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PRESCRIPTION DU SPECTRE DE STEKLOV DANS UNE CLASSE CONFORME

PIERRE JAMMES

Sur toute variété compacte de dimension n > 3 a bord, on prescrit toute partie finie du spectre de Steklov
dans une classe conforme donnée. En particulier, on prescrit la multiplicité des valeurs propres. Sur une
surface compacte a bord donnée, on montre que la multiplicité de la k-ieme valeur propre est bornée
indépendamment de la métrique. Sur le disque, on donne des résultats plus précis : la multiplicité de la
premiere et la deuxiéme valeurs propres non nulles sont au plus 2 et 3 respectivement. Pour le probleme
de Steklov—Neumann sur le disque, on montre que la multiplicité de la k-iéme valeur propre non nulle est
au plus k£ + 1.

On any compact manifold of dimension n > 3 with boundary, we prescribe any finite part of the Steklov
spectrum within a given conformal class. In particular, we prescribe the multiplicity of the first eigenvalues.
On a compact surface with boundary, we show that the multiplicity of the k-th eigenvalue is bounded
independently of the metric. On the disk, we give more precise results: the multiplicity of the first and
second positive eigenvalues are at most 2 and 3 respectively. For the Steklov—Neumann problem on the
disk, we prove that the multiplicity of the k-th positive eigenvalue is at most k + 1.

1. Introduction
Etant donnée une variété riemannienne (M, g) compacte a bord et une fonction strictement positive
p € CY(dM), le spectre de Steklov de M est I’ensemble des réels o tels que le systéme

Af=0 dans M,
af /v =cpf sur IM,

ou v est un vecteur normal unitaire sortant le long de dM, admette des solutions non triviales. Ce spectre

(1.1)

est formé de valeurs propres positives notées 0 = oo(M, g, p) < o1 (M, g, p) <o02(M,g,p) <--- — 400.
Si p =1, alors c’est aussi le spectre de I’opérateur Dirichlet-to-Neumann sur M.

Un grand nombre de travaux récents visent a borner ces valeurs propres sous des contraintes géomé-
triques, par exemple avec des hypotheses conformes [Fraser et Schoen 2011; Hassannezhad 2011], ou
en fonction d’une constante isopérimétrique [Colbois et al. 2011]. Le but de cet article vise au contraire
a mettre en évidence le fait que ce spectre possede une certaine souplesse et que si la dimension de M
est au moins 3, on peut en prescrire toute partie finie, ¢’est-a-dire que si on se donne une suite finie de
réels strictement positifs, il existe une métrique sur M telle que cette suite soit le début du spectre. On
va en fait montrer un résultat plus fort, & savoir qu’on peut prescrire simultanément le début du spectre,
la multiplicité des valeurs propres, la classe conforme de la variété et la fonction densité p sur le bord.

MSC2010: 35P15, 58J50.
Mots-clefs : Steklov eigenvalues, prescription of eigenvalues, conformal geometry.
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530 PIERRE JAMMES

On étend ainsi au spectre de Steklov un résultat obtenu dans [1987] pour le laplacien et généralisé aux
formes différentielles dans [Jammes 2011].

Théoréme 1.2. Soit (M", g) une variété riemannienne compacte a bord de dimension n > 3. Etant donnée
une fonction strictement positive p € C O(8M ), un entier N > 1 et une suite finie de réels strictement
positifs 0 < a; <ap <--- <ay, il existe une métrique g conforme a g telle que

ox(M, p, g) =ay
pour tout k € [1, N].

Remarque 1.3. On ne peut pas prescrire simultanément le spectre, le volume et la classe conforme. En
effet, si on fixe le volume et la classe conforme, les valeurs propres ne peuvent pas étre arbitrairement
grandes (cf. [Fraser et Schoen 2011] et [Hassannezhad 2011]). Des obstructions semblables existent pour
le laplacien usuel [El Soufi et Ilias 1986], le laplacien de Hodge en restriction aux formes différentielles de
certains degrés [Jammes 2007; Jammes 2008] et I’opérateur de Dirac [Ammann 2003]. Le théoréme 1.2
montre en revanche que méme en fixant la classe conforme, on ne peut pas majorer le rapport oy /oy
pour k > [.

Remarque 1.4. On sait que la prescription de multiplicité est possible pour les opérateurs de Schrodinger
en dimension n > 3 [Colin de Verdiere 1986 ; 1987] et les opérateurs agissant sur les formes différentielles
en dimension n > 4 [Jammes 2011 ; 2012]. Mais ce probleme n’est toujours pas résolu pour les formes
différentielles en dimension 3, ni pour 1’opérateur de Dirac, dont on ne sait actuellement prescrire le
spectre que si les valeurs propres sont simples [Dahl 2005].

La principale difficulté consiste a prescrire la multiplicité des valeurs propres. On utilisera pour cela
les techniques introduites dans [Colin de Verdiere 1986] (voir [Jammes 2009] pour une présentation
plus détaillée de ce sujet). Les principaux ingrédients sont des théorémes de convergence spectrale (en
particulier de convergence du spectre vers celui d’un domaine de la variété : théoréme 3.8), un modele de
valeur propre multiple fourni par un laplacien combinatoire sur des graphes (paragraphe 4B).

La démonstration du théoréme 1.2 échoue en dimension 2, entre autres a cause de 1’invariance conforme
de la norme L? du gradient d’une fonction. On va montrer que cette difficulté ne peut pas étre contournée
et qu’il existe en fait une obstruction a la prescription de multiplicité en dimension 2. La démonstration
suit celles de S. Y. Cheng [1976] et G. Besson [1980] pour majorer la multiplicité des valeurs propres du
laplacien.

Théoreme 1.5. Sur toute surface riemannienne compacte orientable a bord (M, g) de genre y et toute
fonction strictement positive p € C*(0M), la multiplicité de o, (M, p, g) est majorée par 4y + 2k + 1.
Si M est non orientable et qu’on note | le nombre de composantes connexes de dM , alors la multiplicité
de o (M, p, g) est majorée par 4p + 4k + 1, out p est l’invariant topologique 1 — x (M) — .

Remarque 1.6. Lors de la finalisation de cet article, la démonstration de bornes sur la multiplicité est ap-
paru simultanément dans deux prépublications. A. Fraser et R. Schoen [2012] ont montré indépendamment
le méme théoréeme, avec une démonstration presque identique. Ils montrent aussi que la borne obtenue
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pour o1 (S 1'% [0, 17), a savoir 3, est optimale. Simultanément, M. Karpukhin, G. Kokarev, 1. Polterovich
ont démontré dans [Karpukhin et al. 2012] une de ces bornes avec des techniques différentes : ils montrent
que la multiplicité de oy est majorée par 2p 4 2k 4+ 1 et 2p 4 21 4 k, que la surface soit orientable ou non.

Les bornes données par le théoreme 1.5 sont les mémes que celles obtenues par G. Besson pour les
valeurs propres de laplacien. Il s’avere que le spectre de Steklov possede des rigidités supplémentaires
qu’on va illustrer dans le cas du disque :

Théoreme 1.7. Sur le disque D, la multiplicité de o1 (D, p, g) est au plus 2 et celle de o,(D, p, g) est au
plus 3.

Remarque 1.8. En utilisant les résultats de [Colin de Verdiere 1988], on peut facilement construire (par
excision d’un petit disque sur la sphere) une métrique sur D telle que la premicre valeur propre non
nulle du laplacien avec condition de Neumann (ou la seconde pour la condition de Dirichlet) soit de
multiplicité 3. En outre, la borne sur la multiplicité de o est optimale puisque pour la métrique canonique,
toutes les valeurs propres non nulles sont doubles.

Remarque 1.9. L’article [Alessandrini et Magnanini 1994], qui traite de la multiplicité des oy sur le
disque, contient comme cas particulier le fait que la multiplicité de o est au plus 2 ; on en donnera une
démonstration un peu plus directe. En revanche, la borne sur la multiplicité de o, ne semble pas étre
apparue auparavant dans la littérature.

On va aussi montrer une autre borne sur la multiplicité dans le cas du disque, mais pour une variante
du probléme de Steklov, a savoir le probleme de Steklov—Neumann. Ce probléme est défini de la maniére
suivante : on partitionne le bord dM en deux sous-variétés (pas nécessairement connexes) M = OMsUIM y
et pour une fonction p € C°(dMsy), on pose la condition 3f/dv = opf sur My et on demande a f de
vérifier la condition de Neumann sur dMy (voir paragraphe 2B pour plus de détails).

Théoréme 1.10. Etant donnée une partition (non triviale) 0D s U0Dy du bord du disque D, la multiplicité
de ox (D, p, g) pour le probleme de Steklov—Neumann relativement a cette partition est au plus k + 1.

Remarque 1.11. Pour le laplacien, les meilleures bornes connues sont asymptotiquement de 1I’ordre
de 2k quand k — +o00. Par exemple, pour le laplacien de Dirichlet sur le disque, il et montré dans
[Hoffmann-Ostenhof et al. 1999] que la multiplicité de la k-ieme valeur propre est au plus 2k — 3. Dans
[Karpukhin et al. 2012], la meilleure borne donnée pour le probleme de Steklov sur le disque est k + 2.

Remarque 1.12. Dans le cas particulier du probléme hydrodynamique de ballottement (voir [Kopachevsky
et Krein 2001] ou les rappels du paragraphe 2B), on sait que la premiére valeur propre non nulle est
simple (cf. [Kozlov et al. 2004]). Il est conjecturé que les autres sont simples aussi, mais cette question
reste ouverte.

Colin de Verdiere a conjecturé que la multiplicité maximale de la deuxieme valeur propre d’un opérateur
de Schrodinger sur une surface M est Chr M — 1, ott Chr M est le nombre chromatique de M, c’est-a-dire
le nombre de sommets du plus grand graphe complet plongeable dans M. Comme la démonstration du
théoreme 1.2 repose sur des graphes plongées dans M dont les sommets sont sur le bord de la variété, on
peut envisager de transposer cette conjecture au probleme de Steklov sous la forme suivante :
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Conjecture 1.13. Soit M une surface compacte a bord M, et soit Chr(M, 0M) le nombre de sommets
du plus grand graphe complet qu’on peut plonger dans M en placant les sommets sur M. Alors la
multiplicité maximale de oy (M) est Chr(M, oM) — 1.

D’apres ce qui précede, cette conjecture est vérifiée sur le disque D et le cylindre S' x [0, 1].

La section 2 rappellera quelques propriétés du spectre de Steklov et de I’opérateur Dirichlet-to-Neumann
dont nous auront besoin. Nous montrerons dans la section 3 les théorémes de convergence spectrale que
nous utiliserons, et nous les appliquerons dans la section 4 pour démontrer le théoréeme 1.2. Enfin, la
section 5 sera consacrée au cas de la dimension 2 et a la démonstration des théorémes 1.5, 1.7 et 1.10.

2. Le probléme de Steklov

2A. Définition du spectre de Steklov. On se donne une variété riemannienne (M, g) compacte a bord
telle que dM soit C! par morceau (dans la suite, g désignera indifféremment la métrique sur M ou la
métrique induite sur dM). Le probleme des valeurs propres de Steklov consiste a résoudre I’équation

:Af:O dans M, 2.1

af/ov =opf sur dM,

oll v est un vecteur unitaire sortant normal au bord et p € C°(dM) un fonction densité fixée. L’ensemble
des réels o solutions du probléme forme un spectre discret positif noté

O0=00(M, g, p)<o1(M,g,p) <02(M,g,p)<---. (2.2)

Le probleme de Steklov, déja étudi€ a la fin du XIXe siecle et au début du XX¢ (voir [Stekloff 1899 ; 1902]
et les références qui y sont données), apparait dans divers problemes physiques. Par exemple il permet
de modéliser I’évolution d’une membrane libre dont la masse se concentre sur son bord, et il inter-
vient dans certains problemes de tomographie. On verra au paragraphe qui suit qu’il apparait aussi en
hydrodynamique.

Notre principal outil sera la caractérisation variationnelle suivante du spectre de Steklov (cf. [Bandle
1980]) :

df|*d
oxr(M, g, p) = inf sup fM' /17 dvg (2.3)

Viy1€HY (M) fer+1\ faM 'Odvg

ou Vj parcours les sous-espaces de dimension k de I’espace de Sobolev H'!(M).

11 faut prendre garde au fait que | f|*> = /. o S Zp dv, ne définit pas une norme de Hilbert sur L*(M)
(elle est nulle sur les fonctions vérifiant la condition de Dirichlet). En revanche, on peut utiliser les
techniques usuelles de min-max en considérant I’espace de Hilbert L?(dM) muni de la métrique | - | qu’on
vient de définir, et la forme quadratique Q(f) = [, |df |? dv,, ou f est le prolongement harmonique
de f. Il sera parfois commode de redéfinir la forme quadratique Q par

O(f)= _inf /M|df|2dvg. (2.4)

feH' (M)
flam=f
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Cette définition sera en particulier applicable dans les situations ou on considere une métrique singulicre
sur M (voir paragraphe 2C).

Dans le cas homogene, c¢’est-a-dire quand p = 1, le spectre de Steklov est aussi connu comme étant le
spectre de 1’opérateur Dirichlet-to-Neumann, qu’on notera A : C*°(dM) — C*°(dM), défini comme suit :
étant donné une fonction f € C*°(dM), on prolonge harmoniquement f dans M et on pose

a
Af(x) = %(X)- (2.5)

Le spectre de A est bien celui de Q car pour une fonction harmonique, on a | o ldf |2 dvg = |, o S g—’; dvy.

L’opérateur A n’est pas un opérateur différentiel sur oM (ce n’est méme pas un opérateur local), mais
c’est un opérateur pseudo-différentiel elliptique d’ordre 1 (cf. [Taylor 1996b, Chapter 7]). En particulier,
nous utiliserons le fait qu’il vérifie une inégalité elliptique :

TiPEr: /a SN dug 4 € (2.6)

ol p € [1, +00], les constante ¢, ¢’ dépendant de p et de la métrique g sur M mais pas de f.
Pour finir, nous auront besoin d’une propriété d’unique prolongement des fonctions propres en dimen-
sion 2 :

Théoreme 2.7. Soit f une fonction propre du probleme de Steklov sur une surface. Si f s’annule sur un
ouvert du bord, alors f = 0.

Démonstration. Soit I un intervalle du bord sur lequel f s’annule. On peut déformer conformément la
surface de maniere a ce que / devienne géodésique et que la métrique reste inchangée sur le reste du bord.
Par invariance conforme de 1’harmonicité et de la condition df/dv = 0, f est toujours fonction propre.
En notant x un paramétre sur /, on a 3%f/dx> = 0, donc aussi 92f/dv> = 0 puisque f est harmonique.
Enfin, comme df/dv = 0 sur I, on a aussi 82f/dx dv = 0 et donc le développement 2 1’ordre 2 de f est
nul le long de 1.

Par conséquent, au voisinage d’un point de /, on peut prolonger f par O en dehors de M et obtenir
une fonction f qui est C2 et vérifie Af = 0. Par unique prolongement des fonctions harmoniques, on a
f=0sur M. 0

2B. Le probléme de Steklov—Neumann. Etant donné une variété compacte 2 bord M, on se donne un
domaine (ou une union de domaines disjoints) 4 bord C! par morceaux de M qu’on notera dMs, et on
pose My = dIM\dMjy. Si p est une fonction sur My, le probleme de Steklov—Neumann se pose ainsi :

Af=0 dans M,
af/ov =opf sur Mg, (2.8)
af/ov =0 sur oMy,

c’est-a-dire qu’on demande a la fonction harmonique f de vérifier la condition de Neumann sur oM. On

appellera respectivement bord de Steklov et bord de Neumann les ensembles dMg et My . Les solutions
de ce probléme interviennent dans 1’étude du phénomene hydrodynamique de ballottement (sloshing
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problem) : si on considere un fluide parfait incompressible contenu dans un récipient M avec une surface
libre 0Ms, les petites oscillations périodiques du fluide correspondent aux solutions de (2.8) pour une
fonction p constante (voir, par exemple, [Kopachevsky et Krein 2001]).

Le probleme de Steklov—Neumann posséde un spectre discret et positif qu’on notera

0=09(M, 0Ms, g, p) <o (M, Ms, g, p) <o2(M,IMs,g,p) <--- (2.9)

Le spectre de Steklov—Neumann posseéde la méme caractérisation variationnelle que le spectre de
Steklov, a condition de restreindre 1’intégrale sur le bord au bord de Steklov :

df|*>dv
or(M, Mg, g, p) =  inf sup Julf P dvg (2.10)

Vit eH'(M) fevi\(0) Sops S2P dvg
ol V; parcours les sous-espaces de dimension k de H'(M).

L’ opérateur Dirichlet-to-Neumann est bien défini sur 0Mg en considérant des fonctions harmoniques
vérifiant la condition de Neumann sur 0My et vérifie toujours 1’inégalité elliptique (2.6).

On aura besoin du fait que si on se donne une fonction f sur dM et qu’on la prolonge en une fonction
harmonique (toujours notée f), sa norme L? sur dMy est controlée par sa norme sur dMy, c’est-a-dire
qu’il existe une constante ¢ > 0 ne dépendant que de g et p telle que |, anty S Z<c /. oM f2p. Cela découle
du fait que la norme L?>(0My) de f est controlée par sa norme H 172(M), elle méme controlée par sa
norme L?(dMy) (cf. [Taylor 1996a, §4.4]).

On utilisera aussi un bref usage du spectre de Steklov—Dirichlet, défini en considérant des fonctions
harmoniques qui vérifient la condition f =0 sur IM \0My. La propriété de ce spectre qui nous intéressera
est qu’il est strictement positif (cf. [Agranovich 2006]).

2C. Fonctions harmoniques et métriques singuliéres. Dans la section suivante, on aura 2 manipuler des
métriques discontinues. Si U est un domaine de (M, g) et ¢ €[0, 1] un réel fixé, elles seront de la forme

{gszszg sur U, 211

ge=2g sur M\U.
Comme les normes L? et de Sobolev pour les métriques g et g. sont équivalentes, la théorie spectrale
de la forme quadratique ||d - ||§,g sur H'(M) est donc similaire a celle de ||d - ||§. On peut donc définir le
prolongement harmonique d’une fonction f € C*°(dM) comme étant le prolongement minimisant cette
forme quadratique. Cette définition est cohérente avec celle de la forme quadratique Q donnée par (2.4).
Un tel prolongement minimisera en particulier ||d- ||§S en restriction a chacun des domaines U et M\ U,
il sera donc harmonique au sens usuel sur ces deux domaines.

Les mé&mes remarques s’appliquent au probleme de Steklov—Neumann.

3. Théorémes de convergence spectrale

3A. Rappels. Dans cette section, nous allons montrer plusieurs théorémes de convergence spectrale
dont nous aurons besoin pour prescrire le spectre de Steklov. Nous utiliserons pour cela les techniques
développées dans [Colin de Verdiere 1986]. Pour prescrire la multiplicité des valeurs propres, il nous
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faudra montrer la convergence des espaces propres, et nous aurons aussi besoin d’une certaine uniformité
de la convergence, nous reprendrons pour cela les notations de Colin de Verdiere :

Soit Ey et E; sont deux sous-espaces vectoriels de méme dimension N d’un espace de Hilbert, munis
respectivement des formes quadratiques gg et g;. Si Eqg et E;| sont suffisamment proches, il existe une
isométrie naturelle v entre les deux (voir la section I de [Colin de Verdiere 1986] pour les détails de la
construction), on définit alors I’écart entre gg et g; par ||q; o ¥ — gol|. Pour deux formes quadratiques Qg
et O sur ’espace de Hilbert, on appellera N-écart spectral entre Qg et Q1 I’écart entre les deux formes
quadratiques restreintes a la somme des espaces propres associés aux N premiéres valeurs propres. Si cet
écart est petit, alors les N premieres valeurs propres de Qg et leurs espaces propres sont proches de ceux
de Ql.

On veut montrer que la convergence spectrale est uniforme pour une certaine famille de spectres limites.
D’apres Colin de Verdiere, on dira donc qu’une forme quadratique vérifie I’hypothese (x) si ses valeurs
propres vérifient

M SAN<ANENSAN I =M ()

pour un entier N et des réels n, M > 0 fixés une fois pour toutes. Dans les énoncés suivants, les constantes
N, M et n auront ces valeurs préalablement fixées.

Lemme 3.1 [Colin de Verdicre 1986, théoreme 1.7]. Soit Q une forme quadratique positive sur un espace
de Hilbert ¥ dont le domaine admet la décomposition Q-orthogonale dom(Q) = #Ho ® H . Pour tout
e > 0, il existe une constante C(n, M, N, €) > 0 (grande) telle que si Qo = Q |, vérifie [’hypothése (x)
et si Q(x) > C|x|? pour tout x € oo, alors Q et Qg ont un N-écart spectral inférieur a «.

Lemme 3.2 [ibid., théoreme 1.8]. Soit (¥, | - |) un espace de Hilbert muni d’une forme quadratique
positive Q. On se donne en outre une suite de métriques | - |,, sur ¥ et une suite de formes quadratiques
0, de méme domaine que Q telles que :

(1) il existe C1, Cp > 0 tels que C1|x| < |x|, < Ca|x| pour tout x € ¥ ;
@ii) |x|, — |x| pour tout x € dom(Q) ;
(ii1) Q(x) < Qn(x) pour tout x € dom(Q) ;
@iv) Q,(x) = Q(x) pour tout x € dom(Q).
Si Q vérifie I’hypothese (x), alors a partir d’un certain rang (dépendant de n, M et N), Q et Q,, ont un
N-écart spectral inférieur a e.

Remarque 3.3. Comme on I’a remarqué dans [Jammes 2011], dans le lemme 3.2, on peut affaiblir

I’hypothése Ci|x| < |x|, < Ca|x| en Ci|x| < |x|, < Ca|x| + £, 0, (x)'/? avec &, — 0, la démonstration

restant exactement la méme (on peut aussi remplacer Q,, par Q dans cette derniere inégalité). En particulier,
il n’est pas nécessaire que 1’espace de Hilbert (¥, | - |) soit complet pour | - |,.

Remarque 3.4. On peut aussi remplacer I’hypothése x € dom(Q) = Q(x) < Q,(x) par Q(x) <M =
Q) < (14+¢&,)Qn(x) avec &, — 0.
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Remarque 3.5. Pour déduire la convergence du spectre et des espaces propres de la convergence des
formes quadratiques, on doit en principe se ramener a une norme de Hilbert fixe. Ca ne sera pas nécessaire
dans la suite car les étapes de la démonstration ol la norme varie seront traitées a 1’aide du lemme 3.2.

3B. Densité et convergence de spectre. Notre premier résultat de convergence sera de montrer qu’avec
une densité fixée sur le bord, on peut déformer conformément la métrique de maniere a faire tendre le
spectre de Steklov vers le spectre correspondant a une autre densité. On peut en outre faire tendre la
métrique déformée vers la métrique initiale dans I’intérieur de la variété. On se restreindra au cas ou la
densité initiale est plus petite que la densité du spectre limite, ce qui sera suffisant pour les applications
dans la section 4.

Théoreme 3.6. Soit (M, g) une variété riemannienne compacte a bord, et p, p € C 0(M) deux fonctions
sur le bord de M telles que p > p.
1l existe une famille g, de métriques conformes a g sur M telle que :

(1) ox(M, g, p) tend vers oy (M, g, p) quand ¢ — O pour tout k > 0, avec convergence des espaces
propres.

(i) ge = (p/p)* "~ Vg sur M.
(iii) g, tend vers g uniformément sur tout compact dans 1’intérieur de M.

En outre, si les oy (M, g, p) vérifient [’hypothese (x), alors le N-écart spectral entre (M, g., p) et
(M, g, p) tend vers O.

Démonstration. On définit une famille 4, € C°°(M) de facteurs conformes de la maniére suivante : on
fixe he(x) = (p/ p)l/n=D pour x € dM et on étend s, de maniere lisse de sorte que la famille (4,) tende
simplement vers 1 dans I'intérieur de M, et uniformément sur tout compact ne rencontrant pas le bord.
On pose alors g, = hg g pour tout &.

La famille de métriques g. induit les familles de normes et de formes quadratiques

0.(f)= inf / AP v, et |fle= [ f25dv,. 3.7)
fernlan Jpm am
floam=r

Comme p > p, on peut choisir une suite (k.) décroissante, les suites Q. et | - | vérifient alors les
hypotheses du lemme 3.2, ce qui suffit pour conclure. U

3C. Convergence vers le spectre d’un domaine. Le second théoreme consiste a faire converger le spectre
de Steklov d’une variété a bord M vers le spectre de Steklov—Neumann d’un domaine U de M, avec
la condition de Steklov sur dUg = dU N M et la condition de Neumann sur le reste du bord de U. Ce
résultat étend au spectre de Steklov de théorémes analogues concernant le laplacien agissant sur les
fonctions [Colin de Verdiere 1986] et sur les formes différentielles [Jammes 2011].

Théoreme 3.8. Soit (M", g) une variété riemannienne compacte a bord de dimensionn >3, p € C*°(0M)
et U un domaine de M & bord C' par morceau tel que dUs = dU N M soit non vide. Il existe une famille
8- de métriques sur M conformes a g telle que :
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(i) g = g en restriction a U.
(i) Vol(M, g.) — Vol(U, g) quand ¢ — O.

(iil) ox (M, p, ge) — ox (U, dUs, plaus, glu) quand € — O pour tout k > 0, avec convergence des
espaces propres.

En outre, siles o (U, dUs, plaug, glu) vérifient ’hypothése (x), alors le N-écart spectral entre (M, p, g¢)
et (U, dUs, plaug, glu) tend vers 0.

Démonstration. La démonstration est similaire a celle du théoréeme III.1 de [Colin de Verdiere 1986] et
passe par I'intermédiaire, pour un réel n > 0 petit donné, de la métrique singuliere g, définie par g, = g
sur U et g, = n*g sur M\U. Elle se déroule en deux étapes : d’abord, on montre la convergence spectre
pour la famille de métriques singuliéres, puis on approche ces métriques singulieres par des métriques
lisses. On conclut en se donnant, pour un & > 0 donné, une métrique g, tel que I’écart spectral avec le
spectre de (U, g) soit inférieur a €, puis une métrique lisse g, tel que I’écart spectral avec g, soit lui aussi
inférieur a €.

On fera souvent appel a la forme quadratique définie en (2.4), en particulier quand on manipule des
métriques singulieres.

Etape 1. Un réel > 0 étant donné, la métrique gy induit sur L?(dM) 1a forme quadratique

Q0,(f) = _inf ( / |7 1? dvg + "2 / |df|2dvg) (3.9)
flav=f \JU M\U
et lanorme | flg, = [y, f2odvg+n""Y [0 f?p dvg. On va utiliser le lemme 3.1 pour se ramener
a un sous-domaine de la forme quadratique puis appliquer le lemme 3.2.
En notant 3¢ le domaine de la forme quadratique Q,), on définit 'espace oo = {f € X, flsuy = 0} et
on note J¢y son orthogonal pour la forme quadratique Q. Pour appliquer le lemme 3.1, on doit minorer
la forme quadratique Q,, sur ¥, en fonction de |- |,. Si f € ¥, alors

FB=10 [ oy =g Vi
IM\3Us
et
0,1z int [ 0P do =200,
Slom=fJIM
On est donc ramené a I’étude du spectre de la forme quadratique Q associée a la métrique initiale g en
restriction a I’espace # o, c’est-a-dire a minorer le spectre de Steklov sur M avec condition de Dirichlet
sur dUg. Comme 0 n’est pas dans le spectre de Steklov—Dirichlet (cf. paragraphe 2B), il existe une
constante ¢ > 0 telle que QN/IfI?>c pour tout f € ¥o,. Par conséquent, Q,(f)/|fl, = c- n=2 pour
tout f € ¥. Si n est suffisamment petit, on peut donc appliquer le lemme 3.1 et en déduire que le spectre
pour la métrique g, est proche du spectre de Q,, restreint a .
Il reste a montrer que la limite du spectre de Q|5 est le spectre de Steklov—Neumann du domaine U.
On utilisera pour cela le lemme 3.2. Puisque ¥ est défini comme le Q,-orthogonal des fonctions de oM
nulles sur dUs, une fonction de 7, est enticrement déterminée par sa restriction a dUs. Plus précisément,
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parmi les fonctions f dont la valeur sur dUy est fixée, celle qui est dans ¥ est celle minimise la forme
quadratique Q. C’est donc la restriction au bord du prolongement harmonique (tel qu’on I’a défini au
paragraphe 2C) de fjy, avec condition de Neumann sur dM\dUs. Dans la suite, on identifiera souvent
une fonction sur dUg avec le prolongement ainsi défini.

La norme |- |, converge en décroissant vers la norme || définie par | f| = [, aus S 2p dv,. L’hypothese (ii)
et la premiere inégalité de I’hypothese (i) du lemme 3.2 sont donc satisfaites. Les hypotheses (iii) et (iv)
sont vérifiées pour les mémes raisons.

Il reste a montrer que la deuxieme inégalité de I’hypothese (i) est vérifiée. Pour cela, on doit majorer
fBM\BUg f2p dv,. Notons f le prolongement de f laug qui est harmonique au sens du paragraphe 2C,
c’est-a-dire que

Q0(f) = f |dF 1 dvg + "2 / |d71? dv.
U M\U
Comme on I’a remarqué au paragraphe 2B, puisque f est harmonique sur M\U avec condition de
Neumann sur dM\dUs, la norme L2(dM\3Us, p) de f est contrdlée par sa norme L2 sur dU\dUs,

c’est-a-dire que
/ fzpdvgfclf fzpdvgh
IM\IUs dU\IUs

Notons que la constante ¢; est invariante par homothétie, donc indépendante de 1, a condition de considérer
sur d(M\U) la métrique induite par la métrique de M\U. En considérant la métrique g, sur 0M\dUs et
la métrique g sur dU\dUs on obtient

/ frpdvg, <" ey / f?dv, (3.10)
IM\JUs dU\aUs

On majore le membre de droite a 1’aide de 1’inégalité elliptique de 1’opérateur Dirichlet-to-Neumann
sur oU.

i af i
[ P 1 By < W By = [ S dve=ca [ 107 dug @0,(F). GAD
dU\aUsg aU U

On a donc finalement |f|% <IfP+n e 0,(f) ce qui permet d’appliquer le lemme 3.2 et la
remarque 3.3.

Etape 2. On doit montrer que pour tout 7 > 0, le spectre de 0, peut €tre approché par le spectre de
métriques lisses conformes a g.

Le parametre n état fixé, on définit une suite de facteurs conformes #; tels que la suite (;) converge
en décroissant vers la fonction xy + nxm\v et on pose g; = hl.zg. Les suites de norme de Hilbert | - |;
et de formes quadratiques Q; associées a g; convergent vers | - |, et O, en vérifiant les hypotheéses du
lemme 3.2, ce qui assure la convergence du spectre et des espaces propres. U

3D. Convergence vers le spectre du bord. Enfin, nous allons montrer qu’on peut faire tendre le spectre
de Steklov homogene (c’est-a-dire que p = 1) d’une variété a bord M vers le spectre du laplacien
sur oM, la métrique sur dM restant homothétique a la métrique initiale. Bien que ce théoréme ne soit pas
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indispensable pour démontrer le théoréme 1.2, on peut I'utiliser si la dimension de M est au moins 3.
Il semble aussi intéressant en lui-méme et fournit un exemple d’application du théoréme démontré au
paragraphe précédent.

Théoreme 3.12. Soit (M", g) une variété riemannienne compacte a bord de dimension n > 3. Il existe
une famille g, de métriques sur M conformes a g et homothétiques a g le long de OM telle que pour tout
k>0onaitoy(M, g.) > M (M, g) quand ¢ — 0.

En outre, si les A, (M, g) vérifient I’hypothése (x), alors le N-écart spectral entre le spectre de Steklov
de (M, g.) et le spectre du laplacien de (0M, g) tend vers O.

Démonstration. Le principe de la démonstration consiste a se ramener au cas d’un voisinage collier du
bord (avec la condition mixte Steklov—Neumann) en utilisant le théoréme 3.8. On va procéder en trois
étapes : d’abord montrer la convergence du spectre d’un voisinage collier de dM muni d’une métrique
produit, puis traiter le cas de la restriction de métrique g a ce voisinage collier, et enfin montrer la
convergence du spectre de M.

Etape 1. On va déterminer I’asymptotique (quand 7 — 0) du spectre de la variété produit dM x [0, ] pour
un métrique produit, avec la condition de Steklov sur M x {0} et la condition de Neumann sur 0M x {n}.

On peut déduire ce spectre du spectre de Steklov de M x [0, 2] (avec condition de Steklov sur les
deux bords) par symétrie : en effet, on peut partitionner les valeurs propres de oM x [0, 2n] en deux,
selon que les fonctions propres sont symétriques ou antisymétriques. Ces fonctions propres vérifient la
condition de Neumann sur dM x {n} dans le premier cas et la condition de Dirichlet dans le second cas.
Le spectre de 0M x [0, n] avec condition mixte est donc le spectre de Steklov de OM x [0, 2n] restreint
aux fonctions symétriques.

Le spectre de Steklov de IM x [0, 2n] a été calculé explicitement dans lemme 6.1 de [Colbois et al.
2011] en fonction du spectre du laplacien sur OM : si dM est de volume 1 et si on note A, ses valeurs
propres et u; ses fonctions propres, alors le spectre non nul de oM x [0, 2n] restreint aux fonctions
symétriques est /A, tanh(n4/Ax) les fonctions propres associées étant cosh(y/Act)u(x), ot x désigne
un point de dM et ¢ la coordonnée sur I’intervalle. Le spectre de Steklov—Neumann de oM x [0, ] se
comporte donc asymptotiquement comme nij quand n — 0. En pratiquant une homothétie sur oM x [0, n],
on peut donc faire tendre son spectre vers A;. On peut facilement vérifier a 1’aide de 1’expression des
fonctions propres qu’il y a bien convergence des espaces propres.

Etape 2. Etant donnée la variété a bord (M, g) et un réel n > 0 petit, on considére le n-voisinage collier M,
de 0M, c’est-a-dire que M, = {x € M, d(x, dM) < n}. Pour n suffisamment petit, M, est difféomorphe
au produit de dM avec un intervalle. On considere alors le probleme de Steklov—-Neumann sur M, comme
dans 1’étape 1.

Quand n tend vers 0, la métrique g restreinte a M), est de plus en plus proche d’une métrique produit.
Plus précisément, il existe une famille de réels 7, > 1 telle que 7, — 1 quand n — O et 1 /7,8, < g|m, < 7,8y>
ou g, désigne la métrique produit sur dM x [0, n]. Comme la constante 7, contrdle aussi I’écart entre
les normes de Hilbert et les formes quadratiques pour le probleme de Steklov—Neumann sur (M,, g) et
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(M, g,), on peut appliquer le lemme 3.2 et la remarque 3.4 pour obtenir la convergence spectrale comme
dans 1’étape 1.

Etape 3. Pour pouvoir conclure, il on aura besoin de faire tendre le spectre de Steklov de M vers celui
de M, en restant dans la classe conforme de g. On va utilise pour cela le théoréme 3.8 :

Un réel ¢ > 0 étant donné, on choisit 7 > 0 et un rapport d’homothétie r,, > 0 tels que le spectre de
(M, r,% g) soit e-proche de celui de (0M, g). Puis, en appliquant le théoréme 3.8 avec U = M,,, on obtient
une métrique g;, sur M tel que le spectre de (M, g;}) soit -proche de celui de (M, r%g). Quand ¢ tend
vers 0, on a ainsi convergence du spectre et des espaces propres de (M, p, g.) vers ceux du laplacien sur
(oM, g). 0

4. Prescription du spectre

4A. L’hypothese de transversalité d’Arnol’d. Pour prescrire la multiplicité des valeurs propres de Stek-
lov nous utilisons, selon la méthode introduite par Colin de Verdiere, trois ingrédients : les théorémes de
convergence spectrale démontrés dans les sections précédentes, des modeles de valeurs propres multiples
déja connus et une propriété de stabilité vérifiée par ces modeles. Nous allons commencer par rappeler
cette derniere. On verra au paragraphe suivant comment utiliser des graphes complets comme modeles de
spectre avec multiplicité.

On suppose qu’on a une famille d’opérateurs (P,),c g, oul B¥ est la boule unité de R¥ (en pratique, P,
est I’opérateur Dirichlet-to-Neumann associé a une métrique g, ), tels que Py posséde une valeur propre Ag
d’espace propre Ej et de multiplicité N. Pour les petites valeurs de a, P, possede des valeurs propres
proches de A dont la somme des espaces propres est de dimension N. Comme dans la définition de
I’écart spectral, on identifie cette somme a Eg et on note g, la forme quadratique associée a P, transportée
sur Ej.

Définition 4.1 [Colin de Verdiere 1988]. On dit que A¢ vérifie I’hypotheése de transversalité d’Arnol’d si
I’application W : a — g, de B dans 9(E) est essentielle en 0, c’est-a-dire qu’il existe & > 0 tel que si
® : BX - 9(Ey) vérifie | ¥ — ®||o < €, alors il existe ay € B¥ tel que ®(ag) = qo.

Une propriété cruciale est que si ¢ provient d’une famille (P,) d’opérateurs, alors A est valeur propre
de P, de multiplicité N et vérifie la méme propriété de transversalité, ce qui justifie qu’on parle de
stabilité de la multiplicité. Comme remarqué par Colin de Verdiere, on peut généraliser cette définition a
une suite finie de valeurs propres.

4B. Voisinages tubulaires de graphes. Colin de Verdi¢re a montré qu’un graphe complet muni d’un
laplacien combinatoire et d’'une métrique appropriée possede une (ou plusieurs) valeur propre multiple
vérifiant la propriété de transversalité d’ Arnol’d. Dans ce paragraphe, nous allons utiliser ce résultat pour
construire une variété dont on prescrit le début du spectre Steklov—Neumann avec multiplicité.

On note I" un graphe fini, S I’ensemble de ses sommets et A ’ensemble de ses arétes. On se donne
une métrique sur ce graphe en associant a chaque aréte a; € A, une longueur /; > 0. Le laplacien
combinatoire sur I" est I’opérateur agissant sur les fonctions § — R induit par la forme quadratique
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q(f)= Zal_eA lidg, ()2, avecd,(f)=(f(x)— f(y))/1;, x et y étant les extrémités de I’ aréte a;. L’espace
des fonctions RS sur les sommets est muni de sa structure euclidienne canonique.
On utilise alors le résultat suivant :

Théoréme 4.2 [Colin de Verdiere 1988, §4]. Etant donné une suite 0 =rg < rj <Ay <--- < Ay, il existe
une métrique sur le graphe complet a N + 1 sommets dont le spectre est la suite (A;). De plus, ce spectre
vérifie la propriété de transversalité d’Arnol’d.

Il reste a construire une famille de variétés dont le début du spectre ressemble a celui d’un graphe
complet. Ces variétés, qu’on notera 2., seront localement des domaines euclidiens. Le graphe I' sera
plongeable isométriquement dans €2, les sommets étant situés sur le bord de Steklov de la variété
(construire 2, comme étant globalement un domaine euclidien nécessiterait d’imposer des contraintes
sur les longueurs /;, ce qu’on veut éviter).

Plus précisément, deux réels ¢ > 0 et ¢ étant fixé, on se donne pour chaque sommet s; € S une
demi-boule B; de rayon ce (dans la suite, utilisera I'indice j pour les sommets du graphe et on réservera
I’indice i pour les arétes). La constante ¢ sera fixée plus loin. Pour chaque aréte a; € A, on se donne
ensuite un cylindre C; de rayon ¢ et de longueur /; — 2ce. Si on note j et j’ les indices des sommets
extrémités de ’aréte a;, et qu’on place les boules B"~! qui bordent le cylindre C; tangentiellement aux
demi-boules B; et Bj/, on peut plonger isométriquement 1’aréte a; dans la réunion de C;, B; et Bjr,en
identifiant les sommets s; et s, avec les centres de B; et Bj/. En répétant le procédé pour chaque aréte,
le graphe I se plonge isométriquement dans la réunion des demi-boules B; et des cylindres C;. Pour
construire le domaine €2,, on va prolonger le cylindre C; en un cylindre C; dont les extrémités seront
dans les demi-boules. Chaque boule B; étant vue localement comme un domaine euclidien, on construit
une application de C; = B! x [0, ;] dans la réunion des C; et des voisinages des B ; telle que :

— B" 'x[ce, l; —ce] est envoyé isométriquement sur C; ;
— pour t € [0, ce] et [[; — ce, [;], chaque boule B! x {r} est plongée isométriquement dans le
voisinage de la demi-boule B; correspondante ;
— B"!'x {0} et B"! x {1} sont envoyé sur le bord équatorial de Bj;
— l’application obtenue est 1-lipschitzienne.
Les extrémités des cylindres ne sont donc pas isométriques a la métrique produit mais 1égerement tordus

/ /ci

a I’intérieur des boules :

En outre, on fait en sorte que les images de chaque C; soient disjointes (on choisit ¢ assez grand pour que
ca soit possible). Ces précisions techniques faciliteront I’étude du spectre. On peut remarquer que quand
¢ tend vers 0, 2, tend vers le graphe I pour la distance de Gromov—Hausdorff.
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En considérant la condition de Steklov sur les boules équatoriales des demi-boules B; et la condition
de Neumann sur le reste du bord de 2., on va montrer que le début du spectre de 2. tend vers le spectre
du graphe, a une constante multiplicative pres :

Théoréme 4.3. Le N-écart spectral entre le spectre de Steklov—Neumann de Q; et le spectre de ¢"~' Ar,
ou Ar désigne le laplacien combinatoire sur ', tend vers O quand ¢ tend vers 0.

Démonstration. La démonstration se déroule en deux étapes. D’abord, on décompose 1’espace des fonctions
harmoniques (pour le probleme de Steklov—Neumann) sur €2, en deux sous-espaces pour appliquer le
lemme 3.1, puis on montre la convergence en se restreignant a I’un des sous-espaces. On note 92, g
le bord de Steklov de 2., BQ; g» 1 < j < N ses composantes connexes et ¢ I’espace des fonctions
harmoniques sur €2, vérifiant la condition de Neumann sur 9€2,\0€2; s.

Etape 1. On définit I’espace ¥, comme étant I’espace des fonctions harmoniques de Q. constantes sur
chacune des N composantes connexes du bord de Steklov. L' orthogonal de # pour la forme quadratique
Q associée a ’opérateur A contient les fonction constantes, qui sont aussi dans . On définit donc ¥,
comme |’espace des fonctions Q-orthogonales a ¥ et d’intégrale nulle sur €2, 5. Si f € ¥ et si g est
Q-orthogonale a Hy, alors on a, en notant f; la valeur de f sur 852; 5"

g g
(f, Ag) = f—= f"/. -
Q.5 ov 2]: J 39‘2‘5 ov

Comme (f, Ag) est nul pour tout f € #, on en déduit que / ; g—‘g = 0 pour tout j. On a donc
0% ¢
of .
Hoo=1f € f=0, ~ — =0 pour tout j ;. 4.4)
Q.5 ol ; OV

On doit minorer la forme quadratique Q sur I’espace . Pour cela, on va passer par I’intermédiaire
du domaine D = J j Bj- Mais comme la restriction des formes harmoniques de £2. ne vérifient pas la
condition de Neumann sur les hémispheres qui bordent les B; on va d’abord reformuler I’expression du
bas du spectre de Q sur ¥o.. On pose, pour toute fonction f € C®(F) telle que faszg,s f=o0,

Q(f>=inf{/g df 1P flaas=F. |  —= } (4.5)

On peut vérifier que la borne inférieure de Q (pour || f I = 1) coincide bien avec le bas du spectre de Q
sur #uo.

On définit les espaces %P, %2 et les formes quadratiques Q7, OP en remplacant €, par D dans les
définitions de %, 0, O et Q. Comme D C 2, O est minoré par la forme quadratique 0P.La premiere
valeur propre de Qg est donc minorée par la premiere valeur propre de Q%w. Le domaine D possede N
composantes connexes, donc la multiplicité de 0 dans spectre de Steklov de D est N, les fonctions propres
étant les fonctions constantes sur chaque B;. La premiére valeur propre de Q%m est donc la (N + 1)-ieme
valeur propre de D, qui est la premiere valeur propre non nulle o (B(¢)) de la demi-boule de rayon ce.
Cette valeur propre se comporte comme ¢ > quand & — 0, ce qui permet d’appliquer que lemme 3.1.
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Etape 2. On doit maintenant comparer les spectres de Oy, et de la forme quadratique g associée au
laplacien combinatoire sur I". Les deux domaines des formes quadratiques sont en bijection de maniere
évidente, en identifiant une fonction sur les sommets s; de I' avec une fonction constante sur chaque F,
prenant les mémes valeurs. Les normes sur les deux espaces sont différentes. On notera | - | la norme
euclidienne canonique sur RS, 1a norme sur ¥ est alors |- | = (c&)" w,_1| - |r, Ol wy_1 désigne le
volume de la boule euclidienne canonique de dimension n — 1.

Etant donnée f est une fonction sur S, on construit une fonction test f sur €2, prenant les mémes
valeurs que f sur chaque F;, constante sur chaque demi-boule B; et prolongée de maniere affine sur les
cylindres C; constituant le domaine €2;. On a

- _ . 1
0(f) = Q(f)z/gg jdf > =& ‘wnltgh_—zcs(ﬂxn—ﬂyi»z,

oll x; et x; sont les extrémités de 1’aréte a;, donc limsup, ., Q(f)/|f]> < c"ilq(f)/lfl%.

Réciproquement, étant donné une fonction f € €y, on construit une fonction test sur les arétes du
graphe T'. A partir de la donnée de f sur I’image d’un cylindre C/ = B"~! x [0, &, 1;], on définit une
fonction f sur I'intervalle [0, /;] par moyennation sur chaque boule B"~!, ¢’est-a-dire que

f(x,t)dx.

gn_la)n—l Bn-!

On a alors, en utilisant le fait que plongement de C; dans €2, est 1-lipschitzien,
712 1 2
df I” = ——= |df " dx. (4.6)
e w1 Bn—1

On obtient ainsi une fonction f sur I' qui est C', qui coincide avec f sur les sommets et qui vérifie
e" w1 |df|I* < [ 1df > = Q(f). Comme sur le graphe, on a [|df || > ¢(f), on obtient que

n—1
lim inf o(f) S ¢ CI(f)'
e—0 |f|2 |f|%

On a finalement montré que Q(f)/|f|* converge simplement vers ¢~ 'q(f)/| f |1% quand ¢ — 0. Comme
on travaille sur des espaces de dimension finie, cela suffit pour assurer la convergence du spectre et des
espaces propres des deux opérateurs. U

4C. Application a la prescription de spectre. On a maintenant tous les ingrédients pour montrer le
théoréme 1.2. La méthode la plus directe serait d’utiliser le théoreme 3.12 de convergence du spectre vers
celui du bord et les résultats de prescription obtenus dans [Colin de Verdiere 1987] (on peut les adapter
de maniere a prescrire la classe conforme). Cependant, cette méthode ne fonctionne que si la dimension
du bord est au moins 3. On va donc procéder autrement en utilisant les plongements de graphes construits
au paragraphe précédent.
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Démonstration du théoréme 1.2. D’apres le théoréme 4.2, il existe un graphe complet I" ayant le spectre
voulu, avec la propriété de stabilité. On va transplanter ce spectre dans la variété M en commengant par
traiter le cas p = 1.

On commence par déformer la variété M en respectant la classe conforme et de maniere a pouvoir
plonger isométriquement le graphe I" dans M en plagant les sommets sur M. Comme la dimension de M
est plus grande que 3, on peut le faire sans que les arétes se croisent. On note g la métrique obtenue
sur M.

A priori, la métrique au voisinage du plongement de I" n’est pas euclidienne, on ne peut donc pas
plonger isométriquement un ouvert 2. (construit au paragraphe précédent) au voisinage de I". Cependant,
pour tout & on peut déformer (de manieére non conforme) la métrique g en une métrique g, telle que
les graphes soient toujours plongés isométriquement et que I' possede un voisinage isométrique au
domaine €2.. On peut de plus faire en sorte que (1/7.)g: < g < 7.&., pour une famille de réels 7, > 1
telle que 7. — 1 quand ¢ — 0.

On peut maintenant appliquer les résultats de convergence spectrale de la section précédente. Pour un
8 > 0 petit donné, on peut trouver un ¢ tel que le N-Eécart spectral entre I' et 2, soit inférieur a §. En
utilisant les arguments de la démonstration du théoréme 3.12 (étape 2), on peut choisir ¢ suffisamment
petit pour que le N-écart spectral entre (€2., g.) et (€2, g) soit inférieur a 6. Enfin, on peut faire converger
le spectre de M vers celui de (€2, g) d’apres le théoreme 3.8, et en particulier déformer g de maniere
conforme de sorte que le N-écart spectral entre M et (€2, g) soit lui aussi inférieur a §. On peut donc
rentre le N-écart spectral entre M et I' arbitrairement petit, et ce de maniere conforme.

Traitons maintenant le cas ou p varie. Quitte a multiplier les a; par une constante, on peut supposer
que p < 1. II suffit d’ajouter une étape a la construction précédente et d’utiliser le théoréme 3.6 pour faire
tendre le spectre de la variété (M, p) vers celui de M sans densité. U

5. Multiplicité en dimension 2

5A. Lignes nodales des fonctions propres. On va montrer dans cette section les obstructions a la pres-
cription de multiplicité en dimension 2 (théorémes 1.5, 1.7 et 1.10). Comme dans le cas du laplacien, les
deux principaux ingrédients sont le théoréme nodal de Courant et le théoreme de Cheng sur la structure
local de I’ensemble nodal. Dans toute la suite du texte, les fonctions propres considérées seront les
fonctions harmoniques sur M et pas leur restriction a oM. En particulier, les lignes et les domaines nodaux
seront considérés sur M.

Avec ces précisions, le théoreme nodal de Courant est valide pour les problemes de Steklov et Steklov—
Neumann, quelle que soit la dimension :

Théoreme 5.1. Le nombre de domaines nodaux de la k-iéme fonction propre du probleme de Steklov (ou
de Steklov—Neumann) est au plus égal a k + 1.

La démonstration (essentiellement la méme que dans le cas du laplacien) est donnée dans [Kuttler et
Sigillito 1969] pour la dimension 2, et elle se généralise immédiatement en toute dimension.
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Contrairement aux fonctions propres du laplacien, les fonctions propres de Steklov ont la particularité
que leurs domaines nodaux rencontrent toujours le bord. Cette propriété a déja été utilisée, par exemple,
dans [Bafiuelos et al. 2010], et nous y feront appel pour démontrer le théoréme 1.7 :

Lemme 5.2. Tout domaine nodal rencontre le bord de la variété. Dans le cas du probléme de Steklov—
Neumann, tout domaine nodal rencontre le bord de Steklov.

Démonstration. Soit f une fonction harmonique non nulle et D un domaine nodal de f ne rencontrant
pas le bord de Steklov de la variété. Comme f est harmonique et nulle sur le bord de D (ou vérifie la
condition de Neumann le long du bord de Neumann de la variété), elle est uniformément nulle dans D.
Par conséquent, elle est nulle partout. O

S. Y. Cheng [1976] a décrit la structure locale de 1’ensemble nodal des fonctions propres du laplacien en
dimension 2. On peut les appliquer aux fonctions harmoniques, et le lemme qui précede permet de préciser
certaines propriétés topologiques des domaines et des lignes nodales, en particulier leur incompressibilité
(une partie d’une surface est dite incompressible si son groupe fondamental s’injecte dans celui de la
surface). L’énoncé qui suit rassemble ces résultats :

Théoreme 5.3. Supposons que M est de dimension 2, et soit f une fonction propre du probléme de
Steklov. Alors :

(1) Les domaines nodaux de f sont incompressibles.

(2) L’ensemble nodal de f intérieur a M est la réunion d’un nombre fini de courbes C* qui sont soit
des cercles immergés, soit des arcs immergés dont les extrémités sont sur oM.

(3) La réunion de ces courbes forme un graphe fini dont les composantes connexes sont incompressibles.

(4) Soit p un point intérieur a M. Si p est un point critique de f situé sur [’ensemble nodal et que
l’ordre d’annulation de f en p est k, alors au voisinage de p ’ensemble nodal est la réunion de k
courbes s’intersectant en p, de courbure géodésique nulle en p et formant un systeme équiangulaire
(en particulier, les sommets du graphe nodal intérieur a M sont de degré pair).

(5) Tout point du bord ou f s’annule est I’extrémité d’une ligne nodale intérieure a M.
(6) Chaque composante connexe du bord contient un nombre pair d’extrémités du graphe nodal.

(7) Dans le cas du probléme de Steklov—Neumann, si p est un point du bord de Neumann ou f s’annule,
l’ordre d’annulation k de f en p est fini et le point p est un zéro isolé en restriction a oM. Au
voisinage de p dans M, I’ensemble nodal est la réunion de k arcs partant de p, de courbure
géodésique nulle en p et dont I’extension par réflexion par rapport au bord forme un systeme
équiangulaire.

On appliquera en particulier les propriétés d’incompressibilité au cas du disque. On obtient alors :

Corollaire 5.4. Si M est homéomorphe a un disque, alors les domaines nodaux sont homéomorphes a
des disques et les composantes connexes du graphe nodal sont des arbres.
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Démonstration du théoreme 5.3. Comme A f = 0 dans I'intérieur de M, on peut appliquer le théoreme 2.5
de [Cheng 1976]. En particulier, I’ensemble nodal est la réunion de courbes immergées (les lignes
nodales) qui sont localement en nombre fini, cette réunion étant homéomorphe a un graphe localement
fini. Cependant, comme I’intérieur de la surface n’est pas compact, on doit vérifier la finitude globale du
graphe nodal, qui découle des deux points suivants :

(1) le nombre de lignes nodales est fini ;

(i1) les points d’intersection des lignes nodales sont en nombre fini.
Le point (i) se déduit du théoréme de Courant : le nombre de domaines délimités par un ensemble de
lignes nodales est au moins égal au nombre de ces lignes ; par conséquent le nombre total de lignes
nodales est majoré par le nombre de domaines nodaux, en particulier il est fini. On montre le point (ii)
a l’aide de la formule d’Euler—Poincaré appliquée a la surface : comme les domaines nodaux sont en
nombre fini et que leur caractéristique d’Euler est majorée par 1, la caractéristique d’Euler du graphe
nodal est minorée en fonction de la topologie de la surface et du nombre de domaines. Or, les sommets
du graphe sont de deux types : d’une part les sommets situés sur le bord de la surface aux extrémités
des lignes nodales, qui sont en nombre fini et de degré fini car il n’y a qu’un nombre fini de les lignes
nodales ; d’autre part les intersections de lignes, qui sont de degré au moins 4. Si les sommets intérieurs
sont en nombre infini, la caractéristique d’Euler du graphe serait donc —oo, ce qui contredit la formule
d’Euler—Poincaré.

On en déduit de ce qui précede les points (2) et (4) du théoreme et le fait que le graphe nodal est fini.

Soit D un domaine nodal et y une courbe de D non contractile dans D. Si y est contractile dans M,
alors elle entoure un domaine nodal D’ distinct de D. En outre, y sépare D’ de dM, ce qui contredit
le lemme 5.2. Par conséquent, D est incompressible. Le méme argument montre I’incompressibilité du
graphe nodal. On obtient ainsi les points (1) et (3).

Montrons le point (5). Supposons que p est un point du bord qui n’est pas I’extrémité d’une ligne
nodale. Le point p n’est donc pas situé a la frontiere entre deux domaines nodaux, il est contenu dans un
domaine nodal D sur lequel on supposera que f est positive. D’apres la propriété d’unique prolongement
(théoréme 2.7), il n’y a pas de ligne nodale le long du bord, on peut donc trouver un petit voisinage U
de p délimité par une courbe de niveau f(x) = & avec € > 0 petit. En restriction a D, f est la premicre
fonction propre du probleme de Steklov—Dirichlet avec condition de Dirichlet sur les ligne nodales qui
bordent D a I'intérieur de M. Or, si on définit la fonction test f par f =¢gsurU et f = f sur D\U, le
quotient de Rayleigh de f est strictement plus petit que celui de f, ce qui contredit que f soit la premiere
fonction propre sur D.

Le fait qu’un nombre pair de lignes nodales rejoigne chaque composante du bord découle du fait que
le signe de la fonction propre change chaque fois qu’on traverse une ligne nodale.

Reste a traiter le cas du probleme de Steklov—Neumann. On consideére deux copies de la variété M
qu’on recolle de maniére symétrique le long du bord de Neumann et on note M’ la surface obtenue.
Comme le probleme de Steklov est conformément invariant en dimension 2, on peut lisser la métrique
le long du recollement de maniere conforme et symétrique. Les fonctions propres sur M correspondent
alors aux fonctions propres sur M’ qui sont symétriques. On peut en particulier leur appliquer les résultats
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de Cheng (point (4)). La symétrie de la fonction implique la symétrie des lignes nodales (sur M") au
voisinage du bord de Neumann de M. On doit encore montrer que le bord de Neumann ne contient pas
de ligne nodale : une fonction harmonique f sur M’ est la partie réelle d’une fonction holomorphe g (en
munissant M’ de la structure complexe induite par la structure conforme). Si f est une fonction propre
symétrique, alors la condition de Neumann et 1’équation de Cauchy—Riemann implique que Im(g) est
constante le long du bord de Neumann de M. On peut choisir g de sorte que cette constante soit nulle, les
zéros de f sur le bord de Neumann sont donc les zéros d’une fonction holomorphe. Par conséquent ils
sont isolés. U

Démonstration du corollaire 5.4. Si M est un disque, I’incompressibilité des domaines nodaux implique
qu’ils sont simplement connexes, donc que ce sont des disques.

Les composantes connexes du graphe nodal sont planaires, et leur incompressibilité signifie qu’ils sont
sans cycle. Donc ce sont des arbres. O

5B. Bornes sur la multiplicité. On peut maintenant démontrer les théoremes 1.5, 1.7 et 1.10. En ce qui
concerne le théoréme 1.5, on reprendra les arguments de [Cheng 1976] et [Besson 1980], qui sont moins
précis que ceux de [Nadirashvili 1987] mais plus faciles a adapter au probleme de Steklov.

Démonstration du théoreme 1.5. Supposons que la surface M soit orientable. On note Ej 1’espace propre
associé a la valeur propre oy (M) et my sa multiplicité. Selon [Besson 1980], si my > 4y + 2k + 1, il
existe un point x dans I’intérieur de M et une fonction propre f € Ej telle que I’ordre d’annulation de f
en x soit strictement supérieur a 2y + k. Localement, il existe donc au moins 4y + 2k + 2 arcs nodaux
partant de p.

Si on « ferme » la surface en quotientant chaque composante du bord sur un point, tous les arcs nodaux
se referment, et il existe donc au moins 2y + k + 1 lacets distincts C' par morceaux dans 1’ensemble
nodal. Or, Cheng [1976, Lemma 3.1] a montré que ces lacets décomposent la surface en au moins k 4 2
composantes connexes. La fonction f possede donc au moins k + 2 domaines nodaux, ce qui contredit le
théoreme de Courant.

Comme dans [Besson 1980], le cas des surfaces non orientables se traite par passage a un revétement a
deux feuillets. La surface obtenue en quotientant les bords est de caractéristique d’Euler p = (1—x (M) —1).
Les arguments des [ibid.] donnent alors la majoration my < 4p + 4k + 3. O

Démonstration du théoréeme 1.7. On note E 1’espace propre associé a la valeur propre o; (M, p, g) pour
i=1ou2.

Soit p un point intérieur au disque. Si E est de dimension au moins 4, il existe une fonction propre
non nulle f € E telle que f et df soient nuls en p. Le point p est donc un sommet du graphe nodal de f
et il en part au moins quatre arétes. Comme le graphe nodal est un arbre dont les feuilles sont sur le bord,
il délimite au moins quatre domaines nodaux. Il y a donc contradiction avec le théoréme de Courant.

Supposons maintenant que i = 1 et que E soit de dimension 3. Si pg est un point du bord, le sous-espace
des fonctions f € E telles que f(po) = 0 est de dimension au moins 2. Pour tout point p du bord distinct
de po, il existe donc une fonction f,, qu’on supposera de norme 1, telle que f(p) = f(po) = 0. Comme
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chacun de ces points est nécessairement I’extrémité d’un ligne nodale et que la fonction f), a exactement
deux domaines nodaux, pg et p sont les extrémités de I’'unique ligne nodale de f),.

Le bord est donc partagé en deux intervalles, I[‘f et I, d’extrémités po et p, sur lesquels la fonction f,
est respectivement positive et négative. En faisant tendre p vers po, on peut faire tendre la longueur de 7,
vers 0. Comme les fonctions f), sont normées et que E est de dimension finie, la famille f, admet une
limite f (quitte a extraire une sous-famille). La fonction f est alors positive ou nulle sur la totalité du
bord, puisque I’évaluation en un point est une forme linéaire continue sur E. Par conséquent, f est de
signe constant, ce qui est impossible puisque c’est une fonction propre de la valeur propre o7;. U

Démonstration du théoréme 1.10. On note I une composante connexe du bord de Neumann 0Dy et on
choisit k 4+ 1 points distincts x, ..., x¢4+1 dans I. Supposons que la multiplicité de o (D, 0Dy, p, g)
soit supérieure ou égale a k + 2. On peut alors trouver une fonction propre f associée a cette valeur
propre qui s’annule en tous les points x;, i € [1, K+ 1]. En vertu du point 6 du théoreme 5.3, chaque x;
appartient a une composante connexe du graphe nodal qui joint x; a un point du bord de Steklov, ces
composantes étant distinctes. L’ ensemble nodal sépare donc D en au moins k + 2 composantes connexes,
ce qui contredit le théoreme de Courant. (|
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SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION

JEAN-FRANCOIS COULOMBEL, OLIVIER GUES AND MARK WILLIAMS

We study weakly stable semilinear hyperbolic boundary value problems with highly oscillatory data.
Here weak stability means that exponentially growing modes are absent, but the so-called uniform
Lopatinskii condition fails at some boundary frequency g in the hyperbolic region. As a consequence
of this degeneracy there is an amplification phenomenon: outgoing waves of amplitude O(g?) and
wavelength ¢ give rise to reflected waves of amplitude O (¢), so the overall solution has amplitude O (¢).
Moreover, the reflecting waves emanate from a radiating wave that propagates in the boundary along a
characteristic of the Lopatinskii determinant.

An approximate solution that displays the qualitative behavior just described is constructed by solving
suitable profile equations that exhibit a loss of derivatives, so we solve the profile equations by a Nash—
Moser iteration. The exact solution is constructed by solving an associated singular problem involving
singular derivatives of the form 9, + 89g, /¢, x’ being the tangential variables with respect to the boundary.
Tame estimates for the linearization of that problem are proved using a first-order (wavetrain) calculus of
singular pseudodifferential operators constructed in a companion article (“Singular pseudodifferential
calculus for wavetrains and pulses”, arXiv 1201.6202, 2012). These estimates exhibit a loss of one
singular derivative and force us to construct the exact solution by a separate Nash—Moser iteration.

The same estimates are used in the error analysis, which shows that the exact and approximate
solutions are close in L™ on a fixed time interval independent of the (small) wavelength ¢. The approach
using singular systems allows us to avoid constructing high-order expansions and making small divisor
assumptions. Our analysis of the exact singular system applies with no change to the case of pulses,
provided one substitutes the pulse calculus from the companion paper for the wavetrain calculus.
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1. Introduction and main results

In this paper we study weakly stable semilinear hyperbolic boundary value problems with oscillatory data.
The problems are weakly stable in the sense that exponentially growing modes are absent, but the uniform
Lopatinskii condition fails at a boundary frequency 8 in the hyperbolic region #.! As a consequence
of this degeneracy in the boundary conditions, there is an amplification phenomenon: boundary data of
wavelength ¢ and amplitude 0(£?) in problem (1-1) below gives rise to a response of amplitude O (¢).
In the meantime, resonance may occur between distinct oscillations. In the situation studied below, a
resonant quadratic interaction between two incoming waves of amplitude O (e) may produce an outgoing
wave of amplitude O (¢?). When reflected and amplified on the boundary, this oscillation gives rise to
incoming waves of amplitude O (¢). Hence the O (¢) amplitude regime appears as the natural weakly
nonlinear regime.

Let us now introduce some notation. On @iﬂ ={x=0"xg)=(,y,xqs)=(t,x") : x4 > 0}, consider
the N x N semilinear hyperbolic boundary problem for v = v, (x), where & > 0:2

(@ Lo(@v+ fo(v) =0,

(b) ¢@)= eZG(x’, ) on xg =0, (1-1)
(¢) v=0and G=0 int <0,

x'-B

where Ly(0) = 9, + Z?:l B;d;, the matrix By is invertible, and both fo(v) and ¢ (v) vanish at v = 0.
The function G (x', 6) is assumed to be periodic in 6y, and the frequency S € R?\ {0} is taken to be a
boundary frequency at which the so-called uniform Lopatinskii condition fails. A consequence of this
failure is that the choice of the factor &2 in (1-1)(b) corresponds to the weakly nonlinear regime for this
problem. The leading profile is nonlinearly coupled to the next-order profile in the nonlinear system
(1-35)—(1-36) derived below. We also refer to Appendix B for a detailed specific example which illustrates
the nonlinear feature of the leading profile equation.

