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SPECTRAL ESTIMATES ON THE SPHERE

JEAN DOLBEAULT, MARIA J. ESTEBAN AND ARI LAPTEV

In this article we establish optimal estimates for the first eigenvalue of Schrödinger operators on the
d-dimensional unit sphere. These estimates depend on Lp norms of the potential, or of its inverse, and are
equivalent to interpolation inequalities on the sphere. We also characterize a semiclassical asymptotic
regime and discuss how our estimates on the sphere differ from those on the Euclidean space.

1. Introduction

Let1 be the Laplace–Beltrami operator on the unit d-dimensional sphere Sd . Our first result is concerned
with the sharp estimate of the first negative eigenvalue λ1 = λ1(−1− V ) of the Schrödinger operator
−1− V on Sd (with potential −V ) in terms of Lp-norms of V .

The literature on spectral estimates for the negative eigenvalues of Schrödinger operators on manifolds
is limited. P. Federbusch [1969] and O. S. Rothaus [1981] established a link between logarithmic
Sobolev inequalities and the ground state energy of Schrödinger operators. The Rozenbljum–Lieb–Cwikel
inequality (case γ = 0 with standard notations: see below) on manifolds has been studied in [Levin and
Solomyak 1997, Section 5]; we may also refer to [Lieb 1976] for the semiclassical regime, and to [Levin
2006; Ouhabaz and Poupaud 2010] for more recent results in this direction. A. Ilyin, in two articles
[1993; 2012] on Lieb–Thirring type inequalities (see also [Levin 2006; Ouhabaz and Poupaud 2010] for
other results on manifolds), considers Schrödinger operators on unit spheres restricted to the space of
functions orthogonal to constants and uses the original method of E. Lieb and W. Thirring [1976]. The
exclusion of the zero mode of the Laplace–Beltrami operator results in semiclassical estimates similar to
those for negative eigenvalues of Schrödinger operators in Euclidean spaces.

The results in this paper are somewhat complementary. We show that if the Lp-norm of V is smaller
than an explicit value, the first eigenvalue λ1(−1− V ) cannot satisfy the semiclassical inequality and
thus it is impossible to obtain standard Lieb–Thirring type inequalities for the whole negative spectrum.
However, we show that if the Lp-norm of the potential is large, the first eigenvalue behaves semiclassically
and the best constant in the inequality asymptotically coincides with the best constants L1

γ,d of the
corresponding inequality in the Euclidean space of the same dimension (see below). In this regime the
first eigenfunction is concentrated around some point on Sd and can be identified with an eigenfunction
of the Schrödinger operator on the tangent space, up to a small error. In Appendix A, we illustrate the
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transition between the small Lp-norm regime and the asymptotic, semiclassical regime by numerically
computing the optimal estimates for the eigenvalue λ1(−1− V ) in terms of the norms ‖V ‖Lp(Sd ).

In order to formulate our first theorem, let us introduce the measure dω induced by the Lebesgue
measure on Sd

⊂Rd+1 and the uniform probability measure dσ = dω/|Sd
| with |Sd

| = ω(Sd). We shall
denote by ‖ · ‖Lq (Sd ) the quantity ‖u‖Lq (Sd )= (

∫
Sd |u|q dσ)1/q for any q > 0 (including the case q ∈ (0, 1),

for which ‖ · ‖Lq (Sd ) is no longer a norm, but is only a quasinorm). Because of the normalization of dσ ,
when making comparisons with corresponding results in the Euclidean space, we will need the constant

κq,d := |S
d
|
1−2/q .

The well-known optimal constant L1
γ,d in the one bound state Keller–Lieb–Thirring inequality is defined

as follows: for any function φ on Rd , if λ1(−1− φ) denotes the lowest negative eigenvalue of the
Schrödinger operator −1−φ (with potential −φ) when it exists, and 0 otherwise, we have

|λ1(−1−φ)|
γ
≤ L1

γ,d

∫
Rd
φ
γ+d/2
+ dx, (1)

provided γ ≥ 0 if d ≥ 3, γ > 0 if d = 2, and γ ≥ 1/2 if d = 1. Notice that only the positive part φ+ of φ
is involved in the right-hand side of the above inequality. Assuming that γ > 1− d/2 if d = 1 or 2, we
shall consider the exponents

q = 2
2γ + d

2γ + d − 2
and p =

q
q − 2

= γ +
d
2
,

which are therefore such that

2< q =
2p

p− 1
≤ 2∗

with 2∗ := 2d/(d − 2) if d ≥ 3, and q = 2p/(p− 1) ∈ (2,+∞) if d = 1 or 2. To simplify notation, we
adopt the convention 2∗ :=∞ if d = 1 or 2. It is also convenient to introduce the notation

α∗ :=
1
4

d(d − 2).

In Section 2 we shall prove the following result.

Theorem 1. Let d ≥ 1 and p ∈ (max{1, d/2},+∞). Then there exists a convex increasing function
α :R+→R+ with α(µ)=µ for any µ∈ [0, (d/2)(p−1)] and α(µ)>µ for any µ∈ ((d/2)(p−1),+∞),
such that

|λ1(−1− V )| ≤ α(‖V ‖Lp(Sd )) (2)

for any nonnegative V ∈ Lp(Sd). Moreover, for large values of µ, we have

α(µ)p−d/2
= L1

p−d/2,d(κq,dµ)
p(1+ o(1)).

The estimate (2) is optimal in the sense that there exists a nonnegative function V such that µ=‖V ‖Lp(Sd )

and |λ1(−1− V )| = α(µ) for any µ ∈ ((d/2)(p − 1),+∞). If µ ≤ (d/2)(p − 1), equality in (2) is
achieved by constant potentials.
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If p = d/2 and d ≥ 3, then (2) is satisfied with α(µ)= µ only for µ ∈ [0, α∗]. If d = p = 1, then (2) is
also satisfied for some nonnegative, convex function α on R+ such that µ ≤ α(µ) ≤ µ+π2µ2 for any
µ ∈ (0,+∞), equality in (2) is achieved and α(µ)= π2µ2(1+ o(1)) as µ→+∞.

Since λ1(−1− V ) is nonpositive for any nonnegative, nontrivial V , inequality (2) is a lower estimate.
We have indeed found that

0≥ λ1(−1− V )≥−α(‖V ‖Lp(Sd )).

If V changes sign, the above inequality still holds if V is replaced by the positive part V+ of V , provided
the lowest eigenvalue is negative. We can then write

|λ1(−1− V )| ≤ α(‖V+‖Lp(Sd )) for all V ∈ Lp(Sd). (3)

The expression of L1
γ,d is not explicit (except in the case d = 1: see [Lieb and Thirring 1976, page 290]),

but can be given in terms of an optimal constant in some Gagliardo–Nirenberg–Sobolev inequality
(see [Lieb and Thirring 1976] and (9)–(10) in Section 2.1). In case d = p = 1, notice that L1

1/2,1 =
1
2 (see

Section B.2 in Appendix B) and κ∞,1 = 2π so that our formula in the asymptotic regime µ→+∞ is
consistent with the other cases.

The reader is invited to check that Theorem 1 can be reformulated in a more standard language of
spectral theory as follows. We recall that γ = p− d/2 and that dω is the standard measure induced on
the unit sphere Sd by the Lebesgue measure on Rd+1.

Corollary 2. Let d ≥ 1 and consider a nonnegative function V . For µ= ‖V ‖Lγ+d/2(Sd ) large, we have

|λ1(−1− V )|γ . L1
γ,d

∫
Sd

V γ+d/2 dω (4)

if either γ >max{0, 1− d/2} or γ = 1/2 and d = 1. However, if µ= ‖V ‖Lγ+d/2(Sd ) ≤
1
4 d(2γ + d − 2),

we have

|λ1(−1− V )|γ+d/2
≤

∫
Sd

V γ+d/2 dω (5)

for any γ ≥max{0, 1− d/2} and this estimate is optimal.

Here the notation f . g as µ→+∞ means that f ≤ c(µ)g with limµ→∞ c(µ)= 1. The limit case
γ =max{0, 1− d/2} in (5) is covered by approximations. We may also notice that optimality in (5) is
achieved by constant potentials. Let us give some details.

