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THE GLOBAL STABILITY OF THE MINKOWSKI SPACETIME SOLUTION
TO THE EINSTEIN-NONLINEAR SYSTEM

IN WAVE COORDINATES

JARED SPECK

We study the coupling of the Einstein field equations of general relativity to a family of nonlinear
electromagnetic field equations. The family comprises all covariant electromagnetic models that satisfy
the following criteria: (i) they are derivable from a sufficiently regular Lagrangian; (ii) they reduce to
the standard Maxwell model in the weak-field limit; (iii) their corresponding energy-momentum tensors
satisfy the dominant energy condition. Our main result is a proof of the global nonlinear stability of the
(1+ 3)-dimensional Minkowski spacetime solution to the coupled system for any member of the family,
which includes the standard Maxwell model. This stability result is a consequence of a small-data global
existence result for a reduced system of equations that is equivalent to the original system in our wave-
coordinate gauge. Our analysis of the spacetime metric components is based on a framework recently
developed by Lindblad and Rodnianski, which allows us to derive suitable estimates for tensorial systems
of quasilinear wave equations with nonlinearities that satisfy the weak null condition. Our analysis of the
electromagnetic fields, which satisfy quasilinear first-order equations that have a special null structure, is
based on an extension of a geometric energy-method framework developed by Christodoulou together
with a collection of pointwise decay estimates for the Faraday tensor developed in the article. We work
directly with the electromagnetic fields and thus avoid the use of electromagnetic potentials.

1. Introduction

The Einstein field equations are the fundamental equations of general relativity. They connect the
Einstein tensor Rµν − 1

2 gµνR, which contains information about the curvature of spacetime1 (M, gµν),
to the energy-momentum-stress-density tensor (energy-momentum tensor for short) Tµν , which contains
information about the matter present in M. Here, gµν is the spacetime metric, Rµν is the Ricci curvature
tensor of gµν , and R = (g−1)κλRκλ is the scalar curvature of gµν . In this article, we show the stability of

Speck was supported in part by the Commission of the European Communities, ERC Grant Agreement Number 208007, and by
an NSF All-Institutes Postdoctoral Fellowship administered by the Mathematical Sciences Research Institute through its core
grant DMS-0441170. He was also funded in part by the NSF through grants DMS-0406951 and DMS-0807705. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation.
MSC2010: primary 35A01, 35Q76; secondary 35L99, 35Q60, 35Q76, 78A25, 83C22, 83C50.
Keywords: Born–Infeld, canonical stress, energy currents, global existence, Hardy inequality, Klainerman–Sobolev inequality,

Lagrangian field theory, nonlinear electromagnetism, null condition, null decomposition, quasilinear wave equation, regularly
hyperbolic, vector field method, weak null condition.
1By spacetime, we mean a four-dimensional time-orientable Lorentzian manifold M together with a Lorentzian metric gµν

of signature (−,+,+,+).
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the (1+ 3)-dimensional Minkowski spacetime solution of the Einstein-nonlinear electromagnetic system,
which takes the following form relative to an arbitrary coordinate system:

Rµν − 1
2 gµνR = Tµν (µ, ν = 0, 1, 2, 3), (1.0.1a)

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (1.0.1b)

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (1.0.1c)

Above, Tµν (see (3.5.4a)) is one of the energy-momentum tensors corresponding to a family of nonlinear
models of electromagnetism, d denotes the exterior derivative operator, the two-form Fµν denotes the
Faraday tensor, the two-form Mµν denotes the Maxwell tensor, and Mµν is connected to (gµν,Fµν)

through a constitutive relation (see (3.2.4)). We make the following three assumptions concerning the
electromagnetic matter model:

(1) Its Lagrangian ?L is a scalar-valued function of the two electromagnetic invariants2

�(1)
def
=

1
2(g
−1)κµ(g−1)λνFκλFµν and �(2)

def
=

1
4(g
−1)κµ(g−1)λνFκλ

?Fµν,

where ? denotes the Hodge duality operator corresponding to gµν .

(2) The energy-momentum tensor Tµν corresponding to ?L satisfies the dominant energy condition
(sufficient conditions on ?L are given in (3.3.4a)–(3.3.4b) below).

(3) ?L is a sufficiently differentiable function of (�(1), �(2)), and its Taylor expansion around (0, 0) agrees
with that of the linear3 Maxwell–Maxwell4 equations to first order; i.e., ?L(�(1), �(2))=− 1

2�(1)+
O`+2(|(�(1), �(2))|2), where `≥ 10 is an integer; see Section 2.13 regarding the notation O`+2( · ).

The fundamental results in [Fourès-Bruhat 1952; Choquet-Bruhat and Geroch 1969] together imply
that the system (1.0.1a)–(1.0.1c) has an initial-value problem formulation in which suitably regular initial
data launch a unique maximal globally hyperbolic development. Roughly speaking, the maximal globally
hyperbolic development, which is uniquely determined up to isomorphism, is the largest possible solution
to the equations that is uniquely determined by the data. However, the results cited are abstract in the
sense that they do not provide any detailed quantitative information about the global structure of the
maximal globally hyperbolic development. In particular, the results do not address the question of whether
the resulting spacetime (M, gµν) is geodesically complete. The main goal of this article is to provide a
detailed qualitative and quantitative description of the global structure of maximal globally hyperbolic
developments launched by data near that of the most fundamental solution to (1.0.1a)–(1.0.1c): the
vacuum Minkowski spacetime. We briefly summarize our main results here. They are rigorously stated
and proved in Section 16.

2Throughout the article, we use Einstein’s summation convention in that repeated indices are summed over.
3By “linear”, we mean that the familiar electromagnetic equations of Maxwell are linear on any fixed spacetime background

(M, gµν); the coupled Einstein–Maxwell system is highly nonlinear.
4Throughout the article, we use the terminology “Maxwell–Maxwell” equations in place of the more common terminology

“Maxwell” equations. The justification is that Maxwell’s theory is based on the electromagnetic equations (1.0.1b)–(1.0.1c) and
the constitutive relation M= ?F; in a general covariant nonlinear electromagnetic theory, such as the ones considered in this
article, the equations (1.0.1b)–(1.0.1c) survive while the constitutive relation differs from that of Maxwell.
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Main results. The vacuum Minkowski spacetime solution g̃µν
def
= diag(−1, 1, 1, 1) and F̃µν

def
= 0 (µ, ν =

0, 1, 2, 3) to the system (1.0.1a)–(1.0.1c) is globally stable. In particular, small perturbations of the
trivial initial data corresponding to (g̃µν, F̃µν) have maximal globally hyperbolic developments that
are geodesically complete. Furthermore, the perturbed solution converges to the Minkowski spacetime
solution as the evolution progresses. These conclusions are consequences of a small-data global existence
result plus decay estimates for solutions to the reduced system (3.7.1a)–(3.7.1c) under the wave-coordinate
gauge condition (g−1)κλ0

µ
κ λ = 0 (µ= 0, 1, 2, 3), where (g−1)κλ0

µ
κ λ is a contracted Christoffel symbol

of gµν . Furthermore, relative to the wave-coordinate system that we construct (i.e., a coordinate system
{xµ}µ=0,1,2,3 such that (g−1)κλ0

µ
κ λ = 0 (µ = 0, 1, 2, 3)), the system (1.0.1a)–(1.0.1c) is equivalent to

the reduced system.

We recall the following standard facts (see, e.g., [Christodoulou 2008; Wald 1984]) concerning the
initial data for the system (1.0.1a)–(1.0.1c), which we refer to as “abstract” initial data. The abstract initial
data consist of a three-dimensional manifold 60 together with the following fields on 60: a Riemannian
metric g̊ jk , a symmetric type-

(0
2

)
tensor field K̊ jk , and a pair of electromagnetic one-forms D̊ j and B̊ j

( j, k = 1, 2, 3). Furthermore, viable data must satisfy the Gauss, Codazzi, and electromagnetic constraint
equations, which are respectively given by

R̊− K̊ab K̊ ab
+ [(g̊−1)ab K̊ab]

2
= 2T (N̂ , N̂ )|60, (1.0.2a)

(g̊−1)abD̊a K̊bj − (g̊−1)abD̊ j K̊ab = T
(

N̂ , ∂

∂x j

)∣∣∣
60

( j = 1, 2, 3), (1.0.2b)

(g̊−1)abD̊aD̊b = 0, (1.0.3a)

(g̊−1)abD̊aB̊b = 0. (1.0.3b)

In the above expressions, the indices are lowered and raised with g̊ jk and (g̊−1) jk , R̊ denotes the scalar
curvature of g̊ jk , D̊ denotes the Levi-Civita connection corresponding to g̊ jk , and N̂µ is the future-directed
unit g-normal to 60 (viewed as an embedded Riemannian submanifold of (M, gµν)). The one-forms D̊ j

and B̊ j together form a geometric decomposition of Fµν |60 , and the right-hand sides of (1.0.2a)–(1.0.2b)
can be computed (in principle) in terms of g̊ jk , D̊ j , and B̊ j alone; see Section 9.2 for more details
concerning the relationship of D̊ j and B̊ j to Fµν |60 . The dominant energy condition manifests itself
along 60 as the inequalities T (N̂ , N̂ )≥ 0 and T (N̂ , N̂ )2− (g̊−1)abT (N̂ , ∂/∂xa)T (N̂ , ∂/∂xb)≥ 0.

In this article, we consider the case 60 = R3. We will construct spacetimes of the form M= I ×R3,
where I is a time interval and 60 is a spacelike Cauchy hypersurface in (M, gµν). The constraints
(1.0.2a)–(1.0.2b) are necessary to ensure that (1.0.1a) can be satisfied along 60 while the constraints
(1.0.3a)–(1.0.3b) are necessary to ensure that the electromagnetic equations (1.0.1b)–(1.0.1c) can be
satisfied along 60. Our stability criteria for the abstract initial data include both decay assumptions at
spatial infinity and smallness assumptions. We provide here a description of our decay assumptions at
spatial infinity, which are based on the assumptions of [Lindblad and Rodnianski 2010]. Our smallness
assumptions will be discussed in detail in Section 10.
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Assumptions on the abstract initial data. We assume that there exists a global coordinate chart x =
(x1, x2, x3) on 60 = R3, a real number κ > 0, and an integer ` ≥ 10 such that (with r def

= |x | def
=√

(x1)2+ (x2)2+ (x3)2 and j, k = 1, 2, 3)

g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , (1.0.4a)

h̊(0)jk = χ(r)
2M
r
δ jk, (1.0.4b)

h̊(1)jk = o`+1(r−1−κ) as r→∞, (1.0.4c)

K̊ jk = o`(r−2−κ) as r→∞, (1.0.4d)

D̊ j = o`(r−2−κ) as r→∞, (1.0.4e)

B̊ j = o`(r−2−κ) as r→∞, (1.0.4f)

where the meaning of o`( · ) is described in Section 2.13. The cut-off function χ( · ) in (1.0.4b) is defined
in (4.2.1).

The parameter M in (1.0.4a), which is known as the ADM mass, is constrained by the following
requirements: according to the positive mass theorem of Schoen and Yau [1979; 1981] and Witten
[1981], under the assumption that Tµν satisfies the dominant energy condition, the only solutions g̊ jk

and K̊ jk to the constraint equations (1.0.2a)–(1.0.2b) that have an expansion of the form (1.0.4a) with the
asymptotic behavior (1.0.4b)–(1.0.4d) either have (i) M > 0 or (ii) M = 0, in which case the Riemannian
manifold (60, g̊ jk) embeds isometrically into Minkowski spacetime with second fundamental form K̊ jk .
The groundbreaking work of Christodoulou and Klainerman [1993] (which is discussed further in
Section 1.1.1) demonstrated the stability of the Minkowski spacetime solution to the Einstein-vacuum
equations in the case that the initial data are strongly asymptotically flat, which corresponds to the
parameter range κ≥ 1

2 in the above expansions. Our work here, which relies on the alternate framework
developed by Lindblad and Rodnianski [2010] (see Section 1.1.1), allows for the parameter range κ> 0.

In this article, we do not consider the issue of solving the constraint equations. The standard method
for solving the constraint equations is called the conformal method. For a detailed discussion of this
method, see, e.g., [Choquet-Bruhat and York 1980]. Roughly speaking, in this approach, part of the data
can be specified freely, and the constraint equations imply nonlinear elliptic PDEs for the remaining part.
To the best of our knowledge, under the restrictions on ?L described at the beginning of Section 1, there
are presently no rigorous results concerning the construction of initial data on the manifold R3 that satisfy
the constraints. However, we remark that, for the Einstein-vacuum equations Tµν ≡ 0, initial data that
satisfy the constraints and that coincide with the standard Schwarzschild data (written here relative to
isotropic coordinates)

g̊ jk =

(
1+ M

2r

)4
δ jk ( j, k = 1, 2, 3), (1.0.5a)

K̊ jk = 0 ( j, k = 1, 2, 3) (1.0.5b)
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outside of the unit ball centered at the origin were shown to exist in [Chruściel and Delay 2002a; 2002b;
Corvino 2000]. We remark that the stability of the Minkowski spacetime solution to the Einstein-
vacuum equations for such data follows from the methods of the aforementioned works [Christodoulou
and Klainerman 1993], [Lindblad and Rodnianski 2010] (and its precursor [2005]), and also from the
conformal method approach of Friedrich [1986] (this is not the same conformal method that was mentioned
above in connection with the constraint equations).

Remark 1.1. The only role of the dominant energy condition in this article is to ensure the physical
condition M ≥ 0; we assume this physical condition throughout the article. However, only the smallness
of |M | is needed to prove our global stability result; the sign of M does not enter into our stability
analysis for solutions to the evolution equations. In particular, if there existed small initial data with small
negative ADM mass M , we would still be able to prove that the corresponding solution to the evolution
equations exists globally. Similarly, if we made the replacement Tµν→−Tµν in the reduced equations
(3.7.1a)–(3.7.1c), we could still prove a small-data global existence result.

1.1. Comparison with previous work.

1.1.1. Mathematical comparisons. Our result is an extension of a large and growing hierarchy of global
stability results for the (1+ 3)-dimensional Minkowski spacetime solution to the Einstein equations.
The hierarchy began with the celebrated work of Christodoulou and Klainerman [1993], who proved
stability in the case of the Einstein-vacuum equations (i.e., Tµν ≡ 0). Klainerman and Nicolò [2003]
gave a second proof of this result using alternate (but related) techniques. Both of these proofs used
a manifestly covariant framework for the formulation of the equations and the derivation of estimates.
However, mathematically speaking, the closest relatives to the present article are the seminal works [2005;
2010], in which Lindblad and Rodnianski developed a technically simpler framework for showing the
stability of the Minkowski spacetime solution of the Einstein-scalar field system using a wave-coordinate
gauge. As we previously mentioned, a wave-coordinate gauge is a coordinate system in which the
contracted Christoffel symbols (g−1)κλ0

µ
κ λ completely vanish. Relative to such a coordinate system, the

Einstein-vacuum equations are equivalent to a reduced system comprising quasilinear wave equations for
the components gµν ; in the present article, the analogous equation is (3.7.1a). In her celebrated result
[1952], Choquet-Bruhat used wave coordinates to prove local well-posedness for the Einstein equations.
However, because of the logarithmic divergences discussed below in Section 1.2.4 and because of the
delicate nonlinearities in the Einstein equations, it was unexpected (see, e.g., [Choquet-Bruhat 1973]) that
the wave-coordinate approach of [Lindblad and Rodnianski 2005; 2010] for proving the global stability
of Minkowski spacetime is in fact viable. We remark that although the decay estimates of [Lindblad and
Rodnianski 2005; 2010] are not as precise as those of [Christodoulou and Klainerman 1993; Klainerman
and Nicolò 2003], these works are much shorter than their predecessors yet are robust enough to allow
for modifications, including the presence of the nonlinear electromagnetic fields examined in this article.
We also remark that many of the technical results we need are contained in [Lindblad and Rodnianski
2005; 2010], and we will often direct the reader to these works for their proofs.
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Other stability results in this vein include [2000], in which Zipser extended the framework of
[Christodoulou and Klainerman 1993] to show the stability of the Minkowski spacetime solution to
the Einstein–Maxwell system, and [2007], in which Bieri weakened the assumptions of [Christodoulou
and Klainerman 1993] on the decay of the initial data at spatial infinity. We also mention the work [2008]
(see also [2006; 2009]), in which Loizelet used the framework of [Lindblad and Rodnianski 2005; 2010] to
demonstrate the stability of the Minkowski spacetime solution of the Einstein-scalar field-Maxwell system
in 1+ n (n ≥ 3) dimensions. Moreover, in spacetimes of dimension 1+ n, with n ≥ 5 odd, it has been
shown [Choquet-Bruhat et al. 2006] that a conformal method (distinct from the one used by Friedrich)
can be used to show the stability of the Minkowski spacetime solution to the Einstein–Maxwell system for
initial data that coincide with the standard Schwarzschild data outside of a compact set. Roughly speaking,
a conformal method is a way of mapping a global existence problem into a local existence problem by
working with rescaled solution variables. When a conformal method is viable, it tends to give very precise
information concerning the asymptotics of the global solutions. In particular, the results of [Choquet-Bruhat
et al. 2006] provide a more detailed description of the asymptotics than the results of [Loizelet 2008].

We now compare the amount of regularity and decay that we require on the data to the amount required
in the alternate frameworks. The Christodoulou and Klainerman [1993], Zipser [2000], and Klainerman
and Nicolò [2003] proofs required two derivatives on the curvature (i.e., four derivatives on the metric).
Furthermore, the initial metric was required to be strongly asymptotically flat in the sense described above.
Zipser’s proof required (in addition) three derivatives on the Faraday tensor. Bieri’s [2007] proof required
only one derivative on the curvature (i.e., three derivatives on the metric), and it allowed for very slow decay
of the data at spatial infinity: g̊ jk=δ jk+o3(r−1/2) and K̊ jk=o2(r−3/2). The present article is less efficient:
we require 11 derivatives on the metric and 10 derivatives on the Faraday tensor. We also require asymptotic
flatness in the sense of (1.0.4a)–(1.0.4f), which is in between the decay required by Christodoulou and
Klainerman and Bieri. Our assumptions are similar to the ones made by Lindblad and Rodnianski [2010]
and Loizelet [2008]. For example, in n ≥ 3 spatial dimensions, Loizelet’s proof required 7+2b(n+2)/2c
derivatives of the metric. The main focus of the Lindblad–Rodnianski wave-coordinate approach is on
providing a technically simpler approach to the proof of stability as opposed to a proof that closes at a low
regularity level. There are at least two ways in which the wave-coordinate approach is suboptimal from the
point of view of the number of derivatives. The first is that all product nonlinearities are estimated in L2 on
constant-time hypersurfaces from only L2

−L∞ estimates with no use of intermediate L p norms, norms on
other hypersurfaces,5 or Calderón–Zygmund theory. That is, all nonlinear products are estimated in spatial
L2 by bounding the factor with the most derivatives on it in L2 and all other factors in L∞. For quadratic
terms, this means that we must be able to bound approximately half of the total number of derivatives in L∞.
This approach stands in contrast to the approaches of [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007], where, e.g., intermediate L p norms and other hypersurface
integrals played an important role in the analysis. The second source of suboptimality comes from the
version of the weighted Klainerman–Sobolev inequality that we use (see Section 1.2.7 and (1.2.10)). This

5As is explained in Section 1.2.6, our proof of global stability also makes use of the positivity of certain time integrals of the
L2 integrals (i.e., positive spacetime integrals) that arise in our energy identities.
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inequality allows one to estimate a weighted L∞ norm of a function by weighted L2 norms of up-to-
order-three weighted derivatives. The reason that three derivatives are used (instead of the familiar two
derivatives of standard Sobolev embedding H 2(R3) ↪→ L∞(R3)) is that this allows one to avoid putting
more than one derivative on the weight function (the at-most-two other derivatives are rotations, which pass
through the weight function); see the proof given in [Lindblad and Rodnianski 2010, Proposition 14.1].

We also emphasize the following point: the techniques used in this article to analyze the electromagnetic
fields differ in a fundamental way from those used by Loizelet [2008]. Our methods are closer in spirit
to (though distinct from) the methods used by Zipser [2000]. More specifically, Loizelet [2008] analyzed
the standard Maxwell–Maxwell equations through the use of a four-potential6 Aµ satisfying the Lorenz
gauge condition (g−1)κλDκ Aλ = 0, where D is the Levi-Civita connection corresponding to gµν . In
Loizelet’s analysis of the Maxwell–Maxwell equations, the Lorenz gauge leads to a diagonal system of
semilinear-in-Aµ wave equations for the components Aµ. Furthermore, these equations can be analyzed
by using the same techniques that are used in the study of the components of the metric (see (3.7.1a)) and
the scalar field. In particular, in Loizelet’s analysis, Lemma 12.2 can be used to deduce suitable weighted
energy estimates for the components ∇µAν . In contrast, as discussed in [Speck 2012], it is not clear that
the Lorenz gauge can be used to analyze the kinds of quasilinear-in-F electromagnetic field equations
(1.0.1c) studied in this article. More specifically, it is not clear that the Lorenz gauge in general leads to a
hyperbolic formulation of the electromagnetic equations that is suitable for deriving the kinds of L2 energy
estimates needed for our analysis. For this reason, throughout this article, we work directly with the
Faraday tensor. In particular, as described in detail in Section 8, we use Christodoulou’s [2000] geometric
framework to construct energy currents that can be used to derive the kinds of L2 estimates needed in our
analysis. Using these methods, we prove Lemma 12.1, which compensates for the fact that Lemma 12.2
is not generally available for controlling the electromagnetic quantities. We remark that there is another
advantage to working directly with the Faraday tensor: our smallness condition for stability depends only
on the physical field variables and not on auxiliary mathematical quantities such as the components ∇µAν .

Now roughly speaking, the reason that we are able to prove our main stability result is because, in
our wave-coordinate gauge, the nonlinear terms have a special algebraic structure, which Lindblad and
Rodnianski [2003] have labeled the weak null condition; see Section 1.2.5 for additional details. We remark
that, in order for small-data global existence to hold, it is essential that the quadratic nonlinearities have
special structure: John’s [1981] blow-up result shows that quadratic perturbations7 of the homogeneous
linear wave equation in (1+ 3)-dimensional Minkowski spacetime (of which our equations (1.2.4a)
below are an example) can sometimes lead to finite-time blow-up even for arbitrarily small data. Now by
definition, a system of PDEs satisfies the weak null condition if the corresponding asymptotic system has
small-data global solutions. Roughly, the asymptotic system is obtained by keeping only the quadratic
terms with both factors involving derivatives that are transversal to the outgoing Minkowskian null cones
and the related linear term that drives their evolution along those cones (see the discussion in Section 1.2.4);
the discarded terms are expected to decay faster than the remaining terms. The general philosophy is that,

6Recall that a four-potential is a one-form Aµ such that Fµν = (d A)µν .
7In [John 1981], it was shown that both semilinear and quasilinear quadratic perturbations can lead to small-data blow-up.
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if the asymptotic system has small-data global existence, then one should be hopeful that the original
system does too. Lindblad and Rodnianski [2010] showed that the asymptotic system corresponding to the
Einstein-scalar field system in wave coordinates has global solutions for small (i.e., near-Minkowskian)
data. Although we do not carry out such an analysis in this article, we remark that it can be checked that the
asymptotic system8 corresponding to the Einstein-nonlinear electromagnetic system in wave coordinates
also has global solutions for small data. This was our original motivation for pursuing the present work.

The aforementioned weak null condition is a generalization of the classic null condition of Klainerman
[1986] (see also [Christodoulou 1986]), in which the quadratic nonlinearities are standard null forms
(which are defined below in the statement of Lemma 3.8). We remark that standard null forms have a very
favorable structure and are completely discarded when one forms the asymptotic system. By now, there is
a very large body of global existence and almost-global existence results that are based on the analysis of
nonlinearities that satisfy generalizations of Klainerman’s null condition. This includes the global stability
results for the Einstein equations mentioned above but also many other results; there are far too many
to list exhaustively, but we mention the following as examples: [Katayama 2005; Klainerman and Sideris
1996; Lindblad 2004; 2008; Metcalfe and Sogge 2007; Metcalfe et al. 2005; Sideris 1996; Speck 2012].

1.1.2. Connections to the “divergence” problem. One of the most important unresolved issues in physics
is that of the so-called “divergence problem”. In the setting of classical electrodynamics on the Minkowski
spacetime background, this problem manifests itself as the unhappy fact that the standard Maxwell–
Maxwell equations with point-charge sources (i.e., delta-function source terms modeling the point
charges) together with the Lorentz force law9 (which is supposed to drive the motion of the point charges)
do not form a well-defined system of equations. This is because the theory dictates that the Lorentz force
at the location of a point charge is “infinite in all directions” so that the charge’s motion is ill-defined.
A further symptom of the divergence problem in this theory is that the energy of a static point charge
is infinite. Moreover, our present-day flagship model of quantum electrodynamics (QED), which is
based on a quantization of the classical Maxwell–Dirac field equations, has not yet fixed the crux of the
problem; similar manifestations of the divergence problem arise in QED; see [Kiessling 2004a; 2004b]
for a detailed discussion of these issues.

Now in [2004a; 2004b], Kiessling has taken a preliminary step in the direction of resolving the diver-
gence problem by reconsidering classical electrodynamics in Minkowski spacetime. One of Kiessling’s
primary strategies is to follow the lead of Max Born [1933] by replacing the standard Maxwell–Maxwell
equations with a suitable nonlinear system, the hope being that it will be possible to make rigorous
mathematical sense of the motion of point charges in the nonlinear theory. Kiessling’s leading candidate
is the Maxwell–Born–Infeld (MBI) model of classical electromagnetism, which was proposed by Born
and Infeld [1934] based on Born’s [1933] earlier ideas. The electromagnetic Lagrangian for this model is

?L(MBI)
def
=

1
β4 −

1
β4

(
1+β4�(1)−β8�2

(2)
)1/2
=

1
β4 −

1
β4 (detg(g+β2F))1/2, (1.1.1)

8To obtain this asymptotic system, one also discards the quadratic terms containing the fast-decaying null components α[F],
ρ[F], and σ [F] of the Faraday tensor; see Section 1.2.4.

9Recall that the Lorentz force is FLorentz = q[E + v× B], where q is the charge associated to the point charge, E is the
electric field, v is the instantaneous point charge velocity, and B is the magnetic induction.



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 779

where β> 0 denotes Born’s “aether” constant. We point out that, as verified in, e.g., [Speck 2012], this
Lagrangian satisfies the assumptions (3.3.3a) and (3.3.4a)–(3.3.4b) so that the main results of this article
apply to the MBI model. Now it turns out that it was not enough for Kiessling to simply replace the
standard Maxwell–Maxwell equations with the Maxwell–Born–Infeld equations, for such a modification
fails to fix the problem of the Lorentz force being ill-defined at the location of the point charge. On the
other hand, in MBI theory on the Minkowski spacetime background, there exist Lipschitz-continuous
electromagnetic potentials corresponding to solutions to the field equations with a single static point-charge
source. Kiessling observed that this level of regularity is (just barely) sufficient for a relativistic version
of Hamilton–Jacobi theory to be well-defined. He thus proposed a new relativistic Hamilton–Jacobi
“guiding law” of motion for the point charges (see [Kiessling 2004a] for the details).

Kiessling’s interest in the Maxwell–Born–Infeld system was further motivated by results contained in
[Boillat 1970; Plebaǹski 1970], which show that it is the unique10 theory of classical electromagnetism
that is derivable from a Lagrangian and that satisfies the following five postulates (see also the discussions
in [Białynicki-Birula 1983; Kiessling 2004a]):

(i) The field equations transform covariantly under the Poincaré group.

(ii) The field equations are covariant under a Weyl (gauge) group.

(iii) The electromagnetic energy surrounding a stationary point charge is finite.

(iv) The field equations reduce to the standard Maxwell–Maxwell equations in the weak field limit.

(v) The solutions to the field equations are not birefringent.

We remark that the standard Maxwell–Maxwell system satisfies all of the above postulates except for
(iii) and that the MBI system was shown to satisfy (iii) by Born [1933]. Physically, postulate (v) is
equivalent to the statement that the “speed of light propagation” is independent of the polarization of the
wave fields. Mathematically, this is the postulate that there is only a single null cone11 associated to the
electromagnetic equations; in a typical theory of classical electromagnetism, the causal structure of the
electromagnetic equations is more complicated than the structure corresponding to a single null cone (see
[Speck 2012] for a detailed discussion of this issue in the context of the Maxwell–Born–Infeld equations
on the Minkowski spacetime background).

We can now clarify the connection of the present article to Kiessling’s work. First, as noted in [2004a],
Kiessling expects that his theory can be generalized to the case of a curved spacetime through a coupling
to the Einstein equations. Next, we mention that although the Maxwell–Born–Infeld system is Kiessling’s
leading candidate for an electromagnetic model, he is also considering other models. In particular, by
relaxing postulate (v) above, a relaxation that in principle could be supported by experimental evidence,
one is led to consider a larger family of electromagnetic models. Now one basic criterion for any viable
electromagnetic model is that small, nearly linear-Maxwellian electromagnetic fields in near-Minkowski
spacetimes should not lead to a severe breakdown in the structure of spacetime or other degenerate

10More precisely, there is a one-parameter family of such theories indexed by β> 0.
11In general, this “light cone” does not have to coincide with the gravitational null cone although it does in the case of the

standard Maxwell–Maxwell equations.
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behavior. The present work confirms this criterion for a large family of electromagnetic models coupled
to the Einstein equations, including the Maxwell–Born–Infeld system and many other models that fall
under the scope of Kiessling’s program.

1.2. Discussion of the analysis.

1.2.1. The splitting of the spacetime metric and setting up the equations. As in [Lindblad and Rodnianski
2005; 2010], in order to analyze the spacetime metric, we split it into the following three pieces (where
we view h(1)µν as the “new unknown metric variable”):

gµν = mµν + hµν (µ, ν = 0, 1, 2, 3), (1.2.1a)

hµν = h(0)µν + h(1)µν (µ, ν = 0, 1, 2, 3), (1.2.1b)

h(0)µν
def
= χ

(r
t

)
χ(r)2M

r
δµν (µ, ν = 0, 1, 2, 3), (1.2.1c)(

h(0)µν
∣∣
t=0 = χ(r)

2M
r
δµν, ∂t h(0)µν

∣∣
t=0 = 0

)
,

where mµν = diag(−1, 1, 1, 1) is the Minkowski metric and the function χ plays several roles that will
be discussed in Section 1.2.9. Above and throughout, χ(z) is a fixed cut-off function that satisfies

χ ∈ C∞, χ ≡ 1 for z ≥ 3
4 , and χ ≡ 0 for z ≤ 1

2 . (1.2.2)

We remark that, here and throughout the rest of the article, unless we explicitly indicate otherwise, all
indices on all tensors are lowered and raised with the Minkowski metric mµν = diag(−1, 1, 1, 1) and
its inverse (m−1)µν = diag(−1, 1, 1, 1) (as is explained in Section 2.2, we use the symbol # whenever
we raise indices with g−1). Furthermore, as in [Lindblad and Rodnianski 2005; 2010], we work in
a wave-coordinate system, which is a coordinate system in which the contracted Christoffel symbols
0µ

def
= (g−1)κλ0

µ
κ λ (see (3.0.2d)) of gµν satisfy

0µ = 0 (µ= 0, 1, 2, 3). (1.2.3)

We remark that several equivalent definitions of the wave-coordinate gauge (1.2.3) are discussed in
Section 3.1 and that the viability of the wave-coordinate gauge for proving local well-posedness for the
system (1.0.1a)–(1.0.1c) (which is a rather standard result based on the fundamental ideas of [Fourès-
Bruhat 1952]) is discussed in Section 4.3.

As is discussed in detail in Section 3.7, in a wave-coordinate system (t, x), the equations (1.0.1a)–
(1.0.1c) are equivalent to the reduced equations

2̃gh(1)µν = Hµν − 2̃gh(0)µν (µ, ν = 0, 1, 2, 3), (1.2.4a)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (1.2.4b)

N #µνκλ
∇µFκλ = Fν (ν = 0, 1, 2, 3), (1.2.4c)

where 2̃g = (g−1)κλ∇κ∇λ is the reduced wave operator corresponding to gµν , ∇ is the Levi-Civita
connection corresponding to the Minkowski metric mµν ,
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N #µνκλ def
=

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ − hµκ(m−1)νλ

+ hµλ(m−1)νκ − (m−1)µκhνλ+ (m−1)µλhνκ
)
+ N #µνκλ

4
,

N #µνκλ
4

= O`(|(h,F)|2) is a quadratic error term that depends on the chosen model of nonlinear elec-
tromagnetism, and Hµν and Fν are inhomogeneous terms that depend in part on the chosen model of
nonlinear electromagnetism.

The question of the stability of the Minkowski spacetime solution to (1.0.1a)–(1.0.1c) has thus been
reduced to two subquestions: (i) show that the reduced system (1.2.4a)–(1.2.4c), where the unknowns
are viewed to be (h(1)µν ,Fµν), has small-data global existence (if the ADM mass M is sufficiently small)
and (ii) show that the resulting spacetime (R1+3, gµν =mµν + h(0)µν + h(1)µν) is geodesically complete. The
second question is very much related to the first, for as in [Lindblad and Rodnianski 2005, Section 16] and
[Loizelet 2008, Section 9], the question of geodesic completeness can be answered if one has sufficiently
detailed information about the asymptotic behavior of h(1)µν ; our stability theorem (see Section 16) provides
sufficient information. Therefore, the main focus of this article is (i).

1.2.2. The smallness condition. Our smallness condition on the abstract initial data is stated in terms
of the ADM mass M and a weighted Sobolev norm of the field data ∇ i h̊

(1)
jk , K̊ jk , D̊ j , and B̊k . More

specifically, in order to deduce global existence, we will require that

E`;γ(0)+M < ε`, (1.2.5)

where ε` > 0 is a sufficiently small positive number, E`;γ(0)≥ 0 is defined by

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
, (1.2.6)

the weighted Sobolev norm ‖ · ‖H `
1/2+γ

is defined in Definition 10.1 below, 0< γ< 1
2 is a constant, and

` ≥ 10 is an integer. The condition ` ≥ 10 is needed for various weighted Sobolev embedding results,
including the weighted Klainerman–Sobolev inequality (1.2.10), and the results stated in Appendix A.
In the above expressions, ∇ is the Levi-Civita connection corresponding to the Euclidean metric12

m jk
def
= diag(1, 1, 1). Note that the assumed fall-off conditions (1.0.4c)–(1.0.4f) guarantee the existence

of a constant 0< γ< 1
2 such that E`;γ(0) <∞.

Although the norm (1.2.6) is useful for expressing the small-data global existence condition in terms
of quantities inherent to the data, from the perspective of analysis, a more useful quantity is the energy
E`;γ;µ(t)≥ 0, which is defined by

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

{
|∇∇

I
Zh(1)|2+ |LI

ZF|2
}
w(q) d3x, (1.2.7)

12Throughout the article, we use the symbol m to denote both the Euclidean metric m jk
def
= diag(1, 1, 1) on R3 and the

first fundamental form mµν
def
= diag(0, 1, 1, 1) of the constant time hypersurfaces 6t viewed as embedded hypersurfaces of

Minkowski spacetime; this double-use of notation should not cause any confusion.
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where ∇ denotes the Levi-Civita connection corresponding to the full Minkowski spacetime metric,
q def
= |x | − t is a null coordinate, the weight function w(q) is defined by

w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(1.2.8)

γ is from (1.2.6), and 0 < µ < 1
2 is a fixed constant. In the above expression, Z

def
= {∂µ, xµ∂ν − xν∂µ,

xκ∂κ}0≤µ≤ν≤3 is a subset of the conformal Killing fields of Minkowski spacetime, I is a vector field
multi-index, ∇ I

Z represents iterated Minkowski covariant differentiation with respect to vector fields in Z,
and LI

Z represents iterated Lie differentiation with respect to vector fields in Z. The significance of the set
Z is that it is needed for the weighted Klainerman–Sobolev inequality (1.2.10), which is discussed below.

Remark 1.2. The presence of the parameter µ>0 in (1.2.8) might seem unnecessary as 1+(1+|q|)−2µ
≈1.

However, as is explained in Section 1.2.6, the presence of µ> 0 ensures that w′(q) > 0, an inequality
that plays a key role in our energy estimates.

1.2.3. Overall strategy of the proof. The overall strategy is to deduce a hierarchy of Gronwall-amenable
inequalities for the energies Ek;γ;µ(t) (0≤ k ≤ `); this is accomplished in (16.2.5) below. The net effect
is that, under the assumptions that E`;γ(0)+M ≤ ε and ε is sufficiently small, we are able to deduce the
following a priori estimate for the solution, which is valid during its classical lifetime:

E`;γ;µ(t)≤ c`ε(1+ t)c̃`ε. (1.2.9)

In the above inequality, c` and c̃` are positive constants. Now it is a standard result in the theory of
hyperbolic PDEs that, if ε is sufficiently small, then an a priori estimate of the form (1.2.9) implies that
the solution exists for (t, x) ∈ (−∞,∞)×R3; see Proposition 14.1 for more details. Furthermore, as
shown in [Lindblad and Rodnianski 2005; Loizelet 2008], if ε is sufficiently small, then it also follows
that the spacetime (R1+3, gµν =mµν+h(0)µν +h(1)µν) is geodesically complete. The main goal of this article
is therefore to derive (1.2.9).

1.2.4. Geometry and null decompositions. Let us now describe the tools used to derive (1.2.9). First and
foremost, as mentioned above in Section 1.1.1, the reason we are able to prove our stability result is that
the reduced equations (1.2.4a)–(1.2.4c) have a special algebraic structure and satisfy (in the language
of Lindblad and Rodnianski) the weak null condition. Now in order to see the special structure of the
terms in the reduced equations, we use the strategy of Lindblad and Rodnianski and decompose them
into their Minkowskian null components; we refer to this as a Minkowskian null decomposition. We
emphasize the following point: the Minkowskian geometry is not the “correct” geometry to use for
analyzing the equations, for the actual characteristics of the system correspond to the null cones of the
spacetime metric gµν and the characteristics of the nonlinear electromagnetic equations (which in general
do not have to coincide with the gravitational null cones). However, the errors that we make in using the
Minkowskian geometry (which has the advantage of being simple) are controllable.

We stress that the strategy of using the Minkowskian geometry to prove a global stability result for
the Minkowski spacetime solution (in wave coordinates) was a novel (and unexpectedly viable) feature of
[Lindblad and Rodnianski 2005; 2010]. The previous works [Christodoulou and Klainerman 1993; Zipser
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2000; Klainerman and Nicolò 2003; Bieri 2007] used foliations of spacetime built out of outgoing null
cones of the actual spacetime metric gµν , which logarithmically diverge from the corresponding outgoing
cones of Minkowski spacetime as t→∞. The use of the actual geometry allowed these authors to derive
sharp estimates for the asymptotic behavior of the perturbed solution. However, this approach required an
enormous effort. In addition to (i) constructing geometric foliations, the authors also had to (ii) carefully
decompose every term relative to a g-null frame, (iii) construct vector fields (with controllable deformation
tensors) for commuting the equations, and (iv) use an elaborate collection of elliptic estimates to control
the foliations. At the expense of reduced precision, the Lindblad–Rodnianski approach eliminates many
of these difficulties: the Minkowskian geometry is very easy to “construct”, one only has to carefully
decompose “the important terms” relative to the Minkowskian null frame, the vector field differential
operators are prespecified, and no elliptic estimates are needed since the foliations are prespecified.

Let us briefly recall the meaning of a Minkowskian null decomposition; a more detailed description is
offered in Section 5. The notion of a Minkowskian null decomposition is intimately connected to the
following spacetime subsets: the outgoing Minkowskian null cones C+q

def
= {(τ, y) | |y|−τ =q}, the ingoing

Minkowskian null cones C−s
def
= {(τ, y) | |y|+τ = s}, the constant time slices 6t

def
= {(τ, y) | τ = t}, and the

Euclidean spheres Sr,t
def
= {(τ, y) | t = τ, |y| = r}. Observe that the null coordinate q def

= |x |− t associated
to the spacetime point with coordinates (t, x) is constant on the outgoing cones and the null coordinate
s def
= |x | + t is constant on the ingoing cones. These coordinates will be used throughout the article to

describe the rates of decay of various quantities. With ω j def
= x j/r ( j = 1, 2, 3), we also define the ingoing

Minkowskian null geodesic vector field Lµ def
= (1,−ω1,−ω2,−ω3), which satisfies mκλLκLλ = 0 and is

tangent to the C−s , and the outgoing Minkowskian null geodesic vector field Lµ def
= (1, ω1, ω2, ω3), which

satisfies mκλLκLλ = 0 and mκλLκLλ =−2 and is tangent to the C+q . Furthermore, in a neighborhood
of each nonzero spacetime point p, there exists a locally defined pair of m-orthonormal vector fields e1

and e2 that are tangent to the family of Euclidean spheres and m-orthogonal to L and L . The set
N

def
= {L, L , e1, e2}, which spans the tangent space at each point, is known as a Minkowskian null frame.

In the discussion that follows, we will also make use of the set T
def
= {L , e1, e2}, which is the subset

consisting of only those frame vectors tangent to the C+q , and the set L
def
= {L}.

Given any two-form F, we can decompose it into its Minkowskian null components α[F], α[F],
ρ[F], and σ [F], where α and α are two-forms m-tangent13 to the spheres Sr,t and ρ and σ are scalars.
More specifically, we define αA = FAL , αA = FAL , ρ = 1

2 FL L , and σ = F12, where A ∈ {1, 2} and
we have abbreviated FAL

def
= eκA LλFκλ, etc. Similarly, we can decompose the tensor hµν into its null

components hL L , hL L , hLT , etc., where T stands for any of the vectors in T. We are now ready to
discuss one of the major themes running throughout this article: the rates of decay of the various null
components of F and h are distinguished by the kinds of contractions taken against the null frame vectors.
In particular, contractions against L , e1, and e2 are associated with favorable decay, with L being the most
favorable, while contractions against L are associated with unfavorable decay. Similarly, differentiation in
the directions L , e1, and e2 are associated with creating additional favorable decay in the null coordinate s
while differentiation in the direction L is associated with creating less favorable additional decay in q

13By m-tangent, we mean that their vector duals relative to the Minkowski metric are tangent to the Sr,t .
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(see Lemma 6.16 for a precise version of this claim). Equivalently, the operator ∇ creates favorable decay
in s while ∇ only creates decay in q . Here and throughout, ∇ is the null frame projection (of the derivative
component only when ∇ is applied to a tensor field) of the Minkowski connection ∇ onto the outgoing
Minkowski null cones (i.e., ∇ projects away the L component of ∇). From this point of view, the most
dangerous terms in the equations are α and hL L and the ∂q ∼∇L derivatives (see Section 2.7) of these
quantities. We recommend that at this point the reader should examine the conclusions of Propositions 15.6
and 15.7 to get a feel for the kind of decay properties possessed by the various null components.

The main idea behind the Minkowskian null decomposition is that it can be used to show the following
fact: the worst possible combinations of terms, from the point of view of decay rates, are not present in
the reduced equations (1.2.4a)–(1.2.4c). This special algebraic structure, which is of central importance
in our small-data global existence proof, is examined in detail in Propositions 11.1–11.4. As revealed
in [Lindblad and Rodnianski 2003; 2005; 2010], this special algebraic structure is highly tensorial in
nature. A related fact is that various null components of the lower-order derivatives of the solution exhibit
a partially decoupled behavior. Moreover, this partial decoupling allows us to derive a hierarchy of
“upgraded pointwise decay” estimates for the lower-order derivatives. These estimates, which play an
essential role in the proof of our main theorem, provide bounds that are stronger than the bounds implied
by the size of E`;γ;µ(t). This critical issue is discussed in more detail in Section 1.2.11.

1.2.5. The special structure of the nonlinearities involving the Faraday tensor. We now briefly summarize
the special structures that allow us to extend the results of [Lindblad and Rodnianski 2010] to include
small electromagnetic fields. We emphasize the following point: because of our assumptions on the
electromagnetic Lagrangian, all of the important nonlinearities (from the point of view of small-data
global existence) are the quadratic ones that are present in the case of the standard Maxwell–Maxwell
Lagrangian ?L(Maxwell) =−

1
2�(1); all of the other electromagnetic theories that are covered by our main

theorem introduce cubic and higher-order nonlinearities into the PDEs that are relatively easy to control.
We first discuss how the electromagnetic fields couple into the equations for the components of the metric
term hµν = gµν−mµν . The presence of the electromagnetic fields introduces only one important nonlinear
term into these equations: the main F-containing quadratic term Q(2;h)µν (F,F) on the right-hand side
of (3.7.2a). A null decomposition reveals that this term has only one dangerous component involving the
product |α|2: Q(2;h)L L , which will be shown to decay like |Q(2;h)|L L . ε2(1+ t)−2 (see inequalities (11.2.7e)
and (15.3.3)). All other null components of Q(2;h) have a negligible effect on the dynamics because at
least one of their factors is a “good” null component of F (see inequalities (11.2.7d) and (15.3.4c)); these
quadratic terms therefore decay rapidly. Furthermore, a null decomposition of the wave equations (3.7.1a)
reveals that the dangerous component only directly influences the behavior of the metric perturbation
component |∇h|L L . The main point is that Lindblad and Rodnianski [2010] were able to close their proof
even though they allowed |∇h|L L to decay at a slower rate than the other null components of ∇h. The
decay rate |Q(2;h)|L L . ε2(1+ t)−2, though relatively slow, still allows us to prove the same estimates
for |∇h|L L and |h|L L as in [ibid.] (see Proposition 15.6 and note the presence of the growing ln(1+ t)
factor in (15.3.2b) compared to the other estimates).
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We now discuss the nonlinearities present in the electromagnetic field equations for the components
of F. There are three important nonlinear terms: the main quadratic terms Pν

(F)(h,∇F) and Qν(1;F)(h,∇F)

from (3.7.3a) and the main quadratic term Qν(2;F)(∇h,F) from (3.7.2b). The terms Qν(1;F)(h,∇F) and
Qν(2;F)(∇h,F) have a very favorable null structure (all quadratic factors involve either a good tangential
derivative ∇ or a good component of F) and therefore have a negligible effect on the dynamics (see
inequalities (11.2.7h)–(11.2.7i)). Furthermore, this special structure survives upon commuting the
equations with LI

Z. In contrast, the term Pν
(F)(h,∇F) has a less favorable null structure and must be

handled with care. For example, if X is any one-form, then in order to bound |XνPν
(F)(h,∇F)|, one must

in particular bound |X ||h|LL|∇F| (see inequality (11.2.7f)). The product |h|LL|∇F| is only expected
to decay like ε2(1+ t)−2 thanks to the presence of the worst null components of ∇F (the worst null
component combination in the product |h|LL|∇F| is the magnitude of the product 1

4 hL L∇Lαν , which is
discussed below in the third paragraph of Section 1.2.11). The main reason that we are able to handle
the difficult term Pν

(F)(h,∇F) is that the wave-coordinate condition allows one to derive independent
estimates for |h|LL that are just good enough to close the proof of stability; this is discussed in more
detail in Section 1.2.10. Another difficulty is that some of this structure is destroyed after one commutes
Pν
(F)(h,∇F) with LI

Z. In particular, the commuted term |LI
Zh|LL must be carefully analyzed, for Lie

differentiation results in the presence of some potentially dangerous lower-order terms. These terms are
discussed in more detail at the end of Section 1.2.12.

