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ORTHONORMAL SYSTEMS IN LINEAR SPANS

ALLISON LEWKO AND MARK LEWKO

We show that any N -dimensional linear subspace of L2(T) admits an orthonormal system such that the
L2 norm of the square variation operator V 2 is as small as possible. When applied to the span of the
trigonometric system, we obtain an orthonormal system of trigonometric polynomials with a V 2 operator
that is considerably smaller than the associated operator for the trigonometric system itself.

1. Introduction

Let (T,B, µ) denote a probability space and 8 := {φn}
N
n=1 an orthonormal system (ONS) of (µ-

measurable) functions from T to R. Motivated by questions regarding almost everywhere convergence,
one is often interested in the behavior of the maximal function

M f :=max
`≤N

∣∣∣∣∑̀
n=1

anφn

∣∣∣∣.
Here we let f :=

∑N
n=2 anφn . For an arbitrary ONS, the Rademacher–Menshov theorem states that

‖M f ‖L2 � log(N )‖ f ‖L2 , where the log(N ) factor is known to be sharp. However, one can do much
better for many classical systems; for instance one can replace log(N ) with an absolute constant in the
case of the trigonometric system (the Carleson–Hunt inequality). More recently, there has been interest in
variational refinements of these maximal results. Define the r -th variation operator by

Vr f :=
(

max
π∈PN

∑
I∈π

∣∣∣∣∑
n∈I

anφn

∣∣∣∣r)1/r

,

where PN denotes the set of partitions of [N ] into subintervals. Clearly, |M f | ≤ |Vr f | for all r <∞. In
the case of the trigonometric system, strengthening the Carleson–Hunt theorem, Oberlin, Seeger, Tao,
Thiele, and Wright [Oberlin et al. 2012] have shown that ‖Vr f ‖L2 � ‖ f ‖L2 for r > 2. When r = 2, it
has been shown that ‖V2 f ‖L2 �

√
log(N )‖ f ‖L2 [Lewko and Lewko 2012a], where the factor

√
log(N )

is optimal. This later inequality has some applications to sieve theory [Lewko and Lewko 2012c]. The
factor

√
log(n) is rather unfortunate, leading to inefficiencies in these applications. It is likely that this

factor can be improved for the functions arising in the applications, for instance, if the Fourier support
of f is contained in certain arithmetic sets. This is a potential route towards improving the estimates
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in [Lewko and Lewko 2012c]. Some results in this direction can be found in section 7 of [Lewko and
Lewko 2012a].

In a different direction, it seems that the
√

log(n) factor might also be an eccentricity of the standard
ordering of the trigonometric system. In [Lewko and Lewko 2012a] the following problem was posed.

Problem 1. Is there a permutation σ : [N ] → [N ] such that the reordering of the trigonometric system
8 := {φn = e(σ (n)x)} (where e(x) := e2π i x) satisfies

‖V2 f ‖L2 � o(
√

log(N ))‖ f ‖L2

for all f in the span of the system1?

This problem can be thought of as a variational variant of Garsia’s conjecture. A longstanding problem
in the theory of orthonormal systems, often called Kolmogorov’s rearrangement problem, asks if every
(infinite) ONS can be reordered such that the expansion of every L2 function converges almost everywhere.
Garsia’s conjecture is the stronger assertion (see [Garsia 1970] for a proof of this implication) that any
finite ONS can be reordered to satisfy ‖M f ‖L2�‖ f ‖L2 where the implicit constant is absolute. Towards
Garsia’s conjecture, Bourgain [1989] proved that one can rearrange a uniformly bounded ONS such that
‖M f ‖L2 � log log(N )‖ f ‖L2 . His proof proceeds by showing that this holds for a uniformly randomly
selected permutation with high probability. Unfortunately this is the best estimate one can obtain from a
purely probabilistic approach. Bourgain showed that if one is allowed to select a new ONS with the same
span as8 (which allows more freedom than just reordering the system), one can obtain ‖M f ‖L2�‖ f ‖L2

for the new system with the same span.
In this paper, we will study the analogous linear span version of Problem 1. Given an ONS 8 :=
{φn(x)}Nn=1 and an N × N orthogonal matrix O = {oi,n}1≤i,n≤N , we define a new ONS, 9 := {ψn(x)}Nn=1,
by

ψn(x) :=
N∑

i=1

oi,nφi (x).

This new system will span the same space as the original system. Conversely, every such ONS can be
obtained from some element of the orthogonal group, O(N ). Let us write 8(O) :=9. Furthermore, in
what follows Q will denote a measurable subset of O(N ) and P[Q] will denote the Haar measure of Q.

Theorem 2. Given an N-dimensional subspace of L2(T), there exists an ONS 9 that satisfies

‖V2 f ‖L2 �
√

log log(N )‖ f ‖L2 (1)

for all f in the span. In fact, if we take an arbitrary basis 8 for F , the conclusion holds for the ONS
8(O) for all O ∈ Q for some Q ⊂ O(N ) with P[Q] ≥ 1−Ce−cN 2/5

(for some absolute positive constants
C, c).

1We have recently proved [Lewko and Lewko 2012b] that there exists a rearrangement such that ‖V2 f ‖L2 �ε

log9/22+ε(N )‖ f ‖L2 for ε > 0 (for all uniformly bounded ONS). This is likely far from best possible.
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If we take 8 := {e(nx)}Nn=1 (on the circle with the Lebesgue measure), this produces an ONS of
trigonometric polynomials (spanning the same space as the first N elements of the trigonometric system)
with much smaller square variation than the trigonometric system. Strictly speaking, Theorem 2 is stated
for real valued ONS, but the result for the trigonometric system can be obtained by splitting into real and
imaginary parts and noting that the corresponding result holds on each with large probability. We note
that Problem 1 asks for a similar conclusion where O is restricted to be a permutation matrix instead of
just an orthogonal matrix.

Theorem 2 is sharp. Consider an ONS of independent, mean zero, variance on Gaussians, {gi }
N
i=1.