If we consider a sequence of constant functions (Vn)n∈N uniformly converging towards 0, for instance
Vn = 1/n, we get that

lim
n→∞

|λ1(−1− Vn)|
γ∫

Sd V γ+d/2
n dω

=+∞,

which clearly forbids the possibility of an inequality of the same type as (4) for small values of∫
Sd V γ+d/2 dω. This is however compatible with the results of Ilyin in dimension d = 2. In [Ilyin

2012, Theorem 2.1], the author states that if P is the orthogonal projection defined by Pu := u−
∫

S2 u dω,
the negative eigenvalues λk(P(−1− V )P) satisfy the semiclassical inequality
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∑
k

|λk(P(−1− V )P)| ≤ 3
8

∫
S2

V 2 dω.

Another way of seeing that inequalities like (4) are incompatible with small potentials is based on the
following observation. Inequality (5) shows that

|λ1(−1− V )| ≤
(∫

S2
V 2 dω

)1/2

if the L2-norm of V is smaller than 1. Since such an inequality is sharp, the semiclassical Lieb–Thirring
inequalities for the Schrödinger operator on the sphere S2 are therefore impossible for small potentials
and can be achieved only in a semiclassical asymptotic regime, that is, when the norm ‖V ‖L2(S2) is large.

Our second main result is concerned with the estimates from below for the first eigenvalue of Schrödinger
operators with positive potentials. In this case, by analogy with (1), it is convenient to introduce the
constant L1

−γ,d with γ > d/2, which is the optimal constant in the inequality

λ1(−1+φ)
−γ
≤ L1
−γ,d

∫
Rd
φd/2−γ dx, (6)

where φ is any positive potential on Rd and λ1(−1+φ) denotes the lowest positive eigenvalue if it exists,
or +∞ otherwise. Inequality (6) is less standard than (1); we refer to [Dolbeault et al. 2006, Theorem 12]
for a statement and a proof. As in Theorem 1, we shall also introduce exponents p and q such that

q = 2
2γ − d

2γ − d + 2
and p =

q
2− q

= γ −
d
2
,

so that p (respectively q = 2p/p+ 1) takes arbitrary values in (0,+∞) (respectively (0, 2)). With these
notations, we have the counterpart of Theorem 1 in the case of positive potentials.

Theorem 3. Let d ≥ 1, p ∈ (0,+∞). There exists a concave increasing function ν : R+→ R+ with
ν(β) = β for any β ∈ [0, (d/2)(p + 1)] if p > 1, ν(β) ≤ β for any β > 0 and ν(β) < β for any
β ∈ ((d/2)(p+ 1),+∞), such that

λ1(−1+W )≥ ν(β) with β = ‖W−1
‖
−1
Lp(Sd )

, (7)

for any positive potential W such that W−1
∈ Lp(Sd). Moreover, for large values of β, we have

ν(β)−(p+d/2) . L1
−(p+d/2),d(κq,dβ)

−p.

The estimate (7) is optimal in the sense that there exists a nonnegative potential W such that β−1
=

‖W−1
‖Lp(Sd ) and λ1(−1+W )= ν(β) for any positive β and p. If β ≤ (d/2)(p+1) and p> 1, equality

in (7) is achieved by constant potentials.

Again the expression of L1
−γ,d is not explicit when d ≥ 2 but can be given in terms of an optimal

constant in some Gagliardo–Nirenberg–Sobolev inequality; see [Dolbeault et al. 2006] and (17)–(18) in
Section 4.

We can rewrite Theorem 3 in terms of γ = p+ d/2 and explicit integrals involving W .
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Corollary 4. Let d ≥ 1 and γ > d/2. For β = ‖W−1
‖
−1
Lγ−d/2(Sd )

large, we have

(λ1(−1+W ))−γ . L1
−γ,d

∫
Sd

W d/2−γ dω.

However, if γ ≥ d/2+ 1 and if β = ‖W−1
‖
−1
Lγ−d/2(Sd )

≤
1
4 d(2γ − d + 2), we have

(λ1(−1+W ))d/2−γ ≤

∫
Sd

W d/2−γ dω,

and this estimate is optimal.

This paper is organized as follows. Section 2 contains various results on interpolation inequalities; the
most important one for our purpose is stated in Lemma 5. Theorem 1, Corollary 2 and, various spectral
estimates for Schrödinger operators with negative potentials are established in Section 3. Section 4 deals
with the case of positive potentials and contains the proofs of Theorem 3 and Corollary 4. Section 5 is
devoted to the threshold case (q = 2, that is, p, γ →+∞) of exponential estimates for eigenvalues, or, in
terms of interpolation inequalities, to logarithmic Sobolev inequalities. Finally, numerical and technical
results have been collected in two appendices.

2. Interpolation inequalities and consequences for negative potentials

2.1. Inequalities in the Euclidean space. Let us start with some considerations on inequalities in the
Euclidean space, which play a crucial role in the semiclassical regime.

We recall that we denote by 2∗ the Sobolev critical exponent 2d/(d−2) if d ≥ 3 and consider Sobolev’s
inequality on Rd , d ≥ 3,

‖v‖2L2∗ (Rd )
≤ Sd‖∇v‖

2
L2(Rd )

for all v ∈ D1,2(Rd) (8)

where Sd is the optimal constant and D1,2(Rd) is the Beppo Levi space obtained by completion of smooth
compactly supported functions with respect to the norm v 7→ ‖∇v‖L2(Rd ). See Section B.4 for details and
comments on the expression of Sd .

Assume now that d ≥ 1 and recall that 2∗=+∞ if d = 1 or 2. In the subcritical case, that is, q ∈ (2, 2∗),
let

Kq,d := inf
v∈H1(Rd )\{0}

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

be the optimal constant in the Gagliardo–Nirenberg–Sobolev inequality

Kq,d‖v‖
2
Lq (Rd )

≤ ‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

for all v ∈ H1(Rd). (9)

The optimal constant L1
γ,d in the one bound state Keller–Lieb–Thirring inequality is such that

L1
γ,d := (Kq,d)

−p with p = γ +
d
2
, q = 2

2γ + d
2γ + d − 2

. (10)
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See Section B.5 for a proof and references and [Lieb and Thirring 1976] for a detailed discussion. Also
see [Barnes 1976] for numerical values of Kq,d .

We shall also define the exponent

ϑ := d
q − 2

2q

which plays an important role in the scale invariant form of the Gagliardo–Nirenberg–Sobolev interpolation
inequalities associated to Kq,d : see Section B.1 for details.

2.2. Interpolation inequalities on the sphere. Using the inverse stereographic projection (see Section B.3),
it is possible to relate interpolation inequalities on Rd with interpolation inequalities on Sd . In this section
we consider the case of the sphere. Notice that α∗ = d/(q − 2) when q = 2∗ = 2d/(d − 2), d ≥ 3.

Lemma 5. Let q ∈ (2, 2∗). There exists a concave increasing function µ : R+→ R+ with the properties

µ(α)= α for all α ∈
[
0, d

q−2

]
,

µ(α) < α for all α ∈
( d

q−2
,+∞

)
,

µ(α)=
Kq,d

κq,d
α1−ϑ(1+ o(1)) as α→+∞,

and such that

‖∇u‖2L2(Sd )
+α‖u‖2L2(Sd )

≥ µ(α)‖u‖2Lq (Sd )
for all u ∈ H1(Sd). (11)

If d ≥ 3 and q = 2∗, the inequality also holds for any α > 0 with µ(α)=min {α, α∗}.