1.2.6. Energy inequalities and the canonical stress. The first major analytical step in deriving the all-
important Gronwall-amenable estimate (16.2.5) (which is the main ingredient in the derivation of the a
priori estimate (1.2.9)) is to deduce the energy inequalities of Lemmas 12.1 and 12.2, which respectively
provide L2 estimates for solutions to the electromagnetic equations of variation and L2 estimates for
solutions to quasilinear wave equations whose principal operator agrees with that of (1.2.4a) (i.e., whose
principal operator is 2̃g). The equations of variation are linear (in the principal term) PDEs that are
satisfied by the derivatives of solutions F to (1.2.4b)–(1.2.4c). Specifically, the equations of variation
are the PDEs (8.1.1a)–(8.1.1b). As is explained below, these equations come into play because we
require L2 estimates for higher-order derivatives of h(1) and F in order to close our global existence
argument. We will comment mainly on the estimates for the electromagnetic equations of variation since
the estimates of Lemma 12.2 are perhaps more familiar to the reader and in any case are explained in
detail in [Lindblad and Rodnianski 2010, Lemma 6.1 and Proposition 6.2]. Our proof of Lemma 12.1 is
based on the construction of a suitable energy current J̇µ def

= −Q̇µ
νXν , where Q̇µ

ν is the canonical stress.
Q̇µ

ν = Q̇µ
ν[Ḟ, Ḟ] is a tensor field that depends quadratically on the variations Ḟµν

def
= LI

ZF, Xν def
= w(q)δν0

(ν = 0, 1, 2, 3) is a “multiplier vector field”, and w(q) is the weight function defined in (1.2.8). The end
result is provided by inequality (12.2.1) below. Although at first glance inequality (12.2.1) may appear
to be a standard energy inequality, one of the most important features of this particular energy current
is that it provides the additional positive spacetime integral

∫ t2
t1

∫
6τ
(|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ on the
left-hand side of (12.2.1); here, α̇, ρ̇, and σ̇ are the “favorable” null components of the two-form Ḟ. This
additional positive quantity, which is analogous to the quantity

∫ t2
t1

∫
6τ
|∇φ|2w′(q) d3x dτ on the left-hand

side of (12.2.4) that was exploited by Lindblad and Rodnianski, is one of the key advantages afforded
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by our use of a weight function of the form (1.2.8). Its availability is directly related to the fact that we
have better integrated control over the quadratic terms |α̇|2+ ρ̇2

+ σ̇ 2 than we do over the term |α̇|2. The
spacetime integral plays a key role in our derivation of the energy inequality (16.2.5).

Let us now make a few comments concerning the canonical stress and the construction of the energy
current J̇µ introduced above. A very detailed description is located in [Christodoulou 2000; Speck 2012],
so we confine ourselves here to its two most salient features. The canonical stress (see (8.2.2)) plays
the role of an energy-momentum-type tensor for the electromagnetic equations of variation. Because
these (linear-in-Ḟ) equations depend on the “background” Fµν in addition to the linearized variables Ḟµν ,
it is not the case that Dµ(Q̇

µ
ν[Ḟ, Ḟ]) = 0; this is in contrast to the property (g−1)κλDκTλν = 0 (see

(3.5.3)) enjoyed by the energy-momentum tensor. However, we now point out the first key property of
the canonical stress: ∇µ(Q̇

µ
ν[Ḟ, Ḟ]) is lower-order in the sense that it does not depend on ∇λḞµν ; by

using the equations of variation for substitution, the ∇λḞµν terms can be replaced with inhomogeneous
terms (see (8.2.4)). It is already important to appreciate the availability of this nontrivial quadratic-in-Ḟ
quantity whose divergence can be expressed in terms of only F, ∇F, Ḟ, and inhomogeneous terms.
The availability of such a quantity is not a feature inherent to all systems of equations,14 but is instead
related to the symmetry properties of the indices of the principal terms (i.e., the terms on the left-hand
side) in equations (8.1.1a)–(8.1.1b), which themselves are related to the fact that the original nonlinear
electromagnetic equations are derivable from a Lagrangian.

The second key property enjoyed by the canonical stress is that of integrated positivity upon contraction
against certain pairs (ξ, X) consisting of a one-form ξ and a vector field X . More precisely, for certain
hypersurfaces 6, there exist choices of (ξ, X) such that ξ is normal to 6 (in the sense of covector-vector
annihilation) and such that the quantity

∫
6

Q̇µ
νξµXν

[Ḟ, Ḟ] d6 is bounded from below by the square of
an L2-type norm of Ḟ along 6. This is a general fact that holds for all electromagnetic equations of
variation that are regularly hyperbolic in the sense of [Christodoulou 2000]. However, in the present
article, a stronger condition than integrated positivity holds: for certain pairs (ξ, X), Q̇µ

νξµXν
[ · , · ] is in

fact a positive-definite quadratic form in Ḟ. We remark that this stronger property concerns the structure of
the quadratic form Q̇µ

νξµXν
[ · , · ] and therefore has nothing to do with whether Ḟ satisfies the equations

of variation.
The two key properties are analogous to (but distinct from) the positivity properties of an energy-

momentum tensor satisfying the dominant energy condition and the positivity properties of the Bel–
Robinson tensor (which played a central role in [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007]). As is explained in [Christodoulou 2000; Speck 2012], the
set of pairs (ξ, X) leading to integrated positivity is intimately connected to the hyperbolicity of and the
geometry of the electromagnetic equations and to the speeds and directions of propagation in the system.
In this article, the only hypersurfaces that we integrate over are the constant-time hypersurfaces 6t and the
only pair (ξ, X) that we use is ξµ =−δ0

µ, and Xν
= w(q)δν0 . The special positivity properties stemming

from this choice of (ξ, X), and in particular the availability of the additional positive spacetime integral∫ t2
t1

∫
6τ
(|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ mentioned above, are derived in Lemma 12.1. We emphasize that

14However, such quantities do in fact exist for all scalar wave equations.
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our derivation of this additional spacetime integral is not just a consequence of the second key property;
rather, our derivation requires Ḟ to be a solution to the equations of variation.

1.2.7. Weighted Klainerman–Sobolev inequalities. Based on the energy inequalities of Proposition 12.3,
which are relatively straightforward consequences of Lemmas 12.1 and 12.2, it is clear that most of the
hard work in deriving the estimate (16.2.5) goes into estimating the integrals involving the inhomogeneous
terms I and Ḟ on the right-hand sides of (12.2.6) and (12.2.8). In particular, we attempt to summarize
here the origin of the factors (1+ τ)−1 and (1+ τ)−1+Cε that appear in (16.2.5) and that are of central
importance in our derivation of the fundamental a priori energy estimate (1.2.9). Roughly speaking, these
factors arise from a collection of pointwise decay estimates that we will soon explain. The first tools
of interest to us along these lines are the weighted Klainerman–Sobolev inequalities, which allow us to
deduce pointwise decay estimates for functions φ ∈ C∞0 (R

3) in terms of weighted L2 estimates for φ and
its Minkowskian covariant derivatives with respect to vector fields Z ∈ Z. More specifically (see also
Appendix B), the weighted Klainerman–Sobolev inequalities state that (with q def

= |x | − t)

(1+ t + |x |)[(1+ |q|)w(q)]1/2|φ(t, x)| ≤ C
∑
|I |≤3

‖w1/2(q)∇ I
Zφ(t, · )‖L2 . (1.2.10)

We refer to these estimates as “weak pointwise decay estimates” since they have nothing to do with the
special structure of the Einstein-nonlinear electromagnetic equations; a major theme permeating this
article is that, in order to close our global existence bootstrap argument, the estimate (1.2.10) needs to be
upgraded using the special structure of the equations. Inequality (1.2.10) can therefore be viewed as a
preliminary estimate that will play a role in the proof of the upgraded estimates.

The form of the inequalities (1.2.10) raises several important issues. First, in order to apply the weighted
Klainerman–Sobolev inequalities to h(1), we have to achieve L2 control over the quantities w1/2(q)∇ I

Zh(1).
To this end, we have to study the equations satisfied by the quantities ∇ I

Zh(1). In order to derive these
equations, we have to commute the operator ∇ I

Z through the reduced wave operator term 2̃gh(1). Lindblad
and Rodnianski accomplished this commutation through the use of modified covariant derivatives ∇̂Z ,
which are equal to ordinary covariant derivatives plus a scalar multiple (depending on Z ∈ Z) of the
identity; see Definition 6.5. The main advantage of these operators is that ∇̂Z2m −2m∇Z = 0, where
2m

def
= (m−1)κλ∇κ∇λ denotes the wave operator of the Minkowski metric; see Lemma 6.13. Therefore,

∇
I
Zh(1) is a solution to the equation 2̃g∇

I
Zh(1)=∇̂ I

Z2̃gh(1)+H κλ
∇κ∇λ∇

I
Zh(1)−∇̂ I

Z(H
κλ
∇κ∇λh(1)), where

2̃gh(1) is equal to the inhomogeneous term on the right-hand side of (1.2.4a) above and Hµν def
= (g−1)µν−

(m−1)µν = −hµν + O(|h|2). We remark that the analysis of the commutator term H κλ
∇κ∇λ∇

I
Zh(1)−

∇̂
I
Z(H

κλ
∇κ∇λh(1)), which was performed in [Lindblad and Rodnianski 2010] (see also Proposition 7.1

and Lemma 16.11), is among the most challenging work encountered. Rather than repeat this analysis and
the discussion behind it, which is thoroughly explained and carried out in [Lindblad and Rodnianski 2010],
we will instead focus on the analogous difficulties that arise in our analysis of F. We do, however, point
out the role that the Hardy inequalities of Proposition C.1 play in the analysis of h(1): they are used to
estimate a weighted L2 norm of ∇ I

Zh(1) by a weighted L2 norm of ∇∇ I
Zh(1). The main point is that ∇ I

Zh(1)
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is not directly controlled in L2 by the energy while ∇∇ I
Zh(1) is. The cost of applying the Hardy inequalities

is powers of 1+ |q|, which are always sufficiently available thanks to our use of the weight w(q).

1.2.8. The role of Lie derivatives. The next important issue concerning the weighted Klainerman–Sobolev
inequality (1.2.10) is that it is more convenient to work with Lie derivatives of F rather than covariant
derivatives of F; note that our definition (1.2.7) of our energy E`;γ;µ(t) involves Lie derivatives of F.
According to inequality (6.5.22) below, inequality (1.2.10) remains valid if we replace the operators ∇ I

Z

with LI
Z. However, as in the case of the ∇ I

Zh(1), we have to study the equations satisfied by the LI
ZF.

Now on the one hand, Lemma 6.8 shows that the operator LZ can be commuted through the Minkowski
connection ∇ in (1.2.4b). On the other hand, to commute Lie derivatives through (1.2.4c), it is convenient
to work with modified Lie derivatives L̂Z , which are equal to ordinary Lie derivatives plus a scalar
multiple15 (depending on Z ∈ Z) of the identity; see Definition 6.5. Unlike covariant derivatives, these
operators have favorable commutation properties with the linear Maxwell–Maxwell term ∇µFµν , which
is the leading term in (1.2.4c). More specifically, L̂Z [((m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ)∇µFκλ] =

[(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ ]∇µLZ Fκλ; see Lemma 6.14. As is captured by Proposition 8.1,
these operators are also useful for differentiating the nonlinear equation (1.2.4c); the error terms generated
have a favorable null structure that is captured in Proposition 11.4.

1.2.9. The tensor field h(0)µν . Let us now discuss the ideas behind the Lindblad–Rodnianski splitting of the
metric defined in (1.2.1a)–(1.2.1c). We first note that because of the 2M/r ADM mass term present in h(0)µν ,
substituting the tensor field hµν

def
= h(0)µν + h(1)µν in place of h(1)µν in the definition of the energy would lead

to E`;γ;µ(0)=∞. Thus, as a practical matter, the introduction of h(1)µν allows us to work with a quantity
of finite energy. Now according to the discussion in [Lindblad and Rodnianski 2010], the precise form
h(0)µν =χ(r/t)χ(r)(2M/r)δµν was determined by making an “educated” guess concerning the contribution
of the ADM mass term χ(r)(2M/r)δ jk , which is present in the data, to the solution. The term h(0)µν
manifests itself in the reduced equations as the 2̃gh(0)µν inhomogeneous term on the right-hand side of the
reduced equation (1.2.4a). Because of the identity 2m(1/r)= 0 for r > 0, where 2m = (m−1)κλ∇κ∇λ is
the Minkowski wave operator, it follows that the main contribution of the term 2̃gh(0)µν comes from the
“interior” region

{
(t, x)

∣∣ 1
2 < r/t < 3

4

}
; this is because the derivatives of χ(z) are supported in the interval[1

2 ,
3
4

]
. Now in the interior region, the quantities 1+ |q| and 1+ s are uniformly comparable. Thus, the

weighted Klainerman–Sobolev inequality (1.2.10) predicts strong decay for the solution in this region,
and consequently, one can derive suitable weighted Sobolev bounds for the inhomogeneity 2̃gh(0)µν ; see
Lemma 16.10 for a precise statement of this estimate.

1.2.10. The wave-coordinate condition. Before expanding our discussion of the pointwise decay estimates,
we will discuss the analytic role of the wave-coordinate condition∇ν[

√
|det g|(g−1)µν]=0 (µ=0, 1, 2, 3),

which plays multiple roles in this article. First, it hyperbolizes the Einstein equations. Second, it allows us
to replace certain unfavorable nonlinear terms from the equations (1.0.1a)–(1.0.1c) with more favorable
ones; the culmination of this procedure is exactly the reduced system (1.2.4a)–(1.2.4c). Finally, the
wave-coordinate condition also allows us to deduce several independent and improved estimates, both

15The multiple is 2cZ , where cZ is the multiple corresponding to the modified covariant derivative ∇̂Z .
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at both the pointwise level and the L2 level, for the components hL L and hLT . As we will see, these
improved estimates are central to the structure of the proof of Theorem 16.1, and our stability argument
would not close without them. More specifically, as shown in [Lindblad and Rodnianski 2010], a null
decomposition of the wave-coordinate condition leads to the algebraic inequalities

|∇h|LT . |∇h| + |h||∇h|, (1.2.11a)

|∇∇Z h|LL . |∇∇Z h| +
∑

|I1|+|I2|≤1

|∇
I1
Z h||∇∇ I2

Z h| (Z ∈ Z), (1.2.11b)

where ∇ is the null frame projection of ∇ (the derivative component only) onto the outgoing Minkowski
cones. Note that the right-hand side of (1.2.11a) involves only favorable derivatives of h and quadratic
error terms while the left-hand side involves all derivatives of h, including the dangerous ∇L derivative.
Generalizations of (1.2.11a) for∇ I

Zh are stated in Proposition 11.1. We remark that it is important to note in
these generalizations that the estimates for |∇∇Z h|LL are stronger than what can be proved for |∇∇Z h|LT.

1.2.11. Upgraded pointwise decay estimates. We now discuss the full collection of upgraded pointwise
decay estimates (see Propositions 15.5–15.7 below), which are of central importance in closing the global
existence bootstrap argument. For as mentioned above, the weighted Klainerman–Sobolev estimates
(1.2.10) are not sufficient to close the argument. We remark that the reasons that we truly need the
upgraded pointwise decay estimates are discussed in more detail at beginning of Section 15. Aside
from the components hL L and hLT , which are controlled by the wave-coordinate condition, there is a
relatively strong coupling between the evolution of the remaining components of h and the evolution of the
dangerous α[F] component of the Faraday tensor. Therefore, our proofs of the upgraded estimates (and
Proposition 15.7 in particular) have a hierarchical structure; i.e., the order in which they are proved is very
important. Although we don’t provide a complete description of all of the subtleties of this hierarchy in this
introduction, we do provide a preliminary description of some of its salient features. We first emphasize the
following important feature: most null components of h, the α null component of F, and the components
∇Z hL L (for Z ∈Z) have better t-decay properties than their higher-order-derivative counterparts; this is the
content of Proposition 15.6. Roughly speaking, the reason for this discrepancy is that the nondifferentiated
reduced equations have a more favorable algebraic structure than the differentiated reduced equations. This
feature will be particularly important during our global existence argument, for the principal terms (from
the point of view of differentiability) in the Leibniz expansion of the operator∇ I

Z acting on a quadratic term
are of the form u∇ I

Zv and similarly for the operator LI
Z. Consequently, the strong pointwise decay property

of the nondifferentiated quantity, which is represented by u, is a crucially important ingredient of the
derivation of the Cε

∫ t
0 (1+ τ)

−1E2
k;γ;µ(τ ) dτ term on the right-hand side of (16.2.5). We emphasize that

our stability proof would not go through if this term were replaced with Cε
∫ t

0 (1+ τ)
−1+CεE2

k;γ;µ(τ ) dτ .
The derivation of the upgraded pointwise decay estimates for the Faraday tensor begins with Propo-

sition 9.3, which provides a null decomposition of the electromagnetic equations of variation, and
Proposition 11.4, which provides a null decomposition of the inhomogeneous terms that result after differ-
entiating the reduced electromagnetic equations with modified Lie derivatives. The net effect is that the
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null components of the lower-order Lie derivatives of F satisfy ordinary differential inequalities16 (which
we loosely refer to as ODEs) along ingoing and outgoing cones (see Proposition 11.5), and furthermore, the
inhomogeneous terms appearing on the right-hand side of the ODEs can be inductively controlled (see the
proofs of Propositions 15.5–15.7). We remark that this analysis of the lower-order derivatives of F involves
a loss of several derivatives because the right-hand sides of the ODEs depend on the higher-order derivatives
of F, which are pointwise bounded via the weighted Klainerman–Sobolev estimates (1.2.10). We stress that
this loss of differentiability is not a concern because we only need to analyze the lower-order derivatives
of F in this fashion. Similar remarks apply for our analysis of the upgraded pointwise decay estimates
for h, which are briefly described below. It is important to distinguish between two classes of ODEs that
play a role in this analysis. The first class consists of ODEs for rescaled versions of the null components
(α̇, ρ̇, σ̇ )

def
= (α[LI

ZF], ρ[LI
ZF], σ [LI

ZF]) and involves differentiation in the direction of the null generators
of the ingoing Minkowskian cones; i.e., the principal part of the ODEs is ∇L . We remark that this point of
view represents a rather crude treatment of (9.1.8b)–(9.1.8d), but because of the favorable decay properties
of the inhomogeneities, this approach is sufficient to conclude the desired estimates: by integrating back
towards the Cauchy hypersurface 60 in the direction −L , we are able to deduce t-decay for α[LI

ZF],
ρ[LI

ZF], and σ [LI
ZF] from t-decay of the inhomogeneous terms at the expense of a loss of decay in q.

We remark that the proof of the upgraded estimates for these components happens in two stages. We refer
to the first-stage estimates, which are proved in Proposition 15.5, as the “initial upgraded” pointwise decay
estimates. These first-stage estimates follow from using the weighted Klainerman–Sobolev estimates to
bound the inhomogeneous terms in the ODEs. The second-stage upgraded estimates, which we refer to as
“fully upgraded” pointwise decay estimates, are proved at the end of Proposition 15.7 after all of the other
upgraded pointwise decay estimates for the remaining components of the lower-order derivatives of h and F

have been proved. For at this point in the upgraded hierarchy, we will have better pointwise control over
the inhomogeneous terms in the ODEs than that afforded by the weighted Klainerman–Sobolev estimates.

The next class consists of ODEs for rescaled versions of the null component α̇ def
= α[LI

ZF]. Notice that
(see (9.1.8a)), unlike the other null components, α̇ does not satisfy an ODE that to 0-th order involves
differentiation in the direction of L . Instead, at first sight, it might appear that one should reason in
analogy with the first class and view (9.1.8a) as an ODE in the direction of L with inhomogeneous terms.
However, the desired decay estimates do not close at this level. Instead, one must also consider the effect
of the quadratic term −6m λ

ν hµκ∇µḞκλ. A null decomposition of this term reveals that it contains the
dangerous term 1

4 hL L∇L α̇ν , which decays too slowly to be treated as an inhomogeneous term in the
ODE satisfied by α̇. To remedy this difficulty, we introduce the vector field 3 = L + 1

4 hL L L , which
can be viewed as a first-order correction to the Minkowski outgoing null direction arising from the
presence of a nonzero tensor field h in the expansion gµν = mµν + hµν . Note that, for these upgraded
pointwise decay estimates for the lower-order Lie derivatives, we do not bother to correct for the fact
that the electromagnetic model is not necessarily the Maxwell–Maxwell model; the deviation from the
Maxwell–Maxwell model comprises cubic terms, which we can treat as small inhomogeneities. We may
thus view (9.1.8a) as an ODE in the direction of 3 with inhomogeneous terms; this is exactly the point of

16More precisely, the null components satisfy transport equations with small sources.
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view emphasized in Proposition 11.5. Because we have a sufficiently strong independent decay estimates
for hL L and for the inhomogeneities, this approach is sufficient to achieve the desired estimates.

Our analysis of the upgraded pointwise decay estimates for the metric-related quantities h and h(1)

closely mirrors the analysis in [Lindblad and Rodnianski 2010]. Hence, we will not discuss them in full
detail here but instead refer the reader to the discussion in [ibid.]. The estimates can be divided into
three classes, the first one being the estimates (15.3.1a) and (15.3.1b) for |∇h|LT, |∇∇Z h|LL, |h|LT,
and |∇Z h|LL. As was suggested above, the first-class estimates are consequences of the additional special
algebraic structure that follows from the wave-coordinate condition together with the weighted Klainerman–
Sobolev inequality. The second class consists of the estimates (15.3.2a) and (15.3.2b) for |∇h|TN and |∇h|.
These estimates heavily rely on the decay estimates of Lemma 13.2 and Corollary 13.3 below, which
were proved in [Lindblad and Rodnianski 2010] and which are of independent interest. The lemma
and its corollary can be viewed as a second-order counterpart to the ODE estimates for the Faraday
tensor discussed in the previous paragraphs. It is important to note that the hypotheses of the lemma
and its corollary are satisfied as a consequence of the independent upgraded pointwise decay estimates
provided by the wave-coordinate condition. The third class consists of the estimates (15.3.4a), (15.3.4b),
and (15.3.4c) for |∇∇ I

Zh(1)|, |∇ I
Zh(1)|, and |∇∇ I

Zh(1)| (related estimates for the tensor field h also hold).
Their derivation is similar in spirit to the derivation of the second-class estimates, but the inductive proof
we give is highly coupled to the simultaneous derivation of analogous upgraded pointwise decay estimates
for |LI

ZF|, which were discussed two paragraphs ago.

1.2.12. Lie differentiation, Minkowski-covariant differentiation, and null structure. We make some final
comments concerning the relationship between Lie derivatives and Minkowski-covariant derivatives. On
the one hand, because we commute the equations satisfied by h(1) with the operators∇ I

Z, our analysis of h(1)

naturally requires us to estimate the quantities |∇ I
Zh|, |∇ I

Zh|LL, |∇ I
Zh|LT, etc. Furthermore, as discussed

above, the quantities |∇ I
Zh|LL and |∇ I

Zh|LT have a distinguished role in view of their connection to the
wave-coordinate condition. On the other hand, because we commute the electromagnetic equations with
Lie derivatives, we will have to confront the terms |LI

Zh|, |LI
Zh|LL, |LI

Zh|LT, etc. In order to bridge the
gap between Lie derivative estimates and covariant derivative estimates, we provide Proposition 6.19, the
proof of which relies on the special algebraic-geometric structure of the vector fields in Z. Proposition 6.19
is an especially important ingredient in the null decomposition estimate (11.1.11b). As an example of the
role played by this proposition, we cite the estimate (6.5.23c), which reads

|LI
Zh|LL . |∇

I
Zh|LL+

∑
|J |≤|I |−1

|∇
J
Zh|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇
J ′
Z h|︸ ︷︷ ︸

absent if |I | ≤ 1

.

This shows that, in the translation from Lie derivatives to covariant derivatives, the error terms that
arise in the analysis of the | · |LL seminorm are either 1 degree lower in order and controllable by the
wave-coordinate condition (i.e., the terms with |J | ≤ |I |−1) or are 2 degrees lower in order (i.e., the terms
with |J ′| ≤ |I | − 2). This fact, and others similar to it, play an essential role in allowing our hierarchy of
estimates to unfold in a viable order.
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1.3. Outline of the article. The remainder of the article is organized as follows.

• In Section 2, we provide for convenience a summary of the notation that is used throughout the article.

• In Section 3, we discuss the Einstein-nonlinear electromagnetic equations in detail. We also introduce
our wave-coordinate condition and our assumptions on the electromagnetic Lagrangian. Next, we derive a
reduced system of equations, which is equivalent to the system of interest in our wave-coordinate gauge. In
Section 3.7, we summarize the version of the reduced equations that we work with for most of the article.

• In Section 4, we construct initial data for the reduced system from the abstract initial data in a manner
compatible with the wave-coordinate condition. We also sketch a proof of the fact that the wave-coordinate
condition is preserved by the flow of the reduced equations.

• In Section 5, we introduce the notion of a Minkowskian null frame and discuss the corresponding null
decomposition of various tensor fields.

• In Section 6, we introduce the differential operators that will be used throughout the remainder of the
article, including modified Lie derivatives and modified covariant derivatives with respect to a special
subset Z of Minkowskian conformal Killing fields. We also provide a collection of lemmas that relate
the various operators.

• In Section 7, we provide a preliminary algebraic expression for the equations satisfied by ∇ I
Zh(1), where

h(1) is a solution to the reduced equations.

• In Section 8, we introduce the electromagnetic equations of variation, which are a linearized version of
the electromagnetic equations. We also provide a preliminary algebraic expression for the inhomogeneous
terms in the equations of variation satisfied by LI

ZF, where F is a solution to the reduced equations. We
then introduce the canonical stress tensor and use it to construct an energy current that will be used to
control weighted Sobolev norms of LI

ZF.

• In Section 9, we perform two decompositions of the electromagnetic equations, including a null
decomposition of the electromagnetic equations of variation and a decomposition of the electromagnetic
equations into constraint equations and evolution equations for the Minkowskian one-forms E , D, B,
and H . In order to connect these one-forms to the abstract initial data, we also introduce the geometric
electromagnetic one-forms E, D, B, and H.

• In Section 10, we introduce our smallness condition on the abstract initial data. We then prove that
this smallness condition guarantees that the energy E`;γ;µ(t) of the corresponding solution to the reduced
equations is small at t = 0; it is this smallness of E`;γ;µ(0) that will lead to a global solution of the
reduced equations.

• In Section 11, we provide algebraic estimates for the inhomogeneities in the reduced equations under
the assumption that the wave-coordinate condition holds. We also derive ordinary differential inequalities
for the null components of LI

ZF and provide algebraic estimates for the corresponding inhomogeneities.

• In Section 12, we prove weighted energy estimates for solutions to the electromagnetic equations of
variation. We also recall some results of [Lindblad and Rodnianski 2010] that provide analogous weighted
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energy estimates for both scalar wave equations and tensorial systems of wave equations with principal
part (g−1)κλ∇κ∇λ.
• In Section 13, we recall some results of [Lindblad and Rodnianski 2010] that provide pointwise
decay estimates for both scalar wave equations and tensorial systems of wave equations with principal
part (g−1)κλ∇κ∇λ.
• In Section 14, we state a basic local well-posedness result and continuation principle for the reduced
equations. The continuation principle will be used in Section 16 in order to deduce small-data global
existence for the reduced equations from a suitable bound on the energy E`;γ;µ(t).
• In Section 15, we introduce our bootstrap assumption on the energy E`;γ;µ(t). We then use this
assumption to deduce a collection of pointwise decay estimates for solutions to the reduced equations
under the assumption that the wave-coordinate condition holds.
• In Section 16, we prove our main results. The results are separated into two theorems. In Theorem 16.1,
we use the decay estimates proved in Section 15 to derive a “strong” a priori estimate for the energy
E`;γ;µ(t); the proof of this theorem is the centerpiece of the article. Theorem 16.3, which is our main
theorem demonstrating the stability of Minkowski spacetime, is then an easy consequence of Theorem 16.1
and the continuation principle of Section 14. Both of these theorems rely upon the assumption that the
wave-coordinate condition holds.

2. Notation

For convenience, in this section, we collect some of the important notation that is introduced throughout
the article.

2.1. Constants. We use the symbols c, c̃, C , and C̃ to denote generic positive constants that are free to
vary from line to line. In general, they can depend on many quantities, but in the small-solution regime
that we consider in this article, they can be chosen uniformly. Sometimes it is illuminating to explicitly
indicate one of the quantities Q that a constant depends on; we do by writing, e.g., CQ. If A and B are
two quantities, then we often write

A . B

to mean that “there exists a uniform constant C > 0 such that A ≤ C B”. Furthermore, if A . B and
B . A, then we often write

A ≈ B.

2.2. Indices.

• Lowercase Latin indices a, b, j , k, etc., take on the values 1, 2, or 3.
• Greek indices κ , λ, µ, ν, etc., take on the values 0, 1, 2, or 3.
• Primed indices κ ′, λ′, etc., are used in the same way as unprimed indices.
• Uppercase Latin indices A, B, etc., take on the values 1 or 2 and are used to enumerate the two
Minkowski-orthonormal null frame vectors tangent to the spheres Sr,t .
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• As a convention, the tensor fields Fµν , Mµν , Rµν , Tµν , εµνκλ, and Nµνκλ are assumed to “naturally”
have all of their indices downstairs, and unless indicated otherwise, all indices on all tensors are lowered
and raised with the Minkowski metric mµν and its inverse (m−1)µν ; e.g., T µν

= (m−1)µκ(m−1)νλTκλ.

• The symbol # is used to indicate that all indices of a given tensor field have been raised with g−1; e.g.,
T #µν

= (g−1)µκ(g−1)νλTκλ.

• Repeated indices are summed over.

2.3. Coordinates.

• {xµ}µ=0,1,2,3 denotes the wave-coordinate system.

• t = x0, x = (x1, x2, x3).

• q = r − t and s = r + t are the null coordinates of the spacetime point (t, x), where r = |x |.

• q− = 0 if q ≥ 0, and q− = |q| if q < 0.

• ω j
= x j/r ( j = 1, 2, 3).

2.4. Surfaces. Relative to the wave-coordinate system:

• C−s = {(τ, y) | |y| + τ = s} are the ingoing Minkowskian null cones.

• C+q = {(τ, y) | |y| − τ = q} are the outgoing Minkowskian null cones.

• 6t = {(τ, y) | τ = t} are the constant Minkowskian time slices.

• Sr,t = {(τ, y) | τ = t, |y| = r} are the Euclidean spheres.

2.5. Metrics and volume forms.

• mµν denotes the standard Minkowski metric on R1+3; mµν = diag(−1, 1, 1, 1) in our wave-coordinate
system.

• m denotes the Minkowskian first fundamental form of 6t ; mµν = diag(0, 1, 1, 1) in our wave-coordinate
system.

• 6m denotes the Minkowskian first fundamental form of Sr,t ; relative to an arbitrary coordinate system,
6mµν = mµν +

1
2(LµLν + LµLν), where L and L are defined in Section 2.9.

• gµν denotes the spacetime metric.

• gµν = mµν + h(0)µν + h(1)µν is the splitting of the spacetime metric into the Minkowski metric mµν , the
Schwarzschild tail h(0)µν = χ(r/t)χ(r)(2M/r)δµν , and the remainder h(1)µν .

• hµν = h(0)µν + h(1)µν .

• (g−1)µν = (m−1)µν + Hµν

(0) + Hµν

(1) is the splitting of the inverse spacetime metric into the inverse
Minkowski metric (m−1)µν , the Schwarzschild tail Hµν

(0) =−χ(r/t)χ(r)(2M/r)δµν , and the remainder
Hµν

(1) .

• Hµν
= Hµν

(0) + Hµν

(1) .

• g̊ denotes the first fundamental form of the Cauchy hypersurface 60 relative to the spacetime metric g.
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• g̊ jk = δ jk+χ(r)(2M/r)δ jk+ h̊(1)jk is the splitting of g̊ jk into the Euclidean metric δ jk , the Schwarzschild
tail χ(r)(2M/r)δ jk , and the remainder h̊(1)jk .

• υµνκλ = |det m|1/2[µνκλ] denotes the volume form of the Minkowski metric m; [µνκλ] is totally
antisymmetric with normalization [0123] = 1; |det m|1/2 = 1 in our wave-coordinate system.

• εµνκλ = |det g|1/2[µνκλ] denotes the volume form of the spacetime metric g.

• ε#µνκλ
=−|det g|−1/2

[µνκλ] denotes the volume form of the spacetime metric g with all of the indices
raised with g−1.

• υνκλ = [0νκλ] denotes the Euclidean volume form of the surfaces 6t viewed as embedded Riemannian
submanifolds of Minkowski spacetime equipped with the wave-coordinate system.

• υ i jk = [i jk] denotes the Euclidean volume form of the surfaces 6t viewed as a Riemannian 3-manifold
equipped with the standard Euclidean coordinate system.

• 6υµν = υµνκλLκLλ denotes the Euclidean volume form of the spheres Sr,t .

2.6. Hodge duals. For an arbitrary two-form Fµν :

•
?Fµν =

1
2 gµµ′gνν′ε#µ′ν′κλFκλ=−

1
2 |det g|−1/2gµµ′gνν′[µ′ν ′κλ]Fκλ denotes the Hodge dual of Fµν with

respect to the spacetime metric gµν .

•
~Fµν=

1
2υ

κλ
µν Fκλ=−

1
2 |det m|−1/2mµµ′mνν′[µ

′ν ′κλ]Fκλ denotes the Hodge dual of Fµν with respect
to the Minkowski metric mµν . In our wave-coordinate system, |det m|−1/2

= 1.

2.7. Derivatives.

• ∇ denotes the Levi-Civita connection corresponding to m.

• D denotes the Levi-Civita connection corresponding to g.

• D̊ denotes the Levi-Civita connection corresponding to g̊.

• ∇ denotes the Levi-Civita connection corresponding to m.

• 6 ∇ denotes the Levi-Civita connection corresponding to 6m.

• ∇ denotes the null frame projection of ∇ onto the outgoing Minkowski null cones; i.e., ∇µ = π κ
µ ∇κ ,

where π ν
µ = δ

ν
µ+

1
2 LµLν projects vectors Xµ onto the outgoing Minkowski null cones.

• In our wave-coordinate system {xµ}µ=0,1,2,3, ∂µ = ∂
∂xµ and ∇µ =∇(∂/∂xµ).

• In our wave-coordinate system, ∂r = ω
a∂a denotes the radial derivative, where ω j

= x j/r .

• In our wave-coordinate system, ∂s =
1
2(∂r + ∂t) and ∂q =

1
2(∂r − ∂t) denote the null derivatives; ∂q

denotes partial differentiation at fixed s and fixed angle x/|x | while ∂s denotes partial differentiation at
fixed q and fixed angle x/|x |.

• If X is a vector field and φ is a function, then Xφ = Xκ ∂κφ.

• ∇X denotes the differential operator Xκ
∇κ .

• ∇X denotes the differential operator Xκ
∇κ .

• 6 ∇X denotes the differential operator Xκ
6 ∇κ .
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• LX denotes the Lie derivative with respect to the vector field X .

• [X, Y ]µ = (LX Y )µ = Xκ ∂κYµ− Y κ ∂κXµ denotes the Lie bracket of the vector fields X and Y .

• For Z ∈ Z, ∇̂Z =∇Z + cZ denotes the modified covariant derivative, where the constant cZ is defined
in Section 2.8.

• For Z ∈ Z, L̂Z = LZ + 2cZ denotes the modified Lie derivative, where the constant cZ is defined in
Section 2.8.

• ∇
I U , ∇ I U , ∇ I

ZU , ∇̂ I
ZU , LI

ZU , and L̂I
ZU respectively denote an |I |-th order iterated Minkowski

covariant derivative, iterated Euclidean (spatial) covariant derivative, iterated Minkowski Z-covariant
derivative, iterated modified Minkowski Z-covariant derivative, iterated Z-Lie derivative, and iterated
modified Z-Lie derivative of the tensor field U .

• 2m = (m−1)κλ∇κ∇λ denotes the standard Minkowski wave operator.

• 2̃g = (g−1)κλ∇κ∇λ denotes the reduced wave operator corresponding to the spacetime metric g. Note
that ∇ is the Minkowskian connection.

2.8. Minkowskian conformal Killing fields. Relative to the wave-coordinate system {xµ}µ=0,1,2,3 =

(t, x):

• ∂µ =
∂
∂xµ (µ= 0, 1, 2, 3) denotes a translation vector field.

• � jk = x j
∂
∂xk − xk

∂
∂x j (1≤ j < k ≤ 3) denotes a rotation vector field.

• �0 j =−t ∂
∂x j − x j

∂
∂t ( j = 1, 2, 3) denotes a Lorentz boost vector field.

• S = xκ ∂
∂xκ denotes the scaling vector field.

• O= {� jk}1≤ j<k≤3 are the rotational Minkowskian Killing fields.

• Z=
{
∂
∂xµ , �µν, S

}
0≤µ≤ν≤3.

• For Z ∈ Z, (Z)πµν =∇µZν +∇νZµ = cZ mµν is the Minkowskian deformation tensor of Z , where cZ

is a constant.

• Commutation properties with the Maxwell–Maxwell term:

L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ.

• Commutation properties with the Minkowski wave operator 2m = (m−1)κλ∇κ∇λ:

[2m, ∂µ] = [2m, �µν] = 0, [2m, S] = 22m, [∇Z ,2m] = −cZ2m, and 2m∇Zφ = ∇̂2mφ.

2.9. Minkowskian null frames.

• L = ∂t − ∂r denotes the Minkowskian null geodesic vector field transversal to the C+q ; it generates the
cones C−s .

• L = ∂t + ∂r denotes the Minkowskian null geodesic vector field generating the cones C+q .

• eA (A=1, 2) denotes Minkowski-orthonormal vector fields spanning the tangent space of the spheres Sr,t .

• The set L= {L} contains only L .
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• The set T= {L , e1, e2} denotes the frame vector fields tangent to the C+q .
• The set N= {L, L , e1, e2} denotes the entire Minkowski null frame.

2.10. Minkowskian null frame decomposition.

• For an arbitrary vector field X and frame vector field N ∈N, we define X N = XκN κ , where Xµ=mµκXκ .
• For an arbitrary vector field X , X = Xκ ∂κ = X L L + X L L + X AeA, where X L

=−
1
2 X L , X L

=−
1
2 X L ,

and X A
= X A.

• For an arbitrary pair of vector fields X and Y ,

m(X, Y )= mκλXκXλ
= XκYκ =− 1

2 X LYL −
1
2 X LYL + X AYA.

If Fµν is any two-form, its Minkowskian null components are:

• αµ = 6m ν
µ FνλLλ.

• αµ = 6m ν
µ FνλLλ.

• ρ = 1
2 FκλLκLλ.

• σ = 1
2 6υ

κλFκλ.

2.11. Electromagnetic decompositions. If Fµν is any two-form, ?Mµν = gµκgνλ
(
∂?L
∂Fκλ
−

∂?L
∂Fλκ

)
and N̂µ

is the future-directed unit g-normal to 6t , then its electromagnetic components are:

• Eµ = Fµκ N̂ κ .
• Bµ =−

?Fµκ N̂ κ .
• Dµ =−

?Mµκ N̂ κ .
• Hµ =−Mµκ N̂ κ .

If Fµν is any two-form, then relative to the wave-coordinate system, its Minkowskian electromagnetic
components are:

• Eµ = Fµ0.
• Bµ =−~Fµ0.
• Dµ =−

~Mµ0.
• Hµ =−Mµ0.

2.12. Seminorms and energies. For an arbitrary type-
(0

2

)
tensor field Pµν and V,W ∈ {L,T,N}:

• |P|VW =
∑

V∈V,W∈W|V
κW λPκλ|.

• |∇P|VW =
∑

N∈N, V∈V,W∈W|V
κW λN γ

∇γ Pκλ|.
• |∇P|VW =

∑
T∈T, V∈V,W∈W|V

κW λT γ
∇γ Pκλ|.

• |P| = |P|NN.
• |∇P| = |∇P|NN.
• |∇P| = |∇P|NN.
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• We use similar notation for an arbitrary tensor field U of type
(n

m

)
.

For an arbitrary tensor field U defined on the Euclidean space 60 with Euclidean coordinate system
x = (x1, x2, x3):

• ‖U‖2L2 =
∫

x∈R3 |U (x)|2 d3x is the square of the standard spatial L2 norm of U .
• ‖U‖L∞ = ess supx∈R3 |U (x)| is the standard spatial L∞ norm of U .
• ‖U‖2H `

η
=
∑
|I |≤`

∫
x∈R3(1+ |x |2)(η+|I |)|∇ I U (x)|2 d3x is the square of a weighted Sobolev norm of U .

• ‖U‖2C`
η
=
∑
|I |≤` ess supx∈R3(1+ |x |2)(η+|I |)|∇ I U (x)|2 is the square of a weighted L∞ norm of U .

For arbitrary abstract initial data (h̊(1)jk , K̊ jk, D̊ j , B̊ j ) on the manifold R3:

• E2
`;γ(0)= ‖∇h̊(1)‖2

H `
1/2+γ
+‖K̊‖2

H `
1/2+γ
+‖D̊‖2

H `
1/2+γ
+‖B̊‖2

H `
1/2+γ

is the square of the norm of the abstract
initial data.

For an arbitrary symmetric type-
(0

2

)
tensor field h(1)µν and an arbitrary two-form Fµν :

• E2
`;γ;µ(t)= sup0≤τ≤t

∑
|I |≤`

∫
6τ
(|∇∇ I

Zh(1)|2+|LI
ZF|2)w(q) d3x is the square of the energy of the pair

(h(1)µν ,Fµν).

2.13. O`( · ) and o`( · ).

• Given an `-times continuously differentiable function f (Q1, . . . ,Qm) depending on the tensorial
quantities Q1, . . . ,Qm , we write f (Q1, . . . ,Qm) = O`(|Q1|

p1 · · · |Qk |
pk ;Qk+1, . . . ,Qm) if we can

decompose f (Q1, . . . ,Qm)=
∑n

i=1 Pi (Q1, . . . ,Qk) f̃i (Q1, . . . ,Qm), where n is a positive integer, each
Pi (Q1, . . . ,Qk) is a polynomial in the components of Q1, . . . ,Qk that satisfies |Pi (Q1, . . . ,Qk)| .
|Q1|

p1 · · · |Qk |
pk on a neighborhood of the origin, and f̃i ( · ) is `-times continuously differentiable on a

neighborhood of the origin.
• Given an `-times continuously differentiable function f (x), if limr→∞|∇

I f (x)|/ra+|I |
= 0 for |I | ≤ `,

we write f (x)= o`(r−a).

2.14. Fixed constants. The fixed constants `, δ, γ, µ, γ′, and µ′ are subject to the following constraints:

• To prove our global stability theorem, we assume that ` is an integer satisfying `≥ 10.
• 0< δ< 1

4 .
• 0< δ< γ< 1

2 .
• 0< γ′ < γ− δ.
• 0< δ< µ′ < 1

2 .
• 0< µ< 1

2 −µ′.

2.15. Weights.

• w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0

is the energy estimate weight function.

• $ =$(q)=
{
(1+ |q|)1+γ

′

if q > 0,
(1+ |q|)1/2−µ

′

if q < 0
is the pointwise decay estimate weight function.
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3. The Einstein-nonlinear electromagnetic system in wave coordinates

In this section, we discuss (1.0.1a)–(1.0.1c) in detail. We also discuss our assumptions on the electro-
magnetic Lagrangian and introduce our wave-coordinate gauge. We then derive a reduced system of
equations that is equivalent to the system (1.0.1a)–(1.0.1c) in the wave-coordinate gauge. Finally, we
summarize the results by providing the version (3.7.1a)–(3.7.1c) of the reduced equations, which will
be used throughout the remainder of the article. In particular, in this version, we distinguish between
principal terms, which require a careful treatment, and “error terms”, which are, from the point of view
of decay rates, relatively easy to estimate.

In this article, we consider the (1+3)-dimensional electrogravitational system (1.0.1a)–(1.0.1c), which
we restate here for convenience:

Rµν − 1
2 gµνR = Tµν (µ, ν = 0, 1, 2, 3), (3.0.1a)

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (3.0.1b)

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (3.0.1c)

We remark that the spacetimes we consider will always have the manifold structure I ×R3 for some
“time” interval I . The energy-momentum tensor Tµν is given below in (3.5.4a), while Mµν is related
to (gµν,Fµν) via the constitutive relation (3.2.4). The precise forms of Tµν and Mµν depend on the
chosen model of electromagnetism, which, as is discussed in detail in Section 3.2, we assume is a
Lagrangian-derived model subject to the restrictions (3.3.3a) and (3.3.4a)–(3.3.4b) below. We recall (see,
e.g., [Christodoulou 2008; Wald 1984]) the following relationships between the spacetime metric gµν ,
the Riemann curvature tensor17 R λ

µκν , the Ricci tensor Rµν , the scalar curvature R, and the Christoffel
symbols 0 κ

µ ν , which are valid in an arbitrary coordinate system:

R λ
µκν

def
= ∂κ0

λ
µ ν − ∂µ0

λ
κ ν +0

λ
κ β0

β
µ ν −0

λ
µ β0

β
κ ν, (3.0.2a)

Rµν
def
= R κ

µκν = ∂κ0
κ
µ ν − ∂µ0

κ
κ ν +0

κ
κ λ0

λ
µ ν −0

λ
µ κ0

κ
λ ν, (3.0.2b)

R def
= (g−1)κλRκλ, (3.0.2c)

0 κ
µ ν

def
=

1
2(g
−1)κλ(∂µgλν + ∂νgµλ− ∂λgµν). (3.0.2d)

We also recall the following symmetry properties:

Rµν = Rνµ, (3.0.3)

0 κ
µ ν = 0

κ
ν µ. (3.0.4)

We note for future use that taking the trace with respect to g of each side of (3.0.1a) implies that

R =−(g−1)κλTκλ. (3.0.5)

Hence, (3.0.1a) is equivalent to

17Under our sign convention, DµDνXκ −DνDµXκ = R λ
µνκ Xλ.



800 JARED SPECK

Rµν = Tµν − 1
2 gµν(g−1)κλTκλ. (3.0.1a′)

Furthermore, we note that the twice-contracted Bianchi identities (see, e.g., [Wald 1984]) are the relation
(see Section 2.2 concerning our use of the notation #)

Dµ(R#µν
−

1
2(g
−1)µνR)= 0 (ν = 0, 1, 2, 3) (3.0.6)

so that by (3.0.1a) Tµν necessarily satisfies the following divergence-free condition:

DµT #µν
= 0 (ν = 0, 1, 2, 3). (3.0.7)

In the above expressions, D denotes the Levi-Civita connection corresponding to gµν .