Notice that applying an orthogonal transformation to this system leaves it metrically unchanged. On
the other hand, we have (almost surely) that maxπ∈PN

∑
I∈π |

∑
n∈I gn|

2
∼ 2N log log(N ) from the

variational law of the iterated logarithm [Lewko and Lewko 2011].
Let us briefly outline the key idea in the proof of Theorem 2. In [Lewko and Lewko 2012a], we proved

an estimate of the form (1) for systems of bounded independent random variables; see Theorem 9. The
key ingredient in that case is that for every f in the span of the system we have the subgaussian tail
estimate ‖ f ‖G�‖ f ‖L2 (where ‖ · ‖G is the Orlicz space norm associated to ex2

−1). This clearly cannot
hold in the setting of Theorem 2, since any L2 function can be in the span of the system. However, we
will show that a function f in the span of a generic basis 8(O) can be split as f = G + E , where G
satisfies a subgaussian tail inequality and E has small L2 norm (decreasing with the size of the Fourier
support of f ). More precisely, we will prove the following (note that we abuse the notation c below to
denote multiple distinct constants):

Proposition 3. For N fixed, let8={φn(x)}Nn=1 be an ONS such that
∑N

n=1 |φn(x)|2≤N holds (pointwise).
There exists Q ⊂ O(N ) with P[Q] ≥ 1−Ce−cN 2/5

such that for O ∈ Q, we have that the associated ONS
8(O)= {ψn}

N
n=1 satisfies the following property. For any f =

∑
anψn , letting m denote support({an})

(the number of nonzero ai values), we have that the function defined by

f :=
∑

anψn(x)

can be decomposed as f :=G+E where ‖G‖G�‖ f ‖L2 and ‖E‖L2� (m/N )c‖ f ‖L2 for some universal
constant c > 0.

See Proposition 15 below, which gives a stronger maximal form of this statement. The condition∑N
n=1 |φn(x)|2 ≤ N can usually be removed in applications (such as Theorem 2) by a change of measure

argument (see Lemma 6). It seems likely that this decomposition has other applications.

2. Preliminaries

We fix the probability space (T,B, µ). We define several different norms on the space of functions from
T to R. First, for a positive constant c, let ‖ · ‖G(c) denote the norm of the Orlicz space associated to the
convex function ecx2

− 1. That is,

‖ f ‖G(c) := inf
λ∈R+

{∫
T

ec| f/λ|2 dµ− 1≤ 1
}
.
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When we write ‖ · ‖G with the specification of c omitted, we mean c = 1.
We next define the convex function

0K (t) :=
{

et2
− 1, |t | ≤ K ,

eK 2
t2
+ eK 2

(1− K 2)− 1, |t | ≥ K

and denote the associated Orlitz norm by ‖ · ‖0K .

Lemma 4. When K ≥ 1, for all t , we have that

0K (t)≤ et2
− 1, 0K (t)≤ eK 2

t2.

It follows that for f : T→ R we have ‖ f ‖0K ≤ ‖ f ‖G and ‖ f ‖0K ≤ eK 2/2
‖ f ‖L2 .

Proof. We first prove 0K (t)≤ et2
− 1 for all t . For t such that |t | ≤ K , this is clear since 0K (t)= et2

− 1.
We consider t such that |t | ≥ K . Then 0K (t) = eK 2

t2
+ eK 2

(1 − K 2) − 1, so we must show that
eK 2

t2
+ eK 2

(1− K 2) ≤ et2
. We note that for all real x ≥ 0, 1+ x ≤ ex . Applying this to the quantity

t2
− K 2

+ 1> 0, we have

eK 2
t2
+ eK 2

(1− K 2)= eK 2
(t2
− K 2

+ 1)≤ eK 2
et2
−K 2
= et2

,

as required.
We let f be a function from T to R. For any fixed positive real number λ such that

∫
T

e| f/λ|
2

dµ−1≤ 1
(that is, λ≥ ‖ f ‖G), we have ∫

T

0K ( f/λ) dµ≤
∫

T

e| f/λ|
2

dµ− 1≤ 1,

since 0K (t)≤ et2
− 1 for all t . This shows that λ≥ ‖ f ‖0K . Hence ‖ f ‖0K ≤ ‖ f ‖G.

Next we prove 0K (t)≤ eK 2
t2. We first consider t such that |t | ≥ K . 0K (t)= eK 2

t2
+eK 2

(1−K 2)−1
in this case. Since K ≥ 1, we see that eK 2

(1−K 2) < 0, so 0K (t)≤ eK 2
t2 follows. For t such that |t | ≤ K ,

we have 0K (t)= et2
− 1, so we must show that et2

− 1≤ eK 2
t2 for |t | ≤ K .

We consider (et2
− 1)/t2 as a function of t for t ≥ 0. Its derivative is

2(t−1et2
− t−3et2

+ t−3).

We observe that this is always nonnegative. To see this, consider multiplying the quantity by t3 to obtain
2(t2et2

− et2
+ 1). Nonnegativity then follows from the inequality 1+ xex

≥ ex for all real x ≥ 0. (This
inequality can be proved by noting that xex

≥
∫ x

0 eu du.) Hence (et2
− 1)/t2 is a nondecreasing function

of t in the range 0≤ t ≤ K . So it suffices to consider the value at t = K , which is K−2(eK 2
− 1). Since

K ≥ 1, this is < eK 2
, as required.

For f : T→ R, we consider λ := eK 2/2
‖ f ‖L2 . Then∫

T

0K ( f/λ) dµ≤
∫

T

eK 2 f 2

λ2 dµ=
eK 2

λ2 ‖ f ‖2L2 = 1,

since 0K (t)≤ eK 2
t2. Thus, ‖ f ‖0K ≤ eK 2/2

‖ f ‖L2 . �
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Lemma 5. For any (measurable) f : T→ R, we can decompose f = f1+ f2 such that

‖ f1‖G�‖ f ‖0K and ‖ f2‖L2 � e−cK 2
‖ f ‖0K

for some universal constant c > 0.

Proof. Given f , we define γ := 2‖ f ‖0K to simplify our notation. We then set

f1 := f · I| f/γ |≤K and f2 := f · I| f/γ |≥K ,

where IS for a set S⊂T denotes the indicator function for that set. By definition of γ = 2‖ f ‖0K > ‖ f ‖0K ,
we have that∫

T

0K ( f/γ ) dµ=
∫

T

(e| f/γ |
2
−1) ·I| f/γ |≤K dµ+

∫
T

(eK 2
f 2/γ 2

+eK 2
(1−K 2)−1) ·I| f/γ |≥K dµ≤ 1. (2)

Since this is a sum of two nonnegative quantities, this implies∫
T

(e| f/γ |
2
− 1) · I| f/γ |≤K dµ≤ 1.

This is equivalent to ∫
T

e| f1/γ |
2

dµ− 1≤ 1,

and so ‖ f1‖G ≤ γ �‖ f ‖0K .
Again considering (2), we also have∫

T

(eK 2
f 2/γ 2

+ eK 2
(1− K 2)− 1) · I| f/γ |≥K dµ≤ 1.