The remainder of this section is mostly devoted to the proof of Lemma 5. A fundamental tool is a
rigidity result proved by M.-F. Bidaut-Véron and L. Véron [1991, Theorem 6.1] for q > 2, which goes as
follows. Any positive solution of

−1 f +α f = f q−1 (12)

has a unique solution f ≡ α1/(q−2) for any 0 < α ≤ d/(q − 2). A straightforward consequence of this
rigidity result is the following interpolation inequality [Bidaut-Véron and Véron 1991, Corollary 6.2]:∫

Sd
|∇u|2 dσ ≥

d
q − 2

[(∫
Sd
|u|q dσ

)2/q

−

∫
Sd
|u|2 dσ

]
for all u ∈ H1(Sd , dσ). (13)

Inequality (13) holds for any q ∈ [1, 2)∪ (2, 2∗] if d ≥ 3 and for any q ∈ [1, 2)∪ (2,∞) if d = 1 or 2.
An alternative proof of (13) has been established in [Beckner 1993] for q > 2 using previous results by
Lieb [1983] and the Funk–Hecke formula [Funk 1915; Hecke 1917]. The whole range p ∈ [1, 2)∪ (2, 2∗)
was covered in the case of the ultraspherical operator [Bentaleb and Fahlaoui 2009; 2010]. Also see
[Bakry and Ledoux 1996; Ledoux 2000] for the carré du champ method, and [Dolbeault et al. 2013] for
an elementary proof. Inequality (13) is tight as defined by D. Bakry [2006, Section 2], in the sense that
equality is achieved only by constants.
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Remark 6. Inequality (13) is equivalent to

inf
u∈H1(Sd )\{0}

(q − 2)‖∇u‖2L2(Sd )

‖u‖2Lq (Sd )
−‖u‖2L2(Sd )

= d.

Although we will not make use of them in this paper, we may notice that the following properties hold
true:

(i) If q < 2∗, the above infimum is not achieved in H1(Sd) \ {0}, but

lim
ε→0+

(q − 2)‖∇uε‖2L2(Sd )

‖uε‖2Lq (Sd )
−‖uε‖2L2(Sd )

= d

if uε := 1+εϕ, where ϕ is a nontrivial eigenfunction of the Laplace–Beltrami operator corresponding
to the first nonzero eigenvalue (see Section 2.3).

(ii) If q = 2∗, d ≥ 3, there are nontrivial optimal functions for (13), due to the conformal invariance.
Alternatively, these solutions can be constructed from the family of Aubin–Talenti optimal functions
for Sobolev’s inequality, using the inverse stereographic projection.

(iii) If α > α∗ and q = 2∗, d ≥ 3, there are no optimal functions for (11), since otherwise α 7→ µ(α)

would not be constant on (α∗, α): see Proposition 7 below.

2.3. Properties of the function α 7→ µ(α) in the subcritical case. Assume that q ∈ (2, 2∗). For any
α > 0, consider

Qα[u] :=
‖∇u‖2L2(Sd )

+α‖u‖2L2(Sd )

‖u‖2Lq (Sd )

for all u ∈ H1(Sd , dσ).

It is a standard result of the calculus of variations that

inf
u∈H1(Sd ,dσ)∫

Sd |u|q dσ=1

Qα[u] := µ(α)

is achieved by a minimizer u ∈ H1(Sd , dσ) which solves the Euler–Lagrange equations

−1u+αu−µ(α)uq−1
= 0. (14)

Indeed, we know that there is a Lagrange multiplier associated to the constraint
∫

Sd |u|q dσ = 1, and
multiplying (14) by u and integrating on Sd , we can identify it with µ(α). As a corollary, we have shown
that (11) holds. The fact that the Lagrange multiplier can be identified so easily is a consequence of the
fact that all terms in (11) are two-homogeneous.

We can now list some basic properties of the function α 7→ µ(α).

(1) For any α > 0, µ(α) is positive, since the infimum is achieved by a nonnegative function u and
u = 0 is incompatible with the constraint

∫
Sd |u|q dσ = 1. By taking a constant test function, we see

that µ(α) ≤ α for all α > 0. The function α 7→ µ(α) is monotone nondecreasing since for a given
u ∈ H1(Sd , dσ) \ {0}, the function α 7→ Qα[u] is monotone increasing. It is actually strictly monotone.
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Indeed, if µ(α1)= µ(α2) with α1 < α2, one can notice that Qα1[u2]< µ(α1) if u2 is a minimizer of Qα2

satisfying the constraint
∫

Sd |u2|
q dσ = 1, which provides an obvious contradiction.

(2) We have

µ(α)= α for all α ∈
(

0, d
q−2

]
.

Indeed, if u is a solution of (14), f = µ(α)1/(q−2)u solves (12) and is therefore a constant function if
α ≤ d/(q − 2) according to [Bidaut-Véron and Véron 1991, Theorem 6.1], and so is u as well. Because
of the normalization constraint ‖u‖Lq (Sd ) = 1, we get that u = 1, which proves the statement.

On the contrary, we have

µ(α) < α for all α >
d

q − 2
.

Let us prove this. Let ϕ be a nontrivial eigenfunction of the Laplace–Beltrami operator corresponding to
the first nonzero eigenvalue:

−1ϕ = dϕ.

If x = (x1, x2, . . . , xd , z) are cartesian coordinates of x ∈ Rd+1 so that Sd
⊂ Rd+1 is characterized by the

condition
∑d

i=1 x2
i + z2

= 1, a simple choice of such a function ϕ is ϕ(x) = z. By orthogonality with
respect to the constants, we know that

∫
Sd ϕ dσ = 0. We may now Taylor expand Qα around u = 1 by

considering u = 1+ εϕ as ε→ 0 and obtain that

µ(α)≤ Qα[1+ εϕ] =
(d +α)ε2

∫
Sd |ϕ|

2 dσ +α
(
∫

Sd |1+ εϕ|q dσ)2/q
= α+ [d +α(2− q)]ε2

∫
Sd
|ϕ|2 dσ + o(ε2).

By taking ε small enough, we get µ(α) < α for all α > d/(q− 2). Optimizing on the value of ε > 0 (not
necessarily small) provides an interesting test function: see Section A.1.

(3) The function α 7→ µ(α) is concave, because it is the minimum of a family of affine functions.

2.4. More estimates on the function α 7→ µ(α). We first consider the critical case q = 2∗, d ≥ 3. As in
the subcritical case q < 2∗, we have µ(α)= α for α ≤ α∗. For α > α∗, the function α 7→µ(α) is constant.

Proposition 7. With the notations of Lemma 5, if d ≥ 3 and q = 2∗, then

µ(α)= α∗ for all α > α∗ =
d

q − 2
=

1
4 d(d − 2).

Proof. Consider the Aubin–Talenti optimal functions for Sobolev’s inequality and, more specifically, let
us choose the functions

vε(x) :=
(

ε

ε2+ |x |2

)d−2
2

for all x ∈ Rd and all ε > 0,

which are such that ‖vε‖L2∗ (Rd )=‖v1‖L2∗ (Rd ) is independent of ε. With standard notations (see Section B.3),
let N ∈ Sd be the north pole. Using the stereographic projection 6, that is, for the functions defined for
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any y ∈ Sd
\ {N} by

uε(y)=
(
|x |2+ 1

2

)d−2
2
vε(x) with x =6(y),

we find that ‖uε‖L2∗ (Sd ) = ‖v1‖L2∗ (Rd ) for any ε > 0, so that

µ(α)≤Qα[uε]=
‖∇vε‖

2
L2(Rd )

+(α−α∗)
∫

Rd |vε|
2(2/(1+|x |2))2 dx

κ2∗,d‖vε‖
2
L2∗ (Rd )

=α∗+4|Sd
|
1−2/d(α−α∗)

δ(d,ε)
‖v1‖

2
L2∗ (Rd )

,

where we have used the fact that κ2∗,dSd = 1/α∗ (see Section B.4) and

δ(d, ε) :=
∫
∞

0

(
ε

ε2+ r2

)d−2 rd−1

(1+ r2)2
dr = ε2

∫
∞

0

(
1

1+ s2

)d−2 sd−1

(1+ ε2s2)2
ds.

One can check that limε→0+ δ(d, ε)= 0 since

δ(d, ε)≤ ε2
∫
∞

0

sd−1

(1+ s2)d−2 ds if d ≥ 5 and δ(d, ε)≤ εcd

∫
+∞

0

ds
(1+ s2)2

if d = 3 or 4,

with c3 = 1 and c4 = 3
√

3/16. �

The next step is devoted to a lower estimate for the function α 7→ µ(α) in the subcritical case, which
shows that limα→+∞ µ(α)=+∞ in contrast with the critical case.

