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THE THEORY OF HAHN-MEROMORPHIC FUNCTIONS, A HOLOMORPHIC
FREDHOLM THEOREM, AND ITS APPLICATIONS

JÖRN MÜLLER AND ALEXANDER STROHMAIER

We introduce a class of functions near zero on the logarithmic cover of the complex plane that have
convergent expansions into generalized power series. The construction covers cases where noninteger
powers of z and also terms containing log z can appear. We show that, under natural assumptions, some
important theorems from complex analysis carry over to this class of functions. In particular, it is possible
to define a field of functions that generalize meromorphic functions, and one can formulate an analytic
Fredholm theorem in this class. We show that this modified analytic Fredholm theorem can be applied in
spectral theory to prove convergent expansions of the resolvent for Bessel type operators and Laplace–
Beltrami operators for manifolds that are Euclidean at infinity. These results are important in scattering
theory, as they are the key step in establishing analyticity of the scattering matrix and the existence of
generalized eigenfunctions at points in the spectrum.

1. Introduction

Asymptotic expansions of the form

f (z)∼
∑
k,m

ak,mzαk (−log z)βm as z→ 0,

with nonintegers αk and βm , defined for functions f in some sector centered at 0 in the complex plane,
appear frequently in mathematics and mathematical physics. Classical examples are solutions for differen-
tial equations (for example, in Frobenius’ method) and expansions of algebraic functions at singularities.
It has been shown that low energy resolvent expansions in scattering problems are of this form; see, for
example, [Jensen and Kato 1979; Jensen and Nenciu 2001] for Schrödinger operators in Rn , [Murata
1982] for operators with constant leading coefficients in Rn , and [Guillarmou and Hassell 2009] for the
Laplace operator on a general manifold with a conical end. The resolvent expansion for |λ|→∞ of cone
degenerate differential operators leads to similar asymptotics; see, for example, [Gil et al. 2011]. In many
of these examples, the expansions can be shown to be convergent under more restrictive assumptions on
the structure at infinity of the underlying geometry.

The algebraic theory of generalized power series is well developed and can be found in the literature
under the name Hahn series or Maltsev–Neumann series (see, for example, [Hahn 1907; Passman 1977,
Chapter 13; Ribenboim 1992]). In this paper we are concerned with the analytic theory of such generalized
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power series. Namely, we will define a ring of functions, the Hahn-holomorphic functions, that have
convergent expansions into generalized power series, and we will show that this ring is actually a division
ring. We show that the quotient field, the field of Hahn-meromorphic functions, has a nice description
in terms of Hahn series, and we generalize the notions of Hahn-holomorphic and Hahn-meromorphic
functions to the operator valued case. The theory turns out to be very close to the case of analytic function
theory. In particular, one of our main theorems states that an analog of the analytic Fredholm theorem
holds in the class of Hahn-holomorphic functions.

The holomorphic Fredholm theorem plays an important role in geometric scattering theory as a tool to
prove the existence of a meromorphic continuation of resolvent kernels of elliptic differential operators
such as the Laplace operator. The extension is typically from the resolvent set across the continuous
spectrum to a branched covering of the complex plane. As soon as such a meromorphic continuation of
the resolvent kernel is established, resonances can be defined as poles of its continuation, generalized
eigenfunctions may be defined as meromorphic functions of a suitably chosen spectral parameter, and an
analytic continuation of the scattering matrix may be constructed. This in many situations leads to a rich
mathematical structure that results in functional equations for the scattering matrix and Maass–Selberg
relations for the generalized eigenfunctions (see, for example, [Müller 1987] for the case of manifolds
with cusps of rank one, [Melrose 1993; Guillopé 1989; Müller and Strohmaier 2010] for manifolds
with cylindrical ends, and [Müller 2011] for manifolds with fibered cusps). In particular, the analytic
continuation of Eisenstein series may be regarded as a special case of this more general construction.

Often, as for example in the case of R2n+1 on asymptotically hyperbolic manifolds [Mazzeo and
Melrose 1987; Guillarmou 2005], geometrically finite hyperbolic manifolds [Guillarmou and Mazzeo
2012], and on globally symmetric spaces of odd rank [Mazzeo and Vasy 2005; Strohmaier 2005], the
branch points of the covering of the complex plane are algebraic and can be resolved by a change of
variables. In this way, one can make sense of the statement that the resolvent is meromorphic at the
branch point. In other examples, as in R2n on symmetric spaces of even rank [Mazzeo and Vasy 2005;
Strohmaier 2005] and on manifolds with generalized cusps [Hunsicker et al. 2014], the branch point is
logarithmic, and this statement loses its meaning. The analytic Fredholm theorem can then only be applied
away from the branching points. Our philosophy is that, at such branching points, it still makes sense
to say when functions are Hahn-holomorphic, that is, have a convergent expansion into more general
power series possibly containing log terms. Our Hahn analytic Fredholm theorem therefore allows us
to analyze the resolvents at nonalgebraic branching points. Our theorem implies, for example, that the
Hahn-meromorphic properties of the resolvent of the Laplace operator on a Riemannian manifold are
stable under perturbations of the topology and the metric that are supported in compact regions. The theory
can be developed further to establish Hahn-analyticity of the scattering matrix and of the generalized
eigenfunctions in this context, but we decided to focus on the theoretical properties of Hahn-meromorphic
functions first and keep the presentation self-contained. The applications in scattering theory will be
developed elsewhere.

The article is organized as follows. Section 2 deals with the definition and the general theory of Hahn-
holomorphic functions and some of their basic properties. In Section 3 we define Hahn-meromorphic
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functions, and in Section 4 we prove our generalization of the meromorphic Fredholm theorem in
the framework of Hahn-holomorphic functions. Sections 5 and 6 deal with two important examples
of convergent Hahn series: those that can be expanded into real powers of z and those that have such
expansions with additional log z terms. The theory has a nice application: convergent resolvent expansions
for Bessel type operators and Laplace–Beltrami operators on manifolds that are Euclidean at infinity can
be shown to be simple consequences of the Hahn-holomorphic Fredholm theorem. These examples are
treated in detail in Section 7; the main results here are Theorems 7.6 and 7.9.

We would like to thank the anonymous referee for suggestions leading to considerable simplifications
in some of the arguments in Section 7.

2. Hahn-holomorphic functions

Let (0,+) be a linearly ordered abelian group and let (G, · ) be a group. Suppose e : 0→ G, γ 7→ eγ is
a group homomorphism; in particular

e0 = 1 ∈ G, eγ1+γ2 = eγ1 · eγ2 for all γ1, γ2 ∈ 0.

The following definition and proposition are due to H. Hahn [1907].

Definition 2.1. Let R be a ring. A formal series

h=
∑
γ∈0

aγ eγ , aγ ∈R

is called a Hahn series if the support of h,

supp(h) := {g ∈ 0 | ag 6= 0 ∈R},

is a well-ordered subset of 0. The set of Hahn series will be denoted by R[[e0]].

Proposition 2.2. The set of Hahn series R[[e0]] is a ring with multiplication(∑
α∈0

aαeα

)(∑
β∈0

bβeβ

)
=

∑
γ∈0

cγ eγ , cγ :=
∑

(α,β)∈0×0
α+β=γ

aαbβ (1)

and addition ∑
α∈0

aαeα +
∑
β∈0

bβeβ =
∑
γ∈0

(aγ + bγ )eγ .

If R is a field, so is R[[e0]].

It is well known that if the support of h is contained in 0+ = {γ | γ > 0}, then 1− h is invertible in
R[[e0]] and its inverse is given by the Neumann series

(1− h)−1
=

∞∑
k=0

hk .

This is due to the fact that, for any well-ordered subset W of 0+, the semigroup generated by W is
also well ordered; see, for example, [Passman 1977, Lemma 2.10]. Here convergence of a sequence
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(pn) ⊂ R[[e0]] to p ∈ R[[e0]] is understood in the sense that, for every element α ∈ 0, there exists an
N > 0 such that, for all n > N , the coefficients of eα in p and pn are equal.

In the following, let Z be the logarithmic covering surface of the complex plane without the origin.
We will use polar coordinates (r, ϕ) as global coordinates to identify Z as a set with R+×R. Adding a
single point {0} to Z, we obtain a set Z0 and a projection map π :Z0→C by extending the covering map
Z→ C\{0} sending 0 ∈ Z0 to 0 ∈ C. We endow Z with the covering topology and Z0 with the topology
generated by the open sets in Z together with the open discs Dε := {0}∪{(r, ϕ) | 0≤ r < ε}. This means a
sequence ((rn, ϕn))n converges to zero if and only if rn→ 0. The covering map is continuous with respect
to this topology. For a point z ∈ Z0, we denote by |z| its r -coordinate and by arg z its ϕ coordinate. We
will think of the positive real axis as embedded in Z as the subset {z | arg z = 0}. In the following, Y ⊂ Z

will always denote an open subset containing an open interval (0, δ) for some δ > 0 and such that 0 /∈ Y .
The set Y0 will denote Y ∪ {0}. In the applications we have in mind, the set Y is typically of the form
D[σ ]δ \{0}, where D[σ ]δ = {z ∈ Z0 | 0≤ |z|< δ, |ϕ|< σ }. For the discussion and the general theorems, it
is not necessary to restrict ourselves to this case.

In the remainder of this article we assume that G := (Hol(Y ∩ Dε), · )
× is a set of nonvanishing

holomorphic functions and that the group homomorphism e satisfies the condition

for all γ > 0, eγ is bounded on Y and lim
z→0
|eγ (z)| = 0. (E1)

Definition 2.3. Suppose that R is a vector space with norm ‖ · ‖. A Hahn series f=
∑
α∈0

aαeα is called
normally convergent in Y ∩ Dε if its support is countable and∑

α∈0

‖aα‖‖eα‖Y,ε <∞,

where ‖eα‖Y,ε := supz∈Y∩Dε
|eα(z)|.