We let µ(| f/γ | ≥ K ) denote the measure of the set in T on which | f/γ | ≥ K . We can then rewrite the
above as

µ

(∣∣∣∣ f
γ

∣∣∣∣≥ K
)
(eK 2

(1− K 2)− 1)+
∫

T

eK 2
f 2
2 /γ

2 dµ≤ 1. (3)

Now, since
∫

T
0K ( f/γ ) dµ≤ 1 and 0K ( f/γ )≥ eK 2

− 1 whenever | f/γ | ≥ K , we must have

µ

(∣∣∣∣ f
γ

∣∣∣∣≥ K
)
(eK 2
− 1)≤ 1.

Thus, µ(| f/γ | ≥ K )≤ 1/(eK 2
− 1). Combining this with (3), we have∫

T

eK 2
f 2
2 /γ

2 dµ≤ 1+µ
(∣∣∣∣ f
γ

∣∣∣∣≥ K
)
(eK 2

(K 2
− 1)+ 1)� K 2,

and hence
‖ f2‖

2
L2 � K 2e−K 2

γ 2,

implying that ‖ f2‖L2 � e−cK 2
‖ f ‖0K for some universal constant c > 0. �

Finally, we note the following.



102 ALLISON LEWKO AND MARK LEWKO

Lemma 6. It suffices to prove (the second formulation of ) Theorem 2 with the restriction
N∑

n=1
|φn|

2
≤ N.

Proof. Consider an arbitrary ONS 8 := {φn}
N
n=1 and define ν(x)= N−1∑N

n=1 |φn(x)|2. Fix O ∈ O(N ).
Define 8̃ := 8(O). Furthermore, consider the ONS 9 defined on T (with the measure induced by
integration against ν(x) dµ) by ψn(x) := ν−1/2(x)φn(x). Furthermore, define 9̃ =9(O). We have the
trivial identity

∫
T

max
π∈PN

∑
I∈π

∣∣∣∣∑
n∈I

anφ̃n(x)
∣∣∣∣2 dµ=

∫
T

max
π∈PN

∑
I∈π

∣∣∣∣∑
n∈I

anψ̃n(x)
∣∣∣∣2ν(x) dµ.

Thus, the conclusion of Theorem 2 holds for8 if and only if it holds for 9. However,
∑N

n=1 |ψn|
2
≤ N

by construction. �

3. Probabilistic Methods

In this section we establish the following result.

Proposition 7. For N fixed, let {φn(x)}Nn=1 be an ONS such that
∑N

n=1 |φn(x)|2 ≤ N. Define for each
1≤ m ≤ N the function

0∗ := 0√(2/5) log((N/m) log(N/m+1))

(the dependence on m is implicit in this notation). There exists a subset Q ⊂ O(N ) with P[Q] ≥
1−C(e−cN 2/5

) such that for all O = {oi,n}1≤i,n≤N ∈ Q the corresponding base change of {φn}
N
n=1, that is

ψn(x) :=
N∑

i=1

oi,nφi (x),

satisfies the following. For each m in the range 1≤ m ≤ N ,∥∥∥∥ N∑
n=1

anψn

∥∥∥∥
0∗

�

( N∑
n=1

a2
n

)1/2

for all vectors a ∈ RN such that support(a)≤ m. (We use support(a) to denote the number of nonzero
coordinates of a.)

The proof will build on arguments from [Bourgain 1989], although the estimates we obtain are
substantially stronger. We start by establishing a weaker result. For a fixed m in the range 1≤ m ≤ N ,
we let Sm ⊂ RN denote the subset of vectors b such that ‖b‖L2 ≤ 1 and support(b)≤ m. We then define

B(m,O) := sup
a∈Sm

∥∥∥∥ N∑
n=1

anψn

∥∥∥∥
0∗

.

Note that both the set Sm and the function 0∗ := 0√(2/5) log((N/m) log(N/m+1)) depend on m. Our first step
will be to establish the following.
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Proposition 8. For any 1≤ m ≤ N we have that

EO(N )B(m, O)� 1,

where the implied constant is independent of m and N.

This does not quite give Proposition 7, since there the claim is made with large probability and we
require the estimates to hold for all m simultaneously. The stronger claim, however, will be deduced later
from the weaker statement using the concentration of measure phenomenon on the orthogonal group.

We will need the following result, which is Lemma 5.5 from [Bourgain 1989], where it is attributed to
[Benyamini and Gordon 1981]. The result is a concatenation of Lemmas 1.10 and 1.12 in [Benyamini
and Gordon 1981]. These are due to [Chevet 1978] and [Marcus and Pisier 1981], respectively.

Lemma 9. Let X and Y be Banach spaces, and consider the operator

TO :=

N∑
i, j=1

oi j (x∗i ⊗ y j )

for O := (oi j )1≤i, j≤N ∈ O(N ), and where {x∗i }
N
i=1 (respectively {y j }

N
j=1) are sequences in X∗ (respectively

Y ). Then∫
O(N )
‖TO‖ ≤

Cα({x∗i }
N
i=1)

√
N

∫ ∥∥∥∥ N∑
j=1

g j (ω)y j

∥∥∥∥ dω+
Cα({y j }

N
j=1)

√
N

∫ ∥∥∥∥ N∑
i=1

gi (ω)x∗i

∥∥∥∥ dω, (4)

where

α({x∗i }): = sup
{(∑

|〈x∗i , x〉|2
)1/2

: x ∈ X, ‖x‖ ≤ 1
}
,

α({y j }): = sup
{(∑

|〈y j , y∗〉|2
)1/2

: y∗ ∈ Y ∗, ‖y∗‖ ≤ 1
}
,

and {gi }
N
i=1 is a system of independent Gaussians with mean zero and variance one. Note that the norms

in (4) refer, respectively, to the Banach spaces B(X, Y ), Y , and X∗.

Let `2
[N ] denote the set of real sequences a := {an}

N
n=1. We will denote by X the Banach space

obtained by considering this set with the norm ‖ ·‖[m] defined as follows. For a vector a, we define ‖a‖[m]
to be the infimum of positive c ∈R such that scaling the convex hull of Sm by c results in a set containing
a. We take Y to be the space of real-valued functions on T equipped with the Orlicz norm associated to
0∗.

Let x∗i (1≤ i ≤ N ) denote the canonical unit vectors in RN (which is naturally identified with the dual
space X∗). We have, from Lemma 9, that

EB(m,O)�
α({x∗i }

N
i=1)

√
N

E

∥∥∥∥∑ giφi

∥∥∥∥
0∗

+
α({φi }

N
i=1)

√
N

E

∥∥∥∥∑ gi x∗i

∥∥∥∥
X∗
.
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In order to establish Proposition 8, we need to show the above is� 1. This follows from the estimates

α({x∗i }
N
i=1)� 1, α({φi }

N
i=1)�

(
N
m

log
(

N
m
+ 1

))1/5

,

E

∥∥∥∥∑ giφi

∥∥∥∥
0∗

≤
√

N , E

∥∥∥∥∑ gi x∗i

∥∥∥∥
X∗
≤
√

m

√
log
(

N
m
+ 1

)
.