Proposition 8. With the notations of Lemma 5, if d ≥ 3 and q ∈ (2, 2∗), then, for any α > α∗, we have

α > µ(α)≥ αϑ
∗
α1−ϑ

with ϑ = d(q−2)/2q. For every s ∈ (2, 2∗), if d ≥ 3, or every s ∈ (2,+∞) if d = 1 or 2, such that s > q ,
we also have that

α > µ(α)≥

(
d

s− 2

)θ
α1−θ

for any α > d/(s− 2) and θ = θ(s, q, d) := s(q − 2)/(q(s− 2)).

Proof. The first case can be seen as a limit case of the second one as s→ 2∗ and ϑ = θ(2∗, q, d). Using
Hölder’s inequality, we can estimate ‖u‖Lq (Sd ) by

‖u‖Lq (Sd ) ≤ ‖u‖
θ
Ls(Sd )
‖u‖1−θL2(Sd )

and get the result using

Qα[u] ≥
(
‖∇u‖2L2(Sd )

+α‖u‖2L2(Sd )

‖u‖2Ls(Sd )

)θ(‖∇u‖2L2(Sd )
+α‖u‖2L2(Sd )

‖u‖2L2(Sd )

)1−θ

≥

(
d

s− 2

)θ
α1−θ . �

Proposition 9. With the notations of Lemma 5, for every q ∈ (2, 2∗), we have

lim sup
α→+∞

αϑ−1µ(α)≤
Kq,d

κq,d
.
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Proof. Let v be an optimal function for Kq,d and define for any x ∈ Rd the function

vα(x) := v
(
2
√
α−α∗ x

)
with α∗ = 1

4 d(d − 2) and α > α∗, so that∫
Rd
|∇vα|

2 dx = 22−d(α−α∗)
1−d/2

∫
Rd
|∇v|2 dx,∫

Rd
|vα|

q
(

2
1+ |x |2

)d−(d−2)q/1

dx = 2−(d−2)q/2(α−α∗)
−d/2

∫
Rd
|v|q

(
1+

|x |2

4(α−α∗)

)−d+(d−2)q/2

dx .

Now we observe that the function uα(y) := ((|x |2+ 1)/2)(d−2)/2vα(x), where y =6−1(x) and 6 is the
stereographic projection (see Section B.3), is such that

Qα[uα] =
1
κq,d

∫
Rd |∇vα|

2 dx + (α−α∗)
∫

Rd |vα|
2(2/(1+ |x |2))2 dx

[
∫

Rd |vα|q(2/(1+ |x |2))d−(d−2)q/2 dx]2/q
.

Passing to the limit as α→+∞, we get

lim
α→+∞

∫
Rd
|v|q

(
1+

|x |2

4(α−α∗)

)−d+(d−2)q/2

dx =
∫

Rd
|v|q dx

by Lebesgue’s theorem of dominated convergence. The limit also holds with q replaced by 2. This proves
that

Qα[uα] = (α−α∗)1−d/2+d/q
(
Kq,d

κq,d
+ o(1)

)
as α→+∞,

which concludes the proof because ϑ = d(q − 2)/(2q). �

2.5. The semiclassical regime: behavior of the function α 7→ µ(α) as α → +∞. Assume q ∈ (2, 2∗).
If we combine the results of Propositions 8 and 9, we know that µ(α) ∼ α1−ϑ as α→+∞ if d ≥ 3.
If d = 1 or 2, we know that limα→+∞ µ(α) = +∞ with a growth at least equivalent to α2/q−ε with
ε > 0, arbitrarily small, according to Proposition 8, and at most equivalent to α1−ϑ by Proposition 9. To
complete the proof of Lemma 5, it remains to determine the precise behavior of µ(α) as α→+∞.

Proposition 10. With the notations of Lemma 5, for every q ∈ (2, 2∗), with ϑ = d(q − 2)/(2q) we have

µ(α)=
Kq,d

κq,d
α1−ϑ(1+ o(1)) as α→+∞.

Proof. Suppose by contradiction that there is a positive constant η and a sequence (αn)n∈N such that
limn→+∞ αn =+∞ and

lim
n→+∞

αϑ−1
n µ(αn)≤

Kq,d

κq,d
− η. (15)

Consider a sequence (un)n∈N of functions in H1(Sd) such that Qαn [un] = µ(αn) and ‖un‖Lq (Sd ) = 1 for
any n ∈ N. From (15), we know that

αn‖un‖
2
L2(Sd )

≤ Qαn [un] = µ(αn)≤ α
1−ϑ
n

(
Kq,d

κq,d
− η

)
(1+ o(1)) as n→+∞,



SPECTRAL ESTIMATES ON THE SPHERE 445

that is,

lim sup
n→+∞

αϑn ‖un‖
2
L2(Sd )

≤
Kq,d

κq,d
− η.

The normalization ‖un‖Lq (Sd ) = 1 for any n ∈ N and the limit limn→+∞ ‖un‖L2(Sd ) = 0 mean that the
sequence (un)n∈N concentrates: there exists a sequence (yi )i∈N of points in Sd (eventually finite) and
two sequences of positive numbers (ζi )i∈N and (ri,n)i,n∈N such that limn→+∞ ri,n = 0,

∑
i∈N ζi = 1, and∫

Sd∩B(yi ,ri,n)
|ui,n|

q dσ = ζi + o(1), where ui,n ∈ H1(Sd), ui,n = un on Sd
∩ B(yi , ri,n), and

supp ui,n ⊂ Sd
∩ B(yi , 2ri,n).

Here o(1) means that uniformly with respect to i , the remainder term converges towards 0 as n→+∞.
Using a computation similar to those of the proof of Proposition 9, we can blow up each function ui,n

and prove

(αn −α∗)
ϑ−1

∫
Sd
(|∇ui,n|

2
+αn|ui,n|

2) dσ ≥
Kq,d

κq,d
ζ

2/q
i + o(1) for all i.

Let us choose an integer N such that
(∑N

i=1 ζi
)2/q

> 1− κq,dη/(2Kq,d). Then we find that

(αn −α∗)
ϑ−1

∫
Sd
(|∇un|

2
+αn|un|

2) dσ ≥
Kq,d

κq,d

N∑
1

ζ
2/q
i + o(1)≥

Kq,d

κq,d

( N∑
1

ζi

)2/q

+ o(1)

≥
Kq,d

κq,d
−
η

2
+ o(1),

a contradiction with (15). �

For details on the behavior of Kq,d as q varies, see Proposition 15. Collecting all results of this section
completes the proof of Lemma 5.

3. Spectral estimates for the Schrödinger operator on the sphere

This section is devoted to the proof of Theorem 1. As a consequence of the results of Lemma 5, the
function α 7→ µ(α) is invertible, of inverse µ 7→ α(µ), if d = 1, 2 or d ≥ 3 and q < 2∗, and we have the
inequality∫

Sd
|∇u|2 dσ −µ

(∫
Sd
|u|q dσ

)2
q
≥−α(µ)

∫
Sd
|u|2 dσ for all u ∈ H1(Sd , dσ) and all µ > 0. (16)

Moreover, the function µ 7→ α(µ) is monotone increasing, convex, and satisfies α(µ) = µ for any
µ ∈ (0, d/(q − 2)] and α(µ) > µ for any µ > d/(q − 2).

Consider the Schrödinger operator −1− V for some function V ∈ Lp(Sd) and the corresponding
energy functional

E[u] :=
∫

Sd
|∇u|2 dσ −

∫
Sd

V |u|2 dσ.

Let
λ1(−1− V ) := inf

u∈H1(Sd ,dσ)∫
Sd |u|2 dσ=1

E[u].
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By Hölder’s inequality, we have

E[u] ≥
∫

Sd
|∇u|2 dσ −‖V+‖Lp(Sd )‖u‖

2
Lq (Sd )

with 1/p+ 2/q = 1. From Section 2, with µ= ‖V+‖Lp(Sd ), we deduce

E[u] ≥ −α(µ)‖u‖2L2(Sd )
for all u ∈ H1(Sd , dσ) and all V ∈ Lp(Sd),

which amounts to a Keller–Lieb–Thirring inequality on the sphere (3), or equivalently,∫
Sd
|∇u|2 dσ−

∫
Sd

V |u|2 dσ+α(‖V+‖Lp(Sd ))

∫
Sd
|u|2 dσ ≥0 for all u∈H1(Sd ,dσ) and all V ∈Lp(Sd).

