [2008a] showed an energy convexity for weakly harmonic maps
with small energy on B1: there exists ε0> 0 such that if u, v ∈W 1,2(B1,N) with u|∂B1 = v|∂B1, E(u)< ε0,
and u is weakly harmonic, then we have the energy convexity

1
2

∫
B1

|∇v−∇u|2 ≤
∫

B1

|∇v|2−

∫
B1

|∇u|2. (1-11)

See [Lamm and Lin 2013] for an alternative proof of this energy convexity using the same techniques
used in the present paper. A direct consequence of (1-11) is that u∞ in Corollary 1.8 is unique in the class

{v ∈W 1,2(B1,Rn) : E(v) < ε0 and v|∂B1 = χ};

see [Colding and Minicozzi 2008a, Corollary 3.3].
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The paper is organized as follows. In Section 2 we present some heuristic arguments and elaborate
on the idea of the proof of the main theorem, Theorem 1.6. In Section 3 we review the main tool of
our proof, namely, Rivière’s gauge decomposition technique adapted to the case of harmonic map heat
flow. In Section 4 we show improved estimates for Rivière’s matrices B and P , which are the two key
ingredients of our proof. We finish the proof of our main theorem in Section 5.

2. Heuristic arguments and the idea of the proof

In this section we will present some heuristic arguments and sketch the basic idea of the proof of
Theorem 1.6. We will abbreviate u( · , t) to u(t). In order to prove the energy convexity (1-9) along the
harmonic map heat flow, that is, there exists some T0 > 0 such that, for all t2 > t1 ≥ T0, we have

1
4

∫
B1

|∇u( · , t1)−∇u( · , t2)|2 ≤
∫

B1

|∇u( · , t1)|2−
∫

B1

|∇u( · , t2)|2, (2-1)

it suffices to show

9 ≥−

(∫
B1

|∇u(t1)|2−
∫

B1

|∇u(t2)|2
)
−

1
2

∫
B1

|∇u(t1)−∇u(t2)|2, (2-2)

where (using that u( · , t)|∂B1 = χ for all t ≥ 0 and the flow equation (1-8))

9 :=

∫
B1

|∇u(t1)|2−
∫

B1

|∇u(t2)|2−
∫

B1

|∇u(t1)−∇u(t2)|2

= 2
∫

B1

〈∇u(t1)−∇u(t2),∇u(t2)〉

= −2
∫

B1

〈u(t1)− u(t2), ut(t2)−5(u)(∇u,∇u)(t2)〉. (2-3)

Now note that for any p, q ∈ N, there exists some constant C > 0 depending only on N such that
|(p− q)⊥| ≤ C |p− q|2, where the superscript ⊥ denotes the normal component of a vector; see, for
example, [Colding and Minicozzi 2008b, Lemma A.1]. Therefore, using the fact that5(u)(∇u,∇u)⊥TuN

and the Cauchy–Schwarz inequality, (2-3) yields

9 ≥− 2
(∫

B1

|u(t1)− u(t2)|2
)1/2(∫

B1

|ut(t2)|2
)1/2

−C
∫

B1

|(u(t1)− u(t2))⊥| |∇u(t2)|2

≥− 2
√

t2− t1

(∫ t2

t1

∫
B1

|ut |
2
)1/2(∫

B1

|ut(t2)|2
)1/2

−C
∫

B1

|u(t1)− u(t2)|2 |∇u(t2)|2,

where we also used the smoothness and compactness of the target manifold N. Here and throughout the
rest of the paper, C > 0 will denote a universal constant depending only on N unless otherwise stated.

Since we have (1-6) and ε0 can always be chosen sufficiently small, we know that (2-2) will be achieved
if we can show the following two key propositions.
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Proposition 2.1. Let u(x, t) be as in Theorem 1.6. Then there exists T0 > 0 such that, for all t2 > t1 ≥ T0,
we have ∫

B1

|ut(t2)|2 ≤
1

t2− t1

∫ t2

t1

∫
B1

|ut |
2. (2-4)

Remark 2.2. The key point of Proposition 2.1 is that (2-4) is valid for all t2 > t1 ≥ T0. We will see that,
in fact,

∫
B1
|ut(t)|2 is nonincreasing along the flow after T0, which yields (2-4); cf. Lemma 2.5 and (5-16)

below. A similar but weaker estimate was shown when the source domain of the heat flow is boundaryless
[Struwe 1985, Equation (3.5)], which turned out to be the key estimate needed in Struwe’s proof.

Proposition 2.3. Let u(x, t) be as in Theorem 1.6. Then there exists T0 > 0 such that, for all t2 > t1 ≥ T0,
we have ∫

B1

|u(t1)− u(t2)|2 |∇u(t2)|2 ≤ Cε0

∫
B1

|∇u(t1)−∇u(t2)|2. (2-5)

If one were able to get
‖∇u(t2)‖L∞(B1) ≤ C

√
ε0, (2-6)

(2-5) would have been automatically true by Poincaré’s inequality. However, without imposing any
regularity information on the boundary data χ , it will be hopeless to get such a strong global pointwise
gradient estimate. In fact, even if we look at the stationary case, that is, W 1,2 -weakly harmonic maps on
B1, it is easy to convince oneself that it is unreasonable to expect regularity with global estimates on the
whole B1 better than W 2,2 in general.

Nevertheless, not all hope is lost to show estimates (2-4) and (2-5). Indeed, the following lemma is
true, which validates Proposition 2.3 under some extra assumptions.

Lemma 2.4. Let u(x, t) be as in Theorem 1.6 and suppose that, for all t2 > t1 ≥ T0 ≥ 1, we can solve the
following Dirichlet problem for ψ ∈W 1,2

0 ∩ L∞(B1):{
1ψ = |∇u(t2)|2 in B1,

ψ = 0 on ∂B1
(2-7)

with the estimate
‖ψ‖L∞(B1)+‖∇ψ‖L2(B1) ≤ Cε0. (2-8)

Then Proposition 2.3 holds.

Proof. The proof is essentially taken from [Colding and Minicozzi 2008a]. Substituting (2-7) into the
left-hand side of (2-5) yields (using also that u(t1)= u(t2)= χ on ∂B1)∫

B1

|u(t1)− u(t2)|2 |∇u(t2)|2 =
∫

B1

|u(t1)− u(t2)|21ψ ≤
∫

B1

∣∣∇|u(t1)− u(t2)|2
∣∣ |∇ψ |

≤ 2
(∫

B1

|∇u(t1)−∇u(t2)|2
)1/2(∫

B1

|u(t1)− u(t2)|2 |∇ψ |2
)1/2

, (2-9)

where we have applied Stokes’ theorem to div(|u(t1) − u(t2)|2∇ψ) and used the Cauchy–Schwarz
inequality. Now, applying Stokes’ theorem to div(|u(t1)−u(t2)|2ψ∇ψ) and using that 1ψ ≥ 0 and (2-9),
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we have∫
B1

|u(t1)−u(t2)|2|∇ψ |2≤
∫

B1

|ψ |(|u(t1)−u(t2)|21ψ+
∣∣∇|u(t1)−u(t2)|2

∣∣|∇ψ |)
≤ 4‖ψ‖L∞

(∫
B1

|∇u(t1)−∇u(t2)|2
)1/2(∫

B1

|u(t1)−u(t2)|2|∇ψ |2
)1/2

, (2-10)

so that (∫
B1

|u(t1)− u(t2)|2 |∇ψ |2
)1/2

≤ 4‖ψ‖L∞

(∫
B1

|∇u(t1)−∇u(t2)|2
)1/2

. (2-11)

Finally, substituting (2-11) back into (2-9) and combining with (2-8) (and choosing ε0 sufficiently small),
yields∫

B1

|u(t1)− u(t2)|2 |∇u(t2)|2 ≤ C‖ψ‖L∞

∫
B1

|∇u(t1)−∇u(t2)|2 ≤ Cε0

∫
B1

|∇u(t1)−∇u(t2)|2,

which is just (2-5). �

Similarly, we can show the following lemma, which states, under some extra conditions, that
∫

B1
|ut(t)|2

is nonincreasing along the harmonic map heat flow after some T0 > 0 and Proposition 2.1 can be validated
in this case.

Lemma 2.5. Let u(x, t) be as in Theorem 1.6. For any t2 > t1 ≥ T0 ≥ 1, suppose that for any t0 ∈ [t1, t2]
we can solve the following Dirichlet problem for ψ ∈W 1,2

0 ∩ L∞(B1):{
1ψ = |∇u(t0)|2 in B1,

ψ = 0 on ∂B1,
(2-12)

with the estimate
‖ψ‖L∞(B1)+‖∇ψ‖L2(B1) ≤ Cε0. (2-13)

Then we have ∫
B1

|ut(t2)|2 ≤
∫

B1

|ut(t1)|2. (2-14)

In particular, Proposition 2.1 holds if (2-12) and (2-13) are valid for any t0 ∈ [t1, t2] and any t2 > t1 ≥
T0 ≥ 1.

Proof. Differentiating the flow equation (1-8) with respect to t , multiplying with ut , and integrating over
B1×[t1, t2], we have

1
2

∫ t2

t1

∫
B1

∂t |ut |
2
+

∫ t2

t1

∫
B1

|∇ut |
2
≤ C

∫ t2

t1

∫
B1

|ut |
2
|∇u|2+ |ut | |∇u| |∇ut |

≤
1
2

∫ t2

t1

∫
B1

|∇ut |
2
+C

∫ t2

t1

∫
B1

|ut |
2
|∇u|2. (2-15)

Since (2-12) and (2-13) are valid for any t0 ∈ [t1, t2], we can use the same arguments as in the proof of
Lemma 2.4 to get an estimate for

∫
B1
|ut |

2
|∇u|2 at the time t0 slice. Indeed, similarly to (2-5) (that is,
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replacing u(t1)− u(t2) by ut(t0)), for any t0 ∈ [t1, t2], we have∫
B1

|ut |
2
|∇u|2(t0)≤ C‖ψ‖L∞

∫
B1

|∇ut(t0)|2 ≤ Cε0

∫
B1

|∇ut(t0)|2. (2-16)

Inserting (2-16) back into (2-15) (for any t0 ∈ [t1, t2]), we see that the right-hand side of (2-15) can be
absorbed into the left-hand side if we choose ε0 sufficiently small. This implies that we have (2-14)
for any such t2 > t1 ≥ T0. In the above calculations, we should treat ut as a difference quotient:
ut( · , t) = limh→0+(u( · , t + h)− u( · , t))/h, which is zero on ∂B1 for all t ≥ 1; moreover, we have
denoted ∇ut( · , t)= limh→0+(∇(u( · , t+h)−u( · , t)))/h and all the calculations are valid for any fixed
h > 0. We then we take h→ 0+ to conclude (2-14).

If (2-12) and (2-13) are valid for any t0 ∈ [t1, t2] and any t2 > t1 ≥ T0 ≥ 1, then, in view of (2-14),
estimating by the mean value of |ut |

2 over B1×[t1, t2] gives Proposition 2.1. �

Therefore, everything boils down to validating the assumptions in Lemmas 2.4 and 2.5, that is, the
existence of such functions ψ satisfying (2-7), (2-8) and (2-12), (2-13), respectively, for any t0 ≥ T0 for
some T0 ≥ 1. We point out that, a priori we only know that the energy density |∇u(t)|2 lies in L1(B1)

with global estimate
∥∥|∇u(t)|2

∥∥
L1(B1)

≤ ε0 for any fixed t . But L1 is the borderline case in which the
standard L p-theory for the Dirichlet problem (2-7) with estimate (2-8) fails!

However, the following regularity theorem for boundary value problems in the local Hardy space
h1(B1) sheds new light on the problem of validating the assumptions in Lemmas 2.4 and 2.5. Here the
local Hardy space h1(B1) is a strict subspace of L1(B1) and we will recall its definition in Definition 2.8
below.

Theorem 2.6 (cf. [Semmes 1994, Theorem 1.100; Chang et al. 1993, Theorem 5.1]). Let f ∈ h1(B1)

such that f ≥ 0 a.e. in B1. Then there exists a function ψ ∈ L∞∩W 1,2
0 (B1) solving the Dirichlet problem{

1ψ = f in B1,

ψ = 0 on ∂B1.
(2-17)

Moreover, there exists a constant C > 0 such that

‖ψ‖L∞(B1)+‖∇ψ‖L2(B1) ≤ C‖ f ‖h1(B1). (2-18)

Proof. For self-containedness, we include an elementary proof of this theorem in Appendix A. �

Remark 2.7. This theorem can be thought of as a generalization of a result from [Müller 1990]; cf. Wente’s
lemma (Lemma 3.6). For a more general version of this theorem, we refer to Chang, Krantz, and Stein’s
work [Chang et al. 1993].

Definition 2.8 [Miyachi 1990]. Choose a Schwartz function φ ∈ C∞0 (B1) such that
∫

B1
φ dx = 1 and let

φt(x) = t−2φ(x/t). For a measurable function f defined in B1, we say that f lies in the local Hardy
space h1(B1) if the radial maximal function of f

f ∗(x)= sup
0<t<1−|x |

∣∣∣∣∫
Bt (x)

1
t2φ

(
x − y

t

)
f (y) dy

∣∣∣∣(x)= sup
0<t<1−|x |

|φt ∗ f |(x) (2-19)
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belongs to L1(B1) and we define

‖ f ‖h1(B1) = ‖ f ∗(x)‖L1(B1). (2-20)

It follows immediately that h1(B1) is a strict subspace of L1(B1) and

‖ f ‖L1(B1) ≤ ‖ f ‖h1(B1).

It is also clear that if f ∈ L p(B1) for some p > 1, then ‖ f ‖h1(B1) ≤ C‖ f ‖L p(B1).

We remark that the local Hardy spaces h1 (or the global version H1) act as replacements for L1 in
Calderon–Zygmund estimates. Therefore, by Theorem 2.6, if we can somehow manage to obtain a
“slightly” improved global estimate for |∇u|2 from L1(B1) to h1(B1) for all t0 ≥ T0, it will be sufficient
to validate the assumptions in Lemmas 2.4 and 2.5. As mentioned above, the subtlety is that, without
imposing any regularity information on the boundary data χ , global estimates are very difficult to obtain.

The rest of the paper is devoted to validating the assumptions in Lemmas 2.4 and 2.5. Namely, in view
of Theorem 2.6, it suffices to show there exists T0 > 0 such that∥∥|∇u(t0)|2

∥∥
h1(B1)

≤ Cε0 for any t0 ≥ T0. (2-21)

The point here is that no pointwise estimate on ∇u such as (2-6) is needed, and instead, a (weaker)
improved global integral estimate (2-21) will be sufficient and turns out to be the key to the proof of
Theorem 1.6.

3. Analysis of harmonic map heat flow using Rivière’s gauge

Regarding the regularity of weakly harmonic maps from surfaces, Hélein (see, for example, [Hélein 2002])
proved the interior regularity with the help of the so-called Coulomb or moving frame, and Qing [1995]
showed the continuity up to the boundary in the case of continuous boundary data based on Hélein’s
technique. Rivière [2007] succeeded in writing the 2-dimensional conformally invariant nonlinear system
of elliptic PDE’s (which includes the weakly harmonic map equation (1-2)) in the form

−1ui
=�i

j ·∇u j , i = 1, 2, . . . , n, or −1u =� ·∇u (3-1)

with �= (�i
j )1≤i, j≤n ∈ L2(B1, so(n)⊗

∧1
R2) and �i

j =−�
j
i (antisymmetry). Here and throughout the

paper, the Einstein summation convention is used. We refer to the system of equations (3-1) as Rivière’s
equation. This special form of the nonlinearity enabled Rivière to obtain a conservation law for this
system of PDE’s (see (3-8) below), which is accomplished via a technique that we call Rivière’s gauge
decomposition. More precisely, following the strategy of [Uhlenbeck 1982], Rivière [2007] used an
algebraic feature of �— its antisymmetry — to construct ξ ∈W 1,2

0 (B1, so(n)) and a gauge transformation
matrix P ∈W 1,2

∩ L∞(B1,SO(n)) (which pointwise almost everywhere is an orthogonal matrix in Rn×n)
satisfying some good properties.
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Theorem 3.1 [Rivière 2007, Lemma A.3]. There exist ε > 0 and C > 0 such that, for every � in
L2(B1, so(n)⊗

∧1
R2) satisfying ∫

B1

|�|2 ≤ ε,

there exist ξ ∈W 1,2
0 (B1, so(n)) and P ∈W 1,2(B1,SO(n)) such that

∇
⊥ξ = PT

∇P + PT�P in B1 with ξ = 0 on ∂B1, (3-2)

and

‖∇ξ‖L2(B1)+‖∇P‖L2(B1) ≤ C‖�‖L2(B1). (3-3)

Here the superscript T denotes the transpose of a matrix.

Remark 3.2. Multiplying both sides of (3-2) by P from the left gives (with indices and 1≤ m, z ≤ n)

∇P i
j = P i

m∇
⊥ξm

j −�
i
z P z

j , 1≤ i, j ≤ n. (3-4)

Remark 3.3. Besides Uhlenbeck’s method there is another way to construct the gauge transformation
matrix P , namely, one can minimize the energy functional

E(R)=
∫

B1

|RT
∇R+ RT�R|2 (3-5)

among all R ∈W 1,2(B1,SO(n)); see, for example, [Choné 1995; Schikorra 2010].

Another key result from Rivière’s work is the following theorem, which was proved based on
Theorem 3.1.

Theorem 3.4 [Rivière 2007, Theorem I.4]. There exist ε > 0 and C > 0 such that, for every � in
L2(B1, so(n)⊗

∧1
R2) satisfying ∫

B1

|�|2 ≤ ε,

there exist

Â ∈W 1,2
∩C0(B1,Gln(R)), A = ( Â+ Id)PT

∈ L∞ ∩W 1,2(B1,Gln(R)), B ∈W 1,2
0 (B1,Mn(R))

such that

∇A− A�=∇⊥B (3-6)

and

‖ Â‖W 1,2(B1)+‖ Â‖L∞(B1)+‖B‖W 1,2(B1) ≤ C‖�‖L2(B1). (3-7)

Remark 3.5. Combining (3-6) with (3-1), one obtains the conservation law (in the distribution sense) for
Rivière’s equation, (3-1):

div(A∇u+ B∇⊥u)= 0. (3-8)
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Equation (3-1), first considered in such generality in [Rivière 2007], generalizes a number of interesting
equations appearing naturally in geometry, including the harmonic map equation (1-2), the H -surface
equation, and, more generally, the Euler–Lagrange equation of any conformally invariant elliptic La-
grangian which is quadratic in the gradient. We remark that the harmonic map equation (1-2) can be
written in the form of (3-1) if we set

� := (�i
j )1≤i, j≤n, where �i

j := [5
i (u) j,l −5

j (u)i,l]∇ul . (3-9)

A central issue is the regularity of the weak solution u to this system of equations (3-1). Based on the
conservation law (3-8), Rivière proved the (interior) continuity of any W 1,2 weak solution u to (3-1). This
also resolved two conjectures by Heinz and Hildebrandt, respectively; see [Rivière 2007]. We point out
that the harmonic map heat flow (1-8) on B1 can be written in the form

ut −1u =� ·∇u on B1× (0, T ), (3-10)

where � is as in (3-9).
The deep reason for Rivière’s argument to work is that once the conservation law (3-8) is established,

(3-1) can be rewritten in the form
div(A∇u)=∇⊥B ·∇u.

The right-hand side of this new equation lies in the Hardy space H1 by a result of Coifman, Lions, Meyer,
and Semmes [Coifman et al. 1993]. Moreover, using a Hodge decomposition argument, one can show
that u lies locally in W 2,1, which embeds into C0 in two dimensions; cf. the proof of Theorem 3.7 below.
The key to this fact is a special “compensation phenomena” for Jacobian determinants, first observed in
[Wente 1969]. We will refer to the following lemma of Wente, for which an elementary proof can be
found in [Brezis and Coron 1983; Hélein 2002, Theorem 3.1.2], and which will be the key ingredient of
our proof.

Lemma 3.6 [Wente 1969]. If a, b ∈W 1,2(B1,R) and w is the solution of1w =
∂a
∂y
∂b
∂x
−
∂a
∂x
∂b
∂y
=∇a ·∇⊥b in B1,

w = 0 or ∂w

∂ν
= 0 on ∂B1,

(3-11)

then w ∈ C0
∩W 1,2(B1,R) and the estimate

‖w‖L∞(B1)+‖∇w‖L2(B1) ≤ C‖∇a‖L2(B1)‖∇b‖L2(B1) (3-12)

holds, where we choose
∫

B1
w = 0 for the Neumann boundary data.

Now let u(x, t) ∈W 1,2(B1×[0,∞),N) be a global weak solution to the harmonic map heat flow (1-8)
with E(u0) < ε0, E(u( · , t)) nonincreasing in t , and u( · , t)|∂B1 = χ for all t ≥ 0 as in Theorem 1.6. First
note that, for a.e. t0 ∈ (0,∞), we have ut(t0) ∈ L2(B1). Then, for any fixed t0 such that ut(t0) ∈ L2(B1),
as in (3-9), we have

�(t0)= (�i
j (t0))1≤i, j≤n, where �i

j (t0)= [5
i (u(t0)) j,l −5

j (u(t0))i,l]∇ul(t0).
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We will express this by writing �(t0)=5(u(t0))∇u(t0). Moreover,∫
B1

|�(t0)|2 ≤ C E(u(t0))≤ Cε0. (3-13)

Therefore Rivière’s theorems on the existence of gauge (Theorems 3.1 and 3.4) apply to this time t0 slice,
and we find the existence of matrices P(t0) ∈W 1,2(B1,SO(n)),

A(t0)= ( Â(t0)+ Id)PT (t0) ∈ L∞ ∩W 1,2(B1,Gln(R)),

and
B(t0) ∈W 1,2

0 (B1,Mn(R))

such that
∇A(t0)− A(t0)�(t0)=∇⊥B(t0) (3-14)

with the corresponding estimates (3-3) and (3-7).
Combining (3-14) with the harmonic map heat flow equation (3-10) yields (omitting the index t0)

div(A∇u+ B∇⊥u)=∇A ·∇u+ A1u+∇B ·∇⊥u

=∇A ·∇u+ A(−� ·∇u+ ut)+∇B ·∇⊥u

=∇A ·∇u+ (∇⊥B−∇A) · ∇u+ Aut +∇B ·∇⊥u

= Aut . (3-15)

We refer to (3-15) as an almost conservation law. By the results of [Coifman et al. 1993] and the standard
L p theory, (3-15) readily implies that u(t0) ∈ C0(B1,Rn). In fact, we have the following ε-regularity
theorem.

Theorem 3.7. There exist ε0 > 0 depending only on N such that if u ∈W 1,2(B1×[0,∞),N) is a global
weak solution to the harmonic map heat flow (1-8) with E(u0) < ε0, E(u( · , t)) nonincreasing in t , and
u( · , t)|∂B1 = χ for all t ≥ 0, then u ∈ C∞(B1×[1,∞),N).

Proof. For any fixed t0 such that ut(t0) ∈ L2(B1), by Hodge decomposition (see, for example, [Iwaniec
and Martin 2001, Corollary 10.5.1]), there exist D(t0), E(t0) ∈ W 1,2(B1,Rn) such that (omitting the
index t0)

A∇u =∇D+∇⊥E . (3-16)

Note that (3-15) implies {
div(A∇u)=−∇B ·∇⊥u+ Aut ,

curl(A∇u)=∇⊥A ·∇u.
(3-17)

Combining (3-16) and (3-17), we have{
1D =−∇B ·∇⊥u+ Aut ,

1E =∇⊥A ·∇u.
(3-18)

Then, by the results of [Coifman et al. 1993] and via an extension argument, using the fact that
Aut(t0) ∈ L2(B1), we get A∇u(t0) ∈W 1,1

loc (B1). Therefore u(t0) ∈W 2,1
loc (B1), which embeds into C0(B1).
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Indeed, A∇u(t0) ∈W 1,1
loc (B1) implies immediately that

�(t0)=5(u(t0))∇u(t0) ∈W 1,1
loc (B1). (3-19)

Then, by [Rivière 2012, Theorem IV.4], the flow equation (3-10), (3-19), and the fact that ut(t0) ∈ L2(B1)

yield that ∇u(t0) ∈ L p
loc(B1) for some p > 2. Note that this is valid for a.e. t0 ∈ (0,∞). Then, via a

standard bootstrapping argument, we have ∇u ∈ Lq
loc(B1×[1, T ]) for all q > 1 and any T > 1 (see, for

example, [Lieberman 1996]) and all higher order interior regularity follows. �

Again, we see that the “compensation phenomenon” enjoyed by the special Jacobian structure (see
Lemma 3.6) has played an important role here, and these Wente-type estimates have many interesting
applications, as in [Wente 1969; Brezis and Coron 1983; 1984; Tartar 1985; Coifman et al. 1993; Hélein
2002; Rivière 2007; 2008; 2011; Lamm and Lin 2013].

4. Improved estimates on the matrices B and P

Our main observation in this section is the existence of hidden Jacobian structures for 1B and 1P , valid
only when � is of some special form: in our case, �=5(u)∇u. This will allow us to gain an improved
global estimate for the matrix B and an improved local estimate for P . We start with the improved
estimate for B.

Proposition 4.1. Let u(x, t) be as in Theorem 1.6. For any t0 ∈ [1,∞), we have

‖B(t0)‖L∞(B1) ≤ C
∫

B1

|∇u(t0)|2 ≤ Cε0. (4-1)

Proof. We recall that � is given by 5(u)∇u as in (3-9) and therefore ‖�(t0)‖2L2(B1)
≤ Cε0 for all t0 ≥ 1.

Now let ε0 be so small that Theorems 3.1 and 3.4 apply. Taking the curl on both sides of (3-14) yields

1B(t0)=− curl(A(t0)5(u(t0))∇u(t0))=−∇u(t0) ·∇⊥(A(t0)5(u(t0))). (4-2)

Combining the Jacobian structure of the right-hand side of (4-2) with the zero boundary condition of B
and estimates (3-3) and (3-7), Lemma 3.6 gives (4-1). Here we have also used E(u(t)) < ε0 for all t ≥ 0
and the smoothness and compactness of the target manifold N. �

Next, as a step toward the improved local estimate on the matrix P , we show that 1P also has a
special Jacobian structure.

Lemma 4.2. Let u(x, t) be as in Theorem 1.6. For any t0 ∈ [1,∞) such that ut( · , t0) ∈ L2(B1), there
exist

ξ(t0) ∈W 1,2
0 (B1, so(n)), η(t0) ∈W 1,2(B1,Rn), ζ(t0) ∈W 2,2

0 (B1,Rn)

and
Qk(t0), Rk(t0) ∈W 1,2

∩ L∞(B1,Gln(R)), k = 1, . . . , n

with

‖∇ξ(t0)‖L2(B1)+‖∇η(t0)‖L2(B1)+‖∇ζ(t0)‖L2(B1)+

∑
k

(
‖∇Qk(t0)‖L2(B1)+‖∇Rk(t0)‖L2(B1)

)
≤ C
√
ε0
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and
‖ζ(t0)‖W 2,2(B1) ≤ C‖ut(t0)‖L2(B1) (4-3)

such that

1P(t0)=∇P(t0) ·∇⊥ξ(t0)+∇Qk(t0) ·∇⊥ηk(t0)+∇Rk(t0) ·∇⊥uk(t0)+ div(Qk(t0)∇ζ k(t0)). (4-4)

Proof. We omit the index t0 in the proof. Hodge decomposition and the estimates for the L∞-norms of A
and B imply the existence of η ∈W 1,2(B1,Rn) and ζ ∈W 1,2

0 (B1,Rn) such that

∇
⊥η+∇ζ = A∇u+ B∇⊥u (4-5)

with
‖∇η‖L2(B1)+‖∇ζ‖L2(B1) ≤ C‖∇u‖L2(B1) ≤ C

√
ε0. (4-6)

Moreover, by the almost conservation law (3-15), we have

1ζ = Aut ∈ L2(B1) and ζ |∂B1 = 0,

which gives (4-3) by the standard L p-theory. Multiplying both sides of (4-5) by A−1 from the left gives
(with indices)

∇ul
= (A−1)lk∇

⊥ηk
− (A−1 B)lk∇

⊥uk
+ (A−1)lk∇ζ

k, l = 1, 2, . . . , n. (4-7)

Taking the divergence on both sides of (3-4) yields

1P i
j =∇P i

m ·∇
⊥ξm

j − div(�i
z P z

j ), 1≤ i, j ≤ n. (4-8)

Since �i
z = [5

i (u)z,l −5z(u)i,l]∇ul , combining (4-7) and (4-8) gives

1P i
j

=∇P i
m ·∇

⊥ξm
j − div[(5i (u)z,l −5z(u)i,l)((A−1)lk∇

⊥ηk
− (A−1 B)lk∇

⊥uk
+ (A−1)lk∇ζ

k)P z
j ]

= ∇P i
m ·∇

⊥ξm
j −∇[(5

i (u)z,l −5z(u)i,l)P z
j (A
−1)lk] ·∇

⊥ηk

+∇[(5i (u)z,l −5z(u)i,l)P z
j (A
−1 B)lk] ·∇

⊥uk
− div[((5i (u)z,l −5z(u)i,l)P z

j (A
−1)lk)∇ζ

k
]. (4-9)

Defining
(Qk)

i
j =−(5

i (u)z,l −5z(u)i,l)P z
j (A
−1)lk

and
(Rk)

i
j = (5

i (u)z,l −5z(u)i,l)P z
j (A
−1 B)lk,

where 1≤ k, i, j ≤ n, completes the proof. �

Next we prove a local estimate on the oscillation of the matrix P based on Lemma 4.2. A key
observation here is that whether a function is in the local Hardy space h1(B1) essentially depends on its
local behavior (see Definition 2.8). This local oscillation estimate on P provides important information
that we need to control the local behavior of |∇u|2. This point will become apparent in Section 5. As we
shall see, the Jacobian structure of 1P enters in a crucial way.
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Lemma 4.3. Let u(x, t) be as in Theorem 1.6. For any t0 ∈ [1,∞) such that ut( · , t0) ∈ L2(B1), any
x ∈ B1, any r > 0 such that B2r (x)⊂ B1, and any y ∈ Br (x), we have

|P(y, t0)− P(x, t0)| ≤ C(
√
ε0+‖ut(t0)‖L2(B1)). (4-10)

Proof. We will omit the index t0 in the proof. Let P̃ ∈W 1,2(B1,Mn(R)) be the weak solution of{
1P̃ =∇P ·∇⊥ξ +∇Qk ·∇

⊥ηk
+∇Rk ·∇

⊥uk
+ div(Qk∇ζ

k) in B1,

P̃ = 0 on ∂B1,

where Qk , Rk , ηk , and ζ k are from Lemma 4.2.
Then, by Wente’s lemma (Lemma 3.6) and the standard L p-theory (and W 2,2(B1) ↪→ C0(B1)), we

have P̃ ∈ C0(B1,Mn(R)) and

‖P̃‖L∞(B1)+‖∇ P̃‖L2(B1) ≤ C(ε0+‖ut(t0)‖L2(B1)). (4-11)

Since

1(P − P̃)= 0 in B1,

we know that V = P − P̃ ∈ C∞(B1,Mn(R)) is harmonic. Now, for any x ∈ B1, any r > 0 such that
B2r (x)⊂ B1, and any y ∈ Br (x), we have

|V (y)− V (x)| ≤ Cr‖∇V ‖L∞(Br (x)) ≤ Cr−1
‖∇V ‖L1(B2r (x))

≤ C‖∇V ‖L2(B2r (x)) ≤ C(‖∇P‖L2(B2r (x))+‖∇ P̃‖L2(B2r (x)))

≤ C(
√
ε0+‖ut(t0)‖L2(B1)), (4-12)

where we have used the mean value property of V and (4-11), (3-3). Combining (4-11) and (4-12) yields
that, for any x ∈ B1, any r > 0 such that B2r (x)⊂ B1, and any y ∈ Br (x), we have

|P(y, t0)− P(x, t0)| ≤ C(
√
ε0+‖ut(t0)‖L2(B1)), (4-13)

which gives the desired estimate (4-10). �

5. Validation of (2-21) and completion of the proof of Theorem 1.6

With the results so far at our disposal, we are now in a position to validate (2-21). As mention above, the
local estimate on the oscillation of the transformation matrix P in Lemma 4.3 will be the key ingredient.

Lemma 5.1. Let u(x, t) be as in Theorem 1.6. For any t0 ∈ [1,∞) such that ‖ut(t0)‖L2(B1) <
√
ε0, we

have
|∇u(t0)|2 ∈ h1(B1) (5-1)

with the estimate ∥∥|∇u(t0)|2
∥∥

h1(B1)
≤ Cε0. (5-2)



1914 LONGZHI LIN

Remark 5.2. Lemma 5.1 continues to hold for the flow (3-10) with a more general � in the form
�i

j =
∑n

l=1 f i
jl∇ul

+ gi
jl∇
⊥ul (which includes � = �i

j = [5
i (u) j,l −5

j (u)i,l]∇ul for the harmonic
map heat flow as a special case); see [Lamm and Lin 2013]. Moreover, the condition ‖ut(t0)‖L2(B1) < ε0

can be replaced by the fact that ‖ut(t0)‖L p(B1) is sufficiently small for some p > 1.

Proof of Lemma 5.1. By the assumption ‖ut(t0)‖L2(B1) <
√
ε0 and Lemma 4.3, for any x ∈ B1, any r > 0

such that B2r (x)⊂ B1, and any y ∈ Br (x), we have

|P(y, t0)− P(x, t0)| ≤ C
√
ε0. (5-3)

We will omit the index t0 from now on. By Proposition 4.1 and Theorems 3.1 and 3.4, for any x ∈ B1,
any r > 0 such that B2r (x)⊂ B1, and any y ∈ Br (x), we have (choosing ε0 sufficiently small)

0≤ 1
2 |∇u|2(y)≤ (A∇u+ B∇⊥u) · (PT

∇u)(y)

= (A∇u+ B∇⊥u) · [(PT (x)+ (PT
− PT (x)))∇u](y), (5-4)

and therefore, by (4-5) and (5-3),

(∇⊥η+∇ζ ) · (PT (x)∇u)(y)

= (A∇u+ B∇⊥u) · (PT (x)∇u)(y)

≥
1
2 |∇u|2(y)− (A∇u+ B∇⊥u) · [(PT

− PT (x))∇u](y)≥ 1
4 |∇u|2(y). (5-5)

Now we choose a function

φ ∈ C∞0 (B1) with φ ≥ 0, spt(φ)⊆ B1/2, φ = 2 on B3/8, and
∫

B1

φ dx = 1. (5-6)

Moreover, we additionally assume that ‖∇φ‖L∞(B1) ≤ 100. Using (4-3) and (5-5), one verifies directly
that (by Definition 2.8)∥∥|∇u|2

∥∥
h1(B1)

=

∫
B1

sup
0<t<1−|x |

φt ∗ |∇u|2 dx

≤ 4
∫

B1

sup
0<t<1−|x |

φt ∗ ((∇
⊥η+∇ζ ) · (PT (x)∇u)) dx

= 4
∫

B1

sup
0<t<1−|x |

φt ∗ [(PT (x))i j (∇
⊥ηi
·∇u j

+∇ζ i
·∇u j )] dx

≤ C
n∑

i, j=1

(‖∇⊥ηi
·∇u j
‖h1(B1)+‖∇ζ

i
‖W 1,2(B1)‖∇u j

‖L2(B1))

≤ C‖∇⊥η‖L2(B1)‖∇u‖L2(B1)+C
√
ε0‖ut‖L2(B1) ≤ Cε0,

where we have used the relations

(1) ∇⊥ηi
·∇u j

∈ h1(B1) and ‖∇⊥ηi
·∇u j
‖h1(B1) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1) for all i, j = 1, 2, . . . , n;

(2) ‖∇ζ i
·∇u j
‖L p(B1) ≤ C‖∇ζ i

‖W 1,2(B1)‖∇u j
‖L2(B1) for any 1 < p < 2 and ‖ f ‖h1(B1) ≤ C‖ f ‖L p(B1)

for any p > 1.
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To see (1), we first extend

ηi
−

1
|B1|

∫
B1

ηi and u j
−

1
|B1|

∫
B1

u j

from B1 to R2, which yields the existence of η̃i , ũ j
∈W 1,2

c (R2) such that∫
R2
|∇η̃i
|
2
≤ C

∫
B1

|∇ηi
|
2 and

∫
R2
|∇ũ j
|
2
≤ C

∫
B1

|∇u j
|
2 (5-7)

and
∇η̃i
=∇ηi and ∇ũ j

=∇u j a.e. in B1. (5-8)

Then, by the results of [Coifman et al. 1993], we know that

‖∇
⊥η̃i
·∇ũ j
‖H1(R2) : =

∫
R2

sup
φ∈T

sup
t>0

∣∣∣∣∫
Bt (x)

1
t2φ

(
x − y

t

)(
∇
⊥η̃i
·∇ũ j

)
(y) dy

∣∣∣∣ dx

≤ C‖∇η̃i
‖L2(R2)‖∇ũ j

‖L2(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1), (5-9)

where T = {φ ∈ C∞(R2) : spt(φ) ⊂ B1 and ‖∇φ‖L∞ ≤ 100}. By (5-8), (5-9), and Definition 2.8, it is
clear that

‖∇
⊥ηi
·∇u j
‖h1(B1) = ‖∇

⊥η̃i
·∇ũ j
‖h1(B1)

≤ ‖∇
⊥η̃i
·∇ũ j
‖H1(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1). (5-10)

This completes the proof of the lemma. �

Now, since u(x, t) ∈ W 1,2
∩C∞(B1× [1,∞),N) and the energy E(u( · , t)) is nonincreasing along

the flow as shown in (1-6), there exists T0 ≥ 1 such that

‖ut(T0)‖L2(B1) <
√
ε0. (5-11)

Then by Lemma 5.1 we know that |∇u(T0)|
2
∈ h1(B1) with estimate∥∥|∇u(T0)|

2∥∥
h1(B1)

≤ Cε0. (5-12)

Therefore, in view of Lemma 5.1, in order to validate the global estimate (2-21) we are left to show

‖ut(t0)‖L2(B1) <
√
ε0 for all t0 ≥ T0. (5-13)

We will next show this is indeed the case.

Lemma 5.3. Let u(x, t) be as in Theorem 1.6. Then there exists T0 > 0 such that

‖ut(t0)‖L2(B1) <
√
ε0 for all t0 ≥ T0. (5-14)

Proof. Let T0 ≥ 1 be as in (5-11), so ‖ut(T0)‖L2(B1) <
√
ε0. Since u(x, t) ∈W 1,2

∩C∞(B1×[1,∞),N),
and by the continuity of

∫
B1
|ut(t)|2 in t , there exists δ = δ(T0, ε0) > 0 such that, for any t0 ∈ [T0, T0+ δ],

we have
‖ut(t0)‖L2(B1) < 2

√
ε0. (5-15)
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Therefore, by our previous arguments (especially Theorem 2.6, Lemma 5.1 and (5-12) with T0 replaced
by t0), Lemma 2.5 applies to any subinterval of [T0, T0+ δ] and yields∫

B1

|ut(t2)|2 ≤
∫

B1

|ut(t1)|2 for any t1, t2 such that T0 ≤ t1 < t2 ≤ T0+ δ. (5-16)

This shows, instead of (5-15), for any t0 ∈ [T0, T0+ δ], we have

‖ut(t0)‖L2(B1) ≤ ‖ut(T0)‖L2(B1) <
√
ε0. (5-17)

We can then continue and iterate this process beyond T0 + δ and we see that
∫

B1
|ut(t)|2 is indeed

nonincreasing along the flow after T0. �

This completes the validation of (2-21) and therefore the assumptions in Lemmas 2.4 and 2.5 in view
of Theorem 2.6, finishing the proof of our main Theorem 1.6 as shown in Section 2.

Appendix: A proof of Theorem 2.6

Proof. The idea of the proof follows [Semmes 1994, Proposition 1.68]. Since the Green’s function of 1
on B1 is given by (1/(2π)) ln |x | for x ∈ B1, we can write

ψ(x)=
1

2π

∫
B1

f (y)
(

ln |x − y| − ln
(∣∣∣∣ x
|x |
− |x |y

∣∣∣∣)) dy. (A-1)

Let θ ∈ C∞0 (B1) be a smooth bump function such that 0 ≤ θ ≤ 1, θ = 1 in B1/16 and spt(θ) ⊂ B1/8.
For x ∈ B1, we define

lx(y) :=
∞∑
j=0

θ(2 j (1− |x |)−1(x − y)) for y ∈ B1. (A-2)

We claim that, for any x, y ∈ B1,

−20 ln 2≤ ln |x − y| − ln
(∣∣∣ x
|x |
− |x |y

∣∣∣)+ lx(y) ln 2≤ 20 ln 2. (A-3)

To see this, it is clear that, for x, y ∈ B1 such that

2−k
≤ |x − y| ≤ 2−k+1, k ∈ N0, (A-4)

we have
−k ln 2≤ ln |x − y| ≤ (−k+ 1) ln 2. (A-5)

Now note that

1− |x | − |x − y| ≤ 1− |x | + |x | − |y| = 1− |y| ≤ 1− |x | + |x − y|,

and therefore, for x ∈ B1−2−i−1 \ B1−2−i , that is, 1− |x | ∈ [2−i−1, 2−i
], i ∈ N0 (with B̄0 = ∅), and any

y ∈ B1 satisfying (A-4), we have

1− |y| ∈
{
[2−i−1

− 2−k+1, 2−i
+ 2−k+1

] if k ≥ i + 4,
[0, 2−i

+ 2−k+1
] if k ≤ i + 3.
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We also have

0≤ (1− |x |)(1− |y|)≤ (1− |x |2)(1− |y|2)

=

∣∣∣∣ x
|x |
− |x |y

∣∣∣∣2− |x − y|2 ≤ 22(1− |x |)(1− |y|), (A-6)

and thus ∣∣∣∣ x
|x |
− |x |y

∣∣∣∣2− |x − y|2 ∈
{
[2−2i−2

− 2−i−k, 2−2i+2
+ 2−i−k+3

] if k ≥ i + 4,
[0, 2−2i+2

+ 2−i−k+3
] if k ≤ i + 3.

Combining this with (A-4), we get∣∣∣∣ x
|x |
− |x |y

∣∣∣∣2 ∈ {[2−2i−2
− 2−i−k

+ 2−2k, 2−2i+2
+ 2−i−k+3

+ 2−2k+2
] if k ≥ i + 4,

[2−2k, 2−2i+2
+ 2−i−k+3

+ 2−2k+2
] if k ≤ i + 3.