Since a normally convergent series converges absolutely and uniformly, the value of the function

f (z)=
∑
α∈0

aαeα(z), z ∈ Y ∩ Dε,

does not depend on the order of summation and f is holomorphic in z 6= 0.

Definition 2.4. Let S ⊂ 0+0 = 0
+
∪ {0} be a subset of the nonnegative group elements.

• The family {eα}α∈S is called weakly monotonic if there exists an rS > 0 such that, for every x ∈ (0, rS),
there is a radius ρ(x) with 0< ρ(x)≤ x and with the property

α ∈ S =⇒ ‖eα‖Y,ρ(x) ≤ |eα(x)|.

• The set S is called admissible for e (or simply admissible) if {eα}α∈S is weakly monotonic, and if,
for every B ⊂ S, the family

{eα−min B}α∈S
α>min B

is also weakly monotonic.
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Definition 2.5 (Hahn-holomorphic functions). Suppose that R is a Banach algebra. A continuous function
h : Y0→R which is holomorphic in Y is called (Y, 0)-Hahn-holomorphic (or simply Hahn-holomorphic)
if there is a Hahn series

h=
∑
γ∈0

aγ eγ , aγ ∈R,

with countable admissible support, converging normally on Y ∩ Dδ for some δ > 0, and such that

h(z)=
∑
γ∈0

aγ eγ (z), z ∈ Y ∩ Dδ.

We will denote the Hahn series of a Hahn-holomorphic function h by the corresponding “fraktur” letter
h. Note that (E1) together with uniform convergence imply that supp h⊂ 0+0 and h(0)= a0. Of course
any normally convergent Hahn series with admissible support gives rise to a Hahn-holomorphic function.

Here is a direct consequence of the support of Hahn-holomorphic functions being admissible:

Lemma 2.6. Let
h(z)=

∑
γ∈0

aγ eγ (z), z ∈ Y ∩ D2r ,

be Hahn-holomorphic with m=min supp(h). Then

e−m(z)h(z)=
∑
γ≥m

aγ eγ−m(z)

is Hahn-holomorphic.

Proof. Let ρ1 be the radius for {eγ } such that, for all γ ∈ supp(h),

‖eγ ‖ρ1(r) ≤ |eγ (r)|,

and similarly let ρ2 be the radius for {eγ−m}. For ρ(r)=min{ρ1(r), ρ2(r)},

‖em‖ρ(r)
∑
γ∈0

‖aγ ‖‖eγ−m‖ρ(r) ≤ |em(r)|
∑
γ∈0

‖aγ ‖|eγ−m(r)| =
∑
γ∈0

‖aγ ‖|eγ (r)|<∞.

Thus
∑
γ∈0

aγ eγ−m converges normally on Dρ(r). �

Proposition 2.7. Let f : Y → R be a Hahn-holomorphic function represented by a Hahn series f on
Y ∩ Dδ. Suppose the zeros of f accumulate in Y ∪ {0}. Then f ≡ 0 and f= 0. In particular, the Hahn
series of a Hahn-holomorphic function is completely determined by the germ of the function at zero.

Proof. If the zero set of f has accumulation points in Y , the statement follows from the fact that f is
holomorphic in this set. It remains to show that if f 6= 0, then 0 can not be an accumulation point of the
zero set of f . Let f be a Hahn series that represents the function on Y ∩ Dε. Let f 6= 0; then f 6= 0. Let
m=min supp f. If there is no other element in the support of f, then f (z)= amem(z) and the statement
follows from the fact that em has no zeros in Y . Otherwise, let m1 be the smallest element in supp f which
is larger than m. Then

f (z)=
∑
α

aαeα(z)= em(z)
(

am+ em1−m(z)
∑
α≥m1

aαeα−m1(z)
)
= em(z)(am+ h(z))
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with a Hahn-holomorphic function h(z) such that h(0)= 0. Since h is continuous and em(z) 6= 0, this
shows that f (z) 6= 0 in a neighborhood of 0. �

Now suppose that Y, 0 and the family of functions (eγ )γ∈0 are fixed and satisfy (E1).
We want to show that the space of Hahn-holomorphic functions at 0 with values in a Banach algebra

R is a ring. To that end we need the following.

Lemma 2.8. Let A1, A2⊂0
+ be admissible sets. Then the sets A1∪A2, A1+A2, and n·A1 := A1+· · ·+A1

(n times),
⋃
∞

n=0 n · A1 are admissible.

Proof. First we show that A1 ∪ A2, A1+ A2 and n · A1 are weakly monotonic. Let ρi , i = 1, 2, be the
radius for Ai and ρ(x) = min{ρ1(x), ρ2(x)}. Then ρ is a radius for A1 ∪ A2 and for A1 + A2 as well,
because, for αi ∈ Ai ,

‖eα1+α2‖ρ(r) ≤ ‖eα1‖ρ(r)‖eα2‖ρ(r) ≤ ‖eα1‖ρ1(r)‖eα2‖ρ2(r)

≤ |eα1(r)||eα2(r)| = |eα1+α2(r)|.

The same argument shows that ρ1 is a radius for n · A1.
Now let B⊂ A := A1+A2. Then B= B1+B2 for some Bi ⊂ Ai , i =1, 2, and min B=min B1+min B2.

Let α ∈ A with α = α1+α2, αi ∈ Ai . Let ρi (r) be the radius for {eαi−min Bi } and ρ =min{ρ1, ρ2}. The
estimate

‖eα−min B‖ρ(r) = ‖eα1−min B1+α2−min B2‖ρ(r) ≤ ‖eα1−min B1‖ρ1(r)‖eα2−min B2‖ρ2(r)

shows that A1+ A2 is admissible. The other statements are proven similarly. �

Let f (z)=
∑

α aαeα and g(z)=
∑

β bβeβ be Hahn-holomorphic functions on Y f and Yg, respectively.
First it is easy to see that f + g is Hahn-holomorphic on Y = Y f ∩ Yg. Since f and g are Hahn series
with support contained in 0+0 , we also have supp(f · g)⊂ 0+0 for the multiplication defined in (1). From
Lemma 2.8 we obtain that the support of f ·g is admissible. We claim that h(z)= f (z) ·g(z) is represented
by the product of Hahn series h= f · g on Y f ∩ Yg. Because f and g are normally convergent,∑

γ

∥∥∥∥ ∑
α+β=γ

aαbβ

∥∥∥∥‖eγ ‖ ≤∑
γ

( ∑
α+β=γ

‖aα‖‖bβ‖
)
‖eγ ‖ ≤

(∑
α

‖aα‖‖eα‖
)(∑

β

‖bβ‖‖eβ‖
)

so that the series f · g is normally convergent in Y f ∩Yg. Thus the series f · g defines a Hahn-holomorphic
function on Y with values in R, and this function equals h(z).

Altogether we have this:

Proposition 2.9. Let R be a Banach algebra. The Hahn-holomorphic functions with values in R on Y
form a ring under usual addition and multiplication, and the map ψR : f 7→ f is a ring isomorphism onto
its image in R[[eγ ]].

Corollary 2.10. The ring of Hahn-holomorphic functions on Y with values in an integral domain R is an
integral domain.
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Proof. By looking at the coefficient cγ with γ =min supp f in (1), we observe that R[[e0]] is an integral
domain if R is an integral domain. Because ψR is an isomorphism, the Hahn-holomorphic functions
must be an integral domain. �

Theorem 2.11. Let R be a Banach algebra and suppose f : Y0→R is Hahn-holomorphic and f (z) is
invertible for all z ∈ Y0. Then f (z)−1 is also Hahn-holomorphic on Y0.

Proof. Since 1/ f is holomorphic in Y , we only have to show that there is a Hahn series for f (z)−1 that
converges normally on some Y0 ∩ Dε. Since f (z)−1

= f (0)−1( f (z) f (0)−1)−1, we can assume without
loss of generality that f (0)= Id. Thus we can write f (z)= Id− h(z), where m :=min supp(h) > 0. By
assumption, the series h :=

∑
α∈0 aαeα defining h(z) converges normally on the set Y0 ∩ Dδ0 for some

δ0 > 0. The function h̃ defined by

h̃(t)=
∑
α∈0

‖aα‖‖eα‖Y0,t ≤ ‖em‖Y0,t

∑
α≥m

‖aα‖‖eα−m‖Y0,t

converges to 0 for t → 0 due to (E1) and Lemma 2.6. Therefore we can choose δ > 0 so small that
h̃ := h̃(δ) < 1/2. Because |h(z)| ≤ h̃ for z ∈ Y0 ∩ Dδ, the geometric series

f (z)−1
=

∞∑
n=0

h(z)n

then converges normally on Y0 ∩ Dδ. But we also know that f is invertible:

f−1
=

∞∑
n=0

hn
=:

∑
α∈S

bαeα with supp(f−1)⊂ S :=
⋃
n≥0

supp(hn).

From Lemma 2.8 we obtain that S is admissible. It remains to show that
∑
α∈S

bαeα(z) is normally convergent
on Y0 ∩ Dδ and represents f (z)−1. We have the implication

N∑
n=0

hn
=

∑
α∈S

cα(N )eα =⇒

∑
α∈S

‖cα(N )‖‖eα‖ ≤
N∑

n=0

h̃n in Y0 ∩ Dδ,

as a simple consequence of the triangle inequality. For every fixed finite set A⊂S, there exists an NA > 0
such that, for all N ≥ NA,

f−1
−

N∑
n=0

hn
=

∑
α∈S\A

(bα − cα(N ))eα

has support away from A. In particular, cα(N )= bα for α ∈ A and N ≥ NA. Therefore, for N > NA,

∑
α∈A

‖bα‖‖eα‖ ≤
∑
α∈S

‖cα(N )‖‖eα‖ ≤
N∑

n=0

h̃n <
1

1− h̃
,

and this proves convergence, since this bound is independent of A. In particular,
∑

α∈S bαeα(z) converges
absolutely in R, hence it converges and the value does not depend on the order of summation. After
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reordering, ∑
α∈S

bαeα(z)=
∞∑

n=0

h(z)n = f (z)−1. �

Because of Lemma 2.6, every complex valued Hahn-holomorphic f that is not identically 0 can be
inverted away from its zeros. Let m :=min supp(f)≥ 0. Then

f −1(z)= a−1
m e−m(z)

∞∑
n=0

(1− a−1
m e−m(z) f (z))n.

