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THE CUNTZ SEMIGROUP AND STABILITY OF CLOSE C∗-ALGEBRAS

FRANCESC PERERA, ANDREW TOMS, STUART WHITE AND WILHELM WINTER

We prove that separable C∗-algebras which are completely close in a natural uniform sense have iso-
morphic Cuntz semigroups, continuing a line of research developed by Kadison–Kastler, Christensen,
and Khoshkam. This result has several applications: we are able to prove that the property of stability is
preserved by close C∗-algebras provided that one algebra has stable rank one; close C∗-algebras must
have affinely homeomorphic spaces of lower-semicontinuous quasitraces; strict comparison is preserved
by sufficient closeness of C∗-algebras. We also examine C∗-algebras which have a positive answer to
Kadison’s Similarity Problem, as these algebras are completely close whenever they are close. A sample
consequence is that sufficiently close C∗-algebras have isomorphic Cuntz semigroups when one algebra
absorbs the Jiang–Su algebra tensorially.

1. Introduction

Kadison and Kastler [1972] introduced a metric d on the C∗-subalgebras of a given C∗-algebra by
equipping the unit balls of the subalgebras with the Hausdorff metric (in norm). They conjectured
that sufficiently close C∗-subalgebras of B(H) should be isomorphic, and this conjecture was recently
established by Christensen et al. [2012] when one C∗-algebra is separable and nuclear. The one-sided
version of this result—that a sufficiently close near inclusion of a nuclear separable C∗-algebra into
another C∗-algebra gives rise to a true inclusion—was later proved by Hirshberg, Kirchberg, and White
[Hirshberg et al. 2012]. These results and others (see [Christensen et al. 2010; Cameron et al. 2012])
have given new momentum to the perturbation theory of operator algebras.

The foundational paper [Kadison and Kastler 1972] was concerned with structural properties of close
algebras, showing that the type decomposition of a von Neumann algebra transfers to nearby algebras.
We continue this theme here asking “Which properties or invariants of C∗-algebras are preserved by
small perturbations?” With the proof of the Kadison–Kastler conjecture, the answer for nuclear separable
C∗-algebras is “all of them”. Here we consider general separable C∗-algebras where already, there are
some results. Sufficiently close C∗-algebras have isomorphic lattices of ideals [Phillips 1973/74] and
algebras whose stabilisations are sufficiently close have isomorphic K-theories [Kirchberg 1996]. This was
extended to the Elliott invariant consisting of K-theory, traces, and their natural pairing, in [Christensen
et al. 2010]. A natural next step is to consider the Cuntz semigroup of (equivalence classes of) positive
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elements (in the stabilisation) of a C∗-algebra, due both to its exceptional sensitivity in determining
non-isomorphism [Toms 2008], classification results using the semigroup [Robert 2012] and the host of
C∗-algebraic properties that can be formulated as order-theoretic properties of the semigroup; for example
there is strong evidence to suggest that the behaviour of the Cuntz semigroup characterises important
algebraic regularity properties of simple separable nuclear C∗-algebras [Matui and Sato 2012; Winter
2010; 2012]. We prove that algebras whose stabilisations are sufficiently close do indeed have isomorphic
Cuntz semigroups, a surprising fact given the sensitivity of a Cuntz class to perturbations of its representing
positive element. This is in stark contrast with the case of Murray–von Neumann equivalence classes of
projections, where classes are stable under perturbations of the representing projection of size strictly less
than one. The bridge between these two situations is that we can arrange for the representing positive
element of a Cuntz class to be almost a projection in trace. We exploit this fact through the introduction
of what we call very rapidly increasing sequences of positive contractions, increasing sequences where
each element almost acts as a unit on its predecessor.

The Kadison–Kastler metric d is equivalent to a complete version dcb (given by applying d to the
stabilisations) if and only if Kadison’s Similarity Problem has a positive solution [Christensen et al.
2010; Cameron et al. 2013]; the latter is known to hold in considerable generality, for instance in the
case of Z-stable algebras [Johanesová and Winter 2012]. We show how this result, and a number of
other similarity results for C∗-algebras, can be put in a common framework using Christensen’s [1977]
property Dk and, building on [Christensen et al. 2010], make a more careful study of automatic complete
closeness and its relation to property Dk . We prove that if an algebra A has Dk for some k, then
d(A⊗K, B⊗K)≤ C(k)d(A, B), where C(k) is a constant independent of A and B; as a consequence,
sufficiently close C∗-algebras have isomorphic Cuntz semigroups provided one algebra is Z-stable.

Stability is perhaps the most basic property one could study in perturbation theory, yet proving its
permanence under small perturbations has seen very little progress. We take a significant step here by
proving that stability is indeed preserved if one of the algebras considered has stable rank one. The proof
is an application of our permanence result for the Cuntz semigroup. Another application is our proof
that stably close C∗-algebras have affinely homeomorphic spaces of lower semicontinuous 2-quasitraces.
This extends and improves results from [Christensen et al. 2010], showing that the affine isomorphism
between the trace spaces of stably close C∗-algebras obtained there is weak∗-weak∗-continuous.

The paper is organized as follows: Section 2 contains the preliminaries on the Cuntz semigroup and the
Kadison–Kastler metric; Section 3 establishes the permanence of the Cuntz semigroup under complete
closeness; Section 4 discusses property Dk and proves our permanence result for stability; Section 5
proves permanence for quasitraces.

2. Preliminaries

Throughout the paper we write A+ for the positive elements of a C∗-algebra A, A1 for the unit ball of A
and A+1 for the positive contractions in A.

In the next two subsections we review the definition and basic properties of the Cuntz semigroup. A
complete account can be found in the survey [Ara et al. 2011].
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The Cuntz semigroup. Let A be a C∗-algebra. Let us consider on (A ⊗ K)+ the relation a - b if
vnbv∗n → a for some sequence (vn) in A⊗K. Let us write a ∼ b if a - b and b - a. In this case we say
that a is Cuntz equivalent to b. Let Cu(A) denote the set (A⊗K)+/∼ of Cuntz equivalence classes. We
use 〈a〉 to denote the class of a in Cu(A). It is clear that 〈a〉 ≤ 〈b〉 ⇔ a - b defines an order on Cu(A).
We also endow Cu(A) with an addition operation by setting 〈a〉+ 〈b〉 := 〈a′+ b′〉, where a′ and b′ are
orthogonal and Cuntz equivalent to a and b respectively (the choice of a′ and b′ does not affect the Cuntz
class of their sum). The semigroup W (A) is then the subsemigroup of Cu(A) of Cuntz classes with a
representative in

⋃
n Mn(A)+.

Alternatively, Cu(A) can be defined to consist of equivalence classes of countably generated Hilbert
modules over A [Coward et al. 2008]. The equivalence relation boils down to isomorphism in the case
that A has stable rank one, but is rather more complicated in general and as we do not require the precise
definition of this relation in the sequel, we omit it. We note, however, that the identification of these two
approaches to Cu(A) is achieved by associating the element 〈a〉 to the class of the Hilbert module a`2(A).

The category Cu. The semigroup Cu(A) is an object in a category of ordered Abelian monoids denoted
by Cu introduced in [Coward et al. 2008] with additional properties. Before stating them, we require the
notion of order-theoretic compact containment. Let T be a preordered set with x, y ∈ T . We say that x is
compactly contained in y, denoted by x � y, if for any increasing sequence (yn) in T with supremum y,
we have x ≤ yn0 for some n0 ∈ N. An object S of Cu enjoys the following properties (see [Coward et al.
2008; Ara et al. 2011]), which we use repeatedly in the sequel. In particular the existence of suprema
in property P3 is a crucial in our construction of a map between the Cuntz semigroups of stably close
C∗-algebras.

P1. S contains a zero element.

P2. The order on S is compatible with addition: x1+ x2 ≤ y1+ y2 whenever xi ≤ yi , i ∈ {1, 2}.

P3. Every countable upward directed set in S has a supremum.

P4. For each x ∈ S, the set x� = {y ∈ S | y� x} is upward directed with respect to both ≤ and�, and
contains a sequence (xn) such that xn � xn+1 for every n ∈ N and supn xn = x .

P5. The operation of passing to the supremum of a countable upward directed set and the relation� are
compatible with addition: if S1 and S2 are countable upward directed sets in S, then S1+S2 is upward
directed and sup(S1+ S2)= sup S1+ sup S2, and if xi � yi for i ∈ {1, 2}, then x1+ x2� y1+ y2.

We say that a sequence (xn) in S ∈ Cu is rapidly increasing if xn � xn+1 for all n. We take the scale
6(Cu(A)) to be the subset of Cu(A) obtained as supremums of increasing sequences from A+.

For objects S and T from Cu, the map φ : S→ T is a morphism in the category Cu if

M1. φ is order-preserving;

M2. φ is additive and maps 0 to 0;

M3. φ preserves the suprema of increasing sequences;

M4. φ preserves the relation�.
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The Kadison–Kastler metric. Let us recall the definition of the metric on the collection of all C∗-
subalgebras of a C∗-algebra introduced in [Kadison and Kastler 1972].

Definition 2.1. Let A, B be C∗-subalgebras of a C∗-algebra C . Define a metric d on all such pairs as
follows: d(A, B) < γ if and only if for each x in the unit ball of A or B, there is y in the unit ball of the
other algebra such that ‖x − y‖< γ .