Notice that this inequality simultaneously contains (3) and (16), by optimizing either on u or on V .
Optimality in (3) still needs to be proved. This can be done by taking an arbitrary µ ∈ (0,∞) and

considering an optimal function for (16), for which we have∫
Sd
|∇u|2 dσ −µ

(∫
Sd
|u|q dσ

)2
q
= α(µ)

∫
Sd
|u|2 dσ.

Because the above expression is homogeneous of degree two, there is no restriction to assume that∫
Sd |u|q dσ = 1, and since the solution is optimal, it solves the Euler–Lagrange equation

−1u− V u = α(µ)u

with V = µuq−2, such that

‖V+‖Lp(Sd ) = µ‖u‖
q/p
Lq (Sd )

= µ.

Hence such a function V realizes the equality in (3).
Taking into account Lemma 5 and (10), this completes the proof of Theorem 1 in the general case.

The case d = 1 and γ = 1/2 has to be treated specifically. Using u ≡ 1 as a test function, we know that
|λ1(−1− V )| ≤ µ=

∫
S1 V dx . On the other hand, consider u ∈ H1(S1) such that ‖u‖L2(S1) = 1. Since

H1(S1) is embedded into C0,1/2(S1), there exists x0 ∈ S1
≈ [0, 2π) such that u(x0)= 1 and

|u(x)|2− 1= 2
∫ x

x0

u(y)u′(y) dy = 2
∫ x

x0+2π
u(y)u′(y) dy

can be estimated by∣∣|u(x)|2− 1
∣∣≤ 2

∫ x

x0

|u(y)||u′(y)| dy = 2
∫ x

x0+2π
|u(y)||u′(y)| dy

≤

∫ 2π

0
|u(y)||u′(y)| dy ≤

(∫ 2π

0
|u(y)|2 dy

∫ 2π

0
|u′(y)|2 dy

)1/2

using the Cauchy–Schwarz inequality, that is,

||u(x)|2− 1| ≤ 2π‖u′‖L2(S1),
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since ‖u′‖2L2(S1)
= (1/(2π))

∫ 2π
0 |u

′(y)|2 dy and ‖u‖2L2(S1)
= (1/(2π))

∫ 2π
0 |u(y)|

2 dy = 1 (recall that dσ
is a probability measure). Thus we get

|u(x)|2 ≤ 1+ 2π‖u′‖L2(S1),

from which it follows that

λ1(−1− V )≥ ‖u′‖2L2(S1)
−µ(1+ 2π‖u′‖L2(S1))≥−µ−π

2µ2.

This shows that µ≤ α(µ)≤ µ+π2µ2. By the Arzelà–Ascoli theorem, the embedding of H1(S1) into
C0,1/2(S1) is compact. When d = 1 and γ = 1/2, the proof of the asymptotic behavior of α(µ) as
µ→+∞ can then be completed as in the other cases.

4. Spectral inequalities in the case of positive potentials

In this section we address the case of Schrödinger operators −1+W where W is a positive potential on
Sd and we derive estimates from below for the first eigenvalue of such operators. In order to do so, we
first study interpolation inequalities in the Euclidean space Rd , like those studied in Section 2 (for q > 2).

For this purpose, let us define for q ∈ (0, 2) the constant

K∗q,d := inf
v∈H1(Rd )\{0}

‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

‖v‖2L2(Rd )

,

that is, the optimal constant in the Gagliardo–Nirenberg–Sobolev inequality

K∗q,d‖v‖
2
L2(Rd )

≤ ‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

for all v ∈ H1(Rd) (17)

(with the convention that the right-hand side is infinite if |v|q is not integrable).
The optimal constant L1

−γ,d in (6) is such that

L1
−γ,d := (K

∗

q,d)
−γ with q = 2

2γ − d
2γ − d + 2

. (18)

See Section B.6 for a proof. Let us define the exponent

δ :=
2q

2d − q(d − 2)
.

Lemma 11. Let q ∈ (0, 2) and d ≥ 1. Then there exists a concave increasing function ν : R+→ R+ with
the properties

ν(β)≤ β for all β > 0 and ν(β) < β for all β ∈
(

d
2− q

,+∞

)
,

ν(β)= β for all β ∈
[

0,
d

2− q

]
if q ∈ [1, 2) and lim

β→0+

ν(β)

β
= 1 if q ∈ (0, 1),

ν(β)= K∗q,d(κq,dβ)
δ(1+ o(1)) as β→+∞,
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such that
‖∇u‖2L2(Sd )

+β‖u‖2Lq (Sd )
≥ ν(β)‖u‖2L2(Sd )

for all u ∈ H1(Sd). (19)

Proof. Inequality (19) is obtained by minimizing the left-hand side the constraint ‖u‖L2(Sd ) = 1: there is
a minimizer which satisfies

−1u+βuq−1
− ν(β)u = 0.

Case q ∈ (1, 2). The proof is very similar to that of Lemma 5, so we leave it to the reader. Written for
the optimal value of ν(β), inequality (19) is optimal in the following sense:

(i) If 0 < β ≤ d/(2− q), equality is achieved by constants. See [Dolbeault et al. 2013] for rigidity
results on Sd .

(ii) If β = d/(2− q), the sequence (un)n∈N with un := 1+ (1/n)ϕ, where ϕ is an eigenfunction of the
Laplace–Beltrami operator, is a minimizing sequence of the quotient to the left-hand side of (19)
divided by the right-hand side which converges to the optimal value of ν(β)= β = d/(2−q), that is,

lim
n→∞

‖∇un‖
2
L2(Sd )

‖un‖
2
L2(Sd )

−‖un‖
2
Lq (Sd )

=
d

2− q
.

(iii) If β > d/(2− q), there exists a nonconstant positive function u ∈ H1(Sd) \ {0} such that equality
holds in (19).

Case q ∈ (0, 1]. In this case, since Sd is compact, the case q ≤ 1 does not differ from the case q ∈ (1, 2)
as far as the existence of ν(β) is concerned. The only difference is that there is no known rigidity result
for q < 1. However, we can prove that

lim
β→0+

ν(β)

β
= 1.

Indeed, let us notice that ν(β)≤ β (use constants as test functions). On the other hand, let uβ = cβ + vβ
be a minimizer for ν(β) such that cβ =

∫
Sd uβ dσ and, as a consequence,

∫
Sd vβ dσ = 0. Without loss of

generality we can set
∫

Sd |cβ + vβ |2 dσ = c2
β +

∫
Sd |vβ |

2 dσ = 1. Using the Poincaré inequality, we know
that ‖∇vβ‖2L2(Sd )

≥ d‖vβ‖2L2(Sd )
, and hence

d‖vβ‖2L2(Sd )
+β‖cβ + vβ‖2Lq (Sd )

≤ ‖∇vβ‖
2
L2(Sd )

+β‖cβ + vβ‖2Lq (Sd )
= ν(β)≤ β,

which shows that limβ→0+ ‖vβ‖L2(Sd ) = 0 and limβ→0+ cβ = 1. As a consequence, ‖cβ + vβ‖2Lq (Sd )
=

c2
β(1+ o(1)) as β→ 0+ and we obtain that

β(1+ o(1))= βc2
β(1+ o(1))≤ ν(β),

which concludes the proof.

Asymptotic behavior of ν(β). Finally, the asymptotic behavior of ν(β) when β is large can be investigated
using concentration-compactness methods similar to those used in the proofs of Propositions 8, 9, and 10.
Details are left to the reader. �
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Proof of Theorem 3. By Hölder’s inequality we have

‖u‖2Lq (Sd )
=

(∫
Sd

W−q/2(W |u|2)q/2 dσ
)2/q

≤ ‖W−1
‖Lq/(2−q)(Sd )

∫
Sd

W |u|2 dσ.