The first estimate above follows from the observation that the convex hull of Sm is contained in the `2

unit ball in RN . We will prove the others in the following lemmas.

Lemma 10. We have that E‖
∑

giφi‖0∗ �
√

N.

Proof.
Letting C be a positive constant, by Fubini’s theorem we have that

E

∫
T

e(
∑

giφi (x))2/(C N ) dµ=
∫

T

Ee(
∑

giφi (x))2/C N dµ.

Now, for each fixed x , we recall that
∑

i |φi (x)|2 ≤ N , so (1/
√

C N )
∑

giφi (x) is a Gaussian random
variable with mean 0 and variance at most 1/C . Thus,

∫
T

Ee(
∑

giφi (x))2/(C N ) dµ� 1 for an appropriate
choice of C .

Since e f 2/λ
≤ 1+e f 2

/λ for λ≥ 1, we have that infλ∈R+{
∫

T
e| f/λ|

2
dµ≤ 2}� 1+

∫
T

e| f |
2

dµ. Applying
this to f = (1/

√
C N )

∑
giφi , we have∥∥∥∥ 1
√

C N

∑
giφi

∥∥∥∥
0∗

≤

∫
T

e(
∑

giφi (x))2/(C N ) dµ.

Taking expectations on both sides, we have E‖
∑

giφi‖0∗ �
√

N , as required. �

Lemma 11. We have that α({φi }
n
i=1)� ((N/m) log(N/m+ 1))1/5.

Proof. From Lemma 4 it follows that ‖ f ‖0∗ ≤ ((N/m) log(N/m+ 1))1/5‖ f ‖L2 . Now

‖g‖0∗∗ = sup
f ∈0∗

〈 f, g〉
‖ f ‖0∗

≥
〈g, g〉
‖g‖0∗

�
‖g‖22

((N/m) log(N/m+ 1))1/5‖g‖L2
�

(
N
m

log
(

N
m
+ 1

))−1/5

‖g‖L2 .

Here we have used that each element of the dual space 0∗
∗

can be represented as integration against
a measurable function. This follows from standard properties of Orlicz spaces. In particular, see
Theorem 14.2 of [Krasnosel’skiı̆ and Rutickiı̆ 1961], since the modulus 0∗ satisfies the 12 condition.

It now follows that if ‖g‖0∗∗ ≤ 1, then ‖g‖L2� ((N/m) log(N/m+1))1/5. Thus by Bessel’s inequality
we have

α({φ j }) := sup
{(∑

|〈φi , g〉|2
)1/2

: g ∈ 0∗
∗
, ‖g‖0∗∗ ≤ 1

}
�

(
N
m

log
(

N
m
+ 1

))1/5

,

which completes the proof. �
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Lemma 12. E‖
∑

gi x∗i ‖X∗ ≤
√

m
√

log(N/m+ 1).

Proof. It follows from the definition of X∗ that

E

∥∥∥∥∑ gi x∗i

∥∥∥∥
X∗
= E sup

a∈Sm

∣∣∣∣∑ gi ai

∣∣∣∣.
(Note that taking the supremum over the convex hull of Sm would yield the same result.)

The latter quantity is well studied in the theory of Gaussian processes. Recall that Dudley’s bound
[1967] gives

�

∫
∞

0

√
log(N(Sm, ε)) dε,

where N(Sm, ε) denotes the number of `2 balls of radius ε needed to cover Sm . Now, clearly Sm is a
subset of the n-dimensional `2 unit ball. Thus log(N(Sm, ε)) = 0 for ε ≥ 1, and the above quantity is
equal to ∫ 1

0

√
log(N(Sm, ε)) dε.

Lemma 12 now follows from the following.

Lemma 13. For 0< ε ≤ 1, we have that

N(Sm, ε)�

(
N
m

)(
3
ε

)m

,

and thus

log N(Sm, ε)� m log
(

N
m
+ 1

)
+m log

(
3
ε

)
.

Proof. We prove the first inequality (the second follows by taking logarithms). We let K denote the
unit `2 ball in Rm . Then N(K , εK )≤ (3/ε)m , where N(K , εK ) denotes the number of translates of εK
needed to cover K . To see this, consider a maximal set of disjoint balls of radius ε/2 with centers in K .
Let T denote the set of their centers. By maximality, taking balls of radius ε around each point in T
yields a cover of K , and hence the cardinality of T is an upper bound on N(K , εK ). Now, the union of
all the disjoint balls of radius ε/2 with centers in T is a set with volume equal to |T | vol((ε/2)K ), where
|T | denotes the cardinality of T and vol((ε/2)K ) denotes the volume of the ball of radius ε/2. Since this
set is contained in (1+ ε/2)K , we have

N(K , εK )≤
vol((1+ ε/2)K )

vol((ε/2)K )
=
(1+ ε/2)m

(ε/2)m
=

(
1+

2
ε

)m

≤

(
3
ε

)m

whenever 0< ε ≤ 1.
Fix m coordinates and consider the associated m-dimensional `2 ball. We have shown that this can be

covered by (3/ε)m balls of radius ε. Summing over all
(N

m

)
such balls completes the proof. �

This completes the proof of Lemma 12 and hence the proof of Proposition 8. �
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3.1. Concentration of measure on O(n). In the prior section, we proved that for any 1 ≤ m ≤ N we
have EO(N )B(m, O)� 1. It follows from Markov’s inequality that, for some large universal C , we have
ν(A(m)) > 1

2 , where

A(m) := {O ∈ O(N ) : B(m, O)≤ C}

and ν(A(m)) denotes the measure of the set A(m) in O(N ).
Consider the Hilbert–Schmidt norm on the set of N × N matrices, ‖A‖HS := (

∑
1≤i, j≤N |Ai, j |

2)1/2.
We recall the concentration of measure inequality on the Orthogonal group; see [Milman and Schechtman
1986].

Lemma 14. Let ν denote the Haar measure on the orthogonal group O(N ) and A ⊂ O(N ) such that
ν(A) > 1

2 . Then

P[A ∈ O(N ) : inf
B∈Ac
‖A− B‖HS > ε] � e−cε2 N

for some absolute positive constant c.