Before proceeding, we write the problem in an equivalent form that is better adapted to the boundary.
After multiplying (1-1)(a) by (B;)~', we obtain

L@)v+ f(v) =0,

/
¢(v>=ezG(x/,x ﬁ) on xg =0, (1-2)
v=0and G =0 int <0,
where we have set
d—1
L©®) =03+ Y _ A;d; with Aj:=B;'Bjforj=0,....d—1.
j=0

I'See Definition 1.4 and Assumption 1.6 for precise statements.
Zwe usually suppress the subscript €.
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Setting v = eu and writing f(v) = D(v)v, ¢ (v) = ¥ (v)v, we get the problem for u = u.(x)
(a) L@)u+ D(su)u =0,

/ .

b)Y (euu = sG<x/, a ﬁ) on x4 =0, (1-3)
(¢c) u=0 int <0.
For problem (1-3) we pose the two basic questions of rigorous nonlinear geometric optics:

(1) Does an exact solution u, of (1-3) exist for € € (0, 1] on a fixed time interval [0, Tp] independent of &?

(2) Suppose the answer to the first question is yes. If we let ug"® denote an approximate solution on
[0, Tp] constructed by the methods of nonlinear geometric optics (that is, solving eikonal equations
for phases and suitable transport equations for profiles), how well does us" approximate u, for &
small? For example, is it true that?

lim fu, —ufP|1 — 07 (1-4)
£—>

The amplification phenomenon was studied in a formal way for several different quasilinear problems
[Artola and Majda 1987; Majda and Artola 1988; Majda and Rosales 1983]. The last of these papers
studied amplification in connection with Mach stem formation in reacting shock fronts, while [Artola and
Majda 1987] explored a connection to the formation of instabilities in compressible vortex sheets. Both
papers derived equations for profiles using an ansatz that exhibited amplification; however, neither of
the two questions posed above were addressed. The first rigorous amplification results were proved in
[Coulombel and Gues 2010] for linear problems. That article provided positive answers to the above
questions (question (1) is trivial for linear problems) by making use of approximate solutions of high-order,
and showed in particular that the limit (1-4) holds.

In this paper we give positive answers to the above questions for the semilinear system (1-3). As is
typical in nonlinear geometric optics problems involving several phases, difficulties with small divisors
rule out the construction of high-order approximate solutions.* Instead of constructing the exact solution
u. as a small perturbation of a high-order approximate solution, we construct i, in the form

ug(x) = Ug(x, 00)lgy=p-x /e

where U, (x, 8y) is an exact solution of the singular system (1-18). The singular system is solved using
symmetrization and diagonalization arguments [Williams 2002], modified and supplemented with methods
[Coulombel 2004] for deriving linear estimates for weakly stable hyperbolic boundary problems. In
deriving the basic estimate (2-4) for the singular linear problem, a loss of derivatives® forces us to use a

3Let us observe that by the amplification phenomenon, we expect the solution v to (1-1) to have amplitude O(¢), so the
solution u to (1-3) should have amplitude O (1). Hence the limit (1-4) deals with the difference between two O (1) quantities.

4Such difficulties are sometimes avoided by assuming that small divisors do not occur; see, for example, [Joly et al. 1993].
But we do not want to make this assumption.

S1In fact, the basic L2 estimate for the singular system (1-18) exhibits loss of a single “singular derivative” 9, + B3y, /¢,
which is optimal according to the analysis in [Coulombel and Gues 2010].
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new tool, namely, a substantial refinement, given in the companion paper [Coulombel et al. 2012], of the
calculus of singular pseudodifferential operators constructed in [Williams 2002]. In the new version of the
calculus, residual operators have better smoothing properties than previously realized and can therefore
be considered as remainders in our problem. The loss of derivatives in the linear estimate presents a
serious difficulty in the application to our semilinear problem. Picard iteration appears to be out of the
question, so in Section 5B we use a Nash—Moser iteration scheme adapted to the scale of spaces (1-19) to
construct the solution U, (x, 6p) to the semilinear singular problem.

If problem (1-3) satisfied the uniform Lopatinskii condition, then, because of the factor ¢ in the
boundary data £G, the equations for the leading profile, ¥ in (1-15), would be linear; and in fact V°
would vanish. The weakly nonlinear regime would correspond to a source term G (and not eG) in (1-3);
see [Williams 1996; 2000]. Under our weak stability assumption, it turns out that ¥ is nonlinearly
coupled to the second-order profile ¥! in the profile equations (1-35) and (1-36). To solve these equations,
we first isolate a “key subsystem” (1-42) that decouples from the full system. The basic L? estimate for
the linearization of the key subsystem still exhibits a loss of one derivative, and we are again forced to use
Nash—Moser iteration in order to solve this subsystem. Once the key subsystem is solved, the solution
of the full profile system (1-35)—(1-36) follows easily. It appears in our analysis that the leading-order
amplitude equation shares the weak well-posedness of the original nonlinear problem, but we have not
checked whether the loss of derivative for the amplitude equation is optimal (we conjecture that it is).

The error analysis used to answer question (2) above is based on the estimate for the singular system
(1-18) (see Proposition 2.2) and is discussed in more detail in Section 1E.

This paper can be read independently of [Coulombel et al. 2012]; for the reader’s convenience, we
have gathered all the necessary material on the singular calculus in Appendix A. Before discussing this
more fully, we provide some definitions, notation, and a precise statement of assumptions.

Remark 1.1. We emphasize that our approach for constructing exact highly oscillating solutions for
the system (1-1) can be used without any modification for constructing exact amplified pulses. More
precisely, the estimates and well-posedness argument of Sections 2A, 2B, and 2C for the linearized
singular system (2-1), and the Nash—-Moser argument of Section 5B for the nonlinear singular system
(1-18) have all been written so as to carry over verbatim to the case of pulses. Amplification of pulses is
treated in [Coulombel and Williams 2013], where we consider a function G in (1-1) that has suitable
decay properties with respect to its additional variable 6y € R (this functional framework is relevant for
applications to lasers). We refer to [Coulombel and Williams 2013] for the precise statements in the pulse
case. The main difference between the analysis of wavetrains and pulses lies in the leading-order profile
equation and in the construction and estimation of correctors needed in the error analysis. The novelty is
that we can get a rate of convergence for (1-4) while this seems out of reach for wavetrains.

1A. Assumptions. We make the following hyperbolicity assumption on the system (1-1):

Assumption 1.2. There exists an integer ¢ > 1, some real functions Ay, ..., A, that are analytic on
R?\ {0} and homogeneous of degree 1, and there exist some positive integers v, .. ., v, such that
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q

d
det[rl + ZsjB,} =[] +m@)™ forallé =(&.....£) e R\ {0}
j=1

k=1
Moreover the eigenvalues A{(§), ..., A,(§) are semisimple (their algebraic multiplicity equals their
geometric multiplicity) and satisfy A1(§) < --- < A,4(§) forall § € R7\ {0}.

For simplicity, we restrict our analysis to noncharacteristic boundaries, and therefore make the following
assumption.

Assumption 1.3. The matrix By is invertible and the matrix B := 4 (0) has maximal rank, its rank p
being equal to the number of positive eigenvalues of B; (counted with their multiplicity). Moreover, the
integer p satisfies 1 < p <N — 1.

In the normal modes analysis for (1-3), one first performs a Laplace transform in the time variable ¢
and a Fourier transform in the tangential space variables y. We let T —iy € C and 1 € R‘~! denote the
dual variables of ¢ and y. We introduce the symbol

d—1
Ag) = —inl((r —iy)l +Zn,~3j>, ¢i=(t—iy,n)eCxRI
j=1

For future use, we also define the following sets of frequencies:
B:={—iy,)eCxRTINO,0:y20, Ti={e:+y +P=1)
Eo:={(t,n) e RxRI\ (0,00} =EN{y =0}, To:=XTNE.
Two key objects in our analysis are the hyperbolic region and the glancing set, defined as follows.

Definition 1.4.  « The hyperbolic region # is the set of all (t, ) € E¢ such that the matrix sd(z, 1) is
diagonalizable with purely imaginary eigenvalues.

« Let G denote the set of all (7, £) € R x R? such that & # 0 and there exists an integer k € {1, ..., ¢}
satisfying
36 = 26 =0
T k = — = U.
94
If 7(G) denotes the projection of G on the d first coordinates (that is, 7 (7, &) = (7, &1, ..., &4-1)

for all (z, &)), the glancing set G is 4 := 7 (G) C Eo.

We recall the following result, proved in [Kreiss 1970] in the strictly hyperbolic case (when all integers
v; in Assumption 1.2 equal 1) and [Métivier 2000] in our more general framework.

Proposition 1.5 [Kreiss 1970; Métivier 2000]. Let Assumptions 1.2 and 1.3 be satisfied. Then, for all
¢ € B\ By, the matrix A(¢) has no purely imaginary eigenvalue and its stable subspace () has
dimension p. Furthermore, E° defines an analytic vector bundle over B\ Eg that can be extended as a

continuous vector bundle over B.
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For all (z, n) € By, we let E°(r, ) denote the continuous extension of E° to the point (z, ). The
analysis in [Métivier 2000] shows that away from the glancing set ¢ C Eg, E*(¢) depends analytically on
¢, and the hyperbolic region # does not contain any glancing point.

To treat the case when the boundary operator in (1-3)(b) is independent of «, which is to say ¥ (cu) =
¥ (0) =: B, we make the following weak stability assumption on the problem (L(9), B).

Assumption 1.6. « Forall ¢ € E\ Ey, ker BNE*(¢) = {0}.
e The set Yo :={¢ € Xo: ker BNE*(¢) # {0}} is nonempty and included in the hyperbolic region #.

e For all (9= Yy, there exists a neighborhood V' of ¢ in X, a real valued €°° function o defined
on V', abasis E1(¢), ..., E,(¢) of E*(¢) that is of class 6°° with respect to ¢ € V', and a matrix
P(Z) € GL,(C) that is of class 6> with respect to ¢ € V', such that

forall; €V, B(E((¢) -+ E,())=P()diag(y +io(¢),1,...,1).
For comparison and later reference we recall the following definition.

Definition 1.7 [Kreiss 1970]. As before let p be the number of positive eigenvalues of B;. The problem
(L(9), B) is said to be uniformly stable or to satisfy the uniform Lopatinskii condition if

B:F'(¢)— C*
is an isomorphism for all ¢ € X.

Remark 1.8. Observe that if (L(d), B) satisfies the uniform Lopatinskii condition, continuity implies that
this condition still holds for (L(9), B + 1'p), where w is any sufficiently small perturbation of B. Hence
the uniform Lopatinskii condition is a convenient framework for nonlinear perturbation. The analogous
statement may not be true when (L (9), B) is only weakly stable. Remarkably, weak stability persists under
perturbation in the so-called WR class exhibited in [Benzoni-Gavage et al. 2002], and Assumption 1.6
is a convenient equivalent definition of the WR class; see [Coulombel and Gues 2010, Appendix B].
In order to handle general nonlinear boundary conditions as in (1-3), we strengthen Assumption 1.6 in
Assumption 1.12.

Boundary and interior phases. We consider a planar real phase ¢ defined on the boundary:

¢o(t,y):=tt+n-y, (z,n) € Eo. (1-5)

As follows from earlier works (see, for example, [Majda and Artola 1988]), oscillations on the boundary
associated with the phase ¢g give rise to oscillations in the interior associated with some planar phases
¢m. These phases are characteristic for the hyperbolic operator Ly(0) and their trace on the boundary
{xq = 0} equals ¢y. For now we make the following assumption.

Assumption 1.9. The phase ¢ defined by (1-5) satisfies (z, ) € Yy. In particular (z, n) € .

Thanks to Assumption 1.9, we know that the matrix si(z, ) is diagonalizable with purely imaginary
eigenvalues. These eigenvalues are denoted by iw;, . . ., iwy, where the w,,s are real and pairwise distinct.
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The w,,s are the roots (and all the roots are real) of the dispersion relation

d—1

det[gl +> n;B; +de] =0.
j=1

To each root w,, there corresponds a unique integer k,, € {1, ..., g} such that  + A4, (n, @) =0. We
can then define the following real® phases and their associated group velocities:

forallm=1,...., M, ¢n(x):=¢o(t,y) +wmXa, Vm:= V)\'km(ZL Wim). (1-6)

Let us observe that each group velocity v, is either incoming or outgoing with respect to the space
domain Ri: the last coordinate of v, is nonzero. This property holds because (z, 1) does not belong to
the glancing set 4. We can therefore adopt the following classification.

Definition 1.10. The phase ¢, is incoming when the group velocity v,, is incoming (that is, when
g, Ak, (1, @m) > 0), and it is outgoing when the group velocity v, is outgoing (9, Ak, (1, @) < 0).

In all that follows, we let $ denote the set of indices m € {1, ..., M} such that ¢,, is an incoming
phase, and O denote the set of indices m € {1, ..., M} such that ¢, is an outgoing phase. If p > 1, $ is
nonempty, while if p < N — 1, O is nonempty (see Lemma 1.11). We will use the notation

d d—1
Lo(v,§):=7I+) &Bj, LB o) =wnl+)_ BAi
j=1 k=0

ﬂ:: (Iv Z].), x/:(t,y), ¢0(X/)=ﬂ-x/.

For each phase ¢,,, d¢,, denotes the differential of the function ¢,, with respect to its argument x =
(t,y, xq). It follows from Assumption 1.2 that the eigenspace of &4 () associated with the eigenvalue i w,,
coincides with the kernel of Ly(d¢;,) and has dimension vi,. The following well-known lemma, whose
proof is recalled in [Coulombel and Gues 2010], gives a useful decomposition of E* in the hyperbolic
region.
Lemma 1.11. The stable subspace E°(8) admits the decomposition
E*(B) = D ker Lo(dpm), (1-7)
mey
and each vector space in the decomposition (1-7) admits a basis of real vectors.
To formulate our last assumption we observe first that for every point ¢ € € there is a neighborhood V'
of ¢ in ¥ and a C* conjugator Q(¢) defined on V" such that
iw] (; )I n 0
Qo()A) Q4! (0) = =: =D (%), (1-8)
0 iwy (;)In]

o1t (z, ) does not belong to the hyperbolic region ¥, some of the phases ¢, may be complex; see, for example, [Williams
1996; 2000; Lescarret 2007; Marcou 2010]. Moreover, glancing phases introduce a new scale /¢ as well as boundary layers.
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where the w; are real when y = 0 and there is a constant ¢ > 0 such that either
Re(iwj) < —cy or Re(iw;)>cy forall¢ eV
In view of Lemma 1.11, we can choose the first p columns of Q ! (¢) to be a basis of E°(¢), and write

051(©) = [Qin(€) Qow (O)].

Choose J' so that the first J' blocks of —D; lie in the first p columns, and the remaining blocks in the
remaining N — p columns. Thus Re(iw;) < —cy ifand only if 1 < j < J'.
Observing that the linearization of the boundary condition in (1-3) is
ur— Yleuw)u+ [dy (cu)it]eu,
we define the operator
Bvi, vo)u =Y (v)u + [dy (v)ulvs, (1-9)
which appears in Assumption 1.12. For later use we also define

D (v, vo)u := D(vy)u + [dD(vy)it]v,, (1-10)

as well as
B(vy) := By, v1), D(vy) :=D(vy, V). (1-11)

We now state the weak stability assumption that we make when considering the general case of
nonlinear boundary conditions in (1-3).

Assumption 1.12.  « There exists a neighborhood 0 of (0, 0) € R*" such that for all (v{, v;) € © and
all € B\ Ep, ker B(vy, vo) NE*(¢) = {0}. For each (v, v2) € O, the set

T (vi, v2) :={¢ € T : ker B(vi, v2) NE*(§) # {0}

is nonempty and is included in the hyperbolic region #. Moreover, if we set T := U(vl’vz)e@ Y (vy, v2),
Y C ¥ (closure in ).

« For every [ Y, there exists a neighborhood V" of 4 in X and a C* function o (vy, v2, ) on O x ¥
such that for all (vq, v2, {) € 0 x V" we have ker B(vy, vo) NE*(¢) # {0} if and only if ¢ € Xy and
o(vy,v,¢)=0.

Moreover, there exist matrices P;(vi, vz, ) € GL,(C), i =1, 2, of class C*° on O x V" such
that, for all (vi, v2,¢) €O x Y,

Pi(v1, v2, $)B(v1, 12) Qin(8) P2(v1, v, §) =diag(y +io(vi, v2,¢), 1,..., 1). (1-12)

For nonlinear boundary conditions, the phase ¢q in (1-5) is assumed to satisfy (t, n) € T(0, 0), or,
in other words, the intersection ker B N E*(z, n) is not reduced to {0} (the set Y in Assumption 1.6 is a
short notation for Y (0, 0)). The phases ¢,, are still defined by (1-6) and thus only depend on L(9) and B,
and not on the nonlinear perturbations fy and v (eu) — ¥ (0) added in (1-3).



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 559

Remark 1.13. (1) The properties stated in Assumption 1.12 are just a convenient description of the
requirements for belonging to the WR class of [Benzoni-Gavage et al. 2002]. Like the uniform Lopatinskii
condition, Assumption 1.12 can, in practice, be verified by hand via a “constant coefficient” computation.
More precisely, for (v, v2) near (0, 0) € R2N and ¢ € X, one can define (see, for example, [Benzoni-
Gavage and Serre 2007, chapter 4]) a Lopatinskii determinant A (vy, vz, ¢) thatis C* in (vy, v2), analytic
in¢ =(t—iy,n) on X\%, and satisfies

A(vy, v2,¢) =0 if and only if ker B(vy, v2) NE*(¢) # {0}.

In particular, A(vy, vy, -) is real-analytic on .
Following [Benzoni-Gavage et al. 2002] (see also [Benzoni-Gavage and Serre 2007, chapter 8]), we
claim that Assumption 1.12 holds provided

G4 e IA®0,0,0)=0}C% and A(0,0,)=0=3,A0,0,¢) #0, (1-13)

and thus it only involves a weak stability property for the linearized problem at (vy, v2) = (0, 0). Indeed,
the implicit function theorem then implies that, for (v, v2) near zero and (7, ) near g, the set

{(‘57 77) € 2:0 : A(Ul, U2, T, 77) = 0}

is a real-analytic hypersurface in #. On the other hand, an application of the implicit function theorem to
A(vy, v2, 2, ), for (z, n) € X, shows that the real dimension of the manifold

{(z,n) e X :A(vy, v2,2,n) =0}

must be the same, that is, d — 2. The two zero sets must then coincide; there are no zeros in X \ X.
The function o and the neighborhoods O and V" arise in a factorization of A given by the Weierstrass
preparation theorem. The construction of the conjugating matrices P;, i = 1, 2 follows from a construction
in [Sablé-Tougeron 1988, Pages 268-270].

Instead of assuming (1-13), we have stated Assumption 1.12 in a form that is more directly applicable
to the proof of Proposition 2.2 and to the error analysis of Theorem 4.1.

(2) To prove the basic estimate for the linearized singular system, Proposition 2.2, and to construct the
exact solution U, to the singular system (1-18), it is enough to require that the analogue of Assumption 1.12
holds when % (v, vp) is replaced by B(vy) := B(v1, v1). However, for the error analysis of Section 4 in
the case of nonlinear boundary conditions, we need Assumption 1.12 as stated.

The next lemma, proved in [Coulombel and Gues 2010], gives a useful decomposition of C" and
introduces projectors needed later for formulating and solving the profile equations.

Lemma 1.14. The space CV admits the decomposition
M
CN = @ ker Lo(dn), (1-14)
m=1

and each vector space in (1-14) admits a basis of real vectors. If we let Py, ..., Py denote the projectors
associated with the decomposition (1-14), we have Im Bd_lLo(qum) =ker P, forallm=1,..., M.
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1B. Main results. For eachm € {1,..., M} we let
Ym,k» kzl,...,vkm,

denote a basis of ker Lo(d¢,,) consisting of real vectors. In Section 4 we shall construct a “corrected”
approximate solution u{ of (1-3) of the form

u (x) :°V0(x, 9) +8°V1(x, 9) +820u§<x, o ﬂ) (1-15)
e e e’ €
where ¢ := (¢, ..., ¢y) denotes the collection of all phases,
Vi

GVO st :Zzam,k x,d)_m Y,k

(v 2) = 2 oma(x. )

(1-16)

OVI X, — =0£ (x)+ Tm,k xv_m rm,k+ )

( & m=1 k=1 €

and the oy, ¢ (x, 6,,) and 1, 1 (x, 6,,) are scalar C ! functions periodic in 6, with mean 0 which describe the
propagation of oscillations with phase ¢,, and group velocity v,,. Here ® denotes the nonlocal operator

RVO = —R[L(3,)V° + D(©0)V"]

for R defined as in (1-32). The last corrector ezou%, (x, 6o, &4) in (1-15) is a trigonometric polynomial
constructed in the error analysis of Section 4.

The next theorem, our main result, is an immediate corollary of the more precise Theorem 4.1. Here we
let Q7 :={(x,60) = (t,y,x4,60) e R xT:x;>0,t <T}and b :={(t, y,00) e R xT' : ¢ < T}.
The spaces E° are defined in (1-19).

Theorem 1.15. We make Assumptions 1.2, 1.3, 1.6, and 1.9 when the boundary condition in (1-3) is
linear (Y (eu) = Y (0)); in the general case we substitute Assumption 1.12 for Assumption 1.6. Fix T > 0,
set My :=3d + 5, and let

pwi=[d+1)/2)+My+3 and ji:=2p—[(d+1)/2].

Consider the semilinear boundary problem (1-3), where G(t, y, 6y) € H* (bS27). There exists gy > 0 such
that if (G) gu+2 b,y i small enough, there exists a unique function Ug(x, 6p) € EFYQr) satisfying the
singular system (1-18) on Qr such that

ug(x) :=U, (x, x’_,B>

&

is an exact solution of (1-3) on (—o0, T] x @i for 0 < & < ¢gg. In addition there exists a profile VO(x, 0)
as in (1-16), whose components oy, i lie in H*~'(Q27), such that the approximate solution defined by

uiPP = 0 (x, Q)
)

satisfies

lim |u, —uiPP|p~ =0 on (—oo0, T]x @i.
e—0
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Observe that although the boundary data in problem (1-3) is of size O(e), the approximate solution
ug™ is of size O(1), exhibiting an amplification due to the weak stability at frequency B. The main
information provided by Theorem 1.15 is that this amplification does not rule out the existence of a
smooth solution on a fixed time interval, that is, it does not trigger a violent instability, at least in this
weakly nonlinear regime. As far as we know, the derivation of the leading-order amplitude equation
(1-42) is also new in the general framework that we consider. This amplitude equation shares some
features of the Burgers equation and we expect that its solutions may develop singularities in finite time;
see similar discussions in [Majda and Rosales 1984]. We hope that the analysis developed in this article
will be useful in justifying quasilinear amplification phenomena such as the Mach stems or kink modes
formation [Artola and Majda 1987; Majda and Artola 1988; Majda and Rosales 1983], but there are still
many obstacles along the way.

Remark 1.16. (a) In order to avoid some technicalities, we have stated our main result for a problem (1-3)
where all data vanish for ¢ < 0. This result easily implies a similar result in which outgoing waves defined
in ¢t < 0 of amplitude O(¢) and wavelength ¢ give rise to reflected waves of amplitude O(1). In either
formulation, analysis of the profile equations (see Remark 1.28) shows that the waves of amplitude O (1)
emanate from a radiating wave that propagates in the boundary along a characteristic of the Lopatinskii
determinant.

(b) We have decided to fix 7 > 0 at the start and choose data small enough so that a solution to the
nonlinear problem exists up to time 7. One can also (as discussed in Remark 3.7) fix the data in the
problem (G in (1-3)) at the start, and then choose T small enough so that a solution to the nonlinear
problem exists up to time 7'.

In the remainder of this introduction, we discuss the construction of exact solutions, the construction of
the approximate solution ¥, and the error analysis. Complete proofs are given in Sections 2, 3, 4, and 5.

1C. Exact solutions and singular systems. The theory of weakly stable hyperbolic initial boundary value
problems fails to provide a solution of the system (1-3) that exists on a fixed time interval independent of
&.” In order to obtain such an exact solution to the system (1-3), we adopt the strategy of studying an
associated singular problem first used in [Joly et al. 1995] for an initial value problem in free space. We
look for a solution of the form

ug(x) = Ug(x, 00) lgy=g0(x") /e » (1-17)

where U, (x, 6p) is periodic in 8y and satisfies the singular system derived by substituting (1-17) into
problem (1-3). Recalling that L(3) = 8, + Y-9_g A;d; we obtain

/3 890

&

d—1
B9, . _
adUg—i-E Ajld;+ - U+ DEU)U, =: 00U, +A | 0 + U +DEU)U, =0,
=0

w(gUs)Us|xd:0 =8G(X/,90), (1‘18)
U.=0 int <0.

7This would be true even for problems (L(d), B) that are uniformly stable in the sense of Definition 1.7.
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The special difficulties presented by such singular problems when there is a boundary are described in
detail in the introductions to [Williams 1996; 2002; Coulombel et al. 2011]. In particular, we mention:

(a) Symmetry assumptions on the matrices B; appearing in the problem (1-1) equivalent to (1-3)
are generally of no help in obtaining an L? estimate for (1-18) (boundary conditions satisfying
Assumption 1.6 cannot be maximally dissipative; see [Coulombel and Gues 2010]).

(b) One cannot control L°° norms just by estimating tangential derivatives 8&, %) U, because (1-18) is

not a hyperbolic problem in the x, direction;?

moreover, even if one has estimates of tangential
derivatives uniform with respect to ¢, because of the factors 1/& in (1-18), one cannot just use the

equation to control d;U, and thereby control L norms.

To deal with these difficulties, Williams [2002] introduced a class of singular pseudodifferential
operators, acting on functions U (x, 6) that are 27 -periodic in 6y and having the form

PpUG B = Y / e”x"s’“"(”‘p(eV(x’, o). & +L, y) UE k) dgy = 1.
2m) = Jr e

Observe that the differential operator A appearing in (1-18) can be expressed in this form. Kreiss-type
symmetrizers rs(D, g,) in the singular calculus were constructed in [Williams 2002] for (quasilinear
systems similar to) (1-18) under the assumption that (L(9), ¥ (0)) is uniformly stable in the sense of
Definition 1.7. With these, one can prove L?(xg, H*(x’, 0p)) estimates uniform in & for (1-18), even when
€@ is replaced by G in the boundary condition. To progress further and control L° norms, the boundary
frequency B is restricted to lie in the complement of the glancing set. With this extra assumption, the singu-
lar calculus was used in [Williams 2002] to block-diagonalize the singular operator A (8 Ug, 0y + B0y, / 8)

microlocally near the § direction and thereby prove estimates uniform with respect to ¢ in the spaces
E*:=C(xq, H' (', 00) N L2 (xg, H*TH (X', 60)). (1-19)

These spaces are Banach algebras and are contained in L™ for s > (d + 1)/2. For large enough s, as
determined by the requirements of the calculus, existence of solutions to (1-18) in E* on a time interval
[0, T'] independent of ¢ € (0, g9] follows by Picard iteration in the uniformly stable case.

The singular calculus of [Williams 2002] was used again in [Coulombel et al. 2011] to rigorously
justify leading-order geometric optics expansions for the quasilinear analogue of (1-3) in the uniformly
stable case (with 8 € 9 and the forcing term G in place of ¢G in the boundary condition). Under the
assumptions made in the present paper, in particular assuming weak stability as in Assumptions 1.6 and
1.12, we face the additional difficulty that the basic L? estimate for the problem (L(d), B) exhibits a loss
of derivatives. A consequence of this is that the singular calculus of [Williams 2002] is no longer adequate
for estimating solutions of (1-18). The main reason is that remainders in the calculus of [Williams 2002]
are just bounded operators on L2, while for energy estimates with a loss of derivative, remainders should
be smoothing operators. We therefore need to use an improved version of the calculus constructed in

8For initial value problems in free space, one can control L°° norms just by estimating enough derivatives tangent to time
slices t = c.
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[Coulombel et al. 2012] in which residual operators are shown to have better smoothing properties than
previously thought. With the improved calculus we are able in Section 2C to estimate solutions of (1-18)
in E° spaces (1-19), but of course there is a loss of one singular derivative in the estimates. This loss forces
us in Section 5B to use Nash—Moser iteration on the scale of E* spaces to obtain an exact solution of the
singular system (1-18) on a fixed time interval independent of €. Observe that one singular derivative
costs a factor 1/& and this is another reason why the scaling G in (1-18) is crucial.

Remark 1.17. The main idea employed in proving the estimate for the linearized singular problem,
Proposition 2.2, is to adapt the techniques of [Coulombel 2004] to the singular pseudodifferential
framework. There is however one major obstacle along the way. While the error term in the composition
of two zero-order operators (or in the composition of an operator of order —1 (on the left) with an operator
of order 1, a (—1, 1) composition) is smoothing of order 1 in the sense of (A-3), the same is unfortunately
not true of the error term in (1, —1) compositions (there are counterexamples for that). The properties of
the (1, —1) error terms that arise in our proof are described in Lemma 2.6.

1D. Derivation of the leading profile equations. We now derive the profile equations for the semilinear
problem (1-3). We work with profiles ¥/ (x, 8) periodic in 8 = (@, ..., Oy), where @ ; is a placeholder
for ¢ /e. Looking for an approximate solution of (1-3) of the form u® = VO 4V 4+ &212) lo=¢ /¢, Where

¢ = (1, ..., du), we get interior equations
() £@3)V° =0,
(b) L@V + L®)V°+ DOV’ =0, (1-20)

©  L@)V2+ L@V + DOV + @DO) V)10 =0,

1

by plugging u® into (1-3)(a) and setting the coefficients of, respectively, ¢!, ¢, and ¢ equal to zero. The

operator £(9p) is defined by Iy
() =Y L(d;)dy,. (1-21)
j=1
With B := ¢(0), the boundary equations, obtained by plugging u“ into (1-3)(b) and setting the
coefficients of £° and ¢ equal to zero, are

BVO(x’, 0,6, ...,60) =0,

1-22
BV + (dyr (0)V)V0 = G(x', 6p), (1-22)

where 6y is a placeholder for ¢g/¢. We will see that as a consequence of the weak stability at frequency S,
the problem for the leading profile ¥° is nonlinear and nonlocal. (See Appendix B for a concrete example.)
Thus, the scaling in (1-2) is the weakly nonlinear scaling when the uniform Lopatinskii condition fails at
a hyperbolic frequency . To analyze these equations, we proceed to define appropriate function spaces
and a pair of auxiliary operators E and R.

Functions V' (x, 6) € Lz(@ffrl x TM™) have Fourier series

V(x,0) = Z V,(x)e?, (1-23)

aeZM
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Since only quadratic interactions appear in (1-20) and we anticipate that ¥ will have the form in (1-16),
fork =1, 2 we let

ZM* = {o € ZM : at most k components of & are nonzero},

and we consider the subspace H**([RL™ x TM) ¢ H*(RL™ x TY) defined by

HH R x T = {°V(x, 0) e H' R x T : 1 (x,0) = ) Va(x)e"“'g}. (1-24)
Thus multiplication defines a continuous map -
HY TR T x B9 ([RIH < TM) > B2 R x TV) (1-25)
fors > (d+1+4+2)/2.

Definition 1.18. Setting ¢ := (¢, ..., ¢ur), we say a € ZM:2 is a characteristic mode and write o € € if
det L(d(« - ¢)) = 0. Otherwise we call « a noncharacteristic mode. We decompose € as

€ = 6 €, where %, ={aecZ"?: 0 ¢ =nyp, for some n, € Z}.
m=1
Observe that for o € €,,, the integer n,, is necessarily equal to Z,i‘/[: | . Since ¢; and ¢; are linearly
independent for i # j, any a € ZM:2\ 0 belongs to at most one of the sets 6,, and ng # 0 if o # 0.
Elements o € 6,, with two nonzero components correspond to resonances. Resonances are generated
in products like o, x (x, ¢,/€)0. 1 (x, ¢ /€), which arise from the quadratic term in (1-20)(c), whenever
there exists a relation of the form

Np@m =np¢p+n,¢., whereme{l,...,M}\{p,r}andny,,n,, n, €.

We then refer to (¢, ¢p, @) as a triple of resonant phases. This relation implies, for example, that ¢,
oscillations interact with ¢, oscillations to produce ¢,, oscillations.

Definition 1.19. We define the continuous projector9 E:H* ;2(@31:“1 x TMy — Hs! (@‘ﬁl x TMy s >0,

by u
E=Ey+ ZEm, where EoV := V, and E,,V := Z P,V (x)e"e0n. (1-26)
m=1 ace,,\0

for P,, as in Lemma 1.14.
For () as in (1-21), we have that, for 10 e H*2(R{™ x TM),
EVY =" ifand only if V0 € H*' (R x TM) and L(35)V° =0, (1-27)

and (1-27) in turn is equivalent to the property that V"% has an expansion of the form

M Vi

VO=v(0)+ Y Y ok, On)rm (1-28)

m=1 k=1

9The continuity of E is shown in [Coulombel et al. 2011, Remark 2.5].
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for some real-valued functions o, . Moreover, since for any m,
d—1
Ldpn) =wnl +Y_ BjAj =) (@n— )P, (1-29)
j=0 km
we have, for ¥ € H2(RLH! x TM),
EZ(09)V =£(39) EV = 0. (1-30)

We also need to introduce a partial inverse R for £(dy). We begin by defining

1
R, = Pk,
" lgn; Wm — Wk
which in view of (1-29) satisfies
L(d¢m)Rm =RmL(d¢m) =1—Py. (1-31)

The operator R is defined formally at first on functions

V(x.0)= > Va(x)e’ of H* 2[R x TY)

aeZM:2
by
RV := Z R(a)V, (x)e'? (1-32)
aeZM;2
where
Ry /(ing) if @ €€, \ {0},
R(a):=1{0 if o =0, (1-33)
L)™' ifa ¢,
and

M
L) =i Y amL(dpn) =iL(d(e-$)).

m=1

Remark 1.20. The operator R is well-defined on functions V" € H S;Z(@Tl x TM) whose spectrum
contains only finitely many noncharacteristic modes, and then R lies in the same space. Otherwise,
there can be a problem with small divisors; the possibility of there being infinitely many noncharacteristic
modes « for which det L(d(a - ¢)) is close to zero can prevent convergence of (1-32) in H' ‘z(ﬁ‘fl x TM)
for any ¢.

It follows readily from (1-31) that, for & € H*!' (R4 x TM), 5 > 0,
F(9)RF = R¥(3)F = (I — E)F. (1-34)

Such & have no noncharacteristic modes. Along with (1-30), (1-34) implies the following.
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Proposition 1.21. Suppose F € H*! (@iH x TM), s > 0. Then the equation £(39)V = F has a solution
Ve H (R x TM) if and only if EF = 0.

By applying the operators E and R to the equations (1-20) and using (1-27), (1-30), and (1-34), we
obtain

(@) EVO=0,
(b) EL@®)V°+DO0)V°) =0, (135)
() BV°=0 onx;=0,6=(®,...,6),
(d ¥°=0 int<0
and
@ (I —E)Y'+RL@)V’+ DOV’ =0,
(b) E(L@®V'+ DOV + @DO)V)¥°) =0, (136

() BV'+dyO)V)T°=G onxg=0,0=®p,...,0),
d Y'=0 intr<0.

Remark 1.22. (a) Since EV? =¥, the function L(3)¥°+ D(0)¥? in (1-36)(a) has no noncharacteristic
modes so the action of R on this function is well-defined.

(b) Itis easy to check that functions AN belonging to H* 1 (@i“ x TM), s > (d +3)/2, and satisfying
(1-35) and (1-36)(a) also satisfy (1-20)(a)—(b) and (1-22). Equation (1-36)(b) and Proposition 1.21 suggest
that we might obtain a solution of (1-20)(c) by taking

(I — EYV? = —=R(L®OV"'+ DOV + @D©O)V")¥°).

There are two problems with this. First, the quadratic term (dD(0)¥°)¥? generally has infinitely many
noncharacteristic modes, so one should expect a problem with small divisors. Second, the statement
(1-34) and Proposition 1.21 are both not true when F € H*2(RL™ x TM), even if F has finitely
many noncharacteristic modes.'? These difficulties affect the error analysis and are discussed further in
Section 1E.

To determine the equations satisfied by the individual profiles v(x), oy, «(x, 85,) in the expansion (1-28)
of U0, we first refine the decomposition of the projector E in (1-26). For each m € {1, ..., M} we let

@m,k,k=1,...,l)k

m

denote a basis of real vectors for the left eigenspace of the real matrix

d—1

id(B) =TAo+ Y njA; (1-37)
j=1

10This is because of the fact that for any k € 7\ {0}, there can be many « € (¢,;, \0) N ZM:2 guch that ng = k. See the proof
of Proposition 1.29.
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associated to the eigenvalue —w,,, chosen to satisfy

1 ifm=m'and k =Kk,
gm,k Fm' k= .
0 otherwise.

For v € CV set

Puiv:=Un k- -v)rymr (nocomplex conjugation here).

We can now write
M Vi,

EZEo—I-ZZEm,k,

m=1 k=1
where E,, x := Py ¢ En. When the multiplicity k = 1, we write E,, instead of E,, ; and do similarly for
L. ks Ym.k and so on.
The following lemma, which is a slight variation on a well-known result [Lax 1957], is included for
the sake of completeness.

Lemma 1.23. Suppose EV? =V and that V° has the expansion (1-28). Then
En k(L)) = (X4, 0m0)7m k

where X, is the characteristic vector field associated to ¢p,:'!

d—1

Xp, =04+ Y —0c,0m(B)0;.
j=0

Proof. For &' € ¥ near B, let —w,, (') be the eigenvalues i A (") —see (1-37) —and let P, (¢') be the
corresponding projectors; these objects depend smoothly on &” near B thanks to the analysis of [Métivier
2000]. Differentiate the equation

d—1
(wm(s’)l +> Ajsj) Pu(E)=0
j=0
with respect to &;, evaluate at 8, and apply P,, on the left to obtain
PmAij = _8$j(1)m(/3)Pma
from which the lemma readily follows. (|

By Assumption 1.6 we know that the vector space ker B N E*(8) is one-dimensional; moreover, it
admits a real basis because B has real coefficients and E*(8) has a real basis. This vector space is therefore
spanned by some e € RV \ {0} that we can decompose in a unique way by using Lemma 1.11:

ker BNE'(B) =Span{e}, e=) em. Puem=cn. (1-38)

mey

'The vector field X¢,, is a constant multiple of the vector field 9; + vy, - V. computed by Lax for the Cauchy problem,
where vy, is the group velocity defined in Definition 1.10.
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Each vector e, in (1-38) has real components. We also know that the vector space BE*(B) is (p — 1)-
dimensional. We can therefore write it as the kernel of a real linear form:

BE(B)={X eCP, b-X =0}, (1-39)

for a suitable vector b € R? \ {0}.
Any function V'(x, 6) € HS;Z(@ffrl x TM) can be decomposed:

V= CK"‘C\Vinc + Vout +Vnoneh = OK"'QV*,

where the terms correspond respectively to the parts of the Fourier series (1-23) with « = 0, o incoming,
o outgoing, and o noncharacteristic. '

Proposition 1.24. Suppose V0 € HS;z(@iJrl x TM), s > 1, is a solution of (1-35). Then

OKO = 0’ O‘/‘(?ut = 0’ OVl?onch =0, and so OVO = 0Vl(r)lc = EOVi(I)IC’
o0 x',0,6p, ...,600) =a(x',0p)e for some unknown periodic function a with mean 0.

Proof. Since EV? =0, we have V°

no

2ch = 0. Applying Ej to problem (1-35), we find that the mean value
99 satisfies the weakly stable boundary problem

L@+ DO’ =0,

BY°=0 onx;=0,

Y°=0 inr<0O.

By the well-posedness result of [Coulombel 2005] we have ¥° = 0.
Lemma 1.23 implies that outgoing profiles o,, x, m € 0, in the expansion (1-28) of ¥ satisfy problems

of the form "
X¢m(fm7k + Z(ﬁm,k . D(O)rm7k/)o’m’k/ = O’
k=1
omik=0 int <0,
where X4, is an outgoing vector field. Thus 0, y =0 forallk =1, ..., v,.

The last statement of Proposition 1.24 follows immediately from the boundary condition in (1-35) and
(1-38). O

Since V0 = °lfi?1c, we obtain from (1-36)(a)

(I —EYV'=—-E)V., =—RL®)V+ DO)VY),

nc —
SO

V=V 4V + Vo € HY',  where EVy, =,

mnc O out out*

2Here we say o is incoming if o € 6, \ O for an index m such that ¢y, is an incoming phase.
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Next decompose the boundary condition (1-36)(c):

BEV! . = G* —[(@y 0)V)V)* — BV, — BUI — E)V.,

(1-40)
= G* — [(dy O)V)V)I* = BV, + BRLO)Y’ + DO)V).

Remark 1.25. (a) If °V01ut|x 1=0.0;=0, Were known, one could write down a transport equation for a(x’, 0y)
which is determined by the solvability condition for (1-40) implied by (1-39):

b-(G* = [(dy OV — BYL + BR(L(®)V + D©0)¥?)) =0. (1-41)

out

However, the presence of the term E ((dD O in (1-36)(b) implies that two incoming modes in
V0 (which is still unknown) can resonate to produce an outgoing mode that will affect ,},,. Thus we
do not know °V01ut|x +=0.0;=0,> and we see that the nonlinear boundary equation (1-41) is coupled to the

nonlinear interior equation (1-36).

(b) If the phases are such that an outgoing mode can never be produced by a product of two incoming
modes, ¥} can be determined from (1-36) to be 0, and one can proceed as in [Coulombel and Gués
2010] to solve for a without having to use Nash—Moser iteration.

The key subsystem to focus on now is (recalling ¥° = EV? = °Vi?1c and writing with obvious notation
E = Eo+ Einc + Eout)

(@)  Einc(L@OV2. +DO)V2) =0,

() Eou(L(3)Vyy + DOV, + @DO)VI) Vi) =0,
O 1" — BYL + BR(L®)V

© b-(G* = [dyO)V2)V; out inc

inc’/ 7 inc

@ V2.(x',0,60,...,600) =a(x’, e,

1-42
+D0)Vp)) =0, (142

where 17 and V), both vanish in 7 < 0.

A formula for °Vi?w in terms of a(x’, fy) can be determined by solving transport equations using (1-42)(a),
and that formula can be plugged into (1-42)(b) to get V!, in terms of a. Thus the subsystem (1-42) can
be expressed as a very complicated nonlinear, nonlocal equation for the single unknown a. This is done
in Appendix B for a strictly hyperbolic example with only one resonance. However, that is not the way
we solve (1-42); instead we solve the subsystem in its above form by iteration. Picard iteration does not
work; there is a loss of derivatives from one iterate to the next (because of R), so we use a Nash—Moser
scheme. An essential point is to take advantage of the smoothing property of the interaction integrals that
pick out resonances in Eom((a’D(O)°Vi([)lc)°¢/i?m);13 that property allows us to get tame estimates in Section 3.

An important tool in solving the subsystem (1-42) is the following result from [Coulombel and Gues
2010], which will allow us to write the boundary equation (1-42)(c) as a transport equation for a(x’, 6p).

Proposition 1.26 [Coulombel and Gues 2010, Proposition 3.5]. Let the vectors b and e,, be as in (1-39)
and (1-38), and let o () be the function appearing in Assumption 1.6. There exists a nonzero real number

Bnteraction integrals are similar to convolution integrals.
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k such that
RyP,=0 forallme{l,..., M},
b-B Y RyAoem =kd-0(z,n) and d.0(x.n) =1,
mey
b-BY RuAjen=rdyo(.n).j=1....d—1,
me$
and thus
d—1
b-BY  RuL(@)en = x(afo@, W3+ Y 30 (z, n)ax,.) =: XLop.
mey j=1

Taking note of the denominator in, in the definition (1-33) of R, we immediately obtain:

Corollary 1.27. The boundary term b - BRL(3)V?

inc

in (1-42) may be written
b- BRL()V, = Xropdt,

where A(x', 0y) is the unique function with mean 0 in 0y such that dg,sd = a.

Remark 1.28. Proposition 1.26 shows that propagation in the boundary, which is described by a(x’, 6p),
is governed by the (x-projection of the) Hamiltonian vector field associated to the Lopatinskii determinant.
Since V0(x’, 0, 6o, ..., 0p) = a(x’, Hy)e, this shows that waves of amplitude O(1) emanate from the
radiating boundary wave defined by a.

After (1-42) is solved, ¥9 is known, so °l_/1, °V01m,
to the full system (1-36). The trace of E°V111C is not yet determined; one should make a choice of

E°Vi£c| x4=0,0;=6, such that (1-40) holds, and then solve for EV}

inc

and (I — E )°Vi1lc can now be determined by returning

using (1-36)(b). A precise description
of the regularity of ¥ and V! is given in Theorem 5.11. The last piece of the corrected approximate
solution, e%uf, in (1-15), is discussed next.

1E. Error analysis. Given a periodic function f(x, 6), where 8 = (61, ..., 6y), let us denote

Fx, oyt = f(x,00+wi&a, ..., 00 +oua);

so we have

F &, O)lo— po/e.xase) = f(x, %)
Taking the profiles ¥, ¥'! constructed in Theorem 5.11, if we define
UL (x, 60) = (VO(x, 0) + &V (X, )l (0y.x4/0)-

we find that OIL’; satisfies the singular system

@ Loub):=a,u’ +A<8x/ 4P g"°>m§ + DEUNHUL = 0(e),
(b) Y (EUHYUL =G/, 0p) + O(e?) onxy=0, (1-43)

) =0 int<0,
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where the error terms refer to norms in E* and H' spaces whose orders are made precise in Section 4.
For example, (1-43) follows directly from the profile equations (1-20)(a)—(b), together with the identity

H—s(f(xv 9)|0—>(00,xd/£))
= é(i(ae)f(x, ONNo— (9,xa/e) T (L) f(x, 0))o—60,xa/) + (DES) o= @0,xa/e)- (1-44)

Since our basic estimate for the linearized singular system exhibits a loss of one singular derivative
(basically, we lose a 1/¢ factor), the accuracy in (1-43)(a) is not good enough to conclude that

|Ue —UE| Lo (x.0)

is small (the error terms are only O(g)). Thus, to improve the accuracy, we construct an additional
corrector mg (x, B0, &) and replace oulg by

X
WUe (x, 60) 1= (VO(x, 0) + €1 (x, 0)) |9 (6y.x/6) + €U <x, 0o, ;") (1-45)

In constructing W2, we deal with the first (small divisor) problem described in Remark 1.22(b) by
approximating ¥° and V! by trigonometric polynomials °V?, and °V}, to within an accuracy § > 0 in
appropriate Sobolev norms, and seek Ouf, in the form of a trigonometric polynomial.'* To deal with the
second (solvability) problem, we use the following proposition, which allows us to use the profile equation
(1-36)(b) as a solvability condition, in spite of the failure of Proposition 1.21 when & € H*2(R4T! x T™).
We define

580(8@0, 8§d) = L(d(f)o)aeo + 8@.

Proposition 1.29. Suppose F(x,0) € H® ﬂ(@i“ x TMY has a Fourier series which is a finite sum and
that EF = 0. Then there exists a solution of the equation

L0096y, 0,)U(x, Oo, E4) = F(x, 0) |0 (99,£0) (1-46)

in the form of a trigonometric polynomial in (09, ;) of the form

UCx, 00, &) = D Uy (x)e/0MHke5, (1-47)

(ko.ka)EF
where $ is a finite subset of Z x R and the coefficients Uy, ., lie in H’ (@i“).

The proof is given in Section 4. Observe that U is periodic in 6y but almost periodic in (6y, &7).
Proposition 1.29 is applied to solve the equation

L0(3gy» %)W = [—(I — E)L@)V ), 4+ DOV ), + dDOYV)DV)]lo— 6.2)-

14Trigonometric polynomial approximations were already used to deal with small divisor problems in the error analysis of
[Joly et al. 1995].
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With this choice of ouf, we show in Section 4 that the new approximate solution U, (x, 6p) in (1-45)
satisfies instead of (1-43) the singular system

(@ L:(Ue) = O(e(KS+C(S)e)),
() Y (eWU)U — G (x', Bp) = O(*C(5)) on xg =0, (1-48)
©) U=0 int <0,

where the errors in (1-48)(a)—(b) are measured in appropriate norms. Now one can apply our basic
estimate (2-41) for the linearized singular problem to conclude that the difference between exact and
approximate solutions of the semilinear singular system (1-18) satisfies, for some constants C(8) and K,

|U,(x, 0p) — U (x,00)|gs < K8+ C(8)e, for some s > d—21-1.

This estimate clearly implies the conclusion of Theorem 1.15 by choosing first § > 0 small enough and
then letting ¢ tend to zero (this is the same final argument as in [Joly et al. 1995]).

1F. Remarks on quasilinear problems. In this article, we are able to rigorously justify a weakly nonlinear
regime with amplification for semilinear hyperbolic initial boundary value problems. Our assumptions
only deal with the principal part of the operators, meaning that we only assume a weak stability property
for the problem (L(d), B) obtained by linearizing at the origin and dropping the zero-order term in
the hyperbolic system. The weak stability is of WR type in the terminology of [Benzoni-Gavage et al.
2002]. Despite the weak regime that we consider (O (&%) source term at the boundary and O (¢g) solution),
the leading profile equation displays some quasilinear features. We emphasize that the regime that we
consider here is exactly one power of ¢ weaker than the weakly nonlinear regime for the semilinear
Cauchy problem or for semilinear uniformly stable boundary value problems. As in [Coulombel and
Gues 2010], this power of & corresponds exactly to the loss of one derivative in the energy estimates.
We believe that the techniques developed here can be extended to give a rigorous justification of weakly
nonlinear geometric optics with amplification for quasilinear hyperbolic initial boundary value problems

of the form

d

v+ Bj)dv+ fov) =0, (1-49)
j=1

3 ’ )C/‘,B
p(v)=¢ G(x , > on xy =0, (1-50)
e
v=0 and G=0 int <O. (1-51)

The corresponding solution v, would be of amplitude O (¢?). In particular the arguments used in Section 2
to obtain uniform estimates with a loss of one singular derivative for the singular initial boundary value
problem might be extended to the corresponding singular quasilinear problem. There are however several
new obstacles along the way, one of which is to extend the singular pseudodifferential calculus of
[Coulombel et al. 2012] in order to obtain a two-terms expansion of (1, 0) and (0, 1) compositions. The
weaker scaling (g2 in place of &) should be sufficient to obtain the appropriate results. Let us observe
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that, for O (¢?) solutions, the principal part of the hyperbolic operator has coefficients that are uniformly
bounded in W>°°, which is precisely the regularity needed in [Coulombel 2004; 2005] to obtain a priori
estimates and well-posedness. The leading profile equation obtained in this quasilinear framework is
very similar to the one we have derived here, and we thus believe that a weak well-posedness result
using Nash—Moser iteration should prove the existence of the leading profile. For all the above reasons,
we thus believe that the £ source term on the boundary is the relevant “weakly nonlinear regime with
amplification” in the quasilinear case, and we postpone the verification of the many technical details to a
future work. Unfortunately, this regime would still be beyond the one considered in [Artola and Majda
1987; Majda and Rosales 1983], so there would still be a new ingredient to incorporate in order to justify
the calculations of these papers.

2. Exact oscillatory solutions on a fixed time interval

2A. The basic estimate for the linearized singular system. In this section, it is our goal to prove
Proposition 2.2 and its time-localized version, that is, Proposition 2.9. These propositions provide
the a priori estimates for the linearized singular system that form the basis for the Nash—Moser iteration
of Section 5B and the error analysis of Section 4.

We begin by gathering some of the notation for spaces and norms that is needed below.

Notation 2.1. Here we take s e N=1{0,1,2,...}.

(a) Let Q ::@‘fl xThL Qr:=QN{—co<t<T},bQ: =R xT!, bQ7 :=bQN{—00 <t < T}, and

—=d+1
seta)T:=[R+Jr N{—oco<t<T}

(b) Let H* = H* (bS2), the standard Sobolev space with norm (V (x’, 6y))s. For y > 1 we set H]f =eV'H*
and (V) == (e 7'V),.

(¢) L*H* = L*(Ry, H* (b)) with norm |U (x, 6p) |25 = U o,s given by
o0
U1, =/ U (X', xa. 00) 55 ey dXa-
0

The corresponding norm on LZH; is denoted by |V ]o .y .
(d CHS=C (ﬁJr, H*(b2)) denotes the space of continuous bounded functions of x; with values in
H*(b2), with norm

|U(x,00)|chs = |Ulso,s :== sup |U(., xa, )| Hsb2r)

MZO
(note that C H® C L°° H®). The corresponding norm on C H; is denoted by |V oo 5,y -

(e) Let My :=3d~+>5 and define COMo.=C (@Jr, CMo(bQ)) as the space of continuous bounded functions
of x4 with values in CM0(b2), with norm |U (x, 00) | comy :=|U | coyymo.0. Here L®WMo-2 denotes
the space L®(R,; WMo (pQ)).15

15The size of My is determined by the requirements of the singular calculus described in Appendix A.
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(f) The corresponding spaces on Q7 are denoted by L>H3., L2H;7T, CHy, CHj  and C%M‘) with

norms Uo7, |Ulo,s,y, 75 |Uloo,s, 7> 1Ulco,s,y,7, and |U|CO,MO, respectively. On bQ2r we use the
T

spaces Hj and H;’T with norms (U), 1 and (U)s,, 7.

(g) All constants appearing in the estimates below are independent of €, y, and T unless such dependence
is explicitly noted.

The linearization of the singular problem (1-18) at U (x, 6p) has the form

. )
(a) 8dUs + A<8x’ + 13860

(b) BEU)Us|y—0 = g(x', 60). (2-1)
(¢) U;=0 inr<0,

)Ug +9(eU)U, = f(x,60,) on <,

where the matrices B(eU), D(eU) are defined in (1-11).'° Instead of (2-1), consider the equivalent

problem satisfied by U? := e "'U:

ﬁaﬁo
e

B(eU)U7 |5y=0 = 8" (&', 6o), 2-2)

UY=0 inr<O.

9,U" +A((8t+y, ) + )U”+€D(8U)Uy=fy(x,9o)»

Below we let Ap denote the singular Fourier multiplier (see (A-2)) associated to the symbol

. —
& &

20 1,2
) Lo x=g 4P (2-3)

AX,y) = (y2+

The basic estimate for the linearized singular problem (2-2) is given in the next proposition. Observe that
the estimate (2-4) exhibits a loss of one “singular derivative” Ap. In view of [Coulombel and Gues 2010,
Theorem 4.1], there is strong evidence that the loss below is optimal.

Proposition 2.2 (main L? linear estimate). We make the structural assumptions of Theorem 1.15 and
recall My = 3d + 5. Fix K > 0 and suppose |e04U|comy-1 + |U|comy < K for e € (0, 1]. There exist
positive constants eg(K) > 0, C(K) > 0, and yo(K) > 1 such that sufficiently smooth solutions U of the
linearized singular problem (2-1) satisfy'”

: (U)o IADf" oo+ 167" V100 (Apg”o+{(e'g")o
1U” 0.0+ —= < C(K) 5 + 73 :
JY 4 Y

(2-4)

fory > y(K), 0 < & < go(K).
The same estimate holds if B(eU) in (2-1) is replaced by B(eU, eW) and D(eU) is replaced by
D(eU, eW), as long as €04 (U, W)|comp-1 + |U, Ul oy < K for e € (0, 1].

16Here and below we often suppress the subscript £ on U.
17Note that the norms lulp,1 and |A pulg,( are not equivalent.
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Corollary 2.3 (main H, linear estimate). Under the same assumptions as in Proposition 2.2, smooth
enough solutions U of the linearized singular problem (2-1) satisfy

Uy
JY

. . ApF¥lo1+ et FY Ape¥) + (e 1g7
07 oo 107 o1 + |[Apfloa+1e™ f |0,1+( pg" )i+ (e g @)

fory = yo(K), 0 <& < ¢go(K).

Short guide to the proof. The proof of Proposition 2.2 is completed using the next two propositions, each
of which has the same hypotheses as Proposition 2.2. In the first step of the proof of Proposition 2.2,
we choose a partition of unity defined by frequency cutoffs x;(¢), i =1, ..., N + N, such that for
i=1,..., Ny the function ¥; is supported near a point of the “bad” set Y, while for i > N, the function
xi is supported away from Y. The estimates of ;. pUY for i > Ny are done in Proposition 2.8. For such
indices, Kreiss symmetrizers in the singular calculus are used to estimate y; p U” without loss.

Proof of Proposition 2.2. (I): Partition of unity. The compactness of T (see Assumption 1.12) and X
N1 +N, such that {V;};—;
and such that U%iii\’ 29/, is disjoint from a neighborhood of Y. Since Y C %, we can arrange so that for
each i € {1, ..., N} there is a conjugator Qo,i(g“)l8 and diagonal matrix D ;(¢) satisfying (1-8) in ;.
R2N such that for each i < N; there are functions

oi, Pi.1, and P;> on O x V; with the properties described in Assumption 1.12. For these symbols, we
19

allows us to choose a finite open covering of X, € = {1';};—; N, covers T

..........

Moreover, we can choose a neighborhood O of (0, 0) €

shall use the substitution (vy, v2) = (¢U(x, 6), €U (x, 6p)) to prescribe the space dependence.

We let x;(¢),i =1,..., N| 4+ N, be a smooth partition of unity subordinate to 6, and extend the x; to
all ¢ as functions homogeneous of degree zero. We smoothly extend each Qg ; (as a matrix with bounded
inverse) first to X, and then to all ¢ as a function homogenous of degree zero. We take similar extensions
in ¢ of P; 1, Pi2, Dy, and o;, but with homogeneity of degree 1 in the cases of D ; and o;. As with
Qo.i, the extensions of P; | and P; , are taken to have bounded inverses.2® Of course, for a given i < Ny,
the property (1-12) is satisfied only for ¢ /|¢| € V.

(I): Estimate near the bad set. The first estimate deals with a piece of U that is microlocalized near the
bad set Y.

Proposition 2.4. Fix i such that 1 <i < Ny, let Uf’ = X,-,DUV and write

U7 =07, + U7

1,in 1,out’

where?*!

Ul = (0p) ' (win,0) and U = (0p)~" (0, wow).

I8Recall the notation ¢ = (t —iy,n). Sometimes we also write ¢ = (£/, y) to match the notation of [Coulombel et al. 2012].
19The substitution (v1, v2) = (€U(x, Op), eWU(x, Oy)) is also used at one point.

20Taking such extensions reduces the number of cutoff functions we need later.

2 Here Op, wip € CP, and woyt € CN =P are defined by the diagonalization procedure explained in the proof.
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Then we have

O oo 107 ilo00 PG e~ HUY oo PGY: eHUY o0

1,in J7 y y3/2
+1(eAp) U o0+

<(8AD)_IUKin|xd:O>O

1,in «/7
I(Ap, e D00 . ((Ap,e™Hgo  1U |00+ 1eAp) U |00
=C 2 + 32 2
14 14 14
U y—0)o+ ((eAp) LU | —
+( [x,=0)0 (;3/20) lx, o)o) (2-6)

Proof of Proposition 2.4. The loss of derivatives in the estimate prevents us from treating the zero-order
term @(eU)U? as a forcing term, as we would in a uniformly stable problem. Thus we need to use an
argument that simultaneously diagonalizes A and the lower-order term % (eU).

We now set x; = x, v = XDUV = Uly, and estimate v. We let A(X, y) = —A(X, y) denote the
singular symbol such that

)
Ap = A((31 + v, 0v) + ﬂ:O >

Dropping superscripts y, we see from (2-2) that v satisfies
0qv +Apv+D(eU)v = Xpf +1D(V), XxplU = xp f +r-1.0U. 0
B(eU)vl1,=0 = Xpg + [B(V), Xp1Ux,=0 = X0g +r-1.0Ux,=0-

Here and below r_1 p denotes a singular operator of order —1 (which can change from one occurrence to
the next) computed using the singular calculus. Similarly, ro p will denote an operator of order 0. In spite
of the loss of the factor A p in the estimate (2-4), we are able to treat r_g, pU asa forcing term (see, for
example, (2-16) below). A term like ro, DU /v would be too large to absorb.

The first several steps of the proof estimate the terms in the first line of (2-6).

Step 1: Simultaneous diagonalization. This diagonalization argument is similar to the one in [Coulombel
2004]. Let Qo(¢) := Qo,i(¢) and D1(¢) := Dy ;(¢) be the matrices as in (1-8) such that

Q0(OA) Q' (0) =D ()

in the conical extension of ¥;. We define
w = Qpv,

where QO = Qo(X, y)+ QO_1(eU, X, y). Here the matrix Q_;(eU, ¢) is a symbol of order —1 defined
for all ¢, but chosen so that, on the conical extension of V';, the matrix

Do(eU, ¢) :=[0-10;", D11+ Qo (eU) Q" (2-8)

is block diagonal, necessarily of order 0, with blocks of the same dimensions ny, ..., ny as those of D;.
Since the eigenvalues associated to the blocks of D) are mutually distinct, a direct computation shows
that O 10, ! and thus Q_1, can be chosen so that the commutator cancels the off-diagonal blocks of
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002(el)Q, I (The diagonal blocks of the commutator are all zero blocks and therefore cannot cancel
those of Qo (el) Qa] .) Since QoA =D Qp on ¥, (2-8) implies the relation

QA+ QoD =D10+10-10;", Di1Q0 + Q0% = D1 Q + Dy Qo. (2-9)
Remark 2.5. (1) The scalar entries of the matrix Q_; p can be chosen to have the form

(Q-1,p)i,j =c(eU)a-1,p,
where a_;(¢) is of order —1 and independent of (x, 8), thus giving rise to a Fourier multiplier.

(2) Since (Qo, )~ ! Q_1,p has norm less than one as an operator on L? for y large, we can define (0Op)~!
as an operator on L2 using a Neumann series.

Noting that x-dependence is absent in A and Q¢ and using the commutation property (2-9), we have

dqw = Qpdav+ (3aQ-1)pv =—0pA+D(eU))pv+ Opxp f +7-1.0U + (3aQ-1) pv
= —(QA+ QoB(eU))pv+ Qpxp f +7—1,0U + (340-1)pv
=—(D1Q+DoQ0)pv+ Qpxp f +r-1.0U + (3 Q1) pv
= —(Dy+Do)pw+ropf+r_1.pU + Rpv. (2-10)

In the final line of (2-10), the operator r_ p is explicitly given by
Opl%(eU), xp1U—(Q0.p%(eU)~(Qo%(eU))p) xpU~Q-1.0%(eU) xpU+Do.p Q-1.0xpU, (2-11)
and the second remainder term is decomposed as R}, = R% + R}, with operators R%, RY, defined by

(@) RYv:=(3,0-1)pv,

. (2-12)
(b) Rpv:=D1p(Q-1)pv—(D1Q-1)pv.
In view of Remark 2.5 the scalar entries of Rlz) and R, have the form
(0gc(eU))a—1,p and [ay p,c(eU)]a_1p, (2-13)

respectively. In (2-13), o1 (¢) denotes one of the diagonal entries of D1 (¢). Here and below a_;,p denotes
a singular operator of order —1 associated to a symbol a_;(¢) which may change from term to term.
The precise estimate of the above remainder terms is one of the keys to the proof of Proposition 2.4.

Lemma 2.6. The remainder terms r_;, pU and R{,v in the last line of (2-10) satisfy estimates of the form
Ir_1,0Ul0.0 < C(K)IAL Uloo,  IRGl0.0 < C(K) AL Voo,
|Apr_1,0Ulo,0 < CUK)IU o0, [ApRHYl00 < C(K)(vlo0+I(eAD) vlo0),

with a constant C (K) that is uniform with respect to € and y .

Proof of Lemma 2.6. « The estimate of R},v in L? comes from the expression (2-13) of the coefficients
of R% and RY,. For instance, the commutator [ p, c(¢U)] is bounded on L? uniformly on ¢, y (see
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Appendix A), and we can isolate a Fourier multiplier a_; p on the right. In particular, we obtain the
weaker estimate
Y IRHl0.0 < Clvloo,

and we are now going to estimate the singular derivative (0, + 8dg,/€) R},v. Let us deal with the operator
R, (the estimate involving R’l’) is similar). When applying the singular derivative, we need to estimate
terms of the form

B 9a,
£

/3.
[a1.D, C(EU)]<3xj + )a—l,Dv +[a1,p, dx;c(eU)]a—y,pv + ?1[011,1), dg,c(eU)]a—1,pv.