Using (19), we get∫
Sd
|∇u|2 dσ +

∫
Sd

W |u|2 dσ ≥
∫

Sd
|∇u|2 dσ +‖W−1

‖
−1
Lp(Sd )

‖u‖2Lq (Sd )
≥ ν(‖W−1

‖
−1
Lp(Sd )

)

∫
Sd
|u|2 dσ

with p = q/(2− q), which proves (7). Then Theorem 3 is an easy consequence of Lemma 11. �

5. The threshold case: q = 2

The limiting case q = 2 in the interpolation inequality (13) corresponds to the logarithmic Sobolev
inequality ∫

Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ ≤
2
d

∫
Sd
|∇u|2 dσ for all u ∈ H1(Sd , dσ),

which has been studied, for example, in [Beckner 1993; Brouttelande 2003b; 2003a]. For earlier results
on the sphere, see [Federbush 1969; Rothaus 1981; Mueller and Weissler 1982] and the references therein
(in particular for the circle). Now, if we consider inequality (11), in the limiting case q = 2 we obtain the
following interpolation inequality.

Lemma 12. For any p >max{1, d/2}, there exists a concave nondecreasing function ξ : (0,+∞)→ R

with the properties

ξ(α)= α for all α ∈ (0, α0) and ξ(α) < α for all α > α0

for some α0 ∈ [(d/2)(p− 1), (d/2)p], and

ξ(α)∼ α1−d/(2p) as α→+∞

such that∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log
ξ(α)

α
‖u‖2L2(Sd )

≤ p‖u‖2L2(Sd )
log
(

1+
‖∇u‖2L2(Sd )

α‖u‖2L2(Sd )

)
for all u ∈ H1(Sd). (20)

Proof. Consider Hölder’s inequality: ‖u‖Lr (Sd ) ≤ ‖u‖θL2(Sd )
‖u‖1−θLq (Sd )

, with 2≤ r < q and θ = 2
r

q−r
q−2 . To

emphasize the dependence of θ in r , we shall write θ = θ(r). By taking the logarithm of both sides of the
inequality, we find that

1
r

log
∫

Sd
|u|r dσ ≤

θ(r)
2

log
∫

Sd
|u|2 dσ +

1− θ(r)
q

log
∫

Sd
|u|q dσ.
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The inequality becomes an equality when r = 2, so that we may differentiate at r = 2 and get, with
q = 2p/(p− 1) < 2∗, that is, p = q/(q − 2), the logarithmic Hölder inequality∫

Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ ≤ p‖u‖2L2(Sd )
log
‖u‖2Lq (Sd )

‖u‖2L2(Sd )

for all u ∈ H1(Sd).

We may now use inequality (11) to estimate

‖u‖2Lq (Sd )

‖u‖2L2(Sd )

≤
α

µ(α)

(
1+

1
α

‖∇u‖2L2(Sd )

‖u‖2L2(Sd )

)
,

where µ= µ(α) is the constant which appears in Lemma 5. Thus we get∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log
µ(α)

α
‖u‖2L2(Sd )

≤ p‖u‖2L2(Sd )
log
(

1+
‖∇u‖2L2(Sd )

α‖u‖2L2(Sd )

)
,

which proves that the inequality∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ + p log ξ(α)‖u‖2L2(Sd )
≤ p‖u‖2L2(Sd )

log
(
α+
‖∇u‖2L2(Sd )

‖u‖2L2(Sd )

)
holds for some optimal constant ξ(α)≥µ(α), which is therefore concave, and such that limα→+∞ ξ(α)=

+∞. This establishes (20). The fact that equality is achieved for every α > 0 follows from the method of
[Dolbeault and Esteban 2012, Proposition 3.3].

Testing (20) with constant functions, we find that ξ(α) ≤ α for any α > 0. On the other hand,
ξ(α) ≥ µ(α) = α for any α ≤ d/(q − 2) = (d/2)(p− 1). Testing (20) with u = 1+ εϕ, we find that
ξ(α) < α if α > (d/2)p.

By Proposition 10, we know that ξ(α)≥µ(α)∼ α1−ϑ with ϑ = d(q−2)/(2q)= d/(2p) as α→+∞.
As in the proof of Propositions 9 and 10, let us consider an optimal function uα for (20). Then we have

p log
ξ(α)

α

= p log
(

1+
1
α
‖∇uα‖2L2(Sd )

)
−

∫
Sd
|uα|2 log |uα|2 dσ ∼

p
α
‖∇uα‖2L2(Sd )

−

∫
Sd
|uα|2 log |uα|2 dσ

as α→+∞ and uα concentrates at a single point like in the case q > 2 so that, after a stereographic
projection which transforms uα into vα, the function vα is, up to higher order terms, optimal for the
Euclidean logarithmic Sobolev inequality∫

Rd
|v|2 log

|v|2

‖v‖2L2(Rd )

dx +
d
2

log(πεe2)‖v‖2L2(Rd )
≤ ε‖∇v‖2L2(Rd )

,

which holds for any ε > 0 and any v ∈ H1(Rd). Here we have of course ε = p/α and we find that

p log
ξ(α)

α
=

d
2

log
(
π

p
α

e2
)
(1+ o(1)) as α→+∞. �
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Corollary 13. With the notations of Lemma 12, for any α > 0, we have

α

p

∫
Sd
|u|2 log

|u|2

‖u‖2L2(Sd )

dσ +α log
ξ(α)

α
‖u‖2L2(Sd )

≤ ‖∇u‖2L2(Sd )
for all u ∈ H1(Sd).

Proof. This is a straightforward consequence of Lemma 12 using the fact that log(1+ x) ≤ x for any
x > 0. �

As in the case q 6= 2, Corollary 13 provides some spectral estimates. Let u ∈ H1(Sd) be such that
‖u‖L2(Sd ) = 1. A straightforward optimization with respect to an arbitrary function W shows that

inf
W

[∫
Sd

W |u|2 dσ +µ log
∫

Sd
e−W/µ dσ

]
=−µ

∫
Sd
|u|2 log |u|2 dσ,

with the optimality case achieved by W such that

|u|2 =
e−W/µ∫

Sd e−W/µ dσ
.

Notice that, up to the addition of a constant, we can always assume that
∫

Sd e−W/µ dσ = 1, which uniquely
determines the optimal W . Now, by Corollary 13 applied with µ= α/p, we find that∫

Sd
|∇u|2 dσ +

∫
Sd

W |u|2 dσ ≥ α log
ξ(α)

α
−
α

p
log

∫
Sd

e−pW/α dσ.

This leads us to the following statement.

Corollary 14. Let d ≥ 1. With the notations of Lemma 12, we have the estimate

e−λ1(−1−W )/α
≤

α

ξ(α)

(∫
Sd

e−pW/α dσ
)1/p

for any function W such that e−pW/α is integrable. This estimate is optimal in the sense that there exists a
nonnegative function W for which the inequality becomes an equality.

Appendix A. Further estimates and numerical results

A.1. A refined upper estimate. Let q ∈ (2, 2∗). For α > d/(q − 2), we can give an upper estimate of
the optimal constant µ(α) in inequality (11) of Lemma 5. Consider functions which depend only on z,
with the notations of Section 2.3. Then (11) is equivalent to an inequality that can be written as

Fα[ f ] :=

∫ 1
−1 | f

′
|
2ν dνd +α

∫ 1
−1 | f |

2 dνd(∫ 1
−1 | f |

q dνd
)2/q ≥ µ(α),

where dνd is the probability measure defined by

νd(z) dz = dνd(z) := Z−1
d νd/2−1 dz with ν(z) := 1− z2, Zd :=

√
π

0(d/2)
0((d + 1)/2)

.
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Figure 1. In the case q > 2, the optimal constant is given by µ= α for α ≤ d/(q − 2)
and the curve µ = µ(α) for α > d/(q − 2). An upper estimate is given by the curve
µ = µ+(α) obtained by optimizing the function hα(ε) in terms of ε ∈ (0, 1), while a
lower estimate, namely µ = µ−(α) = αϑ∗ α

1−ϑ , has been established in Proposition 8.
The asymptotic regime is governed by µ(α)∼ µasymp(α)= Kq,dκ

−1
q,dα

1−ϑ as α→+∞
according to Lemma 5. The above plot shows the various curves in the special case d = 3
and q = 3.