3.1. Wave coordinates. In this article, we use the framework developed in [Lindblad and Rodnianski
2005; 2010] and work in a wave-coordinate system, which is defined to be a coordinate system in which

0µ
def
= (g−1)κλ0

µ
κ λ = 0 (µ= 0, 1, 2, 3). (3.1.1a)

The condition (3.1.1a) is also known as harmonic gauge or de Donder gauge. It is easy to check that the
condition (3.1.1a) is equivalent to the conditions

gµν(g−1)κλ0 ν
κ λ = 0 (µ= 0, 1, 2, 3), (3.1.1b)

(g−1)κλ ∂κgλµ− 1
2(g
−1)κλ ∂µgκλ = 0 (µ= 0, 1, 2, 3), (3.1.1c)

∂ν
[√
|det g|(g−1)µν

]
= 0 (µ= 0, 1, 2, 3). (3.1.1d)

We also note that condition (3.1.1d) follows from the identity

0µ
def
= (g−1)κλ0

µ
κ λ =−

1
√
|det g|

∂ν
[√
|det g|(g−1)µν

]
(µ= 0, 1, 2, 3), (3.1.2)

which holds in any coordinate system. Furthermore, if the wave-coordinate system is also interpreted
to be a coordinate system in which the Minkowski metric takes the form mµν = diag(−1, 1, 1, 1), then
all coordinate derivatives ∂ can be interpreted as covariant derivatives ∇, where ∇ is the Levi-Civita
connection corresponding to the Minkowski metric. Throughout the article, we will often take this point
of view because it allows for a covariant interpretation of all of our equations.

We remark that the use of wave coordinates in the study of the Einstein equations goes back at least to
the work of de Donder [1921]. However, it was not until Choquet-Bruhat’s [1952] fundamental work
that it became clear that the Einstein equations are fundamentally hyperbolic in nature and that wave
coordinates can be used to prove local well-posedness. See Section 4.3 for further discussion on the
viability of using wave coordinates to analyze the system (3.0.1a)–(3.0.1c).

3.2. The Lagrangian formulation of nonlinear electromagnetism. In this section, we recall some stan-
dard facts concerning a classical electromagnetic field theory in a Lorentzian spacetime (R1+3, gµν). Our
goal is to explain the origin of (3.0.1b)–(3.0.1c). We remark that, for our purposes in this section, we may
assume that the spacetime is known. The fundamental quantity in such a classical electromagnetic field
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theory is the Faraday tensor Fµν , which is an antisymmetric type-
(0

2

)
tensor field (i.e., a two-form). We

assume the Faraday–Maxwell law, which is the postulate that Fµν is closed:

(dF)λµν = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.1)

where d denotes the exterior derivative operator.
We restrict our attention to covariant theories of nonlinear electromagnetism arising from a Lagrangian

L. In such a theory, the Hodge dual18 ?L of L is a scalar-valued function of the two invariants of the
Faraday tensor, which we denote by �(1) and �(2):

?L= ?L(�(1), �(2)), (3.2.2a)

�(1) = �(1)[F]
def
=

1
2(g
−1)κµ(g−1)λνFκλFµν, (3.2.2b)

�(2) = �(2)[F]
def
=

1
4(g
−1)κµ(g−1)λνFκλ

?Fµν =
1
8ε

#κλµνFκλFµν . (3.2.2c)

Throughout the article, we use ? to denote the Hodge duality operator corresponding to the spacetime
metric gµν :

?F#µν def
=

1
2ε

#µνκλFκλ. (3.2.3)

Here, ε#µνκλ is totally antisymmetric with normalization ε#0123
= −|det g|−1/2 while εµνκλ is totally

antisymmetric with normalization ε0123 = |det g|1/2. See Section 2.2 concerning our use of the notation #.
We remind the reader that our main results are derived for a class of Lagrangians that satisfy certain
assumptions; these assumptions are listed in (3.3.3a) and (3.3.4a)–(3.3.4b) below.

We now introduce the Maxwell tensor Mµν , a two-form whose Hodge dual ?Mµν is defined by

?M#µν def
=

∂?L

∂Fµν

−
∂?L

∂Fνµ

. (3.2.4)

We also postulate that Mµν is closed:

(dM)λµν = 0 (λ, µ, ν = 0, 1, 2, 3). (3.2.5)

Taken together, (3.2.1) and (3.2.5) are the electromagnetic equations for Fµν corresponding to ?L.
We remark for future use that it is straightforward to verify that (3.2.1) is equivalent to any of

DλFµν +DνFλµ+DµFνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.6a)

∇λFµν +∇νFλµ+∇µFνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.6b)

Dµ
?F#µν

= 0 (ν = 0, 1, 2, 3), (3.2.6c)

∇µ
~Fµν

= 0 (ν = 0, 1, 2, 3) (3.2.6d)

18For brevity, we often refer to ?L as the Lagrangian.
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and that (3.2.5) is equivalent to any of

DλMµν +DνMλµ+DµMνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.7a)

∇λMµν +∇νMλµ+∇µMνλ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.2.7b)

Dµ
?M#µν

= 0 (ν = 0, 1, 2, 3), (3.2.7c)

∇µ
~Mµν

= 0 (ν = 0, 1, 2, 3). (3.2.7d)

In the above formulas, ~ denotes the Hodge duality operator corresponding to the Minkowski metric mµν ;
this operator is defined in Section 2.6.

We state as a lemma the following identities, which will be used for various computations. We leave
the proof as a simple exercise for the reader.

Lemma 3.1 (Basic identities). The following identities hold:

∂|det g|
∂gµν

= |det g|(g−1)µν, (3.2.8a)

∂(g−1)κλ

∂gµν
=−(g−1)κµ(g−1)λν, (3.2.8b)

�2
(2) = |det F||det g|−1, (3.2.8c)

(g−1)κλFµκFνλ− (g−1)κλ?Fµκ
?Fνλ = �(1)gµν, (3.2.8d)

(g−1)κλFµκ
?Fνλ = �(2)gµν, (3.2.8e)

∂�(1)
∂gµν

=−gκλF#µκF#νλ, (3.2.8f)

∂�(2)
∂gµν

=−
1
2�(2)(g

−1)µν, (3.2.8g)

∂�(1)
∂Fµν

= F#µν, (3.2.8h)

∂�(2)
∂Fµν

=
1
2
?F#µν, (3.2.8i)

∂F#µν

∂Fκλ

= (g−1)µκ(g−1)νλ, (3.2.8j)

∂?F#µν

∂Fκλ

=
1
2ε

#µνκλ, (3.2.8k)

Dµ�(1) = F#κλDµFκλ (µ= 0, 1, 2, 3), (3.2.8l)

Dµ�(2) = 1
2
?F#κλDµFκλ (µ= 0, 1, 2, 3), (3.2.8m)

?M#µν
= 2

∂?L

∂�(1)
F#µν

+
∂?L

∂�(2)
?F#µν . (3.2.8n)
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3.3. Assumptions on the electromagnetic Lagrangian. The standard Maxwell–Maxwell equations cor-
respond to the Lagrangian

?L(Maxwell) =−
1
2�(1), (3.3.1)

which by (3.2.8n) leads to the relationship

M(Maxwell)
µν =

?Fµν . (3.3.2)

Roughly speaking, we will assume that our electromagnetic Lagrangian is a covariant perturbation
of ?L(Maxwell). More precisely, we make the following assumptions concerning our Lagrangian ?L:

Assumptions. We assume that, in a neighborhood of (0, 0), ?L is an (` + 2)-times (where ` ≥ 10)
continuously differentiable function of the invariants (�(1), �(2)) that can be expanded as follows:

?L= ?L(Maxwell)+ O`+2(|(�(1), �(2))|2). (3.3.3a)

The notation O`+2( · ) is defined in Section 2.13.
We also assume that the corresponding energy-momentum tensor Tµν , which is defined below in (3.5.1),

satisfies the dominant energy condition, which is the assumption that

TκλXκY λ ≥ 0 (3.3.3b)

whenever the following conditions are satisfied:

• X and Y are both timelike (i.e., gκλXκXλ < 0 and gκλY κY λ < 0).

• X and Y are g-future-directed.

As discussed in, e.g., [Gibbons and Herdeiro 2001], sufficient conditions for the dominant energy
condition to hold are

∂?L

∂�(1)
< 0, (3.3.4a)

?L− �(1)
∂?L

∂�(1)
− �(2)

∂?L

∂�(2)
≤ 0. (3.3.4b)

We remark that it is straightforward to verify the sufficiency of these conditions by using (3.5.4b) below
and that condition (3.3.4b) is equivalent to the nonpositivity of the trace of the energy-momentum
tensor corresponding to ?L. Furthermore, we recall that the trace vanishes in the case of the standard
Maxwell–Maxwell model.

Remark 3.2. We make the (`+2)-times differentiability assumption because we will need to differentiate
the equations (3.3.7) below ` times in order to prove our main stability theorem.

We will now derive an equivalent version of the electromagnetic equations that will be used throughout
the remainder of the article. The final form, which is valid only in a wave-coordinate system, is given
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below in Lemma 3.4. To begin, we use (3.2.6c), (3.2.7c), and (3.2.8n) to compute that the following
equation holds:

−2
∂?L

∂�(1)
DµF#µν

− 2F#µνDµ

( ∂?L
∂�(1)

)
−
?F#µνDµ

( ∂?L
∂�(2)

)
= 0. (3.3.5)

Furthermore, from the chain rule and the fact that Dµφ =∇µφ for scalar-valued functions φ, it follows
from (3.3.5) and (3.2.8l)–(3.2.8m) that

−2
∂?L

∂�(1)
DµF#µν

−

(
2F#µν ∂

2?L

∂�2
(1)
+
?F#µν ∂2?L

∂�(1) ∂�(2)

)
∇µ�(1)

−

(
2F#µν ∂2?L

∂�(1) ∂�(2)
+
?F#µν ∂

2?L

∂�2
(2)

)
∇µ�(2) = 0. (3.3.6)

We note for future use that (3.3.6) can be expressed as

N #µνκλDµFκλ = 0 (ν = 0, 1, 2, 3), (3.3.7)

where the tensor field N #µνκλ is defined by

N #µνκλ def
= −

∂?L

∂�(1)

(
(g−1)µκ(g−1)νλ− (g−1)µλ(g−1)νκ

)
− 2

∂2?L

∂�2
(1)

F#µνF#κλ

−
∂2?L

∂�(1)∂�(2)

(
F#µν?F#κλ

+
?F#µν?F#κλ)

−
1
2
∂2?L

∂�2
(2)

?F#µν?F#κλ. (3.3.8)

We also note that N #µνκλ has the following symmetry properties, which will play an important role during
our construction of suitable energies for Fµν (and in particular during our proof of Lemma 8.5):

N #νµκλ
=−N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3), (3.3.9a)

N #µνλκ
=−N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3), (3.3.9b)

N #κλµν
= N #µνκλ (κ, λ, µ, ν = 0, 1, 2, 3). (3.3.9c)

The moral reason that the above properties are satisfied is that N #µνκλ is closely related to the Hessian
of ?L (with respect to F):

N #µνκλ
=−

1
2

∂2?L

∂Fµν ∂Fκλ

+
1
2
∂?L

∂�(2)
ε#µνκλ. (3.3.10)

We have added the last term on the right-hand side of (3.3.10) in order to cancel a term appearing in the
Hessian; this is permissible because (3.2.6a) implies that this term does not contribute to (3.3.7).

Our next goal is to formulate a “reduced” electromagnetic equation that is equivalent to (3.3.7) in a
wave-coordinate system. We also decompose the reduced equation into the principal terms and error
terms of an equation involving the Minkowski connection ∇. This is accomplished in Lemma 3.4 below.
Before proving this lemma, we first provide the following preliminary lemma, whose simple proof is left
to the reader:
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Lemma 3.3 (Expansions). Assume that the electromagnetic Lagrangian ?L satisfies (3.3.3a). Then in
terms of the expansion hµν

def
= gµν −mµν from (1.2.1a) and with Hµν def

= (g−1)µν − (m−1)µν , we have

Hµν
=−hµν + O∞(|h|2)

=−hµν + O∞(|H |2), (3.3.11a)

∇λ(g−1)µν =−(g−1)µµ
′

(g−1)νν
′

∇λhµ′ν′

=−(m−1)µµ
′

(m−1)νν
′

∇λhµ′ν′ + O∞(|h||∇h|), (3.3.11b)

|det g| = 1+ (m−1)κλhκλ+ O∞(|h|2)

= 1−mκλH κλ
+ O∞(|H |2), (3.3.11c)

|det g|1/2 = 1+ 1
2(m

−1)κλhκλ+ O∞(|h|2)

= 1− 1
2 mκλH κλ

+ O∞(|H |2), (3.3.11d)

|det g|−1/2
= 1− 1

2(m
−1)κλhκλ+ O∞(|h|2)

= 1+ 1
2 mκλH κλ

+ O∞(|H |2), (3.3.11e)

ε#µνκλ
=−(1+ O∞(|h|))[µνκλ], (3.3.11f)

εµνκλ = (1+ O∞(|h|))[µνκλ], (3.3.11g)

F#µν
= Fµν

+ O∞(|h||F|) def
= (m−1)µκ(m−1)νλFκλ+ O∞(|h||F|), (3.3.11h)

?Fµν =
~Fµν + O∞(|h||F|) def

= −
1
2 mµµ′mνν′[µ

′ν ′κλ]Fκλ+ O∞(|h||F|), (3.3.11i)

�(1) = 1
2(m

−1)κµ(m−1)λνFκλFµν + O∞(|h||F|2), (3.3.11j)

�(2) =− 1
8 [µνκλ]FµνFκλ+ O∞(|h||F|2), (3.3.11k)

?L=− 1
4(m

−1)ηκ(m−1)ζλFκλFηζ + O`+2(|h||F|2)+ O`+2(|F|4; h), (3.3.11l)

∇�(i) = O∞(|F||∇F|)+ O∞(|∇h||F|2; h)+ O∞(|h||F||∇F|), (3.3.11m)

Mµν =
~Fµν + O`+1(|h||F|)+ O`+1(|F|3; h). (3.3.11n)

In (3.3.11f)–(3.3.11g), [µνκλ] is totally antisymmetric with normalization [0123] = 1, ? denotes the
Hodge duality operator corresponding to the spacetime metric gµν , and ~ denotes the Hodge duality
operator corresponding to the Minkowski metric mµν . Furthermore, the notation O( · ) is defined in
Section 2.13.

3.4. The reduced electromagnetic equations. In this section, we provide the aforementioned decompo-
sition of the reduced electromagnetic equations.

Lemma 3.4 (The reduced electromagnetic equations). Assume that the wave-coordinate condition (3.1.1a)
holds. Then in terms of the expansion (1.2.1a), the system of electromagnetic equations (3.2.1) and (3.3.7)
is equivalent to the following reduced system of equations:
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∇λFµν +∇µFνλ+∇νFλµ = 0, (3.4.1a)

N #µνκλ
∇µFκλ = Qν(2;F)(∇h,F)+ O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.4.1b)

where

N #µνκλ
=

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
+

1
2

(
−hµκ(m−1)νλ+ hµλ(m−1)νκ

)
+

1
2

(
−(m−1)µκhνλ+ (m−1)µλhνκ

)
+ N #µνκλ

4
, (3.4.2)

Qν(2;F)(∇h,F)= (m−1)µκ(m−1)νν
′

(m−1)λλ
′

(∇µhν′λ′)Fκλ. (3.4.3)

Furthermore,
N #µνκλ
4

= O`
(
|(h,F)|2

)
, (3.4.4)

and like N #µνκλ, the tensor field N #µνκλ
4

also possesses the symmetry properties (3.3.9a)–(3.3.9c).

Remark 3.5. Equations (3.4.1a)–(3.4.3) are equivalent to (3.2.1) and (3.3.7) only in a wave-coordinate
system. Hence, we refer to (3.4.1a)–(3.4.3) as the “reduced” electromagnetic equations.

Proof. We use the assumption (3.3.3a) and the Leibniz rule to expand (3.3.6) and apply the results of
Lemma 3.3, arriving at the following expansion:

DµF#µν
+ Ñµνκλ

∇µFκλ = O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.4.5)

where Ñµνκλ
= O`(|(h,F)|2). Let us now decompose the DµF#µν term. Using the antisymmetry

of F#µν , the symmetry of the Christoffel symbol 0 ν
µ λ under the exchanges µ↔ λ, the identity 0 κ

κ µ =

(1/
√
|det g|)∇µ(

√
|det g|), and the wave-coordinate condition ∇µ[

√
|det g|(g−1)µκ ] = 0 (κ = 0, 1, 2, 3),

we have that

DµF#µν
=∇µF#µν

+0 κ
κ µF#µν

+0 ν
µ λF#µλ

=∇µ

[
(g−1)µκ(g−1)νλFκλ

]
+

[
1

√
|det g|

∇µ(
√
|det g|)

]
(g−1)µκ(g−1)νλFκλ

=
1

√
|det g|

∇µ

[√
|det g|(g−1)µκ(g−1)νλFκλ

]
= (g−1)µκ(g−1)νλ∇µFκλ+

[
(g−1)µκ∇µ(g−1)νλ

]
Fκλ. (3.4.6)

Using (3.3.11a), we conclude that the term (g−1)µκ(g−1)νλ∇µFκλ on the right-hand side of (3.4.6) can
be expressed as the terms in parentheses on the right-hand side of (3.4.2) plus O`(|h2

|)∇µFκλ.
Similarly, using (3.3.11b), we conclude that the term [(g−1)µκ∇µ(g−1)νλ]Fκλ on the right-hand

side of (3.4.6) is equal to −Qν(2;F)(∇h,F) + O`(|h||∇h||F|), where Qν(2;F)(∇h,F) is defined in (3.4.3).
Combining these expansions with (3.4.5), we arrive at (3.4.1b)–(3.4.4).

The fact that N #µνκλ
4

possesses the symmetry properties (3.3.9a)–(3.3.9c) follows trivially from the fact
that both N #µνκλ and the term in parentheses on the right-hand side of (3.4.2) have these properties. �
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Remark 3.6. With the help of the identity (3.1.2), the above proof shows that the reduced equation
(3.4.1b) is obtained by adding the inhomogeneous term −0κ(g−1)νλFκλ to the right-hand side of (3.3.7).
That is, (3.4.1b) is equivalent to

N #µνκλDµFκλ =−0
κ(g−1)νλFκλ. (3.4.7)

We will use this fact in our proof of Proposition 4.2.

3.5. The energy-momentum tensor. In this section, we discuss the energy-momentum tensor Tµν appear-
ing on the right-hand side of (3.0.1a). We recall that the energy-momentum tensor for an electromagnetic
Lagrangian field theory is defined as follows:

T #µν def
= 2

∂?L

∂gµν
+ (g−1)µν?L. (3.5.1)

It follows trivially from the definition (3.5.1) that Tµν is symmetric:

Tµν = Tνµ (µ, ν = 0, 1, 2, 3). (3.5.2)

Furthermore, we recall that, if Fµν is a solution to the (nonreduced) electromagnetic equations (3.0.1b)–
(3.0.1c), then

DµT #µν
= 0 (ν = 0, 1, 2, 3). (3.5.3)

For the class of electromagnetic energy-momentum tensors considered in this article, we can use the
chain rule and Lemma 3.1 to express Tµν as follows:

Tµν =−2
∂?L

∂�(1)
(g−1)κλFµκFνλ− �(2)

∂?L

∂�(2)
gµν + gµν?L (3.5.4a)

=−2
∂?L

∂�(1)
T (Maxwell)
µν +

1
4 T gµν, (3.5.4b)

where
T (Maxwell)
µν

def
= (g−1)κλFµκFνλ−

1
2�(1)gµν (3.5.5)

is the energy-momentum tensor corresponding to the standard Maxwell–Maxwell equations and

T def
= (g−1)κλTκλ = 4

(
?L− �(1)

∂?L

∂�(1)
− �(2)

∂?L

∂�(2)

)
(3.5.6)

is the trace of Tµν with respect to gµν . Furthermore, from (3.5.4a) and the expansions of Lemma 3.3, it
follows that

Tµν = (m−1)κλFµκFνλ−
1
4 mµν(m−1)κη(m−1)λζFκλFηζ + O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.7)

We now compute the right-hand side of (3.0.1a′). First, taking the trace of (3.5.7) with respect to g, we
compute that

(g−1)κλTκλ = O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.8)
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Combining (3.5.7) and (3.5.8) and using the expansion (1.2.1a), we have that the right-hand side of
(3.0.1a′) can be expressed as follows:

Tµν − 1
2 gµν(g−1)κλTκλ = (m−1)κλFµκFνλ−

1
4 mµν(m−1)κη(m−1)λζFκλFηζ

+ O`+1(|h||F|2)+ O`+1(|F|3; h). (3.5.9)

To conclude this section, we note for future use that, if Fµν is a solution to the inhomogeneous system

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.5.10a)

N #µνκλDµFκλ = Iν (ν = 0, 1, 2, 3), (3.5.10b)

then with the help of Lemma 3.1, it can be shown that the following identity holds:

(g−1)κλDκTλν = IκFνκ (ν = 0, 1, 2, 3). (3.5.11)

We will use this fact in our proof of Proposition 4.2 (which shows that the wave-coordinate gauge is
preserved by the flow of the reduced equations), where Iν will be equal to the right-hand side of (3.4.7).
We also remark that (3.5.3) corresponds to the special case Iν = 0 (ν = 0, 1, 2, 3).

3.6. The modified Ricci tensor. Throughout the remainder of this article, we perform the standard wave-
coordinate system procedure (see, e.g., [Wald 1984]) of replacing the Ricci tensor Rµν in the Einstein
field equation (3.0.1a) with a modified Ricci tensor R̃µν . As we will soon see, this replacement transforms
equations (3.0.1a) into a system of quasilinear wave equations.

Definition 3.7. We define the modified Ricci tensor R̃µν of the metric gµν as follows:

R̃µν
def
= Rµν − 1

2(gκνDµ0
κ
+ gκµDν0

κ)+ uµνκ(g, g−1, ∂g)0κ , (3.6.1)

where the Ricci tensor Rµν is defined in (3.0.2b) and the “gauge term” uµνκ(g, g−1, ∂g)0κ is a smooth
function of g, g−1, and ∂g that will be discussed in Lemma 3.8. We remark that, for purposes of covariant
differentiation by D in (3.6.1), the 0µ are treated as the components of a vector field.

In the next lemma, we provide an algebraic decomposition of the modified Ricci tensor.

Lemma 3.8 (Decomposition of the modified Ricci tensor [Lindblad and Rodnianski 2005, Lemmas 3.1
and 3.2]). For a suitable choice of the gauge term uµνκ(g, g−1, ∂g)0κ , the modified Ricci tensor R̃µν of
the metric gµν = mµν + hµν can be decomposed as follows:

R̃µν =− 1
2

(
2̃ggµν −P(∇µh,∇νh)−Q(1;h)µν (∇h,∇h)

)
+ O∞(|h||∇h|2), (3.6.2)

where

2̃g
def
= (g−1)κλ∇κ∇λ (3.6.3)

is the reduced wave operator corresponding to gµν and the quadratic terms P(∇µ · ,∇ν · ) and Q(1;h)µν ( · , · )

are defined by their action on tensor fields 5µν , 2µν , and hµν as follows:
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P(∇µ5,∇ν2)
def
=

1
4(∇µ5

κ
κ )(∇ν2

λ
λ )−

1
2(∇µ5

κλ)(∇ν2κλ), (3.6.4)

Q(1;h)µν (∇h,∇h) def
= (m−1)λλ

′

Q0(∇hλµ,∇hλ′ν)

− (m−1)κκ
′

(m−1)λλ
′

Qκλ′(∇hλµ,∇hκ ′ν)

+ (m−1)κκ
′

(m−1)λλ
′

Qµκ(∇hκ ′λ′,∇hλν)

+ (m−1)κκ
′

(m−1)λλ
′

Qνκ(∇hκ ′λ′,∇hλµ)

+
1
2(m

−1)κκ
′

(m−1)λλ
′

Qλ′µ(∇hκκ ′,∇hλν)

+
1
2(m

−1)κκ
′

(m−1)λλ
′

Qλ′ν(∇hκκ ′,∇hλµ). (3.6.5)

The bilinear forms Q0( · , · ) and Qµν( · , · ), which appear on the right-hand side of (3.6.5), are known
as the standard null forms. They are defined through their action on the derivatives of scalar-valued
functions ψ and χ by

Q0(∇ψ,∇χ)
def
= (m−1)κλ(∇κψ)(∇λχ), (3.6.6a)

Qµν(∇ψ,∇χ)
def
= (∇µψ)(∇νχ)− (∇νψ)(∇µχ). (3.6.6b)

Proof. This decomposition is carried out in Lemmas 3.1 and 3.2 of [Lindblad and Rodnianski 2005]. �

We conclude this section by observing that (3.0.1a′), (3.5.9), and (3.6.2) together imply that under the
wave-coordinate condition (3.1.1a), and under the assumption (3.3.3a) on the Lagrangian, the Einstein
field equation (3.0.1a) is equivalent to the following equation:

2̃ggµν =P(∇µh,∇νh)+Q(1;h)µν (∇h,∇h)−2(m−1)κλFµκFνλ+
1
2 mµν(m−1)κη(m−1)λζFκλFηζ

+ O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h). (3.6.7)

3.7. Summary of the reduced system. In this section, we summarize the above results by stating the form
of the reduced Einstein-nonlinear electromagnetic system that we work with for most of the remainder of
the article, namely (3.7.1a)–(3.7.1c); the derivation of this version of the reduced equations follows easily
from the previous results of Section 3. We remind the reader that the reduced equations are obtained by
adding the inhomogeneous term −0κ(g−1)νλFκλ to the right-hand side of (3.3.7) and by substituting the
modified Ricci tensor in place of the Ricci tensor in (3.0.1a). Furthermore, in a wave-coordinate system,
the reduced system is equivalent to the system (3.0.1a)–(3.0.1c) (see Proposition 4.2).

Reduced system. The reduced system (where gµν = mµν + h(0)µν + h(1)µν and the unknowns are viewed to
be (h(1)µν ,Fµν)) can be expressed as

2̃gh(1)µν = Hµν − 2̃gh(0)µν (µ, ν = 0, 1, 2, 3), (3.7.1a)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (3.7.1b)

N #µνκλ
∇µFκλ = Fν (ν = 0, 1, 2, 3), (3.7.1c)

where 2̃g
def
= (g−1)κλ∇κ∇λ is the reduced wave operator corresponding to gµν .
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The quantities Hµν , N #µνκλ, and Fν can be decomposed into principal terms and error terms (which
are denoted with a “4”) as follows:

Hµν = P(∇µh,∇νh)+Q(1;h)µν (∇h,∇h)+Q(2;h)µν (F,F)+H4µν, (3.7.2a)

Fν = Qν(2;F)(∇h,F)+Fν
4
, (3.7.2b)

N #µνκλ
=

1
2((m

−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ)

+
1
2(−hµκ(m−1)νλ+ hµλ(m−1)νκ)

+
1
2(−(m

−1)µκhνλ+ (m−1)µλhνκ)+ N #µνκλ
4

, (3.7.2c)

where P(∇µh,∇νh) is defined in (3.6.4), Q(1;h)µν (∇h,∇h) is defined in (3.6.5), and

Q(2;h)µν (F,G)=−2(m−1)κλFµκGνλ+
1
2 mµν(m−1)κλ(m−1)λκFκλGκλ, (3.7.2d)

Qν(2;F)(∇h,F)= (m−1)µκ(m−1)λλ
′

(m−1)νν
′

(∇µhν′λ′)Fκλ, (3.7.2e)

H4µν = O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h), (3.7.2f)

Fν
4
= O`(|h||∇h||F|)+ O`(|∇h||F|2; h), (3.7.2g)

N #µνκλ
4

= O`(|(h,F)|2). (3.7.2h)

Furthermore, the left-hand side of (3.7.1c) can be expressed as

N #µνκλ
∇µFκλ =

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

−Pν
(F)(h,∇F)−Qν(1;F)(h,∇F)+ N #µνκλ

4
∇µFκλ, (3.7.3a)

where

Pν
(F)(h,∇F)= (m−1)µµ

′

(m−1)κκ
′

(m−1)νλhµ′κ ′∇µFκλ, (3.7.3b)

Qν(1;F)(h,∇F)= (m−1)µκ(m−1)νν
′

(m−1)λλ
′

hν′λ′∇µFκλ. (3.7.3c)

More precisely, (3.7.1a) follows from (3.6.7) and the expansions (1.2.1a)–(1.2.1b) while (3.7.1b)–(3.7.1c)
were derived in Lemma 3.4.

4. The initial-value problem

In this section, we discuss the abstract initial data and the constraint equations for the Einstein-nonlinear
electromagnetic system. We then use the abstract initial data to construct initial data for the reduced
equations that satisfy the wave-coordinate condition at t = 0. Finally, we sketch a proof of the well-known
fact that the wave-coordinate condition is satisfied by the solution to the reduced equations launched by this
data; this result shows that the wave-coordinate gauge is a viable gauge for studying the Einstein-nonlinear
electromagnetic system.

4.1. The abstract initial data. The initial-value problem formulation of the Einstein equations goes
back to the seminal work by Fourès-Bruhat [1952]. In this article, initial data for the Einstein-nonlinear
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electromagnetic system consist of the 3-dimensional manifold60=R3 together with the following fields on
60: a Riemannian metric g̊ jk , a symmetric two-tensor K̊ jk , and a pair of one-forms D̊ j and B̊ j . After we
construct the ambient Lorentzian spacetime (M, gµν), g̊ jk and K̊ jk will respectively be the first and second
fundamental forms of 60 while D̊ j and B̊ j , which are defined below in Section 9.2, will be an electro-
magnetic decomposition of Fµν |60 into a pair of one-forms that are both m-tangent and g-tangent to 60.

It is well-known that one cannot consider arbitrary data for the Einstein-nonlinear electromagnetic
system. The data are subject to the following constraints:

R̊− K̊ab K̊ ab
+
[
(g̊−1)ab K̊ab

]2
= 2T (N̂ , N̂ )|60, (4.1.1a)

(g̊−1)abD̊a K̊bj − (g̊−1)abD̊ j K̊ab = T
(

N̂ , ∂

∂x j

)∣∣∣
60

( j = 1, 2, 3), (4.1.1b)

(g̊−1)abD̊aD̊b = 0, (4.1.2a)

(g̊−1)abD̊aB̊b = 0, (4.1.2b)

where D̊ is the Levi-Civita connection corresponding to g̊ jk , R̊ is the scalar curvature of g̊ jk , Tµν is defined
in (3.5.4a), and N̂µ is the future-directed unit g-normal to 60. The right-hand sides of (4.1.1a)–(4.1.1b)
can (in principle) be computed in terms of and g̊ jk , D̊ j , and B̊ j with the help of the relations (9.2.3),
which connect these quantities to Fµν |60 . In (4.1.1a)–(4.1.1b), indices are lowered and raised with the
Riemannian metric g̊ jk and its inverse (g̊−1) jk . The constraints (4.1.1a)–(4.1.1b) are respectively known
as the Gauss and Codazzi equations while (4.1.2a)–(4.1.2b) are known as the electromagnetic constraints.
They relate the fields present in the ambient spacetime (M, gµν,Fµν) (which has to be constructed) to
the fields induced on an embedded Riemannian hypersurface (which will be (60, g̊ jk, D̊ j , B̊ j ) after
construction). Without providing the rather standard details (see, e.g., [Christodoulou 2008]), we remark
that they are consequences of the following assumptions:

• 60 is a spacelike submanifold of the spacetime manifold M.

• g̊ jk is the first fundamental form of 60, and K̊ jk is the second fundamental form of 60.

• The Einstein-nonlinear electromagnetic system is satisfied along 60.

• Along 60 (viewed as a subset of M), Bµ =−
?Fµκ N̂ κ and Dµ =−

?Mµκ N̂ κ .

We recall that, under the above assumptions, g̊ and K̊ are defined by

g̊|p(X, Y )= g|p(X, Y ) ∀X, Y ∈ Tp60, (4.1.3)

K̊ |p(X, Y )= g|p(DX N̂ , Y ) ∀X, Y ∈ Tp60, (4.1.4)

where N̂ is the future-directed unit g-normal19 to60 at p and D is the Levi-Civita connection corresponding
to g. Furthermore, if X and Y are vector fields tangent to 60, then

DX Y = D̊X Y + K̊ (X, Y )N̂ . (4.1.5)

19Under the assumptions of Section 4.2, it follows that, at every point p ∈ 60, N̂µ = (A−1, 0, 0, 0), where A is defined
by (4.2.2).
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We also remind the reader that our stability theorem requires the hypothesis that the abstract initial
data decay at spatial infinity according to the rates (1.0.4a)–(1.0.4f).

4.2. The initial data for the reduced equations. We assume that we are given “abstract” initial data
(g̊ jk, K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) on the manifold R3 for the Einstein equations as discussed in the
previous section. In this section, we will use this data to construct data (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)
(µ, ν = 0, 1, 2, 3) for the reduced equations (3.7.1a)–(3.7.1c) that satisfy the wave-coordinate condition
0µ|t=0 = 0. We begin by recalling that χ(z) is a fixed cut-off function with the following properties:

χ ∈ C∞, χ ≡ 1 for z ≥ 3
4 , and χ ≡ 0 for z ≤ 1

2 . (4.2.1)

We then define the function A(x1, x2, x3)≥ 0 by

A2 def
= 1− 2M

r
χ(r) and r def

= |x |. (4.2.2)

We define the data for the spacetime metric gµν by

g00|t=0 =−A2, g0 j |t=0 = 0, g jk |t=0 = g̊ jk, (4.2.3a)

∂t g00|t=0 = 2A3(g̊−1)ab K̊ab,

∂t g0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t g jk |t=0 = 2AK̊ jk

(4.2.3b)

and the data for the Faraday tensor Fµν by

F j0|t=0 = E̊ j and F jk |t=0 = [i jk]B̊i . (4.2.4)

The one-forms E̊ j and B̊ j can be expressed in terms of h̊ jk and the one-forms D̊ j and B̊ j appearing in the
constraint equations (4.1.2a)–(4.1.2b) by using the relations (9.2.3) and (9.2.4) below. The precise form
of these relations depends on the choice of Lagrangian ?L, but in the small-data regime, the estimates
(9.2.7) (9.2.8a), and (9.2.8b) hold.

We now state the main result of this section.

Lemma 4.1 (Wave-coordinate condition holds at t = 0). Suppose that the initial data (gµν |t=0, ∂t gµν |t=0)

(µ, ν = 0, 1, 2, 3) for the reduced equations are constructed from abstract initial data (g̊ jk, K̊ jk) ( j, k =
1, 2, 3) as described above. Then the wave-coordinate condition holds initially:

0µ|t=0 (µ= 0, 1, 2, 3). (4.2.5)

Proof. Lemma 4.1 follows from the expression (3.1.1c), the definitions (4.2.3a)–(4.2.3b), and straightfor-
ward calculations. �

Note that the above definitions induce the following data for the spacetime metric “remainder” piece
h(1)µν , which is defined by (1.2.1a)–(1.2.1c):
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h(1)00 |t=0 = 0, h(1)0 j |t=0 = 0, h(1)jk |t=0 = h̊(1)jk , (4.2.6a)

∂t h
(1)
00 |t=0 = 2A3(g̊−1)ab K̊ab,

∂t h
(1)
0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −

1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t h
(1)
jk |t=0 = 2AK̊ jk .

(4.2.6b)

Similarly, the following data are induced in hµν = h(0)µν + h(1)µν , which is defined in (1.2.1b):

h00|t=0 = χ(r)
2M
r
, h0 j |t=0 = 0, h jk |t=0 = χ(r)

2M
r
δ jk + h̊(1)jk , (4.2.7a)

∂t h00|t=0 = 2A3(g̊−1)ab K̊ab,

∂t h0 j |t=0 = A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A,

∂t h jk |t=0 = 2AK̊ jk .

(4.2.7b)

We will make use of these facts in our proof of Proposition 10.4 below.

4.3. Preservation of the wave-coordinate gauge. In this section, we sketch a proof of the fact that, if
the reduced data are constructed from abstract data as described in Section 4.2, then the wave-coordinate
condition 0µ = 0 is preserved by the flow of the reduced equations. This result requires the assumption
that the abstract data satisfy the constraints (4.1.1a)–(4.1.2b). To simplify the discussion, we assume in
this section that the data are smooth. However, the result also holds in the regularity class we use during
our global existence proof. We remark that this result is quite standard and that we have included it only
for convenience.

Proposition 4.2 (Preservation of the wave-coordinate gauge). Suppose that (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) are smooth initial data for the reduced equations (3.7.1a)–(3.7.1c) that are constructed
from abstract initial data satisfying the constraints (4.1.1a)–(4.1.2b) as described in Section 4.2. In
particular, by Lemma 4.1, the wave-coordinate condition 0µ|t=0 holds. Assume further that the reduced
data are small enough so that they lie within the regime of hyperbolicity20 of the reduced equations. Let
(gµν,Fµν) be the corresponding smooth solution to the reduced equations that is launched by the data.
Let T > 0, and assume that the reduced solution exists on the slab [0, T )×R3 and lies within the regime
of hyperbolicity of the reduced equations. Then 0µ ≡ 0 for [t, x) ∈ [0, T )×R3.

Sketch of proof. Our goal is to show that under the assumptions of the proposition, whenever we have
a smooth solution to the reduced equations (3.7.1a)–(3.7.1c) on [0, T ) × R3, the corresponding 0µ

satisfy a homogeneous-in-0µ system of wave equations with principal part equal to (g−1)κλ ∂κ ∂λ and
with trivial initial data 0µ|t=0 = ∂t0

µ
|t=0 = 0. The conclusion that 0µ ≡ 0 for (t, x) ∈ [0, T )× R3

then follows from a standard uniqueness theorem for such wave equations that is based on energy
estimates (see, e.g., [Hörmander 1997; Sogge 2008] for ideas on how to prove such a theorem). To
derive the equations satisfied by the 0µ, we will view 0µ as a vector field for purposes of covariant

20Since our electromagnetic equations are perturbations of the standard Maxwell–Maxwell equations, there will always be
such a regime.
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differentiation. We first recall (see Remark 3.6) that (3.6.2) is obtained by adding the gauge term
−

1
2(gκνDµ0

κ
+ gκµDν0

κ)+ uµνκ(g, g−1, ∂g)0κ to the expression (3.0.2b) for Rµν . Consequently, it
follows that, for a solution to the reduced equations (3.7.1a)–(3.7.1c), we have that

Rµν − 1
2 Rgµν − Tµν = 1

2(gκνDµ0
κ
+ gκµDν0

κ)− uµνκ(g, g−1, ∂g)0κ

−
1
2 gµνDκ0

κ
+

1
2 gµν(g−1)κλuκλδ(g, g−1, ∂g)0δ. (4.3.1)

We note that the left-hand side of (4.3.1) is simply the difference of the left-hand and right-hand sides of
the Einstein equation (1.0.1a).

We now apply (g−1)νλDλ to each side of (4.3.1), use the Bianchi identity (g−1)νλDλ(Rµν− 1
2 Rgµν)=0,

the fact that (g−1)νλDλTµν = −0κ(g−1)βλFκλFµβ (see Remark 3.6 and (3.5.11)), and the curvature
relation DµDκ0

κ
= DκDµ0

κ
− Rµκ0κ , and expand the covariant derivatives in terms of coordinate

derivatives and Christoffel symbols to deduce that the 0µ are solutions to the following hyperbolic system
of wave equations that is homogeneous in 0µ:

(g−1)κλ ∂κ ∂λ0
µ
= Aµκλ(g, g−1, ∂g, ∂∂g) ∂κ0λ+Bµκ(g, g−1, ∂g, ∂∂g,F)0κ (µ=0, 1, 2, 3), (4.3.2)

where the Aµκλ(g(t, x), g−1(t, x), ∂g(t, x), ∂∂g(t, x)) and Bµκ(g(t, x), g−1(t, x), ∂g(t, x), ∂∂g(t, x),
F(t, x)) are smooth functions of (t, x).

To complete our sketch of the proof, it remains to show that ∂t0
µ
|t=0 = 0. Since the abstract initial

data (g̊ jk, K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) are assumed to satisfy the constraint equations (4.1.1a)–(4.1.1b),
it follows that the left-hand side of (4.3.1) is equal to 0 at t = 0 after contracting21 against N̂µ N̂ ν or
N̂µXν , where N̂µ is the future-directed unit g-normal to 60 and Xµ is any vector tangent to 60.

Recalling that N̂µ
|t=0 = A−1δ

µ

0 and choosing Xν
= δνj , it therefore follows that the right-hand side

must also be equal to 0 at t = 0 upon contraction (where j = 1, 2, 3 in (4.3.3b)):(
gκ0Dt0

κ
− u00κ(g, g−1, ∂g)0κ − 1

2 g00Dλ0
λ

+
1
2 g00(g−1)κλuκλδ(g, g−1, ∂g)0δ

)∣∣
t=0 = 0, (4.3.3a)( 1

2(gκ j Dt0
κ
+ gκ0D j0

κ)− u0 jκ(g, g−1, ∂g)0κ − 1
2 g0 j Dλ0

λ

+
1
2 g0 j (g−1)κλuκλδ(g, g−1, ∂g)0δ

)∣∣
t=0 = 0. (4.3.3b)

Expanding the covariant differentiation in (4.3.3a)–(4.3.3b) in terms of coordinate derivatives and Christof-
fel symbols and using (4.2.3a) plus the fact that the initial data were constructed so as to satisfy 0µ|t=0= 0,
it is straightforward to verify that ∂t0

µ must also necessarily be trivial at t = 0:

∂t0
µ
|t=0 = 0 (µ= 0, 1, 2, 3). (4.3.4)

This completes our sketch of a proof of the proposition. �

21In fact, one derives the constraint equations by assuming that these contractions are 0 at t = 0.
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5. Geometry and the Minkowskian null frame

In this section, we introduce the families of ingoing Minkowskian null cones C−s , outgoing Minkowskian
light cones C+q , constant Minkowskian time slices 6t , and Euclidean spheres Sr,t . We then discuss the
well-known notion of a Minkowskian null frame, which allows us to geometrically decompose the tangent
space at p as a direct sum TpR1+3

= span{L|p}⊕ span{L|p}⊕ Tp Sr,t . These decompositions allow us to
geometrically decompose tensor fields. In Section 5.3, we provide a full description of the null decompo-
sition of a two-form F into its Minkowskian null components. This decomposition will be essential to our
subsequent analysis of the decay properties of the Faraday tensor. In Section 9.1, we will derive equations
for these null components under the assumption that F is a solution to the reduced electromagnetic
equations (3.7.1b)–(3.7.1c). In Section 15, we will use the equations for the null components to deduce
“upgraded” pointwise decay estimates for the lower-order Lie derivatives of F; these estimates are essential
for closing our global existence bootstrap argument in Section 16. We refer the reader to Section 1.2.4
for discussion on how our use of Minkowskian decompositions compares and contrasts against other
decompositions that have been used by other authors in the context of the stability of Minkowski spacetime.

5.1. The Minkowskian null frame. Before proceeding, we introduce the subsets C+q , C−s , 6t , and Sr,t .

Definition 5.1. In our wave-coordinate system (t, x), we define the outgoing Minkowski null cones C+q ,
ingoing Minkowski null cones C−s , constant Minkowskian time slices 6t , and Euclidean spheres Sr,t as

C+q
def
= {(τ, y) | |y| − τ = q}, (5.1.1a)

C−s
def
= {(τ, y) | |y| + τ = s}, (5.1.1b)

6t
def
= {(τ, y) | τ = t}, (5.1.1c)

Sr,t
def
= {(τ, y) | τ = t, |y| = r}. (5.1.1d)

In the above formulas, y def
= (y1, y2, y3) and |y| def

=
√
(y1)2+ (y2)2+ (y2)2.

We also introduce the following vector fields, which play a fundamental role throughout this article:

Definition 5.2. We define the ingoing Minkowski-null geodesic vector field L and the outgoing Minkowski-
null geodesic vector field L by

Lµ = (1,−ω1,−ω2,−ω3), (5.1.2a)

Lµ = (1, ω1, ω2, ω3), (5.1.2b)

where ω j def
= x j/r . By “Minkowski-null”, we mean that m(L, L)=m(L , L)= 0. Note that L is tangent to

the ingoing cones C−s , that L is tangent to the outgoing cones C+q , and that L and L are both m-orthogonal
to the Sr,t . By “Minkowski-geodesic”, we mean that ∇L L =∇L L = 0.
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Note that

L = ∂t − ∂r , (5.1.3a)

L = ∂t + ∂r . (5.1.3b)

We now recall the definitions of the Minkowskian first fundamental forms of the surfaces 6t and Sr,t .

Definition 5.3. The Minkowskian first fundamental forms of the surfaces 6t and Sr,t are respectively
defined to be the following intrinsic metrics:

mµν
def
= diag(0, 1, 1, 1), (5.1.4a)

6mµν
def
= mµν +

1
2(LµLν + LµLν). (5.1.4b)

Recall that m|p(X, Y )=m|p(X, Y ) for X, Y ∈ Tp6t and 6m(X, Y )=m(X, Y ) for X, Y ∈ Tp Sr,t . Note
also that the tensor fields m ν

µ and 6m ν
µ respectively m-orthogonally project onto the 6t and the Sr,t .

We now define a related tensor field corresponding to the outgoing Minkowski null cones C+q .

Definition 5.4. The tensor field π ν
µ , which projects vectors Xµ onto the outgoing cones C+q , is defined as

π ν
µ

def
= δνµ+

1
2 LµLν . (5.1.5)

Note in particular that π ν
µ Lµ = 0 while π ν

µ Xµ
= Xν whenever X is tangent to C+q .

Furthermore, we recall the definitions of the Minkowskian volume forms of Minkowski spacetime and
of the surfaces 6t and Sr,t .

Definition 5.5. The Minkowskian volume forms of Minkowski spacetime, the surfaces 6t , and the
Euclidean spheres Sr,t are respectively defined relative to our wave-coordinate system as follows:

υµνκλ
def
= [µνκλ], (5.1.6a)

υνκλ
def
= υ0νκλ, (5.1.6b)

6υµν
def
= υµνκλLκLλ, (5.1.6c)

where [µνκλ] is totally antisymmetric with normalization [0123] = 1.

We also recall what it means for a spacetime tensor field to be m-tangent to the surfaces 6t or Sr,t .

Definition 5.6. Let U be a type-
(n

m

)
spacetime tensor field. We say that U is m-tangent to the time

slices 6t if
U ν1···νn
µ1···µm

= m
µ′1

µ1 · · ·m
µ′m

µm m ν1
ν′1
· · ·m νn

ν′n
U

ν′1···ν
′
n

µ′1···µ
′
m

. (5.1.7)

Equivalently, U is m-tangent to the 6t if and only if every wave-coordinate component of U containing a
0 index vanishes.

Similarly, we say that U is m-tangent to the spheres Sr,t if

U ν1···νn
µ1···µm

= 6m
µ′1

µ1 · · · 6m
µ′m

µm 6m ν1
ν′1
· · · 6m νn

ν′n
U

ν′1···ν
′
n

µ′1···µ
′
m

. (5.1.8)
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Equivalently, U is m-tangent to the spheres Sr,t if and only if any contraction of any index of U with
either L or L vanishes.