The first term is estimated by v in L2, while the second and, above all, the third term are estimated by
(eAp)~'vin L2

 The estimate of Apr_i, pU is precisely the definition of the notation r_; p and it follows from the rules
of symbolic calculus; see Appendix A. We thus focus on the L? estimate of the remainder where we wish
to gain a factor ABI rather than a mere 1/y. Let us first consider the term Q_I,DQD(SU)XDU in (2-11).
We write

0_1.p%E0)xpU = Q_1.p(@EU)AD)Xp AL U = Q_1.p(@(EU)N)pxpA,'U=ropA}'U,

where we have applied the symbolic calculus rule in the end for the (—1, 1) product. Similarly, we can
write the first commutator in (2-11) as

Opl%(eU), xplU = ro,pl(B(EU)N)p, xplAp' U =ropAp'U.

We leave to the reader the other two terms in (2-11) that can be treated in an analogous way. Eventually,
we can write the term r_1, DU in the last line of (2-10) as ro, DAB1 U and the L? estimate follows. Il

The estimates of Lemma 2.6 seem to be the best we can hope for in the case of the bad (1, —1) product
(2-12)(b), which is the reason for the need to estimate such terms as those on the left of inequality (2-6).

Step 2: Outgoing modes. Recall that —D; and —Dg are block diagonal:

ia)l({)lnl 0 Cy 0
—Di(0) = , —Do(el,¢) = ,
0 ia)/ (g)],” 0 Cj
so the system (2-10) satisfied by w = (wy, ..., wy) can be written as a collection of J decoupled transport
equations
3dwj = (ia)j)ij + Cj,ij +r(),Df —I-F'_LDU + RaDU (2-14)

with Re(iw;j) < —cy for 1 < j < J', and Re(iw;) > cy for J'+1 < j < J (¢ > 0 denotes a constant).
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Following the strategy of [Coulombel 2004], we now give two preliminary estimates of the outgoing
modes w;, j > J'+ 1. Taking the real part of the L?(2) inner product of (2-14) with —A%)w j» We obtain

(Apw;(0))3 .
B e—— Re(Ap(iwj)pwj, Apw;j)i2q)+Re(ApCjpwj, Apwj)i2q)
+Re(Apro.pf, Apw;) 2@y +Re(Apr_1,pU, Apw;) 2y +Re(ApRHU, Apw;) 2 (-

Since Re(iw;) > cy, we get, after absorbing some terms on the left,
2 2 E 2 2 —1772
Y Apwoutlg o + (Apwout (0)) < ” (IAD floo+ U0+ 1€AD) Ulyo)- (2-15)
Here, for example, we have used Young’s inequality and Lemma 2.6 and estimated
. Cs . 1,
IRe(ApRHU, Apw;) 2yl < 7(|U|§,0 +1EAD) " UG o)+ 8y A pw;l5 - (2-16)

Taking the real part of the L? inner product of (2-14) with w; on [x4, 00) x b2 instead of €2, we obtain,
for all x; > 0,

C 1 -
YIw;lg.o+ (w)(xa)§ < ;(|f|3,0 + ﬁwﬁo). (2-17)

Finally, adding to (2-15) the estimate y%x(2-17) and the estimates we obtain in the same way by pairing
(2-14) with w;/ &2 (here we use the L? estimate of the remainders given in Lemma 2.6), we obtain

_ _ C _ . .
YI(Ap, e Dwould o+ 1(Ap, € 1>wout|§o,os;(|<AD,s DFGo+1UGo+1Ap) UG- (2-18)

This completes the estimate of the outgoing terms in the first line of (2-6).
Step 3: Incoming modes 1. Estimating w; for j < J' in a similar way, but now using Re(iw;) < —cy

and pairing the corresponding transport equation with w;, we obtain

C .
Y2 [ Winlg.o + ¥ Winla.0 < C¥ (Winlx,=0) + ;umé,o + UG 0)- (2-19)

This L? estimate does not cause any problem because we have a good L? control of the remainder Rpv
appearing on the right of (2-14); see Lemma 2.6 (we have even weakened the estimate of the remainders in
Lemma 2.6 by simply estimating them in terms of |U|o,o/y). Moreover the term |win|go’0 was estimated
by considering the L? pairing on [0, x4] x bS2 instead of .

Step 4: Boundary estimate. 'We observe that v can be expressed in terms of w as
v=(Q, )pw+r_1,pU.

Recalling the boundary condition in (2-7) and using the decomposition Q,, ! (©) =[0Qin(¢) Qout(¢)], we
accordingly let w = (wjip, wour) and rewrite the boundary condition in (2-7) as

%(SU) Qin,Dwin|x,1=0 = _%(SU) Qout,Dwout|xd=0 + xpg+ rfl,Dled=0- (2‘20)
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By (1-12) we have on 7/}
_ _ (AN y +io _
B(EeU)Qin = P (PIB(EU) Qin P) Py ' = P! ( (v +io) 1) Pl
so using the rules of singular calculus, we get

- +io -
ApB(eU) Qin. pWinlry=0 = (P, )p (V ? ADI) (P5 ) pWinlz,=0 + 0.0 Winlx,=0-

With (2-20), this implies

<(P11)D (V +i0p AD1> (Pgl)Dwinlxd:0> < C({A pWoutlx,=0)0 + (Apg)o + (Uly,=0)o). (2-21)
0

We have P, D(Pl’l) p =1-+r_; p soup to choosing y large (and absorbing the r_; p term), the estimate
(2-21) implies

<(V+iGD A 1) (Pz_l)Dwinlxd:0> < C({A pWoutlxy=0)0 + (Apg)o + (U lx,=0)0)- (2-22)
D 0

Letting
w1 _
<w/> = (Pz l)Dwin|xd=Oa

we find, using the fact that o is real and again choosing y large enough,

Yy +iop w1 2>l( 2(w)2 + (A w/>2)>y_2<w w')s
Apl) \w' )], = ¢V WHoTARDW )= "a i Wio-

Thus, from (2-22), we may conclude

Y (Winlry=0)0 < CUA pWoutlx,=0)0 + (Ap&)o + (Ulry=0)0)- (2-23)
Combining the estimates (2-19) and (2-23), we have thus derived the bound

C . .
Y2 [winlg.o + ¥ 1winlo.0 < ;(nylé,oJr 1UI5.0) + C{ADE)G+ (Ulyy=0)5) + C{A pWout|x,=0)§-

Together with (2-18) this completes the estimate of the terms in the first line of (2-6).

Remark 2.7. At this point we can see the need to estimate the remaining terms on the left in the estimate
(2-6) as well as the similar terms on the left in the Kreiss estimate (2-29). We must estimate those terms
in order to be able to absorb the terms involving (¢ Ap)~! U? on the right side of (2-6). Recall that such
terms come from the bad (1, —1) product and from the d; Q_; term. This is one of the major differences
between our analysis and that in [Coulombel 2004].
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Step 5: Incoming modes 11. Here we begin to estimate the terms in the second line of (2-6). We introduce
the functions v := ABIU and ¥ := v/e, and see that the function v’ satisfies
AR . .
9 +Apd + D)V = —Lxp f+ —2[D(U), xplU + (B(eU) — Ap'D(eU)Ap)T,

° ‘) (2-24)

~/ AB AB y -1V
BEU)V |xy=0 = ——xpg + ——[B(V), xplU|1y=0 + [B(U), A 1= |x,=0-

e e e

We can thus diagonalize the problem for v’ with the same operator Op = Qo.p + Q—_1.p as before.
Introducing the function w’ := Qp?’, we find that W’ satisfies
~ / ~ / ABI ABI ¥ 1 ~/
(@ 9w =—(D;+Do)pw + QDTXDf + QDT[QD(f?U), xplU + ;rO,DU ,

- o, A Ay : (2-25)
(b) BEU)Qin,pwj, = —B(EU) Qout, DW oy + - Xpg + - (B(eU), xplU

+ A [AD, BEUIY +r_1 p?,

1

where we have collected several terms into remainders of the form y ~'ro p?’. For instance, we have used

R% ~ 1 ~/ ~ 1 ~/
pU = ;ro,Dv , 0. pDEU)V = ;ro,Dv .

Next we fix an index j € {1, ..., J'}. Taking the real part of the L?(Q) inner product of (2-25)(a) with

}, we obtain the standard L? estimate for incoming modes:

w
v Whlg.0

< C{iy |x,=0)5 + §(|<8AD>—1f|3,o + %KsAD)—lmao +1eAD) 1B (EU), x01U )

< Cll Lol + 5157 FRo +leAn) UL ). (2-26)

We thus wish to control the trace of w; .

Step 6: Control of the trace of w),. Using (2-25)(b) and arguing as in Step 4, we obtain the boundary
estimate

Y (W, x,=0)0
< CUA DD, ylxy=0)0+ (e g0+ (e UBEU), xp1U lxy=0)0+ (V' lxy=0)0+ (¢ [Ap, B(eU)]D|x,=0)0)
< C({ApWhylx=0)o+ (e g)o+ ((eAp) ' Ulr=0)0)-

Combining with (2-26), we have derived

Y 1Wiy15.0 + (Biy =05

C 5 C _ . C _ .
sﬁ<ADwgut|xd:o>3+F(|s "fl50+ 1(eAD) 1U|é,o>+ﬁ<<e ')+ ((eAp) Ul y=0)3). (2-27)



582 JEAN-FRANCOIS COULOMBEL, OLIVIER GUES AND MARK WILLIAMS

/
out

the next and last step of the proof of Proposition 2.4.

We expect Apw, , to be comparable to wey/e and thus use (2-18); this is checked and made precise in

Step 7: Relation between Apw' and w/e, and conclusion. Using the definitions
W' = Qp?' = Op(eAp)"'v and w= Qpu,
and the fact that A p commutes with Q¢ p, we compute
Ap' =& ' Qpv4ropd = e lw+ ro.p?’.

We have thus derived the bound from above

%mmgmxd:w% < %((s—lwomud:w% + ((eAD) ™ Ulyy=0)),

v v
which we combine with (2-27) and (2-18) to obtain

-/ 2 - 2
Vi, 15,0 + (Wiy |,=0)5

C _ . . C _ .
s;(uAD,e Nfl3o+1(eAD) 1U|%,O+|U|%,o)+;(<es ') 4+ ((eAp) 'Uly=0)3). (2-28)

It only remains to derive a bound from below to go from w; to (¢A p)! U f/ - We first observe that
estimating (¢ Ap)~' U/, as claimed in (2-6) amounts to estimating Qp(¢ Ap)~' U, . We use the relation

Win

0

Win

Op(eAp)™' U, =(eAp)™ ( 0

)—[(eADr‘, OplU] = (eAp)™ ( )—[(eAD)—‘, 0_1.p107 ;.

and the special “decoupled” form of the coefficients of Q_; to show that
—1 1 -1
[(eAp) ", Q-1.p]l= ?rO,D(SAD) .
Similarly, taking the “in” component of W’ = Qp(eA D)_lU ly , we have
~ -1 1 -1y
Wi, = (6Ap)” win+ ﬁ”O,D(aAD) Uy,
SO we obtain

i w! 1 .
QD(&‘AD) IUKinz(()ln)—i_ﬁro»D(gAD) 1U.

We have therefore proved that (2-28) implies that the second line in (2-6) is controlled by the terms on
the right of (2-6). This finishes the proof of Proposition 2.4. g

(III): Estimate away from the bad set. The next proposition provides a Kreiss-type estimate for the terms
X,-,DUV, where i > Nj.
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Proposition 2.8. Fix i such that N+ 1 <i < N, and let Uzy = x;.pU”. We have

((eAp) ™10 | xy=0)0
JY
- C(|f}’|o,o +1eAD) " 7 (00 4 8"+ ((eAp)~tg")o
< y N
N U7 0,0+ |<812\D)*IUV|0,0 N (U |xy=0)0 + (A D)UY |=0)0
14 14

(U |5,=0)0 1
2 (e Ap) T U Jo.0 +
NG

10 lo,0 +

) . (2-29)

Proof. Step 1: L? estimate. The first step is to prove the Kreiss-type estimate

TV Y y TV TV
(Uy |x4=0)0 <c <|f 0,0 n (") . 1% lo,o n (U de=0)0) .
14 VY 14 14

For this we define the good set G C X to be a neighborhood of the closure of U,N:z ~y+1 Vi such that

G is disjoint from T'; here the uniform Lopatinskii condition is satisfied. The classical construction of

10X 0.0+

(2-30)

Kreiss symmetrizers [Kreiss 1970; Chazarain and Piriou 1982] provides us with an N x N symbol R(¢),
homogeneous of degree 0, such that, for some positive constants C, ¢, and {/|¢| € G, we have

(@ R(@) =R,

(b) —Re(R(5A(L)) = cyly, (2-31)

(©) R&)+CBOYBO)>cly.
We take a smooth extension of R to all ¢ as a symbol of order 0 such that (2-31)(a) holds. Observe that
by continuity (2-31)(c) implies

R()+ CHB(U)*B(eU) > cly for & small enough. (2-32)

As observed in [Williams 2002], we may now use Rp, the singular Fourier multiplier associated to
the symbol R(X, y) as a Kreiss symmetrizer for the singular problem. Let x; = x, v := xpU?, and
denote by (-, -) the L? inner product on bS2. Using (2-7) to expand 9, (v, Rpv) and integrating in x4
over [0, co), we obtain

_<v|xd=0, RDU|xd=0>
= —2Re(RpApv, v) —2Re(RpW(eU)v, v) + 2Re(Rpxp f7, v) + O (U |o,0lvl0,0/7).

From (2-31)(b), (2-32), and the localized Garding inequality (Proposition A.9),

(U7 |r,=0)§
Re{(R + CRBEV) BEU)pvlzy=0- vlsy=0) Z €{vlay=o)g — C—— =2, (2-33)
we easily derive the estimate (2-30).
Step 2: Estimate of (sAD)_ley. Set v := ABlv and 0" = U/e. Then 0’ satisfies the system (2-24),
where the truncation function x has changed but the forcing terms have exactly the same expression. An
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argument just like the one that gave the estimate (2-30) yields

- ((eAD) ™ U |1,=0)0
I(eAD) U 0.0+ 2 X

NS
=1y =1,y TV =177y
SC(|(8AD) f |0,0+((8AD) g )o+|U |0,0+|(812\D) U o,0
14 NG Y
+ (U7 |x,=0)0 + ((SAD)_lUy|x([:0>O)
14

Here instead of (2-33) we have used

) N N ((eAp)'UY |1y=0)3
Re((R+ CB(EU)Y*B(eU)) pt|xy=0, V' lxy=0) = (¥ |x,=0)5 — C y =0,

to recover the estimate of the trace of 7. The L? estimates of the forcing terms in the interior and on the
boundary are exactly the same as in steps 4 and 5 of the previous proof. g

(IV): Conclusion. We use the previous propositions to complete the proof of Proposition 2.2. Summing
the estimates (2-6) and (2-29) over i € {1, ..., Ny} and absorbing error terms from the right by taking y
large, we derive

(U |x,=0)0 n U7 0,0

NG NG

where we have “forgotten” on the left of the inequality the additional control of (¢Ap)~'U?Y (this term

10 0.0 + < C(K)

(|(AD,ey—;>fV|o,o <<AD,s‘1>gV>0), (2-34)

+
)/3/2

has played its role, meaning that it was used to absorb some bad terms appearing on the right). This gives
exactly (2-4) with the additional control of U f’ in L>°(L?). This additional property is used in the proof
of Corollary 2.3. 0

Proof of Corollary 2.3. It remains to estimate |UY|o.; and |U? |a0.0. We first estimate the first-order
tangential derivatives. We can apply the a priori estimate (2-4) to the problem satisfied by a(x/,go)U v,
which is obtained by differentiating (2-2). This yields

(U7 | ry=0)1 - C(K)(

U7 |o.1 +

I(Ap, 8_21)fy|0,1 {(Ap, s‘l)gyh)’ (2-35)

y )/3/2

which is the same as (2-5), except for the absence of |U ¥|.0 On the left. Here we were able to treat
commutators as forcing terms because, for example,

[D(eU), 8.y 1U” = —(dD(eV) - (80 VIV
and the factor of ¢ coming out from the commutation allows us, for example, to estimate

|Ap[D(U), dx 001U 0.0 < ClU |o.1.
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It thus only remains to estimate the norm |U ¥|00.0. For 63 > 0 to be chosen, we take 0 < §; < &, and
consider a symbol of order zero in the extended calculus, x (&', kB/¢, y), such that

e e /k !/ |k| e |k|
0<x° <1, x<s,§,y)=1 on{|s,y|sal ’3}, suppx c{|s’,y|ssz Pl

e e
We then write UY = XIE)UV + (1 — XE)UV and begin by estimating |(1 — )(Ie))l']yk),C>o by using the

Sobolev-type estimate

(1=x5)U7 |oo0 < Cl(1=x5)3aU" [0.0+Cl(1—x5)U7 0.0 < Cl(1— x5)34U 0.0+ C|U" |0,0. (2-36)

ef o KB /

Using (2-2) and the fact that

we obtain
(1= x5)3aU" lo.0 < 1A (1= xH)U” lo.o +1(1 = x5)DU 0.0+ (1 — x5) £ lo.0
: : |Ap f7 o,
<CUU loa + 17 l00) < C(|UV|0,1 + —sz =),
where the last inequality follows from | ¥ (9.0 < C|f"lo.1/y. With (2-36) this gives
: : IAp(f7)lo,
|<1—xg>UV|m,osC(|UV|o,1+$ . (2-37)

To estimate |7, U loo,0 We observe that since 8 € T, we have, for 6, > 0 chosen small enough,

N1
kp kp
Xe(é‘/, - J/) = xe(é‘/, - J/) D xiX.p),
i=1
for the x; chosen in Step I of the proof of Proposition 2.2. Thus
XHU7 loo0 = X5 U Ios.0 < 10 s,
with U ly defined in Proposition 2.4.%> We can then apply the a priori estimate (2-34) and obtain

: Ap,e” ") fY Ap,eHg?
|X£Uy|oo,0§C(|( D 32)f loo , ((Ap )8 )O)
y3/ y

With (2-37) and (2-35), this completes the proof of Corollary 2.3. U

Let us quickly observe that the genuine Garding inequality was used only once, in the proof of
Proposition 2.2, namely in (2-33). In all other cases, we only used Plancherel’s theorem for Fourier
multipliers. This explains the slight difference between (2-29) and (2-6) for the powers of y.

22More precisely, here U {/ is the sum of the similarly denoted functions in Proposition 2.4.
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0,
- ‘(y’ ax’+ ﬂ 90>f
0,1 €

we can rewrite the a priori estimate (2-5) for solutions to the linearized system (2-1) as

(Ulxy=0)1.y
JY

|(y, Ox +/3390/8)f2|0,1,y +1f/¢€lo,1,y n ((y, Oy +,3390/83)g)1,y + (8/8)1,;/). (2-38)
% y3/2

Suppose now that the singular problem (2-1) is posed on Q7 instead of €2. Given f € LZHTl, one can
define a Seeley extension f € L2H' such that

9\ = . P
‘(y, 8x/+'389°>f +1f/¢€loa SC(K% ax/+ﬂ89")f

where C is independent of y, ¢, and T'. It is readily checked that the same extension satisfies
B, \ 7
‘ (yv ax’ + e . f

where again C is independent of y, &, and T. We claim that changing f, g, and U in {t > T} does not

Next we “localize the estimate” to Q7. Since??

’

B0
|[Ap f¥lo1 ~ ‘(V By + ) f7

&

0,1,y

U0y +1Ul0.1. +

SC(K)(

+ |f/8|0,1,T),

0,1 0,1,T

- 0
+1f/€lory < C(‘ (J/, Oy + 'Bgeo)f + |f/8|0,1,y,T>, (2-39)

0,1,y 0,1,y,T

affect the solution of (2-1) in {t < T'}. (This causality principle is discussed further below together with
the existence of solutions to the linearized system (2-1).) Hence the estimates (2-38) and (2-39) imply the
following estimate for the singular problem on Q7:

: ' (Ulg=0)1,9.7
|Ulo,0,,7 +1Ulo1,y, 1 + —————
- ’ N
98 /+ a & —'I— I ’a ,_l_ a £ + €
§C(K)(|(y v+ Bdg,/ )f)|/02,1,V,T |f/ |o,1,y,TJr ((y, 0y + Bdg,/ ))/é;z;yT (g/ >l,y,T).

Let us now consider the linearized singular problem (2-1) on 27 with data of the form ¢f and eg
instead of f and g. We note that

9
(o E)e o) =l
€ 1,y,T

Let us write the linearized operators on the left sides of (2-1)(a) and (b) as I'(eU )U and B'(¢U )U ,
respectively, and define

B dg,
e

= C|f|0,2,y,T and <(V7 8)6/ +
0,1,y,T

LU = é[L’(sU)U, BLUYU 2= éB’(sU)U.
We have proved:

Z3Here “~” denotes equivalence of norms with constants independent of € and y.



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 587

Proposition 2.9. Fix K > 0 and suppose |9, U | o1+ |U| oMo < K for e € (0, 1]. There exist positive
T T
constants £0(K), y9(K) such that solutions of the singular problem

LU =f on Qr,

BLUY =g on bQr, (2-40)
U=0 int<0
satisfy
: , Ul
|Uloo,0,y,7 + |Ulo,1,y,7 + Wls=0)1y.7 < C(K)('ﬂo’zz’y’T + (g>§’/’;’T) (2-41)
N y %

for0 < e <eo(K),y = w(K), and the constant C(K) only depends on K.
The same estimate holds if B(eU) in (2-1) is replaced by B(eU, eW) given in (1-9), and D (eU) is
replaced by 9 (eU, eW) given in (1-10), as long as |ed (U, Ou)|co,1u404 +|U, OlLlCo,MO <K fore € (0, 1].
T T

2B. Well-posedness of the linearized singular equations. In this short section, we explain why the
analysis in [Coulombel 2005] gives existence and uniqueness of a solution to the linearized singular
problem (2-40) for which the estimate (2-41) holds. First we define a dual problem for (2-1):

B g,
£

3dU+A*<8x/+ )U+@(8U)U=f(x,90) on €,

(2-42)
MUY | y=0 = g(x', 6o),

where A* is obtained from A by first multiplying the system by the constant matrix By, then integrating
by parts on €2, and eventually multiplying by (B;)_l. The zero-order term is also changed accordingly.
Following the standard procedure described for instance in [Benzoni-Gavage and Serre 2007, Chapter 4.4],
the matrix Jl giving the adjoint boundary conditions is chosen such that

By =B1(v)" B(v) + M) My (v)

for all v sufficiently close to the origin, where % (v) and Jl;(v) are additional matrices depending
smoothly on v.

The expression of A* shows that this singular operator coincides with the operator obtained by applying
the substitution d,» — 9y 4 B3y, /€ to the dual operator

d
0+ BJ9;=—Lo(d)".
j=l1
It is known from the analysis in [Benzoni-Gavage and Serre 2007, Chapter 8.3] that the latter constant
multiplicity hyperbolic operator with boundary conditions given by A (v) gives rise to a boundary value
problem in the “backward” WR class (one just has to replace y by —y for this dual problem). When
we apply the singular transformation 9,y — 9y + B9y, /¢ to the boundary value problem defined by
(Lo(9)*, M(eU)), we can reproduce the analysis of the previous section and show that the same type of a
priori estimate as in Proposition 2.2 holds for (2-42).
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For all fixed ¢ > 0 small enough, we have thus proved that both the forward problem (2-1) and its dual
problem (2-42) satisfy an a priori estimate with a loss of one tangential derivative. The estimates depend
very badly on ¢ because the singular derivative d,’ + B9g,/¢ is estimated by 1/e times the tangential H !
norm with respect to (x’, 6y). Nevertheless, we can at this stage reproduce the arguments of [Coulombel
2005] to show the existence and uniqueness of L? solutions to (2-1) when the source terms f and g satisfy
fi 00, f, 0 f € L2(Q7), g € H'(bQ27). The analysis is actually much simpler than in [Coulombel 2005]
because most of the technical difficulties there arise from commutations with the hyperbolic operator.
Here the hyperbolic operator has constant coefficients so commutation with any scalar Fourier multiplier
is exact. The analysis in [Coulombel 2005] also shows that weak solutions are limits of strong solutions
when the hyperbolic operator has constant coefficients,”* so we can show that weak solutions satisfy
the energy estimate (2-4) with constants that are uniform with respect to the small parameter €. Such
global in time estimates imply the causality principle that “the future does not affect the past” and can be
localized to Q7 by the extension procedure previously described.

2C. Tame estimates. In this section we prove higher derivative estimates for the linearized singular
problem (2-1), first in the “pretame” form of Proposition 2.11, and then in the final, “tame” form of
Proposition 2.16, which is suitable for Nash—Moser iteration. Propositions 2.12 and 2.15 give pretame
and tame estimates for second derivatives.

Notation 2.10. (a) Let LW = L®(R,, W1°(bQ)) with norm |U | cp1. := |U|*. We also write
UL = U, (V)L=pa) = (V)s (VIwrepa) = (V)" [U|Le@) = [Uls 1, etc.

(b) For k € N, let 3* denote the collection of tangential operators 8&, %) with || =k (« is a multi-index).
Sometimes 9* is used to denote a particular member of this collection. Set 3°¢ = ¢.

(c) For k € {1,2,3,...}, denote by 3¢ the set of products of the form (0*'¢;,) - - - (3% ¢;,) where
l<r<k,oi+---ar=k,a;>1. Setd V¢ =1.

(d) For r > 0, let [r] denote the smallest integer greater than r.
Our first goal is to prove the following “pretame” estimate for solutions to (2-40).

Proposition 2.11. Fix K > 0 and suppose |e9,U | co.mg-1 + |U | comy < K for e € (0, 1]. For s > 0 in any
fixed finite interval, there exist positive constants €y(K), vo(K) such that the solution to the linearized
singular problem (2-40) satisfies

(U|xd=0>s+l,y,T
VY
|f|0,s+2,y,T <g)s+2,y,T |U|O,s+2,y,T|U|*,T (U|xd:0>s+2,y,T(U|xd:0)*,T
2 + 3/2 2 + 3/2
14 4 14 14

|U|oo,s,y,T + |U|O,s+1,y,T +

SC(K)( ) (2-43)
for 0 < e <eo(K) and y > yo(K).

24Weak solutions are only “semistrong” solutions when the hyperbolic operator has variable coefficients.
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Proof. The problem satisfied by 8*U is

LU =d"f + %[@(w), 310,

BLU)U =0°g+ é[%(w), 3°10.

In applying the estimate (2-41) to this problem, we must, for example, compute 32([%(sU), 3°1U), which
is a sum of terms of the form?>

D)0V (eU)d*U, where j+k=s+2,j>1,
and & is some smooth function of its argument. Since j > 1, we can rewrite this as
(U3 (eU)a(eU)d'U.
Using Moser estimates, we obtain
éQB(eU)aU—”(sU)a(eU>a"U 07 S COOWULrUloss2y.r + CUOU st ot

The contribution from the final term on the right can be absorbed by taking y large enough; thus this
explains the third term on the right in (2-43). The final term on the right in (2-43) arises by the same
argument applied to the boundary commutator. O

Next we prove estimates for the second derivatives
L/ UNU, U =dDEU) (U, U"),
BUYNU*, U") = dB(U)U*, U,
where we use the short notation
d%(eU) (U, U") := (dD(U)UHU.
Proposition 2.12. We have
@ 1L U)YU*, U sssy.T
< CUUL ) (U 50,5y, 71U Lt +10° 00,5, 71U .7 + 61U w5y 71U s, 71U 1),
b) LU, UMost1.1
< CUULD (U 05419710V + 10 l0,541,9. 710 o + €1U 0,541,710 . 71U L 1),
© (BLOYU*, U")syp1
< CUUY ) (U5 7 {U) i + (U5 17U s + (U 7 (U7 (UP)s 7).
Proof. For t <s one computes 8’ (£, (U )(U a yb )), which is a sum of terms of the form

Ge0)® (cU)d' U™ U, where k +14+m=r.

S More precisely, each component is a sum of such terms.
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Thus, the first estimate follows directly from Moser estimates. The remaining estimates are proved the
same way. (|

In the iteration scheme of Section 5B we will use H; spaces on the boundary, while in the interior we
use the following spaces.

Definition 2.13. For s € {0, 1,2, ...} let

E; =CH; N LZH;H with the norm |U (x, 60)| 3. := |Uloo,s.7 + [Ulo.s+1.1,
E‘}‘,’T = CH;’T N LZH;’JFT1 with the norm |U (x, 90)|E;.T =|Uloo,s,y,7 +1Ul0,541,9,T-
Remark 2.14. By Sobolev embedding we have
s> [(d+1)/2] = Ej C CHy C L™(Qr),
s>[(d+1)/21+1 = EyCCH; C L®Ry, W>bQr)),
s=[d+1)/21+ My = Ej CCHj c Cp™.
Note that E is a Banach algebra for s > [(d +1)/2].
By Proposition 2.12 and Remark 2.14 we immediately obtain:

Proposition 2.15 (tame estimates for second derivatives). Let uo = [(d + 1) /2] and suppose s > 0 lies in
some finite interval. Then

@ L WO U g, <CAUIgr) (U g3 U o U g3 10U gro+elU g3 10] grol U] gro),
b) (BLW)U, U1
< CUU) o D UU sy 10 Vo, + (U )51 AU, 7+ €U 53,7 (U ) g, 74UV 7).
In order to obtain a tame estimate for the linearized system suitable for Nash—Moser iteration, we
must recast estimate (2-43) without the L> norms of U on the right. First of all, we fix the parameter
K > 0. For instance, one may take K = 1. This choice is arbitrary because we are interested in a small
data result.”® We then choose constants £o(K), yo(K) as in Proposition 2.11 so that the estimate (2-43)
holds for s € [0, ft], where [ is defined in (5-57). For the remainder of Section 2C and in Section 5B, the

parameter K is fixed, and y is also fixed as y = yo(K).
Let

k= 1Ulo,up+2,y,7 + {Ulxy=0) po+2,y,7» Where po :=[(d +1)/2].
Applying (2-43) with s = o, we obtain for 0 < & < &g

|U|oo,uo,y,T + |U|O,u0+l,y,T + (U|xd:O)M0+l,y,T
= C(K, V)(|f|0,,uo+2,y,T + <g>uo+2,y,T + (|U|* + <U>>)<)K) (2’44)

261f we were interested in a small time result for a given source term G, we would need to fix the constant K in terms of G
and the parameters y, T would be chosen accordingly.



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 591

By Remark 2.14 if « is chosen small enough, we can absorb the last term on the right in (2-44) and obtain,
with a new constant C,

1U s+ (Ulxy=0)s < CUflo oty + (&) uot2..7)- (2-45)
Substituting (2-45) in (2-43), we obtain:

Proposition 2.16 (tame estimate for the linearized system). Let K and y = y(K) be fixed as in
Proposition 2.11 and suppose |04U | comy-1 4+ |U|comy < K for e € (0,1]. Let o = [(d +1)/2] and
s € [0, ft], where [i is defined in (5-57). There exist positive constants ky(y, T), &9, and C such that if

[Ul0,1042,7, 7 + (Ul xg=0) po+2,.,7 < K0,
solutions U of the linearized system (2-40) satisfy, for 0 < ¢ < g,

Ules , + (Ulxy=0)st1,.1
=< C[|f|0,s+2,y,T + <g>s+2,y,T + (|f|0,u0+2,y,T + <g>uo+2,y,T)(|U|0,s+2,y,T + (U|xd=0>s+2,y,T)]-

3. Profile equations

3A. The key subsystem in the 3 x 3 strictly hyperbolic case. To simplify the exposition, we first treat
the case of a 3 x 3 strictly hyperbolic system and a boundary frequency 8 for which there is one single
resonance in which two incoming modes interact to produce an outgoing mode. This case already contains
the main difficulties and is exactly the one we emphasize in the example of Appendix B. We explain later
the relatively small changes needed to treat the general case of systems satisfying the assumptions of
Section 1A.

The leading profile is decomposed as

VO(x, 01,62, 63) = o1 (x, 01)r1 +03(x, 63)r3 (3-1)

where ¢, is the outgoing phase and the resonant triple (ny, ny, n3) € 73 \ {0} satisfies

ni1 = na¢r + n3gs. (3-2)
We can thus write
VO =o1(x, 0)r +0o3(x, 03)r3, Vo =1a(x, 62)r2. (3-3)
Furthermore, we have
V) Lxym0,01=0,=0, = a(x’, Bo)e = a(x', 6p) (e1 + e3), (3-4)

so (recall that e = e] + e3, where ¢; € span{r;} spans ker B NE*(B))
0i(x',0,00)r; =a(x', 6p)e;, i=1,3, (3-5)

which determines the trace of ¢; in terms of a.
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Applying the operators E; for i =1, 3 to (1-42)(a) and for i = 2 to (1-42)(b) and using Corollary 1.27
for (1-42)(c), we obtain the following system for the unknowns (o1, 12, 03, a), where A (x’, 6y) denotes
the unique function with mean zero such that dg,d = a:

X¢10’1 +cio1 =0,

X¢,03+c303 =0,

e n» ns (3-6)
Xp, T2+ coT2 42 Ol x,n—92+n—93 03(x,603)d60z; =0
0 1 i

Xpopsd + cadl + c5Ta|ry=0 + c(@®)* = —b - G*  on bQr,

where the first three equations hold on 27, and the constants ¢; are readily computed real constants. Here
01.n,(x, 61) is the image of the function o under the preparation map

o1(x, 00) =Y fir)e* " - 3" fi, (x)eM (3-7)

keZ keZ

a map designed so that the integral in (3-6) picks out resonances in the product of o1 and 03.%’
Differentiating with respect to 6y, we rewrite the last equation of (3-6) as

XLopa + cqa + 05860‘[2|xd=0 + 6‘6390 (az) =—b- 390G* =:g onbQr. (3-8)

We now set V := (01 (x, 01), 03(x, 03), T2 (x, 62), a(x’, 6p)) and define the interior and boundary operators
for the leading profile system:

X¢10'1 + 101
PV):= X303 + 303 ,
2.
Xp, o+ oo+ fO no_lynl (x 20, + %93)03()6, 03) dos

’nl

B(V) : = Xiopa + €aa + €536, T2 ] xy=0 + C6p, (@*).

(3-9)

In this notation the profile subsystem becomes
Z(V)=0 in Qr,
B(V)=g in bQr, (3-10)
V=0 in t <0,
where the additional relations (3-5) hold giving the traces of o7, o3 in terms of a. The following existence

result for the key subsystem is proved in Section 5A using the tame estimates derived in Section 3B
below.

Proposition 3.1. Fix T > 0, let vo .= [(d + 1)/2]+ 1, v :=2vy + 4, and V := 2v — vy, and suppose
g € H72(b2r). Rewrite V as V = (V', a). If (g), is small enough, there exists a solution V of the
profile subsystem (3-10) with V' € H'"Y(Q7), (V'|x,=0,a) € H"~'(bQ7).

2T Interaction integrals like the one in (3-6) are discussed further in [Coulombel et al. 2011, Proposition 2.13].



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 593

Remark 3.2. (1) Although the original problem is semilinear with a nonlinear zero-order boundary
condition, the profile system (3-9) has a quasilinear first-order boundary operator and an interior operator
that includes a nonlinear, nonlocal, integro-pseudodifferential operator given by the interaction integral.
The nonlocality arises both from the d63-integration and from the pseudodifferential operator o1 — o7 5.

(2) Attempts to solve the system (3-10) by a standard Picard iteration lead to a (fatal) loss of a derivative
from one iterate to the next. The reason is that o7 and o3 have the regularity of a (incoming transport
equation), and therefore 7, has the same regularity as a. However, the equation for a involves the
derivative dg,72|x,=0 and this term induces the loss. Thus we shall use Nash-Moser iteration to prove
Proposition 3.1.

3B. Tame estimates. With V = (01, 03, 13, a) and V= (61, 03, T2, a), we compute the first derivatives
of & and %:
X¢1('71 + 107
X¢3('73 + 303
Xg, T2 +cota + 2 fozn Oty (¥, 202+ 12603)63(x, 63) db3 | (3-11)
+e2 fo o3y (X, — 200+ 1201)61 (x. 1) dO)

(b) B (V)V = Xpopa + cait + 599, T2 xy=0 + 2¢6(adg,a + adg,a).

(@ L (V)V =

Here we have used the property

27 ny n3 ) o ny ns
033 | X, —— 6+ —01 |o1(x, 01) dO; = Ol | X, —0r+—03 |o3(x,03)dO;,  (3-12)
0 n3 ni 0 ni ni

which follows readily by looking at the Fourier series of the factors of the integrand. For the second
derivatives we obtain

0
FVYVLVP) =, 0 :
et (x. 120+ 2205) 6% (x, 03) 3 +fTel, (. 120+ 1203) 6 (x, 03) dO3
B"(V)(V, V) = 2c6(a"8g,a° +a”,a). (3-13)

Proposition 3.3 (tame estimates for second derivatives). (a) Let v| be the smallest integer greater than
(d+2)/2 and let s > 0. We have

1L V)V V)5 < CUV sy IV Loy + 1V IV L), (3-14)
where C is independent of V,y,and T.
(b) Let vy be the smallest integer greater than (d +1)/2 4 1 and let s > 0. We have
(B VYV V))5y < CUV)sr10 V)0 + (Vi1 (V). (3-15)

where C is independent of V, y,and T.
In (3-14) and (3-15), the constant C can be chosen independent of s in any fixed finite interval.
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Proof. (a) Moser estimates imply

ca np n3 ) . a b ‘a b
o7, | s n—92 + n—93 03 (X, 03) |y (x,60) = €67, I5, 103 (L 167, 122163 | 15 (). (3-16)
1 1

since d3b is independent of 6,. We have

21
| 1636 8l ds = Clod iy = €161 (3-17)

The estimate (3-14) now follows by Sobolev embedding and the fact that

167 0, 15,y <167 s,y (3-18)

(b) Again Moser estimates imply
(693,05 < C(@")s. (0@ e + (") 1 (D000 )s. 1), (3-19)
so the estimate (3-15) follows by Sobolev embedding. O

Next we derive tame energy estimates for the linearized problem
F(V)V=f in Qr,
B'(V)V =g on bQr, (3-20)
V=0 in t <0,
where f and g vanish in # < 0. We begin with a simple proposition.

Proposition 3.4. (1) If the phase ¢, is incoming, solutions of

Xg,0p+cpop=h in Qr, o0,=0 int<0 (3-21)
satisfy, for y large (depending on c)),
|hls,
VYloplsy < C((o—pn,y + JSVV : (3-22)
(2) If the phase ¢, is outgoing, solutions of (3-21) satisfy, for y large (depending on c)),
|hls,
VV10pls.y +{0p)sy < C \/VVV. (3-23)
(3) Solutions in wr of
Xpopa + caa +2c(adg,a +adgya) =g, a=0 int <0 (3-24)

satisfy, for Cg, y > yx (where K = (a)y1,),

. C
NI 7’;

The second term on the right in (3-25) does not appear in the s = 0 estimate.

((g)s,y + (@5t (@) i) - (3-25)
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Proof. (1) To prove (3-23) with s = 0, one considers the problem satisfied by e, multiplies the
equation by e~ "o, integrates dx df,, on Qr, and performs obvious integrations by parts. One then
applies the L? estimate to the problem satisfied by tangential derivatives y*~ 17! 85,’ 9,9p> |B] <s. Normal
derivatives are estimated using the equation and the tangential estimates. The proof of (3-23) is similar.
We refer to [Benzoni-Gavage and Serre 2007] for a complete discussion of such estimates.

(2) The proof of (3-25) is similar, but in the higher derivative estimates one now has forcing terms that
are commutators involving a. The commutators are linear combinations of terms of the form

v PO @) 2, B0,0)  where [Bi] + B2 = 1B, 1] = 1, (3-26)
or linear combinations of terms of the form

y I8, a)(307, da,@)  where |B1|+ |l = |BI. |l = 1. (3-27)
Applying Moser estimates to (3-26) after writing 3#'a = 8194, we obtain

(P @L @) (@24 B0,0))0.y < C((Da) L (By@)m—1.y + (92) 1.y (Doyd) 1)
< C((@) i (@)s.y + (@5 (@) i) (3-28)

The factor Cg /,/y on the forcing term in the L? estimate allows the first term on the right to be absorbed
by taking y large.

The estimate of (3-27) is similar, but we do not split the 3% derivative, and after absorbing a term we
are left with (Ck /,/¥){@)r(a)s+1,, on the right. U

We now use Proposition 3.4 to estimate solutions of the linearized problem (3-20) by treating the
interaction integrals in (3-11)(a) and the term c¢50g,72 in (3-11)(b) as additional forcing terms. Setting

Vinc,n = (Gl,nla 0'3,713)9 Vinc = (019 0'3)’ VOth =12, (3_29)

estimating interaction integrals as in (3-16) and (3-17), and using (3-18), we immediately obtain

. . C . .
\/?|V0ut|s,y + (Vout>s,y = _(lflsy + |Vinc,n|L°°|Vinc|s,y + |Vinc|s,ylvinc|L°°)’
VY
C (3-30)
«/?laB Voutls,y + (aeovout>s,y =< ﬁ(laefh,y + |86 Vinc,n|L°°|Vinc|s,y + |89 Vinclm,ylvinc|L°°)a

and

. : | fls.y
VY Vinels,y < C(<Vinc>s,y + )
vr (3-31)

C . .
K (<g>s,y + <860 Vout)s,y + (Vinc>s+l,y<Vinc>W1v°°)-

NG

This leads to the following “pretame” estimate.

V7 Vine)s.y <
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Proposition 3.5. Let 1o := [(d +1)/2], fix K1 > 0, and suppose |Vinc| o2 < K1.28 Fors > 0 in any fixed
finite interval, there exist constants C (K1), y (K1) such that, for y > y (K1), solutions of the linearized
problem (3-20) satisfy

\/7| Vout» 89 Vouta Vincls y < .Ollt’ 860 .out s y + \/7<Vinc>s,y

C(K . .
)s,y + |Vincls+1,y|Vinc|L°° + (Vinc)s+l,y<vinc>W1~°°)- (3‘32)

f

Proof. We add the estimates (3-30) and (3-31) and absorb the terms
Ck
J7

by taking y large, after observing that

((Vine)s.y + (38, Vour)s.y | Vine.n» 39 Vine.n 2% | Vinels.y ) (3-33)

|Vinc,n» 89 Vinc,n|L°° =< C| ‘/inc,fz|u0+2 =< C| Vincluo-i-Z (3‘34)

and
K = (Vinc>W1,°° = C|Vinc|,uo+2- O

We now set b := 2v — vy as in Proposition 3.1 and choose constants C (K1), y (K1) as in Proposition 3.5
corresponding to the interval s € [0, $].2° In the remainder of Section 3B and also in Section 5A, y is
fixedas y =y (K).

To obtain a tame estimate, we need to remove the terms depending on Vinc on the right side of (3-32).
Let

KZ = |Vinc|uo+2,y + <Vinc>,U-0+2,V- (3‘35)

Applying (3-32) with s = up + 1, we obtain

. . C(Ky)
ﬁ|vino|uo+1,y +\/7<Vin0>uo+l,y = «/_

By Sobolev embedding, if K» = K»>(y, T) is chosen small enough, we can absorb the last term on the
right in (3-36) and obtain, with a new C,

|Vinc|L°O + <Vinc>W1vC>c = C(|f|uo+2,y + <g>m)+1,y)- (3’37)

For y fixed as above, setting |U |5 ,, = |U |, now and substituting (3-37) in (3-32), we obtain the estimate

[|f|u0+2 y+<g>lto+l y+(|vlnc|L°°+< 1nC>W1°°)K2] (3 36)

in the following proposition.

Proposition 3.6 (tame estimate for the linearized system). Let o = [(d + 1)/2] and s € [0, V]. There
exists ko = ko(y, T) > 0 and a constant C depending on ko such that if

|Vinc|uo+2 + <Vinc>/40+2 = Ko, (3-38)
solutions of the linearized system (3-20) satisfy
Vs + (V) < CUF Lot +48)s + (1 luor2 + (@) uor DUV Is1 4 (V)ss )] (3-39)

281n this proposition pg = [d/2] would work, but we make the above choice so as not to have to redefine p later.
29The choice of 7 is explained in Section 5A.
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Proof. We have proved the a priori estimate (3-39) for sufficiently smooth solutions of the linearized
system. The existence of such solutions now follows by standard arguments, which we summarize here
for completeness.

The unknown in the linearized system (3-20) is (o1, 93, 72, @). We can solve the linearized system by
putting the terms that involve dg, 7> or dy,a on the right and replacing the operator dy,, when it acts on
those terms, by a finite difference operator ag‘oz

X¢,61 +c167 = fi,
X,65 + 363 = fa,

Xt +coty = fy—ca [y o1m (x, 260+ 220561 (x, 03) ds (3-40)

’"1

2 n < h
—c2 [5O3y (¥, =202+ 1261)6] (x, 61) d6),
XLopc'lh + cad + 2c6d" dg,a =8 — csago t'zh — 2c6a8£’0dh.

For fixed i € (0, 1] we can solve this system by Picard iteration, where n-th iterates appear on the right
and (n + 1)-st iterates appear on the left. All iterates are 0 in ¢ < 0 and the iterates with index zero are
all 0.

We then need an estimate that is uniform in 4. This can be done by repeating the existing proof of
tame estimates, using the operator 8(5‘0 in place of dg,. This gives an estimate like (3-39):

VR + (Vs < Clf Lyt +48)s + (F o2 + (€ ot DAV 51+ (V)i (3-41)

where V! := (c'rlh, 63’1, i'zh, a"y and C is uniform for & € (0, 1]. Passing to a subsequence, we obtain the

desired solution of the linearized system. U

Remark 3.7 (short time, given data). For a given T > 0, let K| and y = y (K1) be as in Proposition 3.5.
As we saw above, to obtain a tame estimate, we need to take |Vinc|ug+2 + (Vine) uo+2 small. In our
formulation of Theorem 1.15, T is fixed ahead of time and we achieve (3-38) by taking G small in an
appropriate norm on 27. For a given G as in (1-2) vanishing in ¢ < 0, another way to proceed is to shrink
T'; that is, to work on Qr, where 0 < T1 < T is chosen so that y; :=1/T7 > y(K;) and so that

| Vinel + (Vinc)

not+2

+2
Hy (@) )0

H P (r))

is small enough to absorb the terms involving Vi,. on the right in (3-36). One again obtains an estimate
of the form (3-39), where now

\Uls :=Ulns @r,)-
The iteration scheme described in Section SA applies to this situation with no essential change as well.

3C. The key subsystem in the general case. Recall that {1,..., M} =0U ¥, where O and $ contain the
indices corresponding to outgoing and incoming phases. We further decompose O = 0 U 0,, where 0
consists of indices m such that ¢,, is part of at least one triple of resonant phases with the property that
the other two phases in that triple are incoming. For a given m € O the phase ¢,, might belong to more
than one such triple.
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Now instead of (3-3) we have

Vkm Vion
Ve =D D omk (G O)rmp and Vo= Y > Tk (6, ) (3-42)
me9 k=1 me0 k=1

since terms T, ; in the expansion of ] out Vanish if m € O, as a consequence of (1-36) and Yo = 0‘/1?15

Recalling that

Vkm

e= Z Z emk, Wwhere ey, ;€ span{r, i}, (3-43)
meg k=1

we see that in place of (3-4) we now have

Vi Vikm
Vielsu=0:,—tomer =a(x' . 0)e =Y > aemp= Y oni'.0,00)rmi,  (3-44)
medg k=1 me9 k=1
and thus
Om i (x',0,00)rmr =a(x',00)emx formedP k=1,...,1,. (3-45)

Next we derive the formulas for £(V) and %(V) in the general case. The unknown is now
V=(ur-med k=1,...,v,;tmi,me0,k=1,...,v,;a). (3-46)
Suppose g € 01 and that (¢, ¢y, @) is a resonant triple such that
ny¢p, =nyP, +nsp; where p,s €9 and ged(n,, ng, ny) =1. (3-47)

Applying the projectors E,, x, m € $, k = 1,..., 1, to (1-42)(a) and the projectors E,;, g € Oy,
I=1,..., Vg, to (1-42)(b), we obtain

X¢m0m,k+cm,k0m,k; me$, k=1,...,v

Vikp Vi
(V)= L& "2 , .
V) X¢qfq,z+cq,lfq,l+kZlk/Zld§j1k 0 (@pidn, (X: 50q + 1265) 0k (x, 65)d6; + (similar):;

qE@l, l:l,...,vk
(3-48)
Here “similar” denotes a finite sum of families (i.e., sums over k and k) of integrals similar to the one

m

explicitly given. One such family corresponds to each distinct resonant triple involving the outgoing
phase ¢, and two incoming phases.?® The values of the real constants c,, x, dg’f are not important for

our analysis, but, for example, the d(";:f/ are given by>!
/ 1
dyy = a1 (DO p i 7si0) +dDO) (s T ) (3-49)

By a computation similar to the one that produced (3-8), we obtain from (1-42)(c)

30We do not distinguish between (¢, ¢g, ¢S) and (¢p, @5, ¢gq). We do distinguish between (¢p, dg, ¢s) and (¢p, dg, P1).

31We have suppressed indices r, s on the d
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qu

BV) = Xropa + fra+ D D fr196,Tg.1 + fr08,(a) (3-50)
qe0; =1

for some real constants fi, f>, fy,;. For example, we have f> = —b-[y'(0)(e, e)]. Thus the system (1-42)
may be rewritten

ZWV)=0 in Qr,
RB(V)=—b-03,G*:=g on bQr, (3-51)
V=0 in t <0,

where the relations (3-45) hold.

It is now a simple matter to write out the expressions for the first and second derivatives of & and %.
For example, just as the interaction integral in (3-9) gave rise to two integrals in the expression (3-11)
for (V) in the 3 x 3 case, it is clear that each integral in (3-48) will give rise to two integrals in the
new expression for £'(V). The tame estimates for second derivatives are proved exactly as before, and
Proposition 3.3 holds verbatim in the general case. Proposition 3.4 is used exactly as before to prove
estimates for the linearized system. With the unknown V as given in (3-46) and after defining Vinc, Vout,
Vinc, Vout in the obvious way, we see that the “pretame” estimate of Proposition 3.5 and the tame estimate
of Proposition 3.6 hold verbatim in the general case. The iteration scheme of Section SA depends only on
the tame estimates. Thus it applies here without change and Proposition 3.1 holds verbatim in the general
case.

Once the key subsystem is solved, we can easily complete the solution of the full profile system
(1-35)—(1-36). The precise result for the full system will be proved in Theorem 5.11.

4. Error analysis

Here we carry out the error analysis sketched in Section 1E, beginning with the proof of Proposition 1.29.

Proof of Proposition 1.29. Step 1: Noncharacteristic modes. We write

M
F(x,0)=Fy(x)+ Z Fa(x)ei“‘e + Z Z Fo,(x)ei""g,

age m=1 e, \{0}

and recall that the sums are finite. Set
M
Ng = Zaj and o= (wi,...,o0n).
j=1

Since EF = 0, we first note that Fy vanishes. For any «, we have
(Fa (x)eia-e) |0_)(90’§d) — Fot (x)einaeo-i-i(a.g)sd’
and when o ¢ 6, we look for U, (x) such that

320(890, a%_d)Ua(x)eina@o-H(a@)Ed — Fa(x)eina%-i-i(a-g)éd_ (4-1)



600 JEAN-FRANCOIS COULOMBEL, OLIVIER GUES AND MARK WILLIAMS

This holds if and only if
iL(ngB,a-0)Uy = Fy.
The matrix on the left is invertible, so we obtain a solution of (4-1) for o ¢ 6.

Step 2: Characteristic modes. When o € 6, \ {0}, we have « - w = nyw,, $O

(Fo(x)e'™?) lo— ©0,60) = Fu (x)e'"eGoFensa),

We can write

Z FC{ (x)eil’lu (90“1‘@/;1&1) — Z %m k (x)el'k(e()-‘rgm%'d)’
a €6, \{0} kez\{0}
where

Fui(¥):= Y Fulx).

{a €6, \0, ny=k}

Since E,, F =0, we have for each k € Z\ {0} that P,,%,, x(x) =0. So now we look for U,, x (x) such that
Lo (Bay> Igy) Un g (x)e*OFens) — (] — P, )G, ek OFemba),
The latter relation holds if and only if
IL(kB, kwm)Up ik (x) = ik L(dpm) Up i (x) = (I — Ppp) Fp 1 (x),

which is solvable even though L(d¢,,) is singular. Finally, we take

M
Ou(x’ 90, Sd) — Z Ua(x)eina00+i(a@)$d + Z Z Um’k(x)eik(Qo—i-gméd)’
age m=1keZ\{0}

which solves (1-46) as claimed. g

The existence theorems for profiles and for the exact solution to the singular system, Theorems 5.11 and
5.13, respectively, are stated and proved in Section 5; we shall only use the statement of these theorems
here. In order to formulate the main result of this section we must make some preliminary choices.

Choice of i and 1. The conditions on the boundary datum G (x’, 6) are slightly different in Theorems 5.11
and 5.13. We need to choose u, ft, and G(x’, 6) so that both theorems apply simultaneously. We also
need u large enough so that we can apply Proposition 2.9 in step (4-24) of the error analysis below. These
conditions are met if we take>?

w=max(d+9,[(d+1)/2]+Mo+3)=[(d+1)/2]+ Mp+3 and p=2u—-[d+1)/2] 4-2)

and choose G € H*(bQ7) such that (G) gr+2pq, 1s small enough. Applying Theorems 5.11 and 5.13,
we now have, for 0 < ¢ < g, an exact solution U, (x, 6p) € E*~1(Qr) to the singular system (1-18) and
profiles ¥(x, 0) € H*1(Qr), ¥(x, 6) € H*~2(Q7) satisfying the equations (1-35) and (1-36).

32Recall that My =3d +5,d > 2.
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Approximation. Fix § > 0. Using the Fourier series of ¥? and 4!, we choose trigonometric polynomials
V9 (x,6) and ¥}, (x, 6) such that

|0V0 _OV(I))|H“'_I(QT) < 8, |0V1 _OV;)|H“_2(QT) < 8 (4-3)

We can smooth the coefficients so that °V?, and ‘V}) lie in H*°(Q27) and so that (4-3) still holds. Having
made these choices, we can now state the main result of this section, which yields the final convergence
result of Theorem 1.15 as an immediate corollary.

Theorem 4.1. We make the same assumptions as in Theorem 1.15 and let v and i1 be as just chosen.
Consider the leading-order approximate solution to the singular semilinear system (1-18) given by

UL (x, B0) := VO (x, 0)lo— (@o.xa/e)» (4-4)
and let U, (x, 0p) € EF~1(Qr) be the exact solution to (1-18) just obtained. Then
lim U (x, 60) — U (x, 60)| sy = 0. (4-5)

The following lemma, which is proved in [Coulombel et al. 2011, Lemmas 2.7 and 2.25] by a simple
argument based on Fourier series, is an important tool in the proof.

Lemma 4.2 (relation between norms). For m € N suppose f(x,0;) € H" 1 (Qr), and set f.(x, 6p) :=
f(x,00+wjxq/e). Then

| felen < CLflgm+1@p)- (4-6)
Proof of Theorem 4.1. We shall fill in the sketch provided in Section 1E.
Step 1. First we use Proposition 1.29 to construct Oui (x, B0, &;) satisfying
L0(3gy» 9 )W = [—(I = E)L@B)V ), + DO)V ), +dDO) (VS V)N lo @y, (4-7)
The function oui is a trigonometric polynomial of the form (1-47) with H> coefficients. We then define
the corrected approximate solution

AU (x, 60) = (VO(x, 8) + V" (x, ) g (6,076 + €72 (x, 0o xg—") (4-8)

Since ' € H*~2(Q7), Lemma 4.2 implies U, € E*3(Q7).

Step 2. Next we explain (1-48) and make precise the norms used on the right there. Using the identity
(1-44), we compute

Le (Ue) = [(L0(Dgy. 0e)U) ley=ry/6 + (LOV + DOV +dD OV V) g 6y.5576)]
+ & (LU |gy=x, /e + D(EU)U — DO)(VO + V") — edDO)VOV,  (4-9)

where the second line represents an O(e?) term (see below for a precise estimate). Here the profile
equations (1-20)(a)—(b) imply that the terms of order ¢~ and &° vanish. Using (4-7), we can rewrite the
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coefficient of ¢ in (4-9) as
L@V =) + DOV =V +dDO) VOV = VIV g @046
+[EL@)V), + DOV ), +dDOYV V)6 @.x/e) = A+ B. (4-10)
Using (4-3), Lemma 4.2, and the fact that E*(27) is a Banach algebra for s > [(d 4 1) /2], we see that
|Al pusiayy < K. (4-11)
To estimate B, let
F:=L@V"'+ DOV +dDO)V*° and F,:=L@)V)+ DO)Y,+dDOYV).  (4-12)

The profile equation (1-36)(b) implies E F = 0. Using continuity of the multiplication map (1-25), we
see that (4-3) implies?
|F — Fplyu-32 < K8. (4-13)
T

From the continuity of E : H;;z — H;;l and Lemma 4.2 we then obtain

|Blgn-4(@p) = I(EFp)lo—@y.xa/e) | En-4r) = [(ECF — Fp))lo—@.xa/e) | En-40p) < KO- (4-14)

Step 3. The O (¢?) terms in (4-9) consist of

|87 (LU (x. B0, £a)) ey xa/e | pr-s(p) < £7C(8), (4-15)

as well as terms coming from the Taylor expansion of D (eU,)U, like (%dD (O)°VO°V1)|9_)(90, xq/e)» all of
which satisfy an estimate like (4-15). Setting R.(x, 6p) := L. (U.), we have shown

|Relpu-siay) < e(K8 +C(8)e). (4-16)
Step 4. The boundary profile equations (1-22) and the fact that the traces of ¥'? and V! lie in H*~1(b27)
and H*~2(bQ7), respectively, imply
(re(x', 60)) Hu—2(p02p) < C(8)e?, where r, := ¥ (eMU)Ue — G (x, Bp). 4-17)
Indeed, these O(g2) terms include
(€*BU (x', 0, 60, 0)) gu-2pq2y) < C(8)€7, (4-18)

and other terms satisfying the same estimate coming from the Taylor expansion of v (€U, )WU,.

Step 5. Next we consider the singular problem satisfied by the difference W, := U, — U;:
:B 89()
€
Yo(eUg, U)Wy = —r, on x4 =0,

We=0 1in t <0,

8dWa+A<8x/+ >W5+D2(8Ug,80u£)W£:—R8,

(4-19)

33Here HITL =32 denotes the space defined in (1-24), but with the obvious restriction on the domain of 7.
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where

Dy(eUg, eU)W, := D(eU,)U, — D(eWe)U,
1
=D(EU)W, + (/ dD (U, + se(Ue —WU,)) ds) (W, eU,), (4-20)
0

and V> (eU,, €U, ) W, is defined similarly. Since U, € E*~1(Q7) and U, € E*=3(Qr), ashort computation
shows

V2 (eUs, £Ue) We = (eUp) We+dyr (eU) (W, 60, )+ O (C(8)e”) = B(eU, eW) W+ 0 (C(8)e?), (4-21)
where the error term is measured in H*~3(bQ7) and B is defined in (1-9). Similarly,
Dy (eU,, eU)W, = B(eU, eWYW, + O(C(8)e?) in EF3(Qp). (4-22)

Thus, using (4-16) and (4-17), we find

J
8dW8+A<8x/+ﬁ 9°>W8+@(8U8,801L8)W8:8(K8+C(8)8) in EF4(Qp),
&
B(eUp, £Ue)Weleymo = O(C(8)e?) in H* 3 (bQyp), (4-23)

W,=0 int<O.
Applying the estimate of Proposition 2.9, we obtain
|W8|EO(QT) < Ké§+ C(S)E, (4-24)

which implies
U — U pogq,y < K8+ C(S)e. (4-25)

Fixing first § small and then letting ¢ — 0, we have shown
lim |U, — U gocayy = 0. (4-26)
The family U, — Gug, 0 < & < &, is bounded in E*~2(Q7), so, by interpolation, (4-26) implies
lim |U, = U g =0,

as required. (|

5. Nash—Moser schemes

5A. Iteration scheme for profiles. A good reference for the Nash—-Moser scheme is [Alinhac and Gérard
2007]. The method depends on having a family of smoothing operators with the following properties.
ForT >0,s>0,and y > 1, we let

F;(QT) ={ue H;(QT), u =0 fort < 0}. (5-1)
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Lemma 5.1 [Alinhac 1989, Section 4]. There exists a family of operators Sy : Ff(QT) - N F),’s(QT)

such that £=0
(@) |Spulg < COP~D+|ul, fora, >0,

(b) 1Sou —ulp < COP"uly  for0O<p<a, (5-2)
d o
©) )Esgu‘ﬂ <COB= Dy, fora, p > 0.
The constants are uniform for «,  in a bounded interval.

There is another family of operators Sy acting on functions defined on the boundary and satisfying the
above properties with respect to the norms (u)s on bQr.>*

Description of the scheme. Our goal is to solve problem (3-10):
L(V)=0 in Qr,
B(V)=g in bQr, (5-3)
V=0 in t <O0.

The scheme starts with Vy = 0. Assume that V are already given for k =1, ..., n and satisfy V; =0 for
t < 0. We define

Vst = Vo + Vi, (5-4)

1/2

where the increment V,, is specified below. Given 6y > 1, we set 6, := (93 + n)'/* and work with the

smoothing operators Sg,. We write the decomposition
EVi1) = EV) = L (V) Vi + €, = L' (S5, Vi) Vi + €, + e (5-5)

where e], denotes the usual “quadratic error” of Newton’s scheme and ), the “substitution error”. Similarly,

BVt D) xg=0) = BUVi) Ly=0) = B' (Vi) 11y=0)) (Vi lry=0)) + €},
= B'((S5, V) 1x4=0) (Vi |x,=0) + &, + &, (5-6)
The increment V,, is computed by solving the linearized problem
‘58/(59” Vn)vn = fn’
B’ (S5, Vi) lx4=0) Vil 14=0) = &n- (5-7)
V,=0 int <0,
where f,, and g, are computed as we now describe.
We set e, :=¢), + e, and ¢, := ¢, +¢,. Given
Vo = 0, fo = 0, 80 = Sgog, Eo = O, E~'() =0,

- , (5-8)
Vl’---7Vna fl’-~-’fl’l*1’ gl’--'vgnflv e07---’en71’ eOa-"veIZ*l’

34For u defined on 7, we do not necessarily have equality of (Spu)|y,—o and 5‘9 (4] x,=0)-
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we first compute for n > 1 the accumulated errors

n—1 n—1
E,:= Zek, E,:=) é. (5-9)
k=0 k=0

We then compute f,, and g, from the equations
n n
D fetSo,En=0, Y gi+SsEn= 353 (5-10)
k=0 k=0

solve (5-7) for Vn, and finally compute V,; from (5-4).

Next e, and ¢,, can be computed from 35

§£(Vn+1) —L(Vy) = fn + ey,

_ (5-11)
BVt D xg=0) — B((Vi)lxy=0) = gn + €n.
Thus the order of construction is
o= (en—t, én1) = (En, En) = (far 8n) = Vi = Vg1t = (en, &n) = -+ . (5-12)
Adding (5-11) from O to n and using (5-10) gives
g(Vn+l) = (I_SQn)En + ey, (5-13)

B((Vs1)|rg=0) — & = (Sg, — g + (I — Sg,) E, +&,.

Since Sg, — I and S‘gn — I as n — oo and we expect (e,, ¢,) — 0, we formally obtain a solution of
(5-3) in the limit as n — oo.

Induction assumption. Let A, := 6,1 — 6, and observe that

<A,=.,/624+1-09, <
30, — " T "= 20,

With no = [(d + 1)/2] as in Proposition 3.6, we now set vy := o + 1 and fix a choice of integers
Vg < v < v, whose values are explained below:

for all n € N. (5-14)

v:=2v9+4 and V:=2v—vy. (5-15)
Given § > 0 our induction assumption is this:
(H,_;) Forallk=0,...,n—1and foralls € [0, V] NN,
| Vels + (Vi) < 867" A (5-16)

The main step in the proof of Theorem 5.11 is to show that, for correctly chosen parameters § > 0
(small) and 6y > 1 (large) and for small enough g, (H,—1) implies (H,,). At the end we will verify that
(Hp) holds for small enough g.

First we state some easy consequences of (H,,_).

351n the estimates of e, and &,, we instead use (5-20), (5-21) and (5-24).
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Lemma 5.2. If 0y is large enough, then, fork =0, ..., n and all integers s € [0, V], we have

Cs0° ™, v,

(5-17)
Célogby, v=s.