Now, using the facts that for k ≥ i + 4 we have

2−2i−2
− 2−i−k

+ 2−2k
≥ 2−2i−4 and 2−2i+2

+ 2−i−k+3
+ 2−2k+2

≤ 2−2i+4

and for k ≤ i + 3 we have
2−2i+2

+ 2−i−k+3
+ 2−2k+2

≤ 2−2k+10,

we arrive at ∣∣∣∣ x
|x |
− |x |y

∣∣∣∣2∈ {[2−2i−4, 2−2i+4
] if k ≥ i + 4,

[2−2k, 2−2k+10
] if k ≤ i + 3,

and hence

− ln
∣∣∣∣ x
|x |
− |x |y

∣∣∣∣ ∈ {[(i − 2) ln 2, (i + 2) ln 2] if k ≥ i + 4,
[(k− 5) ln 2, k ln 2] if k ≤ i + 3.

(A-7)

Combining (A-5) and (A-7), we get

ln |x − y| − ln
∣∣∣∣ x
|x |
− |x |y

∣∣∣∣ ∈ {[(−k+ i − 2) ln 2, (−k+ i + 3) ln 2] if k ≥ i + 4,
[−5 ln 2, ln 2] (in fact, [−5 ln 2, 0]) if k ≤ i + 3

(A-8)

for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0, and any y ∈ B1 satisfying (A-4) for some k ≥ 0.
Now, for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0, and any y ∈ B1 satisfying (A-4), since 0≤ θ ≤ 1, θ = 1 in

B1/16, and spt(θ)⊂ B1/8, we get that, for any j ≥ 0,

θ(2 j (1− |x |)−1(x − y))= 0 for |x − y| ≥ 2− j−3(1− |x |) ∈ [2− j−i−4, 2− j−i−3
]

and
θ(2 j (1− |x |)−1(x − y))= 1 for |x − y| ≤ 2− j−4(1− |x |) ∈ [2− j−i−5, 2− j−i−4

].

Combining with (A-4), we obtain

θ(2 j (1− |x |)−1(x − y))= 0 for j ≥ k− i − 3 (A-9)

and
θ(2 j (1− |x |)−1(x − y))= 1 if k− 1≥ j + i + 5 (that is j ≤ k− i − 6). (A-10)
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Hence, for any x ∈ B1−2−i−1 \ B1−2−i , i ≥ 0 and any y ∈ B1 such that 2−k
≤ |x − y| ≤ 2−k+1 for some

k = 0, 1, 2, . . . , (A-2), (A-9), and (A-10) imply{
k− i − 10≤ lx(y)≤ k− i + 10 if k ≥ i + 4,
lx(y)= 0 if k ≤ i + 3.

(A-11)

Combining (A-8) and (A-11) gives (A-3).
Therefore, in order to obtain the L∞-bound ofψ on B1 as in (2-18), it suffices to bound

∫
B1

f (y)lx(y) dy,
since we have (A-1), (A-3), and ‖ f ‖L1(B1) ≤ ‖ f ‖h1(B1).

In order to bound
∫

B1
f (y)lx(y) dy, we next claim that, for any x ∈ B1, j ≥ 0, and z ∈ B2− j−4(1−|x |)(x),

we have∫
B1

f (y)22 j+2(1− |x |)−2θ(2 j (1− |x |)−1(x − y)) dy ≤
∫

Bt (z)

1
t2φ

(
z− y

t

)
f (y) dy, (A-12)

where

t = 2− j−1(1− |x |)

and φ is a nonnegative Schwartz function as in (5-6). To see (A-12), we first note that since spt(θ)⊂ B1/8,
we have, for any x ∈ B1 and j ≥ 0,∫

B1

f (y)22 j+2(1− |x |)−2θ(2 j (1− |x |)−1(x − y)) dy

=

∫
B2− j−3(1−|x |)(x)

f (y)22 j+2(1− |x |)−2θ(2 j (1− |x |)−1(x − y)) dy. (A-13)

Now since
3
8(2
− j−1)= 2− j−4

+ 2− j−3

and

2− j−4
+ 2− j−1

=
9
16 2− j < 1

for any j ≥ 0, we see that, for any z ∈ B2− j−4(1−|x |)(x),

B2− j−3(1−|x |)(x)⊆ B3t/8(z)⊂ Bt(z)= B2− j−1(1−|x |)(z)⊆ B1. (A-14)

Using the relations f ≥ 0, 0≤ θ ≤ 1, φ ≥ 0, and the fact that φ = 2 on B3/8, we conclude∫
B2− j−3(1−|x |)(x)

f (y)22 j+2(1− |x |)−2θ(2 j (1− |x |)−1(x − y)) dy

≤

∫
B2− j−3(1−|x |)(x)

f (y)22 j+2(1− |x |)−2 dy ≤
∫

B3t/8(z)
f (y)22 j+2(1− |x |)−2 dy

≤

∫
Bt (z)

f (y)22 j+2(1− |x |)−2φ

(
z− y

t

)
dy =

∫
Bt (z)

1
t2φ

(
z− y

t

)
f (y) dy.
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Combining this with (A-13) gives (A-12). Therefore, by (A-12) and the definition (2-19) of the radial
maximal function f ∗, for any x ∈ B1 and j ≥ 0, we have∣∣∣∣∫

B1

f (y)θ(2 j (1− |x |)−1(x − y)) dy
∣∣∣∣≤ 2−2 j−2(1− |x |)2 inf

z∈B2− j−4(1−|x |)(x)
f ∗(z).

Therefore, by (A-2), for any x ∈ B1, we have∣∣∣∣∫
B1

f (y)lx(y) dy
∣∣∣∣≤ ∞∑

j=0

∣∣∣∣∫
B1

f (y)θ(2 j (1− |x |)−1(x − y)) dy
∣∣∣∣

≤

∞∑
j=0

2−2 j−2(1− |x |)2 inf
z∈B2− j−4(1−|x |)(x)

f ∗(z)

≤
28

3π

∞∑
j=0

∫
B2− j−4(1−|x |)(x)\B2− j−5(1−|x |)(x)

f ∗(z) dz

≤
28

3π

∫
B1

f ∗(z) dz ≤
28

3π
‖ f ‖h1(B1). (A-15)

Combining (A-6), (A-3), and (A-15) yields (using ‖ f ‖L1(B1) ≤ ‖ f ‖h1(B1))

|ψ(x)| = −
1

2π

∫
B1

f (y)
(

ln |x − y| − ln
∣∣∣∣ x
|x |
− |x |y

∣∣∣∣) dy ≤ C‖ f ‖h1(B1).

This gives the desired L∞-bound of ψ on B1. The L2-estimate for ∇ψ simply follows from an integration
by parts argument. �
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A ROTATIONAL APPROACH TO TRIPLE POINT OBSTRUCTIONS

NOAH SNYDER

Subfactors where the initial branching point of the principal graph is 3-valent are subject to strong
constraints called triple point obstructions. Since more complicated initial branches increase the index
of the subfactor, triple point obstructions play a key role in the classification of small index subfactors.
There are two strong triple point obstructions, called the triple-single obstruction and the quadratic tangles
obstruction. Although these obstructions are very closely related, neither is strictly stronger. In this paper
we give a more general triple point obstruction which subsumes both. The techniques are a mix of planar
algebraic and connection-theoretic techniques with the key role played by the rotation operator.

1. Introduction

The principal graph of a subfactor begins with a type A string and then hits an initial branch point (unless
the graph is Ak or A∞). It is natural to stratify subfactors based on how complex this initial branch
point is. Furthermore, complex initial branches increase the norm of the graph and thus the index of the
subfactor. This means that small index subfactors can only have simple initial branches. The simplest
possibility is an initial triple point (in this case the dual graph also begins with a triple point). Subfactors
beginning with an initial triple point are subject to strong constraints known as triple point obstructions.
For example, a triple point obstruction due to Ocneanu shows that as long as the index is greater than 4
the initial triple point must be at odd depth. These triple point obstructions play a crucial role in the
classification of small index subfactors [Haagerup 1994; Morrison and Snyder 2012; Morrison et al. 2012;
Izumi et al. 2012; Penneys and Tener 2012].

The current state of the art of triple point obstructions is given in our joint paper with S. Morrison,
D. Penneys, and E. Peters [Morrison et al. 2012], but the status is somewhat unsatisfactory as there are
two main results, neither of which is strictly stronger than the other. One result applies more generally
and proves a certain inequality, while the other (due to V. F. R. Jones [2012]) has stricter assumptions
but replaces the inequality with a finite list of values. The former is proved using connections and the
latter using planar algebras. The main result of this paper is a mutual generalization of these two triple
point obstructions, which proves the stronger conclusion using only the weaker assumptions. As one
might expect, this paper uses a mix of connections and planar algebras following our earlier paper with
M. Izumi, Jones, and Morrison [Izumi et al. 2012]. Furthermore, one can think of this argument as giving
an alternate proof of the triple point obstruction from [Jones 2012].

MSC2010: 46L37.
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Before stating the three relevant results, we fix some notation which we will use throughout the paper.
Suppose that N ⊂ M is an n−1 supertransitive finite index subfactor of index greater than 4 whose
principal graphs begin with triple points, and let 0 and 0′ denote the principal and dual principal graphs.
Let [k] denote the quantum number (νk

− ν−k)/(ν − ν−1), where ν is a number such that the index is
[2]2. Let β and β ′ denote the initial triple points at depth n− 1 (which is necessarily odd by Ocneanu’s
obstruction), let α1 and γ1 be the vertices at depth n−2, let α2 and α3 be the two vertices at depth n on 0,
and let γ2 and γ3 be the two vertices at depth n on 0′. We will conflate vertices with the corresponding
simple bimodules and the corresponding simple projections in the planar algebra. Assume without loss of
generality that dimα2 ≥ dimα3 and dim γ2 ≥ dim γ3.

Theorem 1 (triple-single obstruction [Morrison et al. 2012, Theorem 3.5]). If γ3 is 1-valent, then

dim(α2)− dim(α3)≤ 1.

Theorem 2 (quadratic tangles obstruction [Jones 2012]). Suppose that γ3 is 1-valent and that γ2 is
3-valent; then

r +
1
r
=
λ+ λ−1

+ 2
[n][n+ 2]

+ 2,

where λ is the scalar by which rotation acts on the 1-dimensional perpendicular complement of Temperley–
Lieb at depth n and r = dim(α2)/dim(α3).

Since λ is a root of unity, we know that −2≤ λ+ λ−1
≤ 2. Hence the quadratic tangles obstruction

gives an inequality, and (as observed by Zhengwei Liu) this inequality turns out to be precisely the one in
the triple-single obstruction [Morrison et al. 2012, Lemma 3.3]. Thus the quadratic tangles obstruction
is stronger (replacing an interval of possibilities with a finite list) when both apply, but the triple-single
obstruction has a weaker assumption. The main result of this paper is the following mutual generalization
of Theorems 1 and 2.

Theorem 3. Suppose that γ3 is 1-valent; then

r +
1
r
=
λ+ λ−1

+ 2
[n][n+ 2]

+ 2.

2. Background

We quickly summarize the key idea of [Izumi et al. 2012, §5.2], which is that the action of rotation on the
planar algebra can be read off from the connection. Since rotational eigenvalues must be roots of unity,
this gives highly nontrivial constraints on candidate connections. We assume that the reader is familiar
with both planar algebras and connections; see [Izumi et al. 2012] for more detail.

Given a subfactor N ⊂ M we get a certain collection of matrices called a connection. This connection
depends on a choice of certain intertwiners, and thus is only well-defined up to gauge automorphisms. Let
the branch matrix U denote the 3-by-3 matrix coming from the connection at the initial branch vertex of 0.
The key idea of Izumi et al. is that there is a canonical gauge choice for U , called the diagrammatic branch
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matrix, coming from the planar algebra. This choice is both easy to recognize and has nice properties, as
captured by the following two results.

Lemma 4 [Izumi et al. 2012, Lemma 5.6]. When n is odd the diagrammatic branch matrix is characterized
within its gauge class by the property that all the entries in the first row and column are positive real
numbers.

Proposition 5. Let U be the diagrammatic branch matrix for a subfactor with an initial triple point. Let
x be an n-box in the perpendicular complement of Temperley–Lieb, and write x = a2(α2/

√
dimα2)+

a3(α3/
√

dimα3). Let (c1, c2, c3)=U (0, a2, a3). Then c1 = 0 and c2(γ2/
√

dim γ2)+ c3(γ3/
√

dim γ3) is
ρ1/2(x).

Proof. This is a restatement of [Izumi et al. 2012, Corollary 5.3] in our special case. See [Izumi et al.
2012, pp. 18–19] for a worked example. �

In order to apply the previous proposition, we will want an explicit formula for vectors in the perpen-
dicular complement to Temperley–Lieb in the n-box space and the action of rotation there. Recall that
the rotation ρ preserves shading and thus is an endomorphism of each box space, while ρ1/2 changes
rotation and thus is a map from one box space to a different box space. We will use λ to denote the scalar
by which ρ acts on the 1-dimensional perpendicular complement to Temperley–Lieb in the n-box space.
Note that this is an n-th root of unity.

Lemma 6. Let r = dimα2/dimα3 and ř = dim γ2/dim γ3. Then T = (1/
√

r)α2 −
√

rα3 and Ť =
(1/
√

ř)γ2−
√

řγ3 are each in the perpendicular complement of Temperley–Lieb.
Furthermore ρ1/2(T )=

√
λŤ , where

√
λ is some square root of the rotational eigenvalue for the action

of rotation on the perpendicular compliment of Temperley–Lieb.

Proof. These calculations (with slightly different conventions) were done in an early version of [Jones
2012]. Seeing that T and Ť are perpendicular to Temperley–Lieb is straightforward (you only need to work
out their inner product with two specific Jones–Wenzl projections). Since half-click rotation preserves
Temperley–Lieb and is an isometry, it also preserves the perpendicular complement of Temperley–Lieb.
Thus ρ1/2(T ) is some scalar multiple of Ť . To work out which scalar multiple this is you compute their
norms. This tells you that the square of this scalar is λ. �

Remark 7. There are many square roots in this paper. Other than
√
λ, all square roots are positive square

roots of positive numbers. Moreover
√
λ will always be chosen such that the previous lemma works. In

the final statement of the main theorem no
√
λ appears, so this subtlety is not very important.

Combining the previous two results we have the following concrete statement, which will supply the
main ingredient of our proof of Theorem 3.

Corollary 8. The diagrammatic branch matrix U sends(
0,
√

dim(α3),−
√

dim(α2)
)
7→
√
λ
(
0,
√

dim(γ3),−
√

dim(γ2)
)
.
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3. Proof of Theorem 3

The idea of this argument is that having a 1-valent vertex allows us to solve for the branch matrix, and thus
we can read off the rotational eigenvalue (since the diagrammatic branch matrix acts on the appropriate
vectors by rotation). This gives an identity between the dimensions of objects and the rotational eigenvalue.

We begin with a quick calculation of the branch matrix following the proof of the triple-single
obstruction [Morrison et al. 2012, Theorem 3.1]. Since α1, γ1, β, and β ′ are in the initial string their
dimensions are [n−1], [n−1], [n], and [n], respectively. Since γ3 is 1-valent, we have dim γ2=[n+2]/[2]
and dim γ3 = [n]/[2]. Using the 1-valence of γ3 the normalization condition on connections determines
the magnitude of several of the entries in the branch matrix. Furthermore, unitarity of U allows us to
work out several more of the entries. In particular, the branch matrix is gauge equivalent to the matrix
below, where p = dim(α2) and q = dim(α3), where σ and τ are unknown phases, and where ? denotes
unknown entries which will play no role in the calculation.

U =



1
[n]

√
[n− 1]p
[n]

√
[n− 1]q
[n]√

[n− 1]
[2][n]

σ

√
p
[2][n]

τ

√
q
[2][n]√

[n− 1][n+ 2]
[2][n]2

? ?


.

The first row and column of this matrix are clearly positive, so by Lemma 4 we see that U is the
diagrammatic branch matrix.

Remark 9. This matrix is the transpose of the matrix found in [Morrison et al. 2012] because the
calculation there is done for 0′ instead of 0. As shown in [Izumi et al. 2012], the diagrammatic branch
matrices of 0 and 0′ are always transposes.

We would like to solve for σ and τ . Orthogonality of the first two rows of U tells us that

1+ σ p+ τq = 0.

Although 1+ σ p+ τq = 0 is one equation in two unknowns, it actually determines σ and τ since they
are phases:

σ =−
1+ τq

p
,

1= σ σ̄ =
1+ τq

p
1+ τ̄q

p
=

1+ (τ + τ̄ )q + q2

p2 ,

τ + τ̄ =
p2
− q2
− 1

q
.

This determines the real part of τ , and thus τ itself. Similarly, σ + σ̄ = (q2
− p2
− 1)/p.
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Now that we have a very explicit understanding of U we apply it to a rotational eigenvector. Corollary 8
tells us that U sends

(0,
√

q,−
√

p) 7→
√
λ

(
0,

√
[n+ 2]
[2]

,−

√
[n]
[2]

)
.

Looking at the middle coordinate of that identity, we see that

σ − τ =
√
λ

√
[n+ 2][n]

pq
.

Comparing the real parts of both sides yields(
√
λ+

1
√
λ

)√
[n+ 2][n]

pq
= (σ + σ̄ )− (τ + τ̄ )

=
q2
− p2
− 1

p
−

p2
− q2
− 1

q
=
(q − p)((p+ q)2− 1)

pq

=
(q − p)([n+ 1]2− 1)

pq
=
(q − p)([n][n+ 2])

pq
.

Squaring both sides and rearranging proves the theorem.

Remark 10. You might guess that σ − τ =
√
λ
√
[n+ 2][n]/(pq) would give a second condition coming

from the imaginary parts. In fact there’s no new information there, because the two sides automatically
have the same norm.
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ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION
IN R3 WITH RADIAL DATA

RUIPENG SHEN

In this paper, we consider the wave equation in 3-dimensional space with an energy-subcritical nonlinearity,
either in the focusing or defocusing case. We show that any radial solution of the equation which is
bounded in the critical Sobolev space is globally defined in time and scatters. The proof depends on
the compactness/rigidity argument, decay estimates for radial, “compact” solutions, gain of regularity
arguments and the “channel of energy” method.

1. Introduction

In this paper we will consider the energy subcritical, nonlinear wave equation in R3 with radial initial
data 8<:

@2t u��uD˙juj
p�1u; .x; t/ 2 R3 �R;

ujtD0 D u0 2 PH
sp .R3/;

@tujtD0 D u1 2 PH
sp�1.R3/:

(1)

Here 3 < p < 5 and

sp D
3

2
�

2

p� 1
:

The positive sign in the nonlinear term gives us the focusing case, while the negative sign indicates the
defocusing case. The quantity

E.t/D
1

2

Z
R3
.j@tu.x; t/j

2
Cjru.x; t/j2/ dx�

1

pC 1

Z
R3
ju.x; t/jpC1 dx (2)

is called the energy of the solution. The energy is a constant in the whole lifespan of the solution, as long
as it is well-defined. Note that the energy can be a negative number in the focusing case.

Previous results in the energy-critical case. In the energy-critical case, namely p D 5, the initial data is
in the energy space PH 1 �L2. This automatically guarantees the existence of the energy by the Sobolev
embedding PH 1 ,! L6. This kind of wave equations has been extensively studied. In the defocusing case,
M. Grillakis [1990; 1992] proved the global existence and scattering of the solution with any PH 1 �L2

initial data. In the focusing case, however, the behavior of solutions is much more complicated. The
solutions may scatter, blow up in finite time or even be independent of time. (See [Duyckaerts et al.
2013; Kenig and Merle 2008] for more details.) In particular, a solution independent of time is usually

MSC2010: 35L15, 35L71.
Keywords: wave equation, scattering, nonlinear, energy subcritical.
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called a ground state or a soliton. This kind of solutions is actually the solutions of the elliptic equation
��W.x/D jW.x/jp�1W.x/. We can write down all the nontrivial radial solitons explicitly as

W.x/D˙
1

�1=2

�
1C
jxj2

3�2

�� 1
2

: (3)

Here � is an arbitrary positive parameter.

Energy subcritical case. We will consider the case 3 < p < 5 in this paper; thus 1=2 < sp < 1. In this
case the problem is critical in the space PH sp .R3/� PH sp�1.R3/, because if u.x; t/ is a solution of (1)
with initial data .u0; u1/, then for any � > 0, the function

1

�3=2�sp
u
�
x

�
;
t

�

�
is another solution of the (1) with the initial data�

1

�3=2�sp
u0

�
x

�

�
;

1

�5=2�sp
u1

�
x

�

��
;

which shares the same PH sp � PH sp�1 norm as the original initial data .u0; u1/. These scalings play an
important role in our discussion of this problem.

Theorem 1.1 (main theorem). Let u be a solution of the nonlinear wave equation (1) with radial initial
data .u0; u1/ 2 PH sp � PH sp�1.R3/ and a maximal lifespan I so that

sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 <1: (4)

Then u is global in time .I D R/ and scatters; that is,

ku.x; t/kS.R/ <1; or equivalently ku.x; t/kYsp .R/ <1:

This is actually equivalent to saying that there exist two pairs .uC0 ; u
C
1 / and .u�0 ; u

�
1 / in the space

PH sp � PH sp�1 such that

lim
t!˙1

�u.t/�S.t/.u˙0 ; u˙1 /; @tu.t/� @tS.t/.u˙0 ; u˙1 /� PH sp� PH sp�1 D 0:

Here S.t/.u˙0 ; u
˙
1 / is the solution of the linear wave equation with the initial data .u˙0 ; u

˙
1 /.

Please refer to Definition 2.4 for the S and Ys norms. There are a couple of remarks on the main
theorem.

� The defocusing case. As in the energy-critical case, we expect that the solutions always scatter
as long as the initial data are in the critical Sobolev space. Besides the radial condition, the main
theorem depends on the assumption (4), which is expected to be true for all solutions. Unfortunately,
as far as the author knows, no one actually knows how to prove it without additional assumptions.



ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION IN R3 WITH RADIAL DATA 1931

� The focusing case. In the focusing case, the solutions may blow up in finite time. (See Theorem 6.3,
for instance.) Thus the assumption (4) is a meaningful and essential condition rather than a technical
one. The main theorem gives us the following rough classification of radial solutions.

Proposition 1.2. Let u.t/ be a solution of (1) in the focusing case with a maximal lifespan I and radial
initial data .u0; u1/ 2 PH sp � PH sp�1.R3/. Then one of the following holds for u.x; t/.

(I) (blow-up) The PH sp � PH sp�1 norm of .u.t/; @tu.t// blows up, namely

sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 DC1:

(II) (scattering) If the upper bound of the PH sp � PH sp�1 norm above is finite instead, namely, the
assumption (4) holds, then u.t/ is a global solution (i.e, I D R) and scatters.

Main idea in this paper. The main idea to establish Theorem 1.1 is to use the compactness/rigidity
argument, namely to show:

(I) If the main theorem failed, it would break down at a minimal blow-up solution, which is almost
periodic modulo scalings.

(II) The minimal blow-up solution is in the energy space.

(III) The minimal blow-up solution described above does not exist.

Step (I). The method of profile decomposition used here has been a standard way to deal with both the
wave equation and the Schrödinger equation. Thus we will only give important statements instead of
showing all the details. The other steps, however, depend on the specific problems. One could refer to
[Bahouri and Gérard 1999] in order to understand what the profile decomposition is, and to [Kenig and
Merle 2008; 2010; Killip and Visan 2010] in order to see why the profile decomposition leads to the
existence of a minimal blow-up solution.

Step (II). We will combine the method used in my old paper [Shen 2011] and a method used in [Kenig
and Merle 2011] on the supercritical case of the nonlinear wave equation in R3. The idea is to use the
following fact. Given a radial solution u.x; t/ of the equation

@2t u.x; t/��u.x; t/D F.x; t/

defined in the time interval I , if we define two functions w; h W RC � I ! R, such that w.jxj; t / D
jxju.x; t/ and h.jxj; t / D jxjF.x; t/, then w.r; t/ is a solution of the one-dimensional wave equation
@2tw.r; t/� @

2
rw.r; t/D h.r; t/. This makes it convenient to consider the integralZ 4r0˙t

r0˙t

j@tw.r; t0C t /� @rw.r; t0C t /j
2 dr:

as the parameter t changes.

Step (III). Given an energy estimate, all minimal blow-up solutions are not difficult to kill except for the
soliton-like solutions in the focusing case. As I mentioned earlier, this kind of solutions actually exists in
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the energy-critical case. The ground states given in (3) are perfect examples. In the energy-subcritical case,
however, the soliton does not exist at all. More precisely, none of the solutions of the corresponding elliptic
equation is in the right space PH sp . This fact enables us to gain a contradiction by showing a soliton-like
minimal blow-up solution must be a real soliton, which does not exist, using a new method introduced
by T. Duyckaerts, C. E. Kenig and F. Merle. They classified all radial solutions of the energy-critical,
focusing wave equation in their recent paper [Duyckaerts et al. 2013] using this “channel of energy”
method.

Remark on the supercritical case. Simultaneously to this work, T. Duyckaerts et al. [2012] proved that
results similar to ours also hold in the supercritical case p > 5 of the focusing wave equation, using the
compactness/rigidity argument, a point-wise estimate on “compact” solutions obtained in [Kenig and
Merle 2011] and the channel of energy method mentioned above.

2. Preliminary results

Notation. The following notation will be used throughout this paper.

� (.) The inequality A. B means that there exists a constant c such that A� cB . A subscript on .
implies that the constant c depends on the parameter(s) indicated but nothing else.

� (the smooth frequency cutoff) We use P<A and P>A for the standard smooth frequency cutoff
operators. In particular, we use the following notation on u for convenience:

u<A
:
D P<Au; u>A

:
D P>Au:

� (notation for radial functions) If u.x; t/ is radial in the space, then u.r; t/ represents the value u.x; t/
when jxj D r .

� (linear wave evolution) Let .u0; u1/ 2 PH s � PH s�1.R3/ be a pair of initial data. Suppose u.x; t/ is
the solution of the linear wave equation8<:

@2t u��uD 0; .x; t/ 2 R3 �R;

ujtD0 D u0;

@tujtD0 D u1:

We will use the following notation to represent this solution u:

S.t0/.u0; u1/D u.t0/; S.t0/

�
u0
u1

�
D

�
u.t0/

@tu.t0/

�
:

� (method of center cutoff) Let .v0; v1/ 2 PH 1 �L2.R3 nB.0; r// be a pair of radial functions. We
define (with R > r)

.‰Rv0/.x/D

�
v0.x/ if jxj>R;
v0.R/ if jxj �R;

.‰Rv1/.x/D

�
v1.x/ if jxj>R;
0 if jxj �R:
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Local theory with PH sp � PH sp�1.R3/ initial data. In this section, we will review the theory for the
Cauchy problem of the nonlinear wave equation (1) with initial data in the critical Sobolev space
PH sp � PH sp�1.R3/. The same local theory works in both the focusing and defocusing cases. It can be

also applied to the nonradial case.

Definition 2.1 (space-time norm). Let I be an interval of time. If 1� q; r <1, the space-time norm is
defined by

kv.x; t/kLqLr .I�R3/ D

�Z
I

�Z
R3
jv.x; t/jr dx

�q=r
dt

�1=q
;

kv.x; t/kL1Lr .I�R3/ D inf
�
M > 0 W

�Z
R3
jv.x; t/jr dx

�1=r
<M; a.e. t 2 I

�
:

This is used in the following Strichartz estimates.

Proposition 2.2 (generalized Strichartz inequalities; see Proposition 3.1 of [Ginibre and Velo 1995] —
here we use the Sobolev version in R3). Let 2� q1; q2 �1, 2� r1; r2 <1 and �1; �2; s 2 R with

1=qi C 1=ri � 1=2 for i D 1; 2;

1=q1C 3=r1 D 3=2� sC �1;

1=q2C 3=r2 D 1=2C sC �2:

Let u be the solution of the linear wave equation8<:
@2t u��uD F.x; t/; .x; t/ 2 R3 �R;

ujtD0 D u0 2 PH
s.R3/;

@tujtD0 D u1 2 PH
s�1.R3/:

(5)

Then we have

k.u.T /; @tu.T //k PH s� PH s�1 CkD
�1
x ukLq1Lr1 .Œ0;T ��R3/

� C
�
k.u0; u1/k PH s� PH s�1 CkD

��2
x F.x; t/kL Nq2LNr2 .Œ0;T ��R3/

�
:

The constant C does not depend on T .

Definition 2.3 (admissible pair). If .q1; r1; s; �1/D .q; r;m; 0/ satisfies the conditions in Proposition 2.2,
we say .q; r/ is an m-admissible pair.

Definition 2.4. Fix 3 < p < 5. We define the following norms with sp � s � 1:

kv.x; t/kS.I/ D kv.x; t/kL2.p�1/L2.p�1/.I�R3/;

kv.x; t/kW.I/ D kv.x; t/kL4L4.I�R3/;

kv.x; t/kZs.I / D kv.x; t/k
L

2
sC1L

2
2�s .I�R3/

;

kv.x; t/kYs.I / D kv.x; t/k
L

2p
sC1�.2p�2/.s�sp/L

2p
2�s .I�R3/

:
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Remark 2.5. By the Strichartz estimates, we have if u.x; t/ is the solution of8<:
@2t u��uD F.x; t/; .x; t/ 2 R3 �R;

ujtD0 D u0 2 PH
s.R3/;

@tujtD0 D u1 2 PH
s�1.R3/:

then

k.u.T /; @tu.T //k PH s� PH s�1 CkukYs.Œ0;T �/ � C.k.u0; u1/k PH s� PH s�1 CkF.x; t/kZs.Œ0;T �//:

Definition 2.6 (solutions). We say u.t/.t 2 I / is a solution of (1), if .u.t/; @tu.t//2C.I I PH sp� PH sp�1/,
with finite norms kukS.J / and kDsp�1=2x ukW.J/ for any bounded closed interval J � I so that the
integral equation

u.t/D S.t/.u0; u1/C

Z t

0

sin..t � �/
p
��/

p
��

F.u.�// d�

holds for all time t 2 I . Here S.t/.u0; u1/ is the solution of the linear wave equation with initial data
.u0; u1/ and

F.u/D˙jujp�1u:

Remark 2.7. We can take another way to define the solutions by substituting S.I / and W.I/ norms by
a single Ysp .I / norm. Using the Strichartz estimates, these two definitions are equivalent to each other.

By the Strichartz estimate and a fixed-point argument, we have the following theorems. (Our argument
is similar to those in a lot of earlier papers. See, for instance, [Lindblad and Sogge 1995; Kenig and
Merle 2008] for more details.)

Theorem 2.8 (local solution). For any initial data .u0; u1/ 2 PH sp � PH sp�1, there is a maximal interval
.�T�.u0; u1/; TC.u0; u1// in which the equation has a solution.

Theorem 2.9 (scattering with small data). There exists ı D ı.p/ > 0 such that if the norm of the initial
data k.u0; u1/k PH sp� PH sp�1 < ı, then the Cauchy problem (1) has a global-in-time solution u with
kukS.�1;C1/ <1.

Lemma 2.10 (standard finite blow-up criterion). If TC <1, then kukS.Œ0;TC// D1.

Theorem 2.11 (long-time perturbation theory; see [Colliander et al. 2008; Kenig and Merle 2008; 2006;
2011]). Fix 3 < p < 5. Let M;A;A0 be positive constants. There exists "0 D "0.M;A;A0/ > 0 and ˇ > 0
such that if " < "0, then for any approximation solution Qu defined on R3 � I (0 2 I ) and any initial data
.u0; u1/ 2 PH

sp � PH sp�1 satisfying

.@2t ��/. Qu/�F. Qu/D e.x; t/; .x; t/ 2 R3 � I;8̂<̂
:

supt2I k. Qu.t/; @t Qu.t//k PH sp� PH sp�1 � A;

k QukS.I/ �M;

kD
sp�1=2
x QukW.J/ <1 for each J b I;

k.u0� Qu.0/; u1� @t Qu.0//k PH sp� PH sp�1 � A
0;

kD
sp�

1
2

x ek
L
4=3
I L

4=3
x
CkS.t/.u0� Qu.0/; u1� @t Qu.0//kS.I/ � ";

(6)
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there exists a solution of (1) defined in the interval I with the initial data .u0; u1/ and satisfying

kukS.I/ � C.M;A;A
0/;

sup
t2I

k.u.t/; @tu.t//� . Qu.t/; @t Qu.t//k PH sp� PH sp�1 � C.M;A;A
0/.A0C "C "ˇ /:

Theorem 2.12 (perturbation theory with Ysp norm). Fix 3 < p < 5. Let M be a positive constant. There
exists a constant "0 D "0.M/ > 0 such that if " < "0, then for any approximation solution Qu defined on
R3 � I (0 2 I ) and any initial data .u0; u1/ 2 PH sp � PH sp�1 satisfying

.@2t ��/. Qu/�F. Qu/D e.x; t/; .x; t/ 2 R3 � I;

k QukYsp .I / <M; k. Qu.0/; @t Qu.0//k PH sp� PH sp�1 <1;

ke.x; t/kZsp .I /CkS.t/.u0� Qu.0/; u1� @t Qu.0//kYsp .I / � ";

there exists a solution u.x; t/ of (1) defined in the interval I with the initial data .u0; u1/ and satisfying

ku.x; t/� Qu.x; t/kYsp .I / < C.M/":

sup
t2I

� u.t/

@tu.t/

�
�

�
Qu.t/

@t Qu.t/

�
�S.t/

�
u0� Qu.0/

u1� @t Qu.0/

�
PH sp� PH sp�1

< C.M/":

Remark 2.13. If K is a compact subset of the space PH sp � PH sp�1, then there exists T D T .K/ > 0
such that TC.u0; u1/ > T .K/ for any .u0; u1/ 2K. This is a direct result from perturbation theory.

Local theory with more regular initial data. Let s 2 .sp; 1�. By a similar fixed-point argument we can
obtain the following results.

Theorem 2.14 (local solution with PH s � PH s�1 initial data). If .u0; u1/ 2 PH s � PH s�1, then there is a
maximal interval .�T�.u0; u1/; TC.u0; u1// in which the equation has a solution u.x; t/. In addition,
we have

T�.u0; u1/; TC.u0; u1/ > T1
:
D Cs;p.k.u0; u1/k PH s� PH s�1/

�1=.s�sp/;

ku.x; t/kYs.Œ�T1;T1�/ � Cs;pk.u0; u1/k PH s� PH s�1 :

Theorem 2.15 (weak long-time perturbation theory). Let Qu be a solution of the equation (1) in the time
interval Œ0; T � with initial data . Qu0; Qu1/, so that

k. Qu0; Qu1/k PH s� PH s�1 <1; k QukYs.Œ0;T �/ <M:

There exist two constants "0.T;M/; C.T;M/ > 0 such that if .u0; u1/ is another pair of initial data with

k.u0� Qu0; u1� Qu1/k PH s� PH s�1 < "0.T;M/;

then there exists a solution u of the equation (1) in the time interval Œ0; T � with initial data .u0; u1/ so that

ku� QukYs.Œ0;T �/ � C.T;M/k.u0� Qu0; u1� Qu1/k PH s� PH s�1 ;

sup
t2Œ0;T �

k.u.t/� Qu.t/; @tu.t/� @t Qu.t//k PH s� PH s�1 � C.T;M/k.u0� Qu0; u1� Qu1/k PH s� PH s�1 :
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Technical results.

Lemma 2.16 (gluing of PH s functions). Let �1� s � 1. Suppose f .x/ is a tempered distribution defined
on R3 such that (R > 0)

f .x/D

�
f1.x/ for x 2 B.0; 2R/;
f2.x/ for x 2 R3 nB.0;R/;

with f1; f2 2 PH s.R3/. Then f is in the space PH s.R3/ with

kf k PH s.R3/
� C.s/

�
kf1k PH s.R3/

Ckf2k PH s.R3/

�
:

Proof. By a dilation we can always assume RD 1. Let �.x/ be a smooth, radial, nonnegative function
such that

�.x/D

�
1 for x 2 B.0; 1/;
0 for x 2 R3 nB.0; 2/:

Let us define a linear operator: P.f / D �.x/f . We know this operator is bounded from PH 1.R3/ to
PH 1.R3/, and from L2.R3/ to L2.R3/. Thus by an interpolation, this is a bounded operator from PH s to

itself if 0 < s < 1. By duality P is also bounded from PH s to itself if �1 � s � 0. In summary, P is a
bounded operator from PH s to itself for each �1� s � 1. Now we have

f D Pf1Cf2�Pf2

as a tempered distribution. Thus

kf k PH s � kPf1k PH s Ckf2k PH s CkPf2k PH s � .kP ksC 1/.kf1k PH s Ckf2k PH s /: �

Lemma 2.17. Let u.x; t/ be a solution of the nonlinear wave equation (1) with the condition (4). Then
for any t1; t2 2 I and t 2 R, we have

0BBB@
Z t2

t1

sin..� � t /
p
��/

p
��

F.u.�// d�

�

Z t2

t1

cos..� � t /
p
��/F.u.�// d�

1CCCA

PH sp� PH sp�1

. 1: (7)

Proof. It follows directly from the identity0BBB@
Z t2

t1

sin..� � t /
p
��/

p
��

F.u.�// d�

�

Z t2

t1

cos..� � t /
p
��/F.u.�// d�

1CCCAD S.t � t1/
�
u.t1/

@tu.t1/

�
�S.t � t2/

�
u.t2/

@tu.t2/

�
: �

Lemma 2.18 (see Lemma 3.2 of [Kenig and Merle 2011]). Let 1=2< s <3=2. If u.y/ is a radial PH s.R3/

function, then

ju.y/j.s
1

jyj
3
2
�s
kuk PH s : (8)
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Remark 2.19. This actually means that a radial PH s function is uniformly continuous in R3 nB.0;R/ if
R > 0.

Lemma 2.20. Let r1; r2 > 0 and t0; t1 2 R so that r1C r2 � t1� t0. Suppose .u0; u1/ is a weak limit in
the space PH sp � PH sp�1:

u0 D lim
T!C1

Z T

t1

sin..t � t0/
p
��/

p
��

F.t/ dt;

u1 D� lim
T!C1

Z T

t1

cos..t � t0/
p
��/F.t/ dt:

(9)

Here F.x; t/ is a function defined in Œt1;1/�R3 with a finite Zsp .Œt1; T �/ norm for each T > t1. In
addition, we have (1=2 < s1 � 1, �.x; t/ is the characteristic function of the region indicated)

S D k�jxj>r2Cjt�t1j.x; t/F.x; t/k
L1L

6
5�2s1 .Œt1;1/�R3/

<C1: (10)

Then there exists a pair . Qu0; Qu1/ with k. Qu0; Qu1/k PH s1� PH s1�1.R3/
� Cs1S and

.u0; u1/D . Qu0; Qu1/ in the ball B.0; r1/:

Proof. Let us define

u0;T D

Z T

t1

sin..t � t0/
p
��/

p
��

F.t/ dt; u1;T D�

Z T

t1

cos..t � t0/
p
��/F.t/ dt;

Qu0;T D

Z T

t1

sin..t � t0/
p
��/

p
��

.�F.t// dt; Qu1;T D�

Z T

t1

cos..t � t0/
p
��/.�F.t// dt:

By the Strichartz estimates and the assumption (10), we know the pair . Qu0;T ; Qu1;T / converges strongly in
PH s1 � PH s1�1 to a pair . Qu0; Qu1/ as T !C1 so that

k. Qu0; Qu1/k PH s1� PH s1�1.R3/
� Cs1S:

cutoff area

t

jxj D r2Cjt � t1j

t D t1

t D t0r1

r2

Figure 1. Illustration of proof.
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In addition, we know the pair . Qu0;T ; Qu1;T / is the same as .u0;T ; u1;T / in the ball B.0; r1/ by the strong
Huygens principle. Figure 1 shows the region where the value of F.x; t/ may affect the value of the
integrals in the ball B.0; r1/. This region is disjoint with the cutoff area if r1C r2 � t1� t0. As a result,
the pair . Qu0;T ; Qu1;T / converges to .u0; u1/ weakly in the ball B.0; r1/ as the pair .u0;T ; u1;T / does.
Considering both strong and weak convergence, we conclude that

.u0; u1/D . Qu0; Qu1/ in the ball B.0; r1/: �

3. Compactness process

As we stated in the first section, the standard technique here is to show that if the main theorem failed,
there would be a special minimal blow-up solution. In addition, this solution is almost periodic modulo
symmetries.

Definition 3.1. A solution u.x; t/ of (1) is almost periodic modulo symmetries if there exists a positive
function �.t/ defined on its maximal lifespan I such that the set��

1

�.t/3=2�sp
u

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t

��
W t 2 I

�
is precompact in the space PH sp � PH sp�1.R3/. The function �.t/ is called the frequency scale function,
because the solution u.t/ at time t concentrates around the frequency �.t/ by the compactness.

Remark 3.2. Here we use the radial condition, thus the only available symmetries are scalings. If we
did not assume the radial condition, similar results would still hold but the symmetries would include
translations besides scalings.

Existence of minimal blow-up solution.

Theorem 3.3 (minimal blow-up solution). Assume that the main theorem failed. Then there would exist a
solution u.x; t/ with a maximal lifespan I such that

sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 <1I

u blows up in the positive direction at time TC �C1 with

kukS.Œ0;TC// D1:

In addition, u is almost periodic modulo scalings with a frequency scale function �.t/. It is minimal in the
following sense: if v is another solution with a maximal lifespan J and

sup
t2J

k.v.t/; @tv.t//k PH sp� PH sp�1 < sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 ;

then v is a global solution in time and scatters.

The main tool to obtain this result is the profile decomposition. One can follow the general argument
in [Kenig and Merle 2010], which deals with the cubic defocusing NLS under similar assumptions.
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Three enemies. Since the frequency scale function �.t/ plays an important role in the further discussion,
it is helpful if we could make additional assumptions on this function. It turns out that we can reduce the
whole problem into the following three special cases. This method of three enemies was introduced in
R. Killip, T. Tao and M. Visan’s paper [Killip et al. 2009].

Theorem 3.4 (three enemies). Suppose our main theorem failed. Then there would exist a minimal
blow-up solution u satisfying all the conditions we mentioned in the previous theorem, so that one of the
following three assumptions on its lifespan I and frequency scale function �.t/ holds:

(I) (soliton-like case) I D R and �.t/� 1.

(II) (high-to-low frequency cascade) I D R, �.t/� 1 and

lim inf
t!˙1

�.t/D 0:

(III) (self-similar case) I D RC and �.t/D 1=t .