For any N × N matrix M = {mi, j }, using the bounds from Lemma 4, we have∥∥∥∥ ∑
1≤i,n≤N

mi,naiφn

∥∥∥∥
0∗

�

(
N
m

log
(

N
m

))1/5(∑
n

(∑
i

mi,nai

)2)1/2

�

(
N
m

log
(

N
m

))1/5

‖M‖H S‖a‖`2 (5)

for all a ∈ RN . The final inequality follows from Cauchy–Schwartz.
Now consider A(m, ε) ⊂ O(N ), defined to be the set of all orthogonal matrices that differ from

an element of A(m) by a matrix with Hilbert–Schmidt norm at most ε. Using (5), we have that for
O ∈ A

(
m, (m/(N log(N/m)))1/5

)
, B(m, O) ≤ C ′, where C ′ is a new absolute constant. On the other

hand, denoting the complement of A
(
m, (m/(N log(N/m)))1/5

)
by Ac

(
m, (m/(N log(N/m)))1/5

)
, by

Lemma 14, we have

P

[
O ∈Ac

(
m,
(

m
N log(N/m)

)1/5)]
� e−cN 2/5

for some positive constant c.
Now to conclude the proof of Proposition 7, it suffices to find a sufficiently high probability set of

elements O ∈ O(N ) such that for every 1≤m ≤ N we have O ∈A
(
m, (m/(N log(N/m)))1/5

)
. However,

for sufficiently large N , we see from the union bound that

ν

( ⋃
1≤m≤N

Ac
(

m,
(

m
N log(N/m)

)1/5))
≤ Ne−cN 2/5

� e−c2 N 2/5
.

This completes the proof of Proposition 7.
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4. Maximal function decomposition

Proposition 15. For N fixed, let {φn(x)}Nn=1 be an ONS such that
∑N

n=1 |φn(x)|2 ≤ N. There exists
Q ⊂ O(N ) with P[Q] ≥ 1− C(e−cN 2/5

) such that for O ∈ Q the associated system 9(O) = {ψn}
N
n=1

satisfies the following property. For any f =
∑

anψn , letting m denote support({an}), we have that the
maximal function defined by

M f := sup
I⊆[N ]

∣∣∣∣∑
n∈I

anψn

∣∣∣∣
can be decomposed as M f := G̃ + Ẽ , where ‖G̃‖G � ‖ f ‖L2 and ‖Ẽ‖L2 � (m/N )c‖ f ‖L2 for some
universal constant c > 0.

To prove this, we fix Q ⊂ O(N ) from Proposition 7. We now decompose [N ] into a family of
subintervals according to a concept of mass defined with respect to the ai values. We define the mass of a
subinterval I ⊆ [N ] as M(I ) :=

∑
n∈I |an|

2. By normalization, we may assume that M([N ]) = 1. We
define I0,1 := [N ] and we iteratively define Ik,s , for 1≤ s ≤ 2k , as follows. Assuming we have already
defined Ik−1,s for all 1≤ s≤ 2k−1, we will define Ik,2s−1 and Ik,2s , which are subintervals of Ik−1,s . Ik,2s−1

begins at the left endpoint of Ik−1,s and extends to the right as far as possible while covering strictly less
than half the mass of Ik−1,s , while Ik,2s ends at the right endpoint of Ik−1,s and extends to the left as far as
possible while covering at most half the mass of Ik−1,s . More formally, we define Ik,2s−1 as the maximal
subinterval of Ik−1,s which contains the left endpoint of Ik−1,s and satisfies M(Ik,2s−1) <

1
2 M(Ik−1,s).

We also define Ik,2s as the maximal subinterval of Ik−1,s which contains the right endpoint of Ik−1,s and
satisfies M(Ik,2s)≤

1
2 M(Ik−1,s). We note that these subintervals are disjoint. We may express Ik−1,s as

Ik,2s−1∪ Ik,2s∪ ik,s , where ik,s ∈ Ik−1,s . In other words, ik,s denotes the single element which lies between
Ik,2s−1 and Ik,2s (note that such a point always exists because we have required that Ik,2s−1 contains
strictly less than half of the mass of the interval). Here it is acceptable, and in many instances necessary,
for some choices of the intervals in this decomposition to be empty. By construction we have that

M(Ik,s)≤ 2−k . (6)

We call an interval J ⊆ [N ] admissible if it is an element of the decomposition given above. We denote
the collection of admissible intervals by A. We additionally refer to the subset {Ik,s : 1≤ s ≤ 2k

} of A as
the admissible intervals on level k and the subset {ik,s : 1≤ s ≤ 2k

} as the admissible points on level k.
We note that every point in [N ] is an admissible point on some level. (Eventually, we have subdivided all
intervals down to being single elements.)

Now we write Ik := {Ik,s : 1≤ s ≤ 2k
}. We decompose this as Ia

k := {I ∈ Ik : |I | ≤ 2−k/2 N } and its
complement, Ib

k := {I ∈ Ik : |I |> 2−k/2 N }. Here, |I | denotes the number of nonzero ai values contained
in an interval I .

For J ⊆ [N ], we define

SJ (x)=
∑
n∈J

anψn(x).
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We also define

S̃J (x) :=max
I⊆J

∣∣∣∣∑
n∈I

anψn(x)
∣∣∣∣.

From Lemma 5 and Proposition 7, we deduce that SJ = G J + E J , where ‖G J‖G � ‖SJ‖L2 and
‖E J‖L2 � (|J |/N )c

′

‖SJ‖L2 for some positive constant c′. Our purpose now is to show a similar
decomposition for S̃J (x). Clearly, it suffices to show such a decomposition for a pointwise majorant.
Denote the decomposition of SIk,s by SIk,s := Gk,s + Ek,s , and the decomposition of Sik,s by Sik,s :=

Gik,s + Eik,s . Setting r = 3, for an interval J we have the following bound, where the sums below are
restricted to values of k, s such that Ik,s, ik,s ⊆ J :

S̃J (x)

�

∑
k

(∑
s

|Gk,s + Ek,s |
r
)1/r

+

∑
k

(∑
s

|Gik,s + Eik,s |
r
)1/r

�

(∑
k

(∑
s

|Gk,s |
r
)1/r

+

∑
k

(∑
s

|Gik,s |
r
)1/r)

+

(∑
k

(∑
s

|Ek,s |
r
)1/r

+

∑
k

(∑
s

|Eik,s |
r
)1/r)

=: G̃ J + Ẽ J . (7)

This follows from the observation that, for each point x , the maximizing subinterval I ⊆ J can be
decomposed as a union of admissible intervals and points with at most two intervals and points on each
level. The contribution on each level can then be bounded by a constant times the contribution from the
“worst” interval/point, which is in turn bounded by the quantity inside the sum over k above for each level k.