We are now ready to introduce the notion of a Minkowskian null frame. We complement the vector
fields L and L with a locally defined pair of m-orthogonal vector fields e1 and e2 that are tangent
to the spheres Sr,t and therefore m-orthogonal to L and L . The resulting collection of vector fields

N
def
= {L, L , e1, e2} is known as Minkowskian null frame. It spans the tangent space TpR1+3 at each point

p where it is defined.
We leave the proof of the following lemma, which summarizes some of the important properties of the

geometric quantities introduced in this section, as an exercise for the reader:

Lemma 5.7 (Null frame field properties). The following identities hold:

∇L L =∇L L = 0, (5.1.9a)

∇L L =∇L L = 0, (5.1.9b)

LκLκ =−2, (5.1.9c)

eκA Lκ = eκA Lκ = 0 (A = 1, 2), (5.1.9d)

mκλeκAeλB = δAB (A, B = 1, 2), (5.1.9e)

∇L 6mµν =∇L 6mµν = 0 (µ, ν = 0, 1, 2, 3), (5.1.10)

∇L 6υµν =∇L 6υµν = 0 (µ, ν = 0, 1, 2, 3). (5.1.11)

See Definition 6.4 concerning our use of notation in these formulas.

Later in the article, we will see that the decay rates of the null components (see Section 5.3) of h and F

are distinguished according to the kinds of contractions of F taken against L , L , e1, and e2. With these
ideas in mind, we introduce the following sets of vector fields:

L
def
= {L}, T

def
= {L , e1, e2}, and N

def
= {L, L , e1, e2}. (5.1.12)

In order to measure the size of the contractions of various tensors and their covariant derivatives against
vectors belonging to the sets L, T, and N, we introduce the following definitions:

Definition 5.8. If V and W denote any two of the above sets and P is a type-
(0

2

)
tensor, then we define

the following pointwise seminorms:

|P|VW
def
=

∑
V∈V, W∈W

|V κW λPκλ|, (5.1.13a)

|∇P|VW
def
=

∑
N∈N, V∈V, W∈W

|V κW λN γ
∇γ Pκλ|, (5.1.13b)

|∇P|VW
def
=

∑
T∈T, V∈V, W∈W

|V κW λT γ
∇γ Pκλ|. (5.1.13c)

We often use the abbreviations |P| def
= |P|NN, |∇P| def

= |∇P|NN, and |∇P| def
= |∇P|NN.
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The above definition generalizes in an obvious way to arbitrary type-
(n

m

)
tensor fields U ν1···νn

µ1···µm
.

Observe that, for any such tensor field, the following inequalities hold in our wave-coordinate system:

|U | ≈
3∑

µ1,...,µm ,ν1,...,νn=0

|U ν1···νn
µ1···µm

|. (5.1.14)

5.2. Minkowskian null frame decomposition of a tensor field. For an arbitrary vector field X and frame
vector field N ∈ N, we define

X N
def
= XκN κ , where Xµ

def
= mµκXκ . (5.2.1)

The components X N are known as the Minkowskian null components of X . In the sequel, we often
abbreviate

X A
def
= XeA and ∇A

def
= ∇eA , etc. (5.2.2)

It follows from (5.2.1) that

X = Xκ ∂κ = X L L + X L L + X AeA, (5.2.3)

X L
=−

1
2 X L , X L

=−
1
2 X L , X A

= X A. (5.2.4)

Furthermore, it is easy to check that

m(X, Y ) def
= mκλXκXλ

= XκYκ =− 1
2 X LYL −

1
2 X LYL + δ

AB X AYB . (5.2.5)

The above null decomposition of a vector field generalizes in the obvious way to higher-order tensor
fields. In the next section, we provide a detailed version of the null decomposition of two-forms F

since this decomposition is needed for our derivation of decay estimates later in the article; see, e.g.,
Propositions 9.3 and 11.5.

5.3. The detailed Minkowskian null decomposition of a two-form.

Definition 5.9. Given any two-form F, we define its Minkowskian null components to be the following
pair of one-forms αµ and αµ and the following pair of scalars ρ and σ :

αµ
def
= 6m ν

µ FνλLλ (µ= 0, 1, 2, 3), (5.3.1a)

αµ
def
= 6m ν

µ FνλLλ (µ= 0, 1, 2, 3), (5.3.1b)

ρ
def
=

1
2 FκλLκLλ, (5.3.1c)

σ
def
=

1
2 6υ

κλFκλ. (5.3.1d)

It is a simple exercise to check that αµ and αµ are m-tangent to the spheres Sr,t :

ακLκ = 0, ακLκ = 0, (5.3.2a)

ακLκ = 0, ακLκ = 0. (5.3.2b)
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Furthermore, relative to the null frame N
def
= {L, L , e1, e2}, we have that

αA = FAL (A = 1, 2), (5.3.3a)

αA = FAL (A = 1, 2), (5.3.3b)

ρ = 1
2 FL L , (5.3.3c)

σ = F12. (5.3.3d)

In terms of the seminorms introduced in Definition 5.8, it follows that

|F| ≈ |F|NN ≈ |α| + |α| + |ρ| + |σ |, (5.3.4a)

|F|LN ≈ |α| + |ρ|, (5.3.4b)

|F|TT ≈ |α| + |σ |. (5.3.4c)

The null components of ~F (the Minkowskian Hodge duality operator ~ is defined in Section 2.6) can
be expressed in terms of the above null components of F. Denoting the null components22 of ~F by �α,
�α, �ρ, and �σ , we leave it as a simple exercise for the reader to check that

�αA =−α
B
6υB A (A = 1, 2), (5.3.5a)

�αA = α
B
6υB A (A = 1, 2), (5.3.5b)

�ρ = σ, (5.3.5c)
�σ =−ρ. (5.3.5d)

6. Differential operators

In this section, we introduce a collection of differential operators that will be used throughout the remainder
of the article. In order to define these operators, we also introduce subsets O and Z of Minkowskian
conformal Killing fields. Finally, we prove a collection of lemmas that expose useful properties of these
operators and that illustrate various relationships between them.

6.1. Covariant derivatives. As previously mentioned, throughout the article, ∇ denotes the Levi-Civita
connection of the Minkowski metric m. Let m and 6m be the first fundamental forms of the 6t and Sr,t as
defined in Definition 5.3, and let ∇ and 6 ∇ be their corresponding Levi-Civita connections. We state as a
lemma the following well-known identities, which relate the connections ∇ and 6 ∇ to ∇:

Lemma 6.1 (Relationships between connections). If U is any type-
(n

m

)
tensor field m-tangent to the

6t , then

∇λU ν1···νn
µ1···µm

= m λ′

λ m
µ′1

µ1 · · ·m
µ′m

µm m ν1
ν′1
· · ·m νn

ν′n
∇λ′U

ν′1···ν
′
n

µ′1···µ
′
m

. (6.1.1)

22We use the symbol � in order to avoid confusion with the Minkowskian Hodge duality operator ~; i.e., it is not true that
~(α[F])= α[~F].
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Similarly, if U is any type-
(n

m

)
tensor field m-tangent to Sr,t , then

6 ∇λU ν1···νn
µ1···µm

= 6m λ′

λ 6m
µ′1

µ1 · · · 6m
µ′m

µm 6m ν1
ν′1
· · · 6m νn

ν′n
∇λ′U

ν′1···ν
′
n

µ′1···µ
′
m

. (6.1.2)

We recall the following fundamental properties of the connections ∇, ∇, and 6 ∇:

∇λmµν = 0=∇λ(m−1)µν (λ, µ, ν = 0, 1, 2, 3), (6.1.3a)

∇λmµν = 0 (λ, µ, ν = 0, 1, 2, 3), (6.1.3b)

6 ∇λ 6mµν = 0 (λ, µ, ν = 0, 1, 2, 3). (6.1.3c)

We will also make use of the projection of the operator ∇ onto the favorable directions, i.e., the
directions tangent to the outgoing Minkowski cones C+q .

Definition 6.2. If U is any type-
(n

m

)
spacetime tensor field, then we define the projected Minkowskian

covariant derivative ∇U by

∇λU ν1···νn
µ1···µm

= π λ′

λ ∇λ′U
ν1···νn

µ1···µm
, (6.1.4)

where the null frame projection π ν
µ is defined in (5.1.5).

Remark 6.3. Note that only the λ component is projected onto the outgoing cones so that the tensor field
∇λU ν1···νn

µ1···µm
need not be m-tangent to the outgoing Minkowski cones.

Definition 6.4. If X is any vector field, then we define the covariant derivative operators ∇X and 6 ∇X by

∇X
def
= Xκ

∇κ , (6.1.5a)

6 ∇X
def
= Xκ

6 ∇κ . (6.1.5b)

6.2. Minkowskian conformal Killing fields. In this section, we introduce the special set of vector fields Z

that appears in the definition (1.2.7) of our energy E`;γ;µ(t) and in the weighted Klainerman–Sobolev
inequality (1.2.10). We begin by recalling that a Minkowskian conformal Killing field is a vector field Z
such that

∇µZν +∇νZµ = (Z)φmµν (6.2.1)

for some function (Z)φ(t, x). The tensor field

(Z)πµν
def
= ∇µZν +∇νZµ (6.2.2)

is known as the Minkowskian deformation tensor of Z . If (Z)πµν = 0, then Z is known as a Minkowskian
Killing field. We also recall that the conformal Killing fields of the Minkowski metric mµν form a Lie
algebra under the Lie bracket [ · , · ] (see (6.3.1)). The Lie algebra is generated by the following 15 vector
fields (see, e.g., [Christodoulou 2008]):

(i) the four translations ∂µ = ∂
∂xµ (µ= 0, 1, 2, 3),

(ii) the three rotations � jk
def
= x j

∂
∂xk − xk

∂
∂x j (1≤ j < k ≤ 3),

(iii) the three Lorentz boosts �0 j
def
= −t ∂

∂x j − x j
∂
∂t ( j = 1, 2, 3),
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(iv) the scaling vector field S def
= xκ ∂

∂xκ , and

(v) the four acceleration vector fields Kµ
def
= −2xµS+ gκλxκxλ ∂

∂xµ (µ= 0, 1, 2, 3).

It can be checked that the translations, rotations, and Lorentz boosts are in fact Killing fields of mµν .
Two subsets of the above conformal Killing fields will play a prominent role in the remainder of the

article, namely the rotations O and a larger set Z, which are defined by

O
def
= {� jk}1≤ j<k≤3, (6.2.3a)

Z
def
=

{
∂

∂xµ
, �µν, S

}
0≤µ≤ν≤3

. (6.2.3b)

The vector fields in Z satisfy a strong version of the relation (6.2.1). That is, if Z ∈ Z, then

∇µZν = (Z)cµν, (6.2.4)

where the components (Z)cµν are constants in our wave-coordinate system. In particular, we compute for
future use that

∇µSν = mµν, (6.2.5a)

∇µ(�κλ)ν = mµκmνλ−mµλmνκ . (6.2.5b)

We note in addition that if Z ∈ Z then there exists a constant cZ such that

∇µZν +∇νZµ = cZ mµν . (6.2.6)

Furthermore, by contracting each side of (6.2.6) against (m−1)µν , we deduce that

cZ =
1
4
(Z)π κ

κ =
1
2
(Z)c κ

κ . (6.2.7)

6.3. Lie derivatives. As mentioned in Section 1.2.3, it is convenient to use Lie derivatives to differentiate
the electromagnetic equations (3.7.1b)–(3.7.1c). In this section, we recall some basic facts concerning
Lie derivatives.

We recall that, if X and Y are any pair of vector fields, then relative to an arbitrary coordinate system
their Lie bracket [X, Y ] can be expressed as

[X, Y ]µ = Xκ ∂κYµ− Y κ ∂κXµ. (6.3.1)

Furthermore, we have that
LX Y = [X, Y ], (6.3.2)

where L denotes the Lie derivative operator. Given a tensor field U of type
(0

m

)
and vector fields

Y(1), . . . , Y(m), the Leibniz rule for L implies that (6.3.2) generalizes as follows:

(LXU )(Y(1), . . . , Y(m))

= X{U (Y(1), . . . , Y(m))}−
n∑

i=1

U (Y(1), . . . , Y(i−1), [X, Y(i)], Y(i+1), . . . , Y(m)). (6.3.3)

Using Lemma 6.7 below, we see that the left-hand side of (6.2.6) is equal to the Lie derivative of the
Minkowski metric. It therefore follows that if Z ∈ Z then



822 JARED SPECK

LZ mµν = cZ mµν, (6.3.4a)

(LZ m−1)µν =−cZ (m−1)µν, (6.3.4b)

where the constant cZ is defined in (6.2.6).

6.4. Modified covariant and modified Lie derivatives. It will be convenient for us to work with modified
Minkowski covariant derivatives ∇̂Z and modified Lie derivatives23 L̂Z .

Definition 6.5. For Z ∈ Z, we define the modified Minkowski covariant derivative ∇̂Z by

∇̂Z
def
= ∇Z + cZ , (6.4.1)

where cZ denotes the constant from (6.2.6).
For each vector field Z ∈ Z, we define the modified Lie derivative L̂Z by

L̂Z
def
= LZ + 2cZ , (6.4.2)

where cZ denotes the constant from (6.2.6).

The crucial features of the above definitions are captured by Lemmas 6.13 and 6.14 below. The first
shows that, for each Z ∈ Z, ∇̂Z2mφ = 2m∇Zφ, where 2m = (m−1)κλ∇κ∇λ is the Minkowski wave
operator. The second shows that

L̂Z
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ.

Furthermore, Lemma 6.8 shows that LZ∇[λFµν] =∇[λLZ Fµν], where [ · ] denotes antisymmetrization.
These commutation identities suggest that the operators ∇̂Z and L̂Z are potentially useful operators
for differentiating the nonlinear equations (3.7.1a) and (3.7.1b)–(3.7.1c), respectively. This suggestion
is borne out in Propositions 11.4 and 11.6, which show that the inhomogeneous terms generated by
differentiating the nonlinear equations have a special algebraic structure, a structure that will be exploited
during our global existence bootstrap argument.

6.5. Vector-field algebra. We introduce here some notation that will allow us to compactly express
iterated derivatives. If A is one of the sets from (6.2.3a)–(6.2.3b), then we label the vector fields in A

as Z ι1, . . . , Z ιd , where d is the cardinality of A. Then for any multi-index I = (ι1, . . . , ιk) of length k,
where each ιi ∈ {1, 2, . . . , d}, we make the following definition:

Definition 6.6. The iterated derivative operators are defined by

∇
I
A

def
= ∇Z ι1 ◦ · · · ◦ ∇Z ιk , (6.5.1a)

∇̂
I
A

def
= ∇̂Z ι1 ◦ · · · ◦ ∇̂Z ιk , (6.5.1b)

LI
A

def
= LZ ι1 ◦ · · · ◦LZ ιk , (6.5.1c)

L̂I
A

def
= L̂Z ι1 ◦ · · · ◦ L̂Z ιk , etc. (6.5.1d)

23Note that these are not the same modified Lie derivatives that appear in [Christodoulou and Klainerman 1993; Zipser 2000;
Klainerman and Nicolò 2003; Bieri 2007].



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 823

Similarly, if I = (µ1, . . . , µk) is a coordinate multi-index of length k, where µ1, . . . , µk ∈ {0, 1, 2, 3}
and U is a tensor field, then we use shorthand notation such as

∇
I U def
= ∇µ1 · · · ∇µk U, etc. (6.5.2)

Under the above conventions, the Leibniz rule can be written as, e.g.,

LI
Z(U V )=

∑
I1+I2=I

(LI1
Z U )(LI2

Z V ), etc., (6.5.3)

where by a sum over I1 + I2 = I we mean a sum over all order-preserving partitions of the index I
into two multi-indices. That is, if I = (ι1, . . . , ιk), then I1 = (ιi1, . . . , ιia ) and I2 = (ιia+1, . . . , ιik ), where
i1, . . . , ik is any reordering of the integers 1, . . . , k such that i1 < · · ·< ia and ia+1 < · · ·< ik .

The next standard lemma provides a useful expression relating Lie derivatives to covariant derivatives.

Lemma 6.7 (Lie derivatives in terms of covariant derivatives [Wald 1984, p. 441]). Let X be a vector
field, and let U be a tensor field of type

(n
m

)
. Then LXU can be expressed in terms of covariant derivatives

of U and X as follows:

LXU ν1···νn
µ1···µm

=∇XU ν1···νn
µ1···µm

+U ν1···νn
κµ2···µm

∇µ1 Xκ
+ · · ·+U ν1···νn

µ1···µm−1κ
∇µm Xκ

−U κν2···νn
µ1···µm

∇κXν1 − · · ·−U ν1···νn−1κ
µ1···µm

∇κXνn . (6.5.4)

The next lemma shows that the operators LZ and L̂Z commute with ∇ if Z ∈ Z.

Lemma 6.8 (LZ and ∇ commute). Let ∇ denote the Levi-Civita connection corresponding to the
Minkowski metric m, and let I be a Z-multi-index. Let L̂I

Z be the iterated modified Lie derivative
from Definitions 6.5 and 6.6. Then

[∇,LI
Z] = 0 and [∇, L̂I

Z] = 0. (6.5.5)

In an arbitrary coordinate system, equations (6.5.5) are equivalent to the following relations, which
hold for all type-

(n
m

)
tensor fields U :

∇µ{L
I
ZU ν1···νn

µ1···µm
} = LI

Z{∇µU ν1···νn
µ1···µm

},

∇µ{L̂
I
ZU ν1···νn

µ1···µm
} = L̂I

Z{∇µU ν1···νn
µ1···µm

}. (6.5.6)

Proof. The relation (6.5.5) can be shown via induction in |I | by using (6.5.4) and the fact that ∇∇Z =0. �

The next lemma captures the commutation properties of vector fields Z ∈ Z.

Lemma 6.9 (Lie bracket relations [Christodoulou and Klainerman 1990, p. 139]). Relative to the wave-
coordinate system {xµ}µ=0,1,2,3, the vector fields belonging to the subset Z

def
=
{
∂
∂xµ , �µν, S

}
0≤µ≤ν≤3 of

the Minkowskian conformal Killing fields satisfy the following commutation relations, where (Z)c κ
µ is

defined in (6.2.4):
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∂

∂xµ
,
∂

∂xν
]
= 0= (∂/∂xν)c κ

µ

∂

∂xκ
(µ, ν = 0, 1, 2, 3), (6.5.7a)[

∂

∂xλ
, �µν

]
= mλµ

∂

∂xν
−mλν

∂

∂xµ
=
(�µν)c κ

λ

∂

∂xκ
(λ, µ, ν = 0, 1, 2, 3), (6.5.7b)[

∂

∂xµ
, S
]
=

∂

∂xµ
=
(S)c κ

µ

∂

∂xκ
(µ= 0, 1, 2, 3), (6.5.7c)

[�κλ, �µν] = mκµ�νλ−mκν�µλ+mλµ�κν −mλν�κµ (κ, λ, µ, ν = 0, 1, 2, 3), (6.5.7d)

[�µν, S] = 0 (µ, ν = 0, 1, 2, 3). (6.5.7e)

We now provide the following simple commutation lemma:

Lemma 6.10 (∇Z and ∇∂/∂xµ commutation relations). Let Z ∈ Z. Then relative to the wave-coordinate
system {xµ}µ=0,1,2,3, the differential operators ∇∂/∂xµ and ∇Z satisfy the following commutation relations:

[∇∂/∂xµ,∇Z ] =
(Z)c κ

µ

∂

∂xκ
, (6.5.8)

where (Z)c κ
µ is defined in (6.2.4).

Proof. The relation (6.5.8) follows from Lemma 6.9 and the identity [∇X ,∇Y ]=∇[X,Y ], which holds for all
pairs of vector fields X and Y ; this identity holds because of the torsion-free property of the connection ∇
and because the Riemann curvature tensor of the Minkowski metric mµν completely vanishes. �

The next lemma shows that the operators ∇ and ∇ I
Z commute up to lower-order terms.

Lemma 6.11 (∇ and ∇ I
Z commutation inequalities). Let U be a type-

(n
m

)
tensor field, and let I be a

Z-multi-index. Then the following inequality holds:

|∇
I
Z∇U |. |∇∇ I

ZU | +
∑

|J |≤|I |−1

|∇∇
J
ZU |. (6.5.9)

Proof. Using (5.1.14), we have that

|∇
I
Z∇U | ≈

3∑
µ=0

|∇
I
Z∇∂/∂xµU |. (6.5.10)

We therefore repeatedly apply Lemma 6.10 to deduce that there exist constants Cν
I ;J such that

∇
I
Z∇∂/∂xµU =∇∂/∂xµ∇

I
ZU +

∑
|J |≤|I |−1

3∑
ν=0

Cν
I ;J∇∂/∂xν∇

J
ZU. (6.5.11)

Inequality (6.5.9) now follows from applying (5.1.14) to each side of (6.5.11). �

The next lemma provides some important differential identities.

Lemma 6.12 (Geometric differential identities). Let L and L be the Minkowski-null geodesic vector fields
defined in (5.1.2a)–(5.1.2b), and let O ∈ O. Then the vector fields L , L , and O mutually commute:

[L, L] = 0, [L, O] = 0, and [L , O] = 0. (6.5.12)
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Furthermore, let υκλµν , 6mµν , and 6υµν denote the tensor fields defined in (5.1.4b), (5.1.6a), and (5.1.6c).
Then

LOυκλµν = 0, (6.5.13a)

LO 6mµν = 0, (6.5.13b)

LO 6υµν = 0. (6.5.13c)

Proof. Equation (6.5.12) can be checked by performing straightforward calculations and using the
definitions (5.1.2a)–(5.1.2b) of L and L , the definitions of the rotations O ∈ O given at the beginning of
Section 6.2, and the Lie bracket formula (6.3.1). Equation (6.5.13a) follows from the well-known identity
LXυκλµν =

1
2
(X)π

β
βυκλµν , where (X)πµν is defined in (6.2.2), together with the fact that LOmµν =

(O)πµν = 0 (i.e., that O is a Killing field of mµν). Equations (6.5.13b) and (6.5.13c) then follow from
definitions (5.1.4b) and (5.1.6c) and the identities (6.5.12)–(6.5.13a). �

The next lemma shows that the modified covariant derivatives ∇̂ I
Z have favorable commutation properties

with the Minkowski wave operator.

Lemma 6.13 (∇̂ I
Z and 2m commutation properties). Let I be a Z-multi-index, and let φ be any function.

Let ∇̂ I
Z be the iterated modified Minkowski covariant derivative operator from Definitions 6.5 and 6.6,

and let 2m
def
= (m−1)κλ∇κ∇λ denote the Minkowski wave operator. Then

∇̂
I
Z2mφ =2m∇

I
Zφ. (6.5.14)

Proof. Using the symmetry of the tensor field ∇κ∇λφ together with (6.1.3a), (6.2.6), and definition (6.4.1),
we compute that

2m∇Zφ = (m−1)κλ∇κ∇λ(Z ζ∇ζφ)=∇Z2mφ+ 2(∇κ Zλ)∇λ∇κφ

=∇Z2mφ+ (∇
κ Zλ+∇λZκ)∇κ∇λφ

=∇Z2mφ+ cZ2mφ

def
= ∇̂Z2mφ. (6.5.15)

This proves (6.5.14) in the case |I | = 1. The general case now follows inductively. �

The next lemma shows that the modified Lie derivative LI
Z operator has favorable commutation prop-

erties with the linear Maxwell–Maxwell term ∇µFµν
=

1
2 [(m

−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ ]∇µFκλ.

Lemma 6.14 (Commutation properties of L̂I
Z with a linear Maxwell–Maxwell term). Let I be a Z-multi-

index, and let F be a two-form. Let L̂I
Z be the iterated modified Lie derivative from Definitions 6.5 and 6.6.

Then

L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ. (6.5.16)

Proof. Let Z ∈ Z. By the Leibniz rule, (6.3.4b), and Lemma 6.8, we have that
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LZ
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=−2cZ

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

+
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ. (6.5.17)

It thus follows from Definition 6.5 that

L̂Z
((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
=
(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLZ Fκλ. (6.5.18)

This implies (6.5.16) in the case |I | = 1. The general case now follows inductively. �

The next lemma shows that some of the differential operators we have introduced commute with the
null decomposition of a two-form.

Lemma 6.15 (Differential operators that commute with the null decomposition). Let F be a two-form, and
let α, α, ρ, and σ be its Minkowskian null components. Let O ∈ O be any of the rotational Minkowskian
Killing fields � jk (1≤ j < k ≤ 3). Then LOα[F] = α[LOF], LOα[F] = α[LOF], LOρ[F] = ρ[LOF],
and LOσ [F] = σ [LOF]. An analogous result holds for the operators ∇L and ∇L ; i.e., LO , ∇L , and ∇L

commute with the null decomposition of F.

Proof. Lemma 6.15 follows from Definition 5.9, Lemmas 5.7 and 6.12, and the fact that LOmµν =

(LOm−1)µν = 0. �

The next lemma shows that weighted covariant derivatives can be controlled by covariant derivatives
with respect to vector fields Z ∈ Z.

Lemma 6.16 (Weighted pointwise differential operator inequalities [Lindblad and Rodnianski 2010,
Lemma 5.1]). For any tensor field U and any two-tensor 5, we have the following pointwise estimates
(where |∇2U | def

= |∇∇U |):

(1+ t + |q|)|∇U | + (1+ |q|)|∇U |.
∑
|I |≤1

|∇
I
ZU |, (6.5.19a)

|∇
2U | + r−1

|∇U |. r−1(1+ t + |q|)−1
∑
|I |≤2

|∇
I
ZU |, (6.5.19b)

|5κλ
∇κ∇λU |.

(
(1+ t + |q|)−1

|5| + (1+ |q|)−1
|5|LL

)∑
|I |≤1

|∇∇
I
ZU |. (6.5.19c)

The next lemma shows that rotational Lie derivatives can be used to approximate weighted Sr,t -intrinsic
covariant derivatives.

Lemma 6.17 (Weighted covariant derivatives approximated by rotational Lie derivatives [Speck 2012,
Lemma 8.0.5]). Let U be any tensor field m-tangent to the spheres Sr,t and k ≥ 0 be any integer. Then
with r def

= |x |, we have that ∑
|I |≤k

r |I || 6 ∇ I U | ≈
∑
|I |≤k

|LI
OU |. (6.5.20)
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Corollary 6.18. Let F be a two-form, and let α[F], α[F], ρ[F], and σ [F] denote its Minkowskian null
components. Then with r = |x |, we have that

r | 6 ∇α[F]|.
∑
|I |≤1

|α[LI
ZF]|. (6.5.21)

Furthermore, analogous inequalities hold for α[F], ρ[F], and σ [F].

Proof. Inequality (6.5.21) follows from Lemmas 6.15 and 6.17. �

Finally, the following proposition provides pointwise inequalities relating various Lie and covariant
derivative operators under various contraction seminorms:

Proposition 6.19 (Lie derivative and Minkowski covariant derivative comparison inequalities). Let U be
a tensor field. Then ∑

|I |≤k

|LI
ZU | ≈

∑
|I |≤k

|∇
I
ZU |. (6.5.22)

Furthermore, let P be a symmetric or an antisymmetric type-
(0

2

)
tensor field. Then the following

inequalities hold:∑
|I |≤k

|∇LI
Z P|.

∑
|I |≤k

|∇∇
I
Z P|, (6.5.23a)

∑
|I |≤k

|∇LI
Z P|.

∑
|I |≤k

|∇∇
I
Z P|, (6.5.23b)

|LI
Z P|LL . |∇

I
Z P|LL+

∑
|J |≤|I |−1

|∇
J
Z P|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇
J ′
Z P|︸ ︷︷ ︸

absent if |I | ≤ 1

, (6.5.23c)

|∇LI
Z P|LL . |∇∇

I
Z P|LL+

∑
|J |≤|I |−1

|∇
J
Z P|LT︸ ︷︷ ︸

absent if |I | = 0

+

∑
|J ′|≤|I |−2

|∇∇
J ′
Z P|︸ ︷︷ ︸

absent if |I | ≤ 1

, (6.5.23d)

|∇P|LN+ |∇P|TT . (1+ |q|)−1
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
+ (1+ t + |q|)−1

∑
|I |≤1

|LI
Z P|. (6.5.23e)

Proof. Inequality (6.5.22) follows inductively from (6.2.4) and (6.5.4).
To prove the remaining inequalities, for each Z ∈ Z, we define the contraction operator CZ by

(CZ P)µν
def
= Pκν(Z)c κ

µ + Pµκ(Z)c κ
ν , (6.5.24)

where the covariantly constant tensor field (Z)c κ
µ is defined in (6.2.4). It follows from definition (6.5.24)

and Lemma 6.7 that
LZ P =∇Z P +CZ P. (6.5.25)

Since each Z ∈ Z is a conformal Killing field and since LµLνmµν = 0, it follows that LµLν(Z)c ν
µ = 0.

Also using the fact that each (Z)c ν
µ is a constant, we have that
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|CZ P|LL . |P|LT, (6.5.26)

|CZ P|. |P|. (6.5.27)

If I = (ι1, . . . , ιk) is a Z-multi-index with 1≤ |I | = k, then using the fact that the components (Z)c κ
µ

are constants, we have that

LI
Z P def
= LZ ι1 ◦ · · · ◦LZ ιk P

= (∇Z ι1 +CZ ι1 ) ◦ · · · ◦ (∇Z ιk +CZ ιk )P

=∇
I
Z P +

k∑
i=1

CZ ιi ◦∇Z ι1 ◦ · · · ◦ ∇Z ιi−1 ◦∇Z ιi+1 ◦ · · · ◦ ∇Z ιk P +

absent if k = 1︷ ︸︸ ︷∑
I1+I2=I
|I2|≤k−2

CI1
Z∇

I2
Z P . (6.5.28)

Inequality (6.5.23a) now follows from applying ∇ to each side of (6.5.28), from using the fact that
the operator ∇ commutes through the operators CZ , and from (6.5.27). Inequality (6.5.23b) follows
from similar reasoning. Inequalities (6.5.23c) and (6.5.23d) also follow from similar reasoning together
with (6.5.26).

To prove (6.5.23e), we first observe that, by (6.5.19a) and (6.5.22), we have that

|∇P|LN+ |∇P|TT . |∇L P|LN+ |∇L P|TT+ |∇P|

. |∇L P|LN+ |∇L P|TT+ (1+ t + |q|)−1
∑
|I |≤1

|LI
Z P|. (6.5.29)

Therefore, from (6.5.29), we see that to prove (6.5.23e) it suffices to prove that the following inequality
holds for any symmetric or antisymmetric type-

(0
2

)
tensor field P:

|∇L P|LN+ |∇L P|TT . (1+ |q|)−1
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.30)

To this end, we use the vector fields S = xκ ∂κ and �0 j =−t ∂ j − x j ∂t to decompose

L =−q−1(S+ωa�0a) and ωa def
= xa/r, (6.5.31)

which implies that

−q∇L Pµν =∇S Pµν +ωa
∇�0a Pµν . (6.5.32)

Using (6.2.5a), (6.2.5b), and (6.5.4), we compute that

∇S Pµν = LS Pµν − 2Pµν, (6.5.33)

ωa
∇�0a Pµν = ωaL�0a Pµν − 1

2

(
LµLκ Pκν − LµLκ Pκν + LνLκ Pµκ − LνLκ Pµκ

)
. (6.5.34)

Inserting these two identities into (6.5.32), we conclude that

−q∇L Pµν = LS Pµν +ωaL�0a Pµν − 2Pµν

−
1
2

(
LµLκ Pκν − LµLκ Pκν + LνLκ Pµκ − LνLκ Pµκ

)
. (6.5.35)
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Contracting (6.5.35) against the sets LN and TT, we see that

|q||∇L P|LN+ |q||∇L P|TT .
∑
|I |≤1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.36)

Furthermore, by decomposing

L = ∂t − ∂r = ∂t −ω
a ∂a (6.5.37)

and using the fact that (∂/∂t)c ν
µ =

(∂/∂x j )c ν
µ = 0 (where (Z)cµν is defined in (6.2.4)), we deduce that

∇L Pµν = L∂/∂t Pµν −ωaL∂/∂xa Pµν . (6.5.38)

Contracting (6.5.38) against the sets LN and TT, we have that

|∇L P|LN+ |∇L P|TT .
∑
|I |=1

(
|LI

Z P|LN+ |L
I
Z P|TT

)
. (6.5.39)

Adding (6.5.36) and (6.5.39), we arrive at inequality (6.5.30). This completes our proof of (6.5.23e). �

7. The reduced equation satisfied by ∇ I
Zh(1)

In this short section, we assume that h(1)µν is a solution to the reduced equation (3.7.1a). We provide a
proposition that gives a preliminary description of the inhomogeneities in the equation satisfied by ∇ I

Zh(1)µν .

Proposition 7.1 (Inhomogeneities for ∇ I
Zh(1)µν ). Suppose that h(1)µν is a solution to the reduced equation

(3.7.1a), and let I be any Z-multi-index. Then ∇ I
Zh(1)µν is a solution to the inhomogeneous system

2̃g∇
I
Zh(1)µν = H(1;I )µν , (7.0.1)

H(1;I )µν = ∇̂
I
ZHµν −∇̂

I
Z2̃h(0)µν −

(
∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν

)
= ∇̂

I
ZHµν −∇̂

I
Z2̃h(0)µν −

(
∇̂

I
Z

(
H κλ
∇κ∇λh(1)µν

)
− H κλ

∇κ∇λ∇
I
Zh(1)µν

)
. (7.0.2)

Proof. Proposition 7.1 follows from differentiating each side of (3.7.1a) with modified covariant derivatives
∇̂

I
Z and applying Lemma 6.13. �

8. The equations of variation, the canonical stress, and electromagnetic energy currents

In this section, we introduce the electromagnetic equations of variation, which are linearized versions of
the reduced electromagnetic equations. The significance of the equations of variation is the following:
if F is a solution to the reduced electromagnetic equations (3.7.1b)–(3.7.1c), then LI

ZF is a solution to the
equations of variation. We then provide a preliminary description of the structure of the inhomogeneous
terms in the equations of variation satisfied by LI

ZF. Additionally, we introduce the canonical stress
tensor field and use it to construct energy currents. The energy currents are vector fields that will be used
in the divergence theorem to derive weighted energy estimates for solutions to the equations of variation;
this analysis is carried out in Section 12.
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8.1. Equations of variation. The equations of variation in the unknowns Ḟµν are the linearization24 of
(3.7.1b)–(3.7.1c) around a background (hµν,Fµν). More specifically, the equations of variation are the
system

∇λḞµν +∇µḞνλ+∇νḞλµ = Ḟλµν (λ, µ, ν = 0, 1, 2, 3), (8.1.1a)

N #µνκλ
∇µḞκλ = Ḟν (ν = 0, 1, 2, 3), (8.1.1b)

where N #µνκλ is the (hµν,Fµν)-dependent tensor field defined in (3.7.2c) and Ḟλµν and Ḟν are inhomoge-
neous terms that are specified in Proposition 8.1. In this article, the equations of variation will arise when
we differentiate the reduced equations (3.7.1b)–(3.7.1c) with modified Lie derivatives. In particular, Ḟ will
be equal to LI

ZFµν . The next proposition, which is a companion of Proposition 7.1, provides a preliminary
expression of the inhomogeneous terms that arise in the study of the equations of variation satisfied
by LI

ZFµν . We remark that the proof of the proposition uses lemmas that are proved in Section 11.

Proposition 8.1 (Inhomogeneities for LI
ZFµν). If Fµν is a solution to the reduced electromagnetic

equations (3.7.1b)–(3.7.1c) and I is a Z-multi-index, then Ḟµν
def
= LI

ZFµν is a solution to the equations
of variation (8.1.1a)–(8.1.1b) (corresponding to the background (hµν,Fµν)) with inhomogeneous terms
Ḟλµν

def
= F(I )λµν and Ḟν

def
= Fν(I ), where

F(I )λµν = 0, (8.1.2a)

Fν(I ) = L̂I
ZF

ν
+
(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z

(
N #µνκλ

∇µFκλ

))
. (8.1.2b)

Furthermore, there exist constants C̃1;I1,I2 , C̃2;I1,I2 , C̃P;I1,I2 , C̃F4;J , and C̃N #
4
;I1,I2

such that

L̂I
ZF

ν
=

∑
|I1|+|I2|≤|I |

C̃2;I1,I2Qν(2;F)(∇LI1
Z h,LI2

Z F)+
∑
|J |≤|I |

C̃F4;J LJ
ZF

ν
4
, (8.1.3a)

N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)

=

∑
|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃P;I1,I2Pν
(F)(L

I1
Z h,∇LI2

Z F)+
∑

|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃1;I1,I2Qν(1;F)(L
I1
Z h,∇LI2

Z F)

+

∑
|I1|+|I2|≤|I |
|I2|≤|I |−1

C̃N #
4
;I1,I2

(LI1
Z N #µνκλ
4

)∇µLI2
Z Fκλ. (8.1.3b)

In the above formulas, Fν
4

and N #µνκλ
4

are the error terms appearing in (3.7.2g) and (3.7.2h), respectively,
while Pν

(F)( · , · ) and Qν(i;F)( · , · ) (i = 1, 2 and ν = 0, 1, 2, 3) are the quadratic forms defined in (3.7.3b),
(3.7.3c), and (3.7.2e), respectively.

Proof. To prove (8.1.2a), we first recall (3.7.1b), which states that Fµν is a solution to ∇[κFµν]= 0, where
[ · ] denotes antisymmetrization. From (6.5.5), it therefore follows that

0= LI
Z∇[λFµν] =∇[λLI

ZFµν], (8.1.4)

which is the desired result.
24More precisely, the equations of variation are linear in Ḟ.
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To derive (8.1.2b), we conclude that L̂I
Z(N

#µνκλ
∇µFκλ)= L̂I

ZF
ν by simply differentiating each side

of (8.1.1b) with L̂I
Z. Trivial algebraic manipulation then leads to the fact that N #µνκλ

∇µLI
ZFκλ = Fν(I ),

where Fν(I ) is defined by (8.1.2b).
Equation (8.1.3a) follows from (3.7.2b), Definition 6.5 of L̂Z , and Lemma 11.8, which is proved in

Section 11.2.
To prove (8.1.3b), we first recall the decomposition (3.7.3a):

N #µνκλ
∇µFκλ =

1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

−Pν
(F)(h,∇F)−Qν(1;F)(h,∇F)+ N #µνκλ

4
∇µFκλ. (8.1.5)

The commutator term arising from the first term on the right-hand side of (8.1.5) vanishes. More
specifically, we use (6.5.16) to conclude that(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µLI

ZFκλ

− L̂I
Z

((
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µFκλ

)
= 0. (8.1.6)

Therefore, it follows from (8.1.5) and (8.1.6) that

N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)= L̂I

ZPν
(F)(h,∇F)−Pν

(F)(h,∇LI
ZF)

+ L̂I
ZQν(1;F)(h,∇F)−Qν(1;F)(h,∇LI

ZF)

+ N #µνκλ
4

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
4

∇µFκλ). (8.1.7)

The expression (8.1.3b) now follows from (8.1.7), the Leibniz rule, Definition 6.5 of L̂Z , Lemma 6.8,
and Lemma 11.8 below. �

8.2. The canonical stress. The notion of the canonical stress tensor field Q̇µ
ν in the context of PDE

energy estimates was introduced by Christodoulou [2000]. As explained in Section 1.2.6, from the point
of view of energy estimates, it plays the role of an energy-momentum-type tensor for the equations
of variation. Its two key properties are (i) its divergence is lower-order (in the sense of the number of
derivatives falling on the variations Ḟµν) and (ii) contraction against certain pairs (ξ, X) consisting of
a one-form ξµ and a vector field Xν leads to an energy density that can be used derive L2 control of
solutions Ḟµν to the equations of variation. As we will see, property (i) is captured by Lemma 8.5 and
(8.3.3) while property (ii) is captured by (8.3.2), (12.2.1), and (12.2.8). In order to explain the origin
of the canonical stress, we first define the linearized Lagrangian; our definition is modeled after the
definition given by Christodoulou [2000].

Definition 8.2. Given an electromagnetic Lagrangian L[ · ] (as described in Section 3.2) and a “back-
ground” (hµν,Fµν), we define the linearized Lagrangian by

L̇
def
= −

1
4 N #ζηκλḞζηḞκλ, (8.2.1)

where N #ζηκλ is the (hµν,Fµν)-dependent tensor field defined in (3.3.8).
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Remark 8.3. L̇ is equal to 1
2(∂

2?L[h,F]/(∂Fζη ∂Fκλ))ḞζηḞκλ up to a correction term 1
4(∂

?L/∂�(2)) ·
ε#µνκλḞζηḞκλ corresponding to the term 1

2(∂
?L/∂�(2))ε#µνκλ from (3.3.10).

The merit of Definition 8.2 is the following: the principal part (from the point of view of number of
derivatives) of the Euler–Lagrange equations (assuming that we view (h,F) as a known background
and Ḟ to be the unknowns and that an appropriately defined action25 is stationary with respect to closed
variations of Ḟ) corresponding to L̇[Ḟ; h,F] is identical to the principal part of the electromagnetic
equations of variation (8.1.1b); i.e., L̇[Ḟ; h,F] generates the principal part of the linearized equations.

Definition 8.4. Given a linearized Lagrangian L̇[Ḟ; h,F], the canonical stress tensor field Q̇µ
ν is defined

as follows:

Q̇µ
ν = Q̇µ

ν[Ḟ, Ḟ]
def
= −2

∂L̇

∂Ḟµζ

Ḟνζ + δ
µ
ν L̇= N #µζκλḞκλḞνζ −

1
4δ
µ
ν N #ζηκλḞζηḞκλ, (8.2.2)

where N #µνκλ is defined in (3.3.8).

Note that, in contrast to the energy-momentum tensor Tµν , Q̇µν
def
= mµκ Q̇κ

ν is in general not symmetric.
We use the notation Q̇µ

ν[Ḟ, Ḟ] whenever we want to emphasize the quadratic dependence of Q̇µ
ν on Ḟ.

Because of our assumption (3.3.3a) concerning the Lagrangian, Q̇µ
ν is equal to the energy-momentum

tensor (in Ḟ) for the standard Maxwell–Maxwell equations in Minkowski spacetime plus small corrections.
More precisely, we insert the decomposition (3.7.2c) of N #µζκλ into the right-hand side of (8.2.2) and
perform simple computations, thereby arriving at the following decomposition of Q̇µ

ν :

Q̇µ
ν[Ḟ, Ḟ] =

terms from linear Maxwell–Maxwell
equations in Minkowski spacetime︷ ︸︸ ︷

Ḟµζ Ḟνζ −
1
4δ
µ
ν ḞζηḞζη

corrections to Minkowskian linear
Maxwell–Maxwell equations arising from h︷ ︸︸ ︷

− hµκḞκζ Ḟ ζ
ν − hκλḞµ

κḞνλ+
1
2δ
µ
ν hκλḞκηḞ

η
λ

+ N #µζκλ
4

ḞκλḞνζ −
1
4δ
µ
ν N #ζηκλ
4

ḞζηḞκλ︸ ︷︷ ︸
error terms

. (8.2.3)

The next lemma captures the lower-order divergence property enjoyed by Q̇µ
ν .

Lemma 8.5 (Divergence of the canonical stress). Let Ḟµν be a solution to the equations of variation
(8.1.1a)–(8.1.1b) corresponding to the background (hµν,Fµν), and let Ḟλµν and Ḟν be the inhomogeneous
terms from the right-hand sides of (8.1.1a)–(8.1.1b). Let Q̇µ

ν[Ḟ, Ḟ] be the canonical stress tensor field
defined in (8.2.2). Then

∇µ

(
Q̇µ

ν[Ḟ, Ḟ]
)
=−

1
2 N #ζηκλḞζηḞνκλ+ ḞνηḞ

η
+ (∇µN #µζκλ)ḞκλḞνζ −

1
4(∇νN #ζηκλ)ḞζηḞκλ

=−
1
2 N #ζηκλḞζηḞνκλ+ ḞνηḞ

η
− (∇µhµκ)Ḟκζ Ḟ ζ

ν − (∇µhκλ)Ḟµ
κḞνλ

+
1
2(∇νh

κλ)ḞκηḞ
η
λ + (∇µN #µζκλ

4
)ḞκλḞνζ −

1
4(∇νN #ζηκλ

4
)ḞζηḞκλ. (8.2.4)

Proof. To obtain (8.2.4), we use (8.1.1a)–(8.1.1b), the expansion (3.7.2c), and the properties (3.3.9a)–
(3.3.9c) (which are also satisfied by the tensor field N #µζκλ

4
). �

25A suitable action AC[Ḟ] is, e.g., of the form AC[Ḟ]
def
=
∫
CbM L̇[Ḟ; h,F] d4x , where C is a compact subset of spacetime.
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8.3. Electromagnetic energy currents. In this section, we introduce the energy currents that will be
used to derive the weighted energy estimate (12.2.1) for a solution Ḟ to the equations of variation
(8.1.1a)–(8.1.1b).

Definition 8.6. Let hµν be a symmetric type-
(0

2

)
tensor field, and let Fµν and Ḟµν be a pair of two-forms.

Let w(q) be the weight defined in (12.1.1), and let Xν def
= w(q)δν0 be the “multiplier” vector field. We

define the energy current J̇µ(h,F)[Ḟ] corresponding to the variation Ḟµν and the background (hµν,Fµν) to
be the vector field

J̇µ(h,F)[Ḟ]
def
= −Q̇µ

ν[Ḟ, Ḟ]Xν
=−w(q)Q̇µ

0[Ḟ, Ḟ], (8.3.1)

where Q̇µ
ν[Ḟ, Ḟ] is the canonical stress tensor field from (8.2.2).

Lemma 8.7 (Positivity of J̇ 0
(h,F)). Let J̇µ(h,F)[Ḟ] be the energy current defined in (8.3.1). Then

J̇ 0
(h,F) =

1
2 |Ḟ|

2w(q)+
(
O∞(|h|;F)+ O`(|(h,F)|2)

)
|Ḟ|2w(q). (8.3.2)

Furthermore, if Ḟµν is a solution to the equations of variation (8.1.1a)–(8.1.1b) with inhomogeneous
terms Ḟλµν ≡ 0, then the Minkowskian divergence of J̇(h,F) can be expressed as follows:

∇µ J̇µ(h,F) =−
1
2w
′(q)(|α̇|2+ ρ̇2

+ σ̇ 2)−w(q)Ḟ0ηḞ
η

−w(q)
(
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

)
−w′(q)

(
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

)
−w(q)

(
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

)
−w′(q)

(
LµN #µζκλ

4
ḞκλḞ0ζ +

1
4 N #ζηκλ
4

ḞζηḞκλ

)
, (8.3.3)

where α̇ def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ] are the “favorable” Minkowskian null components of Ḟ

defined in Section 5.3.