Theorem 2.12. Suppose that f : Y0→ C is a Hahn-holomorphic function with Hahn series f. Suppose
that U is an open neighborhood of f (0) and h :U→ C is holomorphic. Then h ◦ f is Hahn-holomorphic
on its domain.

Proof. Since holomorphicity away from zero is obvious, it is enough to show that h ◦ f has a normally
convergent expansion into a Hahn series. Replacing f (z) by f (z)− f (0) and h(z) by h(z− f (0)), we
can assume without loss of generality that f (0)= 0 and thus supp(f)⊂ 0+. Since h is holomorphic near
f (0), it has a uniformly and absolutely convergent expansion

h(z)=
∞∑

k=0

ak(z− f (0))k .

Thus

h ◦ f (z)=
∞∑

k=0

ak( f (z))k .

Note that
∑
∞

k=0 akf
k is a Hahn series. A similar argument as in the proof of Theorem 2.11 shows that

this Hahn series is normally convergent and represents h ◦ f (z). �

3. Hahn-meromorphic functions

Definition 3.1. A meromorphic function h : Y → C is called Hahn-meromorphic if h is represented by a
Hahn series h in Y ∩Dε for some ε > 0 and there exist Hahn-holomorphic functions f , g 6≡ 0 on Y0∩Dε

such that h · g= f.

In this sense, a Hahn-meromorphic function can be written as a quotient h= f/g of Hahn-holomorphic
functions in a neighborhood of 0.

Remark 3.2. Since C-valued Hahn-holomorphic functions form an integral domain, Hahn-meromorphic
functions form a field. More generally, let R be a (commutative) integral domain. From Corollary 2.10
we know that Hahn-holomorphic functions with coefficients in R are a commutative integral domain
whose quotient field is defined. Furthermore, the map f 7→ f induces an injective morphism from the
quotient field of Hahn-holomorphic functions to the quotient field R((e0)) of Hahn series R[[e0]]. Note
that R((e0))=R[[e0]] if R is a field.
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An important difference with usual meromorphic functions is that Hahn-meromorphic functions may
have infinitely many negative exponents. For example, the function

f (x)=
∞∑

n=1

1
n2 z1−1/n

is Hahn-holomorphic and therefore
∞∑

n=1

1
n2 z−1/n−1

=
f (z)
z2

is Hahn-meromorphic.
It follows from our analysis for Hahn-holomorphic functions that every C-valued Hahn-meromorphic

function h can be written as
h(z)= emin supp h(z) f (z),

where f is Hahn-holomorphic. Moreover, if h 6= 0, then f (0) 6= 0. In particular, this implies that
Hahn-meromorphic functions bounded on (0, δ) are Hahn-holomorphic in some neighborhood of 0.

We can also define Hahn-meromorphic functions with values in a Banach algebra.

Definition 3.3. Let R be a Banach algebra. A function h : Y →R is called Hahn-meromorphic if it is
meromorphic on Y and there exists a δ > 0 and a nonzero Hahn-holomorphic function f on Y0∩ Dδ such
that f (z)h(z) is a Hahn-holomorphic function on Y0 ∩ Dδ with values in R.

Remark 3.4. Let R > 0 and σ > 0. If there exists one nonzero Hahn-holomorphic function on Y ∩ D[σ ]R
that vanishes with positive order at 0, then one can use the Weierstrass product theorem together with
Theorem 2.12 to show that the set of complex valued Hahn-meromorphic functions on Y ∩ D[σ ]R can be
identified with the quotient field of the division ring of Hahn-holomorphic functions on Y ∩ D[σ ]R .

4. A Hahn-holomorphic Fredholm theorem

Let H be a complex Hilbert space and denote by K(H) the space of compact operators on H.

Theorem 4.1. Suppose Y0 ⊂ Z is connected and let f : Y → K(H) be either Hahn-holomorphic or
Hahn-meromorphic such that all coefficients of eγ with γ < 0 and all Laurent coefficients in the principal
part away from the point z = 0 have range in a common finite-dimensional subspace H0 ⊂H.

Then either (Id− f (z))∈B(H) is invertible nowhere in Y0 or its inverse (Id− f (z))−1 exists everywhere
except at a discrete set of points in Y0 and defines a Hahn-meromorphic function. Moreover, in the Hahn
series of (Id− f (z))−1, the coefficients of eγ with γ < 0 are finite-rank operators, and the coefficients in
the principal part of its Laurent expansion away from z = 0 are finite-rank operators too.

Proof. The proof generalizes that of [Reed and Simon 1980, Theorem VI.14]. The assumptions imply that
there exists a Hahn-meromorphic function B(z) with range in H0, a finite-rank operator A, and a δ > 0
such that f (z)− A− B(z) is Hahn-holomorphic and ‖ f (z)− A− B(z)‖< 1 for all z ∈U [σ ] := D[σ ]δ ∩Y .
Thus (Id − f (z) + A + B(z))−1 exists and is Hahn-holomorphic by Theorem 2.11. Consequently,
g(z)= (A+ B(z))(Id− f (z)+ A+ B(z))−1 is a Hahn-meromorphic function on U [σ ] with values in the
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Banach space B(H, V ), where V is the finite-dimensional subspace of H spanned by H0 and rg(A). It is
easy to see that

(Id− f (z))−1
= (Id− f (z)+ A+ B(z))−1(Id− g(z))−1, (2)

where equality means here that the left hand side exists if and only if the right hand side exists. Now let
P be the orthogonal projection onto V and let G(z) be the endomorphisms of V defined by restricting
g(z) to V , that is, G(z)= g(z) ◦ P . Invertibility of Id−g(z) in B(H) is equivalent to invertibility of

P(Id− g(z))P : V → V,

and this is equivalent to det(IdV −G(z)) 6= 0. Moreover, a straightforward computation shows

(Id− g(z))−1
= (P(Id− g(z))P)−1(P + g(z)(Id− P))+ (Id− P). (3)

Now note that G(z) is a Hahn-holomorphic family of endomorphisms of V . In particular, det(Id−G(z))
is a Hahn-meromorphic C-valued function. As such, it is meromorphic in U [σ ] \ {0}, and together with
Proposition 2.7, this shows that the set

S = {z ∈U [σ ] | det(Id−G(z))= 0}

is either discrete in U [σ ] or S =U [σ ]. If det(Id−G(z)) 6= 0, then, after a choice of basis of V , the inverse
(Id−G(z))−1 can be computed with Cramer’s rule, showing that, with respect to this basis,

det(Id−G(z))(Id−G(z))−1
∈Mat(dim V,C[[e0]])

is represented by a matrix with Hahn-meromorphic entries. After the identification

Mat(dim V,C[[e0]])=Mat(dim V,C)[[e0]],

we see that the function (Id− G(z))−1 is Hahn-meromorphic with coefficients in End(V ) if there is
only a single point in U [σ ] for which it exists. Consequently, due to (2) and (3), (Id− f (z))−1 is Hahn-
meromorphic with all coefficients of eγ (z) with γ < 0 being of finite rank if there is only a single point
in U [σ ] for which Id− f (z) is invertible. So far we have proved the statement in U [σ ]. By the usual
analytic Fredholm theorem, invertibility of Id− f (z) at a single point in Y implies that the inverse exists
as a meromorphic function on Y . Conversely, we have seen that invertibility of Id− f (z) at a single
point in U [σ ] implies that (Id− f (z))−1 exists as a Hahn-meromorphic function on U [σ ]. By the usual
meromorphic Fredholm theorem, it then exists as a Hahn-meromorphic function on Y . �

5. z-Hahn-holomorphic functions

The prominent class of Hahn-holomorphic functions is defined by convergent power series with noninteger
powers.

Let 0 ⊂ R be a subgroup with order inherited from the standard ordering of R. As the group G we
will take the group generated by the set of functions

eα(z) := zα, α ∈ 0, z ∈ D[σ ]r \{0}.
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In this definition we choose the principal branch of the logarithm with |Im log z|<π for z ∈C\ (−∞, 0],
and, as usual, we set log(reiϕ)= log r + iϕ, |ϕ|< σ , and zα := eα log z .

A z-Hahn-holomorphic function f with values C then is a holomorphic function on D[σ ]r \{0} such
that the generalized power series

f (z)=
∑
γ

aγ zγ , aγ ∈ C,

is normally convergent in Y ∩ D[σ ]δ for some δ > 0.
Note that every well-ordered subset of W ⊂ 0+ is admissible for e, because for every α ∈W ,

|zα| = |z|α ≤ |z|min W , z ∈ D[σ ]1/2. (4)

Example 5.1. If 0 = Z and ek(z)= zk , the set of Hahn series corresponds to the formal power series and
the set of z-Hahn-holomorphic functions can be identified with the set of functions that are holomorphic
on the disc of radius δ > 0 centered at the origin.

Example 5.2. The series

zπ
∞∑

k=0

z2k

(2k)!

converges normally on Dr for any r > 0 and defines a z-Hahn-holomorphic function for 0 = πZ+ 2Z.

