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THE NONLINEAR SCHRÖDINGER EQUATION GROUND STATES
ON PRODUCT SPACES

SUSANNA TERRACINI, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

We study the nature of the nonlinear Schrödinger equation ground states on the product spaces Rn
×Mk ,

where Mk is a compact Riemannian manifold. We prove that for small L2 masses the ground states
coincide with the corresponding Rn ground states. We also prove that above a critical mass the ground
states have nontrivial Mk dependence. Finally, we address the Cauchy problem issue, which transforms
the variational analysis into dynamical stability results.

1. Introduction

Our goal here is to study the nature of the nonlinear Schrödinger equation ground states when the problem
is posed on the product spaces Rn

×Mk , where Mk is a compact Riemannian manifold. We thus consider
the Cauchy problems {

i∂t u−1x,yu− u|u|α = 0, (t, x, y) ∈ R×Rn
x ×Mk

y ,

u(0, x, y)= ϕ(x, y),
(1-1)

where

1x,y =

n∑
j=1

∂2
x j
+1y

and 1y is the Laplace–Beltrami operator on Mk
y . Recall that the Laplace–Beltrami operator is defined in

local coordinates by
1√

det(gi, j (y))
∂yi

√
det(gi, j (y))gi, j (y)∂y j ,

where gi, j (y)= (gi, j (y))−1 and gi, j (y) is the metric tensor.
We assume that 0< α < 4/(n+ k), which corresponds to L2 subcritical nonlinearity. In this paper, we

shall study the following two questions:

• the existence and stability of solitary waves for (1-1);

• the global well-posedness of the Cauchy problem associated to (1-1).

Equation (1-1) has two (at least formal) conservation laws: the energy

En,Mk ,α(u)=
∫

Mk
y

∫
Rd

x

(
1
2
|∇x,yu|2−

1
2+α

|u|2+α
)

dx dvolMk
y
, (1-2)
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and the L2 mass,

‖u‖2L2(Rn×Mk)
=

∫
Mk

y

∫
Rn

x

|u|2 dx dvolMk
y
. (1-3)

Here we denote by dvolMk
y

the volume form on Mk . Recall that in local coordinates it can be written as√
det(gi, j (y)) dy. Moreover, the i-th component (in local coordinates) of the gradient (∇yu(y)) is

gi, j (y)∂y j u.

One has the classical Gagliardo–Nirenberg inequality

‖u‖2+αL2+α(Rn×Mk)
≤ C‖u‖θ(α)H1(Rn×Mk)

‖u‖2+α−θ(α)L2(Rn×Mk)
, (1-4)

where θ(α)= (n+ k)α/2. Thus θ(α) < 2 under our assumption 0< α < 4/(n+ k). This implies that the
conservation laws (1-2) and (1-3) imply a control on the H 1 norm which excludes an L2 self-focusing
blow-up, and thus one expects that (1-1) has well defined global dynamics. This problem seems quite
delicate for a general Mk . However, if we replace Mk with Rk , it is well known (see [Tsutsumi 1987;
Cazenave 2003] and the references therein) that (1-1) has a global strong solution for every L2(Rn+k)

initial data.
Our argument to construct stable solutions to (1-1) follows the one proposed in [Cazenave and Lions

1982]. Hence we shall look at the following minimization problems:

K ρ

n,Mk ,α
= inf

u∈H1(Rn
×Mk)

‖u‖L2(Rn×Mk )=ρ

En,Mk ,α(u) (1-5)

and En,Mk ,α(u) is defined in (1-2). In the following we shall use the notation

M
ρ

n,Mk ,α
= {v ∈ H 1(Rn

×Mk) : ‖v‖L2(Rn×Mk) = ρ and En,Mk ,α(v)= K ρ

n,Mk ,α
}. (1-6)

The first result we state concerns the compactness of minimizing sequences to (1-5).

Theorem 1.1. Let Mk be a compact manifold and 0< α < 4/(n+ k). Then

K ρ

n,Mk ,α
>−∞ and M

ρ

n,Mk ,α
6=∅ for all ρ > 0. (1-7)

Also, for any sequence u j ∈ H 1(Rn
×Mk) such that ‖u j‖L2(Rn×Mk) = ρ and lim

j→∞
En,Mk ,α(u j )= K ρ

n,Mk ,α
,

there exists a subsequence u jl and τl ∈ Rn
x such that

u jl (x + τl, y) converges in H 1(Rn
×Mk). (1-8)

The proof of Theorem 1.1 is based on the concentration compactness principle which will be given in
the Appendix. Also, the following stability theorem follows from a standard argument, hence its classical
proof will be recalled in the Appendix.

Theorem 1.2. Let ρ > 0 be fixed and n,Mk, α as in Theorem 1.1. Assume moreover that

the Cauchy problem (1-1) is globally well posed for any data ϕ ∈U, (1-9)
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where U is an H 1(Rn
×Mk)-neighborhood of M

ρ

n,Mk ,α
. Then the set M

ρ

n,Mk ,α
is orbitally stable; that is,

for all ε > 0, there exists δ = δ(ε) > 0 such that, for any ϕ ∈U with infv∈M
ρ

n,Mk ,α
‖ϕ−v‖H1(Rn×Mk) < δ(ε),

we have

sup
t∈R

inf
v∈M

ρ

n,Mk ,α

‖uϕ(t)− v‖H1(Rn×Mk) < ε,

where uϕ(t, x, y) is the unique global solution to (1-1).

Let us emphasize that the stability result stated in Theorem 1.2 has two major defaults: the first
one is that we don’t have an explicit description of the minimizers M

ρ

n,Mk ,α
; the second one is that it

is subordinated to (1-9), that is, the global well-posedness of the Cauchy problem (1-1). The main
contributions of this paper concern a partial understanding of the aforementioned questions.

Notice that [Cazenave 2003] a special family of solutions to (1-1) is given by

u(t, x, y)= e−iωt un,ω,α(x),

where ω > 0 and un,ω,α(x) is defined as the unique radial solution to

−1x un,ω,α +ωun,ω,α = un,ω,α|un,ω,α|
α, un,ω,α ∈ H 1(Rn

x), un,ω,α(x) > 0, x ∈ Rn
x . (1-10)

Next, we set
Nn,ω,α = {eiθun,ω,α(x + τ) : τ ∈ Rn, θ ∈ R}. (1-11)

Notice that there is a natural embedding H 1(Rn
x)⊂ H 1(Rn

x ×Mk
y ). In fact, every function in H 1(Rn

x) can
be extended in a trivial way with respect to the y variable on Rn

x ×Mk
y , and this extension will belong to

H 1(Rn
×Mk). In particular, since now the set Nn,ω,α defined in (1-11) will be considered without any

further comment both as a subset of H 1(Rn
x) and as a subset of H 1(Rn

x ×Mk
y ), by a rescaling argument,

one can prove that the function

(0,∞) 3 ω→‖un,ω,α‖
2
L2(Rn

x )
∈ (0,∞)

is strictly increasing for any 0< α < 4/n and

lim
ω→∞

‖un,ω,α‖L2(Rn
x )
=∞ and lim

ω→0
‖un,ω,α‖L2(Rn

x )
= 0.

As a consequence, for any fixed 0< α < 4/n, we have

for all ρ > 0 there exists a unique ω(ρ) > 0 such that ‖un,ω(ρ),α‖L2(Rn
x )
= ρ. (1-12)

In the next theorem, the set Nn,ω,α is the one defined in (1-11) and M
ρ

n,Mk ,α
is defined in (1-6).

Theorem 1.3. Let n,Mk, α be as in Theorem 1.2. There exists ρ∗ ∈ (0,∞) such that

M
ρ

n,Mk ,α
= N

n,ω(ρ/
√

vol(Mk)),α
for all ρ < ρ∗ (1-13)

and

M
ρ

n,Mk ,α
∩N

n,ω(ρ/
√

vol(Mk)),α
=∅ for all ρ > ρ∗, (1-14)
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where ω
(
ρ/
√

vol(Mk)
)

is uniquely defined in (1-12). In particular for ρ > ρ∗ the elements of M
ρ

n,Mk ,α

depend in a nontrivial way on the Mk variable.