In this definition, we typically take C = B(H) for a Hilbert space H. The complete, or stabilised,
version of the Kadison–Kastler metric is defined by dcb(A, B)= d(A⊗K, B⊗K) inside C ⊗K (here K

is the C∗-algebra of compact operators on `2(N)); the notion dcb is used for this metric as dcb(A, B)≤ γ
is equivalent to the condition that d(Mn(A),Mn(B))≤ γ for every n.

We repeatedly use the standard fact that if d(A, B) < γ , then given a positive contraction a ∈ A+1 , there
exists a positive contraction b ∈ B+1 with ‖a− b‖< 2α. One way of seeing this is to use the hypothesis
d(A, B) < γ to approximate a1/2 by some c ∈ B1 with ‖a1/2

− c‖< γ . Then take b = cc∗ so that

‖a− b‖ ≤ ‖a1/2(a1/2
− c)‖+‖(a1/2

− c∗)c‖< 2γ.

There is also a one-sided version of closeness introduced by Christensen [1980], which is referred to
as a γ -near inclusion:

Definition 2.2. Let A, B be C∗-subalgebras of a C∗-algebra C and let γ > 0. Write A ⊆γ B if for every
x in the unit ball of B, there is y ∈ B such that ‖x − y‖ ≤ γ (note that y need not be in the unit ball of
B). Write A ⊂γ B if there exists γ ′ < γ with A ⊆γ ′ B. As with the Kadison–Kastler metric, we also
use complete, or stabilised, near inclusions: write A ⊆cb,γ B when A⊗Mn ⊆γ B ⊗Mn for all n, and
A ⊂cb,γ B when there exists γ ′ < γ with A ⊆cb,γ ′ B.

3. Very rapidly increasing sequences and the Cuntz semigroup

We start by noting that, for close C∗-algebras of real rank zero, an isomorphism between their Cuntz
semigroups can be deduced from existing results in the literature. For a C∗-algebra A, let V (A) be the
Murray and von Neumann semigroup of equivalence classes of projections in

⋃
∞

n=1 A⊗Mn and write
6(V (A))= {[p] ∈ V (A) | p= p2

= p∗ ∈ A}. This is a local semigroup in the sense that if p, q , p′ and q ′

are projections in A with p′q ′ = 0 and p ∼ p′, q ∼ q ′, then [p] + [q] = [p′ + q ′] ∈ 6(V (A)). Recall
that, if A has real rank zero, then the work of Zhang [1990] shows that V (A) has the Riesz refinement
property. By definition, this means that whenever x1, . . . , xn, y1, . . . , ym ∈ V (A) satisfy

∑
i xi =

∑
j y j ,

then there exist zi, j ∈ V (A) with
∑

j zi, j = xi and
∑

i zi, j = y j for each i, j . The case m = n = 2 of this
can be found as [Ara and Pardo 1996, Lemma 2.3], and the same proof works in general.

The Cuntz semigroup of a C∗-algebra of real rank zero is completely determined by its semigroup of
projections (see [Perera 1997] when A additionally has stable rank one and [Antoine et al. 2011] for the
general case). We briefly recall how this is done. An interval in V (A) is a nonempty, order hereditary and
upward directed subset I of V (A), which is said to be countably generated provided there is an increasing
sequence (xn) in V (A) such that I = {x ∈ V (A) | x ≤ xn for some n}. The set of countably generated
intervals is denoted by 3σ (V (A)), and it has a natural semigroup structure. Namely, if I and J have
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generating sequences (xn) and (yn) respectively, then I + J is the interval generated by (xn+ yn). Given a
positive element a in A⊗K in a σ -unital C∗-algebra of real rank zero A, put I (a)= {[p] ∈ V (A) | p- a}.
The correspondence [a] 7→ I (a) defines an ordered semigroup isomorphism Cu(A)∼=3σ (V (A)).

Theorem 3.1. Let A and B be σ -unital C∗-subalgebras of a C∗-algebra C , with d(A, B) < 1/8. If A
has real rank zero, then B also has real rank zero and Cu(A)∼= Cu(B).

Proof. That B has real rank zero follows from [Christensen et al. 2010, Theorem 6.3]. We know
from [Phillips and Raeburn 1979, Theorem 2.6] that there is an isomorphism of local semigroups
81 : 6(V (A)) → 6(V (B)) (with inverse, say, 91). This is defined as 81[p] = [q], where q is a
projection in B such that ‖p− q‖ < 1/8. Given p ∈ Mn(A), by [Zhang 1990, Theorem 3.2] we can
find projections {pi }i=1,...,n in A such that [p] =

∑
i [pi ]. Now extend 81 to 8 : V (A)→ V (B) by

8([p])=
∑

i 81([pi ]). Let us check that 8 is well defined. If [p] =
∑

i [pi ] =
∑

j [q j ] for projections pi

and q j in A, then use refinement to find elements ai j ∈ V (A) such that [pi ] =
∑

j ai j and [q j ] =
∑

i ai j .
We may also clearly choose projections zi j , z′i j ∈ A such that ai j = [zi j ] = [z′i j ], and such that zi j ⊥ zik if
j 6= k, and z′i j ⊥ z′l j if i 6= l. Then∑

81([pi ])=
∑

i

∑
j

81([zi j ])=
∑

i

∑
j

81([z′i j ])=
∑

j

∑
i

81([z′i j ])=
∑

j

81([q j ]).

Clearly 8 is additive and 8|6(V (A)) =81. Using 91, we construct an additive map 9 : V (B)→ V (A),
with 9|6(V (B))=91. Since 91◦81= id6(V (A)), it follows that 9 ◦8= idV (A). Similarly 8◦9 = idV (B).

Since Cu(A)∼=3σ (V (A)) and Cu(B)∼=3σ (V (B)), it follows that Cu(A) is isomorphic to Cu(B). �

We turn now to very rapidly increasing sequences. These provide the key tool we use to transfer
information between close algebras at the level of the Cuntz semigroup.

Definition 3.2. Let A be a C∗-algebra. We say that a rapidly increasing sequence (an)
∞

n=1 in A+1 is very
rapidly increasing if given ε > 0 and n ∈N, there exists m0 ∈N such that for m ≥m0, there exists v ∈ A1

with ‖(vamv
∗)an − an‖< ε. Say that a very rapidly increasing sequence (an)

∞

n=1 in (A⊗K)1
+

represents
x ∈ Cu(A) if supn〈an〉 = x .

The following two functions are used in the sequel to manipulate very rapidly increasing sequences.
Given a∈ A+ and ε>0, write (a−ε)+ for hε(a), where hε is the continuous function hε(t)=max(0, t−ε).
For 0≤ β < γ , let gβ,γ be the piecewise linear function on R given by

gβ,γ (t)=


0 if t ≤ β,
t−β
γ−β

if β < t < γ,

1 if t ≥ γ.

(3-1)

With this notation, the standard example of a very rapidly increasing sequence is given by

(g2−(n+1),2−n (a))∞n=1 for a ∈ A+1 .
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This sequence represents 〈a〉. In this way every element of the Cuntz semigroup of A is represented by a
very rapidly increasing sequence from (A⊗K)+1 . In the next few lemmas we develop properties of very
rapidly increasing sequences, starting with a technical observation.

Lemma 3.3. Let A be a C∗-algebra and let a, b ∈ A+1 and v ∈ A1 satisfy ‖v∗bva−a‖≤ δ for some δ > 0.
Suppose that 0< β < 1 and γ ≥ 0 satisfy γ + δβ−1 < 1, then 〈(a−β)+〉 ≤ 〈(b− γ )+〉 in Cu(A).

Proof. Let p ∈ A∗∗ denote the spectral projection of a for the interval [β, 1]. When p = 0, then
(a − β)+ = 0 and the result is trivial, so we may assume that p 6= 0. Then ap is invertible in p A∗∗ p
with inverse x satisfying ‖x‖ ≤ β−1. Compressing (v∗bva − a) by p and multiplying by x , we have
‖pv∗bvp− p‖ ≤ δβ−1. Thus

‖pv∗(b− γ )+vp− p‖ ≤ ‖(b− γ )+− b‖+‖pv∗bvp− p‖ ≤ γ + δβ−1,

and so
pv∗(b− γ )+vp ≥ (1− (γ + δβ−1))p.

As p acts as a unit on (a−β)+, we have

(a−β)+ = (a−β)
1/2
+ p(a−β)1/2+

≤ (1− (γ + δβ−1))−1(a−β)1/2+ pv∗(b− γ )+vp(a−β)1/2+

= (1− (γ + δβ−1))−1(a−β)1/2+ v∗(b− γ )+v(a−β)
1/2
+ .

Thus (a−β)+ - (b− γ )+. �

The next lemma encapsulates the fact that the element of the Cuntz semigroup represented by a very
rapidly increasing sequence (an)

∞

n=1 of contractions depends only on the behaviour of parts of the an with
spectrum near 1.