[Viels + (Vi)s < {

Proof. This follows by writing Vi, = Vo + Z/;;(l) Vj and using the triangle inequality and an elementary
comparison between Riemann sums and integrals. O

Lemma 5.3. If 0y is large enough, then, fork =0, ..., n and all integers s € [0, V + 2], we have

Cs0° ™, v,

So, Viels < 5-18
|50, Vel —{Calogek, v=>s. (>-18)
Moreover, for k =0, ..., n and all integers s € [0, V], we have
C30; Vlogby, s=<v
1= Sy Val, < | €% =Y 5-19
[( o) k|s_{C591i_v» - (5-19)
Proof. This follows from Lemma 5.2 and the properties of the Sp. For example, we have
[(1 — Sg) Vils <2|Vils < C86°77 fors > v,
[(I —Sp)Vils <CO* V| Vk], < C80° " logby fors <v. O
Estimate of the quadratic errors. From (5-5) and (5-6) we have
1
ey =LVir1) =LV =L (Vi) Vi = / (=) E" (Vi + Vi) (Vk, Vi) dr, (5-20)
0
1
&, =B(Viz1) —BV) =B (Vi) Vi = / (A =1)B" (Vi + Vi) (Vi, Vidr, (5-21)
0
where the arguments in (5-21) are evaluated at x; = 0.
Lemma 5.4. (1) For large enough 6y we have, for allk =0, ..., n — 1 and all integers s € [0, V],
lely < €820~ A, (5-22)
where L1(s) =s +vy—2v —2.
(2) For large enough 6y we have for allk =0, ...,n — 1 and all integers s € [0,V — 1]
(81)s < 8207207 A, (5-23)

where Lo(s) =5 +vg—2v — 1.
Proof. Using (5-20), Proposition 3.3, and the fact that vy > v, we have
leils < ClVils] Vilup-

The estimate (5-22) then follows by applying assumption (5-16) and using Ay ~ 1/6;. The estimate
(5-23) is proved similarly; the restriction s € [0,  — 1] reflects the loss of one derivative in (3-15). [
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Estimate of the substitution errors. From (5-5) and (5-6) we have

1
(@ e = / L' (8o Vic + T (Vi — S, Vi) (Vie, (I — Sp,) Vi) dt,
0

| (5-24)
(b) ¢ = /0 B (Se, Vi + (Vi — Sg, Vi) (Vie, (I — Sa) Vi) di,
where in (5-24)(b) we have, for example, written Sg, Vi for (Sp, Vi)|x,=0-
Lemma 5.5. (1) For large enough 6y we have, for allk =0, ...,n — 1 and all integers s € [0, V],
lefls < €826, A, (5-25)
where L3(s) =s +vg—2v+ 1.
(2) For large enough 6y we have, for allk =0, ..., n — 1 and all integers s € [0, v — 2],
(@) < 8204 Ay, (5-26)
where Ly(s) =s +vg—2v+3.
Proof. Using (5-24)(a) and Proposition 3.3, we obtain
le¢ls < CUViels (I = Sg0) Vilug +1( = Sg) Viels Vi) (5-27)

The estimate (5-25) now follows from (H,—;) and Lemma 5.3. The estimate (5-26) is proved the same
way, after using the trace estimate

(I = So) Vids+1 = CI( — Sp.) Viels42- (5-28)
The restriction s € [0, v — 2] reflects the subscript s + 2 in (5-28). O
Estimate of (E,, E,) and (f,, g,). Since e, = e, +e; and ¢, = ¢, +¢;/, we have:
Lemma 5.6. There exists 6y sufficiently large so that
|Epls < C8205%) and  (E,)5_ < C820L40—2), (5-29)

Proof. Viewing E,, = ZZ;& ey as a Riemann sum and using L3 (V) > 0,3 we obtain the estimate of E,,
from (5-22) and (5-25). Since L4(v —2) > 0, the estimate of E,, is similar. Il
From (5-10) we have
Jon=—(S9, = So,_ ) En—1— So,€n—1,

- - - - - . (5-30)
gn = (S0, — So,_1)& — (S, — So,_) En—1 — S, €n—1-
Lemma 5.7. There exists 0y sufficiently large so that, for s € [0, V + 1], we have
@) |fuls €826, 1A,
fn s n n (5_31)

() (gn)s < CEOHOIA, + COT Hg) A,

36This determines ¥ in (5-15).
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Proof. Using (5-2)(c), (5-29), and s — v + L3(V) = L3(s), we find
6, }
(S, — S8, ) En-1ls < C / 0" E, 115 d6 < C820,°0) 7' A,
On—1
From (5-22), (5-25), and the properties of Sy, we readily obtain
|S,en—1ls < C8%6,° 71 A,
and this gives (5-31)(a).
The first term on the right in (5-31)(b) arises similarly. With

On
(S5, — o, )8)s < C f 0" g d < COTV ) Ay,
Gn—l

we obtain (5-31)(b).

(5-32)

(5-33)

(5-34)

g

Induction step. We claim that, for § > 0 sufficiently small, the estimate for the linearized system (3-39)

applies to (5-7) and gives for s € [0, V]

[Vals + (Vi)s < Cll fulst1 + (gn)s + (Falvort + (@ndvo) (IS8, Vals1 + (Sa, Viads+1)].

(5-35)

Indeed, (5-18) and v > vg + 2 imply that, for § > 0 small enough, the requirement (3-38) holds.?’ For the
terms involving f, and g,, except (g,),,» we substitute directly into (5-35) the corresponding estimates

from Lemma 5.7. For (g,)., we have
(gn)vg < C@20, 1Ay 46,72 (8)sgwv 1 M),
where the last term arises from (5-34) with s = vy and v replaced by v 4 vy + 1. We also use
(g, Vads+1 < |80, Vals2 < CEOST2 4L

and a similar estimate for | Sy, V,,|5+1, which follow directly from (5-18).
Since L4(s) > L3(s + 1), this gives for s € [0, V]

[Vals 4+ (V)s

< CL8%60, Y7 Ay +60,7" @)y Au + (826, T Ay + 6,772 (g) w1 )86, T

For s € [0, V] the parameters vy and v (recall (5-15)) satisfy
La(s) <s—v,
Li(vp)+(+2—-v)4+1<s—v,
(s+2—-v)y <s.

Thus we have proved (H,), which is the content of the following lemma.

37We use a trace estimate like (5-37) here as well.

(5-36)

(5-37)

(5-38)

(5-39)
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Lemma 5.8 (H,). If§ > 0, (g), /6 are sufficiently small, and 6 sufficiently large, we have
|ans + (Vn)s < 89;;_”_1An for all integers s € [0, D].
Still assuming (H,,_;), we now show the following.
Lemma 5.9. Suppose n > 1. If § > 0 is sufficiently small and 0y sufficiently large, we have
@ LWV < 8627”71 for all integers s € [0, V],
(b) (BV,) —g)s < 89;‘”_1 for all integers s € [0, D — 2].
Proof. From (5-13) we have
@ |LVls =1 = So,_ ) En—1ls + len—1ls,
®)  (BVa) = &) < {(Sg,, = Dgs +{U = S5, ) Ent)s + (n-1)s-
Using (5-2) and the above estimates of E,_; and e,_;, we find

(I = S, En-tls < €O, V| Egy]p < €820 7V~ DH0027w),
len—i1ls < C8%6,°C 71 A,
which imply (5-41)(a) since vg+2 —v <0 and L3(s) <s —v.
The last two terms on the right in (5-42)(b) are estimated similarly. To finish, we use
(8o, = Dg)s = CO VP (g)5 fors<v—2

and observe that s — vV +2 <s—v — 1.
We now fix § and 6y as above and check (Hp).
Lemma 5.10. If (g), is small enough, (Hy) holds.
Proof. Applying the estimate for the linearized system to
F () Vo =0,
B'(0)Vo = Sayg,
we obtain for integer s € [0, V]
Vols + (Vo) < C(Sig)s < C {95_u<g>”’ s
(g, s < V.
Thus, (Hp) holds if (g), is small enough.
Proof of Proposition 3.1. We have

n—1

Vi=Vi+ anl = Z Vk-
k=0
Let v/ :=v — 1. Since 6; ~ Vk we have by (H,,)

oo oo
YWVl +D (Vv =8 677Ac=CY k2 < o0
k=0 k=0 k k

609

(5-40)

(5-41)

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)

(5-48)
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Thus, for some V as described in Proposition 3.1, V, — V in HY (S7) and Viclxy=0 = V|x,=0 in HY (7).
This implies

L(Vi) — L(V)in H' "1 (Qr) and  B(Vilyy=0) — B(V|=0) in H' ' (bQr).
Applying Lemma 5.9 with s = v’ — 1, we conclude that V is a solution of the profile system (3-10). O

Having solved the key subsystem we can now easily complete the solution of the full profile system
(1-35)—(1-36) and obtain the following result.

Theorem 5.11. Fix T > 0, let vo = [(d + 1)/2]+ 1, v = 2vg+ 4, and Vv = 2v — vy, and suppose
G e H Y Q). If (G) 41 is small enough, there exist solutions

Vo=

inc

e H' ' Qr), V'=V'+¥ + Vi € H 2(Qr)

inc o)
of the full profile system (1-35)—(1-36) satisfying>®
VO=EV’ e H''(Qr), Viclxy=0.0;=0 € H'' (bQr),
Vo= EVo € H'NQr),  (EVy)lxy=0.0,—00 € H' ' (bQ7), (5-49)

out out
Y'e H'72(Qr), (I —-E)V) e H"2(Qr), EV.. e H Q7).

inc
These statements remain true if v is increased and if v > 2v — vy.

= EY,

out?

o‘/-l

out

Proof. After the subsystem (1-42) is solved, we know Y0 = °Vi(r)lc = E°Vi?w,
functions have the regularity described in Proposition 3.1. Taking the mean of equations (1-36)(b)—(d),
using the fact that the mean of the quadratic term in (1-36)(b) lies in H v=1(Q7), and applying the result
of [Coulombel 2005] to the resulting weakly stable system, we conclude °¢_f1 € H"~2(Q27). From (1-36)(a)

we find

and these

(I—-EYV'=—-E)VL e H'2(Qr). (5-50)

mc

It remains to determine E°I/’11IC Since the solvability condition (1-41) holds, we can make a choice of
EoViLJx =0.0;=0, € H "=2(b27) satisfying the boundary equation (1-40), whose right side is now known
and lies in H'~2(b27).>° Finally, we determine the components of E¥j,. by solving the transport
equations determined by (1-36)(b), the choice of initial data, and the initial condition (1-36)(d). Observe
that the interaction integrals corresponding to the quadratic term in (1-36)(b) lie in H"~'(Q7). O

5B. Iteration scheme for the exact solution. The Nash—Moser scheme for the exact solution will use
the scale of spaces E;, 7 on Q7 and H}f 7 on bQ7. Since T was fixed at the start and y was fixed in
Section 2C, we now drop these subscripts in the notation for norms and function spaces. For s > 0 we let

F* = {u(x, ) € E*,u=0for  <0}. (5-51)
Moreover, we shall now denote E* norms simply by |U|; and H® norms by (U);.
38 Here when we write °Vl?1 c€H v=l(Qr), for example, we mean that the individual components of °V1?1c lie in that space.

39 All terms on the right in (1-40) lie in H v-1 (bS2T), except the term involving L(9). That term is actually more regular than
H 1’72(17§2T), but we do not wish to introduce more refined spaces to capture this.
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Lemma 5.12. There exists a family of operators Sp : F* — () F? such that

B=>0
(@) |Spulg < COP~+|ul, foro, >0,
(®) |Sou—ulg < COPuly  for0O<p=<a, (5-52)

© ’%Sgu‘ﬂ <COF Dy, fora, B> 0.

The constants are uniform for «, B in a bounded interval.
There is a family of operators Sy acting on functions defined on the boundary and satisfying the above
properties with respect to the norms (u); on b2, and we have

(So1t) | xy=0 = Sp(tt]x,=0)- (5-53)

Proof- Let S, be a standard family of smoothing operators, for example, as in [Alinhac 1989], acting in
the (x’, 6p) variables on the scale of spaces H®. For U € E* simply treat x, as a parameter and define

SpU = SpU (-, xa, -). (5-54)
The properties (5-52) then follow immediately from the corresponding properties of the operators Sp. [J

To avoid excessive repetition, we use the notation and arguments of Section 5A as much as possible,
and just point out where changes are needed. Thus, we now denote the solution to the semilinear singular
problem (1-18) by V instead of U, and rewrite (1-18) as

F(V)=0 on Qr,

RB(V)=G on bQr, (5-55)
V=0 in T <0,
where
1 B g,
PWV): =—[0,V+Al 0+ V+D(@EV)V,
£ £

1 (5-56)
BV) 1= (W EVV).

We now let*?
mo:=[d+1/2], wi:=po+Mo, pi=maxCuo+3, mi+)=m+1, [p:=2u—po. (5-57)

We now state the main result of this section.

Theorem 5.13. Fix T > 0, define o, jt1, i, and fi as in (5-57), and suppose G € H. There exists
g0 > 0 such that if (G) 42 is small enough, there exists a solution V of the system (5-55) on Qr for
0O<e<egywithV e EFL, Vly,=0 € H*. Thus U, =V is a solution of the singular system (1-18) on Qr
for 0 < & < gg. These statements remain true if | is increased and if . > 24 — L.

40The parameter [i is determined so that Ly (i) > 0 for L, (s) as in Lemma 5.18. The definition of w is chosen so that u| <
and the conditions (5-76) hold.
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The linearized singular problem (2-40) is now written
L(V)V=Ff on Qr,
B'(V)V =g on bQr, (5-58)
V=0 in 1 <0.

With this notation the description of the scheme in Section 5A starting at line (5-3) applies here word for
word down to line (5-14).

Remark 5.14. (a) In order to apply the tame estimate of Proposition 2.16 to the linearized system (5-58),
by Sobolev embedding (Remark 2.14), it suffices to have

1€0aV =1+ 1V]y <K' foree(0,1] and |V]y42 < ko, (5-59)

for some constant K’ depending on K and g as in Proposition 2.16. In fact, we use the slightly weaker
(because we use E* norms on the right) estimate for s € [0, ii]:

V15 + (V)st1 < CUflss1 + (&) 542 + (U luot1 + () uo42) (U ls1 + (U)s42)]. (5-60)

(b) By Proposition 2.15, when |V, < K’, the tame estimates for second derivatives now take the form

@ L VYV VO < CAVEIV g VLIV g + VIV gV L), (561
(b) (B (V)(VE, V) < CUV VO 4y + (VO (V) g + (V)5 (V 16 (V) o)

With p and i redefined as in (5-57), for a given § > 0, the induction hypothesis (H,_;) is now as
follows.

(H,_;) Forallk=0,...,n—1and forall s € [0, 2] "N
Vels + (Vi)ser <86, Ay (5-62)
Lemmas 5.2 and 5.3 are now replaced, with no real change in the proofs, by the following two lemmas.
Lemma 5.15. If 0y is large enough, then, for k =0, ..., n and all integers s € [0, ], we have

oo™, s,

(5-63)
Célogb,, u=s.

|Vk|s + <Vk>s+l =< {

Lemma 5.16. If 0y is large enough, then, for k =0, ..., n and all integers s € [0, fi 4+ 2], we have

(s—p)+
Cés6 , s,
5, Vel + (So Vidy 1 < 4 00k i (5-64)
Célog b, w=s.
Fork =0, ...,n and all integers s € [0, i1], we have
C80; " logbr, s<upu,
(I = S Vils 4+ (I = Sy Viha < { Ok 087 2 =1 (5-65)
céo, -, s> .

We have used (5-54) for the estimate on traces in Lemma 5.16. In place of Lemma 5.4 we now have:



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 613

Lemma 5.17. (1) For large enough 6y and small enough § we have, for all k =0, ..., n — 1 and all

integers s € [0, 1],
lels < €826 V7 A, (5-66)

where L1(s) :=max(s + o — 2 — 2, (s — )+ + 20 — 20 — 1).
(2) For large enough 6y and small enough § we have, for allk =0, ..., n — 1 and all integers s € [0, 1],
(@541 < C820 T (5-67)

Proof. Again we use (5-20) and (5-21). By Lemma 5.15 and (H,,—;), we see that, for § small enough,
| Vi + rVklm < K’, so we can apply the estimates (5-61). The new definition of L (s) reflects the third
term on the right in the estimates (5-61). O

In place of Lemma 5.5, the estimate of substitution errors, we now have:

Lemma 5.18. (1) For large enough 6y and small enough § we have, for all k =0, ...,n — 1 and all

integers s € [0, fi], ,
lef s < €820, 71 A, (5-68)

where Ly(s) ;= max(s +uo—2u+ 1, (s — ) + 20 — 210 + 2).
(2) For large enough 6y and small enough § we have, for all k =0, ..., n — 1 and all integers s € [0, 1],
(&)s1 < C8202 7 A (5-69)

Proof. Again we use the formulas (5-24). By Lemma 5.3 we have |Sg, Vi + 7 (I — Sg,) Vil < K’ for &
small enough, so we can apply the estimates (5-61). When estimating the right sides of (5-61), we use,

for example, .
(I — Sg) Viels < C86;, " O

In place of Lemma 5.6, the estimate of accumulated errors, we now have:
Lemma 5.19. There exist 6y sufficiently large and &y sufficiently small so that, for 0 < § < &y,
|Eq|p < C82012 D and  (E,)p4 < C82012P. (5-70)
Proof. Since 1 =2 — o, we have La(ft) > 0, so the proof is the same as that of Lemma 5.6. O

The new version of Lemma 5.7, the estimate of f,, and g, is this:

Lemma 5.20. There exist 6y sufficiently large and 8¢ sufficiently small so that, for s € [0, ii+1], 0 <8 <,

we have @ |fuls < CO-OA,, 51
(b)  (gn)s+1 < C80OTIA, +COTFTHG) 2 A
Proof. Since s — ji + Ly (ft) < Ly(s), the proof of Lemma 5.7 can be repeated here. O

Induction step. For § > 0 sufficiently small, the estimate (5-60) for the linearized system applies to (5-7)
and gives for s € [0, ]

|Vn|s + (Vn>s+1 =< C[|fn|s+l +{gn)s+2 + (|fn|uo+l + <gn>uo+2)(|S9n Vals+1 + (Sen Vi)s+2)1. (5-72)
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Indeed, (5-64) implies that for § > 0 small enough, Sy, V,, satisfies the requirement (5-59).*1 For the terms
involving f, and g,, except (g,),,+2, wWe substitute directly into (5-72) the corresponding estimates from
Lemma 5.20. For (gy) 042, We have

(8n)por2 < C (820120t D=IA L L G=H=2(GY 1 i3 A), (5-73)

where the last term arises from an estimate like (5-34) with s = o+ 2 and u replaced by u + po + 3.

We also use
(So, Vi)s42 < COLTIW+H] (5-74)

and a similar estimate for | Sy, V,,|541, which follow directly from (5-64).
Making these substitutions in (5-72) gives, for s € [0, ],
Vals + (Vihs1 < CI8%60,2F D71 A, 46,7 71(G) 2 A,
+ (820,21 AL 671726 g3 An)86, T TIH]L(5-75)
For s € [0, [i] the parameters g and p (recall (5-57)) satisfy
(@ Las+1D=s—pu,
() Lo(mo+D+(+1-—wy+1=s—pu, (5-76)
© (+1-py<s.
Thus, we have proved (H,,), which is the content of the following lemma.
Lemma 5.21 (H,,). If § > 0 and (G),.42/8 are sufficiently small and 0, is sufficiently large, we have
|Vals 4+ (Via)sa1 <8057H7YA,  for all integers s € [0, ji). (5-77)
Still assuming (H,—;) we now show:

Lemma 5.22. Suppose n > 1. If § > 0 is sufficiently small and 6, sufficiently large, we have
@ |LV)ls <86,

(5-78)
() (B(Va) = G)ypr <86,
for all integers s € [0, [1].
Proof. From (5-13) we have
@ 1Z2Vls < - SQ,FL)En—ILV +len—1ls, ) ) (5-79)
®) (B(Va) = Gls1 = (8o, = DG)s1 +{(I = Sp,_ ) En—1)s+1+ (€n—1)5+1-
Using (5-52) and the above estimates of E,,_; and e,_;, we find
(I = 8o, ) En-ils < COTF | Epo | < CE2007H7DH007I0, (5-50)

len-ils < C826,2971A,,
which imply (5-78)(a) since o — pu < 0 and Ly(s) < s — u.

4IHere we use K1 < p. Also, the term [£94(Sg, Vi) |y, —1 is estimated using (5-7).
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The last two terms on the right in (5-79)(b) are estimated similarly. To finish, we use
((Sg, 1 — DG)yy1 < COTITHGY, fors <fi—1, (5-81)
and observe that s — i+ 1 <s —u — 1. O
We now fix § and 6y as above and check (Hp).
Lemma 5.23. If (G) 42 is small enough, (Ho) holds.
Proof. Applying the estimate for the linearized system to
L (0)Vo =0,

. (5-82)
B'(0)Vo = S, G,
we obtain, for integers s € [0, ],
i i 0y “(Gluta, s=p,
|%h+MMH§CmﬂmHSC{O nt2 H (5-83)
(G)uta. s <.
Thus (Hp) holds if (G) > is small enough. O

Proof of Theorem 5.13. We have

n—1

Vi=Vi+ Vn—] Z Vk-
k=0

Letv:=u —1. Since 6; ~ Jk we have by (H,)

o0 o]
Do WVeh+ D (Vi1 <86 A< C Y k7 <o,
k=0 k=0 k k

Thus, for some V as described in Theorem 5.13, Vy — V in EV and Vi|y,=0 = V|y,=0 In H"*! (in fact,
uniformly for 0 < ¢ < gp). Lemma 5.22 applied with s = v — 1 now implies that V is a solution of the
semilinear system (5-55). Il

Appendix A: A calculus of singular pseudodifferential operators

Here we summarize the parts of the singular calculus constructed in [Coulombel et al. 2012] that are
needed in this article.

Symbols. Our singular symbols are built from the following sets of classical symbols.

Definition A.1. Let 0 C RY be an open subset that contains the origin. For m € R we let $”(0) denote
the class of all functions o : 0 x R? x [1, o0) = CV*N N > 1, such that o is C* on 0 x R? and, for all

compact sets K C O,
sup sup sup(y” +[&'1) ™" "D210% 0k o (v, €', y)| < Cank -
veK g/eRd y>1

Let ‘Glg(Rd x T), k € N, denote the space of continuous and bounded functions on R? x R that are
2m-periodic in their last argument, and whose derivatives up to order k are continuous and bounded.
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Definition A.2 (singular symbols). Let m € R, n € N, and fix g € R? \ 0. We let S, denote the family of
functions (ag,y )ee(0,1],y>1 that are constructed as follows:

_’
&

k
for all (x,00,&", k) eRI x TxRI xZ, @, (x',60,& k) := a(sV(x/, o), &' + p y), (A-1)
where 0 € §™(0) and V € %Z(Rd x T). Below and in the main text we often set
X =&+ =
&
All results below extend to the case where in place of a function V that is independent of &, the
representation (A-1) is considered with a function V, that is indexed by ¢, provided that we assume that all
functions V, take values in a fixed convex compact subset K of O that contains the origin, and (V).c(0.1

is a bounded family of %Z(Rd x T). Such singular symbols with a function V. are exactly the kind of
symbols that we manipulated in the construction of exact solutions to the singular system (1-18).

Singular pseudodifferential operators. To each symbol a, , as in (A-1), we associate a singular pseudo-
differential operator Op®" (a) whose action on Schwartz class functions u € P(R? x T:CVN) is defined
by

1 g k
Op* (@u(x', b0) = Z/R ¥tk <8V(x’, 00), &' + ?ﬁ y)ﬁ(’;‘/, kydg', (A2
kez !

where (€', k) denotes the Fourier transform at &’ of the k-th Fourier coefficient of u with respect
to 6p. When a, , is defined as in (A-1), below and in the main text of the article, we often write
o(eV(x,0), X, y) in place of a, ,, (x', 6o, §', k), and op in place of Op*? (a). In particular, we let A p
denote the singular Fourier multiplier associated to the function

AKX, y) =2 +I1XHV

When V (x', x4, 6y) depends also on a normal variable x; > 0, we define the associated family of
operators depending on the parameter x, in the obvious way. The pseudodifferential calculus takes place
only in the tangential directions (x’, 6p). To discuss mapping properties, we first define “singular” Sobolev
spaces as follows.

Definition A.3. We let
HY (R xT) := {u e R xT): Z/ A+ |XP)aE, k)2 dg’ < oo}.
Rd
keZ

This space is equipped with the family of norms*?

1
WL /<y2+|X|2)~‘|ﬁ<s/,k)|2ds/.
Hey (2n)d§ Rd

4211 this appendix we use | - | instead of (- ) in the notation for norms on RY x T, but otherwise we retain notation from the
main text.
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Observe that, for s fixed, the space H*¢ depends on & with no obvious inclusion if ¢; < ;. However,
for fixed & > 0, the norms | - |gse 5, and | - |gse ,, are equivalent.

The next proposition describes some of the mapping properties of these operators. Detailed proofs can
be found in [Coulombel et al. 2012]. The constant C is always independent of ¢ € (0, 1] and y > 1, and
we denote the LZ(R? x T) norm by | - |o (which corresponds to s = 0 in Definition A.3).

Proposition A.4 (mapping properties). (a) Suppose o (eV (x,6p), X, y) € S, wheren >d+1 andm <0.
Then op : LA (R? x T) — L2(RY x T) and

C

(b) Suppose o (eV (x, 0), X, y) € S™, wheren >d+1andm > 0. Then op : H™*(R? xT) — L*(R? x T)

and
|0Du|0 S Clule,E’V,

(¢) (Smoothing property) Suppose o (eV (x,0y), X, y) € Sn_l, where n > d + 2. Then
op: L*(RY xT) - HY¥(RY x T
and
lopulgre,, < Clulo.
(d) Suppose o (eV (x,60), X,y) € SO, wheren > d +2. Thenop : H"*(R? x T) — H"*(R? x T) and
lopulge, < Clulge .

Residual operators. We sometimes denote by o p an operator that maps L>(RY x T) — L?>(R? x T) and

satisfies a uniform operator bound
lro,pulo < Clulo,

even when ry p is not necessarily defined by a symbol in some class S°. Similarly, we sometimes let
r_1,p denote an operator not necessarily associated to a symbol in S, ! such that

[r—1.pul e, < Clulo. (A-3)

For example, the composition 6_; pTty,p = r—1,p of an operator of order —1 (case (c) in Proposition A.4)
with an operator of order O (case (a) when m = 0) is of this latter type.

Remark A.5. Observe that a composition of the form g pr_| p is not necessarily an operator of type
r_1,p, a fact that is a source of difficulty in the proof of the main linear estimate, Proposition 2.2. This is
the case, for example, if ry p is the operator of multiplication by V (x’, 6y) € € })(Rd x T). On the other

hand we have
/
eV(x',00)r—1,.p=r_1,p,

and, more generally, Proposition A.4(d) implies that if o € S,? ,n>d+?2, we have

Opr—-1,p =7r-1,D-
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Adjoints and products. In spite of the fact that singular symbols and their derivatives fail to decay in
the classical way in (&', k, y), it is possible to construct a crude calculus of singular pseudodifferential
operators with useful formulas for adjoints and products, which, in particular, permit Garding inequalities
to be proved. This calculus was used repeatedly in the proof of the main linear estimate, Proposition 2.2.
Detailed proofs can be found in [Coulombel et al. 2012].

In the next proposition, o* denotes the conjugate transpose of the N x N matrix valued symbol o,
while (op)* denotes the adjoint operator for the L? scalar product.

Proposition A.6 (adjoints). (a) Leto € S,?, where n > 2d + 3. Then (op)* — (6*)p =r_1.p.
(b) Leto € S,%, where n > 3d +4. Then (op)* — (6*)p = ro.p.
Proposition A.7 (products). (a) Suppose o and t lie in S,?, where n > 2d + 3. Then
optp—(0T)p =r_1.p.
(b) Suppose o € S,%, T E S,? oro € S,?, TE S,{, where n > 3d + 4. Then
optp —(0T)p =70,p-
(c) Suppose o € S;l, T E S,%, where n > 3d + 4. Then
optp —(0T)p =7-1.p. (A-4)

Remark A.8. Observe that when t = 7(X, y) is independent of ¢V (x, 6p) and thus gives rise to a Fourier
multiplier, the composition opTp = (0 T)p is exact, a fact that has been used several times in the proof of
Proposition 2.2.

The equality (A-4) does not hold in general when o € S,i andt € S, !, and this is one of the main
difficulties in the proof of Proposition 2.4.

In the proof of Proposition 2.2 we use the following localized Garding inequality for zero-order
operators. As before, we write ¢ = (¢, y).

Proposition A.9 (Garding inequality). Let o (v, ¢) € S%(0) and x (v, ¢) € S°(0) be such that
Reo(v,0)>c>0

on a conic neighborhood of supp x. Provided the corresponding singular symbols lie in SS ,n>2d+2,

we have c C
2 2
Re(opxpu, xpu) = s xpuls— ;|M|o~

Extended calculus. In the proof of Corollary 2.3 we use a slight extension of the singular calculus. For
given parameters 0 < §; < 8, < 1, we choose a cutoff x¢(&’, kB/¢, y) such that

and define a corresponding Fourier multiplier xp in the extended calculus by the formula (A-2) with

k k
0<x°<l, Xe<%‘/,?ﬂ,y>=1 on {(V2+|§/|2)1/2§51‘?ﬁ

2| —
&

}, suppxeC{(szrIS’lz)”ZsB

x¢(&',kB/e, y) in place of o (¢V, X, y). Composition laws involving such operators are proved in
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[Coulombel et al. 2012], but here we need only the fact that part (a) of Proposition A.7 holds when either
o or t is replaced by an extended cutoff x°.

Appendix B: An example derived from the Euler equations

In this appendix we explain in a particular example how one can derive a single nonlocal nonlinear
equation that governs the evolution of the amplitude function a, which itself determines the leading profile
0 see Proposition 1.24. In the process, we provide explicit constructions of a number of the objects that
appeared in our earlier discussion of approximate solutions.

As in [Coulombel and Gues 2010], we consider the linearized Euler equations in two space dimensions
to which we add a nonlinear zero-order term (we slightly change notation compared with the introduction).
More precisely, we consider the system

Ve + A1y, VE + Ardy, Ve + D(VE, VE) =0, (t, x1, x2) € (—00, T] x R2,
BVE o+ W(VE, VE)|y—0 = £2G (1, x1, do(t, x1) /€), (1, x1) € (00, T] x R, (B-1)
VS|I<O :Oa

where the 3 x 3 matrices A, A, are given by

0 —v 0 u 0 —v
Ar=|=c2/v 0 0], Ay:= 0 u 0],
0 00 —2/v 0 u

and the parameters v, u, ¢ are chosen so that
v>0 O<u<c.

The latter assumption corresponds to the linearization of the Euler equations at a given specific volume v
with corresponding sound speed ¢, and a subsonic incoming velocity (0, u) (observe the difference with
[Coulombel and Gues 2010]). We also assume that D in (B-1) is a symmetric bilinear operator from
R? x R3 into R3, and that W is a bilinear operator from R* x R into R? (why we choose R? is explained
below).

For such parameters, the operator 0, + A0y, + A29y, in (B-1) is strictly hyperbolic with three charac-
teristic speeds:

MELE) =uby—o\JEE+E, M &) =ub, A& &) =ub+c\/E +E.

There are two incoming characteristics and one outgoing characteristic, so B should be a 2 x 3 matrix of
maximal rank. The choice of B is made precise below. Of course, the source term G in (B-1) is valued in
R%. We assume moreover that G is 1-periodic and has mean zero with respect to its third variable 6. We
choose a planar phase ¢ for the oscillations of the boundary source term in (B-1):

¢o(t, x1) ==t +nx1, (z,n) #(0,0).
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The hyperbolic region # can be explicitly computed and is given by

H={(t,n) e RxR/|t| > v c*—u?n|}.

For concreteness, we fix from now on parameters (t, n) such that n > 0 and T = cn. In this way, we have
(z,n) € %K.

We determine the planar characteristic phases whose trace on {x, = 0} equals ¢o. This amounts to
finding the roots w of the dispersion relation

det[t] +nA|+wAy] =0.

We obtain three real roots that are given by

) 2M ) ) 1 _u
Ql.:l_MZQ, wy =0, Q3.=—Mﬂ, M.:ZE(O,I).

The associated (real) phases are ¢; (¢, x) := ¢o (¢, x1) + w;x2, i = 1,2, 3. The relations
T+2(m @) =1+r(, @) =T+ A (1, w3) =0
yield the group velocity v; associated with each phase ¢;:
1—-M? [(—¢ —c 0
0 (), e (). e ().

Hence the phase ¢, is outgoing while ¢;, ¢3 are incoming. With the notation of the introduction, we can
also compute

14 M? \
1— 2" v 0
ry = C . ry = C . r3 = C .
2Mc 0 u
.
¢ LM ( 1{;} 0= L i;v ¢ ! _11//v
1= -1l/c|, b= c |, bai=—r0 c |,
2(14+ M?) 1 /u 2 1/ 1+M Mc

from which one can obtain the expression of the projectors P;, P>, P3 as well as the expression of the
partial inverses R, R;, R3. The stable subspace at the frequency (7, 1) is spanned by the vectors r;, r3.

Ov O
B =
(uOv)’

so that we can choose e := ry — r3 as the vector that spans ker BN E*(z, n). The reader can check that all

The matrix B in (B-1) is chosen as

our weak stability assumptions are satisfied with this particular choice of boundary conditions. (We skip
the details, which are just slightly more complicated than those in [Coulombel and Gues 2010].) The
one-dimensional space BE*(t, ) can be written as the orthogonal of the vector b := (u, —c)” .



SEMILINEAR GEOMETRIC OPTICS WITH BOUNDARY AMPLIFICATION 621

The leading profile ¥ and the corrector V! satisfy (see Proposition 1.24)

VO =] =0a(t, X, 0)ry +03(t, x, 03)r3, Vi =Ti(t, x,0)r1.

mc

Moreover, we have
VO(t, x1, 0, 60, 60, 60) = a(t, x1, Op)e = a(t, x1, ) (r2 — 3),

where the scalar function a is 1-periodic with respect to 8y and has mean 0. The Fourier coefficients of a
are denoted by ay, k € Z, where ag equals 0 for all time ¢. Since the functions o7, o3 satisfy the transport
equations®?

0;07 + vy - Vy0o = 0,03+ v3- Vo3 =0,

and vanish for ¢ < 0, we obtain the expressions

X2 b ) X2
az(t,x,92)=a<t——,x1+—,02), 03(2‘,)(,93)=—a<t——,x1,93). (B-2)
u M u

1

out» W€ must solve

To compute V'

Eou(L@VE +ATTDEAD V0 ) =0 (here Eoy = E), (B-3)

out mc’

and we thus need to determine the resonances between the phases. A simple calculation shows that there
is a nontrivial n € Z3 satisfying n1¢| = na¢o + n3¢3 if and only if M 2 is a rational number. We thus
assume this to be the case from now on. The resonance between the phases reads

nii=q, ny:=p+q, nzi=-p, with ——073 ==,

and it is understood that p, g are both positive and have no common divisor (for instance p = g = 1 when
M equals 1/+/3). Expanding the quadratic term D (V0 V?nc) in Fourier series, and using the relation

nc’

1 0
6 =2|0|UZ|ny|,
0 n3
we obtain (using the expressions (B-2))
EV(A;' DO V90) = =2 Y aripig (1= 1+ 52 Jaip (1= 5,31 )™ PLAT DG, 1),
2 inc inc prq u M P u 2

keZ

In terms of the interaction integral, we obtain the expression
—1 0 o0
E; (AZ D(oVinc’ Ol/’inc))

! X2 X2 n n3 X2 1
=-2f @p|\t——x1+—,—0——60|a|t——,x1,03 | dOsPLA, D(ra2, 13),
0 u M ny ny u

43Observe that there is no zero-order term in the transport equations because the zero-order term in (B-1) has only a quadratic
part. This choice has been made for the sake of simplicity.
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where (a),, still denotes the action of a under the preparation map that retains only Fourier coefficients
that are multiples of n,. Consequently, (B-3) reads

1 — M? 1—M?
O = T T O )

1
x X2 n X2

=d t— ——9——9 t——,x1,065)dos, -

/O(a)n2< Ryt " 3>( b 3) 3, (B-4)

d 2 1_”25 A D@, 13).
= —2u ra, r
1+ 1 2,13

The transport equation (B-4) is solved by integrating along the characteristics, and we obtain the expression

71 (t, 09)_ //() Zs—(l—MZ)[ 2 1_4120 ) nl@ ”39
X1, a , X1+ 2c¢ —-S), —01 — —
! ! ! " 1+M2 A l—I-M2 ny ! 1’123

2s — (1 — M*)t N 1—M?
Xa|l ———————, P a—
4 14+ M2 i Cl+M2

with

(t—s), 93) dozds. (B-5)

The Fourier series expansion of t; reads

25 — (1 = M)t 1 — M?
Tl(t xlao 91)_‘1%/ ak(P+q)( 1+M2 ,X1+201+M2(Z—S)

25 — (1 — M%)t 1—M? 2imkgt
X d kp(W’XI cl+M2(t—s) dse” T,
The equation governing the amplitude a reads
b-((@*)*W¥(e, €) + Tix=0Bri — BRIL()V{,)|x,=0) =b- G

where functions are evaluated at x; = 0 and 6] = 6, = 63 = 6. Since we already have the expression

of 7, in terms of a, the only task left is to compute the trace of the term BR(L(®)V? ). Recalling that

mc
Ryro = Ryr3 =0, we have

BR(L()VD V=0 = (BR2AS 'ra+ BR3AS 'r3)d,a+ (BRyAS ' Ajra + BR3 AL ' Ar3)d,,

with a the unique primitive function of @ with zero mean. Using the expressions of R,, Rz in terms of the
projectors Pj, Py, P3, which themselves can be obtained from the vectors r;, £;, we get

4 . uv(l+ M?)
b(BR2A2 r2+BR3A2 r3)=—M—2n,

1 1 ucv(l + M?)
b(BR2A2 A1r2+BR3A2 A]l’3):M—2n.

The fact that both quantities are proportional to each other with a factor —c comes from a general fact;
see [Coulombel and Gues 2010, Lemma 5.1].
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The function a should therefore satisfy the amplitude equation

uv(l + M?
(M—n)(a,a ¢y a) +b-W(e, e)@?)*+b-Britiyn,—0=b-G,
or, equivalently,
uv(1+ M?)
M—zn(a,a — Cax]a) +b- lIf(e, 8)890(612) +b- Bry 8901'1 |Xd=0 =b- 890(;. (B—6)
Let us define the two constants
M?*n ducM?n 1
= ———b V(e e), = ——41- A, D(rp,13).
A= T M) (e,e), T A (r2,13)
Then (B-6) reads
2 71 Mzﬂ
B,a — Caxla +Ol]890(6l ) +a28903|x2=0 = mb . aQOG,

where the derivative 9y, /d|x,—o is computed from the relation (B-5):

25 — (1 — M)t 1— M2 " s
aGQd xz—O (390a)n2 ]+M2 , 1+2c1—|—M2(t_S)’ n_ZQO_E®
25 — (1 — M%)t 1 — M2
xa\ = o nte a9, 0 )deds.

In terms of the Fourier coefficients ay, the latter equation is seen to be equivalent to the infinite system
of transport equations
2y

8tak—c8xlak+2inka1 Zak/ak_k/ =2in kmb Gk, k ng,
k'eZ
and
darg — dy, arg + 2imkqay Z ayag—p +2imkqa;
k'eZ
! 2s — (1 — M*)t 1—M? 2s — (1 — M*)t 1—M?
“Jo oo\ T e Y ) T e )@
2
=2imkq

————b - Gyy.
uv(l + M?) kq
We recall that the coefficient ag vanishes.

In the special case M = 1/+/3, the above system reduces to

35—t

2
. n
=2ink—b-Gy, keZ,
4uv

t
Oray — oy, ar +2imkay Zak/ak_k/-i-Zinkag/ a2k<¥,x1+c(t—s))a_k<
kez 0

X1 +§<t—s>) ds
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with parameters o1, o, computed from the nonlinearities D, ¥ in (B-1):

o = ib -W(e,e), ar:=ucnl -Ang(rg, r3).
duv
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THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT
OF THE N-SPHERE

LORENZO GIACOMELLI, JOSE M. MAZON AND SALVADOR MOLL

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total
variation of a vector field with respect to the L?-distance — from a domain of R” into a hyperoctant of
the N-dimensional unit sphere, 8_’{ _', under homogeneous Neumann boundary conditions. In particular,
we characterize the lower-order term appearing in the Euler-Lagrange formulation in terms of the
“geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower
semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a
shortest path between two points on §f ~! with respect to a metric which penalizes the closeness to their
geodesic midpoint.

1. Introduction 627
2. Preliminaries 631
3. Existence of solutions 639
4. A nonconvex variational problem 652
Acknowledgement 669
References 669

1. Introduction

Throughout the paper,  C R™ is a bounded domain with Lipschitz continuous boundary 92 and SV ~!
is the unit sphere of R". For a smooth map u : @ — SV~ and 1 < p < oo, the p-energy of u is given by

E,(u) =/ |Du|? dx.
Q

A critical pointu € C'(2; SN 1) of the p-energy, a p-harmonic map, formally satisfies the Euler—Lagrange
equation
—div(|Du|?~>Du) = |Du|’u. (1-1)

The term |Du|? plays the role of a Lagrange multiplier corresponding to the pointwise constraint |u| = 1.

Mazén and Moll have been partially supported by the Spanish MEC project MTM2012-31103.
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variational problems, geodesics, Riemannian manifolds with boundary, image processing.
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One well-known method to obtain (distributional) solutions to (1-1), the so-called heat-flow method,
introduced by J. Eells and J. H. Sampson [1964] for p = 2 in the general framework of Riemannian
manifolds, consists in looking at long time limits of solutions to

u, =div(|Du|?">Du) + u|Du|?, |u|=1. (1-2)

Equation (1-2) is also a prototype for often quite complicated reaction-diffusion systems for the evolution
of director fields which arise in various contexts — multigrain problems [Kobayashi et al. 2000], theory
of liquid crystals [van der Hout 2001], ferromagnetism [DeSimone and Podio-Guidugli 1996], and image
processing [Sapiro 2001]. For p > 1, (1-2) with various boundary conditions has been widely studied over
the last decades; referenced discussions of the cases p =2 and p € (1, oo) may be found, for example, in
[Bertsch et al. 2003; Bertsch et al. 2002; Chen 1989; Struwe 1992] and [Chen et al. 1994; Hungerbiihler
2004; Misawa 2002], respectively.
Here we are interested in the case p = 1, for which (1-2) formally reads

D
w, = div( —— ) +u|Du|, uweSN. (1-3)
|[Du|

More precisely, we focus on the homogeneous Neumann problem for (1-3) when the target space is a
compact subset A of SN=1: that s,

. Du N—1
u, =div Du] +ulDu|,ue ACS ", inQr=(0,T) x 2,
u

2 )=0 on St =(0,T) x 9%, (1-4)
| Du|
u0,-)=uo(-), up €A, in Q,

where v denotes the outward unit normal to 92. Problem (1-4) was proposed as a tool to denoise either
two-dimensional image gradients and optical flows, in which case N =2 and A = S' [Tang et al. 2000],
or color images by smoothing the chromaticity data while preserving the contrast, in which case N =3
and A is an octant of the sphere [Tang et al. 2001].

While the scalar and unconstrained version of (1-3), that is, the so-called total variation flow, is by
now well understood after the pioneering paper [Andreu et al. 2001] (see the monograph [Andreu-Vaillo
et al. 2004] and the references therein or [Bonforte and Figalli 2012] for an up-to-date reference list).
An existence theory for (1-3) is still open in general. Special cases considered so far have dealt with
piece-wise constant data [Giga and Kobayashi 2003; Giga et al. 2005; Giga et al. 2007], initial data with
“small” energy [Giga et al. 2004], and rotationally symmetric solutions [Giga and Kuroda 2004; Dal Passo
et al. 2008; Giacomelli and Moll 2010]. We refer to [Giacomelli et al. 2013a] for a detailed discussion of
previous attempts to obtain a solution to (1-4) given in [Barrett et al. 2008; Feng 2010].

In dealing with (1-3), the most delicate issue is of course the interpretation of the bounded matrix Z,
which represents Du/|Du|, and of the measure u, which represents u|Du|, the latter being the product
between a measure and a possibly discontinuous function. Very recently, an interpretation of (1-3) has
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been proposed in [Giacomelli et al. 2013a]: in summary,
u,(t) —divZ(t) € uy |Du|(t), u(t) € A forae.t€[0,T] (1-5)

in the sense of distributions, where Z(¢) is a bounded matrix that represents Du(¢)/|Du(t)| (the precise
meaning is given in Proposition 3.5) and ug|Du|(¢) denotes a set of vector-valued measures which are
oriented as u(#)* (the precise representative of u(¢)) and have total variation density |Du(¢)|. For N =2,
this interpretation has led to the existence and uniqueness of a solution to (1-4) when A is a semicircle
[Giacomelli et al. 2013a, Theorems 4.1 and 5.1] together with the existence of a solution when A = s!
and ug € BV (R2; S') has no jumps by an “angle” larger than 7.

The aim of this paper is to prove an existence result, according to the same interpretation, for an
arbitrary dimension of the target sphere. We consider (1-4) in the first hyperoctant of the N-sphere:

A:Sﬁfl :={(x1,...,xN)eSN*1:x,-zOfori:l,...,N}

(a natural assumption in the context of image processing; see above). Note that in this case, for every pair
U_,u, € 8171 there exists a unique geodesic midpoint, ug = (u4 +u_)/|us +u_| (see Definition 3.1).
Hence we may define the geodesic representative of u € BV (L2; Sﬁ 1 u ¢ :=u"/|u*| (see Definition 3.2
and Remark 3.3) and the set of measures in (1-5) reduces to the singleton u(z)g|Du(z)|.

The complete definition of a solution and the statement of the main result are given in Definition 3.4
and Theorem 3.6, respectively. We obtain a solution as the limit of a sequence of solutions to the following
approximating problems (see Proposition 3.7 and Lemma 3.8):

u; =divZ® +p®, usegﬁ_l in Qr,

[Z¢,v]=0 on St,
u®0,-)=uy(-) in 2,
where
VA =$"‘Vu5—i-v—u‘S e = e%uf|Vul | + uf Vur P (1-6)

/|Vu£|2+82’ /|Vu8|2+82’

and the initial data suitably converge to a given ug € BV (L2; §ﬁ_l) (see Lemma 3.9). The strategy
we follow is completely different from that in [Giacomelli et al. 2013a], where the special structure of
S' was heavily used. Its core, neglecting any technicality and concentrating on the crucial issues, may
be summarized as follows (see also [Giacomelli et al. 2013b] for a slightly more detailed discussion).
By fairly standard compactness arguments, we obtain convergence of u®, Z¢, and u® to u, Z, and u,
respectively (see Step 1 in the proof of Theorem 3.6). The functions u and Z can be seen to satisfy, for
ae. t€[0,T],

u,(t) —divZ(r) = p(r) in M(2; RV).
Then we show, by a relatively soft argument, which nevertheless requires quite a few preliminaries, that

n=x(x(ZAu)ADu) and |u(¢)| <|Du(t)| as measures fora.e.t e [0, T] (1-7)
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(see Step 2 in the proof of Theorem 3.6). Hence, in order to identify u it suffices to show that

R~ >1 forae.r€[0,T], (1-8)
| Du(t)]

where u(t)/|Du(t)| denotes the Radon—Nikodym derivative of () with respect to |Du(t)|. Indeed,
(1-7) and simple vectorial identities then imply that

u(t)g .

w(t) =u(t)g|Du(t)| forae.re(0,T]

(see Step 6 in the proof of Theorem 3.6). In view of (1-6), the lower bound (1-8) for the diffuse part of
p follows (see Step 4 in the proof of Theorem 3.6) from a suitable modification of a relaxation result
[Alicandro et al. 2007], applied to each of the components of

F(v) :=/ v(x)|Vv(x)|dx
Q

(see Section 2F). On the other hand, the same argument would lead to a suboptimal lower bound on p(¢)
over the jump set of u(¢) (see Remark 3.10). Moreover, the results in [Alicandro et al. 2007] can not
be directly applied to u(t), - p*(t), since u(t), is a discontinuous function (though a very special one).
For these reasons, we revisit the blow-up argument in [Fonseca and Miiller 1993] and the dimensional
reduction argument in [Fonseca and Rybka 1992] to conclude that

p(1) 1

1
O Du@)] = a0, @) — w0 -] yle“ffN/o w(s () y @)y ()l ds (-9

for a.e. t and %"~ !-a.e. x € Jy(), where
Ty i=1{p e Wh(©,1);SY™) : y0) =u@)-(x), p(1) = u(r)+(x)} (1-10)

(see Step 5 in the proof of Theorem 3.6). The minimization problem which appears on the right-hand
side of (1-9) is crucial in our argument. In Section 4 we argue that

1
meipf g y($)Iy'()lds = luy —u_|,
e where I'={y e W"'((0, 1); SY™) (O =u—, y() =uy} (1-1D)

(see Theorem 4.1). Together with (1-9), (1-11) yields the lower bound (1-8) on the jump set of u(¢) too.

The minimization problem in (1-11) is equivalent to finding— and characterizing the length of —
shortest paths between u_ and u in a Riemannian manifold with boundary whose metric penalizes the
closeness to ug. In addition, the metric may degenerate at a point of the manifold: for instance, if N =3,
u_=(0,0,1),and uy = (0, 1,0), then u, - (1, 0, 0) = 0. In these respects, the minimization problem
has a geometrical interest of its own.

It turns out that the minimum in (1-11) is achieved by the standard geodesic on Sﬁ ~! connecting u_
and uy; see Lemma 4.2. Nevertheless, the analysis of (1-11) is highly nontrivial for two reasons. Firstly,
one has to characterize the length of candidate shortest paths which may in principle intersect and/or
de-touch from the boundary of the manifold. Secondly, the functional in (1-11) is genuinely nonconvex:
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indeed, besides the aforementioned standard geodesic, it always possesses a second smooth critical point,
which we show not to be a shortest path. In addition, in the extreme cases in which u and u_ are
two distinct “vertices” of 81 ~!, the functional in (1-11) possesses a second shortest path which is not a
critical point: it follows the boundary of 81_] and passes through the point of degeneracy. For instance,
if N=3,u_=(0,0,1),and u, = (0, 1,0), then u, = (0, 1, 1)/+/2 and the curve

(sin(rs), 0, cos(mrs)) if s € [0, 1/2],

Pis) = i(sin(nS), —cos(ms),0) ifs e (1/2,1]

is such that

172 cos(mrs)

V2

Finally, we note that if the paths in T" are allowed to take values in a set A which contains SY !, then

nds=x/§=|u+—u_|.

1
f ug-y()|y'(s)lds=2
0 0

in general the standard geodesic is not a minimizer and (1-11) does not hold; an example is given in
Remark 4.4.

The paper is organized as follows. In Section 2 we collect the definitions and results which we need
concerning multivector fields, functions of bounded variations, a generalized Green’s formula, tensor
fields, and lower semicontinuity of integral functionals. In Section 3 we introduce the concept of and
prove the existence of a solution to (1-4). Section 4 is devoted to the minimization problem in (1-11).

2. Preliminaries

In this section we introduce some notation and some preliminary results that we need in the sequel.

General notations. Throughout this paper #"~! denotes the (m — 1)-dimensional Hausdorff measure
and ™ the m-dimensional Lebesgue measure. We denote by .L(2; RY) the space of R"-valued finite
Radon measures on €2; see [Ambrosio et al. 2000, Definition 1.40]. We recall that AL($2; RY) is the dual
space of Co(£2; RY). Throughout, the subscript o denotes spaces of compactly supported functions. We
denote &(2; RY) := Coo (2 RY). When N = 1, we often do not specify the target space (for example,
M(R) = M(2; R)). Finally, if A C R" is compact and Y (Q; RV) is a space of functions, we sometimes
use the notation Y(Q2; A) := {u € T(Q:; RY) : u(x) € A for £™-a.e. x € Q).

2A. Multivectors. Here we recall some definitions and basic properties about multivectors that we need
in our analysis. We refer to, for example, [Federer 1969, Chapter 1; Darling 1994, Chapter 1] for details.

The spaces Ag(R") and A (R") coincide with R and RV, respectively. For 2 < k <N, the k-th exterior
power of RV, denoted by A;(R"), is a set spanned by elements of the form

uiA-Aug, w;eRV i=1,...,k
(elements of this form are called “generators”) and subject to the following rules:

(D) (av+bw)Aur AN---ANup=a(WAur A---Aup)+b(wAuyA---Auy).

(2) uy A --- Auy changes sign if two entries are transposed.
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(3) For any basis {e, ...e,} of RV, {ey := €y, A---Aey, :a € I(k, N)}is a basis for A;(RV).
Here we have used the standard notation for ordered multiindexes:
Ik, Ny ={a=(a,..., o), €Z, 1 <o <-- <o <N} (2-1)

The elements of Ay (RY) are called multivectors (or k-vectors), and Ax(R") is a vector space of dimension
(IZ ) We will use the well-known equality [Darling 1994, Formula 1.68]

lal’|b|? = (a-b)* + (anb)* foralla,beR". (2-2)

Given k, p € {0, ..., N} with k 4+ p < N, there exists a unique bilinear map (A, p) — A A p from
Ar(RY) x AP(RN) to Ak+p(RN), whose effect on generators is

@y AU N AU AN OLAVIA - AV) =UT AU A - AU AV AV AV,
This map satisfies
AAR=(=D*(uAL) forreAr@RY), peA,RY). (2-3)
The Hodge-star operator is an isomorphism from Ay (R") to Ay_;(RY), defined on the basis as
x(€g N Ney) =€y N - Neg,, (2-4)

where {«q, ..., ay} has positive signature. In particular, in what follows we will systematically identify
Ay_1(RY) with R¥. We will use the following well-known formulas:

x(xd) = (= DFN=Pp forall A € Ap(RY) (2-5)
(see, for example, [Darling 1994, (1.64)]) and
anx(brc)=(a-c)xb—(a-b)xc foralla,b,ceR" (2-6)
(see, for example, [Darling 1994, Table 1.2]). It follows from (2-3), (2-6), and (2-5) that
|b|%a = (a-b)b—x(x(a Ab) Ab) foralla,beR". 2-7)
Introducing the norm

172
|x|k=< > |xa|2) . whereA= )" e, (2-8)

aecl(k,N) aecl(k,N)

and using (2-4), it is immediate to see that
| %Ayt = |Alx for any A € Ax(RM). (2-9)
Finally, we recall that, given A € Ax(RY) and 5 € A p(IRN ) such that one of them is a generator, we have
A Ak4p < Mkl ps (2-10)

see [Federer 1969, p. 32].
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2B. Vector-valued functions. Let (X, | -||) a Banach space with dual X’ and let U C R? be a bounded
open set endowed with the Lebesgue measure $£¢. We denote by (-, -) the pairing between X and X'.
A function u : U — X is called simple if there exist x1,...,x, € X and Uy, ..., U, £™-measurable
subsets of U such that u = )_;_, x; xy,. The function u is called strongly measurable if there exists a
sequence of simple functions {u,} such that ||u, (x) —u(x)|| = 0 as n — +oo for almost all x € U. If
1 < p < oo, then L?(U; X) stands for the space of (equivalence classes of) strongly measurable functions

u:U — X with
1/p
llullp = (/ ||u(x)||pdx) < 00.
U

Endowed with this norm, L? (U; X) is a Banach space. For p = oo, the symbol L*°(U; X) stands for the
space of (equivalence classes of) strongly measurable functions u : U — X such that

lut]l oo := esssup{|lu(x)|| : x € U} < 0.

IfU=(0,T),wewrite L?(0, T; X)=L?((0,T); X). For1 < p < o0, LP(0,T; X A/p+1/p'=1)
is isometric to a subspace of (L?(0, T; X))’, with equality if and only if X’ has the Radon—-Nikodym
property; see, for instance, [Diestel and Uhl 1977].

We consider the vector space 2(U; X) := C5°(U; X), endowed with the topology for which a sequence
¢n — 0as n — +oo if there exists K C U compact such that supp(¢,) C K for any n € N and D%¢p, — 0
uniformly on K as n — +oo for all multiindexes «. We denote by %’(U; X) the space of distributions
on U with values in X, that is, the set of all linear continuous maps 7 : @(U; X) — R. As is well known,
LP(U; X) Cc 9'(U; X) through the standard continuous injection. Given T € %' (U; X), the distributional
derivative of T is defined by

(DT, @) :=—(T, 0ip) forany ¢ € 9(U; X)andanyi e ({l,...,d}. (2-11)
General notations for matrices. If A = (af) is an N x m matrix, we write a¢ = (af, .. .a,fl) forl<fl<N
and a; = (al.l, e, al.N) forl<i<m. If B= (bf) is also an N x m matrix, we let
N m N m 1/2
A:B=>) > afbl and [A|=(A:4)"7= (ZZ(af)Z) :
=1 i=1 e=1 i=1
Given A = (ay, ..., a,) € R¥N*™ and b € RV, we let

AANDb:=(a AD,...,a, \D),
*(AAD):=(x(a1 AD), ..., *x(a, ADb)).
2C. Functions of bounded variation. A vector-field u € L'(Q; RY) has bounded variation, and we write

u € BV(Q; RY), if there is an N x m matrix Du, whose components D;u' are finite Radon measures,
such that
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N N m
Z/ ubdivetdx = — Z Zf godeiue for all ¢ € (C(l)(Q; RM))™.
=179 &

=1 i=1

Its variation measure |Du| is a finite Radon measure defined on open sets U C €2 by

N
|Du|(U)=sup{Z[ udivdx : ¢ € (Cy(U; RV)™, ll¢lloo < 1}.
=1"Y

The matrix-valued Radon measure Du is decomposed into three mutually orthogonal measures (see
[Ambrosio et al. 2000; Evans and Gariepy 1992; Ziemer 1989]):

Du=Vu¥" + Du+ D’ u,

where Vu denotes the Radon—Nikodym derivative of Du with respect to £™". The Cantor part D u is
supported on the set of Lebesgue points of u, 2\ S, that is, those points x € 2 for which there exists
i(x) € RV such that

Iim —— —u dy =0.
plﬁ}if’”(Bp(x)) B,(x) ) = ol dy

The jump part D/u is supported on the set of approximate jump points of u, J,, that is, those points
x €  for which there exist u (x) Zu_(x) € RN and v, (x) € S~ ! such that

1

lim T
040 Swpm(Bp (x, vu(x))) Bf,t(x,vu(x))

lu(y) —us+(x)|dy =0,
where

By (x,vu(x)) = {y € By(x) : (y —x, vy (x)) 2 0}.

The jump set J, is a Borel subset of S, that satisfies %mfl(Su\Ju) = 0. The precise representative
u* : Q\(Sy\Ju) — RY of u is defined to be equal to & on Q\S, and equal to (u_ +uy)/2 on J,. In
what follows, we identify u = u# = u™* on Q\ S,.

2D. A generalized Green’s formula. Let
X () ={z€ L®(Q;R™) :divz € M(Q)}
and
Mye(S2; RV) := {pu € M(Q; RY) : || (B) = 0 for any Borel set B C Q : %"~ (B) = 0}.

In [Anzellotti 1983, Theorem 1.2] (see also [Andreu-Vaillo et al. 2004; Chen and Frid 1999]), the weak
trace on 9€2 of the normal component of z € X 4 (£2) is defined. Namely, it is proved that there exists a
linear operator [ -, v]: X () — L*°(32) such that ||[z, v]||z~@pq) < llzllze) for all z € X 4 (2) and
[z, v] coincides with the pointwise trace of the normal component if z is smooth:

[z, v](x) = z(x) - v(x) forallx € aQif z € C'(Q, R™).
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It follows from [Chen and Frid 1999, Proposition 3.1] or [Ambrosio et al. 2005, Proposition 3.4] that
divz € My (R2) forall z € X 4 (). (2-12)

Therefore, given z € X () and u € BV (2) N L>(R2), the functional (z, Du) € 9’'(2) given by

u*(pa’(divz)—/ uzVedx (2-13)
Q

((z, Du), @) == —f

Q

is well defined, and the following holds (in [Caselles 2011], see Lemma 5.1, Theorem 5.3, and the
discussion after Lemma 5.4):

Lemma 2.1. Let 7 € X () and u € BV (2) N L®(Q). Then the functional (z, Du) € &' () defined by
(2-13) is a Radon measure which is absolutely continuous with respect to | Du|. Furthermore,

/u*d(divz)-l-(Z,Du)(Q):/ [z, v]u dge™"
Q

aQ
and

div(zu) = u*divz + (z, Du) as measures.
We will use the vector-valued version of Lemma 2.1. To this aim, we introduce the space
xXh@=1z=¢",....2" 2t eXu(@) fort=1,...,N}.
Given Z € X} () and u € BV(Q2; RY) N L>®(Q; RY), we use the notation
divZ:= divz', ..., divzY),

[Z,v]:= ([zl, v],..., [zN, v]),

N
Z:Du .= Z(zg, Dub).
=1

Then, as an immediate consequence of (2-12) and Lemma 2.1, we have:

Corollary 2.2. Let Z € X}/ (Q). Then
div Z € My (2; RY).

Furthermore, for any u € BV(; RY) N L®(Q; RY), Z : Du is a Radon measure which is absolutely
continuous with respect to | Dul|,

/ u*-d(divZ)+ (Z: Du)(R2) :/ [Z,v]- udyem! (2-14)
Q aQ
and

div(ZTu)=u*-divZ+Z: Du as measures. (2-15)



636 LORENZO GIACOMELLI, JOSE M. MAZON AND SALVADOR MOLL

2E. Multivector fields. Let U C RY. A multivector distribution in U is a linear continuous map
L e 9 (U; Ar(RY)) (see Section 2B). It may be expressed in terms of the basis (3) as

A= Y sy with i, € D' (U:RY) forany a € I(k, N).
ael(k,N)

Then, according to (2-11),

Dik= )  Didse, foranyief{l,....d}. (2-16)
ael(k;N)
From (2-16), the following two identities are easily seen to hold for k, p e Nandi € {1,...,d}:
DiAAn)=DiAAn+AADiy (2-17)

for any A € L2(U; Ax(RY)) such that D;A € L*(U; Ar(RN)) and any 5 € L*(U; AP(RN)) such that
Din e L*(U; A,(RY));

%(D;A) = D;(xA) forany A € @' (U; Ar(RV)). (2-18)

For any k € N, (A;(RV))™ is a Banach space. We use the norm

m 1/2
e (Z |wi|,%> for st = (s, ..., sl)
i=1

with | - | given by (2-8).
We will now state and prove the analogue of Corollary 2.2 for a multivector field

A= (A, ..., dAw) € L=(Q; (ARV)™).
We define m
div o := ZDi(&di). (2-19)
i=1

Square-integrability of div o suffices for our purposes. Hence, we introduce the space
Xo (2 Ay-2(RY)) = (st € L¥(Q (Ay—2(R™)™) 1 div sl € L2(Q: Ay—2(RM))).
The following holds:

Lemma 2.3. Let A € X»(Q2: Ay_2(RN)) and consider u € BV(2; RN)YNL?(Q2; RN). Then the functional
x(sd A Du) : D(Q; RY) — R defined by

(x(A A Du), ) := —/ *(divd Au) - Pdx — Z/ *(d; Au)-0;Ddx (2-20)
Q i /e

is an RN -valued Radon measure on 2, absolutely continuous with respect to | Du/|, with

| % (4 A Du)|(B) < ||Alleo|Dul(B) for any Borel set B C Q. (2-21)
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Furthermore,
div(x(A Au)) = *(AA Du) ++(divd Au)E™  as measures. (2-22)

Proof. Since 2 has compact Lipschitz boundary, it follows from [Ambrosio et al. 2000, Theorem 3.21,
Remark 3.22, and Corollary 3.80] that the sequence u, := (Tu) x p, € C ®(Q) (here T denotes an
extension operator) is such that u,, — u in BV(2; RY), fQ |Vu,|dx — |Du|(S2), and u,, — u* %" -ae.
in Q. Furthermore, by construction and since u € L2(Q; RN), we have u, — u in L?(2; RV). Then

m
(x(sd A Du), @)Y _ lim (/ s(div sd A y)-® dx + Z/ (sl /\un)-aid)dx).
n—o0o Q ‘= Q
Integrating by parts and using (2-18), we obtain
m
(x(A A Du), ®) = — lim (/ *(divd Auy) @ dx — Z/ *(0; (A; Nuy)) - CDdx)
i=1

m
@D Jim Z/ (i A O;uy)- D dx.

Therefore, applying the Holder and Cauchy—Schwarz inequalities,

(2-9) m
et A D), @) 2 10 tim Y [ 1o A bl d
n—oo i Q
(2-10) ) "
< 1Pl hm/Zwiunnwim_zdx
n—oo Qi:]

m 12
: 12
|@lloo lim /Q |Vun|(§ |&¢,|N_2> dx

[[@llooll Ao lim / |Vu,|dx
n—oo Q

A

A

= [[Plloolldlloo| Du|(£2).