See [Dolbeault et al. 2013] for details. To get an estimate, it is enough to take a well chosen test function.
Consider fε(z) := 1+ εϕ(z) and as in Section 2.3 we can choose ϕ(z) = z. Then one can optimize
hα(ε)= Fα[ fε] with respect to ε ∈ (0, 1), and observe that

∫ 1
−1 | f

′
ε|

2ν dνd = dε2
∫ 1
−1 z2 dνd , so that hα(ε)

can be written as

hα(ε)=
α+ (d +α)ε2

∫ 1
−1 z2 dνd(∫ 1

−1 |1+ εz|q dνd
)2/q ≥ µ(α).

When ε→ 0+, we recover that hα(ε)−α∼ [d−α(q−2)]ε2
∫ 1
−1 z2 dνd < 0 if α > d/(q−2), but a better

estimate can be achieved simply by considering µ+(α) := infε∈(0,1) hα(ε) so that µ(α) ≤ µ+(α) < α.
The function α 7→ µ+(α) can be computed explicitly (using hypergeometric functions) and is shown in
Figure 1.

A.2. Numerical results. In this section, we illustrate the various estimates obtained in this paper by
numerical computations done in the special case d = 3 and q = 3. See Figure 1 for the computation of
the curve α 7→ µ(α) and how it behaves compared to the theoretical estimates obtained in this paper.
We emphasize that our upper and lower estimates α 7→ µ±(α) bifurcate from the line µ= α precisely
at α = d/(q − 2) if q ∈ (2, 2∗) (and at α = d/(2− q) if q ∈ (1, 2)). The curve corresponding to the
asymptotic regime is also plotted, but gives relevant information only as α→∞.

The convergence towards the asymptotic regime is illustrated in Figure 2 which shows the convergence
of µ(α)/µasymp(α) towards 1 as α→+∞ in the special case d = 3 and q = 3. In terms of spectral
properties, for large potentials, eigenvalues of the Schrödinger operator can be estimated according to
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Figure 2. The asymptotic regime corresponding to α→+∞ has the interesting feature
that, up to a dependence in α1−ϑ and a normalization factor proportional to κq,d , the
optimal constant µ(α) behaves like the optimal constant in the Euclidean space, as has
been established in Proposition 10.

Theorem 1 by the Euclidean Keller–Lieb–Thirring constant that has been numerically computed for
instance in [Barnes 1976].

Appendix B. Constants on the Euclidean space

B.1. Scaling of the Gagliardo–Nirenberg–Sobolev inequality. Let q > 2 and denote by KGN(q) the
optimal constant in the Gagliardo–Nirenberg–Sobolev inequality, given by

KGN(q) := inf
u∈H1(Rd )\{0}

‖∇u‖2ϑL2(Rd )
‖u‖2(1−ϑ)L2(Rd )

‖u‖2Lq (Rd )

with ϑ = ϑ(q, d)= d
q − 2

2q
.

An optimization of the quotient in the definition of Kq,d , which has been defined in Section 2, allows us
to relate this constant with KGN(q). Indeed, if we optimize N[u] :=

∫
Rd |∇u|2 dx +

∫
Rd |u|2 dx under the

scaling λ 7→ uλ(x) := λd/qu(λx), we find that

N[uλ] = λ2(1−ϑ)
∫

Rd
|∇u|2 dx + λ−2ϑ

∫
Rd
|u|2 dx

achieves its minimum at

λ? =

√
ϑ

1−ϑ
‖u‖L2(Rd )

‖∇u‖L2(Rd )

,

so that
N[uλ?] = ϑ

−ϑ(1−ϑ)−(1−ϑ)‖∇u‖2ϑL2(Rd )
‖u‖2(1−ϑ)L2(Rd )

,

thus proving that Kq,d can be computed in terms of KGN(q) as

Kq,d = ϑ
−ϑ(1−ϑ)−(1−ϑ)KGN(q).
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B.2. Asymptotic regimes in Gagliardo–Nirenberg–Sobolev inequalities. Let q > 2 and consider the
constant Kq,d as above. To handle the case of dimension d = 1, we may observe that, for any smooth
compactly supported function u on R, we can write either

|u(x)|2 = 2
∣∣∣∣∫ x

−∞

u(y)u′(y) dy
∣∣∣∣≤ ‖u‖2L2(−∞,x)+‖u

′
‖

2
L2(−∞,x) for all x ∈ R

or

|u(x)|2 = 2
∣∣∣∣∫ +∞

x
u(y)u′(y) dy

∣∣∣∣≤ ‖u‖2L2(x,+∞)+‖u
′
‖

2
L2(x,+∞) for all x ∈ R,

thus proving that
|u(x)|2 ≤ 1

2(‖u‖
2
L2(R)
+‖u′‖2L2(R)

) for all x ∈ R,

that is, the Agmon inequality
‖u‖2L2(R)

+‖u′‖2L2(R)

‖u‖2L∞(R)
≥ 2,

and hence K∞,1 ≥ 2. Equality is achieved by the function u(x)= e−|x |, x ∈ R, and we have shown that

K∞,1 = 2.

Proposition 15. Assume that q > 2. For all d ≥ 1,

lim
q→2+

Kq,d = 1

and, for all d ≥ 3,
lim

q→2∗
Kq,d = Sd ,

where Sd is the best constant in inequality (8). If d = 1, then limq→+∞ Kq,1 = K∞,1.

Proof. For any v ∈ H1(Rd) and d ≥ 3, we have

lim
q→2∗

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

≥ lim
q→2∗

‖∇v‖2L2(Rd )

‖v‖2Lq (Rd )

=

‖∇v‖2L2(Rd )

‖v‖2
L2∗ (Rd )

≥ Sd ,

thus proving that limq→2∗ Kq,d ≥ Sd . On the other hand, we may use the Aubin–Talenti function

ū(x)= (1+ |x |2)−(d−2)/2 for all x ∈ Rd (21)

as a test function for Kq,d if d ≥ 5, that is,

Kq,d ≤ ϑ
−ϑ(1−ϑ)−(1−ϑ)

‖∇ū‖2ϑL2(Rd )
‖ū‖2(1−ϑ)L2(Rd )

‖ū‖2Lq (Rd )

and observe that the right-hand side converges to Sd , since limq→2∗ ϑ(q, d)= 1. If d = 3 or 4, standard
additional truncations are needed. The case corresponding to q→∞, d = 1 is dealt with as above.

Now we investigate the limit as q→ 2+. For any v ∈ H1(Rd), we have



SPECTRAL ESTIMATES ON THE SPHERE 455

lim
q→2+

‖∇v‖2L2(Rd )
+‖v‖2L2(Rd )

‖v‖2Lq (Rd )

≥ lim
q→2+

‖v‖2L2(Rd )

‖v‖2Lq (Rd )

= 1,

thus proving that limq→2+ Kq,d ≥ 1, and for any v ∈ H1(Rd), the right-hand side in

Kq,d ≤ ϑ
−ϑ(1−ϑ)−(1−ϑ)

‖∇v‖2ϑL2(Rd )
‖v‖

2(1−ϑ)
L2(Rd )

‖v‖2Lq (Rd )

converges to 1 as q→ 2+. This completes the proof. �

B.3. Stereographic projection. On Sd
⊂ Rd+1, we can introduce the coordinates y = (ρφ, z) ∈ Rd

×R

such that ρ2
+ z2
= 1, z ∈ [−1, 1], ρ ≥ 0, and φ ∈ Sd−1, and consider the stereographic projection

6 : Sd
\ {N} → Rd

defined by 6(y) = x , where, using the above notations, x = rφ with r =
√
(1+ z)/(1− z) for any

z ∈ [−1, 1). In this setting, the north pole N corresponds to z = 1 (and is formally sent at infinity) while
the equator (corresponding to z = 0) is sent onto the unit sphere Sd−1

⊂ Rd . Hence x ∈ Rd is such that
r = |x |, φ = x/|x |, and we have the useful formulae

z =
r2
− 1

r2+ 1
= 1−

2
r2+ 1

, ρ =
2r

r2+ 1
.