For an admissible interval J , we let k∗ denote the level of J . We note that the sums over k in (7)
range only over k ≥ k∗ (and the sums over s are also appropriately restricted). Next we show that
‖G̃ J‖G(c)�‖SJ‖L2 for some absolute constant c and ‖Ẽ J‖L2 � (|J |/N )c

′

‖SJ‖L2 .
Now let us estimate ‖Ẽ J‖L2 . We first estimate the contribution from the admissible points ik,s ∈ J .

We observe that ∥∥∥∥∑
k

(∑
s

|Eik,s |
r
)1/r∥∥∥∥

L2
≤

∑
k

∥∥∥∥(∑
s

|Eik,s |
r
)1/r∥∥∥∥

L2
.

Since r > 2, this is at most

∑
k

(∑
s

‖Eik,s‖
2
L2

)1/2

�

(
1
N

)c′∑
k

(∑
s

‖Sik,s‖
2
L2

)1/2

,

where the latter inequality follows from the definition of Eik,s .
Now since these sums only range over values of k, s such that ik,s ∈ J , we may split the sum over k

into two portions as

∑
k

(∑
s

‖Sik,s‖
2
L2

)1/2

=

k∗+10 log(N )∑
k=k∗

(∑
s

‖Sik,s‖
2
L2

)1/2

+

∑
k>k∗+10 log(N )

(∑
s

‖Sik,s‖
2
L2

)1/2

. (8)
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To bound the first quantity in (8), it suffices to observe that the inner quantity for each k is at most ‖SJ‖L2 ,
and hence its contribution is� log(N )‖SJ‖L2 � N ε

‖SJ‖L2 , for a constant ε < c′. (Thus we will adjust
the value of c′ for our final estimate by subtracting ε.)

To bound the second quantity in (8), we note that, for any ik,s ∈ J with k > k∗+ 10 log(N ), we have
‖Sik,s‖

2
L2 ≤ N−10

‖SJ‖
2
L2 . There are at most N points ik,s in the sum, and thus

∑
k>k∗+10 log(N )

(∑
s

‖Sik,s‖
2
L2

)1/2

� N−4
‖SJ‖L2 .

To estimate the contribution from the admissible intervals, we proceed as follows. For each k ≥ k∗, we
define I a

k (J ) to be the set of admissible intervals I on level k contained in J such that |I |< 2−(k−k∗)/2
|J |

and we let I b
k (J ) denote the set of remaining admissible intervals on level k contained in J . Note that

I a
k (J ) and I b

k (J ) are disjoint, and their union is the set of all admissible intervals on level k contained in
J . It thus suffices to estimate

Ẽa
J + Ẽb

J :=
∑
k≥k∗

( ∑
Ik,s∈I a

k (J )

|Ek,s |
r
)1/r

+

∑
k

( ∑
Ik,s∈I b

k (J )

|Ek,s |
r
)1/r

.

Now |I b
k (J )| ≤ 2(k−k∗)/2, and we also have

‖Ek,s‖L2 �

(
|J |
N

)c′

‖Sk,s‖L2 �

(
|J |
N

)c′

2−(k−k∗)/2
‖SJ‖L2 .

Since r > 2, we have∥∥∥∥∑
k≥k∗

( ∑
s∈I b

k (J )

|Ek,s |
r
)1/r∥∥∥∥

L2
≤

∑
k≥k∗

( ∑
s∈I b

k (J )

‖Ek,s‖
2
L2

)1/2

�

(
|J |
N

)c′

‖SJ‖L2

∑
j≥0

2− j/4
�

(
|J |
N

)c′

‖SJ‖L2 .

Next, we recall that I ∈ I a
k (J ) implies |I | ≤ 2−(k−k∗)/2

|J |. We have ‖SIk,s‖L2 � 2−(k−k∗)/2
‖SJ‖L2 .

Thus ‖Ek,s‖L2 � (|J |/N )c
′

2−c′(k−k∗)/2
‖SIk,s‖2� (|J |/N )c

′

2−(c
′
+1)(k−k∗)/2

‖SJ‖2.
We then have∥∥∥∥∑

k≥k∗

( ∑
Ik,s∈I a

k (J )

|Ek,s |
r
)1/r∥∥∥∥

L2
≤

∑
k≥k∗

( ∑
Ik,s∈I a

k (J )

‖Ek,s‖
2
L2

)1/2

�

(
|J |
N

)c′

‖SJ‖L2

∑
k≥k∗

2k−k∗2−(c
′
+1)(k−k∗)

�

(
|J |
N

)c′

‖SJ‖L2 .

Here we have used the fact that there are at most 2k−k∗ values of s such that Ik,s ⊆ J for each k ≥ k∗.
We can apply this for J = [N ] in particular, recalling that |J | denotes the number of nonzero ai values
contained in J , which in this case is m. This completes the proof that ‖Ẽ‖L2 � (m/N )c

′

‖ f ‖L2 for some
positive constant c′.

To show that ‖G̃‖G(c)� ‖ f ‖L2 for some universal constant c > 0, we will use the following lemma.
These implications and arguments are well known, however, we include a proof for completeness.
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Lemma 16. Let A denote a fixed, positive constant. For positive constants c,C , we define the following
sets of measurable functions:

S1(c): = { f : T→ R s.t. ‖ f ‖L p ≤ c
√

p A for all p ≥ 2},

S2(c,C): = { f : T→ R s.t. µ(| f | ≥ λ)≤ Ce−cλ2/A2
for all λ≥ 0},

S3(c): = { f : T→ R s.t. ‖ f ‖G(c) ≤ A},

where µ(| f | ≥ λ) denotes the measure of the subset of x ∈ T such that | f (x)| ≥ λ. Then, for any
c > 0, there exist positive constants c′,C ′, c′′ (depending only on c) such that S1(c) ⊆ S2(c′,C ′) and
S1(c)⊆ S3(c′′). Similarly, for any c,C > 0, there exist positive constants c′, c′′ (depending only on c,C)
such that S2(c,C)⊆ S1(c′) and S2(c,C)⊆ S3(c′′). Finally, for any c > 0, there exist positive constants
c′,C ′, c′′ (depending only on c) such that S3(c)⊆ S2(c′,C ′) and S3(c)⊆ S1(c′′).

Proof. Fixing c,C , we will determine c′ such that S2(c,C) ⊆ S3(c′) (for every A). We consider an
f ∈ S2(c,C). We consider c′ := d1d2 as a product of two variables d1, d2 whose values will be set later.

We assume d1 ≤ 1. We have∫
T

ec′| f |2/A2
dµ=

∫
T

ed1d2| f |2/A2
dµ≤ 1+ d1

∫
T

ed2| f |2/A2
dµ, (9)

using the inequality ex/a
≤ (1/a)ex

+ 1 for all a ≥ 1 and nonnegative x (this can be seen by considering
the Taylor expansion of ex ).