By the approach of Weinstein [1986] one may expect that Nn,ω,α is stable under (1-1) for α < 4/n
and ω small enough; see [Rousset and Tzvetkov 2012] for a recent related work. It should however be
pointed out that in such a stability result one would not get the variational description of Nn,ω,α as is the
case in Theorem 1.3 (α < 4/(n+ k)). We underline that, by combining Theorem 1.2 and Theorem 1.3,
we get a stable set for large values of the mass ρ, and in general it is independent of the solitary waves
associated to the nonlinear Schrödinger equation in Rn .

Next we shall focus on the question of the global well-posedness of the Cauchy problem associated to
(1-1) in the particular case n ≥ 1, k = 1. For every n > 1 we fix the numbers

p := p(n, α)=
4(2+α)

nα
and q := q(n, α)= 2+α,

and for every T > 0 we define the localized norms

‖u(t, x, y)‖XT ≡ ‖u(t, x, y)‖L p((−T,T );Lq (Rn
x ;H1(M1

y ))
(1-15)

and

‖u(t, x, y)‖YT ≡ ‖∇x u‖L p((−T,T );Lq (Rn
x ;L2(M1

y ))
. (1-16)

Theorem 1.4. Let n ≥ 1 be fixed and α < 4/(n+ 1). Then, for every initial data ϕ ∈ H 1(Rn
×M1), the

Cauchy problem (1-1) has a unique global solution u(t, x, y) satisfying

u(t, x, y) ∈ C((−T, T ); H 1(Rn
×M1))∩ XT ∩ YT for all T > 0.

Remark 1.5. The main difficulty in the analysis of the Cauchy problem (1-1) (compared with the Cauchy
problem in the euclidean space) is related to the fact that the propagator e−i t1x,y on Rn

×M1
y does not satisfy

the Strichartz estimates which are available for the propagator e−i t1
Rn+k on the euclidean space Rn+k .

Let us now describe some other known cases when (1-1) is well posed in H 1(Rn
× Mk) under the

assumption α < 4/(n+ k). Using the analysis of [Burq et al. 2004; Burq et al. 2003], one may prove
such a well-posedness result in the case R×M2, that is, n = 1 and k = 2. Moreover, using the analysis
of [Herr et al. 2010; Ionescu and Pausader 2012], one may also prove such a well-posedness result in the
cases R2

×T2 and R×T3, respectively.

Notation. Next we fix some notations. We denote by L p
x and H s

x the spaces L p(Rn
x) and H s(Rn

x),
respectively. We also use the notation L p

x,y = L p(Rn
x ×Mk

y ) and L p
x Lq

y = L p(Rn
x ; L

q(Mk
y )). If v(t) is a

time dependent function defined on Rt and valued in a Banach space X , we define

‖v‖
p
L p

t (X)
=

∫
R

‖v(t)‖p
X dt.

For every p ∈ [1,∞] we denote by p′ ∈ [1,∞] its conjugate Hölder exponent. We denote by e−i t1x,y the
free propagator associated to the Schrödinger equation on Rn

x ×Mk
y .
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2. Some useful results on the euclidean space Rn
x with n ≥ 1

In this section we recall some well-known facts (see [Cazenave 2003]) related to the following minimization
problem on Rn

x :
I ρn,α = inf

u∈H1
x

‖u‖L2
x
=ρ

En,α(u), (2-1)

where, for α < 4/n,

En,α(u)=
1
2

∫
Rn

x

|∇x u|2 dx −
1

2+α

∫
Rn

x

|u|2+α dx . (2-2)

By an elementary rescaling argument we have

I ρn,α = ρ
(8+4α−2αn)/(4−αn) I 1

n,α. (2-3)

It is well known that
−∞< I ρn,α < 0, for all ρ > 0, (2-4)

and
Mρ

n,α = Nn,ω(ρ),α, (2-5)

where Nn,ω,α is defined in (1-11),

Mρ
n,α = {u ∈ H 1

x |‖u‖L2
x
= ρ and En,α(u)= I ρn,α} (2-6)

and ω(ρ) is defined uniquely (see (1-12)) by the relation

‖un,ω(ρ),α‖L2
x
= ρ.

We also recall that the functions un,ω,α (defined as the unique radially symmetric and positive solution to
(1-10)) satisfy the following Pohozaev type identity (for a proof of (2-7) see the proof of (3-21) in the
next section): ∫

Rn
x

|∇x un,ω,α|
2 dx =

αn
2(α+ 2)

∫
Rn

x

|un,ω,α|
2+α dx . (2-7)

On the other hand, if we multiply (1-10) by un,ω,α and integrate by parts, we get∫
Rn

x

|∇x un,ω,α|
2 dx +ω‖un,ω,α‖

2
L2

x
=

∫
Rn

x

|un,ω,α|
2+α dx,

which, in conjunction with (2-7), gives

ω‖un,ω,α‖
2
2 =

2α+4−αn
αn

∫
Rn

x

|∇x un,ω,α|
2 dx

=
4α+8−2αn
αn−4

(
1
2

∫
Rn

x

|∇x un,ω,α|
2 dx − 1

2+α

∫
Rn

x

|un,ω,α|
2+α dx

)
=

4α+8−2αn
αn−4

I
‖un,ω,α‖L2

x
n,α (2-8)
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(in the last step we have used the fact that due to (2-5) we have that un,ω,α is a minimizer for En,α on its
associated constrained).

Finally notice that by (2-7) we deduce

I
‖un,ω,α‖L2

x
n,α = En,α(un,ω,α)=

αn− 4
2αn

∫
Rn

x

|∇x un,ω,α|
2 dx . (2-9)

3. An auxiliary problem

In this section we study the minimizers of the minimization problems

Jn,Mk ,α,λ = inf
u∈H1(Rn

×Mk)
‖u‖L2

x,y
=1

En,Mk ,α,λ(u), (3-1)

where

En,Mk ,α,λ(u)=
∫

Mk
y

∫
Rn

x

(
λ

2
|∇yu|2+ 1

2 |∇x u|2−
1

2+α
|u|2+α

)
dx dvolMk

y
.

We also introduce the sets

Mn,Mk ,α,λ = {w ∈ H 1(Rn
×Mk) : ‖w‖L2

x,y
= 1 and En,Mk ,α,λ(w)= Jn,Mk ,α,λ}.

Theorem 3.1. Let n,Mk , and 0< α < 4/(n+ k) be given. There exists λ∗ ∈ (0,∞) such that

Mn,Mk ,α,λ = Nn,ω̄,α for all λ > λ∗ (3-2)

and

Mn,Mk ,α,λ ∩Nn,ω̄,α =∅ for all λ < λ∗, (3-3)

where ω̄ is defined by the condition

vol(Mk)‖un,ω̄,α‖
2
L2

x
= 1.

We fix a sequence λ j →∞ and a corresponding sequence of functions uλ j ∈Mn,Mk ,α,λ j . In the sequel
we shall assume that

uλ j (x, y)≥ 0 for all (x, y) ∈ Rn
x ×Mk

y . (3-4)

Indeed, it is well known that if uλ j is a minimizer, |uλ j | is also a minimizer. In particular there exists at
least one minimizer which satisfies (3-4).

Notice that the functions uλ j depend in principle on the full set of variables (x, y). Our aim is to prove
that, for j large and up to subsequence, the functions uλ j will not depend explicitly on the variable y.

First we prove some a priori bounds satisfied by uλ j (x, y). Recall that the quantities I ρn,α are defined
in (2-1).