Lemma 3.4. Let (an)
∞

n=1 be a very rapidly increasing sequence in A+1 . Then for each λ < 1, the sequence
(〈(an − λ)+〉)

∞

n=1 has the property that for each n ∈ N, there is m0 ∈ N such that, for m ≥ m0, we have
〈(an − λ)+〉 � 〈(am − λ)+〉. Furthermore,

sup
n
〈(an − λ)+〉 = sup

n
〈an〉. (3-2)

Proof. Fix n ∈ N and 0 < ε < λ and take 0 < δ small enough that λ+ ε−1δ < 1. As (an)
∞

n=1 is very
rapidly increasing, there exists m0 such that for m ≥ m0, there exists v ∈ A1 with ‖(v∗amv)an − an‖< δ.
Lemma 3.3 gives

〈(an − ε)+〉 ≤ 〈(am − λ)+〉,

so that 〈(an−λ)+〉� 〈am−λ)+〉, as ε < λ. This shows that (〈(ar −λ)+〉)
∞

r=1 is upward directed and that

〈(an − δ)+〉 ≤ sup
r
〈(ar − λ)+〉,

for all n and all ε > 0, from which (3-2) follows. �
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We can modify elements sufficiently far down a very rapidly increasing sequences with contractions so
that they almost act as units for positive contractions dominated in the Cuntz semigroup by the sequence.

Lemma 3.5. Let A be a C∗-algebra.

(1) Suppose that a, b ∈ A+1 satisfy a - b. Then for all ε > 0, there exists v ∈ A with ‖v∗bva− a‖ ≤ ε
and ‖v∗bv‖ ≤ 1.

(2) Let (an)
∞

n=1 be a very rapidly increasing sequence in A+1 and suppose a ∈ A+1 satisfies 〈a〉� sup〈an〉.
Then, for every ε > 0, there exists m0 ∈ N such that, for m ≥ m0, there exists v ∈ A1 with
‖(v∗amv)a− a‖< ε.

Proof. (1). Fix ε > 0 and find r > 0 so that ‖a1+r
− a‖ ≤ ε/2. Now ar - b, so there exists w ∈ A with

‖ar
−w∗bw‖ ≤ ε/4. Thus ‖w∗bw‖ ≤ 1+ ε/4, and so, writing v = (1+ ε/4)−1/2w, we have ‖v∗bv‖ ≤ 1

and ‖w∗bw− v∗bv‖ ≤ ε/4. As such ‖ar
− v∗bv‖ ≤ ε/2 and so

‖v∗bva− a‖ ≤ ‖v∗bv− ar
‖‖a‖+‖a1+r

− a‖ ≤ ε
2
+
ε

2
= ε,

as claimed.

(2) As 〈a〉� sup〈an〉, there exists some m1 ∈N with a- am1 ∼ a2
m1

. Fix ε > 0 and by part (1), find w ∈ A
with ‖(w∗a2

m1
w)a−a‖< ε/2 and ‖w∗a2

m1
w‖≤ 1. Now set ε′= ε/(2‖w‖) and, as (an)

∞

n=1 is very rapidly
increasing, find some m0 > m1 such that for m ≥ m0 there exists t ∈ A1 with ‖(t∗am t)am1 − am1‖ ≤ ε

′.
Given such m and t , we have

‖(w∗am1 t∗am tam1w)a− a‖ ≤ ‖w∗am1‖‖(t
∗am t)am1 − am1‖‖w‖‖a‖+‖(w

∗a2
m1
w)a− a‖

≤ ‖w‖ε′+ 1
2ε = ε,

as ‖w∗am1‖ ≤ 1. Thus we can take v = tam1w ∈ A1. �

It follows immediately from part (2) above that two very rapidly increasing sequences representing the
same element of the Cuntz semigroup can be intertwined to a single very rapidly increasing sequence.

Proposition 3.6. Let (an)
∞

n=1, (a
′
n)
∞

n=1 be very rapidly increasing sequences in a C∗-algebra A representing
the same element x ∈ Cu(A). Then these sequences can be intertwined after telescoping to form a very
rapidly increasing sequence which also represents x , i.e., there exists m1 < m2 < · · · and n1 < n2 < · · ·

such that (am1, a′n1
, am2, a′n2

, . . .) is a very rapidly increasing sequence.

Given a rapidly increasing sequence in A+1 , we can use the functions gβ,γ from (3-1) to push the
spectrum of the elements of the sequence out to 1 and extract a very rapidly increasing sequence
representing the same element of the Cuntz semigroup.

Lemma 3.7. Let A be a C∗-algebra and (an)
∞

n=1 be a rapidly increasing sequence in A+1 . There exists a
sequence (mn)

∞

n=1 in N such that the sequence (g2−(mn+1),2−mn (an))
∞

n=1 is very rapidly increasing and

sup
n
〈g2−(mn+1),2−mn (an)〉 = sup

n
〈an〉.

In particular, every element of the scale6(Cu(A)) can be expressed as a very rapidly increasing sequence
of elements from A+1 .
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Proof. We will construct the mn so that an−1 - g2−(mn+1),2−mn (an) and for each 1 ≤ r < n, there exists
v ∈ A1 with

‖(v∗g2−(mn+1),2−mn (an)v)g2−(mr+1),2−mr (ar )− g2−(mr+1),2−mr (ar )‖< 2−n.

Fix n∈N and suppose m1, . . . ,mn−1 have been constructed with these properties. As (g2−(m+1),2−m (an))
∞

m=1
is a very rapidly increasing sequence representing 〈an〉, and 〈an−1〉 � 〈an〉, there exists m̃n such that
〈an−1〉 � 〈(g2−(m+1),2−m (an))〉 for m ≥ m̃n . Further, for 1≤ r < n,

〈g2−(mr+1),2−mr (ar )〉 � 〈ar 〉 � sup
m
〈(g2−(m+1),2−m (an)〉

and so the required mn can be found using part (2) of Lemma 3.5.
The resulting sequence (g2−(mn+1),2−mn (an))

∞

n=1 is very rapidly increasing by construction. Since
an−1 - g2−(mn+1),2−mn (an)- an for all n, we have supn〈g2−(mn+1),2−mn (an)〉 = supn〈an〉. �

We now consider the situation where we have two close C∗-algebras acting on the same Hilbert space.
The following lemma ensures that we can produce a well defined map between the Cuntz semigroups.

Lemma 3.8. Let A, B be C∗-algebras acting on the same Hilbert space and suppose that a ∈ A+1 and
b ∈ B+1 satisfy ‖a − b‖ < 2α for some α < 1/27. Suppose that (an)

∞

n=1 is a very rapidly increasing
sequence in A+1 with 〈a〉 � sup〈an〉. Then, there exists n0 ∈ N with the property that for n ≥ n0 and
bn ∈ B+1 with ‖bn − an‖< 2α, we have

〈(b− 18α)+〉 � 〈(bn − γ )+〉 � 〈(bn − 18α)+〉

in Cu(B), for all γ with 18α < γ < 2/3.

Proof. Fix γ with 2/3 > γ > 18α (which is possible as α < 1/27). By taking ε = 2α − ‖a − b‖ in
Lemma 3.5(2), there exists n0 ∈ N such that for n ≥ n0, there exists v ∈ A1 with

‖(v∗anv)a− a‖< 2α−‖a− b‖.

Fix such an n ≥ n0 and v ∈ A1, and take bn ∈ B+1 with ‖an − bn‖< 2α and choose some w ∈ B1 with
‖w− v‖< α. We have

‖w∗bnw− v
∗anv‖ ≤ 2‖w− v‖+‖bn − an‖< 4α

so that

‖(w∗bnw)b− b‖ ≤ ‖((w∗bnw)− 1)(b− a)‖+‖(w∗bnw− v
∗anv)a‖+‖(v∗anv)a− a‖

≤ ‖b− a‖+ 4α+‖(v∗anv)a− a‖

≤ 6α.

Taking δ = 6α, β = 18α and 2/3> γ ′ > γ > 18α so that γ ′+ δβ−1 < 1, Lemma 3.3 gives

〈(b− 18α)+〉 ≤ 〈(bn − γ
′)+〉 � 〈(bn − γ )+〉 � 〈(bn − 18α)+〉. �
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Proposition 3.9. Let A, B be C∗-algebras acting on the same Hilbert space with the property that there
exists α < 1/27 such that for each a ∈ A1 there exists b ∈ B1 with ‖a − b‖ < α. Then there is a well
defined, order-preserving map 8 :6(Cu(A))→6(Cu(B)) given by

8(sup〈an〉)= sup〈(bn − 18α)+〉,

whenever (an)
∞

n=1 is a very rapidly increasing sequence in A+1 and bn ∈ B+1 have ‖an−bn‖<2α for all n∈N.
Moreover, if d(A, B) < α for α < 1/42, then 8 is a bijection with inverse 9 :6(Cu(B))→6(Cu(A))
obtained from interchanging the roles of A and B in the definition of 8.

Proof. Suppose first that α < 1/27. To see that 8 is well defined, we apply Lemma 3.8 repeatedly.
Firstly, given a very rapidly increasing sequence (an)

∞

n=1 in A+1 representing an element x ∈6(Cu(A))
and a sequence (bn)

∞

n=1 in B+1 with ‖an − bn‖ < 2α for all n, Lemma 3.8 shows that the sequence(
〈(bn − 18α)+〉

)∞
n=1 is upward directed. Indeed, for each m, take a = am and b = bm in Lemma 3.8 so

that 〈(bm − 18α)+〉 � 〈(bn − 18α)+〉 for all sufficiently large n. As such, supn〈(bn − 18α)+〉 exists in
6(Cu(B)).