Remark 8.8. The term 1
2w
′(q)(|α̇|2+ ρ̇2

+ σ̇ 2) appearing on the right-hand side of (8.3.3) is of central
importance for closing the bootstrap argument during our global existence proof. It manifests itself
as the additional positive spacetime integral

∫ t
0

∫
6τ
(|Ḟ|2LN+ |Ḟ|

2
TT)w

′(q) d3x dτ on the left-hand side
of (12.2.1) below and provides a means for controlling some of the spacetime integrals that emerge in
Section 16.4.

Proof. Equation (8.3.2) follows from (8.2.3), simple calculations, and (3.7.2h).
To prove (8.3.3), we first recall that since q = r − t it follows that ∇µq = Lµ, where L is defined in

(5.1.2b). Hence, we have that ∇µw(q)=w′(q)Lµ. Using this fact, (8.2.3), and (8.2.4), we calculate that
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∇µ J̇µ(h,F) =−w(q)Ḟ0ηḞ
η
−w(q)

(
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

)
−w(q)

(
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

)
−w′(q)

(
LµḞµζ Ḟ0ζ +

1
4 ḞκλḞκλ︸ ︷︷ ︸

(|α̇|2+ρ̇2+σ̇ 2)/2

)
−w′(q)

(
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

)
−w′(q)

(
LµN #µζκλ

4
ḞκλḞ0ζ +

1
4 N #ζηκλ
4

ḞζηḞκλ

)
. (8.3.4)

The expression (8.3.3) thus follows. �

9. Decompositions of the electromagnetic equations

In this section we perform two decompositions of the electromagnetic equations. The first is a null
decomposition of the equations of variation, which will be used in Section 15 to derive pointwise decay
estimates for the lower-order Lie derivatives of Fµν . The second is a decomposition of the electromagnetic
equations into constraint and evolution equations for the Minkowskian one-forms Eµ and Bµ, which
are respectively known as the electric field and magnetic induction. This decomposition will be used
in Section 10 to prove that our smallness condition on the abstract data necessarily implies a smallness
condition on the initial energy E`;γ;µ(0) of the corresponding solution to the reduced equations. We remark
that the Minkowskian one-forms Dµ and Hµ, which are respectively known as the electric displacement
and the magnetic field, and also the geometric electromagnetic one-forms Eµ, Bµ, Dµ, and Hµ will play
a role in the discussion.

9.1. The Minkowskian null decomposition of the electromagnetic equations of variation. In this sec-
tion, we decompose the equations of variation into equations for the null components of Ḟ. The main
advantage of our decomposition, which is given in Proposition 9.3, is that the terms in each equation can
be separated into two classes: (i) a derivative of a null component in a “nearly Minkowski-null” direction26

and (ii) the error terms. Although from the point of view of differentiability some of the error terms
are higher-order, it will turn out that all error terms are lower-order in terms of decay rates. In this way,
the equations can be viewed as ordinary differential inequalities with inhomogeneous terms (which we
loosely refer to as ODEs) for the null components of Ḟ. This point of view is realized in Proposition 11.5.
The key point is that the ODEs we derive are amenable to Gronwall estimates. In Section 15, we will use
this line of argument to derive pointwise decay estimates for the null components of the lower-order Lie
derivatives of a solution F to the electromagnetic equations (3.7.1b)–(3.7.1c). These estimates will be an
improvement over what can be deduced from the weighted Klainerman–Sobolev inequality (B.4) alone;
see the beginning of Section 15 for additional details regarding this improvement.

We begin the analysis by using (3.7.2c) to write the equations of variation (8.1.1a)–(8.1.1b) in the
following form:

26By “nearly Minkowski-null”, we mean vectors that are nearly parallel to L or L with some corrections coming from the
presence of a nonzero h in the case of the vector field L .
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∇λḞµν +∇µḞνλ+∇νḞλµ = 0, (9.1.1a)
1
2

(
(m−1)µκ(m−1)νλ− (m−1)µλ(m−1)νκ

)
∇µḞκλ

+
1
2

(
−hµκ(m−1)νλ+ hµλ(m−1)νκ

)
∇µḞκλ

+
1
2

(
−(m−1)µκhνλ+ (m−1)µλhνκ

)
∇µḞκλ+ N #µνκλ

4
∇µḞκλ = Ḟν . (9.1.1b)

In our calculations below, we will make use of the identities

∇A L =−r−1eA and ∇A L = r−1eA, (9.1.2)

which can be directly calculated in our wave-coordinate system by using (5.1.2a)–(5.1.2b). We will also
make use of the identity

6 ∇ AeB =∇AeB +
1
2 m(∇AeB, L)L + 1

2 m(∇AeB, L)L

=∇AeB −
1
2 m(eB,∇A L)L − 1

2 m(eB,∇A L)L

=∇AeB +
1
2r−1δAB(L − L), (9.1.3)

which follows from (6.1.2) and (9.1.2).
Furthermore, if U is a type-

(0
m

)
tensor field and X(i) (1≤ i ≤ m) and Y are vector fields, then by the

Leibniz rule we have that
∇Y {U (X(1), . . . , X(m))} = (∇Y U )(X(1), . . . , X(m))+U (∇Y X(1), X(2), . . . , X(m))

+ · · ·+U (X(1), X(2), . . . ,∇Y X(m)). (9.1.4)

Similarly, if U is m-tangent to the spheres Sr,t , then

6 ∇eA{U (eB(1), . . . , eB(m))} = ( 6 ∇ AU )(eB(1), . . . , eB(m))+U ( 6 ∇ AeB(1), eB(2), . . . , eB(m))

+ · · ·+U (eB(1), eB(2), . . . , 6 ∇ AeB(m)). (9.1.5)

Applying (9.1.4) and (9.1.5) to F and using (9.1.2), (9.1.3), and (5.3.5a)–(5.3.5d), we compute (as in
[Christodoulou and Klainerman 1990, p. 161]) the following identities, which we state as a lemma:

Lemma 9.1 (Contracted derivatives expressed in terms of the null components [Christodoulou and
Klainerman 1990, p. 161]). Let F be a two-form, and let α, α, ρ, and σ be its Minkowskian null
components. Then the following identities hold:

∇AFBL = 6∇ AαB − r−1(ρδAB + σ 6υ AB), (9.1.6a)

∇AFBL = 6∇ AαB − r−1(ρδAB − σ 6υ AB), (9.1.6b)

∇A
~FBL =−6υC B 6 ∇ AαC − r−1(σδAB − ρ 6υ AB), (9.1.6c)

∇A
~FBL = 6υC B 6 ∇ AαC − r−1(σδAB + ρ 6υ AB), (9.1.6d)

1
2∇AFL L = 6∇ Aρ+

1
2r−1(αA+αA), (9.1.6e)

1
2∇A

~FL L = 6∇ Aσ +
1
2r−1(−6υB AαB + 6υB AαB), (9.1.6f)

∇AFBC = 6υBC
(
6 ∇ Aσ +

1
2r−1(−6υD AαD + 6υD AαD)

)
. (9.1.6g)

In all of our expressions, contractions are taken after differentiating; e.g., ∇AFBL
def
= eµAeκB Lλ∇µFκλ.
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Remark 9.2. The identities in Lemma 9.1 can be reinterpreted as identities for spacetime tensors that
are m-tangent to the spheres Sr,t . That is, they can be rephrased in terms of our wave-coordinate frame
with the help of the projection 6m ν

µ and the spherical volume form 6υ ν
µ defined in (5.1.4b) and (5.1.6c),

respectively. For example, (9.1.6a) is equivalent to the following equation:

6m µ′

µ 6m
ν′

ν Lκ∇κFν′κ = 6m µ′

µ 6m
ν′

ν ∇µ′αν′ − r−1(ρ 6mµν + σ 6υµν). (9.1.7)

We will use the spacetime-coordinate-frame version of the identities in our proof of Proposition 9.3.

We now derive equations for the null components of a solution Ḟ to (9.1.1a)–(9.1.1b).

Proposition 9.3 (Minkowskian null decomposition of the equations of variation). Let Ḟ be a solution
to the equations of variation (9.1.1a)–(9.1.1b), and let α̇ def

= α[Ḟ], α̇ def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ]

denote its Minkowskian null components. Assume that the source term Ḟλµν on the right-hand side of
(9.1.1a) vanishes.27 Then the following equations are satisfied by the null components:

∇L α̇ν + r−1α̇ν + 6m
κ
ν ∇κ ρ̇− 6υ

κ
ν ∇κ σ̇ −

6mνλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

6m λ
ν hµκ∇µḞκλ−

6mνλQλ
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

6mνν′(m−1)µκhν
′λ
∇µḞκλ

+6mνν′N
#µν′κλ
4

∇µḞκλ = 6mνν′Ḟ
ν′, (9.1.8a)

∇L α̇ν − r−1α̇ν − 6m κ
ν ∇κ ρ̇− 6υ

κ
ν ∇κ σ̇ −

6mνλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

6m λ
ν hµκ∇µḞκλ−

6mνλQλ
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

6mνν′(m−1)µκhν
′λ
∇µḞκλ

+6mνν′N
#µν′κλ
4

∇µḞκλ = 6mνν′Ḟ
ν′, (9.1.8b)

∇L ρ̇− 2r−1ρ̇+ 6mµν
∇µα̇ν −

LλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

Lλhµκ∇µḞκλ−

LνQν
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

Lν(m−1)µκhνλ∇µḞκλ

+LνN #µνκλ
4

∇µḞκλ = LλḞλ, (9.1.8c)

∇L σ̇ − 2r−1σ̇ + 6υµν∇µα̇ν = 0, (9.1.8d)

∇L ρ̇+ 2r−1ρ̇− 6mµν
∇µα̇ν +

LλPλ
(F)(h,∇Ḟ)︷ ︸︸ ︷

Lλhµκ∇µḞκλ+

LνQν
(1;F)(h,∇Ḟ)︷ ︸︸ ︷

Lν(m−1)µκhνλ∇µḞκλ

−LνN #µνκλ
4

∇µḞκλ =−LλḞλ, (9.1.8e)

∇L σ̇ + 2r−1σ̇ + 6υµν∇µα̇ν = 0. (9.1.8f)

In the above expressions, the quadratic terms Pλ
(F)(h,∇Ḟ) and Qλ(1;F)(h,∇Ḟ) are as defined in Section 3.7.

Remark 9.4. Note that in the above equations, we have that, e.g., 6m κ
ν ∇κ = 6m

κ
ν 6 ∇κ and 6υ κ

ν ∇κ = 6υ
κ
ν 6 ∇κ

so that these operators only involve favorable angular derivatives.

Proof. To obtain (9.1.8a) and (9.1.8b), we contract (9.1.1a) against LλLµeνA and (9.1.1b) against (eA)ν

and use Lemma 9.1 plus Remark 9.2 to deduce that

27By Proposition 8.1, this assumption holds for the variations Ḟ of interest in this article.
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∇Lαν −∇Lαν + 2 6m ν′

ν ∇ν′ρ+ r−1(αν +αν)= 0, (9.1.9)

∇Lαν +∇Lαν − 2 6υ κ
ν ∇κσ + r−1(αν −αν)

− 2 6m λ
ν hµκ∇µḞκλ− 2 6mνν′(m−1)µκhν

′λ
∇µḞκλ+ 6mνν′N

#µν′κλ
4

∇µḞκλ = 2 6mνν′Ḟ
ν′ . (9.1.10)

Adding the two above equations gives (9.1.8a) while subtracting the first from the second gives (9.1.8b).
Similarly, to deduce (9.1.8d), we contract (9.1.1a) against Lλe µ

A e ν
B and then contract against 6υ AB ;

to deduce (9.1.8f), we contract (9.1.1a) against Lλe µ
A e ν

B and then against 6υ AB ; to deduce (9.1.8c), we
contract (9.1.1b) against Lν ; and to deduce (9.1.8e), we contract (9.1.1b) against −Lν . �

9.2. Electromagnetic one-forms. In this section, we introduce the one-forms E, B, D, and H, which
are derived from a geometric decomposition of F that depends on the spacetime metric gµν . We also
introduce the one-forms E , B, D, and H , which are derived from a Minkowskian decomposition of F. We
then derive an equivalent version of the electromagnetic equations, namely constraint and electromagnetic
evolution equations for the Minkowskian one-forms. These quantities play a role only in Section 10,
where they are used to connect the smallness of the abstract initial data to the smallness of the energy of
the corresponding reduced solution at t = 0. Furthermore, we show that the abstract one-forms D̊ and B̊

satisfy the constraints (1.0.3a)–(1.0.3b) if and only if the corresponding Minkowskian one-forms D̊ and B̊
satisfy a Minkowskian version of the constraints.

We will perform our electromagnetic decompositions of the equations with the help of two versions of
the (nonreduced) electromagnetic equations, namely (3.2.6a) and (3.2.7a) and (3.2.6b) and (3.2.7b). We
restate them here for convenience:

DλFµν +DµFνλ+DνFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.1a)

DλMµν +DµMνλ+DνMλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.1b)

∇λFµν +∇µFνλ+∇νFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (9.2.2a)

∇λMµν +∇µMνλ+∇νMλµ = 0 (λ, µ, ν = 0, 1, 2, 3). (9.2.2b)

Before decomposing the equations, we first define the aforementioned geometric electromagnetic
one-forms.

Definition 9.5. Let N̂µ
= N̂µ(t, x) denote the future-directed unit g-normal to the hypersurface 6t . Then

in components relative to an arbitrary coordinate system, we define the following one-forms:

Eµ = Fµκ N̂ κ , Bµ =−
?Fµκ N̂ κ , Dµ =−

?Mµκ N̂ κ , and Hµ =−Mµκ N̂ κ . (9.2.3)

Note that, in the above expressions, ? denotes the Hodge duality operator corresponding to the spacetime
metric g.

We now define the Minkowskian electromagnetic one-forms.

Definition 9.6. In components relative to the wave-coordinate system {xµ}µ=0,1,2,3, we define the electric
field E , the magnetic induction B, the electric displacement D, and the magnetic field H by

Eµ = Fµ0, Bµ =−~Fµ0, Dµ =−
~Mµ0, and Hµ =−Mµ0. (9.2.4)
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Note that in the above expressions, ~ denotes the Hodge duality operator corresponding to the Minkowski
metric m.

Observe that (9.2.4) implies that

F jk = [i jk]Bi , B j =
1
2 [ jab]Fab, and D j =

1
2 [ jab]Mab ( j, k = 1, 2, 3). (9.2.5)

Remark 9.7. Our definition of B coincides with the one commonly found in the physics literature, but it
has the opposite sign convention of the definition given in [Christodoulou and Klainerman 1990].

It follows from the antisymmetry of Fµν and Mµν that Eµ, Bµ, Dµ, and Hµ are m-tangent to the
hyperplanes 6t ; i.e., we have that E0 = B0 = D0 = H0 = 0. We may therefore view these four quantities
as one-forms that are intrinsic to 6t . Similarly, we have that Eµ N̂µ

=Bµ N̂µ
=Dµ N̂µ

= Hµ N̂µ
= 0.

From the assumption (3.3.3a) on the electromagnetic Lagrangian, (3.3.11n), Definition 9.6, (9.2.5),
and the implicit-function theorem, we deduce that, when all of the fields are sufficiently small, we have
(see Section 2.13 for the definition of O`+1( · )):

D = E + O`+1(|h||(E, B)|)+ O`+1(|(E, B)|3; h), (9.2.6a)

H = B+ O`+1(|h||(E, B)|)+ O`+1(|(E, B)|3; h), (9.2.6b)

E = D+ O`+1(|h||(D, B)|)+ O`+1(|(D, B)|3; h), (9.2.6c)

H = B+ O`+1(|h||(D, B)|)+ O`+1(|(D, B)|3; h). (9.2.6d)

We now assume that the reduced initial data (gµν |60, ∂t gµν |60,F0 j |60 = E̊ j ,F jk |60 = [i jk]B̊i ) have
been constructed from the abstract initial data (g̊ jk, K̊ jk, D̊ j , B̊ j ) in the manner described in Section 4.2.
In particular, we recall that N̂ ν

|60 = A−1δν0 , where A def
=
√

1− (2M/r)χ(r). Consequently, we can use
(3.3.11i) and (4.2.7a) to deduce that

E̊ = D̊+ O`+1(
|h̊(1)||(D̊, B̊)|;χ(r)M/r

)
+ O`+1(

|χ(r)M/r ||(D̊, B̊)|; h̊(1)
)
+ O`+1(

|(D̊, B̊)|3;χ(r)M/r; h̊(1)
)
. (9.2.7)

Using also Definitions 9.5 and 9.6, we infer that the following relations hold:

B̊ = B̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8a)

D̊ = D̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8b)

B̊= B̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
, (9.2.8c)

D̊= D̊+ O`+1(
|χ(r)M/r ||(D̊, B̊)|; h̊(1)

)
+ O`+1(

|h̊(1)||(D̊, B̊)|;χ(r)M/r
)
. (9.2.8d)

Remark 9.8. Logically speaking, the ADM mass M (and hence also the components of the unit normal
vector N̂ |60) is only well-defined after one has solved the abstract Einstein constraint equations (1.0.2a)–
(1.0.3b).

The main goal of this section is to deduce the following proposition, which is a decomposition of the
electromagnetic equations into constraint equations and evolution equations:
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Proposition 9.9 (Electromagnetic constraint and evolution equations). Under the assumption (3.3.3a)
on ?L, the (nonreduced) electromagnetic equations (9.2.2a)–(9.2.2b) are equivalent to pairs of constraint
equations and evolution equations that have the following structure (the precise details depend on the
choice of electromagnetic Lagrangian ?L):

Constraint equations

(m−1)ab
∇a Db = 0, (9.2.9a)

(m−1)ab
∇a Bb = 0, (9.2.9b)

Evolution equations

∂t B j =−[ jab]∇a Eb, (9.2.10a)

∂t E j = [ jab]∇a Bb+ O`
(
|h||∇(E, B)|; (E, B)

)
+ O`

(
|(E, B)|2|∇(E, B)|; h

)
+ O`

(
|∇h||(E, B)|; h

)
. (9.2.10b)

Furthermore, assume that the reduced initial data (gµν |60, ∂t gµν |60,F0 j |60 = E̊ j ,F jk |60 = [i jk]B̊i )

have been constructed from the abstract initial data (g̊ jk, K̊ jk, D̊ j , B̊ j ) in the manner described in
Section 4.2. Then (9.2.9a)–(9.2.9b) hold for D̊ and B̊ along 60 if and only if the following equations hold
along 60:

Abstract constraint equations

(g̊−1)abD̊aD̊b = 0, (9.2.11a)

(g̊−1)abD̊aB̊b = 0. (9.2.11b)

In the above expressions, g̊ jk is the first fundamental form of 60 and D̊ is the Levi-Civita connection
corresponding to g̊ jk .

Remark 9.10. In (9.2.9a)–(9.2.9b), (m−1)ab
∇a is the standard Euclidean divergence operator while in

equations (9.2.10a)–(9.2.10b) [ jab]∇a is the standard Euclidean curl operator.

Remark 9.11. With the help of (9.2.16)–(9.2.17) below, it is straightforward to check that, if a classical
solution to the evolution equations satisfies the constraints at t = 0, then it necessarily satisfies the
constraints (9.2.9a)–(9.2.9b) at all later times (as long as it persists).

Proof. We first show that (9.2.9b) and (9.2.11b) follow from either (9.2.1a) or (9.2.2a) (which are
equivalent) and that (9.2.9b) holds if and only if (9.2.11b) holds. To this end, we first note that, since N̂µ

is the future-directed unit g-normal to 6t and gµν = g̊µν − N̂µ N̂ν along 60, the following identities hold
for any one-form Xµ g-tangent to 60 and any two-form Pµν :

(g̊−1)abD̊a Xb = (g−1)κλDκXλ− Xλ N̂ κDκ N̂λ, (9.2.12)

(g−1)κλPλνDκ N̂ ν
= Pλν N̂ ν N̂ κDκ N̂λ. (9.2.13)
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Using (9.2.12) and (9.2.13) with Xµ
def
= Bµ and Pµν

def
=

?Fµν , we compute that the following identities
hold along 60:

(g̊−1)abD̊aBb = (g−1)κλDκBλ−Bλ N̂ κDκ N̂λ

=−(g−1)κλDκ(
?Fλν N̂ ν)+ ?Fλν N̂ ν N̂ κDκ N̂λ

=−
1
2 gνν′ N̂ ν′ε#µνκλDµFκλ. (9.2.14)

Identities analogous to (9.2.14) hold if we make the replacements (g̊−1, g, D̊,D, ?, N̂µ, ε#µνκλ,B)→

(m−1,m,∇,∇,~, n̂µ, υµνκλ, B), where n̂µ(t, x) is the future-directed Minkowskian unit normal to 6t .
Now by (9.2.14) and the Minkowskian analogy of (9.2.14), (9.2.9b) and (9.2.11b) follow from either
(9.2.1a) or (9.2.2a) since either (9.2.1a) or (9.2.2a) is sufficient to guarantee that the right-hand side of
(9.2.14) is 0. Furthermore, since gνν′ N̂ ν′ and mνν′ n̂ν

′

are proportional along 60, since ε#µνκλ and υµνκλ

are proportional, and since the Christoffel symbols of D and ∇ are symmetric in their two lower indices,
it follows that

gνν′ N̂ ν′ε#µνκλDµFκλ|60 = 0 ⇐⇒ mνν′ n̂ν
′

υµνκλ∇µFκλ|60 = 0. (9.2.15)

Hence, (9.2.9b) holds along 60 if and only if (9.2.11b) holds along 60. The derivation of (9.2.9a) and
(9.2.11a) along 60 from (9.2.1b) or (9.2.2b) and the proof of the equivalence of (9.2.9a) and (9.2.11a)
along 60 are similar.

We now set λ= 0, µ= a, and ν = b in (9.2.2a), contract against the Euclidean volume form [ jab],
and use (9.2.4)–(9.2.5) to deduce that

∂t B j =−[ jab]∇a Eb. (9.2.16)

Similarly, we set λ= 0, µ= a, and ν = b in (9.2.2b), contract against [ jab], and use (9.2.4)–(9.2.5) to
deduce that

∂t D j = [ jab]∇a Hb. (9.2.17)

Finally, we use (9.2.16), (9.2.17), and (9.2.6a)–(9.2.6b) to deduce (9.2.10a)–(9.2.10b). �

10. The smallness condition on the abstract data

In this section, we assume that we are given abstract initial data (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3) on the manifold R3 satisfying the constraint equations (4.1.1a)–(4.1.2b). Our goal is to
describe in detail the smallness condition on (h̊(0)jk , h̊(1)jk , K̊ jk, D̊ j , B̊ j ) that will lead to global existence for
the reduced system (3.7.1a)–(3.7.1c) under the assumption that its initial data (gµν |t=0, ∂t gµν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) are constructed from the abstract initial data as described in Section 4.2. Recall that
our global existence argument is heavily based on the analysis of E`;γ;µ(t), which is the energy defined
in (1.2.7). In particular, E`;γ;µ(0) must be sufficiently small in order for us to close the argument. The
energy depends on both normal and tangential Minkowskian covariant derivatives of the quantities
(∇λh(1)µν ,Fµν) at t = 0. On the other hand, our smallness condition will be expressed in terms of the
ADM mass M and E`;γ(0), which is a weighted Sobolev norm of (∇ i h̊

(1)
jk , K̊ jk, D̊ j , B̊ j ) depending only

on tangential derivatives of the abstract data. More specifically, our smallness condition is expressed
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in terms of the weighted Sobolev norms ‖ · ‖H `
1/2+γ

introduced in Definition 10.1. The main result of
this section is contained in Proposition 10.4, which shows that, if E`;γ(0)+M is sufficiently small and
(h(1)µν ,Fµν) is the corresponding solution to the reduced equations, then E`;γ;µ(0). E`;γ(0)+M . Thus,
Proposition 10.4 allows us to deduce the smallness of E`;γ;µ(0) from the smallness of quantities that
depend exclusively on the abstract initial data.

We begin by introducing the weighted Sobolev norm discussed in the above paragraph.

Definition 10.1. Let U (x) be a tensor field defined along the Euclidean space R3. Then for any integer
`≥ 0 and any real number η, we define the H `

η norm of U by

‖U‖2H `
η

def
=

∑
|I |≤`

∫
x∈R3

(1+ |x |2)(η+|I |)|∇ I U (x)|2 d3x . (10.0.1)

We also introduce the following norm, which can be controlled in terms of a suitable H `
η norm via a

Sobolev embedding result; see Proposition A.1.

Definition 10.2. Let U (x) be a tensor field defined along the Euclidean space R3. Then for any integer
`≥ 0 and any real number η, we define the C`

η norm of U by

‖U‖2C`
η

def
=

∑
|I |≤`

ess sup
x∈R3

(1+ |x |2)(η+|I |)|∇ I U (x)|2. (10.0.2)

We are now ready to introduce our norm E`;γ(0)≥0 on the abstract initial data. Recall that, as discussed
in Section 4.1, the data are the following four fields on R3: (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk︸ ︷︷ ︸

h̊ jk

, K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3).

Definition 10.3. The norm E`;γ(0)≥ 0 of the abstract initial data is defined by

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
. (10.0.3)

The smallness condition. Our smallness condition for global existence is

E`;γ(0)+M ≤ ε`, (10.0.4)

where ε` is a sufficiently small positive number.
Recall that the energy E`;γ;µ(t)≥ 0 is defined by

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x, (10.0.5)

where ∇ denotes the full Minkowski spacetime covariant derivative operator and the weightw(q) is defined
in (12.1.1). The dependence on γ and µ in E`;γ;µ is through w(q). The next proposition, which is the main
result of this section, shows that the smallness of E`;γ;µ(0) follows from the smallness of E`;γ(0)+M :

Proposition 10.4 (The smallness of the initial energy). Let (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk , K̊ jk, D̊ j , B̊ j )

( j, k = 1, 2, 3) be abstract initial data on the manifold R3 for the Einstein-nonlinear electromagnetic
system (1.0.1a)–(1.0.1c). Assume that the abstract initial data satisfy the constraints (1.0.2a)–(1.0.3b) and
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that they are asymptotically flat in the sense that (1.0.4a)–(1.0.4f) hold. Let (gµν |t=0 = mµν + h(0)µν |t=0+

h(1)µν |t=0, ∂t gµν |t=0 = ∂t h
(0)
µν |t=0+ ∂t h

(1)
µν |t=0,Fµν |t=0) (µ, ν = 0, 1, 2, 3) be the corresponding initial data

for the reduced system (3.7.1a)–(3.7.1c) as defined in Section 4.2, and let (gµν = mµν + h(0)µν + h(1)µν ,Fµν)

be the solution to the reduced system launched by this data. Let ` ≥ 10 be an integer. In particular, by
Proposition 4.2, the wave-coordinate condition (3.1.1a) is satisfied by the reduced solution. Then there
exist a constant ε0 > 0 and a constant C` > 0 such that, if E`;γ(0)+M ≤ ε ≤ ε0, then

E`;γ;µ(0)≤ C`{E`;γ(0)+M} ≤ C`ε. (10.0.6)

Remark 10.5. Note that q ≥ 0 holds at t = 0. Therefore, E`;γ;µ(0) does not depend on the constant µ.

The proof of Proposition 10.4 starts on page 845. We first establish some technical lemmas.

Lemma 10.6 (Energy in terms of h(1), E, and B). Let Fµν be a two-form, let the pair of one-forms (Eµ,Bµ)
be its Minkowskian electromagnetic decomposition as defined in Section 9.2, and let h(1)µν be an arbitrary
type-

(0
2

)
tensor field. Let E`;γ;µ(t) be the energy defined in (10.0.5). Then

E2
`;γ;µ(t)≈ sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |∇ I

Z E |2+ |∇ I
Z B|2

)
w(q) d3x . (10.0.7)

Proof. Equation (10.0.7) easily follows from (6.5.22) and the identity |∇ I
ZF|2 = 2|∇ I

Z E |2+ 2|∇ I
Z B|2, the

verification of which we leave to the reader. �

Lemma 10.7. The following estimates hold for any `-times differentiable spacetime tensor field U (t, x)
defined in a neighborhood of 60

def
= {(t, x) | t = 0}, where w(q) is the weight defined in (12.1.1):(∑

|I |≤`

w1/2(q)|∇ I
ZU |

)∣∣∣∣
60

≈

(∑
|I |≤`

(1+ r)1/2+γ+|I ||∇ I U |
)∣∣∣∣
60

≈

( ∑
|J |+k≤`

(1+ r)1/2+γ+|J |+k
|∂k

t ∇
J U |

)∣∣∣∣
60

. (10.0.8)

The same estimates hold if ∇ I
Z is replaced with LI

Z. The notation |60 is meant to indicate that the
estimates only hold along 60.

Proof. By iterating the identity ∂
∂xµ = (x

κ�κµ+xµS)/qs and noting that q=r=s along60, we deduce that

(1+ r)|I ||∇ I U |.
∑
|J |≤|I |

|∇
J
ZU |. (10.0.9)

It thus follows from the definition (12.1.1) of w(q) that(∑
|I |≤`

(1+ r)1/2+γ+|I ||∇ I U |
)∣∣∣∣
60

.

(∑
|I |≤`

w1/2(q)|∇ I
ZU |

)∣∣∣∣
60

. (10.0.10)

On the other hand, the opposite inequality follows easily from expanding the operator ∇ I
Z and using

the Leibniz rule plus (6.2.4). This proves the first ≈ in (10.0.8). The second ≈ is trivial. We have thus
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established (10.0.8). To establish the same estimates with the operator LI
Z in place of ∇ I

Z, we simply use
(6.5.22). �

Corollary 10.8. Under the assumptions of Lemma 10.6, we have that

E2
`;γ;µ(0)≈

∑
k+|I |≤`

∫
R3
(1+ |x |)1+2γ+2(k+|I |)(

|∂k
t ∇

I ∂t h(1)|2(0, x)+ |∇ I
∇h(1)|2(0, x)

)
d3x

+

∫
R3
(1+ |x |)1+2γ+2(k+|I |)(

|∂k
t ∇

I E |2(0, x)+ |∂k
t ∇

I B|2(0, x)
)

d3x . (10.0.11)

Proof. Corollary 10.8 follows easily from Lemmas 10.6 and 10.7. �

Lemma 10.9. Assume the hypotheses of Proposition 10.4. Let k ≥ 1 and `≥ 10 be integers, and let J be
a ∇-multi-index. Assume that |J | + k ≤ `. Define the arrays V , V (0), V (1), W , W (0), and W (1) by

V def
= (h,∇h, ∂t h, E, B)= V (0)

+ V (1), (10.0.12a)

V (0) def
= (h(0),∇h(0), ∂t h(0), 0, 0), (10.0.12b)

V (1) def
= (h(1),∇h(1), ∂t h(1), E, B), (10.0.12c)

W def
= (0,∇h, ∂t h, E, B)=W (0)

+W (1), (10.0.12d)

W (0) def
= (0,∇h(0), ∂t h(0), 0, 0), (10.0.12e)

W (1) def
= (0,∇h(1), ∂t h(1), E, B). (10.0.12f)

In the above expressions, the tensor fields h(0)µν and h(1)µν are defined by (1.2.1a)–(1.2.1c) while the electro-
magnetic one-forms Eµ and Bµ are defined in (9.2.4). Assume further that |V (1)

| +M ≤ ε. Then if ε is
sufficiently small, ∂k

t ∇
J W (1) can be written as the following finite linear combination:

∇
J∂k

t W (1)
=
∑

terms, (10.0.13)

where each term can be written as

term=
∑

|I1|+···+|Is |≤|J |+k
0≤|I1|,...,|Is |

F(I1,...,Is ;J ;k;s)(t, x)×M(I1,...,Is ;J ;k;s)(V )[∇
I1 W (1), . . . ,∇ Is W (1)

], (10.0.14)

and:

(i) The array-valued functions M(I1,...,Is ;J ;k;s)(V )[∇
I1 W (1), . . . ,∇ Is W (1)

] are continuous in a neighbor-
hood of V = 0 and are multilinear in the arguments [∇ I1 W (1), . . . ,∇ Is W (1)

].

(ii) If s=0 (i.e., if there are no multilinear arguments [ · ]), the array-valued functions F(I1,...,Is ;J ;k;s)(t, x)
are smooth and satisfy |F(I1,...,Is ;J ;k;s)(t, x)|. M(1+ t + |x |)−(3+|J |+k), where M is the ADM mass.

(iii) When s ≥ 1, |F(I1,...,Is ;J ;k;s)(t, x)|. (1+ t+|x |)−d , where d ≥ |J |+ k− (|I1|+ · · ·+ |Is |)− (s−1).

Proof. We first claim that we can write the reduced system (3.7.1a)–(3.7.1c) as a finite linear combination

∂t W (1)
=
∑

terms, (10.0.15a)
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where each term can be written in the form

term=
∑
|I |=1

M(I ;0;1;1)(V )[∇ I W (1)
] +M(0;0;1;2)(V )[W (1),W (1)

]

+ f(0;0;1;1)(t, x)M(0;0;1;1)(V )[W (1)
] + f(0;0;1;0)(t, x)M(0;0;1;0)(V ). (10.0.15b)

Above, the functions M( · )(V )[ · ], which depend on the (`+ 2)-times continuously differentiable La-
grangian ?L for the electromagnetic equations, have the properties stated in the conclusions of the theo-
rem. In addition, f(0;0;1;1)(t, x) and f(0;0;1;0)(t, x) are smooth functions satisfying |∇ I f(0;0;1;1)(t, x)|.
(1+ t + |x |)−(2+|I |) and |∇ I f(0;0;1;0)(t, x)| . M(1+ t + |x |)−(3+|I |) for any ∇-multi-index I . Let us
accept the claim (10.0.15b) for now; we will briefly discuss the derivation of (10.0.15b) at the end of the
proof. We also note that

∂t V = ∂t W (1)
+51W (1)

+ ∂t V (0), (10.0.16)

∇V =∇W (1)
+52W (1)

+∇V (0), (10.0.17)

where V (0)(t, x) satisfies |∇ I ∂t V (0)(t, x)|+|∇ I
∇V (0)(t, x)|. (1+t+|x |)−(2+|I |) for any∇-multi-index I

(see Lemma 15.1),51W (1) def
= (∂t h(1), 0, 0, 0, 0), and 52W (1) def

= (∇h(1), 0, 0, 0, 0). Now with the help
of (10.0.16)–(10.0.17), the chain rule, and the Leibniz rule, we repeatedly partially differentiate (10.0.15b)
with respect to time and spatial derivatives, using the resulting equations to replace time derivatives
with spatial derivatives, thereby inductively arriving at an expression of the form (10.0.14) verifying the
properties (i)–(iii). The properties (ii)–(iii) capture the fact that each additional differentiation of ∂t W (1)

either (a) creates an additional decay factor of (1+ t + |x |)−1 (when the derivative falls on one of the
f···(t, x)), (b) increases one of the powers |I j | (when the derivative is spatial and falls on one of the
multilinear factors [. . . ,∇ I j W (1), . . . ]), or (c) increases s by one (when the derivative falls on M(V ),
thereby creating an additional multilinear factor of ∇W (1) via the chain rule).

We now return to the issue of expressing ∂t W (1) in the form (10.0.15a)–(10.0.15b). We will make
repeated use of the splitting h = h(0) + h(1), where h(0) is the smooth function of (t, x) with the de-
cay properties (15.1.1a), which are proved in Section 15.1. We first note that ∂t E and ∂t B can be
expressed in the desired form by using (9.2.10a)–(9.2.10b) together with the splitting of h and the
properties (15.1.1a). We remark that, although (9.2.10a)–(9.2.10b) are nonreduced electromagnetic
equations, they are nonetheless satisfied by virtue of the fact that the wave-coordinate condition holds
and the fact that the reduced and nonreduced equations are equivalent under that condition. Next,
we note that the quantities ∂t∇h(1)µν can be expressed in the desired form through the trivial identity
∂t∇h(1)µν =∇∂t h

(1)
µν . The quantities ∂2

t h(1)µν can be expressed in the desired form by using (3.7.1a) to isolate
them. We remark that the MI ;0;1;1(V )[∇ I W (1)

] term on the right-hand side of (10.0.15b) arises from the
spatial derivatives and mixed spacetime derivatives of h(1) contained in the term 2̃gh(1)µν on the left-hand
side of (3.7.1a). Furthermore, the M0;0;1;2(V )[W (1),W (1)

] term on the right-hand side of (10.0.15b)
arises from the quadratic and higher-order-in-W (1) terms on the right-hand sides of (3.7.1a) and (9.2.10b)
while the f0;0;1;1(t, x)M0;0;1;1(V )[W (1)

] term on the right-hand side of (10.0.15b) arises from the h(0)-
and ∇h(0)-containing factors that arise from the terms on the right-hand sides of (3.7.1a) and (9.2.10b)
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that contain a linear factor of h or ∇h. Finally, the f0;0;1;0(t, x)M0;0;1;0(V ) term on the right-hand side
of (10.0.15b) arises from the 2̃gh(0)µν term on the right-hand side of (3.7.1a) and from the O(|∇h(0)|2)
terms arising from splitting the O(|∇h|2) terms on the right-hand side of (3.7.1a). �

Corollary 10.10. Assume the hypotheses of Proposition 10.4, which include the smallness condition
E`;γ(0) + M ≤ ε. Let k ≥ 0 be an integer, let J be a ∇ multi-index, and assume that |J | + k ≤ `.
Let V (t, x), . . . ,W (1)(t, x) be the array-valued functions defined in (10.0.12a)–(10.0.12f), let V̊ (x) =
V (0, x), . . . , W̊ (1)(x)=W (1)(0, x), and assume that ‖V̊ (1)

‖L∞+‖W̊ (1)
‖H `

1/2+γ
≤ ε. Then if ε is sufficiently

small, the following inequality holds:∥∥(1+ |x |)1/2+γ+|J |+k
∇

J ∂k
t W (1)(0, x)

∥∥
L2 . ‖W̊ (1)

‖H `
1/2+γ
+M. (10.0.18)

Proof. We first consider the case s=0 in (10.0.14). Then using that |F(0;J ;k;0)(t, x)|.M(1+|x |)−(3+|J |+k)

(i.e., property (ii) from the conclusions of Lemma 10.9) and recalling that 0< γ< 1
2 , we deduce that∥∥(1+ |x |)1/2+γ+|J |+k F(0;J ;k;0)(0, x)M(0;J ;k;0)(V̊ (x))

∥∥2
L2

=

∫
x∈R3

(1+ |x |)1+2γ+2|J |+2k
|F(0;J ;k;0)(0, x)M(0;J ;k;0)(V̊ (x))|2 d3x

. M2
∫

x∈R3
(1+ |x |)2γ−5 d3x . M2. (10.0.19)

For the case s ≥ 1, we first use Proposition A.1 to deduce that, for all ∇-indices K with |K | ≤ `− 2,
we have

|∇
K W̊ (1)(x)|. (1+ |x |)−(|K |+1)

‖W̊ (1)
‖H |K |+2

1/2+γ
. (10.0.20)

Then (without loss of generality assuming |I1| ≤ |I2| ≤ · · · ≤ |Is |) we use |F(I1,...,Is ;J ;k;s)(t, x)| .
(1+ t + |x |)−(|J |+k−(|I1|+···+|Is |)−(s−1)) (i.e., property (iii)), together with (10.0.20), to deduce∥∥(1+ |x |)1/2+γ+|J |+k F(I1,...,Is ;J ;k;s)(0, x)×M(I1,...,Is ;J ;k;s)(V̊ (x))[∇

I1 W̊ (1)(x), . . . ,∇ Is W̊ (1)(x)]
∥∥

L2

.

∥∥∥∥(1+ |x |)|I1|+···+|Is−1|+(s−1)
s−1∏
i=1

∇
Ii W̊ (1)(x)

∥∥∥∥
L∞
×
∥∥(1+ |x |)1/2+γ+|Is |∇

Is W̊ (1)(x)
∥∥

L2

.
∥∥(1+ |x |)1/2+γ+|Is |∇

Is W̊ (1)(x)
∥∥

L2 . ‖W̊ (1)
‖H `

1/2+γ
. (10.0.21)

Combining (10.0.19) and (10.0.21), we arrive at (10.0.18). �

We are now ready for the proof of the proposition.

Proof of Proposition 10.4. We first stress that the estimates derived in this proof are valid under the
assumption that ε is sufficiently small. Recall that gµν(t, x)= mµν +χ(r/t)χ(r)(2M/r)δµν + h(1)µν(t, x).
Also recall that, according to the assumptions of the proposition, we have (see (4.2.6a)–(4.2.6b)) the
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following relations (where we slightly abuse matrix notation):

h(1)(0, x)=

(
0 0
0 h̊(1)jk

)
, (10.0.22a)

∂t h(1)(0, x)=

(
2A3(g̊−1)ab K̊ab A2(g̊−1)ab ∂a g̊bj −

1
2 A2(g̊−1)ab ∂ j g̊ab− A ∂ j A

A2(g̊−1)ab ∂a g̊bj −
1
2 A2(g̊−1)ab ∂ j g̊ab− A∂ j A 2AK̊ jk

)
,

(10.0.22b)
where A(x) =

√
1− (2M/r)χ(r) and g̊ jk(x) = δ jk + (2M/r)χ(r)δ jk + h̊(1)jk (x). Note that (g̊−1) jk

=

δ jk
+O∞(|(M/r)χ(r)|; h̊(1))+O∞(|h̊(1)|; (M/r)χ(r)). Our immediate objectives are to relate ‖E̊‖H `

1/2+γ

and ‖∂t h(1)(0, · )‖H `
1/2+γ

to the inherent quantities ‖∇ h̊‖H `
1/2+γ

, ‖K̊‖H `
1/2+γ

, ‖D̊‖H `
1/2+γ

, ‖B̊‖H `
1/2+γ

, and M .
To this end, we first observe that the following estimates hold for sufficiently small M :∣∣∣∇ I

(M
r
χ(r)

)∣∣∣. M(1+ r)−(1+|I |), (10.0.23)

|A(x)|. 1, (10.0.24)

|∇
I A(x)|. M(1+ r)−(1+|I |) (|I | ≥ 1). (10.0.25)

With the help of (10.0.22a)–(10.0.22b), the decay estimates (10.0.23)–(10.0.25), the Leibniz rule,
Corollary A.4, the definition of ‖ · ‖H `

1/2+γ
, and the assumption 0 < γ < 1

2 , it is straightforward to
check that

‖∂t h(1)(0, · )‖H `
1/2+γ
. ‖∇h̊(1)‖H `

1/2+γ
+‖K̊‖H `

1/2+γ
+M. (10.0.26)

Furthermore, from (9.2.8a)–(9.2.8d) and Corollary A.4, it follows that

‖D̊‖H `
1/2+γ
+‖B̊‖H `

1/2+γ
≈ ‖D̊‖H `

1/2+γ
+‖B̊‖H `

1/2+γ
. (10.0.27)

Similarly, from (9.2.6a) and (9.2.6c), we have that

‖E̊‖H `
1/2+γ
+‖B̊‖H `

1/2+γ
≈ ‖D̊‖H `

1/2+γ
+‖B̊‖H `

1/2+γ
. (10.0.28)

By (10.0.26), (10.0.27), (10.0.28), and Proposition A.1, it follows that, if E`;γ(0)+ M is sufficiently
small, then the smallness conditions28 for ‖V̊ (1)

‖L∞ and ‖W̊ (1)
‖H `

1/2+γ
in the hypotheses of Lemma 10.9

and Corollary 10.10 hold. Therefore, combining Corollaries 10.8 and 10.10, (10.0.26), (10.0.27), and
(10.0.28), we deduce that, if ε is sufficiently small, then

E2
`;γ;µ(0). ‖∇h̊(1)‖2H `

1/2+γ
+‖∂t h(1)(0, · )‖2H `

1/2+γ
+‖E̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
+M2

. ‖∇h̊(1)‖2H `
1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
+M2

def
= E2

`;γ(0)+M2. (10.0.29)

This concludes our proof of Proposition 10.4. �

28As in the Lindblad–Rodnianski proof of Corollary 15.3 below, the smallness condition |h(1)(0, x)|. ε(1+r)−1−γ follows
from integrating the smallness condition |∂r h(1)(0, x)|. ε(1+r)−2−γ, which is a consequence of Proposition A.1, from spatial
infinity, and from using the decay assumption (1.0.4c) for |h̊(1)(x)| at spatial infinity.
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11. Algebraic estimates of the nonlinearities

In this section, we provide algebraic estimates for the inhomogeneous terms that arise from commuting
the reduced equations (3.7.1a)–(3.7.1c) with various differential operators. We also use the equations
of Proposition 9.3 to derive ordinary differential inequalities for the null components of Ḟ = LI

ZF.
Furthermore, we provide algebraic estimates for the inhomogeneous terms appearing on the right-hand
sides of these inequalities. Many of the estimates derived in this section rely on the wave coordinate
condition.

11.1. Statement and proofs of the propositions. The proofs of the propositions given in this section use
the results of a collection of technical null-structure lemmas, which we relegate to the end of the section.
We begin by quoting the following proposition, which is central to many of the estimates. The basic
idea is the following: many of our estimates would break down if we could not achieve good control
of the components hL L and hLT . Amazingly, as shown in [Lindblad and Rodnianski 2005; 2010], the
wave-coordinate condition allows for independent, improved estimates of exactly these components.

Proposition 11.1 (Algebraic consequences of the wave coordinate condition [Lindblad and Rodnianski
2010, Proposition 8.2]). Let g be a Lorentzian metric satisfying the wave-coordinate condition (3.1.1a)
relative to the coordinate system {xµ}µ=0,1,2,3. Let I be a Z-multi-index, and assume that |∇ J

Zh| ≤ ε holds
for all Z-multi-indices J satisfying |J | ≤ b|I |/2c, where hµν

def
= gµν −mµν . Then if ε is sufficiently small,

the following pointwise estimates hold for the tensor Hµν def
= (g−1)µν − (m−1)µν :

|∇∇
I
Z H |LT .

∑
|J |≤|I |

|∇∇
J
Z H | +

∑
|J |≤|I |−1

|∇∇
J
Z H |︸ ︷︷ ︸

absent if |I | = 0

+

∑
|I1|+|I2|≤|I |

|∇
I1
Z H ||∇∇ I2

Z H |, (11.1.1a)

|∇∇
I
Z H |LL .

∑
|J |≤|I |

|∇∇
J
Z H | +

∑
|J |≤|I |−2

|∇∇
J
Z H |︸ ︷︷ ︸

absent if |I | ≤ 1

+

∑
|I1|+|I2|≤|I |

|∇
I1
Z H ||∇∇ I2

Z H |. (11.1.1b)

Furthermore, analogous estimates hold for the tensor hµν .

The next lemma provides an analogous version of the proposition for the “remainder” pieces of (g−1)µν

and gµν .