Lemma 3.2. Make the same assumptions as in Theorem 3.1. Then we have

lim
j→∞

Jn,Mk ,α,λ j = vol(Mk)I
1/
√

vol(Mk)
n,α (3-5)
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and

lim
j→∞

λ j

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
= 0. (3-6)

Proof. First notice that

Jn,Mk ,α,λ j ≤ vol(Mk)I
1/
√

vol(Mk)
n,α . (3-7)

In fact, let w(x) ∈ H 1
x be such that ‖w‖L2

x
= 1/

√
vol(Mk) and En,α(w) = I

1/
√

vol(Mk)
n,α . Then we easily

get

Jn,Mk ,α,λ j ≤ En,Mk ,α,λ j (w(x))= vol(Mk)

(
1
2

∫
Rn

x

|∇xw|
2 dx −

1
2+α

∫
Rn

x

|w|2+α dx
)

= vol(Mk)I
1/
√

vol(Mk)
n,α ,

which concludes the proof of (3-7).
Next we claim that

lim
j→∞

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
= 0. (3-8)

Assume for a contradiction that this is false. Then there exists a subsequence of λ j (that we still denote
by λ j ) such that

lim
j→∞

λ j =∞ and
∫

Mk
y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
≥ ε0 > 0,

and, in particular,

lim
j→∞

(λ j − 1)
∫

Mk
y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
=∞. (3-9)

On the other hand, by the classical Gagliardo–Nirenberg inequality (see (1-4)) we deduce the existence
of 0< µ< 2 such that

1
2

∫
Mk

y

∫
Rn

x

(|∇yv|
2
+ |∇xv|

2
+ |v|2) dx dvolMk

y
−

1
2+α

∫
Mk

y

∫
Rn

x

|v|2+α dx dvolMk
y

≥
1
2

∫
Mk

y

∫
Rn

x

(|∇yv|
2
+ |∇xv|

2
+ |v|2) dx dvolMk

y
−C

[∫
Mk

y

∫
Rn

x

(|∇yv|
2
+ |∇xv|

2
+ |v|2) dx dvolMk

y

]µ
≥ inf

t>0
(1/2t2

−Ctµ)= C(µ) >−∞

for all v ∈ H 1(Rn
×Mk) such that ‖v‖L2

x,y
= 1. By the previous inequality we get

En,Mk ,α,λ j (v)−
1
2(λ j − 1)

∫
Mk

y

∫
Rn

x

|∇yv|
2
≥−

1
2 +C(µ)

for all v ∈ H 1(Rn
×Mk) such that ‖v‖L2

x,y
= 1. In particular, if we choose v = uλ j , we get

Jn,Mk ,α,λ j = En,Mk ,α,λ j (uλ j )≥
1
2(λ j − 1)

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
−

1
2 +C(µ).
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By (3-9) this implies limn→∞ Jn,Mk ,α,λ j =∞, which is in contradiction with (3-7). Hence (3-8) is proved.
Next we introduce the functions

w j (y)= ‖uλ j (x, y)‖2L2
x
.

Notice that
‖w j (y)‖L1

y
= 1 (3-10)

and, moreover, ∫
Mk

y

|∇yw j (y)| dvolMk
y
≤ C

∫
Mk

y

∫
Rn

x

|uλ j (x, y)||∇yuλ j (x, y)| dx dvolMk
y

≤ C‖uλ j‖L2
x,y
‖∇yuλ j‖L2

x,y
.

Hence, due to (3-8), we get
lim

j→∞
‖∇yw j‖L1

y
= 0. (3-11)

By combining (3-10) and (3-11) with the Rellich compactness theorem and with the Sobolev embedding
W 1,1(M1)⊂ L∞(M1) and W 1,1(M2)⊂ L2(M2), we deduce in the cases k = 1 and k = 2 that (up to a
subsequence)

lim
j→∞
‖w j (y)− 1/ vol(M1)‖Lr

y
= 0 for all 1≤ r <∞ (3-12)

and
lim

j→∞
‖w j (y)− 1/ vol(M2)‖Lr

y
= 0 for all 1≤ r < 2, (3-13)

respectively. For k > 2 we use the Sobolev embedding H 1(Mk)⊂ L2k/(k−2)(Mk) and we get

sup
j
‖uλ j‖L2

x L2k/(k−2)
y

≤ C sup
j
‖uλ j‖L2

x H1(Mk
y )
<∞

(where in the last step we have used the fact that sup j (‖uλ j‖L2
x,y
+‖∇yuλ j‖L2

x,y
) <∞). By the Minkowski

inequality the bound above implies sup j ‖uλ j‖L2k/(k−2)
y L2

x
, which is equivalent to the condition

sup
j
‖w j (y)‖Lk/(k−2)

y
<∞ for k > 2. (3-14)

By combining (3-10) and (3-11) with the Rellich compactness theorem, we deduce that up to a subsequence

‖w j (y)− 1/ vol(Mk)‖L1
y
= 0 for k > 2,

and hence, by interpolation with (3-14), we get

‖w j (y)− 1/ vol(Mk)‖Lr
y
= 0 for k > 2, 1≤ r < k/(k− 2). (3-15)

By the definition of I ρn,α (see (2-1)) and (2-3) we get

1
2

∫
Rn

x

|∇x uλ j (x, y)|2 dx −
1

2+α

∫
Rn

x

|uλ j (x, y)|2+α dx

≥ I
‖uλ j ( · ,y)‖L2

x
n,α = I 1

n,α‖uλ j ( · , y)‖(8+4α−2αn)/(4−αn)
L2

x
= I 1

n,αw j (y)(4+2α−αn)/(4−αn) (3-16)
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for all y ∈ Mk and all j ∈ N. Next notice that, by definition,

Jn,Mk ,α,λ j = En,Mk ,α,λ j (uλ j )

=
1
2

∫
Mk

y

∫
Rn

x

(λ j |∇yuλ j |
2
+ |∇x uλ j |

2) dx dy−
1

2+α

∫
Mk

y

∫
Rn

x

|u|2+α dx dvolMk
y
, (3-17)

and we can continue

· · · ≥

∫
Mk

y

(
1
2

∫
Rn

x

|∇x uλ j (x, y)|2 dx −
1

2+α

∫
Rn

x

|uλ j (x, y)|2+α dx
)

dvolMk
y

≥ I 1
n,α

∫
Mk

y

w j (y)(4+2α−αn)/(4−αn) dvolMk
y

= I 1
n,α vol(Mk) vol(Mk)−(4+2α−αn)/(4−αn)

+ o(1), (3-18)

where o(1)→ 0 as j→∞ and in the last step we have combined (3-12), (3-13), and (3-15) for k = 1,
k = 2, and k > 2, respectively, and we used our assumption on α. By combining this fact with (2-3), we
have

lim inf
j→∞

Jn,Mk ,α,λ j ≥ vol(Mk)I
1/
√

vol(Mk)
n,α . (3-19)

Hence (3-5) follows by combining (3-7) with (3-19).
Next we prove (3-6). For that purpose, it suffices to keep the term λ j |∇yuλ j |

2 in the previous analysis.
Namely, by combining (3-5) with (3-17) and (3-18), we get

vol(Mk)I
1/
√

vol(Mk)
n,α + g( j)≥ 1

2λ j

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
+ h( j), (3-20)

where

lim
j→∞

g( j)= 0 and lim inf
j→∞

h( j)≥ vol(Mk)I
1/
√

vol(Mk)
n,α .

Hence (3-6) follows by (3-20). �

Lemma 3.3. We have the identity∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
=

αn
2(2+α)

∫
Mk

y

∫
Rn

x

|uλ j |
2+α dx dvolMk

y
. (3-21)

Moreover, there exist J ∈ N such that for all j > J there exists ω(λ j ) > 0 such that

−λ j1yuλ j −1x uλ j +ω(λ j )uλ j = uλ j |uλ j |
α, (3-22)

and the following limit exists:
lim

j→∞
ω(λ j )= ω̄ ∈ (0,∞). (3-23)

Proof. Since uλ j is a constrained minimizer for En,Mk ,α,λ j on the ball of size 1 in L2(Rn
×Mk), we get

d
dε
[En,Mk ,α,λ j (ε

n/2uλ j (εx, y)]ε=1 = 0,
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which is equivalent to

d
dε

[
1
2λ j

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
+

1
2ε

2
∫

Mk
y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
−

1
2+α

εαn/2
‖uλ j‖

2+α
L2+α

x,y

]
ε=1
= 0.