The minimal blow-up solution u here could be different from the one we found in the previous theorem.
But we can always manufacture a minimal blow-up solution in one of these three cases from the original
one. One can follow the method used in [Killip et al. 2009] to verify this theorem.

Further compactness results. Fix a radial cutoff function '.x/ 2 C1.R3/ with the properties

'.x/

8<:
D 0 for jxj � 1=2;
2 Œ0; 1� for 1=2� jxj � 1;
D 1 for jxj � 1:

Given a minimal blow-up solution u mentioned above and its frequency scale function �.t/, we have the
following propositions by a compactness argument.

Proposition 3.5. Let u be a minimal blow-up solution with a maximal lifespan I as above. There exist
constants d; C 0 > 0 and C1 > 1 independent of t such that:

(I) The interval Œt � d��1.t/; t C d��1.t/�� I for all t 2 I . In addition, we have

1

C1
�.t/� �.t 0/� C1�.t/ (11)

for each t 0 2 Œt � d��1.t/; t C d��1.t/�.

(II) The following estimate holds for each sp-admissible pair .q; r/ and each t 2 I :

kukLqLr .Œt�d��1.t/;tCd��1.t/��R3/ � C
0:

Proposition 3.6. Given " > 0, there exists R1 DR1."/ > 0 such that the inequality�'� x

R��1.t/

�
u.t/; '

�
x

R��1.t/

�
@tu.t/

�
PH sp� PH sp�1.R3/

� "

holds for each t 2 I and R >R1."/.
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Proposition 3.7. There exists two constants R0; �0 > 0, such that the inequalityZ tCd��1.t/

t

Z
jxj<R0��1.t/

ju.x; �/jpC1

jxj
dx d� � �.t/2�2sp�0

holds for each t 2 I . (The constant d is the same constant we used in Proposition 3.5.)

Proof. By a compactness argument we obtain that there exist R0; �0 > 0, so that for all t 2 I ,

Z d

0

Z
jxj<R0

�
1

�.t/2=.p�1/
ju.��1.t/x; ��1.t/� C t /j

�pC1
jxj

dx d� � �0:

This implies Z d

0

Z
jxj<R0

ju.��1.t/x; ��1.t/� C t /jpC1

��1.t/jxj

dx d�

�.t/
2.pC1/
p�1

C1
� �0:

1

�.t/4=.p�1/�1

Z d

0

Z
jxj<R0

ju.��1.t/x; ��1.t/� C t /jpC1

��1.t/jxj

dx d�

�.t/4
� �0:Z tCd��1.t/

t

Z
jxj<R0��1.t/

ju.x; �/jpC1

jxj
dx d� � �.t/4=.p�1/�1�0 (12)

D �.t/2�2sp�0:

This completes the proof. �

The Duhamel formula. The following formula will be frequently used in later sections.

Proposition 3.8 (Duhamel formula). Let u be a minimal blow-up solution described above with a maximal
lifespan I D .T�;1/. Then we have

u.t/D lim
T!C1

Z T

t

sin..� � t /
p
��/

p
��

F.u.�// d�;

@tu.t/D� lim
T!C1

Z T

t

cos..� � t /
p
��/F.u.�// d� I

u.t/D lim
T!T�

Z t

T

sin..t � �/
p
��/

p
��

F.u.�// d�;

@tu.t/D lim
T!T�

Z t

T

cos..t � �/
p
��/F.u.�// d�:

Given a time t 2 I , these limits are weak limits in the space PH sp � PH sp�1. If J is a closed interval
compactly supported in I , then one can also understand the formula for u.t/ as a strong limit in the space
LqLr.J �R3/, as long as .q; r/ is an sp-admissible pair with q ¤1.
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Remark 3.9. Actually we have0BB@
Z T

t

sin..� � t /
p
��/

p
��

F.u.�// d�

�

Z T

t

cos..� � t /
p
��/F.u.�// d�

1CCAD � u.t/

@tu.t/

�
�S.t �T /

�
u.T /

@tu.T /

�
: (13)

Thus we only need to show the corresponding limit of the last term is zero in order to verify this formula.
See Lemma A.2 in the appendix for details.

4. Energy estimate near infinity

In this section, we will prove the following theorem for a minimal blow-up solution u.x; t/. The method
was previously used in the supercritical case of the equation. (See [Kenig and Merle 2011] for more
details.) In the supercritical case, by the Sobolev embedding, the energy automatically exists at least
locally in the space, for any given time t 2 I . In the subcritical case, however, we need to use the
approximation techniques.

Theorem 4.1 (energy estimate near infinity). Let u.x; t/ be a minimal blow-up solution as we found in
the previous section. Then .u.x; t/; @tu.x; t// 2 PH 1 �L2.R3 nB.0; r// for each r > 0, t 2 I . Actually
we have Z

r<jxj<4r

.jru.x; t/j2Cj@tu.x; t/j
2/ dx � Cr�2.1�sp/: (14)

The constant C depends on p and supt2I k.u.t/; @tu.t//k PH sp� PH sp�1 but nothing else.

Preliminary results.

Introduction to w.r; t/. Let u.x; t/ be a radial solution of the wave equation

@2t u��uD F.x; t/:

If we define w.r; t/; h.r; t/ W RC � I ! R so that

w.r; t/D ru.x; t/; h.r; t/D rF.x; t/;

then we have w.r; t/ is the solution of the one-dimensional wave equation

@2tw� @
2
rw D h.r; t/:

Lemma 4.2. Let .u.x; t0/; @tu.x; t0// be radial and in the energy space PH 1 �L2 locally. Then for any
0 < a < b <1, we have that the identity

1

4�

Z
a<jxj<b

.jruj2Cj@tuj
2/ dx D

�Z b

a

Œ.@rw/
2
C .@tw/

2� dr

�
C .au2.a/� bu2.b//

holds (if we take the value of the functions at time t0).
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Proof. By direct computationZ b

a

Œ.@rw/
2
C .@tw/

2� dr D

Z b

a

Œ.r@ruCu/
2
C .r@tu/

2� dr

D

Z b

a

Œr2.@ru/
2
Cu2C r2.@tu/

2� dr C

Z b

a

2ru @rudr

D

Z b

a

Œr2.@ru/
2
C r2.@tu/

2
Cu2� dr C

Z b

a

r d.u2/

D

Z b

a

r2Œ.@ru/
2
C .@tu/

2� dr C Œru2�ba

D
1

4�

Z
a<jxj<b

.jruj2Cj@tuj
2/ dxC bu2.b/� au2.a/: �

Lemma 4.3. Let w.r; t/ be a solution to the equation

@2tw� @
2
rw D h.r; t/

for .r; t/ 2 RC � I , so that .w; @tw/ 2 C.I I PH 1 �L2.R1 < r < R2// for any 0 < R1 <R2 <1. Let us
define

z1.r; t/D @tw.r; t/� @rw.r; t/;

z2.r; t/D @tw.r; t/C @rw.r; t/:

Then we have (with M > 0)ˇ̌̌̌�Z 4r0

r0

jz1.r; t0/j
2 dr

�1
2

�

�Z 4r0CM

r0CM

jz1.r; t0CM/j2 dr

�1
2
ˇ̌̌̌

�

�Z 4r0

r0

�Z M

0

h.r C t; t0C t / dt

�2
dr

�1
2

(15)

if t0; t0CM 2 I , andˇ̌̌̌�Z 4r0

r0

jz2.r; t0/j
2 dr

�1
2

�

�Z 4r0CM

r0CM

jz2.r; t0�M/j2 dr

�1
2
ˇ̌̌̌

�

�Z 4r0

r0

�Z M

0

h.r C t; t0� t / dt

�2
dr

�1
2

(16)

if t0; t0�M 2 I .

Proof. We will assume w has sufficient regularity, otherwise we only need to use the standard techniques
of smooth approximation. Let us define

z.r; s/D .@t � @r/w.r C s; t0C s/:
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We have
@sz.r; s/D .@t C @r/.@t � @r/w.r C s; t0C s/D h.r C s; t0C s/:

Thus

z.r;M/D z.r; 0/C

Z M

0

h.r C t; t0C t / dt:

Applying the triangle inequality, we obtain the first inequality. The second inequality can be proved in a
similar way. �

Smooth approximation.

Introduction. Let u.x; t/ be a minimal blow-up solution. Choose a smooth, nonnegative, radial function
'.x; t/ supported in the four-dimensional ball B.0; 1/� R4 such thatZ

R3�R

'.x; t/ dx dt D 1:

Let d be the number given in Proposition 3.5. If " < d , we define (both the functions u and F.u/ are
locally integrable)

'".x; t/D
1

"4
'.x="; t="/; u" D u�'"; F" D F.u/�'":

This makes u".x; t/ be a smooth solution of the linear wave equation

@2t u".x; t/��u".x; t/D F".x; t/;

with the convergence (using the continuity of .u.t/; @tu.t// in the space PH sp � PH sp�1)

.u".t0/; @tu".t0//! .u.t0/; @tu.t0// in the space PH sp � PH sp�1 for each t0 2 I

and the estimate

k.u".t0/; @tu".t0//k PH sp� PH sp�1 � sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 . 1:

In addition, if a� " 2 I , we have
kF".x; t/kZsp .Œa;b�/ <1:

Remark 4.4. We have to apply the smooth kernel on the whole nonlinear term, because if we just made
the initial data smooth, we would not resume the compactness conditions of the minimal blow-up solution.

The Duhamel formula.

Lemma 4.5 (almost periodic property). The set��
1

�.t/3=2�sp
u"

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu"

�
x

�.t/
; t

��
W t 2 Œd C 1;1/

�
is precompact in the space PH sp � PH sp�1.R3/ for each fixed " < d . The number d here is the constant we
obtained in Proposition 3.5.
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Proof. Given a sequence ftng we could assume without loss of generality that

�.tn/! �0 2 Œ0; 1�;�
1

�.tn/3=2�sp
u

�
x

�.tn/
; tn

�
;

1

�.tn/5=2�sp
@tu

�
x

�.tn/
; tn

��
! .u0; u1/;

by extracting a subsequence if necessary. Let Qu.x; t/ be the solution of the equation (1) with initial data
.u0; u1/. By the long-time perturbation theory we know

sup
t2Œ�d;d�


0@ 1

�.tn/
3=2�sp

u
�

x
�.tn/

; tnC
t

�.tn/

�
1

�.tn/
5=2�sp

@tu
�

x
�.tn/

; tnC
t

�.tn/

�1A�� Qu.t/
@t Qu.t/

�
PH sp� PH sp�1

! 0:

This implies0@ 1

�.tn/
3=2�sp

u"

�
x

�.tn/
; tn

�
1

�.tn/
5=2�sp

@tu"

�
x

�.tn/
; tn

�1AD
24'"�.tn/ �

0@ 1

�.tn/
3=2�sp

u
�
�

�.tn/
; tnC

�

�.tn/

�
1

�.tn/
5=2�sp

@tu
�
�

�.tn/
; tnC

�

�.tn/

�1A35
tD0

D

�
'"�.tn/ �

�
Qu

@t Qu

��
tD0

C o.1/

D

8̂̂<̂
:̂
�
'"�0 �

�
Qu
@t Qu

��
tD0

C o.1/ if �0 > 0I�
u0
u1

�
C o.1/ if �0 D 0I

The error o.1/ tends to zero as n!1 in the sense of the PH sp � PH sp�1 norm. �

Lemma 4.6. The Duhamel formula

u".t0/D

Z C1
t0

sin..� � t0/
p
��/

p
��

F".x; �/ d�;

@tu".t0/D�

Z C1
t0

cos..� � t0/
p
��/F".x; �/ d�:

still holds for u" in the sense of weak limit if " < d and t0 � " 2 I . In the soliton-like or high-to-low
frequency cascade case, we can also establish the Duhamel formula in the negative time direction.

Proof. This lemma can be proved in exactly the same way as the original Duhamel formula (see
Lemma A.2). The key ingredient is the almost periodic property we have just obtained above. �

Decay of u" and F" at infinity.

Lemma 4.7. If jxj> 10", we have

ju".x; t/j �
C

jxj2=.p�1/
; jF".x; t/j �

C

jxj2p=.p�1/
:

The constant C depends only on p and the upper bound supt2I k.u.t/; @tu.t//k PH sp� PH sp�1 .

Proof. This comes from the estimate (8) and an easy computation. �



ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION IN R3 WITH RADIAL DATA 1945

Uniform estimate on u". In this subsection, we will prove the following lemma. It implies Theorem 4.1
immediately by a limit process. The functions w".r; t/ and zi;".r; t/ below are defined as described earlier
using u".x; t/.

Lemma 4.8. Let t0 2 I and r0 > 0. Then for sufficiently small ", we haveZ
r0<jxj<4r0

.jru".x; t0/j
2
Cj@tu".x; t0/j

2/ dx � Cr
�2.1�sp/
0 : (17)

The constant C can be chosen in a way that it depends only on p and the upper bound

sup
t2I

k.u.t/; @tu.t//k PH sp� PH sp�1 :

Conversion to w".r; t/. First choose " <minfr0=10; dg. If the minimal blow-up solution is a self-similar
one, we also require " < t0=2. Let us apply Lemmas 4.2 and 4.7. It is sufficient to showZ 4r0

r0

.j@rw".r; t0/j
2
Cj@tw".r; t0/j

2/ dr � Cr
�2.1�sp/
0 :

In other words, Z 4r0

r0

.jz1;".r; t0/j
2
Cjz2;".r; t0/j

2/ dr � Cr
�2.1�sp/
0 : (18)

Expansion of z1;". Let us break .u".t/; @tu".t// into two pieces:

u.1/" .t/D

Z t0C100r0

t

sin..� � t /
p
��/

p
��

F".�/ d�;

@tu
.1/
" .t/D�

Z t0C100r0

t

cos..� � t /
p
��/F".�/ d�;

and

u.2/" .t/D

Z 1
t0C100r0

sin..� � t /
p
��/

p
��

F".�/ d�;

@tu
.2/
" .t/D�

Z 1
t0C100r0

cos..� � t /
p
��/F".�/ d�:

These are smooth functions, and we have

.u".x; t0/; @tu".x; t0//D .u
.1/
" .x; t0/; @tu

.1/
" .x; t0//C .u

.2/
" .x; t0/; @tu

.2/
" .x; t0//:

Defining w.j /" ; z
.j /
1;" accordingly for j D 1; 2, we have

z1;".x; t0/D z
.1/
1;".x; t0/C z

.2/
1;".x; t0/:
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Short-time contribution. We have u.1/" satisfies the wave equation8̂<̂
:
@2t u

.1/
" ��u

.1/
" D F".x; t/; .x; t/ 2 R3 � .t�0 ;C1/;

u
.1/
" jtDt0C100r0 D 0 2

PH sp .R3/;

@tu
.1/
" jtDt0C100r0 D 0 2

PH sp�1.R3/:

Thus w.1/" is a smooth solution of8̂<̂
:
@2tw

.1/
" � @

2
rw

.1/
" D rF".r; t/; .r; t/ 2 RC � .t�0 ;C1/;

w
.1/
" jtDt0C100r0 D 0;

@tw
.1/
" jtDt0C100r0 D 0:

Applying Lemmas 4.3 and 4.7, we obtain

�Z 4r0

r0

jz
.1/
1;".r; t0/j

2 dr

�1
2

�

�Z 4r0

r0

�Z 100r0

0

.t C r/F".t C r; t C t0/ dt

�2
dr

�1
2

.
�Z 4r0

r0

�Z 100r0

0

.t C r/
1

.t C r/2p=.p�1/
dt

�2
dr

�1
2

.
�Z 4r0

r0

�Z 100r0

0

1

.t C r/1C2=.p�1/
dt

�2
dr

�1
2

.
�Z 4r0

r0

1

r4=.p�1/
dr

�1
2

.
1

r
1�sp
0

:

Long-time contribution. Let us define a cutoff function �.x; t/ to be the characteristic function of the
region f.x; t/ W jxj> t � t0� 50r0g. By Lemma 4.7, we know

k�F"kL1L2.Œt0C100r0;1/�R3/ D

Z 1
t0C100r0

�Z
jxj>t�t0�50r0

jF"j
2 dx

�1
2

dt

.
Z 1
t0C100r0

�Z
jxj>t�t0�50r0

1

jxj4p=.p�1/
dx

�1
2

dt

.
Z 1
t0C100r0

�
1

jt � t0� 50r0j1C4=.p�1/

�1
2

dt

.
Z 1
t0C100r0

1

jt � t0� 50r0j
1
2
C2=.p�1/

dt

.
1

r
1�sp
0

:
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Applying Lemma 2.20, we obtainZ
r0<jxj<4r0

.jru.2/" .x; t0/j
2
Cj@tu

.2/
" .x; t0/j

2/ dx . r2.sp�1/0 :

Applying Lemma 4.2 and using the fact (plus (8))

k.u.2/" .t0/; @tu
.2/
" .t0//k PH sp� PH sp�1 D

S.�100r0/� u".t0C 100r0/

@tu".t0C 100r0/

�
PH sp� PH sp�1

D k.u".t0C 100r0/; @tu".t0C 100r0//k PH sp� PH sp�1

� sup
I

k.u; @tu/k PH sp� PH sp�1 . 1;

we obtain Z 4r0

r0

.j@rw
.2/
" .r; t0/j

2
Cj@tw

.2/
" .r; t0/j

2/ dr . r2.sp�1/0 ;Z 4r0

r0

jz
.2/
1;".r; t0/j

2 dr . r2.sp�1/0 :

Combining with the estimate for z.1/1;" , we haveZ 4r0

r0

jz1;".r; t0/j
2 dr . r2.sp�1/0 :

Estimate of z2;". We also need to consider z2;". In the soliton-like case or the high-to-low frequency
cascade case, this can be done in exactly the same way as z1;". Now let us consider the self-similar case.

Lemma 4.9. Let u be a self-similar minimal blow-up solution. If t0 � 0:3r0, then .u.t0/; @tu.t0// is in
PH 1 �L2.jxj> 0:9r0/ withZ

jxj>0:9r0

.jru.x; t0/j
2
Cj@tu.x; t0/j

2/ dx . r2.sp�1/0 :

Proof. We have (the Duhamel formula)

u.t0/D

Z t0

0C

sin..t0� t /
p
��/

p
��

F.t/ dt;

@tu.t0/D

Z t0

0C
cos..t0� t /

p
��/F.t/ dt;

and

Qu0 D

Z t0

0C

sin..t0� t /
p
��/

p
��

�.jxj> 0:5r0/F.t/ dt;

Qu1 D

Z t0

0C
cos..t0� t /

p
��/�.jxj> 0:5r0/F.t/ dt:
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A straightforward computation shows k�F kL1L2..0C;t0/�R3/. r
sp�1
0 . This means . Qu0; Qu1/ is in the space

PH 1 �L2.R3/ with a norm . rsp�10 . By the strong Huygens principle we can repeat the argument we
used in Lemma 2.20 and obtain

.u.t0/; @tu.t0//D . Qu0; Qu1/ in the region R3 nB.0; 0:9r0/: �

Lemma 4.10. Let u be a self-similar solution. If t0 � 0:2r0 and " < t0=2, then we haveZ
r0<jxj<4r0

.jru".x; t0/j
2
Cj@tu".x; t0/j

2/ dx . r2.sp�1/0 :

Proof. We have ru" D '" �ru, thus jru"j � '" � jruj. Thus (we have " < 0:1r0)Z
r0<jxj<4r0

jru".x; t0/j
2 dx � sup

t2Œt0�";t0C"�

Z
0:9r0<jxj<4:1r0

jru.x; t/j2 dx . r2.sp�1/0

by our previous lemma. The other term can be estimated using the same method. �

Remark 4.11. By Lemmas 4.2 and 4.7, this lemma implies (if t0 � 0:2r0 and " < t0=2)Z 4r0

r0

.j@rw".r; t0/j
2
Cj@tw".r; t0/j

2/ dr . r2.sp�1/0 : (19)

In the self-similar case, let us recall that we always choose " <minfr0=10; t0=2; dg. By Lemma 4.10
and Remark 4.11, we only need to consider the case t0 > 0:2r0 in order to estimate z2;". Applying
Lemma 4.3, we have�Z 4r0

r0

jz2;".r; t0/j
2 dr

�1
2

�

�Z t0C3:8r0

t0C0:8r0

jz2;".r; 0:2r0/j
2 dr

�1
2

C

�Z 4r0

r0

�Z t0�0:2r0

0

.t C r/F".t C r; t0� t / dt

�2
dr

�1
2

:

The first term is dominated by rsp�10 because of (19). We can gain the same upper bound for the second
term by a basic computation similar to the one we used for z1;".

Conclusion. Now we combine the estimates for z1;" and z2;", thus concluding our Lemma 4.8.

Local energy estimate and its corollary. As mentioned earlier, we are able to establish Theorem 4.1
immediately by letting " converge to zero. (See Lemma A.6 for details of this argument.) Furthermore,
we can obtain the following proposition by applying Lemma 4.2 on u.

Proposition 4.12. Let u.x; t/ be a minimal blow-up solution as above; we haveZ 4r0

r0

.j@rw.r; t0/j
2
Cj@tw.r; t0/j

2/ dr . r2.sp�1/0 ;Z 4r0

r0

.jz1.r; t0/j
2
Cjz2.r; t0/j

2/ dr . r2.sp�1/0 :
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5. Recurrence process

In the previous section we found that the minimal blow-up solution is locally in the energy space. However,
our goal is to gain a global energy estimate. This section features a recurrence process which helps us
march toward higher regularity. We will prove the following lemma. Throughout the whole section we
assume u satisfies all the conditions mentioned in the lemma.

Lemma 5.1. Let u.x; t/ be a minimal blow-up solution of (1) as obtained in Section 3 (compactness
process) with a frequency scale function �.t/. In addition, the set K is precompact in the space
PH s � PH s�1.R3/ for some number s 2 Œsp; 1/:

K D

��
1

�.t/3=2�sp
u

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t

��
W t 2 I

�
:

Then at least one of the following holds.

� The solution u satisfies the energy estimate

k.u.t/; @tu.t//k PH1�L2.R3/
. .�.t//1�sp :

� The set K is also precompact in the space PH sC0:98�2.p/ � PH s�1C0:98�2.p/. Here the number
�2.p/ > 0 depends on nothing but p.

Remark 5.2. The compactness of K immediately gives the estimate

ku.t/; @tu.t/k PH s� PH s�1 . .�.t//s�sp ; t 2 I:

Setup and technical lemmas.

Definition 5.3. Let us define

S.A/D sup
t2I

.�.t//sp�sku>�.t/AkYs.Œt;tCd��1.t/�/;

N.A/D sup
t2I

.�.t//sp�skP>�.t/AF.u/kZs.Œt;tCd��1.t/�/:

Proposition 5.4. The functions S.A/ and N.A/ are universally bounded for all A > 0 with the limit

lim
A!C1

S.A/D 0:

Proof. By our assumptions on compactness and Proposition 3.5 part (I), we obtain that the set��
1

�.t/3=2�sp
u

�
x

�.t/
; t C

�

�.t/

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t C

�

�.t/

��
W � 2 Œ0; d �; t 2 I

�
is precompact in the space PH s� PH s�1. Applying either Proposition 3.5 part (II) (if sD sp) or Theorem 2.14
(if s > sp), we also have a bound independent of t : 1

�.t/3=2�sp
u

�
x

�.t/
; t C

�

�.t/

�
Ys.Œ0;d�/

. 1: (20)



1950 RUIPENG SHEN

Combining these facts with perturbation theory (Theorem 2.12 if s D sp , or Theorem 2.15 if s > sp), we
have �

1

�.t/3=2�sp
u

�
x

�.t/
; t C

�

�.t/

�
; � 2 Œ0; d � W t 2 I

�
is precompact in the space Ys.Œ0; d �/. This immediately gives the uniform convergence for t 2 I ,P>A 1

�.t/3=2�sp
u

�
x

�.t/
; t C

�

�.t/

�
Ys.Œ0;d�/

� 0; asA!1: (21)

If we rescale the inequality (20) back, we obtain

.�.t//sp�skukYs.Œt;tCd��1.t/�/ . 1) .�.t//sp�skF.u/kZs.Œt;tCd��1.t/�/ . 1;

which implies that S.A/ and N.A/ are uniformly bounded. In a similar way we can show S.A/ converges
to zero as A!1, using the uniform convergence (21) above. �

Definition 5.5. Let us set

†.s; p/D sC 1� .2p� 2/.s� sp/

for convenience. Thus the Ys.I / norm can also be written as L2p=†.s;p/L2p=.1�s/.I �R3/ norm.

Lemma 5.6 (bilinear estimate). Suppose ui satisfies the linear wave equation on the time interval
I D Œ0; T �, i D 1; 2,

@2t ui ��ui D Fi .x; t/;

with the initial data .ui jtD0; @tui jtD0/D .u0;i ; u1;i /. Then

S D k.P>Ru1/.P<ru2/k
L

p
†.s;p/L

p
2�s .I�R3/

.
�
r

R

���
k.u0;1; u1;1/k PH s� PH s�1 CkF1kZs.I /

�
�
�
k.u0;2; u1;2/k PH s� PH s�1 CkF2kZs.I /

�
:

Here the number � is an arbitrary positive constant satisfying

� � 3

�
1

2
�
†.s; p/

2p
�
2� s

2p

�
; � < 3�

2� s

2p
: (22)

Remark 5.7. We can actually choose

� D �.p/D
3minfp� 3; 1g

2p
> 0:

This constant �.p/ depends on nothing but p. This fact plays an important role in our discussion.

Proof. By the Strichartz estimate

k.P>R/u1k
L

2p
†.s;p/L

1=. 2�s
2p
C�
3
/
. k.D��x P>Ru0;1;D

��
x P>Ru1;1/k PH s� PH s�1 CkD

��
x P>RF1kZs.I /;

k.P<r/u2k
L

2p
†.s;p/L

1=. 2�s
2p
��
3
/
. k.D�xP<ru0;2;D

�
xP<ru1;2/k PH s� PH s�1 CkD

�
xP<rF2kZs.I /:



ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION IN R3 WITH RADIAL DATA 1951

Our choice of � makes sure that the pairs above are admissible. Thus we have

k.P>Ru1/.P<ru2/k
L

p
†.s;p/L

p
2�s

. k.P>R/u1k
L

2p
†.s;p/L

1=. 2�s
2p
C�
3
/
k.P<r/u2k

L
2p

†.s;p/L
1=. 2�s

2p
��
3
/

.
�
k.D��x P>Ru0;1;D

��
x P>Ru1;1/k PH s� PH s�1 CkD

��
x P>RF1kZs.I /

�
�
�
k.D�xP<ru0;2;D

�
xP<ru1;2/k PH s� PH s�1 CkD

�
xP<rF2kZs.I /

�
.
�
1

R

�� �
k.P>Ru0;1; P>Ru1;1/k PH s� PH s�1 CkP>RF1kZs.I /

�
� r�

�
k.P<ru0;2; P<ru1;2/k PH s� PH s�1 CkP<rF2kZs.I /

�
. the right-hand side: �

Lemma 5.8. Let u.x; t/ be a function defined on I �R3, such that Ou is supported in the ball B.0; r/ for
each t 2 I . Then

kP>RF.u.x; t//k
L

2
†.s;p/L

2
2�s .I�R3/

.
� r
R

�2
kuk

p

Ys.I /
:

Proof. We have

kP>RF.u.x; t//k
L

2
†.s;p/L

2
2�s .I�R3/

.
1

R2
kP>R�xF.u.x; t//k

L
2

†.s;p/L
2
2�s .I�R3/

.
1

R2
k�xF.u.x; t//k

L
2

†.s;p/L
2
2�s .I�R3/

.
1

R2
kp.�xu/juj

p�1
Cp.p� 1/jrxuj

2
jujp�3uk

L
2

†.s;p/L
2
2�s

.
1

R2

�
k�xukYs.I /kuk

p�1

Ys.I /
Ckrxuk

2
Ys.I /
kuk

p�2

Ys.I /

�
.
r2

R2
kuk

p

Ys.I /
: �

Lemma 5.9. Let v.t/ be a long-time contribution in the Duhamel formula

v.t0/D

Z T2

T1

sin..t � t0/
p
��/

p
��

F.u.t// dt:

Then for any t0 < T1 < T2, we have

kv.t0/kL1.R3/ . .T1� t0/�2=.p�1/:
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Proof. Using the explicit expression of the wave kernel in dimension 3, we obtainˇ̌̌̌�Z T2

T1

sin..t � t0/
p
��/

p
��

F.u.t// dt

�
.x/

ˇ̌̌̌
D

ˇ̌̌̌Z T2

T1

Z
jy�xjDt�t0

1

4�.t � t0/
F.u.y; t// dS.y/ dt

ˇ̌̌̌
.
Z T2

T1

Z
jy�xjDt�t0

1

4�.t � t0/
ju.y; t/jp dS.y/ dt

.
Z T2

T1

Z
jy�xjDt�t0

1

.t � t0/

1

jyj
2p
p�1

dS.y/ dt:

In the last step, we use the estimate (8) for radial PH sp functions. If jxj � 1
2
.T1� t0/, then on the sphere

for the integral we have

jyj � jt � t0j � jxj �
1
2
.t � t0/:

Thus for these small x, we obtainˇ̌̌̌�Z T2

T1

sin..t � t0/
p
��/

p
��

F.u.t// dt

�
.x/

ˇ̌̌̌
.
Z T2

T1

Z
jy�xjDt�t0

1

.t � t0/

1

.t � t0/2p=.p�1/
dS.y/ dt

.
Z T2

T1

Z
jy�xjDt�t0

1

.t � t0/3C2=.p�1/
dS.y/ dt

.
Z T2

T1

.t � t0/
2

.t � t0/3C2=.p�1/
dt

.
Z T2

T1

1

.t � t0/1C2=.p�1/
dt

. .T1� t0/�2=.p�1/:

On the other hand, if x � 1
2
.T1� t0/, by the estimate on radial PH sp functions (8) and Lemma 2.17, we

haveˇ̌̌̌�Z T2

T1

sin..t � t0/
p
��/

p
��

F.u.t// dt

�
.x/

ˇ̌̌̌
.

1

jxj2=.p�1/

Z T2

T1

sin..t � t0/
p
��/

p
��

F.u.t// dt


PH sp

.
1

.T1� t0/2=.p�1/
:

Combining these two cases, we finish our proof. �

Lemma 5.10. There exists a constant �D �.p/2 .0; 1/ that depends only on p, so that for each s 2 Œsp; 1/,
there exists an s-admissible pair .q; r/, with q ¤1 and

†.s; p/

2p
D � � 0C .1� �/

1

q
;

2� s

2p
D �

3� 2s

6
C .1� �/

1

r
:



ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION IN R3 WITH RADIAL DATA 1953

Proof. We will choose � D 1� 3=p 2 .0; 0:4/. Basic computation shows

1

q
D

†.s; p/

2p.1� �/
D
sC 1� .2p� 2/.s� sp/

6
2 .0; 1=3/I

1

r
D

2� s

2p.1� �/
�

�

1� �
�
3� 2s

6
D
2� s

6
�

�

1� �
�
3� 2s

6

2

�
2� s

6
�
2

3
�
3� 2s

6
;
2� s

6

�
�

�
s

18
;
2� s

6

�
� .1=36; 1=4/:

Thus we can solve two positive real numbers q; r so that the two identities hold. In addition, we have
q 2 .3;1/ and r 2 .4; 36/. Furthermore, by adding the identities together, we obtain

3� .2p� 2/.s� sp/

2p
D �

3� 2s

6
C .1� �/

�
1

q
C
1

r

�
:

This implies
1

q
C
1

r
<
3� .2p� 2/.s� sp/

2p.1� �/
D
3� .2p� 2/.s� sp/

6
� 1=2:

Using the same method, one can show 1=q C 3=r D 3=2� s. In summary, .q; r/ is an s-admissible
pair. �

Lemma 5.11. Given any s-admissible pair .q; r/ with q <1 and three times t0 < t1 < t2 in the maximal
lifespan I of u, we have

lim
T!1

Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�


LqLr .Œt0;t1��R3/

� C.�.t2//
s�sp :

The constant C does not depend on t0, t1 or t2.

Proof. By Lemma A.5 and the identityZ T

t2

sin..� � t /
p
��/

p
��

F.u.�// d� D S.t � t2/.u.t2/; @tu.t2//�S.t �T /.u.T /; @tu.T //;

we have

lim
T!1

Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d� D S.t � t2/.u.t2/; @tu.t2//

in the space LqLr.Œt0; t1��R3/. Thus

lim
T!1

Z T

t2

sin..� � t /
p
��/

p
��

.u.�// d�


LqLr .Œt0;t1�/

D kS.t � t2/.u.t2/; @tu.t2//kLqLr .Œt0;t1��R3/

. k.u.t2/; @tu.t2//k PH s� PH s�1

. .�.t2//s�sp : �
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Lemma 5.12. Suppose S.A/ is a nonnegative function defined in RC satisfying S.A/! 0 as A!1. In
addition, there exist 0 < ˛ < ˇ < 1 and l; ! > 0 with

l˛Cˇ > 1;

such that the inequality

S.A/. S.Aˇ /S l.A˛/CA�! (23)

is true for each sufficiently large A. Then

S.A/. A�!

for each sufficiently large A.

Proof. Let us first choose two constants l� and !�, which are slightly smaller than l and ! respectively,
such that the inequality l�˛Cˇ > 1 still holds. By the conditions given, we can find a constant A0� 1,
such that the following inequalities hold:

S.A/� 1
2
S.Aˇ /S l

�

.A˛/C 1
2
A�!

�

if A� A0;

S.A/ < 1
2

if A� A˛0 :

(24)

Using the second inequality above, we know the inequality

S.A/� A�!1 (25)

holds for all A 2 ŒA˛0 ; A0� if !1 is sufficiently small. Fix such a small constant !1 � !�. We will show
that the inequality (25) above holds for each A� A˛0 by an induction. We already know this is true for
A 2 ŒA˛0 ; A0�. If A 2 ŒA0; A

1=ˇ
0 �, the inequality (24) implies

S.A/� 1
2
S.Aˇ /S l

�

.A˛/C 1
2
A�!

�

�
1
2
.Aˇ /�!1..A˛/�!1/l

�

C
1
2
A�!

�

�
1
2
.A�!1/ˇCl

�˛
C
1
2
A�!1

� A�!1 :

Here we use the fact that A˛; Aˇ 2 ŒA˛0 ; A0� if A satisfies our assumption. Conducting an induction, we

can show the inequality holds for each A2 ŒA.1=ˇ/
n

0 ; A
.1=ˇ/nC1

0 � if n is a nonnegative integer. In summary,
the inequality (25) is true for each A� A˛0 . Plugging this back in the original recurrence formula (23),
we obtain for sufficiently large A,

S.A/. A�!1.ˇCl˛/CA�! . A�minf!1.ˇCl˛/;!g;

which indicates faster decay thanA�!1 . Iterating the argument if necessary, we gain the decay S.A/.A�!

and finish the proof. �
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Recurrence formula. Under our setting in this section, given 0< ˛ <ˇ < 1 and a small positive constant
"1, we have the recurrence formula

N.A/. S.Aˇ /Sp�1.A˛/CA�.ˇ�˛/�.p/CA�2.1�ˇ/; (26)

S.A/.N.A1�"1/CA��1.p/ (27)

for sufficiently large A. The constants �.p/; �1.p/ depend on p but nothing else.

Proof of (26). In the following argument, all the space-time norms are taken in Œt; t C d��1.t/��R3:

kP>�.t/AF.u/kZs . �.t/
�.p�1/.s�sp/kP>�.t/AF.u/k

L
2

†.s;p/L
2
2�s

� �.t/�.p�1/.s�sp/kP>�.t/AF.u�Aˇ�.t//k
L

2
†.s;p/L

2
2�s

C�.t/�.p�1/.s�sp/kP>�.t/A.F.u/�F.u�Aˇ�.t///k
L

2
†.s;p/L

2
2�s

D �.t/�.p�1/.s�sp/.I1C I2/:

By Lemma 5.8, we have

I1 .
�
Aˇ

A

�2
kuk

p
Ys
. .�.t//p.s�sp/A�2.1�ˇ/:

In order to estimate I2, we have (all unmarked norms are L
2

†.s;p/L
2
2�s .Œt; t C d��1.t/��R3/ norms)

I2 �

P>�.t/A�u>Aˇ�.t/ Z 1

0

F 0.u�Aˇ�.t/C �u>Aˇ�.t// d�

�
.
u>Aˇ�.t/ Z 1

0

F 0.u�Aˇ�.t/C �u>Aˇ�.t// d�


. kI2;1kCkI2;2k:

Here

I2;1 D u>Aˇ�.t/

Z 1

0

F 0.u�Aˇ�.t/C �u>Aˇ�.t// d�

�u>Aˇ�.t/

Z 1

0

F 0.uA˛�.t/< � �Aˇ�.t/C �u>Aˇ�.t// d�;

I2;2 D u>Aˇ�.t/

Z 1

0

F 0.uA˛�.t/< � �Aˇ�.t/C �u>Aˇ�.t// d�:

We have

I2;1 D u>Aˇ�.t/u�A˛�.t/ �

Z 1

0

Z 1

0

F 00. Q�u�A˛�.t/CuA˛�.t/< � �Aˇ�.t/C �u>Aˇ�.t// d� d Q�:
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Applying the bilinear estimate (Lemma 5.6) on the term u>Aˇ�.t/ u�A˛�.t/, we obtain

kI2;1k. ku>Aˇ�.t/u�A˛�.t/k
L

p
†.s;p/L

p
2�s

�

Z 1

0

Z 1

0

F 00. Q�u�A˛�.t/CuA˛�.t/< � �Aˇ�.t/C �u>Aˇ�.t// d� d Q�


L

2p
.p�2/†.s;p/L

2p
.p�2/.2�s/

.
��
A˛�.t/

Aˇ�.t/

��.p/
.�.t//2.s�sp/

�
.�.t//.p�2/.s�sp/

. .�.t//p.s�sp/A�.ˇ�˛/�.p/:

On the other hand, we know that, for sufficiently large A,

kI2;2k. ku>Aˇ�.t/k
L

2p
†.s;p/L

2p
2�s

Z 1

0

F 0.uA˛�.t/< � �Aˇ�.t/C �u>Aˇ�.t// d�


L

2p
.p�1/†.s;p/L

2p
.p�1/.2�s/

. .�.t//s�spS.Aˇ /Œ.�.t//.p�1/.s�sp/Sp�1.A˛/�

. .�.t//p.s�sp/S.Aˇ /Sp�1.A˛/:

Collecting all terms above, we have

kP>�.t/A.F.u//kZs . .�.t//
s�sp ŒS.Aˇ /Sp�1.A˛/CA�.ˇ�˛/�.p/CA�2.1�ˇ/�:

Multiplying both sides by .�.t//sp�s and taking sup for all t 2 I , we obtain the first inequality.

Definition 5.13. Given t0 2 I , define ti recursively for i � 1 by

ti D ti�1C d�
�1.ti�1/: (28)

By the choice of d , all the ti are in the maximal lifespan I . (See Proposition 3.5.)

Proof of (27). By the Strichartz estimate and the Duhamel formula (see Lemma A.5), we have

ku>�.t0/AkYs.Œt0;t1�/ D

Z 1
t

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


Ys.Œt0;t1�/

�

Z t2

t

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


Ys.Œt0;t1�/

C lim inf
T!1

Z T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


Ys.Œt0;t1�/

. kP>�.t0/AF.u/kZs.Œt0;t2��R3/

C lim inf
T!1

Z T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


Ys.Œt0;t1�/

D I1C I2:
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The first term can be dominated by

I1 . kP>�.t0/AF.u/kZs.Œt0;t1��R3/CkP>�.t0/AF.u/kZs.Œt1;t2��R3/

. .�.t0//s�spN.A/C .�.t1//s�spN
�
�.t0/

�.t1/
A

�
. .�.t0//s�spN.A1�"1/

for any small positive number "1 and sufficiently large A > A0.u; "1/, because �.t0/ and �.t1/ are
comparable to each other by the local compactness result (11). Now let us consider the term I2. First of
all, by Lemma 2.17, we haveZ T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


L1L2.Œt0;t1��R3/

.
1

.�.t0/A/sp

Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�


L1
Œt0;t1�

PH sp .R3/

.
1

.�.t0/A/sp
:

Using Lemma 5.9, we are also able to obtainZ T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


L1L1.Œt0;t1��R3/

.
Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�


L1L1.Œt0;t1��R3/

. .t2� t1/�2=.p�1/

. .�.t0//2=.p�1/:

By an interpolation between L2 and L1, we haveP>�.t0/A Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�


L1L

6
3�2s .Œt0;t1��R3/

� k � k
2s=3

L1L1.Œt0;t1��R3/
k � k

.3�2s/=3

L1L2.Œt0;t1��R3/

. Œ�.t0/2=.p�1/�2s=3Œ.�.t0/A/�sp �.3�2s/=3

D .�.t0//
s�spA

�sp.3�2s/

3 :

Next, we will use the interpolation again to gain an estimate of the Ys norm. Let .q; r/ be the admissible
pair given by Lemma 5.10. Applying Lemma 5.11, we have

lim
T!1

Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�


LqLr .Œt0;t1��R3/

. .�.t2//s�sp . .�.t0//s�sp :



1958 RUIPENG SHEN

Using this fact and the construction of .q; r/, we obtain

I2 D lim inf
T!1

Z T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�


Ys.Œt0;t1�/

� lim inf
T!1

 Z T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�

�.p/
L1L

6
3�2s

.Œt0;t1��R3/

�

Z T

t2

sin..� � t /
p
��/

p
��

P>�.t0/AF.u.�// d�

1��.p/
LqLr .Œt0;t1��R3/

!

.
h
.�.t0//

s�spA
�sp.3�2s/

3

i�.p/
� lim
T!1

Z T

t2

sin..� � t /
p
��/

p
��

F.u.�// d�

1��.p/
LqLr

.
h
.�.t0//

s�spA
�sp.3�2s/

3

i�.p/
.�.t0//

.s�sp/.1��.p//

. .�.t0//s�spA
�sp�.p/.3�2s/

3

. .�.t0//s�spA��1.p/:

Here �1.p/D �.p/=6. It depends only on p. Combining our estimates on I1 and I2, we finish the proof
of the second inequality.

Decay of S.A/ and N.A/ with applications.

