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STRICHARTZ ESTIMATES FOR SCHRÖDINGER EQUATIONS
WITH VARIABLE COEFFICIENTS AND UNBOUNDED POTENTIALS

HARUYA MIZUTANI

This paper is concerned with Schrödinger equations with variable coefficients and unbounded electro-
magnetic potentials, where the kinetic energy part is a long-range perturbation of the flat Laplacian and
the electric (respectively magnetic) potential can grow subquadratically (respectively sublinearly) at
spatial infinity. We prove sharp (local-in-time) Strichartz estimates, outside a large compact ball centered
at the origin, for any admissible pair including the endpoint. Under the nontrapping condition on the
Hamilton flow generated by the kinetic energy, global-in-space estimates are also studied. Finally, under
the nontrapping condition, we prove Strichartz estimates with an arbitrarily small derivative loss without
asymptotic flatness on the coefficients.

1. Introduction

We study sharp (local-in-time) Strichartz estimates for Schrödinger equations with variable coefficients
and unbounded electromagnetic potentials. More precisely, we consider the Schrödinger operator

H = 1
2

d∑
j,k=1

(−i∂ j − A j (x))g jk(x)(−i∂k − Ak(x))+ V (x), x ∈ Rd ,

where d ≥ 1 is the spatial dimension. Throughout the paper we assume that g jk, V , and A j are smooth
real-valued functions on Rd and that (g jk(x)) j,k is symmetric and positive definite:

d∑
j,k=1

g jk(x)ξ jξk ≥ c|ξ |2, x, ξ ∈ Rd ,

with some c > 0. Moreover, we suppose the following condition holds.

Assumption 1.1. There exists µ≥ 0 such that for any α ∈ Zd
+

,

|∂αx (g
jk(x)− δ jk)| ≤ Cα〈x〉−µ−|α|,

|∂αx A j (x)| ≤ Cα〈x〉1−µ−|α|,

|∂αx V (x)| ≤ Cα〈x〉2−µ−|α|, x ∈ Rd .

Then it is well known that H admits a unique self-adjoint realization on L2(Rd), which we denote by the
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same symbol H . By Stone’s theorem, H generates a unique unitary propagator e−i t H on L2(Rd) such
that u(t)= e−i t Hϕ is the solution to the Schrödinger equation

i∂t u(t)= Hu(t), t ∈ R,

u|t=0 = ϕ ∈ L2(Rd).

In order to explain the purpose of the paper, we recall some known results. Let us first recall well-known
properties of the free propagator e−i t H0 , where H0 =−1/2. The distribution kernel of e−i t H0 is given
explicitly by (2π i t)−d/2ei |x−y|2/(2t), and e−i t H0ϕ thus satisfies the dispersive estimate

‖e−i t H0ϕ‖L∞(Rd ) ≤ C |t |−d/2
‖ϕ‖L1(Rd ), t 6= 0.

Moreover, e−i t H0 enjoys the (global-in-time) Strichartz estimates

‖e−i t H0ϕ‖L p(R;Lq (Rd )) ≤ C‖ϕ‖L2(Rd ),

where (p, q) satisfies the admissible condition

p ≥ 2, 2
p
= d

(1
2
−

1
q

)
, (d, p, q) 6= (2, 2,∞). (1-1)

Strichartz estimates imply that, for any ϕ ∈ L2, e−i t H0ϕ ∈
⋂

q∈Qd
Lq for a.e. t ∈ R, where Q1 = [2,∞],

Q2 = [2,∞) and Qd = [2, 2d/(d − 2)] for d ≥ 3. These estimates can therefore be regarded as L p-type
smoothing properties of Schrödinger equations, and have been widely used in the study of nonlinear
Schrödinger equations; see, for example, [Cazenave 2003]. Strichartz estimates for e−i t H0 were first
proved in [Strichartz 1977] for a restricted pair of (p, q) with p = q = 2(d + 2)/d, and have been
generalized for (p, q) satisfying (1-1) and p 6= 2 in [Ginibre and Velo 1985]. The endpoint estimate
(p, q)= (2, 2d/(d − 2)) for d ≥ 3 was obtained in [Keel and Tao 1998].

For Schrödinger operators with electromagnetic potentials, that is, H = (1/2)(−i∂x − A)2+ V , (short-
time) dispersive and (local-in-time) Strichartz estimates have been extended with potentials decaying at
infinity [Yajima 1987] or growing at infinity [Fujiwara 1980; Yajima 1991]. In particular, it was shown in
the last two references that if g jk

= δ jk , V and A satisfy Assumption 1.1 with µ≥ 0, and all derivatives
of the magnetic field B = dA of short-range type, then e−i t Hϕ satisfies (short-time) dispersive estimate

‖e−i t Hϕ‖L∞(Rd ) ≤ C |t |−d/2
‖ϕ‖L1(Rd ),

for sufficiently small t 6= 0. Local-in-time Strichartz estimates, which have the form

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ), T > 0,

are immediate consequences of this estimate and the T T ∗-argument in [Ginibre and Velo 1985] (see [Keel
and Tao 1998] for the endpoint estimate). For the case with singular electric potentials or with supercritical
electromagnetic potentials, we refer to [Yajima 1987; 1998; Yajima and Zhang 2004; D’Ancona and
Fanelli 2009]. We mention that global-in-time dispersive and Strichartz estimates for scattering states
have also been studied under suitable decaying conditions on potentials and assumptions for zero energy;
see [Journé et al. 1991; Yajima 2005; Schlag 2007; Erdoğan et al. 2009; D’Ancona et al. 2010]. We also
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mention that there is no result on sharp global-in-time dispersive estimates for magnetic Schrödinger
equations.

On the other hand, the influence of the geometry on the behavior of solutions to linear and nonlinear
partial differential equations has been extensively studied. From this geometric viewpoint, sharp local-
in-time Strichartz estimates for Schrödinger equations with variable coefficients (or, more generally, on
manifolds) have recently been investigated by many authors under several conditions on the geometry;
see, for example, [Staffilani and Tataru 2002; Burq et al. 2004; Robbiano and Zuily 2005; Hassell et al.
2006; Bouclet and Tzvetkov 2007; Bouclet 2011b; Burq et al. 2010; Mizutani 2012]. In [Staffilani and
Tataru 2002; Robbiano and Zuily 2005; Bouclet and Tzvetkov 2007], the authors studied the case on the
Euclidean space with nontrapping asymptotically flat metrics. The case on the nontrapping asymptotically
conic manifold was studied in [Hassell et al. 2006; Mizutani 2012]. Bouclet [2011b] considered the
case of a nontrapping asymptotically hyperbolic manifold. For the trapping case, it was shown in [Burq
et al. 2004] that Strichartz estimates with a loss of derivative 1/p hold on any compact manifold without
boundaries. They also proved that the loss 1/p is optimal in the case of M = Sd . In [Bouclet and
Tzvetkov 2007; Bouclet 2011b; Mizutani 2012], the authors proved sharp Strichartz estimates, outside
a large compact set, without the nontrapping condition. It was shown in [Burq et al. 2010] that sharp
Strichartz estimates still hold for the case with hyperbolic trapped trajectories of sufficiently small fractal
dimension. We mention that there are also several works on global-in-time Strichartz estimates in the
case of long-range perturbations of the flat Laplacian on Rd [Bouclet and Tzvetkov 2008; Tataru 2008;
Marzuola et al. 2008].

While (local-in-time) Strichartz estimates are well studied for these two cases (at least under the
nontrapping condition), the literature is sparser for the mixed case. In this paper we give a unified
approach to a combination of these two kinds of results. More precisely, under Assumption 1.1 with
µ > 0, we prove

(1) sharp local-in-time Strichartz estimates, outside a large compact set centered at the origin, without
the nontrapping condition, and

(2) global-in-space estimates with the nontrapping condition.

Under the nontrapping condition and Assumption 1.1 with µ≥ 0, we also show local-in-time Strichartz
estimates with an arbitrarily small derivative loss. We mention that all results include the endpoint
estimates (p, q)= (2, 2d/(d− 2)) for d ≥ 3. This is a natural continuation of the author’s previous work
[Mizutani 2013], which was concerned with the nonendpoint estimates for the case with at most linearly
growing potentials.

In the sequel, F(∗) denotes the characteristic function designated by (∗). We now state the main result.

Theorem 1.2 (Strichartz estimates near infinity). Suppose that H satisfies Assumption 1.1 with µ > 0.
Then there exists R0 > 0 such that for any T > 0, p ≥ 2, q <∞, 2/p = d(1/2− 1/q), and R ≥ R0, we
have

‖F(|x |> R)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ), (1-2)

where CT > 0 may be taken uniformly with respect to R.
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To state the result on global-in-space estimates, we recall the nontrapping condition. We denote by

k(x, ξ)= 1
2

d∑
j,k=1

g jk(x)ξ jξk,

the classical kinetic energy, and by (y0(t, x, ξ), η0(t, x, ξ)) the Hamilton flow generated by k(x, ξ):

ẏ0(t)= ∂ξk(y0(t), η0(t)), η̇0(t)=−∂x k(y0(t), η0(t)), (y0(0), η0(0))= (x, ξ).

The Hamiltonian vector field Hk = ∂ξk · ∂x − ∂x k · ∂ξ generated by k is complete on R2d since (g jk)

satisfies the uniform elliptic condition. Hence (y0(t, x, ξ), η0(t, x, ξ)) exists for all t ∈ R.

Definition 1.3. We say that k(x, ξ) satisfies the nontrapping condition if, for any (x, ξ) ∈R2d with ξ 6= 0,

|y0(t, x, ξ)| → +∞ as t→±∞. (1-3)

To control the asymptotic behavior of the flow, we also impose the following condition, which is the
classical analogue of Mourre’s inequality.

Assumption 1.4 (convexity near infinity). There exists f ∈ C∞(Rd) satisfying f ≥ 1 and f →+∞ as
|x | → +∞ such that ∂α f ∈ L∞(Rd) for any |α| ≥ 2 and

Hk(Hk f )(x, ξ)≥ ck(x, ξ)

on {(x, ξ) ∈ R2d
: f (x)≥ R} for some positive constants c, R > 0.

Note that if |∂x g jk(x)| = o(|x |−1) as |x |→+∞, Assumption 1.4 holds with f (x)= 1+|x |2. In partic-
ular, Assumption 1.1 with µ> 0 implies Assumption 1.4. Moreover, if g jk(x)= (1+a1 sin(a2 log r))δ jk

for a1 ∈ R, a2 > 0 with a2
1(1 + a2

2) < 1 and for r = |x | � 1, then Assumption 1.4 holds with
f (r)= (

∫ r
0 (1+ a1 sin(a2 log t))−1 dt)2. For more examples, we refer to [Doi 2005, Section 2].

Theorem 1.5 (global-in-space Strichartz estimates). Suppose that H satisfies Assumption 1.1 with µ≥ 0.
Let T > 0, p ≥ 2, q <∞, and 2/p = d(1/2− 1/q). Then, for any r > 0, there exists CT,r > 0 such that

‖F(|x |< r)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,r‖〈H〉1/(2p)ϕ‖L2(Rd ). (1-4)

If we assume in addition that k(x, ξ) satisfies the nontrapping condition (1-3) and Assumption 1.4,

‖F(|x |< r)e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,r‖ϕ‖L2(Rd ). (1-5)

In particular, combining with Theorem 1.2, we have the (global-in-space) Strichartz estimates

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ),

under the nontrapping condition (1-3), provided that µ > 0.

For the general case we have the following partial result.
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Theorem 1.6 (near sharp estimates without asymptotic flatness). Suppose H satisfies Assumption 1.1
with µ≥ 0 and k(x, ξ) satisfies the nontrapping condition (1-3). Assume also Assumption 1.4. Let T > 0,
p ≥ 2, q <∞, and 2/p = d(1/2− 1/q). Then, for any ε > 0, there exists CT,ε > 0 such that

‖e−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT,ε‖〈H〉εϕ‖L2(Rd ).

Remark 1.7. (1) The estimates of forms (1-2), (1-4), and (1-5) have been proved [Staffilani and Tataru
2002; Bouclet and Tzvetkov 2007] when A ≡ 0 and V is of long-range type. Theorems 1.2 and 1.5 are
therefore regarded as generalizations of their results for the case with growing electromagnetic potential
perturbations.

(2) The only restriction for admissible pairs, in comparison to the flat case, is to exclude (p, q)= (4,∞)
for d = 1, which is due to the use of the Littlewood–Paley decomposition.

(3) The missing derivative loss 〈H〉ε in Theorem 1.6 is due to the use of the following local smoothing
effect, due to [Doi 2005]:

‖〈x〉−1/2−ε
〈D〉1/2e−i t Hϕ‖L2([−T,T ];L2(Rd )) ≤ CT,ε‖ϕ‖L2(Rd ).

It is well known that this estimate does not hold when ε = 0 even for H = H0. We would expect that
Theorem 1.2 still holds true for the case with critical electromagnetic potentials in the following sense:

〈x〉−1
|∂αx A j (x)| + 〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|,

(at least if g jk satisfies the bounds in Assumption 1.1 with µ> 0). However, this is beyond our techniques
(see also Remark 4.2).

The rest of the paper is devoted to the proofs of Theorems 1.2, 1.5, and 1.6. Throughout the paper we
use the following notations. 〈x〉 stands for

√
1+ |x |2. We write Lq

= Lq(Rd) if there is no confusion. For
Banach spaces X and Y , we denote by ‖ · ‖X→Y the operator norm from X to Y . We write Z+ =N∪{0}
and denote the set of multi-indices by Zd

+
. We denote by K the kinetic energy part of H and by H0 the

free Schrödinger operator:

K =−1
2

d∑
j,k=1

∂ j g jk(x)∂k, H0 =−
1
21=−

1
2

d∑
j=1

∂2
j .

We define the symbols p(x, ξ) and p1(x, ξ) by

p(x, ξ)= 1
2

d∑
j,k=1

g jk(x)(ξ j − A j (x))(ξk − Ak(x))+ V (x),

p1(x, ξ)=−
i
2

d∑
j,k=1

(
∂g jk

∂x j
(x)(ξk − Ak(x))− g jk(x)

∂Ak

∂x j
(x)
)
.

(1-6)
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Assumption 1.1 implies

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ〈x〉−|α|〈ξ〉−|β|(|ξ |2+〈x〉2−µ),

|∂αx ∂
β
ξ p1(x, ξ)| ≤ Cαβ〈x〉−|α|〈ξ〉−|β|(〈x〉−1−µ

|ξ | + 〈x〉−µ).
(1-7)

For h ∈ (0, 1] we consider H h
:= h2 H as a semiclassical Schrödinger operator with h-dependent

electromagnetic potentials h2V and h A j . The corresponding symbols ph and p1,h are also defined by

ph(x, ξ)=
1
2

d∑
j,k=1

g jk(x)(ξ j − h A j (x))(ξk − h Ak(x))+ h2V (x),

p1,h(x, ξ)=−
i
2

d∑
j,k=1

(
∂g jk

∂x j
(x)(ξk − h Ak(x))− hg jk(x)

∂Ak

∂x j
(x)
)
.

(1-8)

It is easy to see that H = Op(p)+Op(p1) and H h
= Oph(ph)+ h Oph(p1,h).