Secondly, this supremum does not depend on the choice of (bn)
∞

n=1. Consider two sequences (bn)
∞

n=1
and (b′n)

∞

n=1 satisfying ‖bn − an‖< 2α and ‖b′n − an‖< 2α for all n. For each n, Lemma 3.8 shows that
there exists m0 such that, for m ≥ m0, we have

〈(bn − 18α)+〉 � 〈(b′m − 18α)+〉, and 〈(b′n − 18α)+〉 � 〈(bm − 18α)+〉.

Thus supn〈(bn − 18α)+〉 = supn〈(b
′
n − 18α)+〉.

Thirdly, for two very rapidly increasing sequences (a′n)
∞

n=1 and (an)
∞

n=1 in A+1 with supn〈a
′
n〉≤ supn〈an〉,

and sequences (b′n)
∞

n=1 and (bn)
∞

n=1 in B+1 with ‖b′n − a′n‖, ‖bn − an‖ < 2α for all n, Lemma 3.8 gives
supn〈(b

′
n − 18α)+〉 ≤ supn〈(bn − 18α)+〉. In particular, when (a′n)

∞

n=1 and (an)
∞

n=1 represent the same
element of 6(Cu(A)), this shows that the map 8 given in the proposition is well defined. In general, this
third observation also shows that 8 is order-preserving.

Now suppose that d(A, B) < α < 1/42 and let 9 :6(Cu(B))→6(Cu(A)) be the order-preserving
map obtained by interchanging the roles of A and B above. Take x ∈6(Cu(A)) and fix a very rapidly
increasing sequence (an)

∞

n=1 in A+1 representing x . Fix a sequence (bn)
∞

n=1 in B+1 with ‖an − bn‖< 2α
for all n. For each n, Lemma 3.8 gives m > n with

〈(bn − 18α)+〉 � 〈(bm − γ )+〉 � 〈(bm − 18α)+〉,

for any γ with 18α < γ < 2/3. Passing to a subsequence if necessary, we can assume this holds for
m = n+ 1 and hence ((bn − 18α)+)∞n=1 is a rapidly increasing sequence. By Lemma 3.7, there exists
a sequence (mn)

∞

n=1 in N so that, defining b′n = g2−(mn+1),2−mn ((bn − 18α)+), we have a very rapidly
increasing sequence (b′n)

∞

n=1 in B+1 with

sup
n
〈b′n〉 = sup

n
〈(bn − 18α)+〉 =8(x).

Choose a sequence (cn)
∞

n=1 in A+1 with ‖cn − b′n‖ < 2α for each n so that the definition of 9 gives
9(8(x))= sup〈(cn − 18α)+〉. We now show that x ≤9(8(x))≤ x .
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Fix 0 < β < 1 with α(18+ 24β−1) < 1. This choice can be made as α < 1/42. Fix n ∈ N. As
〈(bn − 18α)+〉 � supr 〈b

′
r 〉, Lemma 3.5 (2) provides m0 ∈ N such that for m ≥ m0, there exists w ∈ B1

with
‖(w∗b′mw)(bn − 18α)+− (bn − 18α)+‖< 2α−‖an − bn‖. (3-3)

Take v ∈ A1 with ‖v−w‖< α. Then

‖(v∗cmv−w
∗b′mw)‖ ≤ ‖cm − b′m‖+ 2‖v−w‖< 4α. (3-4)

Combining the estimates (3-3), (3-4) and noting that ‖w∗b′mw− 1‖ ≤ 1 as w is a contraction, gives

‖(v∗cmv)an − an‖ ≤ ‖((v
∗cmv)− 1)(an − bn)‖+‖(v

∗cmv−w
∗b′mw)bn‖

+‖(w∗b′mw− 1)(bn − (bn − 18α)+)‖+‖(w∗b′mw)(bn − 18α)+− (bn − 18α)+‖

< ‖an − bn‖+ 4α+ 18α+ (2α−‖an − bn‖)= 24α.

Taking γ = 18α, δ= 24α, Lemma 3.3 gives 〈(an−β)+〉≤ 〈(cm−18α)+〉≤9(8(x)). As n was arbitrary,
supn〈(an − β)+〉 ≤ 9(8(x)). As β < 1, Lemma 3.4 gives supn〈(an − β)+〉 = supn〈an〉 = x , so that
x ≤9(8(x)).

For the reverse inequality, fix k ∈ N and apply Lemma 3.8 (with the roles of A and B reversed, b′k
playing the role of a, (b′n)

∞

n=1 the role of (an)) and γ = 1/2 (so 18α < γ < 2/3) to find some n ∈ N

such that 〈(ck − 18α)+〉 ≤ 〈(cn − 1/2)+〉. Now, just as in the proof of Lemma 3.8, there is z ∈ B1 with
‖(z∗bn+1z)bn − bn‖ ≤ 6α. Let p ∈ B∗∗ be the spectral projection of bn for [18α, 1], so that, just as in
the proof of Lemma 3.3, ‖z∗bn+1zp− p‖ ≤ 1/3. Fix y ∈ A1 with ‖y − z‖ ≤ α. Since p is a unit for
(bn − 18α)+, it is a unit for b′n = g2−(mn+1),2−mn ((bn − 18α)+), giving the estimate

‖y∗an+1 ycn − cn‖ ≤ ‖y∗an+1 ycn − z∗bn+1zcn‖+‖(z∗bn+1z− 1)(cn − b′n)‖+‖(z
∗bn+1z)b′n − b′n‖

≤ 4α+ 2α+ 1
3 = 6α+ 1

3 .

Take δ = 6α+ 1/3, β = 1/2 and γ = 0, so that γ +β−1δ = 2/3+ 12α < 1. Thus Lemma 3.3 gives

〈(cn − 1/2)+〉 ≤ 〈an+1〉,

and hence
〈(ck − 18α)+〉 ≤ 〈an+1〉 ≤ x .

Taking the supremum over k gives 9(8(x))≤ x . �

Theorem 3.10. Let A and B be C∗-algebras acting on the same Hilbert space with dcb(A, B)<α < 1/42.
Then (Cu(A),6(Cu(A))) is isomorphic to (Cu(B),6(Cu(B))). Moreover, an order-preserving isomor-
phism 8 : Cu(A)→ Cu(B) can be defined by 8(sup〈an〉) = sup〈(bn − 18α)+〉, whenever (an)

∞

n=1 is a
very rapidly increasing sequence in (A⊗K)+1 and (bn)

∞

n=1 is a sequence in (B⊗K)+1 with ‖an−bn‖< 2α
for all n ∈ N.

Proof. We have d(A⊗K, B⊗K) < α < 1/42. By definition,

6(Cu(A⊗K))= Cu(A) and 6(Cu(A⊗K))= Cu(B).
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By applying Proposition 3.9 to A⊗K and B⊗K, we obtain mutually inverse order-preserving bijections
8 :Cu(A⊗K)→Cu(B⊗K) and9 :Cu(B⊗K)→Cu(A⊗K), given by8(sup〈an〉)= sup〈(bn−18α)+〉,
whenever (an)

∞

n=1 is a very rapidly increasing sequence in (A ⊗ K)+1 and (bn)
∞

n=1 is a sequence in
(B⊗K)+1 with ‖an − bn‖< 2α for all n ∈ N. Given a very rapidly increasing sequence (an)

∞

n=1 in A+1
representing an element x ∈ 6(Cu(A)), we can find a sequence (bn)

∞

n=1 in B+1 with ‖an − bn‖ < 2α,
so that 8(x)= sup〈(bn − 18α)+〉 ∈6(Cu(B)). Since 8 and 8−1 are order-preserving bijections, they
also preserve the relation� of compact containment and suprema of countable upward directed sets, as
these notions are determined by the order relation ≤. Further, taking an = bn = 0 for all n shows that
8(0Cu(A)) = 0Cu(B). Finally, note that 8 preserves addition: given very rapidly increasing sequences
(an)

∞

n=1 and (a′n)
∞

n=1 in (A⊗K)+1 representing x and y in Cu(A), the sequence (an ⊕ a′n) is very rapidly
increasing in M2(A⊗K)∼= A⊗K. If (bn)

∞

n=1, (b
′
n)
∞

n=1 have ‖an − bn‖, ‖a′n − b′n‖< 2α for all n, then

‖(an ⊕ a′n)− (bn ⊕ b′n)‖< 2α,

and has

((bn ⊕ b′n)− 18α)+ = (bn − 18α)+⊕ (b′n − 18α)+.

In this way we see that 8(x + y)=8(x)+8(y). �

In particular properties of a C∗-algebra which are determined by its Cuntz semigroup transfer to
completely close C∗-algebras. One of the most notable of these properties is that of strict comparison.

Corollary 3.11. Let A and B be C∗-algebras acting on the same Hilbert space with dcb(A, B) < 1/42
and suppose that A has strict comparison. Then so too does B.

4. Z-stability and automatic complete closeness

Given a C∗-algebra A ⊂B(H), [Cameron et al. 2013] shows that the metrics d(A, · ) and dcb(A, · ) are
equivalent if and only if A has a positive answer to Kadison’s [1955] similarity problem. The most useful
reformulation of the similarity property for working with close C∗-algebras is due to Christensen [1982,
Theorem 3.1] and Kirchberg [1996]. Combining these, it follows that a C∗-algebra A has a positive
answer to the similarity problem if and only if A has Christensen’s [1980] property Dk for some k.