Decay of S.A/ and N.A/. Plugging the first recurrence formula into the second one, we obtain

S.A/. S.A.1�"1/ˇ /Sp�1.A.1�"1/˛/CA��.p/.1�"1/.ˇ�˛/CA�2.1�"1/.1�ˇ/CA��1.p/:

Choose ˛, ˇ and "1 so that

.1� "1/ˇ D 2=3; .1� "1/˛ D 1=3; "1 D 1=10000: (29)

Then we have

S.A/. S.A2=3/Sp�1.A1=3/CA��2.p/

for sufficiently large A. Here the positive number �2.p/, defined as

�2 Dminf�.p/=3; �1.p/; 0:6g;

depends on p only. Applying Lemma 5.12, we have S.A/. A��2.p/ for sufficiently large A. Plugging
this in the first recurrence formula, we have N.A/. A��2.p/ for large A. Observing that both S.A/ and
N.A/ is uniformly bounded, we know these two decay estimates are actually valid for each A> 0. Now
let us choose

s1 Dmin
n
1; sC

99

100
�2.p/

o
;

and make the following definition.
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Definition 5.14 (local contribution of the Duhamel formula). Assume t 0 2 I . Let us introduce the notation

vt 0.t/D

Z t 0Cd�.t 0/�1

t 0

sin..� � t /
p
��/

p
��

F.u.�// d� I

@tvt 0.t/D�

Z t 0Cd�.t 0/�1

t 0
cos..� � t /

p
��/F.u.�// d�:

Estimate on local contribution. Given any t � t 0 and integer k � 0, we know

kP�.t 0/2k<�<�.t 0/2kC1.vt 0.t/; @tvt 0.t//k PH s1� PH s1�1

. .�.t 0/2k/s1�skP�.t 0/2k<�<�.t 0/2kC1.vt 0.t/; @tvt 0.t//k PH s� PH s�1

. .�.t 0/2k/s1�skP>�.t 0/2k .vt 0.t/; @tvt 0.t//k PH s� PH s�1

. .�.t 0/2k/s1�skP>�.t 0/2kF.u/kZs.Œt 0;t 0Cd�.t 0/�1�/

. .�.t 0/2k/s1�s.�.t 0//s�spN.2k/

. .�.t 0//s1�sp .2k/s1�s��2.p/:

Summing for all k � 0, we have

kP>�.t 0/.vt 0.t/; @tvt 0.t//k PH s1� PH s1�1
. .�.t 0//s1�sp :

Combining this with the estimate

kP��.t 0/.vt 0.t/; @tvt 0.t//k PH s1� PH s1�1
. .�.t 0//s1�spkP��.t 0/.vt 0.t/; @tvt 0.t//k PH sp� PH sp�1

. .�.t 0//s1�sp ;

we obtain

k.vt 0.t/; @tvt 0.t//k PH s1� PH s1�1
. .�.t 0//s1�sp : (30)

Higher regularity. In this subsection we will show that .u.x; t/; @tu.x; t//2 PH s1� PH s1�1.R3/ for each
t 2 I . The idea is to deal with the “center” part and the “tail” part individually and then glue them together
using Lemma 2.16.

Center estimate. Let us break the Duhamel formula into two pieces:

u.1/.t/D

Z t1

t

sin..� � t /
p
��/

p
��

F.u.�// d�;

u.2/.t/D

Z 1
t1

sin..� � t /
p
��/

p
��

F.u.�// d�:
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Let � be the characteristic function of the region f.x; t/ W jxj> d��1.t0/=2Cjt � t1jg. We have

k�F.u.t//k
L1L

6
5�2s1 .Œt1;1/�R3/

D

Z 1
t1

�Z
jxj>

d��1.t0/

2
Cjt�t1j

.F.u//
6

5�2s1 dx

�5�2s1
6

dt

.
Z 1
t1

 Z
jxj>

d��1.t0/

2
Cjt�t1j

�
1

jxj
2p
p�1

� 6
5�2s1

dx

!5�2s1
6

dt

.
Z 1
t1

 ˇ̌̌̌
d��1.t0/

2
C t � t1

ˇ̌̌̌� 2p
p�1

6
5�2s1

C3
!5�2s1

6

dt

.
Z 1
t1

�
d��1.t0/

2
C t � t1

�sp�s1�1
dt

. �.t0/s1�sp :

By Lemma 2.20, there exists a pair . Qu0; Qu1/ such that

k. Qu0; Qu1/k PH s1� PH s1�1.R3/
. �.t0/s1�sp ;

.u.2/.t0/; @tu
.2/.t0//D . Qu0; Qu1/ in B

�
0;
d��1.t0/

2

�
:

This implies

.u.t0/; @tu.t0//D . Qu0Cu
.1/.t0/; Qu1C @tu

.1/.t0// in B
�
0;
d��1.t0/

2

�
: (31)

By (30), we have

k.u.1/.t0/; @tu
.1/.t0//k PH s1� PH s1�1

. �.t0/s1�sp :

Combining this with the PH s1 � PH s1�1 bound of . Qu0; Qu1/, we have

k. Qu0Cu
.1/.t0/; Qu1C @tu

.1/.t0//k PH s1� PH s1�1
. �.t0/s1�sp : (32)

Tail estimate. Let .u00; u
0
1/D‰d��1.t0/=4.u.t0/; @tu.t0//, and

1

q
D
1

2
C
1� s1

3
:

By Theorem 4.1, if r � d��1.t0/=4, we have�Z
r<jxj<4r

.jru00j
q
Cju01j

q/ dx

�1=q
.
�Z

r<jxj<4r

.jru00j
2
Cju01j

2/ dx

� 1
2

.r3/
1
q
� 1
2

. r�.1�sp/.r3/.1�s1/=3

. r�.s1�sp/:
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Letting r D 4kd��1.t0/=4 and summing for all k � 0, we obtain that the pair .u00; u
0
1/ is in the space

PW 1;q �Lq.R3/ with

k.u00; u
0
1/k PW 1;q�Lq.R3/

. .d�.t0/�1=4/�.s1�sp/ . .�.t0//s1�sp :

By the Sobolev embedding, we have

k.u00; u
0
1/k PH s1� PH s1�1.R3/

. .�.t0//s1�sp : (33)

Combining the center estimate (32) and tail estimate (33) by Lemma 2.16, we have

k.u.t0/; @tu.t0//k PH s1� PH s1�1.R3/
. .�.t0//s1�sp : (34)

Conclusion. Now we can finish our proof of Lemma 5.1.

� Case 1 .s1 D 1/ The inequality (34) is exactly the energy estimate we are looking for.

� Case 2 .s1 < 1/ This means s1 D sC 0:99�2.p/. As a result, the set

K D

��
1

�.t/3=2�sp
u

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t

��
W t 2 I

�
is precompact in the space PH sp� PH sp�1, and bounded in the space PH sC0:99�2.p/� PH s�1C0:99�2.p/,
thus it is also precompact in the space PH sC0:98�2.p/ � PH s�1C0:98�2.p/ by an interpolation.

6. Global energy estimate and its corollary

Repeat the recurrence process we described in the previous section starting from the space PH sp � PH sp�1.
Each time we either obtain the global energy estimate below or gain additional regularity by 0:98�2.p/.
However, this number depends on p only. As a result, the process has to stop at PH 1 �L2 after finite
steps.

Proposition 6.1 (global energy estimate). Let u.x; t/ be a minimal blow-up solution. Then .u.t/; @tu.t//
is in the energy space for each t 2 I with

k.u.t/; @tu.t//k PH1�L2.R3/
. �.t/1�sp : (35)

By the local theory, we actually obtain

.u.t/; @tu.t// 2 C.I I PH
1.R3/�L2.R3//:

Remark 6.2. By Lemma 4.2, we have, for any 0 < a < b <1,

.@rw.t/; @tw.t// 2 C.I IL
2
�L2.Œa; b�//:



1962 RUIPENG SHEN

Self-similar and high-to-low frequency cascade cases. In both two cases, we can choose ti !1 such
that �.ti /! 0. This implies Z

R3
.jru.x; ti /j

2
Cj@tu.x; ti /j

2/ dx! 0:

By the Sobolev embedding, we have

kuk
pC1

LpC1.R3/
� kuk

p�1

L
3
2
.p�1/

.R3/
kuk2

L6.R3/
. kukp�1

PH sp .R3/
kuk2

PH1.R3/
: (36)

This implies ku.ti /k
pC1

LpC1.R3/
! 0. Using the definition of energy we have E.ti /! 0. On the other hand,

we know the energy is a constant. Therefore the energy must be zero.

� Defocusing case. It is nothing to say, because in this case an energy zero means that the solution is
identically zero.

� Focusing case. We can still solve the problem using the following theorem. By the fact that the
energy is zero, the theorem claims that u blows up in finite time in both time directions. But this is a
contradiction with our assumption TC D1.

Theorem 6.3 (see Theorem 3.1 in [Killip et al. 2014], nonpositive energy implies blowup). Let .u0; u1/2
. PH 1 �L2/\ . PH sp � PH sp�1/ be initial data. Assume that .u0; u1/ is not identically zero and satisfies
E.u0; u1/� 0. Then the maximal life-span solution to the nonlinear wave equation blows up both forward
and backward in finite time.

Soliton-like solutions in the defocusing case. Now let us consider the soliton-like solutions in the
defocusing case. First we have a useful global integral estimate in the defocusing case.

Lemma 6.4 (see [Perthame and Vega 1999]; we use the 3-dimensional case). Let u be a solution of (1)
defined in a time interval Œ0; T � with a finite energy

E D

Z
R3

�
1

2
jrxuj

2
C
1

2
j@tuj

2
C

1

pC 1
ju.x/jpC1

�
dx:

For any R > 0, we have

1

2R

Z T

0

Z
jxj<R

.jruj2Cj@tuj
2/ dx dt C

1

2R2

Z T

0

Z
jxjDR

juj2 d�R dt

C
1

2R

2p� 4

pC 1

Z T

0

Z
jxj<R

jujpC1 dx dt C
p� 1

pC 1

Z T

0

Z
jxj>R

jujpC1

jxj
dx dt C

2

R2

Z
jxj<R

ju.T /j2 dx

� 2E:

Observing that each term on the left-hand side is nonnegative, we can obtain a uniform upper bound
for the middle term in the second line above:Z T

0

Z
jxj>R

jujpC1

jxj
dx dt �

2.pC 1/

p� 1
E:
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Letting R approach zero and T approach TC, we haveZ TC

0

Z
R3

jujpC1

jxj
dx dt �

2.pC 1/

p� 1
E: (37)

The energy E here is finite by our estimate (36). On the other hand, recalling our local compactness
result Proposition 3.7, we obtain (TC D1)Z 1

0

Z
R3

jujpC1

jxj
dx dt D1:

This finishes our discussion in this case.

7. Further estimates in the soliton-like case

Let u be a soliton-like minimal blow-up solution. We will find additional decay of u.x; t/ as x tends to
infinity. The method used here is similar to the one used in [Kenig and Merle 2011] for the supercritical
case. Throughout this section w.r; t/, h.r; t/, z1.r; t/ and z2.r; t/ are defined as usual using u.x; t/.
The argument in this section works in both the defocusing and focusing cases. But we are particularly
interested in the focusing case, because the soliton-like solutions in the focusing case are the only solutions
that still survive at this time.

Setup. Let '.x/ be a smooth cutoff function in R3:

'.x/

8<:
D 0 if jxj � 1

2
;

2 Œ0; 1� if 1
2
� jxj � 1;

D 1 if jxj � 1:

Then by Proposition 3.6 (compactness of u), k'.x=R/u.x; t/k PH sp converges to zero uniformly in t as
R!1. Thus we have a positive function g.r/ so that g.r/ decreases to zero as r increases to infinity
with

k'.x=R/u.x; t/k PH sp � g.R/:

This means for each jxj �R, we have

ju.x; t/j D j'.x=R/u.x; t/j � C
k'. � =R/u. � ; t /k PH sp

jxj2=.p�1/
�

Cg.R/

jxj2=.p�1/
:

Definition 7.1. fˇ .r/D sup
t2R;jxj�r

jxjˇ ju.x; t/j

for ˇ 2 Œ2=.p� 1/; 1/ and r > 0.

This is a nonincreasing function of r defined from RC to Œ0;1/[f1g. Consider the set

U D fˇ 2 Œ2=.p� 1/; 1/ W fˇ .r/! 0 as r!1g:

This is not empty, since 2=.p� 1/ is in U . Due to the estimate

jxjˇ ju.x; t/j � Cpjxj
ˇ� 2

p�1 ku. � ; t /k PH sp ;
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we know if ˇ 2 U , then fˇ .r/ is a bounded function. By the definition of fˇ , we have

ju.x; t/j �
fˇ .r/

jxjˇ
(38)

for any time t 2 R and jxj � r . This is a meaningful inequality as long as ˇ 2 U .

Lemma 7.2. Suppose u is a soliton-like minimal blow-up solution and ˇ 2 U . Then we have the local
energy estimate on w D ru�Z 4r0

r0

j@tw.r; t0/j
2
Cj@rw.r; t0/j

2 dr

�1
2

� Cp
f
p

ˇ
.r0/

r
pˇ�5=2
0

(39)

for any r0 > 0 and t0 2 R. The constant Cp depends on p only.

Proof. Applying Lemma 4.3 to w, we have�Z 4r0

r0

jz1.r; t0/j
2 dr

�1
2

�

�Z 4r0CM

r0CM

jz1.r; t0CM/j2 dr

�1
2

C

�Z 4r0

r0

�Z M

0

h.rC t; t0C t / dt

�2
dr

�1
2

:

Let M !1. Using Proposition 4.12 we have�Z 4r0

r0

jz1.r; t0/j
2 dr

�1
2

� lim sup
M!1

�Z 4r0

r0

�Z M

0

.r C t /F .u.r C t; t0C t // dt

�2
dr

�1
2

� lim sup
M!1

�Z 4r0

r0

�Z M

0

.r C t /

�
fˇ .r0/

.r C t /ˇ

�p
dt

�2
dr

�1
2

.p lim sup
M!1

�Z 4r0

r0

�
f
p

ˇ
.r0/

rpˇ�2

�2
dr

�1
2

� f
p

ˇ
.r0/

�Z 4r0

r0

1

r2pˇ�4
dr

�1
2

.p f pˇ .r0/
�

1

r
2pˇ�5
0

�1
2

� f
p

ˇ
.r0/

1

r
pˇ�5=2
0

:

Similarly we have �Z 4r0

r0

jz2.r; t0/j
2 dr

� 1
2

.
f
p

ˇ
.r0/

r
pˇ�5=2
0

:

Combining these two estimates we obtain the inequality (39). �
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Recurrence formula.

Lemma 7.3. The function fˇ defined above satisfies the recurrence formula

fˇ .r0/�
1

2

h�
3

2

�1�ˇ
C

�
1

2

�1�ˇi
fˇ

�
r0
2

�
CCpf

p

ˇ

�
r0
2

�
r
2�.p�1/ˇ
0 : (40)

Proof. We know w D ru is a solution to the one-dimensional wave equation

@2tw� @
2
rw D r juj

p�1u:

Using the explicit formula to solve this equation, we obtain

r0u.r0; t0/D
1

2

h�
r0C

r0
2

�
u
�
r0C

r0
2
; t0�

r0
2

�
C

�
r0�

r0
2

�
u
�
r0�

r0
2
; t0�

r0
2

�i
C
1

2

Z r0C
r0
2

r0�
r0
2

@tw
�
r; t0�

r0
2

�
dr C

1

2

Z r0
2

0

Z 3r0
2
�t

r0
2
Ct

r jujp�1u
�
r; t0�

r0
2
C t

�
dr dt

D I1C I2C I3:

By Cauchy–Schwartz and Lemma 7.2, we have

jI2j �
1

2

�Z 3r0
2

r0
2

ˇ̌̌
@tw

�
r; t0�

r0
2

�ˇ̌̌2
dr

�1
2
�Z 3r0

2

r0
2

1 dr

�1
2

� Cp
f
p

ˇ
.r0=2/

r
pˇ�5=2
0

r
1=2
0

D Cpf
p

ˇ

�
r0
2

�
r
3�pˇ
0 :

Next we estimate I3 using the estimate (38)

jI3j �
1

2

Z r0
2

0

Z 3r0
2
�t

r0
2
Ct

r

�
fˇ .r0=2/

rˇ

�p
dr dt � Cp

Z r0
2

0

r20

f
p

ˇ
.r0=2/

r
pˇ
0

dt � Cpf
p

ˇ

�
r0
2

�
r
3�pˇ
0 :

At the same time, we know

jI1j �
1

2

�
3r0
2

fˇ .3r0=2/

.3r0=2/ˇ
C
r0
2

fˇ .r0=2/

.r0=2/ˇ

�
D
1

2

��
3

2

�1�ˇ
fˇ

�
3r0
2

�
C

�
1

2

�1�ˇ
fˇ

�
r0
2

��
r
1�ˇ
0 :

Combining these three terms and dividing both sides of the inequality by r1�ˇ0 , we obtain (replace r0
by r)

rˇ ju.r; t0/j �
1

2

��
3

2

�1�ˇ
fˇ

�
3r

2

�
C

�
1

2

�1�ˇ
fˇ

�
r

2

��
CCpf

p

ˇ

�
r

2

�
r2�.p�1/ˇ :

Observing that the right-hand side is a nonincreasing function of r , we apply supr�r0 on both sides and
obtain

fˇ .r0/�
1

2

��
3

2

�1�ˇ
fˇ

�
3r0
2

�
C

�
1

2

�1�ˇ
fˇ

�
r0
2

��
CCpf

p

ˇ

�
r0
2

�
r
2�.p�1/ˇ
0 : (41)

This completes the proof because we know fˇ .3r0=2/� fˇ .r0=2/. �
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Decay of u.x; t/.

Definition 7.4. Let us define (2=.p� 1/� ˇ < 1)

g.ˇ/D 1
2

�
.3
2
/1�ˇ C .1

2
/1�ˇ

�
< 1:

Lemma 7.5. If ˇ 2 U , then we have�
ˇ; ˇC log2

2

1Cg.ˇ/

�
� U:

Proof. Because fˇ .r/! 0 and 2� .p� 1/ˇ � 0, we know that there exists a large constant R, such that
if r0 >R, we have

Cpf
p

ˇ

�
r0
2

�
r
2�.p�1/ˇ
0 �

1�g.ˇ/

2
fˇ

�
r0
2

�
:

Thus the inequality (40) gives, for r0 >R,

fˇ .r0/�
g.ˇ/C1

2
fˇ

�
r0
2

�
:

This implies

fˇ .r/� Cr
log2.

g.ˇ/C1
2

/

for sufficiently large r > R0. As a result, for each ˇ1 < ˇ� log2.
g.ˇ/C1
2

/ 2 .ˇ; 1/, we have

jxjˇ1 ju.x; t/j � fˇ .jxj/jxj
ˇ1�ˇ � C jxjˇ1�ˇClog2.

g.ˇ/C1
2

/
! 0

as jxj !1. This proves the lemma by our definition of fˇ1 and U . �

Lemma 7.6. Let U be defined as above. Then we have supU D 1.

Proof. If this were false, we could assume supU D ˇ0 < 1. Then we have for each ˇ 2 U ,

g.ˇ/�G0
:
Dmax

n
g.ˇ0/; g

�
2

p�1

�o
< 1

using the convexity of the function g. Thus log2
2

1Cg.ˇ/
� log2

2

1CG0
> 0: By Lemma 7.5, we knowh

ˇ; ˇC log2
2

1CG0

�
� U:

This gives us a contradiction as ˇ! supU . �

The following proposition is the main result of this section.

Proposition 7.7 (decay of u). Let u be a soliton-like minimal blow-up solution. Then

ju.x; t/j �
C1
jxj

(42)

and Z
r<jxj<4r

.jru.x; t/j2Cj@tu.x; t/j
2/ dx � C2r

�1: (43)

The constants C1 and C2 are independent of t , x or r .
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Proof. Let ˇ be a number slightly smaller than 1. Lemma 7.6 guarantees ˇ 2 U . As a result, we can
obtain the following estimate using the conclusion of Lemma 7.2:Z 4r0

r0

j@rw.r; t0/j dr �

�Z 4r0

r0

j@rw.r; t0/j
2 dr

�1
2
�Z 4r0

r0

1 dr

�1
2

�

Cpf
p

ˇ
.r0/

r
pˇ�5=2
0

r
1=2
0 �

Cp;ˇ

r
pˇ�3
0

:

We can choose ˇ 2 U so that pˇ� 3 > 0 by the fact p > 3. Thus we haveZ 1
1

j@rw.r; t0/j dr � Cp;ˇ : (44)

In addition, for r � 1,

jw.r; t0/j D r ju.r; t0/j � Cpku.t0/k PH sp r
1� 2

p�1 � Cpku.t0/k PH sp :

Combining these two estimates above, we know that jw.r; t/j is bounded by a universal constant C1 for
each pair .r; t/. This gives us the first inequality in the conclusion by the definition w D ru. Plugging
this in the definition of fˇ .r/, we have

fˇ .r0/D sup
t2R;jxj�r0

jxjˇ ju.x; t/j � sup
t2R;jxj�r0

C1jxj
ˇ�1
D C1r

ˇ�1
0 :

Plugging this in (39), we obtain�Z 4r0

r0

j@tw.r; t0/j
2
Cj@rw.r; t0/j

2 dr

�1
2

.
1

r
p�5=2
0

: (45)

By Lemma 4.2, the combination of this estimate, Proposition 4.12 and the universal decay of u (42)
indicates that the second inequality in the lemma is also true. �

8. Death of soliton-like solution

Solitons in the focusing case. In order to kill the soliton-like minimal blow-up solutions, we need to
consider the solitons of the wave equation. It turns out that there does not exist any soliton for our
equation. The elliptic equation

��W.x/D jW.x/jp�1W.x/ (46)

does admit a lot of nontrivial radial solutions. However, none of these solutions is in the space PH sp .
Among these solutions we are particularly interested in the following solution W0 which satisfies the
condition W0.x/� 1=jxj.

Proposition 8.1. The elliptic equation (46) has a solution W0.x/ such that:

� W0.x/ is a radial and smooth solution in R3 n f0g.

� The point 0 is a singularity of W0.x/.

� The solution W0.x/ is not in the space PH sp .R3/.
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� Its behavior near infinity is given by (jxj>R0)ˇ̌̌̌
W0.x/�

1

jxj

ˇ̌̌̌
�

C

jxjp�2
; jrW0.x/j �

C

jxj2
: (47)

The next section has a complete discussion of this solution.

Idea to deal with the soliton-like solutions. We will show there does not exist a soliton-like minimal
blow-up solution in the focusing case. This conclusion is natural because there is actually no soliton.
However, to prove this result is not an easy task. We will use a method developed by T. Duyckaerts et al.
as I mentioned at the beginning of this paper. In [Duyckaerts et al. 2013] they use this method to prove
the soliton resolution conjecture for radial solutions of the focusing, energy-critical wave equation. The
idea is to show that our soliton-like solution has to be so close to the solitons ˙W0.x/ or their rescaled
versions that they must be exactly the same. But the soliton we mentioned above is not in the right
Sobolev space. This is a contradiction. In order to achieve this goal, we have to be able to understand the
behavior of a minimal blow-up solution if it is close to our soliton W0.x/.

Preliminary results. We first recall a lemma proved in [Duyckaerts et al. 2011].

Lemma 8.2 (energy channel). Let .v0; v1/ 2 PH 1 �L2 be a pair of radial initial data. Suppose v.x; t/
is the solution of the linear wave equation with the given initial data .v0; v1/. Let w.r; t/D rv.r; t/ as
usual. Then for any R > 0, either the inequalityZ

jxj>RCt

.jrv.x; t/j2Cj@tv.x; t/j
2/ dx � 2�

Z 1
R

.j@rw.r; 0/j
2
Cj@tw.r; 0/j

2/ dr

holds for all t > 0, or the inequalityZ
jxj>R�t

.jrv.x; t/j2Cj@tv.x; t/j
2/ dx � 2�

Z 1
R

.j@rw.r; 0/j
2
Cj@tw.r; 0/j

2/ dr

holds for all t < 0.

Definition 8.3. Let us define (R > 0)

VR.x; t/D

�
W0.RCjt j/ if jxj �RCjt j;
W0.jxj/ if jxj>RCjt j:

(48)

Lemma 8.4. The following space-time norms of VR.x; t/ are both finite for R > 0:

kVRkYsp .R/ <1I kVRkL2p=.p�3/L2p.R�R3/ <1:

Furthermore, if R is sufficiently large, we have the estimate

kVRkYsp .R/ .R
1
2
�sp I kVRkL2p=.p�3/L2p.R�R3/ .R�

1
2 : (49)

Proof. By the estimate (47) in Proposition 8.1, we have

jW0.x/j �
CR

jxj
if jxj �R:
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Thus, if 3=r C 1=q < 1,

kVRkLqLr .R�R3/ D

�Z
R

�Z
R3
jVR.x; t/j

r dx

�q=r
dt

�1=q
.
�Z

R

�
.RCjt j/3jW0.RCjt j/j

r
C

Z
jxj>RCjt j

jW0.x/j
r dx

�q=r
dt

�1=q
. CR

�Z
R

�
.RCjt j/3�r C

Z
jxj>RCjt j

jxj�r dx

�q=r
dt

�1=q
.r CR

�Z
R

�
.RCjt j/3�r

�q=r
dt

�1=q
.r;q CR.R.3�r/q=rC1/1=q

.r;q CRR
3
r
C 1
q
�1:

This shows the norms in question are always finite. Furthermore, if R is sufficiently large, we can always
choose CR D 2. This finishes our proof by the computation above. �

Approximation theory.

Theorem 8.5. Fix 3 < p < 5. There exists a constant ı0 > 0, such that if ı < ı0 and we have

(i) a function V.x; t/ with kV.x; t/kYsp .I / < ı (here I is a time interval containing 0), and

(ii) a pair of initial data .h0; h1/ with

k.h0; h1/k PH1�L2.R3/
< ı; k.h0; h1/k PH sp� PH sp�1.R3/

< ı;

then the equation 8<:
@2t h��hD F.V C h/�F.V /; .x; t/ 2 R3 � I;

hjtD0 D h0;

@thjtD0 D h1

has a unique solution h.x; t/ on I �R3 so that

khkYsp .I / � Cpı;

sup
t2I

k.h; @th/� .hL; @thL/k PH1�L2
� Cpı

p�1
k.h0; h1/k PH1�L2

:

Here .hL; @thL/ is the solution of the linear wave equation with initial data .h0; h1/.

Proof. In this proof, Cp represents a constant that depends on p only. In different places Cp may represent
different constants. We will also write Y instead of Ysp .I / for convenience. By the Strichartz estimates,
we have

kF.V C h/�F.V /kZsp � CpkhkY .khk
p�1
Y CkV k

p�1
Y /;

kF.V C h.1//�F.V C h.2//kZsp � Cpkh
.1/
� h.2/kY .kh

.1/
k
p�1
Y Ckh.2/k

p�1
Y CkV k

p�1
Y /:



1970 RUIPENG SHEN

In addition, if we choose a 1-admissible pair
� 4p
9�p

; 4p
p�3

�
, we also have

kF.V C h/�F.V /kL1L2 � Cpkhk
L
4p
9�pL

4p
p�3

.khk
p�1
Y CkV k

p�1
Y /;

kF.V C h.1//�F.V C h.2//kL1L2 � Cpkh
.1/
� h.2/k

L
4p
9�pL

4p
p�3

.kh.1/k
p�1
Y Ckh.2/k

p�1
Y CkV k

p�1
Y /:

By a fixed point argument, if ı is sufficiently small, we have a unique solution h.x; t/ defined on I �R3,
so that

khkY � Cpı; khk
L
4p
9�pL

4p
p�3
� Cpk.h0; h1/k PH1�L2

:

This immediately gives

sup
t2I

k.h; @th/� .hL; @thL/k PH1�L2
� CpkF.V C h/�F.V /kL1L2

� Cpkhk
L
4p
9�pL

4p
p�3

.khk
p�1
Y CkV k

p�1
Y /

� Cpı
p�1
k.h0; h1/k PH1�L2

: �

Match with W0.x/. Using the estimate (45), we haveZ 4r0

r0

j@rw.r; t/j dr .
�Z 4r0

r0

j@rw.r; t/j
2 dr

�1
2

r
1=2
0 .

1

r
p�3
0

:

This means Z 1
r0

j@rw.r; t/j dr .
1

r
p�3
0

: (50)

Thus we know the limit limr!1w.r; t/ exists for each t . In particular, the limit exists at t D 0. There
are two cases.

(I) If limr!1w.r; 0/D 0. Then in the rest of this section, set W.x/D 0. By (50) we have

jw.r; 0/j.
1

rp�3
:

Thus

ju0.x/�W.x/j D
1

jxj
jw.jxj; 0/j.

1

jxjp�2
:

(II) If limr!1w.r; 0/¤ 0. Without loss, let us assume the limit is equal to 1. Otherwise we only need
to apply some space-time dilation and/or multiplication by �1 on u. In the rest of this section, set
W.x/DW0.x/. By (50), we have

jw.r0; 0/� 1j �

Z 1
r0

j@rw.r; 0/j dr .
1

r
p�3
0

:
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Dividing this inequality by r0, we haveˇ̌̌̌
u0.x/�

1

jxj

ˇ̌̌̌
.

1

jxjp�2
:

Combining this with our estimate for W0.x/, we have for large x

ju0.x/�W.x/j.
1

jxjp�2
:

Identity near infinity.

Theorem 8.6. Let W.x/ D W0.x/ or W.x/ D 0. Suppose u.x; t/ is a global radial solution of the
equation (1) with initial data .u0; u1/ 2 PH sp � PH sp�1.R3/ satisfying the following conditions.

(I) The following inequality holds for each t 2 R and r > 0:Z
r<jxj<4r

.jru.x; t/j2Cj@tu.x; t/j
2/ dx � C1r

�1: (51)

(II) We have u0.x/ and W.x/ are very close to each other as jxj is large:

ju0.x/�W.x/j.
1

jxjp�2
: (52)

Then there exists R0 D R0.C1; p/ 2 .0;C1/ such that the pair .u0.x/�W.x/; u1.x// is essentially
supported in the ball NB.0;R0/.

Remark 8.7. There are actually two separate theorems, and both can be proved in the same way. If
W.x/DW0.x/ (the primary case), then define VR0 as usual in the proof below. Otherwise, if W.x/D 0,
just make VR0 D 0.

Proof. Consider the functions

g0 D‰R.u0�W /; g1 D‰Ru1; G.r/D u0.r/�W.r/;

for R �R0, where the constant R0 is to be determined later. Choose a small constant ı D ı.p/, so that it
is smaller than the constant ı0 in Theorem 8.5 and guarantees the number Cpıp�1 in the conclusion of
that theorem is smaller than ".p/, which is a small number determined later in the argument below. By
the condition (51) and the properties of W.x/, we know (R > 1)Z

R3
.jrg0j

2
Cg21/ dx .C1;p R

�1
IZ

R3

�
jrg0j

3.p�1/=.pC1/
Cg

3.p�1/=.pC1/
1

�
dx .C1;p R

�3.p�3/=.pC1/:

As a result, if R0 D R0.C1; p/ is sufficiently large, the following inequalities hold as long as R � R0
(we use the Sobolev embedding in order to obtain the second inequality):

k.g0; g1/k PH1�L2
� ı; k.g0; g1/k PH sp� PH sp�1 � ı; kVR0kYsp .R/ � ı:
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Let g be the solution of

@2t g��g D F.VR0 Cg/�F.VR0/

with the initial data .g0; g1/ and Qg be the solution of the linear wave equation with the same initial data.
On the other hand, we know u.x; t/�W.x/ is the solution of the equation

@2t Qu�� QuD F.W C Qu/�F.W / (53)

in the domain R� .R3 n f0g/ with the initial data .u0�W;u1/. Let K be the domain

K D f.x; t/ W jxj> jt jCRg:

Considering the fact W.x/D VR0.x; t/ in the region K and the construction of .g0; g1/, we have

u.x; t/�W.x/D g.x; t/; @tu.x; t/D @tg.x; t/

in the domain K by the finite speed of propagation. Using our assumption (51) and the decay of W.x/ at
infinity and considering the identity above, we have

lim
t!˙1

Z
jxj>jt jCR

.jrg.x; t/j2Cj@tg.x; t/j
2/ dx! 0: (54)

Using Lemma 8.2, without loss of generality, let us assume for all t > 0Z
jxj>RCt

.jr Qg.x; t/j2Cj@t Qg.x; t/j
2/ dx � 2�

Z 1
R

.j@r.rg0.r; 0//j
2
C r2jg1.r; 0/j

2/ dr:

That is Z
jxj>RCt

.jr Qg.x; t/j2Cj@t Qg.x; t/j
2/ dx �

1

2

�Z
jxj>R

.jrg0j
2
Cg21/ dx

�
� 2�Rg20.R/:

Combining this with (54), we have

lim inf
t!1

.g.x; t/; @tg.x; t//� . Qg; @t Qg/ PH1�L2.jxj>RCt/
�

�
1

2

Z
jxj>R

.jrg0j
2
Cg21/ dx�2�Rg

2
0.R/

�1
2

:

On the other hand, we know that the inequality.g.x; t/; @tg.x; t//� . Qg; @t Qg/k PH1�L2
� Cpı

p�1
k.g0; g1/


PH1�L2

� ".p/k.g0; g1/k PH1�L2

holds for each t 2 R, by Theorem 8.5. Considering both inequalities above, we have

1

2

Z
jxj>R

.jrg0j
2
Cg21/ dx� 2�Rg

2
0.R/� "

2.p/

Z
jxj>R

.jrg0j
2
Cg21/ dx:

Thus Z
jxj>R

.jrg0j
2
Cg21/ dx �

4�

1� 2"2.p/
Rg20.R/: (55)
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We have

jg0.mR/�g0.R/j �

Z mR

R

j@rg0j dr

�

�Z mR

R

jr@rg0j
2 dr

�1
2
�Z mR

R

1

r2
dr

�1
2

�

�
1

4�

Z
jxj>R

.jrg0j
2
Cg21/ dx

�1
2
�
1

R
�

1

mR

�1
2

�

�
Rg20.R/

1� 2"2.p/

�1
2
�
1�

1

m

�1
2

R�
1
2

�

�
1� 1=m

1� 2"2.p/

�1
2

jg0.R/j:

Since p� 2 > 1, we can choose k D k.p/ 2 ZC such that .kC 1/=k < p� 2. Let mD 2k . Since

.1� 1=m/
1
2 < 1�

1

2m
;

we can choose ".p/ > 0 so small that�
1� 1=m

1� 2"2.p/

� 1
2

� 1�
1

2m
D 1�

1

2kC1
:

Plugging this into our estimate above, we obtain

jg0.2
kR/�g0.R/j �

�
1�

1

2kC1

�
jg0.R/j:

Thus

jg0.2
kR/j �

1

2kC1
jg0.R/j:

By the definition of g0, this is the same as

jG.2kR/j �
1

2kC1
jG.R/j:

This inequality holds for all R � R0. Now let us consider the value of G.R0/. If G.R0/ D 0, let us
choose RDR0. Plugging g0.R/ back in (55), we have .g0; g1/D .0; 0/. This means that .u0�W;u1/
is supported in NB.0;R0/ and finishes the proof. If jG.R0/j> 0, then we have

jG.2knR0/j �
1

.2kn/.kC1/=k
jG.R0/j> 0

for each positive integer n. This contradicts the condition (52) because .kC 1/=k < p� 2 by our choice
of k. �
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Remark 8.8. If one feels uncomfortable about the singularity at zero in the equation (53), we could use
the following center-cutoff version instead. Let ' be a smooth, radial, nonnegative function satisfying

'.x/D

8<:
1 if jxj � 1;
2 Œ0; 1� if jxj 2 .1=2; 1/;
0 if jxj � 1=2:

Then u.x; t/�'.jxj=R0/W0.x/ is a solution to the equation8<:
@2t Qu�� QuD F.'.jxj=R0/W0C Qu/C�.'.jxj=R0/W0.x//; .x; t/ 2 R3 �R;

QujtD0 D u0�'.jxj=R0/W0 2 PH
sp .R3/;

@t QujtD0 D u1 2 PH
sp�1.R3/:

For any T > 0, we know

k'.jxj=R0/W0.x/kYsp .Œ�T;T �/ <1; k�.'.jxj=R0/W0.x//kZsp .Œ�T;T �/ <1:

In addition, the function �.'.jxj=R0/W0.x//D�F.W0.x// in the region K. We can do the argument as
usual in the proof above but avoid the singularity at zero with this new cutoff version of the equation (53).
This method also works in the proof of Theorem 8.9, which will be introduced in the next subsection.

Application of the theorem. Now apply Theorem 8.6 to our soliton-like minimal blow-up solution. All
the conditions are satisfied by our earlier argument. Thus .u0.x/�W.x/; u1.x// is supported in the
closed ball of radius R0 centered at the origin. In particular, because R0 depends only on the constant C1
and p, the same R0 also works for other time t as long as the condition (52) is true at that time. But by
the finite speed of propagation, we know .u.x; t/�W.x/; @tu.x; t// is actually compactly supported in
NB.0;R0Cjt j/ at each time t . This means the condition (52) is always true at any given time. Thus the

pair .u.x; t/�W.x/; @tu.x; t// is essentially supported in the cylinder NB.0;R0/�R.

Local radius analysis. Let us define the essential radius of the support of .u.x; t/�W.x/; @tu.x; t// at
time t as

R.t/DminfR � 0 W .u.x; t/�W.x/; @tu.x; t//D .0; 0/ holds for jxj>Rg:

This is well-defined for our minimal blow-up solution. Actually R.t/�R0 holds for any t 2 R.

Theorem 8.9 (behavior of “compactly supported” solutions). Let W.x/ D W0.x/ or W.x/ D 0. Let
u.x; t/ be a radial solution of the equation (1) in a time interval I containing 0, so that

(I) .u.x; t/; @tu.x; t// 2 C.I I PH 1.R3/�L2.R3//.

(II) The pair .u.x; 0/�W.x/; @tu.x; 0// is compactly supported with an essential radius of support
R.0/ > R1 > 0.

Then there exists a constant � D �.R1; p/, such that

R.t/DR.0/Cjt j

holds either for each t 2 Œ0; ��\ I or for each t 2 Œ��; 0�\ I .
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Remark 8.10. If W.x/DW0.x/ (the primary case), then define VR1 as usual in the proof. Otherwise
if W.x/D 0, just make VR1 D 0. In this case we can choose � D1. In the proof we use the notation
.u0; u1/ for the initial data .u.x; 0/; @tu.x; 0//.

Proof. By Lemma 8.4, we have kVR1kYsp .R/ <1. Thus we can choose � D �.R1; p/ > 0 such that
kVR1kYsp .Œ��;��/ < ı. Here ı is a small constant so that we can apply Theorem 8.5 and make the number
Cpı

p�1 less than 1=100 in that theorem. If " < R.0/�R1, let us consider a pair of initial data .g0; g1/
for each R 2 .R.0/� �; R.0//,

g0 D‰R.u0�W /; g1 D‰Ru1:

This pair .g0.x/; g1.x// is nonzero by the definition of R.0/. By our assumptions on .u0; u1/, we know
the inequalities

k.g0; g1/k PH1�L2
< ı; k.g0; g1/k PH sp� PH sp�1 < ı

hold for each R 2 .R.0/� �; R.0// as long as " is sufficiently small. (In order to obtain the second
inequality we use the Sobolev embedding.) Furthermore, we have

jg0.R/j D

ˇ̌̌̌
g0.R.0//�

Z R.0/

R

@rg0.r/ dr

ˇ̌̌̌
�

Z R.0/

R

j@rg0.r/j dr

�

�Z R.0/

R

r2j@rg0.r/j
2 dr

�1
2
�Z R.0/

R

1

r2
dr

�1
2

�

�Z R.0/

R

r2j@rg0.r/j
2 dr

�1
2
�
R.0/�R

R.0/R

�1
2

�

�
"

R.0/R

Z R.0/

R

r2j@rg0.r/j
2 dr

�1
2

:

Thus

Rg20.R/�
"

R.0/

Z R.0/

R

r2j@rg0.r/j
2 dr �

"

4�R.0/

Z
R<jxj<R.0/

.jrg0.x/j
2
Cjg1.x/j

2/ dx:

If " is sufficiently small, we can apply Lemma 4.2 to obtainZ R.0/

R

�
j@r.rg0.r//j

2
C r2g1.r/

2
�
dr �

0:99

4�

Z
R<jxj<R.0/

.jrg0.x/j
2
Cjg1.x/j

2/ dx:

Let Qg.x; t/ be the solution to the linear wave equation with the initial data .g0; g1/. By Lemma 8.2,Z
jxj>RCjt j

�
jr Qg.x; t/j2Cj@t Qg.x; t/j

2
�
dx � 2�

Z 1
R

�
j@r.rg0.r//j

2
C r2jg1.r/j

2
�
dr

D 2�

Z R.0/

R

�
j@r.rg0.r//j

2
C r2jg1.r/j

2
�
dr

� 0:49

Z
R<jxj<R.0/

.jrg0.x/j
2
Cjg1.x/j

2/ dx
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holds either for each t � 0 or for each t � 0. Without loss of generality, let us choose t � 0; then we have

k. Qg.x; t/; @t Qg.x; t//k PH1�L2.jxj>RCt/
� 0:7k.g0; g1/k PH1�L2.R3/

: (56)

Let g be the solution of the equation8<:
@2t g��g D F.VR1 Cg/�F.VR1/; .x; t/ 2 R3 � Œ��; ��;

gjtD0 D g0;

@tgjtD0 D g1:

By Theorem 8.5, we have

k.g.x; t/; @tg.x; t//� . Qg.x; t/; @t Qg.x; t//k PH1�L2
� 0:01k.g0; g1/k PH1�L2.R3/

for each t 2 Œ��; ��. Combining this with (56), for t 2 Œ0; �� we obtain

k.g.x; t/; @tg.x; t//k PH1�L2.jxj>RCt/
� 0:69k.g0; g1/k PH1�L2.R3/

: (57)

In addition, we know u.x; t/�W.x/ is the solution of equation8<:
@2t Qu�� QuD F.W.x/C Qu/�F.W.x//;

QujtD0 D u0�W;

@t QujtD0 D u1

in .R3 n f0g/ � I . The initial data of these two equations mentioned above is the same in the region
fx W jxj �Rg and the nonlinear part is the same function in the region

K D f.x; t/ W jxj>RC t; t 2 Œ0; ��\ I g:

Thus by the finite speed of propagation, we have g.x; t/ D u.x; t/�W.x/ and @tg.x; t/ D @tu.x; t/
in K. Plugging this in (57), we obtain

k.u.x; t/�W.x/; @tu.x; t//k PH1�L2.jxj>RCt/
� 0:69k.g0; g1/k PH1�L2.R3/

for each t 2 I \ Œ0; ��. Since R <R.0/, we know the right-hand side of the inequality above is positive
by the definition of essential radius of support. Thus we have

R.t/�RCjt j (58)

for all t 2 Œ0; ��\I . Letting R!R.0/�, we obtain R.t/�R.0/Cjt j. By the finite speed of propagation,
we have R.t/DR.0/Cjt j. �

Remark 8.11. For each R 2 .R.0/� "; R.0//, we know that the inequality (58) above holds either in the
positive or negative time direction. It may work in different directions as we choose different values of R.
However, we can always choose a sequence Ri !R.0/� such that the inequality works in the same time
direction for all the Ri . This is sufficient for us to conclude the theorem.