Before starting the details of the proofs, we describe the main ideas. First we note that, since our
Hamiltonian H is not bounded below, the Littlewood–Paley decomposition associated with H seems to
be false for p 6= 2 in general. To overcome this difficulty, we consider the following partition of unity on
the phase space R2d :

ψε(x, ξ)+χε(x, ξ)= 1,

where ψε is supported in {(x, ξ) : 〈x〉< ε|ξ |} for some sufficiently small constant ε > 0. It is easy to see
that the symbol p(x, ξ) is elliptic on suppψε:

C−1
|ξ |2 ≤ p(x, ξ)≤ C |ξ |2, (x, ξ) ∈ suppψε,

and we can therefore prove a Littlewood–Paley type decomposition of the form

‖Op(ψε)u‖Lq ≤ Cq‖u‖L2 +Cq

( ∑
h=2− j

j≥0

‖Oph(ah) f (h2 H)u‖
2
Lq

)1/2

,

where 2≤ q <∞, the sequence { f (h2
· ) : h = 2− j , j ≥ 0} is a 4-adic partition of unity on [1,∞), ah is

an appropriate h-dependent symbol supported in {|x |< 1/h, |ξ | ∈ I } for some open interval I b (0,∞),
and Op(ψε),Oph(ah) denote the corresponding pseudodifferential and semiclassical pseudodifferential
operators, respectively.

Then the idea of the proof of Theorem 1.2 is as follows. In view of the above Littlewood–Paley estimate,
the proof is reduced to proving Strichartz estimates for F(|x |> R)Oph(ah)e−i t H and Op(χε)e−i t H . In
order to prove Strichartz estimates for F(|x |> R)Oph(ah)e−i t H , we use semiclassical approximations
of Isozaki–Kitada type. However, we note that, because of the unboundedness of potentials with respect
to x , it is difficult to directly construct such approximations. To overcome this difficulty, we introduce
a modified Hamiltonian H̃ [Yajima and Zhang 2004] so that H̃ = H for |x | ≤ L/h and H̃ = K for
|x | ≥ 2L/h for some constant L ≥ 1. Then H̃ h

= h2 H̃ can be regarded as a “long-range perturbation” of
the semiclassical free Schrödinger operator H h

0 = h2 H0. We also introduce the corresponding modified
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symbol p̃h(x, ξ) so that p̃h(x, ξ)= ph(x, ξ) for |x | ≤ L/h and p̃h(x, ξ)= k(x, ξ) for |x | ≥ 2L/h. Let
a±h be supported in outgoing and incoming regions {R < |x |< 1/h, |ξ | ∈ I, ±x̂ · ξ̂ > 1/2}, respectively,
so that F(|x |> R)ah = a+h +a−h , where x̂ = x/|x |. Rescaling t 7→ th, we first construct the semiclassical
approximations for e−i t H̃ h/h Oph(a

±

h )
∗ of the forms

e−i t H̃ h/h Oph(a
±

h )
∗
= Jh(S±h , b±h )e

−i t H h
0 /h Jh(S±h , c±h )

∗
+ O(hN ), 0≤±t ≤ 1/h,

respectively, where S±h solves the eikonal equation associated to p̃h and Jh(S±h , b±h ) and Jh(S±h , c±h ) are
the associated semiclassical Fourier integral operators (FIOs). The method of the construction is similar
to that of [Robert 1994]. On the other hand, we will see that if L ≥ 1 is large enough, the Hamilton flow
generated by p̃h with initial conditions in supp a±h cannot escape from {|x | ≤ L/h} for 0 < ±t ≤ 1/h,
respectively, that is,

πx(exp t H p̃h ( supp a±h ))⊂ {|x | ≤ L/h}, 0<±t ≤ 1/h.

Since p̃h = ph for |x | ≤ L/h, we have

exp t H p̃h ( supp a±h )= exp t Hph ( supp a±h ), 0<±t ≤ 1/h.

We can thus expect (at least formally) that the corresponding two quantum evolutions are approximately
equivalent modulo some smoothing operator. We will prove the following rigorous justification of this
formal consideration:

‖(e−i t H h/h
− e−i t H̃ h/h)Oph(a

±

h )
∗
‖L2→L2 ≤ CM hM , 0≤±t ≤ 1/h, M ≥ 0,

where H h
=h2 H . By using such approximations for e−i t H h/h Oph(a

±

h )
∗, we prove local-in-time dispersive

estimates for Oph(a
±

h )e
−i t H Oph(a

±

h )
∗:

‖Oph(a
±

h )e
−i t H Oph(a

±

h )
∗
‖L1→L∞ ≤ C |t |−d/2, 0< h� 1, 0< |t |< 1.

Strichartz estimates follow from these estimates and the abstract theorem due to Keel and Tao [1998].
Strichartz estimates for Op(χε)e−i t H follow from the short-time dispersive estimate

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t |< tε� 1.

To prove this, we first construct an approximation for e−i t H Op(χε)∗ of the form

e−i t H Op(χε)∗ = J (9, a)+ OH−γ→Hγ (1), |t |< tε, γ > d/2,

where the phase function 9 =9(t, x, ξ) is a solution to the time-dependent Hamilton–Jacobi equation
associated to p(x, ξ) and J (9, a) is the corresponding Fourier integral operator. In the construction, the
fact that

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ, (x, ξ) ∈ suppχε, |α+β| ≥ 2,

plays an important role. We note that if (g jk) jk− Idd 6= 0 depends on x , these bounds do not hold without
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such a restriction of the support. Using these bounds, we construct the phase function 9(t, x, ξ) such that

|∂αx ∂
β
ξ (9(t, x, ξ)− x · ξ + p(x, ξ))| ≤ Cαβ |t |2〈x〉2−|α+β|.

Then we can follow a classical argument [Kitada and Kumano-go 1981] and construct the FIO J (9, a).
By the composition formula, Op(χε)J (9, a) is also an FIO and dispersive estimates for this operator
follow from the standard stationary phase method. Finally, using an Egorov-type lemma, we prove that
the remainder, Op(χε)(e−i t H Op(χε)∗− J (9, a)), has a smooth kernel for sufficiently small t .

The proof of Theorem 1.5 is based on a standard idea [Staffilani and Tataru 2002]; see also [Burq et al.
2004; Bouclet and Tzvetkov 2007]. Strichartz estimates with loss of derivatives 〈H〉1/(2p) follow from
semiclassical Strichartz estimates up to time scales of order h, which can be verified by the standard
argument. Moreover, under the nontrapping condition, we will prove that the missing 1/p derivative loss
can be recovered by using local smoothing effects [Doi 2005].

The proof of Theorem 1.6 is based on a slight modification of that of Theorem 1.5. By virtue of the
Strichartz estimates for Op(χε)e−i t H and the Littlewood–Paley decomposition, it suffices to show

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq ) ≤ CT h−ε‖ϕ‖L2, 0< h� 1.

To prove this estimate, we first prove semiclassical Strichartz estimates for e−i t H Oph(ah)
∗ up to time

scales of order h R, where R= inf |πx( supp ah)|. The proof is based on a refinement of the standard WKB
approximation for the semiclassical propagator e−i t H h/h Oph(ah)

∗. Combining semiclassical Strichartz
estimates with a partition of unity argument with respect to x , we will obtain the following Strichartz
estimate with an inhomogeneous error term:

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq ) ≤ CT ‖ϕ‖L2 +C‖〈x〉−1/2−εh−1/2−ε Oph(ah)e−i t Hϕ‖L2([−T,T ];L2),

for any ε > 0, which, combined with local smoothing effects, implies Theorem 1.6.
The paper is organized as follows. In Section 2 We record some known results on the semiclassical

pseudodifferential calculus and prove the above Littlewood–Paley decomposition. Using dispersive
estimates, which will be studied in Sections 4 and 5, we prove Theorem 1.2 in Section 3. We construct
approximations of Isozaki–Kitada type and prove dispersive estimates for Oph(a

±

h )e
−i t H Oph(a

±

h )
∗ in

Section 4. In Section 5 we discuss the dispersive estimates for Op(χε)e−i t H Op(χε)∗. The proofs of
Theorems 1.5 and 1.6 are given in Sections 6 and 7, respectively.

2. Semiclassical functional calculus

Throughout this section we assume Assumption 1.1 with µ≥ 0, that is,

|∂αx g jk(x)| + 〈x〉−1
|∂αx A j (x)| + 〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|. (2-1)

The goal of this section is to prove a Littlewood–Paley type decomposition under a suitable restriction on
the initial data. First we record (without proof) some known results on the pseudodifferential calculus
which will be used throughout the paper. We refer to [Robert 1987; Martinez 2002] for the details of the
proof.



STRICHARTZ ESTIMATES FOR SCHRÖDINGER EQUATIONS WITH VARIABLE COEFFICIENTS 1865

Pseudodifferential calculus. For the metric g = dx2/〈x〉2+ dξ 2/〈ξ〉2 and a weight function m(x, ξ) on
the phase space R2d , we use Hörmander’s symbol class notation S(m, g), that is, a ∈ S(m, g) if and only
if a ∈ C∞(R2d) and

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβm(x, ξ)〈x〉−|α|〈ξ〉−|β|, α, β ∈ Zd

+
.

To a symbol a ∈ C∞(R2d) and h ∈ (0, 1], we associate the semiclassical pseudodifferential operator
(h-PDO for short) Oph(a) defined by

Oph(a) f (x)= 1
(2πh)d

∫
ei(x−y)·ξ/ha(x, ξ) f (y) dy dξ, f ∈ S(Rd).

When h = 1 we write Op(a)= Oph(a) for simplicity. The Calderón–Vaillancourt theorem shows that for
any symbol a ∈ C∞(R2d) satisfying |∂αx ∂

β
ξ a(x, ξ)| ≤ Cαβ, Oph(a) is extended to a bounded operator on

L2(Rd) uniformly with respect to h ∈ (0, 1]. Moreover, for any symbol a satisfying

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉−γ , γ > d,

Oph(a) is extended to a bounded operator from Lq(Rd) to Lr (Rd) with the bounds

‖Oph(a)‖Lq→Lr ≤ Cqr h−d(1/q−1/r), 1≤ q ≤ r ≤∞, (2-2)

where Cqr > 0 is independent of h ∈ (0, 1]. These bounds follow from the Schur lemma and an
interpolation; see, for example, [Bouclet and Tzvetkov 2007, Proposition 2.4].

For two symbols a ∈ S(m1, g) and b ∈ S(m2, g), the composition Oph(a)Oph(b) is also an h-PDO
and is written in the form Oph(c) = Oph(a)Oph(b) with a symbol c ∈ S(m1m2, g) given by c(x, ξ) =
eih DηDz a(x, η)b(z, ξ)|z=x,η=ξ . Moreover, c(x, ξ) has the expansion

c =
N−1∑
|α|=0

h|α|

i |α|α!
∂αξ a · ∂αx b+ hN rN with rN ∈ S(〈x〉−N

〈ξ〉−N m1m2, g). (2-3)

The symbol of the adjoint Oph(a)
∗ is given by a∗(x, ξ)= eih DηDz a(z, η)|z=x,η=ξ ∈ S(m1, g) which has

the expansion

a∗ =
N−1∑
|α|=0

h|α|

i |α|α!
∂αξ ∂

α
x a+ hN r∗N with r∗N ∈ S(〈x〉−N

〈ξ〉−N m1, g). (2-4)

Littlewood–Paley decomposition. As we mentioned in the outline of the paper, H is not bounded below
in general and hence we cannot expect that the Littlewood–Paley decomposition associated with H , which
is of the form

‖u‖Lq ≤ Cq‖u‖L2 +Cq

( ∞∑
j=0

‖ f (2−2 j H)u‖
2
Lq

)1/2

,

to hold if q 6= 2. The standard Littlewood–Paley decomposition associated with H0 also does not work
well in our case, since the commutator of H with the Littlewood–Paley projection f (2−2 j H0) can grow
at spatial infinity. To overcome this difficulty, let us introduce an additional localization as follows. Given
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a parameter ε > 0 and a cut-off function ϕ ∈ C∞0 (R+) such that ϕ ≡ 1 on [0, 1/2] and suppϕ ⊂ [0, 1],
we define ψε(x, ξ) by

ψε(x, ξ)= ϕ
(
〈x〉
ε|ξ |

)
.

It is easy to see that, for each ε > 0, ψε ∈ S(1, g) and is supported in {(x, ξ)∈R2d
: 〈x〉<ε|ξ |}. Moreover,

for sufficiently small ε > 0, p(x, ξ) is uniformly elliptic on the support of ψε and thus Op(ψε)H is
essentially bounded below.

In this subsection we prove a Littlewood–Paley type decomposition on the range of Op(ψε). We begin
with the following proposition which tells us that, for any f ∈ C∞0 (R) and h ∈ (0, 1], Op(ψε) f (h2 H) is
well approximated in terms of the h-PDO.

Proposition 2.1. There exists ε > 0 such that, for any f ∈C∞0 (R) with supp f b (0,∞), we can construct
bounded families {ah, j }h∈(0,1] ⊂

⋂
M≥0 S(〈x〉− j

〈ξ〉−M , g), j ≥ 0, such that:

(1) ah,0 is given explicitly by ah,0(x, ξ)= ψε(x, ξ/h) f (ph(x, ξ)). Moreover,

supp ah, j ⊂ suppψε( · , · /h)∩ supp f (ph)⊂ {(x, ξ) ∈ R2d
: 〈x〉< 1/h, |ξ | ∈ I },

for some relatively compact open interval I b (0,∞). In particular, we have

‖Oph(ah, j )‖Lq′→Lq ≤ C jqq ′h−d(1/q ′−1/q), 1≤ q ′ ≤ q ≤∞,

uniformly in h ∈ (0, 1].

(2) For any integer N > d + 2, we set ah =
∑N−1

j=0 h j ah, j . Then

‖Op(ψε) f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N h2, 2≤ q ≤∞,

uniformly in h ∈ (0, 1].

The following is an immediate consequence of this proposition.

Corollary 2.2. For any 2 ≤ q ≤∞ and h ∈ (0, 1], Op(ψε) f (h2 H) is bounded from L2(Rd) to Lq(Rd)

and satisfies

‖Op(ψε) f (h2 H)‖L2→Lq ≤ Cqh−d(1/2−1/q),

where Cq > 0 is independent of h ∈ (0, 1].

For the low energy part we have the following.

Lemma 2.3. For any f0 ∈ C∞0 (R) and 2≤ q ≤∞, we have

‖Op(ψε) f0(H)‖L2→Lq ≤ Cq .

Remark 2.4. If V, A≡ 0, then Proposition 2.1, Corollary 2.2, and Lemma 2.3 hold without the additional
term Op(ψε). Moreover, in this case we see that the remainder satisfies

‖ f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N hN−d(1/2−1/q).
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We refer to [Burq et al. 2004] (for the case on compact manifolds without boundary) and to [Bouclet and
Tzvetkov 2007] (for the case with metric perturbations on Rd). For more general cases with Laplace–
Beltrami operators on noncompact manifolds with ends, we refer to [Bouclet 2010; 2011a]. Because of
this result, we believe Proposition 2.1 is far from sharp. However, the bounds

‖Op(ψε) f (h2 H)−Oph(ah)‖L2→Lq ≤ Cq N h, 2≤ q ≤∞,

are sufficient to obtain our Littlewood–Paley type decomposition (Proposition 2.5). For more details, we
refer to Burq, Gérard, and Tvzetkov [2004, Corollary 2.3].