Lemma 11.2 (Algebraic/analytic consequences of the wave-coordinate condition; slight extension of [Lind-
blad and Rodnianski 2010, Lemma 15.4]). Let g be a Lorentzian metric satisfying the wave-coordinate
condition (3.1.1a) relative to the coordinate system {xµ}µ=0,1,2,3, and let Hµν def

= (g−1)µν − (m−1)µν . Let
k ≥ 0 be an integer, and assume that there is a constant ε such that |∇ J

Zh| ≤ ε holds for all Z-multi-
indices J satisfying |J | ≤ bk/2c, where hµν

def
= gµν −mµν . Let

Hµν

(1)
def
= Hµν

− Hµν

(0) and Hµν

(0)
def
= −χ

(r
t

)
χ(r)2M

r
δµν, (11.1.2)

where Hµν

(1) is the tensor obtained by subtracting the Schwarzschild part Hµν

(0) from Hµν , and χ0
( 1

2 < z< 3
4

)
denotes the characteristic function of the interval

[ 1
2 ,

3
4

]
. Assume further that M≤ε. Then if ε is sufficiently
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small, the following pointwise estimates hold:∑
|I |≤k

|∇∇
I
Z H(1)|LL+

∑
|J |≤k−1

|∇∇
J
Z H(1)|LT

.
∑
|I |≤k

|∇∇
I
Z H(1)| + ε

∑
|I |≤k

(1+ t + |q|)−1
+ ε

∑
|I |≤k

(1+ t + |q|)−2
|∇

I
Z H(1)||∇∇ I

Z H(1)|

+

∑
|I1|+|I2|≤k

|∇
I1
Z H(1)||∇∇

I2
Z H(1)| +

∑
|J ′|≤k−2

|∇∇
J ′
Z H(1)|︸ ︷︷ ︸

absent if k ≤ 1

+ ε(1+ t + |q|)−2χ0

(1
2
<

r
t
<

3
4

)
+ ε2(1+ t + |q|)−3. (11.1.3)

Additionally, let

h(1)µν
def
= hµν − h(0)µν and h(0)µν

def
= χ

(r
t

)
χ(r)2M

r
δµν, (11.1.4)

where h(1)µν is the tensor field obtained by subtracting the Schwarzschild part h(0)µν from hµν . Then an
estimate analogous to (11.1.2) holds if we replace the tensor field H(1) with the tensor field h(1).

Proof. The estimates for the tensor field Hµν

(1) were proved as [Lindblad and Rodnianski 2010, Lemma 15.4].
The analogous estimates for the tensor field h(1)µν follow from those for Hµν

(1) together with the fact that
H(1);µν =−h(1)µν+O∞(|h(0)+h(1)|2) and the decay estimates for h(0) provided by Lemma 15.1 below. �

We now provide the following proposition, which captures the algebraic structure of the inhomogeneous
term Hµν appearing on the right-hand side of the reduced equation (3.7.1a).

Proposition 11.3 (Algebraic estimates of Hµν and ∇ I
ZHµν ; extension of [Lindblad and Rodnianski 2010,

Proposition 9.8]). Let Hµν be the inhomogeneous term on the right-hand side of the reduced equation
(3.7.1a), and assume that the wave-coordinate condition (3.1.1a) holds. Then

|H|TN . |∇h||∇h|+(|F|LN+|F|TT)|F|+O∞(|h||∇h|2)+O`+1(|h||F|2)+O`+1(|F|3; h), (11.1.5a)

|H|. |∇h|2TN+|∇h||∇h|+|F|2+O∞(|h||∇h|2)+O`+1(|h||F|2)+O`+1(|F|3; h). (11.1.5b)

In addition, assume that there exists an ε > 0 such that |∇ J
Zh|+|LJ

ZF| ≤ ε holds for all Z-multi-indices
|J | ≤ b|I |/2c. Then if ε is sufficiently small, the following pointwise estimates hold:

|∇
I
ZH|.

∑
|I1|+|I2|≤|I |

(
|∇∇

I1
Z h|TN|∇∇

I2
Z h|TN+ |∇∇

I1
Z h||∇∇ I2

Z h|
)
+

∑
|I1|+|I2|≤|I |

|LI1
Z F||LI2

Z F|

+

∑
|I1|+|I2|≤|I |−2

|∇∇
I1
Z h||∇∇ I2

Z h|︸ ︷︷ ︸
absent if |I | ≤ 1

+

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||∇∇ I2

Z h||∇∇ I3
Z h|

+

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||LI2

Z F||LI3
Z F| +

∑
|I1|+|I2|+|I3|≤|I |

|LI1
Z F||LI2

Z F||LI3
Z F|. (11.1.5c)
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Proof. Using (3.7.2a), we can decompose Hµν into

Hµν = (i)µν + (ii)µν + (iii)µν + (iv)µν, (11.1.6)
where

(i)µν
def
= P(∇µh,∇νh), (11.1.7)

(ii)µν
def
= Q(1;h)µν (∇h,∇h), (11.1.8)

(iii)µν
def
= Q(2;h)µν (F,F), (11.1.9)

(iv)µν
def
= O∞(|h||∇h|2)+ O`+1(|h||F|2)+ O`+1(|F|3; h). (11.1.10)

We will analyze each of the four pieces separately.
The facts that |(i)|TN . the right-hand side of (11.1.5a) and that |(i)|. the right-hand side of (11.1.5b)

follow from Proposition 11.1, (11.2.7a), and (11.2.7b). The fact that |∇ I
Z(i)| . the right-hand side

of (11.1.5c) follows from Proposition 11.1, (11.2.2c), and (11.2.7a).
The facts that |(ii)|TN. the right-hand side of (11.1.5a) and that |(ii)|. the right-hand side of (11.1.5b)

both follow from (11.2.7c). The fact that |∇ I
Z(ii)|. the right-hand side of (11.1.5c) follows from (11.2.2a)

and (11.2.7c).
The fact that |(iii)|TN . the right-hand side of (11.1.5a) follows from (11.2.7d) while the fact that
|(iii)|. the right-hand side of (11.1.5b) follows from (11.2.7e). The fact that |∇ I

Z(iii)|. the right-hand
side of (11.1.5c) follows from (6.5.22), (11.2.2b), and (11.2.7e).

The desired estimates for term (iv) follow easily with the help of the Leibniz rule and (6.5.22). �

The next proposition captures the special algebraic structure of the reduced inhomogeneous term Fν(I )
defined in (8.1.2b).

Proposition 11.4 (Algebraic estimates of Fν(I )). Let Fν be the inhomogeneous term (3.7.2b) in the reduced
electromagnetic equations, let I be a Z-multi-index with |I | = k, and let Xν be any one-form. In addition,
assume that there exists an ε > 0 such that |∇ J

Zh| + |LJ
ZF| ≤ ε holds for all Z-multi-indices |J | ≤ bk/2c.

Then if ε is sufficiently small, the following pointwise estimates hold:

|XνL̂I
ZF

ν
|

.
∑

|I1|+|I2|≤k

|X ||∇∇ I1
Z h||LI2

Z F| +
∑

|I1|+|I2|≤k

|X ||∇∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I1|+|I2|+|I3|≤k

|X ||∇ I1
Z h||∇∇ I2

Z h||LI3
Z F| +

∑
|I1|+|I2|+|I3|≤k

|X ||∇∇ I1
Z h||LI2

Z F||LI3
Z F|

. (1+ t + |q|)−1
∑

|I1|+|I2|≤k+1
|I2|≤k

|X ||∇ I1
Z h||LI2

Z F| + (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I2|≤k

|X ||∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+ (1+ |q|)−1

∑
|I1|+|I2|+|I3|≤k+1
|I2|,|I3|≤k

|X ||∇ I1
Z h||∇ I2

Z h||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I2|,|I3|≤k

|X ||∇ I1
Z h||LI2

Z F||LI3
Z F|. (11.1.11a)
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In addition, the same estimates hold if we replace modified Lie derivatives L̂I
Z with standard Lie deriva-

tives LI
Z.

Furthermore, let N #µνκλ be the tensor field from the reduced electromagnetic equation (3.7.1c). Then
if ε is sufficiently small and k ≥ 1, the following pointwise commutator estimate holds:

∣∣Xν(N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)

)∣∣
. (1+ |q|)−1

∑
|I ′|=k, |J |≤1

|X ||∇ I ′
Z h|LL|L

J
ZF|

+ (1+ |q|)−1
∑

|J |≤1, |I ′|=k

|X ||∇ J
Zh|LL|L

I ′
Z F|

+ (1+ |q|)−1
∑
|I ′|=k

|X ||h|LT|L
I ′
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X ||∇ I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)

+ (1+ t + |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X ||∇ I1
Z h||LI2

Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|,|I2|≤k

|X |L|∇
I1
Z h||LI2

Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k+1
|I1|≤k−1, |I2|≤k−1

|X ||∇ I1
Z h|LL|L

I2
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k
|I1|≤k−1, |I2|≤k−1

|X ||∇ I1
Z h|LT|L

I2
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|≤k−1
|I1|≤k−2, |I2|≤k−1

|X ||∇ I1
Z h||LI2

Z F|

︸ ︷︷ ︸
absent if k = 1

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||∇ I1
Z h||∇ I2

Z h||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||∇ I1
Z h||LI2

Z F||LI3
Z F|

+ (1+ |q|)−1
∑

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

|X ||LI1
Z F||LI2

Z F||LI3
Z F|. (11.1.11b)
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Proof. To derive (11.1.11a), we first appeal to the relation (8.1.3a), which shows that we have to estimate
principal terms of the form XνQν(2;F)(∇LI1

Z h,LI2
Z F) and error terms of the form XνLJ

ZF
ν
4

. The desired
estimates for the principal terms follow from the null-structure estimate (11.2.7i) together with inequalities
(6.5.22), (6.5.23a), and (6.5.23b), which allow us to estimate Lie derivatives of h in terms of covariant
derivatives of h. The error terms can easily be bounded by the right-hand side of (11.1.11a), where we
use Lemma 6.16 to derive the second inequality in (11.1.11a).

Inequality (11.1.11b) can be proved in a similar fashion with the help of the relation (8.1.3b). In
this case, there are two kinds of principal terms that have to be estimated: XνPν

(F) (L
I1
Z h,∇LI2

Z F) and
XνQν(1;F)(L

I1
Z h,∇LI2

Z F) while the error terms are of the form Xν(L
I1
Z N #µνκλ
4

)∇µLI2
Z Fκλ. The error terms

can be estimated as in the previous paragraph. The principal terms can be bounded by using the null-
structure estimates (11.2.7f) and (11.2.7h). As in the previous paragraph, we use (6.5.22) and (6.5.23c) to
estimate Lie derivatives of h in terms of covariant derivatives of h. �

As discussed at the beginning of Section 9.1, the null components of the lower-order Lie derivatives of F

satisfy ordinary differential inequalities with controllable inhomogeneous terms. The next proposition
provides convenient algebraic expressions for the inhomogeneities. In Section 15, these algebraic
expressions will be combined with preliminary pointwise decay estimates to deduce upgraded pointwise
decay estimates for the null components of F and its lower-order Lie derivatives.

Proposition 11.5 (Ordinary differential inequalities for α[LI
ZF], α[LI

ZF], ρ[LI
ZF], and σ [LI

ZF]). Let
F be a solution to the reduced electromagnetic equations (3.7.1b)–(3.7.1c), and let α, α, ρ, and σ denote
its Minkowskian null components. Let 3 def

= L + 1
4 hL L L , and assume that |h| + |F| ≤ ε holds. Then if ε is

sufficiently small, the following pointwise estimate holds:

r−1
|∇3(rα)|. r−1

|h|LL|α| +
∑
|I |≤1

r−1(
|LI

ZF|LN+ |L
I
ZF|TT

)
+

∑
|I1|+|I2|≤1

r−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I |≤1

(1+ |q|)−1
|h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|. (11.1.12)

Similarly, for each Z-multi-index I , let α[LI
ZF], α[LI

ZF], ρ[LI
ZF], and σ [LI

ZF] denote the Minkowsk-
ian null components of LI

ZF. Furthermore, let $(q) be any differentiable function of q. Assume that
|∇

I
Zh|+ |LI

ZF| ≤ ε holds for |I | ≤ bk/2c. Then if ε is sufficiently small, the following pointwise estimates
also hold:
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|I |≤k

r−1∣∣∇3(r$(q)α[LI
ZF]

)∣∣.∑
|I |≤k

r−1$(q)|h|LL

∣∣α[LI
ZF]

∣∣+∑
|I |≤k

$ ′(q)|h|LL

∣∣α[LI
ZF]

∣∣
+

∑
|I |≤k, |J |≤1

$(q)(1+ |q|)−1
|∇

I
Zh|LL

∣∣α[LJ
ZF]

∣∣
︸ ︷︷ ︸

absent if k ≤ 1

+

∑
|J |≤1, |I |≤k

$(q)(1+ |q|)−1
|∇

J
Zh|LL

∣∣α[LI
ZF]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I |≤k

$(q)(1+ |q|)−1
|h|LT

∣∣α[LI
ZF]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I1|+|I2|≤k+1

|I1|≤k−1, |I2|≤k−1

$(q)(1+ |q|)−1
|∇

I1
Z h|

∣∣α[LI2
Z F]

∣∣
︸ ︷︷ ︸

absent if k = 0

+

∑
|I |≤|k|+1

$(q)r−1(|LI
ZF|LN+ |L

I
ZF|TT)

+

∑
|I1|+|I2|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I1|+|I2|≤k+1

$(q)(1+ t + |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

$(q)(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13a)

∑
|I |≤k

r−1∣∣∇L(rα[LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF| +
∑

|I1|+|I2|≤k+1
|I1|≤k

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13b)



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 853∑
|I |≤k

r−2∣∣∇L(r2ρ[LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF| +
∑

|I1|+|I2|≤k+1
|I1|≤k

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||∇ I2

Z h||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|∇

I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤k+1

(1+ |q|)−1
|LI1

Z F||LI2
Z F||LI3

Z F|, (11.1.13c)

∑
|I |≤k

r−2∣∣∇L(r2σ [LI
ZF])

∣∣. ∑
|I |≤k+1

r−1
|LI

ZF|. (11.1.13d)

Proof. Our proof of (11.1.12) is based on decomposing the terms in (9.1.8a), where α̇ν
def
= αν[F], Ḟν

′

=Fν
′

,
etc., in the equation. We remind the reader that this equation is a consequence of performing a Minkowskian
null decomposition on the electromagnetic equations (3.7.1b)–(3.7.1c). Here, Fν

′

is defined in (3.7.2b).
We begin by noting that the first two terms in (9.1.8a) can be written as r−1

∇L(rα). We then remove
the dangerous − 1

4 hL L∇Lαν component from the quadratic term 6mνλPλ
(F)(h,∇F)

def
= 6m λ

ν hµκ∇µFκλ on
the left-hand side of (9.1.8a) and add it to the r−1

∇L(rαν) term. From the fact that ∇3r = 1− 1
4 hL L , it

follows that the resulting sum can be written as r−1
∇3(rαν)+ 1

4r−1hL Lαν . We then put the 1
4r−1hL Lαν

term on the right-hand side of (11.1.12) as the first inhomogeneous term; all the remaining terms in
(9.1.8a) will also be placed on the right-hand side of (11.1.12). The left-over terms in Pν

(F)(h,∇F) (after
the dangerous component 1

4 hL L∇Lα
ν has been removed) are denoted by P̃ν

(F)(h,∇F) in Lemma 11.10
below. Now by (11.2.7g), with Xν′

def
= 6mνν′ (so that |X |L = 0), it follows that the left-over terms

Xν′P̃ν′

(F)(h,∇F) are bounded by the right-hand side of (11.1.12). The terms 6 ∇ρ and 6 ∇σ appearing on
the left-hand side of (9.1.8a) (see Remark 9.4) can be bounded by the second term on the right-hand
side of (11.1.12) via Corollary 6.18. The remaining terms in (11.1.12) that need to be bounded can be
expressed as Xν′Qν

′

(1;F)(h,∇F), Xν′N
#βν′κλ
4

∇βFκλ, and Xν′Fν
′

. The first of these can be bounded by
using (11.2.7h) and the third with (11.1.11a) (in the case |I | = 0) while the second (with the help of
Lemma 6.16) contributes to the cubic terms on the right-hand side of (11.1.12).

Our proof of (11.1.13a) is similar but more elaborate. To begin, we differentiate the electromagnetic
equations with the iterated modified Lie derivative L̂I

Z to obtain the equations of variation (8.1.1a)–
(8.1.1b) for Ḟµν

def
= LI

ZFµν with inhomogeneous terms Ḟν = Fν(I ), where Fν(I ) is defined in (8.1.2b). We
then perform a null decomposition of the equations of variation, obtaining (9.1.8a) with α̇ν

def
= αν[L

I
ZF],

Ḟν
′ def
= Fν

′

(I ), etc. Next, we multiply (9.1.8a) by$(q), use the identities∇3r =1− 1
4 hL L and∇3q=− 1

2 hL L ,
and argue as above, removing the dangerous −1

4 hL L∇Lαν[L
I
ZF] component from the quadratic term

6mνλPλ
(F)(h,∇LI

ZF)
def
= 6m λ

ν hµκ∇µLI
ZFκλ and denoting the remaining terms by 6mνλP̃λ

(F)(h,∇LI
ZF),

to deduce that $(q)(∇Lαν[L
I
ZF] + 1

4 hL L∇Lαν[L
I
ZF] + r−1αν[L

I
ZF]) = r−1

∇3(r$(q)αν[LI
ZF]) +

1
4r−1$(q)hL Lαν[L

I
ZF] + 1

2$
′(q)hL Lαν[L

I
ZF]. The first of these three terms is the only term on the

left-hand side of (11.1.13a) while the last two are brought over to the right-hand side of (11.1.13a). To
bound 6mνν′F

ν′

(I ) by the right-hand side of (11.1.13a), we again set Xν′
def
= 6mνν′ (so that |X |L = 0); the
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desired bound then follows from (11.1.11a) and (11.1.11b) together with repeated use of the inequality
|LI

ZF|. |α[LI
ZF]| + |LI

ZF|LN+ |L
I
ZF|TT. The terms $(q) 6 ∇ρ[LI

ZF] and $(q) 6 ∇σ [LI
ZF] appearing

on the left-hand side of (9.1.8a) (see Remark 9.4) can be bounded by the seventh sum on the right-hand
side of (11.1.13a) with the help of Corollary 6.18. The remaining three terms on the left-hand side
of (9.1.8a) to be estimated are Xν′P̃ν′

(F)(h,∇LI
ZF), Xν′Qν

′

(1;F)(h,∇LI
ZF), and Xν′N

#βν′κλ
4

∇βLI
ZFκλ. The

first of these can be bounded by using (11.2.7g) and the second with (11.2.7h) while the third (with the
help of Lemma 6.16) contributes to the cubic terms on the right-hand side of (11.1.12).

The proofs of (11.1.13b)–(11.1.13d), which are based on an analysis of (9.1.8b)–(9.1.8d), are similar
but much simpler. We will provide a brief overview of how to derive (11.1.13b); we then leave the
remaining details to the reader. To begin, as in the previous paragraph, we differentiate the electromagnetic
equations with the iterated modified Lie derivative L̂I

Z and null-decompose the equations of variation.
We use the same notation as in the previous paragraph and also the notation α̇ν

def
= αν[L

I
ZF]. To derive

inequality (11.1.13b), we will manipulate the equation (9.1.8b) satisfied by α̇ν . First, we rewrite the first
two terms on the left-hand side of (9.1.8b) as r−1

∇L(r α̇). This term is the only one that appears on the
left-hand side of (11.1.13b); all other terms are placed on the right-hand side. The only thing that remains
to be discussed is how to bound these other terms from (9.1.8b) by the right-hand side of (11.1.13b).
These terms separate into two classes: the linear terms involving angular derivatives 6 ∇ and the remaining
nonlinear terms. As in the previous paragraph, the linear terms can be suitably bounded by the first sum
on the right-hand side of (11.1.13b) thanks to Corollary 6.18. With the help of Lemma 6.16, the nonlinear
terms can all bounded in the crudest possible fashion by estimates of, e.g., the form∑

|I |≤k

|∇
I
Z(U∇V )|. (1+ |q|)−1

∑
|I1|+|I2|≤k+1
|I1|≤k

|∇
I1
Z U ||∇ I2

Z V |. �

The next proposition provides pointwise estimates for the challenging commutator term 2̃g∇
I
Zh(1)−

∇̂
I
Z2̃gh(1) from the right-hand side of (7.0.1).

Proposition 11.6 (Algebraic estimates of [2̃g,∇
I
Z] [Lindblad and Rodnianski 2010, Proposition 5.3]).

Let gµν be a Lorentzian metric, hµν
def
= gµν−mµν , and Hµν def

= (g−1)µν−mµν . Let 2̃g
def
= 2m+H κλ

∇κ∇λ,
and let I be a Z-multi-index with 1≤ |I |. Let ∇̂ I

Z denote the modified Minkowskian covariant derivative
operator defined in (6.4.1). Assume that there is a constant ε such that |∇ J

Zh| ≤ ε holds for all Z-multi-
indices J satisfying |J | ≤ b|I |/2c. Then if ε is sufficiently small, the following pointwise estimate holds:

|2̃g∇
I
Zh(1)−∇̂ I

Z2̃gh(1)|. (1+ t + |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

, (11.1.15)
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where (|K | − 1)+
def
= 0 if |K | = 0 and (|K | − 1)+

def
= |K | − 1 if |K | ≥ 1.

Corollary 11.7 (Algebraic estimates of |2̃g∇
I
Zh(1)|). Assume that h(1)µν (µ, ν = 0, 1, 2, 3) is a solution to

the reduced equation (3.7.1a). Then under the assumptions of Proposition 11.6, we have that

|2̃g∇
I
Zh(1)|. |∇̂ I

ZH| + |∇̂
I
Z2̃gh(0)| + (1+ t + |q|)−1

∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

. (11.1.16)

Proof. Simply use Proposition 7.1 to decompose 2̃g∇
I
Zh(1)=∇̂ I

ZH−∇̂
I
Z2̃gh(0)+(2̃g∇

I
Zh(1)−∇̂ I

Z2̃gh(1))
and apply Proposition 11.6. �

11.2. Null-structure lemmas. In this section, we provide the lemmas that are used in the proofs of
some of the previous propositions. We will make repeated use of the following decompositions of the
Minkowski metric and its inverse:

mµν =−
1
2 LµLν − 1

2 LµLν + 6mµν, (11.2.1a)

(m−1)µν =− 1
2 LµLν − 1

2 LµLν + 6mµν, (11.2.1b)

where 6mµν is the Euclidean first fundamental form of the spheres Sr,t defined in (5.1.4b).
We begin with a lemma that shows that the essential algebraic structure of the quadratic terms appearing

on the right-hand sides of the reduced equations (3.7.1a)–(3.7.1c) is preserved under differentiation.

Lemma 11.8 (Leibniz rules for the quadratic terms). Let Q0(∇ψ,∇χ) and Qµν(∇ψ,∇χ) denote the
standard null forms defined in (3.6.6a)–(3.6.6b), and let Q(1;h)µν (∇h,∇h), Q(2;h)µν (F,F), P(∇µh,∇νh),
Pν
(F)(∇h,F), Qν(1;F)(h,∇F), and Qν(2;F)(h,∇F) denote the quadratic terms defined in (3.6.5), (3.7.2d),

(3.6.4), (3.7.3b), (3.7.3c), and (3.7.2e), respectively. Let I be a Z-multi-index. Then there exist constants
Cκλγ γ ′δδ′

I1,I2;µν
, C0;γ γ ′δδ′

I1,I2;µν
, C I1,I2 , Cκλ

P;I1,I2;µν
, CP;I1,I2 , and Ci;I1,I2 such that

∇
I
ZQ(1;h)µν (∇h,∇h)=

∑
|I1|+|I2|≤|I |

Cκλγ γ ′δδ′

I1,I2;µν
Qκλ(∇∇

I1
Z hγ γ ′,∇∇

I2
Z hδδ′)

+

∑
|I1|+|I2|<|I |

C0;γ γ ′δδ′

I1,I2;µν
Q0(∇∇

I1
Z hγ γ ′,∇∇

I2
Z hδδ′), (11.2.2a)

∇
I
ZQ(2;h)µν (F,F)=

∑
|I1|+|I2|≤|I |

C I1,I2Q(2;h)µν (∇
I1
Z F,∇ I2

Z F), (11.2.2b)

∇
I
ZP(∇µh,∇νh)=

∑
|I1|+|I2|≤|I |

Cκλ
P;I1,I2;µν

P(∇κ∇
I1
Z h,∇λ∇

I2
Z h), (11.2.2c)
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LI
ZPν

(F)(∇h,F)=
∑

|I1|+|I2|≤|I |

CP;I1,I2Pν
(F)(∇LI1

Z h,LI2
Z F), (11.2.2d)

LI
ZQν(i;F)(h,∇F)=

∑
|I1|+|I2|≤|I |

Ci;I1,I2Qν(i;F)(L
I1
Z h,∇LI2

Z F) (i = 1, 2). (11.2.2e)

Proof. By pure calculation, if Z ∈ Z, then the following identity holds for the standard null form
Qµν(∇ψ,∇χ):

∇Z Qµν(∇ψ,∇χ)= Qµν(∇∇Zψ,∇χ)+Qµν(∇ψ,∇∇Zχ)

−
(Z)c κ

µ Qκν(∇ψ,∇χ)−
(Z)c κ

ν Qµκ(∇ψ,∇χ), (11.2.3)

where (Z)cµν is the covariantly constant tensor field defined in (6.2.4). A similar identity holds for the
standard null form Q0(∇ψ,∇χ). Equation (11.2.2a) now follows inductively from these facts and the
Leibniz rule since Q(1;h)µν (∇h,∇h) is a linear combination of standard null forms. Equation (11.2.2c)
follows similarly. Equation (11.2.2b) follows trivially from definition (3.7.2d) and the Leibniz rule.
Equations (11.2.2d) and (11.2.2e) follow from (6.3.4b), Lemma 6.8, and the Leibniz rule. �

The next lemma concerns the null structure of the standard null forms.

Lemma 11.9 (Null structure estimates for the standard null forms). Let Q0(∇ψ,∇χ)
def
= (m−1)κλ(∇κψ) ·

(∇λχ) and Qµν(∇ψ,∇χ)
def
= (∇µψ)(∇νχ)− (∇νψ)(∇µχ) denote the standard null forms defined in

(3.6.6a)–(3.6.6b). Then

|Q0(∇ψ,∇χ)| + |Qµν(∇ψ,∇χ)|. |∇ψ ||∇χ | + |∇χ ||∇ψ |. (11.2.4)

Proof. The estimate (11.2.4) for Q0 easily follows from using (11.2.1b) to decompose (m−1)κλ. To obtain
the estimates for Qµν(∇ψ,∇χ), we first consider the Qµν(∇ψ,∇χ) to be components of a 2-covariant
tensor Q(∇ψ,∇χ). Inequality (11.2.4) is equivalent to the following inequality:

|Q(∇ψ,∇χ)|NN . |∇ψ ||∇χ | + |∇χ ||∇ψ |. (11.2.5)

Contracting Qµν(∇ψ,∇χ) against frame vectors Nµ, N ν
∈ N, we see that the only component on the

left-hand side of (11.2.5) that could pose any difficulty is LµLνQµν(∇ψ,∇χ). But the antisymmetry of
the Qµν( · , · ) implies that this component is 0. �

The next lemma addresses the null structure of some of the terms appearing in the reduced equations
(3.7.1a)–(3.7.1c).

Lemma 11.10 (Null structure estimates for the reduced equations). Let P(∇µ5,∇ν2), Q(1;h)µν (∇h,∇h),
Q(2;h)µν (F,G), Pν

(F)(h,∇F), Qν(1;F)(h,∇F), and Qν(2;F)(∇h,F) be the quadratic forms defined in Section
3.7, and define the quadratic form P̃ν

(F)(h,∇F) by removing the ∇Lα
ν
[F]-containing component of

Pν
(F)(h,∇F):

P̃ν
(F)(h,∇F)

def
= Pν

(F)(h,∇F)− 1
4 hL L 6mνν′

∇LFLν′

= Pν
(F)(h,∇F)+ 1

4 hL L∇Lα
ν
[F]. (11.2.6)
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Let Xν be any one-form, let 5µν and 2µν be symmetric type-
(0

2

)
tensor fields, and let Fµν and Gµν be

two-forms. Then the following pointwise inequalities hold:

|P(∇µ5,∇ν2)|. |∇5|TN|∇2|TN

+ |∇5|LL|∇2| + |5||∇2|LL (µ, ν = 0, 1, 2, 3), (11.2.7a)∑
T∈T, N∈N

|T µN νP(∇µ5,∇ν2)|. |∇5||∇2|, (11.2.7b)

|Q(1;h)µν (∇5,∇2)|. |∇5||∇2| + |∇5||∇2| (µ, ν = 0, 1, 2, 3), (11.2.7c)∑
T∈T, N∈N

|T µN νQ(2;h)µν (F,G)|. (|F|LN+ |F|TT)|G| + |F|(|G|LN+ |G|TT), (11.2.7d)

|Q(2;h)µν (F,G)|. |F||G| (µ, ν = 0, 1, 2, 3), (11.2.7e)

|XνPν
(F)(h,∇F)|. |X ||h||∇F| + |X ||h|

(
|∇F|LN+ |∇F|TT

)
+ |X ||h|LL|∇F| + |X |L|h||∇F|

. (1+ t + |q|)−1
∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+ (1+ |q|)−1

∑
|I |≤1

|X ||h|LL|L
I
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X |L|h||LI
ZF|, (11.2.7f)

|XνP̃ν
(F)(h,∇F)|. |X ||h||∇F| + |X ||h|

(
|∇F|LN+ |∇F|TT

)
+ |X |L|h||∇F|

. (1+ t + |q|)−1
∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
+ (1+ |q|)−1

∑
|I |≤1

|X |L|h||LI
ZF|, (11.2.7g)

|XνQν(1;F)(h,∇F)|. |X ||h||∇F| + |X ||h|
(
|∇F|LN+ |∇F|TT

)
. (1+ t + |q|)−1

∑
|I |≤1

|X ||h||LI
ZF|

+ (1+ |q|)−1
∑
|I |≤1

|X ||h|
(
|LI

ZF|LN+ |L
I
ZF|TT

)
, (11.2.7h)

|XνQν(2;F)(∇h,F)|. |X ||∇h||F| + |X ||∇h||F|LN

. (1+ t + |q|)−1
∑
|I |≤1

|X ||∇ I
Zh||F|

+ (1+ |q|)−1
∑
|I |≤1

|X ||∇ I
Zh|

(
|F|LN+ |F|TT

)
. (11.2.7i)
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Proof. Inequality (11.2.7c) follows directly from Lemma 11.9 since Q(1;h)µν (∇h,∇h) is a linear combination
of standard null forms. Inequality (11.2.7e) is trivial while (11.2.7a), (11.2.7b), and the first inequalities
in (11.2.7d)–(11.2.7i) are straightforward to verify by using (11.2.1a)–(11.2.1b). The second inequalities
in (11.2.7d)–(11.2.7i) then follow from the first ones, Lemma 6.16, and Proposition 6.19. �

The next lemma addresses the null structure of some of the cubic terms on the right-hand side of (12.2.4).

Lemma 11.11 (Null structure estimates for quasilinear wave equations [Lindblad and Rodnianski 2010,
Lemma 4.2]). Let 5 be a type-

(0
2

)
tensor field, and let φ be a scalar function. Then the following

inequalities hold:

|5κλ(∇κφ)(∇λφ)|. |5|LL|∇φ|
2
+ |5||∇φ||∇φ|, (11.2.8a)

|Lκ5κλ
∇λφ|. |5|LL|∇φ| + |5||∇φ|, (11.2.8b)

|(∇κ5
κλ)∇λφ|. |∇5|LL|∇φ| + |∇5||∇φ| + |∇5||∇φ|, (11.2.8c)

|5κλ
∇κ∇λφ|. |5|LL|∇∇φ| + |∇∇φ|. (11.2.8d)

The following lemma addresses the null structure of some of the cubic terms on the right-hand side
of (12.2.8):

Lemma 11.12 (Null structure estimates for the terms appearing in the divergence of the electromagnetic
energy currents). Let hµν be a type-

(0
2

)
tensor field, and let Fµν be a two-form. Then the following

inequalities hold:

|(∇µhµκ)FκζF
ζ

0 |. |∇h|LL|F|
2
+ |∇h||F|2+ |∇h||F|(|F|LN+ |F|TT), (11.2.9a)

|(∇µhκλ)Fµ
κF0λ|. |∇h||F|2+ |∇h||F|(|F|LN+ |F|TT), (11.2.9b)

|(∇t hκλ)FκηF
η
λ |. |∇h|LL|F|

2
+ |∇h||F|(|F|LN+ |F|TT), (11.2.9c)

|LµhµκFκζF
ζ

0 |. |h|LL|F|
2
+ |h||F|(|F|LN+ |F|TT), (11.2.9d)

|LµhκλFµ
κF0λ|. |h||F||F|LN, (11.2.9e)

|hκλFκηF
η
λ |. |h|LL|F|

2
+ |h||F|(|F|LN+ |F|TT). (11.2.9f)

Proof. It is straightforward to derive inequalities (11.2.9a)–(11.2.9f) by using (11.2.1a). �

12. Weighted energy estimates for the electromagnetic equations of variation and for systems of
nonlinear wave equations in a curved spacetime

In this section, we prove weighted energy estimates for the electromagnetic equations of variation

∇λḞµν +∇µḞνλ+∇νḞλµ = Ḟλµν (λ, µ, ν = 0, 1, 2, 3), (12.0.1a)

N #µνκλ
∇µḞκλ = Ḟν (ν = 0, 1, 2, 3). (12.0.1b)

Our estimates complement the weighted energy estimates proved in [Lindblad and Rodnianski 2010] for
the inhomogeneous wave equation

2̃gφ = I (12.0.2)
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and for tensorial systems of inhomogeneous wave equations with principal part 2̃g:

2̃gφµν = Iµν (µ, ν = 0, 1, 2, 3). (12.0.3)

12.1. The energy estimate weight function w(q). As in [Lindblad and Rodnianski 2010], our energy
estimates will involve the weight function w(q) defined by

w = w(q)=
{

1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(12.1.1)

where the constants γ and µ are subject to the restrictions stated in Section 2.14.
Observe that the following inequalities follow from the definition (12.1.1):

w′ ≤ 4(1+ |q|)−1w ≤ 16µ−1(1+ q−)2µw′, (12.1.2)

where q− = 0 if q ≥ 0 and q− = |q| if q < 0.

12.2. Weighted energy estimates. We begin by deriving weighted energy estimates for the electro-
magnetic equations of variation.

Lemma 12.1 (Weighted energy estimates for Ḟ). Assume that Ḟµν is a solution to the equations of
variation (8.1.1a)–(8.1.1b) corresponding to the background (hµν,Fµν), where hµν

def
= gµν −mµν . Let

α̇
def
= α[Ḟ], ρ̇ def

= ρ[Ḟ], and σ̇ def
= σ [Ḟ] denote the “favorable” Minkowskian null components of Ḟ as

defined in Definition 5.9. Assume that |h|+|F| ≤ ε. Then if ε is sufficiently small and t1≤ t2, the following
integral inequality holds:∫
6t2

|Ḟ|2w(q) d3x +
∫ t2

t1

∫
6τ

(
|α̇|2+ ρ̇2

+ σ̇ 2)w′(q) d3x dτ

.
∫
6t1

|Ḟ|2w(q) d3x +
∫ t2

t1

∫
6τ

∣∣Ḟ0ηḞ
η
∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣−(∇µhµκ)Ḟκζ Ḟ
ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣LµhµκḞκζ Ḟ
ζ

0 + LµhκλḞµ
κḞ0λ+

1
2 hκλḞκηḞ

η
λ

∣∣w′(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣(∇µN #µζκλ
4

)ḞκλḞ0ζ −
1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

∣∣w(q) d3x dτ

+

∫ t2

t1

∫
6τ

∣∣LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

∣∣w′(q) d3x dτ. (12.2.1)

Proof. It follows from (8.3.2) that, if ε is sufficiently small, we have that

1
4 |Ḟ|

2w(q)≤ J̇ 0
(h,F) ≤ |Ḟ|

2w(q). (12.2.2)
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From (8.3.3) and the divergence theorem, it follows that∫
6t2

J̇ 0
(h,F) d3x + 1

2

∫ t2

t1

∫
6τ

w′(q)(|α̇|2+ ρ̇2
+ σ̇ 2) d3x dτ

=

∫
6t1

J̇ 0
(h,F) d3x −

∫ t2

t1

∫
6τ

w(q)Ḟ0ηḞ
η d3x dτ

−

∫ t2

t1

∫
6τ

w(q)
{
−(∇µhµκ)Ḟκζ Ḟ

ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w′(q)
{
−LµhµκḞκζ Ḟ

ζ

0 − LµhκλḞµ
κḞ0λ−

1
2 hκλḞκηḞ

η
λ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w(q)
{
(∇µN #µζκλ

4
)ḞκλḞ0ζ −

1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

}
d3x dτ

−

∫ t2

t1

∫
6τ

w′(q)
{

LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

}
d3x dτ, (12.2.3)

which, with the help of (12.2.2), implies (12.2.1). �

We now recall the analogous lemma proved in [Lindblad and Rodnianski 2010] for solutions to the
inhomogeneous wave equation in curved spacetime.

Lemma 12.2 (Weighted energy estimates for a scalar wave equation [Lindblad and Rodnianski 2010,
Lemma 6.1]). Assume that the scalar-valued function φ is a solution to the equation 2̃gφ = I, and let
Hµν def
= (g−1)µν − (m−1)µν . Assume that the metric gµν is such that |H | ≤ 1

2 . Then∫
6t2

|∇φ|2w(q) d3x + 2
∫ t2

t1

∫
6τ

|∇φ|2w′(q) d3x dτ

≤ 4
∫
6t1

|∇φ|2w(q) d3x + 4
∫ t2

t1

∫
6τ

|Iκ∇tφ
κ
|w(q) d3x dτ

+ 4
∫ t2

t1

∫
6τ

∣∣(∇νH νλ)(∇λφ)(∇tφ)−
1
2(∇t Hλκ)(∇λφ)(∇κφ)

∣∣w(q) d3x dτ

+ 4
∫ t2

t1

∫
6τ

∣∣(ω j H jλ
− H 0λ)︸ ︷︷ ︸

Lκ Hκλ

(∇tφ)(∇λφ)+
1
2 Hλκ(∇λφ)(∇κφ)

∣∣w′(q) d3x dτ. (12.2.4)

We now extend the results of the previous lemmas by estimating (under assumptions that are compatible
with our global stability theorem) some of the cubic terms on the right-hand sides of (12.2.1) and (12.2.4).

Proposition 12.3 (Weighted energy estimates for the reduced equations; extension of [Lindblad and
Rodnianski 2010, Proposition 6.2]). Let φ be a solution to 2̃gφ = I for the metric gµν , and let
Hµν def
= (g−1)µν − (m−1)µν . Let γ and µ be positive constants satisfying the restrictions described
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in Section 2.14. Assume that the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|H |L L + |∇H |L L + |∇H | ≤ Cε(1+ t + |q|)−1, (12.2.5a)

(1+ |q|)−1
|H | + |∇H | ≤ Cε(1+ t + |q|)−1/2(1+ |q|)−1/2(1+ q−)−µ, (12.2.5b)

where q−= 0 if q ≥ 0 and q−= |q| if q < 0. Then there exists a constant C1> 0 such that, if 0<ε≤µ/C1,
then the following integral inequality holds for t ∈ [0, T ):∫
6t

|∇φ|2w(q) d3x +
∫ t

0

∫
6τ

|∇φ|2w′(q) d3x dτ

.
∫
60

|∇φ|2w(q) d3x +
∫ t

0

∫
6τ

(Cε|∇φ|2

1+ τ
+ |I||∇φ|

)
w(q) d3x dτ. (12.2.6)

Furthermore, let Ḟµν be a solution to the electromagnetic equations of variation (8.1.1a)–(8.1.1b) cor-
responding to the background (hµν,Fµν), where hµν

def
= gµν −mµν . Assume that the following pointwise

estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|h|LL+ |∇h|LL+ |∇h| + |F| ≤ Cε(1+ t + |q|)−1, (12.2.7a)

(1+ |q|)−1
|h| + |∇h| + |∇F| ≤ Cε(1+ t + |q|)−1/2(1+ |q|)−1/2(1+ q−)−µ, (12.2.7b)

where q−= 0 if q ≥ 0 and q−= |q| if q < 0. Then there exists a constant C1> 0 such that, if 0<ε≤µ/C1,
then the following integral inequality holds for t ∈ [0, T ):∫
6t

|Ḟ|2w(q) d3x +
∫ t

0

∫
6τ

(
|Ḟ|2LN+ |Ḟ|

2
TT

)
w′(q) d3x dτ

.
∫
60

|Ḟ|2w(q) d3x + ε
∫ t

0

∫
6τ

|Ḟ|2

1+ τ
w(q) d3x dτ +

∫ t

0

∫
6τ

|Ḟ0κ Ḟ
κ
|w(q) d3x dτ. (12.2.8)

Remark 12.4. Proposition 12.3 will not be used until the proof of Theorem 16.1, where it plays a key role;
see Section 16.2. We also remark that the hypotheses of the proposition are implied by the hypotheses of
the theorem; see Section 2.14 and Remark 16.2.

Proof. Inequality (12.2.6) was proved as Proposition 6.2 of [Lindblad and Rodnianski 2010]. The proof
was based on using Lemma 11.11 to estimate the inhomogeneous terms on the right-hand side of (12.2.4).
Rather than reproving this inequality, we only give the proof of (12.2.8), which is based on (12.2.1) and
uses related ideas.

We commence with the proof of (12.2.8), our goal being to deduce suitable pointwise bounds for some
of the terms appearing on the right-hand side of (12.2.1). For the cubic terms, we use Lemma 11.12, the
hypotheses of the proposition, and the inequality |ab|. a2

+ b2 to conclude that∣∣(∇µhµκ)Ḟκζ Ḟ
ζ

0 − (∇µhκλ)Ḟµ
κḞ0λ+

1
2(∇t hκλ)ḞκηḞ

η
λ

∣∣
. (|∇h|LL+ |∇h|)|Ḟ|2+ |∇h||Ḟ|(|Ḟ|LN+ |Ḟ|TT)

. ε(1+ t + |q|)−1
|Ḟ|2+ ε(1+ |q|)−1(1+ q−)−2µ(

|Ḟ|2LN+ |Ḟ|
2
TT

)
(12.2.9)
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and∣∣LµhµκḞκζ Ḟ
ζ

0 + LµhκλḞµ
κḞ0λ+

1
2 hκλḞκηḞ

η
λ

∣∣
. |h|LL|Ḟ|

2
+ |h||Ḟ|(|Ḟ|LN+ |Ḟ|TT)

. ε(1+ |q|)(1+ t + |q|)−1
|Ḟ|2+ ε(1+ q−)−2µ(

|Ḟ|2LN+ |Ḟ|
2
TT

)
. (12.2.10)

For the higher-order terms, we use (3.7.2h), the hypotheses of the proposition, and the inequality
|ab|. a2

+ b2 to deduce that∣∣(∇µN #µζκλ
4

)ḞκλḞ0ζ −
1
4(∇t N #ζηκλ

4
)ḞζηḞκλ

∣∣. (|(h,F)||(∇h,∇F)|
)
|Ḟ|2

. ε(1+ t + |q|)−1
|Ḟ|2 (12.2.11)

and ∣∣LµN #µζκλ
4

ḞκλḞ0ζ +
1
4 N #ζηκλ
4

ḞζηḞκλ

∣∣. |(h,F)|2|Ḟ|2

. ε(1+ |q|)(1+ t + |q|)−1
|Ḟ|2. (12.2.12)

Inserting (12.2.9)–(12.2.12) into the right-hand side of (12.2.1) and using (12.1.2), we have that∫
6t

|Ḟ|2w(q) d3x +
∫ t

0

∫
6τ

(
|Ḟ|2LN+ |Ḟ|

2
TT

)
w′(q) d3x dτ

≤ C
∫
60

|Ḟ|2w(q) d3x +C1ε

∫ t

0

∫
6τ

(
|Ḟ|2

1+ τ
w(q)+

(
|Ḟ|2LN+ |Ḟ|

2
TT

)w′(q)
µ

)
d3x dτ

+C
∫ t

0

∫
6τ

|Ḟ0κ Ḟ
κ
|w(q) d3x dτ. (12.2.13)

Now if C1ε/µ is sufficiently small, we can absorb the C1ε
∫ t

0

∫
6τ
[(|Ḟ|2LN+ |Ḟ|

2
TT)w

′(q)/µ] d3x dτ
term on the right-hand side of (12.2.13) into the second term on the left-hand side at the expense of
increasing the constants C . Inequality (12.2.8) thus follows. �

13. Pointwise decay estimates for wave equations in a curved spacetime

In this section, we state a lemma and a corollary proved in [Lindblad and Rodnianski 2010]. They
allow one to deduce pointwise decay estimates for solutions to inhomogeneous wave equations (e.g., for
the hµν). The main advantage of these estimates is that, if one has good control over the inhomogeneous
terms, then the pointwise decay estimates provided by the lemma and its corollary are improvements
over what can be deduced from the weighted Klainerman–Sobolev inequalities of Proposition B.1. In
particular, the lemma and its corollary play a fundamental role in the proofs of Propositions 15.6 and 15.7.
See the beginning of Section 15 for additional details regarding this improvement.

Remark 13.1. The Faraday tensor analogs of Lemma 13.2 and Corollary 13.3 are contained in the
estimates of Proposition 11.5. More specifically, the analogous inequalities would arise from integrating
(in the direction of the first-order vector field differential operators on the left-hand sides of the inequalities)
the inequalities in the proposition. We will carry out these integrations in Section 15, which will allow
us to derive improved pointwise decay estimates for the lower-order Lie derivatives of the Faraday
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tensor (improved relative to what can be deduced from the weighted Klainerman–Sobolev inequalities of
Proposition B.1).

13.1. The decay estimate weight function $(q). As in [Lindblad and Rodnianski 2010], our decay
estimates will involve the following weight function $(q), which is chosen to complement the energy-
estimate weight function w(q) defined in (12.1.1):

$ =$(q)=
{
(1+ |q|)1+γ

′

if q > 0,
(1+ |q|)1/2−µ

′

if q < 0,
(13.1.1)

where 0< δ< µ′ < 1
2 −µ and 0< γ′ < γ− δ are fixed constants. Its complementary role will become

apparent in Section 15.

13.2. Pointwise decay estimates. We now state the lemma concerning pointwise decay estimates for
solutions to inhomogeneous quasilinear wave equations.