Now, we observe that∫
T

ed2| f |2/A2
dµ≤

∑
k≥0

∫
T

ed2| f |2/A2
· IA2k≤| f |2<A2(k+1) dµ≤

∑
k≥0

µ(| f |2 ≥ A2k)ed2(k+1),

where IA2k≤| f |2<A2(k+1) denotes the characteristic function of the set on which | f |2 takes values between
A2k and A2(k+1). Since f ∈ S2(c,C), we have µ(| f |2≥ A2k)≤Ce−ck for all k ≥ 0. Thus, we conclude∫

T

ed2| f |2/A2
dµ≤

∑
k≥0

Ce−ck+d2(k+1)
= Ced2

∑
k≥0

e−(c−d2)k =
Cec

ec−d2 − 1

whenever d2 < c. Setting d2 = c/2, we obtain the above quantity is ≤ Cec/(ec/2
− 1). Letting d1 =

min{1, (ec/2
− 1)/(Cec)}, we have

d1

∫
T

ed2| f |2/A2
≤ 1,

and hence
∫

T
ec′| f |2/A2

dµ− 1 ≤ 1 for c′ = d1d2, showing that f ∈ S3(c′). Note that c′ = d1d2 depends
only on c and C .

Conversely, we observe that, for every c > 0, S3(c)⊆ S2(c, 2). To see this, consider f ∈ S3(c). Then
we have ∫

T

ec| f |2/A2
dµ− 1≤ 1⇒

∫
T

ec| f |2/A2
dµ≤ 2.
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Thus, for any λ > 0,

µ(| f | ≥ λ)ecλ2/A2
≤

∫
T

ec| f |2/A2
dµ≤ 2.

It follows that f ∈ S2(c, 2).
For any c > 0, we will now show there exist c′,C such that S1(c) ⊆ S2(c′,C) (for every A). We

consider an f ∈ S1(c). This means that ‖ f ‖p
p ≤ cp p p/2 Ap for all p ≥ 2. Thus, for every λ > 0,

µ(| f | ≥ λ)λp
≤ (cA)p p p/2, which implies

µ(| f | ≥ λ)≤
(cA)p p p/2

λp . (10)

For a fixed λ, we may minimize this quantity over the choices of p ≥ 2. In the case that λ2/(ec2 A2)≥ 2,
we may set p equal to this value, and the quantity in (10) then becomes(

cA
λ

)λ2/(ec2 A2)(
λ2

ec2 A2

)λ2/(2ec2 A2)

= e−λ
2/(2ec2 A2).

Hence, by setting c′ = 1/(2ec2), we achieve µ(| f | ≥ λ)≤ e−c′λ2/A2
in these cases.

Now, when λ2/(ec2 A2) < 2, we note that e−c′λ2/A2
≥ e−c′(2ec2)

= e−1. Thus, setting C = e, we have
µ(| f | ≥ λ)≤ 1≤ Ce−c′λ2/A2

in these cases. Hence, in all cases, we have that

µ(| f | ≥ λ)≤ Ce−c′λ2/A2
,

so f ∈ S2(c′,C).
Conversely, for any c,C > 0, we will show that there exists c′ such that S2(c,C)⊆ S1(c′) for every A.

We consider an f ∈ S2(c,C). Then, for every λ ≥ 0, we have µ(| f | ≥ λ) ≤ Ce−cλ2/A2
. We fix p ≥ 2.

We observe that

‖ f ‖p
L p = p

∫
∞

0
λp−1µ(| f |> λ) dλ� p

∫
∞

0
λp−1e−cλ2/A2

dλ.

Substituting λ= t1/p, we see this equals ∫
∞

0
e−ct2/p/A2

dt. (11)

We note the identity (p/2)0(p/2)=
∫
∞

0 e−s2/p
ds where0 denotes the function0(z) :=

∫
∞

0 yz−1e−y dy.
Setting s = (c/A2)p/2t , we see that the quantity in (11) is equal to

c−p/2 Ap
∫
∞

0
e−s2/p

ds = c−p/2 Ap
(

p
2

)
0

(
p
2

)
.

By Sterling’s formula, 0(p/2)� p−1/2(p/(2e))p/2. Hence,

‖ f ‖L p � A
√

p(p1/(2p))� A
√

p,

as required. �
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Appealing to Lemma 16, we see that we may bound the quantity ‖G̃ J‖G(c) by considering the p norm.
We recall that

G̃ J =
∑

k

(∑
s

|Gk,s |
r
)1/r

+

∑
k

(∑
s

|Gik,s |
r
)1/r

,

where the sums are restricted to values of k, s such that Ik,s, ik,s ⊆ J . We let k∗ again denote the level of
J , so we are only summing over values k ≥ k∗.

By the triangle inequality, we have∥∥∥∥∑
k

(∑
s

|Gk,s |
r
)1/r

+

∑
k

(∑
s

|Gik,s |
r
)1/r∥∥∥∥

L p
≤

∑
k

∥∥∥∥(∑
s

|Gk,s |
r
)1/r∥∥∥∥

L p
+

∑
k

∥∥∥∥(∑
s

|Gik,s |
r
)1/r∥∥∥∥

L p
,

which, by another application of the triangle inequality, is equal to∑
k

∥∥∥∥∑
s

|Gk,s |
r
∥∥∥∥1/r

L p/r
+

∑
k

∥∥∥∥∑
s

|Gik,s |
r
∥∥∥∥1/r

L p/r
≤

∑
k

(∑
s

‖|Gk,s |
r
‖L p/r

)1/r

+

∑
k

(∑
s

‖|Gik,s |
r
‖L p/r

)1/r

=

∑
k

(∑
s

‖Gk,s‖
r
L p

)1/r

+

∑
k

(∑
s

‖Gik,s‖
r
L p

)1/r

.

Now, using that ‖Gk,s‖L p�
√

p‖SIk,s‖L2 and ‖Gik,s‖L p�
√

p‖Sik,s‖L2 , by Lemma 16 and ‖SIk,s‖L2�

‖SJ‖L22−(k−k∗)/2 and ‖Sik,s‖L2 �‖SJ‖L22−(k−k∗)/2, we have

‖G̃ J‖L p ≤

∑
k≥k∗

(∑
s

‖Gk,s‖
r
L p

)1/r

+

∑
k≥k∗

(∑
s

‖Gik,s‖
r
L p

)1/r

�
√

p‖SJ‖L2

∑
k≥k∗

(∑
s

2−r(k−k∗)/2
)1/r

.

Since the sum of s ranges over at most 2k−k∗ values (recall we only include values of s such that Ik,s ⊆ J )
and r > 2, this is

�
√

p‖SJ‖L2

∑
k≥k∗

2(k−k∗)(r−1
−2−1)

�
√

p‖SJ‖L2 .