ON THE ENERGY SUBCRITICAL, NONLINEAR WAVE EQUATION IN R3 WITH RADIAL DATA 1977

End of soliton-like solution. Now let us show R.0/D 0. If it were not zero, let R1 DR.0/=2, and then
apply Theorem 8.9. We have (without loss of generality) R.t/DR.0/C t for each t 2 Œ0; ��. Applying
Theorem 8.9 again at t D � , we obtain

R.t/DR.0/C � C .t � �/DR.0/C t

for t 2 Œ�; 2��, because

(i) The same constant � works by the inequality R.�/ > R.0/ > R1.

(ii) The theorem may only work in the positive time direction, since we know the radius of support R.t/
decreases in the other direction.

Repeating this process, we have for each t > 0,

R.t/DR.0/C t:

But it is impossible since R.t/ is uniformly bounded by R0. Therefore we must have R.0/D 0. But this
means either u0 DW0.x/ … PH sp .R3/ or .u0; u1/D .0; 0/. This is a contradiction.

9. The solution of the elliptic equation

In this section we will consider the elliptic equation

��W.x/D jW.x/jp�1W.x/; (59)

and prove Proposition 8.1. It has infinitely many solutions. For example,

W1.x/D C jxj
�2=.p�1/

is a solution if we choose an appropriate constant C . Since we are interested in radial solutions of this
elliptic equation, we can assume W.x/D y.jxj/. Here the function y.r/ satisfies the following equation
in .0;1/:

y00.r/C
2

r
y0.r/Cjyjp�1y.r/D 0: (60)

Let us first show that the solution W0.x/ we mentioned earlier in this paper exists.

Existence of W0.x/.

The idea. We are seeking a solution with the property W0.x/' 1=jxj as x is large. That is equivalent to
y.r/' 1=r . Let us define �.r/D ry.r/; then �.r/ satisfies

�00.r/D�
F.�/

rp�1
; F .�/D j�jp�1�:

We expect �.r/' 1 for large r , thus let us assume �.r/D �.r/C1. The corresponding equation for �.r/
is given as

�00.r/D�
F.�C 1/

rp�1
:

We will show the following facts:
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(I) This equation has a solution in the interval ŒR;1/ with boundary conditions at infinity �.C1/D
�0.C1/D 0, by a fixed-point argument.

(II) We can expand the domain of this solution to RC.

The fixed-point argument. Let us consider the metric space

K D f� W � 2 C.ŒR;1/I Œ�1; 1�/; lim
r!C1

�.r/D 0g

with the distance d.�1; �2/D supr j�1.r/��2.r/j. One can check K is complete. Let us define a map
L WK!K by

L.�/.r/D

Z 1
r

�Z 1
s

�
�
F.�.t/C 1/

tp�1

�
dt

�
ds:

We have

jL.�/.r/j �

Z 1
r

�Z 1
s

2p

tp�1
dt

�
ds �

Cp

rp�3
;

jL.�1/.r/�L.�2/.r/j � Cp

Z 1
r

�Z 1
s

d.�1; �2/

tp�1
dt

�
ds � Cp

d.�1; �2/

rp�3
:

Thus if R>R.p/ is a sufficiently large number, then L is a contraction map from K to itself. As a result,
there exists a unique fixed point �0.r/. This gives us a classic smooth solution of the ODE in ŒR;1/.
We have �0.r/. r3�p and its derivative �00.r/ satisfies

j�00.r/j D

ˇ̌̌̌Z 1
r

F.�0.t/C 1/

tp�1
dt

ˇ̌̌̌
�

Cp

rp�2
:

Expansion of the solution. Now let us solve the ODE backward from r D R. We need to show it will
never break down before we approach r D 0. Actually we have

d

dr

�
j�0C 1j

pC1

pC 1
C
rp�1j�00j

2

2

�
D
p� 1

2
rp�2j�00j

2
� 0:

Thus we have that the inequality

j�0.r/C 1j
pC1

pC 1
C
rp�1j�00.r/j

2

2
�
j�0.R/C 1j

pC1

pC 1
C
Rp�1j�00.R/j

2

2

holds for all 0 < r � R as long as the solution still exists at r . But this implies the solution will never
break down at a positive r .

Properties of the solution. Now we can define

W0.x/D
�0.jxj/C 1

jxj
:
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This is a C 2, radial solution of our elliptic equation (59) for jxj> 0. Furthermore, we have for large xˇ̌̌̌
W0.x/�

1

jxj

ˇ̌̌̌
D
j�0.jxj/j

jxj
�

Cp

jxjp�2
; jrW0.x/j D

ˇ̌̌̌
r�00.r/��0.r/� 1

r2

ˇ̌̌̌
rDjxj

�
Cp

jxj2
:

Now the remaining task is to show W0.x/ is not in the space PH sp . This implies W0.x/ must have a
singularity at 0. It turns out that it is not trivial. For instance, if we repeat the argument as above in the
case p D 5, then the solution we obtain will be a smooth function in the whole space, as

W.x/D

p
3

.1C 3jxj2/1=2
:

Radial PH sp solution does not exist. The following theorem shows that any nontrivial radial solution
of our elliptic equation is not in the space PH sp .R3/. In particular, W0.x/ is not in the space PH sp .R3/.
Actually we have lim supx!0C jxj

� jW0.x/j > 0 by the argument below. This gives us a singularity at
zero.

Theorem 9.1. If 3 < p < 5, then a radial PH sp .R3/ solution to the elliptic equation

��W.x/D jW.x/jp�1W.x/

must be the zero solution.

Remark 9.2. We always assume the function y.r/ has two continuous derivatives at any r > 0 in the
proof below. Actually we can show any radial PH sp solution of the elliptic equation must be in the space
C 2.R3 n f0g/. First of all, a radial PH sp function must be continuous except for x D 0. Using this fact
and the regularity theory on the elliptic equation, we have the solution is C 2 except for x D 0.

Proof. The proof consists of three steps.

(I) (introduction to r�y.r/) We assume W.x/ D y.jxj/. The function y.r/ defined in RC is a C 2

solution of

y00.r/C
2

r
y0.r/Cjyjp�1y.r/D 0:

Let us define another C 2.RC/ function

v.r/D r�y.r/; � D
2

p� 1
:

If W.x/ D y.jxj/ is in the space PH sp , we then have limr!0C v.r/ D limr!C1 v.r/ D 0 by
Lemma A.7. Plugging y.r/D r��v.r/ in the equation for y.r/, we obtain an equation for v.r/,

r2v00.r/C
2.p� 3/

p� 1
rv0.r/�

2.p� 3/

.p� 1/2
v.r/Cjvjp�1v.r/D 0:

Multiplying both sides by v0.r/, we obtain

d

dr

�
r2
jv0.r/j2

2
�

p� 3

.p� 1/2
v2.r/C

jv.r/jpC1

pC 1

�
D
5�p

p� 1
r jv0.r/j2 � 0: (61)
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(II) (the lower limit) If v.r/ is not the zero function, then the inequality

lim inf
r!C1

r2jv0.r/j2 > 0 (62)

holds. If it failed, by considering the integral of (61) in the interval .";M/ and letting "! 0C and
M !C1, we would have

5�p

p� 1

Z 1
0

r jv0.r/j2 dr � 0:

This means v0.r/D 0 everywhere, so v.r/D 0. But we assume it is not the zero function.

(III) (conclusion) If W.x/ were not identically zero, then v.r/ would be a nonzero function. By the
limit (62), there exist C > 0 and r1 > 0, such that if r 2 .r1;1/, the inequality r2jv0.r/j2 >C holds.
In other words, we have jv0.r/j>

p
Cr�1. This means v0.r/ does not change its sign in the interval

.r1;1/ since it is a continuous function. Combining this fact with the lower bound of jv0.r/j, we
know the limit of v.r/ does not exist at1. This gives us a contradiction. �

Further properties of the function W0.x/. In this subsection, we will discover some additional properties
of the solitonW0.x/. Assume that y.r/ and v.r/ are defined in the same manner as the previous subsection.

� W0.x/ is a positive solution. If this were not true, we could assume that v.r0/D 0 for some r0 > 0,
because we know v.r/ > 0 for sufficiently large r . Then by (61), we obtain

r2
jv0.r/j2

2
�

p� 3

.p� 1/2
v2.r/C

jv.r/jpC1

pC 1
� r20
jv0.r0/j

2

2
> 0 (63)

for each r > r0. However, the decay of W0.x/ implies (if r is large) that

jv.r/j. r��1; jv0.r/j D j� r��1y.r/C r�y0.r/j. r��2:

This gives us a contradiction if we consider the limit of the left hand in the inequality (63) using
these estimates.

� W0.x/ is smooth in R3 n f0g. Due to the fact that the function F is smooth in RC, a direct corollary
follows that the function W0.x/ is smooth everywhere except for x D 0.

Appendix

The Duhamel formula.

Lemma A.1. Let 1
2
< s � 1. If K is a compact subset of PH s � PH s�1 with an s-admissible pair .q; r/ so

that q ¤1, then for each " > 0, there exist two constants M; ı > 0 such that

kS.t/.u0; u1/kLqLr .J�R3/CkS.t/.u0; u1/kLqLr .ŒM;1/�R3/CkS.t/.u0; u1/kLqLr ..�1;M��R3/ < "

holds for any .u0; u1/ 2K and any time interval J with a length jJ j � ı.
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Proof. Given .u0; u1/ 2 PH s � PH s�1, it is clear that we are able to find M; ı > 0 so that the inequality
holds for this particular pair of initial data and any interval J with a length jJ j � ı by the fact q <1
and the Strichartz estimate

kS.t/.u0; u1/kLqLr .R�R3/ <1:

If K is a finite set, then we can find M and ı so that they work for each pair in K by taking a
maximum over all M and a minimum over all ı. In the general case, we can just choose a finite
subset f.u0;i ; u1;i /giD1;2;:::;n of K such that for each .u0; u1/ 2K, there exists a positive integer i with
1 � i � n and kS.t/.u0 � u0;i ; u1 � u1;i /kLqLr .R�R3/ � Ck.u0 � u0;i ; u1 � u1;i /k PH s� PH s�1 < 0:01"I

and then use our result for a finite subset. �

Lemma A.2 (the Duhamel formula). Let u.x; t/ be almost periodic modulo scaling in the interval
I D .T�;1/, namely the set

K D

��
1

�.t/3=2�sp
u

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t

��
W t 2 I

�
is precompact in the space PH sp � PH sp�1.R3/. Then for any time t0 2 R, any bounded closed interval
Œa; b� and any sp-admissible pair .q; r/ with q <1, we have

lim
T!C1

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ D 0;

weak lim
T!C1

S.t0�T /

�
u.T /

@tu.T /

�
D 0:

Proof. We have

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ D kS.t/.u.T /; @tu.T //kLqLr .Œa�T;b�T ��R3/

D kS.t/.u
.T /
0 ; u

.T /
1 /kLqLr .Œ�.T /.a�T /;�.T /.b�T /��R3/I

here

.u
.T /
0 ; u

.T /
1 /D

�
1

�.T /3=2�sp
u

�
�

�.T /
; T

�
;

1

�.T /5=2�sp
@tu

�
�

�.T /
; T

��
:

Given " > 0, let M; ı be the constants as in Lemma A.1. It is clear that if T is sufficiently large, we have
either (�.T / is small)

�.T /.b�T /��.T /.a�T /D .b� a/�.T / < ı;

or (�.T / is large)
�.T /.b�T / < �M:

In either case, by Lemma A.1 we have kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ < ". This completes the
proof of the first limit. In order to obtain the second limit, we only need to choose t1 2 .t0;C1/, set
Œa; b�D Œt0; t1� and apply Lemma A.4 below using the first limit and the identity

S.t � t0/

�
S.t0�T /

�
u.T /

@tu.T /

��
D S.t �T /

�
u.T /

@tu.T /

�
: �
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Remark A.3. We can obtain the similar result in the negative time direction using exactly the same
argument. This implies the corresponding Duhamel formula in the negative time direction.

� Soliton-like case or high-to-low frequency cascade case

lim
T!�1

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ D 0;

weak lim
T!�1

S.t0�T /

�
u.T /

@tu.T /

�
D 0:

� Self-similar case (let a; t0 > 0)

lim
T!0C

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ D 0;

weak lim
T!0C

S.t0�T /

�
u.T /

@tu.T /

�
D 0:

Lemma A.4. Suppose that f.u0;n; u1;n/gn2Z is a bounded sequence in PH s � PH s�1.R3/ so that

lim
n!1

kS.t/.u0;n; u1;n/kLqLr .Œ0;���R3/ D 0:

Here .q; r/ is an s-admissible pair and � is a positive constant. Then we have the weak limit in
PH s � PH s�1.R3/

.u0;n; u1;n/ * 0:

Proof. Let us suppose the conclusion were false. This means that there exists a subsequence (for which
we use the same notation as the original sequence) that converges weakly to a nonzero limit . Qu0; Qu1/. We
know the operator P W PH s � PH s�1! LqLr.Œ0; ���R3/ defined by

P.u0; u1/D S.t/.u0; u1/

is bounded by the Strichartz estimate. This implies that we have the weak limit in LqLr.Œ0; ���R3/

P.u0;n; u1;n/ * P. Qu0; Qu1/:

On the other hand, we know P.u0;n; u1;n/ converges to zero strongly. Thus P. Qu0; Qu1/D 0. This means
. Qu0; Qu1/D 0, which is a contradiction. �

Lemma A.5. Assume s 2 Œsp; 1�. Let u.x; t/ be defined on I D .T�;1/ and almost periodic modulo
scalings in PH s � PH s�1.R3/, namely the set

K D

��
1

�.t/3=2�sp
u

�
x

�.t/
; t

�
;

1

�.t/5=2�sp
@tu

�
x

�.t/
; t

��
W t 2 I

�
is precompact in the space PH s � PH s�1.R3/. In addition, �.t/� 1 when t is large. Then, for any closed
interval Œa; b� and any s-admissible pair .q; r/ with q <1, we have

lim
T!C1

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/ D 0:
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Proof. One could use the similar method as used in Lemma A.2 by observing

kS.t �T /.u.T /; @tu.T //kLqLr .Œa;b��R3/

D kS.t/.u.T /; @tu.T //kLqLr .Œa�T;b�T ��R3/

D .�.T //s�spkS.t/.u
.T /
0 ; u

.T /
1 /kLqLr .Œ�.T /.a�T /;�.T /.b�T /��R3/:

Here

.u
.T /
0 ; u

.T /
1 /D

�
1

�.T /3=2�sp
u

�
�

�.T /
; T

�
;

1

�.T /5=2�sp
@tu

�
�

�.T /
; T

��
: �

Perturbation theory. In this subsection we will finish the proof of Theorem 2.12 and Theorem 2.15.

Proof of Theorem 2.12. Let us first prove the perturbation theory when M is sufficiently small. Let I1 be
the maximal lifespan of the solution u.x; t/ to the equation (1) with the given initial data .u0; u1/ and
assume Œ0; T �� I \ I1. By the Strichartz estimate, we have

k Qu�ukYsp .Œ0;T �/ � kS.t/.u0� Qu.0/; u1� Qu.0//kYsp .Œ0;T �/CCpkeCF. Qu/�F.u/kZsp .Œ0;T �/

� "CCpkekZsp .Œ0;T �/CCpkF. Qu/�F.u/kZsp .Œ0;T �/

� "CCp"CCpk Qu�ukYsp .Œ0;T �/
�
k Quk

p�1

Ysp .Œ0;T �/
Ck Qu�uk

p�1

Ysp .Œ0;T �/

�
� Cp"CCpk Qu�ukYsp .Œ0;T �/

�
Mp�1

Ck Qu�uk
p�1

Ysp .Œ0;T �/

�
:

By a continuity argument in T , there exist M0 DM0.p/ and "0 D "0.p/ > 0 such that if M �M0 and
" < "0, we have

k Qu�ukYsp .Œ0;T �/ � Cp":

Observing that this estimate does not depend on the time T , we are actually able to conclude I � I1 by
the standard blow-up criterion and obtain

k Qu�ukYsp .I / � Cp":

In addition, by the Strichartz estimate

sup
t2I

� u.t/

@tu.t/

�
�

�
Qu.t/

@t Qu.t/

�
�S.t/

�
u0� Qu.0/

u1� @t Qu.0/

�
PH sp� PH sp�1

� CpkF.u/�F. Qu/� ekZsp .I /

� Cp
�
kekZsp .I /CkF.u/�F. Qu/kZsp .I /

�
� Cp

�
"Cku� QukYsp .I /

�
k Quk

p�1

Ysp .I /
Cku� Quk

p�1
Ysp

��
� Cp":

This finishes the proof as M is sufficiently small. To deal with the general case, we can separate the
time interval I into a finite number of subintervals fIj g, so that k QukYsp .Ij / <M0, and then iterate our
argument above. �
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Proof of Theorem 2.15. Let us first prove the perturbation theory when M and T are sufficiently small.
Let I1 be the maximal lifespan of the solution u.x; t/ to the equation (1) with the given initial data
.u0; u1/ and assume Œ0; T1�� Œ0; T �\ I1. By the Strichartz estimate, we have

k Qu�ukYs.Œ0;T1�/ � kS.t/.u0� Qu0; u1� Qu1/kYs.Œ0;T1�/CCs;pkF. Qu/�F.u/kZs.Œ0;T1�/

� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1 CCs;pkF. Qu/�F.u/kZs.Œ0;T1�/

� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1

CCs;pT
.p�1/.s�sp/
1 kF. Qu/�F.u/k

L
2

sC1�.2p�2/.s�sp/L
2
2�s .Œ0;T1��R3/

� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1

CCs;pT
.p�1/.s�sp/
1 k Qu�ukYs.Œ0;T1�/

�
k Qu�uk

p�1

Ys.Œ0;T1�/
Ck Quk

p�1

Ys.Œ0;T1�/

�
� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1

CCs;pT
.p�1/.s�sp/
1 k Qu�ukYs.Œ0;T1�/

�
k Qu�uk

p�1

Ys.Œ0;T1�/
CMp�1

�
:

By a continuity argument in T1, there exist M0 DM0.s; p/ and "0 D "0.s; p/ > 0 such that if M �M0,
T � 1 and

k.u0� Qu0; u1� Qu1/k PH s� PH s�1 � "0;

we have

k Qu�ukYs.Œ0;T1�/ � Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1 :

Observing that this estimate does not depend on the time T1 as long as T1 � T � 1, we are actually able
to conclude Œ0; T �� I1 by Theorem 2.14 and obtain

k Qu�ukYs.Œ0;T �/ � Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1 :

In addition, by the Strichartz estimate

sup
t2Œ0;T �

� u.t/

@tu.t/

�
�

�
Qu.t/

@t Qu.t/

�
PH s� PH s�1

�

S.t/�u0� Qu0u1� Qu1

�
PH s� PH s�1

CCs;pkF.u/�F. Qu/kZs.Œ0;T �/

� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1

CCs;pT
.p�1/.s�sp/k Qu�ukYs.Œ0;T �/

�
k Qu�uk

p�1

Ys.Œ0;T �/
Ck Quk

p�1

Ys.Œ0;T �/

�
� Cs;pk.u0� Qu0; u1� Qu1/k PH s� PH s�1 :

This finishes the proof as M and T are sufficiently small. To deal with the general case, we can separate
the time interval Œ0; T � into a finite number of subintervals fIj g, so that k QukYs.Ij / �M0 and jIj j � 1,
then iterate our argument above. �
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Technical lemmas.

Lemma A.6. Suppose that .u0;".x/; u1;".x// are radial, smooth pairs defined in R3 and converge to
.u0.x/; u1.x// strongly in PH sp � PH sp�1.R3/. In addition, we haveZ

r0<jxj<4r0

.jru0;".x; t0/j
2
Cju1;".x; t0/j

2/ dx � C

for each " < "0. Then .u0.x/; u1.x// is in the space PH 1 �L2.r < jxj< 4r/ and satisfiesZ
r0<jxj<4r0

.jru0.x/j
2
Cju1.x/j

2/ dx � C:

Proof. By the uniform bound of the integral, we can extract a sequence "i! 0 so that @ru0;"i .r/ converges
to Qu00.r/ weakly in L2.r0; 4r0/, and u1;"i converges to Qu1 weakly in L2.r0 < jxj< 4r0/. Define

Qu0.r/D u0.r0/C

Z r

r0

Qu00.�/ d�:

We have Z
r0<jxj<4r0

.jr Qu0.x/j
2
Cj Qu1.x/j

2/ dx � C:

By the strong and weak convergence, we have immediately u1 D Qu1 in the region r0 < jxj < 4r0. In
order to conclude, we only need to show u0.r/ D Qu0.r/. Observing

R r1
r0
f .�/ d� is a bounded linear

functional in L2.r0; 4r0/ for each r1 2 .r0; 4r0/, we have

Qu0.r1/D u0.r0/C

Z r1

r0

Qu00.�/ d�

D lim
i!1

u0;"i .r0/C lim
i!1

Z r1

r0

@ru0;"i .�/ d�

D lim
i!1

�
u0;"i .r0/C

Z r1

r0

@ru0;"i .�/ d�

�
D lim
i!1

u0;"i .r1/

D u0.r1/:

This completes the proof. �

Lemma A.7. Assume 1
2
< s < 3

2
. Given any radial PH s.R3/ function f , we have

lim
jxj!0C

jxj
3
2
�sf .x/D lim

jxj!1
jxj

3
2
�sf .x/D 0:

Proof. Let s1 2 .s; 32/. Applying frequency cutoff techniques and using (8), we have

jxj
3
2
�s
j.P>Mf /.x/j � CskP>Mf k PH s ;

jxj
3
2
�s
j.P�Mf /.x/j � Cs1 jxj

s1�skP�Mf k PH s1
;
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for any fixed M > 0. Combining the higher and lower frequency parts, we obtain

lim sup
jxj!0C

jxj
3
2
�s
jf .x/j � CskP>Mf k PH s :

This proves the first limit if we let M !C1. We can prove the second limit in a similar way. �
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GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER
EQUATION WITH DERIVATIVE IN ENERGY SPACE

YIFEI WU

In this paper, we prove that there exists some small ε∗ > 0 such that the derivative nonlinear Schrödinger
equation (DNLS) is globally well-posed in the energy space, provided that the initial data u0 ∈ H 1(R)

satisfies ‖u0‖L2 <
√

2π + ε∗. This result shows us that there are no blow-up solutions whose masses
slightly exceed 2π , even if their energies are negative. This phenomenon is much different from the
behavior of the nonlinear Schrödinger equation with critical nonlinearity. The technique used is a
variational argument together with the momentum conservation law. Further, for the DNLS on the
half-line R+, we show the blow-up for the solution with negative energy.

1. Introduction

We study the following Cauchy problem of the nonlinear Schrödinger equation with derivative (DNLS):{
i∂t u+ ∂2

x u = iλ∂x(|u|2u), t ∈ R, x ∈ R,

u(0, x)= u0(x) ∈ H 1(R),
(1-1)

where λ ∈ R. It arises from studying the propagation of circularly polarized Alfvén waves in magnetized
plasma with a constant magnetic field; see [Mio et al. 1976; Mjolhus 1976; Sulem and Sulem 1999] and
the references therein.

This equation is L2-critical in the sense that both the equation and the L2-norm are invariant under the
scaling transform

uα(t, x)= α1/2u(α2t, αx), α > 0.

It has the same scaling invariance as the quintic nonlinear Schrödinger equation,

i∂t u+ ∂2
x u+µ|u|4u = 0, t ∈ R, x ∈ R,

and the quintic generalized Korteweg–de Vries equation,

∂t u+ ∂3
x u+µ∂x(u5)= 0, t ∈ R, x ∈ R.

One may always take λ= 1 in (1-1), since the general case can be reduced to this case by the following
two transforms. First, we apply the transform

u(t, x) 7→ ū(−t, x),

The author was partially supported by the NSF of China (number 11101042), the Chinese Postdoctoral Science Foundation
(numbers 20110490018 and 2012T50068), and the Fundamental Research Funds for the Central Universities of China.
MSC2010: primary 35Q55; secondary 35A01, 35B44.
Keywords: nonlinear Schrödinger equation with derivative, global well-posedness, blow-up, half-line.
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then reduce the equation to the case of λ > 0. Then we take the rescaling transform

u(t, x) 7→
1
√
λ

u(t, x)

and reduce it to the case of λ= 1. So in this sense, (1-1) can always be regarded as the focusing equation.
From now on, we always assume that λ= 1 in (1-1).

The H 1-solution of (1-1) obeys three conservation laws. The first is the conservation of the mass

M(u(t)) :=
∫

R

|u(t)|2 dx = M(u0); (1-2)

the second is the conservation of energy

ED(u(t)) :=
∫

R

(
|ux(t)|2+ 3

2 Im |u(t)|2u(t)ux(t)+ 1
2 |u(t)|

6) dx = ED(u0); (1-3)

and the third is the conservation of momentum (see (3-4) below),

PD(u(t)) := Im
∫

R

ū(t)ux(t) dx − 1
2

∫
R

|u(t)|4 dx = PD(u0). (1-4)

Local well-posedness for the Cauchy problem (1-1) is well understood. It was proved for the energy
space H 1(R) in [Hayashi 1993; Hayashi and Ozawa 1992; 1994]; see also [Guo and Tan 1991] for an
earlier result in smooth spaces. For rough data below the energy space, Takaoka [1999] proved local
well-posedness in H s(R) for s ≥ 1

2 . This result was shown to be sharp in the sense that the flow map fails
to be uniformly C0 for s < 1

2 ; see [Biagioni and Linares 2001; Takaoka 2001].
The global well-posedness for (1-1) has also been widely studied. By using mass and energy con-

servation laws, and by developing the gauge transformations, Hayashi and Ozawa [Hayashi and Ozawa
1994; Ozawa 1996] proved that the problem (1-1) is globally well-posed in energy space H 1(R) under
the condition

‖u0‖L2 <
√

2π. (1-5)

Further, for initial data of regularity below the energy space, Colliander et al. [2001; 2002] proved the
global well-posedness for (1-1) in H s(R) for s > 1

2 , under the condition (1-5). Recently, Miao, Wu, and
Xu [Miao et al. 2011] proved that (1-1) is globally well-posed in the critical space H 1/2(R), also under
the condition (1-5). For other work on the DNLS in the periodic case, see for example [Grünrock and
Herr 2008; Herr 2006; Nahmod et al. 2012; Win 2010].

As mentioned above, all the results on global existence for initial data were obtained under the
assumption (1-5). Since

√
2π is just the mass of the ground state of the corresponding elliptic problem,

the condition (1-5) was naturally used to keep the energy positive; see [Colliander et al. 2001; Miao et al.
2011] for examples. Now one may wonder what happens to the well-posedness for the solution when
(1-5) is not fulfilled. Our first main result in this paper is to improve the assumption (1-5) and obtain the
global well-posedness as follows.
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Theorem 1.1. There exists a small ε∗ > 0 such that, for any u0 ∈ H 1(R) with∫
R

|u0(x)|2 dx < 2π + ε∗, (1-6)

the Cauchy problem (1-1) (λ= 1) is globally well-posed in H 1(R) and the solution u satisfies

‖u‖L∞t H1
x
≤ C(ε∗, ‖u0‖H1).

The technique used to prove Theorem 1.1 is a variational argument together with the momentum and
energy conservation laws. The key ingredient is the momentum conservation law, rather than the energy
conservation law, upon which many (subcritical) problems rely when studying the global existence. We
argue by contradiction. Suppose that the solution of (1-1) blows up at finite/infinite time T and tn is a
time sequence tending to T such that u(tn) tends to infinity in H 1(R) norm. Then, thanks to the energy
conservation law and a variational lemma from Merle [2001], u(tn) is close to the ground state Q (see
below for its definition) up to a spatial transformation, a phase rotation, and a scaling transformation. On
the one hand, since u(tn) blows up at T , the scaling parameter λn decays to zero; on the other hand, the
conservation of momentum prevents λn from tending to zero. This leads to a contradiction.

As mentioned above, Theorem 1.1 improves the smallness of the L2-norm of the initial data of the
previous works on global existence [Hayashi and Ozawa 1994; Ozawa 1996]. More importantly, it reveals
some special features of the derivative nonlinear Schrödinger equation. As discussed before, the smallness
condition (1-5) in the previous works is imposed to guarantee the positivity of the energy ED(u(t)).
Indeed, by using a variant gauge transformation

v(t, x) := e−(3/4)i
∫ x
−∞
|u(t,y)|2 dyu(t, x), (1-7)

the energy is deduced to be

ED(u(t))= ‖vx(t)‖2L2
x
−

1
16‖v(t)‖

6
L6

x
:= E(v(t)), (1-8)

and then the positivity of E(v) is followed by the sharp Gagliardo–Nirenberg inequality (see [Weinstein
1982/83])

‖ f ‖6L6 ≤
4
π2 ‖ f ‖4L2‖ fx‖

2
L2 . (1-9)

Once the mass is greater than 2π , the positive energy can not be maintained. To see this, we first make
use of the gauge transformation (1-7), and rewrite (1-1) as

i∂tv+ ∂
2
x v =

i
2
|v|2vx −

i
2
v2v̄x −

3
16 |v|

4v. (1-10)

Then there exists a standing wave ei t Q of (1-10), where Q is the unique (up to some symmetries) positive
solution of the elliptic equation

−Qxx + Q− 3
16 Q5

= 0.

This leads to the standing wave solution corresponding to (1-1),

R(t, x) := ei t+(3/4)i
∫ x
−∞

Q2 dy Q(x).
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So on the one hand, as a byproduct, our result implies the stability of the standing wave solution, which
has been proved by Colin and Ohta [2006]. On the other hand,

‖Q‖L2 =
√

2π, E(Q)= 0,

and the Fréchet derivation of the functional E(v) at Q satisfies δE(Q) · Q =−2π < 0. These relations
imply that there exists a u0 such that u0 obeys (1-6) and ED(u0) < 0. Therefore, there indeed exist global
solutions with negative energy, as stated in Theorem 1.1. Obviously this is much different from the
focusing, quintic nonlinear Schrödinger equation (3-1) and focusing, quintic generalized Korteweg–de
Vries equation (3-2). For (3-1), Ogawa and Tsutsumi [1991] proved that the solutions with the initial
data belonging to H 1(R) and negative energy must blow up in finite time; for (3-2), Martel and Merle
[Martel and Merle 2002; Merle 2001] proved that the solutions with the initial data belonging to H 1(R),
negative energy, and obeying some further decay conditions blow up in finite time. In Section 3 below
we will discuss some differences among these three equations, in particular from the viewpoint of the
virial arguments.

Moreover, the situation of the Cauchy problem and the initial boundary value problem of (1-1) are
much different. We consider the following Cauchy–Dirichlet problem of the nonlinear Schrödinger
equation with derivative on the half-line R+:

i∂t u+ ∂2
x u = i∂x(|u|2u), t ∈ R, x ∈ (0,+∞),

u(0, x)= u0(x),
u(t, 0)= 0.

(1-11)

We show that under some assumptions, the solution must blow up in finite time if its energy is negative.

Theorem 1.2. Let u0 ∈ H 2(R+) and xu0 ∈ L2(R+), and let u be the corresponding solution of (1-11)
which exists on the (right) maximal lifetime [0, T∗). If ED(u0) < 0, then T∗ <∞. Moreover, there exists a
constant C = C(u0) > 0 such that

‖ux(t, x)‖L2(R+) ≥
C

√
T∗− t

→∞ as t ↗ T ∗.

For related results on the blow-up solution to the DNLS equation on bounded domain with the Dirichlet
condition, see [Tan 2004].

Lastly, we remark that it remains open for the DNLS equation (1-1) whether there exists an H 1(R)

initial data of much larger L2-norm such that the corresponding solution blows up in finite time. Moreover,
it may be interesting to study the existence of global rough solutions when the condition (1-5) on initial
data is relaxed.

This paper is organized as follows. In Section 2, we present the gauge transformation and prove the
virial identities of DNLS. In Section 3, we discuss the differences among the DNLS, the quintic NLS,
and the quintic gKdV equations. In Section 4, we study the initial boundary value problem of the DNLS
on the half-line and give the proof of Theorem 1.2. In Section 5, we prove Theorem 1.1.
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2. Gauge transformations, virial identities

Gauge transformations. The gauge transformation is an important and very nice tool to study the
nonlinear Schrödinger equation with derivative [Hayashi 1993; Hayashi and Ozawa 1992; 1994]. It gives
some improvement of the nonlinearity. In this subsection, we present the various gauge transformations
and their properties. See [Colliander et al. 2001; Ozawa 1996] for more details. We define

Gau(t, x)= eia
∫ x
−∞
|u(t,y)|2 dyu(t, x).

Then GaG−a = Id, the identity transform. For any function f ,

∂x Ga f = eia
∫ x
−∞
| f (t,y)|2 dy(ia| f |2 f + fx). (2-1)

Further, we have the following.

Lemma 2.1. If u is the solution of (1-1) (where λ= 1), v = Gau is the solution of the equation

i∂tv+ ∂
2
x v− i2(a+ 1)|v|2vx − i(2a+ 1)v2v̄x +

1
2a(2a+ 1)|v|4v = 0.

Moreover,

ED(u)= ‖∂x Gau‖22+ (2a+ 3
2) Im

∫
R

|Gau|2Gau · ∂x Gau dx + (a2
+

3
2a+ 1

2)

∫
R

|Gau|6 dx .

The proof of this lemma follows from a direct computation and is omitted.
To understand how the gauge transform improves the nonlinearity in the present form (1-1), we

introduce the following two transforms used in [Hayashi and Ozawa 1994; Ozawa 1996]. Let

φ = G−1u, ψ = G1/2∂x G−1/2u.

Then (φ, ψ) solves the following system of nonlinear Schrödinger equations:{
i∂tφ+ ∂

2
xφ =−iφ2ψ̄,

i∂tψ + ∂
2
xψ = ψ

2φ̄.
(2-2)

Compared with the original equation (1-1), the system above has no loss of derivatives. Thus it is much
more convenient to get the local solvability of (1-1) for suitable smooth data by considering the system
(2-2) instead.

As mentioned above, it is convenient to consider v = G−3/4u. Then, by Lemma 2.1, the equation (1-1)
of u reduces to (1-10), that is,

i∂tv+ ∂
2
x v =

1
2 i |v|2vx −

1
2 2v2v̄x −

3
16 |v|

4v.

Moreover, the energy ED(u) in (1-3) is changed into E(v) in (1-8). In the sequel we shall consider (1-10)
and the energy (1-8) of v instead.
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Virial identities. In this subsection, we discuss some virial identities for the nonlinear Schrödinger
equation with derivative. Formally, one may find that the virial quantity of v is similar to that of the
mass-critical nonlinear Schrödinger equation. However, it is in fact the difference that gives the different
conclusions of these two equations. Let ψ = ψ(x) be a smooth real function. Define

I (t)=
∫

R

ψ |v(t)|2 dx, (2-3)

J (t)= 2 Im
∫

R

ψv̄(t)vx(t) dx + 1
2

∫
ψ |v(t)|4 dx . (2-4)

Lemma 2.2. Let v be the solution of (1-10) with v(0)= v0 ∈ H 1(R), and let ψ ∈ C3. Then

I ′(t)= 2 Im
∫

R

ψ ′v̄(t)vx(t) dx, (2-5)

J ′(t)= 4
∫

R

ψ ′(|vx(t)|2− 1
16 |v(t)|

6) dx −
∫

R

ψ ′′′|v(t)|2 dx . (2-6)

Proof. Employing the gauge transform

w(t, x) := G−1/2u(t, x)= G1/4v(t, x),

by Lemma 2.1, w obeys the equation

iwt +wxx = i |w|2wx .

Moreover, since v(t, x)= G−1/4w(t, x), by (2-1),

∂xv(t, x)= e−i(1/4)
∫ x
−∞
|w(t,y)|2 dy(− 1

4 i |w|2w+wx).

Thus we have

I (t)=
∫

R

ψ |w(t)|2 dx and J (t)= 2 Im
∫

R

ψw̄(t)wx(t) dx .

Now, by a direct computation, we get

I ′(t)= 2 Re
∫

R

ψw̄(t, x)∂tw(t, x) dx = 2 Re
∫

R

ψw̄(iwxx + |w|
2wx) dx

= 2 Im
∫

R

ψ ′w̄wx dx − 1
2

∫
R

ψ ′|w|4 dx . (2-7)

Applying (2-1) again,
∂xw(t, x)= e(1/4)i

∫ x
−∞
|v(t,y)|2 dy( 1

4 i |v|2v+ vx). (2-8)

This together with (2-7) gives (2-5). Now we turn to (2-6). For this, we get

J ′(t)= 2 Im
∫

R

ψw̄t(t, x)wx(t, x) dx + 2 Im
∫

R

ψw̄(t, x)wxt(t, x) dx

=−4Im
∫

R

ψwt w̄x dx − 2 Im
∫

R

ψ ′w̄wt dx
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=−4 Im
∫

R

ψw̄x(iwxx + |w|
2wx) dx − 2 Im

∫
R

ψ ′w̄(iwxx + |w|
2wx) dx

=−4 Re
∫

R

ψw̄xwxx dx − 2 Re
∫

R

ψ ′w̄wxx dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx

= 4
∫

R

ψ ′|wx |
2 dx + 2 Re

∫
R

ψ ′′w̄wx dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx

= 4
∫

R

ψ ′|wx |
2 dx −

∫
R

ψ ′′′|w|2 dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx . (2-9)

Now, using (2-8), we have
|wx |

2
= |vx |

2
+

1
2 Im(|v|2v̄vx)+

1
16 |v|

6

and
|w|2 = |v|2, Im(|w|2w̄wx)= Im(|v|2v̄vx)+

1
4 |v|

6.

These insert into (2-9) and we obtain (2-6). �

3. A comparison between DNLS, NLS-5, and gKdV-5

In this section, we discuss the nonlinear Schrödinger equation with derivative (1-10), the focusing, quintic
nonlinear Schrödinger equation (NLS-5), which reads

i∂t u+ ∂2
x u+ 3

16 |u|
4u = 0, (3-1)

and the focusing, quintic generalized Korteweg–de Vries equation (gKdV-5),

∂t u+ ∂3
x u+ 3

16∂x(u5)= 0. (3-2)

The first two equations have the same standing wave solutions as ei t Q, and the last one has a traveling
wave solution Q(x − t). These three equations have the same energies in the form of (1-8). So by the
sharp Gagliardo–Nirenberg inequality, all of them are globally well-posed in H 1(R) when the initial data
‖u0‖L2 < ‖Q‖L2 =

√
2π .

Now we continue to discuss the difference between the first equation (DNLS) and the last two (NLS-5,
gKdV-5).

First of all, we give some products from Lemma 2.2. We always assume that v is smooth enough.
Taking ψ = x and ψ = x2, by (2-5), we have

d
dt

∫
R

x |v(t)|2 dx = 2 Im
∫

R

v̄(t)vx(t) dx

and
d
dt

∫
R

x2
|v(t)|2 dx = 4 Im

∫
R

x v̄(t)vx(t) dx, (3-3)

respectively. Note that these two identities resemble the corresponding identity of the mass-critical
nonlinear Schrödinger equation (3-1).

Now we take ψ = 1 in (2-6), which gives the momentum conservation law,
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P(v(t)) := Im
∫

R

v̄(t)vx(t) dx + 1
4

∫
R

|v(t)|4 dx = P(v0). (3-4)

Then, taking ψ = x , we have

d
dt

(
2 Im

∫
R

x v̄(t)vx(t) dx + 1
2

∫
R

x |v(t)|4 dx
)
= 4E(v0). (3-5)

This equality is different from the situation of the mass-critical nonlinear Schrödinger equation (3-1).
More precisely, for the solution u of (3-1) with the initial data u0, we have

d
dt

(
2 Im

∫
R

xū(t)ux(t) dx
)
= 4E(u0). (3-6)

Compared with the identity (3-6), there is an additional term 1
2

∫
x |v(t)|4 dx in (3-5). Indeed, for the

solution of (3-1), combining with the same identity as in (3-3), one has

d2

dt2

∫
R

x2
|u(t)|2 dx = 8E(u0). (3-7)

But this does not hold for the solution of (1-10). The “surplus” term 1
2

∫
x |v(t)|4 dx in (3-5) breaks

the convexity of the variance. It is precisely this difference that leads to the distinct phenomena of the
solutions of these two equations, at least at the technical level.

Using the virial identity (3-7), Glassey [1977] proved that the solution u of the mass-critical nonlinear
Schrödinger equation

∂t u+1u+ |u|4/N u = 0, (t, x) ∈ R×RN ,

blows up in finite time when u0 ∈ H 1(RN ), xu0 ∈ L2(RN ), and E(u0) < 0. Further, in the 1D case,
Ogawa and Tsutsumi [1991] proved that the solutions of (3-1) blow up in finite time when u0 ∈ H 1(R)

and E(u0) < 0. See also [Du et al. 2013; Holmer and Roudenko 2010; Glangetas and Merle 1995; Nawa
1999], where all the solutions of the nonlinear Schrödinger equations with power nonlinearity blow up in
finite time or infinite time if their energies are negative. However, Theorem 1.1 depicts a different scene,
where there exist global and uniformly bounded solutions even if E(v0) < 0.

The situation is also different from the mass-critical generalized KdV equation (3-2). The latter also
has virial identity

d
dt

∫
R

(x + t)|u(t)|2 dx =
∫

R

u2 dx − 3
∫

R

|ux |
2 dx − 1

3

∫
R

|u|6 dx .

The blow-up of the solutions to (3-2) also occurs when the initial data u0 satisfies E(u0) < 0, (1-6), and
some decay conditions; see [Martel and Merle 2002; Merle 2001].

4. Blow-up for the DNLS on the half line

In this section, we use the virial identities obtained in Lemma 2.2 to study the blow-up solutions for the
nonlinear Schrödinger equation with derivative on the half line. Consider the problem (1-11), and set



GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH DERIVATIVE 1997

v(t, x)= exp
(
−

3
4 i
∫ x

0
|u(t, y)|2 dy

)
u(t, x),

Using the gauge transformation, we see that v is the solution of
i∂tv+ ∂

2
x v =

1
2 i |v|2vx −

1
2 iv2v̄x −

3
16 |v|

4v, t ∈ R, x ∈ (0,+∞),

v(0, x)= v0(x),

v(t, 0)= 0.