Proof of Proposition 2.1. We write

Op(ψε)= Oph(ψε/h), h ∈ (0, 1],

where ψε/h(x, ξ)= ψε(x, ξ/h) satisfies suppψε/h ⊂ {h〈x〉< ε|ξ |} and

|∂αx ∂
β
ξ ψε/h(x, ξ)| ≤ Cαβεh−|β|〈x〉−|α|〈ξ/h〉−|β| ≤ Cαβε〈x〉−|α|(h+ |ξ |)−|β|. (2-5)

By using the Helffer–Sjöstrand formula [1989], we get

Oph(ψε/h) f (h2 H)=− 1
2π i

∫
C

∂ f̃
∂ z̄
(z)Oph(ψε/h)(h2 H − z)−1 dz ∧ dz̄,

where f̃ (z) is an almost analytic extension of f (λ). Since f ∈ C∞0 (R), f̃ (z) is also compactly supported
and satisfies

∂z̄ f̃ (z)= O(|Im z|M)

for any M > 0. We may assume |z| ≤ C on supp f̃ with some C > 0. In order to use this formula, we
shall construct a semiclassical approximation of Oph(ψε/h)(h2 H − z)−1, in terms of the h-PDO, for
z ∈ C \ [0,∞) with |z| ≤ C . Although the method is based on the standard semiclassical parametrix
construction (see, for example, [Robert 1987; Burq et al. 2004]), we give the details of the proof, since
ψε/h is not uniformly bounded in S(1, g) with respect to h ∈ (0, 1].

We first study the symbol of the resolvent (h2 H − z)−1. Let ph and p1,h be as in (1-8) so that
h2 H = Oph(ph)+ h Oph(p1,h). Since

h|A(x)|. |ξ |, h2
|V (x)|. |ξ |2,

on suppψε/h , we obtain by (1-7) that

|∂αx ∂
β
ξ ph(x, ξ)| ≤ Cαβ〈x〉−|α||ξ |2−|β| if |β| ≤ 2, (2-6)

|∂αx ∂
β
ξ p1,h(x, ξ)| ≤ Cαβ〈x〉−1−|α|

|ξ |1−|β| if |β| ≤ 1, (2-7)

uniformly in (x, ξ) ∈ suppψε/h and h ∈ (0, 1]. Moreover, if ε > 0 is sufficiently small, the uniform
ellipticity of k implies that ph is also uniformly elliptic on suppψε/h :

C−2
1 |ξ |

2
≤ ph(x, ξ)≤ C2

1 |ξ |
2 if h〈x〉< ε|ξ |,
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with some C1 > 0, which particularly implies

1
|ph(x, ξ)−z|

.

{
|Im z|−1 if |ξ | ≤ 2C2,

〈ξ〉−2 if |ξ | ≥ 2C2
(2-8)

for (x, ξ) ∈ suppψε/h , z /∈ R, and |z| ≤ C , with some C2 > 0.
Let us now consider a sequence of symbols qh

j = qh
j (z, x, ξ) (depending holomorphically on z /∈ R)

defined inductively by

qh
0 =

ψε/h

ph − z
,

qh
1 =−

1
ph−z

(∑
|α|=1

i−1∂αξ qh
0 · ∂

α
x ph + qh

0 · p1,h

)
,

qh
j =−

1
ph−z

( ∑
|α|+k= j
|α|≥1

i−|α|

α!
∂αξ qh

k · ∂
α
x ph +

∑
|α|+k= j−1

i−|α|

α!
∂αξ qh

k · ∂
α
x p1,h

)
, j ≥ 2.

We then learn by (2-5), (2-6), and (2-8) that

|∂αx ∂
β
ξ qh

0 (z, x, ξ)| ≤ Cαβε

{
〈x〉−|α|(h+ |ξ |)−|β||Im z|−1−|α+β| if |ξ | ≤ 2C2,

〈x〉−|α|〈ξ〉−|β|−2 if |ξ | ≥ 2C2,

≤ Cαβε〈x〉−|α|(h+ |ξ |)−|β||Im z|−1−|α+β| (2-9)

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. Similarly, by using (2-6), (2-7), and (2-9), we obtain that if
h|ξ | ≤ 2C2,

|∂αx ∂
β
ξ qh

1 (z, x, ξ)|

≤ Cαβε
(
〈x〉−1−|α|(h+ |ξ |)−1−|β|

|ξ |2|Im z|−3−|α+β|
+〈x〉−1−|α|(h+ |ξ |)−|β|(h+ |ξ |)|Im z|−2−|α+β|)

≤ Cαβε(h+ |ξ |)2〈x〉−1−|α|(h+ |ξ |)−1−|β|
|Im z|−3−|α+β|,

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. Here note that, in this case, (h+ |ξ |)−1 may have a singularity at
ξ = 0 as h→+0. In order to prove the remainder estimate, we will remove this singularity by using a
rescaling ξ 7→ hξ (see the estimates (2-12)). For h|ξ | ≥ 2C2, qh

1 does not have such a singularity and
satisfies

|∂αx ∂
β
ξ qh

1 (z, x, ξ)| ≤ Cαβε〈x〉−1−|α|
〈ξ〉−|β|−4

|ξ | ≤ Cαβε〈x〉−1−|α|
〈ξ〉−|β|−3

uniformly in z /∈ R with |z| ≤ C and h ∈ (0, 1]. Since 1. h+ |ξ | if h|ξ |& 1, summarizing these, we get

|∂αx ∂
β
ξ qh

1 (z, x, ξ)| ≤ Cαβε〈x〉−1−|α|(h+ |ξ |)1−|β||Im z|−3−|α+β|, z /∈ R, |z| ≤ C, h ∈ (0, 1].

The estimates (2-9) and a direct computation also show that qh
1 is of the form

qh
1 = qh

11(ph − z)−3
+ qh

10(ph − z)−2,

where qh
1k are supported in suppψε/h , are independent of z, and satisfy

|∂αx ∂
β
ξ qh

1k(x, ξ)| ≤ Cαβε〈x〉−1−|α|(h+ |ξ |)−|β|〈ξ〉N1(k), h ∈ (0, 1],
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with some positive integer N1(k) > 0. For j ≥ 2, an induction argument yields that

|∂αx ∂
β
ξ qh

j (z, x, ξ)| ≤ Cαβε〈x〉− j−|α|(h+ |ξ |)2− j−|β|
|Im z|−2 j−1−|α+β|, j ≥ 2, (2-10)

for z /∈ R with |z| ≤ C and h ∈ (0, 1]. It also follows from an induction on j that there exists a sequence
of z-independent symbols (qh

jk)
j
k=0 supported in suppψε/h and satisfying

|∂αx ∂
β
ξ qh

jk(x, ξ)| ≤ Cαβε〈x〉− j−|α|(h+ |ξ |)−|β|〈ξ〉N j (k) (2-11)

with some N j (k) > 0, such that qh
j is of the form

qh
j =

j∑
k=0

qh
jk(ph − z)− j−k−1.

Rescaling ξ 7→ hξ , we learn by (2-9) and (2-10) that

qh
0 (z, x, hξ) ∈ S(1, g), h j qh

j (z, x, hξ) ∈ S(h2
〈x〉− j

〈ξ〉2− j , g),

with uniform bounds in h and polynomially bounds in |Im z|−1. Then, by the construction of qh
j , the

standard symbolic calculus (not in the semiclassical regime), and the fact that

Op(h j qh
j (z, x, hξ))= h j Oph(q

h
j ),

we obtain

Op(ψε)=
N−1∑
j=0

h j Oph(q
h
j )(h

2 H − z)+ h2 Op(rh,N ,z), N ≥ 1,

with some rh,N ,z ∈ S(〈x〉−N
〈ξ〉2−N , g) satisfying

|∂αx ∂
β
ξ rh,N ,z(x, ξ)| ≤ CαβεN 〈x〉−N−|α|

〈ξ〉2−N−|β|
|Im z|−2N−1−|α+β|, (2-12)

where CαβεN > 0 may be taken uniformly in h ∈ (0, 1], z ∈ C \R with |z| ≤ C and x, ξ ∈ Rd .
We now use the Helffer–Sjöstrand formula to obtain

Op(ψε) f (h2 H)=
N−1∑
j=0

h j Oph(ah, j )+ h2 R(h, N ),

where
ah,0(x, ξ)= ψε/h(x, ξ)( f ◦ ph)(x, ξ),

ah, j (x, ξ)=
j∑

k=0

(−1)k+ j

(k+ j)!
qh

jk(x, ξ)( f ( j+k)
◦ ph)(x, ξ), 1≤ j ≤ N − 1,

R(h, N )=− 1
2π i

∫
C

∂ f̃
∂ z̄
(z)Oph(rh,N ,z)(h2 H − z)−1 dz ∧ dz̄.

Since supp q jk ⊂ suppψε/h ⊂ {h〈x〉< ε|ξ |} and ph is uniformly elliptic (that is, ph ≈ |ξ |
2) on the latter

region, taking ε > 0 smaller if necessary, we have

ah, j ⊂ suppψε/h ∩ supp f (ph)⊂ {(x, ξ) : |x |< 1/h, C−1
0 ≤ |ξ | ≤ C0}
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with some positive constant C0 > 0, which, combined with (2-11), implies that {ah, j }h∈(0,1] is bounded in⋂
M≥0

S(〈x〉− j
〈ξ〉−M , g), since h+|ξ |& 〈ξ〉 on suppψε/h ∩ supp f (ph). By virtue of (2-2), we also obtain

‖Oph(ah, j )‖Lq′→Lq ≤ C jqq ′h−d(1/q ′−1/q), h ∈ (0, 1], 1≤ q ′ ≤ q ≤∞.

Finally, we prove the estimate on the remainder R(h, N ). If we choose N > d + 2, then (2-12) and
(2-2) (with h = 1) imply

‖Op(rh,N ,z)‖L2→Lq ≤ Cq N |Im z|−n(N ,q), 2≤ q ≤∞,

with some positive integer n(N , q) ≥ 2N + 1, where Cq N > 0 is independent of h. Using the bounds
‖(h2 H − z)−1

‖L2→L2 ≤ |Im z|−1, |∂z̄ f̃ (z)| ≤ CM |Im z|M for any M ≥ 0 and the fact that f̃ is compactly
supported, we conclude that

‖R(h, N )‖L2→Lq ≤ CM

∫
supp f̃

|Im z|M‖Op(rh,N ,z)‖L2→Lq‖(h2 H − z)−1
‖L2→L2 dz ∧ dz̄

≤ CM Nq

∫
supp f̃

|Im z|M−n(N ,q)−1 dz ∧ dz̄

≤ CM Nq ,

provided that M is large enough. This completes the proof. �

Proof of Lemma 2.3. By the same argument as above with h = 1, we can see that

Op(ψε) f0(H)=
N−1∑
j=0

Op(a j )+ R(N )

where a j ∈
⋂

M≥0 S(〈x〉− j
〈ξ〉−M , g) are supported in

suppψε ∩ supp f0(p)⊂ {(x, ξ) ∈ R2d
: 〈x〉< ε|ξ |, |ξ |. 1}

and R(N ) satisfies

‖R(h, N )‖L2→Lq ≤ CNq , 2≤ q ≤∞,

if N > d + 2. The assertion then follows from (2-2). �

Consider a 4-adic partition of unity

f0(λ)+
∑

h

f (h2λ)= 1, λ ∈ R,

where f0, f ∈ C∞0 (R) with supp f0 ⊂ [−1, 1], supp f ⊂ [1/4, 4] and
∑

h means that, in the sum, h
takes all negative powers of 2 as values, that is,

∑
h =

∑
h=2− j , j≥0. Let F ∈ C∞0 (R) be such that

supp F ⊂ [1/8, 8] and F ≡ 1 on supp f . The spectral decomposition theorem implies

1= f0(H)+
∑

h

f (h2 H)= f0(H)+
∑

h

F(h2 H) f (h2 H).



STRICHARTZ ESTIMATES FOR SCHRÖDINGER EQUATIONS WITH VARIABLE COEFFICIENTS 1871

Let ah ∈ S(1, g) be as in Proposition 2.1 with f = F . Using Proposition 2.1, we obtain a Littlewood–Paley
type estimates on a range of Op(ψε).

Proposition 2.5. For any 2≤ q <∞,

‖Op(ψε)u‖Lq (Rd ) ≤ Cq‖u‖L2(Rd )+Cq

(∑
h

‖Oph(ah) f (h2 H)u‖Lq (Rd )

)1/2

.

Proof. The proof is the same as that of [Burq et al. 2004, Corollary 2.3] and we omit the details. �

Corollary 2.6. Let ε > 0 and ψε be as above and χε = 1−ψε. Let ρ ∈ C∞(Rd) be such that

|∂αx ρ(x)| ≤ Cα〈x〉−|α|, α ∈ Zd
+
.

Then, for any T > 0 and any (p, q) satisfying p≥ 2, q <∞ and 2/p= d(1/2−1/q), there exists CT > 0
such that

‖ρe−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd )+C‖Op(χε)e−i t Hϕ‖L p([−T,T ];Lq (Rd ))

+C
(∑

h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq (Rd ))

)1/2

,

where ah is given by Proposition 2.1 with ψε replaced by ρψε. In particular, ah(x, ξ) is supported in
supp ρ(x)ψ(x, ξ/h)F(ph(x, ξ)).

Proof. This proposition follows from the L2-boundedness of e−i t H , Propositions 2.1 and 2.5 (with ψε
replaced by ρψε), and the Minkowski inequality. �

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 under Assumption 1.1 with µ > 0. We first state two key estimates
which we will prove in later sections. For R > 0, an open interval I b (0,∞) and σ ∈ (−1, 1), we define
the outgoing and incoming regions 0±(R, I, σ ) by

0±(R, I, σ ) :=
{
(x, ξ) ∈ R2d

: |x |> R, |ξ | ∈ I, ±
x · ξ
|x ||ξ |

>−σ

}
,

respectively. We then have the following (local-in-time) dispersive estimates.

Proposition 3.1. Suppose that H satisfies Assumption 1.1 with µ > 0. Let I b (0,∞) and σ ∈ (−1, 1).
Then, for sufficiently large R ≥ 1, small h0 > 0, and any symbols a±h ∈ S(1, g) supported in 0±(R, I, σ )∩
{x : |x |< 1/h}, we have

‖Oph(a
±

h )e
−i t H Oph(a

±

h )
∗
‖L1→L∞ ≤ C |t |−d/2, 0< |t | ≤ 1,

uniformly with respect to h ∈ (0, h0].

We prove this proposition in Section 4. In the region {|x |& |ξ |}, we have the following (short-time)
dispersive estimates.
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Proposition 3.2. Suppose that H satisfies Assumption 1.1 with µ≥ 0. Let us fix arbitrarily ε > 0. Then
there exists tε > 0 such that, for any symbol χε ∈ S(1, g) supported in {(x, ξ) : 〈x〉 ≥ ε|ξ |}, we have

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t | ≤ tε.

We prove this proposition in Section 5.