By computing explicitly the derivative (in ε), we deduce (3-21).
Next notice that by using the Lagrange multiplier technique we get (3-22) for a suitable ω(λ j ) ∈ R.

On the other hand, by (3-22), we get∫
Mk

y

∫
Rn

x

(λ j |∇yuλ j |
2
+ |∇x uλ j |

2) dx dvolMk
y
+ω(λ j )‖uλ j‖

2
L2

x,y
=

∫
Mk

y

∫
Rn

x

|uλ j |
2+α dx dvolMk

y
,

which, by (3-21), gives

ω(λ j )=
−αn+ 4+ 2α

αn

∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
− λ j

∫
Mk

y

∫
Rn

x

|∇yuλ j |
2 dx dvolMk

y
,

and hence, by (3-6), we get

ω(λ j )=
−αn+ 4+ 2α

αn

∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
+ o(1), (3-24)

where lim j→∞ o(1)= 0.
On the other hand, notice that, by (3-21), we get

Jn,Mk ,α,λ j = En,Mk ,α,λ j (uλ j )=
αn− 4

2αn

∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
+

1
2

∫
Mk

y

∫
Rn

x

λ j |∇yuλ j |
2 dx dvolMk

y
,

and by (3-6) ∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
=

2αn
αn− 4

Jn,Mk ,α,λ j + o(1). (3-25)

By (3-5) this implies∫
Mk

y

∫
Rn

x

|∇x uλ j |
2 dx dvolMk

y
=

2αn
αn− 4

vol(Mk)I
1/
√

vol(Mk)
n,α + o(1), (3-26)

which, in conjunction with (3-24) and (2-4), implies ω(λ j ) > 0 for j large enough. Moreover, (3-23)
follows by (3-24) and (3-26). �

Next recall that the sets M
ρ
n,α are the ones defined in (2-6).

Lemma 3.4. Let ω̄ be as in (3-23) and let v(x) ∈M
1/
√

vol(Mk)
n,α be such that v(x) > 0. Then

−1xv+ ω̄v = v|v|
α.

Proof. It is well known that

−1xv+ω1v = v|v|
α
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for a suitable ω1 > 0. More precisely, we can assume that up to translation v = un,ω1,α. Our aim is to
prove that ω1 = ω̄. Notice that, by (2-8),

ω1
1

vol(Mk)
=

4α+ 8− 2αn
αn− 4

I
‖v‖L2

x
n,α =

4α+ 8− 2αn
αn− 4

I
1/
√

vol(Mk)
n,α . (3-27)

On the other hand, by (3-24) and (3-26), we get

ω(λ j )=
−2αn+ 8+ 4α

αn− 4
vol(Mk)I

1/
√

vol(Mk)
n,α + o(1),

and hence, passing to the limit in j , we get

ω̄ =
−2αn+ 8+ 4α

αn− 4
vol(Mk)I

1/
√

vol(Mk)
n,α . (3-28)

By combining (3-27) and (3-28), we get ω̄ = ω1. �

Lemma 3.5. There exist a subsequence of λ j (that we shall denote still by λ j ) and a sequence τj ∈ Rn
x

such that
lim

j→∞
‖uλ j (x + τj , y)− uω̄‖H1(Rn×Mk) = 0,

where uω̄ ∈ Nn,ω̄,α, uω̄ > 0 and ω̄ is defined in (3-23).

Proof. By combining (3-6) and (3-26), and since ‖uλ j‖L2
x,y
= 1, we deduce that uλ j is bounded in

H 1(Rn
×Mk). Moreover, by combining (3-5) with the fact that I

1/
√

vol(Mk)
n,α < 0 (see (2-4)), we get

inf
j
‖uλ j‖L2+α

x,y
> 0.

By using the localized version of the Gagliardo–Nirenberg inequality (A-5) (in the same spirit as in the
Appendix), we get the existence (up to subsequence) of τj ∈ Rn

x such that

uλ j (x + τj , y) ⇀ w 6= 0 in H 1(Rn
×Mk).

Moreover, due to (3-4), we can assume that

w(x, y)≥ 0 a.e. in (x, y) ∈ Rn
x ×Mk

y ,

and by (3-6) we get ∇yw = 0. In particular w is y-independent.
By combining (3-6) and (3-23), we pass to the limit in (3-22) in the distribution sense, and we get

−1xw+ ω̄w = w|w|
α in Rn

x , w(x)≥ 0, w 6= 0. (3-29)

We claim that

‖w‖L2
x
=

1√
vol(Mk)

. (3-30)

If not, we can assume ‖w‖L2
x
= β < 1/

√
vol(Mk), and since w solves (3-29) by (2-5), we get

w ∈Mβ
n,α. (3-31)
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On the other hand, by Lemma 3.4, (3-29) is satisfied by any v ∈M
1/
√

vol(Mk)
n,α . Hence, again by (2-5) and

by the injectivity of the map ρ→ ω(ρ) (see (1-12)), we deduce that, necessarily, β = 1/
√

vol(Mk).
In particular, by (3-30), we deduce

lim
j→∞
‖uλ j (x + τj , y)−w‖L2

x,y
= 0.

Next notice that, by (3-6) and since we have already proved that ∇yw = 0, we can deduce that

lim
j→∞
‖∇yuλ j (x + τj , y)‖L2

x,y
= 0= ‖∇yw‖L2

x,y
.

Hence, in order to conclude that uλ j (x + τj , y) converges strongly to w in H 1(Rn
×Mk), it is sufficient

to prove that

lim
j→∞
‖∇x uλ j (x + τj , y)‖L2

x,y
=

√
vol(Mk)‖∇xw‖L2

x
= ‖∇xw‖L2

x,y
.

This last fact follows by combining (2-9) (where we use the fact that w ∈ Nn,ω̄,α by (3-29) and ‖w‖L2
x
=

1/
√

vol(Mk) by (3-30)) and (3-26). �

Lemma 3.6. There exists j0 > 0 such that

∇yuλ j = 0 for all j > j0.

Proof. By Lemma 3.5 we can assume that

uλ j → uω̄ in H 1(Rn
×Mk). (3-32)

We introduce w j =
√
−1yuλ j . Notice that due to (3-22) the functions w j satisfy

−λ j1yw j −1xw j +ω(λ j )w j =
√
−1y(uλ j |uλ j |

α), (3-33)

which, after multiplication by w j , implies∫
Mk

y

∫
Rn

x

[λ j |∇yw j |
2
+ |∇xw j |

2
+ω(λ j )|w j |

2
−
√
−1y(uλ j |uλ j |

α)w j ] dx dvolMk
y
= 0. (3-34)

In turn this gives

0=
∫

Mk
y

∫
Rn

x

(λ j − 1)|∇yw j |
2
− (α+ 1)

√
−1y(uλ j |uω̄|

α)w j dx dvolMk
y

+

∫
Mk

y

∫
Rn

x

(|∇yw j |
2
+ |∇xw j |

2
+ ω̄|w j |

2
+
√
−1y(uλ j ((α+ 1)|uω̄|α − |uλ j |

α))w j dx dvolMk
y

+

∫
Mk

y

∫
Rn

x

(ω(λ j )− ω̄)|w j |
2 dx dy ≡ Ij + IIj + IIIj . (3-35)

Next we fix an orthonormal basis of eigenfunctions for −1y , that is, −1yϕk = µkϕk and ϕ0 = const.
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We can write the following development:

w j (x, y)=
∑

k∈N\{0}

a j,k(x)ϕk(y) (3-36)

(where the eigenfunction ϕ0 does not enter in the development). By using the representation in (3-36), we
get

Ij ≥
∑
k 6=0

(λ j − 1)|µk |
2
∫

Rn
x

|a j,k(x)|2 dx − (α+ 1)
∑
k 6=0

∫
Rn

x

|uω̄(x)|α|a j,k(x)|2 dx, (3-37)

and by (3-23) we get
IIIj = o(1)‖w j‖

2
L2

x,y
. (3-38)