The arbitrariness of ® completes the proof of (2-21). It follows from (2-20) and (2-19) that div(x«(d A u))
is also an RY-valued Radon measure in 2, and (2-22) follows from (2-19). U

2F. Lower semicontinuity of integral functionals over W1-1(L; Sf 1), Let f:Qx Sf_l — R4 and
consider the energy functional defined in L!(; Sﬁ by

flx, v) | Vo) |dx ifve Whi(Q; Y1,
Fr(v):= »/sz -
+o00 otherwise.

The purpose of this section is to restate, to the extent we need in the present setting, a few lower
semicontinuity results obtained in [Fonseca and Rybka 1992; Alicandro et al. 2007] (see also [Giaquinta
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and Mucci 2006] for related results when the target space is a general manifold). We consider the
following hypotheses for f:

(H1) f is continuous and nonnegative;

(H2) (uniform boundedness) a positive constant C; exists such that
|f(x,8)| <C; forall (x,s) e xSy
(H3) for every compact set U C 2, there exist a continuous function w, with w(0) = 0, such that
[ f(x,s)— f&x', ) =w(x—x'|+|s—5'|) forall (x,s), (x',s)eU x Sﬁ_l.

For ¢ € R™ such that [¢| =1, we define Q. := Rg[—%, %]m, where R denotes a rotation such that
Rce,, =¢. Givena, b e Sf\r/_l, we set

K¢(x,a,b,¢) :=inf{/Q fx,v(y)|Vv(y)|dy:veP(a,b, g)}, (2-23)

where

P@,b,g):={veW (0 SV Y :ivx)=aifx-¢c=-1 v(x)=bifx-¢c =1} (2-24)

Lemma 2.4. Assume (H1). Then

1
Ky(x,a.b,q) =inf{/0 fay)y@lde:y e WH(©, 1D); SYh, p(0) =a, p(1) =b}- (2-25)

The proof of Lemma 2.4 is identical to that of [Fonseca and Rybka 1992, Proposition 2.6], where the
same result has been proved (under more general assumptions on the energy density) when the target
space is RV rather than S%'~'. Therefore we omit it.

In order to obtain a lower bound on the lower semicontinuous envelope of F ¢, in particular of its
jump part, one needs an approximation lemma which relates a generic sequence in W!!'(Q o5 Sﬁ -h,
converging to a step function, to a nongeneric one in %(a, b, ¢):

Lemma 2.5. Assume (H1) and (H2).
Leta,b e Sﬁ_l and let v, € Wl’l(Qg; Sﬁ_l) such that v, — ug in Ll(Qg; 81_]), where

b iflx,5)=0,
uox) = {a if (x, <) <0.

Then a sequence w, € P(a, b, ¢) exists such that w, — ugy in Ll(Qg; 81_1) and

lim inf f(x,v,)|Vv,|dx > lim sup fx, wy)|Vw,|dx.
n—oo
[0} ¢ n—oo [ ¢
Lemma 2.5 may be proved following line by line that of [Alicandro et al. 2007, Lemma 5.2], where the
same result was proved (under more general assumptions on the energy density) when the target space is
SN=1, and therefore we omit it. We just mention that the proof may in fact be simplified in the present
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setting by using the standard projection onto Sﬁf‘l (see estimate (3-23) and Lemma 3.9 below for a
related approximation result).
Let % be the functional defined in BV($2; S ') by

%.f(v):=/g2f(x,v)|Vv|dx+/J Kf(x,v_,v+,v,,)d%ml—l—/Qf(x,v)dlDCv|

(v)
(and 400 elsewhere). Under an additional coercivity assumption on f, and when the target space is SV !,
in [Alicandro et al. 2007, Proposition 5.1] it is proved that 9 coincides with the lower semicontinuous
envelope of & ; with respect to the L'-convergence. Of course, coercivity is crucial for the upper bound in
that it guarantees that any sequence along which % is bounded has a convergent subsequence. However,
it may be dropped when only a lower bound is needed, provided it is a priori known that a sequence has
good convergence properties:

Proposition 2.6. Let f satisfy (H1)~(H3) and let v, € W1 (2; SY ™) such that v, — v e BV(Q; Y1)
and v, — v in L'(2; SY 1), Then

G/ (v) < liminf & (v,).
n—oo

Given Lemma 2.5, the proof follows line by line that of [Alicandro et al. 2007, Proposition 5.1], and
the difference between the target spaces (S¥~! versus §ﬁ ~1) is harmless. Therefore we omit it.

3. Existence of solutions

In this section we introduce the notion of solutions to (1-4) and we prove their existence.

As is mentioned in Section 2C, on its jump set J, a function # € BV(R; RV) has a jump discontinuity
between two distinct values, # and u_, and the value of the precise representative of u is given by
(u4+ +u_)/2. Note that (u4 +u_)/2 is the midpoint of the segment which connects u and u_. In this
sense, (#4 + u_)/2 has natural counterparts in S¥ ~! endowed with the standard geodesic distance d, on
SN=1, the geodesic midpoints:

Definition 3.1. Let A be a geodesically convex subset of S¥~! and let u_, u, € A. A point u ¢ €EAS
called a geodesic midpoint on A between u_ and u if

(i) ug belongs to a greatest circle of SN-! passing through #_ and u, and
(ii) dy(ug,u_) = dy(ug. u).
In particular, when A = Sﬁ -1 geodesic midpoints are uniquely determined:

u—+ll+

= forallu_,u, e SY1.
u_+u| T

Ug

Thus we can introduce the notion of geodesic representative of u € BV(L2; Sﬁ -1
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Definition 3.2. Let u € BV(Q; Sﬁ_l). The geodesic representative ug : Q\(Sy\Ju) — Si’_l of u is

defined by
u* on Q\S,,
& {u*/lu*l on Jy,.

Note that u, € BV(£2; Sﬁ ~1) since u, and u_ are 9" '-measurable on J,; see [Ambrosio et al. 2000,
Proposition 3.69]. Hence the following Radon measures are well defined:

lu*||Du| = |Vu|L™ + | Du| + |u*||luy —u_|3%" ', 3-1)
ug|Du| :=u(|Vu|L" +|Du|) +ugluy — u_|?€’”_1 Ly, - (3-2)
Moreover, ug|Du| € Mg (€2; RY) (see Section 2D).

Remark 3.3. As shown in the proof of Lemma 3.9, the projections onto Sﬁ ~! of the mollifications of u
point-wise converge to ug in £2. In this sense, the geodesic representative u, is a natural representative
for BV-vector fields with values into Sﬁ -1

We are now ready to introduce the concept of solution for (1-4).
Definition 3.4. Let A =SY"', T > 0, and ug € BV(Q2; SY 1). A function
uelL®0,T;BV(Q;RY)NCO, T; LY RY)), u, e L*0, T; L*(Q; RY))

is a solution to (1-4) in Q7 if u(0) = ug, u € 51_1 a.e. in Qr, and there exists a matrix-valued function
Z e L®(Qr, RV, with | Z]leo <1 and Z(¢) € XJ‘AA’(SZ) for almost all # € (0, T), such that

u,(t) —divZ(t) = u(t)g|Du(t)| as measures for a.e. t € [0, T], (3-3)
u, () Au(t) =div(Z(1) Au(r))  in L2(S2; Ar(RN)) forae. 1 € [0, T, (3-4)
ZTu=0 ae.in Or, (3-5)
and
[Z(),v]=0 %" '-ae. ondQ forae.tel0,T]. (3-6)

The next observation clarifies the concept of solution given in Definition 3.4.

Proposition 3.5. Let u be a solution of (1-4) in the sense of Definition 3.4. Then
Z(t): Du(t) = |\u(t)*||Du(t)| as measures fora.e.t € (0,T). (3-7)
Proof. We take any ¢ € 9(2). Then

/<pd(Z(t):Du(t))(225)—f ou(t)* - d(div Z(z))—/(Z(z)Tu(z))-w dx
Q Q Q

(3-5)
(3-3)

= \/;Zgﬂu([)*d(u(t)ngu(t)l)a

/Qsﬂu*(l) d(u (1) +u(t)g| Du(n)))
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where in the last line we have used the facts that |u(r)| = 1, u; € L>(Q7: R") and the fact that
u(t)g|Du(t)] € My (€25 RM) a.e. t € (0, T). Finally, by (3-1) we get

/Qﬁf)d(z(t)iDu(l))=/;2<pd(|Vu(t)|§£m+IDC(u(I))I)Jr/ olu@)*|lu(t) —u(t)—|de" !
Jur)

:/Qwuu(r)*ul)u(r)n. -

Our main result is the following existence theorem.

Theorem 3.6. Forany T > 0 and any ug € BV(L; Sﬁ _1), there exists a solution u to (1-4) in the sense
of Definition 3.4.

To prove Theorem 3.6 we need to recall or establish several results. The first one follows as a particular
case from [Barrett et al. 2008, Theorem 4.1, (4.24), and (4.25)] (with A = g =0 and p =2).

Proposition 3.7. Lete > 0,T > 0,and a > 0. Ifuj € WL2(Q; SN, then there exists
u® e L0, T; WH(Q; RM)Y N w20, T; L*(2; RY))

such that u® (0, -) = ug,
lu®|=1 ae inQr, (3-8)

and u® is a weak solution to

u; =divZ® +p® in Qr, (3-9)
[Z%,v]=0 in St,
where
Vu? |Vue|?
2P ="Vt ——— and pf =u|\Vub)P +ut ——— (3-10)
/|Vu8|2+82 /|Vu8|2+82
in the sense that
T
W -v+Z°:Vo—p®-v)dxdi =0 forall ve C'(Qr;RY). (3-11)
0oJa !
Furthermore,
(Z5Tut =0 a.e.in O, (3-12)
u; -u®=0 ae.in QOr, (3-13)
u; Au® =div(Z® Auf), (3-14)
and
t
Jo (1)) —{—/0 /Q qulzdx ds < J;(ug) forae.tel0,T], (3-15)

where the energy functional J; is defined as

JE(v) = s"‘/ |Vv(x)|2dx—|—/ VIVox) 2 +e2dx, ve Wh(Q RY),
Q Q
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and a positive e-independent constant C exists such that

Idiv Z° |l 220, 7; 21 (M) < C (3-16)
1div(Z® Au) |l L20.7:12(2: A, @Yy < C (3-17)
e2IVut ()|l oo (0. 7: 12 () < C. (3-18)

We next show that if uf takes values in the first hyperoctant, then u#® does too:

Lemma 3.8. Ifuj € wh2(Q; Sﬁ_l), then the weak solution to Problem (3-9) given by Proposition 3.7
verifies u® € §ﬁ_1 a.e.in Qr.

Proof. Let (s)~ = max{0, —s} and let @®)~ = (w®>"H~,..., @®")7). Pick a sequence of smooth
functions v, such that v, — (@)~ in L2(0, T; W"2(Q)) N W'2(0, T; L>(R)) as n — +oo. Choosing
v = v, in (3-11) and passing to the limit as n — 400, we obtain on the one hand

/ /(ua) uf dx dt = f /( )|V(u8)_|2(1—|(u8)_|2)dxdt20. (3-19)
82+|Vu |2

On the other hand, since u® € W12(0, T; L*>(Q2; RY)),

T
0§f /(us)_-ufdxdt:/(|(u0)_|2—|(u€(T))_|2)dx:—/ |(uf(T))™|* dx, (3-20)
0 Q Q Q

hence the negative part of each component remains 0O for all times. O

Provided « is large enough, any function in BV (£2; Sﬁ ~1) can be approximated in W'2(Q; Sﬁ “in
such a way that the initial energy is controlled.

Lemma 3.9. Given uy € BV(2; Sﬁ_]) and a > m, there exist u; € wh2(Q; Si_l) such that

(i) uf — ugin LP (2 RN) forall p < oo as € — 0,

(i) ug— (uo)g #H"qe inQase— 0,
(iii) Jg(ug) — L <+ocase— 0.
Proof. We will construct u as the projection onto Sﬁ ~! of the convolution of a suitable extension Tug of
uo with a standard mollifier. In order to do this, we proceed as in [Ambrosio et al. 2000, Proposition 3.21],
to which we refer for further details; see also [Brezis 2011, Theorem 9.7].

Since Q is compact, there exists a finite collection {R;};c; of open rectangles whose union B contains
Q, which satisfies the following property: for any i € I, either

(a) Ry, CQor

(b) 02N R; is the graph of a Lipschitz function defined on one face L; of R; and the closure of 02N R;
intersects neither L; nor the closure of the face opposite to L;.

Let Q; = QNR;. In case (b), up to a translation, a rotation, and a homothety, we have R; = L; x (—1, 1)
with €2; on the upper side of R; (thatis, 2; = {x = (y, z) : 2 > ¢;(y)}). A vertical deformation ¢ : R; — R;
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exists such that ¢(£2;) = R;r = L; x (0, 1) and both ¢ and its inverse are Lipschitz. Given u € BV(£2),
the operator 7; : R; — R is defined as the identity in case (a) and as

T,(uw) =T/ (wop Yogp, where T/ (u)(y, z) =u(y, |zl),

in case (b). Note that |ug| = I a.e. in ©, the maps ¢ and its inverse are Lipschitz, and 7 does not change
the value of u. Hence

U ={xeR;: |(T,-(u(l)), R T,-(u(j)v))| # 1} has zero measure.

Let {n;}ics be a partition of unity relative to {R;};¢;s, that is, supp(n;) C R;, 0 <n; <1 for any i € I and
there exists r > 0 such that Zi <7 Mi = 1 in a neighborhood of Q containing Q2 @ B,. We now define

Tug:B=|JR - RY, Tug:= (Z T, (i Y Ti(uév)m).
iel iel iel
It is readily checked that 7 € BV(Q & B,; RY). Now let k > 0 be the cardinality of / and U = | J,; U;
(a set of zero measure). We observe that

| Tug(x)| > % forallx € Q@ B, \ U. (3-21)

Indeed, for each x € (2@ B,) \ U, there exists i (x) € I such that n;(,)(x) > 1/k: since each component
of ug is nonnegative and x ¢ U, (y),

1 1
Tuo(0) = 5 ((Tio o)) + -+ + (Tro (4))?) = 13-

Given ¢ < r, let p.(x) := & " p(x/e) be a standard mollifier. As is well known (see, for example,
[Ambrosio et al. 2000, Remark 3.22]) T'ug * p, converges to Tuy strictly in BV(2; RY) and strongly in
L'(€2; RN). Since || Tug* ps |l < 1, the last convergence upgrades to

Tugxpe — Tug in LP(Q; [R{N) forall 1 < p < o0. (3-22)
By (3-21) and since (T (ug))¢ > 0for £ =1, ..., N, a direct computation shows that
1
|[Tug* ps(x)| > —= forall x € Q. (3-23)
PN

In addition, it follows from [Ambrosio et al. 2000, Corollary 3.80] that Tuo* p. — (T'uo)* = u pointwise
in 2\ (Sy, \ Ju,). Together with (3-23), this implies that

Tug* pe

& .__

uf = ——"% 5 (uy), " '-ae.in Q. (3-24)
O | Tug * pe ¢

Furthermore, (3-23) and (3-22) easily imply that ug — uo in L7 (2; RV) for all 1 < p < oco. Finally,
applying the chain rule and (3-23), [Ambrosio et al. 2000, Proposition 3.2], and [Ambrosio et al. 2000,
Theorem 2.2(b)] (in this order), we see that

/|Vuf)|dx§C/ |V(Tu0*pe)|dx=C/ I(DTup) * pe|dx < C|DTuol(Qd B,).  (3-25)
Q Q Q
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Similarly,
/Q |Vaf|* dx < C/Q |(DTug) * pe|* dx < Cl[(DTug) * pe oo /Q |(DTug) * pe| dx,
and, using the definition of p., we conclude that
* /Q |Vu§|* dx < Ce® ™ (|DTuo| (2@ Be))*. (3-26)

Inequalities (3-25) and (3-26), together with (3-24), complete the proof. O

Proof of Theorem 3.6. We proceed in steps. In the first step, we use the previous lemmas, together with
standard compactness arguments, to identify a triplet (u, Z, p). In the second step we identify p in terms
of u and Z, which automatically yields an upper bound on |u|. In the third step, collecting the information
of the previous two steps, we note that u satisfies all the properties in Definition 3.4 except for

p(t) =u(t)g|Du(t)| as measures for a.e. t € [0, T], (3-27)

to which the rest of the proof is devoted. In the fourth step we use the lower semicontinuity results in
Section 2F to prove a lower bound on u(#) over the diffuse support of | Du(¢)|. In the fifth step, we revise
the blow-up argument given in [Fonseca and Miiller 1993; Fonseca and Rybka 1992] to obtain a lower
bound on u(t) over Jy, (. Finally, in the sixth step we complete the proof.

Step 1: Passage to the limit. Let ug and u® be as given by Lemma 3.9 and Proposition 3.7, respectively.
By Lemma 3.8, u® € Sﬁ_l a.e. in Q7. By (3-8), Lemma 3.9(iii), and (3-15), a positive constant C
(independent of ¢) exists such that

sup ||u8||WL1(Q) <C, (3-28)
1€(0,T)
lusll20,7:12:mYy) < C. (3-29)

We recall that BV (Q; RV) is compactly embedded in LY(Q; RY) [Ambrosio et al. 2000, Theorem 3.23].
Hence the Aubin—Simon compactness criterion [Simon 1987, Corollary 8.4], together with (3-28) and
(3-29), implies that

u®* —>u inC@,T; L' (2 RY)) and ae. in Or (3-30)

for a subsequence. By the lower semicontinuity of the total variation [Ambrosio et al. 2000, Remark 3.5],
(3-30) and (3-15) imply that
ue L®0,T; BV(Q; RY)). (3-31)

From (3-30) and Lemma 3.9(i), we have
u(0) =uog (3-32)

and, using also (3-8),
lul=1 a.e.in Qr. (3-33)
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By a standard interpolation argument, the boundedness of u® in L>(0, T; L>°(2; R")) and (3-30) imply
that
u® —u in LP(0, T; LY(Q2; RY)) for all p, g €[1, o0) and a.e. in Q7. (3-34)

Moreover, it follows from (3-29) that
u® —u, inL>(0, T; L*(Q2; RY)). (3-35)
By (3-15), Lemma 3.9(iii), and (3-18), a subsequence exists such that

*Vu® — 0 in L*(0, T; L>(Q; RV*™Y), (3-36)
Vu?t

/|Vu£|2 +82

Recalling the definition (3-10) of Z¢, by (3-36) and (3-37) we obtain that

L Z in L®(Qr; RN*™), (3-37)

Zf—~Z in L*(0, T: L>(; RV>™y), (3-38)

and from (3-37) we also obtain that
1Z| >0y = 1. (3-39)

Since {u?} is bounded in L>°(0, T; L'(2; RY)) and
L0, T; L'(2: RY)) € L™, T; M(2; RY)) € (L'(0, T; Co(Q: RV)))'

(see Section 2B), we have
pt = in (L0, T; Co(: RY))). (3-40)

Analogously, by (3-16),

divZe S divZ in (L%(0, T; Co(2; RM)))'. (3-41)
Passing to the limit as ¢ — 0 in (3-9); (using (3-35), (3-41), and (3-40)), we obtain

u,—divZ=p in (L*0, T; Co(2; RV)))'. (3-42)

Passing to the limit as ¢ — 0 in (3-12) (using (3-38) and (3-34)), in (3-13) (using (3-35) and (3-34)), and
in (3-14) (using (3-35), (3-38), and (3-34)), we get that

ZTu=0 a.e.in Or, (3-43)
u-u=0 a.e.in Qr, (3-44)
u, () Au(r) =div(Z(t) Au(r))  in L2(2; Ar(RY)) for ae. 1 € [0, T). (3-45)

Step 2: The intermediate identification of w and its upper bound. We claim that

w=x(x(Z Au) A Du) € L0, T; M(2:; RY)) (3-46)
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with
|w(t)| <|Du(t)| as measures fora.e.t [0, T]. (3-47)
Let
= (1, ..., ) 1= %(Z Aw) € LX(Q1; (An-2(RV)™). (3-48)
We have
*(uy A u) >x<(d1V(Z A u)) = d1V(>|<(Z Au)) =divHA, (3-49)

hence (1) € X»(Q2: Ay_2(RM)) for a.e. t. Therefore, by Lemma 2.3, (A () A Du(t)) € M(£2; RN for
almost every ¢ with

(c0) A Due)] = NNl Du)] N Z@) nu@) ool Du) = | Duto)l, (3-50)
and in addition
% (A(t) A Dut)) "2 — s (div sh (1) Au(r) L™ + div(e(sd(r) Au(t))). (3-51)
It follows from (3-50) and (3-31) that
(sl A Du) € L®°(Qr; M(2; RY)). (3-52)

Using (3-51), we see that

(3-33) 27
c= (P = (- wyu — %G (uy A ) Au)

(3-51)

CAY_ o (div st Au) "2V (st A Du) — div((+(sd A w))). (3-53)

(3-49)
On the other hand,

—w (A AW D _(x(+(Z Aw) Au))

= —(x(x(z1 Au) Au), ..., x(x(zn Au) ANu))
D (ulPzi— @ 2w, ..., (w2, — @ z)u)
= Z—(Z"wu (”3)2 (3-54)

Combining (3-53) and (3-54), we obtain
u, =*%(AADu)+divZ,

which together with (3-42), (3-48), and (3-52), implies (3-46). Finally, (3-47) follows immediately from
(3-46) and (3-50).

Step 3: Intermediate summary. Tt follows from (3-42), (3-35), and (3-46) that div Z € L>(0, T; M(Q; RY)).
Hence (3-42) upgrades to

u;(t) —divZ(t) = u(¢t) as measures fora.e.r [0, T]. (3-55)
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In particular,
Z(t) e X%(Q) fora.e. .t €[0,T]. (3-56)

Thus the weak trace [Z(t), v] on 92 of the normal component of Z(¢) is well defined, and for all smooth
w we have

T 14 [T
/ [Z,v]-wdH" ' dr "= / (/ w-d(din)-l—Z:dex) dt
0 JaQ 0 Q

T
G398 lim( f / (w-div Z¢ + Z° : Vw) dx dt) G2,
3-41) e—0\ Jy Jo

Hence
[Z(),v]=0 %" '-ae.ondQ forae.re[0,T]. (3-57)

Collecting (3-31), (3-30), (3-35), (3-32), (3-33), (3-39), (3-56), (3-43), (3-45), and (3-57), we see that all
the properties of u stated in Definition 3.4 are satisfied except for (3-3). In view of (3-55), in order to
prove (3-3), it remains to show (3-27).

Step 4: The lower bound on p over the diffuse support of | Du|. In view of (3-47), u(t) can be decomposed
as

O _Guoien + 10wy + 0

= _ m—1 _
~ D) Duin] MO+~ 8O- e, (3-58)

w(t)

where u(¢)/|Du(t)| € (L' (Q2; |Du(t)|))V denotes the Radon—Nikodym derivative of u(¢) with respect
to |Du(t)|. We claim that

t
u(t) - ) >1 (Vu@)|L"+ |D(u(t))])-a.e. in . (3-59)
[ Du(t)|
We first notice that
el (:10) el 2 12 _ el e _ _
> u(ver+|Vusl—¢e)=u""(|Vu’|—¢), £=1,...N. (3-60)

For any ¢ € C(; [0, 00)),0 < € L'((0, T)), and £ € {1, ..., N}, we have

r (3-40) .. r
f wm( / god//m) dr °29 fim / wm( / goﬂ(r)dx) dt
0 Q e—>0Jo Q

3B-60) . T '
> lim 1nf/ Y (1) / ou® (0)|Vub ()| dx | dt.
e—>0 0 Q
We claim that, for a.e. t € (0, T),
u®(t) = u(r) inBV(Q;RY)ase— 0. (3-61)

Indeed, in view of (3-28), for a.e. ¢ we have |lu® (1)1 ) < oo. Take any such ¢ and assume for a
contradiction that (3-61) does not hold, that is, that #®(¢) /4 u(t¢) for a subsequence. By (3-28), a further
subsequence would exist such that u®(t) — @ for some & € BV(2; R"). On the other hand, because of
(3-30), u?(t) — u(r) in L'(2; RY): hence & = u(t), a contradiction.
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In view of (3-61) and (3-30), we may apply Proposition 2.6 to the right-hand side of (3-60) with
f=foe:2xRY — [0, 00) defined by f, ¢(x, s) := ¢(x)s‘|&|. This implies that

T T
f wm( f godu"(t))dtz / w)( / ou () (IVa ()| dx +d| D°u(n)]) + / sode%’"‘l)dz,
0 Q 0 Q Ju(t)

where
K/ =inf{/01 y'@p@ldr:y e WO, 1); SITY, yO) =u@)_, y(1) = u(r)+}. (3-62)
By the arbitrariness of i, we conclude that
/de;/(t) > /ngue(t)(Wu(tN dx +d|Du(t)|) +/, " eKtd¥™™! forallp e C(Q) (3-63)
Wt

forae.r €[0, T]and forall £ € {1, ..., N}. Recalling (3-58), (3-63) yields

Me(t) ¢
>u'(t) (|Vu@)|E™ + |D(u(t))])-a.e.in
| Du(t)|
forae.t€[0,T]andall £=1,..., N. Now, recalling that |u(¢)| = 1 a.e. in 2, we obtain the inequality

(3-59) at once.

Remark 3.10. On the jump set J, (), the above argument would yield

|1ng2)| >u()g- (K}, ... K) %" -ae on Ju(0).

Unfortunately, by (3-62) and obvious properties of the infimum,

luy () —u_()|u(t), -

ult),- (K, ...,k
1
sinf{/o u(t), -y @)y @)ldr:y e wh((o, 1>;Sﬁ—‘w(m=u(t)_,y<1)=u(r)+}, (3-64)

whilst, as we shall see, it is the right-hand side of (3-64) which yields the sharp lower bound on the jump
part (cf. (3-70)—(3-73) below). On the other hand, we can not use the results in Proposition 2.6 directly
on u*- uf, since u* is a discontinuous function (though a very special one). This motivates the discussion
that follows.

Step 5: The lower bound on p over Jy ). We claim that
w(t)

[Du(r)| —

It follows from (3-8) and (3-28) that, for a.e. t € [0, T'], there exists a subsequence &; such that

u(t)y - g~ la.e. on Jy(). (3-65)

u® (1) |Vu ()| A /() in M(Q; RN). (3-66)
Then (3-60) and the fact that #*¢ > 0 imply that

,uz(t) > ,&Z(t) > (0 as measures forae.r€[0,T], £e{l,...,N} (3-67)
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Hereafter, we argue for a fixed ¢ and we do not specify dependence on ¢ for notational convenience. Using
the Radon—Nikodym theorem [Ambrosio et al. 2000, Theorem 1.28], we decompose j into four mutually
orthogonal measures:

_ R N R i
= ——|Vu|¥£" + ——|Du| +
5= oa T pu P D

with (f1)°_L|Du|. It follows from (3-67) and (3-58) that

g —u_ | %" LT+ (R)°

h
U, —— > U, -
* |Dul = ¢ |Du|

Therefore, (3-65) is proved once we have shown that

%"~ 1lae. on J,.

o -1
-——>1 " -ae.on Jy. 3-68
Ug Du| = a.e.on Jy ( )
To prove (3-68) we apply the same blow-up argument as in [Fonseca and Miiller 1993, Section 3].
From the Besicovitch differentiation theorem [Ambrosio et al. 2000, Theorem 2.22], for %™ !-a.e.

xo € Ju, we have

i:(/ . i’i'(xo + (SQVu(xO))
(xp) = lim 1 )
|Dul 6=0 [y —u_|IH" 1 (Jy N (x0 + 8 Quy,y)

where Q. is defined in Section 2F. On the other hand, by [Fonseca and Miiller 1993, Lemma 2.6], for
#m 1 ae. xo € J,, we also have

_ 1
lim ——
$—0 8 @08 Q1,40 )N

lug (x) — u— ()| dIH" " = |u (x0) — u—(x0)|.

Therefore, letting
M = |uy(x0) —u—(xo)l

for notational convenience, we obtain that

i .1 -
M (x0) = lim —— dp.
|Du| 5—0 §m—1 xO—HSQ”u(xO)
Then, for any £ € {1, ..., N}, since the function xy,+so, o) is upper semicontinuous with compact
u XO
support in €2 if § is sufficiently small, we have
it ¢
M (x0) = lim — / dn
|Du| 8—0 §m—1 x0+8QVu(x0)
(3:66) . . 1 s b g
> limsuplimsup —— u™"|Vu| dx
§—0 k—o00 X0+5Qv,,(x())
= limsup lim sup / U5 DIVos () dy, (3-69)
30 k—oo JQu

where
vs k() :=u* (xo + 8y).
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We now observe that vs € Wl’l(Q,,u<x0); RY) and (see [Fonseca and Miiller 1993, formula (3.2)])

lim lim ||vs;—w 1 rvy =0
lim lim jvs.x = woll1 (g, &%) = O:

where
ccuy(xp) if y- vy >0,

wo(y) := {

u_(xp) if y - vz <O.

Then, by a diagonalization argument, we may extract a subsequence vy converging to wq in L' (Quy’ RM).
It follows from (3-69) that

L

Q .
Dy (¥0) = lim, s NIV ()l dy.

M
vung)

Since (u?)* >0 forall £ € {1, ..., N}, this implies that

n :
M{ug-——|(xo) = lim ug(xo) - v (Y)IVor(y)l dy.
|Du| k— 00 QV( )

u X0
The function f(x,s) = f(s) = ug(xp) - s is continuous, nonnegative, and bounded. Then, applying

Lemma 2.5, we obtain a new sequence
wi € P(u(x0), U—(X0), Vu(xy))
(with ? given by (2-24)) converging to wy in L! (vao)? R") and such that

M<ug . L)(xo) > lim Sup/ ug(x0) - wi (y)|[Vwi(y)|dy.
[Du| 0

k— o0 Vu(xg)

We may now apply Lemma 2.4. It follows from (2-23) and (2-25) that

M(ug : L)(m) > inf Inlu (x0). u_(x0)1(p), (3-70)
|Dul| y LN (4 (x0),u—(x0))
where
! . vy + v;
Inlvo, vi](y) == [ vg-y@Oly@®)ldt, vg:=———, (3-71)
0 [vo + vy
and
T (vo, v1) :={y € W0, 1); SN : y(0) = v, y(1) = v1}. (3-72)
In view of (3-70), (3-68) and therefore (3-65) follows from
inf Inlug(x0), u_(x0)1(y) = M = |us(x0) — u_(x0)|. (3-73)

y€ln (4 (x0),u— (x0))

This last inequality will be proved in Theorem 4.1, to which the next section is devoted.



THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE 651

Step 6: Conclusion. Recalling (3-58), the upper bound on || given by (3-47) immediately implies that

w(t) -
|Du(t)|| ~

|[Du(t)|-a.e. in (3-74)

for a.e. t € [0, T]. In particular, recalling (3-33),

u(t) - |1;Ll52)| <1 (Vu@®)|¥" +|D(u(t))|)-a.e. in ,
p(r) m—
u(t)y - Du] <1 ¥ lae. on Jyq

for a.e. t € [0, T]. Combining these inequalities with the lower bounds in (3-59) and (3-65), we obtain

u(t)- |Duzfg)| =1 (Vu@®)|L" +|D(u(t))|)-a.e. in L, (3-75)
r() m—1_ i
u(t)g - Du(0)] = 7 a.e. on Jy( (3-76)

for a.e. t € [0, T]. We are now ready to complete the proof. By (2-2), we have

(1) P le | ono 2 I |
|Du(t)| win) = Dun)|| ~ ||Du(0)] u(®)] (Vu@)|L" + |D(u(t)))-a.e.in 2 (3-77)
and
2 2 2
‘—|1§l;52)| ANu(t)g| = ‘ |l;lllft(2)| ‘ |U(f)g|2 _ ) |l;'l;52)| u(t)g 9m—1_a ¢. on Ju- (3-78)

Now, from (3-74),(3-75), and (3-77), we get

2

A0 =0 ([Vu®)|E" +|D(u(t)))-ae. in Q,

| Du(z)|

Au(t)

and from (3-74),(3-76), and (3-78), we get

2
Au(t)g| =0 F" l-ae. on Jyg).

‘ n(t)
[Du(z)]

Hence the wedge products on the left-hand side are zero.
Therefore, applying (2-7) and using once more the equalities in (3-75) and (3-76), we conclude that

pO ) k(@) . . o
Du)| lu ()] Du(0)] =u(®)  (Vu@®)|L" +|D(ut))])-ae.in Q,
rO ) () _—

Duy] O puy T4 e o0,

Plugging these expressions into (3-58), we obtain (3-27), and the proof is complete. O
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4. A nonconvex variational problem

In this section we study the minimization of a nonconvex functional, and, as a result, we prove the
inequality (3-73).

Theorem 4.1. Let vy, v € S¥~! and let Jy[vo, v11(y) and Ty (vo, v1) be given by (3-71) and (3-72). If
VoV = 0, then

min  Jy[vo, v11(p) = |v1 — vo.
y€ln (vo,v1)

Of course, it suffices to consider vy # v;. Up to a rotation, we may assume without loss of generality

that
Vo + vy
vo=—=ey and g, v €span{ey_i,ey}.
lvo + v1]

Since v, is the geodesic midpoint and v, - v1 > 0, there exists 6y € (0, 7 /4] such that
vo=(0,...,0,sin6y,cosfy) and v; =(0,...,0,—sin6y, cosbdy).
Then
vy — vg| = 2 sin by. 4-1)
A curve which attains the equality in (4-3) is easily obtained: it is just the geodesic with respect to the
standard metric of SV~
Lemma 4.2. Lety ;. (1) = (O, ..., 0,sin((1 — 2¢)6p), cos((1 — 2t)90)). Then J (Y ;) = 2 sin 6.
After the above-mentioned rotation, Sﬁ ~! is transformed into a geodesic simplex 7 in S¥~!. We
consider a larger set of curves: let ?y(vg, v1) be given by
Py, o) ={veS" 10920, v-v; = 0)
and let
Ty (vo, v1) = {y € WH((0, 1); @y (0, 1)) : 7(0) = vo, ¥ (1) =v1}.
Then

1
Inlvo, v11(y) =/ yYOlyoldr fory =", ....y") e Tn(vo, v1).
0
Hence, recalling (4-1) and Lemma 4.2, it suffices to prove that

inf Jnlvo, v1](py) = 2sin 6. 4-2)

yely (vo,v1)
We now show that the problem in S¥~! may be reduced to the same problem in S2. Let
v; = (0, (—=1)' sinfp, cosbp), i=0,1,
denote the projection of v; onto the three-dimensional subspace span{ey_», ex—1, en}.

Lemma 4.3. Let N > 4. Then

inf  Jy[vo, v1l(y) = inf ) J3[vo, v11(p).

yeln(vo,v1) yel'3(vo,v)
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Proof. For any y € I'y(vg, v1), consider the curve

7=(0,.... 0V 4+ (V2PN YY),

Clearly y € w10, 1), S¥1). Since vy and v; belong to span{ey_1, ey} and the projections of y and
y onto span{ey_1, ey} coincide, y € WEL((0, 1); Pn (vo, v1)) and the end-point conditions are satisfied.
Therefore y € I'y (vg, v1). In addition, letting

s=t ... vV,

we may apply the chain rule [Ambrosio and Dal Maso 1990, Corollary 3.2]: since § € W!1((0, 1); RV —2)
and f(x) = |x| is a Lipschitz function with f(0) = 0, we have |§| = f 08 € WI1((0, 1); R), for almost
every t € (0, 1) the restriction of f to the affine space

TP :={y e RN =21y =8(r) + né(r) for some n € R}
is differentiable at §(¢), and finally
%|8| = V(f|Tts)(3(t))-8(t) fora.e. t € (0, 1).

Since the Lipschitz constant of f is 1, we get that |(d/dt)|8|| < |(d/dt)8|. Hence |(d/dt)y| < |(d/dt)y]|,
which implies that Jy[vo, v1]1(}) < Jn[vo, v1]1(p), since 7V = y¥. Arguing as above, we also see that

7= D 4+ VD2 N )
belongs to I'3(vp, v1). Since Jy[vo, v1](¥) = J3[vo, v1](¥), the proof is complete. O

Hereafter we let

v :=0;, J:=J[vp,v1], P:=P3(vo,v1), T :=T3(vg,vy).
Because of (4-2) and Lemma 4.3, it suffices to prove that
inf J(y) = 2sin6y. 4-3)
yel

Proving (4-3) is far from trivial, both since the functional is genuinely nonconvex (see Lemmas 4.9
and 4.10) and since the curves are constrained to an octant of the sphere. However, it is exactly for this
reason that the lower bound holds:

Remark 4.4. In the extremal case 6y = 7 /4, there are exactly two paths y such that J(y) = 2sin68y: the
one given in Lemma 4.2, and the one which coincides with 9% (see Section 1 or Lemma 4.14 with ¢y =0
and ¢, = w/2). If the constraint is removed, the lower bound (4-3) does not hold any more: for instance,
the curve

(0, sin 6, cos 8), 6 = 6y + 3t (7w /2 — 6y) € (Bo, 7/2) ifo<r<1i,
y (1) :={ (sing, cos ¢, 0), ¢ =37(t - 3) € (0. 7) if 3 <r<3,
(0, —sin®, cos0), 0 =m/2+3(t —3)(6o—7/2) € (6o, w/2) ifF<t=<1



654 LORENZO GIACOMELLI, JOSE M. MAZON AND SALVADOR MOLL

is such that

1/3 ) 7/2
J(y):2f cos@l@ldt:2f cos@df =2(1 —sinfy),
0 0o

hence J(y) =2(1 —sin6y) < 2sin by if 6y > /6.
We will often use spherical coordinates centered at (0, 0, 1):
X (@, 0) := (singsinf, cos @ sinb, cosh). (4-4)

In this case vg = X (0, 6y), v1 = X (7, 6p), the functional reads

1
J(y) = [ cos 6(r) \/(9'(0)2 + (¢(1))?sin® 0(r) dt,  where y (1) = X (p(1), 0(1)), (4-5)
0
and the constraint y (t) € P is equivalent to

0(t) €0, /2], 6(t) <arctan ; =:0%(p(1)). (4-6)
tan 6y [cos o (1)|

It is convenient to cut-off from & a neighborhood of z = 0: in this way, the new constraint has a smooth
boundary and the density of J does not degenerate. Thus, let 67 € C*°(R) be such that

0} is m-periodic, even w.r.t. /2, increasing in (0, /2),
4-7
02(¢) = 0%(9) if /2 — ¢| = .67 < /2. and |(6})] = C e

for some e-independent positive constant C. Note that here and after primes denote differentiation with
respect to ¢, and that the latter property of 6 may be fulfilled since 6* is Lipschitz-continuous. Now let

Pe:={X(p,0): ¢ €[0,27], 0 <0 <0 (p)},
Tei={y e Wh((0, 1); P:) : ¥(0) = v, p(1) =v1}.

In what follows, w(¢) denotes a generic positive universal function which goes to zero as ¢ — 0. The
next lemma shows that we may equivalently work on P,:

Lemma 4.5. Assume that
inf J(py)>2sinfy — w(e). (4-8)
yerl,

Then (4-3) holds true, and therefore so does Theorem 4.1.

Proof. Given y €T, we replace the parts of y which enter into % \ %, by arcs of 0%,. More precisely, let
I, ={te0,1):y(t) e P\ P}

Since the spherical coordinates (4-4) are a bijection away from the north pole (0, 0, 1), in I, we may
define ¢(¢) and 6(¢) through y (t) =: X (¢(¢), 6(¢)). Then we let

40 ifr ¢ I,

ye()= {(ga(r), 0x (1) ift el
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It follows from (4-7) that
Z 02| = 0. (4-9)

We may now estimate

4-5) er s A @) b
JY)—J(y) = — COS@g(ﬁl))I(ﬂl\/(QS) +sin 9€(¢>)dt(429) —w(¢) A @l dt.

&

Therefore
4-8) !
J(y) = 2sin6by —w(e)(l +/ @] dt).
0
Passing to the limit as ¢ — 0, the arbitrariness of y € I" yields (4-3). 0
The rest of the section will be concerned with the proof of (4-8). Let
Te(wo, wi) :={y € WH((0,1); @) : y(0) = wo, y(1) = w1} for wo, w; € P,.

Lemma 4.6. For any wg, w| € P, there exists a minimizer y of J in I'g(wqo, w). Furthermore y lies in
W0, 1); RY), satisifes y3|y| = J(p) a.e. in [0, 11, and is also a minimizer of

1
E(y) :=/O Y )y @) dt

among all y € Ts(wg, wy) N H'((0, 1); RY).

Though we could appeal to general results on geodesics for Riemannian manifolds with boundary (see
[Alexander et al. 1993] and the references therein), we prefer to give a self-contained proof.

Proof. We preliminarily observe that

for all y € ', (wg, w1), there exists € I's(wo, w;) N WH®((0, 1); R?)
such that 73 (1) |y ()| = L := J(y) forae. t € [0, 1]. (4-10)

To see this, let

1 t
$(t) = Z/ V3O (@)l dr. @-11)
0

Obviously s € W1([0, 11; [0, 1]), s is nondecreasing, and s(t;) = s(t,) if and only if ¥ (t) = ¥ (1) in
[t1, »]. Therefore, for any o € [0, 1], either there exists a unique ¢ (o) such that s(¢(c)) = o, or there
exists an interval I, such that s(¢) = o for all ¢t € I;, and in this case we let, for example, ¢ (o) = inf /,,
so that again s(t(0)) = 0. Now let y(0) := y(¢t(0)). By construction,

y(@)=y(s(t)) forallte]l0,1]. (4-12)
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Note that y € WH>°((0, 1); ?,). Indeed,
t(02)

(01— F(o2)| = |y<r<ol>>—y(r(oz>)|s/( y@lde

(4-11) L
< t —s(r
< o y%)IS( (01)) —s(1(02))]
t€[t(01),t(02)]
47 L
=gl (4-13)

Hence, it follows from (4-12) and the chain rule formula given in [Ambrosio et al. 2000, Theorem 3.101]
that

i7
y() = d—:(S(t))i(t) in L'((0, 1)). (4-14)

Therefore,

1
§(t)dt = / 73(s) ds. (4-15)
0

_ @14 [ 3 dy dy
L—/O Y @)1y @) dt 12)/ (s (l))) (s(1)) I (s)

On the other hand, given s € [0, 1] and & > 0, let 51, s» € [0, 1] with |s; — s| < &. Then

U S P

POIPes) —pe)l < — ——Lls; —s1]. (4-16)
inf (7)
T€[z(s1),1(s2)]

If T € [t(s1), t(s2)], then, by the monotonicity of s and since s(t(s)) = s, we have s(t) € [s;, s2]. Hence

inf 302 inf () > inf 73(s). 4-17)

Te[t(s1),1(s2)] T€lt(s1),1(s2)] s€[s1,52]
Combining (4-16) and (4-17) and passing to the limit as ¢ — 0, we obtain
dy
g(s)

7 (s) <L forae.sel0,]1],

which together with (4-15) concludes the proof of the claim (4-10).
We consider the functional E defined on G, (wo, w;) := [z (wo, w;) N HL((0, 1); R3). By the Cauchy—
Schwarz inequality,

(J(@)? <E(y) forally e G.(wy, wy). (4-18)

Hence inf E(y) > inf(J (y))z. On the other hand, let y,, be a minimizing sequence for J, and let y, be
as given by (4-10): then E(y,) = (J (yn))z, which means that inf E < inf J?. Therefore,
inf E(y)= _inf (J(y)*
r€Ge(wo,w)) @ )’Grs(wo,wl)( )
The inf on the left-hand side is attained. Indeed, let p, be a minimizing sequence. By the coercivity

of E ensured by the definition of ?,, a subsequence (not relabeled) exists such that y, — y weakly in
H'((0, 1); ?,) and in C([0, 1]; P,). Therefore E(y) <liminf,_, 1 E(¥,,)-
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Let y, be a minimizer of E, and let p, be as given by (4-10). Then

Ero) 2 (I(re)’ = (U (Go) = EFo).
that is, p is also a minimizer of E, and
U@ =@ =E@) =EFg) = (P)* forally € Te(wo, wy),
hence p (or y,) is a minimizer of J. Therefore J has a minimizer too. O

The rest of the section is concerned with estimating the length of a minimizer of J in I'; as given by
Lemma 4.6, a shortest path in what follows. Our first observation concerns those shortest paths which
pass through the north pole:

Lemma 4.7. If a shortest path y passes through (0,0, 1), then J(y) > 2 sin 6.

Proof. Let ty and 1 be the first, respectively the last, time in which y = (0, 0, 1). Then, using the spherical
coordinates (4-4),

fo - 1 -
J(y)z/ COSG\/(9)2+(¢)2sin29dt+/ c0s 0/ (9) + (¢)? sin? 0 dr
0 n
o . 1 . 1o d 1 d
2/ cost9|9|dt+/ cos9|9|dt:/ —sin@‘dt—i—/ —sin@‘dt,
0 t o |dt fn dt

and the lemma follows, since 8(ty) = 6(¢;) =0 and 6(0) = 6(1) = 6. U

We may therefore restrict our attention to shortest paths not passing through the north pole. There,
the spherical coordinates (4-4) are a diffeomorphism. In fact, we may also restrict our attention to those
paths for which ¢ is nondecreasing and which are symmetric with respect to ¢ = 7 /2. In what follows,
we shall call them symmetric shortest paths.

Lemma 4.8. Let y = X (¢, 0) be a shortest path not passing through (0, 0, 1). Then ¢ € [0, 7] and ¢ is
nondecreasing. Moreover, there exists a shortest path = X (@, 0) not passing through (0, 0, 1) such that
¢ Is symmetric with respect to 7 /2:

(@), 0) :1 €0, 1]} = {(x —§(1), 0(0)) : 1 € [0, 1]},

Proof. Without loss of generality, ¢(0) =0 and ¢(1) = 2k + 1)z with k > 0. It is straightforward to see
that max{¢g, 0} and min{p, 7} both decrease the value of J, hence k = 0. Analogously, if #y < #; < 1, are
such that ¢(#;) < ¢(t2) = (o), then replacing ¢ with ¢(#y) in (g, t;) decreases the value of J. Therefore,
¢ is nondecreasing along a shortest path.

In order to construct p, we claim that

I3 - 1 -
7 :=/ cosG\/(Q)z—i—(gb)zsinZth:/ c0s0\/ ()2 + () sin0dt =, (4-19)
0

Ly
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for any ¢* € (0, 1) such that ¢(t,) = 7w /2. Suppose by contradiction that (4-19) does not hold. Then,
without loss of generality, we can suppose J; < Jo. We define 7 (t) = X (¢(¢), 6(¢)), where

6(t) if t <t,, (1) if t <t,,

C S IS I HED I

Then, by letting 7 = t,(1 — 1) /(1 — t,) and using the 1-homogeneity of the integrands with respect to ¢,
we see that

1
Jy)=]+ 1 ft / cos 6(f) \/(é(ﬂ)z_i_ (@) sin? 0(F) dt
=J; +/ ' cos 6(7) \/(G(ﬂ)2+ (@) sin? 0(F) dF = 2,
0
<1+ h=J(p), .

a contradiction, since y is a shortest path. Therefore (4-19) holds. Then, defining y () = X (¢(¢), 0 (1))
as in (4-20), it follows from (4-21) that J(y) =2J, = J1 + J» = J(p), hence p is also a shortest path. [

We now characterize arcs of shortest paths contained in P, .

Lemma 4.9. Let y be a shortest path not passing through (0, 0, 1) and let (ty, t,) be an interval in which
Yla.n) C Pe. Then
cos O(r) sin® ()¢ (1)
JEOP + @) sin20(0)
for some K €10, 1/2]. If K =0, then ¢ is constant. If K > 0, then ¢ is strictly increasing, the function

=K forallt e (ty, 1) (4-22)

(p(10), @(t1)) =11 5 ¢ > 0(1(9)) (4-23)
is a smooth solution of
6" sin 6 cos 6 = (8")?(cos? 0 + cos(20)) + cos(20) sin” 6 (4-24)
with
sin? 0 (cos® 0 sin? 0 — K?) = K%(0')?, (4-25)
and

o(t)
J¥ Xto.0)) = / cos 6,/ (8")? +sin’ 6 dy. (4-26)

®(t)
Proof. Up to a linear reparametrization, y is also a minimizer of J in I';(py (ty), y(t1)). Hence, by
Lemma 4.6, it is also a minimizer of E in I'x (¥ (to), ¥ (1)) N H'((0, 1); R3). Since it does not touch the
north pole, we can write y = X (¢, 6) with ¢ and 6 Lipschitz, and

1 .
EWY Xto.1) = / cos® 0 (6% + sin® 0¢?) dr.

fo
Taking the first variation with respect to ¢, we obtain sin? 6 cos2@¢ = H, and, recalling that y3|p| is
constant, (4-22) follows. Since sinf > 0 (y does not cross the north pole), cos8 > 0 (y € P.), and
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¢ is nondecreasing (by Lemma 4.8), we see that K > 0. If K = 0, then ¢ is constant. If K > O,
then ¢ > 0 in (#, #;) and we may use ¢ as independent variable: letting 6 be as in (4-23), we have
0'=do/de = 0 /@ € L°°((ty, t1)) (because of (4-22)). Then (4-26) follows at once from (4-5) and the
definition of K may be rewritten as

cos 0 sin” 0
V(02 +sin” 0
which is equivalent to (4-25). From (4-25) one sees immediately that K < 1/2. Differentiating (4-27),
we obtain (4-24) in the sense of distributions, and a bootstrap argument starting from 6 € W1 ((t9, 1))

=K, (4-27)

yields smoothness. 0

If y = X(¢,0()) : (fo, 1) — S? is a curve which does not pass through (0, 0, 1) and such that
¢ €1 := (p(ty), ¢(t1)) is strictly increasing, then, following (4-26), we hereafter write (with a slight
abuse of notation)

T Xy = 10 = / cos0/ (@ +sin2 0 dg,  J(0) = Jio.m)(©).
1

In view of Lemma 4.9, it is convenient to state a few properties of the solutions to (4-24), some of which
are visualized in Figure 1.

Lemma 4.10. Let 6 be any solution of (4-24) such that 6 € (0, 7w /2) at some point of its domain. Then:
(a) 6 is globally defined, periodic, and 0 € (0, w/2);

(b) within a period, 6 has a unique local (and therefore global) maximum, 6y > 7 /4, and a unique local
(and therefore global) minimum, 6,, = /2 — 0y, and it is symmetric with respect to its maximum

(minimum) point;
(c) the period P is larger than ;
(d) the length of each interval in which 6 < 1 /4 is at least 7w /~/2;

(e) 0’ has a unique local (and therefore global) maximum and a unique local (and therefore global)

minimum.
Proof. (a) and (b) easily follow from (4-25) rewritten as
N} L. ) 2 2
0)H) = %2 sin“ 0 (sin“ 0 cos“ 0 — K°) =: fx(@), K €][0,1/2] (4-28)

and plotted in the phase space (see Figure 1). We just observe explicitly that, since 6’ = 0 at the extremal
values of 6, we can characterize K from (4-25) as

K =cos6,, sinb,, = cos by sinby,, (4-29)

which explains why 63, = /2 —6,,. Also (e) follows immediately from (4-28), since after differentiation
we see that

20" = fx ©),
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A

Figure 1. The phase plane (0, 0).

whence the arrows in Figure 1.
To prove (c), we let ¢, and @, be a point of minimum and of maximum, respectively, chosen such
that no local extremum exists in between. Then, in view of (b),

P Pm § oM Ko’ Om K
L :/ ¢<4:25>/ d(p:/ ao.
2 - ¢m sinf \/cos2 0sin’6 — K2 om siné \/cos2 0sin’ 6 — K2

We now observe that

K g cos Oy sin By = cos Oy cos B, > cosBy cosO forall 6 € (6, 0u).

Therefore,

P - 9 /91” cos 6 40
— > cos Oy ,
2 0n siné \/coszésinze — K2

whose primitives may be computed explicitly:

0= — arcsin
sin@ v/cos2 0 sin? 6 — K2 2sinfy sin® @ |1 — 2 cos? O |

/ cos o 1 sin? @ — 2 sin? Oy cos2 Oy
cos Oy

Hence

P 1 T T b g

~ Z . ~ + ~ | = . > =

2 T 2sinfy \2 2 2sinfy 2
which proves (c).

To prove (d), let ¢, be a minimum point and let ¢, be the closest point to ¢, such that ¢, < ¢, and
0(ps) = /4. By (b), the length of the interval within a period where 0 < /4 is exactly

D _ /4 K
2 / dp = / do.
- 0n sinf \/cos2 0sin’ 6 — K2
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Since cos @ > 1/4/2 if 6 € [0, 7 /4],

Px /4 K
2/ do > 2 do.
i 6, sin® cos6 v/cos2 6 sin? 6 — K2

The primitives of the right-hand side may be computed explicitly (via the substitution z = sin’(26)):

K 2K cos(26)
df = — arctan +C. (4-30)
sin 6 cos 0 v/cos2 6 sin2 @ — K2 V/sin?(20) — 4K?2
After a substitution we get (d). Il

Lemma 4.11. Let y be a symmetric shortest path not passing through (0,0, 1) and let y = X (¢, 0). If
t1 € [0, 1] is such that 0(t)) < /6 and ¢(t1) < 7w/2, then 0(t) < m/6 as long as ¢(t) <1 — @(t1).

Proof. Let w = sinf and let t, > ¢ be the first time in which ¢(#;) =7 — ¢(#;). We have

Y X)) =/ V@ (0)2+ (@) w(0)> (1 — w(t)?) dt.

By assumption, w(t;) < % If there is an interval I C [t1, 2] where w(t) > %, then a symmetrization of w
with respect to % would strictly decrease the value of J, since

(I—w)*(1 — (1 —w)?) — w1 —w?) =2w(l —w)(1 —2w) <0 ifwe (1/2,1).
This contradicts that p is a shortest path and thus proves the lemma. g
We are now ready to exclude shortest paths which are contained in P
Lemma 4.12. There is no symmetric shortest path y not passing through (0,0, 1) such that y ((0, 1)) C P..

Proof. Assume for a contradiction that such a p exists. We will argue that J(y) > 2 sin 6, in contradiction
with Lemma 4.2 (note that y_;, € P, for all ¢).

Since ¢ has to travel from O to 7, it can not be constant in [0, 1]. Then, it follows from Lemma 4.9
that y (1) = X (¢(2), 6(t)), where ¢ — 6(t(¢)) is a smooth solution of (4-24) such that 6(0) = 6 (;r) = 6.
Since y is symmetric, we have 6’(;r/2) = 0. Because of (b) and (c¢) in Lemma 4.10, 6 is monotone in
(0, /2). Hence, letting 8; = 6(;r/2), we have

K 2 K(01) =cos6;sinf; and cos’Osin’6 > K?> foralls e 0, 1). (4-31)
We claim that 6, > /4. If not, it follows from (4-31) that 6; < 6y. Hence 6 is nonincreasing in (0, 77/2),
and

T (4-25) /”/2 Ko’ do— /90 K 50
2 0 sinO\/cos2GSin29—K2 0 Sine\/COSZQSiIIz@—KZ
/4 K
< cos(6;) do. (4-32)
6 sinfcos@ v/ cos?fsin®h — K2

By (4-30), we would have w < & cos(6), a contradiction. Hence 6; > 7 /4.
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We note the obvious bound
| m/2 . @30 7 .
3J(0) > cosfsinfdp > Esmel cos 6.
0

Hence we are done if
T .
5 sin 81 cos 0 > sin 6,

that is, if

6y < arcsin(% sin 01 cos 91> = arcsin(% sin(291)). (4-33)

We claim that (4-33) does hold. If not, recalling Lemma 4.11, we would have

6y > max{arcsin(% sin(201)), %} =: f(0y).

Then, arguing as in (4-32), we write

T o K
T / o
2 % sinf \/cos295in20 —K?

- /4 K 01 K
< COS — db + cos = do
6 Jr@) sind cos 6 \/coszesinze—l(2 4 Ju SineCOSQ\/COSZQSiHZQ—KZ
3 in 6 0 216 2
= \/T— arctan sin6) cos by cos2f(61)) + g% =: F(9)).

Jsin22£(01)) — 4sin ) cos? 6,

It is now a calculus exercise to check that F' is increasing in (7 /4, ) := (0, %(n — arcsin (2/m))) and
decreasing in (0, 7w /2): therefore F has a global maximum at 6, with F () < /2. Since this is impossible,
(4-33) holds and the proof is complete. 0

The rest of the section is concerned with estimating the length of candidate symmetric shortest paths
which intersect 0%, (and do not pass through the north pole). We firstly infer some properties of those
candidate shortest paths which reach d%,.

Lemma 4.13. Let 6y < 7 /4, let € be sufficiently small, and let y = X (¢, 6) be a symmetric shortest path
not intersecting the north pole. If t| > 0 exists such that y (t)) € 0%, and y(t) € 9]38 in [0, t1), then:

(1) 6(t)=m/6 forallt €0, t1);
(ii) 6 is increasing in [0, t);
(iii) ¢(n) <m/2—¢.
Proof. (1) follows immediately from Lemma 4.11.
To prove (ii), we note that by Lemma 4.9, (4-22) holds in [0, #;). Let ¢; = ¢(#;). By symmetry,
¢1 <m/2. If K =0, we would have ¢(t) = ¢; in (0, t;): since y does not reach the north pole, this
means that ¢; = 0 and 0 is increasing from 6y up to 6(t;) = 7w /2 — 6p. If instead K > 0, then (4-23)

holds in (0, ¢1). We will prove that 6’ > 0 in (0, ¢;), which implies (ii). Assume by contradiction that
0’ < 0 somewhere in (0, ¢;). Then, by Lemma 4.10(b), there exists ¢, € (0, ¢;) such that 6 (¢2) = 6,,. By
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Lemma 4.10(d) and since 0(¢,) > 7 /4, we have ¢ > o1 — @ > 7/ (2«/5). Then, since 6; is increasing
in (0, 7/2) and provided ¢ is sufficiently small,

01 :=0(p1) =6, (p1) > 9:(L> = 9*(L) (4é6> arctan _ >
2V2 2V2 cos(7/(2v2)) 3

By (4-25), this implies that sin 6,, cos 8,, < sin8; cos 8] < \/5/4, that is, 6,, < 7 /6, which is impossible
in view of Lemma 4.11.
To prove (iii), assume for a contradiction that ¢(¢;) € (w/2 — &, 7 /2]. We have

T @(r1) 3 0(p(t1)) K Om K
——85/ d(p(4=25)/ d9§/ do,
2 0 6o sin 0 \/coszesinze —K? 6 sinf \/coszésinze —K?

where in the last inequality we have used (ii). Splitting the right-hand side and applying (i), we then

obtain
/4 K 2 [ K
——¢& < f do + £ f do
2 7/6 sin® v/cos? 6 sin6 — K2 2 Ja4 sinf cosO v/cos2 6 sin2 0 — K2
_ ﬂ/4 K 2
(30 f o472 (4-34)
7/6 sin@ v/cos? 0 sin 6 — K2 4

Furthermore, again by (ii), we have
K =sinfy; cos Oy < sin0(¢(t1)) cos O (p(f1)) <sinf* (¢ —&)cos0*(p —e) - 0 ase— 0.

Therefore the integral on the right-hand side of (4-34) vanishes as ¢ — 0, yielding a contradiction for ¢
sufficiently small. O

Lemma 4.14. Let ¢ € I = (¢o, ¢1) € [0, m/2 —¢]. Then

. sin @ sin ¢ y=a

J1(6)) = . (4-35)
V1 +tan2 6, cos? ¢ lp—g,

Proof. Since 6 = 0* for ¢ < /2 — ¢, a straightforward computation shows that
; 4 sin 6,
cos 0 \/(6:)? +sin* 0 = kel .
V1 +tan? 6y cos? ¢ (3 + cos 26 + 2 cos 2¢ sin’ )
An integration of this expression yields (4-35). O

We now show that if the graph of a solution to (4-24) emanates from 9% N 0P, into 938, then it does
not return to 9% N o%P,.

Lemma 4.15. Let 91 € [0, 1/2 — €) and let 6 be a solution of (4-24) such that 6(p1) = 0*(¢,) and
0'(p1) < 0% (¢1). Then X (9, 0(9)) C P, for all ¢ € (1, 7/2 — €.

Proof. We let 6] = 6(p;) and we distinguish two cases.
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Case 1: 0'(¢p1) <0. If 6y = /4, 91 =0, and 6'(¢;) =0, then 6 = /4 and the lemma is trivially true.
Else Lemma 4.10 implies that € decreases until either ¢ = 7 or it reaches its minimum. In the former
case the lemma is proved. In the latter, part (d) of Lemma 4.10 implies that 8 < 6*(¢;) at least until
¢ =1 +7/V2>m/2.

Case 2: 0'(p1) > 0. It is convenient to set
v(p) = logtan(36(¢)).
Lengthy but straightforward computations show that

_ cosh(2v) — 3
" sinh(2v)

4

(1+@)5.

We now observe that

cosh(2v) < 3 <= L1og(3 —2v2) < v < Llog(3 +2v2)
<= logtan(r/8) < logtan(6/2) < logtan(37/8)
<—0ec(n/4,1/2),

sinh(2v) > 0<= v > 0<=0 € (w/8, 7 /2).

Hence v” < 0 if 6 > /4. On the other hand, as long as ¢ < /2 — ¢, we have

1
0 <0 =0" <= v <v*(p) :=logtan 1 arctan ————
2 tan 6y |cos ¢|
with
" sin By cos ¢

*
= >
(sin? B cos? ¢ + cos? y)3/2

v

Hence (v —v*)” <0 aslong as @ > 7/4 and ¢ < /2 — ¢. Since v = v* and v/ < v* at ¢ = ¢;, we have
v < v* as long as either ¢ = /2 — ¢ or 8 = /4. In the former case the proof is complete. In the latter
case, part (d) of Lemma 4.10 implies that 6 will then remain below 7 /4 at least in an interval of length
7/+/2 > /2, and the proof is complete. O

We now estimate J over a candidate symmetric shortest path which de-touches from 9% N 9%, and
reaches ¢ = /2 —¢:

Lemma 4.16. Let y be a symmetric shortest path not passing through (0,0, 1) and let y = X (¢, 6). If
t; > 0 exists such that 1 = ¢(t)) € [0, 1/2 —¢), 0(t;) = 0*(¢1), and y ¢ 0P in a right-neighborhood
of t1, then

&
Jgr.7/2-6)O) > T2/ (07) = 5.
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Proof. By assumption, for all ¢ > 0, there exists ¢, € (t1, t; + o) such that y(¢,) € @g. By continuity,
there exists 7, € [1, f,) such that y (,) € 3%, and y(¢) € P, for all 7 € (7,, t,]. Then we may apply
Lemma 4.9 in (75, t5].

If K =0, then ¢ is constant, and since the curve is on 0%, at t = f,,, 0 must decrease. Hence y remains
smooth down to 8 = 0, the north pole. Therefore this case is excluded.

Then K > 0, ¢ is strictly increasing, and 0 (¢) solves (4-24) in (45, t,). By Lemma 4.15, we in fact
have X (¢, 6(p)) C P, as long as ¢ < /2 — &, which in particular implies that 7, = #; and that 6 solves
(4-24) as long as ¢ < 7w /2 —¢e. We let

01 =0(p1) =0"(¢1)
and we distinguish two cases.

Case 1: 0'(¢;) <0. Lemma 4.10 and the symmetry of the path imply that 6 does not increase until 77 /2
and 0(;r/2) =6, > 0. If 0 =0y = /4 and ¢, =0, then y((0, 1)) C Qo’a, a case which has already been
ruled out in Lemma 4.12. Hence 6, > 7 /4.

We claim that

min siné cos @ = sin G, cos b,,. (4-36)
¢€l0,7/2]
By (4-25),
min siné cos @ = sin 6, cos 6,,. 4-37)
veler,m/2]
In particular,
sin(0) cos(01) > sinb,, cos G,,. (4-38)

On the other hand, by Lemma 4.13(ii), 6 € [6y, 61] for ¢ € [0, ¢1]. Hence
min sin 6 cos§ = min{sin 6y cos Gy, sin &1 cos 6 }. (4-39)
¢el0,¢1]
Since 6* is increasing,
sin(6)) cos(61) < sin(6*(0)) cos(6*(0)) = sin(% . 90) cos(% . 90) — sin(fp) cos(6),
therefore (4-39) reads
. . . (4-38) |
min sinf cosf® =sinf; cosf; > sinb,, cosb,, (4-40)
9el0,¢1]
and (4-36) follows from (4-37) and (4-40).
We denote by ¢; € (¢1, 7/2) the unique point such that 6(¢) = 6y (recall that 6, > /4, 0(r/2) =
0 < /4 and 6 is decreasing in (¢1, 7/2)), and we define (see Figure 2)

0(¢+@1) if05<0§%—¢1,

0(¢) == , 3
Om lf%_‘/’lffpf%'

We have

J0.51)(0) > 8in 6y, €08 0 @1 = Jin )23y /2 (0)  and  Jo.nj2—51)O) = 3,22 (6).
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Y1 Q1

Figure 2. Case 1 in the proof of Lemma 4.16. The path (¢, 8(¢)) (continuous) is beaten
by its competitor (¢, 8(¢)) (dashed).