(4-1)

Note that after replacing the integral domain R by R+, the energy conservation law and all of the virial
identities obtained in Section 2 also hold true for v.

Now using the virial identities and Glassey’s argument [1977], we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let v be the solution to (4-1). Define

I (t)=
∫
∞

0
x2
|v(t, x)|2 dx .

Then, by the identity analogous to (3-3), we have

I ′(t)= 4 Im
∫
∞

0
x v̄(t)vx(t) dx = 2

(
2 Im

∫
∞

0
x v̄(t)vx(t) dx + 1

2

∫
∞

0
x |v(t)|4 dx

)
−

∫
∞

0
x |v(t)|4 dx .

Now, by the identity analogous to (3-5), we get

d
dt

(
2 Im

∫
∞

0
x v̄(t)vx(t) dx + 1

2

∫
∞

0
x |v(t)|4 dx

)
= 4E(v0).

Therefore, using these two identities, we obtain

I ′′(t)= 8E(v0)−
d
dt

∫
∞

0
x |v(t)|4 dx .

Integrating in time twice, we have

I (t)= I (0)+ I ′(0)t +
∫ t

0

∫ s

0
I ′′(τ ) dτ ds

= I (0)+ I ′(0)t +
∫ t

0

∫ s

0

(
8E(v0)−

d
dτ

∫
∞

0
x |v(τ)|4 dx

)
dτ ds

= 4E(v0)t2
+

(
I ′(0)+

∫
∞

0
x |v0|

4 dx
)

t + I (0)−
∫ t

0

∫
∞

0
x |v(s)|4 dx ds

≤ 4E(v0)t2
+

(
I ′(0)+

∫
∞

0
x |v0|

4 dx
)

t + I (0). (4-2)

Since E(v0)= ED(u0) < 0, there exists a finite time T∗ > 0 such that I (T∗)= 0,

I (t) > 0 for 0< t < T∗,

and
I (t)= O(T∗− t) as t ↗ T∗.
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Note that ∫
∞

0
|v0(x)|2 dx =

∫
∞

0
|v(t, x)|2 dx =−2 Re

∫
∞

0
xv(t, x)vx(t, x) dx

≤ 2‖xv(t, x)‖L2
x (R
+)‖vx(t, x)‖L2

x (R
+) = 2

√
I (t)‖vx(t, · )‖L2(R+).

Then there is a constant C = C(v0) > 0 such that

‖vx(t, · )‖L2(R+) ≥

∫
∞

0 |v0(x)|2 dx

2
√

I (t)
≥

C
√

T∗− t
, (4-3)

and the right-hand side goes to∞ as t ↗ T ∗. Therefore, v(t) blows up at time T∗ <+∞. Since

vx = exp
(
−

3
4 i
∫ x

0
|u(t, y)|2 dy

)
(−i 3

4 |u|
2u+ ux),

by the Gagliardo–Nirenberg inequality and the mass conservation law, there exists C = C(u0) such that

‖vx(t, · )‖L2(R+) ≤ ‖ux(t, · )‖L2(R+)+
3
4‖u(t, · )‖

3
L6(R+)

≤ C‖ux(t, · )‖L2(R+).

Thus, by (4-3), this gives the analogous estimate on u. �

One may note from the proof that the key ingredient to obtain the blow-up result of the initial boundary
value problem on the half-line case is the positivity of the “surplus” term

∫
∞

0 x |v(t)|4 dx . This is not true
for the Cauchy problem.

5. Proof of Theorem 1.1

Proof. Let (−T−(u0), T+(u0)) be the maximal lifespan of the solution u of (1-1). To prove Theorem 1.1,
it is sufficient to obtain the (indeed uniformly) a priori estimate of the solutions on H 1-norm, that is,

sup
t∈(−T−(u0),T+(u0))

‖vx(t)‖L2 <+∞.

Now we argue by contradiction and suppose that there exists a sequence {tn} with

tn→−T−(u0) or T+(u0)

such that
‖vx(tn)‖L2 →+∞, as n→∞. (5-1)

Let
λn = ‖Qx‖L2/‖vx(tn)‖L2 (5-2)

and
wn(x)= λ1/2

n v(tn, λnx). (5-3)

Then, by (5-1),
‖∂xwn‖L2 = ‖Qx‖L2 and λn→ 0, as n→∞.

First we have the following lemma.
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Lemma 5.1. For any ε > 0, there exists a small ε∗ = ε∗(ε) > 0 such that if the function f ∈ H 1(R)

satisfies ∫
R

| f (x)|2 dx < 2π + ε∗, ‖∂x f ‖L2 = ‖∂x Q‖L2, E( f ) < ε∗,

then there exist γ0, x0 ∈ R such that

‖ f − e−iγ0 Q( · − x0)‖H1 ≤ ε.

We put the proof of Lemma 5.1 at the end of this section and apply it to prove Theorem 1.1. Let ε0 > 0
be a fixed small constant which will be chosen later, and let ε∗ = ε∗(ε0) > 0 be the number defined in
Lemma 5.1. By (1-6), (5-3), and a simple computation,∫

R

|wn(x)|2 dx =
∫

R

|v0(x)|2 dx < 2π + ε∗,

and

‖∂xwn‖L2 = ‖Qx‖L2, E(wn)= λ
2
n E(v0)→ 0.

Then, by Lemma 5.1, we may inductively construct the sequences {γn}, {xn} which satisfy

‖wn − e−iγn Q( · − xn)‖H1 ≤ ε0 for any n ≥ n0, (5-4)

where n0 = n0(ε0) is a positive large number. Let

ε(tn, x)= eiγnwn(x + xn)− Q.

Then

wn(x)= e−iγn Q(x − xn)+ e−iγnε(tn, x − xn). (5-5)

Therefore, by (5-3), (5-5), and (5-4), we have

v(tn, x)= e−iγnλ−1/2
n (ε+ Q)(tn, λ−1

n x − xn), ‖ε(tn)‖H1 ≤ ε0. (5-6)

By the momentum and (5-6), one has

P(v(tn))= Im
∫

R

v̄(tn)vx(tn) dx + 1
4

∫
R

|v(tn)|4 dx

= λ−2
n Im

∫
R

(ε̄+ Q)(tn, λ−1
n x − xn) · (εx + Qx)(tn, λ−1

n x − xn) dx

+
1
4λ
−2
n

∫
R

|(ε+ Q)(tn, λ−1
n x − xn)|

4 dx

= λ−1
n Im

∫
R

(ε̄(tn)+ Q)(εx(tn)+ Qx) dx + 1
4λ
−1
n

∫
R

|ε(tn)+ Q|4 dx

= λ−1
n

(
1
4‖Q‖

4
L4 + Im

∫
R

(Qxε(tn)+ Qεx(tn)+ ε̄εx(tn)) dx + 1
4

∫
R

(|ε(tn)+ Q|4− Q4) dx
)

= λ−1
n
( 1

4‖Q‖
4
L4 + O(‖ε(tn)‖H1)

)
≥ λ−1

n
( 1

4‖Q‖
4
L4 −Cε0

)
. (5-7)
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Thus, by choosing ε0 small enough such that Cε0 ≤
1
8‖Q‖

4
L4 , one has P(v(tn))≥ λ−1

n ·
1
8‖Q‖

4
L4 . By the

momentum conservation law, this proves that P(v0)λn ≥
1
8‖Q‖

4
L4 . That is, by (5-2),

‖vx(tn)‖L2 ≤ 8P(v0)‖Qx‖L2/‖Q‖4L4 . (5-8)

This violates (5-1). Therefore, we prove that there exists C0 = C0(ε∗, ‖v0‖H1), such that

sup
t∈R

‖vx(t)‖L2 ≤ C0.

Now, for the solution u of (1-1) (with λ= 1), we have u = G3/4v. Thus, by (2-1), we have

ux = ei(3/4)
∫ x
−∞
|v(t,y)|2 dy(i 3

4 |v|
2v+ vx

)
.

Therefore, by (1-9) and the mass conservation law, for any t ∈ R,

‖ux(t)‖L2 ≤ ‖vx(t)‖L2 +
3
4‖v(t)‖

3
L6 ≤ ‖vx(t)‖L2 +

3
2π
‖v(t)‖2L2‖vx(t)‖L2 ≤ C0

(
1+ 3

2π
‖u0‖

2
L2

)
. �

Proof of Lemma 5.1. The proof follows from the standard variational argument; see [Merle 2001; Weinstein
1986] for examples; see also [Banica 2004; Hmidi and Keraani 2005] for its applications. Here we prove
it by using the profile decomposition (see [Gérard 1998] for example) for the sake of the completeness.
Let { fn} ⊂ H 1(R) be any sequence satisfying

‖ fn‖L2 →‖Q‖L2, ‖∂x fn‖L2 = ‖Qx‖L2, E( fn)→ 0.

Then, by the profile decomposition, there exist {V j
}, {x j

n } such that, up to a subsequence,

fn =

L∑
j=1

V j ( · − x j
n )+ RL

n ,

where, for j 6= k, we have |x j
n − xk

n | →∞ as n→∞, and

lim
L→∞

lim
n→∞
‖RL

n ‖L6 = 0. (5-9)

Moreover,

‖ fn‖
2
H s =

L∑
j=1

‖V j
‖

2
H s +‖RL

n ‖
2
H s + on(1) for s = 0, 1,

E( fn)=

L∑
j=1

E(V j )+ E(RL
n )+ on(1).

(5-10)

Since ‖ fn‖L2 →‖Q‖L2 , one has, by (5-10),

‖V j
‖L2 ≤ ‖Q‖L2 for any j ≥ 1. (5-11)

This implies, by the sharp Gagliardo–Nirenberg inequality (1-9), that E(V j )≥ 0 for any j ≥ 1. Further,
by (5-9), one has

lim
L→∞

lim
n→∞

E(RL
n )≥ 0.
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Since E( fn)→ 0, we have E(V j )= 0 for any j ≥ 1. Combining with (5-11) and (1-9), this again yields

‖V j
‖L2 = ‖Q‖L2 or V j

= 0.

Since ‖ fn‖L2 →‖Q‖L2 , there exists exactly one j , say j = 1, such that

‖V 1
‖L2 = ‖Q‖L2, V j

= 0 for any j ≥ 2.

Moreover, by (5-10) and (1-9), when n→∞, we have RL
n → 0 in L2(R), and then further in H 1(R).

Therefore,
‖∂x V 1

‖L2 = ‖Qx‖L2, E(V 1)= 0,

and fn→ V 1 in H 1(R) as n→∞. Now we note that V 1 attains the sharp Gagliardo–Nirenberg inequality
(1-9). Thus, by the uniqueness of the minimizer of the Gagliardo–Nirenberg inequality [Weinstein
1982/83], we have V 1

= e−iγ0 Q( · − x0) for some γ0 ∈ R and x0 ∈ R. This proves the lemma. �
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THE CALDERÓN PROBLEM WITH PARTIAL DATA ON MANIFOLDS
AND APPLICATIONS

CARLOS KENIG AND MIKKO SALO

We consider Calderón’s inverse problem with partial data in dimensions n ≥ 3. If the inaccessible part
of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem
reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the
flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local
uniqueness in the Calderón problem with partial data in admissible geometries, and global uniqueness
under an additional concavity assumption. This work unifies two earlier approaches to this problem —
one by Kenig, Sjöstrand, and Uhlmann, the other by Isakov — and extends both. The proofs are based
on improved Carleman estimates with boundary terms, complex geometrical optics solutions involving
reflected Gaussian beam quasimodes, and invertibility of (broken) geodesic ray transforms. This last topic
raises questions of independent interest in integral geometry.
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1. Introduction

This article is concerned with inverse problems where measurements are made only on part of the boundary.
A typical example is the inverse problem of Calderón, where the objective is to determine the electrical
conductivity of a medium from voltage and current measurements on its boundary. The mathematical
formulation of this problem is as follows. Let �⊂Rn , n≥ 2, be a bounded domain with smooth boundary.
Given a positive function γ ∈ L∞(�) (the electrical conductivity of the medium) and two open subsets
0D, 0N of ∂�, consider the partial Cauchy data set

C0D,0N
γ = {(u|0D , γ ∂νu|0N ) : div(γ∇u)= 0 in �, u ∈ H 1(�), supp(u|∂�)⊂ 0D}.

MSC2010: primary 35R30; secondary 35J10, 58J32.
Keywords: Calderón problem, partial data, inverse problem.
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The Calderón problem with partial data is to determine the conductivity γ from the knowledge of C0D,0N
γ

for possibly very small sets 0D, 0N . Here ∂ν is the normal derivative, and the conormal derivative
γ ∂νu|∂� is interpreted in the weak sense as an element of H−1/2(∂�).

A closely related problem is to determine a potential q ∈ L∞(�) from partial boundary measurements
for the Schrödinger equation, given by the partial Cauchy data set

C0D,0N
q = {(u|0D , ∂νu|0N ) : (−1+ q)= 0 in �, u ∈ H1(�), supp(u|∂�)⊂ 0D}.

Here we use the space
H1(�)= {u ∈ L2(�) :1u ∈ L2(�)},

and the trace u|∂� and normal derivative ∂νu|∂� are in H−1/2(∂�) and H−3/2(∂�); see [Bukhgeim
and Uhlmann 2002]. Above, one thinks of u|∂� as Dirichlet data prescribed only on 0D, and one
measures the Neumann data of the corresponding solution on 0N . If 3γ : H 1/2(�)→ H−1/2(∂�) is the
Dirichlet-to-Neumann map (DN map) given by

3γ : u|∂� 7→ γ ∂νu|∂�, where u ∈ H 1(�) solves div(γ∇u)= 0 in �,

then the partial Cauchy data set is a restriction of the graph of 3γ ,

C0D,0N
γ = {( f |0D ,3γ f |0N ) : f ∈ H 1/2(∂�), supp( f )⊂ 0D}.

A similar interpretation is valid for C0D,0N
q provided that 0 is not a Dirichlet eigenvalue of −1+ q in �.

The problems above are well studied questions in the theory of inverse problems. The case of full
data (0D = 0N = ∂�) has received the most attention. Major results include [Sylvester and Uhlmann
1987; Haberman and Tataru 2013] in dimensions n ≥ 3 and [Nachman 1996; Astala and Päivärinta 2006;
Bukhgeim 2008] in the case n = 2. In particular, it is known that the set C∂�,∂�

γ determines uniquely a
conductivity γ ∈ C1(�) if n ≥ 3 and a conductivity γ ∈ L∞(�) if n = 2. These results are based on the
method of complex geometrical optics solutions developed in [Sylvester and Uhlmann 1987] for n ≥ 3
and in [Nachman 1996; Bukhgeim 2008] in the case n = 2.

The partial data question where the sets 0D or 0N may not be the whole boundary has also attracted
considerable attention. We mention here four approaches, each of which gives a slightly different partial
data result. Formulated in terms of the Schrödinger problem, it is known that C0D,0N

q determines q in �
in the following cases:

(1) n ≥ 3, the set 0D is possibly very small, and 0N is slightly larger than ∂� \0D; proved by Kenig,
Sjöstrand, and Uhlmann [Kenig et al. 2007].

(2) n ≥ 3 and 0D = 0N = 0, and ∂� \0 is either part of a hyperplane or part of a sphere; proved in
[Isakov 2007].

(3) n = 2 and 0D = 0N = 0, where 0 can be an arbitrary open subset of ∂�; proved by Imanuvilov,
Uhlmann, and Yamamoto [Imanuvilov et al. 2010].

(4) n ≥ 2, linearized partial data problem, 0D = 0N = 0, where 0 can be an arbitrary open subset of
∂�; proved by dos Santos Ferreira, Kenig, Sjöstrand, and Uhlmann [Ferreira 2009b].
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Approaches (1)–(3) also give a partial data result of determining γ from C0D,0N
γ with the same

assumptions on the dimension and the sets 0D, 0N . In (4), the linearized partial data problem is to show
injectivity of the Fréchet derivative of 3q at q = 0 instead of injectivity of the full map q 7→3q , when
restricted to the sets 0D and 0N .

It is interesting that, although each of the four approaches is based on a version of complex geometrical
optics solutions, the approaches are distinct in the sense that none of the above results is contained in any
of the others. The result in [Kenig et al. 2007] uses Carleman estimates with boundary terms, given for
special limiting weights, that allow one to control the solutions on parts of the boundary, whereas [Isakov
2007] is based on the full data arguments of [Sylvester and Uhlmann 1987] and a reflection argument.
The result in [Imanuvilov et al. 2010] is a strong one that only requires Dirichlet and Neumann data on
any small set, but the method involves complex analysis and Carleman weights with critical points and
does not obviously extend to higher dimensions. Finally, [Ferreira 2009b] is based on analytic microlocal
analysis but is so far restricted to the linearized problem.

Nevertheless, given that there exist several approaches to the same problem, one expects that a
combination of ideas from different approaches might lead to improved partial data results. In this paper
we unify the Carleman estimate approach of [Kenig et al. 2007] and the reflection approach of [Isakov
2007], and, in fact, we obtain the main results of both these papers as special cases.

The method also allows us to improve both approaches. Concerning [Isakov 2007], we are able to
relax the hypothesis on the inaccessible part 0i = ∂� \ 0 of the boundary: instead of requiring 0i

to be completely flat (or spherical), we can deal with 0i that satisfy a flatness condition only in one
direction. Compared with [Kenig et al. 2007], we remove the need for measurements on certain parts of
the boundary that are flat in one direction; and, in certain cases where ∂� may not have any symmetries,
we eliminate the overlap of 0D and 0N needed in [Kenig et al. 2007]. The method eventually boils down
to inverting geodesic ray transforms (possibly for broken geodesics). In some cases the invertibility of the
ray transform is known, but in other cases it is not, and in these cases we obtain a reduction from the
Calderón problem with partial data to integral geometry problems of independent interest.

The survey [Kenig and Salo 2013] describes earlier results on the Calderón problem with partial data
and also the results in the present paper. However, we also list here some further references for partial
data results, first for the case n ≥ 3. The Carleman estimate approach was initiated in [Bukhgeim and
Uhlmann 2002; Kenig et al. 2007]. Based on this approach, there are low regularity results [Knudsen
2006; Zhang 2012], results for other scalar equations [Ferreira 2007; Knudsen and Salo 2007; Chung
2012] and systems [Salo and Tzou 2010; Chung et al. 2013], stability results [Heck and Wang 2006], and
reconstruction results [Nachman and Street 2010]. The reflection approach was introduced in [Isakov
2007], and has been employed for the Maxwell system [Caro et al. 2009]. Partial data results for slab
geometries are given in [Li and Uhlmann 2010; Krupchyk et al. 2012]. Also, at the same time as this
preprint was first submitted, a preprint of Imanuvilov and Yamamoto [2013a] appeared that independently
proves a result similar to that in Section 3A in this paper.

In two dimensions, the main partial data result is that of [Imanuvilov et al. 2010], which has been
extended in [Imanuvilov et al. 2011a; 2011b; Imanuvilov and Yamamoto 2012a; 2012b] to, respectively,



2006 CARLOS KENIG AND MIKKO SALO

more general equations, combinations of measurements on disjoint sets, less regular coefficients, and
certain systems. An earlier result is [Astala et al. 2005]. In the case of Riemann surfaces with boundary,
corresponding partial data results are given in [Guillarmou and Tzou 2011a; 2011b; Albin et al. 2013].
See also the surveys [Guillarmou and Tzou 2013; Imanuvilov and Yamamoto 2013b].

In the case when the conductivity is known near the boundary, the partial data problem can be reduced
to the full data problem [Ammari and Uhlmann 2004; Alessandrini and Kim 2012; Hyvönen et al. 2012].
Also, we remark that in the corresponding problem for the wave equation, it has been known for a long
time (see [Katchalov et al. 2001]) that measuring the Dirichlet and Neumann data of waves on an arbitrary
open subset of the boundary is sufficient to determine the coefficients uniquely up to natural gauge
transforms. Partial results for the case where Dirichlet and Neumann data are measured on disjoint sets
are in [Lassas and Oksanen 2010; 2012].

The structure of this paper is as follows. Section 2 states our main partial data results in the setting
of Riemannian manifolds, and Section 3 considers some consequences of the Calderón problem with
partial data in Euclidean space. Section 4 gives a Carleman estimate that is used to control solutions on
parts of the boundary, and Section 5 discusses a reflection approach that can be used as an alternative
to Carleman estimates in some cases. In Section 6 we give the proofs of the local uniqueness results
for simple transversal manifolds, based on complex geometrical optics solutions involving WKB type
quasimodes. In Section 7 we discuss a more sophisticated quasimode construction based on reflected
Gaussian beams, and in Section 8 we show how complex geometrical optics solutions involving reflected
Gaussian beam quasimodes can be used to recover the broken ray transform of a potential from partial
Cauchy data.

2. Statement of results

Our method is based on ideas developed for the anisotropic Calderón problem in [Ferreira 2009a], and
even though much of the motivation comes from the Calderón problem with partial data in Euclidean
domains, it is convenient to formulate our main results in the setting of manifolds. The Riemannian
geometry notation we use is mostly that of [Ferreira 2009a].

Definition. Let (M, g) be a compact oriented Riemannian manifold with C∞ boundary, and let n =
dim(M)≥ 3.

1. We say that (M, g) is conformally transversally anisotropic (or CTA) if

(M, g)b (R× M̂0, g), g = c(e⊕ g0),

where (M̂0, g0) is some compact (n− 1)-dimensional manifold with boundary, e is the Euclidean
metric on the real line, and c is a smooth positive function in the cylinder R× M̂0.

2. We say that (M, g) is admissible if it is CTA and additionally the transversal manifold (M̂0, g0) is
simple, meaning that the boundary ∂ M̂0 is strictly convex (the second fundamental form is positive
definite) and for each p ∈ M̂0, the exponential map expp is a diffeomorphism from its maximal
domain of definition in Tp M̂0 onto M̂0.
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The uniqueness results in [Ferreira 2009a] were given for admissible manifolds. In this paper we will
give results both for admissible and CTA manifolds. In the main results, we will also assume that there is
a compact (n− 1)-dimensional manifold (M0, g0) with smooth boundary such that

(M, g)⊂ (R×M0, g)b (R× M̂0, g), g = c(e⊕ g0), (2-1)

and the following intersection is nonempty:

∂M ∩ (R× ∂M0) 6=∅.

Under some conditions, it will be possible to ignore boundary measurements in the set ∂M ∩ (R× ∂M0).
In the results below, we will implicitly assume that the various manifolds satisfy (2-1), and if (M, g) is
admissible, it is also assumed that (M̂0, g0) is simple (but (M0, g0) need not be simple, since its boundary
may not be strictly convex).

Write x = (x1, x ′) for points in R× M̂0, where x1 is the Euclidean coordinate. The approaches of [Kenig
et al. 2007; Ferreira 2009a] are based on complex geometrical optics solutions of the form u= eτϕ(m+r),
where ϕ is a special limiting Carleman weight. We refer to the latter paper for the definition and properties
of limiting Carleman weights on manifolds. For present purposes, we only mention that the functions
ϕ(x)=±x1 are natural limiting Carleman weights in the cylinder (R× M̂0, g).

The weight ϕ(x)= x1 allows us to decompose the boundary ∂M as the disjoint union

∂M = ∂M+ ∪ ∂M− ∪ ∂Mtan,

where

∂M± = {x ∈ ∂M : ±∂νϕ(x) > 0} and ∂Mtan = {x ∈ ∂M : ∂νϕ(x)= 0}.

Here the normal derivative is understood with respect to the metric g. Note that ∂νϕ = 0 on R× ∂M0

whenever (M0, g0) b (M̂0, g0). We think of ∂Mtan as being flat in one direction (the direction of the
gradient of ϕ). For the sake of definiteness, the sets ∂M± = ∂M±(ϕ) will refer to the weight ϕ(x)= x1 in
this section, but all results remain true when ∂M+ and ∂M− are interchanged (this amounts to replacing
the weight x1 by −x1).

Next we give the local results for the Calderón problem with partial data on manifolds. In these results
we say that a unit speed geodesic γ : [0, L] → M0 is nontangential if its endpoints are on ∂M0, the
vectors γ̇ (0), γ̇ (L) are nontangential, and γ (t) ∈ M int

0 for 0< t < L . We also define the partial Cauchy
data set as

C0D,0N
g,q = {(u|0D , ∂νu|0N ) : (−1g + q)= 0 in M, u ∈ H1g (M), supp(u|∂M)⊂ 0D},

where H1g (M) = {u ∈ L2(M) : 1gu ∈ L2(M)} and u|∂M ∈ H−1/2(∂M), ∂νu|∂M ∈ H−3/2(∂M) by the
same arguments as in [Bukhgeim and Uhlmann 2002].

To explain the results, it is convenient to think in terms of the following special case.

Example. Let M = Mleft∪Mmid∪Mright be a compact manifold with boundary consisting of three parts:
Mmid = [a, b] × M0 for some compact manifold (M0, g0) with boundary, Mleft ⊂ {x1 < a} × M0, and
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Mright ⊂ {x1 > b}×M0. We also assume that ∂M− = Mleft∩∂M and ∂M+ = Mright∩∂M . In this case
∂Mtan = [a, b]× ∂M0.

The methods developed in this paper suggest that it should suffice to measure Neumann data on
∂M+ for Dirichlet data supported in ∂M−, with no measurements required on ∂Mtan. However, in the
results below we need a part 0a ⊂ ∂Mtan that is accessible to measurements, and 0i = ∂Mtan \0a is the
inaccessible part. Suppose for simplicity that

0a = [a, b]× E, 0i = [a, b]× (∂M0 \ E)

for some nonempty open subset E of ∂M0.
In this setting, Theorem 2.1 implies that from Neumann data measured near ∂M+ ∪0a with Dirichlet

data input near ∂M− ∪0a , one can determine certain integrals of the potential q in the set

R×
⋃
γ

γ ([0, L]),

where the union is over all nontangential geodesics in M0 with endpoints on E . Moreover, if the local
ray transform is injective in this set in a suitable sense, one can determine the potential in this set by
Theorem 2.2. Theorem 2.4 shows that one can go beyond this set and extract information about integrals
of q over all nontangential broken rays with endpoints on E , and Theorem 2.3 gives a global uniqueness
result in the case where ∂Mtan has zero measure.

Theorem 2.1. Let (M, g) be an admissible manifold as in (2-1), and let q1, q2 ∈ C(M). Let 0i be a
closed subset of ∂Mtan, and suppose that, for some nonempty open subset E of ∂M0, one has

0i ⊂ R× (∂M0 r E).

Let 0a = ∂Mtan r0i , and assume that

C0D,0N
g,q1

= C0D,0N
g,q2

,

where 0D and 0N are any open sets in ∂M such that 0D ⊃ ∂M− ∪0a and 0N ⊃ ∂M+ ∪0a .
Given any nontangential geodesic γ : [0, L] → M0 with endpoints on E , and given any real number λ,

one has ∫ L

0
e−2λt(c(q1− q2))ˆ(2λ, γ (t)) dt = 0.

Here q1− q2 is extended by zero outside M , and ( · )ˆ denotes the Fourier transform in the x1 variable.

The previous theorem allows us to conclude uniqueness of potentials in sets where the local ray
transform is injective in the following sense.

Definition. Let (M0, g0) be a compact oriented manifold with smooth boundary, and let O be an open
subset of M0. We say that the local ray transform is injective on O if any function f ∈ C(M0) with∫

γ

f dt = 0 for all nontangential geodesics γ contained in O

must satisfy f |O = 0.
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Theorem 2.2. Assume the conditions in Theorem 2.1. Then q1 = q2 in M ∩ (R× O) for any open subset
O of M0 such that the local ray transform is injective on O and O ∩ ∂M0 ⊂ E.

The local ray transform is known to be injective in the next three cases (the second case will be used
in Section 3):

1. (M0, g0)= (�0, e), where �0 ⊂ Rn−1 is a bounded domain with C∞ boundary, e is the Euclidean
metric, E is an open subset of ∂�0, and O is the intersection of �0 with the union of all hyperplanes
in Rn−1 that have ∂�0\E on one side. The complement of this union is the intersection of half-spaces
and is thus convex. If the integral of f ∈ C(�0), extended by zero to Rn−1, vanishes over all line
segments in O , the integral over all hyperplanes that do not meet ∂�0 \ E also vanishes, and it
follows from the Helgason support theorem [1999] that the local ray transform is injective on O .

2. (M0, g0)b (M̃0, g0) are simple manifolds with real-analytic metric, and F̃ is an open set of nontan-
gential geodesics in (M̃0, g0) such that any curve in F̃ can be deformed to a point on ∂ M̃0 through
curves in F̃. In such a case, by a result of Krishnan [2009] the local ray transform is injective on the
set O of all points in M0 that lie on some geodesic in F̃.

3. If dim(M0)≥ 3 and if ∂M0 is strictly convex at a point p ∈ ∂M0, then p has a neighborhood O in
M0 on which the local ray transform is injective. This is a result from [Uhlmann and Vasy 2012].

In Theorem 2.2, if the nontangential geodesics with endpoints on E cover a dense subset O of M0 and
if the local ray transform is injective in O , we obtain a global uniqueness result stating that q1 = q2 in M .
An example of such a result under a concavity assumption is given in Section 3F.

The method for proving Theorems 2.1 and 2.2 also allows us to reduce the overlap for 0D and 0N

needed in [Kenig et al. 2007]. An example of such a result is the following (a similar result was also
proved in [Imanuvilov and Yamamoto 2013b]).

Theorem 2.3. Let (M, g) be an admissible manifold and assume that q1, q2 ∈ C(M). If ∂Mtan has zero
measure in ∂M , then

C∂M−,∂M+
g,q1

= C∂M−,∂M+
g,q2

=⇒ q1 = q2.

Next we wish to gather information on the potentials beyond the set that can be reached by transversal
geodesics with endpoints on E . To do this, we will use broken geodesics in the transversal manifold that
go inside M0, reflect finitely many times, and eventually return to E .

Definition. Let (M0, g0) be a compact manifold with boundary.

(a) We call a continuous curve γ : [a, b] → M0 a broken ray if γ is obtained by following unit speed
geodesics that are reflected according to geometrical optics (angle of incidence equals angle of
reflection) whenever they hit a point of ∂M0.

(b) A broken ray γ : [0, L]→ M0 is called nontangential if γ̇ (t) is nontangential whenever γ (t) ∈ ∂M0,
and additionally all points of reflection are distinct.
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The next theorem is a generalization of Theorem 2.1 in the sense that it allows arbitrary transversal
manifolds and recovers integrals over all nontangential broken rays (instead of just nontangential geodesics)
with endpoints on E . However, it is stated with a weaker partial data condition.

Theorem 2.4. Let (M, g) be a CTA manifold as in (2-1), and let q1, q2 ∈C(M). Let 0i be a closed subset
of ∂Mtan, and suppose that, for some nonempty open subset E of ∂M0, one has

0i ⊂ R× (∂M0 r E).

Let 0a = ∂Mtan r0i , and assume that

C0D,0N
g,q1

= C0D,0N
g,q2

,

where 0D = 0N = 0 for some neighborhood 0 of the set ∂M+ ∪ ∂M− ∪0a in ∂M.
Given any nontangential broken ray γ : [0, L]→M0 with endpoints on E , and given any real number λ,

one has ∫ L

0
e−2λt(c(q1− q2))ˆ(2λ, γ (t)) dt = 0.

Here q1− q2 is extended by zero outside M , and ( · )ˆ denotes the Fourier transform in the x1 variable.

It is natural to ask whether a function in M0 is determined by its integrals over broken rays with
endpoints in some subset E of ∂M0 (that is, whether the broken ray transform is injective). Combined
with Theorem 2.4 and with the proof of Theorem 2.2, such a result would imply unique recovery of the
potential in the whole manifold M . However, it seems that there are very few results in this direction,
except for the case where E is the whole boundary and the question reduces to the injectivity of the usual
ray transform; see [Sharafutdinov 1994].

Eskin [2004] has proved injectivity in the case of Euclidean broken rays reflecting off several convex
obstacles, with E being the boundary of a smooth domain enclosing all the obstacles, if the obstacles
satisfy additional restrictions (in particular, the obstacles must have corner points and they cannot be
smooth). Hubenthal [2013a; 2013b] and Ilmavirta [2013a; 2013b; 2013c] have given partial results for
the broken ray transform in special geometries. See also [Florescu et al. 2011; Lozev 2013] for related
results. However, the following question seems to be open even in convex Euclidean domains except
when E = ∂M0.

Question. Let (M0, g0) be a simple manifold, let E be a nonempty open subset of ∂M0, and assume that
f ∈ C(M0) satisfies ∫ L

0
f (γ (t)) dt = 0

for all nontangential broken rays γ : [0, L] → M0 with endpoints on E. Does this imply that f = 0?

3. The Euclidean case

In this section, we indicate some consequences of the previous results to the Calderón problem with
partial data in Euclidean space. We assume that � ⊂ R3 is a bounded domain with smooth boundary
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equipped with the Euclidean metric g = e, and q1, q2 ∈ C(�). We also assume that

C0,0
q1
= C0,0

q2
,

where 0 is some strict open subset of ∂�. Write

0i = ∂� \0

for the inaccessible part of the boundary. The results in this section show that in cases where 0i satisfies
certain geometric restrictions, it is possible to conclude that

q1 = q2 in �∩ (R× O),

where the sets O ⊂ R2 will be described below.

Remark. We also obtain results for the conductivity equation by making a standard reduction to the
Schrödinger equation. More precisely, if γ1, γ2 ∈ C2(�) are positive functions such that C0,0

γ1
= C0,0

γ2
,

the corresponding DN maps satisfy

3γ1 f |0 =3γ2 f |0 for f ∈ H 1/2(∂�) with supp( f )⊂ 0.

Boundary determination [Kohn and Vogelius 1984; Sylvester and Uhlmann 1988] implies that

γ1|0 = γ2|0, ∂νγ1|0 = ∂νγ2|0.

Writing q j =1γ
1/2
j /γ

1/2
j , the relation

3q j f = γ−1/2
j 3γ j (γ

−1/2
j f )+ 1

2γ
−1
j (∂νγ j ) f |∂�

and the above conditions imply that the DN maps 3q j for the Schrödinger equations satisfy

3q1 f |0 =3q2 f |0 for f ∈ H 1/2(∂�) with supp( f )⊂ 0.

Thus C0,0
q1
= C0,0

q2
, and we obtain that

q1 = q2 in �∩ (R× O).

Write q = q1= q2 in�∩(R×O). Then γ 1/2
1 and γ 1/2

2 are both solutions of (−1+q)u= 0 in�∩(R×O)
having identical Cauchy data on 0. It follows that γ1 = γ2 in any connected component of �∩ (R× O)
whose intersection with 0 contains a nonempty open subset of ∂�.

In the following we will use some general facts on limiting Carleman weights from [Ferreira 2009a],
where it was proved that any limiting Carleman weight in R3 has, up to translation, rotation and scaling,
one of the following six forms:

x1, log|x |, arg(x1+ i x2),
x1

|x |2
, log

|x + e1|
2

|x − e1|2
, arg(eiθ (x + ie1)

2).

Here θ ∈ [0, 2π), and the argument function is defined by

arg(z)= 2 arctan
Im(z)
|z| +Re(z)

, z ∈ C \ {t ∈ R : t ≤ 0}.
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It was also proved in Section 2 of [Ferreira 2009a] that if ϕ is a limiting Carleman weight near (�, e),
then ∇g̃ϕ is a unit parallel vector field near (�, g̃) where

g̃ = c−1e, c = |∇eϕ|
−2
e .

Furthermore, by the proof of Lemma A.5 of the same reference, if (y1, y′) are coordinates so that
∇g̃ϕ = ∂y1 and if the coordinates y′ parametrize a 2-dimensional manifold S such that ∇g̃ϕ is orthogonal
to S with respect to the g̃ metric, then the metric has the form

g̃(y1, y′)=
(

1 0
0 g̃0(y′)

)
,

where g̃0 is the metric on S induced by g̃.

3A. Cylindrical sets. This case corresponds to the limiting Carleman weight ϕ(x)= x1. Suppose that
�⊂ R×�0, where �0 is a bounded domain with smooth boundary in R2. Let E be an open subset of
∂�0, and assume that

0i ⊂ R× (∂�0 \ E).

If �0 has strictly convex boundary, Theorem 2.2 and the result of [Krishnan 2009] imply that

q1 = q2 in �∩ (R× O),

where O is the intersection of �0 with the union of all lines in R2 that have ∂�0 \ E on one side.
The above conclusion holds true also when �0 does not have strictly convex boundary. To see this, let

�0 b B b B̃, where B and B̃ are balls. The extensions of the line segments in O to B̃ form a class F̃

such that any curve in F̃ can be deformed to a point through curves in F̃. It is then enough to extend
q1− q2 by zero to R× B, and to use the proof of Theorem 2.2 with M0 replaced by B, together with
[Krishnan 2009].

3B. Conical sets. Consider the limiting Carleman weight ϕ(x)= log|x |. Suppose that �⊂ {x3 > 0}, let
(S2, g0) be the sphere with its standard metric, let S2

+
= {ω ∈ S2

: ω3 > 0}, and let (M0, g0) be a compact
submanifold of (S2

+
, g0) with smooth boundary. Let E be an open subset of ∂M0, and assume that

0i ⊂ {rω : r > 0, ω ∈ ∂M0 \ E}.

We have c = |∇ϕ|−2
= |x |2 and g̃ = |x |−2e, ∇g̃ϕ = x . Choose coordinates so that

y1 = log |x |, y′ = x/|x |.

The coordinates y′ parametrize the manifold S2 and the metric g̃0 on S2 induced by g̃ is just the standard
metric g0. The discussion in the beginning of this section shows that

g̃(y1, y′)=
(

1 0
0 g0(y′)

)
.
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Now (M0, g0) is contained in some simple submanifold (M̂0, g0) of the hemisphere (S2
+
, g0) (just remove

a neighborhood of the equator). Since geodesics in S2
+

are restrictions of great circles, Theorem 2.2 and
the local injectivity result [Krishnan 2009] imply, as in Section 3A, that

q1 = q2 in �∩ {rω : r > 0, ω ∈ O},

where O is the union of all great circle segments in S2
+

such that ∂M0 \ E is on one side of the hyperplane
containing the great circle segment.

3C. Surfaces of revolution. Let �⊂ R3
\ {x : x1 ≤ 0}, and consider the limiting Carleman weight

ϕ(x)= arg(x1+ i x2).

Then

∇ϕ =

(
−x2

x2
1 + x2

2
,

x1

x2
1 + x2

2
, 0
)

and

c = x2
1 + x2

2 , g̃ =
1

x2
1 + x2

2
e, ∇g̃ϕ = (−x2, x1, 0).

We make the change of coordinates valid near �,

y1 = arg(x1+ i x2), y2 =
√

x2
1 + x2

2 , y3 = x3.

The coordinates y′ parametrize the manifold S = {(x1, 0, x3) : x1 > 0} and ∇g̃ϕ is orthogonal to S.
Furthermore, we may also think of S as the set {(0, y2, y3) : y2 > 0}, and the metric on S induced by g̃ is
the hyperbolic metric g̃0 = (1/y2

2)e. The discussion in the beginning of this section shows that

g̃(y1, y′)=
(

1 0
0 g̃0(y′)

)
.

Let (M0, g0) be a compact submanifold of S with smooth boundary, let E be an open subset of ∂M0.
We think of M0 as lying in {(x1, 0, x3) : x1 > 0}. Now, assume that

0i ⊂ {Rθ (∂M0 \ E) : θ ∈ (−π, π)},

where Rθ x = (R̃θ (x1, x2)
t , x3)

t and R̃θ rotates vectors in R2 by angle θ counterclockwise. That is, we
assume that the inaccessible part 0i is contained in a surface of revolution obtained by rotating the
boundary curve ∂M0 \ E .

Now, the geodesics in S (and, after restriction, also in M0) have either the form

(y2(t), y3(t))= (R sin t, R cos t +α),

where t ∈ (0, π), R > 0, and α ∈ R, or the form (y2(t), y3(t))= (t, α), where t > 0 and α ∈ R (these are
not unit speed parametrizations). In the x coordinates, these are either the half circles in the {x2 = 0}
plane given by

(x1(t), x2(t), x3(t))= (R sin t, 0, R cos t +α), t ∈ (0, π),
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or the lines
(x1(t), x2(t), x3(t))= (t, 0, α), t > 0.

Enclosing M0 in some ball B in S, the manifold (B, g0) is simple and Theorem 2.2 and [Krishnan 2009]
imply, as in Section 3A, that

q1 = q2 in �∩ {Rθ (O) : θ ∈ (−π, π)},

where O is the union of all geodesics in S that have ∂M0 \ E on one side.

3D. Other limiting Carleman weights. So far we have considered three of the six possible forms of
limiting Carleman weights in R3. The fourth one, ϕ(x)= x1/|x |2, is the Kelvin transform of the linear
weight, and corresponds to inaccessible parts of the boundary that are Kelvin transforms of cylindrical
domains. In particular, if part of the cylindrical domain is on the hyperplane {x3= 1}, its Kelvin transform
lies on the sphere centered at (0, 0, 1/2) with radius 1/2, and we recover the result of Isakov [2007] for
domains where the inaccessible part is part of a sphere. The corresponding results for the remaining two
limiting Carleman weights do not seem so easy to state and we omit them.

3E. Extension of Kenig, Sjöstrand, and Uhlmann’s result. Now let �⊂R3 be a bounded domain with
smooth boundary, assume that 0 is not in the convex hull of �, and let ϕ(x)= log |x |. Define

∂�± = {x ∈ ∂� : ±∂νϕ(x) > 0}, ∂�tan= {x ∈ ∂� : ∂νϕ(x)= 0}.

It was proved in [Kenig et al. 2007] that whenever 0D is a neighborhood of ∂�− ∪ ∂�tan and 0N is a
neighborhood of ∂�+ ∪ ∂�tan, we have

C0D,0N
q1

= C0D,0N
q2

=⇒ q1 = q2.

In particular, 0D and 0N always need to overlap. This result is a consequence of the reduction given
above for the logarithmic weight, Theorem 2.1 (the special case where E = ∂�0, so that 0i =∅), and
injectivity of the ray transform. If ∂�tan has zero measure in ∂�, then Theorem 2.3 allows us to improve
this result: we have

C∂�−,∂�+
q1

= C∂�−,∂�+
q2

=⇒ q1 = q2.

In this case, the sets where Dirichlet and Neumann data are measured are disjoint, but their union covers
all of ∂� except for a set of measure zero. The result remains true if the roles of ∂�+ and ∂�− are
changed.