Proof of Theorem 1.2. Taking ρ ∈ C∞(Rd) so that 0≤ ρ(x)≤ 1, ρ(x)= 1 for |x | ≥ 1 and ρ(x)= 0 for
|x | ≤ 1/2, we set ρR(x)= ρ(x/R). In order to prove Theorem 1.2, it suffices to show

‖ρRe−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT ‖ϕ‖L2(Rd ),

for sufficiently large R ≥ 1. We may also assume without loss of generality that T > 0 is sufficiently
small. Indeed, if the above estimate holds on [−T0, T0] with some T0 > 0, we obtain by the unitarity of
e−i t H on L2 that, for any T > T0,

‖ρRe−i t Hϕ‖
p
L p([−T,T ];Lq (Rd )) .

[T/T0]+1∑
k=−[T/T0]

‖ρRe−i t H e−i(k+1)Hϕ‖
p
L p([−T0,T0];Lq (Rd ))

. (T/T0)C
p
T0
‖ϕ‖

p
L2(Rd )

.

Let ah be as in Proposition 2.1. Replacing ψε with ρRψε and taking ε > 0 smaller if necessary, we
may assume without loss of generality that supp ah ⊂ {(x, ξ) : R < |x | < 1/h, |ξ | ∈ I } for some
open interval I b (0,∞). Choosing θ± ∈ C∞([−1, 1]) so that θ+ + θ− = 1, θ+ = 1 on [1/2, 1] and
θ+ = 0 on [−1,−1/2], we set a±h (x, ξ)= ah(x, ξ)θ±(x̂ · ξ̂ ), where x̂ = x/|x |. It is clear that {a±h }h∈(0,1]
is bounded in S(1, g) and supp a±h ⊂ 0

±(R, I, 1/2)∩ {x : |x |< 1/h}, and that ah = a+h + a−h . We now
apply Proposition 3.1 to a±h and obtain the local-in-time dispersive estimate for Oph(a

±

h )e
−i t H Oph(a

±

h )
∗

(uniformly in h ∈ (0, h0]), which, combined with the L2-boundedness of Oph(a
±

h )e
−i t H and the abstract

theorem [Keel and Tao 1998], implies the following Strichartz estimates for Oph(ah)e−i t H :

‖Oph(ah)e−i t Hϕ‖L p([−1,1];Lq (Rd )) ≤

∑
±

‖Oph(a
±

h )e
−i t Hϕ‖L p([−1,1];Lq (Rd ))

≤ C‖ϕ‖L2(Rd ),

uniformly with respect to h ∈ (0, h0]. Since Oph(ah) is bounded from L2(Rd) to Lq(Rd) with the bound
of order O(h−d(1/2−1/q)), for h0 < h ≤ 1, we have∑

h0<h≤1

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−1,1];Lq (Rd )) ≤ C(h0)‖ϕ‖

2
L2(Rd )

with some C(h0) > 0. Using these two bounds, we obtain∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−1,1];Lq (Rd )) ≤ C

∑
0<h<h0

‖ f (h2 H)ϕ‖
2
L2(Rd ))+C(h0)‖ϕ‖

2
L2(Rd )

≤ C‖ϕ‖2L2(Rd )
.
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On the other hand, Strichartz estimates for Op(χε)e−i t H are an immediate consequence of Proposition 3.2.
Together with Corollary 2.6, this completes the proof. �

4. Semiclassical approximations for outgoing propagators

Throughout this section we assume Assumption 1.1 with µ > 0. Here we study the behavior of

e−i t H Oph(a
±

h )
∗,

where a±h ∈ S(1, g) are supported in 0±(R, I, σ ) ∩ {|x | < 1/h}, respectively. The main goal of this
section is to prove Proposition 3.1. For simplicity, we consider the outgoing propagator e−i t H Oph(a

+

h )
∗

for 0≤ t ≤ 1 only, and the proof for the incoming case is analogous.
In order to prove dispersive estimates, we construct a semiclassical approximation for the outgoing

propagator e−i t H Oph(a
+

h )
∗ by using the method of Isozaki–Kitada. Namely, rescaling t 7→ th and

setting H h
= h2 H , H h

0 = −h21/2, we consider an approximation for the semiclassical propagator
e−i t H h/h Oph(a

+

h )
∗ of the form

e−i t H h/h Oph(a
+

h )
∗
= Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ O(hN ), 0≤ t ≤ h−1,

where S+h solves a suitable eikonal equation in the outgoing region and J (S+h , w) is the corresponding
semiclassical Fourier integral operator (h-FIO for short):

Jh(S+h , w) f (x)= (2πh)−d
∫

ei(S+h (x,ξ)−y·ξ)/hw(x, ξ) f (y) dy dξ.

Such approximations (uniformly in time) have been studied for Schrödinger operators with long-range
potentials [Robert and Tamura 1987] and for the case of long-range metric perturbations [Robert 1987;
1994; Bouclet and Tzvetkov 2007]. We also refer to the original paper by Isozaki and Kitada [1985], in
which the existence and asymptotic completeness of modified wave operators (with time-independent
modifiers) were established for the case of Schrödinger operators with long-range potentials. We note
that, in these cases, we do not need the additional restriction of the initial data in {|x |< 1/h}. On the
other hand, in [Mizutani 2013], we constructed such approximations (locally in time) for the case with
long-range metric perturbations, combined with potentials growing subquadratically at infinity, under the
additional restriction on the initial data into {|x |< 1/h}.

As we mentioned in the outline of the paper, we first construct an approximation for the modified
propagator e−i t H̃ h/h , where H̃ h is defined as follows. Taking arbitrarily a cut-off function ψ ∈ C∞0 (R

d)

such that 0≤ψ ≤ 1, ψ ≡ 1 for |x | ≤ 1/2 and ψ ≡ 0 for |x | ≥ 1, we define truncated electric and magnetic
potentials, Vh and Ah = (Ah, j ) j by Vh(x) :=ψ(hx/L)V (x) and Ah, j (x)=ψ(hx/L)A j (x), respectively.
It is easy to see that

Vh ≡ V, Ah, j ≡ A j on {|x | ≤ L/(2h)}, supp Ah, j , supp Vh ⊂ {|x | ≤ L/h},

and that, for any α ∈ Zd
+

, there exists CL ,α > 0, independent of x, h, such that

h2
|∂αx Vh(x)| + h|∂αx Ah(x)| ≤ Cα,L〈x〉−µ−|α|. (4-1)
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Let us define H̃ h by

H̃ h
=

1
2

d∑
j,k=1

(−ih∂ j − h Ah, j (x))g jk(x)(−ih∂k − h Ah,k(x))+ h2Vh(x).

We consider H̃ h as a “semiclassical” Schrödinger operator with h-dependent electromagnetic potentials
h2Vh and h Ah . By virtue of the estimates on g jk, Ah , and Vh , H̃ h can be regarded as a long-range
perturbation of the semiclassical free Schrödinger operator H h

0 = −h21/2. Such a type modification
has been used to prove Strichartz estimates and local smoothing effects (with loss of derivatives) for
Schrödinger equations with superquadratic potentials; see [Yajima and Zhang 2004, Section 4]. Let us
denote by p̃h the corresponding modified symbol

p̃h(x, ξ)=
1
2

d∑
j,k=1

g jk(x)(ξ j − h Ah, j (x))(ξk − h Ah,k(x))+ h2Vh(x). (4-2)

The following proposition provides the existence of the phase function of h-FIOs.

Proposition 4.1 [Robert 1994]. Fix an open interval I b (0,∞), −1 < σ < 1 and L > 0. Then there
exist R0, h0 > 0 and a family of smooth and real-valued functions

{S+h : 0< h ≤ h0, R ≥ R0} ⊂ C∞(R2d
: R)

satisfying the eikonal equation associated to p̃h :

p̃h(x, ∂x S+h (x, ξ))= |ξ |
2/2, (x, ξ) ∈ 0+(R, I, σ ), (4-3)

such that
|S+h (x, ξ)− x · ξ | ≤ C〈x〉1−µ, x, ξ ∈ Rd . (4-4)

Moreover, for any |α+β| ≥ 1,

|∂αx ∂
β
ξ (S
+

h (x, ξ)− x · ξ)| ≤ Cαβ min{R1−µ−|α|, 〈x〉1−µ−|α|}, x, ξ ∈ Rd . (4-5)

Here C,Cαβ > 0 are independent of x, ξ, R, and h.

Proof. Since h2Vh and h Ah are of long-range type uniformly with respect to h ∈ (0, 1] (the constant CL ,α

in (4-1) can be taken independently of h), the proof is the same as that of [Robert 1994, Proposition 4.1],
and we omit it. For the R dependence, we refer to [Bouclet and Tzvetkov 2007, Proposition 3.1]. �

Remark 4.2. The crucial point to obtain the estimates (4-4) and (4-5) is the uniform bound (4-1), and we
do not have to use the support properties of Ah and Vh . Suppose that A and V satisfy 〈x〉−1

|∂αx A(x)| +
〈x〉−2

|∂αx V (x)| ≤ Cαβ〈x〉−|α|, and g jk satisfies Assumption 1.1 with µ ≥ 0. Then there exists L > 0,
independent of h, such that if 0< L ≤ L0, we can still construct the solution S+h to (4-3) by using the
support properties of Ah and Vh . However, in this case, S+h − x · ξ behaves like 〈x〉1−µh−1 as h→ 0, and
we cannot obtain the uniform L2-boundedness of the corresponding h-FIO. This is one of the reasons
why we exclude the critical case µ= 0.
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To the phase S+h and an amplitude a ∈ S(1, g), we associate the h-FIO defined by

Jh(S+h , a) f (x)= (2πh)−d
∫

ei(S+h (x,ξ)−y·ξ)/ha(x, ξ) f (y) dy dξ.

Using (4-5), for sufficiently large R > 0, we have

|∂ξ ⊗ ∂x S+h (x, ξ)− Id | ≤ C〈R〉−µ < 1
2 , |∂

α
x ∂

β
ξ S+h (x, ξ)| ≤ Cαβ for |α+β| ≥ 2,

uniformly in h ∈ (0, h0]. Therefore, the standard L2-boundedness of FIOs implies that Jh(S+h , a) is
uniformly bounded on L2(Rd) with respect to h ∈ (0, h0].

We now construct the outgoing approximation for e−i t H̃ h/h .

Theorem 4.3. Let us fix arbitrarily open intervals I b I0b I1b I2b (0,∞),−1<σ <σ0 <σ1 <σ2 < 1
and L > 0. Let R0 and h0 be as in Proposition 4.1 with I, σ replaced by I2, σ2, respectively. Then, for
every integer N ≥ 0, the following hold uniformly with respect to R ≥ R0 and h ∈ (0, h0].

(1) There exists a symbol

b+h =
N−1∑
j=0

h j b+h, j with b+h, j ∈ S(〈x〉− j
〈ξ〉− j , g), supp b+h, j ⊂ 0

+(R1/3, I1, σ1),

such that, for any a+ ∈ S(1, g) with supp a+ ⊂ 0+(R, I, σ ), we can find

c+h =
N−1∑
j=0

h j c+h, j with c+h, j ∈ S(〈x〉− j
〈ξ〉− j , g), supp c+h, j ⊂ 0

+(R1/2, I0, σ0),

such that, for all 0≤ t ≤ h−1, e−i t H̃ h/h Oph(a
+)∗ can be brought to the form

e−i t H̃ h/h Oph(a
+)∗ = Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ Q+IK(t, h, N ),

where Jh(S+h , w), w = b+h , c+h , are h-FIOs associated to the phase S+h defined in Proposition 4.1 with R,
I , and σ replaced by R1/4, I2, and σ2, respectively. Moreover, for any integer s ≥ 0 with 2s ≤ N − 1, the
remainder Q+IK(t, h, N ) satisfies

‖〈D〉s Q+IK(t, h, N )〈D〉s‖L2→L2 ≤ CNshN−2s−1, (4-6)

uniformly with respect to h ∈ (0, h0] and 0≤ t ≤ h−1.

(2) Let KS+h
(t, x, y) be the distribution kernel of Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗. Then KS+h
satisfies the

dispersive estimate
|KS+h

(t, x, y)| ≤ C |th|−d/2, (4-7)

uniformly with respect to h ∈ (0, h0], x, y ∈ Rd and 0≤ t ≤ h−1.

Proof. This theorem is basically known; hence we omit the proof. For the construction of the amplitudes
b+h and c+h , we refer to [Robert 1994, Section 4]; see also [Bouclet and Tzvetkov 2007, Section 3]. The
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remainder estimate (4-6) can be proved by the same argument as that in [Bouclet and Tzvetkov 2007,
Proposition 3.3, Lemma 3.4] combined with the simple estimate

‖〈D〉s(H̃ h
+C1)

−s/2
‖L2→L2 ≤ Csh−s, s ≥ 0.

where C1 > 0 is a large constant. Note that this estimate follow from the obvious bounds

‖〈D〉s〈h D〉−s
‖L2→L2 ≤ Csh−s, s ≥ 0,

and the fact that ( p̃h + h p̃1,h + C1)
−s/2
∈ S(〈ξ〉−s, g) since p̃h + h p̃1,h + C1 is uniformly elliptic for

sufficiently large C1 > 0. The dispersive estimate (4-7) can be verified by the same argument as that in
[Bouclet and Tzvetkov 2007, Lemma 4.4]. �

The following lemma, which has been essentially proved in [Mizutani 2013], tells us that we can still
construct the semiclassical approximation for the original propagator e−i t H h/h if we restrict the support
of initial data in the region 0+(R, J, σ )∩ {x : |x |< h−1

}.

Lemma 4.4. Suppose that {a+h }h∈(0,1] is a bounded set in S(1, g) with symbols supported in

0+(R, I, σ )∩ {x : |x |< h−1
}.

There exists L > 1 such that, for any M, s ≥ 0, h ∈ (0, h0] and 0≤ t ≤ h−1, we have

‖(e−i t H h/h
− e−i t H̃ h/h)Oph(a

+

h )
∗
〈D〉s‖L2→L2 ≤ CM,shM−s,

where CM,s > 0 is independent of h and t.

In order to prove this lemma, we need the following.

Lemma 4.5. Let fh ∈ C∞(Rd) be such that for any α ∈ Zd
+

,

|∂αx fh(x)| ≤ Cα

uniformly with respect to h ∈ (0, h0] and such that supp fh ⊂ {|x | ≥ L/(2h)}. Let L > 1 be large enough.
Then, under the conditions in Lemma 4.4, we have

‖ fh(x)〈D〉γ e−i t H̃ h/h Oph(a
+

h )
∗
〈D〉s‖L2→L2 ≤ CM,s,γ hM−s−γ ,

for any s, γ ≥ 0 and M ≥ 0, uniformly with respect h ∈ (0, h0] and 0≤ t ≤ 1/h.

Proof. We apply Theorem 4.3 to e−i t H̃ h/h Oph(a
+

h )
∗ and obtain

e−i t H̃ h/h Oph(a
+

h )
∗
= Jh(S+h , b+h )e

−i t H h
0 /h Jh(S+h , c+h )

∗
+ Q+IK(t, h, N ).