Therefore y is not a shortest path and this case is excluded.
Case 2: 6'(¢1) > 0. Lemma 4.10 and the symmetry of the path imply that 6 increases until 7/2 —&. We
now estimate its length in /, = (¢, /2 — ¢). By the assumption of Case 2, and since y € % in I,

0 <0'(p1) < (6" (1) (4-41)
By (4-25),

sin? 6 (cos? 0 sin> 6 — K?) = K*(#')> for some K € (0, 1/2). (4-42)
Evaluating this expression at ¢, we have

_ sin?0%(¢1) cos 0% (1) (4-41) sin? 6*(¢;) cos 6*(¢))
VO (@) +sin20%(p1) V(07 (91))? +sin® 0*(¢))

Of course, we have

(4-42)
J]S(Q)Z/COSQSiHQd(p > |[|K.
I,

This chain of inequalities implies that

sin® 0* (1) cos 0* (1) B | 1] sin 6y cos ¢
VO (91)2 +sin20%(¢;) /1 +tan2 6, cos? ¢

J1.(0) > ||

(the latter equality follows from an explicit computation). On the other hand, by Lemma 4.14, the curve
which just stays on the obstacle, y* = X (¢, 6*(¢)), ¢ € (¢1, 7/2), is such that

. sin ®1
J(wl,n/z)(e*) = s1n90<1 — )
V1 +tan2 6, cos? ¢
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Hence

(J1.0) — Jigy,2/2)(07))

V14 tan2 0y cos? ¢
sin 6

> |I.| cos @1 + sin g1 — +/1 + tan2 §; cos? ¢

> (Z—S—(pl) cos @1 +sin @) —+/1+cos? ¢ =: F(@1) —&cos ¢y.

2

Another calculus exercise shows that F' is decreasing [0, 7 /2]: since F'(;r/2) =0, F is positive. Therefore
sin 6y cos ¢
V1 +tan2 6, cos? ¢

J1.(0) > Jipy 22 (0%) — & > Jigr,7/2)(0%) — Le. O

Next we characterize the candidate shortest paths joining X (0, 6*(0)) with another point on 0% N 3%,
which is on the same side with respect to 7 /2.

Lemma 4.17. Let 0 < ¢ < /2 — &. The shortest path which connects X (0, w/2 — 6y) and X (¢, 6*(¢))
is (a smooth reparametrization of) y* = X (¢, 0*(¢)), ¢ € [0, ¢].
Proof. Let I = (0, ¢). We recall by Lemma 4.14 that

sin 6 sin @

J1(<9*) = < SiIl@().
V14 tan2 6 cos? ¢

First note that y does not reach the north pole. For if it did, at a time 7 € (0, 1), we would have

t
J(y) = / cos9|é| dt > sin(6(0)) = sin(% —60) =cosfy > sinby > J;(6%),
0

which is impossible.

Therefore we may use the spherical coordinates (4-4), and arguing as in the proof of Lemma 4.8 we
see that ¢ in nondecreasing.

Assume for a contradiction that y does not coincide (up to a smooth reparametrization) with y*. Then
t; > 0 and a right-neighborhood I of #; exist such that ¢; := ¢(1;) < @ and y(I) ¢ 9P. Arguing as
in the first lines of the proof of Lemma 4.16, one finds that there is #, > #; such that y(¢) € % for all
t € (t1, t2). Then, arguing as in the proof of Lemma 4.9, one finds that (4-22) holds, and K > 0 since ¢ is
nondecreasing. If K > 0, then 6(¢) would solve (4-24) in (#1, t2); but in view of Lemma 4.15, such a
solution will not rehit the constraint until ¢ = /2 — e, hence K > 0 can not occur. If K =0, then ¢ = ¢y,
and since we are on 0% at time #;, & must move inwards. Hence y remains smooth up to 6 = 0, the north
pole, a contradiction. (|

Proof of Theorem 4.1. First of all, we note that Lemma 4.14 implies that J(6*) = 2 sin fy. Hence, in view
of Lemma 4.5, it suffices to show that

inf J(y) = J(07) —w(e) =2sinbh — w(e), (4-43)
yele

where o is a universal function which vanishes as ¢ — 0. By Lemma 4.6, the inf on the left-hand side of
(4-43) is attained. Let p be one such shortest path. If y passes through (0, 0, 1), then (4-43) follows from
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plt) o1 5

Figure 3. Case 1 in the proof of Theorem 4.1. The path (¢(¢), 6(¢)) (gray) is beaten by
its competitor (¢(¢), 0(¢)) (dashed).

Lemma 4.7. If not, we let y = X (¢, ) and, by Lemma 4.8, we assume without loss of generality that y
is symmetric. For simplicity, we distinguish between 6y < /4 and 6y = 7 /4.

Case 1: 6y < /4. We already know from Lemma 4.12 that y has to intersect 0%,. Let #y and #; be,
respectively, the first time in which 6(¢) = 7 /4 and the first time in which p intersects 0%,:

ti:=supf{r>0:y ¢ 9]3,3 in[0,#)} and ¢ =@(f).

Provided ¢ is sufficiently small, by Lemma 4.13(ii), € is increasing in (0, #;). Hence the curve
g

50 = X o), 00y, B(ry:= ]2 0@ 10 n0b

(1) 1 € [0, 11]
is contained in P, (see Figure 3). We claim that
T xo.m) < J ¥ x0.0)- (4-44)
which is equivalent to
¥ x0.0) < IV X0O.10))- (4-45)

By Lemma 4.9, y satisfies (4-22) in (0, tp). If K =0, then ¢ = 0 and (4-45) follows from the expression
(4-5) of J:

cos(% — 9) =sin(f) < cosf if 6 <m/4.

Otherwise, by Lemma 4.9 ¢ — 0(¢) solves (4-24) in (0, ¢g), where ¢g = ¢(f9). Then it follows by
Lemma 4.13(iii) that ¢y < /2 — ¢, and we may use the equivalent expression (4-26) for J: since
cos? 6((6")? + sin® ) = sin® H((0)* 4 cos? 0) < cos?> ((")> +sin®6) in (0, ¢p),

(4-45) follows.
Since p is a path connecting X (0, /2 —6p) to X (¢1, 0*(¢1)), Lemma 4.17 implies that J (Y x(0,,,)) >
J0,)(07). Together with (4-44), we obtain

J0.00)(0™) < T(¥ X(0.01))- (4-46)
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Now let #, >t be defined by
:=max{r >t :y € 0P, in [t1,t]} and ¢ = p(f).
The estimate in (¢, 1) is trivial since y coincides with y* := X (¢, 6*):

J(}’X(tl,lz)) = J(‘ﬂlvfﬂz)(e*)‘

On (¢, /2 — ¢), Lemma 4.16 implies that
J(m’n/z_g)(e) > J((pz,n/z)(@*) — % if @y < % —E&. (4-47)
Finally, we just observe that

L @)
Jaj2—e7/2)(07) < w(e). (4-48)

Collecting (4-46)—(4-48) and recalling the symmetry of y, we obtain (4-43).
Case 2: 6y = m /4. This case is simpler. We let

=max{tr>0:p 0P, in[0,¢]} >0 and ¢, =p(f),

and we argue exactly as above to obtain J (¥ x(0,1,)) = J(0,¢,)(0) and (4-47)—(4-48). Il
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DECOMPOSITION RANK OF #-STABLE C*-ALGEBRAS

AARON TIKUISIS AND WILHELM WINTER

We show that C*-algebras of the form C(X) ® %, where X is compact and Hausdorff and & denotes the
Jiang—Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for
C*-bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine
structure of nuclear C*-algebras of Toms and Winter, even in a nonsimple setting, and gives evidence that
the topological dimension of noncommutative spaces is governed by fibres rather than base spaces.

1. Introduction

The structure and classification theory of nuclear C*-algebras has seen rapid progress in recent years,
largely spurred by the subtle interplay between certain topological and algebraic regularity properties,
such as finite topological dimension, tensorial absorption of suitable strongly self-absorbing C*-algebras,
and order completeness of homological invariants; see [Elliott and Toms 2008] for an overview. In the
simple and unital case, these relations were formalized by A. Toms and W. Winter as follows.

Conjecture 1.1. For a separable, simple, unital, nonelementary, stably finite and nuclear C*-algebra A,
the following are equivalent:

(i) A has finite decomposition rank: in symbols, dr 4 < oc.
(i) Ais%-stable: A =~ AR %.
(iii) A has strict comparison of positive elements.

Here, decomposition rank is a notion of noncommutative topological dimension introduced in [Kirch-
berg and Winter 2004], % denotes the Jiang—Su algebra introduced in [Jiang and Su 1999], and strict
comparison essentially means that positive elements may be compared in terms of tracial values of their
support projections; compare [Rgrdam 2006]. If one drops the finiteness assumption on A, one should
replace (i) by

(i) A has finite nuclear dimension, dimp, 4 < oo,
where nuclear dimension [Winter and Zacharias 2010] is a variation of the decomposition rank that can

have finite values also for infinite C*-algebras.
The conjecture still makes sense in the nonsimple situation, provided one asks A to have no elementary

Both authors were supported by DFG (SFB 878). Winter was also supported by EPSRC (grant numbers EP/G014019/1 and
EP/1019227/1).
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subquotients (this is a minimal requirement for Z-stability); one also has to be slightly more careful about
the definition of comparison in this case.

Nuclearity in this context manifests itself most prominently via approximation properties with particu-
larly nice completely positive maps [Christensen et al. 2012; Hirshberg et al. 2012a].

Conjecture 1.1 has a number of important consequences for the structure of nuclear C*-algebras and it
has turned out to be pivotal for many recent classification results, especially in view of the examples given
in [Villadsen 1999; Rgrdam 2003; Toms 2008]. Moreover, it highlights the striking analogy between
the classification program for nuclear C*-algebras (see [Elliott 1995]) and Connes’ [1976] celebrated
classification of injective II; factors.

Implications (i), (i') = (ii) = (iii) of Conjecture 1.1 are by now known to hold in full generality
[Rgrdam 2004; Winter 2010; 2012]; (iii) = (ii) has been established under certain additional structural
hypotheses [Matui and Sato 2012; Winter 2012], all of which, in particular, guarantee sufficient divisibility
properties.

Arguably, it is (ii) = (i) which remains the least well understood of these implications. While there
are promising partial results available [Winter and Zacharias 2010; Lin 2011b; Winter 2012], all of these
factorize through classification theorems of some sort. This in turn makes it hard to explicitly identify the
origin of finite dimensionality.

In the simple purely infinite (hence Oxo-stable, hence %-stable [Kirchberg and Rgrdam 2002; Kirchberg
2006]) case, one has to use Kirchberg—Phillips classification [Kirchberg 1995; Kirchberg and Phillips
2000] as well as a range result providing models to exhaust the invariant [Rgrdam 2002] and then again
Kirchberg—Phillips classification to show that these models have finite nuclear dimension [Winter and
Zacharias 2010].

In the simple stably finite case, at this point only approximately homogeneous (AH) algebras or
approximately subhomogeneous (ASH) algebras for which projections separate traces are covered [Lin
2011a; Lin and Niu 2008; Winter 2004; 2007]. (This approach also includes crossed products associated
to uniquely ergodic minimal dynamical systems [Toms and Winter 2009; 2013].) While both of these
classes after stabilizing with % can by now be shown directly to consist of TAI and TAF algebras [Lin
2011b], again finite topological dimension will only follow from classification results [Elliott et al. 2007;
Winter 2010; Lin 2011a; Toms 2011] and after comparing to models which exhaust the invariant [Elliott
1996; Villadsen 1998]; see also [Rgrdam 2002] for an overview. (Note that certain crossed products
are shown directly to have finite nuclear dimension, or even finite decomposition rank [Hirshberg et al.
2012b; Szabo 2013]; however, %-stability is not assumed in these cases.)

L After this article appeared on the arXiv, Matui and Sato [2013] posted a very nice paper in which they prove finite
decomposition rank for separable, simple, unital, nuclear, and %-stable C*-algebras provided these are quasidiagonal and have a
unique tracial state. While this result is restricted to the simple and monotracial case (conditions we do not need at all), it only
uses quasidiagonality as additional structural hypothesis (and this is of course much more general than our local homogeneity);
see also [Sato et al. 2014]. Matui and Sato’s approach heavily relies on deep results of Connes and of Haagerup and, in a sense,
is almost perpendicular to ours; we believe that the two methods nicely complement each other.

2[Matui and Sato 2013] also contains a proof of finite nuclear dimension for simple purely infinite C*-algebras, which does
not rely on classification; see also [Barlak et al. 2014].
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Once again, the classification procedure does not make it entirely transparent where the finite topological
dimension comes from, but at least Elliott—Gong-Li classification of simple AH algebras (of very slow
dimension growth — later shown to be equivalent to slow dimension growth and to %-stability [Winter
2012]) heavily relies on Gong’s deep dimension reduction theorem [2002]. Gong gives an essentially
explicit way of replacing a given AH limit decomposition with one of low topological dimension.
However, this method is technically very involved and requires both simplicity and the given inductive
limit decomposition. It does not fully explain to what extent the two are necessary; in particular, it is
in principle conceivable that a decomposition similar to that of Gong exists for algebras of the form
C(X)® 9, where 9 is the universal UHF algebra.>

In this article we show how finite topological dimension indeed arises for algebras of this type; in
fact, we are able to cover algebras of the form C(X) ® %, and hence also locally homogeneous %-stable
C*-algebras (not necessarily simple, or with a prescribed inductive limit structure). We hope our argument
will shed new light on the conceptual reasons why finite topological dimension should arise in the presence
of sufficient C*-algebraic regularity. Our method is based on approximately embedding the cone over the
Cuntz algebra O, into tracially small subalgebras of the algebra in question; these play a similar role as
the small corners used in the definition of TAF algebras [Lin 2004] or the small hereditary subalgebras
in property SI [Matui and Sato 2012]. We mention that we only obtain (a strong version of) finite
decomposition rank, whereas Gong’s reduction theorem yields an inductive limit decomposition; however,
for many purposes, finite decomposition rank is sufficient; see [Winter 2010; Toms and Winter 2013].

In [Kirchberg and Rgrdam 2005], algebras of the form C(X) ® O, were shown to be approximated by
algebras of the form C(I') ® O, with I" one-dimensional. Since 05 is by now known to have finite nuclear
dimension [Winter and Zacharias 2010], this may be regarded as strong evidence that the topological
dimension of a C*-bundle depends on the noncommutative size of the fibres more than the size of the
base space. (A somewhat similar phenomenon was already observed for stable rank by Rieffel [1983].)

It is remarkable that [Kirchberg and Rgrdam 2005] does not rely on a classification result in any way.
It does, however, mix commutativity (of the structure algebra) and pure infiniteness (of the fibres).

It is not clear from [Kirchberg and Rgrdam 2005] whether such a dimension type reduction also occurs
in the setting of stably finite fibres. In the present article we show that it does, by developing a method
to transport [Kirchberg and Rgrdam 2005] to the situation where the fibres are UHF algebras (to pass
to the case where each fibre is & then requires a certain amount of additional machinery — at least if
one wants to increase the dimension by no more than one). The crucial concept to link purely infinite
and stably finite fibres is quasidiagonality of the cone over 05, discovered by Voiculescu [1993] and
Kirchberg [1991]. In many ways it is most interesting just to know that the %-stable C*-algebras in
our main result have finite decomposition rank, and the very small bound that we are able to derive is
secondary. Certain technicalities can be circumvented, using [Carrién 2011, Lemma 3.1] in order to prove
just finite decomposition rank, as we describe in Remarks 4.8 and 4.9. We are indebted to one of the
referees for suggesting this shortcut.

3Added in proof: It turns out that this is not, in fact, conceivable; see [Tikuisis 2014].
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One should mention that the fact that the fibres are specific strongly self-absorbing algebras in both
[Kirchberg and Rgrdam 2005] and in our result plays an important but in some sense secondary role: In
[Kirchberg and Rgrdam 2005] (combined with [Winter and Zacharias 2010]) one can replace O with O,
or in fact with any UCT Kirchberg algebra, and still arrive at finite nuclear dimension. More generally,
our result yields the respective statement if the fibres have finite nuclear dimension and are %-stable, for
example, in the simple, nuclear, classifiable case.

While at the current stage we only cover the case of highly homogeneous bundles, it will be an important
task to handle bundles with non-Hausdorff spectrum, for example, B ® # with B subhomogeneous,
in order to also cover transformation group C*-algebras. This will be pursued in subsequent work by
combining our technical Lemma 4.7, with the methods of [Winter 2004]; in preparation, we have stated
Lemma 4.7 in a form slightly more general than necessary for the current main result Theorem 4.1. One of
the referees has raised the question of whether (local) triviality of C(X) ® % is needed to show that it has
finite decomposition rank, particularly in light of the interesting examples of C (X )-algebras appearing in
[Dadarlat 2009b; Hirshberg et al. 2007]; in response, we have added Section 5, in which we show that
our result easily extends to nontrivial bundles such as these examples.

We would like to take this opportunity to thank both referees for their careful proofreading and inspiring
comments.

We remind the reader that the Jiang—Su algebra % is an inductive limit of so-called dimension-drop
C*-algebras

Zpo.pr ‘=1 € C([0,1], Mp, ® Mp,) : f(0) € Mp, ®C-1p, and f(1) €C-1p, @ Mp,},  (1-1)

where pg, p1 € N are coprime, and it can be defined as the unique simple, monotracial limit of such
algebras. It has also been realized as an inductive limit of generalized dimension-drop algebras, which
are defined as in (1-1), but with pg, p1 taken to be coprime supernatural numbers (so that M, denotes a
UHF algebra) [Rgrdam and Winter 2010, Theorem 3.4]. The connecting maps in this inductive limit have
the crucial feature of being trace-collapsing.

2. Decomposition rank of homomorphisms

In this section we introduce the notions of decomposition rank and nuclear dimension of *-homomorphisms,
building naturally on the respective notions for C*-algebras, just as nuclearity for *-homomorphisms
arises from the completely positive approximation property for C*-algebras. We first recall from [Winter
2003] the notion of completely positive contractive (c.p.c.) order zero maps.

Definition 2.1. Let A, B be C*-algebras and let ¢ : A — B be a c.p.c. map. We say that ¢ has order zero
if it preserves orthogonality in the sense that if a, b € A4 satisty ab = 0, then ¢ (a)¢p(b) = 0.

Definition 2.2. Let o : A — B be a *-homomorphism of C*-algebras. We say that « has decomposition
rank at most n, and write dr(«) < n, if, for any finite subset % C A and any € > 0, there exists a finite
dimensional C*-algebra F and c.p.c. maps

Yv:A—F and ¢:F—B
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such that ¢ is (n + 1)-colourable, in the sense that we can write
F=FOg...g F®
and ¢| ru) has order zero for all i, and such that ¢ is point-norm close to «, in the sense that, for a € &,

la(a) =gy (a)| <e.

We may define nuclear dimension of « similarly (and write dimp,(e¢) < n), where instead of requiring
that ¢ is contractive, we only ask that ¢| g is contractive for each i.

Remark 2.3. The decomposition rank (respectively nuclear dimension) of a C*-algebra, as defined in
[Kirchberg and Winter 2004, Definition 3.1] (respectively [Winter and Zacharias 2010, Definition 2.1]) is
just the decomposition rank (respectively nuclear dimension) of the identity map.

The following generalizes some permanence properties for decomposition rank and nuclear dimension
of C*-algebras. Proofs are omitted, as they are essentially the same as those found in [Kirchberg and
Winter 2004; Winter 2003; Winter and Zacharias 2010].

Proposition 2.4. Let A, B be C*-algebras and let @ : A — B be a *-homomorphism.

(i) Suppose that A is locally approximated by a family of C*-subalgebras (A)) p, in the sense that, for
every finite subset % C A and every tolerance € > 0, there exists A such that % C¢ A). Then

dr(er) < supdr(« |Ax) and  dimpyc (@) < sup dimpyc(c |A)L )-
A A

(ii) If C C A is a hereditary C*-subalgebra, then
dr(ac) =dr(e) and dimpyc(ac) < dimpye(e),
where ¢ = a|c : C — her(a(C)).

When computing the decomposition rank (or nuclear dimension), it is often convenient to replace the
codomain by its sequence algebra, defined to be

(/@)

noo:l_[A—>Aoo
N

We shall denote by

the quotient map, and by t : A — A the canonical embedding as constant sequences.

Proposition 2.5. Let a : A — B be a *-homomorphism.
Then

dr(e) =dr(tec o) and dimpye (o) = dimpye(too 0 ).

Proof. Straightforward, using stability of the relations defining c.p.c. order zero maps on finite dimensional
domains [Kirchberg and Winter 2004]. O
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Proposition 2.6. Let 9 be a strongly self-absorbing C*-algebra (as defined in [Toms and Winter 2007]),
and let A be a @-stable C*-algebra.
Then

dr(4) = dr(idg ® 1g) and  dimpue(A) = dimpue(idg ® 19).

Proof. This follows easily from the fact that id4 has approximate factorizations of the form

g 1% g 99 % A0,

where ¢ is a *-isomorphism. O

3. C(X)-algebras and decomposition rank

For a locally compact Hausdorff space X, a Co(X)-algebra is a C*-algebra A equipped with a nonde-
generate *-homomorphism Co(X) — Z.M(A), called the structure map [Kasparov 1988, Definition 1.5].
Here M (A) refers to the multiplier algebra of A and ZA(A) to its centre; note that if A is unital, so is the
structure map. In this section, we study the decomposition rank of such structure maps. Proposition 3.2
below is reminiscent of [Winter 2003, Proposition 2.19], which shows that the completely positive rank
of C(X) equals the covering dimension of X.

Definition 3.1. Let A be a Co(X)-algebra and let a € A. Define the support of a to be the smallest closed
set ' C X such that ag = 0 whenever g € Co(X\F) C Co(X). (This is easily seen to be well defined.)

We note the following property of order zero maps, which was obtained in the proof of [Kirchberg and
Winter 2004, Proposition 5.1] (sixth line from the bottom of p. 79): if ¢ : A — B is an order zero map
and A is a unital C*-algebra, then

¢l = llg(La)llllx]|  forany x € A. (3-1

Proposition 3.2. Let X be a compact Hausdorff space, and let A be a unital C(X)-algebra with structure
map t: C(X) — Z(A).
The following are equivalent:
(1) dr(t) <n.
(i) dimpyc(e) < n.

(iii) The definition of dr(t) < n holds with the additional requirements that F is abelian and \ is a unital
*-homomorphism.

(iv) For any finite open cover W of X, any € > 0, and any b € C(X )+, there exists an (n + 1)-colourable

€-approximate finite partition of b; that is, positive elements b @D e 4 Jori=0,...,n,j =1,
such that
(a) for each i, the elements b(.), .. b(.) are pairwise orthogonal,

(b) foreachi, j, the support of b( oF is contained in some open set in the given cover U, and

©) sz(’) (b <e.
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Proof. (iii)) = (i) = (ii) is obvious.

(ii)) = (iv). Let us first assume b = 1. Let F be a finite partition of unity such that, for each f € %, there
exists Uy € U such that supp f C Uy. Set

€

Use dimy,c(t) < n to obtain
C(x)i) FOg...gg F®™ i)A

such that ¥ is c.p.c., ¢| o) is c.p.c. and order zero for all i =0,...,n, ¢(Y(f)) =, f for f € F, and
(Y (1)) =¢/2 1. Set

ri
FO = D Mg, j).
j=1

(By throwing in some zero summands if necessary, we may as well assume all the r; to be equal.)

Foreachi =0,...,nand j =1,...,r;, we set
(l) ¢V (lex) I, ;) —
m.7) 2(n +1)/4
For each i, since ¢|rq) is order zero, a( 2N aﬁl) are orthogonal. We estimate

l=¢pp(¥(1) = Z Z¢(w(1>1Mm(, ) =g Za(’)

i=0j=1

where the last approximation is obtained using the fact that the inner summands are orthogonal.

Lastly, we must verify that each a( D has support contained in an open set from the cover U. Fix i

@ ;

and j. Let f; ; € ¥ maximize f > || W( )M, |- We shall show that the support of a;’ is contained

in the support of fl by showing that a( )| x =0, where
={xeX: fi,; =0}

Since 1 = ) f, we must have
feF

”W(fl',j)le(i,j)” = |Je| ”W(l)le(, j)” (3-3)
Noting that
Jij =0 ¢W(fi.;) Z ¢ W (fi. )M, )

we must have
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We get
(3-D

16 W (D, ) =" 110 At ) KM (D155

3)
= ||¢(1Mm(,,))|K” |@| ”W(ﬁ,})le(,,) ”

(3-D

= oW (fi, )M )k
(3-2) €

2 €.

G4y 2(n+1)°

therefore, a(i)| x = 0, as required.
If b is not the unit, we may still assume that ||b|| < 1 and use the argument above to obtain an
(n 4 1)-colourable approximate partition of unity (a ) subordinate to U. Then simply set b(’) ba(l).

(iv) = (ii). It will suffice to prove the condition in (iii) assuming that & consists of self-adjoint
contractions.

Take an open cover AU of X along with points xyy € U for every U € AU such that, for any f € F
Ue€al,and x € U,

HOENCHIESS (3-5)

Use (iv) with b =1 to find an (n + 1)-colourable €/2-approximate partition of unity

subordinate to 9. By a standard rescaling argument, we may assume that » a(l)

U(i, j) € AU be such that suppaj( D Uuga,j).
Define ¢ : C(X) — (C")" by

< 1. Foreachi, j, let

V(f) = (f(Xu@,j))i=0,n; j=1,..r

and define ¢ : (C")" — C(X, A) by

i,j

Clearly, ¥ is a *-homomorphism, while ¢ is c.p.c. and its restriction to each copy of C” is order zero.
To verify that ¢ o ¢ approximates 6 in the appropriate sense, fix f € % and x € X. We shall show that

l¢v (f)(x) — f(X)[| < € (in the fibre A(x)). Let

S={@GJj)e{0,....n}x{1,....r}:x €U, j)},
so that

SN =Y fxue)) a’ @) and 1=y, Y al(x).

@, j)es @, j)es
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By (3-5), | |
F@=¢/2- Y al@ = Y foug-a @)
@,/)es N
<(f0)+e€/2)- Y al ().

@,j)es
It follows that

pW (=D flyan) a = f)- Y al? = f(0).

@,))es @.))es
as required. O

Proposition 3.3. Let X be a locally compact metrizable space with finite covering dimension, and let A
be a Co(X)-algebra all of whose fibres are isomorphic to 0. Let U C X be an open subset such that U
is compact.

Then Co(U)A = Co(U, 03) as Co(U)-algebras.

Proof. [Dadarlat 2009a, Theorem 1.1] says that A|g = C(U,03), as C(U)-algebras. Viewing Co(U)A
as an ideal of A|g, the result follows. O

4. Decomposition rank of Cy(X, %)

In this section, we prove our main result.

Theorem 4.1. Let A be a C*-algebra which is locally approximated by hereditary subalgebras of C*-
algebras of the form C(X,¥), with X compact Hausdorff.
Then
dr(A®%) <2.

In particular, any %-stable AH C*-algebra has decomposition rank at most 2.

In our proof, we will make use of the huge amount of space provided by the noncommutative fibres in
two ways. First, we exhaust the identity on X by pairwise orthogonal functions up to a tracially small
hereditary subalgebra. This will be designed to host an algebra of the form Co(Z) ® O», which is possible
by quasidiagonality of the cone over 0,. The first factor embedding of Cy(Z) into the latter can be
approximated by 2-colourable maps as shown by Kirchberg and Rgrdam (see below). Together with the
initial set of functions, we obtain a 3-colourable, hence 2-dimensional, approximation of the first factor
embedding of C(X) into C(X) @ %.

We will first carry out this construction with a UHF algebra in place of %; a slight modification will
then allow us to pass to certain C ([0, 1])-algebras with UHF fibres, which immediately yields the general
case.

In fact, if one is only concerned with showing that A ® % has finite decomposition rank, our argument
can be significantly shortened; using [Carrién 2011, Lemma 3.1], it suffices to show that A ® U has
finite decomposition rank, when U is an infinite dimensional, self-absorbing UHF algebra. Remarks 4.8
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and 4.9 describe how one can easily modify (and skip some long technicalities in) the arguments below
in order to efficiently prove that A ® % has finite decomposition rank.

As noted above, a result of Kirchberg and Rgrdam [2005, Proposition 3.7] on 1-dimensional approx-
imations in the case of 0,-fibred bundles is a crucial ingredient; this in turn relies on the fact that the
unitary group of C(S!,0,) is connected [Cuntz 1981]. We note the following direct consequence which
is more adapted to our needs.

Theorem 4.2. For any locally compact Hausdorff space X, the decomposition rank of the first factor
embedding Co(X) — Co(X, 03) is at most one.

Proof. We begin with the case that X is compact and metrizable. By [Kirchberg and Rgrdam 2005,
Proposition 3.7], there exists a *-subalgebra A C C(X, 02) which contains C(X)®1¢, and is isomorphic to
C(Y) where Y is compact metrizable with covering dimension at most one. Therefore, the decomposition
rank of the first factor embedding C(X) — C(X) ® 05 is at most the decomposition rank of the inclusion
C(X)® 1lg, C A, which in turn is at mostdr 4 < 1.

For X compact but not metrizable, C(X) is locally approximated by finitely generated unital subalge-
bras, which are of the form C(Y') where Y is compact and metrizable. Therefore, by Proposition 2.4(i),
the claim holds in this case too.

For the case that X is not compact, we let X denote the one-point compactification of X. Then
Co(X, 0) is the hereditary subalgebra of C ()? , 05) generated by Co(X), and therefore the result follows
from Proposition 2.4(ii). O

Remark 4.3. The preceding result also implies that dimpy.(4 ® O3) < 3 for A as in Theorem 4.1 — this
can be seen using Proposition 2.6, [Winter and Zacharias 2010, Theorem 7.4], and the analogue of [Winter
and Zacharias 2010, Proposition 2.3(ii)].

In what follows, D, denotes the diagonal subalgebra of M,,.

Lemma 4.4. Let Iy, ..., I, C (0, 1) be nonempty closed intervals and let ay/, € Co((0,1), D)+ be a
function of norm 1 such that, for t € I, the s-th diagonal entry of ay»(t) is 1.
Then there exist ag, ay, eg, e1/2. €1 € C([0, 1], Dy)+ such that

(i) eg and ey are orthogonal,
(ii) ap +ayp +ar =ep+eyp+er =1,
(iii) fori =0,1, we have a; (i) = 1,,
(iv) eo, ey act like a unit on ag, a1, respectively, and
(V) ay; acts like a unit on ey 5.

Proof. Since D, =~ C", it suffices to work in one coordinate at a time — that is, to assume that n = 1.

Then define
1 —aj/p(x) if x is to the left of /1,

0 otherwise,

ap(x) := {

1 —aj/p(x) if x is to the right of Iy,

ai(x):= {0

otherwise.
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Note that since a1/, = 1 on Iy, these are continuous. Now, we may find continuous orthogonal functions
eq, e1 such that eq is 1 to the left of /1, and e is 1 to the right of /1. Finally, set e/, := 1 — (e +e1).
Then (i), (i1), and (iii) clearly hold by construction. (iv) holds since each a; is nonzero only on one side
of 71, and the corresponding e; is identically 1 on that side. Likewise, (v) holds since e; /5 is nonzero
only on [y, where ay, is identically 1. O

We mention the following well-known fact explicitly for convenience. Here ® denotes the minimal
tensor product.

Proposition 4.5. Let A1, A, By, and By be C*-algebras, and suppose that ¢(i) :Ai = (Bi)oo is a
*-homomorphism fori = 1,2 with a c.p. lift (¢Ig))N cAi = [y Bi-
Then
$1® 2 = oo 0 (¢ ® 7 )n 1 A1 ® A2 — (B1 ® B2)oo

is a *-homomorphism.

Lemma 4.6. Let A be an infinite dimensional UHF algebra.
Then there exist positive orthogonal contractions

ag, a1 € C([0, 1], A)oo,
a *-homomorphism
Y 1 Co(Z,02) = Co((0, 1), A)oos
where Z = (0, 112, and a positive element ¢ € Co(Z,C - 1¢,) such that V¥ (c) commutes with ag, ay,
ao+ar+y(c) =1, (4-1)

and ao(0) = a1 (1) = 1. In addition, there exist positive contractions eg, €12, e1 € C([0, 1], A)oo such
that

(1) eq, e1 are orthogonal,
(i) eo +ey2+e1 =1,
(iii) ¥ (c) acts like a unit on ey 5,
@iv) e; acts like a unit on a; fori =0, 1, and
(v) eo, ey1/2, €1, a0, ay, ¥(c) all commute.

Proof. Let A = My »,.. where ny,ny, ... are a sequence of natural numbers > 2. Since the cone over
05 is quasidiagonal (see [Voiculescu 1991] and [Kirchberg 1993, Theorem 5.1]) there exists a sequence
of c.p.c. maps

¢k : CO((Oa 1], @2) - Mn1"-nk
which are approximately multiplicative and approximately isometric, meaning that

1px (@) (b) — dr(ab)|| - 0 and g (a)|| — llal| as k — oo
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for all a, b € Cy((0, 1], 02). Fix a positive element
d € C.((0,1],C- 1¢,)

of norm 1.
For each k, let A; denote the greatest eigenvalue of ¢y (d). Note that

A = llor(d)|| =1 as k — oc.
Fix k for a moment and let/ = ny---ng. Let
Ii,.... I
be nonempty disjoint closed intervals in (0, 1). Let
Ui,...,u; € M
be unitaries such that, for each s, us¢y (d)uj is a diagonal matrix whose s-th diagonal entry is Aj. Let
hi,....,h; € Co((0,1))

be positive normalized functions with disjoint support, such that hg|;, = 1 for each s. Set Z := (0, 1]?
and define

Wk . CO(Z7 @2) = CO((O’ 1]) 02 CO((O’ 1]’ ©2) - C([O’ 1]) & Ml = C([()? 1]? Ml) C C([Ov 1]’ A)
by ]
Yi(f ®b) =) f(hs) @user(b)u;.

s=1

Let f € C.((0, 1]) be a function satisfying f(1) = 1 and set
c=f®deC(Z,C-1g,).
By construction, ¥ (c) € C((0, 1), D;)+, and for ¢ € I, the s-th diagonal entry is A. Let
¢, € C([0,1], Dp)+
be of norm 1, such that
lleg =¥l = 1= Akl
and for ¢ € I, the s-th diagonal entry is 1. Feeding
ayni=c
to Lemma 4.4, let
ok A1,k €0,ks €1/2,k- €1,k € C([0,1], Dp) +
be the output, satisfying (i)—(v) of Lemma 4.4.
Having found these for each k, set

V= Teo 0 (Y1, ¥2,...) : Co(Z,02) = C([0, 1], A)o.
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Set

aj ‘= moo(ai,1,ai2,...)
fori =0,1 and

e 1= Too(€i,1,€i2....)
fori =0,1, 1.

b 25
Since all unitaries in M; (and in particular, all the u;) are in the same path component, ¥ is unitarily

equivalent to o ® ¢y, where
a : Co((0,1]) — C€([0,1])

is the *-homomorphism given by

f fhi+-+h).

From this observation and Proposition 4.5, it follows that ¥ is a *-homomorphism.
Notice further that

V(c) = moolcy, Chy- .,
and therefore, drawing on the finite stage results, we see that
ap+ar+v(c)=1
and that (i)—(v) hold. O

Lemma 4.7. Let p,q > 1 be natural numbers. Let X = [0, 1] for some m and let € > 0.
Then there exist positive orthogonal elements
ho, ce ,hk (S C(X,gf)oo,
a *-homomorphism

¢:Co(Z,02) > C(X,%)o

for some locally compact, metrizable, finite dimensional space Z, and a positive element c € C.(Z, C-1¢,)
such that ¢ (c) commutes with hy, . .., h,

ho+---+hx+¢(c)=1,
and the support of h; has diameter at most € fori =0, ...,k with respect to the £°° metric on [0, 1]™.
In addition, there exist positive contractions eg, €1/2,¢1 € C (X, %) oo such that

(i) eq, e1 are orthogonal,

(i) eo +ey2t+e1 =1,
(i) e; is identically 1 on {j} x [0, 17"Y, for j = 0,1,
(iv) ¢(c) acts like a unit on ey,

(v) eo + eq acts like a unit on h; foralli =0, ...k, and

(vi) eg,ey/2.e1,ho, ..., hi, ¢(c) all commute.
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Remark 4.8. This lemma of course holds with a self-absorbing UHF algebra in place of # (since such a
UHF algebra contains %). But, in fact, this variation is shown in Steps 1 and 2 of the proof below, and, as
we will see in Remark 4.9, this variation is sufficient to prove that A ® % as in Theorem 4.1 has finite
decomposition rank. A reader only interested in showing finite decomposition rank may therefore skip
the third step of the proof below.

Proof. This will be proven in three steps. In Step 1, we will prove the statement of the proposition with %
replaced by a UHF algebra of infinite type and with m = 1. In Step 2, we will still replace A by a UHF
algebra of infinite type, but we will allow any m € N. Step 3 will be the proof of the proposition.

Step 1. Let A be a UHF algebra of infinite type. Let
ao,ai, y,c.eq, €y y. €1, Z

be as in Lemma 4.6, with e] in place of e;. Note that each a; has a positive normalized lift

(ai,)52, €[] €(0. 1], 4)
N

1

such thata; (1) =6; 1 foralli,t =0, 1 and all j; likewise, each elf, i=0,5,

lift

1, has a positive normalized
(] N2y e [[C0.1]. 4)
N

such that, fori =0, 1, e] j(i) =1.
Let k > 2 /¢ be a natural number. Fori =0,...,k, j € N, and ¢ € [0, 1], set

0 iftf%ortz—izl,
, . . i—1 i
hi j(t) =4 ay;(kt — (i — 1)) lfl‘El:T,E], (4-2)
ao.; (kt —1) ifze[]’cé,%].

Note that the endpoint conditions on a;, ; make h; ; well defined and continuous on [0, 1]. Likewise, set
e; ;(0) ifr=0,

. 1
e, j(t):= el{,j(l) ifr > % (4-3)

e (ki) ifte [o, ﬂ
Set
hi ==neo(hi1. hia,...),e; :=nx0(ei1,€i2,...) € C([0,1], A)oo
fori =0, 1. Choose a c.p.c. lift for v, that is, c.p.c. maps
Y+ Co(Z,02) = Co((0,1), A) € C([0, 1], A)
such that

V=m0 (Y1, ¥2,...).
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Define
¢j : Co(Z,02) — C([0, 1], 4)
by
$j(a)(t) = yj(a)(kt —i), (4-4)
ifi e Nissuch that 7 € [i/k, (i +1)/k]. Note that this is well defined since the image of v; is contained
in Co((0, 1), A). Use (qﬁ] | to define

¢ =Tl © (¢1,¢2, .. ) . C()(Z,@z) — C([O, 1], A)oo-
Then ¢ is a *-homomorphism.
Let us first show that g + - - - + hg + ¢ (c) = 1, and then that (i)—(vi) hold. For ¢ € [0, 1], let i be such
thatf € [i/k, (i + 1)/k]. Then, by (4-2), we have, for all i,
hi(t) =ao(kt —i), hiy1(t) =ai1(kt—i), hj(t)=0
for j #i,i + 1. Thus

(ho+++++hi + (@) Z aokt —i) +ar(kr —i) + () (ke —i) =1,

Properties (i) and (ii) hold by Lemma 4.6(i) and (ii), and since, for each ¢ € [0, 1], there exists s such
that e; () = e; "(s) for j = 0,11 (by (4-3)). Property (iii) holds since e; (i) = e/ (i) (by (4-3)) and since
aii)=1.

(iv): ey is supported on [0, 1/k], so it suffices to show that

(@(c)er2)(t) = eq)2(1)

727

for t € [0, 1/k]. But, for such ¢,

(@(c)e 1/2)(f)( 4)W(C)(kf)€1/2(kl‘) z(kl) = €1/2(f)

(v): By a similar computation, this time using Lemma 4.6(iv), we see that epag = ag, while eja; = a;
fori =1,...,k.

(vi) is clear from (4-2), (4-3), (4-4), and Lemma 4.6(v).
Finally, also, for each i, the support of /; is contained in

Lemma 4.6(iii) ,

i—1 i+1

- T]’ which has diameter at most €.

Step 2. From Step 1, let
go0,..., 8k €C([0,1], A) o

be orthogonal positive contractions,
Y Co(Y,02) > C([0,1], A) o

a *-homomorphism for some locally compact, metrizable, finite dimensional space Y, and d € C.(Y, C-1¢,)
a positive contraction such that ¥ (d) commutes with go, ..., gx,

go++ge +Y(d) =1
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and the support of g; has diameter at most € for i =0, ..., k’; furthermore, let
66,8’1/2, e/l € C([0,1], A) oo
be such that
(") e, e} are orthogonal,
(ii") e +e/1/2 +e) =1,
(iii") €] is identically 1 on {;} x [0, 1"~ for j =0,1,

(iv") ¥ (d) acts like a unit on ¢’

1/2°
(V') e + e} acts like a unit on g; foralli =0,...,k’, and
(vi") e(’),e/l/z,e’l,go, ..., &k ¥(d) all commute.

Fori = (i1,...,im) €{0,....k'}™, set
hi = gi, ® -+ ® gi, € (C([0,1], A)®™) o,
where we have used the canonical inclusion
(C(10,1], A)o0)®™ — (C([0, 1], A)®™)oo;

compare Proposition 4.5.

Then {h;} is a set of pairwise orthogonal positive contractions, and each one has support with diameter
at most € (recall that we are using the £°° metric on [0, 1]™). Proposition 4.5 gives us a *-homomorphism
¢ = ()P 1 C 1= (Co(Y,02) )" — (C([0. 1], Mpo2)®™)oo.

Set
ci=1-(1-d)®"eC.

We can easily see that ¢’(c) commutes with each /4;; a simple computation shows that

> hi+¢'(c)=1.
Setting i
ei=e ® 180m=1)  for i =0, % 1,
it is easy to see that (i), (ii), (iii), (v), and (vi) hold (with ¢’ in place of ¢). To see that (iv) holds, we
compute
¢'(©)ern = (1= =y (d)®™) (e}, ® 12"D)

= ¢/(C) - (6/1/2 — w(d)e’l/z) ® (- w(d))®(m—l)
.
We may set

k= +1)" -1

and relabel the h; as ho, ..., h.
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All that remains is to modify ¢’ to make it a map whose domain is Co(Z, 0;) for some Z. Set
Z' = (Y U{oo})*™.

Then C may be identified with a certain C(Z’)-subalgebra of C(Z’, @?m ). All of the fibres of C are

isomorphic to O, except for the fibre at (oo, ..., 00), which is C. One can easily verify that the element

cisin Co(U,C- 1 em) where U is some open subset of Z " whose closure does not contain (oo, ..., 00).
2 —

Let Z be an open subset of Z’ such that U C Z and whose closure does not contain (oo, ..., 00);

in particular, Z is a compact subset of Z’\{(co, ..., 00)}. By Proposition 3.3, Co(Z)C = Co(Z,03)
as Co(Z)-algebras. With this identification, we have ¢ € C.(Z, C- 1g,) (since c is in the image of the
structure map, which is fixed by the isomorphism Co(Z)C = Cy(Z,03)), and we may define

¢ :=¢|cozyc : Co(Z,02) - C(X, A)oo-

Step 3. Let pg, p1 be coprime natural numbers. Since prgo, pe (as defined in [Rgrdam and Winter
2010, Section 2]) embeds unitally into % [Rgrdam 2004, Proposition 2.2], it suffices to do this part with
%pgo,p?o in place of #.

From Step 2, fori =0, 1, we may find

h$. .. h € C(X. Mpeo)oo.
a *-homomorphism
¢i : Co(Zi, 02) = C(X. Mp>)oo
for some locally compact, metrizable, finite dimensional space Z;, and a positive element
¢ €C(Z;,C. 1@2)
such that ¢; commutes with h(()i), ... ,h,(f),
W 4o hD i) = 1,

and the support of h;i) has diameter at most € for j = 1,...,k. We may also find el(i) for/ =0, %, 1
satisfying (i)—(vi).

From Lemma 4.6, let

(SIS

ag,ai, ey, €y €1 € C([3. 3] 4)

be positive orthogonal contractions, let
¥ Co(Y.02) = Co((3. 3)- M(pop1)=) oo
be a *-homomorphism for some locally compact, metrizable, finite dimensional space Y, and let
deC/(Z,C-1q,)
be positive such that ¥ (d) commutes with ag, aq,

ap+a1+v(d) =1,
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ao(%) =a (%) = 1, and such that (i)~(v) of Lemma 4.6 hold. We continuously extend ao, a1, ey, 3/1/2’

e} to [0, 1] by allowing them to be constant on [0, 1] and on [3, 1].
Upon choosing an isomorphism

M(popi)oe ® Mpgo d Mp<l>o = Mpgo ® Mp?o

and using the diagonal restriction C (X, Mpg°)oo ® C(X, MpfO)oo - C(X, Mpgo ® Mp?o)oo, we obtain
a *-homomorphism

p:C(o, 1]7M(p0p1)°°)oo®C(X» Mpgo)oo®C(X’ Mp‘l’o)oo_> C([0,1]x X, M(POPI)OO ®Mp8° ®Mp‘1’°)oo
~ C([0,1]x X, Mpgo ®Mp‘1>°)oo,

and define

A

ho.j = plao @ ® le(xpyeer) and b= plar ® Lo @15
for j =1,..., k. Note that g; has a lift
(@i x)gey € [In €0, 1], M(pg py)so)
such that a; ¢ (t) € C-1 for t = 0, 1, and, consequently,
};i,j € C(X, prgo,pfO)oo.
Define a *-homomorphism
¢ : C([0,1]) ® Co(Y. 02)™ ® Co(Zo.02)™ ® Co(Z1.02)™ — C([0,1] X X, Mpgo @ Mpeo)oo

by

¢ :=po(idcqoa) ® (V) ® (dg) ® (97))-
Let

Y':={yeY:d(y)>0} and Z;:={z€Z;:ci(z)#0},
and, using these, set
C:= C* (CO[Ov 1) & ICO(Y,@z)N 02 CO(Zé)v ©2) 2 ICO(ZI,@z)N’

Co(0. 1] ® 1y (v,00)~ ® Lcy(Zo,00)~ ® Co(Z7.02),

Leo.an ® Co(Y', 02) ® ley(zo.00~ ® Lco(z1.0)~)-
Using Proposition 3.3 as in Step 2, C is a subalgebra of some Cy(Z)-algebra
D C C[0,1]® Co(Y,02)™ ® Co(Zo,02) ® Co(Z1,02)

for some open subset Z of

[0,1] x (Y U {oo}) X (Z U oo) x (Z7] U 00),
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and D is isomorphic, as a Cy(Z)-algebra, to Co(Z, 03), via an isomorphism taking C into C.(Z, 0>).
One easily sees that ¢(C) C C(X, %, p,)-
Let fp € Co[0, 1)1 be identically 1 on [O ] and let f1 € Co(0, 1]+ be identically 1 on [ 1] Set

63=f0®1®C()®1+f1®1®1®61+1®d®1®1EC.

Identifying D with Co(Z,03), we see that ¢ € C.(Z,C- 1¢,). It is straightforward to check that ¢(¢)
commutes with /; ; for all i, j, and we may easily compute

PO+ hij=1
i’j
Let g € Co(0, oo] be the function g(z) = max{¢, 1} and set

c:=g(0).
Then, by commutativity, it follows that
¢+ Y hij=1 (4-5)
i’j
Let g0.&1/2: &1 € C(X)+ be a partition of unity such that g; is identically 1 on {j } x [0, 171 for
j =0,1, go is supported on [O, %] x [0, 1], and g is supported on [%, 1] x [0, 1771, Let us define

ej =pleg®el’ ®1+ef®@1®el”)+gp(e] , @10 1) (4-6)
for j = 0,1 5, 1. Itis clear by their definitions that eg, 12, €1, ﬁo, e ﬁk, ¢(c) all commute.
Let us now check that (eg + el)ﬁ,-, j= h i,j- Certainly
(eo +€1)f;0,j
-6)

= (pleg® (e(()O) —i—elo)) Rl+e1®1® (e(()l) ®ell))) +(go —i—gl)/o(el/2 ®1®1))p(ao ®h(0) ®1)

L 0 © 0
L2 pao® (e +e )N ® 1)

Step 2
VO (a8 h0 @ 1) = .
and likewise, (eg + el)ﬁl = le ,j as required.
Since all terms in (4-5) commute, it is easy to see that for any € > 0, there exist orthogonal elements
hi, P < hl ,j Which commute with eg, €1/, e1 and ¢(c), such that

$O)+ > hij=cl
i?j
Then, by a diagonal sequence argument, it follows that there exist orthogonal elements /; ; with supports
contained in those of /;, ;, commuting with eq, €1/5, €1 and ¢(c), and such that

¢(c)+Y hij=1 and (eo+e)hi;=hi;.
i,J
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Hence (v) holds.
Now let us verify (i)—(iv).
(1) holds using the following orthogonalities:

e 1 i=0,1

go L g1,
eq Le,

(0)

p(1®1 ®ej(-1)) Lgij. j=0.1.
(ii): We compute
€0+e12+er © plep @ (e + eg% +e @1+ @10+ eil/)z +eM)
+(g0+ 812+ 8g1)pley ), ®1® 1)

Step 2(ii) (( el + 6’1+) 21® 1) Lemma
4. 6( i)
(iii): For x € {j}x [0, 1]"!
Step 2(iii) L
ej(x) = egtey+gi(x)e, 4C.r6n:(;a

(iv) follows from the fact that ¢ (¢)e;/» = e1/2¢(¢) > ey, by considering irreducible representations of
C*(¢(5)»€1/2)- U

Proof of Theorem 4.1. By Proposition 2.4(i) and [Kirchberg and Winter 2004, Proposition 3.8], it suffices
to verify the theorem for C*-algebras A of the form C(X,¥), where X is compact and Hausdorff. By
[ibid., (3.5)], it suffices to prove it for A = C(X). Again by Proposition 2.4(i), it suffices to assume that
C(X) is finitely generated. Finally, when C(X) is finitely generated, it is a quotient of C([0, 1]™) for
some m, and so, by [ibid., (3.3)], the result reduces to showing that dr C(X,%¥) <2 for X = [0, 1]"*. By
Proposition 2.6, we must show that the first factor embedding C (X, %) — C(X, %) ®% has decomposition
rank at most 2.

We will do this in two steps. In Step 1, we will use Lemma 4.7 to show that the first factor embedding
to: C(X) — C(X) ®% has decomposition rank at most 2. In Step 2, we will use Step 1, with X replaced
by X x [0, 1], to prove the theorem.

Step 1. Due to Proposition 2.5, it suffices to replace ¢ by its composition with the inclusion C(X) ® % C
(C(X) ®%)o0, that is, tg is now

CX)=C(X)®1y CC(X)®% C (C(X) ®%)oo.

To show that dr¢g < 2, we verify condition (iv) of Proposition 3.2. Let AU be an open cover of X and let
€ > 0. By the Lebesgue covering lemma, we may possibly reduce € so that AU is refined by the set of all
open sets of diameter at most €. Then, it suffices to assume that U is in fact the set of all open sets of
diameter at most €.
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Let ho, ..., hx, ¢, c be as in Lemma 4.7. By Theorem 4.2 and condition (iv) of Proposition 3.2, we
may find

b € Co(X x Z.02) = C(X) ® Co(Z) ® 03
fori =0,1,j =0,...,r such that
(1) for eachi =0, 1, the elements b(()i), e bgi) are pairwise orthogonal,
(i1) for each i, j, the support of bj(-i) is contained in U x Z for some U € AU, and

(iii) Hij(-i) —lcx)® c” < € (note that ¢ € Co(Z) ® 1¢,).
i!j

Define
¢ :Co(X X Z,02) = C(X)® Co(Z,02) = C(X,%)oo

by H(f ®a) = f¢(a). This is a *-homomorphism. Fori =0,1and j =0,...,r, set
@) ._ 5@
a;’=¢(b;"),

and, for j =0,1...,k, set
2 .
a;” = hj.
Since qS is a homomorphism, a are pairwise orthogonal for i =0, 1. Also, by the definition
](-’) is contained in some set in AU, for i = 0, 1. Since the
2

supports of the &1; have diameter at most ¢, the respective statement holds for the a i as well. Finally,

k k k k
SR @D L D IETIEERS SUETICED SR
i, Jj=0 j=0 J=0

i=0,1 j=0

O o

of q3 and the choice of bj(.i), the support of each a

as required.

Step 2. Since ¥ is an inductive limit of algebras of the form %, ; (for p, g € N), by Proposition 2.4(i), it
suffices to show that the decomposition rank of the first factor embedding

vi=idexa, ) ® la C(X, %pg) — C(X,%pg) ®F 4-7)

is at most 2. The proof will combine Step 1 with the idea of Proposition 3.2(iv) = (iii).
Fort € [0, 1], we letev, : &, ; — M), ® M, denote the point-evaluation at ¢, while we also let

evo:%pg—> M, and evy:%,,—> My
denote the irreducible representations which satisfy
evo(-) =evo(-)®1p, and evi(:)=Ilp, ®@Vi(-).

Let # C C(X,%, 4) be the finite set to approximate, and let € > 0 be the tolerance. Let us assume that
% consists of contractions. Let AU be an open cover of X x [0, 1], such that, for all f € & and U € A, if
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(x,1),(x',t") e U, then
lleve (f(x)) —eve (f(X))I < e€/2.
Let us also assume that no U € U intersects both X x {0} and X x {1}.

Using Step 1 (with X x [0, 1] in place of X) and Proposition 3.2(iv), we may find a 3-colourable
€ /2-approximate partition of unity

@ imor im0, € CX X0, T 0

subordinate to AU, and such that
Za(.i) <1.

.....

with the support of each a( ) belng contained in U ](l)
For each i, j, we shall choose a matrix algebra F @ and produce maps

(l) (l)
C(X. fqu) > F) 5 C(X.%p ) ®%.

We distinguish three cases, depending on properties of the set U j(i) € Q. In every case, we arrange that
o v () =a ®ev,o (f(x)).

where (x(.i), t}i)) is a point from U j(i), and we make sense of the right-hand side by using the canonical
identification of C(X, %, 4) ® % with a subalgebra of

CXx[0,1)R@FQM, @M,

(determined by boundary conditions at X x {0} and at X x {1}).
Case 1. If Uj(i) N (X x{0}) # @, let (x](i), t](i) = () be a point in this intersection. We set Fj(i) =M,

and define
v O (f) ==o(f(xD)),
o(T):=aV @T ® 1,.

By assumption, Uj(i) N(X x{1}) =@, so, forall x € X,
evi(@{(T)(x)) =0

and therefore, the range of qﬁj(” liesin C(X,%,4) @%.

Case 2. If U /-(i )N (X x {1}) # @, as in Case 1, let (xj(" ) ¢t j(i )=1)bea point in this intersection. We set
F j(i) := My and define

W}i)(f) = e_vl(f(xj(i))) and ¢J(i)(T) = aJ(-i) Q1m,QT.
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Case 3. If Uj(i) N (X x{0}) = @ and UJ-(i) N (X x{1}) = @, then let (xj(i), t]-(i)) be any point in U]-(i). We
set Fj(i) = M, ® M, and define

VO =evp () and ¢0(T):=aP T,
We now set F := @Fj(i) and use (wj(i)) and (qﬁj(i)) to define

iJ
CX.%pg) L F 25 C(X. %)) @%.

We have that v is c.p.c. since all of its components are. Each d)}i ) is c.p. and order zero. For each i, ji,
J2,if j1 # jo, the images of ¢](.i) and ¢Jg) are orthogonal. Thus, for each i,
P, Fio>

is order zero. Also, ¢(1) =) aj(i) <1, so that ¢ is contractive.
Finally, let f € % and let us check that ¢ ( f) =¢ f. As in the proof of Proposition 3.2(iv) = (iii),
we have for each 7, j thatif x e U j(i ), then

evyi (f () =cj2 eve (f (),

and therefore,
€ ; €
Vi (f(0) =5 Impem, = evin (f(7) <evi(f() + 5 Im,omM,-

Since aj(.l) commutes with f, this gives

. c . .
0 (e (v (f () =5 - gy, ) = @ (. 0ev, 0 (f (5f)
j €
< a0 (v (SO + 5 Inom, ).
Moreover, since aj(.i) vanishes outside of U j(i), these inequalities continue to hold for all x € X and all

t €[0,1].
Summing over i, j, we find that

Za]('i)(x, t)(ev,(f(x)) - % : 1Mp®Mq> = Za](i)(x, t)evt]g[)(f(x](.i)))
i,J i .
<> af (v S () + 5 Iyen, ).

i,J

and therefore

eve(f()) =2 Y (. 0evi(f() =¢j2 Y a) (x.ev, o0 (f(67)) = eve(yr () ().

i,J i,J

Since this holds for all x € X, ¢ € [0, 1], this means that || f — @ ¥ (f)| < €, as required. O
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Remark 4.9. Here we describe how one can give a shorter proof that A ® ¥ has decomposition rank at
most 5, for A as in Theorem 4.1. Since A ® % is an inductive limit of A ® %, 400, it suffices to show
that the latter has decomposition rank at most 5. This algebra is a C ([0, 1])-algebra whose fibres are all
of the form A ® U, where U is a self-absorbing UHF algebra. Hence, by [Carrién 2011, Lemma 3.1],
A ® % poo goo has decomposition rank at most 5 = (dim[0, 1] + 1)(2 4 1) — 1 if we show that A ® U has
decomposition rank at most 2 for every infinite dimensional, self-absorbing UHF algebra.

As in the first paragraph of the proof above, it suffices to show that the first-factor embedding
C(X,U) - C(X,U)® U has decomposition rank at most 2, when X = [0, 1]"*. Since U is a limit of
finite dimensional C*-algebras, by Proposition 2.4(i), the decomposition rank of this first-factor embedding
agrees with the decomposition rank of the first-factor embedding ¢g : C(X) — C(X) ® U. Then following
Step 1 of the above proof verbatim, except with U in place of %, shows that this ¢y has decomposition
rank at most 2; moreover, we only need to use the variation of Lemma 4.7 where % is replaced by U,
and, as explained in Remark 4.8, the proof of that lemma can be simplified in that case.

5. %-stable C(X)-algebras

The proof of [Carrién 2011, Lemma 3.1] actually shows the following.

Lemma 5.1. Let X be a compact metric space, let A be a C(X)-algebra, and let B be a unital C*-algebra.
Denote by ic(x) : C(X) — C(X)® B and 14 : A— A ® B the first-factor embeddings. Then

driy 5(drtc(x)+1)(ma)>(<drA(x)+1)—1 (5-1)
pAS
and
dimyye tq4 < (dimyye tex) + 1)(ma))(< dimp, A(x) + l) —1. (5-2)
pAS]

Proof. Although this is essentially the same as the proof of [Carrién 2011, Lemma 3.1], we provide a
detailed proof of (5-1) for the reader’s convenience.

Set k := maxyey dr A(x) and [ := dric(x). Let ¥ C A be a finite subset and let € > 0. Without
loss of generality, & consists of self-adjoint contractions. As shown in the proof of [Carrién 2011,
Lemma 3.1], there exists an open cover U of X such that, for each U € U, there exists a finite dimensional
C*-algebra Fy and c.p.c. maps Yy : A — Fy, ¢u : Fy — A such that ¢y is (k + 1)-colourable and
pu Yy (a)(x) =¢/2 a(x) for all a € F and all x € U. By Proposition 3.2(iv), let (b(i))j_I, rii=0,...1 C
C(X)® B be an (I + 1)-colourable, € /2-approximate partition of 1, subordinate to AU, and, by a rescahng
argument, we may assume bj( 2 <1 for each i, j. Hence, for each i, j, we may pick some U @ e q

containing the support of b](-i). Define

w = @WUJQ) A — @FU;,')
i,J i,j

and ¢ : PF,i» > A® B by
i,] J

D) =3 by @) @b,
i,J
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One readily verifies that ¢ is (k + 1)(/ + 1)-colourable, and, as in the proof of Proposition 3.2(iv) =
(iii), that ¢y (a) =c a ® 1p for all a € F. O

Corollary 5.2. If A is a %-stable C(X)-algebra whose fibres have decomposition rank (respectively
nuclear dimension) bounded by M , the decomposition rank (respectively nuclear dimension) of A is at
most 3(M + 1) — 1.

Proof. We shall apply Lemma 5.1 with % in place of B. Using the notation of Lemma 5.1, Theorem 4.1
tells us that dimyye te(x) < dric(x) < 2. Thus, if the fibres of A4 have decomposition rank at most M,
then, by Lemma 5.1, driy <2+ 1)(M +1)—1. O

This shows in particular that the C(X)-algebra in [Hirshberg et al. 2007, Example 4.7] (which is
%-stable by [Dadarlat and Toms 2009]) has decomposition rank at most 2, and that the C(X)-algebra
E in [Dadarlat 2009b, Section 3] (which is Z-stable since it is an extension of patently %-stable C*-
algebras) has nuclear dimension at most 5. On the other hand, the C (X )-algebra in [Hirshberg et al. 2007,
Example 4.8] is not #-stable, and it is shown in [Robert and Tikuisis 2013, Section 7.4] that it does not
have finite nuclear dimension.

Another immediate application is the following strengthening of Theorem 4.1. See [Dadarlat and
Pennig 2013] for a discussion of C(X)-algebras with fibres & ® , where & is either % or an infinite
dimensional UHF algebra.

Corollary 5.3. If A is a #-stable C(X)-algebra whose fibres are all AF algebras tensored by %, then
dr4 <2.

Proof. It suffices to show that B := A ® %00 400 has decomposition rank at most 2. Note that B is a
%-stable C(X x[0, 1])-algebra with AF fibres. Therefore, by Corollary 5.2, dr B is at most 3(0+1)—1=2,
as required. O
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SCATTERING FOR A MASSLESS CRITICAL NONLINEAR WAVE EQUATION
IN TWO SPACE DIMENSIONS

MARTIN SACK

We prove scattering for a massless wave equation which is critical in two space dimensions. Our method
combines conformal inversion with decay estimates from Struwe’s previous work on global existence of a
similar equation.

1. Introduction
We study the asymptotic behavior of solutions to the nonlinear wave equation
upr — A+ u@E—1-u?)=0 onRxR2 1)
with compactly supported initial data
(u,ur)lr=0 = (1o, u1) € C°(R?) x C°(R?). 2)
Their initial energy is given by

Eo= 4 [ +1%u0f + 11— ) g

Interest in this equation arises because it lies at the boundary of what one considers an energy-critical
equation. For the defocusing nonlinear wave equation with power nonlinearity in dimension d > 3,

ugg —Au+ [uP2u=0 onRxR?,

this border is marked by the Sobolev-critical power p* = 2d/(d — 2). In the subcritical case p < p* as
well as in the critical case p = p* well-posedness in the energy space is known to hold. However, little
is known for the supercritical case p > p*. In two space dimensions the embedding H!(R?) C L?(R?)
for p < oo renders every power nonlinearity subcritical. However, H ! (R?) & L>°(R?). Instead, we have
the Trudinger—Moser inequality

<Cl|Q| ifa<4
sup /e““zdx {_ 1<2] %a_ i 4
ueH, () Q =00 if o > 4,

[Vu ”LZ(IRZZ) <1
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for a smooth bounded domain  C R2. Since

2 2
sup / e dx = sup / e dx,
ueH(Q) Q ueH (Q) Q
Vull32@2,=1 IVull?2@2)=a
it seems that well-posedness, for instance of the initial value problem for the equation

u,t—Au+ue”2:0 on R x R?, 5)

may depend on the size of the initial energy
E.=1 / (u? 4 |Vuol® + oo 1)dx,
2 R2

(or, in the case of (1), on the size of Ey).

For small data, global well-posedness for (5) was shown in [Nakamura and Ozawa 1999]. Ibrahim,
Majdoub, and Masmoudi [Ibrahim et al. 2006] proved global existence for data with energy E < 2,
which they define to be (sub)critical. Due to the dispersive nature of (5), they also expected u to decay in
time and to scatter towards a solution of the linear Klein—Gordon equation

utt—Au+u=O. (6)

Indeed, together with Nakanishi [Ibrahim et al. 2009], they established scattering for the modified equation

u,t—Au—I—u(e"z—uz):O on R x R?, @)
as long as
E| = %/ (u% + |Vuo|? +e”%— 1— %ug) dx <2m,
R2

leaving open the corresponding questions in the supercritical regime when E > 2w or E1 > 2m. Note
that we reserve the notation E for the context of (5), while Ey and E; refer to equations (1) and (7),
respectively.