Example 5.3. Puiseux series and Levi-Civita series, as defined in, for example, [Ribenboim 1992],
are special cases of Hahn series with certain 0 ⊂ Q. When they are normally convergent, they define
z-Hahn-holomorphic functions.

In the following, let DR = D[∞]R \ {0} be the pointed disk of radius R in the logarithmic covering of the
complex plane. The next result is in analogy with complex analysis, where series expansions converge
normally on the maximal disc embedded in the domain of holomorphicity.

Theorem 5.4. Let R be a Banach algebra, and suppose f is z-Hahn-holomorphic. Suppose further that
f is bounded on DR̃ R+ε for some ε, R̃ > 0, and let

f (z)=
∑

α∈supp f

aαzα

be its expansion (which we do not assume converges normally on DR̃).
Then, for all R with 0< R < R̃,∑

α∈supp f

‖aα‖Rα ≤ sup
|z|=R
‖ f (z)‖

∑
α∈supp f

(R/R̃)α.

In particular, if
∑
α

(R/R̃)α <∞, the Hahn series converges normally on DR .

Proof. As a Hahn-holomorphic function, f converges normally on D2δ for some δ > 0 and is holomorphic
in DR̃ . Let 3R,L be the averaging operator

3R,L( f )=
1

2π iL

∫
S(L)R

f (z)
z

dz,
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where S(L)R (t)= Reiπ t , t ∈ (−L , L], is the L-fold cover of the circle with radius R. Certainly

‖3R,L( f )‖ ≤ sup
|z|=R
‖ f (z)‖.

Since f is holomorphic for 0< |z|< R, we have

1
2π iL

∫
S(L)R

f (z)
z

dz =
1

2π iL

∫
S(L)δ

f (z)
z

dz+ O(L−1).

This shows that

3R( f ) := lim
L→∞

3R,L( f )= lim
L→∞

∑
α∈supp f

aα
2π iL

∫
S(L)δ

zα−1 dz = a0.

Suppose (Ik) is a family of finite subsets of supp f such that

I1 ⊂ I2 ⊂ · · · and
⋃

k

Ik = supp f.

For z ∈ DR̃ , let gk(z)=
∑
α∈Ik

λαz−αRα, where λα ∈R∗ :=B(R,R) are chosen such that

‖λα‖ = 1, λα(aα)= ‖aα‖.

Such λα exist by the Hahn–Banach theorem.
Then gk is holomorphic in DR̃ and ‖gk(z)‖ ≤

∑
α∈Ik
|z|−αRα. Moreover,

〈gk, f 〉(z)=
∑
α∈Ik

γ=−α+β

λα(aβ)Rαzγ ,

and the constant term of this function is∑
α∈Ik

‖aα‖Rα =3δ(〈gk, f 〉)=3R̃(〈gk, f 〉).

Therefore∑
α∈Ik

‖aα‖Rα ≤ sup
|z|=R
|〈gk, f 〉(z)| ≤ sup

|z|=R
‖gk(z)‖‖ f (z)‖ ≤ sup

|z|=R
‖ f (z)‖

∑
α∈supp f

(R/R̃)α,

and the theorem follows by letting k→∞. �

Theorem 5.5. Let R > 0, and assume fk : DR → V is a sequence of bounded z-Hahn-holomorphic
functions that converge uniformly to a bounded function f : DR→ V . Suppose that there exist constants
C > 0, ε̂ > 0 such that, for each k ∈ N, ∑

α∈supp fk

ε̂α < C.

Suppose furthermore that there exists I ⊂ R such that supp fk → I in the following sense. For each
compact subset K b R, there exists N > 0 such that supp fk ∩ K = I ∩ K for all k ≥ N .

Then f is Hahn-holomorphic on DR with supp f ⊂ I .
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Proof. First, I is well ordered because supp fk→ I . Let fk(z)=
∑

α∈supp fk
a(k)α zα be the expansion of fk .

Let ε > 0. Then there exists N1 > 0 such that ‖ f`(z)− fk(z)‖ < ε for all k, ` > N1 and all z ∈ DR .
Given a finite subset Ĩ ⊂ I , we can choose N > N1 such that Ĩ ∩ supp fk = Ĩ for all k > N . Theorem 5.4
then shows that, for all k, ` > N and R̃ < ε̂R,∑

α∈ Ĩ

‖a(`)α − a(k)α ‖ · R̃
α
≤ sup
|z|=R̃
‖ f`(z)− fk(z)‖

∑
α∈supp fk ∪ supp f`

ε̂α < 2 C ε.

It follows that (a(k)α )k is a Cauchy sequence for each α. Let aα := limk→∞ a(k)α . Given a finite subset
Ĩ ⊂ I and ε > 0, we can find N such that ‖a(k)α − aα‖< ε for all k > N , α ∈ Ĩ . Then, for |z|< R̃ < ε̂,∥∥∥∥∑

α∈ Ĩ

a(k)α zα −
∑
α∈ Ĩ

aαzα
∥∥∥∥<∑

α∈ Ĩ

‖a(k)α − aα‖R̃α < C ε.

This shows that
∑

α∈I aαzα is a Hahn series for f . By the uniform convergence of ( fk), f is analytic in
D[σ ]R \ {0}. Its Hahn series converges normally on DR̃ because∑

α∈ Ĩ

‖aα‖R̃α ≤
∑
α∈ Ĩ

‖a(`)α ‖R̃
α
+

∑
α∈ Ĩ

‖a(k)α − aα‖R̃α +
∑
α

‖a(k)α − a(`)α ‖R̃
α

≤

∑
α∈supp f`

‖a(`)α ‖R̃
α
+Cε+ 2Cε <∞

for all finite Ĩ ⊂ I , ` sufficiently large, and k� ` depending on Ĩ . �

6. z log z-Hahn-holomorphic functions

In the following, let R2 be equipped with the lexicographical order and let 0 ⊂ R2 be a subgroup with
order inherited from that of R2. Let Y = D[σ ]1/2 for fixed σ > 0. The group G will be generated by

e(α,β)(z) := zα(−log z)−β, (α, β) ∈ 0, |z|< 1.

With the inclusion R×{0} ⊂ R2, this comprises the power functions zα from Section 5. Note that

lim
z→0

e(α,β)(z)= 0 ⇐⇒ α > 0∨ (α = 0∧β > 0),

which is equivalent to (α, β) > (0, 0) in the lexicographical ordering of R2. The monotonicity (4) of
power functions zα has to be replaced by the following “weak monotonicity” property.

Lemma 6.1. Let S⊂ 0+ = {γ ∈ 0 | γ > 0} be a set such that there exists an N ∈ N0 with

−β ≤ Nα for all (α, β) ∈ S. (∗)

(a) There exists rN < 1 such that, for (α, β) ∈ S and |θ |< σ , the function

r 7→ |reiθ
|
α
|log(reiθ )|−β

is monotonically increasing on [0, rN ).
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(b) Given x with 0 < x < rN , there exists ρN (x) ≤ x such that, for all z with 0 ≤ |z| ≤ ρN (x) and
|arg z|< σ , we have

(α, β) ∈ S =⇒ |e(α,β)(z)| ≤ e(α,β)(x)

The proof is elementary and will be omitted.
It is not difficult to see that if S satisfies (∗), a similar inequality holds for the set (S− A)∩0+, where

A ⊂ S and the constant N depends on A. Thus a set S with (∗) is admissible for e.
Now the assumptions from Section 2 are all satisfied and we can consider Hahn-holomorphic and

meromorphic functions: A z log z-Hahn-holomorphic function with values in a Banach algebra R is
defined by a normally convergent series

f (z)=
∑

(α,β)∈0

a(α,β)zα(−log z)−β, a(α,β) ∈R, z ∈ D[σ ]1/2,

such that supp( f ) is contained in a set S∪ {(0, 0)} with S as in Lemma 6.1.
Note that the property (∗) is invariant under addition and multiplication of Hahn-holomorphic functions,

so that z log z-Hahn-holomorphic functions indeed are a ring, and all results from Section 2 apply.

Example 6.2. The series
∞∑

n=0

zn(−log z)n = (1+ z log z)−1

is a Hahn series in 0 = Z × Z with support {(n,−n) | n ∈ N0}. It converges normally on the set{
z ∈ Z

∣∣ |z log z|< 1
2

}
and therefore defines a z log z-Hahn-holomorphic function on D[σ ]r for any σ > 0

and sufficiently small r = r(σ ).

Example 6.3. The formal series
∞∑

n=0

1
n!

z(−log z)n

is not a Hahn series for 0 = Z×Z, because the support

{(1,−n) | n ∈ N0}

is not a well-ordered subset of 0.

Example 6.4. The logarithm log z =
z log z

z
is Hahn-meromorphic for 0 ⊂ Z×Z.

Example 6.5. The series
∞∑

n=1

∞∑
m=1

1
m2 zn(−log z)2n−1+1/m

defines a z log z-Hahn-holomorphic function in a neighborhood D[σ ]ε of 0 for any σ > 0 and for small
enough ε = ε(σ ) with 0 = Z×Q. Its support is

{(n, 1− 2n− 1/m) | n,m ∈ N}.
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7. Applications: Hahn-meromorphic continuation of resolvent kernels

7A. Suppose that ν ≥ 0. The differential operator Bν associated to the Bessel differential equation in its
Liouville normal form,

Bν := −
∂2

∂x2 +
ν2
−

1
4

x2 Id, (5)

is a nonnegative symmetric operator on the space C∞c ((0,∞)) equipped with the inner product inherited
from L2((0,∞), dx). We will denote the Friedrichs extension of Bν by the same symbol Bν .

The kernel r (ν)λ of the resolvent (Bν −λ2)−1 can be constructed directly out of the fundamental system
of the corresponding Sturm–Liouville equation and this results in (see, for example, [Brüning and Seeley
1987, p. 371])

r (ν)λ (x, y)=
iπ
2
√

xy · Jν(λmin(x, y))H (1)
ν (λmax(x, y)), 0< x, y <∞, (6)

where H (1)
ν is the Hankel function of order ν of the first kind and Jν is the Bessel function.