Lemma 13.2 (Pointwise decay estimates for solutions to a scalar wave equation [Lindblad and Rodnianski
2010, Lemma 7.1]). Let φ be a solution of the scalar wave equation (13.2.1)

2̃gφ = I (13.2.1)

on a curved background with metric gµν . Assume that the tensor Hµν def
= (g−1)µν − (m−1)µν obeys the

following estimates:

|H |≤ε′,
∫
∞

0
(1+t)−1

‖H(t, · )‖L∞(Dt ) dt≤ 1
4 , and |H |LT≤ε

′(1+t+|x |)−1(1+|q|) (13.2.2)

in the region

Dt
def
= {x | t/2< |x |< 2t} (13.2.3)

for t ∈ [0, T ). Then with α
def
= max(1+γ′, 1

2 −µ′), the following pointwise estimate holds for (t, x) ∈
[0, T )×R3:

(1+ t + |q|)$(q)|∇φ|. sup
0≤τ≤t

∑
|I |≤1

‖$(q)∇ I
Zφ(τ, · )‖L∞ +

∫ t

τ=0
ε′α‖$(q)∇φ(τ, · )‖L∞ dτ

+

∫ t

τ=0
(1+ τ)‖$(q)I(τ, · )‖L∞(Dτ ) dτ

+

∫ t

τ=0

∑
|I |≤2

(1+ τ)−1
‖$(q)∇ I

Zφ(τ, · )‖L∞(Dτ ) dτ. (13.2.4)

We now state the following corollary, which provides similar decay estimates for the null components
of tensorial systems of wave equations:

Corollary 13.3 (Pointwise decay estimates for solutions to a system of tensorial wave equations [Lindblad
and Rodnianski 2010, Corollary 7.2]). Let φµν be a solution of the system

2̃gφµν = Iµν (13.2.5)
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on a curved background with a metric gµν . Assume that the tensor Hµν def
= (g−1)µν − (m−1)µν obeys the

following estimates:

|H |≤ ε
′

4
,

∫
∞

0
(1+t)−1

‖H(t, · )‖L∞(Dt ) dt≤ε′, and |H |LT≤
ε′

4
(1+t+|q|)−1(1+|q|) (13.2.6)

in the region

Dt
def
= {x | t/2< |x |< 2t} (13.2.7)

for t ∈ [0, T ). Then for any U,V ∈ {L,T,N} and with α
def
= max(1+γ′, 1

2 −µ′), the following pointwise
estimate holds for (t, x) ∈ [0, T )×R3:

(1+ t + |q|)$(q)|∇φ|UV . sup
0≤τ≤t

∑
|I |≤1

‖$(q)∇ I
Zφ(τ, · )‖L∞ +

∫ t

τ=0
ε′α‖$(q)|∇φ(τ, · )|UV‖L∞ dτ

+

∫ t

τ=0
(1+ τ)‖$(q)|I(τ, · )|UV‖L∞(Dτ ) dτ

+

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖$(q)∇ I
Zφ(τ, · )‖L∞(Dτ ) dτ. (13.2.8)

14. Local well-posedness and the continuation principle for the reduced equations

In this short section, we state for convenience a standard proposition concerning local well-posedness and
a continuation principle for the reduced equations (3.7.1a)–(3.7.1c). The continuation principle shows
that a suitable a priori bound on the energy of the solution implies global existence. It therefore plays a
fundamental role in our global stability argument of Section 16.

Proposition 14.1 (Local well-posedness and the continuation principle). Let (h(1)µν |t=0,∂t h
(1)
µν |t=0,Fµν |t=0)

(µ, ν = 0, 1, 2, 3) be initial data for the reduced equations (3.7.1a)–(3.7.1c) constructed from abstract
initial data (h̊(1)jk , K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) on the manifold R3 satisfying the constraints (4.1.1a)–
(4.1.2b) as described in Section 4.2. Assume that the data are asymptotically flat in the sense of (1.0.4a)–
(1.0.4f). Let `≥ 4 be an integer, and let γ> 0 and µ> 0 be constants satisfying the restrictions stated in
Section 2.14. Assume that E`;γ(0) < ε, where E`;γ(0) is the norm of the abstract data defined in (10.0.3).
Then if ε is sufficiently small,29 these data launch a unique classical solution to the reduced equations
existing on a nontrivial maximal spacetime slab [0, Tmax)× R3. The energy E`;γ;µ(t) of the solution,
which is defined in (1.2.7), satisfies E`;γ;µ(0) . ε and is continuous on [0, Tmax). Furthermore, either
Tmax =∞, or one of the following two “breakdown” scenarios must occur:

(i) lim t↑Tmax E`;γ;µ(t)=∞.

(ii) The solution escapes the regime of hyperbolicity of the reduced equations.

Remark 14.2. The classification of the two breakdown scenarios is known as a continuation principle.

29This smallness assumption ensures that the reduced data lie within the regime of hyperbolicity of the reduced equations.
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Remark 14.3. Note that, in order to deduce global existence, Proposition 14.1 shows that it suffices
to derive an a priori bound on E4;γ;µ(t) together with a bound ensuring that the solution remains in
the regime of hyperbolicity. However, our methods do not allow us to derive an a priori bound for
E4;γ;µ(t) alone; our derivation of upgraded pointwise estimates (see Section 15), which are essential for
our derivation of an a priori energy estimate, requires that we work with E`;γ;µ(t) for `≥ 10.

The main ingredients in the proof of Proposition 14.1 are Lemmas 12.1 and 12.2, which provide
weighted energy estimates for linearized versions of the reduced equations. Based on the availability of
these estimates, the proof is rather standard, and we omit the details. Readers may consult, e.g., [Hörmander
1997, Chapter VI; Majda 1984, Chapter 2; Shatah and Struwe 1998, Chapter 5; Sogge 2008, Chapter 1;
Speck 2009b; Taylor 1996, Chapter 16] for details concerning local existence and, e.g., [Hörmander 1997,
Chapter VI; Sogge 2008, Chapter 1; Speck 2009a] for the ideas behind the continuation principle.

15. The fundamental energy bootstrap assumption and pointwise decay estimates
for the reduced equations

In this section, we introduce our fundamental bootstrap assumption (15.0.1) for the energy of a solution
to the reduced equations. Under this assumption, we derive a collection of pointwise decay estimates
that will play a crucial role in the proof of Theorem 16.1. In particular, these decay estimates are used to
deduce the factors (1+ τ)−1 and (1+ τ)−1+Cε in (16.2.10), which are essential for deriving the a priori
energy bound (16.1.8). The decay estimates can be roughly divided into two classes: the weak pointwise
decay estimates and the upgraded pointwise decay estimates. The weak decay estimates are consequences
of the weighted Klainerman–Sobolev inequality (1.2.10). These estimates inherit a loss of approximately
(1+ t)δ relative to what is needed to prove our main result. We remark that δ is a fixed small constant
that is independent of the data while ε is connected to the size of the data. The loss comes from the loss
we allow in our energy bootstrap assumption. Roughly speaking, if one tried to prove global stability
using only the weak estimates, then the factors (1+ τ)−1 and (1+ τ)−1+Cε in (16.2.10) would have to be
replaced with (1+ τ)−1+δ; this loss of approximately (1+ t)δ would completely destroy the viability
of our approach. The purpose of the upgraded pointwise decay estimates is precisely to eliminate some
of this loss for the lower-order derivatives of the solution. The upgraded estimates are derived using
the weak estimates and the special structure of the equations in wave coordinates; that is, many of the
estimates we derive in this section rely upon the wave-coordinate condition.

We recall that the spacetime metric gµν is split into the pieces gµν = mµν + h(0)µν + h(1)µν and that the
energy E`;γ;µ(t) (see (1.2.7)) is a functional of (h(1),F). Our main bootstrap assumption for the energy is

E`;γ;µ(t)≤ ε(1+ t)δ, (15.0.1)

where `≥ 10 is an integer, 0<γ< 1
2 is a fixed constant, δ is a fixed constant satisfying both 0< δ< 1

4 and
0< δ< γ, 0< µ< 1

2 is a fixed constant (all of which will be chosen during the proof of Theorem 16.3),
and ε is a small positive number whose required smallness is adjusted (as many times as necessary) during
the derivation of our inequalities. With the help of (6.5.22), inequality (15.0.1) implies the following
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more explicit consequence of the energy bootstrap assumption:∑
|I |≤`

(∥∥w1/2(q)∇∇ I
Zh(1)

∥∥
L2 +

∥∥w1/2(q)LI
ZF
∥∥

L2

)
≤ Cε(1+ t)δ. (15.0.2)

In the remaining estimates in this article, we will also often make the following smallness assumption
on the ADM mass:

M ≤ ε. (15.0.3)

15.1. Preliminary (weak) pointwise decay estimates. In this section, we provide some preliminary point-
wise decay estimates that are essentially a consequence of the weighted Klainerman–Sobolev inequalities
of Appendix B. Unlike the upgraded pointwise decay estimates of the next section, these estimates do
not take into account the special structure of the reduced equations under the wave-coordinate condition.

We begin with a simple lemma concerning pointwise decay estimates for the Schwarzschild tail of the
metric and its derivatives.

Lemma 15.1 (Decay estimates for h(0)). Let h(0) be as in (1.2.1c), and let I be any ∇-multi-index. Then
the following pointwise estimate holds for (t, x) ∈ [0,∞)×R3:

|∇
I h(0)| ≤ C M(1+ t + |q|)−(1+|I |), (15.1.1a)

where M is the ADM mass.
Furthermore, if I is any ∇-multi-index and J is any Z-multi-index, then the following pointwise

estimate holds for (t, x) ∈ [0,∞)×R3:

|∇
I
∇

J
Zh(0)| + |∇ J

Z∇
I h(0)| ≤ C M(1+ t + |q|)−(1+|I |). (15.1.1b)

Remark 15.2. Since H(0)µν =−h(0)µν (where Hµν

(0) is defined in (11.1.2)), the above estimates also hold if
we replace h(0) with H(0).

Proof. The lemma follows from simple computations, the definition (4.2.1) of the cut-off function χ , the
definition of h(0), and the definitions of the vector fields Z ∈ Z. �

Corollary 15.3 (Weak pointwise decay estimates; slight extension of [Lindblad and Rodnianski 2010,
Corollary 9.4]). Let ` ≥ 10 be an integer. Assume that the abstract initial data are asymptotically
flat in the sense of (1.0.4a)–(1.0.4f), that the ADM mass smallness condition (15.0.3) holds, that the
constraints (4.1.1a)–(4.1.2b) are satisfied, and that the initial data for the reduced system are constructed
from the abstract initial data as described in Section 4.2. Let (gµν

def
= mµν + h(0)µν + h(1)µν ,Fµν) be the

corresponding solution to the reduced system (3.7.1a)–(3.7.1c) existing on a slab (t, x) ∈ [0, T )×R3,
where h(1) is defined in (1.2.1b). In particular, by Proposition 4.2, the wave-coordinate condition (3.1.1a)
holds for (t, x) ∈ [0, T )×R3. Assume in addition that the pair (h(1),F) satisfies the energy bootstrap
assumption (15.0.1) on the interval [0, T ). Then if ε is sufficiently small, the following pointwise estimates
hold for (t, x) ∈ [0, T )×R3:
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|∇∇
I
Zh(1)||LI

ZF| ≤

{
Cε(1+ t + |q|)−1(1+ t)δ(1+ |q|)−1−γ if q > 0,
Cε(1+ t + |q|)−1(1+ t)δ(1+ |q|)−1/2 if q < 0

(|I | ≤ `− 3), (15.1.2a)

|∇
I
Zh(1)| ≤

{
Cε(1+ t + |q|)−1+δ(1+ |q|)−γ if q > 0,
Cε(1+ t + |q|)−1+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 3), (15.1.2b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF|

≤

{
Cε(1+ t + |q|)−2+δ(1+ |q|)−γ if q > 0,
Cε(1+ t + |q|)−2+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 4). (15.1.2c)

In addition, the tensor field Hµν

(1) defined in (11.1.2) satisfies the same estimates as h(1)µν . Furthermore,
if we make the substitution γ→ δ in the above inequalities, then the same estimates hold for the tensor
fields h(0)µν , hµν

def
= h(0)µν + h(1)µν , H(0)µν

def
= −h(0)µν , Hµν def

= (g−1)µν − (m−1)µν , and Hµν

(1)
def
= Hµν

− Hµν

(0) .

Proof. This corollary is a slight extension of Corollary 9.4 of [Lindblad and Rodnianski 2010], in which
estimates for h(0) =−H(0), h(1), and h were proved. The main idea in the proof is to use the weighted
Klainerman–Sobolev estimates of Proposition B.1 under the assumption (15.0.2) together with the decay
(1.0.4c)–(1.0.4f) of the initial data at spatial infinity and Lemma 15.1. The estimates for F follow in a
straightforward fashion from the arguments of [Lindblad and Rodnianski 2010, Corollary 9.4] while the
estimates for H(1) and H follow from those for h(1) and h together with (3.3.11a). �

In the next lemma, we use the weak decay estimates to derive pointwise estimates for the Schwarzschild
tail term ∇ I

Z2̃gh(0) appearing on the right-hand side of (7.0.1).

Lemma 15.4 (Pointwise decay estimates for ∇ I
Z2̃gh(0) [Lindblad and Rodnianski 2010, Lemma 9.9]).

Let h(0) be the Schwarzschild part of h as defined in (1.2.1c), and assume the hypotheses/conclusions of
Corollary 15.3. Let I be a Z-multi-index subject to the restrictions stated below. Then if ε is sufficiently
small, the following pointwise estimates hold for (t, x) ∈ [0, T )×R3, where M is the ADM mass:

|∇
I
Z2̃gh(0)| ≤

{
C Mε(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
C M(1+ t + |q|)−3 if q < 0

(|I | ≤ `− 3). (15.1.3a)

Furthermore, the following pointwise estimates also hold for (t, x) ∈ [0, T )×R3:

|∇
I
Z2̃gh(0)|≤C M

∑
|J |≤|I |

(1+t+|q|)−3
|∇

J
Zh(1)|+

{
C Mε(1+ t + |q|)−4 if q > 0,
C M(1+ t + |q|)−3 if q < 0

(|I |≤`). (15.1.3b)

Proof. We first observe that 2̃gh(0) = 2mh(0) + H κλ
∇κ∇λh(0), where 2m

def
= (m−1)κλ∇κ∇λ is the

Minkowski wave operator. From (15.1.1b), the definition of h(0), the Leibniz rule, and the fact that
2m(1/r)= 0 for r > 0, it follows that

|∇
I
Z2mh(0)|. M(1+ t + |q|)−3χ0

(1
2
≤

r
t
≤

3
4

)
, (15.1.4)∣∣∇ I

Z

(
H κλ
∇κ∇λh(0)

)∣∣. M(1+ t + |q|)−3
∑
|J |≤|I |

|∇
J
Z H |, (15.1.5)
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where χ0
(1

2 ≤ z ≤ 3
4

)
is the characteristic function of the interval

[ 1
2 ,

3
4

]
. Furthermore, using H =

−h(0)− h(1)+ O∞(|h(0)+ h(1)|2), we deduce that∑
|J |≤|I |

|∇
J
Z H |. ε(1+ t + |q|)−1

+

∑
|J |≤|I |

|∇
J
Zh(1)|. (15.1.6)

Using (15.1.5), (15.1.6), and the estimate (15.1.2b), we have that∣∣∇ I
Z

(
H κλ
∇κ∇λh(0)

)∣∣. {Mε(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
Mε(1+ t + |q|)−4+δ(1+ |q|)1/2 if q < 0

(|I | ≤ `− 3) (15.1.7)

and∣∣∇ I
Z

(
H κλ
∇κ∇λh(0)

)∣∣. Mε(1+ t + |q|)−4
+Mε(1+ t + |q|)−3

∑
|J |≤|I |

|∇
J
Zh(1)| (|I | ≤ `). (15.1.8)

Inequalities (15.1.3a) and (15.1.3b) now easily follow from the above estimates. �

15.2. Initial upgraded pointwise decay estimates for |LI
ZF|LN and |LI

ZF|TT. In this section, we prove
some upgraded pointwise decay estimates for the “favorable” components of the lower-order Lie derivatives
of F. Our estimates take into account the special structure revealed by our null decomposition of the
electromagnetic equations of variations, a structure that was captured by Proposition 11.5 and that depends
in part upon the wave-coordinate condition. We remark that in Section 15.3 some of these decay estimates
will be further improved (hence our use of the terminology “initial upgraded” here).

Proposition 15.5 (Initial upgraded pointwise decay estimates for |LI
ZF|LN and |LI

ZF|TT). Assume the
hypotheses/conclusions of Corollary 15.3. Then if ε is sufficiently small, the following pointwise estimates
hold for (t, x) ∈ [0, T )×R3:

|LI
ZF|LN+ |L

I
ZF|TT ≤

{
Cε(1+ t + |q|)−2+2δ(1+ |q|)−γ−δ if q > 0,
Cε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0

(|I | ≤ `− 4). (15.2.1)

Proof. Since |LI
ZF|LN+ |L

I
ZF|TT| ≈ |α[L

I
ZF]| + |ρ[LI

ZF]| + |σ [LI
ZF]|, it suffices to prove the desired

decay estimates for |α[LI
ZF]|, |ρ[LI

ZF]|, and |σ [LI
ZF]| separately. We provide proof for the null

component α[LI
ZF]. The proofs for the components ρ[LI

ZF] and σ [LI
ZF] are similar, and we leave these

details to the reader. Let W
def
= {(t, x) | |x | ≥ 1+ t/2} ∩ {(t, x) | |x | ≤ 2t − 1} denote the “wave-zone”

region. Then for (t, x) /∈W, we have that 1+ |q| ≈ (1+ t + |q|). Using this fact, for (t, x) /∈W, we can
bound |α[LI

ZF]| by the right-hand side of (15.2.1) by using the weak decay estimate (15.1.2a).
We now consider the case (t, x) ∈ W. Let f def

= rα[LI
ZF]. Then from (11.1.13b), the fact that

r ≈ (1+ t + |q|)≈ (1+ s+ |q|) on W, and the weak decay estimates of Corollary 15.3, it follows that
(with ∂q defined in Section 2.7)

|∂q f (t, x)|.
{
ε(1+ s+ |q|)−1+2δ(1+ |q|)−1−γ−δ if q > 0,
ε(1+ s+ |q|)−1+2δ(1+ |q|)−1/2−δ if q < 0.

(15.2.2)

Let (τ (q ′), y(q ′)) be the q ′-parametrized line segment of constant s and angular values that begins
at (t, x) and terminates at the point (t0, x0) lying to the past of (t, x) and on the boundary of W. Let q
and s be the null coordinates corresponding to (t, x). Then the null coordinates corresponding to (t0, x0)
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are q0=
s
3−

2
3 and s0= s. Integrating the inequality (15.2.2) along this line segment (i.e., integrating dq ′),

we have that

| f (t, x)|. | f (t0, x0)| +

∫ q ′=s/3−2/3

q ′=q

{
ε(1+ s+ |q ′|)−1+2δ(1+ |q ′|)−1−γ−δ if q ′ > 0,
ε(1+ s+ |q ′|)−1+δ(1+ |q ′|)−1/2−δ if q ′ < 0

}
dq ′

. | f (t0, x0)| +

{
ε(1+ s)−1+2δ(1+ |q|)−γ−δ if q > 0,
ε(1+ s)−1+δ(1+ |q|)1/2−δ if q < 0.

(15.2.3)

From the facts that r0 ≈ 1+ |q0| ≈ 1+ t0+ |q0| ≈ 1+ s0+ |q0| ≈ 1+ s, together with the weak decay
estimate (15.1.2a), it follows that

| f (t0, x0)|. ε(1+ s)−1−γ+δ. (15.2.4)

Combining (15.2.3) and (15.2.4), and using the fact that 1+s≈ 1+ t+|q|, we deduce that |α[LI
ZF(t, x)]|

is bounded from above by the right-hand side of (15.2.1). This completes our proof of (15.2.1) for
the α[LI

ZF] component. �

15.3. Upgraded pointwise decay estimates for |∇ I
Zh| and |LI

ZF| and fully upgraded pointwise decay
estimates for |LI

ZF|LN and |LI
ZF|TT. In this section, we state two propositions that strengthen some

of the pointwise decay estimates proved in Sections 15.1 and 15.2. Their proofs, which are provided in
Sections 15.4 and 15.5, are based on a careful analysis of the special structure of the reduced equations
and in particular rely upon the decompositions performed in Section 11, which in turn rely in part upon the
wave-coordinate condition. These estimates play a central role in our derivation of the “strong” a priori
energy estimate (16.1.8), which is the main step in the proof of our stability theorem.

Proposition 15.6 (Upgraded pointwise decay estimates for F and certain components of h, ∇h, and ∇Z h;
extension of [Lindblad and Rodnianski 2010, Proposition 10.1]). Assume the hypotheses/conclusions
of Corollary 15.3. In particular, by Proposition 4.2, the wave-coordinate condition (3.1.1a) holds
for (t, x) ∈ [0, T )×R3. Then if ε is sufficiently small, for every vector field Z ∈Z, the following pointwise
estimates hold for (t, x) ∈ [0, T )×R3:

|∇h|LT+ |∇∇Z h|LL ≤

{
Cε(1+ t + |q|)−2+δ(1+ |q|)−δ if q > 0,
Cε(1+ t + |q|)−2+δ(1+ |q|)1/2 if q < 0,

(15.3.1a)

|h|LT+ |∇Z h|LL ≤

{
Cε(1+ t + |q|)−1 if q > 0,
Cε(1+ t + |q|)−1(1+ |q|)1/2+δ if q < 0,

(15.3.1b)

|∇h|TN ≤ Cε(1+ t + |q|)−1, (15.3.2a)

|∇h| ≤ Cε(1+ t + |q|)−1(1+ ln(1+ t)), (15.3.2b)

|F| ≤ Cε(1+ t + |q|)−1. (15.3.3)

Furthermore, the same estimates hold for the tensor fields h(0)µν , h(1)µν , Hµν def
= (g−1)µν − (m−1)µν , Hµν

(0) ,
and Hµν

(1) .

Proposition 15.7 (Upgraded pointwise decay estimates for the lower-order derivatives of h and F; exten-
sion of [Lindblad and Rodnianski 2010, Proposition 10.2]). Under the assumptions of Proposition 15.6,
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let 0 < γ′ < γ− δ and 0 < δ < µ′ < 1
2 be fixed constants. Let I be any Z-multi-index subject to the

restrictions stated below. Then there exist constants Mk and Ck depending on γ′, µ′, and δ such that, if ε
is sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|∇∇
I
Zh(1)| + |LI

ZF|

≤

{
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−1−γ′ if q > 0,
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−1/2+µ′ if q < 0

(|I | = k ≤ `− 5), (15.3.4a)

|∇
I
Zh(1)| ≤

{
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)−γ

′

if q > 0,
Ckε(1+ t + |q|)−1+Mkε(1+ |q|)1/2+µ

′

if q < 0
(|I | = k ≤ `− 5), (15.3.4b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
Ckε(1+ t + |q|)−2+Mkε(1+ |q|)−γ

′

if q > 0,
Ckε(1+ t + |q|)−2+Mkε(1+ |q|)1/2+µ

′

if q < 0
(|I | = k ≤ `− 6). (15.3.4c)

Furthermore, the same estimates hold for hµν
def
= gµν −mµν and Hµν def

= (g−1)µν − (m−1)µν if we
replace γ′ with Mkε.

15.4. Proof of Proposition 15.6. We only prove the estimates for hµν and Fµν . The estimates for h(0)µν ,
h(1)µν , Hµν , Hµν

(0) , and Hµν

(1) follow easily from those for hµν , (3.3.11a), and Lemma 15.1.

15.4.1. Proofs of (15.3.1a) and (15.3.1b). We will argue as in Lemma 10.4 of [Lindblad and Rodnianski
2010]; we first provide a lemma that establishes a more general version of the desired estimates.

Lemma 15.8 (Pointwise estimates for |∇∇ I
Zh|LL, |∇ I

Zh|LL, |∇∇ I
Zh|LT, and |∇ I

Zh|LT [Lindblad and
Rodnianski 2010, Lemma 10.4]). Under the hypotheses of Proposition 15.6, if k ≤ ` − 4 and ε is
sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:∑
|I |≤k

|∇∇
I
Zh|LL+

∑
|J |≤k−1

|∇∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

|∇∇
K
Z h|︸ ︷︷ ︸

absent if k ≤ 1

+

{
ε(1+ t + |q|)−2+2δ(1+ |q|)−2δ if q > 0,
ε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0,

(15.4.1)

∑
|I |≤k

|∇
I
Zh|LL+

∑
|J |≤k−1

|∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

∫ %=|x |+t

%=|x |
|∇∇

K
Z h|(t + |q| − %, %x/|x |) d%︸ ︷︷ ︸

absent if k ≤ 1

+

{
ε(1+ t + |q|)−1 if q > 0,
ε(1+ t + |q|)−1(1+ |q|)1/2+δ if q < 0.

(15.4.2)

Furthermore, the same estimates hold for the tensor Hµν def
= (g−1)µν − (m−1)µν .

Proof. By Proposition 11.1, we have that∑
|I |≤k

|∇∇
I
Zh|LL+

∑
|J |≤k−1

|∇∇
J
Zh|LT︸ ︷︷ ︸

absent if k = 0

.
∑
|K |≤k−2

|∇∇
J
Zh|︸ ︷︷ ︸

absent if k ≤ 1

+

∑
|J |≤k

|∇∇
J
Zh|+

∑
|I1|+|I2|≤k

|∇
I1
Z h||∇∇ I2

Z h|. (15.4.3)
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By Corollary 15.3, we have that∑
|J |≤k

|∇∇
J
Zh| +

∑
|I1|+|I2|≤k

|∇
I1
Z h||∇∇ I2

Z h|

.

{
ε(1+ t + |q|)−2+2δ(1+ |q|)−2δ if q > 0,
ε(1+ t + |q|)−2+2δ(1+ |q|)1/2−δ if q < 0

(k ≤ `− 4). (15.4.4)

Combining (15.4.3) and (15.4.4), we deduce (15.4.1). Inequality (15.4.2) follows from integrating
inequality (15.4.1) for |∂q∇

I
Zh|. |∇∇ I

Zh|, q def
= |x | − t , along the lines along which the angle ω def

= x/|x |
and the null coordinate s = |x | + t are constant (i.e., integrating dq) and using (15.1.2b) at t = 0.

The proofs of the estimates for Hµν follow from the estimates for hµν , (3.3.11a), and Corollary 15.3.
This concludes our proof of the lemma. �

Having proved the lemma, inequalities (15.3.1a) and (15.3.1b) now follow from inequalities (15.4.1)
and (15.4.2) and the weak decay estimates of Corollary 15.3.

15.4.2. Proof of (15.3.3). Let W
def
= {(t, x) | |x | ≥ 1+ t/2}∩{(t, x) | |x | ≤ 2t−1} denote the “wave-zone”

region. Note that r ≈ 1+ t + |q| ≈ 1+ t + s for (t, x) ∈W. Now as in the proof of Proposition 15.5,
inequality (15.3.3) follows from the weak decay estimates of Corollary 15.3 if (t, x) /∈W. Furthermore,
we have that |F| ≈ |α[F]| + |α[F]| + |ρ[F]| + |σ [F]|, and by Proposition 15.5, inequality (15.3.3) has
already been shown to hold for |α[F]| + |ρ[F]| + |σ [F]| ≈ |F|LN+ |F|TT.

It remains to prove the desired estimate for |α[F(t, x)]| under the assumption that (t, x) ∈W. To this
end, we use (11.1.12), the weak decay estimates of Corollary 15.3, and Proposition 15.5 to deduce that if
(t, x) ∈W then ∣∣∇3(rα[F])∣∣. ε(1+ t + |q|)−3/2+δ∣∣rα[F]∣∣+ ε(1+ t + |q|)−2+3δ, (15.4.5)

where 3 def
= L + 1

4 hL L L . Let (τ (λ), y(λ)) be the integral curve30 of the vector field 3 passing through the
point (t, x)= (τ (λ1), y(λ1))∈W. By the already-proved smallness estimate (15.3.1b) for hL L , every such
integral curve must intersect the boundary of W at a point (t0, x0)= (τ (λ0), y(λ0)) to the past of (t, x).
Furthermore, by (15.3.1b) again, we have that dτ

dλ ≈ 1 along the integral curves, and for all (τ, y) ∈W, we
have that |y| ≈ τ ≈ 1+|τ | ≈ 1+|τ |+ ||y|− τ |. We now set f (λ) def

=
∣∣|y(λ)|α[F(τ (λ), y(λ))]

∣∣, integrate
inequality (15.4.5) along the integral curve (which is contained in W), use the assumption 0< δ< 1

4 , and
change variables so that τ is the integration variable to obtain

f (λ(t))︷ ︸︸ ︷∣∣rα[F](t, x)
∣∣≤ f (λ0)︷ ︸︸ ︷∣∣r0α[F(t0, x0)]

∣∣+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−2+3δ dλ+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−3/2+δ f (λ) dλ

≤ Cε+Cε
∫ τ=t

τ=t0
(1+ τ)−2+3δ dτ +Cε

∫ τ=t

τ=t0
(1+ τ)−3/2+δ f (λ ◦ τ) dτ

≤ Cε+Cε
∫ τ=t

τ=t0
(1+ τ)−3/2+δ f (λ ◦ τ) dτ, (15.4.6)

30By integral curve, we mean the solution to the ODE system dτ
dλ =3

0(τ, y) and dy j

dλ =3
j (τ, y) ( j = 1, 2, 3) passing

through the point (t, x) at parameter value λ= λ1.
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where we have used (15.1.2a) to obtain the bound |r0α[F(t0, x0)]| ≤ Cε for the point (t0, x0) lying on
the boundary of W. Applying Gronwall’s lemma to (15.4.6), we deduce that∣∣rα[F(t, x)]

∣∣≤ Cε exp
(

Cε
∫ τ=t

τ=t0
(1+ τ)−3/2+δ dτ

)
≤ Cε, (15.4.7)

from which it trivially follows that∣∣α[F(t, x)]
∣∣≤ Cεr−1

≤ Cε(1+ t + |q|)−1 (15.4.8)

as desired.

15.4.3. Proofs of (15.3.2a) and (15.3.2b). In the next two lemmas, we will use the fact that the tensor
field hµν

def
= gµν −mµν is a solution to the system

2̃ghµν = Hµν, (15.4.9)

where the inhomogeneous term Hµν is defined in (3.7.2a).

Lemma 15.9 (Pointwise estimates for the Hµν inhomogeneities; extension of [Lindblad and Rodnianski
2010, Lemma 10.5]). Suppose that the assumptions of Proposition 15.6 hold. Then if ε is sufficiently
small, the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|H|TN ≤ Cε(1+ t + |q|)−3/2+δ
|∇h| +Cε(1+ t + |q|)−5/2+δ, (15.4.10a)

|H| ≤ Cε(1+ t + |q|)−3/2+δ
|∇h| +C |∇h|2TN+Cε2(1+ t + |q|)−2. (15.4.10b)

Proof. Lemma 15.9 follows from Proposition 11.3, Corollary 15.3, Proposition 15.5, the already-proved
estimate (15.3.3), and the assumption 0< δ< 1

4 . �

Lemma 15.10 (Integral inequalities for |∇h|TN and |∇h|; extension of [Lindblad and Rodnianski 2010,
Lemma 10.6]). Suppose that the assumptions of Proposition 15.6 hold. Then if ε is sufficiently small, the
following integral inequalities hold for t ∈ [0, T ):

(1+ t)‖|∇h|TN(t, · )‖L∞ ≤ Cε+Cε
∫ t

0
(1+ τ)−1/2+δ

‖∇h(τ, · )‖L∞ dτ, (15.4.11a)

(1+ t)‖∇h(t, · )‖L∞ ≤ Cε+Cε2 ln(1+ t)+Cε
∫ t

0
(1+ τ)−1/2+δ

‖∇h(τ, · )‖L∞ dτ

+Cε
∫ t

0
(1+ τ)‖|∇h|2TN(τ, · )‖L∞ dτ. (15.4.11b)

Proof. We first observe that (15.1.2b) and (15.3.1b) (the version for the tensor H ) imply that the hypotheses
of Lemma 13.2 and Corollary 13.3 hold. Therefore, using the lemma and the corollary with $(q) def

= 1
and α

def
= 0, and noting that hµν satisfies the system (15.4.9), we have that

(1+ t)|∇h|TN . sup
0≤τ≤t

∑
|I |≤1

‖∇
I
Zh(τ, · )‖L∞ +

∫ t

τ=0
(1+ τ)‖|H|TN‖L∞(Dτ ) dτ

+

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖∇
I
Zh‖L∞(Dτ ) dτ. (15.4.12)
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Using (15.1.2b) (the version for the tensor h), we estimate the first and third terms on the right-hand side
of (15.4.12) as follows:

sup
0≤τ≤t

∑
|I |≤1

‖∇
I
Zh(τ, · )‖L∞ ≤ Cε, (15.4.13)

∑
|I |≤2

∫ t

τ=0
(1+ τ)−1

‖∇
I
Zh‖L∞(Dτ ) dτ ≤ Cε

∫
∞

τ=0
(1+ τ)−3/2+δ dτ ≤ Cε. (15.4.14)

To estimate the second term, we use (15.4.10a) to conclude that for x ∈ Dt we have that

(1+ t)|H|TN ≤ Cε(1+ t)−1/2+δ
|∇h| +Cε(1+ t)−3/2+δ. (15.4.15)

Inequality (15.4.11a) now follows from (15.4.12)–(15.4.15) and the fact that Cε
∫ t

0 (1+τ)
−3/2+δ dτ ≤Cε.

Inequality (15.4.11b) can be obtained in a similar fashion by using (15.4.10b). �

To finish the proof of Proposition 15.6, we will apply the following Gronwall-type inequality:

Lemma 15.11 (Gronwall-type inequality; slight modification of [Lindblad and Rodnianski 2010, Lemma
10.7]). Assume that the continuous functions b(t)≥ 0 and c(t)≥ 0 satisfy

b(t)≤ Cε+Cε
∫ t

0
(1+ τ)−1−ac(τ ) dτ, (15.4.16a)

c(t)≤ Cε + Cε2 ln(1+ t)+Cε
∫ t

0
(1+ τ)−1−ac(τ ) dτ +C

∫ t

0
(1+ τ)−1b2(τ ) dτ (15.4.16b)

for some positive constants a and C such that ε < a/4C and ε < 2a/(1+ 4C2). Then

b(t)≤ 2Cε, (15.4.17a)

c(t)≤ 2Cε(1+ a ln(1+ t)). (15.4.17b)

Proof. We slightly modify the proof of [Lindblad and Rodnianski 2010, Lemma 10.7]. Let T be the largest
time such that the bounds (15.4.17a)–(15.4.17b) hold. Then inserting these bounds into the inequalities
(15.4.16a)–(15.4.16b) and using the bound (and the change of variables z def

= a ln(1+ τ))∫
∞

τ=0
(1+ τ)−1−a(1+ a ln(1+ τ)) dτ = a−1

∫
∞

z=0
e−z(1+ z) dz = 2a−1, (15.4.18)

we deduce that the following inequalities hold for t ∈ [0, T ]:

b(t)≤ Cε(1+ 4Cεa−1) < 2Cε, (15.4.19)

c(t)≤ Cε(1+ 4Cεa−1
+ (1+ 4C2)ε ln(1+ t)) < 2Cε(1+ a ln(1+ t)). (15.4.20)

Since the above inequalities are a strict improvement of the assumed bounds (15.4.17a)–(15.4.17b), we
thus conclude that T =∞. �

To complete the proofs of (15.3.2a) and (15.3.2b), we apply Lemmas 15.10 and 15.11 with b(t) def
=

(1+ t)‖|∇h|TN(t, · )‖L∞ and c(t) def
= (1+ t)‖∇h(t, · )‖L∞ . This implies (15.3.2a) and (15.3.2b) with
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(1+ t) in place of (1+ t + |q|). The additional decay in |q| in (15.3.2a) and (15.3.2b) follows directly
from (15.1.2a) (the version for the tensor h). �

15.5. Proof of Proposition 15.7. We will prove the proposition using a series of inductive steps. We only
prove the estimates for h(1)µν and Fµν . The estimates for hµν and Hµν follow easily from those for h(1)µν ,
(3.3.11a), and Lemma 15.1. We first prove a technical lemma that will be used during the proof of the
proposition.

Lemma 15.12 (Pointwise estimates for the |∇ I
ZH| inhomogeneities). Suppose that the hypotheses of

Proposition 15.6 hold, and let Hµν be the inhomogeneous term on the right-hand side of the reduced
equation (3.7.1a). Then if I is any Z-multi-index with |I | ≤ `, the following pointwise estimates hold for
(t, x) ∈ [0, T )×R3:

|∇
I
ZH| ≤ Cε

∑
|J |≤|I |

(1+ t + |q|)−1(
|∇∇

J
Zh(1)| + |∇ J

ZF|
)

+C
∑

|I1|+|I2|≤|I |
|I1|,|I2|≤|I |−1

(
|∇∇

I1
Z h(1)| + |LI1

Z F|
)(
|∇∇

I2
Z h(1)| + |LI2

Z F|
)
+Cε2(1+ t + |q|)−4. (15.5.1)

Proof. Lemma 15.12 follows from (11.1.5c), Lemma 15.1, the weak decay estimates of Corollary 15.3,
(15.3.2a), (15.3.3), and the assumption that 0< δ< 1

4 . We remark that the Cε2(1+ t +|q|)−4 term arises
from the estimate |∇∇ I1

Z h(0)||∇∇ I2
Z h(0)| ≤ Cε2(1+ t + |q|)−4. �

We are now ready for the proof of Proposition 15.7. To prove (15.3.4a)–(15.3.4c), we will argue
inductively, using the inequalities in the case |I | ≤ k to deduce that they hold in the case |I | = k+ 1. We
also remark that the base case k = 0 is covered by our argument.

Induction Step 1: Upgraded pointwise decay estimates for |∇ I
Zh|LL for |I | = k + 1 and |∇ J

Zh|LT for
|J | = k. As a first step, we will use the wave-coordinate condition to upgrade the estimates for |∇ I

Zh|LL

for |I | = k+ 1 and |∇ J
Zh|LT for |J | = k. To this end, we appeal to inequality (15.4.2), using inequality

(15.3.4a) for h under the induction hypothesis to bound the integrand and thereby concluding that∑
|I |=k+1

|∇
I
Zh|LL+

∑
|J |=k

|∇
J
Zh|LT .

{
ε(1+ t + |q|)−1+Mk−1ε(1+ |q|)−Mk−1ε if q > 0,
ε(1+ t + |q|)−1+Mk−1ε(1+ |q|)1/2+µ

′

if q < 0.
(15.5.2)

In the above estimates, the constant µ′ is subject to the restrictions stated in the hypotheses of Proposition
15.7. Furthermore, since Hµν

=−hµν + O∞(|h|2), (15.1.2b) implies that the same estimates hold for
the tensor H .

Induction Step 2: Upgraded pointwise decay estimates for |LI
ZF| and |I | = k + 1. Let W

def
= {(t, x) |

|x | ≥ 1+ t/2} ∩ {(t, x) | |x | ≤ 2t − 1} denote the “wave-zone” region. Then for (t, x) /∈W, we have that
1+|q| ≈ 1+ t+|q|. Using this fact, we see that for (t, x) /∈W the weak decay estimate (15.1.2a) implies
that inequality (15.3.4a) holds for |LI

ZF| in the case |I | = k+ 1. Furthermore, by Proposition 15.5, the
inequality (15.3.4a) holds for the null components |α[LI

ZF]|, |ρ[LI
ZF]|, and |σ [LI

ZF]| when |I | = k+ 1.
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It remains to consider |α[LI
ZF(t, x)]| in the case (t, x) ∈W. Note that r ≈ 1+ t + |q| ≈ 1+ t + s for

(t, x) ∈W. We will make use of the weight $(q) defined in (13.1.1). From (11.1.13a), Corollary 15.3
(the version for the tensor field h), Proposition 15.5, (15.3.1b), (15.3.3), the induction hypothesis, and
(15.5.2), it follows that∑
|I |≤k+1

∣∣∇3(r$(q)α[LI
ZF]

)∣∣≤ Cε(1+ t + |q|)−1
∑
|I |≤k+1

∣∣r$(q)α[LI
ZF]

∣∣
+Cε(1+ t + |q|)−(1+a)

+Cε2(1+ t + |q|)−1+Cε, (15.5.3)

where 0< a <min{µ′− δ,γ− δ−γ′} is a fixed constant and 3 def
= L + 1

4 hL L L . Note the importance of
the independent estimate (15.3.1b) for bounding the second, fourth, and fifth sums on the right-hand side
of (11.1.13a) and of the independent estimate (15.5.2) (in the case |I | = k+ 1) for bounding the third
sum on the right-hand side of (11.1.13a).

Let (τ (λ), y(λ)) be the integral curve (as defined in Section 15.4.2) of the vector field3 passing through
the point (t, x) = (τ (λ1), y(λ1)) ∈W. By the inequality (15.3.1b) for hL L , every such integral curve
must intersect the boundary of W at a point (t0, x0)= (τ (λ0), y(λ0)) lying to the past of (t, x). Using
(15.3.1b) again, we have that dt

dλ ≈ 1 along the integral curves, and in the entire region W, we have that
|y| ≈ τ ≈ 1+|τ | ≈ 1+|τ |+||y|−τ |. We define f (λ) def

=
∑
|I |≤k+1

∣∣|y(λ)|$(q(λ))α[LI
ZF(τ (λ), y(λ))]

∣∣,
where q(λ) def

= |y(λ)| − τ(λ). Note that f (λ1) =
∑
|I |≤k+1|r$(q)α[L

I
ZF]|, where q def

= q(λ1)= |x | − t
while the weak decay estimate (15.1.2a) implies that f (λ0) ≤ Cε. Integrating inequality (15.5.3) and
changing variables so that τ is the integration variable, we have that

f (λ1)︸ ︷︷ ︸
f (λ(t))

≤ f (λ0)+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−1 f (λ) dλ

+Cε
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−(1+a) dλ+Cε2
∫ λ=λ1

λ=λ0

[1+ τ(λ)]−1+Cε dλ

≤ Cε(1+ t)Cε +Cε
∫ τ=t

τ=t0
(1+ τ)−1 f (λ ◦ τ) dτ. (15.5.4)

Applying Gronwall’s inequality to (15.5.4), we have that

f (λ ◦ t︸︷︷︸
λ1

)≤ Cε(1+ t)Cε exp
(

Cε
∫ τ=t

τ=t0
(1+ τ)−1 dτ

)
≤ Cε(1+ t)2Cε, (15.5.5)

from which it easily follows that for (t, x) ∈W we have that∑
|I |≤k+1

∣∣α[LI
ZF]

∣∣≤ Cε(1+ t)−1+2Cε$−1(q). (15.5.6)

Combining (15.5.6) and the previous arguments covering (t, x) /∈ W and the other null components
of LI

ZF, we have shown that the estimate (15.3.4a) holds for |LI
ZF| in the case |I | = k+ 1.
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Final Induction Step: Upgraded pointwise decay estimates for |∇∇ I
Zh| and |∇ I

Zh| (|I | = k+ 1). Our first
goal is to prove the following estimate in the case |I | = k+ 1:

|2̃g∇
I
Zh(1)|. ε

∑
|K |≤|I |

(1+ t+|q|)−1
|∇∇

K
Z h(1)|+

{
ε2(1+ t + |q|)−4+δ(1+ |q|)−δ if q > 0,
ε(1+ t + |q|)−3 if q < 0

+

{
ε2(1+ t + |q|)−2+2Mkε(1+ |q|)−1−γ′ if q > 0,
ε2(1+ t + |q|)−2+2Mkε(1+ |q|)−1/2+µ′ if q < 0.

(15.5.7)

To prove (15.5.7), we first recall Corollary 11.7, which states that

|2̃g∇
I
Zh(1)|. |∇̂ I

ZH| + |∇̂
I
Z2̃gh(0)| + (1+ t + |q|)−1

∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇∇
K
Z h(1)||∇ J

Z H |LL (15.5.8)

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′|+(|K |−1)+≤|I |−1

|∇∇
K
Z h(1)||∇ J ′

Z H |LT

+ (1+ |q|)−1
∑
|K |≤|I |

∑
|J ′′|+(|K |−1)+≤|I |−2

|∇∇
K
Z h(1)||∇ J ′′

Z H |

︸ ︷︷ ︸
absent if |I | ≤ 1 or |K | = |I |

, (15.5.9)

where (|K | − 1)+
def
= 0 if |K | = 0 and (|K | − 1)+

def
= |K | − 1 if |K | ≥ 1. We first bound the terms from line

(15.5.8) onwards, considering separately the cases |K |< |I | and |K |= |I |=k+1. For |K |< |I |=k+1, we
use (15.5.2) (for the tensor field H ) and (15.3.4b) (for the tensor field H ) under the induction hypotheses
to conclude that

(1+ |q|)−1
∑
|J |≤k+1
|J ′|≤k
|J ′′|≤k−1

(
|∇

J
Z H |LL+ |∇

J ′
Z H |LT+ |∇

J ′′
Z H |

)
.

{
ε(1+ t + |q|)−1+Mkε(1+ |q|)−1−Mkε if q > 0,
ε(1+ t + |q|)−1+Mkε(1+ |q|)−1/2+µ′ if q < 0.

(15.5.10)

Also using (15.3.4a) under the induction hypotheses to bound |∇∇K
Z h(1)|, we deduce that all of the terms

from line (15.5.8) onwards in the case |K |< |I | can be bounded by the last term on the right-hand side
of (15.5.7).

We now consider the case |K | = |I | = k + 1. Since |J | ≤ 1 and |J ′| = 0 in this case, we can use
(15.3.1b) (for the tensor field H ) to deduce the bound

(1+ |q|)−1
∑
|K |=|I |

(
|∇∇

K
Z h(1)|

( ∑
|J |+(|K |−1)+≤|I |

|∇
J
Z H |LL+

∑
|J ′|+(|K |−1)+≤|I |−1

|∇
J ′
Z H |LT

))
. ε

∑
|K |=|I |

(1+ t + |q|)−1
|∇∇

K
Z h(1)|. (15.5.11)

Thus, all of the terms from line (15.5.8) onwards in the case |K | = |I | = k+ 1 can be bounded by the
first term on the right-hand side of (15.5.7).
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With the help of Corollary 15.3 (the version for the tensor field H ), the

(1+ t + |q|)−1
∑
|K |≤|I |

∑
|J |+(|K |−1)+≤|I |

|∇
J
Z H ||∇∇K

Z h(1)|

sum on the right-hand side of (15.5.9) can be bounded by the first sum on the right-hand side of (15.5.7).
For the |∇̂ I

Z2̃gh(0)| term from the right-hand side of (15.5.9), we simply use Lemma 15.4, which shows
that |∇̂ I

Z2̃gh(0)| is bounded by the next-to-last term on the right-hand side of (15.5.7).
To bound the |∇ I

ZH| term from the right-hand side of (15.5.9), we apply Lemma 15.12. Using the
already-proved upgraded estimates for |LI

ZF| (|I | ≤ k+ 1), we see that the first and third sums from the
right-hand side of (15.5.1) are bounded by the right-hand side of (15.5.7). The second sum

∑
|J |+|K |≤|I |
|J |≤|K |<|I |

(
|∇∇

J
Zh(1)| + |LJ

ZF|
)(
|∇∇

K
Z h(1)| + |LK

Z F|
)

from the right-hand side of (15.5.1) can be bounded by the last term on the right-hand side of (15.5.7)
by using the induction hypotheses since |J | ≤ |K | ≤ k. This completes the proof of (15.5.7) in the case
of |I | = k+ 1.