Surprisingly, Struwe [2013] was able to establish global existence for (5) for arbitrary smooth initial
data using only energy estimates.

Here we show that for scattering, too, there is no restriction on the energy, at least when we consider
the massless wave equation (1) for radially symmetric initial data. As a consequence of the next result,
we consider (1), (5), and (7) to be critical problems only, regardless of the size of the initial energy.

Theorem 1.1. For any solution u to the Cauchy problem (1), (2) with smooth compactly supported radial
data (uo,u1), uo(x) = uo(|x]), u1(x) = u(|x|), there exists (vy,v1) € H'(R2) x L2(R2) such that

||(u(t)—v(t),8;u(t)—8,v(t))||H1(R2)XL2(R2) —0 ast— oo, (8)
where v is the solution to the linear wave equation
Ut — Av =0 (9)

with Cauchy data (v, v¢)|s=0 = (vo, v1).
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We assume smooth data. We remark, however, that to our knowledge Struwe’s result has not been
extended to data in energy space.
To prepare for the proof of Theorem 1.1, we rewrite (1) abstractly as
Uyr —Au+ N =0, (10)
with the nonlinearity

N(u) := (e”z— 1—u?)u.

The solution to (10) is given by the Duhamel formula

t
u(t) = 0 R(t) xug + R(t) *uy +/ R(t —s)* N(u(s))ds an
0
with R the fundamental solution to (9). In Fourier space it reads
sin(|&]¢)
FRE ="

From the Duhamel formula (11), we read off how the initial data are propagated. We define

v = 9;—1(&0_/0“) %ﬁm ds), vy = @—1(5“ +/Ooo cos(|£]s) N (s) ds)

as initial data for the linear wave equation, which we understand in the trace sense by energy control
(compare [Lions and Magenes 1970]). We call v the solution to the corresponding Cauchy problem.
Using the Duhamel formula (11), one calculates

% sin(€](r =) &
(6 = 00l 71 g2y = “/ IEC=) §5yas) (12)
t €] HI®2)
and a corresponding expression for the time derivative. To prove scattering, we need to establish
convergence of the integrals defining the initial data (vg, v;) in the norm H! x L2. In the following

lemma we reduce this problem to a bound on the nonlinearity N.

Lemma 1.2. If

N2 (10,00);22®2)) < 00,

the integrals

i) 5 [P
/o £] N(s)ds, /o cos(|€|s)N (s) ds

converge in H' x L2

The lemma follows from the equivalences

loall g = 181 ] o0 Nvlle = 1192

Thus, once N € L} L2 is established, the assertion of Theorem 1.1 follows from (12).
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In the case of the nonlinear Klein—Gordon equation, we find similar representation formule and
analogous results with the fundamental solution replaced by

sin(<€>1)
EY

where <€) = /1 + |£|2. Then scattering takes place in the norm H! x L2.
This discussion highlights the significance of leaving out the cubic term in (1). Informally, to ensure

F(R())(E) =

’

that N(u) = u(e“z— 1) lies in L! L2 we need to control |ju ||L?L§JC. However, L3 LS is not an admissible
Strichartz norm in two space dimensions. In this respect, we agree with [Ibrahim et al. 2009]. In the
course of our argument we will encounter further reasons that justify omission of the cubic term.

Moreover, for large data we restrict our result to the massless equation (1). The reason is that the
method of conformal inversion that we employ in Section 3 to control the nonlinearity in this case only
seems to work for the massless equation. It is not clear whether a similar control can also be achieved
when working in the original coordinates. However, even then, the contribution to the energy from the
mass term might spoil the validity of an estimate like Lemma 3.1.

Our work is organized as follows. In Section 2 we derive estimates for the nonlinear term. As a
by-product we obtain a scattering result for the massive equation (7) for small data, where we only use
standard L? L% Strichartz estimates, instead of the more elaborate estimates for Besov spaces used in
[Nakamura and Ozawa 1999; Ibrahim et al. 2009].

In Section 3 we prove Theorem 1.1 for large radially symmetric data. In a first step, by applying the
method of conformal inversion as in [Grillakis 1990] and adapting the decay estimates from [Struwe
2013], we find a hyperboloid contained inside the support of the solution u such that || N ||, 172 is bounded
inside the hyperboloid. For this part of the argument, we need not assume the initial data to be radial.
In the final step, we use the radial symmetry of the data to bound || N ||, 172 in the complement of the
hyperboloid.

2. Scattering for small data

For small data, scattering for (7) was first shown in [Nakamura and Ozawa 1999]. In [Ibrahim et al.
2009], the authors extend the result to include initial data with energy £ < 27. Both these works rely
on Besov space techniques. In this section, we show scattering for small data via a more direct approach.
We assume ug,u; € C° ([R{Z) with E1 bounded by an absolute constant g¢ to be determined later.

The modulus of the nonlinearity |N | = (e”z— u? — 1)|u| behaves like |u|* for small values of |u|. For
large values of |u| the exponential dominates. More precisely, we have the pointwise estimate
X yk W[40/ — 1) if [u| > 1,

N| = —u?—u| = |u]? < [ulPe~1) <
NI =( )ul "g(k+1)z—"( )= e 0 < ul < 1.

(13)

By Holder’s inequality,

40/9  u? 40/9 u?
[[u™" (e —1)IIL;L§SIIMIIL?O/gL%OIIe — oo 1875
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To control the norm of the exponential term we roughly estimate

1

vz

18.,,2 2
<es3¥ 1 <t

("= 1)
Then we can use a version of the Trudinger—Moser inequality [Ruf 2005]:
sup / (64””2— 1)dx < Crm (14)
el 2 +1Vull 2 <1 /$2

with a constant Cry independent of the region Q C R?. Because of the finite speed of propagation, the
support of u stays bounded locally uniformly in time. Since the energy is nonincreasing in time, if g9 < 3,
the condition ||u| ;2 + || Vu||;2 <1 is satisfied for all times. Therefore we may combine (14) with (13)
to obtain

40/9

Lo ooy el

5
”N”L}([O’T);L%(R2)) = CTM””” L?([O,T);L;O(Rz))' (15)

We have chosen the power % for convenience. However, we are not free in our choice, as we want to
estimate ¥ in L(,ZL; with Strichartz estimates. Wave admissibility [Keel and Tao 1998] demands that

1 1 1
— _ << =
q+2r_4’

so we need ¢ > 4. By Strichartz estimates (as in [Nakanishi and Schlag 2011, Corollary 2.41, Lemma 2.43]),
H(T) = ”u”L?O/Q([O,T);L,ZCO(Rz)) +ullLs o,y 10 @2y
< Cs(Ilo. vl @2yxr2@) + IN L1 o, 7:222)) (16)
with a constant Cg that does not depend on the initial data. Then, by (15) and (16), we have
F(T) = Cs (| @o, u) | 1 @2y L2 @2) + Crn (T + e f(T)°).

The function f(7) is continuous and nondecreasing with f(0) = 0. Therefore there exists a time Ty > 0
such that f(T) <1for0<T < Tp and

F(T) = Cs (1o uD) |1 @2yxr2 @2y + (e + Cm) £(T)*07°) (17)
for all times T € [0, Tp). Let A = min{1, Ao}, where Ag satisfies
Cs(e + Crm)(240)**° = 3 4.
Suppose [[(vo, u1)[| g1 @2)x22@2) < €0, Where
Cseo = SA.

Then relation (17) implies f(T) < A as long as f(T) <2A. Hence, by continuity, f(7p) < A. By the
definition of A and continuity again, Ty can be arbitrarily extended and the bound f(7") < A holds for all
times. By (15) we have

||N||L}([o,oo);L§(R2)) < CrmA*® 4 eA® < oo

Therefore u scatters for || (w0, u1)|l g1 (r2)xL2(R2) < €0, and in particular for £ < &.
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3. Scattering for large data

Conformal inversion. Suppose we are given initial data at time @ > 0. We assume they are compactly
supported inside a ball of radius a /2. Because of the finite speed of propagation, the solution is confined
within the forward light cone emanating from the origin at time a/2:

suppu(t,-) C B;_gq/2(0), t>a.
We perform a conformal inversion
D:(t,x,u)y—~ (T, X,U),

as in [Grillakis 1990]; that is, we define

r=_'_ x=_ py.=—q
.—tz_rz, .—t2—r2, = u

with the weight
1

A _ 72 2
Q.—tz_rz—T _Ry

where r = |x|, R = | X|. Conformal inversion leaves the structure of the d’ Alembert operator invariant
[Godin 1994, Lemma 4.2] and

(02 — Ax)U = Q73 (0> — Ap)u.

In fact, conformal inversion can be regarded as a Kelvin transform of Minkowski space (R!*2, ) with
metric 7y, = diag(+1, —1, —1). This can be seen by writing the transformation as

G:x* > x)t(x“x"nw)_1 = xM¢x, x>;1.
One then calculates the differential,

i‘ ( xX+ty ): Y 2x{x, )y
dtli=0\ <x, x>y +2t<x, >0 +12(y, y0n ) X, X0 (x,x)7

d
dGx(y)= 4| _ Glx+1y)=

so that {(dGyx)y, (dGx)y>y = {x,x) ;2 {y, >y and the differential is a conformal transformation with
respect to the metric 7.
In the new variables 7, X, (1) becomes

U — AU + Q72U —1-QU?) =0. (18)

Note that we changed the direction of time. The transformed function U has support inside the set

2
suppU =3(T,X): T+ R < — and > a and additionally R < T';.
a

T2 _ R2
For the following arguments we fix a. This is not a restriction. In fact, for any initial data with compact
support, we may shift the initial time such that the support of the initial data at the starting time is
contained inside our fixed cone. We choose a = 1. This leads to 2 <1 for T < 1.
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Energy-flux relation in conformal coordinates. For the remainder of the argument we closely follow
[Struwe 2013]. We multiply (18) with Ur. Then we obtain

ore—divm =TP (19)
with the scaled energy density

e:=L(U2+ VU + Q73" —1-Qu? - 1a2U?)).
the momentum density
m:=UrVU,

and the remainder

oA (o120 QU 1 orr2y AlQU 1 o2 L2y 8 N QU
P:=Q % (QU?*(e 1-QU?)—3(e 1-QU?—1Q*U%) =U®> ———(k+1)=0.
= (k+4)

The power series expansion of P shows that the right-hand side of (19) is positive. Therefore the scaled
energy is nonincreasing as we approach the origin. Note that removing the mass term is crucial at this
point. Without doing so, we are left with an additional term —2Q~2U? in P that spoils the definite sign
of the remainder. Furthermore, the same observation holds for the u3-term in the original equation.

For Tp < 1, we integrate (19) over the forward light cone {R < T'} where we truncate by the initial
data surface and the support of U, that is, we integrate over

K:={T,X)esuppU, To <T, |X|=R<T}.

Its boundary 0K has four components. The first one is the initial data surface. It contributes the energy
E, on the initial data surface. The second is the boundary of the support of U inside {R < T}. Its
contribution vanishes. The third boundary is the mantle of the light cone,

My :={(T.X):To<T <1, |X|=R=T}.
We write
V(Y):=U(Y|.Y)

for the restriction of U to the mantle. We call the quantity

[MT LIVVP + Q732 —1- Q2 12V4) ay
T

the flux of U through the mantle M77:12. The last boundary yields the energy in new coordinates:

E(Ty) ::/ edX.
BTo(O)

Putting everything together, we find

1 1
E(To) + i Flux(M},) = Eq — /K PT dX dT.
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In particular, we have the energy inequality

1
E(To) + —= Flux(M7,) < E,.

V2

Therefore the limit TlimoE (T, BT(0)) exists and the flux decays:
—

Flux(M):= sup Flux(MI)—0, T -o. (20)
0<S<T

Moreover, the remainder term P 7' is bounded by the initial energy

/ PTdXdT < E,. 21
K
Pointwise estimates for the average on the mantle. We derive pointwise estimates for the spherical
averages
— 1 [ .
V=V(T)=— / V(e'®T)de (22)
2 0

of V, the trace of U on MOT 9. By Holder’s inequality, for any 0 < T < T,

_ _ T _ _ T T S %
=+ | |V’(S)|dS§|V(T1)|+(/ wvesas. | ?)
T T T
172 T
= |V(Tl)| +7T_% Flux%(M;"‘)log% ?1

Flux decays towards the origin by (20). So there exists a time Tp < 1 such that, for smaller times
0<T <Ty, we have

Flux%(M;O) < Flux%(MOTO) < %.
With this explicit bound on the flux, we can fix a second time 77, 0 < T7 < Tp, such that 8|I_/(T0)| <
logl/z(l/T) for0 < T < Tj. By To <1 we have log(Ty/T) <log(1/T). Therefore,

11

41V(T)| < log? - forall0<7 <Ti. (23)

Decay of energy. We introduce polar coordinates R, ¢. The energy law (19) becomes

o7 (Re) — dp(Rm) = %%(UT Us) + RTP, (24)

where now
ei= LU+ UZ+ R2UZ + 23" —1-Qu? - 1Q2U?)).
m = UTUR.

We multiply (18) with X - VU. Then
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o (X -m) —div(X - VUVU = £ (IVUP - U2 + 973207~ 1 - QU2 - 1 @2U*))
+UZ—Q (e —1—QU? - 1Q2U*) = —R?P.
In polar coordinates,
dr(R*m) — Lar(R2(UZ + U3 — R72U2 — 73 (e%V°— 1 - QU2 - 1Q2U*)))
+ R(UZ—Q 732V —1-QU? - 1Q2U*)) = 3,(UrUs) — RPP.  (25)
Multiplying (18) with (U — V'), we obtain
— ) = 2 2 = -2 7, QU? 2
Ar(Ur (U =V))—=div(VU(U = V) + VU - UF + UrVr + Q2UU - V) (" = 1-QU?) =0.
Or, again in polar coordinates,
I7(RUT (U—V))—0r(RUR(U—V))+R(IVU|*~UF+Ur 177+Q_2U(U—I7)(eQU2—1—QU2))
1 _
= 2 0((U=V)Up). (26)

We rescale the energy identity (24) with R/ T. Then

9 R 9 R + R> + R 9 1U Us | + R*P (27)
—e | — —m —e+—m= — .
T R\7T 72° 7T P\T7THe

We divide both (25) and (26) by T'. Then

R? R?
aT(7m) —Log (7(U% +UR-R2UZ -3 (W —1-QUu? - %QZU“)))
R? R 2 -3(,QU? 2_ 102774 1 R
—i—ﬁm—l—T(UT—Q (¥ —1-QU —EQU))=3¢(7 RU¢)—7P. (28)

and

ar(gw(u - V)) ok (§UR<U - V))

R 2 2 Y/
+= |\VU|?-U7 +UrVr+Ur

_7\2
= 3T(§(UT(U —V)+ (U—V))) —BR(gUR(U— I_/))

+Q2UU - I_/)(eQUz— 1— QUZ))

T 2T
R _ Uu-v (U-V)? —
+T(|VU|2—U%+UTVT+VT - +( T2) +S2_2U(U—V)(eQU2—1—QU2))

Uu-V
= a¢( e U¢). (29)
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Adding (27) and (28) with one half of (29) yields

R? U-V (U-V)?
orl — 1
T(T(€+m+2UT R + TR ))

R? Uu-v
—BR(7(e—|—m—R_2U(§—Q_3(eQU2—1—QUZ—%QZU“)—I—UR ))

2R _
—|—;((l—l—;)(e—l—m)—kéUTI_/T—H_/TU;TV_I_(Uz—T;/)z)
=g (% (UR +Ur + Uz;v)uﬁ)
+§(%Q_3(eQUz—l—QUZ—%QZU“)—%Q_zU(U—I_/)(eQUz—l—QUZ))-i—RZ(1—?)P. (30)

Lemma 3.1. For any time T, with 0 < T> < T1, we have

R (U—-V)2\dXdT y 3
/;(Tz((lzl:T)(e:I:m)—i— 73 ) 7 =CU+ Ea + T Ep),

where K12 is the truncated light cone
K= {((T.X):T<Th |X|<T}.

Proof. Fix T, < T7. We integrate (30) over the truncated cone K T2 Then

I / 1+ R (e + )+(U_I7)2 dXdT _ vy
= — J(e+m
T e T 272 T - ’

where we label the terms I, II, IV, and V as in the proof of [Struwe 2013, Lemma 3.1]. As shown there,
by Poincaré’s inequality, we obtain

< E, IV<CFlux(M]?) <CE,.
The first two terms of our error term
—  _ U=V R
V= Ly V-V RT|[1-=|P
/KTZ(ZTT T2T+(T)

+3Q73( - 1— QU2 - 12U - LU - 7)Q 2 (e -1 - QUZ))

dX dT
T

are the same as in Struwe’s work and so, for any § > 0, we have

— _ U-V\dXdT T2 dX dT
‘/ (UTVT+VT ) ‘505[ [ VU |? +C8I4 +C8™ Flux(M?).
K2 T T 0 B7/2(0) T

By (21),

R
/ R(l——)PdXde/ TP dX dT < E,.
KT T KT
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For the remaining terms we add and subtract in the spherical averages as defined in (22):
3073V - 1-Qu2 - 12U%) — LU - 72 (e?V -~ 1 - QUu?)
- %Q_3(eQU2— 1-QU2 - 1Q2U* — (¥~ 1 - QV2 - 1Q274))
LU -7 (V-1 -QU?) + 3073 (2 - 1 - V2 - 1?74
= f(UV)+ 3732V —1-QV2 - 1Q?74),
We can compensate for the second term with the pointwise bound from (23):
173 - 1-ei2 - 12V =2 Z i 3V2k

le

| /\

i Vz) 3V6 QV?2
— (k +
<C log® 1)1
% g 77
where we used 2 < 1. Then

T
3 l)ldXdT< 3(l) -
/KTzlog (T T <C A log T dT < C < 0.
In the following, we analyze the nonlinear function f as above by comparing U(T, X) with V(T
pointwise in X for a fixed time slice. Recalling that

Qk =3(772k _ 2k Qk —2772k
.7 = ZZ U= vw - V>Z =

we observe that f(—U,—V) = f(U, V). Furthermore, if U and V have opposite sign, say U >0, V <0,
then U(U — V) > U?2. Comparing coefficients, we see that the second power series dominates the first
and f is negative. Therefore, we only need to analyze the case U, V > 0. We distinguish three subcases.
(i) If U <V, then - -

fU V) <7202~ 1-QV?) < 1762,

which we estimate with the bound on | V| as above.

(i) If V < U <4V, then

v 30—3(,16QV? 72_1 2774 3163776,16QV2 3(1)1

fUV)<35Q (e —1-16QV~" —3(16Q2)°V )5516 V®e <Clog (7)7’
where the factor 4 in (23) together with & < 1 ensures that the power in 1/ 7 stays smaller than 1.

(iii) For the remaining case U > 4V, we write V = U, that is, o < %. Then we analyze the power series

o0 k=3 172k _ 172k

Ty 176 _ 76y 3 QU -V

fu.vy=1w —V)+§k; o luw - V)kX;

Qk 2U2k
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For the leading term, we use o < % to compare with (U — V)®,
Ul—Ve=U%1-a® <CUS(1—-a)®=C(U-V)°,

pointwise. Then, by the Poincaré—Sobolev inequality, on each time slice,

U—V)° c 6 3
/ ud)(g—([ |VU|3dX) §CT(/ |VU|2dX) <CTE}.
Br@ T T'\JBr(0) Br(0)

Integration in time yields a term bounded by T22 E3. The remaining power series is negative, as

o0 k-3 2k 172k k—2772k
3 & Q3 U2k — Y2k Q U
3 > o ~lvw-v) Z

k=4 k=2

ey (szUZ)k(l—a2<"+3’)_1 s 3 UV
=3U Z (k +3)! all=a)U ,;)(k+2)!
o @U

<0.

Note that this calculation further motivates the exclusion of 1 in the original equation.
Combining, we arrive at the estimate

T>
V<C(+E, +T2E3+81+)+C8/ / VU |?

dx dT
Br/2(0) r

+ C57 Flux(M D).

By the energy inequality, Flux(MOT 2) < E,. Therefore,

Tz dX dT
I+SC(I+Ea+T22E3+81++8_1Ea)+C8/ / VU |? ,
Br/2(0) r
and, in the same fashion,
R U—-V)2\dXdT
I_=/ | — (e—m)—i-( )
KT> T 272 T

T dX dT
5C(1+Ea+T22E3+51++5—1Ea)+65/ / VU |? .
Br/2(0)

We have |VU|? < 2e = (e +m) + (e —m), and hence

T2 dX dT
/ / |IVU|? <Ii+2I_.
0 JBr,2(0) T

Choosing § > 0 sufficiently small, we conclude that

I4 +1-<C(1+ E,+ TFED). O
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Bound inside a hyperboloid. Recall that Ty was fixed to bound |V (T)| as in (23), which in turn was
crucial for smallness in Lemma 3.1.
For any ¢ > 0, we fix a time 0 < 7, < T7 such that

_T7\2
((1 i%)(eim)-l— w T2V) )dXTdT <e.

Flux(u, MTS) + /
KTe

In the same fashion as in [Struwe 2013, Lemma 4.3], we obtain:

Lemma 3.2. There exists ¢ > 0 and a constant C < oo such that, for any 0 < T < 471T,, we have
/ AUdx dT <CT,
KT

The region ®~!1(KT) is a hyperboloid. Its asymptote is the cone {r =t —1/(2T)}.

In the following we fix T <47 !T,. Let tg = 1/ T, the smallest time inside the hyperboloid. Furthermore,
we denote D = &~ 1(KT).

Using Lemma 3.2, we obtain decay of the nonlinearity in L2 L2 locally in time.

Lemma 3.3. Let tp > t1 > tg. Then
/ INw)|?dxdt < Ct72.
Dn{t1<t<t>}

Proof. Inside D;f =DN{t) <t <tx}wehavet+r>tandt—r > 1/(2T). Therefore, Q2 < C/t; with
a constant C that is uniform over D;f Then we calculate

[tz (e’ —1—u?)|?dxdt = / QU2(RV’—1-QU?)?2Q~3dX dT
D [}

15
2 (D)

C T
5/ l %QZUIOeZQUdede—z t e3U2dXdT§C—2. 0
(D;?) 17 JoD?) i

We conclude:

Lemma 3.4. Inside D the nonlinearity is bounded in L} L2, that is,

00 3
/ (/ |N|2dx) dr < 0.
to DN({t}xR2)

Proof. Divide [tg, o0) into intervals I, = [t92", 192"+ 1). Then, by Holder’s inequality and Lemma 3.3,

00 % 1) %
/ (/ |N|2dx) dt:Z/ (/ |N|2dx) dt
to DN({t}xR2) ne0?In \JDN({1}xR2)

00 | 1
52@02")2(// |N|2dxdz)
= » I DNy xR?)

oo
1
<) Cty22"? <0, O
n=0
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The case of radial data. In the previous section we have obtained control of the nonlinearity inside a
hyperboloid ®~1(KT), where T <47 !T,. Let tg = 1/ T, the smallest time in the hyperboloid. Now fix
T and choose d > 1/(2T). Let

Ay ={t,x):t>1t1, t —d <|x| <t}.
Then there exists a time 1 > fo such that
{(t.x):t=1, x| <t} (@ UKT)N{(Et. x):t =1} UA,y,.

that is, the thinned cone A;, covers the region where we have not yet obtained control over the nonlinearity.
In the following, we will restrict ourselves to the case of radial solutions. We will show that we can
bound the nonlinearity inside A, in L!L2.
In the case of radially symmetric data, we employ the following bound. Let ¢ > ¢; fixed, t —d <r <t.
Recall that u is compactly supported within B;(0). Then

t t
lu(z,r)| 5/ |[0su(t,s)| ds 5/ |dsu(t,s)|ds
r t—d

t N B N |
< (/ |0su(t, s)|?s ds) (/ = ds) <CE2 (log ) .
t—d t—d S t—d

Therefore there exists £, > #1 such that |u(z, r)| < [1% for all # > t,, with a constant C independent of
t>1.

Lemma 3.5. Let 1, be as above. Then N is bounded in L} L2 inside Ay,.
Proof. Again we estimate

NG I= ul(e = 1=u?) < Suf®e”
pointwise. Then

[ ul0e24% g x <Ct-t>=Ctr %
B;(0)\B;—;(0)

00 5 % S
/ (/ ul0e2u dx) dt < C/ 172 dt < oo. O
153 B;(0)\B;—4(0) 153

Combining Lemmas 3.3 and 3.5, we obtain || N ||11(4,,00);22(r2)) < 00. Using Lemma 1.2, we conclude
the proof of Theorem 1.1

Therefore,
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LARGE-TIME BLOWUP FOR A PERTURBATION
OF THE CUBIC SZEGO EQUATION

HAIYAN XU

We consider the following Hamiltonian equation on a special manifold of rational functions:
i0;u =T (Jul?u) +aull), «aeR,

where IT denotes the Szeg6 projector on the Hardy space of the circle S!. The equation with & = 0 was
first introduced by Gérard and Grellier as a toy model for totally nondispersive evolution equations. We
establish the following properties for this equation. For a < 0, any compact subset of initial data leads
to a relatively compact subset of trajectories. For « > 0, there exist trajectories on which high Sobolev
norms exponentially grow in time.

1. Introduction

The study on the long time behavior of solutions of Schrodinger type Hamiltonian equations is a central
issue in the theory of dispersive nonlinear partial differential equations. For instance, Colliander, Keel,
Staffilani, Takaoka, and Tao [Colliander et al. 2010] studied the cubic defocusing nonlinear Schrédinger
equation,

i0;u—+ Au=+ul®u, (t.x)eRxT?. (1-1)

In that paper, they constructed solutions with small H* norm at the initial moment, which present a large
Sobolev H® norm at a sufficiently long time 7. Guardia and Kaloshin [2012] improved this result by
refining the estimates on the time 7. Zaher Hani [2014] studied a version of the nonlinear Schrodinger
equation obtained by canceling the least resonant part, and showed the existence of unbounded trajectories
in high Sobolev norms. Hani, Pausader, Tzvetkov, and Visciglia [Hani et al. 2013] studied the nonlinear
Schrodinger equation (1-1) on the spatial domain R x T4, and obtained global solutions to the defocusing
and focusing problems (for any d > 2) with infinitely growing high Sobolev norms H*.

Gérard and Grellier [2012a] achieved a related result by considering the following degenerate half
wave equation on the one-dimensional torus:

id;u—|Dlu = |ul*u. (1-2)

This work was supported by grants from Région Ile-de-France.
MSC2010: 37135, 47B35, 35B44.
Keywords: Szegd equation, integrable Hamiltonian systems, Lax pair, large-time blowup.
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They found solutions with small Sobolev norms at initial time which become much larger as time grows.
More precisely, there exist sequences of solutions u” and " such that |[ug ||z~ — 0 for any r, but

25—1
[ ) s ~ lugllas (log w——)  » s> 1
g Nl s

This result is a consequence of studies on the so-called cubic Szegd equation, introduced by Gérard and
Grellier [2010; 2012b] as a model of nondispersive dynamics:

idsu = TI(Jul?u). (1-3)

The above equation turns out to be the resonant part of the half wave equation (1-2). The operator I1,
called the Szeg6 operator, is defined as a projector onto the nonnegative frequencies. If u € @'(S!) is a
distribution on the circle S! = {z € C: |z| = 1}, then

() = H(Z ﬁ(k)eike) = i(k)e*?. (1-4)
kez k>0

Notice that, on the Hilbert space L2(S') endowed with the inner product

1 T L —
(ulv) = E/ u(e'*)v(et¥) dx, (1-5)

—TT

IT is the orthogonal projector on the subspace Lﬁ_(Sl) defined by the conditions
u(k)=0 forall k <O.
Gérard and Grellier [2010; 2012b] studied the Szegd equation on the space
HY?(SY) = HY2(SY) nL2(SY)

and displayed two Lax pair structures for this completely integrable system. Moreover, they established
an explicit formula of every solution with rational initial data [Gérard and Grellier 2013] and illustrated
the large-time behavior of Sobolev norms of the solutions; for instance:

Theorem 1.1 [Gérard and Grellier 2010]. Every solution u of (1-3) on

b
O 0 taeC beC peC |pl<1,a+bp#0

1—pz’

M) :=u=

satisfies

sup [[u(t)| s <oo foralls > 3.
teR

However, there exists a family of Cauchy data uf in J(7L(1) which converges in J(7L(1) for the C®(S!)
topology as ¢ — 0, and K > 0 such that the corresponding solutions of (1-3) u® satisfy the following
condition, for all € > 0:

for some t& >0, |ué(t%)|gs = Kt)** Last® - oo forall s > %
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Another result on this Szeg6 equation was obtained by Pocovnicu [2011b; 2011a], who studied this
equation by replacing the circle S! with the real line and got a polynomial growth of high Sobolev norms
[Pocovnicu 201 1a, Corollary 4], which says that there exists a solution u of the Szegd equation and a
constant C > 0 such that [[u(¢)||zs > C|t|?>*~! for sufficiently large |¢|.

The aim of this article is to study the properties of global solutions for the following Hamiltonian
equation on L2 (81) which is the cubic Szeg6 equation with a linear perturbation:

{iatu = I(Jul*u) + a(u|1). a€R, (1-6)
u(0,x) = uo(x).

In view of (1-5),
1 T :
(u|l) = —/ u(e'™)dx
2

-7
is the average of u on S!.
Equation (1-6), called the a-Szegd equation, inherits three formal conservation laws:

do
mass: Q(M)i=/ |”|2 = |lu ||L2’

momentum: M (u) := (Du |u), D :=—idg =z0,,
1 dg 1
: Eq(u) =~ Y — + ||
energy:  Eal)i= 5 [ Wi*S + el

Slight modifications of the proof of the well-posedness result in [Gérard and Grellier 2010] lead to the
result that the o-Szeg6 equation is globally well posed in H (S') = H*(S') N L2 (S!) for s > 3:

Theorem 1.2. Given ug € H1/2(§1), there exists a unique global solution u € C(R; H1/2) of (1-6)
with ug as the initial condition. Moreover, if ug € HY (SY) for some s > L, then u € C®(R; HS 1)
Furthermore, ifug € HY (SY) with s > 1, the Wiener norm of u is bounded umformly in time:

sup l[u(@)llw —SUPZ u(t)(k)| < Cylluol s (1-7)
R =0

Now we present our main results. In our case with a perturbation term, it turns out that if o < 0, the
Sobolev norm stays bounded uniformly in time, while if & > 0, it may grow exponentially fast:

Theorem 1.3. Let ug = bo + coz/(1 — poz), co # 0, | po| < 1.
For a < 0, the Sobolev norm of the solution will stay bounded:

lu()||gs <C, C does not depend on time t,s > 0. (1-8)

For o > 0, the solution u of the «-Szegd equation (1-6) has a Sobolev norm growing exponentially in
time:
Ca.slt]

lu(@)||gs ~e s>— Cas >0, |t| = o0 (1-9)

if and only if
= 10%+ LaQ. (1-10)
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Remark 1.4. (1) Together with the results in [Gérard and Grellier 2010; 2012b], we now have a complete
picture for the high Sobolev norm of the solutions to the a-Szegd equation. For o < 0, it stays bounded
(uniformly on time). For o > 0, it turns out to have an exponential growth for some initial data satisfying
the condition in Theorem 1.3. Finally, for @ = 0, the trajectories of the Szegd equation with rational
initial data are quasiperiodic with instability of the H*® norm as in Theorem 1.1.

(2) Our result is in strong contrast with Bourgain’s [1996] and Staffilani’s [1997] results for the dispersive
equations, which say that the dispersive equations admit polynomial upper bounds on Sobolev norms.
Here, we give an example of exponential growth of Sobolev norms for a nondispersive model.

(3) The solutions to the «-Szegd equation admit an exponential upper bound of the Sobolev norms.
Assuming s > 1, it is easy to solve (1-6) locally in time. More precisely, one has to solve the integral
equation

t
u(t) =ug—i / (TI(Ju*u) + a(u|1)) dt’.
0
Thus

t
lu@ s < lluollzs +C[O (L4 @) 1) ) | s dt',
since, by Theorem 1.2, the Wiener norm is uniformly bounded. Then, by Gronwall’s inequality, we have

lu@)llgs < ||Mo||1-1s€c’.
This shows that (1-9) is the worst that can happen.

This paper is organized as follows. In Section 2, we prove that there exists a Lax pair for the a-Szegd
equation based on Hankel operators. Then we define the manifolds £(k) :={u : kK, =k, k € 7"}
with the shifted Hankel operator K;,. These manifolds are proved to be invariant by the flow and can be
represented as sets of rational functions. In this paper we will just consider the solutions u € £(1). We
plan to address the other cases in a forthcoming work. In Section 3, we prove the large-time blowup result
and the boundedness of the Wiener norm to show that our result is optimal. Furthermore, we provide an
example which describes the energy cascade. Finally, we present some perspectives in Section 4.

2. The Lax pair structure

For u € E C 9/(S!), we define E by canceling the negative Fourier modes of u:
Eir ={ue€E :forall k <0,u(k)=0}.

In particular, Li is the Hardy space of L? functions which extend to the unit disc D ={z € C:|z| < 1}
as holomorphic functions

u(z) =Y i)z, D k)P < oc.

k>0 k>0
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An element of Li can therefore be seen either as a square integrable function u = u(e’ 9) on the circle
with only nonnegative Fourier modes, or a holomorphic function ¥ = u(z) on the unit disc with square
summable Taylor coefficients.

Using the Szegd projector defined as (1-4), we first introduce two important classes of operators on
Lﬁ_(Sl), namely, the Hankel and Toeplitz operators.

Given u € H_ilr/ 2(51), a Hankel operator Hy, : Lﬁ_ — Li is defined by

H,, (h) = TI(uh).

Notice that H,, is C-antilinear and symmetric with respect to the real scalar product Re(u|v). In fact, it
satisfies

(Hy(h1)|h2) = (Hy(h2)|h1).

Moreover, H,, is a Hilbert-Schmidt operator with

Te(Hg) = ) (1 + Dla(m).

n=0

Given b € L>°(S"), a Toeplitz operator T : L3 — L2 is defined by
T, (h) = TI(bh).

Ty is C-linear, bounded, and self-adjoint if and only if b is real valued.
The cubic Szeg6 equation was proved to admit two Lax pairs as follows:

Theorem 2.1 [Gérard and Grellier 2010, Theorem 3.1]. Let u € C(R, H%(S')) for some s > % The
cubic Szegd equation

idsu = T(Jul?u) (2-1)

has two Lax pairs (Hy, By) and (K, Cy,), namely, if u solves (2-1), then

dH, dK
dtu :[Bu,Hu]» “

= [Cu, Ku]» (2_2)
where
By = %Hﬁ—iTwz, Ky:=T Hy, Cy= %Kﬁ—iTwz-

Corollary 2.2. The perturbed Szegd equation (1-6) with « # 0 still has one Lax pair (K, Cy).

Proof of Corollary 2.2. We need an identity from [Gérard and Grellier 2013, Lemma 1]:
Hrt(upuy = Tju2 Hu + HuTjy2 — Hy.- (2-3)

Using (1-6) and (2-3),

dt

= H—iH(|u|2u)—ia(u|1) = _i(Tluleu + HuT|u|2 - HS) —ia(u|l)Hy.
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Using the antilinearity of H,,, we deduce that

dH )

o = [Bu, Hy] —iac(u|1) Hy, (2-4)
which means that (H,,, By,) is no longer a Lax pair. Fortunately, we have T H; = 0, which leads to the
identity

dK
dtu == [Cu, Ku]. D

An important consequence of this Lax pair structure is the existence of finite dimensional submanifolds
of L2+(Sl), which are invariant by the flow of (1-6). To describe these manifolds, Gérard and Grellier
[2010, Appendix 4] proved a Kronecker-type theorem to the effect that the Hankel operator H,, is of
finite rank k if and only if u is a rational function of the complex variable z with no poles in the unit disc
and of the form u(z) = A(z)/B(z) with A € C_1[z], B € Ci[z], B(0) =1,degA =k —1ordeg B =k,
A and B having no common factors, and B(z) # 0 if |z| < 1. In fact, we can prove a similar theorem for
our case.

Definition 2.3. Letting k be a positive integer, we define
(k) = {u e H/*(S") : tk Ky, = k}. (2-5)

Due to the Lax pair structure, the manifolds £(k) are invariant by the flow.

A(2)
B(z)’

A BeCilz], AAB=1, degd=kordegB=k B '({0)ND=0. (2-6)

Theorem 2.4. The elements of L (k) are the rational functions u = where

Here A A B =1 means A and B have no common factors.
Proof. Gérard and Grellier [2010, Appendix 4] proved that

ME+1)={u:tkH, =k+1}
A(2)
=3u(z) = —=: A € Clz], B € Cx41[z], B(0) =1,
B(2) _
degA=kordegB=k+1, AAB=1, B1{(0)NnD =02}.

For u € M(k + 1) we have dimIm H,, = k + 1. Then u, T*u, ..., (T;)**'u are linearly dependent, that

is, there exist Cy, not all zero, such that ZIZ:(} Co(T}) u = 0. We get

k+1
Z Cii(+n)=0 foralln=>0.
{=0

This is a recurrence equation for the sequence %, and can be solved by using linear algebra. Define

k+1

P(X)=) Cxt=cJ]&x-pm,
£=0 DEP



LARGE-TIME BLOWUP FOR A PERTURBATION OF THE CUBIC SZEGO EQUATION 723

where ? = {p € C: P(p) = 0} and m,, is the multiplicity of p. Then (i1(n)),>0 is a linear combination
of the sequences

nfp”—‘f,p;,éo,Ogﬁfmp—l and $um, p=0,0<m <mo—1.

Recall that
u(z) = Zﬁ(n)z” for |z] < 1.
n>0
Thus u is a linear combination of terms _ with 0 < |p| <1 and 0 <{ <mj, —1, and terms zt
(l—pz)e""l

for0 <{ <mg—1.
Consequently, u(z) = A(z)/B(z) with
degA<k,degB=k+1 if0¢P,
degA=k,degB <k if0e®.
But 0 € & is equivalent to 1 € Im H,, or again to ker K, N Im H,, # {0}, since K, = T} H,, and
tk H, —1 <1k K, <1k H,. For u € ¥(k) we have rtk K;, = k. Thus u = A(z)/B(z) with
degA<k—1,degB=k ifrkH,=1kK, =k,
deg A =k, degB <k iftkH,=1kK,+1=k+1.

The proof of the converse is similar. It follows that (k) = {u : tk K,, = k + 1} contains precisely the
quotients u = A/ B, with A and B as in (2-6). |

3. Proof of the main theorem

We will now prove that the @-Szegd equation (1-6) has a large-time blowup as in Theorem 1.3. We also
give an example to describe this phenomenon in terms of energy transfer to high frequencies. We start by
proving the boundedness of the Wiener norm as in Theorem 1.2.

Proposition 3.1. Assume ug € H$ (S') with s > 1 and let u be the corresponding unique solution of
(1-6). Then
lu@)lw < Cslluollas forallt € R.

Proof. By Peller’s theorem [2003], the regularity of u ensures that H,, is trace class and the trace norm of
H,, is equivalent to the Bil norm of u. Recall the definition of B} , (ShH.

Let y € C®(R™) satisfy xlr<1(t) = 1, yli=2(1) = 0,0 < x < 1. Set ¢ as Yo(t) = 1 — x(t),
Vi(t) = x(27/T1t) — ¥(27/t). Define the operator A;j for f € ' (S!) as

Ajf =) k) [ (ke
kez
Then the Besov space is defined as

By /(SN :={u e (S"): 2”°||A; fllLr €lf, 1< p,g < 400, 0 < j < +o0},
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with norm

too 1/q
lullgy 1) = (Z(Z”IIAjflle)q) :

=0
Observe that there exist C, Cy > 0 such that

+o00 +o0
lullgr =Y 27 1Al <C ) 27 1A ul L
Jj=0 Jj=0

too 1/2 ;fo0 1/2
<C (Z 22N||Aju||§2) (Z 22J<I—S>) < Cyllullgs foralls>1. (3-1)
j=0 j=0

So, for u € H® with s > 1, H,, is trace class, and
Tr(|Hyl) < Csllullgs.

Since Ky = T} Hy, we have K2 = H? — (-|u)u, and so Tr(|Ky|) < Tr(|Hy|). Due to the Lax pair
structure, we conclude that K, (s is isospectral to Ky, an in particular Tr(| Ky, s)|) = Tr(| Ky, |). Therefore

Tr(| Ku(y) = Cslluollas-

Since [[ullw = [#(0)| + >, > [#(n)] and [@(0)| < [|u]|z2, we just need to show that
> li(m)] = € Te(|Kul).
n>1

Let {e, } be an orthonormal basis of Li. Then, for any bounded operator B,

> " |(Kuen|Ben)| < Tr(|Ku )| B.

Then we see that Y |#(2n)|+ > | (2n+1)| <Tr(|Ky|) by taking B =T, and B = Id. This completes
the proof. nzl nzl O

Remark 3.2. In fact, to prove the global well-posedness, it is natural to use the Brezis—Gallouét type

estimate from [Gérard and Grellier 2010, Appendix 2]: for s > %,

1
u Ky 2
lullw < Cslull 1.2 [Iog(l + m)] .
||M||H1/2

This leads to a growth doubly exponential on time for the Sobolev norm of u. Fortunately, by the estimate
in Proposition 3.1, we know the H* norm of the solutions will admit an exponential on time upper bound
for s > 1 (see Remark 1.4).

Now, let us start the large-time blowup theorem.

Theorem 3.3. For a > 0, we consider the solution of the Szegd equation (1-6) with initial data ug € £(1).
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(1) If the trajectory issued from ug is not relatively compact in £(1), then

b+ L= Ja, (3-2)
1-|pl?
or, equivalently,
Ey=30%+1a0. (3-3)
(2) If (3-2) holds, then
u(@®)|gs = Sl s> 1 Cpy >0, [t] - 0. (3-4)
2 5

Thus the equality (3-3), which is invariant by the flow, is a necessary and sufficient condition to cause
large-time blowup.

Proof. First, since the trajectory of the solution is not relatively compact in £(1), the level set L(ug) :=
{lueZ): Q)= 0uo), M(u) = M(up), Eq(u) = Eq(utg)} is not compact in £(1).

We rewrite u € £(1) as
cz

u=>b+ .
1—pz

Then the conservation laws under the coordinates b, p, ¢ are given as
|c|?
1—1p|?

|c|?

(1—pl*»?*

1
= Hull + Jall P = § 614+

0 = lull}> = + 1612,

M = (Dulu) =

AbPle> | lel*(L+[p?) | 4lc|*Re(bpc)
I—|pl>  (A-1pl?)’ (1—1p»)?

Now, u € £(1) stays in a compact of £(1) if and only if || < C, 1/C < |c| <C, and |p| <k < 1
with some constant C and k. Otherwise, due to the formulas of mass Q and momentum M, there exist
tn — oo such that |¢(t,)| and 1 — | p(t,)|? tend to O at the same order. Using the formula of Q and Ej,

}+%cx|b|2.

we have
btn)1? = 0. Yb@tn)* + Lalb(th)* — E.

Since the limit should be unique,
Eq = %Qz + %ch.

Using the formula of mass and energy, (3-3) can be rewritten under coordinates of b, p, ¢ as

lc|?|p? bpe
b|? + ——">— 4+ 2Re =«
(1-1p[?)? 1—[p|?
Simplifying the left hand side, we get
pc
b+ = ..
‘ I—1pl?
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Now we turn to proving that (3-2) is sufficient to cause the exponential growth of Sobolev norms.
Writing, as before,

c(t)z
u(t) =bt) + "
—p)z
2
the terms d;u, IT(Ju|?u), (u|1) can bezrepresented as linear combinations of 1, I—sz’ (l—sz)2:
z z
u=0b+dic—+0;p——m—,
tU = 0:b+ tcl—pz+ tp(l—pz)z
2b 2 2., =
H(|u|2u) |b|2b—|— |C| |C| sz
—Ipl*  1-|p|
2blcPp | 1+1plP lclPep ] 22
+[2|b|2(:+ +1 |e|“c —+ c%b+ :
1—[pl?>  1—|pf? 1—pz 1—|p|? J(1-pz)?
u|l)=5>b
Then (1-6) reads ) )
. 2b|c| |c["cp
id;b=|b|*b + + + ab,
I—[pl>  (d-IpP)?
. 2b|c?p lc|?e
id;c =2|b|%c + , (3-5)
I=[pl?  (1-IpP)?
. - lelPp
idep=chb+ .
1-1|pl?
Using the second equation of (3-5), we obtain
dlc| 2|c| _
— = Im(bpc). 3-6

This equality together with (3-2) gives us
(dICI )2_ 4(Im(bpc))* _ 4|bpc|>  4(Re(bpc))?
|cldt (I=[p?»?>  A=[pP)?> (A=[p?)?
41hpé|? 21912 12 4lppél? 2 2 72
|pr| |:Ol—|b|2— |C| |p| i| :( |pr| _|:a_|b|2_ |C| |C| i|

~(1-p]?)? (1—|p?)? 1—|p|?)? (1-1p?)2  1-|p|?
4lbpe|? [ lc|? ]2

= g—Q-M+2
(1—1p[?)? 1—|p|?

L2 [ A o [a_| 2 e el i|_(a_Q_M)2
(1-[p»? (1-|p»? 1-|p|? 1-[p»? 1-|p?

_4bpPcf? 4c|* 4)c|?

= - —(a— M)?
(-p22 T ppy Y1z @9 M

|c|2) e e
4( 1p1? — —(—0—-M)?
(' PR G Yo @M
= 40M —4avM|c|—(a—Q —M)>.
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Thus

dlog|c|
dt

2
):—MJMkngM—m—M—Qﬂ

d log|c|
dt

2
Since 0 < |c| < 1, it follows that cq,p,0 < ) < Cq,m,0, Which leads to exponential decay
in time for |c|:

le|(2) = |c(0)]e€ !

with the positive constant C depending on @ and M, Q.
Notice that 7i(k, 1) = ¢pF~! for k > 1. Using Fourier expansion, we obtain, as | p| approaches 1,
c]?

2 ~
lellys > (1= |p2)zs+1

Since M(u) = |c|?/(1—|p|?)? = constant, we get [[u]|%, = |¢|~@~D ~ ¢CC@s=DII which has an
exponential growth as s > % This completes the proof. O

Corollary 3.4. We do not have the growth of HS norms for small data in £(1). In other words, if
[0 172 K Ja, the higher Sobolev norm will never grow to infinity.
+

Proof. ||u(0)||HJ1r/z < 4/a. Then

cp
b <O+ VM < |u© .
‘ +1—|p|2 =vO+ < Ju( )||HJ1F/2<<\/&
According to the necessary and sufficient condition (3-2), there is no norm explosion. 0

Remark 3.5. Consider a family of Cauchy data given by
ug=z+e e€Cande# .

For the case a = 0, Gérard and Grellier got the following instability of H* norms:

lu®(@®) || gs ~ e~ oo %

However, we do not have such an instability result for o > 0. In fact, using Theorem 3.3, we know there
exists a constant C = C(«) such that

sup sup ||u®(@)||gs <C.
e# /o 1€ER

Now we give an example to display the energy cascade in Theorem 3.3.
Theorem 3.6. Given o > 0,

i0u = T(|Ju|?u) + a(u]|1),

3-7
ulr=0 =z + Jo, zeSh -7

Forall s > %, the above equation is globally well posed in H® and the solution satisfies

ul@t)||gs >~ e@s=Det 4 o
lu@)|l
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Proof. Since ug = z + +/a, the conserved quantities are Q = 1 +a, M =1, Ey = %(1 + a)(1 4 3a).
Thus ug € £(1). So, by the proof of Theorem 3.3,

d \? )
Qﬁwo — daleP(1 - le)).

Together with the initial condition |¢|(0) = 1, we get, for ¢ > 0 (same strategy for ¢ < 0),

d
Elc|=—2«/5lc|\/1—lcl, (3-8)
and then 4e2~/"7
)= ———.
€10 = ey

By (3-2), we get Re(bpé) = |c|?> —|c|, and, by (3-6) and (3-8), we have Im(bp¢) = —/a|c|+/1 —|c], so
bpé = Re(bpé) + i Im(bpé) = |c|* —|c| —i valc|/1—]c].

The second equation of (3-5) can be simplified as follows:

id;c = (1420 —2i/ay/1—|c|)c,

c(0)=1.
Thus
462"/0” ;
_ —i(14+2a)t _
c(t) a +e2x/¢W)26 . (3-9)

Now we turn to calculating » and p. In fact, we only need to calculate their angles. Let us denote

b=1be"D = /1+a—1cle’®®, p=|ple!®® = /1—|c|e!®®.

Then, using the differential equation on p, we get

1
)=Mmu—4wkﬁw=a
||

9:0|p| = lc||p| +Re(cbe™7) = |c| | p| +Re( 1P|

which means
o(t) =a(0).

Since

bp _ C(bPE) — (|C| -1 —iﬁ/l——|c|)e_i(l+2“)t
— Ve DT (A i et

Vita—lc| 1+a—|c|
Li(0+0) _ (_ vi—le . Vo )e—i(l+2a)t
Vi+a—|c| 1+ a—|c]|

and ¢/ = 1, we get
S10(0) _ 4io(0) _ i(@©)+6(0) _ _;
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Then

ei@(t)=(_l~ vi-lel Ve )e—i(1+2a)t.

Vita—le|  VlI+a—|c|

Finally, we have

29

. e2Vat |
p)=—iy1—|c| =l
e2Vel 41 (3-10)
Y 1\ i(142ay
_ o —i o
b(t)—(ﬁ lezﬁt+1)e )
Now we get the explicit formula for the solution u(¢) = b(t) +c(t)z/(1 — p(t)z):
2 /at _ 1 .
_ . —i(142a)t
b(t)—(«/a lezx/&t+1)e ,
2/ at )
C(l) — 4e—e—l(l+2a)t’ (3-11)
(1 + e2ver)2
_ eVt
PO A
In this case, M(u) = |c|?/(1 —|p|?)?> = 1 and we get, for t — 400,
(@) ]|3s = |e|735™D ~ Ce2@s—DVer, O

Remark 3.7. One can illustrate this instability of Sobolev norms from the viewpoint of transfer of energy

to high frequencies. The Fourier coefficients for u = b 4 cz/(1 — pz) are

a(k)=c@)p@)*~" forall k > 1.

Then
M) =1="Y[k|[a()> = _[kl[c@)]|p@)**V.
k>1 k>1
With (3-11), we have
1 — e 2Vt |2 16]k|

2

k>1

=1
1+e2ver | |(1 4 e 2ver)(1 —e=2var)2

As t — oo, we get
D 4lkle ™V exp (—dk|e V) ~ 4.

k>1
so the main part of the summation is on the ks satisfying

k| ~ &2V,

So as time increases, the main part of the energy concentrates on the Fourier modes as large as e2ver,
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On the other hand, from the viewpoint of the space variable, we find that as time grows to infinity, the
energy will concentrate on one point. In fact, rewriting z = ¢’*, we get

A—e2Ver e 1—[pO  1-|p@)|
w0 Ve e e S T e~ T=p0z] = p0)z]
1

\/2(e4«/&’ —1)(1—sinx) + 4’

which tends to 0 as ¢ — oo if and only if x # /2. Therefore, as time tends to infinity, the value of |u/|
will concentrate on the point i € S!.

This example shows that the radius of analyticity of the solution of (1-6) may decay exponentially.
This shows the optimality of the result in [Gérard et al. 2013].

Now, let us turn to the case a < 0.

Theorem 3.8. In the case o < 0, for any given initial data uy € £(1), let u = (az + b)/(1 — pz) be the
corresponding solution of (1-6). Then there exists a constant C = C(«) such that, for all t,

lu@)|gs <C, 5= 3,
where the constant C > 0 is uniform for ug in a compact subset of £(1).

Proof. Assume for a contradiction that u(#,) leaves any compact subset of £(1). Then Theorem 3.3 leads
to (3-3), or equivalently to the equality

luoll7> — luollF s = 2a(| (o DI* = fluol72)-
Via the Cauchy—Schwarz inequality and o < 0, we get
luoll2 = llullps and  [(uo| D] = [luollL2.

Then ug is a constant, which contradicts the fact that ug € £(1). O

4. Further studies and open problems

In this paper, we just considered the data on the (complex) three-dimensional manifold
L():={u:k K, =1}.

It is of course natural to consider the higher-dimensional case, which will probably be much more
complicated. Since we also have enough conservation laws for the case rk K;,, = 2, we have a conjecture
that the system stays completely integrable for rk K,, > 2. It would be interesting to know how the results
of this paper extend to this bigger phase space. In particular, do small data generate large-time blowup of
high Sobolev norms?
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A GEOMETRIC TANGENTIAL APPROACH TO SHARP REGULARITY
FOR DEGENERATE EVOLUTION EQUATIONS

EDUARDO V. TEIXEIRA AND JOSE MIGUEL URBANO

That the weak solutions of degenerate parabolic PDEs modelled on the inhomogeneous p-Laplace
equation
up —div(|Vu|P2Vu) = f e LY, p>2

are C%¢, for some « € (0, 1), has been known for almost 30 years. What was hitherto missing from the
literature was a precise and sharp knowledge of the Holder exponent « in terms of p, g, r and the space
dimension n. We show in this paper that

o PA=MIr—pq
ql(p —=Dr —(p=2)]
using a method based on the notion of geometric tangential equations and the intrinsic scaling of the
p-parabolic operator. The proofs are flexible enough to be of use in a number of other nonlinear evolution
problems.

1. Introduction

The understanding of the local behaviour of solutions to singular and degenerate parabolic equations
has witnessed an impressive progress in the last three decades. At the heart of most developments lies
a single unifying idea, namely that regularity results have to be interpreted in an intrinsic geometric
configuration, a sort of signature to each particular PDE. The pioneering work of DiBenedetto [1993]
was the starting point to a theory that has, in many aspects, reached its maturity (see [DiBenedetto et al.
2012] and [Urbano 2008] for recent accounts).

A central aspect in this endeavour has always been the Holder continuity of bounded weak solutions,
which ultimately follows from Harnack-type inequalities. Although powerful, this approach only provides
qualitative estimates that depend solely on the structure of the equations and thus hold in a very general
setting. The quest for precise, quantitative derivations of the Holder exponent has hitherto eluded
the community, the only exception being the two-dimensional result in [Iwaniec and Manfredi 1989]
concerning p-harmonic functions. This type of quantitative information, apart from its own intrinsic
value, plays an important role in the analysis of a number of qualitative issues for parabolic PDEs, such
as blow-up analysis, Liouville type results, free boundary problems, and so forth.

MSC2010: 35K55, 35K65, 35B65.
Keywords: degenerate parabolic equations, sharp Holder regularity, tangential equations, intrinsic scaling.
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The main goal of this paper is to fill this gap, bringing the theory to a new level of understanding. We
show that weak solutions of degenerate p-parabolic equations whose prototype is

uy —div(|Vul"?Vu) = f e LT, p=2, (1)
are locally of class C** in space, with

o P4 —pq
~ql(p—Dr—(p—-2)]

a precise and sharp expression for the Holder exponent in terms of p, the integrability of the source and

the space dimension 7. We also show that u is of class C%%/? in time, where 6 is the a-interpolation
between 2 and p. What makes the parabolic case more delicate to analyse is the inhomogeneity in the
equation, the fact that it scales differently with respect to space and time. It is worth stressing that the
integrability in time (respectively, in space) of the source affects the regularity in space (respectively, in
time) of the solution.

To highlight the extent to which our result is sharp, we project it into the state of the art of the theory.

2
a=1—<—+f—1),
rg

which is the optimal Holder exponent for the nonhomogeneous heat equation, and is in accordance with

For the linear case p = 2, we obtain

estimates obtained by energy considerations. When p — oo, we have o« — 17, which gives an indication
of the expected locally Lipschitz regularity for the case of the parabolic infinity-Laplacian. When the
source f is independent of time, or else bounded in time, that is » = co, we obtain

_pg—n _ _p qg-n/p
gp—bH p-1 ¢

which is exactly the optimal exponent obtained in [Teixeira 2013] for the elliptic case. It might also be

’

interesting to compare our optimal result with the estimates from [Misawa 2013, Section 4], and also
with the continuity estimates on p-parabolic obstacle problems from [Kuusi et al. 2014].

Within the general theory of p-parabolic equations, our result reveals a surprising feature. From the
applied point of view, it is relevant to know what is the effect on the diffusion properties of the model
as we dim the exponent p. Naive physical interpretations could indicate that the higher the value of p,
the less efficient should the diffusion properties of the p-parabolic operator turn out to be, i.e., one
should expect a less efficient smoothness effect of the operator. For instance, this is verified in the sharp
regularity estimate for p-harmonic functions in 2D [Iwaniec and Manfredi 1989]. On the contrary, our
estimate implies that for p-parabolic inhomogeneous equations, the Holder regularity theory improves as
p increases. In fact, a direct computation shows

sign(dp,a(p,n,q,r)) =sign(g(2—r)+nr) =+1,

in view of standard assumptions on the integrability exponents of the source term.
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Although regularity estimates for degenerate evolution equations have been successfully obtained in
great generality (see [Kinnunen and Lewis 2000; Acerbi and Mingione 2007]), explicit expressions for
the Holder exponent of continuity for weak solutions have only been known in the linear setting. For
nonlinear equations, the classical tools from harmonic analysis, such as singular integrals, are precluded
from being used and an entirely new approach is needed. The new estimates we obtain are striking in their
simplicity but perhaps the most relevant contribution we offer is the technique employed. We develop a
method based on the notion of geometric tangential equations, which explores the intrinsic scaling of the
p-parabolic operator and the integrability of the forcing term. By means of appropriate scaled iterative
arguments, we show that at each inhomogeneous equation there is a universal tangential space formed by
C%! in space and C%!/2 in time functions. The method then imports such regularity back to the original
equation, properly corrected through the scaling used to access the tangential space. The method is new
to the field and robust enough to be adapted to other evolutionary problems, as well as to a number of
other issues in the theory.

2. Preliminary tools

Let U C R”" be open and bounded, and 7" > 0. We consider the space-time domain Uy = U x (0, T'). We
work with the prototype inhomogeneous equation

u; —div(|Vu|’P2Vu) = f in Uy, )

with a source term f € L?"(Ur) = L" (0, T; L1(U)) satisfying

1 n
-+ — <1 3)
rpq

and
2 n
-+ —->1. 4)
roq

The first assumption is the standard minimal integrability condition that guarantees the existence of
bounded weak solutions, while (4) defines the borderline setting for optimal Holder type estimates. For
instance, when r = oo, conditions (3) and (4) enforce

n
— <gq <n,

which corresponds to the known range of integrability required in the elliptic theory for local C%*
estimates to be available.
We start with the definition of weak solution to (2).

Definition 2.1. We say a function

u € Coe(0, T; LE (U)NLE (0, T; Wli;f(U))

loc
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is a weak solution to (2) if, for every compact K C U and every subinterval [¢1, ;] C (0, T'], there holds

t %) [5)
/u(pdx 2+/ /{—mpt-i-|Vu|”_2Vu-V(p}dxdt=/ f fodxdt,
K n nh JK n JK

forall g € H! (0, T; L*(K))NLY (0,T; W(:”’(K)).

loc

The following alternative definition makes use of the Steklov average of a function v € LY(Ur), defined
forO<h <T by

1 t+h

—/ v(-,t)dt iftre 0, T —h],
vpyi=13h J;

0 ifte (T —h,T],

and circumvents the difficulties related to the low regularity in time. In fact, these difficulties are more of
a technical nature since the time derivative u, is shown in [Lindqvist 2008] to be an element of a certain
Lebesgue space.

Definition 2.2. We say a function

u € Coe(0, T; LE (U)NLE (0, T; Wli;f(U))

loc

is a weak solution to (2) if, for every compact K C U and every 0 <t < T — h, there holds

f {(uh)f<o+(|VuI”‘2Vu)h-V<p}dx=/ Jnpdx, (5)
K x{t} K x{r}

for all ¢ € Wol’p(K).

One key ingredient in our analysis is the following Caccioppoli-type energy estimate enjoyed by weak
solutions of (2).

Lemma 2.3 (Caccioppoli estimate). Let u be a weak solution to (2). Given K x [t;,t20] C U x (0, T],
there exists a constant C, depending only on n, p, K x [t|, t] and || f || e, such that

15)
sup /uzgpder/ f |Vu|PEP dx dt
h<t<t) JK t K
%) 15)
s/f|u|f’<s”+|vs|f’>dxdt+//ﬁgl’—1|gt|dxdt+||f||q,, ©
N K n K

for every & € 65°(K x (1, 1)) such that & € [0, 1].

Proof. Choose ¢ = up&? as a test function in (5) and perform the usual combination of integrating in
time, passing to the limit in # — 0 and applying Young’s inequality to derive the estimate. U

We finally recall that, if v is a function belonging to L?(Q), its averaged norm is

1/p
VIl p.ave.0 == (][ |v|f’dxdr) =101"" vl .0,
0
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where, as usual, the integral average is defined by

he=mly

3. Sharp Holder estimate

We start by fixing universal constants, that depend only on the data. The intrinsic exponent to (2), with
felL? is

o-4-2)
g PA=MWIr—pq PN e %
ql(p—Dr—(p—2)] <2+£_1)+p<1_l_1)
roq ropq
which, in view of (3) and (4), satisfies 0 < o < 1. Next, let
0=a+p—(p—lHa=p—(p—2)a=a2+{ —a)p. (®)

Clearly 2 < 6 < p, since 0 < « < 1. For such 6, we define the intrinsic 6-parabolic cylinder
G.:=(-1",0)x B;(0), 7>0.

We first establish a key compactness result that states that if the source term f has a small norm in L9,
then a solution u to (2) is close to a p-caloric function in an inner subdomain. It is worth comparing such
a result with the A-caloric approximation lemma obtained in [Duzaar and Mingione 2005, Lemma 4.1].

Lemma 3.1 (approximation to p-caloric functions). For every § > 0, there exists 0 < € < 1, such that if
| fllLarG,) <€ and u is a local weak solution of (2) in G1, with ||ull ave,G, < 1, then there exists a ¢
that is p-caloric in G, in the sense that

¢ —div(|V|P V) =0 in Gyp, ©)
and moreover satisfies
||u_¢||p,avg,G1/2 §8~ (10)

Proof. Suppose, for the sake of contradiction, that the thesis of the lemma fails. That is, assume, for some
8o > 0, that there exists a sequence

W’); € Croe(—1,0; L} (B))N LY (=1,0; Wt"(B)))

loc

and a sequence (f/); € L%"(G1) such that

u! —div(\Vu/|1P2Vuly = £/ in Gy, (11)
/1 p.ave.cr < 1, (12)
Il Lar Gy < 1/4, (13)

but still, for any j and any p-caloric function ¢ in G2,

! = |l pave. 61,2 > 0. (14)
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Fix a cutoff function & € C;°(G1), such that & € [0, 1], & =1in G2 and & =0 near 9,G . From the
Caccioppoli estimate, using the notation

VI xU)=L>(; L*(U)N L (I; WP (U)),

we obtain

0

1 v < sup | (w267 dx + / Vu|PEP dx di
—1<t<0 B -1 B

0 . . .
5/1/3 (/17 €7 + IVEI) + )67 &) dx di + 11 f o vy

‘ , 1
p 2
<cllully awec, TN 13 0 6, + G

<ec.
A control of the time derivative, along the lines of [Lindqvist 2008] (see also [Acerbi et al. 2004]),
gives
llue] L5110 =€
with s =min{q, p/(p—1)} < p. We now use a classical compactness result (see [Simon 1987, Corollary 4]),
with
WhPes LP C LS,

to conclude that

u =y,

strongly in L”(G1/2), in addition to the weak convergence in V(G12).
Passing to the limit in (11), we find that

¥ —div(Vy|P2VY) =0 in Gip,
which contradicts (14), for j > 1. The proof is complete. O

Next, by means of geometric iteration, we shall establish the optimal Holder continuity for solutions
to the heterogeneous p-parabolic equation (2). Our approach explores the approximation by p-caloric
functions, given by Lemma 3.1, and the fact that p-caloric functions are universally Lipschitz continuous
in space and C%!/2 in time. The following is the crucial first iterative step.

Lemma 3.2. Let 0 < o < 1 be fixed. There exists € > 0 and 0 < A K 1/2, depending only on p, n and «,
such that if || fllLar(G,) < € and u is a local weak solution of (2) in Gy, with ||u|l p,ave,G, < 1, then there

exists a universally bounded constant cq such that

||Lt - CO”p,avg,Gk = A% (15)
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Proof. Take 0 < § < 1, to be chosen later, and apply Lemma 3.1 to obtain 0 < € < 1 and a p-caloric
function ¢ in G2, such that

||M _¢||p,avg,G1/2 =< 3.