The proof of the following lemma uses the well-known expansion of Bessel and Hankel functions, and
will be given at the end of this section.

Lemma 7.1. For every ν > 0 and (x, y) ∈ (0,∞)× (0,∞), the kernel λ 7→ r (ν)λ (x, y) defines a z log z-
Hahn-holomorphic function.

(a) For ν ∈ R+ \N0, we have

r (ν)λ (x, y)= λ2ν f (ν)1 (x, y)(λ)+ f (ν)2 (x, y)(λ),

where the maps λ 7→ f (ν)j (x, y)(λ) are even and entire. In particular, r (ν)λ (x, y) is z-Hahn-holomorphic
with support contained in 2Z+ 2νZ.

Let a(ν)j;2k(x, y) be the coefficient of λ2k in the Taylor series expansion of f (ν)j (x, y).
There is a constant C1 such that, for 0≤ x ≤ y,

|a(ν)1;2k(x, y)| ≤ R−2kC1(ν)(xy)ν+1/2eR(x+y), R > 0.

For c > 0 and every r0 > 0, there is a constant C2 such that, for all y ≥ x ≥ c,

|a(ν)2;2k(x, y)| ≤ R−2k C2(ν, r0)
√

R

√
x(x/y)νeR(x+y), R ≥ r0.

(b) The kernel λ 7→ r (ν)λ (x, y) is a z log z-Hahn-holomorphic function with support contained in 2Z×Z if
ν = n ∈ N:

r (n)λ (x, y)= log(λ)g(n)1 (x, y)(λ)+ g(n)2 (x, y)(λ),

where the maps λ 7→ g(ν)j (x, y)(λ) are even and entire.

The coefficients b(n)j;2k(x, y) in its Hahn-series expansion can be estimated by
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|b(n)1;2k(x, y)| ≤ R−2k√xy
(R/2)2n

(n!)2
eR(x+y), R > 0,

|b(n)2;2k(x, y)| ≤ R−2keR(x+y)
(

ĉ1xn+1 yn+1/2 (R/2)2n

n! (n− 1)!
+ c2

)
, R > 0.

Remark 7.2. For ν = 0, the expansion (11) below gives

r (0)λ (x, y)=−
√

xy log
λy
2
+ h(x, y)(λ)

with a Hahn-holomorphic function h(x, y). In particular, λ 7→ r (0)λ (x, y) is z log z-Hahn-meromorphic.

For c > 0, let χc : [0,∞)→ R+ be a smooth cutoff function with

χc(x)=
{

0 if x ≤ c,
1 if x ≥ 2c.

Multiplication by this function defines a bounded operator on L2((0,∞)). The “restricted resolvent”
χc(Bν − λ2)−1χc then is the bounded operator on L2((0,∞)) with integral kernel

(χc ◦ r (ν)λ )(x, y) := χc(x) · r
(ν)
λ (x, y) ·χc(y).

Proposition 7.3. Let I = (0,∞), ν > 0, and c > 0. For any κ > 0 and σ > 0, the restricted resolvent
χc(Bν−λ2)−1χc extends, as a function of λ, to a z log z-Hahn-holomorphic function on some neighborhood
D[σ ]r of 0 with values in the compact operators

K
(
L2(I, eκx dx), L2(I, e−κx dx)

)
.

Proof. First let ν /∈ N0. In Lemma 7.1(a), let r0 = R = κ/3. Using∫
∞

c

∫
∞

c
min(x, y)

(
min(x, y)
max(x, y)

)2ν

e(2R−κ)(x+y) dx dy ≤ C(κ) (7a)

and ∫
∞

c

∫
∞

c
(xy)2ν+1e(2R−κ)(x+y) dx dy ≤

(
0(2+ 2ν)
(κ/3)2+2ν

)2

, (7b)

it is easy to see that the coefficients a(ν)j;2k(x, y) of the Hahn series expansion of r (ν) satisfy

|χc ◦ a(ν)j;2k | ∈ L2(I × I, e−κ(x+y) dx ⊗ dy), j = 1, 2.

Therefore the kernels {χc ◦ a(ν)j;2k}k define Hilbert–Schmidt operators

A(ν)j;2k : L
2(I, eκx dx)→ L2(I, e−κx dx)=:Hκ

with norm bounded from above by

‖A(ν)j;2k‖ ≤ ‖χc ◦ a(ν)j;2k‖Hκ×Hκ
≤ R−2kC(ν, κ), (8)
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where C(ν, κ) can be obtained from (10a), (7a), (10b), (7b). But then the series

λ2ν
∞∑

k=0

‖A(ν)1;2k‖|λ|
2k
+

∞∑
k=0

‖A(ν)2;2k‖|λ|
2k

converges normally in some neighborhood U ⊂ D[σ ]r of 0 and the kernel r (ν)λ defines a z-Hahn-holomorphic
family of Hilbert–Schmidt operators in

K
(
L2(I, eκx dx), L2(I, e−κx dx)

)
.

For integral ν = n ∈ N, we can argue similarly, using Lemma 7.1(b). �

Proof of Lemma 7.1. First let ν /∈ N0. Recall that Jν(z)=
( z

2

)ν
hν(z), where

hν(z)=
∞∑

k=0

a(ν)k z2k with a(ν)k =
(−1)k

4k k!0(k+ ν+ 1)
.

The function hν is entire. We have

H (1)
ν (z)=

i
sin νπ

(Jν(z)e−iνπ
− J−ν(z)), H (1)

n (z)= lim
ν→n

H (1)
ν (z), n ∈ Z.

(a) Let x ≤ y. Then

−
2i
π

r (ν)λ (x, y)=
√

xy Jν(λx)H (1)
ν (λy)= λ2ν f (ν)1 (x, y)(λ)+ f (ν)2 (x, y)(λ)

with even, analytic functions in λ:

f (ν)1 (x, y)(λ)=
ie−iνπ

4ν sin νπ
(xy)ν+1/2hν(λx)hν(λy)

f (ν)2 (x, y)(λ)=
−i

sin νπ
√

xy
( x

y

)ν
hν(λx)h−ν(λy)

Due to Cauchy’s integral formula,

|a(ν)j,2k(x, y)| ≤ R−2k sup
|λ|=R
| f (ν)j (x, y)|, j = 1, 2.

We know from, for example, [Olver and Maximon 2011, (10.14.4)] that, for ν ≥ 0,

|hν(z)| ≤
e|Im z|

0(ν+ 1)
. (9)

Using Jν = 1
2(H

(1)
ν + H (2)

ν ), |H (∗)
−ν | = |H

(∗)
ν |, and that h−ν is a holomorphic and even function,

(R/2)ν sup
|z|=R
|h−ν(z)| = sup

|z|=R
Re z>0

|J−ν(z)| ≤ sup
|z|=R
Re z>0

1
2(|H

(1)
ν (z)| + |H (2)

ν (z)|).

But from [Olver and Maximon 2011, (10.17.13)], for −π/2< arg z < π/2,

|H (1;2)
ν (z)| ≤

√
2
π |z|

e∓ Im z(1+ τν(|z|)eτν(|z|)), τν(s) :=
π

2
∣∣ν2
−

1
4

∣∣ · s−1.
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Thus there exists a constant C1 > 0 with

sup
|λ|=R
Re λ>0

|H (1;2)
ν (λy)| ≤ C1

eRy
√

Ry
(1+ τ(R)eτ(R)), y ≥ c, τ (R) :=

π

2

∣∣ν2
−

1
4

∣∣
Rc

.

This shows that, for every r0 > 0, there is a constant C such that, for every R ≥ r0,

|a(ν)2;2k(x, y)| ≤ R−2k−ν Cν
√

R

√
x(x/y)νeR(x+y), Cν :=

C · 2ν(1+ τ(r0)eτ(r0))

|sin(νπ)|0(ν+ 1)
. (10a)

Also from (9),

|a(ν)1;2k(x, y)| ≤ R−2k (xy)ν+1/2eR(x+y)

4ν |sin νπ |0(ν+ 1)2
. (10b)

(b) Let ν = n ∈ N and x ≤ y. Then, from H (1)
n = Jn + iYn and [Olver and Maximon 2011, (10.8.1)],

−2i
π
√

xy
r (n)λ (x, y)=

2i
π

(
log λ+ log y

2

)
Jn(λx)Jn(λy)+ Jn(λx)Jn(λy)−

i
π

hn(λx)
n−1∑
k=0

(n−k−1)!
k!

(
λy
2

)2k

−Jn(λx)
(
λy
2

)n 1
π

∞∑
k=0

ψ(k+ 1)+ψ(n+ k+ 1)
k! (n+ k)!

(−1)k(λy/2)2k (11)

with ψ(x) = 0′(x)/0(x). The only logarithmic terms in the Hahn-series expansion of r (n)(x, y) are
e(2k,−1)(λ), k ≥ n. Because of (9), the coefficient of e(2k,−1) is bounded by

R−2k√xy
(R/2)2n

(n!)2
eR(x+y), R > 0.

From Stirling’s inequalities for 0, we obtain, for 0≤ k→∞,

1≥
√

k+ 1
(2k)!

4k(k!)2
∼

1
√
π
; (12)

hence
(n− k− 1)! (2k)!

4kk!n!
=

1

(n− k)
(

n
k

) · (2k)!
4k(k!)2

≤
1
n
, 0≤ k < n.

Because |z|2k
≤ (2k)! e|z| and because of (9), the norm of the sum in the second line of (11) can be

bounded by (e|Im λ|x/π)e|λy|.