By combining (3-37) with (3-38), we get

Ij + IIIj ≥ 0 (3-39)

for j large enough. In order to estimate IIj , notice that, by the Cauchy–Schwartz inequality, we get∣∣∣∣∫
Mk

y

∫
Rn

x

√
−1y(uλ j ((α+ 1)|uω̄|α − |uλ j |

α))w j dx dvolMk
y

∣∣∣∣
≤ ‖

√
−1y(uλ j ((α+ 1)|uω̄|α − |uλ j |

α))‖L2(n+k)/(n+k+2)
x L2(n+k)/(n+k+2)

y
‖w j‖L2(n+k)/(n+k−2)

x,y

≤ C‖∇y(uλ j ((α+ 1)|uω̄|α − |uλ j |
α))‖L2(n+k)/(n+k+2)

x L2(n+k)/(n+k+2)
y

‖w j‖L2(n+k)/(n+k−2)
x,y

,
(3-40)

where in the last step we have used the following estimate: for all p ∈ (1,∞) there exist c(p),C(p) > 0
such that

c(p)‖
√
−1y f ‖L p

y
≤ ‖∇y f ‖L p

y
≤ C(p)‖

√
−1y f ‖L p

y
. (3-41)

Indeed, using [Sogge 1993, Theorem 3.3.1], we have that
√
−1y is a first-order classical pseudodifferential

operator on M with a principal symbol (gi, j (y)ξi ξ j )
1/2. Observe that

C1
∑
i, j

gi, j (y)ξi ξ j ≤
∑

i

∣∣∣∣∑
j

gi, j (y)ξ j

∣∣∣∣2 ≤ C2|ξ |
2
≤ C3

∑
i, j

gi, j (y)ξi ξ j .

Moreover, one can assume that in (3-41) f has no zero frequency. Then one can deduce (3-41) by working
in local coordinates, introducing a classical angular partition of unity according to the index l ∈ [1, . . . , k]
such that ∑

i, j

gi, j (y)ξi ξ j ≤ c
∣∣∣∣∑

j

gl, j (y)ξ j

∣∣∣∣2,
and, most importantly, using the L p boundedness of zero-order pseudodifferential operators on Rk (for
the proof of this fact we refer to [Sogge 1993, Theorem 3.1.6]).

Next, by the chain rule, we get

∇y
(
uλ j ((α+ 1)|uω̄|α − |uλ j |

α)
)
= (α+ 1)∇yuλ j (|uω̄|

α
− |uλ j |

α),
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and by the Hölder inequality we can continue the estimate (3-40):

· · · ≤ C
∥∥‖∇yuλ j‖Lq

y
‖|uω̄|α − |uλ j |

α
‖Lr

y

∥∥
L2(n+k)/(n+k+2)

x
‖w j‖L2(n+k)/(n+k−2)

x,y
,

where
1
q
+

1
r
=

n+ k+ 2
2(n+ k)

,

and, again by the Hölder inequality in the x-variable, we can continue

· · · ≤ C‖∇yuλ j‖Lq
x,y
‖|uω̄|α − |uλ j |

α
‖Lr

x,y
‖w j‖L2(n+k)/(n+k−2)

x,y
.

Notice that if we fix

q =
2(n+ k)
n+ k− 2

and r =
n+ k

2
,

then, by combining the Sobolev embedding

H 1
x,y ⊂ L2(n+k)/(n+k−2)

x,y (3-42)

with (3-32) and (3-41), we can continue the estimate:

· · · ≤ o(1)‖
√
−1yuλ j‖Lq

x,y
‖w j‖H1

x,y
= o(1)‖w j‖

2
H1

x,y
,

where lim j→∞ o(1)= 0. By combining this information in conjunction with the structure of IIj , we get

IIj ≥ ‖w j‖
2
H1

x,y
(1− o(1))≥ 0 for j > j0. (3-43)

By combining (3-35), (3-39), and (3-43), we deduce w j = 0 for j large enough. �

Proof of Theorem 3.1. By using the diamagnetic inequality, we deduce that (up to a remodulation factor
eiθ ) we can assume that v ∈Mn,Mk ,α,λ is real valued. Moreover, if v ∈Mn,Mk ,α,λ, then also |v| ∈Mn,Mk ,α,λ.
By a standard application of the strong maximum principle, we finally deduce that it is not restrictive to
assume that v ∈Mn,Mk ,α,λ and v(x, y) > 0 for all (x, y) ∈ Rn

x ×Mk
y .

First step: there exists λ̃ > 0 such that for all v ∈Mn,Mk ,α,λ, v(x, y)> 0 we have ∇yv= 0 for all λ> λ̃. As-
sume that the conclusion is false. Then there exists λ j→∞ such that uλ j (x, y)∈Mn,Mk ,α,λ j , uλ j (x, y) >
0 and ∇yuλ j 6= 0. This is absurd due to Lemma 3.6.

Second step: conclusion. We define

λ∗ = inf
λ
{λ > 0 : ∇yv = 0 for all v ∈Mn,Mk ,α,λ}.

By the first step, λ∗ <∞. Moreover, it is easy to deduce that if λ > λ∗, the minimizers of the problem
Jn,Mk ,α,λ are precisely the same minimizers as those of the problem I 1/

√
vol(Mk)

n,α , which in turn are
characterized in Section 2 (hence we get (3-2)).

Next we prove that λ∗ > 0. It is sufficient to show that

lim
λ→0

Jn,Mk ,α,λ < vol(Mk)I
1/
√

vol(Mk)
n,α (3-44)
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(see (2-1) and (3-1) for a definition of the quantities involved in the inequality above). Let us fix
ρ(y) ∈ C∞(Mk) such that ∫

Mk
|ρ|2 dvolMk

y
= 1

and ρ2(y0) 6= 1/vol(Mk) for some y0 ∈ Mk (that is, ρ(y) is not identically constant). Then we introduce
the functions

ψ(x, y)= ρ(y)4/(4−αn)Q(ρ(y)
2α

4−αn x),

where Q(x) is the unique radially symmetric minimizer for I
1/
√

vol(Mk)
n,α . Then we get

‖ψ(x, y)‖2L2
x
= (ρ(y))2 and En,α(ψ(x, y))= I 1

n,α(ρ(y))
8+4α−2αn
(4−αn)

,

and, as a consequence, we deduce∫
Mk

y

∫
Rn

x

(
1
2
|∇xψ(x, y)|2−

1
2+α

|ψ(x, y)|2+α
)

dx dvolMk
y

= I 1
n,α

∫
Mk

y

(ρ(y))
8+4α−2αn

4−αn d volMk
y

< I 1
n,α

(∫
Mk
(ρ(y))2 dvolMk

y

)4−αn+2α
4−αn

vol(Mk)
−

2α
4−αn
= I 1

n,α vol(Mk)
−

2α
4−αn

,

where in the last inequality we have used the fact that I 1
n,α < 0 in conjunction with the Hölder inequality

(moreover, we get the inequality < since by hypothesis ρ(y) is not identically constant). As a byproduct
we get

lim
λ→0

En,Mk ,α,λ(ψ(x, y)) < I 1
n,α vol(Mk)−2α/(4−αn)

= vol(Mk)I
1/
√

vol(Mk)
n,α

(where we have used (2-3)), which in turn implies (3-44).
Let us finally prove (3-3). It is sufficient to show that if v ∈ Mn,Mk ,α,λ for λ < λ∗, then ∇yv 6= 0.

Assume for a contradiction that this is false. Then we get λ1 <λ
∗ and v1 ∈Mn,Mk ,α,λ1 such that ∇yv1 = 0.

Arguing as above implies that

Jn,Mk ,α,λ1 = vol(Mk)I
1/
√

vol(Mk)
n,α . (3-45)

On the other hand, by the definition of λ∗, there exists λ2 ∈ (λ1, λ
∗
] and v2 ∈Mn,Mk ,α,λ2 such that ∇yv2 6= 0.