Definition 4.1. Given an operator T ∈B(H), we write ad(T ) for the derivation ad(T )(x)= xT − T x . A
C∗-algebra A has property Dk for some k > 0 if, for every nondegenerate representation π : A→B(H),
the inequality

d(T, π(A)′)≤ k‖ad(T )|π(A) ‖ (4-1)

holds for all T ∈B(H). A von Neumann algebra A is said to have the property D∗k if the inequality (4-1)
holds for all unital normal representations π on H and all T ∈B(H).

By taking weak∗-limit points, it follows that if A is a weak∗-dense C∗-subalgebra of a von Neumann
algebra M and A has property Dk , then M has property D∗k .
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That property Dk converts near containments to completely bounded near containments originates in
[Christensen 1980, Theorem 3.1]. The version we give below improves on the bounds γ ′ = 6kγ from
there and γ ′ = (1+ γ )2k

− 1 from [Christensen et al. 2010, Corollary 2.12].

Proposition 4.2. Suppose that A has property Dk for some k > 0. Then for γ > 0, every near inclusion
A ⊆γ B (or A ⊂γ B) with A and B acting nondegenerately on the same Hilbert space, gives rise to a
completely bounded near inclusion A ⊆cb,γ ′ B (or A ⊂cb,γ ′), where γ ′ = 2kγ .

Proof. Suppose A⊆γ B is a near inclusion of C∗-algebras acting nondegenerately on H and fix n ∈N. Let
C =C∗(A, B) and let π :C→B(K) be the universal representation of C . Then π(A)′′ has property D∗k so
that π(A)′′⊆cb,2kγ π(B)′′, by [Cameron et al.≥ 2014, Proposition 2.2.4]. By definition, for n ∈N we have
π(A)′′⊗Mn ⊆2kγ π(B)′′⊗Mn . As π is the universal representation of C , the Hahn–Banach argument
used to deduce [Christensen 1980, equation (3)] from [ibid., equation (2)] gives A⊗Mn ⊆2kγ B⊗Mn ,
as required. The result when we work with strict near inclusions A ⊂γ B follows immediately. �

C∗-algebras with no bounded traces (such as stable algebras) were shown to have the similarity property
in [Haagerup 1983]. Using the property Dk version of this fact, the previous proposition gives automatic
complete closeness when one algebra has no bounded traces. The argument below which transfers the
absence of bounded traces to a nearby C∗-algebra essentially goes back to [Kadison and Kastler 1972,
Lemma 9]. We use more recent results in order to get better estimates.

Corollary 4.3. Suppose that A and B are C∗-algebras which act nondegenerately on the same Hilbert
space and satisfy d(A, B) < γ for γ < (2+ 6

√
2)−1. Suppose that A has no bounded traces (for example

if A is stable). Then B has no bounded traces, and therefore A⊂cb,3γ B, B ⊂cb,3γ A and dcb(A, B) < 6γ .

Proof. Suppose d(A, B) < (2+ 6
√

2)−1 and τ : B→ C is a bounded trace. Let π : B→B(H) be the
GNS-representation of B corresponding to τ . Then there is a larger Hilbert space H̃ and a representation
π̃ : C∗(A, B)→B(H̃) such that π is a direct summand of π̃ |B . That is, the projection p from H̃ onto H

is central in π̃(B) and π(b)= pπ̃(b)p for all b ∈ B. Then, by [Kadison and Kastler 1972, Lemma 5], we
have d(π̃(A)′′, π̃(B)′′)≤ d(A, B), and hence there is a projection q ∈ π̃(A)′′ with ‖p− q‖ ≤ γ /

√
2 by

[Khoshkam 1984, Lemma 1.10(ii)]. If q is an infinite projection in π̃(A)′′, then as d(A, B)< (2+6
√

2)−1,
one can follow the argument of [Christensen et al. 2010, Lemma 6.1] (using the estimate ‖p−q‖<γ/

√
2

in place of ‖p− q‖ < 2γ ) to see that p is infinite in π̃(B)′′, giving a contradiction. If q is finite, then
qπ̃(A)′′q has a finite trace ρ and ρ ◦ π̃ |A defines a bounded trace on A, and again we have a contradiction.
Thus B has no bounded traces.

Theorem 2.4 of [Christensen 1977] shows that a properly infinite von Neumann algebra has property
D∗3/2. As such, every C∗-algebra with no bounded traces has property D3/2. Since A and B both have
property D3/2, Proposition 4.2 gives A ⊂cb,3γ B and B ⊂cb,3γ A, whence dcb(A, B) < 6γ . �

Corollary 4.4. Suppose that A and B are C∗-algebras which act nondegenerately on the same Hilbert
space and satisfy d(A, B) < 1/252 and suppose that A has no bounded traces (for example, when A is
stable). Then (

Cu(A),6(Cu(A))
)
∼=
(
Cu(B),6(Cu(B))

)
.
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Proof. Combine Corollary 4.3 with Theorem 3.10, noting that 6d(A, B) < 1/42. �

We can use the Cuntz semigroup to show that stability transfers to close C∗-algebras provided one
algebra has stable rank one. To detect stability for a σ -unital C∗-algebra we use the following criterion
from [Ortega et al. 2012, Lemma 5.4] which reformulates the earlier characterisation from [Hjelmborg
and Rørdam 1998].

Lemma 4.5. Let A be a σ -unital C∗-algebra and let c ∈ A be a strictly positive element. Then, A is
stable if and only if for every ε > 0, there is b ∈ A+ such that (c− ε)+ ⊥ b and (c− ε)+ - b.

Following [Robert and Santiago 2010], we say that a C∗-algebra A has weak cancellation provided
Cu(A) satisfies the property that x+ z� y+ z implies x ≤ y. It was proved in [Rørdam and Winter 2010,
Theorem 4.3] that if A has stable rank one, then W (A) has the property defining weak cancellation. When
A has stable rank one, so too does A⊗K [Rieffel 1983, Theorem 3.6], and so A has weak cancellation.

Lemma 4.6. Let A be a σ -unital C∗-algebra with weak cancellation. Then A is stable if and only if
Cu(A)=6(Cu(A)).

Proof. If A is stable, we have 6(Cu(A)) = Cu(A). Indeed, given n ∈ N, choose an automorphism
θn : K⊗K→ K⊗K with θn(K⊗ e11) = K ⊗ Mn and let ψ : A→ A⊗K be an isomorphism. Then
(ψ−1

⊗ idK)(idA⊗ θn)(ψ⊗ idK) is an automorphism of A⊗K which maps A⊗ e11 onto A⊗Mn . In this
way the class of a positive element in A⊗Mn lies in the scale 6(Cu(A)). For x ∈ (A⊗K)+ and ε > 0,
we have (x − ε)+ ∈

⋃
∞

n=1(A⊗Mn), and hence 〈(x − ε)+〉 ∈6(Cu(A)). Since the scale is defined to be
closed under suprema, it follows that Cu(A)=6(Cu(A)).

Conversely, let c ∈ A be a strictly positive element so that 6(Cu(A)) = {x ∈ Cu(A) : x ≤ 〈c〉}
and let ε > 0 be given. The hypothesis ensures that 2〈c〉 ≤ 〈c〉, and so we can find δ > 0 such that
2〈(c− ε/4)+〉 � 〈(c− δ)+〉. Now write

(c− δ)+ = (c− δ)+gε/2, ε(c)+ (c− δ)+(1M(A)− gε/2, ε(c)),

and observe that

〈(c− δ)+gε/2, ε(c)〉 ≤ 〈gε/2, ε(c)〉 = 〈(c− ε/2)+〉 � 〈(c− ε/4)+〉.

We now have that

2〈(c− ε/4)+〉 � 〈(c− δ)+〉 ≤ 〈(c− ε/2)+〉+ 〈(c− δ)+(1M(A)− gε/2, ε(c))〉

and so weak cancellation enables us to conclude that

〈(c− ε/4)+〉 ≤ 〈(c− δ)+(1− gε/2, ε(c))〉.

Let b = (c− δ)+(1− gε/2, ε(c)). It is clear that b ⊥ (c− ε)+ and that (c− ε)+ ≤ (c− ε/4)+ - b. Thus
we may invoke Lemma 4.5 to conclude that A is stable. �

Theorem 4.7. Let A and B be σ -unital C∗-algebras with A stable and d(A, B) < 1/252 and suppose
either A or B has stable rank one. Then B is stable.
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Proof. By Corollary 4.4, we have an isomorphism

(Cu(A),6(Cu(A))∼= (Cu(B),6(Cu(B)).

Since A is stable Cu(A)=6(Cu(A)). Our isomorphism condition now tells us that Cu(B)=6(Cu(B)).
If B has stable rank one, then it has weak cancellation, whereas if A has stable rank one, A has weak
cancellation and, as weak cancellation is a property of the Cuntz semigroup, so too does B. The result
now follows from Lemma 4.6. �

We now turn to the situation in which one C∗-algebra is Z-stable. Christensen [1977] shows that
McDuff II1 factors have property D5/2, and hence via the estimates of [Pisier 1998], have similarity length
at most 5. (In fact, McDuff factors, and more generally II1 factors with Murray and von Neumann’s
property 0 have length 3 [Christensen 2001], but at present we do not know how to use this fact to obtain
better estimates for automatic complete closeness of close factors with property 0.)