For the last line in (11), we first note that the polygamma function is monotonically increasing and
ψ(k). log k, k > 0, and estimate as above

∞∑
k=0

∣∣∣∣ψ(k+ 1)+ψ(n+ k+ 1)
k!(n+ k)!4k

∣∣∣∣|λy|2k
≤ e|λy|

∞∑
k=0

1
√

k+ 1

2log(n+ k+ 1)
(k+ n) · (k+ n− 1) · · ·(k+ 1)

≤ 2e|λy|
∞∑

k=0

1
√

k+ 1(k+ n)2/3
log(n+ k+ 1)
(k+ n)1/3

1
(n− 1)!

≤
c1 e|λy|

(n− 1)!
,
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where the constant c1 can be obtained from ζ
(7

6

)
and x−1/3 log(x + 1) < 3

2 for x > 0.
Altogether, this shows that the coefficient of λ2k in r (ν)λ (x, y) is bounded by

C R−2k√xyeR(x+y)
((

log
y
2
+ 1

)(xy)n(R/2)2n

(n!)2
+

1
π
+ c1(xy)n

(R/2)2n

n! (n− 1)!

)
, R > 0,

and, for y ≥ x ≥ c, this is smaller than

R−2keR(x+y)
(

ĉ1xn+1 yn+1/2 (R/2)2n

n! (n− 1)!
+ c2

)
, R > 0. �

7B. The resolvent of the Laplace operator on cones. Let Z = (0,∞)×M be equipped with the cone
metric gZ

= dx2
+ x2gM , where (M, gM) is a compact n-dimensional Riemannian manifold (without

boundary); we will call Z a cone. We consider the Friedrichs extension 1 of the Laplace operator on
compactly supported functions C∞0 (Z) to L2(Z , gZ ). Under the isometry

9 : L2(Z , dx2
+ gM)→ L2(Z , gZ ), f (x, p) 7→ x−n/2 f (x, p),

this Laplacian becomes

1̃ :=9−1
◦1 ◦9 =−

∂2

∂x2 +
1
x2

(
1M +

n
2

(n
2
− 1

))
.

Let {µk} be the eigenvalues of the Laplace operator 1M on L2(M), and define νk := ν(µk) as the positive
solution of ν2

k −
1
4 = (n/2)(n/2− 1)+µk . Let V be the set of these solutions and let {φν}ν∈V be the

corresponding orthonormal Hilbert space basis of L2(M) consisting of eigenfunctions of 1M such that
1Mφν(µ) = µφν(µ).

For a smooth function f (x, p)=
∑

ν∈V fν(x)φν(p) ∈ L2(Z), we obtain

9−1(1− λ2)9 f (x, p)=
∑
ν∈V

((Bν − λ2) fν)(x)φν(p),

where Bν is the Bessel operator defined in (5).
Let λ ∈ C with Im λ > 0; in particular, λ2 lies in the resolvent set of 1. Then the integral kernel of the

resolvent (1̃− λ2)−1 is given by

K ((x, p), (y, q), λ)=
∑
ν∈V

r (ν)(x, y)(λ)φν(q)⊗φν(p), (13)

where r (ν) is defined in (6). Recall from Lemma 7.1 that r (ν) is a z log z-Hahn-holomorphic function,

r (ν)(x, y)(λ)=
∑

γ∈S̃ν⊂R2

a(ν)γ (x, y)eγ (λ), e(α,β)(λ) := λα(−log λ)−β,

where S̃ν is the Hahn series support of r (ν). In this expansion, logarithmic terms occur only for ν ∈ N.
Take G ⊂ R2 to be the group generated by

⋃
ν

Sν for Sν :=
⋃

x,y∈(0,∞)
S̃ν(x, y). Then it is clear that the
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resolvent kernel is a Hahn series with support in G⊂ R2:

K ((x, p), (y, q), λ) :=
∑
ν∈V

r (ν)(x, y)(λ)φν(q)⊗φν(p)=
∑
ν∈V

∑
γ∈Sν

a(ν)γ (x, y)eγ (λ)φν(q)⊗φν(p)

=

∑
γ∈G

eγ (λ)
( ∑
ν∈V :γ∈Sν

a(ν)γ (x, y)φν(q)⊗φν(p)
)

=:

∑
γ∈G

ãγ ((x, p), (y, q))eγ (λ), (14)

where we have set ãγ = 0 if γ /∈
⋃
ν∈V Sν .

To show normal convergence of the operator-valued series defined by (14), we will make the additional
assumption that each ν ∈ V either is an integer, or is not “too close” to an integer in the following sense.

Definition 7.4. For κ > 0, a family of orders V ⊂ R≥0 is called κ-suitable if the set{
1

(2κ)ν sin(νπ)0(ν+ 1)

∣∣∣ ν ∈ V \N

}
(15)

is bounded.

Example 7.5. For M = Sn , n ≥ 1, the n-sphere equipped with the standard metric, it is well known (see,
for example, [Shubin 2001, Section 22]) that the eigenvalues of the Laplace operator on functions are
µk = k(k+ n− 1), k ∈ N0 with multiplicity

mk :=

(
n+ k

n

)
−

(
n+ k− 2

n

)
.

Then νk := ν(µk) := (n− 1)/2+ k is (half-)integral for odd (even) n and V = (ν0, ν1, . . . , ν1, ν2, . . .),
where each ν j appears m j times. For n ≥ 2, all ν(µk) are positive.

In Section 7A we defined a smooth cutoff function χ , which can be extended to a bounded operator χ
on L2((0,∞)×M, dx) by setting

χ( f )(x, p)= χ(x) f (x, p) for f ∈ C∞0 (Z), x ∈ (0,∞), p ∈ M,

and taking the closure.
Here is the main result of this section:

Theorem 7.6. Let c, σ, κ > 0 and assume that the family V = {ν} of orders is κ-suitable. Then the
restricted resolvent χc(1̃− λ

2)−1χc extends, as a function of λ, to a z log z-Hahn-meromorphic function
on some D[σ ]r with values in

K
(
L2(Z , eκ x2

dx ⊗ volM), L2(Z , e−κ x2
dx ⊗ volM)

)
, (16)

where the only term λα(−log λ)−β in its Hahn-series expansion with (α, β) < 0 that possibly has a
nonzero coefficient is the one with (α, β) = (0,−1), and its coefficient has finite rank. If V does not
contain ν = 0, then, in a (possibly smaller) neighborhood of zero, this function is Hahn-holomorphic.
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Proof. Let Aγ be the operator on L2(Z) defined by the “restricted kernel”

(χc ◦ ãγ )((x, q), (y, q)) := χc(x)ãγ ((x, p), (y, q))χc(y)

with ã from (14), so that
∑

γ∈G Aγ eγ (λ) is the Hahn series of the restricted resolvent.
As in (8), in the proof of Proposition 7.3, we can estimate

‖χc ◦ ã(ν)γ ‖ ≤ R−k(γ )C(ν, κ);

now instead of (7b) we choose R < cκ/4 and use∫
∞

c
x2ν+1e2Rx−κx2

dx ≤
∫
∞

c
x2ν+1e−(κ/2)x

2
dx ≤

0(ν+ 1)
2(κ/2)ν+1 . (17)

Because the family V is κ-suitable, the constants C(ν, κ) are bounded in ν. Thus the kernel Aγ defines a
Hilbert–Schmidt operator

Aγ : L2(Z , eκ x2
dx ⊗ volM)→ L2(Z , e−κ x2

dx ⊗ volM)

between weighted L2-spaces, with norm bounded by

‖Aγ ‖ ≤ ‖χc ◦ ãγ ‖ ≤ sup
ν:γ∈supp rν

‖χc ◦ a(ν)γ ‖ ≤ C

for all γ ∈
⋃
ν Sν .

Therefore the Hahn series
∑
γ∈G

Aγ eγ (λ) is normally convergent in D[σ ]δ for some δ > 0, provided that∑
γ∈S

‖eγ ‖δ <∞.

Due to Lemma 7.1, the support S is given by

S=
⋃
ν

supp rν = Sr ∪Si ⊂ R+× (−N0), (18)

where Si and Sr correspond to integer and noninteger real coefficients ν. Furthermore, elements in Si are
of the form (2sn+ 2`,−s) with ` ∈ N0, s ∈ {0, 1}, and those in Si have the form (2sν+ 2`, 0), ` ∈ N0,
s ∈ {0, 1} for ν noninteger.

For 0< |λ|< δ < 1 and ν ∈ V \N0,∑
γ∈Sr

|eγ (λ)| ≤
∑
`∈N0

|λ2`
| +

∑
ν

∑
`∈N0

|λ2`+2ν
| ≤

1
1− δ2

(
1+

∑
ν

|λ2ν
|

)
.

Now, from Weyl’s formula, we obtain that there exists an R > 0 such that
∑

ν∈V Rν <∞. This shows
that, for |λ|<min(δ,

√
R), the partial series

∑
γ∈Sr
|eγ (λ)| converges absolutely.

Finally, for ν = n ∈ N, we use |log λ||λ|2k
≤ Cσ |λ|2k−1 to estimate

∑
γ∈Si
|eγ (λ)| by the geometric

series.
Note that the only term that gives rise to a nonzero coefficient of eγ with γ < 0 is the order ν = 0. �
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Remark 7.7. From the proof of Theorem 7.6, it is clear that a similar statement holds if the weights in
(16) are replaced by e±κx1+ε

for any ε > 0.

For the Laplace operator on differential forms L2(Sn,3∗T ∗Sn), the eigenvalues µ are integers
(cf. [Ikeda and Taniguchi 1978, Theorem 4.2]), and the corresponding ν = ν(µk, p) are square roots of
integers. In this case we have:

Lemma 7.8. Any family V = (
√

qi )i with qi ∈ N0 is κ-suitable for every κ > 0.