By virtue of (4-6), the remainder fh(x)〈D〉γ Q+IK(t, h, N )〈D〉s is bounded on L2(Rd) with the norm
dominated by CNsγ hN−γ−s−1, uniformly with respect h ∈ (0, h0] and t ∈ [0, 1/h]. On the other hand, by
virtue of (4-5), the phase of KS+h

(t, x, y), which is given by

8+h (t, x, y, ξ)= S+h (x, ξ)−
1
2 t |ξ |2− S+h (y, ξ),

satisfies ∂ξ8+h (t, x, y, ξ)= (x − y)(Id+O(R−µ/4))− tξ. Here we recall that
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supp c+h ⊂ {(y, ξ) ∈ R2d
: a+h (y, ∂ξ S+h (y, ξ)) 6= 0};

see [Mizutani 2013, Lemma 3.2] and its proof. In particular, c+h (y, ξ) vanishes in the region {y : |y|≥ 1/h}.
We now set L = 4

√
sup I2+ 2, where I2 is given in Theorem 4.3. Since |x | ≥ L/(2h), |y| < 1/h, and

|ξ |2 ∈ I2 on the support of the amplitude fh(x)b+h (x, ξ)c
+

h (y, ξ), we obtain

|∂ξ8
+

h (t, x, y, ξ)|> c(1+ |x | + |y| + |ξ | + t + h−1), 0≤ t ≤ h−1,

for some universal constant c > 0. The assertion now follows from an integration by parts and the
L2-boundedness of h-FIOs. �

Proof of Lemma 4.4. The Duhamel formula yields

(e−i t H h/h
− e−i t H̃ h/h)

=−
i
h

∫ t

0
e−i(t−s)H h/h W h

0 e−is H̃ h/h ds

=−
i
h

∫ t

0
e−i(t−s)H h/he−is H̃ h/h W h

0 ds+ 1
h2

∫ t

0
e−i(t−s)H h/h

∫ s

0
e−i(s−τ)H̃ h/h

[H̃ h,W h
0 ]e
−iτ H̃ h/h dτ ds,

where W h
0 := H h

− H̃ h consists of two parts,

ih2

2

∑
j,k

(∂ j g jk(1−ψ(hx/L))Ak + (1−ψ(hx/L))A j g jk∂k)

and
h2

2

∑
j,k

(1−ψ(hx/L))2g jk A j Ak + h2(1−ψ(hx/L))V .

In particular, W h
0 is a first order differential operator of the form

h2
∑
|α|=1

f h
α (x)∂

α
x + h2 f h

0 (x),

where f h
α , f h

0 are supported in {|x | ≥ L/(2h)} and satisfy

|∂βx f h
α (x)| ≤ Cαβ〈x〉1−µ−|β|, |∂βx f h

0 (x)| ≤ Cαβ〈x〉2−µ−|β|. (4-8)

Since {|x | ≥ L/(2h)} ∩πx( supp a+h )=∅ if L > 1, we have

‖W h
0 Oph(a

+

h )
∗
〈D〉s‖L2→L2 ≤ CM,shM−s, M ≥ 0, s ∈ R.

Therefore, the first term of the right-hand side of the above Duhamel formula satisfies the desired estimates
since e−i t H h/h and e−i t Ĥ h/h are unitary on L2.

We next study the second term. Again by the Duhamel formula, we have

[H̃ h,W h
0 ]e
−iτ H̃ h/h

= e−iτ H̃ h/h
[H̃ h,W h

0 ] +
i
h

∫ τ

0
e−i(τ−u)H̃ h/h

[H̃ h, [H̃ h,W h
0 ]]e

−iu H̃ h/h du.
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Since the coefficients of the commutator [H̃ h,W h
0 ] are supported in {|x |≥ L/(2h)}, the support property of

a+h again implies that [H̃ h,W h
0 ]Oph(a

+

h )
∗
〈D〉s = OL2→L2(hM−s) for any M ≥ 0 and s ∈R. Furthermore,

by virtue of (4-1), (4-8), and the symbolic calculus, the coefficients of [H̃ h, [H̃ h,W h
0 ]] are uniformly

bounded in x and supported in {|x | ≥ L/(2h)}. We now apply Lemma 4.5 to

[H̃ h, [H̃ h,W h
0 ]]e

−iu H̃ h/h Oph(a
+

h )
∗

and obtain the assertion. �

Proof of Proposition 3.1. Rescaling t→ th, it suffices to show

‖Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
‖L1→L∞ ≤ Cε|th|−d/2, 0< |t | ≤ h−1,

where H h
= h2 H . Let Ah(x, y) be the distribution kernel of Oph(a

+

h ):

Ah(x, y)= (2πh)−d
∫

ei(x−y)·ξ/ha+h (x, ξ) dξ.

Since a+h ∈ S(1, g) is compactly supported in I with respect to ξ , we easily see that

sup
x

∫
|Ah(x, y)| dy+ sup

y

∫
|Ah(x, y)| dx ≤ C, h ∈ (0, 1].

Moreover, since 〈ξ〉sa+h 〈ξ〉
γ
∈ S(1, g) for any s, γ , we have

‖〈D〉s Oph(a
+

h )〈D〉
γ
‖L2→L2 ≤ Csh−s−γ . (4-9)

Combining these two estimates with Theorem 4.3 and Lemma 4.4, we can write

Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
= K1(t, h, N )+ K2(t, h, N ),

where

K1(t, h, N )= Oph(a
+

h )Jh(S+h , b+h )e
−i t H h

0 /h Jh(S+h , c+h )
∗,

K2(t, h, N )= Oph(a
+

h )Q
+

IK(t, h, N )+Oph(a
+

h )(e
−i t H h/h

− e−i t H̃ h/h)Oph(a
+

h )
∗.

By (4-7), the distribution kernel of K1(t, h, N ), which we denote by K1(t, x, y), satisfies

|K1(t, x, y)| ≤
∫
|Ah(x, z)||KS+h

(t, z, y)| dz ≤ CN |th|−d/2, 0< t ≤ h−1,

uniformly in h ∈ (0, h0]. On the other hand, (4-6), Lemma 4.4, and (4-9) imply

‖〈D〉s K2(t, h, N )〈D〉s‖L2→L2 ≤ CN ,shN−2s−1.

If we choose N ≥ d + 2 and s > d/2, it follows from the Sobolev embedding that the distribution kernel
of K2(t, h, N ) is uniformly bounded in R2d with respect to h ∈ (0, h0] and 0 < t ≤ h−1. Therefore,
Oph(a

+

h )e
−i t H h/h Oph(a

+

h )
∗ has the distribution kernel K (t, x, y) satisfying dispersive estimates for

0< t ≤ h−1:
|K (t, x, y)| ≤ CN |th|−d/2, x, y ∈ Rd . (4-10)
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Finally, using the relation

Oph(a
+

h )e
−i t H h/h Oph(a

+

h )
∗
= (Oph(a

+

h )e
i t H h/h Oph(a

+

h )
∗)∗,

we learn that K (t, x, y)= K (−t, y, x) and (4-10) also holds for 0<−t ≤ h−1. For the incoming case,
the proof is analogous and we omit it. �

5. Fourier integral operators with the time dependent phase

Throughout this section we assume Assumption 1.1 with µ≥ 0. Consider a symbol χε ∈ S(1, g) supported
in a region

�(ε) := {(x, ξ) ∈ R2d
: 〈x〉> ε|ξ |/2},

where ε > 0 is an arbitrarily small fixed constant. In this section we prove the dispersive estimate

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t | ≤ tε,

where tε > 0 is a small constant depending on ε. This estimate, combined with the L2-boundedness of
Op(χε) and e−i t H , implies the Strichartz estimates for Op(χε)e−i t H .

Let us give a short summary of the steps of the proof. Choose χ∗ε ∈ S(1, g) so that suppχ∗ε = suppχε
and Op(χε)∗ =Op(χ∗ε )+Op(rN ) with some rN ∈ S(〈x〉−N

〈ξ〉−N , g) for sufficiently large N > d/2. We
first construct an approximation for e−i t H Op(χ∗ε ) in terms of the FIO with a time dependent phase

J (9, bN ) f (x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)b(t, x, ξ) f (y) dy dξ,

where 9 is a generating function of the Hamilton flow associated to p(x, ξ) and (∂ξ9, ξ) 7→ (x, ∂x9) is
the corresponding canonical map, and the amplitude

b = b0+ b2+ · · ·+ bN−1

solves the corresponding transport equations. Although such parametrix constructions are well known
as WKB approximations (at least if χ∗ε is compactly supported in ξ and the time scale depends on the
size of frequency), we give the details of the proof since, in the present case, suppχ∗ε is not compact
with respect to ξ and tε is independent of the size of frequency. The crucial point is that p(x, ξ) is of
quadratic type on �(ε):

|∂αx ∂
β
ξ p(x, ξ)| ≤ Cαβ, (x, ξ) ∈�(ε), |α+β| ≥ 2,

which allows us to follow a classical argument (see, for example, [Kitada and Kumano-go 1981]) and
construct the approximation for |t | < tε if tε > 0 is small enough. The composition Op(χε)J (9, b) is
also an FIO with the same phase, and a standard stationary phase method can be used to prove dispersive
estimates for 0< |t |< tε. It remains to obtain the L1

→ L∞ bounds of the remainders Op(χε)e−i t H Op(rN )

and Op(χε)e−i t H (Op(χ∗ε )− J (9, bN )). If e−i t H maps from the Sobolev space H d/2(Rd) to itself, then
L1
→ L∞ bounds are direct consequences of the Sobolev embedding and L2-boundedness of PDOs.

However, our Hamiltonian H is not bounded below (on {|x |& |ξ |}) and such a property does not hold in
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general. To overcome this difficulty, we use an Egorov-type lemma as follows. By the Sobolev embedding
and the Littlewood–Paley decomposition, the proof is reduced to that of the estimate∑

j≥0

‖2 jγ S j (D)Op(χε)e−i t H Op(rN )〈D〉γ f ‖
2
L2 ≤ C‖ f ‖2L2, (5-1)

where γ >d/2 and S j is a dyadic partition of unity. Then we will prove that there exists η j (t, · , · )∈ S(1, g)
such that

2 j
≤ C(1+ |x | + |ξ |) on supp η j (t),

and that

S j (D)Op(χε)e−i t H
= e−i t H Op(η j (t))+ OL2→L2(2− j N ), |t |< tε� 1.

Choosing δ > 0 with γ + δ ≤ N/2, we learn that 2 j (γ+δ)η j (t)rN 〈ξ〉
γ
∈ S(1, g), and hence (5-1) holds.

Op(χε)e−i t H (Op(χ∗ε )− J (9, b)) can be controlled similarly.

Short-time behavior of the Hamilton flow. We now discuss the classical mechanics generated by p(x, ξ).
We denote by (X (t),4(t))= (X (t, x, ξ),4(t, x, ξ)) the solution to the Hamilton equations

Ẋ j =
∂p
∂ξ j

(X,4)=
∑

k

g jk(X)(4k − Ak(X)),

4̇ j =−
∂p
∂x j

(X,4)

=−
1
2

∑
k,l

∂gkl

∂x j
(X)(4k − Ak(X))(4l − Al(X))+

∑
k,l

gkl(X)
∂Ak

∂x j
(X)(4l − Al(X))−

∂V
∂x j

(X)

with the initial condition (X (0),4(0))= (x, ξ), where ḟ = ∂t f . We first observe that the flow conserves
the energy:

p(x, ξ)= p(X (t),4(t)),

which, combined with the uniform ellipticity of g jk , implies

|4(t)− A(X (t))|2 . p(X (t),4(t))− V (X (t))

= p(x, ξ)− V (X (t))

. |ξ − A(x)|2+ |V (x)| + |V (X (t))|,

and hence |4(t)|. |ξ | + 〈x〉+ 〈X (t)〉. By the Hamilton equation, we then have

|Ẋ(t)| + |4̇(t)| ≤ C(1+ |ξ | + |x | + |X (t)| + |4(t)|).

Applying Gronwall’s inequality to this estimate, we obtain an a priori bound:

|X (t)− x | + |4(t)− ξ | ≤ CT |t |(1+ |x | + |ξ |), |t | ≤ T, x, ξ ∈ Rd .

Using this estimate, we obtain more precise behavior of the flow with initial conditions in �(ε).
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Lemma 5.1. Let ε > 0. Then, for sufficiently small tε > 0 and all α, β ∈ Zd
+

,

|∂αx ∂
β
ξ (X (t, x, ξ)− x)| + |∂αx ∂

β
ξ (4(t, x, ξ)− ξ | ≤ Cαβε|t |〈x〉1−|α+β|,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×�(ε).

Proof. We only consider the case with t ≥ 0, the proof for the opposite case is similar. Let (x, ξ) ∈�(ε).
First we remark that, for sufficiently small tε > 0,

|x |/2≤ |X (t, x, ξ)| ≤ 2〈x〉, |t | ≤ tε. (5-2)

For |α+ β| = 0, the assertion is obvious. We let |α+ β| = 1 and differentiate the Hamilton equations
with respect to ∂αx ∂

β
ξ :

d
dt

(
∂αx ∂

β
ξ X

∂αx ∂
β
ξ 4

)
=

(
∂x∂ξ p(X, 4) ∂2

ξ p(X, 4)
−∂2

x p(X, 4) −∂ξ∂x p(X, 4)

)(
∂αx ∂

β
ξ X

∂αx ∂
β
ξ 4

)
. (5-3)

Using (5-2), we learn that p(X (t),4(t)) is of quadratic type in �(ε):

|(∂αx ∂
β
ξ p)(X (t),4(t))| ≤ Cαβε〈x〉2−|α+β|, (t, x, ξ) ∈ (−tε, tε)×�(ε).

Hence all entries of the above matrix are uniformly bounded in (t, x, ξ) ∈ (−tε, tε)×�(ε). Taking tε > 0
smaller if necessary, integrating (5-3) with respect to t , and applying Gronwall’s inequality, we have the
assertion with |α+β| = 1. For |α+β| ≥ 2, we prove the estimate for ∂2

ξ1
X (t) and ∂2

ξ1
4(t) only, where

ξ = (ξ1, ξ2, . . . , ξd). Proofs for other cases are similar, and proofs for higher derivatives follow from an
induction on |α+β|. By the Hamilton equation, we learn

d
dt
∂2
ξ1

X (t)= ∂x∂ξ p(X (t),4(t))∂2
ξ1

X (t)+ ∂2
ξ p(X (t),4(t))∂2

ξ1
4(t)+ Q(X (t),4(t)),

where Q(X (t),4(t)) satisfies

|Q(X (t),4(t))| ≤ Cε
∑

|α+β|=3,|β|≥1

|(∂αx ∂
β
ξ p)(X (t),4(t))||∂ξ1 X (t)||α||∂ξ14(t)|

|β|

≤ Cε〈x〉−1.

We similarly obtain

d
dt
∂2
ξ1
4(t)=−∂2

x p(X (t),4(t))∂2
ξ1

X (t)− ∂ξ∂x p(X (t),4(t))∂2
ξ1
4(t)+ O(〈x〉−1).

Applying Gronwall’s inequality, we have the desired estimates. �

Lemma 5.2. (1) Let tε > 0 be small enough. Then, for any |t |< tε, the map

g(t) : (x, ξ) 7→ (X (t, x, ξ), ξ)

is a diffeomorphism from �(ε/2) onto its range, and satisfies

�(ε)⊂ g(t, �(ε/2)) for all |t |< tε.
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(2) Let �(ε) 3 (x, ξ) 7→ (Y (t, x, ξ), ξ) ∈ �(ε/2) be the inverse map of g(t). Then Y (t, x, ξ) and
4(t, Y (t, x, ξ), ξ) satisfy the same estimates as those for X (t, x, ξ) and 4(t, x, ξ) of Lemma 5.1, respec-
tively:

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| + |∂αx ∂

β
ξ (4(t, Y (t, x, ξ), ξ)− ξ | ≤ Cαβε|t |〈x〉1−|α+β|,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×�(ε).