3F. Extension of Isakov’s result. According to [Isakov 2007], the condition C0,0
q1
=C0,0

q2
implies q1=q2

in � if � ⊂ {x3 > 0} and 0i ⊂ {x3 = 0}, or if � ⊂ B for some ball B and 0i ⊂ ∂B. We have already
recovered these results in Sections 3A and 3D, since in these cases the local injectivity set O is so large
that the result q1 = q2 holds in all of �. Of course, the results above also extend [Isakov 2007], since we
can conclude at least local uniqueness for potentials when the inaccessible part of the boundary satisfies a
(conformal) flatness condition in only one direction, such as being part of a cylindrical set, a conical set,
or a surface of revolution.
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We also get global uniqueness if the local injectivity set O is sufficiently large. For instance, if

�⊂ R×�0, 0i ⊂ R× (∂�0 \ E),

where �0 is a bounded domain with smooth boundary and E is a nonempty open subset of ∂�0, and if
the lines in R2 that have ∂�0 \ E on one side cover a dense subset of �0, then q1 = q2 in �. One example
of this situation is if

�⊂ R×{(x2, x3) : x3 > η(x2)}, 0i ⊂ R×{(x2, x3) : x3 = η(x2)},

where η : R→ R is a smooth concave function.

4. Carleman estimate

Let (M, g) be a CTA manifold, so (M, g) is compact with boundary and

(M, g)b (R×M0, g), g = c(e⊕ g0).

Here (M0, g0) is any compact (n−1)-dimensional manifold with boundary. We wish to prove a Carleman
estimate with boundary terms for the conjugated operator eϕ/h(−1g)e−ϕ/h in M , where ϕ is the limiting
Carleman weight ϕ(x)= x1 or ϕ(x)=−x1, and h > 0 is small. Following [Kenig et al. 2007], it is useful
to consider a slightly modified weight

ϕε = ϕ+ h fε

where fε is a smooth real-valued function in M depending on a small parameter ε, with ε independent
of h. The convexity of fε will lead to improved lower bounds in terms of the L2(M) norms of u and
h∇u. On the other hand, the sign of ∂νϕε in the boundary term of the Carleman estimate will allow us to
control functions on different parts of the boundary. Of special interest is the set ∂Mtan, where ∂νϕ = 0,
and in this set we have

∂νϕε|∂Mtan = h∂ν fε.

We would like to have ∂ν fε < 0 on ∂Mtan. It is not easy to find a global convex function fε satisfying the
last condition for a general set ∂Mtan. However, splitting fε into a convex part whose normal derivative
vanishes on ∂Mtan and another part which ensures the correct sign on ∂Mtan will give the required
result. We will use semiclassical conventions in the next proof; see [Ferreira 2009a, Section 4; Zworski
2012] for more details. We also write (v,w)= (v,w)L2(M), ‖v‖ = ‖v‖L2(M), and for 0 ⊂ ∂M we write
(v,w)0 = (v,w)L2(0).

Proposition 4.1. Let (M, g) be as above, let ϕ(x)=±x1, and let κ be a smooth real-valued function in
M so that ∂νκ =−1 on ∂M. Also let q ∈ L∞(M). There are constants ε,C0, h0 > 0 with h0 ≤ ε/2≤ 1
such that, for the weight

ϕε = ϕ+
h
ε

ϕ2

2
+ hκ,
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where 0< h ≤ h0, one has

h3

C0
(|∂νϕε|∂νu, ∂νu)∂M−(ϕε)+

h2

C0
(‖u‖2+‖h∇u‖2)

≤ ‖eϕ/h(−h21g + h2q)(e−ϕ/hu)‖2+ h3(|∂νϕε|∂νu, ∂νu)∂M+(ϕε)

for any u ∈ C∞(M) with u|∂M = 0.

Proof. Since ϕ(x) = ±x1 is a limiting Carleman weight in a manifold strictly containing M , the
computations in the proof of [Ferreira 2009a, Theorem 4.1] apply and we can follow that proof. First of
all, note that

c(n+2)/4(−1g + q)u = (−1c−1g + qc)(c(n−2)/4u),

where qc = cq+ c(n+2)/41g(c−(n−2)/4). Thus, by replacing q with another potential, we may assume that
c = 1 so that g = e⊕ g0 and ϕ is a distance function in the g metric, that is, |∇gϕ|g = 1.

Let P0 =−h21g and P0,ϕε = eϕε/h P0e−ϕε/h . Then P0,ϕε = A+ i B, where A and B are the formally
self-adjoint operators

A =−h21g − |∇ϕε|
2, B =−2i〈∇ϕε, h∇ · 〉− ih1gϕε.

Assume u ∈ C∞(M) and u|∂M = 0. We have

‖P0,ϕεu‖
2
= ((A+ i B)u, (A+ i B)u)

= ‖Au‖2+‖Bu‖2+ i(Bu, Au)− i(Au, Bu)

= ‖Au‖2+‖Bu‖2+ (i[A, B]u, u)− ih2(Bu, ∂νu)∂M

= ‖Au‖2+‖Bu‖2+ (i[A, B]u, u)− 2h3((∂νϕε)∂νu, ∂νu)∂M .

Define

ϕ̃ε(x)= ϕ+
h
ε

ϕ2

2
.

Thus ϕε = ϕ̃ε + hκ . Let

Ã =−h21− |∇ϕ̃ε|
2, B̃ =−2i〈∇ϕ̃ε, h∇ · 〉− ih1ϕ̃ε.

Since 1ϕε =1ϕ̃ε + h1κ and ∇ϕε =∇ϕ̃ε + h∇κ , we have

A = Ã+ Ae, Ae =−h2
|∇κ|2− 2h〈∇ϕ̃ε,∇κ〉,

B = B̃+ Be, Be =−2ih〈∇κ, h∇ · 〉− ih21κ.

Consequently,
i[A, B] = i[ Ã, B̃] + i[ Ã, Be] + i[Ae, B̃] + i[Ae, Be].

Recall from [Ferreira 2009a, p. 143] that

i[ Ã, B̃] =
4h2

ε

(
1+

h
ε
ϕ

)2

+ h B̃β B̃+ h2 R,
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where β= (h/ε)(1+(h/ε)ϕ)−2 and R is a first order semiclassical differential operator whose coefficients
are uniformly bounded with respect to h and ε if we assume that h/ε ≤ 1/2. Consider now

i[ Ã, Be] = i[−h21− |∇ϕ̃ε|
2,−2ih〈∇κ, h∇ · 〉− ih21κ].

It is clear that this equals h2 Q, where Q is a second order semiclassical differential operator whose
coefficients are uniformly bounded in h and ε. The terms i[Ae, B̃] and i[Ae, Be] are better. We thus have

i[A, B] =
4h2

ε

(
1+

h
ε
ϕ

)2

+ h B̃β B̃+ h2 Q

for some Q as described above. It follows that

(i[A, B]u, u)=
4h2

ε
‖(1+ hϕ/ε)u‖2+ h(B̃β B̃u, u)+ h2(Qu, u).

We will choose h0 so small that |hϕ/ε| ≤ 1/2 in M for h ≤ h0. Since u|∂M = 0, integration by parts
gives

|h(B̃β B̃u, u)| ≤ C1
h2

ε
‖B̃u‖2,

Similarly,

|h2(Qu, u)| ≤ C2h2(‖u‖2+‖h∇u‖2).

Putting this information together, we get

(i[A, B]u, u)≥
h2

ε
‖u‖2−C1

h2

ε
‖B̃u‖2−C2h2(‖u‖2+‖h∇u‖2).

Next we revisit the term ‖Au‖2. Let K be a positive constant whose value will be specified later. Since
u|∂M = 0, integration by parts and Young’s inequality give that

h2
‖h∇u‖2 = h2(−h21u, u)= h2(Au, u)+ h2(|∇ϕε|

2u, u)

≤
1

2K
‖Au‖2+

K h4

2
‖u‖2+C3h2

‖u‖2,

or

‖Au‖2 ≥ 2K h2
‖h∇u‖2− K 2h4

‖u‖2− 2K C3h2
‖u‖2.

Also recall that B− B̃ = Be =−2ih〈∇κ, h∇ · 〉− ih21κ . Thus,

‖(B− B̃)u‖2 ≤ C4h2(‖u‖2+‖h∇u‖2).

Hence

‖B̃u‖2 ≤ 2‖Bu‖2+ 2C4h2(‖u‖2+‖h∇u‖2)

and

‖Bu‖2 ≥ 1
2‖B̃u‖2−C4h2(‖u‖2+‖h∇u‖2).
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Putting our estimates together, we obtain

‖P0,ϕεu‖
2
≥ 2K h2

‖h∇u‖2− K 2h4
‖u‖2− 2K C3h2

‖u‖2+ 1
2‖B̃u‖2−C4h2(‖u‖2+‖h∇u‖2)

+
h2

ε
‖u‖2−C1

h2

ε
‖B̃u‖2−C2h2(‖u‖2+‖h∇u‖2)− 2h3((∂νϕε)∂νu, ∂νu)∂M .

At this point, we choose h0 so small that

C1h2
0/ε ≤

1
4 .

We also make the choice
K = 1

αε
,

where α is to be determined. Then, for h ≤ h0,

‖P0,ϕεu‖
2
≥

h2

ε

(
‖u‖2+ 2

α
‖h∇u‖2

)
− (C2+C4)h2(‖u‖2+‖h∇u‖2)

−
h2

ε

h2

α2ε
‖u‖2−

h2

ε

2C3

α
‖u‖2+ 1

4‖B̃u‖2− 2h3((∂νϕε)∂νu, ∂νu)∂M .

Choose first α = 4C3. It follows that

‖P0,ϕεu‖
2
≥

h2

2ε

(
1−2ε(C2+C4)−

2h2

α2ε

)
‖u‖2+

h2

ε

(
2
α
−ε(C2+C4)

)
‖h∇u‖2−2h3((∂νϕε)∂νu, ∂νu)∂M .

Next choose ε so that

ε =min
{

1
4(C2+C4)

,
1

α(C2+C4)

}
.

Finally, choose h0 so it satisfies the restrictions made earlier, i.e., h0 ≤
ε

2
, h0 max

x∈M
|ϕ| ≤

ε

2
, and h2

0 ≤
ε

4C1
,

and additionally
2h2

0

α2ε
≤

1
4
.

With these choices, we have

‖P0,ϕεu‖
2
≥

h2

8ε
‖u‖2+

h2

αε
‖h∇u‖2− 2h3((∂νϕε)∂νu, ∂νu)∂M .

Adding a potential gives

‖P0,ϕεu‖
2
≤ 2‖(P0,ϕε + h2q)u‖2+ 2h4

‖q‖2L∞(M)‖u‖
2.

Choosing an even smaller value of h0 depending on ‖q‖L∞(M) if necessary, we obtain for 0< h ≤ h0 that

‖(P0,ϕε + h2q)u‖2 ≥
h2

C0
(‖u‖2+‖h∇u‖2)− 2h3((∂νϕε)∂νu, ∂νu)∂M .

Finally, we replace u by eϕ
2/2ε+κu, where u ∈ C∞(�) and u|∂� = 0, and use the fact that

1/C ≤ eϕ
2/2ε+κ

≤ C, |∇(eϕ
2/2ε+κ)| ≤ C on M.

The required estimate follows. �
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We now pass from ϕε to ϕ in the boundary terms of the previous result, making use of the special
properties of ϕε on ∂M . Note that the factor h4 in the boundary term on {x ∈ ∂M : −δ < ∂νϕ(x) < h/3}
below is weaker than the factor h3 in the other boundary terms. This follows from the fact that ∂νϕε =
h∂νκ =−h in the set where ∂νϕ vanishes, so one only has the weak lower bound.

Proposition 4.2. Let (M, g) be as above, let q ∈ L∞(M), and let ϕ(x) = ±x1. There exist constants
C0, h0 > 0 such that, whenever 0< h ≤ h0 and δ > 0, one has

δh3

C0
‖∂νu‖2L2({∂νϕ≤−δ})

+
h4

C0
‖∂νu‖2L2({−δ<∂νϕ<h/3})+

h2

C0
(‖u‖2+‖h∇u‖2)

≤ ‖eϕ/h(−h21g + h2q)(e−ϕ/hu)‖2+ h3
‖∂νu‖2L2({∂νϕ≥h/3})

for any u ∈ C∞(M) with u|∂M = 0.

Proof. Note that

∂νϕε =
(

1+ h
ε
ϕ
)
∂νϕ+ h∂νκ =

(
1+ h

ε
ϕ
)
∂νϕ− h.

We choose h0 so small that whenever h ≤ h0, one has, for x ∈ M ,

1
2 ≤ 1+ h

ε
ϕ(x)≤ 3

2 .

On the set where ∂νϕ(x)≤−δ, we have

|∂νϕε| ≥ δ/2.

If −δ < ∂νϕ < h/3, we use the estimate
|∂νϕε| ≥ h/2.

Moreover, |∂νϕε| ≤C0 on ∂M . Since {∂νϕ < h/3} ⊂ {∂νϕε < 0} and {∂νϕε ≥ 0} ⊂ {∂νϕ ≥ h/3}, the result
follows from Proposition 4.1 after replacing C0 by some larger constant. �

We can now obtain a solvability result from the previous Carleman estimate in a standard way by
duality; see [Bukhgeim and Uhlmann 2002; Kenig et al. 2007; Nachman and Street 2010]. There is a
slight technical complication, since the solution will be in L2 but not in H 1. To remedy this, we will
work with the space

H1g (M)= {u ∈ L2(M) :1gu ∈ L2(M)}

with norm ‖u‖H1 = ‖u‖L2 +‖1u‖L2 . As in [Bukhgeim and Uhlmann 2002], we see that H1(M) is a
Hilbert space having C∞(M) as a dense subset, and there is a well defined bounded trace operator from
H1(M) to H−1/2(∂M) and a normal derivative operator from H1(M) to H−3/2(∂M). We also recall
that if u ∈ H1(M) and u|∂M ∈ H 3/2(∂M), then u ∈ H 2(M).

Proposition 4.3. Let (M, g) be as above, let q ∈ L∞(M), and let ϕ(x) = ±x1. There exist constants
C0, τ0 > 0 such that when τ ≥ τ0 and δ > 0, for any f ∈ L2(M) and f− ∈ L2(S− ∪ S0) there exists
u ∈ L2(M) satisfying eτϕu ∈ H1g (M) and eτϕu|∂M ∈ L2(∂M) such that

e−τϕ(−1g + q)(eτϕu)= f in M, eτϕu|S−∪S0 = eτϕ f−,
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and

‖u‖L2(M) ≤ C0(τ
−1
‖ f ‖L2(M)+ (δτ )

−1/2
‖ f−|S−‖L2(S−)+‖ f−|S0‖L2(S0)).

Here S± and S0 are the subsets of ∂M defined by

S− = {∂νϕ ≤−δ}, S0 = {−δ < ∂νϕ < 1/(3τ)}, S+ = {∂νϕ ≥ 1/(3τ)}.

Proof. Write Lv = eτϕ(−1g+ q̄)(e−τϕv) and τ = 1/h, τ0 = 1/h0. We rewrite the Carleman estimate of
Proposition 4.2 as

(δτ )1/2‖∂νv‖L2(S−)+‖∂νv‖L2(S0)+ τ‖v‖+‖∇v‖ ≤ C0‖Lv‖+C0τ
1/2
‖∂νv‖L2(S+).

This is valid for any δ > 0, provided that τ ≥ τ0 and v ∈ C∞(M) with v|∂M = 0.
Consider the following subspace of L2(M)× L2(S+):

X = {(Lv, ∂νv|S+) : v ∈ C∞(M), v|∂M = 0}.

Any element of X is uniquely represented as (Lv, ∂νv|S+), where v|∂M = 0 by the Carleman estimate.
Define a linear functional l : X→ C by

l(Lv, ∂νv|S+)= (v, f )L2(M)− (∂νv, f−)L2(S−∪S0).

By the Carleman estimate, we have

|l(Lv, ∂νv|S+)| ≤ ‖v‖‖ f ‖+‖∂νv‖L2(S−)‖ f−‖L2(S−)+‖∂νv‖L2(S0)‖ f−‖L2(S0)

≤ C0(τ
−1
‖ f ‖+ (δτ )−1/2

‖ f−‖L2(S−)+‖ f−‖L2(S0))× (‖Lv‖+ τ
1/2
‖∂νv‖L2(S+)).

The Hahn–Banach theorem implies that l extends to a continuous linear functional

l̄ : L2(M)× τ−1/2L2(S+)→ C

such that

‖l̄‖ ≤ C0(τ
−1
‖ f ‖+ (δτ )−1/2

‖ f−‖L2(S−)+‖ f−‖L2(S0)).

By the Riesz representation theorem, there exist functions u ∈ L2(M) and u+ ∈ L2(S+) satisfying
l̄(w,w+)= (w, u)L2(M)+ (w+, u+)L2(S+). Moreover,

‖u‖L2(M)+ τ
−1/2
‖u+‖L2(S+) ≤ C0(τ

−1
‖ f ‖+ (δτ )−1/2

‖ f−‖L2(S−)+‖ f−‖L2(S0)).

If v ∈ C∞(M) and v|∂M = 0, we have

(Lv, u)L2(M)+ (∂νv, u+)L2(S+) = (v, f )L2(M)− (∂νv, f−)L2(S−∪S0).

Choosing v compactly supported in M int, it follows that L∗u = f , or

e−τϕ(−1g + q)(eτϕu)= f in M.

Furthermore, eτϕu ∈ H1(M).



THE CALDERÓN PROBLEM WITH PARTIAL DATA ON MANIFOLDS AND APPLICATIONS 2021

If w, v ∈ C∞(M) with v|∂M = 0, an integration by parts gives

(Lv,w)=−(e−τϕ∂νv, eτϕw)L2(∂M)+ (v, L∗w).

Given our solution u, we choose u j ∈ C∞(M) so that eτϕu j → eτϕu in H1(M). Applying the above
formula with w = u j and taking the limit, we see that

(Lv, u)=−(e−τϕ∂νv, eτϕu)L2(∂M)+ (v, L∗u)

for v ∈ C∞(M) with v|∂M = 0. Combining this with (4-1), using that L∗u = f gives

(∂νv, f−)L2(S−∪S0)+ (∂νv, u+)L2(S+) = (e
−τϕ∂νv, eτϕu)L2(∂M).

Since ∂νv can be chosen arbitrarily, it follows that eτϕu|S−∪S0 = eτϕ f− and eτϕu|S+ = eτϕu+. We also
see that eτϕu|∂M ∈ L2(∂M). �

5. Reflection approach

In the previous section, we employed Carleman estimates and duality to obtain a solvability result
(Proposition 4.3) that will be used to produce correction terms in complex geometrical optics solutions
with prescribed behavior on parts of the boundary. In this section we give an alternative approach to the
construction of correction terms vanishing on parts of the boundary. The method is based on a reflection
argument. We extend the method of [Isakov 2007], which dealt with inaccessible parts that are part of a
hyperplane, to the case of inaccessible parts that are part of the graph of a function independent of one of
the variables. The results are less general than the ones in Section 4, and, for simplicity, will only be
stated for domains in R3 with Euclidean metric, but on the other hand, the method is constructive and is
based on direct Fourier arguments in the spirit of [Kenig et al. 2011a; Kenig et al. 2011b].

Let �⊂ R3 be a bounded domain with smooth boundary, and assume that

�⊂ R×{(x2, x3) : x3 > η(x2)},

where η : R→ R is a smooth function. Also assume that 00 is a closed subset of ∂� such that

00 ⊂ R×{(x2, x3) : x3 = η(x2)}.

We will show that if one has access to suitable amplitudes of complex geometrical optics solutions that
vanish on 00, it is possible to produce correction terms that also vanish on 00.

Proposition 5.1. Let � and 00 be as above, and let q ∈ L∞(�). There are C0, τ0 > 0 such that, for any
τ with |τ | ≥ τ0 and for any m ∈ H 2(�) with m|00 = 0, the equation (−1+ q)u = 0 in � has a solution
u ∈ H 2(�) of the form

u = e−τ x1(m+ r)

such that r |00 = 0 and

‖r‖L2(�) ≤
C0

|τ |
‖eτ x1(−1+ q)(e−τ x1m)‖L2(�).
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The proof involves a reflection argument that reduces the construction of the correction term to the
problem of solving a conjugated equation with anisotropic metric,

eτ x1(−1ĝ + q̂)(e−τ x1 r̂)= f̂ in R× �̂0,

where �̂0 ⊂ R2 is a bounded open set and ĝ is a metric of the form

ĝ(y1, y′)=
(

1 0
0 ĝ0(y′)

)
,

and where g0 is smooth for y3 6= 0 but only Lipschitz continuous across {y3 = 0}. In three and higher
dimensions, it is not known how to handle equations of this type with general Lipschitz coefficients in the
second order part (the case of C1 coefficients, and also Lipschitz coefficients with a smallness condition,
is considered in [Haberman and Tataru 2013]). However, in our case, the singularity of ĝ only appears in
the lower right block ĝ0, and this turns out not to be a problem.

The following is an analogue of [Kenig et al. 2011a, Proposition 4.1], the main difference being that the
transversal metric is only Lipschitz. (With correct definitions, one could easily deal with L∞ transversal
metrics as well, but then the solution would only be in H 1

−δ(T ).) Here we write (x1, x ′) for coordinates
in T = R×M0, and for δ ∈ R we consider the spaces

‖ f ‖L2
δ (T )
= ‖〈x1〉

δ f ‖L2(T ), ‖ f ‖H1
δ (T )
= ‖ f ‖L2

δ (T )
+‖d f ‖L2

δ (T )

with 〈t〉 = (1+ t2)1/2, and similarly for H 2
δ (T ). We also write Spec(−1g0) for the set of Dirichlet

eigenvalues of the Laplace–Beltrami operator −1g0 in (M0, g0).

Proposition 5.2. Let T =R×M0 with metric g = e⊕ g0, where (M0, g0) is a compact oriented manifold
with smooth boundary and g0 is a Lipschitz continuous Riemannian metric on M0. Given any q ∈ L∞comp(T )
and any δ > 1/2, there are constants C0, τ0 > 0 such that whenever

|τ | ≥ τ0 and τ 2 /∈ Spec(−1g0),

the equation

eτ x1(−1g + q)(e−τ x1r)= f in T

has a unique solution r ∈ H 1
−δ(T ) with r |∂T = 0 for any f ∈ L2

δ(T ). Moreover, r ∈ H 2
−δ(T ), and one has

the bounds

‖r‖L2
−δ(T )
≤

C0

|τ |
‖ f ‖L2

δ (T )
, ‖r‖H1

−δ(T )
≤ C0‖ f ‖L2

δ (T )
.

Proof. The proof is almost exactly the same as the proof of [Kenig et al. 2011a, Proposition 4.1], and we
only give the main idea. Since 1g = ∂

2
x1
+1g0 , the equation that we need to solve is

(−∂2
x1
+ 2τ∂x1 −1g0 − τ

2
+ q)r = f in T .

It is enough to consider q = 0. The standard argument based on weak solutions shows that even when g0

has very little regularity, there is an orthonormal basis of L2(M0) consisting of Dirichlet eigenfunctions
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of −1g0 ,

−1g0ϕl = λlϕl in M0, ϕl ∈ H 1
0 (M0),

where 0< λ1 ≤ λ2 ≤ λ3 ≤ · · · →∞ are the Dirichlet eigenvalues of −1g0 in M0.
Considering the partial Fourier expansions

r(x1, x ′)=
∞∑

l=1

r̃(x1, l)ϕl(x ′), f (x1, x ′)=
∞∑

l=1

f̃ (x1, l)ϕl(x ′),

it is enough to solve

(−∂2
x1
+ 2τ∂x1 + λl − τ

2)r̃( · , l)= f̃ ( · , l) in R for all l.

The condition τ 2 /∈ Spec(−1g0) allows us to solve these ordinary differential equations by the Fourier
transform as in [Kenig et al. 2011a, Section 4], and the estimates given there imply that one obtains a
unique solution r ∈ H 1

−δ(T ) with r |∂T = 0 satisfying the required bounds. Elliptic H 2 regularity also
works with Lipschitz g0, and the argument in [Kenig et al. 2011a, Section 4] gives that r ∈ H 2

−δ(T ). �

Proof of Proposition 5.1. We begin by flattening 00 via the map

8 : R3
→ R3, (x1, x2, x3) 7→ (x1, x2, x3− η(x2)).

Let �̃=8(�), write y for coordinates in �̃, and let R be the reflection

R(y1, y2, y3)= (y1, y2,−y3).

Note that �̃ ⊂ {y3 > 0}. Consider the reflected domain �̃∗ = R(�̃), so �̃∗ ⊂ {y3 < 0}, and let U the
double domain �̃∪8(00)

int
∪ �̃∗.

Let 9 = 8−1, let g̃ = 9∗e be the metric in �̃ that is the pullback of the Euclidean metric in �, let
q̃ =9∗q , and let m̃ =9∗m. In the double domain U , we use even reflection to define the quantities

ĝ =
{

g̃ if y3 > 0,
R∗g̃ if y3 < 0,

q̂ =
{

q̃ if y3 > 0,
R∗q̃ if y3 < 0,

and odd reflection to define the amplitude

m̂ =
{ 1

2 m̃ if y3 > 0,
−

1
2 R∗m̃ if y3 < 0.

Since the flattening map 8 leaves x1 intact, we have

ĝ(y1, y′)=
(

1 0
0 ĝ0(y′)

)
,

where ĝ0 is a Lipschitz continuous metric only depending on y2 and y3. (In fact, g̃ and g̃0 are well defined
in {y3 > 0} by the flattening map 8 and the Euclidean metric in {x3 > η(x2)}.) Also, q̂ ∈ L∞(U ), and
m̂ ∈ H 2(U ) by the boundary condition m|00 = 0 and by the properties of odd reflection.
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We wish to find r̂ ∈ H 1(U ) satisfying

eτ x1(−1ĝ + q̂)(e−τ x1 r̂)= f̂ ,

where f̂ =−eτ x1(−1ĝ + q̂)(e−τ x1m̂). Now

‖ f̂ ‖L2(U ) = ‖ f̂ ‖L2(�̃)+‖ f̂ ‖L2(�̃∗)

= ‖9∗(eτ x1(−1+ q)(e−τ x1m)‖L2(�̃)+‖R
∗9∗(eτ x1(−1+ q)(e−τ x1m)‖L2(�̃∗)

≤ C‖eτ x1(−1+ q)(e−τ x1m)‖L2(�).

Choose a bounded open set �̂0 ⊂ R2 such that

U b R× �̂0,

and let ĝ0 be the metric in �̂0 that is the even extension of g̃0 from {y3 > 0} to �̂0. Then ĝ0 is smooth for
y3 6= 0 and Lipschitz continuous across {y3 = 0}. Extending ĝ to R× �̂0 using the block structure and
extending q̂ and f̂ by zero to R× �̂0, it is enough to find a solution r̂ ∈ H 2

loc(R× �̂0) of the equation

eτ x1(−1ĝ + q̂)(e−τ x1 r̂)= f̂ in R× �̂0. (5-1)

Such a solution may be found by Proposition 5.2, and denoting by r̂ its restriction to U , we have

‖r̂‖L2(U ) ≤
C
|τ |
‖ f̂ ‖L2(U ).

Now define

û = e−τ x1(m̂+ r̂) in U

and

ũ = û− R∗û in �̃.

Then (−1ĝ + q̂)û = 0 in U , and (−1g̃ + q̃)ũ = 0 in �̃ by the definition of ĝ and q̂ and using that
û ∈ H 2(U ). We also have

ũ = e−τ x1(m̂− R∗m̂+ r̂ − R∗r̂) in �̃.

But here m̂−R∗m̂|�̃= m̃ by the definition of m̂. Consequently, if we define u=8∗ũ, then (−1+q)u= 0
in � and

u = e−τ x1(m+ r) in �,

where r =8∗(r̂ − R∗r̂) satisfies

‖r‖L2(�) ≤ C‖r̂‖L2(U ) ≤
C
|τ |
‖ f̂ ‖L2(U ) ≤

C
|τ |
‖eτ x1(−1+ q)(e−τ x1m)‖L2(�). �

Note how the odd reflection of the amplitude m in the proof ensured that the solution obtained by
reflection is not the zero solution. We also remark that under certain conditions, the arguments in Sections 6
and 7 allow to construct amplitudes m vanishing on a part 00 as above.
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6. Local uniqueness on simple manifolds

In this section we prove Theorems 2.1–2.3. In these results the transversal manifold is assumed to be
simple and we only use nonreflected geodesics. This case already illustrates the main features of the
approach, and we can use a quasimode construction that is much easier than the Gaussian beam one used
for nonsimple transversal manifolds and reflected geodesics.

The first observation is the usual integral identity.

Proposition 6.1. If 0D, 0N ⊂ ∂M are open and if C0D,0N
g,q1 = C0D,0N

g,q2 , then∫
M
(q1− q2)u1u2 dVg = 0

for any u j ∈ H1g (M) satisfying (−1g + q j )u j = 0 in M and

supp(u1|∂M)⊂ 0D, supp(u2|∂M)⊂ 0N .

Proof. Let u j be as stated. Since C0D,0N
g,q1 =C0D,0N

g,q2 , there is a function ũ2 ∈ H1(M) with (−1+q2)ũ2= 0
in M , supp(ũ2|∂M)⊂ 0D , and

(u1|0D , ∂νu1|0N )= (ũ2|0D , ∂ν ũ2|0N ).

Using that u1, u2, and ũ2 are solutions, we have∫
M
(q1− q2)u1u2 dV =

∫
M
[(1u1)u2− u1(1u2)] dV

=

∫
M
[(1(u1− ũ2))u2− (u1− ũ2)(1u2)] dV .

Now u1− ũ2|∂M = 0, so in fact u1− ũ2 ∈ H 2(M) by the properties of the space H1(M). Recall also that
C∞(M) is dense in H1(M) and that u2|∂M ∈ H−1/2(∂M) and ∂νu2|∂M ∈ H−3/2(∂M). These facts make
it possible to integrate by parts, and we obtain that∫

M
(q1− q2)u1u2 dV =

∫
∂M
[(∂ν(u1− ũ2))u2− (u1− ũ2)(∂νu2)] dS

in the weak sense. The last expression vanishes since ∂ν(u1− ũ2)|0N = 0 and supp(u2|∂M)⊂ 0N . �

The next result will be used to pass from the metric g = c(e ⊕ g0) to the slightly simpler metric
g̃ = e⊕ g0.

Lemma 6.2. Let c be a smooth positive function in M. Then u ∈ H1g (M) satisfies (−1g + q)u = 0 in
M if and only if ũ ∈ H1g̃ (M) satisfies (−1g̃ + q̃)ũ = 0 in M , where

g̃ = c−1g, ũ = c(n−2)/4u, q̃ = c(q − c(n−2)/41g(c−(n−2)/4)).
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Proof. This follows from the identity for v ∈ C∞(M),

c(n+2)/4(−1g + q)(c−(n−2)/4v)= (−1c−1g + c(q − c(n−2)/41g(c−(n−2)/4)))v,

upon approximating u or ũ by smooth functions. �

Proof of Theorem 2.1. Let g̃ = e⊕ g0 and q̃ j = c(q j − c(n−2)/41g(c−(n−2)/4)). Let λ be a fixed real
number, and consider the complex frequency

s = τ + iλ,

where τ > 0 will be large. We look for solutions

ũ1 = e−sx1(vs(x ′)+ r1),

ũ2 = esx1(vs(x ′)+ r2)

of the equations (−1g̃ + q̃1)ũ1 = 0, (−1g̃ + q̃2)ũ2 = 0 in M . Here vs will be a quasimode for the
Laplacian in (M0, g0) that concentrates near the given geodesic γ . Next we will construct a suitable
solution ũ1, and the case of ũ2 will be analogous.

Since 1g̃ = ∂
2
1 +1g0 , the function ũ1 is a solution if and only if

esx1(−1g̃ + q̃1)(e−sx1r1)=−(−1g0 + q̃1− s2)vs(x ′) in M. (6-1)

We want to choose vs ∈ C∞(M0) to satisfy

‖vs‖L2(M0) = O(1), ‖(−1g0 − s2)vs‖L2(M0) = O(1) (6-2)

as τ →∞. Looking for vs in the form
vs = eisψa,

where ψ, a ∈ C∞(M0), a direct computation shows that

(−1g0 − s2)vs = eisψ(s2
[|dψ |2g0

− 1]a− is[2〈dψ, d · 〉g0 +1g0ψ]a−1g0a
)
.

Since (M0, g0) is simple, it is easy to find ψ and a so that the expressions in brackets will vanish and
that the resulting quasimode vs will concentrate near the geodesic γ . To do this, let (M̂0, g0) be a simple
manifold that is slightly larger than (M0, g0), extend γ as a geodesic in M̂0, and choose ε > 0 such that
γ |(−2ε,0)∪(L ,L+2ε) stays in M̂0 \M0 (this is possible since γ is nontangential). Let ω= γ (−ε) ∈ M̂0 \M0,
and let (r, θ) be polar normal coordinates in (M0, g0) with center ω. Then γ corresponds to the curve
r 7→ (r, θ0) for some fixed θ0 ∈ Sn−2. We will choose

ψ(r, θ)= r,

a(r, θ)= |g0(r, θ)|−1/4b(θ),

where |g0| is the determinant of g0, and b is a fixed function in C∞(Sn−2) that is supported so close to θ0

such that vs |∂M0\E = 0. With these choices, we have, as in [Ferreira 2009a],

(−1g0 − s2)vs =−eisψ1g0a.
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Thus vs satisfies the estimates (6-2), and also the estimate

‖vs‖L∞(M0) = O(1).

We now go back to (6-1) and look for a solution in the form r1 = eiλx1r ′1 where r ′1 satisfies

eτ x1(−1g̃ + q̃1)(e−τ x1r ′1)= f in M (6-3)

with

f =−e−iλx1(−1g0 + q̃1− s2)vs(x ′).

We also want to arrange that supp(ũ1|∂M) ⊂ 0D, where 0D ⊃ ∂M− ∪ 0a . For this purpose, let δ > 0
be a small number to be fixed later, let S± and S0 be the sets in Proposition 4.3 with Carleman weight
ϕ(x)=−x1, define

V δ
= {x ∈ S− ∪ S0 : dist∂M(x, 0i ) < δ or x ∈ ∂M+},

0δa = (S− ∪ S0) \ Vδ,

and impose the boundary condition

eτϕr ′1|S−∪S0 = eτϕ f−, (6-4)

where

f− =
{
−e−iλx1vs(x ′) on V δ,

0 on 0δa.

Note that ∂M+ ∪ ∂Mtan (these sets refer to the weight x1) is in the interior of S− ∪ S0 in ∂M .
We have seen that ‖ f ‖L2(M) = O(1) as τ →∞. We also have

f−|∂Mtan = 0,

since f−|0δa∩∂Mtan = 0 by definition and f−|∂Mtan∩Vδ = 0 for sufficiently small δ > 0 by the construction of
vs and using that 0i ⊂ R× (∂M0 \ E). Since ‖ f−‖L∞(S−∪S0) . 1, we have

‖ f−‖L2(S−) . σ({∂νx1 ≥ δ})

and

‖ f−‖L2(S0) . σ({−1/(3τ) < ∂νx1 < 0} ∪ {0< ∂νx1 < δ}),

where σ is the surface measure on ∂M . It follows from Proposition 4.3 that (6-3) has a solution r ′1
satisfying the boundary condition (6-4), and having the estimate

‖r ′1‖L2(M) . τ
−1
+ (δτ )−1/2σ({∂νx1 ≥ δ})+ σ({−1/(3τ) < ∂νx1 < 0})+ σ({0< ∂νx1 < δ}).

The implied constants in the previous inequality are independent of τ and δ. By the basic properties of
measures, for some constant C0 > 0, we have

‖r ′1‖L2(M) ≤ C0[τ
−1
+ (δτ )−1/2

+ oτ→∞(1)+ oδ→0(1)].
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Given ε > 0, we first choose δ so that C0oδ→0(1) ≤ ε/2. After this, we choose τ > 0 so large that
C0(τ

−1
+ (δτ )−1/2

+ oτ→∞(1))≤ ε/2. This shows that

lim
τ→∞
‖r ′1( · ; τ)‖L2(M) = 0.

Choosing r ′1 as described above and choosing r1 = eiλx1r ′1, we have produced a solution ũ1 ∈ H1g̃ (M)
of the equation (−1g̃ + q̃1)ũ1 = 0 in M , having the form

ũ1 = e−sx1(vs(x ′)+ r1)

and satisfying

supp(ũ1|∂M)⊂ 0D

and ‖r1‖L2(M) = o(1) as τ →∞. Repeating this construction for the Carleman weight ϕ(x) = x1, we
obtain a solution ũ2 ∈ H1g̃ (M) of the equation (−1g̃ + q̃2)ũ2 = 0 in M , having the form

ũ2 = esx1(vs(x ′)+ r2)

and satisfying

supp(ũ2|∂M)⊂ 0N

and ‖r2‖L2(M) = o(1) as τ →∞.
Writing u j = c−(n−2)/4ũ j , Lemma 6.2 shows that u j ∈ H1g (M) are solutions of (−1g + q1)u1 = 0

and (−1g + q2)u2 = 0 in M . Then Proposition 6.1 implies that∫
M
(q1− q2)u1u2 dVg = 0.

We extend q1 − q2 by zero to R × M0. Inserting the expressions for u j , and using that dVg =

cn/2 dx1 dVg0(x
′), we obtain∫
M0

∫
∞

−∞

(q1− q2)ce−2iλx1(|vs(x ′)|2+ vsr2+ vsr1+ r1r2) dx1 dVg0(x
′)= 0.

Since ‖r j‖L2(M) = o(1) as τ→∞ and since dVg0 = |g0|
1/2 dr dθ in the (r, θ) coordinates, it follows that∫

Sn−2

∫
∞

0
e−2λr (c(q1− q2))ˆ(2λ, r, θ)|b(θ)|2 dr dθ = 0.

Varying b in C∞(Sn−2) so that the support of b is very close to θ0, this implies that∫
∞

0
e−2λr (c(q1− q2))ˆ(2λ, r, θ0) dr = 0.

Since γ was the curve r 7→ (r, θ), this shows the result. �
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Proof of Theorem 2.2. Suppose that the local ray transform is injective on O and O ∩ ∂M ⊂ E . By
Theorem 2.1, we know that ∫ L

0
e−2λt(c(q1− q2))ˆ(2λ, γ (t)) dt = 0 (6-5)

for any nontangential geodesic γ in O . Setting λ= 0 and using local injectivity of the ray transform, we
obtain that

(c(q1− q2))ˆ(0, · )= 0 in O.

Going back to (6-5) and differentiating this identity with respect to λ, and then setting λ= 0 and using
the vanishing of (c(q1− q2))ˆ(0, · ) on O , it follows that∫ L

0

∂

∂λ
[(c(q1− q2))ˆ](0, γ (t)) dt = 0 in O

for any nontangential geodesic in O . Local uniqueness for the ray transform again implies that

∂

∂λ
[(c(q1− q2))ˆ](0, · )= 0 in O.

Iterating this argument by taking higher order derivatives of (6-5) shows that(
∂

∂λ

)k

[(c(q1− q2))ˆ](0, · )= 0 in O

for any k. Since c(q1− q2) is compactly supported in x1, its Fourier transform is analytic and we have

(c(q1− q2))ˆ(λ, · )= 0 in O for all λ ∈ R.

Inverting the Fourier transform and using that c is positive, we obtain that q1 = q2 in M ∩ (R× O). �

Proof of Theorem 2.3. Since (M, g) is admissible, we may assume that

(M, g)⊂ (R×M0, g), g = c(e⊕ g0),

where (M0, g0) is simple. The argument is very similar to the proof of Theorem 2.1, and we only
indicate the required changes. Up to the formula (6-3), the only change is that there is no restriction on
b ∈ C∞(Sn−2) (we do not require vs to vanish on any part of the boundary). The function r ′1 is obtained
as a solution of (6-3), but this time we want supp(ũ1|∂M)⊂ ∂M−. Fix δ > 0. The boundary condition for
ũ1 is (6-4), where f− is chosen to be

f− =−e−iλx1vs(x ′) on S− ∪ S0.

We use Proposition 4.3 to solve for r ′1. We have ‖ f ‖L2(M) = O(1), and the bound ‖ f−‖L∞ . 1 implies

‖ f−‖L2(S−) . σ({∂νx1 ≥ δ})

and
‖ f−‖L2(S0) . σ({−1/(3τ) < ∂νx1 < 0})+ σ(∂Mtan)+ σ({0< ∂νx1 < δ}).
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Now we use that
σ(∂Mtan)= 0.

This shows that we obtain the same estimate for r ′1 as before:

‖r ′1‖L2(M) ≤ C0[τ
−1
+ (δτ )−1/2

+ oτ→∞(1)+ oδ→0(1)].

We can now continue as in the proof of Theorem 2.1 to conclude that∫ L

0
e−2λt(c(q1− q2))ˆ(2λ, γ (t)) dt = 0

for any λ ∈ R and for any nontangential geodesic in (M0, g0). The geodesic ray transform (with zero
attenuation) is injective in (M0, g0) [Sharafutdinov 1994]. Following the proof of Theorem 2.2, but now
using all the nontangential geodesics in (M0, g0), shows that q1 = q2 in M . �

7. Quasimodes concentrating near broken rays

In this section, to simplify notation, we write (M, g) instead of (M0, g0) and we assume that (M, g) is a
compact oriented Riemannian manifold having smooth boundary and dim(M)= m ≥ 2. Suppose that
E is a nonempty open subset of ∂M , and let R = ∂M \ E . We think of E as the observation set where
geodesics can enter and exit, and R is the reflecting set. In the Calderón problem with partial data, we
are led to consider attenuated broken ray transforms, where one integrates a function on M over broken
geodesic rays that enter M at some point of E , reflect nontangentially at points of R, and then exit M at
some point of E . The reflections will obey the law of geometric optics, so that a geodesic hitting the
boundary in direction v will be continued by the geodesic in the reflected direction v̂ = v− 2〈v, ν〉ν.

Given a slightly complex frequency s = τ + iλ, we will construct corresponding quasimodes, or
approximate eigenfunctions, that concentrate near a fixed nontangential broken ray.

Proposition 7.1. Let γ : [0, L] → M be a nontangential broken ray with endpoints on E , and let λ be
a fixed real number. For any K > 0, there is a family {vs : s = τ + iλ, τ ≥ 1} in C∞(M) such that, as
τ →∞,

‖(−1g − s2)vs‖L2(M) = O(τ−K ), ‖vs‖L2(M) = O(1),

the boundary values of vs satisfy

‖vs‖L2(R) = O(τ−K ), ‖vs‖L2(∂M) = O(1),

and, for any ψ ∈ C(M),∫
M
|vτ+iλ|

2ψ dVg→

∫ L

0
e−2λtψ(γ (t)) dt as τ →∞.