Observe that
@1l p.ave.c1e < I — Dl pave,1je + Nl pave.c, < 8+2C7P < C. (16)

0,1/2 . . 1.
/% in time and C%! in space.

Since ¢ is p-caloric, it follows from standard theory that ¢ is universally C,_. loc

That is, for A < 1, to be chosen soon, we have

sup [p(x, 1) —¢(0,0)| <Ca,
(x,1)eG,,

for C > 1 universal. In fact, for (x, t) € G,
lp(x, 1) —¢(0,0)] < |p(x,1) — (0,0 +[¢(0, 1) —¢(0,0)]
<C'lx—=0|+C"|t—0]?
<C'A+C"A2<Ca,

since 6 > 2. We can therefore estimate

lu(x, 1) = (0, 0)ll pave.6; < lu(x, 1) =P (x, Dl pave.c, + 19 (x, 1) =P (0, 0) p.ave.G,
0+n

Ly’ S+CA a7
<|= )
T\ 2A
Note that we will choose A < 1/2 and thus
Gy = (=2%,0) x B, C (=(1/2)?,0) x Bijo = G2

We put ¢ := ¢ (0, 0), observing that, due to (16) and the fact that ¢ is p-caloric, cq is universally

bounded. The next step is to fix the constants. We choose A < % so small that
Cr<ia%,
and then we define
1 6+n)
§ = 1A% @n)etm/r,

thus fixing, via Lemma 3.1, also € > 0. The lemma now follows from estimate (17) with the indicated
choices. O

Our next step involves iterating Lemma 3.2 in the appropriate geometric scaling.

Theorem 3.3. Under the conditions of the previous lemma, there exists a convergent sequence of real
numbers {ci}i>1, with

ek = cxril < cn, PG, (18)
such that

= cill pave.c, < WO (19)
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Proof. The proof is by induction on k € N. For k = 1, (19) holds due to Lemma 3.2, with ¢; = cy.
Suppose the conclusion holds for k and let’s show it also holds for k£ + 1. We start by defining the function
v: G — Rby

u(kkx, kket) — Ck

v(x, 1) = ok (20)
We compute
v(x, 1) = kke_“ku,(kkx, )»ket)
and
div(|[Vu(x, H)|P72Vu(x, 1)) = AP0k qiv ((Vu(WFx, A0 1P 2Vu(WFrx, A1)
to conclude, recalling (8), that
v — div(|Vo|P 72 V) = APk p=hek gk 3Ky = Fx, 1).
We now compute
N 0 . r/q
I f e Gy =/ ( [f(x, )] dX> dt 21
-1\J/B,

0 r/q
- / ( / A Pr=(p=Dak)g) f(x"x,x"@t)rldx) dt
—1 B

0 r/q
= / ( / AP (p=Daak)g —km f(x,kket)lqu> dt
—1 B,

A

o P r/q
= (A= (=D "")qf (f |f (x, 2K dx> dt
-1 B,

A

o ~ ;o 0 r/q
_ )\,((pk (p—Dak)g kn)q k6 / (/ | f(x, t)|q dx) dt.
—Ak0 \J B, i

A

Due to the crucial and sharp choice (7) of «, we have, recalling again (8),
((pk — (p — Dak)g —kn) - —ko = 0.
q
We go back to (21) to conclude

I fllzer @y = I fllLar—ao.0yxB ) < N fllzer)) <€,

which entitles v to Lemma 3.2 (note that [|v]| 5 ave,6, < 1, due to the induction hypothesis).
It then follows that there exists a constant ¢y, with |¢y| < c(n, p), such that

||U - CTOHp,avg,GA =< )\a’

which is the same as

k+1
lu— Ck+1 ||p,avg,GAk+1 =< )\a( )7



SHARP REGULARITY FOR DEGENERATE EVOLUTION EQUATIONS 741

for cpy1 :=cp + cor%k: the induction is complete. We readily observe that

ekt — ekl < c(n, ),
thus obtaining also (18). Il
Theorem 3.4. A locally bounded weak solution of (2), with f € L?", satisfying (3)—(4), is locally Holder

continuous in the space variables, with exponent
o (pg —n)r — pq
ql(p = Dr —(p=2)]

and locally Holder continuous in time with exponent « /6. In addition, there exists a constant C, that

depends only on p,n, || fllq,r and ||u| p,ave,G,» Such that
||M||Co;a,a/0(G]/2) < C.

Proof. We start by observing (see also [Aradjo et al. 2013, Section 7]) that the smallness regime required
in the assumptions of Theorem 3.3 is not restrictive since we can fall into that framework by scaling and
contraction. Indeed, given a solution u, let

v(x, 1) = Qu(Q”x, Q(p_2)+“pt)
(0, a to be fixed), which is a solution of (2) with
fle 1) =00+ f(gx, oP21%aPy).

We choose a > 0 such that
2
n+p

a< and [(p—D+aplr—an+p)—(p—2) >0,

which is always possible (observe that the second condition holds for a = 0 and use its continuity with
respect to a), and then 0 < o < 1 such that

2—a(n+p) ”u”l’ 1

P
||U”17,an,G1 =0 p.avg,Gy =

and
d -1 - —(p=2
”f”;ﬂf(Gl) :Q[(P )+aplr—a(n+p)—(p )”f”;ﬂf(Gl) <.
Due to (18), the sequence {ck}r>1 is convergent and we put
c:= lim c.
k— 00

It follows from (19) that, for arbitrary 0 < r < 1/2,
][ lu—c|?dxdr < CrP*.
Gr

Standard covering arguments, a remark in [Teixeira 2013, Lemma 3.2] and the characterisation of Holder
continuity of Campanato—Da Prato give the local C%%%/?_continuity and thus the result. O



742 EDUARDO V. TEIXEIRA AND JOSE MIGUEL URBANO

4. Generalisations and beyond

The ideas and methods employed in this paper only explore the degenerate p-structure of the operator.
The underlying heuristics is to interpret the homogeneous problem as the geometric tangential equation
of its inhomogeneous counterpart, for small perturbations f € L"9, | f||,,, < 1. The proofs adapt to
more general degenerate parabolic equations

u; —divd(x, t, Du) = f e L™ (22)

satisfying the usual structure assumptions for p > 2.

We briefly comment on the modifications required. Lemma 2.3 is based on pure energy considerations,
thus the very same proof works in the general case. Lemma 3.1 can be carried out universally in the
structural class of operators, provided integrability bounds for the time-derivative are available (cf. [Acerbi
et al. 2004, Section 7], where a more general version of the result in [Lindqvist 2008] on this issue is
proved). As for Lemma 3.2, the very same proof works since solutions to the general homogeneous
equation are also Lipschitz in space and C%!/? in time. The only modification occurs when we iterate
Lemma 3.2. The rescaled function v defined in (20) now solves the equation

v —div Ay (x, t, Dv) = APk==Dak gk 3k0 )

where

A (x, 1, ) 1= (AP0 x, A%, a7kg)

belongs to the same structural class of <. In particular, v is entitled to the conditions of Lemma 3.2 and
the proof then follows exactly as before.

We would like to conclude by explaining how the idea of finding geometrical tangential equations can
be employed to derive analytical tools for p-parabolic operators, continuously on p. For instance, one
can access regularity estimates for degenerate parabolic equations by interpreting the heat operator as the
tangential equation obtained when we differentiate the family of p-parabolic operators with respect to the
exponent p, near p = 2.

It is possible to obtain a universal compactness device. Let Q; := I; x B; = (—71, t) X B;. We fix
My > 2 and work within the range p € [2, My].

Lemma 4.1 (uniform in p compactness). Given § > 0, there exists € > 0, depending only on n, My and 8,
such that if g € [2, My], u is a q-caloric function in Q, with |u| <1, and |q — p| < €, then we can find a
p-caloric function w in Q1 2, with |w| < 1, such that

sup |w —u| < 8. (23)
Q12

Proof. Suppose, for the sake of contradiction, that the thesis of the lemma does not hold true. This means
that for a certain &y > 0, there exist sequences (g;);, (u;); and (p;);, with
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q; €2, Mol,
(uj)e — diV(|VMj|q-/_2Vuj) =0 in Qy,
(24)
luj| <1,
lpj—aqjl = -,
j j J
but such that, for every p;-caloric function w in Q1 2,
sup |u; — wl| > do. (25)
012
By compactness, we have, up to subsequences,
qj = qoo € [2, Mo] (26)

and, from the last assertion in (24), also p; — goo. As in the proof of Lemma 3.1, up to a subsequence,

Uj —> U in the appropriate space. Since g; — goo, by stability (see [Kinnunen and Parviainen 2010]),

we can pass to the limit in the equation satisfied by the u; to conclude that u is goo-caloric in Q5 /3.
We now solve, for each p;, the boundary value problem

{(wj), —div(|Vw;|Pi72Vw;) =0 in Qy3, on
Wi =Uco on 3Q2/3,
and pass to the limit in j, concluding that also w; — us uniformly in Q1 ;.
Finally, choosing j sufficiently large, we obtain
0, 6o .
|uj—wj|§|uj—uoo|+|wj—uoo|53+?=3o in Q1,
which is a contradiction to (25). |

Heuristically, Lemma 4.1 implies the continuity of the underlying regularity theory for p-parabolic
operators with respect to p. In particular, improved sharp Holder estimates can be derived by these
methods for problems governed by p-parabolic operators, near the heat equation, i.e., for p close to 2.
We leave the development of these heuristics for a future work.
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THE THEORY OF HAHN-MEROMORPHIC FUNCTIONS, A HOLOMORPHIC
FREDHOLM THEOREM, AND ITS APPLICATIONS

JORN MULLER AND ALEXANDER STROHMAIER

We introduce a class of functions near zero on the logarithmic cover of the complex plane that have
convergent expansions into generalized power series. The construction covers cases where noninteger
powers of z and also terms containing log z can appear. We show that, under natural assumptions, some
important theorems from complex analysis carry over to this class of functions. In particular, it is possible
to define a field of functions that generalize meromorphic functions, and one can formulate an analytic
Fredholm theorem in this class. We show that this modified analytic Fredholm theorem can be applied in
spectral theory to prove convergent expansions of the resolvent for Bessel type operators and Laplace—
Beltrami operators for manifolds that are Euclidean at infinity. These results are important in scattering
theory, as they are the key step in establishing analyticity of the scattering matrix and the existence of
generalized eigenfunctions at points in the spectrum.

1. Introduction

Asymptotic expansions of the form

f@)~ Zak,mza"(—log 2P asz—0,
k,m

with nonintegers oy and f,,, defined for functions f in some sector centered at 0 in the complex plane,
appear frequently in mathematics and mathematical physics. Classical examples are solutions for differen-
tial equations (for example, in Frobenius’ method) and expansions of algebraic functions at singularities.
It has been shown that low energy resolvent expansions in scattering problems are of this form; see, for
example, [Jensen and Kato 1979; Jensen and Nenciu 2001] for Schrodinger operators in R”, [Murata
1982] for operators with constant leading coefficients in R”, and [Guillarmou and Hassell 2009] for the
Laplace operator on a general manifold with a conical end. The resolvent expansion for |A| — oo of cone
degenerate differential operators leads to similar asymptotics; see, for example, [Gil et al. 2011]. In many
of these examples, the expansions can be shown to be convergent under more restrictive assumptions on
the structure at infinity of the underlying geometry.

The algebraic theory of generalized power series is well developed and can be found in the literature
under the name Hahn series or Maltsev—Neumann series (see, for example, [Hahn 1907; Passman 1977,
Chapter 13; Ribenboim 1992]). In this paper we are concerned with the analytic theory of such generalized
Both authors were supported by the SFB 647: Space—Time—Matter. Analytic and Geometric Structures.

MSC2010: 47A56, 58]50.

Keywords: Hahn series, holomorphic Fredholm theorem, scattering theory.
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power series. Namely, we will define a ring of functions, the Hahn-holomorphic functions, that have
convergent expansions into generalized power series, and we will show that this ring is actually a division
ring. We show that the quotient field, the field of Hahn-meromorphic functions, has a nice description
in terms of Hahn series, and we generalize the notions of Hahn-holomorphic and Hahn-meromorphic
functions to the operator valued case. The theory turns out to be very close to the case of analytic function
theory. In particular, one of our main theorems states that an analog of the analytic Fredholm theorem
holds in the class of Hahn-holomorphic functions.

The holomorphic Fredholm theorem plays an important role in geometric scattering theory as a tool to
prove the existence of a meromorphic continuation of resolvent kernels of elliptic differential operators
such as the Laplace operator. The extension is typically from the resolvent set across the continuous
spectrum to a branched covering of the complex plane. As soon as such a meromorphic continuation of
the resolvent kernel is established, resonances can be defined as poles of its continuation, generalized
eigenfunctions may be defined as meromorphic functions of a suitably chosen spectral parameter, and an
analytic continuation of the scattering matrix may be constructed. This in many situations leads to a rich
mathematical structure that results in functional equations for the scattering matrix and Maass—Selberg
relations for the generalized eigenfunctions (see, for example, [Miiller 1987] for the case of manifolds
with cusps of rank one, [Melrose 1993; Guillopé 1989; Miiller and Strohmaier 2010] for manifolds
with cylindrical ends, and [Miiller 2011] for manifolds with fibered cusps). In particular, the analytic
continuation of Eisenstein series may be regarded as a special case of this more general construction.

Often, as for example in the case of R***! on asymptotically hyperbolic manifolds [Mazzeo and
Melrose 1987; Guillarmou 2005], geometrically finite hyperbolic manifolds [Guillarmou and Mazzeo
2012], and on globally symmetric spaces of odd rank [Mazzeo and Vasy 2005; Strohmaier 2005], the
branch points of the covering of the complex plane are algebraic and can be resolved by a change of
variables. In this way, one can make sense of the statement that the resolvent is meromorphic at the
branch point. In other examples, as in R* on symmetric spaces of even rank [Mazzeo and Vasy 2005;
Strohmaier 2005] and on manifolds with generalized cusps [Hunsicker et al. 2014], the branch point is
logarithmic, and this statement loses its meaning. The analytic Fredholm theorem can then only be applied
away from the branching points. Our philosophy is that, at such branching points, it still makes sense
to say when functions are Hahn-holomorphic, that is, have a convergent expansion into more general
power series possibly containing log terms. Our Hahn analytic Fredholm theorem therefore allows us
to analyze the resolvents at nonalgebraic branching points. Our theorem implies, for example, that the
Hahn-meromorphic properties of the resolvent of the Laplace operator on a Riemannian manifold are
stable under perturbations of the topology and the metric that are supported in compact regions. The theory
can be developed further to establish Hahn-analyticity of the scattering matrix and of the generalized
eigenfunctions in this context, but we decided to focus on the theoretical properties of Hahn-meromorphic
functions first and keep the presentation self-contained. The applications in scattering theory will be
developed elsewhere.

The article is organized as follows. Section 2 deals with the definition and the general theory of Hahn-
holomorphic functions and some of their basic properties. In Section 3 we define Hahn-meromorphic
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functions, and in Section 4 we prove our generalization of the meromorphic Fredholm theorem in
the framework of Hahn-holomorphic functions. Sections 5 and 6 deal with two important examples
of convergent Hahn series: those that can be expanded into real powers of z and those that have such
expansions with additional log z terms. The theory has a nice application: convergent resolvent expansions
for Bessel type operators and Laplace—Beltrami operators on manifolds that are Euclidean at infinity can
be shown to be simple consequences of the Hahn-holomorphic Fredholm theorem. These examples are
treated in detail in Section 7; the main results here are Theorems 7.6 and 7.9.

We would like to thank the anonymous referee for suggestions leading to considerable simplifications
in some of the arguments in Section 7.

2. Hahn-holomorphic functions

Let (I', +) be a linearly ordered abelian group and let (G, -) be a group. Suppose e : I' — G, y > e, is
a group homomorphism; in particular

eo=1€G, ey4y, =ey,-e, foraly,pyel.

The following definition and proposition are due to H. Hahn [1907].

Definition 2.1. Let % be a ring. A formal series

b:Zayey, a, €R

yel
is called a Hahn series if the support of b,

supp(h) :={g €T [a; #0 € R},
is a well-ordered subset of I'. The set of Hahn series will be denoted by R[[er]l.

Proposition 2.2. The set of Hahn series R er] is a ring with multiplication

(Zaaeaxzbﬁeﬁ)zzw, o= Y auby ()

ael’ pel yel (a,p)el’xI"
a+p=y
and addition
Zaaea + Z bgeg = Z(ay +b))e,.

ael Bel’ yell
If R is a field, so is Rl er].

It is well known that if the support of b is contained in ' = {y | ¥ > 0}, then 1 — § is invertible in
R[ler] and its inverse is given by the Neumann series

a-p~'=>"p"
k=0

This is due to the fact that, for any well-ordered subset W of I't, the semigroup generated by W is
also well ordered; see, for example, [Passman 1977, Lemma 2.10]. Here convergence of a sequence
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(pn) C Rller] to p € R[ler] is understood in the sense that, for every element o € I, there exists an
N > 0 such that, for all n > N, the coefficients of e, in p and p,, are equal.

In the following, let % be the logarithmic covering surface of the complex plane without the origin.
We will use polar coordinates (r, ¢) as global coordinates to identify % as a set with R} x R. Adding a
single point {0} to %, we obtain a set % and a projection map 7 : %y — C by extending the covering map
% — C\{0} sending 0 € %, to 0 € C. We endow % with the covering topology and %, with the topology
generated by the open sets in & together with the open discs D, := {0} U{(r, ¢) | 0 <r < €}. This means a
sequence ((r,, ¢,)), converges to zero if and only if r,, — 0. The covering map is continuous with respect
to this topology. For a point z € %, we denote by |z]| its r-coordinate and by arg z its ¢ coordinate. We
will think of the positive real axis as embedded in % as the subset {z | arg z = 0}. In the following, ¥ C %
will always denote an open subset containing an open interval (0, §) for some § > 0 and such that 0 ¢ Y.
The set Yy will denote Y U {0}. In the applications we have in mind, the set Y is typically of the form
Dg"]\{O}, where Dg”] ={ze€e%9|0<|z| <§, |¢| <o}. For the discussion and the general theorems, it
is not necessary to restrict ourselves to this case.

In the remainder of this article we assume that G := (Hol(¥Y N D), -)* is a set of nonvanishing
holomorphic functions and that the group homomorphism e satisfies the condition

forall y >0, e, is bounded on Y and lin(l) ley (z)] = 0. (E1)
—
Definition 2.3. Suppose that % is a vector space with norm || - ||. A Hahn series f = ) aqe, is called

normally convergent in Y N D, if its support is countable and el

> laall leally.e < oo,
aell
where |eq|ly.e 1= sup,cynp, l€a(2)].
Since a normally convergent series converges absolutely and uniformly, the value of the function
f@) =) aseaz), z€YND,,
ael’

does not depend on the order of summation and f is holomorphic in z # 0.
Definition 2.4. Let S C ' = 't U {0} be a subset of the nonnegative group elements.

o The family {e, }qcs is called weakly monotonic if there exists an rg > 0 such that, for every x € (0, ry),
there is a radius p(x) with 0 < p(x) < x and with the property

aeS = leallype) = lea(x)].

e The set S is called admissible for e (or simply admissible) if {ey}yes is weakly monotonic, and if,
for every B C S, the family

{eot—rnin B}OlES .
o>min B

is also weakly monotonic.
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Definition 2.5 (Hahn-holomorphic functions). Suppose that % is a Banach algebra. A continuous function
h : Yo — R which is holomorphic in Y is called (Y, I')-Hahn-holomorphic (or simply Hahn-holomorphic)
if there is a Hahn series
h= Zayey, a, €R,
yell
with countable admissible support, converging normally on Y N Dy for some § > 0, and such that

h(z)=) aye,(x), z€YNDs.
yell

We will denote the Hahn series of a Hahn-holomorphic function / by the corresponding “fraktur” letter
bh. Note that (E1) together with uniform convergence imply that supp h C Far and 1(0) = ag. Of course
any normally convergent Hahn series with admissible support gives rise to a Hahn-holomorphic function.

Here is a direct consequence of the support of Hahn-holomorphic functions being admissible:

Lemma 2.6. Let

h(z) = Zayey(z), zeYND,y,,
yel

be Hahn-holomorphic with m = min supp(h). Then
e-n(h(2) = ) ayey—u(2)

yzm
is Hahn-holomorphic.

Proof. Let p; be the radius for {e, } such that, for all y € supp(h),

eyl oy < ley (P,

and similarly let p, be the radius for {e, _,}. For p(r) = min{p(r), p2(r)},

lemllpiy D llay ey —mllper < lem@] Y llayllley—m@) =Y llayllle, (r)] < oc.

yel yel yell

Thus ) ay,e,_n converges normally on D). g
yel

Proposition 2.7. Let f : Y — R be a Hahn-holomorphic function represented by a Hahn series f on
Y N Ds. Suppose the zeros of f accumulate in Y U {0}. Then f =0 and §f = 0. In particular, the Hahn
series of a Hahn-holomorphic function is completely determined by the germ of the function at zero.

Proof. If the zero set of f has accumulation points in Y, the statement follows from the fact that f is
holomorphic in this set. It remains to show that if f 7~ 0, then 0 can not be an accumulation point of the
zero set of f. Let § be a Hahn series that represents the function on ¥ N D,. Let f # 0; then § # 0. Let
m = min supp f. If there is no other element in the support of f, then f(z) = amen(z) and the statement
follows from the fact that ey, has no zeros in Y. Otherwise, let m; be the smallest element in supp § which
is larger than m. Then

f@) =) ayeq(2) = en(2) (am +em-m(@) Y dulom, (z)) = e (2) (am + 1(2))

oa=>my
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with a Hahn-holomorphic function 4 (z) such that £(0) = 0. Since % is continuous and ey, (z) # 0, this
shows that f(z) # 0 in a neighborhood of 0. (|

Now suppose that Y, I" and the family of functions (e, ), cr are fixed and satisfy (E1).
We want to show that the space of Hahn-holomorphic functions at 0 with values in a Banach algebra
% is a ring. To that end we need the following.

Lemma2.8. Let A, Ay CT'" be admissible sets. Then the sets A{\UA>, A1+As, andn-Ay:=A1+- - -+A
(n times), U;.,O:o n - Ay are admissible.

Proof. First we show that A; U Ay, A; + A and n - A| are weakly monotonic. Let p;, i = 1, 2, be the
radius for A; and p(x) = min{p;(x), p2(x)}. Then p is a radius for A; U A, and for A; + A, as well,
because, for a; € A;,

||ea|+otz”p(r) = ||eoz1 ||,0(r)||ea2”p(r) = ”eoq ||,01 (r)”eaz”pz(r)
= |ea1(r)| |ea2(r)| = Iea|+a2(r)|-
The same argument shows that p; is a radius forn - A;.
Nowlet BC A:=A1+A,. Then B=B;+ B, forsome B; CA;,i =1, 2, and min B =min B; +min B>.
Let v € A with o = a1 + 2, @; € A;. Let p;(r) be the radius for {ey, —min 5,} and p = min{p;, p2}. The
estimate

leq—min B ”p(r) = ||€a1 —min By +ay—min By ”p(r) = ”eal—min B ||p1(r) ||ea2—min B, ||p2(r)
shows that A; 4+ A, is admissible. The other statements are proven similarly. O

Let f(z) =>_, aaeq and g(z) = }_4 bgeg be Hahn-holomorphic functions on Y and Yy, respectively.
First it is easy to see that f + g is Hahn-holomorphic on ¥ = Yy NY,. Since f and g are Hahn series
with support contained in I, we also have supp(§ - g) C F(J)r for the multiplication defined in (1). From
Lemma 2.8 we obtain that the support of §- g is admissible. We claim that #(z) = f(z) - g(z) is represented
by the product of Hahn series h =f-g on Yy NY,. Because f and g are normally convergent,

SIS aabﬁ’ ||ey||sz( > ||aa||||bﬁ||>||ey||f(; ||aa||||ea||)(Z||bﬂ||||e5||)

vy latf=y Yy Catf=y

so that the series f- g is normally convergent in Yy N Y,. Thus the series §- g defines a Hahn-holomorphic
function on Y with values in R, and this function equals /(z).
Altogether we have this:

Proposition 2.9. Let R be a Banach algebra. The Hahn-holomorphic functions with values in R on Y
form a ring under usual addition and multiplication, and the map Vg, : f +— § is a ring isomorphism onto
its image in R e, ].

Corollary 2.10. The ring of Hahn-holomorphic functions on Y with values in an integral domain R is an
integral domain.
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Proof. By looking at the coefficient ¢, with y = minsupp f in (1), we observe that R[[er ]| is an integral
domain if R is an integral domain. Because ¥/g is an isomorphism, the Hahn-holomorphic functions
must be an integral domain. 0

Theorem 2.11. Let R be a Banach algebra and suppose f : Yo — R is Hahn-holomorphic and f(z) is
invertible for all 7 € Yy. Then f(z)~! is also Hahn-holomorphic on Y.

Proof. Since 1/f is holomorphic in Y, we only have to show that there is a Hahn series for f(z)~! that
converges normally on some Yy N D,. Since f(z)~' = £(0)~'(f(z) f£(0)~")~', we can assume without
loss of generality that f(0) = Id. Thus we can write f(z) = Id — h(z), where m := min supp(h) > 0. By
assumption, the series b := )"
80 > 0. The function & defined by

h6) =" laalllleallvos < llemllvos D lalllea—mllyy.

ael a>m

aqey defining h(z) converges normally on the set Yo N Ds, for some

converges to 0 for t — 0 due to (E1) and Lemma 2.6. Therefore we can choose § > 0 so small that
hi= 5(8) < 1/2. Because |h(2)] < h for z € Yy N Ds, the geometric series

o
f@7'=Y h@)"
n=0
then converges normally on Yy N Ds. But we also know that f is invertible:

f—l = Z h" =: Zbaea with supp(f_l) cCY:= U supp(h”).
n=0

acd n>0

From Lemma 2.8 we obtain that ¥ is admissible. It remains to show that > b, e, (z) is normally convergent
on Yo N Dj and represents f(z)~'. We have the implication acd

N N
S =Y cMe = I lcalllel <D R inYon Dy,
n=0 =0

aed aed

as a simple consequence of the triangle inequality. For every fixed finite set A C &, there exists an Ny > 0

such that, for all N > Ny,
N

Fr=>"0"= )" (ba — ca(N))ea

n=0 aef\A

has support away from A. In particular, ¢, (N) = by for « € A and N > Ny. Therefore, for N > Ny,

N
~ 1
D balllieall <" lea(MHlleall <D A" < 7
n=0 -

aEA aed

and this proves convergence, since this bound is independent of A. In particular, ), o boeq (z) converges
absolutely in R, hence it converges and the value does not depend on the order of summation. After
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reordering,

[o¢]
Y bea() =) h(2)"=f)". 0
acd n=0

Because of Lemma 2.6, every complex valued Hahn-holomorphic f that is not identically O can be
inverted away from its zeros. Let m := min supp(f) > 0. Then

o0
@ =ay'en(@ ) (1—ay'e n() f(2)"
n=0
Theorem 2.12. Suppose that [ : Yo — C is a Hahn-holomorphic function with Hahn series §. Suppose
that U is an open neighborhood of f(0) and h : U — C is holomorphic. Then ho f is Hahn-holomorphic
on its domain.

Proof. Since holomorphicity away from zero is obvious, it is enough to show that 4 o f has a normally
convergent expansion into a Hahn series. Replacing f(z) by f(z) — f(0) and h(z) by h(z — f(0)), we
can assume without loss of generality that f(0) = 0 and thus supp(f) C I'*. Since A is holomorphic near
f(0), it has a uniformly and absolutely convergent expansion

h(z) = az— fO)F.

k=0
Thus
hof()=Y a(f@)".
k=0

Note that Y 2, a;f* is a Hahn series. A similar argument as in the proof of Theorem 2.11 shows that
this Hahn series is normally convergent and represents 4 o f(z). U

3. Hahn-meromorphic functions

Definition 3.1. A meromorphic function 4 : Y — C is called Hahn-meromorphic if h is represented by a
Hahn series  in ¥ N D, for some ¢ > 0 and there exist Hahn-holomorphic functions f, g #0 on Yo N D,
such thatbh-g=1.

In this sense, a Hahn-meromorphic function can be written as a quotient # = f/g of Hahn-holomorphic
functions in a neighborhood of 0.

Remark 3.2. Since C-valued Hahn-holomorphic functions form an integral domain, Hahn-meromorphic
functions form a field. More generally, let ®® be a (commutative) integral domain. From Corollary 2.10
we know that Hahn-holomorphic functions with coefficients in % are a commutative integral domain
whose quotient field is defined. Furthermore, the map f + f induces an injective morphism from the
quotient field of Hahn-holomorphic functions to the quotient field R ((er)) of Hahn series R[[er]]. Note
that R((er)) = Rller] if R is a field.
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An important difference with usual meromorphic functions is that Hahn-meromorphic functions may
have infinitely many negative exponents. For example, the function

00 1 i
n=1

is Hahn-holomorphic and therefore
(o)

Z L i [
A
n=1
is Hahn-meromorphic.
It follows from our analysis for Hahn-holomorphic functions that every C-valued Hahn-meromorphic

function & can be written as
h(z) = emin supp b (@) f (),

where f is Hahn-holomorphic. Moreover, if & # 0, then f(0) # 0. In particular, this implies that
Hahn-meromorphic functions bounded on (0, §) are Hahn-holomorphic in some neighborhood of 0.
We can also define Hahn-meromorphic functions with values in a Banach algebra.

Definition 3.3. Let % be a Banach algebra. A function /i : Y — R is called Hahn-meromorphic if it is
meromorphic on Y and there exists a § > 0 and a nonzero Hahn-holomorphic function f on Yy N Dj such
that f(z)h(z) is a Hahn-holomorphic function on Yy N Ds with values in R.

Remark 3.4. Let R > 0 and o > 0. If there exists one nonzero Hahn-holomorphic function on ¥ N DE?]
that vanishes with positive order at 0, then one can use the Weierstrass product theorem together with

[o]
R

Theorem 2.12 to show that the set of complex valued Hahn-meromorphic functions on Y N D}, can be

identified with the quotient field of the division ring of Hahn-holomorphic functions on ¥ N DE?].

4. A Hahn-holomorphic Fredholm theorem

Let # be a complex Hilbert space and denote by J{(¥) the space of compact operators on #.

Theorem 4.1. Suppose Yo C % is connected and let f : Y — H(¥) be either Hahn-holomorphic or
Hahn-meromorphic such that all coefficients of e,, with y < 0 and all Laurent coefficients in the principal
part away from the point z = 0 have range in a common finite-dimensional subspace ¥y C .

Then either (Id— f(z)) € B(H) is invertible nowhere in Yy or its inverse (Id— f(z)) ™! exists everywhere
except at a discrete set of points in Yy and defines a Hahn-meromorphic function. Moreover, in the Hahn
series of (Id — f(z))~", the coefficients of e, with 'y < 0 are finite-rank operators, and the coefficients in
the principal part of its Laurent expansion away from z = 0 are finite-rank operators too.

Proof. The proof generalizes that of [Reed and Simon 1980, Theorem VI.14]. The assumptions imply that
there exists a Hahn-meromorphic function B(z) with range in ¥y, a finite-rank operator A, anda § > 0
such that f(z) — A — B(z) is Hahn-holomorphic and || f(z) — A — B(z)|| < 1 for all z € Ul°) := DEU] ny.
Thus (Id — f(z) + A + B(z))~! exists and is Hahn-holomorphic by Theorem 2.11. Consequently,
2(z) =(A+ B(z))(Id — f(z) + A+ B(z))~! is a Hahn-meromorphic function on U°! with values in the
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Banach space (%, V), where V is the finite-dimensional subspace of ¥ spanned by 3, and rg(A). It is
easy to see that

Id—f) '=0d— f(2) +A+Bz)'dd—g) ", 2)

where equality means here that the left hand side exists if and only if the right hand side exists. Now let
P be the orthogonal projection onto V and let G(z) be the endomorphisms of V defined by restricting
g(2) to V, thatis, G(z) = g(z) o P. Invertibility of Id — g(z) in B(¥) is equivalent to invertibility of

P(Id—g()P:V >V,
and this is equivalent to det(Idy — G (z)) # 0. Moreover, a straightforward computation shows
(Id—g(2) ' = (PAd = g()P)" (P +g(x)(d = P)) + (Id — P). 3)

Now note that G (z) is a Hahn-holomorphic family of endomorphisms of V. In particular, det(Id — G (z))
is a Hahn-meromorphic C-valued function. As such, it is meromorphic in U!°!\ {0}, and together with
Proposition 2.7, this shows that the set

S ={ze U det(Id— G(z)) =0}

is either discrete in U°! or § = U], If det(Id — G (z)) # 0, then, after a choice of basis of V, the inverse
(Id — G(z))~! can be computed with Cramer’s rule, showing that, with respect to this basis,

det(Id — G(2))(Id — G(z)) ! € Mat(dim V, C[[er])
is represented by a matrix with Hahn-meromorphic entries. After the identification
Mat(dim V, C[[er]]) = Mat(dim V, C)[[er ],

we see that the function (Id — G(z))~! is Hahn-meromorphic with coefficients in End(V) if there is
only a single point in U!°! for which it exists. Consequently, due to (2) and (3), (Id — f(z))~! is Hahn-
meromorphic with all coefficients of e, (z) with y < 0 being of finite rank if there is only a single point
in U for which Id — f(z) is invertible. So far we have proved the statement in U!°l. By the usual
analytic Fredholm theorem, invertibility of Id — f(z) at a single point in Y implies that the inverse exists
as a meromorphic function on Y. Conversely, we have seen that invertibility of Id— f(z) at a single
point in U1 implies that (Id — f(z)) ! exists as a Hahn-meromorphic function on U!°). By the usual
meromorphic Fredholm theorem, it then exists as a Hahn-meromorphic function on Y. U

5. z-Hahn-holomorphic functions

The prominent class of Hahn-holomorphic functions is defined by convergent power series with noninteger
powers.

Let I' C R be a subgroup with order inherited from the standard ordering of R. As the group G we
will take the group generated by the set of functions

eq(z) :=2% a €T, ze D"\(0}.
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In this definition we choose the principal branch of the logarithm with [Imlog z| < & for z € C\ (—o0, 0],
and, as usual, we set log(re'?) = logr +ig, |¢| < o, and z% := e* 1027,

A z-Hahn-holomorphic function f with values C then is a holomorphic function on D!\ {0} such
that the generalized power series

f@ :Zayz”, a, €C,
14

is normally convergent in ¥ N D(ga] for some § > 0.
Note that every well-ordered subset of W C I'" is admissible for e, because for every a € W,

2% = z|* < |z|™V, ze DE‘;% (4)

Example 5.1. If I' = Z and ¢;(z) = z*, the set of Hahn series corresponds to the formal power series and
the set of z-Hahn-holomorphic functions can be identified with the set of functions that are holomorphic
on the disc of radius § > 0 centered at the origin.

Example 5.2. The series

converges normally on D, for any r > 0 and defines a z-Hahn-holomorphic function for I' = nZ + 27.

Example 5.3. Puiseux series and Levi-Civita series, as defined in, for example, [Ribenboim 1992],
are special cases of Hahn series with certain I' C Q. When they are normally convergent, they define
z-Hahn-holomorphic functions.

In the following, let Dg = D%OO] \ {0} be the pointed disk of radius R in the logarithmic covering of the
complex plane. The next result is in analogy with complex analysis, where series expansions converge
normally on the maximal disc embedded in the domain of holomorphicity.

Theorem 5.4. Let R be a Banach algebra, and suppose f is z-Hahn-holomorphic. Suppose further that
f is bounded on D§R+s for some ¢, R > 0, and let

f@= Z agz”

aesupp f

be its expansion (which we do not assume converges normally on D).
Then, for all R with) < R < Ié,

Y laallR* < sup If @I Y (R/R)*.

aesupp f lI=R aesupp f

In particular, if Z(R/R)“ < 00, the Hahn series converges normally on Dg.
o

Proof. As a Hahn-holomorphic function, f converges normally on D,s for some § > 0 and is holomorphic
in Dy. Let Ag ; be the averaging operator

@) J
. — azg,
2mil Js» oz

ArL(f) =
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where S;L)(t) = Re'™  t € (—L, L], is the L-fold cover of the circle with radius R. Certainly
AR L(AHI = sup [[f()].
lzI=R
Since f is holomorphic for 0 < |z] < R, we have

1 f@ 1 f@

. = : -
2mil Jsi z 2mil Js» oz

dz+O(L™h.

This shows that

. . Ay _1
A =1 A =1 o dz = .
rR(S) Jim rRL(S) Jim eguppfsz /sg“z 7 =a
oES

Suppose (1) is a family of finite subsets of supp f such that

L clhLC--- and Ulkzsuppf.
k

For z € Dy, let gi(z) = > Aaz ¥R, where Ay € R* := B(R, R) are chosen such that

OtEIk

Al =1, Aalaa) = llaul.

Such A, exist by the Hahn—Banach theorem.
Then gj is holomorphic in D and ||gx ()| < Zaelk |z| 7% R*. Moreover,

(g 1@ = )Y halapR*Z,

aely
. . . }/:—Ol-‘rﬂ
and the constant term of this function is

D llaalR* = As({gk £)) = Ag({(8ks £))-

aely
Therefore
Z laolIR* < sup {gk, f)(2)] < sup g f (@I < sup | (@) Z (R/R)",
ael, lzI=R lzI=R lzI=R aesupp f
and the theorem follows by letting k — oo. O

Theorem 5.5. Let R > 0, and assume f;: Dr — V is a sequence of bounded z-Hahn-holomorphic
functions that converge uniformly to a bounded function f: Dg — V. Suppose that there exist constants
C > 0, € > 0 such that, for each k € N,

Z &% < C.
aesupp fr

Suppose furthermore that there exists I C R such that supp fr — I in the following sense. For each
compact subset K € R, there exists N > 0 such that supp fy NK =I1NK forallk > N.
Then f is Hahn-holomorphic on Dg with supp f C 1.
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Proof. First, I is well ordered because supp fi — I. Let fi(z) =), esupp fi aék)z“ be the expansion of f.

Let ¢ > 0. Then there exists N; > 0 such that || f¢(z) — fx(2)|| < ¢ for all k, £ > Ny and all z € Dg.
Given a finite subset / C I, we can choose N > N such that I Nsupp fi = I for all k > N. Theorem 5.4
then shows that, for all k£, £ > N and R < £R,

Y olal —aP|-R* < swp | fe@— @I Y & <2Ce.
ael

lz|=R aesupp fx Usupp fe

It follows that (a((xk) )k is a Cauchy sequence for each «. Let a, := limg_, 0 a((xk). Given a finite subset

I CIande>0,wecan find N such that ||a(§,k)—aa|| <egforall k > N, « € I. Then, for lz| < R <&,

k) o o
DEEED I
acl acl

This shows that ) ,_; anz® is a Hahn series for f. By the uniform convergence of (f;), f is analytic in

< Z ||a(§k) —ay||R% < Ce.
acl

D%’] \ {0}. Its Hahn series converges normally on D because

D laall R <Y HalP IR+ e —ag|R*+ ) llal — alP|IR”
acl ael a

ael

< Z 1al?|| R + Ce 42Ce < 00

aEsupp fi
for all finite I C I, £ sufficiently large, and k >> ¢ depending on I. U
6. zlog z-Hahn-holomorphic functions

In the following, let R? be equipped with the lexicographical order and let I' C R? be a subgroup with
order inherited from that of R%. Let ¥ = DE% for fixed o > 0. The group G will be generated by

e@,p)(2) == z“(—logz)_ﬁ, (a, B)el, |zl < 1.
With the inclusion R x {0} C R2, this comprises the power functions z* from Section 5. Note that

lim (o, (2) =0 4= >0V (@=0Ap>0),
—>

which is equivalent to (, 8) > (0, 0) in the lexicographical ordering of R?. The monotonicity (4) of
power functions z“ has to be replaced by the following “weak monotonicity” property.

Lemma 6.1. Let ¥ C '™ ={y €' | y > 0} be a set such that there exists an N € Ny with
—B<Na forall («,p)ed. (%)
(a) There exists ry, < 1 such that, for («, ) € ¥ and |0| < o, the function
r > [re?|%|log(re'?)|~f

is monotonically increasing on [0, ry).
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(b) Given x with 0 < x < ry, there exists py(x) < x such that, for all z with 0 < |z| < py(x) and
larg z| < o, we have

(a,B) €S = lew,p) (D] < ewp)(x)

The proof is elementary and will be omitted.

It is not difficult to see that if & satisfies (x), a similar inequality holds for the set (¥ — A) NT'", where
A C & and the constant N depends on A. Thus a set ¥ with (x) is admissible for e.

Now the assumptions from Section 2 are all satisfied and we can consider Hahn-holomorphic and
meromorphic functions: A zlogz-Hahn-holomorphic function with values in a Banach algebra R is
defined by a normally convergent series

f@= ) awp(-log) ™. awp R, z€ D),
(o, B)el’

such that supp(f) is contained in a set ¥ U {(0, 0)} with & as in Lemma 6.1.
Note that the property (x) is invariant under addition and multiplication of Hahn-holomorphic functions,
so that z log z-Hahn-holomorphic functions indeed are a ring, and all results from Section 2 apply.

Example 6.2. The series
o0
Z Z"(—logz)" = (1+zlogz) ™!
n=0
is a Hahn series in I' = Z x Z with support {(n, —n) | n € Np}. It converges normally on the set

{z e¥ ‘ |zlogz| < %} and therefore defines a z log z-Hahn-holomorphic function on D!°! for any o > 0
and sufficiently small » = r (o).

Example 6.3. The formal series
oo

1
Y a(-loga)"
n

n=0 "

is not a Hahn series for I' = Z x Z, because the support
{(1, =n) | n € No}

is not a well-ordered subset of I".
logz

Example 6.4. The logarithm logz = < is Hahn-meromorphic for I' C Z x Z.

Example 6.5. The series
[o¢] o 1
Z Z _2Zn(_10g Z)2ﬂ—1+1/m
m
n=1 m=1

defines a z log z-Hahn-holomorphic function in a neighborhood D!°! of 0 for any o > 0 and for small
enough ¢ = ¢(o) with I' = Z x Q. Its support is

{n,1—-2n—1/m) | n,m e N}.
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7. Applications: Hahn-meromorphic continuation of resolvent kernels

7A. Suppose that v > 0. The differential operator B,, associated to the Bessel differential equation in its
Liouville normal form,

82 UZ—
Byi=——+

1
7
912 2 Id, )

is a nonnegative symmetric operator on the space C2°((0, oo)) equipped with the inner product inherited
from L?((0, o0), dx). We will denote the Friedrichs extension of B, by the same symbol B,,.

The kernel ri‘)) of the resolvent (B, —A%)~! can be constructed directly out of the fundamental system
of the corresponding Sturm-Liouville equation and this results in (see, for example, [Briining and Seeley
1987, p. 371))

(e, y) = 2 EY -, (minGe, y) B G.max(x, ), 0<x,y < oo, ©)

where H,,(l) is the Hankel function of order v of the first kind and J, is the Bessel function.
The proof of the following lemma uses the well-known expansion of Bessel and Hankel functions, and
will be given at the end of this section.

Lemma 7.1. For every v > 0 and (x, y) € (0, 00) x (0, 00), the kernel A — r)(LV) (x,y) defines a zlog z-
Hahn-holomorphic function.

(a) Forv € Ry \ Ny, we have

0, y) = 22 L 0, )00+ £ v,

where the maps A — f j(v)(x, v)(A) are even and entire. In particular, r)(LU) (x, y) is z-Hahn-holomorphic
with support contained in 27 + 2v/Z.

Let aﬁ.';gk (x, y) be the coefficient of A** in the Taylor series expansion of f j(”)(x, y).

There is a constant Cy such that, for 0 <x <y,

iy (e )] < RT*C1 ) (y) 2R R > 0,

For ¢ > 0 and every ry > 0, there is a constant C, such that, for all y > x > c,

Cr(v, 1
1a%) (x, )| < Rz“(—R‘”ﬁ(x/w“eR(“”, R>ro.

TR

(b) The kernel \ — rl(v)(x, y) is a z log z-Hahn-holomorphic function with support contained in 27 x Z if
v=neN:

(e, y) =log(g!™ (e, () + g5 (x, »)(),

where the maps A — gj.v)(x, v)(A) are even and entire.

The coefficients bﬁ"%k (x, y) in its Hahn-series expansion can be estimated by
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R/2)"
B3] < Ry 2 ,))2 RO, R >0,

2n
(n) —2k _R(x+y) n+l1 n+1/2%
by (X, Y)| < R™ e (c1 y 2= D)l +c), R>0.

Remark 7.2. For v = 0, the expansion (11) below gives
) _ Ay
ry (x,y) =—y/xylog > +h(x, y)(A)

with a Hahn-holomorphic function A(x, y). In particular, A > r, )(x y) is z log z-Hahn-meromorphic.
For ¢ > 0, let x. : [0, o0) — R4 be a smooth cutoff function with

0 ifx<ec,

1 ifx >2c.

Xe(x) = {

Multiplication by this function defines a bounded operator on L2((0, 00)). The “restricted resolvent”
¥e(By — A%~ x. then is the bounded operator on L2((0, 00)) with integral kernel

(e o), ¥) 1= xe@) -1 (e, ) - xe ().

Proposition 7.3. Let I = (0, 00), v > 0, and ¢ > 0. For any k > 0 and o > 0, the restricted resolvent
Xe(By,—A2) "1 x, extends, as a function of ., to a z log z-Hahn-holomorphic function on some neighborhood
D;"] of 0 with values in the compact operators

H(LA(I, e dx), L*(1, e dx)).

Proof. First let v ¢ Ny. In Lemma 7.1(a), let ro = R = «/3. Using

/ f minGr, y)[ 20& ) R g dy < C(x) (Ta)
max(x, y)
and
o0 o0 o r2+42v)\
'/; [ (xy)Z +le(2R YE+Y) 1y dy < ((K/3)2+2v> , (7b)

it is easy to see that the coefficients a (x y) of the Hahn series expansion of r(*) satisfy
|Xcoa Je L2 x e ™Maxdy), j=1,2.
Therefore the kernels {x. o aﬁgk} x define Hilbert—Schmidt operators
AV L2, e dx) > LP(I, e dx) =: %,

with norm bounded from above by

AN < Ixe oS llae o, < RT*C v, k), ®)
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where C (v, k) can be obtained from (10a), (7a), (10b), (7b). But then the series
o0 o0
WS T NA A D AR A
k=0 k=0

converges normally in some neighborhood U C D!°1 of 0 and the kernel ri”) defines a z-Hahn-holomorphic
family of Hilbert—Schmidt operators in

H(LA(I, e dx), L*(1, e dx)).
For integral v = n € N, we can argue similarly, using Lemma 7.1(b). O

%
Proof of Lemma 7.1. First let v ¢ Ny. Recall that J,(z) = (%) hy(z), where

)2k v _ (=Df
h@ =) a2 witha AT (kv 1)

The function 4, is entire. We have

HV (z) =

7 ,@), HY(@) =lim HY (), nez
V—>n
(a) Let x < y. Then
——rk”)(x ) = VEy L G0 HP ) =27 17 0 ) + £ e ) 00
with even, analytic functions in A:

—ivm

)00 = g ()2 (o) ()
S vi

)0 = GV (5) o)

Due to Cauchy’s integral formula,

il =R sup 177wl j =12,
We know from, for example, [Olver and Maximon 2011, (10.14.4)] that, for v > 0,

[Tm z|

lhy(2)] < m )

Using J, = 2(H D 4m, (2)) |HZ) " | = |H,,(*) |, and that 4_, is a holomorphic and even function,

(R/2)" sup |h_y(2)| = sup [J_,(2)| < sup S(IHL @]+ HP @)).
|z|=R |z]=R |z|]=R
Rez>0 Rez>0

But from [Olver and Maximon 2011, (10.17.13)], for —n/2 < argz < 7 /2,

; 2 -
HP @1 < [ me™ ™ A n(eDe™ ), nis) =T - 4]
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Thus there exists a constant C; > 0 with

Ry
sup |[H{" (hy)| < Cy
[A|=R Ry

ReA>0

I+t(R)e®), y=c, r(R)::%

This shows that, for every ro > 0, there is a constant C such that, for every R > ry,

o C-2"(1+t(rg)e™ ™)
W) < R 2k —v v v R(x+y) C = . 10
|a2;2k(x,y)| < _ﬁﬁ(X/y) e ) v [sin(vm)|T(v+1) (102)

Also from (9),
(xy)v+l/ZeR(X+y)

4v|sinvr | T (v +1)2°

)

Iamk(x, = R

(10b)

(b) Let v=n e N and x < y. Then, from H\" = J, +iY, and [Olver and Maximon 2011, (10.8.1)],

2%
r(x, y)_—(logA+10g )J (Ax)Jn (Ay) + Jn(Ax) Iy ()‘y)__h ()‘X)Z s 1)'()»2)’)

(—DFay/2*  an

oy L e Yk + D+ Ytk + 1)
_J”(“)< 2 ) - Z k! (n+k)!

with ¥ (x) = I'(x)/ T'(x). The only logarithmic terms in the Hahn-series expansion of r (x, y) are
eok,—1)(A), k > n. Because of (9), the coefficient of e, —1) is bounded by

R/2
ZkJ—( /'))2 REH) R

From Stirling’s inequalities for I', we obtain, for 0 < k — oo,

Q0! 1
= VI s~ (12)
hence (n—k — 1) (2k)! | Q0! 1
Ak n! - kg =g Osksn
g

Because |z|?* < (2k)!e?! and because of (9), the norm of the sum in the second line of (11) can be
bounded by (eM™*¥/)el*l,

For the last line in (11), we first note that the polygamma function is monotonically increasing and
Y (k) <logk, k > 0, and estimate as above

>

k=0

'Z 2log(n+k+1)
ko\/ 1k+n)-k+n—1)---(k+1)

Yyk+D+ym+k+1) '|)»y|2k <
k! (n + k)'4k

wz logn+k+1) 1 _ Clew’
vk (k—l—n)2/3 k+m)3 m=1!" (n—1)

<2e
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where the constant ¢ can be obtained from §(%) and x~1/3 log(x+1) < % for x > 0.
Altogether, this shows that the coefficient of 22k in ri”)(x, y) is bounded by

. "(R/DP 1 (R/2)™"
R 2k R(x+y) (1 X 1) (xy) ( _ n R
C Jxye og2—|— )2 +n +ci(xy) =11 ) >0,
and, for y > x > ¢, this is smaller than
2
Rk R+ 51x”+1yn+1/2—(R/2) - +c), R>0. O
n'(n—1)!

7B. The resolvent of the Laplace operator on cones. Let Z = (0, 00) x M be equipped with the cone
metric g% = dx? +x2gM, where (M, g™) is a compact n-dimensional Riemannian manifold (without
boundary); we will call Z a cone. We consider the Friedrichs extension A of the Laplace operator on
compactly supported functions C{°(Z) to L?(Z, g%). Under the isometry

U LH(Z,dx*+g") — LA (Z,8%), f(x,p)=x"*f(x, p),

this Laplacian becomes

A:=0loAow 82+1A+”(” 1)
= oAo =4+ — — = — X

ax2 | 2\"M T 2\2
Let {ur} be the eigenvalues of the Laplace operator Ay, on L?*(M), and define vy := v(uuz) as the positive
solution of v,f — }‘ = (n/2)(n/2 — 1)+ ux. Let V be the set of these solutions and let {¢,},cy be the
corresponding orthonormal Hilbert space basis of L?(M) consisting of eigenfunctions of Aj; such that

AMPou) = HPv(w)-
For a smooth function f(x, p) =) .y fu(X)du(p) € L?*(Z), we obtain

A = A)WS(x, p) =Y ((By — A7) £) (X)u(p),

veV
where B, is the Bessel operator defined in (5).
Let A € C with Im A > 0; in particular, A2 lies in the resolvent set of A. Then the integral kernel of the
resolvent (A — A2)~1 is given by

K((x, p), (@), M) =Y rP(x, )My (9) @ du(p), (13)

veV

where (") is defined in (6). Recall from Lemma 7.1 that ) is a z log z-Hahn-holomorphic function,
rY 0= Y Al @ e, (), ewp®) =2 (~logh)
yeS, cR?

where S, is the Hahn series support of 7). In this expansion, logarithmic terms occur only for v € N.

Take ¢ C R? to be the group generated by | J S, for S, := | J S,(x, y). Then it is clear that the
v x,y€(0,00)
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resolvent kernel is a Hahn series with support in ¢ C R?:

K((x, p), (0, @), 1) =) rP e, (@) @ du(p) =Y Y al” (x, y)e, (Wu(q) ® ¢y (p)

veV veV yes,

=Zey<x>< > ai”(x,ym(q)@m(p))
ye% veV:yes,

=Y ay((x, p), (v, q))e, (), (14)
y €Y

where we have set a, =0if y ¢ [, . Su.
To show normal convergence of the operator-valued series defined by (14), we will make the additional
assumption that each v € V either is an integer, or is not “too close” to an integer in the following sense.

Definition 7.4. For « > 0, a family of orders V C R is called «-suitable if the set

{ - ! veV\ N} (15)
x)Vsin(vm)T'(v+ 1)

is bounded.

Example 7.5. For M = §", n > 1, the n-sphere equipped with the standard metric, it is well known (see,
for example, [Shubin 2001, Section 22]) that the eigenvalues of the Laplace operator on functions are
i =k(k+n—1), k € Ng with multiplicity

my = (n—}:k) _ (n—i-’/;—Z).
Then v := v(ug) := (n — 1)/2 4+ k is (half-)integral for odd (even) n and V = (vg, vy, ..., vy, V2, ...),

where each v; appears m ; times. For n > 2, all v(uy) are positive.

In Section 7A we defined a smooth cutoff function y, which can be extended to a bounded operator x
on L%((0, 00) x M, dx) by setting

x(Hx, p)=xx)f(x,p) for feCy®(Z), x€(0,00), peM,

and taking the closure.
Here is the main result of this section:

Theorem 7.6. Let c, o,k > 0 and assume that the family V = {v} of orders is k-suitable. Then the
restricted resolvent XC(Z — A2~y extends, as a function of A, to a zlog z-Hahn-meromorphic function
on some D'V with values in

H(L2(Z, & dx @ voly), L*(Z, e dx @ voly)), (16)

where the only term A%(—logA)~P in its Hahn-series expansion with («, B) < 0 that possibly has a
nonzero coefficient is the one with (a, B) = (0, —1), and its coefficient has finite rank. If V does not
contain v =0, then, in a (possibly smaller) neighborhood of zero, this function is Hahn-holomorphic.
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Proof. Let A, be the operator on L?(Z) defined by the “restricted kernel”

(Xe0ay)((x,q), (¥, q)) := xc(X)ay ((x, p), (¥, ¢)) xc(¥)

with a from (14), so that Z},E(g
As in (8), in the proof of Proposition 7.3, we can estimate

A, e, (1) is the Hahn series of the restricted resolvent.

Ixc0al” || < R C (v, k);

now instead of (7b) we choose R < cx/4 and use
/wx2v+162RXKx2 dx < /oox2v+le(l</2)x2 dx < Fv+1) ‘ (17)
¢ ¢ 2(ic/2)vH!
Because the family V is «-suitable, the constants C (v, «) are bounded in v. Thus the kernel A, defines a
Hilbert—Schmidt operator
A, L*(Z, e dx ®voly) — L*(Z, e dx ® voly)

between weighted L2-spaces, with norm bounded by

1A I < llxcodyll < sup xcoal”| <C
vy Esuppry,

forall y e |, Sv.
Therefore the Hahn series ) | A, e, (1) is normally convergent in D(EU] for some § > 0, provided that

ye$
> ey lls < oo

yed

Due to Lemma 7.1, the support & is given by

$=|Jsuppr, =% UF C Ry x (—Ny), (18)

where ¥; and &, correspond to integer and noninteger real coefficients v. Furthermore, elements in ¥; are
of the form (2sn + 2¢, —s) with £ € Ny, s € {0, 1}, and those in &; have the form (2sv +2¢, 0), £ € Ny,
s € {0, 1} for v noninteger.

ForO<|A| <8 <landveV\Np,

Dol Gl Y IR+ > IR < 1_;32<1+ZW”|>-

yed, £eNy v LeNy

Now, from Weyl’s formula, we obtain that there exists an R > 0 such that ) _,, R” < oco. This shows
that, for |A| < min(8,~/R), the partial series Zy g, ley (1)| converges absolutely.

Finally, for v =n € N, we use |log A| A% < Cy A% to estimate Zyegi le, (A)| by the geometric
series.

Note that the only term that gives rise to a nonzero coefficient of e,, with y < 0 is the order v =0. [
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Remark 7.7. From the proof of Theorem 7.6, it is clear that a similar statement holds if the weights in

(16) are replaced by e for any ¢ > 0.

For the Laplace operator on differential forms L2(S", A*T*S"), the eigenvalues u are integers
(cf. [Ikeda and Taniguchi 1978, Theorem 4.2]), and the corresponding v = v(u, p) are square roots of
integers. In this case we have:

Lemma 7.8. Any family V = (,/q; ); with q; € Ny is k-suitable for every k > 0.

Proof. First we show for n € Ng and ¢ with n?> < g < (n+ 1)? that

min{\/qg —n, (n+1) — /q} > ;

2(m+1)°

We then use [sinxm| > 2|x]| for 0 < |x]| < % to prove that, for v = /g,
1 1 3

— . <1, —_— ) < .
v+ D)|sinvr| v[sinvr| 2

Together with Stirling’s formula for the asymptotics of I'(v), this shows the boundedness of (15). Il

Therefore Theorem 7.6 has a straightforward extension to differential forms. A similar statement can
be proven for the Laplacian acting on differential forms on (0, co) x P"(C), where P"(C) is equipped
with the Fubini-Study metric. The eigenvalues for the Laplace operator on sections of A?T* P"(C) have
been computed in [Ikeda and Taniguchi 1978, Theorem 5.2], they are integers.

7C. The resolvent of the Laplace operator on compact perturbations of R" or conic spaces. Set Z =
(0, 00) x M and let (Z, g%) be a cone as defined in the previous section. Let X be a Riemannian manifold
that is isometric to Z away from a compact set. This means that, for some a > 0, we can identify X with
X=X,Upm, Z,, where Z, = [a, 00) x M, M, = {a} x M, and X, is a compact Riemannian manifold
with boundary M,,.

In this section we denote by Ay the self-adjoint operator on the cone that is obtained from the Friedrichs
extension of the Laplace operator on C;°(Z). Let A be the Laplace operator acting on compactly supported
functions on X, and let L be a formally self-adjoint first order differential operator that is compactly
supported in X, for some a > 0. Then, of course P := A + L is of Laplace type and therefore essentially
self-adjoint on compactly supported smooth functions. We will denote its self-adjoint extension by the
same symbol P whenever there is no danger of confusion. It follows from standard results in perturbation
theory that the essential spectrum of P equals the essential spectrum of the Laplace operator on the cone,
namely, [0, co0). Moreover, it is well known that the distributional kernel of the resolvent (P — AZ)_I has
a meromorphic continuation across the spectrum away from the point A = 0. Now Theorem 4.1 allows us
to refine this statement and show that the resolvent kernel is Hahn-meromorphic at A = 0 if this is true for
the (restricted) kernel of (Ag — A?)~!. The precise statement is formulated in the following theorem.

Theorem 7.9. Let a > 0, k > 0 and suppose that, for some o > 0, the restricted resolvent x,(Ag -2y,
extends, as a function of 1, to a z log z-Hahn-meromorphic function on D£"] with values in

H(LA(Z, & dx @ voly), LA(Z, ™" dx @ volyy))
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for a group I' C Z x Z, such that the range of the coefficients of e,, with y < 0 of its Hahn series are
finite-rank operators with range contained in a fixed finite-dimensional subspace. Let T be the subgroup
of Z x 7 generated by T and 27 x {0}. Then (P — A\*)~! has an extension, as a function of A, to a zlog z
Hahn-meromorphic function on D£"] for the group T with values in

H(LA(X, w(x)voly), L*(X, w(x) 'voly)),

. .. . 2 . .
where w(x) is any positive function on X such that w(x) = e** on Z,. Moreover, in the Hahn series
expansion of this extension, the coefficients of e, with y < 0 are finite-rank operators.

Proof. The proof is identical to the standard proof that the meromorphic properties of the resolvent do
not change under compactly supported topological or metric perturbations. The only difference is that
we apply our Hahn-meromorphic Fredholm theorem. For the sake of completeness, we give the full
argument here. By assumption, we can choose b > a > 0 such that the operators Ay and P agree on
Cy°(Z4). Suppose Y1, Y2, ¢1, ¢ are smooth functions on X such that supp ¢; C X, and supp ¥ C X,
and such that

Vi+yo=1, Y11 +vapr=1, dist(suppde;,supp ;) > 0.

Now denote by Py the self-adjoint operator obtained from P by imposing Dirichlet boundary conditions
at My. Since P is an elliptic operator and the boundary conditions are elliptic, Py has compact resolvent
and therefore Q(A) := (Py — A?)~! is a meromorphic function with values in B(L?(X})) and the
residues of its poles are finite-rank operators. Let us denote by O, (1) the Hahn-meromorphic extension
of (Ag — A%)~! that exists by assumption. Then

O =01 01N Y1 +d202(M) Y2

is a Hahn-meromorphic family with values in
H(L*(X, w(x)voly), L*(X, w(x) 'voly))

with respect to the group T and the coefficients of e, with y <0 of its Hahn series are finite-rank operators
with range contained in a fixed finite-dimensional subspace. By construction, for A € D!°1, Im A > 0,

QMNP =22 =1d+K()
with
KA =KW+ KW, Ki(h) = Qi (M) (AYi —2Vgrady,)-

Since the integral kernels of Q; are smooth off the diagonal, the operator K (1) is smoothing. Moreover,
its integral kernel has compact support in the second variable.

Given the previous remarks, since Q1 (A) is meromorphic and Q»(}) is Hahn-meromorphic, K (1) is a
Hahn-meromorphic family with values in J(L*(X, w(x)~'volx)) for the group T, and the coefficients
of the e, in its Hahn series, for y < 0, are finite-rank operators with range contained in a fixed finite-
dimensional subspace. Furthermore, for A = ir purely imaginary, one derives || K;(ir)| <c/r for r > 1.
Therefore, for a sufficiently large r, the operator Id + K (ir) is invertible. By the meromorphic Fredholm
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theory and Theorem 4.1, (Id + K ) lisa family of operators in K (LZ(X , w(x)_lvolx)) which is
meromorphic away from zero with finite-rank negative Laurent coefficients at its nonzero poles and
finite-rank coefficients of e,, with y < 0. It is Hahn-meromorphic at zero for the group T'. Hence we have

Id+ KM)™'oO)(P =A%) =1d,

and (Id + K (1))~ Q(}) extends the resolvent of P to a Hahn-meromorphic function with the desired
properties, as claimed. U

Combining Theorems 7.6 and 7.9, we obtain:

Corollary 7.10. Let M be a Riemannian manifold that is isometric to R"\ Bg, n > 2, outside a compact
set for some sufficiently large R > 0. Let P be a compactly supported perturbation of the Laplace operator
in the sense of Theorem 7.9, and let w(x) be as in that theorem. Then the resolvent . +— (P — 23~ Lasa
map

{Ima > 0} — H(L*(X, w(x)voly), L*(X, w(x) 'voly)),

has a continuation to a function in A that is z log z-Hahn-meromorphic for the group 7 x Z.

When 7 is odd, from Example 7.5 we conclude that I' = Z x {0}. In this case, Theorem 7.9 and its
corollary are well known and follow from the usual meromorphic Fredholm theorem. Similar convergent
expansions in the case of two-dimensional potential scattering with suitable decay at infinity were obtained
in [Bollé et al. 1988]. For example, in [Bollé et al. 1988, Theorem 3.3], it was shown by more direct
methods that the transition operator T (k) in L?(R?) has a convergent expansion in powers of k and log k.

Remark 7.11. Set Z =1, oo) x N. Let X be a Riemannian manifold with an end isometric to
(Z, dx? +x_2“gN), a >0,

for some closed Riemannian manifold (N, gV). The spectral theory of the Laplace operator on X is
examined in detail in [Hunsicker et al. 2014]. There the authors show that the spectral decomposition of
the Laplace operator on differential forms on Z can also be described with the Weber transform. The
same arguments as in Section 7A together with the proof of Theorem 7.9 then implies that the resolvent
of the Laplace operator on X is z log z-Hahn-meromorphic, provided that the eigenvalues of the Laplace
operator on N lead to suitable v.

Remark 7.12. Our method may also be applied to noncompactly supported perturbations of the Laplace
operator on R", such as for example potential perturbations that have a suitable decay rate at infinity.
This is in line with the well-known result in the odd-dimensional case that uniform exponential decay
of the potential at infinity guarantees the existence of an analytic continuation of the resolvent into a
neighborhood of the spectrum.
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