Proof. Choosing a cutoff function ρ ∈ S(1, g) such that 0 ≤ ρ ≤ 1, supp ρ ⊂ �(ε/3), and ρ ≡ 1 on
�(ε/2), we modify g(t) as follows:

gρ(t, x, ξ)= (Xρ(t, x, ξ), ξ), Xρ(t, x, ξ)= (1− ρ(x, ξ))x + ρ(x, ξ)X (t, x, ξ).

It is easy to see that, for (t, x, ξ) ∈ (−tε, tε)×�(ε/2), gρ(t, x, ξ) is smooth and Lemma 5.1 implies

|∂αx ∂
β
ξ gρ(t, x, ξ)| ≤ Cαβε, |α+β| ≥ 1,

|J (gρ)(t, x, ξ)− Id | ≤ Cεtε,

where J (gρ) is the Jacobi matrix with respect to (x, ξ) and the constant Cε > 0 is independent of t, x ,
and ξ . Choosing tε > 0 so small that Cεtε < 1/2, and applying the Hadamard global inverse mapping
theorem, we see that, for any fixed |t |< tε, gρ(t) is a diffeomorphism from R2d onto itself. By definition,
g(t) is diffeomorphic from �(ε/2) onto its range. Since gρ(t) is bijective, it remains to check that

�(ε)c ⊃ gρ(t, �(ε/2)c), |t |< tε.

Suppose that (x, ξ) ∈ �(ε/2)c. If (x, ξ) ∈ �(ε/3)c, the assertion is obvious since gρ(t) ≡ Id outside
�(ε/3). If (x, ξ) ∈�(ε/3) \�(ε/2), then, by Lemma 5.1 and the support property of ρ, we have

|Xρ(t, x, ξ)| ≤ |x | + ρ(x, ξ)|(X (t, x, ξ)− x)| ≤ (ε/2+C0tε)〈ξ〉

for some C0 > 0 independent of x, ξ , and tε. Choosing tε < ε/(2C0), we obtain the assertion.
We next prove the estimates on Y (t). Since (Y (t, x, ξ), ξ) ∈�(ε/2), we learn

|Y (t, x, ξ)− x | = |X (0, Y (t, x, ξ), ξ)− X (t, Y (t, x, ξ), ξ)|

≤ sup
(x,ξ)∈�(ε/2)

|X (t, x, ξ)− x |

≤ Cε|t |〈x〉.

For α, β ∈ Zd
+

with |α+ β| = 1, apply ∂αx ∂
β
ξ to the equality x = X (t, Y (t, x, ξ), ξ). We then have the

equality
A(t, Z(t, x, ξ))∂αx ∂

β
ξ (Y (t, x, ξ)− x)= ∂αy ∂

β
η (y− X (t, y, η))|(y,η)=Z(t,x,ξ),

where Z(t, x, ξ) = (Y (t, x, ξ), ξ) and A(t, Z) = (∂x X)(t, Z) is a d×d matrix. By Lemma 5.1 and
a similar argument to that in the proof of Lemma 5.2(1), we learn that A(t, Z(t, x, ξ)) is invertible
if tε > 0 is small enough, and that A(t, Z(t, x, ξ)) and A(t, Z(t, x, ξ))−1 are bounded uniformly in
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(t, x, ξ) ∈ (−tε, tε)×�(ε/2). Therefore,

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| ≤ Cαβ sup

(x,ξ)∈�(ε/2)
|∂αx ∂

β
ξ (x − X (t, x, ξ))|

≤ Cαβ |t |〈x〉1−|α+β|.

Proofs for higher derivatives are obtained by induction in |α+β| and proofs for 4(t, Y (t, x, ξ), ξ) are
similar. �

The parametrix for Op(χε)e−i t H Op(χε)∗. Before starting the construction of parametrix, we prepare
two lemmas. The following Egorov-type theorem will be used to control the remainder term. We write
exp t Hp(x, ξ)= (X (t, x, ξ),4(t, x, ξ)).

Lemma 5.3. For h ∈ (0, 1], consider a h-dependent symbol ηh ∈ S(1, g) such that supp ηh ⊂ �(ε) ∩

{1/(2h) < |ξ |< 2/h}. Then, for sufficiently small tε > 0, independent of h, and any integer N ≥ 0, there
exists a bounded family of symbols

{ηN
h (t, · , · ) : |t |< tε, 0< h ≤ 1} ⊂ S(1, g)

such that

supp ηN
h (t, · , · )⊂ exp(−t)Hp( supp ηh)

and

‖ei t H Op(ηh)e−i t H
−Op(ηN

h (t))‖L2→L2 ≤ CNεhN ,

uniformly with respect to 0< h ≤ 1 and |t |< tε.

Proof. Let η0
h(t, x, ξ)= ηh(exp t Hp(x, ξ))= ηh(X (t, x, ξ),4(t, x, ξ)). It is easy to see that

supp η0
h ⊂ exp(−t)Hp( supp ηh).

Moreover, Lemma 5.1 implies that {η0
h : |t |< tε, 0< h ≤ 1} is a bounded subset of S(1, g). By a direct

computation, η0
h solves

∂tη
0
h = {p, η

0
h}, η0

h|t=0 = ηh,

where { · , · } is the Poisson bracket. Then, by standard pseudodifferential calculus, there exists a bounded
set {r0

h (t, · , · ) : 0≤ t < tε, 0< h ≤ 1} ⊂ S(1, g) with supp r0
h ⊂ exp(−t)Hp( supp ηh) such that

d
dt

Op(η0
h)= i[H,Op(η0

h)] + h Op(r0
h ).

We next set

η1
h(t, x, ξ)=

∫ t

0
r0

h (s, X (t − s, x, ξ),4(t − s, x, ξ)) ds.

Again, we learn that {η1
h(t, · , · ) : |t |< tε, 0< h ≤ 1} ⊂ S(1, g) is also bounded and that

supp η1
h ⊂ exp(−t)Hp( supp ηh)
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for all |t |< tε and 0< h ≤ 1. Moreover, η1
h solves

∂tη
1
h = {p, η

1
h}+ r0

h , η1
h|t=0 = 0,

which implies
d
dt

Op(η0
h + hη1

h)= i[H,Op(η0
h + hη1

h)] + h2 Op(r1
h )

with some {r1
h : 0 ≤ t < tε, 0 < h ≤ 1} ⊂ S(1, g) and supp r1

h ⊂ exp(−t)Hp( supp ηh). Iterating this
procedure and putting ηN

h =
∑N−1

j=0 h jη
j
h , we obtain the assertion. �

Using this lemma, we have the following.

Lemma 5.4. Let ε > 0. Then, for any symbol χε ∈ S(1, g) with suppχε ⊂�(ε) and any integer N ≥ 1,
there exists χ∗ε ∈ S(1, g) with suppχ∗ε ⊂�(ε) such that for any γ < N/2,

sup
|t |<tε
‖Op(χε)e−i t H Op(χε)∗−Op(χε)e−i t H Op(χ∗ε )‖H−γ (Rd )→Hγ (Rd ) ≤ CNγ ε.

Proof. By the expansion formula (2-4), there exists χ∗ε ∈ S(1, g) with suppχ∗ε ⊂�(ε) such that

Op(χε)∗ = Op(χ∗ε )+Op(r0(N ))

with some r0(N ) ∈ S(〈x〉−N
〈ξ〉−N , g). For δ > 0 with 2γ + δ ≤ N , we split

〈D〉γ Op(χε)e−i t H Op(r0(N ))〈D〉γ=〈D〉γ Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ·〈x〉γ+δ〈D〉γ+δOp(r0(N ))〈D〉γ .

Since 〈x〉γ+δ〈ξ〉γ+δr0(N )〈ξ〉γ ∈ S(1, g), 〈x〉γ+δ〈D〉γ+δ Op(r0(N ))〈D〉γ is bounded on L2. In order to
prove the L2-boundedness of the first term of the right hand side, we use the standard Littlewood–Paley
decomposition and Lemma 5.3 as follows. Consider a dyadic partition of unity with respect to the
frequency:

∞∑
j=0

S j (D)= 1,

where S j (ξ)= S(2− jξ), j ≥ 1, with some S ∈ C∞0 (R
d) supported in {1/2< |ξ |< 2} and S0 ∈ C∞0 (R

d)

supported in {|ξ |< 1}. Then

‖〈D〉γ Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖L2≤C

( ∞∑
j=0

‖2 jγ S j (D)Op(χε)e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖

2
L2

)1/2

.

By the expansion formula (2-3), there exists a sequence of symbols η j ∈ S(1, g) supported in

�(ε)∩ {2 j−1 < |ξ |< 2 j+1
}

such that

S j (D)Op(χε)= Op(η j )+ Q1( j, N ), ‖Q1( j, N )‖L2→L2 = O(2− j N ).
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We then learn from Lemma 5.3 with h = 2− j that there exists {ηN
j (t) : |t |< tε} ⊂ S(1, g) such that

Op(η j )e−i t H
= e−i t H Op(ηN

j (t))+ Q2(t, j, N ), sup
|t |<tε
‖Q2(t, j, N )‖L2→L2 = O(2− j N ).

Since N ≥ γ + δ, the remainder satisfies

sup
|t |<tε
‖2 jγ (Q1( j, N )e−i t H

+ Q2(t, j, N ))〈D〉−γ−δ〈x〉−γ−δ f ‖
2
L2 ≤ C2−2 jδ

‖ f ‖2L2 .

Suppose that (x, ξ) ∈ supp ηN
j (t). Since supp ηN

j (t)⊂ exp(−t)Hp( supp η j ), we have

|X (t, x, ξ)|> ε〈4(t, x, ξ)〉, 2 j−1 < |4(t, x, ξ)|< 2 j+1.

Using Lemma 5.1 with the initial data (X (t, x, ξ),4(t, x, ξ)), we learn

|x − X (t, x, ξ)| + |ξ −4(t, x, ξ)| ≤ Ctε〈X (t, x, ξ)〉, |t |< tε.

Combining these two estimates, we see that

2 j
≤ C(1+ |x | + |ξ |), (x, ξ) ∈ supp ηN

j (t), |t |< tε,

where the constant C > 0 is independent of x , ξ , and t , provided that tε > 0 is small enough. Therefore,
2 j (γ+δ)ηN

j (t)〈ξ〉
−γ−δ
〈x〉−γ−δ ∈ S(1, g) and the corresponding PDO is bounded on L2. Finally, we obtain

∞∑
j=0

‖2 jγ Op(η j )e−i t H
〈D〉−γ−δ〈x〉−γ−δ f ‖

2
L2

≤ C
∞∑
j=0

(
‖2− jδ2 j (γ+δ) Op(ηN

j (t))〈D〉
−γ−δ
〈x〉−γ−δ f ‖

2
L2 + 2−2 jδ

‖ f ‖2L2

)

≤ C
∞∑
j=0

2−2 jδ
‖ f ‖2L2

≤ C‖ f ‖2L2, �

We now consider a parametrix construction of Op(χε)e−i t H Op(χ∗ε ). Let us first make the following
ansatz:

v(t, x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)bN (t, x, ξ) f (y) dy dξ,

where bN
=
∑N−1

j=0 b j . In order to approximately solve the Schrödinger equation

i∂tv(t)= Hv(t), v|t=0 = Op(χ∗ε )ϕ,

the phase function 9 and the amplitude bN should satisfy respectively the Hamilton–Jacobi equation

∂t9 + p(x, ∂x9)= 0, 9|t=0 = x · ξ (5-4)
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and the transport equations{
∂t b0+X · ∂x b0+Yb0 = 0, b0|t=0 = χε,

∂t b j +X · ∂x b j +Yb j + i K b j−1 = 0, b j |t=0 = 0, 1≤ j ≤ N − 1,
(5-5)

where K is the kinetic part of H , and the vector field X and function Y are defined by

X j (t, x, ξ) := (∂ξ j p)(x, ∂x9(t, x, ξ)), j = 1, . . . , d,

Y(t, x, ξ) := [k(x, ∂x)9 + p1(x, ∂x9)](t, x, ξ).

Here p, p1 are given by (1-6). We first construct the phase function 9.

Proposition 5.5. Let us fix ε > 0 arbitrarily. Then, for sufficiently small tε > 0, we can construct a smooth
and real-valued function 9 ∈ C∞((−tε, tε)×R2d

;R) which solves the Hamilton–Jacobi equation (5-4)
for (x, ξ) ∈�(ε) and |t | ≤ tε. Moreover, for all α, β ∈ Zd

+
, x, ξ ∈ Rd and |t | ≤ tε,

|∂αx ∂
β
ξ (9(t, x, ξ)− x · ξ + tp(x, ξ)| ≤ Cαβε|t |2〈x〉2−|α+β|, (5-6)

where Cαβε > 0 is independent of x, ξ and t.

Proof. We consider the case when t ≥ 0, and the proof for t ≤ 0 is similar. We first define the action
integral 9̃(t, x, ξ) on [0, tε)×�(ε/2) by

9̃(t, x, ξ) := x · ξ +
∫ t

0
L(X (s, Y (t, x, ξ), ξ),4(s, Y (t, x, ξ), ξ)) ds,

where L(x, ξ) = ξ · ∂ξ p(x, ξ)− p(x, ξ) is the Lagrangian associated to p(x, ξ), and X, 4, and Y are
given by Lemma 5.2(2) with ε replaced by ε/2. The smoothness of 9̃(t, x, ξ) follows from corresponding
properties of X (t), 4(t), and Y (t). It is well known that 9̃(t, x, ξ) solves the Hamilton–Jacobi equation

∂t9̃(t, x, ξ)+ p(x, ∂x9̃(t, x, ξ))= 0, 9|t=0 = x · ξ,

for (x, ξ) ∈�(ε/2), and satisfies

∂x9̃(t, x, ξ)=4(t, Y (t, x, ξ), ξ), ∂ξ 9̃(t, x, ξ)= Y (t, x, ξ).

Lemma 5.2(2) shows that p(Y (t, x, ξ), ξ) is of quadratic type:

|∂αx ∂
β
ξ p(Y (t, x, ξ), ξ)| ≤ Cαβε〈x〉2−|α+β|, (t, x, ξ) ∈ [0, tε)×�(ε/2),

which, combined with the energy conservation

p(x, ∂x9̃(t, x, ξ))= p(Y (t, x, ξ), ξ),

implies

|∂αx ∂
β
ξ (9̃(t, x, ξ)− x · ξ)| ≤ Cαβε|t |〈x〉2−|α+β|, (t, x, ξ) ∈ [0, tε)×�(ε/2).
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We similarly obtain, for (t, x, ξ) ∈ [0, tε)×�(ε/2),

|p(x, ∂x9̃(t, x, ξ))− p(x, ξ)| =
∣∣∣∣(∂x9̃(t, x, ξ)− ξ) ·

∫ 1

0
(∂ξ p)(x, θ∂x9̃(t, x, ξ)+ (1− θ)ξ) dθ

∣∣∣∣
≤ Cε|t |〈x〉2,

and, more generally,

|∂αx ∂
β
ξ

(
p(x, ∂x9̃(t, x, ξ))− p(x, ξ)

)
| ≤ Cαβε|t |〈x〉2−|α+β|.