Let us begin by proving this result in the special case E = ∂M , so that R =∅ and one does not need
to worry about reflected rays. The next three preparatory lemmas describe a modified Fermi coordinate
system that is very useful in this construction.
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Lemma 7.2. Let (M̂, g) be a compact manifold without boundary, and let γ : (a, b)→ M̂ be a unit speed
geodesic segment that has no loops. There are only finitely many times t ∈ (a, b) such that γ intersects
itself at γ (t).

Proof. Since γ has no loops, (γ (t), γ̇ (t)) = (γ (t ′), γ̇ (t ′)) implies t = t ′. The first observation is that
γ can only self-intersect transversally, since (γ (t), γ̇ (t)) = (γ (t ′),−γ̇ (t ′)) also implies t = t ′ (if this
would happen for t < t ′, then, by uniqueness of geodesics, γ̇ ((t + t ′)/2) = −γ̇ ((t + t ′)/2), which is
impossible). Next note that if r is smaller than the injectivity radius of (M̂, g), any two geodesic segments
of length ≤ r can intersect transversally in at most one point (locally geodesics are close to straight lines).
Partitioning (a, b) in disjoint intervals {Jk}

K
k=1 of length ≤ r , we have an injective map

{(t, t ′) ∈ (a, b)2Lt < t ′ and γ (t)= γ (t ′)} 7→ {(k, l) ∈ {1, . . . , K }2 : t ∈ Jk, t ′ ∈ Jl}.

Consequently, γ can only self-intersect finitely many times. �

Lemma 7.3. Let F be a C1 map from a neighborhood of (a, b)×{0} in Rn into a smooth manifold such
that F |(a,b)×{0} is injective and DF(t, 0) is invertible for t ∈ (a, b). If [a0, b0] is a closed subinterval of
(a, b), then F is a C1 diffeomorphism in some neighborhood of [a0, b0]× {0} in Rn .

Proof. For any t ∈ [a0, b0], the inverse function theorem implies that there is εt > 0 such that
F |(t−3εt ,t+3εt )×B3εt (0) is a C1 diffeomorphism. Since [a0, b0] is covered by the intervals (t − εt , t + εt),
by compactness we have [a0, b0] ⊂

⋃N
j=1(t j − ε j , t j + ε j ), where F |(t j−3ε j ,t j+3ε j )×B3ε j (0) is bijective.

We can further assume (upon throwing away or shrinking some intervals if necessary) that the intervals
I j = (t j − ε j , t j + ε j ) satisfy Ī j ∩ Īk =∅ unless | j − k| ≤ 1. Since γ (t)= F(t, 0) is injective, we also
have γ ( Ī j )∩ γ ( Īk)=∅ unless | j − k| ≤ 1.

Fix a Riemannian metric in the target manifold, and define

δ = inf {dist(γ ( Ī j ), γ ( Īk)) : | j − k| ≥ 2}> 0.

Let U j = I j×Bε(0), where ε<min{ε1, . . . , εN } is chosen so small that F(U j )⊂{q :dist(q, γ ( Ī j ))<δ/2}.
Then F(U j )∩ F(Uk)=∅ unless | j − k| ≤ 1. Define

U =
N⋃

j=1

U j .

To show that F |U is a C1 diffeomorphism, it is enough to check injectivity. If F(t, y) = F(t ′, y′) for
(t, y), (t ′, y′) ∈U , then, necessarily, (t, y) ∈U j , (t ′, y′) ∈Uk , where | j − k| ≤ 1. We may assume that
ε j ≥ εk . Since F |(t j−3ε j ,t j+3ε j )×B3ε j (0) is bijective, we obtain (t, y)= (t ′, y′). �

Lemma 7.4. Let (M̂, g) be a compact manifold without boundary, and assume that γ : (a, b)→ M̂
is a unit speed geodesic segment with no loops. Given a closed subinterval [a0, b0] of (a, b) such that
γ |[a0,b0] self-intersects only at times t j with a0 < t1 < · · ·< tN < b0 (set t0 = a0 and tN+1 = b0), there is
an open cover {(U j , ϕ j )}

N+1
j=0 of γ ([a0, b0]) consisting of coordinate neighborhoods having the following

properties.
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(1) ϕ j (U j )= I j × B, where I j are open intervals and B = B(0, δ) is an open ball in Rn−1 where δ can
be taken arbitrarily small.

(2) ϕ j (γ (t))= (t, 0) for t ∈ I j .

(3) t j only belongs to I j and Ī j ∩ Īk =∅ unless | j − k| ≤ 1.

(4) ϕ j = ϕk on ϕ−1
j ((I j ∩ Ik)× B).

Further, if S is a hypersurface through γ (a0) that is transversal to γ̇ (a0), one can arrange for the map
y 7→ ϕ−1

0 (a0, y) to parametrize S near γ (a0).

Proof. We will use modified Fermi coordinates, constructed as follows. Let {v1, . . . , vn−1} be an
orthonormal set of vectors in Tγ (a0)M̂ such that {γ̇ (a0), v1, . . . , vn−1} is a basis. (The case where
{γ̇ (a0), v1, . . . , vn−1} is an orthonormal basis corresponds to the usual Fermi coordinates.) Let Eα(t)
be the parallel transport of vα along the geodesic γ . Since γ̇ (t) is also parallel along γ , the set
{γ̇ (t), E1(t), . . . , En−1(t)} is a basis of Tγ (t)M̂ for t ∈ (a, b).

Define the function

F : (a, b)×Rn−1
→ M̂, F(t, y)= expγ (t)(y

αEα(t)).

Here exp is the exponential map in (M̂, g) and α, β run from 1 to n− 1. Then F(t, 0)= γ (t) and (with
eα the α-th coordinate vector)

∂

∂s
F(t, seα)

∣∣
s=0 = Eα(t),

∂

∂t
F(t, 0)= γ̇ (t).

Thus F is a C∞ map near (a, b)×{0} such that DF(t, 0) is invertible for t ∈ (a, b).
In the case where γ does not self-intersect, F |(a,b)×{0} is injective and Lemma 7.3 implies the existence

of a single coordinate neighborhood of γ ([a0, b0]) so that (1) and (2) are satisfied (then (3) and (4) are
void). In the general case, by Lemma 7.2 the geodesic segment γ |[a0,b0] only self-intersects at finitely
many times t j with a0 < t1 < · · ·< tN < b0. For some sufficiently small δ, γ is injective on the intervals
(a, t1 − δ), (t1 − 2δ, t2 − δ), . . . , (tN − 2δ, b) and each interval intersects at most two of the others.
Restricting the map F above to suitable neighborhoods corresponding to these intervals (or slightly
smaller ones) and using Lemma 7.3, we obtain the required coordinate charts with ϕ j = F−1

|U j .
Let S be a hypersurface transversal to γ̇ (a0), and choose some parametrization y 7→ q(y) of S near

γ (a0) satisfying (∂/∂s)q(seα)= vα. We will form a new chart (Ũ0, ϕ̃0) by modifying (U0, ϕ0) so that
y 7→ ϕ̃−1

0 (a0, y) parametrizes S near γ (a0).
We may assume that a0 = 0, and write F0 = ϕ

−1
0 , F̃0 = ϕ̃

−1
0 . It is enough to choose F̃0 = F0 ◦8, where

8 is a diffeomorphism near Ī0× B such that

8(t, 0)= (t, 0),

8(0, y)= F−1
0 (q(y)),

8(t, y)= (t, y) for t > c with suitable c > 0.
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Write the components of q̃ = F−1
0 ◦ q as Taylor series

q̃ j (y)= q̃ j (0)+∇q̃ j (0) · y+ H j (y)y · y,

where H j are smooth matrices, and j = 0, . . . , n− 1 (t is the 0-th variable). The properties of q imply
that

q̃ j (0)= 0, ∂β q̃0(0)= 0, ∂β q̃α(0)= δαβ .

We look for 8 in the form

8 j (t, y)= f j (t)+ a j (t) · y+ R j (t, y)y · y

for some smooth functions f j , vectors a j , and matrices R j . The conditions for 8 motivate the choices

f 0(t)= t, f α(t)= 0, a0
β(t)= 0, aαβ (t)= δ

α
β .

We choose R j (t, y) to be a smooth matrix with R j (0, y) = H j (y) and R j (t, y) = 0 for t > c. Then
D8(t, 0)= Id, and Lemma 7.3 ensures that8 is a diffeomorphism near Ī0×B, possibly after decreasing B.

�

The next result gives the construction of (nonreflected) Gaussian beam quasimodes associated with
a finite length geodesic segment that enters and exits the domain nontangentially. To prepare for the
reflected case, we also consider the possibility of prescribing the boundary values of the quasimode at
least up to high order at a point. Recall that if f is a smooth function having a critical point at p, the
Hessian of f at p is the quadratic form

Hessp( f )(η̇(0), η̇(0))= ( f ◦ η)′′(0),

where η is any smooth curve with η(0)= p.

Proposition 7.5. Let γ : [0, L] → M be any unit speed geodesic in (M, g) such that γ (0), γ (L) ∈ ∂M ,
γ̇ (0) and γ̇ (L) are nontangential, and γ (t) ∈ M int for 0< t < L. Also let λ be a fixed real number. For
any K > 0 there is a family {vs : s = τ + iλ, τ ≥ 1} in C∞(M) such that, as τ →∞,

‖(−1g − s2)vs‖L2(M) = O(τ−K ), ‖vs‖L2(M) = O(1), ‖vs‖L2(∂M) = O(1),

and, for any ψ ∈ C(M),∫
M
|vτ+iλ|

2ψ dVg→

∫ L

0
e−2λtψ(γ (t)) dt as τ →∞. (7-1)

Given any neighborhood of γ ([0, L]), one can arrange for each vs to be supported in this neighborhood,
and away from the points where γ self-intersects one has vs = eis2a where 2 and a are smooth complex
functions with

d2(γ (t))= γ̇ (t)[, a(γ (t)) 6= 0 for τ large.
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If γ does not self-intersect at γ (0), the K -th order jets of 2|∂M and a|∂M can be prescribed freely at γ (0)
except for the following restrictions: d2(γ (0)) = γ̇ (0)[, the Hessian of Im(2|∂M) at γ (0) is positive
definite, and a(γ (0)) 6= 0.

Proof. We embed (M, g) in a compact manifold (M̂, g) without boundary and extend γ as a unit
speed geodesic in M̂ . Choose ε > 0 so that γ (t) lies in M̂ r M and has no self-intersections in the
interval t ∈ [−2ε, 0)∪ (L , L + 2ε]. We will construct a Gaussian beam quasimode in a neighborhood of
γ ([−ε, L + ε]).

Fix a point p0 = γ (t0) on γ ([−ε, L + ε]) and let (t, y) be any local coordinates near p0, defined in
U = {(t, y) : t ∈ I, |y|< δ} for some open interval I containing t0, such that p0 corresponds to (t0, 0) and
the geodesic near p0 is given by 0 = {(t, 0) : t ∈ I }. Write x = (t, y), where x1 = t and (x2, . . . , xm)= y.
We seek to find a quasimode vs concentrated near 0, having the form

vs = eis2a,

where s = τ + iλ, and 2 and a are smooth complex functions near 0 with a supported in {|y|< δ/2}.
We compute

(−1− s2)vs = f,

where
f = eis2(s2

[(〈d2, d2〉− 1)a] − is[2〈d2, da〉+ (12)a] −1a
)
.

We first choose 2 so that
〈d2, d2〉 = 1 to N -th order on 0. (7-2)

In fact, we look for 2 of the form 2=
∑N

j=02 j where

2 j (t, y)=
∑
|γ |= j

2 j,γ (t)
γ !

yγ .

We also write g jk
=
∑N

l=0 g jk
l + g jk

N+1, where

g jk
l (t, y)=

∑
|β|=l

g jk
l,β(t)

β!
yβ, g jk

N+1 = O(|y|N+1).

Set g jk
l = 0 for l ≥ N + 2.

With the understanding that j, k run from 1 to m and α, β run from 2 to m, the main part of the
argument will consist of finding suitable 20, 21, and 22 in the following form:

20(t) real-valued, 21(t)= ξα(t)yα with ξα(t) real-valued, 22(t)= 1
2 Hαβ(t)yα yβ,

where H(t) = (Hαβ(t)) is a complex symmetric matrix, Hαβ = Hβα, such that Im(H(t)) is positive
definite for all t . We also write

ξ1(t)= ∂t20(t).
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Since ∂t20 = ξ1 and ∂α21 = ξα, we compute

g jk∂ j2∂k2− 1

= g11(∂t20+ ∂t21+ · · · )(∂t20+ ∂t21+ · · · )+ 2g1α(∂t20+ ∂t21+ · · · )(∂α21+ ∂α22+ · · · )

+ gαβ(∂α21+ ∂α22+ · · · )(∂β21+ ∂β22+ · · · )− 1

= g jkξ jξk + 2g11ξ1(∂t21+ · · · )+ 2g1αξ1(∂α22+ · · · )

+ 2g1αξα(∂t21+ · · · )+ 2gαβξα(∂β22+ · · · )+ g11(∂t21+ · · · )(∂t21+ · · · )

+ 2g1α(∂t21+ · · · )(∂α22+ · · · )+ gαβ(∂α22+ · · · )(∂β22+ · · · )− 1

= g jkξ jξk + 2g1kξk(∂t21+ · · · )+ 2gαkξk(∂α22+ · · · )+ g11(∂t21+ · · · )(∂t21+ · · · )

+ 2g1α(∂t21+ · · · )(∂α22+ · · · )+ gαβ(∂α22+ · · · )(∂β22+ · · · )− 1.

Writing g jk
= g jk

0 + g jk
1 + · · · and grouping like powers of y, we obtain

g jk∂ j2∂k2− 1

= [g jk
0 ξ jξk−1]+[g jk

1 ξ jξk+2g1k
0 ξk ξ̇β yβ+2gαk

0 ξk Hαβ yβ]+(g jk
2 +· · · )ξ jξk+2g1k

0 ξk(∂t22+· · · )

+ 2(g1k
1 + · · · )ξk(∂t21+ · · · )+ 2gαk

0 ξk(∂α23+ · · · )+ 2(gαk
1 + · · · )ξk(∂α22+ · · · )

+ g11(∂t21+ · · · )(∂t21+ · · · )+ 2g1α(∂t21+ · · · )(∂α22+ · · · )

+ gαβ(∂α22+ · · · )(∂β22+ · · · ). (7-3)

We can make the two expressions in brackets vanish by choosing ξ(t) to be part of the solution
(x(t), ξ(t)) of the cogeodesic flow with Hamiltonian h(x, ξ)= 1

2 g jk(x)ξ jξk ,

ẋ j (t)= ∂ξ j h(x(t), ξ(t)),

ξ̇ j (t)=−∂x j h(x(t), ξ(t)).

There is a unique solution with x(t0) = p0 and ξ(t0) = γ̇ (t0)[ (here we raise and lower indices with
respect to the metric g). It follows that x(t) is the unit speed geodesic t 7→ (t, 0), and ξ j (t)= ẋ j (t). Then
g jk

0 ξ jξk = 1, and with our choice of coordinates ξ 1
= 1 and ξα = 0 so that also

g1k
0 ξk = 1, gαk

0 ξk = 0.

We further have
ξ̇β yβ =− 1

2∂xβ g jk(t, 0)ξ jξk yβ =− 1
2 g jk

1 ξ jξk .

Noting that ∂1 has unit length, we have

ξ1 = g1k(t, 0)ξ k
= 1.

Since ξα = gαk(t, 0)ξ k
= gα1(t, 0), we can therefore choose

20(t)= t,

21(t)= gα1(t, 0)yα.
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Using these choices and the facts above, in (7-3), the expressions in brackets will indeed vanish, and one
obtains

g jk∂ j2∂k2− 1

= (g jk
2 + · · · )ξ jξk + 2(∂t22+ · · · )+ 2(g1k

1 + · · · )ξk(∂t21+ · · · )+ 2(gαk
1 + · · · )ξk(∂α22+ · · · )

+ g11(∂t21+ · · · )(∂t21+ · · · )+ 2g1α(∂t21+ · · · )(∂α22+ · · · )+ gαβ(∂α22+ · · · )(∂β22+ · · · )

=
(
g jk

2 ξ jξk + 2∂t22+ 2gαk
1 ξk∂α22+ 2g1α

0 ∂t21∂α22+ gαβ0 ∂α22∂β22+ 2g1k
1 ξk∂t21+ g11

0 (∂t21)
2)

+

N∑
p=3

(
g jk

p ξ jξk + 2∂t2p + 2gαk
1 ξk∂α2p + 2g1α

0 ∂t21∂α2p + 2gαβ0 ∂α22∂β2p

+ 2
p−1∑
l=1

g1k
p−lξk∂t2l + 2

p−1∑
l=2

gαk
p−l+1ξk∂α2l +

p−2∑
l=0

g11
l

∑
r+s=p−l
1≤r,s<p

∂t2r∂t2s

+

p−2∑
l=0

g1α
l

∑
r+s=p−l+1

1≤r<p
2≤s<p

∂t2r∂α2s +

p−2∑
l=0

gαβl

∑
r+s=p−l+2

2≤r,s<p

∂α2r∂β2s

)
+ O(|y|N+1).

We want to choose 22 so that the first term in brackets vanishes. Recalling that we are looking for 22

in the form 22(t, y)= 1
2 Hαβ(t)yα yβ , where H(t) is a smooth complex symmetric matrix; it follows that

H should satisfy the matrix equation

Ḣαβ yα yβ + 2gγ k
1 ξk Hγβ yβ + 2g1γ

0 ∂t21 Hγβ yβ + gγ δ0 HγαHδβ yα yβ = Fαβ yα yβ,

where F(t) is a real-valued smooth symmetric matrix. This can be further written as the matrix Riccati
equation

Ḣ + B H + H B t
+ HC H = F,

where B(t) and C(t) are real smooth matrices and C is symmetric. More precisely, since g jk
1 =

∂αg jk(t, 0)yα, we have
Bγα = ∂αgγ k(t, 0)ξk + g1γ

0 ξ̇α, Cγ δ
= gγ δ0 . (7-4)

Choosing H(t0)= H0, where H0 is a complex symmetric matrix with Im(H0) positive definite, it follows
that the Riccati equation has a unique smooth complex symmetric solution H(t) with Im(H(t)) positive
definite; see [Katchalov et al. 2001]. This completes the construction of 22. From the lower order terms
we can find 23, . . . ,2N successively by solving linear first order ODEs on 0 with prescribed initial
conditions at t0. In this way, we obtain a smooth 2 satisfying (7-2).

The next step is to find a such that

s[2〈d2, da〉+ (12)a] − i1a = 0 to N -th order on 0.

We look for a in the form

a = τ (m−1)/4(a0+ s−1a−1+ · · ·+ s−N a−N )χ(y/δ′),
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where χ is a smooth function with χ = 1 for |y| ≤ 1/4 and χ = 0 for |y| ≥ 1/2. Writing η =12, it is
sufficient to determine a j so that

2〈d2, da0〉+ ηa0 = 0 to N -th order on 0,

2〈d2, da−1〉+ ηa−1− i1a0 = 0 to N -th order on 0,
...

2〈d2, da−N 〉+ ηa−N − i1a−(N−1) = 0 to N -th order on 0.

Consider a0 = a00 + · · · + a0N , where a0 j (t, y) is a polynomial of order j in y, and similarly let
η = η0+ · · ·+ ηN . We compute

2〈d2, da0〉+ ηa0

= 2(g11
0 + · · · )(∂t20+ · · · )(∂t a00+ · · · )+ 2(g1α

0 + · · · )(∂t20+ · · · )(∂αa01+ · · · )

+ 2(g1α
0 + · · · )(∂α21+ · · · )(∂t a00+ · · · )+ 2(gαβ0 + · · · )(∂β21+ · · · )(∂αa01+ · · · )

+ (η0+ η1+ · · · )(a00+ a01+ · · · ).

Recalling that ∂t20 = ξ1 = 1 and ∂α21 = ξα, where g1 j
0 ξ j = 1 and gα j

0 ξ j = 0, we obtain

2〈d2,da0〉+ ηa0

= 2[g11
0 ξ1+g11

0 (∂t21+···)+(g11
1 +···)(∂t20+···)+g1α

0 ξα+g1α
0 (∂α22+···)+(g1α

1 +···)(∂α21+···)]

× (∂t a00+ ···)

+ 2
[
g1α

0 (∂t21+ ···)+ (g1α
1 + ···)(∂t20+ ···)+ gαβ0 (∂β22+ ···)+ (g

αβ

1 + ···)(∂β21+ ···)
]

× (∂αa01+ ···)+ (η0+ η1+ ···)(a00+ a01+ ···)

= [2∂t a00+ η0a00] +

N∑
p=1

[2∂t a0p + qαβp yβ∂αa0p + η0a0p + Fp] + O(|y|N+1),

where qαβp (t) are smooth functions only depending on g and 2, and Fp(t, y) is a polynomial of degree p
in y that only depends on g, 2, η, and a00, . . . , a0,p−1.

We want to choose a00 so that the first term in brackets vanishes, that is,

∂t a00+ t 1
2η0a00 = 0.

This has the solution

a00(t)= c0e−(1/2)
∫ t

t0
η0(s) ds

, a00(t0)= c0.

We obtain a01, . . . , a0N successively by solving linear first order ODEs with prescribed initial conditions
at t0. The functions a1, . . . , aN may be determined in a similar way so that the required equations are
satisfied to N -th order on 0. This completes the construction of a.
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To review what has been achieved so far, we have constructed a function vs = eis2a in U , where

2(t, y)= t + ξα(t)yα + 1
2 Hαβ(t)yα yβ + 2̃,

a(t, y)= τ (m−1)/4(a0+ s−1a−1+ · · ·+ s−N a−N )χ(y/δ′),

a0(t, 0)= c0e−(1/2)
∫ t

t0
η0(s) ds

.

Here 2̃= O(|y|3) and 2̃ and each a j are independent of τ . Also, f = (−1− s2)vs has the form

f = eis2τ (m−1)/4(s2h2a+ sh1+ · · ·+ s−(N−1)h−(N−1)− s−N1a−N )χ(y/δ′)+ eis2τ (m−1)/4sbχ̃(y/δ′),

where, for each j , one has h j = 0 to N -th order on 0, b vanishes near 0, and χ̃ is a smooth function
with χ̃ = 0 for |y| ≥ 1/2. We also note that d2(γ (t))= γ̇ (t)[ and Hessγ (t0)( Im(2|{t=t0}))= Im(H(t0)).

To prove the norm estimates for vs in U , note that

|eis2
| = e−λRe 2e−τ Im 2

= e−λt e−(1/2)τ Im(H(t))y·ye−λO(|y|)e−τO(|y|3).

Here Im(H(t))y · y ≥ c|y|2 for (t, y) ∈ U , where c > 0 depends on H0, g, and I . By decreasing δ′ if
necessary, this shows the following bound when t in a fixed compact set:

|vs(t, y)|. τ (m−1)/4e−(1/4)cτ |y|
2
χ(y/δ′).

Integrating the square of this over U , we get, as τ →∞,

‖vs‖L2(U ) . ‖τ
(m−1)/4e−(1/4)cτ |y|

2
‖L2(U ) = O(1).

Similarly, we have

‖(−1− s2)vs‖L2(U ) . ‖τ
(m−1)/4e−(1/4)cτ |y|

2
(τ 2
|y|N+1

+ τ−N )‖L2(U )

= O(τ (3−N )/2).

The norm estimates for vs in U follow upon replacing N by 2K + 3.
For the L2(∂M) estimate, if U contains a boundary point x0= (t0, 0)∈ ∂M , by assumption (∂/∂t)|x0 is

transversal to ∂M . If ρ is a boundary defining function for M , so ∂M is given as the zero set ρ(t, y)= 0
near x0 and ∇ρ = −ν on ∂M , then (∂ρ/∂t)(x0) 6= 0 and, by the implicit function theorem, there is a
smooth function y 7→ t (y) near 0 such that ∂M is given by {(t (y), y) : |y|< r0} near x0. The bound for
vs given above implies that, for δ′ small,

‖vs‖
2
L2(∂M∩U ) =

∫
|y|<r0

|vs(t (y), y)| dS(y).
∫
|y|<r0

τ (m−1)/2e−(1/2)cτ |y|
2

dy = O(1).

At this point we can construct the quasimode vs in M from the corresponding quasimodes defined
on small pieces. Let γ ([−ε, L + ε]) be covered by open sets U (0), . . . ,U (N+1) as in Lemma 7.4, and
note that each U ( j) corresponds to I j × B(0, δ) in the (t, y) coordinates. Suppose first that γ does not
self-intersect at time t = 0. We find a quasimode v(0) = eis2(0)a(0) in U (0) by the above procedure, with
some fixed initial conditions at t = 0 for the ODEs determining 2(0) and a(0). Choose some t ′0 with
γ (t ′0) ∈U (0)

∩U (1), and construct a quasimode v(1) = eis2(1)a(1) in U (1) by choosing the initial conditions
for the ODEs for 2(1) and a(1) at t ′0 to be the corresponding values of 2(0) and a(0) at t ′0. Continuing
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in this way, we obtain v(2), . . . , v(N+1). If γ self-intersects at t = 0, we start the construction from v(1)

fixing initial conditions for the ODEs at t = 0, and find v(0) by going backward.
Let {χ̃ j (t)} be a partition of unity near [−ε, L+ε] corresponding to the cover {I j }, let χ j (t, y)= χ̃ j (t)

on U ( j), and define

vs =

N+1∑
j=0

χ jv
( j).

Then vs is smooth in M̂ and it is supported in a small neighborhood of γ ([−ε, L + ε]). The important
point is that since the ODEs for the phase functions and amplitudes have the same initial data in U ( j) and
in U ( j+1), and since the local coordinates ϕ j and ϕ j+1 coincide on ϕ−1

j ((I j ∩ I j+1)× B), one actually
has v( j)

= v( j+1) in ϕ−1
j ((I j ∩ I j+1)× B). Letting p1, . . . , pR be the points where γ intersects itself, we

choose an open cover of supp(vs)∩M ,

supp(vs)∩M ⊂
( R⋃

r=1

Vr

)
∪

( N+1⋃
j=0

(W j,0 ∪W j,1)

)
,

where Vr are small neighborhoods of the points pr and W j,0,W j,1 ⊂U ( j), such that

vs |Vr =

∑
γ (t j )=pr

v( j) and vs |W j,l = v
( j+l).

Since vs is a finite sum of the v( j) in each case, the L2(M) bounds for vs and (−1− s2)vs and the
L2(∂M) bounds for vs follow from corresponding bounds for the v( j). The form of vs near points where
γ does not self-intersect and the possibility to prescribe the K -th order jets of 2|∂M and a|∂M at γ (0)
follow from the construction and Lemma 7.4.

To conclude the proof, using a partition of unity, it is enough to verify the limit (7-1) for any ψ
supported in one of the sets Vr ∩M or W j,l ∩M . Further, we can choose the sets Vr to be so small that
the real part of d2( j)

−d2(k) is nonvanishing near Vr if γ (t j )= γ (tk)= pr but j 6= k. This follows since

Re(d2( j)
− d2(k))(pr )= γ̇ (t j )

[
− γ̇ (tk)[ 6= 0.

Here we may need to decrease δ so that we still have an open cover.
Consider first the case where ψ ∈ Cc(W j,l ∩M). Here the support of ψ may reach ∂M , and we extend

ψ by zero outside of W j,l ∩M . Suppose that vs = eis2a, where 2 = t + ξα yα + 1
2 H(t)y · y+ O(|y|3)

and a = τ (m−1)/4(a0+ O(τ−1))χ(y/δ′), and let ρ = |g|1/2. Then∫
M
|vτ+iλ|

2ψ dVg

=

∫
∞

−∞

∫
Rm−1

e−2λt e−τ Im(H(t))y·yeτO(|y|3)eO(|y|)τ (m−1)/2(|a0|
2
+ O(τ−1))χ(y/δ′)2ψρ dt dy

=

∫
∞

−∞

e−2λt
∫

Rm−1
e− Im(H(t))y·yeτ

−1/2 O(|y|3)eτ
−1/2 O(|y|)(|a0(t, τ−1/2 y)|2

+ O(τ−1))χ(y/τ 1/2δ′)2ψ(t, τ−1/2 y)ρ(t, τ−1/2 y) dt dy.
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Since Im(H(t)) is positive definite and δ′ is sufficiently small, the term e− Im(H(t))y·y dominates the other
exponentials and one obtains

lim
τ→∞

∫
M
|vτ+iλ|

2ψ dVg =

∫ L

0
e−2λt

(∫
Rm−1

e− Im(H(t))y·y dy
)
|a0(t, 0)|2ψ(t, 0)ρ(t, 0) dt.

Evaluating the integral over y gives

lim
τ→∞

∫
M
|vτ+iλ|

2ψ dVg = Cm

∫ L

0
e−2λt |a0(t, 0)|2ρ(t, 0)

√

det Im(H(t))
ψ(t, 0) dt.

We will prove below that
|a0(t, 0)|2ρ(t, 0)
√

det Im(H(t))
= const. (7-5)

The limit (7-1) will follow upon dividing the family {vs} by a suitable constant.
If ψ ∈ Cc(Vr ∩M) (again supp(ψ) may extend up to ∂M), we have

vs |Vr =

∑
γ (t j )=pr

v( j),

so that on Vr

|vs |
2
=

∑
γ (t j )=pr

|v( j)
|
2
+

∑
γ (t j )=γ (tk)=pr

j 6=k

v( j)v(k).

We arranged earlier for Re(d2( j)
− d2(k)) to be nonvanishing near Vr if γ (t j )= γ (tk)= pr but j 6= k.

Thus the cross terms give rise to terms of the form∫
Vr∩M

v( j)v(k)ψ dV =
∫

Vr∩M
eiτϕw( j)w(k)ψ dV,

where ϕ=Re(2( j)
−2(k)) has nonvanishing gradient in Vr , and w(l)= eis Im(2(l))e−λRe(8(l))a(l). We wish

to prove that

lim
τ→∞

∫
Vr∩M

eiτϕw( j)w(k)ψ dV = 0, j 6= k, (7-6)

showing that the cross terms vanish in the limit and the previous computation for |v(l)|2 shows the limit
(7-1) also when ψ is supported in some Vr ∩M . To show (7-6), let ε > 0 and decompose ψ = ψ1+ψ2,
where ψ1 ∈ C∞c (Vr ∩M) and ‖ψ2‖L∞(Vr∩M) ≤ ε. Then∣∣∣∣∫

Vr∩M
eiτϕw( j)w(k)ψ2 dV

∣∣∣∣. ‖w( j)
‖L2‖w(k)‖L2‖ψ2‖L∞ . ε,

since ‖w(l)‖L2 . ‖v(l)‖L2 . 1. For the smooth part ψ1, we employ a nonstationary phase argument and
integrate by parts using that

eiτϕ
=

1
iτ

L(eiτϕ), Lw = 〈|dϕ|−2dϕ, dw〉.
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This gives∫
Vr∩M

eiτϕw( j)w(k)ψ1 dV =
∫
∂M

∂νϕ

iτ |dϕ|2
v( j)v(k)ψ1 dS+

1
iτ

∫
Vr∩M

eiτϕL t(w( j)w(k)ψ1) dV .

Since ‖v(l)‖L2(∂M) = O(1), the boundary term can be made arbitrarily small as τ →∞. As for the last
term, the worst behavior is when the transpose L t acts on eis Im(2(l)), and these terms have bounds of the
form ∥∥|d( Im(2( j)))|v( j)

∥∥
L2‖v

(k)
‖L2‖ψ1‖L∞ .

Here |d( Im(2( j)))|. |y| if (t, y) are coordinates along the geodesic segment corresponding to v( j), and
the computation above for ‖v( j)

‖L2 shows that∥∥|d( Im(2( j)))|v( j)
∥∥

L2‖v
(k)
‖L2‖ψ1‖L∞ . τ

−1/2.

This finishes the proof of (7-6) and also of (7-1).
It remains to show (7-5). We have

|a0(t, 0)|2ρ(t, 0)= |c0|
2e−

∫ t
t0

Re(η0)(s) ds
|g(t, 0)|1/2.

Note that η0(t) is given by

η0(t)

=12(t, 0)

= (g jk∂ jk2+ ∂ j g jk∂k2+ |g|−1/2∂ j (|g|1/2)g jk∂k2)(t, 0)

= g11∂2
t 20+ 2g1α∂tα21+ gαβ∂αβ22+ ∂ j g j1∂t20+ ∂ j g jα∂α21+

1
2∂ j (log|g|)(g j1∂t20+ g jα∂α21)

= 2g1α ξ̇α + gαβHαβ + (∂ j g jk)ξk +
1
2∂ j (log|g|)g jkξk .

The conditions g jkξk = δ
j
1 and g1α ξ̇α = g1k ξ̇k =−(∂t g1k)ξk at (t, 0), together with the general fact that

∂t(log|g|)=−g jk∂t g jk , imply that

η0(t)= g1α ξ̇α + gαβHαβ + (∂αgαk)ξk +
1
2∂t(log|g|).

Recalling the definition of the B and C matrices in (7-4), this says precisely that

η0(t)= Bαα +Cαγ Hγα + 1
2∂t(log|g|)

= tr(B(t)+C(t)H(t))+ 1
2∂t(log|g|).

Consequently, |a0(t, 0)|2ρ(t, 0)= c′0e−
∫ t

t0
tr(B(s)+C(s)Re(H(s))) ds . On the other hand, by [Katchalov et al.

2001, Lemma 2.58], solutions of the matrix Riccati equation have the property that

det Im(H(t))= det Im(H(t0))e
−2

∫ t
t0

tr(B(s)+C(s)Re(H(s))) ds
.

This proves the result. �

The proof of Proposition 7.1 now follows quickly from the way we have set up the previous result.
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Proof of Proposition 7.1. Let γ : [0, L] → M be a nontangential broken ray with endpoints on E , and
let 0 < t1 < · · · < tN < L be the times of reflection. Let v(0)s be a Gaussian beam quasimode as in
Proposition 7.5 associated with the geodesic γ |[0,t1]. We will construct another Gaussian beam quasimode
v
(1)
s associated with γ |[t1,t2] such that v(0)s − v

(1)
s |∂M will be small near γ (t1).

In fact, by Proposition 7.5 we have v( j)
s = eis2( j)

a( j) near γ (t1), and we can choose the K -th order jet
of 2(1)|∂M at γ (t1) to be equal to that of 2(0)|∂M with the following exception: we always have

d(2(0))|γ (t1) = γ̇ (t1−)
[,

d(2(1))|γ (t1) = γ̇ (t1+)
[.

It follows that
d(2(0)|∂M)|γ (t1) = γ̇ (t1−)

[
tan,

d(2(1)|∂M)|γ (t1) = γ̇ (t1+)
[
tan,

where we have taken the projections to the cotangent space of ∂M at γ (t1). But by the rule that the angle
of incidence equals angle of reflection, γ̇ (t1−)

[
tan equals γ̇ (t1+)

[
tan. Thus the K -th order jets of 2(0)|∂M

and 2(1)|∂M actually coincide at γ (t1), and by Proposition 7.5 we can also arrange for the K -th order jets
of a(0)|∂M and a(1)|∂M to coincide at γ (t1).

Write fs = v
(0)
s − v

(1)
s |∂M , and let (t, y) be coordinates near γ (t1) such that ∂M is parametrized by

y 7→ (t1, y) and γ (t1) corresponds to (t1, 0). Recall that v( j)
s are supported in small tubular neighborhoods

of the corresponding geodesic segments. By the above considerations and the construction of 2( j) and
a( j), and dropping the variable t1 from the notations, the restrictions of 2( j) and a( j) to ∂M satisfy

2( j)(y)=2(y)+4( j)(y), a( j)(y)= a(y)+ b( j)(y),

where 2 is a polynomial of order K , a = τ (m−1)/4ãχ(y/δ′), where ã is a polynomial of order K , and
|4( j)(y)| ≤ C |y|K+1 and |b( j)(y)| ≤ Cτ (m−1)/4

|y|K+1χ(y/δ′) on supp(χ( · /δ′), where χ is a cutoff
function and δ′ is a constant independent of τ that can be chosen as small as we want (these initially
depend on j , but since there are finitely many reflections, we can choose them independently of j). Here
2 and 4( j) are independent of τ , and a and b( j) are mildly τ -dependent and satisfy uniform bounds with
respect to τ . Then

fs = eis2((eis4(0)
− eis4(1))a+ eis4(0)b(0)− eis4(1)b(1)).

We have

eis4(0)
− eis4(1)

= is(4(0)−4(1))
∫ 1

0
eis(r4(0)+(1−r)4(1)) dr

and, consequently, near y = 0,

|eis4(0)
− eis4(1)

| ≤ Cτ |y|K+1eCτ |y|K+1
.

Thus, near y = 0,

| fs(y)| ≤ Cτ (m−1)/4e−τ Im(2)τ |y|K+1eCτ |y|K+1
χ(y/δ′).
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Using that the Hessian of Im(2) at 0 is positive definite and choosing δ′ sufficiently small, we have

| fs(y)| ≤ Cτ (m−1)/4e−cτ |y|2τ |y|K+1χ(y/δ′).

Integrating the square of | fs | over Rm−1 and changing y to τ−1/2 y, we obtain

‖ fs‖L2(R1) = O(τ−(K−1)/2),

where R1 is a small neighborhood of γ (t1) on ∂M containing the set of interest.
Repeating this construction for the other points of reflection, we end up with a quasimode

vs =

N∑
j=0

(−1) jv( j)
s

that is supported in a small neighborhood of the broken ray γ . Since all points of reflection are distinct,
we can arrange that the quasimode satisfies

‖vs |R‖L2(R) = O(τ−(K−1)/2).

It also satisfies
‖(−1− s2)vs‖L2(M) = O(τ−K ), ‖vs‖L2(M) = O(1).

Replacing K by 2K + 1, we have proved all the other statements in the proposition except for the
expression of the limit measure. To do this, we consider the finitely many points where the full broken
ray γ self-intersects or reflects, and decompose the terms v( j)

s as in the proof of Proposition 7.5 to parts
living in small neighborhoods of the self-intersection and reflection points and parts away from these
points. Now all self-intersection points are in the interior or on E and all self-intersections must be
transversal, and also all reflections are transversal. Consequently, when forming |vs |

2, the cross terms
arising from different parts living near the same self-intersection or reflection point contribute an o(1)
term by nonstationary phase as in the proof of Proposition 7.5. Thus the limit measure of |vs |

2 dVg is
indeed the measure e−2λtδγ , where δγ is the delta function of the broken ray γ . �

8. Recovering the broken ray transform

In this section we give the proof of Theorem 2.4 concerning the recovery of integrals over broken rays.

Proof of Theorem 2.4. The proof is very similar to the proof of Theorem 2.1, except that we use reflected
Gaussian beam quasimodes instead of WKB type quasimodes. Let γ : [0, L] → M0 be a nontangential
broken ray with endpoints on E , and let λ> 0. Also let g̃= e⊕g0 and q̃ j = c(q j−c(n−2)/41g(c−(n−2)/4)).
Consider the complex frequency

s = τ + iλ,

where τ > 0 will be large. We look for solutions

ũ1 = e−sx1(vs(x ′)+ r1),

ũ2 = esx1(vs(x ′)+ r2)
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of the equations (−1g̃ + q̃1)ũ1 = 0, (−1g̃ + q̃2)ũ2 = 0 in M . Here vs ∈ C∞(M0) is the quasimode
constructed in Proposition 7.1 that concentrates near the given broken ray γ and is small on ∂M0 \ E .

Since 1g̃ = ∂
2
1 +1g0 , the function ũ1 is a solution if and only if

esx1(−1g̃ + q̃1)(e−sx1r1)=−(−1g0 + q̃1− s2)vs(x ′) in M.

We look for a solution in the form r1 = eiλx1r ′1 where r ′1 satisfies

eτ x1(−1g̃ + q̃1)(e−τ x1r ′1)= f in M

with
f =−e−iλx1(−1g0 + q̃1− s2)vs(x ′).

To arrange that ũ1|0i = 0, fix some small δ > 0, let S± and S0 be the sets in Proposition 4.3 with Carleman
weight ϕ(x)=−x1, and consider the boundary condition

eτϕr ′1|S−∪S0 = eτϕ f−,

where

f− =
{
−e−iλx1vs(x ′) on 0i ,

0 on (S− ∪ S0) \0i .

For any fixed K > 0, by Proposition 7.1 and by the condition that 0i ⊂R× (∂M0 \ E), we may assume
that the following bounds are valid:

‖ f ‖L2(M) = O(1), ‖ f−‖L2(S−) = 0, ‖ f−‖L2(S0) = O(τ−K ).

It follows from Proposition 4.3 that there is a solution r ′1 satisfying the above boundary condition and
having the estimate

‖r ′1‖L2(M) = O(τ−1).

Choosing r ′1 as described above and choosing r1 = eiλx1r ′1, we have produced a solution ũ1 ∈ H1g̃ (M)
of the equation (−1g̃ + q̃1)ũ1 = 0 in M , having the form

ũ1 = e−sx1(vs(x ′)+ r1)

and satisfying
supp(ũ1|∂M)⊂ ∂M+ ∪ ∂M− ∪0a

and ‖r1‖L2(M) = O(τ−1) as τ →∞. Repeating this construction for the Carleman weight ϕ(x)= x1, we
obtain a solution ũ2 ∈ H1g̃ (M) of the equation (−1g̃ + q̃2)ũ2 = 0 in M , having the form

ũ2 = esx1(vs(x ′)+ r2)

satisfying the same support condition and bound for ‖r2‖L2(M).
Writing u j = c−(n−2)/4ũ j , Lemma 6.2 shows that u j ∈ H1g (M) are solutions of (−1g + q1)u1 = 0

and (−1g + q2)u2 = 0 in M . Then Proposition 6.1 implies that∫
M
(q1− q2)u1u2 dVg = 0.
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We extend q1 − q2 by zero to R× M0. Inserting the expressions for u j and using the equality dVg =

cn/2 dx1 dVg0(x
′), we obtain∫
M0

∫
∞

−∞

(q1− q2)ce−2iλx1(|vs(x ′)|2+ vsr2+ vsr1+ r1r2) dx1 dVg0(x
′)= 0.

Since ‖r j‖L2(M) = O(τ−1) as τ →∞, Proposition 7.1 implies that∫ L

0
e−2λt(c(q1− q2))ˆ(2λ, γ (t)) dt = 0.

This concludes the proof. �
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