Analogous results have been established in a C∗-setting, in particular, Z-stable C∗-algebras [Johanesová
and Winter 2012] and C∗-algebras of the form A⊗ B, where B is nuclear and has arbitrarily large unital
matrix subalgebras [Pop 2004] have similarity degree (and hence length) at most 5. See also [Li and
Shen 2008]. Here we show how to use the original von Neumann techniques from [Christensen 1977]
to show that a class of algebras generalising both these examples have property D5/2 (recapturing the
upper bound 5 on the length). A similar result has been obtained independently by Hadwin and Li [2014,
Corollary 1] working in terms of the similarity degree as opposed to property Dk . Once we have this Dk

estimate, Proposition 4.2 applies. In particular we obtain uniform estimates on the cb-distance dcb(A, B)
in terms of d(A, B) when A is Z-stable.

Given a von Neumann algebra M ⊂ B(H) and x ∈ B(H), write cowM(x) for the weak∗-closed con-
vex hull of {uxu∗ : u ∈ U(M)}. If M is injective, then by Schwartz’s property P, cowM(x) ∩ M′ is
nonempty for all x ∈ B(H). Note that for a nondegenerately represented C∗-algebra A ⊂ B(H), we
have ‖ad(T )|A‖ = ‖ad(T )|A′′‖. We say that an inclusion A ⊂ C of C∗-algebras is nondegenerate if the
inclusion map is nondegenerate.

Proposition 4.8. Let C be a C∗-algebra and A, B ⊂ C be commuting nondegenerate C∗-subalgebras
which generate C . Suppose B is nuclear and has no nonzero finite-dimensional representations. Then C
has property D5/2, and hence similarity length at most 5.

Proof. Suppose C is nondegenerately represented on H and fix x ∈B(H). The nondegeneracy assumption
ensures that A and B are nondegenerately represented on H. Note that C ′′ has no finite type I part as B
has no nonzero finite-dimensional representations. Let p be the central projection in C ′′ so that C ′′ p is
type II1 and C ′′(1− p) is properly infinite. Fix a unital type I∞ subalgebra M0⊂ (1− p)C ′′(1− p) and let
M= (M0∪ pB)′′ which is injective. By Schwartz’s property P, there exists y ∈ cowM(x)∩ (M∪{p})

′. As in
Theorems 2.3 and 2.4 of [Christensen 1977], ‖y− x‖ ≤ ‖ad(x)|C ′′‖ and ‖ad(y)|C ′′‖ ≤ ‖ad(x)|C ′′‖. Write
y1= yp and y2= y(1− p). If p 6= 1, then the properly infinite algebra M0 lies in C ′′(1− p)∩{y2, y∗2 }

′ and
so by Corollary 2.2 of the same reference, ‖ad(y2)|C ′′(1−p)‖ = 2d(y2,C ′(1− p)). Take x2 ∈ C ′′(1− p)
with ‖x2− y2‖ = ‖ad(y2)|C ′′(1−p)‖/2≤ ‖ad(x)|C ′′‖/2.
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If p 6= 0, then we argue exactly as in the proof of [Christensen 1977, Proposition 2.8] to produce first
z1 ∈ A′ p with ‖y1− z1‖≤ ‖ad(y1)|C ′′ p‖/2≤‖ad(x)|C ′′‖/2. Continuing with Christensen’s proof, as B ′′ p
and A′′ p commute, cowB ′′ p(z1) is contained in A′ p and hence there exists x1 ∈ cowB ′′ p(z1)∩ B ′ p with

‖x1− z1‖ ≤ ‖ad(z1)|B ′′ p‖ ≤ ‖ad(z1− y1)|B ′′ p‖ ≤ 2‖z1− y1‖ ≤ ‖ad(x)|C ′′‖.

Then

‖y1− x1‖ ≤ ‖y1− z1‖+‖z1− x1‖ ≤
3
2‖ad(x)|C ′′‖.

If p = 0, take x1 = 0 and the same inequality holds. The element x1+ x2 ∈ C ′ has

‖x − (x1+ x2)‖ ≤ ‖x − y‖+‖(y1− x1)+ (y2− x2)‖

≤ ‖ad(x)|C ′′‖+max(‖y1− x2‖, ‖y2− x2‖)≤
5
2‖ad(x)C ′′‖.

Therefore C has property D5/2, and so by [Pisier 1998, Remark 4.7] has length at most 5. �

Corollary 4.9. Let A be a Z-stable C∗-algebra. Then A has property D5/2 and length at most 5.

The main result of [Christensen et al. 2010] — a reference we will abbreviate to [CSSW] for the
remainder of this section — is that the similarity property transfers to close C∗-algebras. This work is
carried out with estimates depending on the length and length constant of A, but it is equally possible
to carry out this work entirely in terms of property Dk so it can be applied to Z-stable algebras. Our
objective is to obtain a version of [CSSW, Corollary 4.6] replacing the hypothesis that A has length at
most ` and length constant at most K with the formally weaker hypothesis that A has property Dk (if A
has the specified length and length constants, then it has property Dk for k = K`/2, conversely if A has
property Dk , then it has length at most b2kc, but a length constant estimate is not known in this case;
see [Pisier 1998, Remark 4.7]). This enables us to use Corollary 4.9 obtain an isomorphism between
the Cuntz semigroups of sufficiently close C∗-algebras when one algebra is Z-stable. To achieve a Dk

version of [CSSW, Section 4], we adjust the hypotheses in Lemma 4.1, Theorem 4.2 and Theorem 4.4 of
that reference in turn, starting with Lemma 4.1. We begin by isolating a technical observation.

Lemma 4.10. Let M be a finite von Neumann algebra with a faithful tracial state acting in standard
form on H and let J be the conjugate linear modular conjugation operator inducing an isometric
antisomorphism x 7→ J x J of M onto M′ ∼=Mop. Suppose that S is another von Neumann algebra acting
nondegenerately on H with M′ ⊂γ S. If M has property D∗k , then M′ ⊂cb,2kγ S.

Proof. As J is isometric, M ⊂γ JSJ , so that M ⊂cb,2kγ JSJ by Proposition 4.2. Now, for each
n ∈ N, let Jn denote the isometric conjugate linear operator of component-wise complex conjugation
on Cn so that J ⊗ Jn is a conjugate linear isometry on H⊗Cn . We can conjugate the near inclusion
M⊗Mn ⊂2kγ J S J ⊗Mn by J ⊗ Jn to obtain M′⊗Mn ⊂2kγ S⊗Mn , as required. �

The next lemma is the modification of [CSSW, Lemma 4.1]. The expression for β below is a slight
improvement over that of the original.
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Lemma 4.11. Let M and N be von Neumann algebras of type II1 faithfully and nondegenerately rep-
resented on H with common centre Z which admits a faithful state. Suppose d(M,N) = α and M has
property D∗k . If α satisfies

24(12
√

2k+ 4k+ 1)α < 1
200 ,

then d(M′,N′) < 2β + 1200kα(1+β), where β = 96kα(600k+ 1).

Proof. This amounts to showing that the hypothesis in [CSSW, Lemma 4.1] that M contains an weak∗-
dense C∗-algebra A of length at most ` and length constant at most K can be replaced by the statement
that M has property D∗k (and that the specified expressions on β are valid). The hypothesis that M has
such a weak∗-dense C∗-algebra is initially used to see that M has property Dk at the beginning of the
lemma and then applied to a unital normal representation to obtain [CSSW, equation (4.5)]. As such
property D∗k suffices for this estimate.

The other use of this hypothesis comes on p. 385 in the last paragraph of the lemma, to obtain [CSSW,
equation (4.28)]. Using the notation of this paragraph, the von Neumann algebra TM is a cutdown of M

acting as M⊗ IG on H⊗G by the projection ei0,i0 from the commutant of M on this space. Since ei0,i0 is
unitarily equivalent in this commutant to a projection of the form e⊗ g0, where e is a projection from
the commutant of M on H of full central support and g0 is a minimal projection in B(G), it follows that
ei0,i0 has full central support in the commutant of M on H⊗G. As such TM is isomorphic to M, so has
property D∗k . Thus Lemma 4.10 can be applied to the near inclusion T ′M ⊂48(600kα+α) T ′N2

from [CSSW,
equation (4.25)] giving

T ′M ⊂cb,96k(600kα+α)) T ′N2
.

It then follows that
TM⊗B(`2(3))⊂96k(600kα+α) TN⊗B(`2(3)),

which is precisely [CSSW, equation (4.28)] with our new estimate for β replacing that of the original.
We then deduce that d(M′,N′)≤ 2β+1200kα(1+β) in just the same way that [CSSW, equation (4.30)]
is obtained from [CSSW, equation (4.28)]. �

Now we adjust Theorem 4.2 of [CSSW]. The resulting constant β is obtained by taking α = 11γ in the
previous lemma. Note that there is an unfortunate omission in the value of β in Theorem 4.2 of [CSSW],
which should be given by taking α = 11γ in Lemma 4.1 of [CSSW], so should be K ((1+ 316800kγ +
528γ )`− 1); this has no knock-on consequences to Theorem 4.4 of [CSSW], where the correct value of
β is used.