As a consequence, we deduce that

Jn,Mk ,α,λ1 < En,Mk ,α,λ2(v2)= Jn,Mk ,α,λ2 ≤ vol(Mk)I
1/
√

vol(Mk)
n,α ,

where in the last step we have used (3-7). Hence we get a contradiction with (3-45). �
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4. Proof of Theorem 1.3

The homogeneity of the euclidean space Rn will play a key role in the sequel. Due to this property we
shall be able to reduce the proof of Theorem 1.3 to the problem studied in the previous section.

In view of Section 2 it is sufficient to prove that there exists ρ∗ > 0 such that

v ∈M
ρ

n,Mk ,α
implies ∇yv = 0 for ρ < ρ∗ (4-1)

and
v ∈M

ρ

n,Mk ,α
implies ∇yv 6= 0 for ρ > ρ∗. (4-2)

By an elementary computation, we have that the map

S1 3 u→ ρ4/(4−αn)u(ρ2α/(4−αn)x, y) ∈ Sρ,

where
Sλ = {v ∈ H 1(Rn

×Mk) : ‖v‖L2
x,y
= λ}

is a bijection. Moreover, we have

En,Mk ,α

(
ρ4/(4−αn)u(ρ2α/(4−αn)x, y)

)
= ρ(8−2αn)/(4−αn)

∫
Mk

y

∫
Rn

x

|∇yu|2 dx dvolMk
y
+ ρ(8−2αn+4α)/(4−αn)

∫
Mk

y

∫
Rn

x

|∇x u|2 dx dvolMk
y

− ρ(8−2αn+4α)/(4−αn) 1
2+α

∫
Mk

y

∫
Rn

x

|u|2+α dx dvolMk
y

= ρ(8−2αn+4α)/(4−αn)
(

1
2
ρ−4α/(4−αn)

∫
Mk

y

∫
Rn

x

|∇yu|2 dx dvolMk
y

+
1
2

∫
Mk

y

∫
Rn

x

|∇x u|2−
1

2+α
|u|2+4/d dx dvolMk

y

)
.

In particular, (4-1) and (4-2) are satisfied provided that there exists ρ∗ > 0 such that

v ∈Mn,Mk ,α,ρ−4α/(4−αn) implies ∇yv = 0 for ρ < ρ∗ (4-3)

and
v ∈Mn,Mk ,α,ρ−4α/(4−αn) implies ∇yv 6= 0 for ρ > ρ∗, (4-4)

which in turn follow by Theorem 3.1.

5. Proof of Theorem 1.4

The main tool we use is the following Strichartz type estimate (whose proof follows by [Tzvetkov and
Visciglia 2012]).

Proposition 5.1. For every manifold Mk
y , n ≥ 1 and p, q ∈ [2,∞] such that

2
p
+

n
q
=

n
2
, (p, n) 6= (2, 2),
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there exists C > 0 such that

‖e−i t1x,y f ‖L p
t Lq

x H1
y
+

∥∥∥∥∫ t

0
e−i(t−s)1x,y F(s) ds

∥∥∥∥
L p

t Lq
x H1

y

≤ C(‖ f ‖L2
x H1

y
+‖F‖

L p′
t Lq′

x H1
y
), (5-1)

‖∇x e−i t1x,y f ‖L p
t Lq

x L2
y
+

∥∥∥∥∇x

∫ t

0
e−i(t−s)1x,y F(s) ds

∥∥∥∥
L p

t Lq
x L2

y

≤ C(‖∇x f ‖L2
x L2

y
+‖∇x F‖

L p′
t Lq′

x L2
y
), (5-2)

and ∥∥∥∥∫ t

0
e−i(t−s)1x,y F(s) ds

∥∥∥∥
L p

t Lq
x L2

y

≤ C‖F‖
L p′

t Lq′
x L2

y
. (5-3)

Moreover,

‖e−i t1x,y f ‖L∞t L2
x H1

y
+

∥∥∥∥∫ t

0
e−i(t−s)1x,y F(s) ds

∥∥∥∥
L∞t L2

x H1
y

≤ C(‖ f ‖L2
x H1

y
+‖F‖

L p′
t Lq′

x H1
y
) (5-4)

and

‖∇x e−i t1x,y f ‖L∞t L2
x L2

y
+

∥∥∥∥∇x

∫ t

0
e−i(t−s)1x,y F(s) ds

∥∥∥∥
L∞t L2

x L2
y

≤C(‖∇x f ‖L2
x L2

y
+‖∇x F‖

L p′
t Lq′

x L2
y
). (5-5)

Next we shall use the norms ‖ · ‖XT and ‖ · ‖YT introduced in (1-15) and (1-16) for time dependent
functions. We also introduce the space ZT whose norm is defined by

‖v‖ZT ≡ ‖v‖XT +‖v‖YT

and the nonlinear operator associated to the Cauchy problem (1-1):

Tϕ(u)≡ e−i t1x,yϕ+

∫ t

0
e−i(t−s)1x,y u(s)|u(s)|α ds.

We split the proof of Theorem 1.4 in several steps.

5A. Local well-posedness. We devote this subsection to proving the following: for all ϕ ∈ H 1(Rn
×M1)

there exists a T =T (‖ϕ‖H1(Rn×M1))>0 and there exists a unique v(t, x)∈ ZT∩C((−T, T ); H 1(Rn
×M1))

such that Tϕv(t)= v(t) for all t ∈ (−T, T )

First step: for all ϕ ∈ H 1(Rn
×M1) there exist T = T (‖ϕ‖H1(Rn×M1)) > 0, R = R(‖ϕ‖H1(Rn×M1)) > 0

such that Tϕ(BZ T̃
(0, R))⊂ BZ T̃

(0, R) for all T̃ < T . First we estimate the nonlinear term:

‖u|u|α‖
L p′

t Lq′
x H1

y
≤ ‖‖uα(t, x, · )‖L∞y ‖u(t, x, · )‖H1

y
‖

L p′
t Lq′

x

(where (p, q) is the couple in (1-15) and (1-16)). After applying the Hölder inequality in (t, x), we get

· · · ≤ ‖u‖L p
t Lq

x H1
y
‖u‖α

Lα p̃
t Lαq̃

x L∞y
≤ C‖u‖L p

t Lq
x H1

y
‖u‖α

Lα p̃
t Lαq̃

x H1
y
,

where we have used the embedding H 1
y ⊂ L∞y and we have chosen

1
p̃
+

1
p
= 1−

1
p

and
1
q̃
+

1
q
= 1−

1
q
.
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By direct computation we have

αq̃ = q and α p̃ < p. (5-6)

By combining the nonlinear estimate above with (5-1), (5-6), and the Hölder inequality (in the time
variable), we get

‖Tϕu‖XT ≤ C(‖ϕ‖L2
x H1

y
+ T a(d)

‖u‖1+αXT
) (5-7)

with a(d) > 0.
Arguing as above, we get

‖∇x(u|u|α)‖L p′
t Lq′

x L2
y
≤ C‖∇x u‖L p

t Lq
x L2

y
‖uα‖L p̃

t L q̃
x L∞y
≤ C‖u‖YT ‖u‖

α

Lα p̃
t Lαq̃

x H1
y
,

where p̃ and q̃ are as above and we have used the embedding H 1
y ⊂ L∞y . As a consequence of this

estimate and (5-2), we get

‖Tϕu‖YT ≤ C(‖∇xϕ‖L2
x,y
+ T a(d)

‖u‖YT ‖u‖
α
XT
) (5-8)

with a(d) > 0.
By combining (5-7) with (5-8), we get

‖Tϕu‖ZT ≤ C(‖ϕ‖H1(Rn×M1)+ T a(d)
‖u‖ZT ‖u‖

α
ZT
).

The proof follows by a standard continuity argument.
Next we introduce the norm

‖w(t, x, y)‖Z̃T
≡ ‖w(t, x, y)‖L p((−T,T );Lq

x L2
y)
.

and we shall prove the following.