Proof. First we show for n ∈ N0 and q with n2 < q < (n+ 1)2 that

min{
√

q − n, (n+ 1)−
√

q}>
1

2(n+ 1)
.

We then use |sin xπ |> 2|x | for 0< |x |< 1
2 to prove that, for ν =

√
q ,

1
(ν+ 1)|sin νπ |

< 1,
1

ν|sin νπ |
<

3
2
.

Together with Stirling’s formula for the asymptotics of 0(ν), this shows the boundedness of (15). �

Therefore Theorem 7.6 has a straightforward extension to differential forms. A similar statement can
be proven for the Laplacian acting on differential forms on (0,∞)× Pn(C), where Pn(C) is equipped
with the Fubini–Study metric. The eigenvalues for the Laplace operator on sections of 3pT ∗Pn(C) have
been computed in [Ikeda and Taniguchi 1978, Theorem 5.2], they are integers.

7C. The resolvent of the Laplace operator on compact perturbations of Rn or conic spaces. Set Z =
(0,∞)×M and let (Z , gZ ) be a cone as defined in the previous section. Let X be a Riemannian manifold
that is isometric to Z away from a compact set. This means that, for some a > 0, we can identify X with
X = Xa ∪Ma Za , where Za = [a,∞)×M , Ma = {a}×M , and Xa is a compact Riemannian manifold
with boundary Ma .

In this section we denote by10 the self-adjoint operator on the cone that is obtained from the Friedrichs
extension of the Laplace operator on C∞0 (Z). Let1 be the Laplace operator acting on compactly supported
functions on X , and let L be a formally self-adjoint first order differential operator that is compactly
supported in Xa for some a > 0. Then, of course P :=1+ L is of Laplace type and therefore essentially
self-adjoint on compactly supported smooth functions. We will denote its self-adjoint extension by the
same symbol P whenever there is no danger of confusion. It follows from standard results in perturbation
theory that the essential spectrum of P equals the essential spectrum of the Laplace operator on the cone,
namely, [0,∞). Moreover, it is well known that the distributional kernel of the resolvent (P − λ2)−1 has
a meromorphic continuation across the spectrum away from the point λ= 0. Now Theorem 4.1 allows us
to refine this statement and show that the resolvent kernel is Hahn-meromorphic at λ= 0 if this is true for
the (restricted) kernel of (10− λ

2)−1. The precise statement is formulated in the following theorem.

Theorem 7.9. Let a>0, κ >0 and suppose that, for some σ >0, the restricted resolvent χa(10−λ
2)−1χa

extends, as a function of λ, to a z log z-Hahn-meromorphic function on D[σ ]r with values in

K
(
L2(Z , eκx2

dx ⊗ volM), L2(Z , e−κx2
dx ⊗ volM)

)



HAHN-HOLOMORPHIC FUNCTIONS 767

for a group 0 ⊂ Z× Z, such that the range of the coefficients of eγ with γ < 0 of its Hahn series are
finite-rank operators with range contained in a fixed finite-dimensional subspace. Let 0̃ be the subgroup
of Z×Z generated by 0 and 2Z×{0}. Then (P − λ2)−1 has an extension, as a function of λ, to a z log z
Hahn-meromorphic function on D[σ ]r for the group 0̃ with values in

K
(
L2(X, w(x)volX ), L2(X, w(x)−1volX )

)
,

where w(x) is any positive function on X such that w(x) = eκx2
on Za . Moreover, in the Hahn series

expansion of this extension, the coefficients of eγ with γ < 0 are finite-rank operators.

Proof. The proof is identical to the standard proof that the meromorphic properties of the resolvent do
not change under compactly supported topological or metric perturbations. The only difference is that
we apply our Hahn-meromorphic Fredholm theorem. For the sake of completeness, we give the full
argument here. By assumption, we can choose b > a > 0 such that the operators 10 and P agree on
C∞0 (Za). Suppose ψ1, ψ2, φ1, φ2 are smooth functions on X such that suppφ1 ⊂ Xb and suppψ1 ⊂ Xa

and such that
ψ1+ψ2 = 1, ψ1φ1+ψ2φ2 = 1, dist( supp dφi , suppψi ) > 0.

Now denote by P0 the self-adjoint operator obtained from P by imposing Dirichlet boundary conditions
at Mb. Since P is an elliptic operator and the boundary conditions are elliptic, P0 has compact resolvent
and therefore Q1(3) := (P0 − λ

2)−1 is a meromorphic function with values in B(L2(Xb)) and the
residues of its poles are finite-rank operators. Let us denote by Q2(λ) the Hahn-meromorphic extension
of (10− λ

2)−1 that exists by assumption. Then

Q(λ) := φ1 Q1(λ)ψ1+φ2 Q2(λ)ψ2

is a Hahn-meromorphic family with values in

K
(
L2(X, w(x)volX ), L2(X, w(x)−1volX )

)
with respect to the group 0̃ and the coefficients of eγ with γ < 0 of its Hahn series are finite-rank operators
with range contained in a fixed finite-dimensional subspace. By construction, for λ ∈ D[σ ]r , Im λ > 0,

Q(λ)(P − λ2)= Id+ K (λ)

with
K (λ)= K1(λ)+ K2(λ), Ki (λ) := φi Qi (λ)(1ψi − 2∇gradψi ).

Since the integral kernels of Qi are smooth off the diagonal, the operator K (λ) is smoothing. Moreover,
its integral kernel has compact support in the second variable.

Given the previous remarks, since Q1(λ) is meromorphic and Q2(λ) is Hahn-meromorphic, K (λ) is a
Hahn-meromorphic family with values in K

(
L2(X, w(x)−1volX )

)
for the group 0̃, and the coefficients

of the eγ in its Hahn series, for γ < 0, are finite-rank operators with range contained in a fixed finite-
dimensional subspace. Furthermore, for λ= ir purely imaginary, one derives ‖Ki (ir)‖ ≤ c/r for r > 1.
Therefore, for a sufficiently large r , the operator Id+ K (ir) is invertible. By the meromorphic Fredholm
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theory and Theorem 4.1, (Id+ K (λ))−1 is a family of operators in K
(
L2(X, w(x)−1volX )

)
which is

meromorphic away from zero with finite-rank negative Laurent coefficients at its nonzero poles and
finite-rank coefficients of eγ with γ < 0. It is Hahn-meromorphic at zero for the group 0̃. Hence we have

(Id+ K (λ))−1 Q(λ)(P − λ2)= Id,

and (Id+ K (λ))−1 Q(λ) extends the resolvent of P to a Hahn-meromorphic function with the desired
properties, as claimed. �

Combining Theorems 7.6 and 7.9, we obtain:

Corollary 7.10. Let M be a Riemannian manifold that is isometric to Rn
\BR , n ≥ 2, outside a compact

set for some sufficiently large R> 0. Let P be a compactly supported perturbation of the Laplace operator
in the sense of Theorem 7.9, and let w(x) be as in that theorem. Then the resolvent λ 7→ (P − λ2)−1, as a
map

{Im λ > 0} → K
(
L2(X, w(x)volX ), L2(X, w(x)−1volX )

)
,

has a continuation to a function in λ that is z log z-Hahn-meromorphic for the group Z×Z.

When n is odd, from Example 7.5 we conclude that 0 = Z× {0}. In this case, Theorem 7.9 and its
corollary are well known and follow from the usual meromorphic Fredholm theorem. Similar convergent
expansions in the case of two-dimensional potential scattering with suitable decay at infinity were obtained
in [Bollé et al. 1988]. For example, in [Bollé et al. 1988, Theorem 3.3], it was shown by more direct
methods that the transition operator T (k) in L2(R2) has a convergent expansion in powers of k and log k.

Remark 7.11. Set Z = [1,∞)× N . Let X be a Riemannian manifold with an end isometric to(
Z , dx2

+ x−2agN ), a > 0,

for some closed Riemannian manifold (N , gN ). The spectral theory of the Laplace operator on X is
examined in detail in [Hunsicker et al. 2014]. There the authors show that the spectral decomposition of
the Laplace operator on differential forms on Z can also be described with the Weber transform. The
same arguments as in Section 7A together with the proof of Theorem 7.9 then implies that the resolvent
of the Laplace operator on X is z log z-Hahn-meromorphic, provided that the eigenvalues of the Laplace
operator on N lead to suitable ν.

Remark 7.12. Our method may also be applied to noncompactly supported perturbations of the Laplace
operator on Rn , such as for example potential perturbations that have a suitable decay rate at infinity.
This is in line with the well-known result in the odd-dimensional case that uniform exponential decay
of the potential at infinity guarantees the existence of an analytic continuation of the resolvent into a
neighborhood of the spectrum.