It thus follows from Lemma 16 that

‖G̃ J‖G(c)�‖SJ‖L2

for some positive constant c. Lastly, we have that ‖G̃ J‖G�‖G̃ J‖G(c) from the definition of the Orlicz
norm.

5. Proof of the main result

We are now ready to prove the following.

Theorem 17. Let8 := {φn(x)}Nn=1 be an ONS such that
∑N

n=1 |φn(x)|2≤ N. Then there exists Q⊂O(N )
with P[Q] ≥ 1−Ce−cN 2/5

such that, for O ∈ Q, the alternate ONS 8(O) satisfies

‖V2 f ‖L2 �
√

log log(N )‖ f ‖L2 .
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Proof. Here we use the mass decomposition (into dyadic subintervals Ik,s) stated previously. We use the
following easily verified fact; see Lemma 29 of [Lewko and Lewko 2012a].

Lemma 18. For every J ⊆ [N ] (J 6=∅), there exist J̃`, J̃r ∈A and i J ∈ [N ] such that J̃ := J̃` ∪ i J ∪ J̃r

is an interval (that is, J`, i J , J` are adjacent), J ⊆ J̃ , and M( J̃ )≤ 2M(J ).

Without loss of generality, we set ‖ f ‖L2 = 1, and we have the pointwise inequality

|V2 f (x)|2�
∑
k,s

|S̃Ik,s IB(Ik,s)|
2
+

∑
k,s

|Sik,s |
2
+ log log(N ),

where B(Ik,s) ⊆ T is the set such that |S̃Ik,s (x)|
2
≥ C log log(N )M(Ik,s), for a fixed constant C whose

value will be chosen to be sufficiently large. Appealing to Proposition 15, for each Ik,s we can decompose
S̃Ik,s = G̃ Ik,s + Ẽ Ik,s . We then define BG(Ik,s) ⊆ T by |G̃ Ik,s (x)|

2
≥ (C/10) log log(N )M(Ik,s) and

BE(Ik,s)⊆ T by |Ẽ Ik,s (x)|
2
≥ (C/10) log log(N )M(Ik,s).

Clearly
∫ ∑

k,s |Sik,s |
2
≤ 1 is acceptable, so it suffices to show that∫

T

∑
k,s

|S̃Ik,s IB(Ik,s)|
2 dµ� 1.

Now, appealing to the decomposition above, we have∫
T

∑
k,s

|S̃Ik,s IB(Ik,s)|
2 dµ�

∫
T

∑
k,s

|G̃ Ik,s IBG(Ik,s)|
2 dµ+

∫
T

∑
k,s

|Ẽ Ik,s IBE (Ik,s)|
2 dµ.

First we estimate ∫
T

∑
k,s

|Ẽ Ik,s IBE (Ik,s)|
2 dµ�

∫
T

∑
k,s

|Ẽ Ik,s |
2 dµ.

Employing notation used above, we let I a
k := {Ik,s s.t. |Ik,s |≤2−k/2 N } and I b

k := {Ik,s s.t. |Ik,s |>2−k/2 N }.
Thus I ∈ I a

k implies |I | ≤ 2−k/2 N and |I b
k | ≤ 2k/2. We then have∫

T

∑
k,s

|Ẽ Ik,s |
2 dµ=

∫
T

∑
Ik,s∈I a

k

|Ẽ Ik,s |
2 dµ+

∫
T

∑
Ik,s∈I b

k

|Ẽ Ik,s |
2 dµ.

Using that I ∈ I a
k implies |I | ≤ 2−k/2 N , we have

∫
|Ẽ Ik,s |

2
� 2−c′k/2

‖SIk,s‖
2
L2 � 2−k−c′k/2. Thus∫

T

∑
Ik,s∈I a

k

|Ẽ Ik,s |
2 dµ�

∑
k

2−c′k/2
� 1.

Next, using that |I b
k | ≤ 2k/2 and

∫
|Ẽ Ik,s |

2
� 2−k , we have∫

T

∑
Ik,s∈I b

k

|Ẽ Ik,s |
2
�

∑
k

2−k/2
� 1.

Finally, we estimate ∫
T

∑
k,s

|G̃ Ik,s IBG(Ik,s)|
2 dµ.
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We can choose C sufficiently large so that |BG(Ik,s)| � 1/log10(N ) for all k, s (here, |BG(Ik,s)| denotes
the µ-measure). To see this, recall that ‖G̃ Ik,s‖G(c)�

√
M(Ik,s). By Lemma 16, there exists a constant

c′ > 0 such that
µ(|G̃ Ik,s | ≥ λ)� e−c′λ2/M(Ik,s)

for all λ≥ 0. Setting λ2
= (C/10) log log(N )M(Ik,s), we obtain

|BG(Ik,s)| � log(N )−c′C/10.

We can then choose C sufficiently large with respect to c′ to make this estimate� 1/log10(N ).
Now we split the sum at k = 100 log(N ) so∫

T

∑
k,s

|G̃ Ik,s IBG(Ik,s)|
2 dµ=

∫
T

∑
k,s

k≥100 log(N )

|G̃ Ik,s IBG(Ik,s)|
2 dµ+

∫
T

∑
k,s

k<100 log(N )

|G̃ Ik,s IBG(Ik,s)|
2 dµ.

By the Cauchy–Schwarz inequality,∫
T

∑
k,s

k<100 log(N )

|G̃ Ik,s IBG(Ik,s)|
2 dµ�

∑
k,s

‖G̃ Ik,s‖
2
4 ‖1BG(Ik,s)‖

2
4.

Now, by Lemma 16, we have ‖G̃ Ik,s‖
2
4� ‖SIk,s‖

2
L2 � 2−k , and, by the previous estimate, ‖IBG(Ik,s)‖

2
4�

1/log5(N ). Thus we have shown that the quantity above is

�
1

log5(N )

∑
k,s

k<100 log(N )

‖G̃ Ik,s‖
2
4�

1

log4(N )
� 1.

Lastly, let T ⊂ [N ] denote the set of indices appearing in some Ik,s for k ≥ 100 log(N ). Note that
any index will appear in at most N such intervals, and that M(Ik,s) ≤ N−100 if k ≥ 100 log(N ). Thus
|an|

2
� N−100 for n ∈ T . Thus we have∫

T

∑
k,s

k≥100 log(N )

|G̃ Ik,s IBG(Ik,s)|
2 dµ� N 2

∫
T

∑
n∈T

|anφn(x)|2 dµ� N−98
∫

T

∑
n∈T

|φn(x)|2 dµ� 1.

This completes the proof. �
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