Second step: Let T, R > 0 as in the previous step. Then there exists T ′ = T ′(‖ϕ‖H1(Rn×M1)) < T such
that Tϕ is a contraction on BZT ′

(0, R) endowed with the norm ‖ · ‖Z̃T ′
. It is sufficient to prove

‖Tϕv1−Tϕv2‖Z̃T
≤ CT a(d)

‖v1− v2‖Z̃T
sup

i=1,2
{‖vi‖ZT }

α (5-9)

with a(d) > 0. Notice that we have

‖v1|v1|
α
− v2|v2|

α
‖

L p′ ((−T,T );Lq′
x L2

y)
≤ C

∥∥‖v1− v2‖L2
y
(‖v1‖L∞y +‖v2‖L∞y )

α
∥∥

L p′ ((−T,T );Lq′
x )

≤ CT a(d)
‖v1− v2‖Z̃T

sup
i=1,2
{‖vi‖ZT }

α,

where we have used the Sobolev embedding H 1
y ⊂ L∞y and the Hölder inequality in the same spirit as in the

proof of (5-7) and (5-8). We conclude by combining the estimate above with the Strichartz estimate (5-3).

Third step: existence and uniqueness of the solution in ZT ′ , where T ′ is as in the previous step. We apply
the contraction principle to the map Tϕ defined on the complete space BZT ′

(0, R) endowed with the
topology induced by ‖ · ‖Z̃T ′

. It is well known that this space is complete.
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Fourth step: regularity of the solution. By combining the previous steps with the fixed point argument,
we get the existence of a solution v ∈ ZT ′ . In order to get the regularity v ∈C((−T ′, T ′); H 1(Rn

×M1)),
it is sufficient to argue as in the first step (to estimate the nonlinearity) in conjugation with the Strichartz
estimates (5-4) and (5-5).

5B. Global well-posedness. Next we prove that the local solution (whose existence has been proved
above) cannot blow up in finite time. The argument is standard and follows from the conservation laws

‖u(t)‖L2
x,y
≡ ‖ϕ‖L2

x,y
, (5-10)

En,M1,α(u(t))+
1
2‖u(t)‖

2
L2

x,y
≡ En,M1,α(ϕ)+

1
2‖ϕ‖

2
L2

x,y
, (5-11)

where En,M1,α is defined in (1-2). By the Gagliardo–Nirenberg inequality we deduce

En,M1,α(u(t))+
1
2‖u(t)‖

2
L2

x,y
≥

1
2‖u(t)‖

2
H1(Rn×M1)

−C‖u(t)‖2+α−µL2
x,y
‖u(t)‖µH1(Rn×M1)

for a suitable µ ∈ (0, 2). By combining the estimate above with (5-10) and (5-11), we get

1
2‖u(t)‖

2
H1(Rn×M1)

−C‖ϕ‖2+α−µL2
x,y
‖u(t)‖µH1(Rn×M1)

≤ En,M1,α(ϕ)+
1
2‖ϕ‖

2
L2

x,y
.

Since µ ∈ (0, 2), it implies that ‖u(t)‖H1(Rn×M1) cannot blow up in finite time.

Appendix

For the sake of completeness we prove in this appendix Theorems 1.1 and 1.2. Our argument is heavily
inspired by [Cazenave and Lions 1982] even if, in our opinion, the following presentation of Theorem 1.1
is simpler compared with the original one.

Proof of Theorem 1.1. For any given ρ > 0 we shall denote by u j,ρ ∈ H 1(Rn
× Mk) any constrained

minimizing sequence, that is,

‖u j,ρ‖L2
x,y
= ρ and lim

j→∞
En,Mk ,α(u j,ρ)= K ρ

n,Mk ,α
. (A-1)

Next we split the proof into many steps.

First step: K ρ

n,Mk ,α
>−∞ and sup j ‖u j,ρ‖H1

x,y
<∞ for all ρ > 0. By the classical Gagliardo–Nirenberg

inequality (see (1-4)) we get the existence of µ ∈ (0, 2) such that

En,Mk ,α(u j,ρ)+
1
2ρ

2
≥

1
2

∫
Mk

y

∫
Rn
(|∇x,yu j,ρ |

2
+ |u j,ρ |

2) dx dvolMk
y −C(ρ)‖u j,ρ‖

µ

H1(Rm×Mk)

≥ inf
t>0
(1/2t2

−C(ρ)tµ) >−∞.

The conclusion follows by a standard argument.



92 SUSANNA TERRACINI, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

Second step: the map (0,∞) 3 ρ→ K ρ

n,Mk ,α
is continuous. Fix ρ ∈ (0,∞) and let ρ j → ρ. Then we

have

K ρ j

n,Mk ,ρ
≤En,Mk ,α

(
ρ j

ρ
u j,ρ

)
=

(
ρ j

ρ

)2(
1
2
‖∇x,yu j,ρ‖

2
L2

x,y
−

1
2+α

(
ρ j

ρ

)α
‖u j,ρ‖

2+α
L2+α

x,y

)
=

(
ρ j

ρ

)2(
1
2
‖∇x,yu j,ρ‖

2
L2

x,y
−

1
2+α
‖u j,ρ‖

2+α
L2+α

x,y

)
+

1
2+α

(
ρ j

ρ

)2(
1−

(
ρ j

ρ

)α )
‖u j,ρ‖

2+α
L2+α

x,y

=

(
1
2
‖∇x,yu j,ρ‖

2
L2

x,y
−

1
2+α
‖u j,ρ‖

2+α
L2+α

x,y

)
+

((
ρ j

ρ

)2

−1
)(

1
2
‖∇x,yu j,ρ‖

2
L2

x,y
−

1
2+α
‖u j,ρ‖

2+α
L2+α

x,y

)
+

1
2+α

(
ρ j

ρ

)2(
1−

(
ρ j

ρ

)α )
‖u j,ρ‖

2+α
L2+α

x,y
.

Since we are assuming that ρ j → ρ and supn ‖u j,ρ‖H1(Rn×Mk) <∞ (see the first step), we get

lim sup
j→∞

K ρ j

n,Mk ,α
≤ K ρ

n,Mk ,α
.

To prove the opposite inequality, let us fix u j ∈ H 1(Rn
×Mk) such that

‖u j‖L2
x,y
= ρ j and En,Mk ,α(u j ) < K ρ j

n,Mk ,α
+

1
j
. (A-2)

By looking at the proof of the first step, we also deduce that u j can be chosen in such a way that

sup
j
‖u j‖H1(Rn×Mk) <∞. (A-3)

Then we can argue as above and we get

K ρ

n,Mk ,α
≤ En,Mk ,α

(
ρ

ρ j
u j

)
=

(
1
2
‖∇x,yu j‖

2
L2

x,y
−

1
2+α

‖u j‖
2+α
L2+α

x,y

)
+

((
ρ

ρ j

)2

− 1
)(

1
2
‖∇x,yu j‖

2
L2

x,y
−

1
2+α

‖u j‖
2+α
L2+α

x,y

)
+

1
2+α

(
ρ

ρ j

)2(
1−

(
ρ

ρ j

)α)
‖u j‖

2+α
L2+α

x,y
.

By using (A-2), (A-3), and the assumption ρ j → ρ, we get

K ρ

n,Mk ,α
≤ lim inf

j→∞
K ρ j

n,Mk ,α
.

Third step: for every ρ > 0 we have (up to subsequence) inf j ‖u j,ρ‖L2+α
x,y
> 0. It is sufficient to prove that

K ρ

n,Mk ,α
< 0. In fact, we have

K ρ

n,Mk ,α
≤ vol(Mk)En,α(un,ω,α)= vol(Mk)I

ρ/
√

vol(Mk)
n,α < 0, (A-4)

where En,α is the energy defined in (2-2) and ω is chosen in such a way that ‖un,ω,α‖L2
x
= ρ/

√
vol(Mk).