References

[Bollé et al. 1988] D. Bollé, F. Gesztesy, and C. Danneels, “Threshold scattering in two dimensions”, Ann. Inst. H. Poincaré
Phys. Théor. 48:2 (1988), 175–204. MR 89k:81184 Zbl 0696.35040

http://www.numdam.org/item?id=AIHPB_1988__48_2_175_0
http://msp.org/idx/mr/89k:81184
http://msp.org/idx/zbl/0696.35040


HAHN-HOLOMORPHIC FUNCTIONS 769

[Brüning and Seeley 1987] J. Brüning and R. Seeley, “The resolvent expansion for second order regular singular operators”, J.
Funct. Anal. 73:2 (1987), 369–429. MR 88g:35151 Zbl 0625.47040

[Gil et al. 2011] J. B. Gil, T. Krainer, and G. A. Mendoza, “Dynamics on Grassmannians and resolvents of cone operators”,
Anal. PDE 4:1 (2011), 115–148. MR 2012d:58040 Zbl 1228.58015

[Guillarmou 2005] C. Guillarmou, “Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds”, Duke
Math. J. 129:1 (2005), 1–37. MR 2006k:58051 Zbl 1099.58011

[Guillarmou and Hassell 2009] C. Guillarmou and A. Hassell, “Resolvent at low energy and Riesz transform for Schrödinger
operators on asymptotically conic manifolds, II”, Ann. Inst. Fourier (Grenoble) 59:4 (2009), 1553–1610. MR 2011d:58073
Zbl 1175.58011

[Guillarmou and Mazzeo 2012] C. Guillarmou and R. Mazzeo, “Resolvent of the Laplacian on geometrically finite hyperbolic
manifolds”, Invent. Math. 187:1 (2012), 99–144. MR 2874936 Zbl 1252.58015

[Guillopé 1989] L. Guillopé, “Théorie spectrale de quelques variétés à bouts”, Ann. Sci. École Norm. Sup. (4) 22:1 (1989),
137–160. MR 90g:58136 Zbl 0682.58049

[Hahn 1907] H. Hahn, “Über die nicht-archimedischen Größensysteme”, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. 116
(1907), 601–655. Reprinted as 445–499 in his Collected works, vol. I, edited by L. Schmetterer and K. Sigmund, Springer,
Vienna, 1995. MR 96j:01046 Zbl 0859.01030

[Hunsicker et al. 2014] E. Hunsicker, N. Roidos, and A. Strohmaier, “Scattering theory of the p-form Laplacian on manifolds
with generalized cusps”, J. Spectr. Theory 4:1 (2014), 177–209. MR 3181390

[Ikeda and Taniguchi 1978] A. Ikeda and Y. Taniguchi, “Spectra and eigenforms of the Laplacian on Sn and Pn(C)”, Osaka J.
Math. 15:3 (1978), 515–546. MR 80b:53037 Zbl 0392.53033

[Jensen and Kato 1979] A. Jensen and T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave
functions”, Duke Math. J. 46:3 (1979), 583–611. MR 81b:35079 Zbl 0448.35080

[Jensen and Nenciu 2001] A. Jensen and G. Nenciu, “A unified approach to resolvent expansions at thresholds”, Rev. Math.
Phys. 13:6 (2001), 717–754. MR 2002e:81031 Zbl 1029.81067

[Mazzeo and Melrose 1987] R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the resolvent on complete spaces
with asymptotically constant negative curvature”, J. Funct. Anal. 75:2 (1987), 260–310. MR 89c:58133 Zbl 0636.58034

[Mazzeo and Vasy 2005] R. Mazzeo and A. Vasy, “Analytic continuation of the resolvent of the Laplacian on symmetric spaces
of noncompact type”, J. Funct. Anal. 228:2 (2005), 311–368. MR 2006m:58047 Zbl 1082.58029

[Melrose 1993] R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics 4, A K Peters,
Wellesley, MA, 1993. MR 96g:58180 Zbl 0796.58050

[Müller 1987] W. Müller, Manifolds with cusps of rank one: Spectral theory and L2-index theorem, Lecture Notes in Mathematics
1244, Springer, Berlin, 1987. MR 89g:58196 Zbl 0632.58001

[Müller 2011] J. Müller, “A Hodge-type theorem for manifolds with fibered cusp metrics”, Geom. Funct. Anal. 21:2 (2011),
443–482. MR 2012f:58070 Zbl 1223.58004

[Müller and Strohmaier 2010] W. Müller and A. Strohmaier, “Scattering at low energies on manifolds with cylindrical ends and
stable systoles”, Geom. Funct. Anal. 20:3 (2010), 741–778. MR 2011h:58050 Zbl 1207.58025

[Murata 1982] M. Murata, “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal. 49:1
(1982), 10–56. MR 85d:35019 Zbl 0499.35019

[Olver and Maximon 2011] F. W. J. Olver and L. C. Maximon, “Bessel functions”, Digital Library of Mathematical Functions,
2011, Available at http://dlmf.nist.gov/10.

[Passman 1977] D. S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977. MR 81d:16001
Zbl 0368.16003

[Reed and Simon 1980] M. Reed and B. Simon, Methods of modern mathematical physics, I: Functional analysis, 2nd ed.,
Academic Press, New York, 1980. MR 85e:46002 Zbl 0459.46001

[Ribenboim 1992] P. Ribenboim, “Fields: Algebraically closed and others”, Manuscripta Math. 75:2 (1992), 115–150.
MR 93f:13014 Zbl 0767.12001

http://dx.doi.org/10.1016/0022-1236(87)90073-5
http://msp.org/idx/mr/88g:35151
http://msp.org/idx/zbl/0625.47040
http://dx.doi.org/10.2140/apde.2011.4.115
http://msp.org/idx/mr/2012d:58040
http://msp.org/idx/zbl/1228.58015
http://dx.doi.org/10.1215/S0012-7094-04-12911-2
http://msp.org/idx/mr/2006k:58051
http://msp.org/idx/zbl/1099.58011
http://dx.doi.org/10.5802/aif.2471
http://dx.doi.org/10.5802/aif.2471
http://msp.org/idx/mr/2011d:58073
http://msp.org/idx/zbl/1175.58011
http://dx.doi.org/10.1007/s00222-011-0330-y
http://dx.doi.org/10.1007/s00222-011-0330-y
http://msp.org/idx/mr/2874936
http://msp.org/idx/zbl/1252.58015
http://www.numdam.org/item?id=ASENS_1989_4_22_1_137_0
http://msp.org/idx/mr/90g:58136
http://msp.org/idx/zbl/0682.58049
http://dx.doi.org/10.1007/978-3-7091-6601-7_18
http://msp.org/idx/mr/96j:01046
http://msp.org/idx/zbl/0859.01030
http://dx.doi.org/10.4171/JST/66
http://dx.doi.org/10.4171/JST/66
http://msp.org/idx/mr/3181390
http://projecteuclid.org/euclid.ojm/1200771570
http://msp.org/idx/mr/80b:53037
http://msp.org/idx/zbl/0392.53033
http://dx.doi.org/10.1215/S0012-7094-79-04631-3
http://dx.doi.org/10.1215/S0012-7094-79-04631-3
http://msp.org/idx/mr/81b:35079
http://msp.org/idx/zbl/0448.35080
http://dx.doi.org/10.1142/S0129055X01000843
http://msp.org/idx/mr/2002e:81031
http://msp.org/idx/zbl/1029.81067
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://msp.org/idx/mr/89c:58133
http://msp.org/idx/zbl/0636.58034
http://dx.doi.org/10.1016/j.jfa.2004.10.003
http://dx.doi.org/10.1016/j.jfa.2004.10.003
http://msp.org/idx/mr/2006m:58047
http://msp.org/idx/zbl/1082.58029
http://msp.org/idx/mr/96g:58180
http://msp.org/idx/zbl/0796.58050
http://dx.doi.org/10.1007/BFb0077660
http://msp.org/idx/mr/89g:58196
http://msp.org/idx/zbl/0632.58001
http://dx.doi.org/10.1007/s00039-011-0115-x
http://msp.org/idx/mr/2012f:58070
http://msp.org/idx/zbl/1223.58004
http://dx.doi.org/10.1007/s00039-010-0079-2
http://dx.doi.org/10.1007/s00039-010-0079-2
http://msp.org/idx/mr/2011h:58050
http://msp.org/idx/zbl/1207.58025
http://dx.doi.org/10.1016/0022-1236(82)90084-2
http://msp.org/idx/mr/85d:35019
http://msp.org/idx/zbl/0499.35019
http://dlmf.nist.gov/10
http://msp.org/idx/mr/81d:16001
http://msp.org/idx/zbl/0368.16003
http://msp.org/idx/mr/85e:46002
http://msp.org/idx/zbl/0459.46001
http://dx.doi.org/10.1007/BF02567077
http://msp.org/idx/mr/93f:13014
http://msp.org/idx/zbl/0767.12001


770 JÖRN MÜLLER AND ALEXANDER STROHMAIER

[Shubin 2001] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer, Berlin, 2001. MR 2002d:47073
Zbl 0980.35180

[Strohmaier 2005] A. Strohmaier, “Analytic continuation of resolvent kernels on noncompact symmetric spaces”, Math. Z. 250:2
(2005), 411–425. MR 2006g:58060 Zbl 1081.58027

Received 3 Sep 2013. Revised 22 Nov 2013. Accepted 22 Dec 2013.

JÖRN MÜLLER: jmueller@math.hu-berlin.de
Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

ALEXANDER STROHMAIER: a.strohmaier@lboro.ac.uk
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-3-642-56579-3
http://msp.org/idx/mr/2002d:47073
http://msp.org/idx/zbl/0980.35180
http://dx.doi.org/10.1007/s00209-004-0760-y
http://msp.org/idx/mr/2006g:58060
http://msp.org/idx/zbl/1081.58027
mailto:jmueller@math.hu-berlin.de
mailto:a.strohmaier@lboro.ac.uk
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

László Lempert Purdue University, USA
lempert@math.purdue.edu

Richard B. Melrose Massachussets Institute of Technology, USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Yuval Peres University of California, Berkeley, USA
peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2014 is US $180/year for the electronic version, and $355/year (+$50, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:zworski@math.berkeley.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 7 No. 3 2014

529Prescription du spectre de Steklov dans une classe conforme
PIERRE JAMMES

551Semilinear geometric optics with boundary amplification
JEAN-FRANCOIS COULOMBEL, OLIVIER GUÈS and MARK WILLIAMS

627The 1-harmonic flow with values in a hyperoctant of the N -sphere
LORENZO GIACOMELLI, JOSE M. MAZÓN and SALVADOR MOLL

673Decomposition rank of Z-stable C∗-algebras
AARON TIKUISIS and WILHELM WINTER

701Scattering for a massless critical nonlinear wave equation in two space dimensions
MARTIN SACK

717Large-time blowup for a perturbation of the cubic Szegő equation
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