Lemma 4.12. Let A and B be C∗-algebras acting on a Hilbert space and suppose that d(A, B) = γ .
Suppose A has property Dk and 24(12

√
2k+ 4k+ 1)γ < 1/2200. Then

d(A′, B ′)≤ 10γ + 2β + 13200kγ (1+β),

where β = 1056k(600kγ + γ ).

Proof. This amounts to replacing the hypothesis that A has length at most ` and length constant at most
K with the condition that A has property Dk in Theorem 4.2 of [CSSW]. The length hypothesis on A
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is used to show that certain II1 von Neumann closures of A satisfy [CSSW, Lemma 4.1], but since the
weak∗-closure of a C∗-algebra with property Dk has property D∗k , Lemma 4.11 can be used in place of
that lemma. Note that in the proof of [CSSW, Theorem 4.2] the reference to injective von Neumann
algebras having property D1 is incorrect (it is an open question whether

∏
∞

n=1 Mn has the similarity
property). The correct statement is that these algebras have property D∗1 , which is all that is used. �

Finally we can convert Theorem 4.4 of [CSSW]. Note the typo in the statement of this theorem; the
definition of k̃ should be k/(1− 2η− 2kγ ) rather than k/(1− 2η− kγ ). The same change should be
made in Corollary 4.6 of [CSSW].

Proposition 4.13. Let A and B be C∗-subalgebras of some C∗-algebra C with d(A, B) < γ and suppose
A has property Dk . Write β = 1056(600kγ + γ ) and η= 10γ + 2β+ 13200kγ (1+β) and suppose that

24(12
√

2k+ 4k+ 1)γ <
1

2200
, 2η+ 2kγ < 1. (4-2)

Then dcb(A, B)≤ 4k̃γ , where

k̃ =
k

1− 2η− 2kγ
.

Proof. We check that B has property Dk̃ . This amounts to weakening the hypothesis of [CSSW,
Theorem 4.4] in just the same way as the preceding lemmas. Applying Lemma 4.12 in place of Theorem 4.2
of [CSSW] in the proof of their Theorem 4.4 shows that under the hypotheses of this proposition B has
property Dk̃ , where

k̃ =
k

1− 2η− 2kγ
.

This is valid as property Dk descends to quotients so, following the proof of [CSSW, Theorem 4.4], the
algebra ρ(A) inherits property Dk allowing the use of Lemma 4.12 above in place of [CSSW, Theorem 4.2].
Note that one should take care with issues of degeneracy here. In particular, the representation π of B in
the proof of Theorem 4.4 of [CSSW] should be assumed nondegenerate.

Proposition 4.2 now shows that B ⊂cb,2k̃ A and A ⊂cb,2k B. Therefore

dcb(A, B)≤ 2 max(2k̃γ, 2kγ )= 4k̃γ. �

Corollary 4.14. Let A be a C∗-algebra generated by two commuting nondegenerate C∗-subalgebras one
of which is nuclear and has no finite-dimensional irreducible representations. Suppose that A ⊂B(H)

and B is another C∗-subalgebra of B(H) with d(A, B) < γ for γ < 1/6422957. Then dcb(A, B) < 1/42
and (Cu(A),6(Cu(A))∼= (Cu(B),6(Cu(B)).

Proof. By Proposition 4.8, A has property Dk for k = 5/2 so in Proposition 4.13, β = 1585056γ and
η= 3203122γ +52306848000γ 2, so that 2η+2kγ < 1011γ < 1 for γ < 10−11. The bound on γ ensures
that (4-2) holds so that Proposition 4.13 applies. Further this bound gives

4kγ
1−2η−2kγ

<
1
42
,

and so the result follows from Proposition 4.13 and Theorem 3.10. �
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In particular, C∗-algebras sufficiently close to Z-stable algebras are automatically completely close
and have the Cuntz semigroup of a Z-stable algebra. The question of whether the property of Z-stability
transfers to sufficiently close subalgebras raised in [Christensen et al. 2012] remains open.

Corollary 4.15. Let A be a Z-stable C∗-algebra and suppose that B is another C∗-algebra acting on the
same Hilbert space as A with d(A, B) < 1/6422957. Then dcb(A, B) < 1/42, and (Cu(A),6(Cu(A)) is
isomorphic to (Cu(B),6(Cu(B)). In particular, B has the Cuntz semigroup of a Z-stable algebra.

5. Quasitraces

In this section we use our isomorphism between the Cuntz semigroups of completely close C∗-algebras
to give an affine homeomorphism between the lower semicontinuous quasitraces on such algebras.
This isomorphism is compatible with the affine isomorphism of the trace spaces of close C∗-algebras
constructed in [Christensen et al. 2010, Section 5].

Given a C∗-algebra A, write T (A) for the cone of lower semicontinuous traces on A and QT2(A)
for the cone of lower semicontinuous 2-quasitraces on A. Precisely, a trace τ on A is a linear function
τ : A+ → [0,∞] vanishing at 0 and satisfying the trace identity τ(xx∗) = τ(x∗x) for all x ∈ A. A
2-quasitrace is a function τ : A+→ [0,∞] vanishing at 0 which satisfies the trace identity and which is
linear on commuting elements of A+. Write Ts(A) for the simplex of tracial states on A and QT2,s(A)
for the bounded 2-quasitraces on A of norm one. Lower semicontinuous traces and 2-quasitraces on A
extend uniquely to lower semicontinuous traces and 2-quasitraces respectively on A⊗K; see [Blanchard
and Kirchberg 2004, Remark 2.27(viii)].

In [Elliott et al. 2011, Section 4], Elliott, Robert and Santiago extend earlier work of Blackadar and
Handelman, setting out how functionals on Cu(A) arise from elements of QT2(A). Precisely, a functional
on Cu(A) is a map f : Cu(A)→ [0,∞] which is additive, order-preserving, has f (0)= 0 and preserves
the suprema of increasing sequences. Given τ ∈ QT2(A), the expression dτ (〈a〉) = limn→∞ τ(a1/n)

gives a well defined functional on Cu(A), where we abuse notation by using τ to denote the exten-
sion of the original lower semicontinuous 2-quasitrace to A ⊗ K. Alternatively, one can define dτ
by dτ (〈a〉) = limn→∞ τ(an), where (an)

∞

n=1 is any very rapidly increasing sequence from (A ⊗ K)+1
representing 〈a〉. Conversely, given a functional f on Cu(A), a lower semicontinuous 2-quasitrace on
A⊗K (and hence on A) is given by τ f (a)=

∫
∞

0 f
(
〈(a− t)+〉

)
dt . With this notation, the assignments

τ 7→ dτ and f 7→ τ f are mutually inverse (see [ibid., Proposition 4.2]).
The topology on QT2(A) is specified by saying that a net (τi ) in QT2(A) converges to τ ∈ QT2(A) if

and only if
lim sup

i
τi ((a− ε)+)≤ τ(a)≤ lim inf

i
τi (a)

for all a ∈ A+ and ε > 0. With this topology QT2(A) is a compact Hausdorff space [ibid., Theorem 4.4]
and T (A) is compact in the induced topology [ibid., Theorem 3.7]. In a similar fashion, the cone of
functionals on Cu(A) is topologised by defining λi → λ if and only if

lim sup
i

λi
(
〈(a− ε)+〉

)
≤ λ(〈a〉)≤ lim inf

i
λi (〈a〉)
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for all a ∈ (A ⊗ K)+ and ε > 0. Theorem 4.4 of [ibid.] shows that the affine map τ 7→ dτ is a
homeomorphism between the cone QT2(A) and the cone of functionals on the Cuntz semigroup.

Theorem 5.1. (1) Let A, B be C∗-algebras acting nondegenerately on a Hilbert space, with dcb(A, B)<
1/42. The isomorphism 8 :

(
Cu(A),6(Cu(A))

)
→

(
Cu(B),6(Cu(B))

)
given by Theorem 3.10

induces an affine homeomorphism

8̂ : QT2(B)→ QT2(A)

satisfying
d8̂(τ )(x)= dτ (8(x)) (5-1)

for all x ∈ Cu(A) and τ ∈ QT2(B).

(2) Suppose additionally that A and B are unital and dcb(A, B) < γ < 1/2200. Then 8̂ is compatible
with the map 9 : Ts(B)→ Ts(A) given in Lemma 5.4 of [Christensen et al. 2010]. Precisely, for
τ ∈ Ts(B), we have 8̂(τ ) ∈ Ts(A)⊂ QT2(A) and 8̂(τ )=9(τ).

Proof. Part (1) of the theorem is a consequence of Theorem 3.10 and [Elliott et al. 2011, Proposition 4.2]:
given τ ∈ QT2(B), define 8̂(τ ) to be the lower semicontinuous 2-quasitrace induced by the functional
dτ ◦8 on Cu(A). It is immediate from the construction that the map 8̂ is affine, bijective and the identity
(5-1) holds.