Notice that in (A-4) we have used (2-4) and (2-5).
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Fourth step: for any minimizing sequence u j,ρ , there exists τj ∈ Rn such that (up to subsequence)
u j,ρ(x + τj , y) has a weak limit ū 6= 0. We have the localized Gagliardo–Nirenberg inequality:

‖v‖L2+4/(n+k)
x,y

≤ C sup
x∈Rn

(‖v‖L2
Qn

x×Mk
)2/(n+k+2)

‖v‖
(n+k)/(n+k+2)
H1(Rn×Mk)

, (A-5)

where

Qn
x = x + [0, 1]n for all x ∈ Rn.

The estimate above can be proved as follows (see [Lions 1984] for a similar argument on the flat space
Rd+k). We fix xh ∈ Rn in such a way that

⋃
h Qn

xh
= Rn and measn(Qn

xi
∩ Qn

x j
) = 0 for i 6= j , where

measn denotes the Lebesgue measure in Rn . By the classical Gagliardo–Nirenberg inequality we get

‖v‖
2+4/(n+k)
L2+4/(n+k)

Qn
xh×Mk

≤ C‖v‖4/(n+k)
L2

Qn
xh×Mk
‖v‖2H1(Qn

xh
×Mk)

.

The proof of (A-5) follows by taking the sum of the previous estimates on h ∈ N.
Due to the boundedness of u j,ρ in H 1(Rm

×Mk) (see the first step), we deduce by (A-5) that

0< ε0 = inf
j
‖u j,ρ‖L2+4/(n+k)

x,y
≤ C sup

x∈Rn
‖u j,ρ‖

2/(n+k+2)
L2

Qn
x×Mk

(A-6)

(the left side above follows by combining the Hölder inequality with the third step). The proof can be
concluded by the Rellich compactness theorem once we choose a sequence τj ∈ Rn

x in such a way that

inf
j
‖u j,ρ‖L2

Qn
τj ×Mk

> 0

(the existence of such a sequence τj follows by (A-6)).

Fifth step: the map (0, ρ̄) 3 ρ → ρ−2K ρ

n,Mk ,α
is strictly decreasing. Let us fix ρ1 < ρ2 and u j,ρ1 a

minimizing sequence for K ρ1
n,Mk ,α

. Then we have

K ρ2
n,Mk ,α

≤ En,Mk ,α

(
ρ2

ρ1
u j,ρ1

)
=

(
ρ2

ρ1

)2(
1
2
‖∇x,yu j,ρ1‖

2
L2

x,y
−

1
2+α

(
ρ2

ρ1

)α
‖u j,ρ1‖

2+α
L2+α

x,y

)
=

(
ρ2

ρ1

)2(
1
2
‖∇x,yu j,ρ1‖

2
L2

x,y
−

1
2+α

‖u j,ρ1‖
2+α
L2+α

x,y

)
+

1
2+α

(
ρ2

ρ1

)2(
1−

(
ρ2

ρ1

)α)
‖u j,ρ1‖

2+α
L2+α

x,y

≤

(
ρ2

ρ1

)2(
1
2
‖∇x,yu j,ρ1‖

2
L2

x,y
−

1
2+α

‖u j,ρ1‖
2+α
L2+α

x,y

)
+

1
2+α

(
ρ2

ρ1

)2(
1−

(
ρ2

ρ1

)α)
inf

j
‖u j,ρ1‖

2+α
L2+α

x,y
.

By recalling (see the third step) that inf j ‖u j,ρ1‖
2+α
L2+α

x,y
> 0, we get

K ρ2
n,Mk ,α

<

(
ρ2

ρ1

)2

K ρ1
n,Mk ,α

.
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Sixth step: Let ū be as in the fourth step. Then ‖ū‖L2
x,y
= ρ. Up to a subsequence we get

u j,ρ(x + τj , y)→ ū(x, y) 6= 0 a.e. in (x, y) ∈ Rn
x ×Mk

y ,

and hence, by the Brezis–Lieb lemma [1983], we get

‖u j,ρ(x + τj , y)− ū(x, y)‖2+α
L2+α

x,y
= ‖u j,ρ(x + τj , y)‖2+α

L2+α
x,y
−‖ū(x, y)‖2+α

L2+α
x,y
+ o(1). (A-7)

Assume that ‖ū‖L2
x,y
= θ . Our aim is to prove θ = ρ. Since ū 6= 0, necessarily θ > 0. Notice that since

L2
x,y is a Hilbert space, we have

ρ2
= ‖u j,ρ(x + τj , y)‖2L2

x,y
= ‖u j,ρ(x + τj , y)− ū(x, y)‖2L2

x,y
+‖ū(x, y)‖2L2

x,y
+ o(1), (A-8)

and hence
‖u j,ρ(x + τj , y)− ū(x, y)‖2L2

x,y
= ρ2
− θ2
+ o(1). (A-9)

By a similar argument,∫
Mk

y

∫
Rn

x

|∇x(u j,ρ(x + τj , y))−∇x ū(x, y)|2 dx dy

+

∫
Mk

y

∫
Rn

x

|∇y(u j,ρ(x+τj , y))−∇y ū(x, y)|2 dx dvolMk
y
+

∫
Mk

y

∫
Rn

x

(|∇x ū(x, y)|2+|∇y ū(x, y)|2) dx dvolMk
y

=

∫
Mk

y

∫
Rn

x

(|∇x(u j,ρ(x + τj , y)|2+ |∇yu j,ρ(x + τj , y)|2) dx dvolMk
y
+ o(1). (A-10)

By combining (A-10) with (A-7), we get

K ρ

n,Mk ,α
= lim

j→∞
En,Mk ,α(u j,ρ(x+τj , y))= lim

j→∞
En,Mk ,α(u j,ρ(x+τj , y)−ū(x, y))+En,Mk ,α(ū), (A-11)

and we can continue the estimate as follows:

· · · ≥ K
√
ρ2−θ2+o(1)

n,Mk ,α
+ K θ

n,Mk ,α
,

where we have used (A-9). Hence, by using the second step, we get

K ρ

n,Mk ,α
≥ K
√
ρ2−θ2

n,Mk ,α
+ K θ

n,Mk ,α
.

Assume that θ < ρ. Then, by using the monotonicity proved in the fifth step, we get

K ρ

n,Mk ,α
>
ρ2
− θ2

ρ2 K ρ

n,Mk ,α
+
θ2

ρ2 K ρ

n,Mk ,α
= K ρ

n,Mk ,α
,

and we have an absurdity. �

Proof of Theorem 1.2. Assume for a contradiction that the conclusion is false. Then there exists ρ and
two sequences ϕ j ∈ H 1(Rn

×Mk) and t j ∈ R such that

lim
j→∞

distH1(Rn×Mk)(ϕ j ,M
ρ

n,Mk ,α
)= 0 (A-12)
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and
lim inf

j→∞
distH1(Rn×Mk)(uϕ j (t j ),M

ρ

n,Mk ,α
) > 0, (A-13)

where uϕ j is the solution to (1-1) with Cauchy data ϕ j . By (A-12) we deduce the following information:

lim
j→∞
‖ϕ j‖L2

x,y
= ρ and lim

j→∞
En,Mk ,α(ϕ j )= K ρ

n,Mk ,α
,

and hence, due to the conservation laws satisfied by solutions to (1-1), we get

lim
j→∞
‖uϕ j (t j )‖L2

x,y
= ρ and lim

j→∞
En,Mk ,α(uϕ j (t j ))= K ρ

n,Mk ,α
.

In turn, by an elementary computation, we get

‖ũ j‖L2
x,y
= ρ and lim

j→∞
En,Mk ,α(ũ j )= K ρ

n,Mk ,α

(more precisely ũ j is a constrained minimizing sequence for K ρ

n,Mk ,α
), where

ũ j = ρ
uϕ j (t j )

‖uϕ j (t j )‖L2
x,y

.

Moreover, by (A-13), it is easy to deduce

lim inf
j→∞

distH1(Rn×Mk)(ũ j ,M
ρ

n,Mk ,α
) > 0,

which is in contradiction with the compactness of minimizing sequences for K ρ

n,Mk ,α
from Theorem 1.1. �
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