With these notations in hand, we can transform any function u on Sd into a function v on Rd using

u(y)=
(

r
ρ

)d−2
2
v(x)=

(
r2
+ 1
2

)d−2
2
v(x)= (1− z)−(d−2)/2v(x),

and a painful but straightforward computation shows that, with α∗ = 1
4 d(d − 2),∫

Sd
|∇u|2 dω+α∗

∫
Sd
|u|2 dω =

∫
Rd
|∇v|2 dx and

∫
Sd
|u|q dω =

∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx .

As a consequence, Inequalities (11) and (19) are transformed, respectively, into∫
Rd
|∇v|2 dx + 4(α−α∗)

∫
Rd
|v|2

dx
(1+ |x |2)2

≥ µ(α)κq,d

[∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx
]2/q

for all v ∈ D1,2(Rd)

if q ∈ (2, 2∗) and α ≥ α∗, and∫
Rd
|∇v|2 dx +βκq,d

[∫
Rd
|v|q

(
2

1+ |x |2

)d−(d−2)q/2

dx
]2/q

≥ 4(ν(β)+α∗)
∫

Rd
|v|2

dx
(1+ |x |2)2

for all v ∈ D1,2(Rd)

if q ∈ (1, 2) and β > 0.
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B.4. Sobolev’s inequality: expression of the constant and references. The proof that Sobolev’s inequal-
ity (8) becomes an equality if and only if u = ū given by (21) up to a multiplication by a constant, a
translation, and a scaling is due to T. Aubin [1976] and G. Talenti [1976]. However, G. Rosen [1971]
showed (by linearization) that the function given by (21) is a local minimum when d = 3 and computed
the critical value.

Much earlier, G. Bliss [1930] (also see [Hardy and Littlewood 1930]) established that, among radial
functions, the inequality(∫

Rd
| f |p|x |r+1−d−p dx

)2
p
≤ CBliss

∫
Rd
|∇ f |2|x |1−d dx

holds when r = p/2− 1. With the change of variables f (x) = v(|x |−1/(d−2)x/|x |), the inequality is
changed into (∫

Rd
|v|2d/(d−2) dx

)d−2
d
≤

CBliss

(d − 2)2(d−1)/d

∫
Rd
|∇v|2 dx

if p = 2∗, and it is a straightforward consequence of [Bliss 1930] that the equality is achieved with v = ū.
According to the duplication formula (see, for instance, [Abramowitz and Stegun 1964]) for the 0

function, we know that

0(x)0(x + 1
2)= 21−2x√π0(2x).

As a consequence, the best constant in Sobolev’s inequality (8) can be written either as

Sd =
4

d(d − 2)|Sd |2/d
,

where the surface of the d-dimensional unit sphere is given by |Sd
|= 2π (d+1)/2/0

( d+1
2

)
(see, for instance,

[Beckner 1993]), or as

Sd =
1

πd(d − 2)

(
0(d)
0(d/2)

)2
d

according to [Aubin 1976; Bliss 1930; Rosen 1971; Talenti 1976]. This last expression can easily be
recovered using the fact that optimality in (8) is achieved by ū defined in (21), while the first one, namely
1/Sd =

1
4 d(d − 2)κ2∗,d , is an easy consequence of the stereographic projection and the computations of

Section B.3 with α = α∗ and q = 2∗.

B.5. A proof of (10). Assume that q > 2 and let us relate the optimal constant L1
γ,d in the one bound state

Keller–Lieb–Thirring inequality (1) with the optimal constant Kq,d in the Gagliardo–Nirenberg–Sobolev
inequality (9). In this case, recall that p = q/(q − 2)= γ + d/2. For any nonnegative function φ defined
on Rd such that ‖φ‖Lp(Rd ) = Kq,d , using Hölder’s inequality, we can write that∫

Rd
(|∇v|2−φ|v|2) dx ≥ ‖∇v‖2L2(Rd )

−‖φ‖Lp(Rd )‖v‖
2
Lq (Rd )



SPECTRAL ESTIMATES ON THE SPHERE 457

for any v ∈ H1(Rd). Using (9), namely

‖∇v‖2L2(Rd )
−Kq,d‖v‖

2
Lq (Rd )

≥−‖v‖2L2(Rd )
,

this proves that

|λ1(−1−φ)| ≤ 1 for all φ ∈ Lp(Rd) such that ‖φ‖Lp(Rd ) = Kq,d . (22)

Next one can observe that inequality (1) can be rephrased as

L1
γ,d = sup

φ∈Lp(Sd )

sup
v∈H1(Rd )\{0}

(R[v, φ])γ with R[v, φ] :=

∫
Rd (φ|v|

2
− |∇v|2) dx

‖v‖2L2(Rd )
‖φ‖

2p/(2p−d)
Lp(Rd )

,

where p = γ + d/2 so that the exponent 2p/(2p− d) is precisely the one for which we get the scaling
invariance of R. Indeed, with vλ(x) := v(λx) and φλ(x) := φ(λx), we get that R[vλ, λ

2φλ] = R[v, φ]

for any λ > 0. Hence we find that

sup
v∈H1(Rd )\{0}

R[v, φ] =
|λ1(−1−φ)|

‖φ‖
2p/(2p−d)
Lp(Rd )

= sup
v∈H1(Rd )\{0}

R[vλ, λ
2φλ] =

|λ1(−1− λ
2φλ)|

‖λ2φλ‖
2p/(2p−d)
Lp(Rd )

,

and if we choose λ such that

λ(2p−d)/p
‖φ‖Lp(Rd ) = ‖λ

2φλ‖Lp(Rd ) = Kq,d ,

we obtain
|λ1(−1−φ)|

‖φ‖
2p/(2p−d)
Lp(Rd )

≤
1

K
2p/(2p−d)
q,d

using (22), which proves that L1
γ,d ≤ (Kq,d)

−p with p = γ + d/2. Since optimality can be preserved
at each step, this actually proves (10). See [Keller 1961; Lieb and Thirring 1976; Veling 2002; 2003;
Benguria and Loss 2004; Dolbeault et al. 2006] for further details.

In the Euclidean case, notice that the equivalence can be extended to the case of systems on the one
hand and to Lieb–Thirring inequalities on the other hand: see [Lieb and Thirring 1976; Lieb 1984;
Dolbeault et al. 2006].

B.6. A proof of (18). As in [Dolbeault et al. 2006], we can also relate L1
−γ,d and K∗q,d when q =

2(2γ − d)/(2γ − d + 2) takes values in (0, 2). The method is similar to that of Section B.5. For any
function v ∈ H1(Rd) such that vq is integrable and any positive potential φ such that φ−1 is in Lp(Rd)

with p = q/(2− q), we can use Hölder’s inequality as in the proof of Theorem 3 and get∫
Rd
(|∇v|2+φ|v|2) dx ≥ ‖∇v‖2L2(Rd )

+

‖v‖2Lq (Rd )

‖φ−1‖Lp(Rd )

.

Using (17), namely ‖∇v‖2L2(Rd )
+‖v‖2Lq (Rd )

≥ K∗q,d‖v‖
2
L2(Rd )

, this proves that

λ1(−1+φ)≥ K∗q,d for all φ ∈ Lp(Rd) such that ‖φ−1
‖Lp(Rd ) = 1.
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Inequality (6) can be rephrased as

L1
−γ,d = sup

φ∈Lp(Sd )

sup
v∈H1(Rd )\{0}

(R[v, φ])−γ with R[v, φ] :=

∫
Rd (|∇v|

2
+φ|v|2) dx

‖v‖2L2(Rd )

‖φ−1
‖

p/γ
Lp(Rd )

with γ = p+ d/2. The same scaling as in Section B.5 applies: with vλ(x) := v(λx) and φλ(x) := φ(λx),
we get that R[vλ, λ

2φλ] =R[v, φ] for any λ > 0, and hence

L1
−γ,d = (K

∗

q,d)
−γ ,

which completes the proof of (18).
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