To show that 8̂ is continuous, we use the homeomorphism between the cone of lower semicontinuous
quasitraces and functionals on the Cuntz semigroup in [Elliott et al. 2011, Theorem 4.4]. Consider a net
(τi ) in QT2(B) with τi → τ . Fix a ∈ A+, then

dτ
(
8(〈a〉)

)
≤ lim inf

i
dτi

(
8(〈a〉)

)
,

as dτi → dτ . Now take ε > 0 and fix a contraction b∈ (B⊗K )+ with8(〈a〉)=〈b〉. As
(
〈(b−1/n)+〉

)∞
n=1

is very rapidly increasing with supremum 〈b〉, there exists n ∈N with 8
(
〈(a− ε)+〉

)
≤ 〈(b− 1/n)+〉. As

lim sup
i

dτi (〈b−
1
n )+〉)≤ dτ (〈b〉),

it follows that
lim sup

i
d8̂(τi )

(
〈(a− ε)+〉

)
≤ d8̂(τ )(〈a〉)≤ lim inf

i
d8̂(τ )(〈a〉).

Thus d8̂(τi )
→ d8̂(τ ) and so, using the homeomorphism between QT2(A) and functionals on Cu(A), we

have 8̂(τi )→ 8̂(τ ). Therefore 8̂ is continuous, and hence a homeomorphism between QT2(B) and
QT2(A).

For the second part we first need to review the construction of the map 9 from [Christensen et al.
2010], which we again abbreviate [CSSW]. Suppose dcb(A, B) < γ < 1/2200. Write C = C∗(A, B)
and let C ⊂ B(H) be the universal representation of C so that M = A′′ and N = B ′′ are isometrically
isomorphic to A∗∗ and B∗∗ respectively. Note that the Kaplansky density argument of [Kadison and
Kastler 1972, Lemma 5] gives dcb(M,N) ≤ dcb(A, B). Following the proof of [CSSW, Lemma 5.4]
we can find a unitary u ∈ (Z(M)∪ Z(N))′′ such that Z(uMu∗) = Z(N) and ‖u − 1C‖ ≤ 5γ . We write
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A1 = u Au∗ and M1 = uMu∗. There is now a projection zfin ∈ Z(M1) = Z(N) which simultaneously
decomposes M1 =M1zfin⊕M1(1− zfin) and N= Nzfin⊕N(1− zfin) into the finite and properly infinite
parts respectively (see [CSSW, Lemma 3.5] or [Kadison and Kastler 1972]). Given a tracial state τ on B,
there is a unique extension τ ′′ to N, which then factors uniquely through the centre valued trace TrNzfin on
Nzfin. That is, τ ′′(x) = (φτ ◦ TrNzfin)(xzfin) for some state φτ on Nzfin. The map 9 in [CSSW] is then
given by defining 9(τ)(y)= (φτ ◦TrM1zfin)(uyu∗zfin) for y ∈ A.

Now fix τ ∈ Ts(B). For m ∈ N and a ∈ (A⊗ Mm)
+

1 , consider the standard very rapidly increasing
sequence (g2−(n+1),2−n (a))∞n=1 which represents 〈a〉. Let pn ∈M⊗Mm be the spectral projection for a for
[2−(n+1), 1], so that the alternating sequence

g2−2,2−1(a), p1, g2−3,2−2(a), p2, g2−4,2−3(a), p3, . . .

is very rapidly increasing. Then

d9(τ)(〈a〉)= sup
n
(9(τ))(g2−n,2−(n+1)(a))= sup

n
9(τ)′′(pn). (5-2)

Choose bn ∈ (B⊗Mm)
+

1 with ‖g2−(n+1),2−n (a)−bn‖≤2γ and projections qn ∈N⊗Mm with ‖pn−qn‖≤2γ
by a standard functional calculus argument [Christensen 1974/75, Lemma 2.1]. Note that dcb(M1,N)≤11γ
and the algebras (M1⊗Mm)(zfin⊗ 1m) and (N1⊗Mm)(zfin⊗ 1m) have the same centre. Since∥∥(u⊗ 1m)p(u⊗ 1m)

∗(zfin⊗ 1m)− q(zfin⊗ 1m)
∥∥< 1

2 ,

Lemma 3.6 of [CSSW] applies to show that

(TrM1zfin ⊗ trm)
(
(u⊗ 1m)pn(u⊗ 1m)

∗(zfin⊗ 1m)
)
= (TrNzfin ⊗ trm)(q(zfin⊗ 1m)).

This ensures that 9(τ)′′(pn)= τ
′′(qn) for all n.

As each (qn − 18γ )+ = qn , the sequence

(b1− 18γ )+, q1, (b2− 18γ )+, q2, (b3− 18γ )+, q3, . . .

is upwards directed by Lemma 3.8 and the supremum of this sequence defines 8(〈a〉). We then have

dτ (8(〈a〉))= sup
n
τ ′′(qn). (5-3)

Indeed, dτ (8(〈a〉)) is given by sup τ(cn), where (cn)
∞

n=1 is any very rapidly increasing sequence in
(B⊗K)+ representing 8(〈a〉). But, working in Cu(N), Proposition 3.6 shows that any such very rapidly
increasing sequence (cn)

∞

n=1 can be intertwined with the very rapidly increasing sequence (qn)
∞

n=1 after
telescoping, and this establishes (5-3). Combining (5-2) and (5-3), we have

d9(τ)(〈a〉)= d8̂(τ )(〈a〉) (5-4)

for all m ∈N and a ∈ (A⊗Mm)+. As functionals on the Cuntz semigroup preserve suprema, (5-4) holds
for all a ∈ (A⊗K)+, whence 9(τ)= 8̂(τ ). �
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The homeomorphism between the lower semicontinuous quasitraces can be used to establish the
weak∗-continuity of the map between the tracial state spaces of close unital C∗-algebras from [CSSW,
Section 5] resolving a point left open there. In particular this shows that the map defined in [CSSW]
provides an isomorphism between the Elliott invariants of completely close algebras.

For any closed two-sided ideal I E A, the subcone TI (A) of T (A) consists of those τ ∈ T (A) such
that the closed two-sided ideal generated by {x ∈ A+ : τ(x) <∞} is I . Proposition 3.11 of [Elliott et al.
2011] shows that the relative topology on TI (A) is the topology of pointwise convergence on the positive
elements of the Pedersen ideal of I . In particular, Ts(A)⊂ TA(A). In particular, the induced topology on
Ts(A) is just the weak∗-topology.

Corollary 5.2. Suppose that A and B are unital C∗-algebras acting nondegenerately on a Hilbert space
with dcb(A, B) < 1/42 and d(A, B) < 1/2200. Then the affine isomorphism 9 : Ts(B)→ Ts(A) between
tracial state spaces in [Christensen et al. 2010, Section 5] is a homeomorphism with respect to the
weak∗-topologies.

We end with two further corollaries of Theorem 5.1.

Corollary 5.3. Let A and B be unital C∗-algebras acting nondegenerately on the same Hilbert space
with dcb(A, B) < 1/2200. Suppose every bounded 2-quasitrace on A is a trace, then the same property
holds for B.

Proof. Given τ ∈ QT2,s(B), its image 8̂(τ ) lies in QT2,s(A)= Ts(A). By Theorem 5.1 (2) (applied with
A and B interchanged)

τ = 8̂−1(8̂(τ ))=9−1(8̂(τ )) ∈ Ts(B),

as claimed. �

The question of whether exactness transfers to (completely) close C∗-algebras raised in [Christensen
et al. 2010] remains open, but we do at least obtain the following corollary.

Corollary 5.4. Let A and B be unital C∗-algebras acting nondegenerately on the same Hilbert space
with dcb(A, B) < 1/2200 and suppose A is exact. Then every bounded 2-quasitrace on B is a trace.

Proof. This is immediate from Haagerup’s result [1991] that bounded 2-quasitraces on exact C∗-algebras
are traces and the previous corollary. �

We end by noting that the isomorphism between the Cuntz semigroups of completely close algebras
in Theorem 3.10 can also be used to directly recapture an isomorphism between the Elliott invariants
in significant cases. Let CuT be the functor A 7→ Cu(A⊗C(T)) mapping the category of C∗-algebras
into the category Cu introduced in [Coward et al. 2008] and let Ell be the Elliott invariant functor taking
values in the category Inv whose objects are the 4-tuples arising from the Elliott invariant. Let C be the
subcategory of separable, unital, simple finite and Z-stable algebras A with QT2(A)= T (A) (for example
if A is exact). Then, building on work from [Brown et al. 2008; Brown and Toms 2007], Theorem 4.2
of [Antoine et al. 2014] provides functors F : Inv→ Cu and G : Cu→ Inv such that there are natural
equivalences of functors F ◦Ell|C ∼=CuT|C and G ◦CuT|C

∼= Ell|C (a similar result for simple unital ASH
algebras which are not type I and have slow dimension growth can be found in [Tikuisis 2011]). Note that
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in Theorem 4.2 of [Antoine et al. 2014] there is an implicit nuclearity hypothesis, which is only actually
used in order to see QT2(A)= T (A); therefore the result holds in the generality stated. Thus if A and B
are Z-stable C∗-algebras with dcb(A, B) sufficiently small, and A is simple, separable, unital finite and
has QT2(A)= T (A), then B enjoys all these properties. Further, since tensoring by an abelian algebra
does not increase the complete distance between A and B (see [Christensen 1980, Theorem 3.2] for this
result in the context of near inclusions—the same proof works for the metric dcb), CuT(A)∼= CuT(B) by
Theorem 3.10. Thus Ell(A)∼= Ell(B).
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