Therefore, integrating the Hamilton–Jacobi equation with respect to t , we have

|∂αx ∂
β
ξ (9̃(t, x, ξ)− x · ξ + tp(x, ξ))| ≤ Cαβε|t |2〈x〉2−|α+β|.

Finally, choosing a cutoff function ρ ∈ S(1, g) so that 0≤ ρ ≤ 1, ρ ≡ 1 on �(ε), and supp ρ ⊂�(ε/2),
we define

9(t, x, ξ) := x · ξ − tp(x, ξ)+ ρ(x, ξ)(9̃(t, x, ξ)− x · ξ + tp(x, ξ)).

9(t, x, ξ) clearly satisfies the statement of Proposition 5.5. �

Using the phase function constructed in Proposition 5.5, we can define the FIO J (9, a) : S→ S′ by

J (9, a) f (x)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)a(x, ξ) f (y) dy dξ, f ∈ S(Rd),

where a ∈ S(1, g). Moreover, we have the following.

Lemma 5.6. Let tε > 0 be small enough. Then, for any bounded family of symbols

{a(t) : |t |< tε} ⊂ S(1, g),

J (9, a) is bounded on L2(Rd) uniformly with respect to |t |< tε:

sup
|t |≤tε
‖J (9, a)‖L2→L2 ≤ Cε.

Proof. For sufficiently small tε > 0, the estimates (5-6) imply

|(∂ξ ⊗ ∂x9)(t, x, ξ)− Id | ≤ Cεtε < 1
2 , |∂

α
x ∂

β
ξ 9(t, x, ξ)| ≤ Cαβε for |α+β| ≥ 2,

uniformly with respect to (t, x, ξ) ∈ (−tε, tε)×R2d . Therefore, the assertion is a consequence of the
standard L2-boundedness of FIOs, or, equivalently, Kuranishi’s trick and the L2-boundedness of PDOs;
see, for example, [Robert 1987; Mizutani 2013, Lemma 4.2]. �

We next construct the amplitude.

Proposition 5.7. Let 9(t, x, ξ) be as in Proposition 5.5 with ε replaced by ε/3. Then, for any integer
N ≥ 0, there exist families of symbols {b j (t, · , · ) : |t |< tε} ⊂ S(〈x〉− j

〈ξ〉− j , g), j = 0, 1, 2, . . . , N − 1,
such that supp b j (t, · , · )⊂�(ε/2) and b j solve the transport equations (5-5).



1888 HARUYA MIZUTANI

Proof. We consider the case t ≥ 0 only. Symbols b j can be constructed by a standard method of
characteristics along the flow generated by X(t, x, ξ) as follows. First note that Assumption 1.1 and (5-6)
imply that

|∂αx ∂
β
ξ X(t, x, ξ)| ≤ Cαβε〈x〉1−|α+β|, (5-7)

|∂αx ∂
β
ξ Y(t, x, ξ)| ≤ Cαβε〈x〉−|α+β|, (5-8)

uniformly with respect to 0≤ t ≤ tε and (x, ξ) ∈�(ε/3). For all 0≤ s, t ≤ tε, we consider the solution
to the ODE

∂t z(t, s, x, ξ)= X(t, z(t, s, x, ξ), ξ), z(s, s)= x .

We learn from (5-7) and an argument as in the proof of Lemma 5.1 that z(t, s) is well defined for
0≤ s, t ≤ tε and (x, ξ) ∈�(ε/3), and that

|∂αx ∂
β
ξ (z(t, s, x, ξ)− x)| ≤ Cαβεtε〈x〉1−|α+β|, (x, ξ) ∈�(ε/3). (5-9)

Then b j (t) are defined inductively by

b0(t, x, ξ)= χ∗ε (z(0, t, x, ξ), ξ) exp
(∫ t

0
Y(s, z(s, t, x, ξ), ξ) ds

)
,

b j (t, x, ξ)=−
∫ t

0
(i K b j−1)(s, z(s, t, x, ξ), ξ) exp

(∫ t

u
Y(u, z(u, t, x, ξ), ξ) du

)
ds.

Since suppχ∗ε ⊂�(ε), by (5-9) and an argument as in the proof of Lemma 5.2(1), we see that b j (t, x, ξ)
is smooth with respect to (x, ξ) and that ∂αx ∂

β
ξ b j (t, x, ξ) are supported in �(ε/2) for all 0 ≤ t ≤ tε.

Thus, if we extend b j on R2d so that b j (t, x, ξ) = 0 outside �(ε/2), then b j is still smooth in (x, ξ).
Furthermore, we learn by (5-8) and (5-9) that {b j (t, · , · ) : t ∈ [0, tε], 0≤ j ≤ N − 1} is a bounded set
in S(〈x〉− j

〈ξ〉− j , g). Finally, a standard Hamilton–Jacobi theory shows that b j (t) solve the transport
equations (5-5). �

We now state the main result in this section.

Theorem 5.8. Fix ε > 0 arbitrarily. Then, for any sufficiently small tε > 0, any nonnegative integer
N ≥ 0 and any symbol χε ∈ S(1, g) supported in �(ε), we can find a bounded family of symbols
{aN (t, · , · ) : |t |< tε} ⊂ S(1, g) such that Op(χε)e−i t H Op(χε)∗ can be brought to the form

Op(χε)e−i t H Op(χε)∗ = J (9, aN )+ Q(t, N ),

where J (9, aN ) is the FIO with the phase 9(t, x, ξ) constructed in Proposition 5.5 with ε replaced by
ε/3. The distribution kernel of J (9, aN ), which we denote by K9,aN (t, x, y), satisfies the dispersive
estimate

|K9,aN (t, x, y)| ≤ CN ,ε|t |−d/2, 0< |t |< tε, x, ξ ∈ Rd .

Moreover, for any γ ≥ 0 with N > 2γ , the remainder Q(t, N ) satisfies

‖〈D〉γ Q(t, N )〈D〉γ ‖L2→L2 ≤ CNγ ε|t |, |t |< tε. (5-10)
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In particular, if we choose N ≥ d+1, the distribution kernel of Q(t, N ) is uniformly bounded in R2d with
respect to |t |< tε. Hence

‖Op(χε)e−i t H Op(χε)∗‖L1→L∞ ≤ Cε|t |−d/2, 0< |t |< tε.

Proof. We consider the case when t ≥ 0 and the proof for the opposite case is similar. By virtue of
Lemma 5.4, we may replace Op(χε)∗ by Op(χ∗ε ) for some χ∗ε ∈ S(1, g) supported in �(ε), without loss
of generality. Let bN

=
∑N−1

j=0 b j with b j constructed in Proposition 5.7. Since J (9, bN )|t=0 = Op(χ∗ε ),
we have the Duhamel formula

Op(χε)e−i t H Op(χ∗ε )= Op(χε)J (9, bN )− i
∫ t

0
Op(χε)e−i(t−s)H (Dt + H)J (9, bN )|t=s ds.

Estimates on the remainder. It suffices to show that

sup
|t |<tε
‖〈D〉γ Op(χε)e−i t H (Dt + H)J (9, bN )〈D〉γ ‖L2→L2 ≤ CNγ ε.

Since 9, b j solve the Hamilton–Jacobi equation (5-4) and transport equations (5-5), respectively, a direct
computation yields

e−i9(t,x,ξ)(Dt + H)
(

ei9(t,x,ξ)
N−1∑
j=0

b j (t, x, ξ)
)
= rN (t, x, ξ),

with some {rN (t, · , · ) : 0≤ t ≤ tε} ⊂ S(〈x〉−N
〈ξ〉−N , g). In particular,

(Dt + H)J (9, bN )= J (9, rN ).

A standard L2-boundedness of FIOs then implies

sup
|t |<tε
‖〈x〉γ+δ〈D〉γ+δ J (9, rN )〈D〉γ ‖L2→L2 ≤ CNγ δ,

for any γ, δ ≥ 0 with 2γ + δ ≤ N . Since, in the proof of Lemma 5.4, we already proved that

sup
|t |≤tε
‖〈D〉γ Op(χε)e−i t H

〈D〉−γ−δ〈x〉−γ−δ‖L2→L2 ≤ Cγ δ,

we obtain the desired estimate.

Dispersive estimates. By the composition formula of PDOs and FIOs (cf. [Robert 1987]),

Op(χε)J (9, bN )

is also an FIO with the same phase 9 and the amplitude

aN (t, x, ξ)= 1
(2π)d

∫
eiy·ηχε(x, η+ 4̃(t, x, y, ξ))bN (t, x + y, ξ) dy dη,

where 4̃(t, x, y, ξ)=
∫ 1

0 (∂x9)(t, y+ λ(x − y), ξ) dλ. By virtue of (5-6), 4̃ satisfies

|∂αx ∂
α′

y ∂
β
ξ (4̃(t, x, y, ξ)− ξ)| ≤ Cαα′β |t |, |α+α′+β| ≥ 1.
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Combining this with the relations χε, bN
∈ S(1, g), suppχε ⊂�(ε), and supp bN (t, · , · )⊂�(ε/2), we

see that {aN
: 0≤ t < tε} is bounded in S(1, g). The distribution kernel of J (9, aN ) is given by

K9,aN (t, x, y)= 1
(2π)d

∫
ei(9(t,x,ξ)−y·ξ)aN (t, x, ξ) dξ.

By virtue of Proposition 5.5, we have

sup
|t |≤tε
|∂αx ∂

β
y ∂

γ

ξ (9(t, x, ξ)− y · ξ)| ≤ Cαβγ , |α+β + γ | ≥ 2,

∂2
ξ9(t, x, ξ)=−t (g jk(x)) j,k + O(t2), |t | → 0.

As a consequence, since g jk(x) is uniformly elliptic, the phase function 9(t, x, ξ)− y · ξ has a unique
nondegenerate critical point for all |t |< tε and we can apply the stationary phase method to K9,aN (t, x, y),
provided that tε > 0 is small enough. Therefore,

|K9,aN (t, x, y)| ≤ C |t |−d/2, 0< |t | ≤ tε, x, ξ ∈ Rd . �

6. Proof of Theorem 1.5

We now give the proof of Theorem 1.5. Suppose that H satisfies Assumption 1.1 with µ≥ 0. In view of
Corollary 2.6, (1-4) is a consequence of the following proposition.

Proposition 6.1. For any symbol a ∈ C∞0 (R
2d) and T > 0,

‖Oph(a)e
−i t Hϕ‖L p([−T,T ];Lq (Rd )) ≤ CT h−1/p

‖ϕ‖L2(Rd ),

uniformly with respect to h ∈ (0, 1], provided that (p, q) satisfies (1-1).

Proof. This proposition follows from the standard WKB approximation for e−i t H Oph(a) up to time
scales of order 1/h. The proof is essentially the same as that in the case for the Laplace–Beltrami operator
on compact manifolds without boundaries [Burq et al. 2004, Section 2]. We omit the details. �

Using this proposition, we have the semiclassical Strichartz estimates with inhomogeneous error terms.

Proposition 6.2. Let a∈C∞0 (R
2d). Then, for any T >0 and any (p, q) satisfying the admissible condition

(1-1),

‖Oph(a)e
−i t Hϕ‖L p([−T,T ];Lq (Rd ))

≤ CT ‖Oph(a)ϕ‖L2(Rd )+CT h‖ϕ‖L2(Rd )+Ch−1/2
‖Oph(a)e

−i t Hϕ‖L2([−T,T ];L2(Rd ))

+Ch1/2
‖[Oph(a), H ]e−i t Hϕ‖L2([−T,T ];L2(Rd )),

uniformly with respect to h ∈ (0, 1].

This proposition has been proved by [Bouclet and Tzvetkov 2007] for the case with V, A ≡ 0. We
give a refinement of this proposition with its proof in Section 7.
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Next, we shall prove that if k(x, ξ) satisfies the nontrapping condition (1-3), the missing 1/p derivative
can be recovered. We first recall the local smoothing effects for Schrödinger operators proved by Doi
[2005]. For any s ∈R, we set Bs

:= { f ∈ L2(Rd) : 〈x〉s f, 〈D〉s f ∈ L2(Rd)}. Define a symbol es(x, ξ) by

es(x, ξ) := (k(x, ξ)+ |x |2+ L(s))s/2 ∈ S((1+ |x | + |ξ |)s, g),

where L(s) > 1 is a large constant depending on s. We denote by Es its Weyl quantization,

Es f (x)= Opw(es) f (x)= 1
(2π)d

∫
ei(x−y)·ξes

( x+y
2
, ξ
)

f (y) dy dξ.

Then, for any s ∈ R, there exists L(s) > 0 such that Es is a homeomorphism from Br+s to Br for all
r ∈ R, and (Es)

−1 is still a Weyl quantization of a symbol in S((1+ |x | + |ξ |)−s, g); see, [Doi 2005,
Lemma 4.1].

Proposition 6.3 (the local smoothing effects [Doi 2005]). Suppose that k(x, ξ) satisfies the nontrapping
condition (1-3) and Assumption 1.4. Then, for any T > 0 and σ > 0, there exists CT,σ > 0 such that

‖〈x〉−1/2−σ E1/2e−i t Hϕ‖L2([−T,T ];L2(Rd ))
≤ CT,σ‖ϕ‖L2(Rd ). (6-1)

Remark 6.4. (6-1) implies a standard local smoothing effect,

‖〈x〉−1/2−σ
〈D〉1/2e−i t Hϕ‖L2([−T,T ];L2(Rd )) ≤ CT,σ‖ϕ‖L2(Rd ). (6-2)

Indeed, we compute

〈x〉−1/2−σ
〈D〉1/2 = 〈D〉1/2〈x〉−1/2−σ

+ [〈D〉1/2, 〈x〉−1/2−σ
]

= 〈D〉1/2(E1/2)
−1 E1/2〈x〉−1/2−σ

+ [〈D〉1/2, 〈x〉−1/2−σ
]

= 〈D〉1/2(E1/2)
−1(〈x〉−1/2−σ E1/2+ [E1/2, 〈x〉−1/2−σ

])+ [〈D〉1/2, 〈x〉−1/2−σ
].

It is easy to see that 〈D〉1/2(E1/2)
−1, [E1/2, 〈x〉−1/2−σ

], and [〈D〉1/2, 〈x〉−1/2−σ
] are bounded on L2(Rd)

since their symbols belong to S(1, g). Therefore, (6-1) implies (6-2).

Proof of (1-5) of Theorem 1.5. It is clear that (1-5) follows from Proposition 6.2, (6-2), and Corollary 2.6,
since a is compactly supported with respect to x and {a, p} ∈ S(〈ξ〉, g), where p = p(x, ξ). �

7. Near sharp Strichartz estimates without asymptotic flatness

This section is devoted to proving Theorem 1.6. We may assume µ= 0 without loss of generality.

Proposition 7.1. Let I b (0,∞) be a relatively compact open interval and C0 > 1. Then there exist
δ0, h0 > 0 such that for any 0< δ ≤ δ0, 0< h ≤ h0, 1≤ R ≤ 1/h, and any symbol ah ∈ S(1, g) supported
in {(x, ξ) : R < |x |< C0/h, |ξ | ∈ I }, we have

‖Oph(ah)e−i t H Oph(ah)
∗
‖L1→L∞ ≤ Cδ|t |−d/2, 0< |t |< δh R, (7-1)

where Cδ > 0 may be taken uniformly with respect to h and R.
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Remark 7.2. When |t | > 0 in (7-1) is small and independent of R, (7-1) is well known and the proof
is given by the standard method of the short-time WKB approximation for e−i t H h/h Oph(ah)

∗; see, for
example, [Burq et al. 2004].

For h ∈ (0, 1], R ≥ 1, an open interval I b (0,∞), and C0 > 1, we set

0(R, h, I ) := {(x, ξ) ∈ R2d
: R < |x |< C0/h, |ξ | ∈ I }.

Equation (7-1) is a consequence of the same argument as in the proof of Proposition 3.1 and the following
proposition.

Proposition 7.3. Let I b I1 b (0,∞) and C0 > 1. Then there exist δ0, h0 > 0 such that the following
hold for any 0< δ ≤ δ0, 0< h ≤ h0, and 1≤ R ≤ C0/h.

(1) There exists 8h(t, x, ξ) ∈ C∞((−δR, δR)×R2d) such that 8h solves the Hamilton–Jacobi equation{
∂t8h(t, x, ξ)=−ph(x, ∂x8h(t, x, ξ)), |t |< δR, (x, ξ) ∈ 0(R/2, h/2, I1),

8h(0, x, ξ)= x · ξ, (x, ξ) ∈ 0(R/2, h/2, I1).
(7-2)

Furthermore, we have

|∂αx ∂
β
ξ (8h(t, x, ξ)− x · ξ + tph(x, ξ))| ≤ CαβR−|α|h|t |2, α, β ∈ Zd

+
, (7-3)

uniformly with respect to x, ξ ∈ Rd , h ∈ (0, h0], 0≤ R ≤ C0/h, and |t |< δR.

(2) For any ah ∈ S(1, g) with supp ah⊂0(R, h, I ) and any integer N ≥0, we can find bN
h (t, · , · )∈ S(1, g)

such that
e−i t H̃ h/h Oph(ah)

∗
= Jh(8h, bN

h )+ QWKB(t, h, N ),

where Jh(8h, bN
h ) is the h-FIO with phase function 8h and amplitude bN

h , and its distribution kernel
satisfies

|KWKB(t, h, x, y)| ≤ C |th|−d/2, h ∈ (0, h0], 0< |t | ≤ δR, x, ξ ∈ Rd . (7-4)

Moreover the remainder QWKB(t, h, N ) satisfies

‖〈D〉s QWKB(t, h, N )〈D〉s‖L2→L2 ≤ CN ,shN−2s
|t |, h ∈ (0, h0], |t | ≤ δR.

Sketch of proof. The proof is similar to that of Theorem 5.8; in particular, the proof of the second claim is
completely the same. Thus, we just outline the construction of 8h . We may assume C0 = 1 without loss
of generality. Denote by (Xh, 4h) the Hamilton flow generated by ph . To construct the phase function,
the most important step is to study the inverse map of (x, ξ) 7→ (Xh(t, x, ξ), ξ). Choose an open interval
Ĩ1 so that I1 b Ĩ1 b (0,∞). The following bound was proved in [Mizutani 2013]:

|∂αx ∂
β
ξ (Xh(t, x, ξ)− x)| + 〈x〉|∂αx ∂

β
ξ (4h(t, x, ξ)− ξ)| ≤ Cαβ〈x〉−|α||t |

for (x, ξ) ∈ 0(R/3, h/3, Ĩ1) and |t | ≤ δR. For sufficiently small δ > 0 and for any fixed |t | ≤ δR, this
implies

|∂x Xh(t)− Id | ≤ C R−1
|t | ≤ Cδ < 1

2 .
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By the same argument as that in the proof of Lemma 5.2, the map (x, ξ) 7→ (Xh(t, x, ξ), ξ) is a diffeo-
morphism from 0(R/3, h/3, Ĩ1) onto its range and the corresponding inverse (x, ξ) 7→ (Yh(t, x, ξ), ξ) is
well-defined for |t |< δR and (x, ξ) ∈ 0(R/2, h/2, I1). Moreover, Yh(t) satisfies an estimate like the one
for Xh(t):

|∂αx ∂
β
ξ (Yh(t, x, ξ)− x)| ≤ Cαβ〈x〉−|α||t |, |t |< δR, (x, ξ) ∈ 0(R/2, h/2, I1).

We now define 8h by

8h(t, x, ξ) := x · ξ +
∫ t

0
Lh
(
Xh(s, Y (t, x, ξ), ξ),4(s, y(t, x, ξ), ξ)

)
ds,

where Lh = ξ · ∂ξ ph − ph . By the standard Hamilton–Jacobi theory, 8h solves (7-2). Moreover, using
the energy conservation ph(x, ∂x8h(t))= ph(Yh(t), ξ) and the above estimates on Xh, 4h , and Yh , we
see that

|ph(x, ∂x8h(t))− ph(x, ξ)| = |ph(Yh(t), ξ)− ph(x, ξ)|

≤ |Yh(t)− x |
∣∣∣∣∫ λ

0
(∂x ph)(λYh(t)− (1− λ)x, ξ) dλ

∣∣∣∣
≤ C |y(t)− x |(h+ h2

〈x〉2)

≤ Ch|t |

and that

|∂αx ∂
β
ξ (ph(x, ∂x8h)− ph(x, ξ))| ≤ Cαβ〈x〉−|α|h|t |.

Using these estimates, we can check that 8h satisfies (7-3). Finally, we extend 8h to the whole space so
that 8h(t, x, ξ)= x · ξ − tph(x, ξ) outside 0(R/3, h/3, Ĩ1). �

Using Proposition 7.1, we obtain a refinement of Proposition 6.2.

Proposition 7.4. Let 0< R ≤ 1/h and let ah ∈ S(1, g) be supported in {(x, ξ) : R < |x |< 1/h, |ξ | ∈ I }.
Then, for any T > 0 and (p, q) satisfying the admissible condition (1-1),

‖Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq (Rd ))

≤ CT ‖Oph(ah)ϕ‖L2(Rd )+CT h‖ϕ‖L2(Rd )+CT (h R)−1/2
‖Oph(ah)e−i t Hϕ‖L2([−T,T ];L2(Rd ))

+CT (h R)1/2‖[H,Oph(ah)]e−i t Hϕ‖L2([−T,T ];L2(Rd )),

uniformly with respect to h ∈ (0, h0].

Proof. The proof is similar to that of [Bouclet and Tzvetkov 2007, Proposition 5.4]. By time reversal
invariance we can restrict our considerations to the interval [0, T ]. We may assume T ≥ h R without
loss of generality and split [0, T ] as follows: [0, T ] = J0 ∪ J1 ∪ · · · ∪ JN , where J j = [ jh R, ( j + 1)h R],
0≤ j ≤ N − 1, and JN = [T − δh R, T ]. For j = 0, we have the Duhamel formula

Oph(ah)e−i t H
= e−i t H Oph(ah)− i

∫ t

0
e−i(t−s)H

[Oph(ah), H ]e−is H ds, t ∈ J0.

Here we choose bh ∈ S(1, g) so that bh ≡ 1 on supp a and bh is supported in a sufficiently small
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neighborhood of supp ah . By Proposition 7.1, Oph(bh)e−i(t−s)H Oph(bh)
∗ satisfies dispersive estimates

(7-1) for 0< |t − s|< δh R with some δ > 0 small enough. Using the Keel–Tao theorem [1998] and the
unitarity of e−i t H , we then learn that for any interval JR of size |JR| ≤ 2h R, the following homogeneous
and inhomogeneous Strichartz estimates hold uniformly with respect to h ∈ (0, h0]:

‖Oph(bh)e−i t Hϕ‖L p(JR;Lq (Rd )) ≤ C‖ϕ‖L2(Rd ), (7-5)∥∥∥∥∫ t

0
F(s ∈ JR)Oph(bh)e−i(t−s)H Oph(bh)

∗g(s) ds
∥∥∥∥

L p(JR;Lq (Rd ))

≤ C‖g‖L1(JR;L2(Rd )), (7-6)

where F(s ∈ JR) is the characteristic function of JR and (p, q) satisfies the admissible condition (1-1).
On the other hand, using the expansions (2-3) and (2-4), we see that for any M ≥ 0,

Oph(ah)= Oph(bh)Oph(ah)+ hM Oph(r1,h)

= Oph(bh)
∗Oph(ah)+ hM Oph(r2,h),

[Oph(ah), H ] = Oph(bh)
∗
[Oph(ah), H ] + hM Oph(r3,h),

with some {rl,h}h∈(0,1], l = 1, 2, 3, which are bounded in S(〈x〉−M
〈ξ〉−M , g). Therefore, we can write

Oph(ah)e−i t H

= Oph(bh)e−i t H Oph(ah)− i
∫ t

0
Oph(bh)e−i(t−s)H Oph(bh)

∗
[Oph(ah), H ]e−is H ds+ Q(t, h,M),

where the remainder Q(t, h,M) satisfies

‖Q(t, h,M)‖L2→Lq ≤ CM hM−1−d(1/2−1/q), 2≤ q ≤∞,

uniformly in h ∈ (0, 1]. Combining this estimate with (7-5) and (7-6), we obtain

‖Oph(ah)e−i t Hϕ‖L p(J0;Lq ) ≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C‖[Oph(ah), H ]e−i t Hϕ‖L1(J0;L2)

≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2(J0;L2).

We similarly obtain the same bound for j = N :

‖Oph(ah)e−i t Hϕ‖L p(JN ;Lq ) ≤ C‖Oph(ah)ϕ‖L2 +Ch‖ϕ‖L2 +C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2(JN ;L2).

For j = 1, 2, . . . , N − 1, taking θ ∈ C∞0 (R) so that θ ≡ 1 on [−1/2, 1/2] and supp θ ⊂ [−1, 1], we set
θ j (t)= θ(t/(h R)− j−1/2)). It is easy to see that θ j ≡ 1 on J j and supp θ j ⊂ J̃ j = J j+[−h R/2, h R/2].
We consider v j = θ j (t)Oph(ah)e−i t Hϕ, which solves

i∂tv j = Hv j + θ
′

j Oph(ah)e−i t Hϕ+ θ j [Oph(ah), H ]e−i t Hϕ, v j |t=0 = 0.

An argument as above and the Duhamel formula then imply that, for any t ∈ J̃ j and M ≥ 0, v j satisfies

v j =−i
∫ t

0
Oph(bh)e−i(t−s)H Oph(bh)

∗
(
θ ′j (s)Oph(ah)+ θ j (s)[Oph(ah), H ]

)
e−is Hϕ ds+ Q̃(t, h,M),

where the remainder Q̃(t, h,M) satisfies

‖Q̃(t, h,M)‖L2→Lq ≤ CM hM−1−d(1/2−1/q), 2≤ q ≤∞,
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uniformly in h ∈ (0, 1] and t ∈ J̃ j . Taking M ≥ 0 large enough, we learn

‖v j‖L p(J j ;Lq )

≤ Ch2
‖ϕ‖L2 +C(h R)−1

‖Oph(ah)e−i t Hϕ‖L1( J̃ j ;L2)+C‖[Oph(ah), H ]e−i t Hϕ‖L1( J̃ j ;L2)

≤ Ch2
‖ϕ‖L2 +C(h R)−1/2

‖Oph(ah)e−i t Hϕ‖L2( J̃ j ;L2)+C(h R)1/2‖[Oph(ah), H ]e−i t Hϕ‖L2( J̃ j ;L2).

Since N ≤ T/h and p ≥ 2, summing over j = 0, 1, . . . , N , we have the assertion by Minkowski’s
inequality. �

Proof of Theorem 1.6. In view of Corollary 2.6, Theorem 1.5, and Proposition 3.2, it suffices to show that,
for any ah ∈ S(1, g) with

supp ah ∈ {(x, ξ) : 2≤ |x | ≤ 1/h, |ξ | ∈ I }

and any ε > 0, ∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq ) ≤ CT,ε‖〈H〉εϕ‖

2
L2 .

Let us consider a dyadic partition of unity:∑
1≤ j≤ jh

χ(2− j x)= 1, 2≤ |x | ≤ 1/h,

where χ ∈ C∞0 (R
d) with

suppχ ⊂ {1/2< |x |< 2}

and jh ≤ [ log(1/h)] + 1. We set
χ j (x)= χ(2− j x).

Proposition 7.4 then implies

‖χ j Oph(ah)e−i t Hϕ‖L p([−T,T ];Lq )

≤ CT ‖χ j Oph(ah)ϕ‖L2 +CT h‖ϕ‖L2 +CT (h2 j )−1/2
‖χ j Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)

+CT (h2 j )1/2‖[χ j Oph(ah), H ]e−i t Hϕ‖L2([−T,T ];L2)
.

Since 2 j−1
≤ |x | ≤ 2 j+1 and |x | ≤ 1/h on suppχ j ah , we have, for any ε ≥ 0,

(h2 j )−1/2
‖χ j Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)

≤ C‖χ j 〈x〉−1/2−εh−1/2−ε Oph(ah)e−i t Hϕ‖L2([−T,T ];L2)
.

Since {χ j ah, p} ∈ S(〈x〉−1
〈ξ〉, g), we similarly obtain

(h2 j )1/2‖χ j [Oph(ah), H ]e−i t Hϕ‖L2([−T,T ];L2)

≤ ‖χ̃ j 〈x〉−1/2−εh−1/2−ε Oph(bh)e−i t Hϕ‖L2([−T,T ];L2)
+CT h‖ϕ‖L2,

where χ̃ j (x) = χ̃(2− j x) for some χ̃ ∈ C∞0 (R
d) satisfying χ̃ ≡ 1 on [1/2, 2] and supp χ̃ ⊂ [1/4, 4],

and bh ∈ S(1, g) is supported in a neighborhood of supp ah so that bh ≡ 1 on supp ah . Summing over
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1≤ j ≤ jh and using the local smoothing effect (6-2), since p, q ≥ 2, we obtain

‖Oph(ah)e−i t Hϕ‖
2
L p([−T,T ];Lq )

≤

∑
1≤ j≤ jh

‖χ j Oph(ah)e−i t Hϕ‖
2
L p([−T,T ];Lq )

≤ CT

∑
1≤ j≤ jh

(‖χ j Oph(ah)ϕ‖
2
L2 + h‖ϕ‖2L2)

+C
∑

1≤ j≤ jh

‖χ̃ j 〈x〉−1/2−εh−1/2−ε Oph(ah + bh)e−i t Hϕ‖
2
L2([−T,T ];L2)

≤ CT ‖ϕ‖
2
L2 +C‖〈x〉−1/2−εh−1/2−ε Oph(ah + bh)e−i t Hϕ‖

2
L2([−T,T ];L2)

≤ CT,εh−2ε
‖ϕ‖2L2,

which implies∑
h

‖Oph(ah)e−i t H f (h2 H)ϕ‖
2
L p([−T,T ];Lq ) ≤ CT,ε

∑
h

h−2ε
‖ f (h2 H)ϕ‖

2
L2 ≤ CT,ε‖〈H〉ε/2ϕ‖

2
L2 .

This completes the proof. �
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