To obtain the desired upgraded pointwise estimate for |∇∇ I
Zh(1)|, we will estimate the quantity

nk+1(t)
def
= (1+ t)

∑
|I |≤k+1

∥∥$(q)∇∇ I
Zh(1)(t, · )

∥∥
L∞, (15.5.12)

where $(q) is the weight defined in (13.1.1). Our goal is to use Lemma 13.2 with φ def
= ∇

I
Zh(1)µν to obtain

an integral inequality for nk+1(t) that is amenable to Gronwall’s inequality. We begin by estimating the
terms on the right-hand side of (13.2.8). First, with a def

= min(µ′− δ,γ− δ−γ′) > 0, by the weak decay
estimate (15.1.2b), we have that

$(q)|∇ I
Zh(1)|.

{
ε(1+ t + |q|)−1+δ(1+ |q|)1+γ

′
−γ if q > 0,

ε(1+ t + |q|)−1+δ(1+ |q|)1−µ
′

if q < 0

}
. ε(1+t)−a (|I |≤ `−3). (15.5.13)

This will serve as a suitable bound for estimating the first and fourth sums on the right-hand side of (13.2.8).
Next, using (15.5.7) and the definition (15.5.12), we deduce the following pointwise estimate:

$(q)|2̃g∇
I
Zh(1)|. (1+ t)−2(εnk+1+ ε

2(1+ t)2Mkε + ε(1+ t)−1/2−µ′). (15.5.14)

This will serve as a suitable bound for estimating the third sum on the right-hand side of (13.2.8).
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We now apply Lemma 13.2, using (15.5.13), (15.5.14), and the assumption k+1≤ `−5 to deduce that

nk+1(t)≤ C sup
0≤τ≤t

∑
|I |≤k+2

∥∥$(q)∇ I
Zh(1)(τ, · )

∥∥
L∞

+C
∑
|I |≤k+1

∫ t

0
ε
∥∥$(q)∇∇ I

Zh(1)(τ, · )
∥∥

L∞ dτ

+C
∑
|I |≤k+1

∫ t

0
(1+ τ)

∥∥$(q)|2̃g∇
I
Zh(1)|(τ, · )

∥∥
L∞(Dτ )

dτ

+C
∑
|I |≤k+3

∫ t

0
(1+ τ)−1∥∥$(q)∇ I

Zh(1)(τ, · )
∥∥

L∞(Dτ )
dτ

≤ Cε(1+ t)−a
+C

∫ t

0
(1+ τ)−1εnk+1(τ ) dτ

+C
∫ t

0
(1+τ)−1{ε2(1+τ)Cε+ε(1+τ)−1/2−µ′

+ε(1+τ)−a} dτ

≤ Cε+Cε(1+ t)Cε +Cε
∫ t

0
(1+ τ)−1nk+1(τ ) dτ. (15.5.15)

From (15.5.15) and Gronwall’s inequality, we conclude that nk+1(t)≤ 2Cε(1+ t)2Cε, which proves
(15.3.4a) in the case |I | = k + 1. As in our proof of Lemma 15.8, the estimate (15.3.4b) follows
from integrating the bound for |∂q∇

I
Zh(1)| implied by (15.3.4a) along the line ω def

= x/|x | = constant and
t + |x | = constant, from the hyperplane t = 0, and using (15.1.2b) at t = 0. This closes the induction
argument. We have completed the proof of Proposition 15.7 with the exception of showing that inequality
(15.3.4c) holds for |∇∇ I

Zh(1)|, |∇LI
ZF|, |LI

ZF|LN, and |LI
ZF|TT, where |I | ≤ `−6. In the next paragraph,

we address these inequalities using an argument that is not part of the induction process.

Upgraded pointwise decay estimates for |∇∇ I
Zh(1)|, |∇LI

ZF|, |LI
ZF|LN, and |LI

ZF|TT (|I | ≤ `− 6).
We first note that inequality (15.3.4c) for |∇∇ I

Zh(1)| and |∇LI
ZF| follows from Lemma 6.16, (6.5.22),

(15.3.4a), and (15.3.4b).
We now focus on proving the estimate (15.3.4c) for |LI

ZF|LN and |LI
ZF|TT in (15.3.4c); all of the

other estimates of Proposition 15.7 have already been proved. Recall that |LI
ZF|LN + |L

I
ZF|TT ≈

|α[LI
ZF]|+ |ρ[LI

ZF]|+ |σ [LI
ZF]|. We will prove the desired estimate for |α[LI

ZF]| in detail; the proofs
for |ρ[LI

ZF]| and |σ [LI
ZF]| are similar.

Our proof mirrors the proof of Proposition 15.5 except that we now are able to use the already-proved
upgraded estimates of Proposition 15.7 in place of the weak decay estimates of Corollary 15.3. We will
use the notation defined in the proof of Proposition 15.5. With the help of the upgraded pointwise decay
estimates (15.3.4a) and (15.3.4b) (including the versions for the tensor field h = h(0)+ h(1)), inequality
(15.2.2) for f (t, x) def

= rα[LI
ZF(t, x)] can be upgraded to

|∂q f (t, x)| ≤
{

Ckε(1+ s)−1+Cε(1+ |q|)−1−γ′ if q > 0,
Ckε(1+ s)−1+Cε(1+ |q|)−1/2+µ′ if q < 0

(|I | ≤ `− 6). (15.5.16)
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Arguing as in the proof of Proposition 15.5, and using in particular (15.2.4), we deduce from (15.5.16) that

∣∣rα[LI
ZF(t, x)]

∣∣≤ Cε(1+ s)−1−

>0︷︸︸︷
(γ−δ)

+

{
Ckε(1+ s)−1+Cε(1+ |q ′|)−γ

′

if q ′ > 0,
Ckε(1+ s)−1+Cε(1+ |q ′|)1/2+µ

′

if q ′ < 0
(|I | ≤ `− 6), (15.5.17)

from which it easily follows that

∣∣α[LI
ZF(t, x)]

∣∣≤ {Ckε(1+ t + |q|)−2+Cε(1+ |q|)−γ
′

if q > 0,
Ckε(1+ t + |q|)−2+Cε(1+ |q|)1/2+µ

′

if q < 0
(|I | ≤ `− 6). (15.5.18)

We have thus obtained the desired bound (15.3.4c) for |α[LI
ZF]|. �

16. Global existence and stability

In this section, we prove our main stability results. We separate our results into two theorems. The main
conclusions are proved in Theorem 16.3, which is an easy consequence of Theorem 16.1. Theorem 16.1,
which concerns the reduced equations (3.7.1a)–(3.7.1c), contains the crux of our bootstrap argument.
In this theorem, we make certain assumptions concerning the smallness of the abstract initial data and
various pointwise decay estimates for the solution on a local interval of existence [0, T ). We then use
these assumptions to derive a “strong” a priori estimate for the energy E`;γ;µ(t) of the reduced solution on
the same interval [0, T ). Furthermore, in Section 15, the pointwise decay assumptions of Theorem 16.1
were shown to be automatic consequences of the smallness assumptions on the data and the “weak”
bootstrap assumption (15.0.1) for E`;γ;µ(t) as long as `≥ 10. Consequently, in our proof of Theorem 16.3,
we will be able to appeal to the continuation principle of Proposition 14.1 to conclude that the solution to
the reduced equation exists globally in time. Furthermore, this line of reasoning leads to an estimate on
the size of E`;γ;µ(t), which can be used to deduce various decay estimates for the global solution. The
wave-coordinate condition plays a central role in many of the estimates in this section.

16.1. Statement of the strong-a priori-energy-estimate theorem and proof of the global stability theo-
rem. We begin by recalling that the norm E`;γ(0)≥ 0 of the abstract initial data is

E2
`;γ(0)

def
= ‖∇h̊(1)‖2H `

1/2+γ
+‖K̊‖2H `

1/2+γ
+‖D̊‖2H `

1/2+γ
+‖B̊‖2H `

1/2+γ
. (16.1.1)

We furthermore recall that the energy E`;γ;µ(t)≥ 0 of the reduced solution is

E2
`;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤`

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x . (16.1.2)

In the above expressions, the weight function w(q) and its derivative w′(q) are
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w = w(q) def
=

{
1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0,

(16.1.3a)

w′(q)=
{
(1+ 2γ)(1+ |q|)2γ if q > 0,
2µ(1+ |q|)−2µ−1 if q < 0.

(16.1.3b)

The constants µ and γ are subject to the restrictions summarized in Section 2.14. The spacetime metric is
split into the three pieces

gµν = mµν + h(0)µν + h(1)µν , (16.1.4a)

h(0)µν = χ
(r

t

)
χ(r)2M

r
δµν, (16.1.4b)

where the cut-off function χ is defined in (4.2.1). Furthermore, by Proposition 10.4, if ε is sufficiently
small and E`;γ(0)+M ≤ ε, then the initial energy for the reduced solution satisfies

E`;γ;µ(0). E`;γ(0)+M . ε. (16.1.5)

We now state our technical theorem concerning the derivation of a “strong” a priori energy estimate.
The proof will be provided in Section 16.2.

Theorem 16.1 (Derivation of a strong a priori energy estimate). Let (gµν
def
= mµν +

hµν︷ ︸︸ ︷
h(0)µν + h(1)µν ,Fµν) be a

local-in-time solution of the reduced equations (3.7.1a)–(3.7.1c) satisfying the wave-coordinate condition
(3.1.1a) for (t, x) ∈ [0, T )×R3. Let `≥ 0 be an integer. Suppose also that, for some constants µ′ and γ

satisfying 0< µ′ < 1
2 and 0< γ< 1

2 , for all vector fields Z ∈ Z, for all Z-multi-indices I subject to the
restrictions stated below, and for the sets L= {L}, T= {L , e1, e2}, and N= {L, L , e1, e2}, the following
pointwise decay estimates hold for (t, x) ∈ [0, T )×R3:

(1+ |q|)−1
|h|LT+ (1+ |q|)−1

|∇Z h|LL+ |∇h|TN+ |F| ≤ Cε(1+ t + |q|)−1, (16.1.6a)

(1+ |q|)−1
|∇

I
Zh| + |∇∇ I

Zh| + |LI
ZF|

≤

{
Cε(1+ t + |q|)−1+Cε(1+ |q|)−1−Cε if q > 0,
Cε(1+ t + |q|)−1+Cε(1+ |q|)−1/2+µ′ if q < 0

(|I | ≤ b`/2c), (16.1.6b)

|∇∇
I
Zh| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
Cε(1+ t + |q|)−2+Cε(1+ |q|)−Cε if q > 0,
Cε(1+ t + |q|)−2+Cε(1+ |q|)1/2+µ

′

if q < 0
(|I | ≤ b`/2c). (16.1.6c)

In addition, assume that the following smallness conditions on the abstract initial data and ADM mass hold:

E`;γ(0)+M ≤ ε̊. (16.1.7)

Then for any constant µ satisfying 0< µ< 1
2 −µ′, there exist positive constants ε`, c`, and c̃` depending

on `, µ, µ′, and γ such that, if ε̊ ≤ ε ≤ ε`, then the following energy inequality holds for t ∈ [0, T ):

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε. (16.1.8)
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Remark 16.2. By Lemma 15.1, the decompositions h = h(0) + h(1) and H = H(0) + H(1) (where
Hµν def
= (g−1)µν − (m−1)µν), and the fact that Hµν

(1) = −h(1)µν + O∞(|h(0)+ h(1)|2), it follows that the
estimates stated in the assumptions of the theorem also hold if we replace h with h(0), H(0), h(1), or H(1).

We now state and (using the results of Theorem 16.1) prove our main global stability theorem.

Theorem 16.3 (Global stability of the Minkowski spacetime solution). Let (g̊ jk = δ jk + h̊(0)jk + h̊(1)jk ,

K̊ jk, D̊ j , B̊ j ) ( j, k = 1, 2, 3) be abstract initial data on the manifold R3 for the Einstein-nonlinear
electromagnetic system (1.0.1a)–(1.0.1c) that satisfy the constraints (4.1.1a)–(4.1.2b), and let (gµν |t=0 =

mµν + h(0)µν |t=0 + h(1)µν |t=0, ∂t gµν |t=0 = ∂t h
(0)
µν |t=0 + ∂t h

(1)
µν |t=0,Fµν |t=0) (µ, ν = 0, 1, 2, 3) be the corre-

sponding initial data for the reduced system (3.7.1a)–(3.7.1c) as defined in Section 4.2. Assume that the
abstract initial data are asymptotically flat in the sense that (1.0.4a)–(1.0.4f) hold. Let `≥ 10 be an integer,
and let 0< γ< 1

2 be a fixed constant. Let E`;γ(0) be the norm of the abstract data given in (16.1.1), and
let M be the ADM mass corresponding to the abstract data. Then there exists a constant ε` > 0 depending
on γ and ` such that, if ε ≤ ε` and if

E`;γ(0)+M ≤ ε, (16.1.9)

then the reduced data launch a unique, classical solution (gµν
def
= mµν + h(0)µν + h(1)µν ,Fµν) that exists

for (t, x) ∈ (−∞×∞)×R3. The solution satisfies both31 the reduced system (3.7.1a)–(3.7.1c) and the
Einstein-nonlinear electromagnetic system (1.0.1a)–(1.0.1c), and the spacetime (R1+3, gµν) is geodesically
complete. In addition, the coordinates (t, x) form a global system of wave coordinates. Furthermore,
there exists a constant 0 < µ < 1

2 (see Remark 1.2), and constants c` > 0 and c̃` > 0 depending on γ

and `, such that the solution’s energy (16.1.2) satisfies the following bound for all t ∈ (−∞,∞):

E`;γ;µ(t)≤ c`ε(1+ |t |)c̃`ε. (16.1.10)

In addition, there exists a constant C` > 0 depending on γ and ` such that the following pointwise
decay estimates hold for all (t, x) ∈ (−∞,∞)×R3:

(1+ |t | + |q|)1−c̃`ε(1+ |q|)−3/2
|h(1)|LT+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−3/2

|∇Z h(1)|LL

+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−1/2
|∇h(1)|LT+ (1+ |t | + |q|)1−c̃`ε(1+ |q|)−1/2

|∇∇Z h(1)|LL

+ |∇h(1)|TN+{1+ ln(1+ |t |)}−1
|∇h(1)| + |F|

≤ C`ε(1+ |t | + |q|)−1, (16.1.11a)

(1+ |q|)−1
|∇

I
Zh(1)| + |∇∇ I

Zh(1)| + |LI
ZF|

≤

{
C`ε(1+ |t | + |q|)−1+c̃`ε(1+ |q|)−1−γ if q > 0,

C`ε(1+ |t | + |q|)−1+c̃`ε(1+ |q|)−1/2 if q < 0
(|I | ≤ `− 3), (16.1.11b)

|∇∇
I
Zh(1)| + (1+ |q|)|∇LI

ZF| + |LI
ZF|LN+ |L

I
ZF|TT

≤

{
C`ε(1+ |t | + |q|)−2+c̃`ε(1+ |q|)−γ if q > 0,
C`ε(1+ |t | + |q|)−2+c̃`ε(1+ |q|)1/2 if q < 0

(|I | ≤ `− 4). (16.1.11c)

31Of course, we technically mean here that the pair (h(1)µν ,Fµν) is a solution to the version (3.7.1a)–(3.7.1c) of the reduced
equations while the pair (gµν ,Fµν) is a solution to (1.0.1a)–(1.0.1c).
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Remark 16.4. Some of the (1+|q|)-decay estimates in inequalities (16.1.11a)–(16.1.11c) are not optimal
and can be improved with additional work. For example, in [Lindblad and Rodnianski 2010, Section 16],
with the help of the fundamental solution of the Minkowski wave operator 2m , the (1+ |q|)-decay
estimates (16.1.11b)–(16.1.11c) for the tensor field h(1) are strengthened by a power of 1

2 in the interior
region {q < 0}.

Remark 16.5. Proposition 4.2 shows that the wave-coordinate condition (3.1.1a) holds in the domain of
classical existence of the solution to the reduced equations; this is why the reduced solution also satisfies
the Einstein-nonlinear electromagnetic equations (1.0.1a)–(1.0.1c).

Remark 16.6. A global stability result for the reduced equations under the wave-coordinate assumption,
without regard for the abstract initial data, can be deduced from the smallness of E`;γ;µ(0)+ |M | (we
could even allow for negative M!) together with the assumption lim inf|x |→∞|h(1)(0, x)| = 0; this latter
assumption, which is needed to deduce the inequalities (15.1.2b) at t = 0, is automatically implied by the
assumptions of Theorem 16.3.

Proof. We only discuss the region of spacetime in which t ≥ 0; the argument for t ≤ 0 is similar. We
define E`;γ(0)+M def

= ε̊. By Proposition 14.1, we can choose constants γ′, µ, µ′, and δ subject to the
restrictions described in Section 2.14 (in particular, these constants depend on γ) and a constant A` > 0
such that, if ε def

= A`ε̊, A` is sufficiently large, and ε̊ is sufficiently small, then there exists a nontrivial
spacetime slab [0, T )×R3 upon which the solution to the reduced equations exists and satisfies the energy
bound E`;γ;µ(t)≤ ε(1+ t)δ for t ∈ [0, T ). We then define

T∗
def
= sup

{
T
∣∣ the solution exists classically and remains in the regime

of hyperbolicity of the reduced equations, and E`;γ;µ(t)≤ ε(1+ t)δ for t ∈ [0, T )
}
.

Note that, under the above assumptions, we have that T∗ > 0.
We now observe that the main energy bootstrap assumption (15.0.1) is satisfied on [0, T∗). Thus, if

ε is sufficiently small, then by Propositions 15.6 and 15.7, all of the hypotheses of Theorem 16.1 are
necessarily satisfied on [0, T∗). Here, we are using the fact that b`/2c ≤ `− 5, which holds if ` ≥ 10.
Consequently, the conclusion of that theorem (i.e., estimate (16.1.8)) allows us to deduce that the following
energy estimate holds for t ∈ [0, T∗):

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε = c`
( ε

A`
+ ε3/2

)
(1+ t)c̃`ε. (16.1.12)

Now if A` > 3c` and ε̊ is sufficiently small, then (16.1.12) implies that

E`;γ;µ(t) < 1
2 A`ε̊(1+ t)A`c̃`ε̊ = 1

2ε(1+ t)c̃`ε, (16.1.13)

which is a strict improvement over the bootstrap assumption (15.0.1). Thus, by (16.1.13), the weighted
Klainerman–Sobolev inequality (B.4) (which, together with (6.5.22) and the smallness of E`;γ;µ(t), implies
that the solution remains within the regime of hyperbolicity of the reduced equations), the continuation
principle of Proposition 14.1, and the continuity of E`;γ;µ(t), it follows that, if A` is sufficiently large and
ε̊ is sufficiently small, then T∗ =∞. Furthermore, under these assumptions, it is an obvious consequence
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of this reasoning that (16.1.13) holds for t ∈ [0,∞). After renaming the constants in (16.1.13), we arrive
at (16.1.10).

The inequalities (16.1.11b) follow as in the proof of Corollary 15.3 but with the strong energy estimate
(16.1.10) in place of the energy bootstrap assumption (15.0.1). Similarly, the inequalities (16.1.11a)
follow as in our proof of Proposition 15.6 but with the strong energy estimate (16.1.10) in place of the
energy bootstrap assumption (15.0.1). The inequalities (16.1.11c) for |∇∇ I

Zh(1)| and |∇LI
ZF| follow from

Lemma 6.16, (6.5.22), and (16.1.11b). The inequalities (16.1.11c) for |LI
ZF|LN and |LI

ZF|TT follow as
in our proof of (15.2.1) but with the strong energy estimate (16.1.10) in place of the energy bootstrap
assumption (15.0.1).

Based on these pointwise decay estimates, the geodesic completeness of the spacetime (R1+3, gµν
def
=

mµν + h(0)µν + h(1)µν) follows as in [Lindblad and Rodnianski 2005, Section 16; Loizelet 2008, Section 9].
�

16.2. The main argument in the proof of Theorem 16.1. Our goal is to use only the assumptions of
Theorem 16.1 to deduce (for all sufficiently small nonnegative ε and for sufficiently large fixed constants
c` and c̃`) the “strong” a priori energy estimate (16.1.8), which we restate for convenience:

E`;γ;µ(t)≤ c`(ε̊+ ε3/2)(1+ t)c̃`ε. (16.2.1)

The proof of (16.2.1) is based on a hierarchy of Gronwall-amenable inequalities for Ek;γ;µ(t) (0≤ k ≤ `).
We derive this hierarchy by carefully analyzing the integrals of Proposition 12.3 involving the inhomoge-
neous terms H(1;I )µν and Fν(I ). We recall that the structure of these inhomogeneous terms is captured by
Propositions 7.1 and 8.1, which state that ∇ I

Zh(1)µν and LI
ZFµν are solutions to the following system of

equations:

2̃g∇
I
Zh(1)µν = H(1;I )µν (µ, ν = 0, 1, 2, 3), (16.2.2a)

∇λLI
ZFµν +∇µLI

ZFνλ+∇νLI
ZFλµ = 0 (λ, µ, ν = 0, 1, 2, 3), (16.2.2b)

N #µνκλ
∇µLI

ZFκλ = Fν(I ) (ν = 0, 1, 2, 3). (16.2.2c)

Most of the work goes into obtaining suitable estimates for the integrals involving H(1;I )µν and Fν(I ). In order
to avoid impeding the flow of the proof, we prove most of the desired inequalities later in this section
after the main argument. For the main part of the argument, we simply quote Corollaries 16.12 and 16.18,
which are the key estimates that allow us to apply a suitable version of Gronwall’s inequality. We will then
return to the proofs of Corollaries 16.12 and 16.18, which follow from a large collection of lemmas, each
of which involves the analysis of one of the constituent pieces of the integrals involving H(1;I )µν and Fν(I ).

We now proceed to the main argument. We first note that the hypotheses of Proposition 12.3 are
implied by the hypotheses of Theorem 16.1. Therefore, we can use Proposition 12.3 (with Ḟ

def
= LI

ZF in
the proposition) and Corollaries 16.12 and 16.18 to deduce that
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∑
|I |≤k

∫
6t

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

≤ C
∑
|I |≤k

∫
60

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +Cε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+C
∑
|I |≤k

∫ t

0

∫
6τ

(
|H(1;I )||∇∇ I

Zh(1)| +
∣∣(LI

ZF0ν)F
ν
(I )

∣∣)w(q) d3x dτ

≤ C
∑
|I |≤k

∫
60

∣∣∣∣(∇∇ I
Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x +C M
∑
|I |≤k

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ

+Cε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+Cε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+Cε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+Cε3.

(16.2.3)

Recalling the definition (where the dependence on µ and γ is through w(q))

E2
k;γ;µ(t)

def
= sup

0≤τ≤t

∑
|I |≤k

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2
)
w(q) d3x

and introducing the quantity Sk;γ;µ(t)≥ 0, which is defined by

S2
k;γ;µ(t)

def
=

∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ, (16.2.4)

it therefore follows from the final inequality of (16.2.3) that

E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ CE2
k;γ;µ(0)+C M

∫ t

0
(1+ τ)−3/2Ek;γ;µ(τ ) dτ +Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ

+ CεS2
k;γ;µ(t)︸ ︷︷ ︸

absorb into left-hand side

+Cε
∫ t

0
(1+ τ)−1+CεE2

k−1;γ;µ(τ ) dτ +Cε3. (16.2.5)

For ε sufficiently small, we may absorb the CεS2
k;γ;µ(t) term from (16.2.5) into the left-hand side at the

expense of increasing all of the constants. We can similarly absorb the term C M
∫ t

0 (1+τ)
−3/2Ek;γ;µ(τ ) dτ

by using the inequality C M
∫ t

0 (1+ τ)
−3/2Ek;γ;µ(τ ) dτ ≤ 1

2 E2
k;γ;µ(t)+C2 M2, which follows from the

algebraic estimate C MEk;γ;µ(τ )≤
1
4 E2

k;γ;µ(τ )+C2 M2, the integral inequality
∫ t

0 (1+τ)
−3/2 dτ ≤ 2, and

the fact that E2
k;γ;µ(τ ) is increasing. If we also use the fact that E2

k;γ;µ(0)≤ C(E2
`;γ(0)+M2)≤ C ε̊2 (i.e,

Proposition 10.4) and the inequality M ≤ ε̊, then we arrive at the following inequality, valid for all small ε:
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E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ C(ε̊2
+ ε3)+Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ

+Cε
∫ t

0
(1+ τ)−1+CεE2

k−1;γ;µ(τ ) dτ︸ ︷︷ ︸
absent if k = 0

. (16.2.6)

For k = 0, (16.2.6) implies that

E2
0;γ;µ(t)≤ C(ε̊2

+ ε3)+ c0ε

∫ t

0
(1+ τ)−1E2

0;γ;µ(τ ) dτ. (16.2.7)

From (16.2.7) and Gronwall’s inequality, we deduce that

E2
0;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)c0ε. (16.2.8)

Using (16.2.6) and the base case (16.2.8), we will argue inductively to derive the following estimate
for k ≥ 1:

E2
k;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)ckε. (16.2.9)

Assuming that (16.2.9) holds for the case k − 1, we insert inequality (16.2.9) for E2
k−1;γ;µ(t) into the

right-hand side of (16.2.6) and deduce that

E2
k;γ;µ(t)+S2

k;γ;µ(t)≤ C(ε̊2
+ ε3)+Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ +Cε(ε̊2
+ ε3)

∫ t

0
(1+ τ)−1+Cε dτ

≤ C(ε̊2
+ ε3)(1+ t)Cε +Cε

∫ t

0
(1+ τ)−1E2

k;γ;µ(τ ) dτ. (16.2.10)

Finally, from (16.2.10) and Gronwall’s lemma, we conclude that, if ε is sufficiently small, then

E2
k;γ;µ(t)≤ C(ε̊2

+ ε3)(1+ t)ckε. (16.2.11)

We have therefore closed the induction and shown (16.1.8). This concludes the proof of Theorem 16.1.

16.3. Integral inequalities for the ∇ I
Zh(1)µν inhomogeneities. In this section, we analyze the integrals in

Proposition 12.3 corresponding to the inhomogeneous terms H(1;I )µν in (16.2.2a). The main goal is to arrive
at Corollary 16.12. The main point is that right-hand sides of the inequalities in the corollary can be
bounded in terms of time integrals of the energies Ek;γ;µ(t) (this was carried out in inequality (16.2.5)).
As opposed to the estimates proved in Section 16.4, most of the estimates proved in this section are a
straightforward generalization of the ones proved in [Lindblad and Rodnianski 2010]; i.e., the estimates
involve a similar analysis but with additional terms arising from the presence of the F terms appearing
on the right-hand side of the reduced equation (3.7.1a). The additional terms result in the presence of the
LJ

ZF component of the first term on the right-hand side of inequality (16.3.2) and the LJ ′
Z F component

of the next-to-last term of the same inequality. The most important aspect of our analysis is showing that
these additional terms respectively appear with the factors ε(1+ t)−1 and ε(1+ t)−1+Cε.

We begin with a lemma that follows easily from algebraic estimates of the form |ab|. a2
+ b2:

Lemma 16.7 (Arithmetic-geometric mean inequality). Let

H(1;I )µν = ∇̂
I
ZHµν −∇̂

I
Z2̃h(0)µν − (∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν)
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be the inhomogeneous term on the right-hand side of (7.0.1). Then the following algebraic inequality
holds:
|H(1;I )||∇∇ I

Zh(1)| ≤ ε−1(1+ t)|∇̂ I
ZH|

2
+ ε−1(1+ t)|∇̂ I

Z2̃gh(1)µν − 2̃g∇
I
Zh(1)µν |

2

+ ε(1+ t)−1
|∇∇

I
Zh(1)|2+ |∇̂ I

Z2̃gh(0)||∇∇ I
Zh(1)|. (16.3.1)

�

The next lemma provides a preliminary pointwise estimate for the |∇̂ I
ZH| term on the right-hand side

of (16.3.1).

Lemma 16.8 (Pointwise estimates for the |∇ I
ZH| inhomogeneities; extension of [Lindblad and Rodnianski

2010, Lemma 11.2]). Under the assumptions of Theorem 16.1, if I is any Z-multi-index with |I | ≤ ` and
if ε is sufficiently small, then the following pointwise estimates hold for (t, x) ∈ [0, T )×R3:

|∇
I
ZH|. ε

∑
|J |≤|I |

(1+ t)−1
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣+ε ∑
|J |≤|I |

(1+ t+|q|)−1+Cε(1+|q|)−1/2+µ′
|∇∇

J
Zh(1)|

+ ε2
∑
|J |≤|I |

(1+ t + |q|)−1(1+ |q|)−1
|∇

J
Zh(1)|

+ ε
∑

|J ′|≤|I |−1

(1+ t)−1+Cε
∣∣∣∣(∇∇ J ′

Z h(1)

LJ ′
Z F

)∣∣∣∣︸ ︷︷ ︸
absent if |I | = 0

+ ε2(1+ t + |q|)−4. (16.3.2)

Proof. By Proposition 11.3, we have that

|∇
I
ZH|. |(i)| + |(ii)| + |(iii)|, (16.3.3)

where

|(i)| =
∑

|J |+|K |≤|I |

|∇∇
J
Zh|TN|∇∇

K
Z h|TN+ |∇∇

J
Zh||∇∇K

Z h|

+

∑
|J ′′|+|K ′′|≤|I |−2

|∇∇
J ′′
Z h||∇∇K ′′

Z h|︸ ︷︷ ︸
absent if |I | ≤ 1

, (16.3.4)

|(ii)| =
∑

|J |+|K |≤|I |

|LJ
ZF||LK

Z F|, (16.3.5)

|(iii)| =
∑

|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||∇∇ I2

Z h||∇∇ I3
Z h| +

∑
|I1|+|I2|+|I3|≤|I |

|∇
I1
Z h||LI2

Z F||LI3
Z F|

+

∑
|I1|+|I2|+|I3|≤|I |

|LI1
Z F||LI2

Z F||LI3
Z F|. (16.3.6)

The desired bound for |(i)| was proved in Lemma 11.2 of [Lindblad and Rodnianski 2010] by using
the decomposition h = h(1)+ h(0) and by combining Lemma 15.1 and inequalities (16.1.6a)–(16.1.6c).
The term |(ii)| is the main contribution to |∇ I

ZH| arising from the presence of nonzero electromagnetic
fields. To bound |(ii)| by the right-hand side of (16.3.2), we consider the cases (|J | = `, |K | = 0),
(|J | = 0, |K | = `), (|J | ≤ `− 1, |K | ≤ b`/2c), and (|J | ≤ b`/2c, |K | ≤ `− 1); clearly this exhausts
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all possible cases. In the first two cases, we use (16.1.6a) to achieve the desired bound while in the
last two we use (16.1.6b). The cubic terms from case (iii) can be similarly bounded by using the
decomposition h = h(1)+ h(0) and by combining Lemma 15.1 and inequality (16.1.6b). �

Using the previous lemma, we now derive the desired integral inequalities corresponding to the
ε−1(1+ t)|∇̂ I

ZH|
2 term on the right-hand side of (16.3.1).

Lemma 16.9 (Integral estimates for ε−1(1 + t)|∇̂ I
ZH|

2w(q); extension of [Lindblad and Rodnianski
2010, Lemma 11.3]). Under the assumptions of Theorem 16.1, if I is any Z-multi-index with |I | ≤ ` and
if ε is sufficiently small, then the following integral estimate holds for t ∈ [0, T ):

ε−1
∫ t

0

∫
6τ

(1+ τ)|∇̂ I
ZH|

2w(q) d3x dτ

. ε
∑
|J |≤|I |

∫ t

0

∫
6τ

(
(1+ τ)−1

∣∣∣∣(∇∇ J
Zh(1)

LJ
ZF

)∣∣∣∣2w(q)+ |∇∇ J
Zh(1)|2w′(q)

)
d3x dτ

+ ε
∑

|J ′|≤|I |−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J ′

Z h(1)

LJ ′
Z F

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if |I | = 0

+ ε3. (16.3.7)

Proof. After squaring both sides of (16.3.2), multiplying by ε−1(1 + t)w(q), using the inequality
(1+ |q|)−1(1+ q−)−2µw(q). w′(q) (i.e., inequality (12.1.2)) and the fact that µ+µ′< 1

2 , and integrating,
we see that the only terms that are not manifestly bounded by the right-hand side of (16.3.7) are

ε3
∑
|J |≤|I |

∫ t

0

∫
6t

(1+ τ)−1(1+ |q|)−2
|∇

J
Zh(1)|2w(q) d3x dτ. (16.3.8)

The desired bound for these terms can be achieved with the help of the Hardy inequalities of Proposition C.1,
which imply that∫

6t

(1+ τ)−1(1+ |q|)−2
|∇

J
Zh(1)|2w(q) d3x .

∫
6t

(1+ τ)−1
|∇∇

J
Zh(1)|2w(q) d3x . (16.3.9)

This concludes the proof. �

We now derive the desired integral inequalities corresponding to the |∇̂ I
Z2̃gh(0)||∇∇ I

Zh(1)| term on the
right-hand side of (16.3.1).

Lemma 16.10 (Integral estimates for |∇̂ I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) [Lindblad and Rodnianski 2010, Lemma
11.4]). Let M be the ADM mass. Under the assumptions of Theorem 16.1, if I is a Z-multi-index satisfying
|I | ≤ ` and if ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):
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0

∫
6τ

|∇̂
I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) d3x dτ

. M
∑
|J |≤|I |

∫ t

0

∫
6τ

(1+ τ)−2
|∇∇

I
Zh(1)|2w(q) d3x dτ

+M
∑
|J |≤|I |

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ. (16.3.10)

Proof. We first use the Cauchy–Schwarz inequality for integrals to obtain∫ t

0

∫
6τ

|∇̂
I
Z2̃gh(0)||∇∇ I

Zh(1)|w(q) d3x dτ

≤

∫ t

0

[(∫
6τ

|∇̂
I
Z2̃gh(0)|2w(q) d3x

)1/2

×

(∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)1/2]
dτ. (16.3.11)

Furthermore, under the present assumptions, the previous proof of inequality (15.1.3b) remains valid.
Thus, from (15.1.3b) and the Hardy inequalities of Proposition C.1, it follows that∫

6t

|∇̂
I
Z2̃gh(0)|2w(q) d3x . M2(1+ t)−3

+M2(1+ t)−4
∑
|J |≤|I |

∫
6t

|∇∇
J
Zh(1)|2w(q) d3x . (16.3.12)

The estimate (16.3.10) now follows from (16.3.11), (16.3.12), and the inequalities
√
|a| + |b|.

√
|a|+
√
|b|

and |ab|. a2
+ b2. �

The following integral estimate for the commutator term ε−1(1+ t)|∇̂ I
Z2̃gh(1)µν − 2̃g(∇

I
Zh(1)µν)|2 on the

right-hand side of (16.3.1) was proved in [Lindblad and Rodnianski 2010]. Its lengthy proof is similar to
our proof of Lemma 16.17 below, and we do not repeat it here.

Lemma 16.11 (Integral estimates for ε−1
|∇̂

I
Z2̃gh(1)µν − 2̃g∇

I
Zh(1)µν |2w(q) [Lindblad and Rodnianski 2010,

Lemma 11.5]). Under the assumptions of Theorem 16.1, if I is a Z-multi-index satisfying 1≤ |I | ≤ ` and
if ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):

ε−1
∫ t

0

∫
6τ

(1+ τ)
∣∣∇̂ I

Z2̃gh(1)µν − 2̃g∇
I
Zh(1)µν

∣∣2w(q) d3x dτ

. ε
∑
|J |≤|I |

∫ t

0

∫
6τ

(
(1+ τ)−1

|∇∇
J
Zh(1)|2w(q)+ |∇∇ J

Zh(1)|2w′(q)
)

d3x dτ

+ ε
∑

|J ′|≤|I |−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ + ε3. (16.3.13)

Combining Lemmas 16.7, 16.9, 16.10, and 16.11, we arrive at the following corollary:

Corollary 16.12 (Estimates for the energy integrals corresponding to the h(1) inhomogeneities). Under
the assumptions of Theorem 16.1, if 0 ≤ k ≤ ` and ε is sufficiently small, then the following integral
inequality holds for t ∈ [0, T ):



STABILITY OF THE MINKOWSKI SPACETIME SOLUTION TO THE EINSTEIN-NONLINEAR EM SYSTEM 889

∑
|I |≤k

∫ t

0

∫
6τ

|H(1;I )||∇∇ I
Zh(1)| d3x dτ . M

∑
|I |≤k

∫ t

0

(
(1+ τ)−3/2

√∫
6τ

|∇∇
I
Zh(1)|2w(q) d3x

)
dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+ ε3. (16.3.14)

This completes our analysis of the integral inequalities for the h(1)µν inhomogeneities.

16.4. Integral inequalities for the LI
ZFµν inhomogeneities. In this section, we estimate the integrals

corresponding to the inhomogeneous terms in the LI
Z-commuted electromagnetic equations. More

precisely, we analyze the integrals in Proposition 12.3 corresponding to the inhomogeneous terms Fν(I )
in (16.2.2c). The main goal is to arrive at Corollary 16.18. As was the case for Corollary 16.12, the
main point is that right-hand sides of the inequalities in Corollary 16.18 can be bounded in terms of time
integrals of the energies Ek;γ;µ(t) (this was carried out in inequality (16.2.5)).

We begin with the following lemma, which provides pointwise estimates for the wave-coordinate-
controlled quantities |∇∇ I

Zh(1)|LL and |∇∇ J
Zh(1)|LT for |I | ≤ ` and |J | ≤ `−1. These pointwise estimates

will be used to help to derive suitable integral estimates later in this section.

Lemma 16.13 (Pointwise estimates for
∑
|I |≤k |∇∇

I
Zh(1)|LL +

∑
|J |≤k−1|∇∇

J
Zh(1)|LT). Under the as-

sumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the following pointwise inequality
holds for (t, x) ∈ [0, T )×R3:

∑
|I |≤k

|∇∇
I
Zh(1)|LL+

absent if k = 0︷ ︸︸ ︷∑
|J |≤k−1

|∇∇
J
Zh(1)|LT

.
∑
|I |≤k

|∇∇
I
Zh(1)| + ε(1+ t + |q|)−2χ0(1/2≤ r/t ≤ 3/4)+ ε2(1+ t + |q|)−3

+ ε
∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)1/2+µ
′

|∇∇
I
Zh(1)|

+ ε
∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)−1/2+µ′
|∇

I
Zh(1)| +

absent if k ≤ 1︷ ︸︸ ︷∑
|J ′|≤k−2

|∇∇
J ′
Z h(1)|, (16.4.1)

where χ0
(1

2 ≤ z ≤ 3
4

)
is the characteristic function of the interval

[1
2 ,

3
4

]
.
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Proof. Lemma 16.13 follows from Lemma 11.2 (for the tensor field h(1)µν ) and the pointwise decay
assumptions (16.1.6b) for h(1)µν . �

In the next lemma, we derive pointwise estimates for the term |(LI
ZF0ν)L̂

I
ZF

ν
|. This term appears in

the second spacetime integral on the right-hand side of (12.2.1), which is our basic energy inequality for
the Faraday tensor and its Lie derivatives. The pointwise estimates are preliminary estimates that will be
used in the subsequent lemma to estimate the corresponding spacetime integral.

Lemma 16.14 (Pointwise estimates for |(LI
ZF0ν)L̂

I
ZF

ν
|). Let Fν(I ) = L̂I

ZF
ν
+ [N #µνκλ

∇µLI
ZFκλ −

L̂I
Z(N

#µνκλ
∇µFκλ)] be the inhomogeneous term (8.1.2b) in the equations of variation (8.1.1b) satisfied

by Ḟ
def
= LI

ZF. Under the assumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the
following pointwise inequality holds for (t, x) ∈ [0, T )×R3:∑
|I |≤k

|(LI
ZF0ν)L̂

I
ZF

ν
|. ε

∑
|I |≤k

(1+ t + |q|)−1(
|LI

ZF|2+ |∇∇ I
Zh(1)|2

)
+ ε

∑
|I |≤k

(1+ |q|)−1(1+ q−)−2µ
|∇∇

I
Zh(1)|2

+ ε
∑
|I |≤|k|

(1+ |q|)−1(1+ q−)−2µ(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
+ ε

∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|. (16.4.2)

Proof. From (11.1.11a) with Xν
def
= LI

ZF0ν , the pointwise decay assumptions of Theorem 16.1, the
decomposition h = h(0)+ h(1), and the h(0)-decay estimates of Lemma 15.1, it follows that∑
|I |≤k

|(LI
ZF0ν)L̂

I
ZF

ν
|.

∑
|I |≤k

|I1|+|I2|≤|I |

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|

+

∑
|I |≤k

|I1|+|I2|≤|I |

|LI
ZF||∇∇ I1

Z h(1)|
(
|LI2

Z F|LN+ |L
I2
Z F|TT

)
+

∑
|I |≤k

|I1|+|I2|+|I3|≤|I |

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F||LI3

Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤|I |

|LI
ZF||∇ I1

Z h(1)||∇∇ I2
Z h(1)||LI3

Z F|

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|∇∇

I
Zh(1)|2

+ ε
∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|LI

ZF|2. (16.4.3)

Inequality (16.4.2) now follows from the assumptions of Theorem 16.1, (16.4.3), and repeated ap-
plication of algebraic inequalities of the form |ab| . ςa2

+ ς−1b2. As an example, we consider the
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term |LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|LN in the case that |I1| ≤ |I | ≤ b`/2c (such an inequality must be satisfied

by either |I1| or |I2|). Then with the help of (16.1.6b) and the fact that µ+µ′ < 1
2 , it follows that, if ε is

sufficiently small, then

|LI
ZF||∇∇ I1

Z h(1)||LI2
Z F|LN . ε(1+ t + |q|)−1

|LI
ZF|2+ ε−1(1+ t + |q|)|∇∇ I1

Z h(1)|2|LI2
Z F|2LN

. ε(1+ t + |q|)−1
|LI

ZF|2+ ε(1+ |q|)−1(1+ q−)−2µ
|LI2

Z F|2LN. (16.4.4)

We now observe that the right-hand side of the above inequality is manifestly bounded by the right-hand
side of (16.4.2). �

We now use the pointwise estimates of the previous lemma to estimate part of the second space-
time integral on the right-hand side of (12.2.1). These estimates are easier than the corresponding
estimates involving the commutator term N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ), which are derived in

Lemma 16.17.

Lemma 16.15 (Integral estimates for |(LI
ZF0ν)L̂

I
ZF

ν
|w(q)). Under the assumptions of Lemma 16.14,

if 0≤ k ≤ ` and ε is sufficiently small, then the following integral inequality holds for t ∈ [0, T ):∑
|I |≤k

∫ t

0

∫
6τ

∣∣(LI
ZF0ν)L̂

I
ZF

ν
∣∣w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|LI

ZF|2w(q) d3x dτ + ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ. (16.4.5)

Proof. Inequality (16.4.5) follows from multiplying inequality (16.4.2) by w(q), integrating
∫ t

0

∫
6τ

d3x dτ ,
using the fact that (1+ |q|)−1(1+ q−)−2µw(q). w′(q), and using the Hardy estimate (16.3.9) to bound
the integral corresponding to the last sum on the right-hand side of (16.4.2) by the second sum on the
right-hand side of (16.4.5). �

The next lemma is a companion to Lemma 16.14. In the lemma, we derive pointwise estimates for
the term |(LI

ZF0ν)[N #µνκλ
∇µLI

ZFκλ− L̂I
Z(N

#µνκλ
∇µFκλ)]|. This term appears in the second spacetime

integral on the right-hand side of (12.2.1), which is our basic energy inequality for the Faraday tensor and
its Lie derivatives. As before, these pointwise estimates are preliminary estimates that will be used in the
subsequent lemma to estimate the corresponding spacetime integral.

Lemma 16.16 (Pointwise estimates for |(LI
ZF0ν)[N #µνκλ

∇µLI
ZFκλ−L̂I

Z(N
#µνκλ
∇µFκλ)]|). Let N #µνκλ

·

∇µLI
ZFκλ − L̂I

Z(N
#µνκλ
∇µFκλ) be the inhomogeneous commutator term (8.1.3b) in the equations of

variation (8.1.1b) satisfied by Ḟµν
def
= LI

ZFµν . Under the assumptions of Theorem 16.1, if 1≤ k ≤ ` and
ε is sufficiently small, then the following pointwise inequality holds for (t, x) ∈ [0, T )×R3:
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|I |≤k

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣
. ε

∑
|I |≤|k|

(1+ t + |q|)−1
|LI

ZF|2+ ε
∑
|I |≤|k|

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+ ε
∑
|I |≤|k|

(1+ |q|)−1(1+ q−)−2µ(
|LI

ZF|2LN+ |L
I
ZF|2TT

)
+ ε

∑
|I |≤k

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

I
Zh(1)|2LL

+ ε
∑
|J |≤k−1

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

J
Zh(1)|2LT

+ ε
∑
|J ′|≤k−2

(1+ t + |q|)−1+Cε(1+ |q|)−2
|∇

J ′
Z h(1)|2︸ ︷︷ ︸

absent if k = 1

+ ε
∑
|J |≤k−1

(1+ t + |q|)−1+Cε
|LJ

ZF|2. (16.4.6)

Proof. From inequality (11.1.11b) with Xν
def
= LI

ZF0ν , the pointwise decay assumptions of Theorem 16.1,
together with the decomposition h= h(0)+h(1) and the h(0) decay estimates of Lemma 15.1, it follows that∑
|I |≤k

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣
.

∑
|I |≤k, |I ′|≤k
|J |≤1

(1+ |q|)−1
|LI

ZF||∇ I ′
Z h(1)|LL|L

J
ZF| +

∑
|I |≤k, |I ′|≤k
|J |≤1

(1+ |q|)−1
|LI

ZF||∇ J
Zh(1)|LL|L

I ′
Z F|

+

∑
|I |≤k

(1+ |q|)−1
|LI

ZF|2|h|LT+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|

(
|LI2

Z F|LN+ |L
I2
Z F|TT

)

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ |q|)−1
|LI

ZF|LN|∇
I1
Z h(1)||LI2

Z F|

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|,|I2|≤k

(1+ t + |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F|

+ ε
∑
|I |≤k

(1+ t + |q|)−1
|LI

ZF|2+ ε
∑
|I |≤k

(1+ t + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2

+

∑
|I |≤k

|I1|+|I2|≤k+1
|I1|≤k−1, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|LL|L

I2
Z F|

+

∑
|I |≤k

|I1|+|I2|≤k
|I1|≤k−1, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)|LT|L

I2
Z F|
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+

∑
|I |≤k

|I1|+|I2|≤k−1
|I1|≤k−2, |I2|≤k−1

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F|

︸ ︷︷ ︸
absent if k = 1

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||∇ I2

Z h(1)||LI3
Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||∇ I1
Z h(1)||LI2

Z F||LI3
Z F|

+

∑
|I |≤k

|I1|+|I2|+|I3|≤k+1
|I1|,|I2|,|I3|≤k

(1+ |q|)−1
|LI

ZF||LI1
Z F||LI2

Z F||LI3
Z F|. (16.4.7)

We remark that the ε
∑
|I |≤k(1+t+|q|)−1

|LI
ZF|2 and ε

∑
|I |≤k(1+t+|q|)−1(1+|q|)−2

|∇
I
Zh(1)|2 sums on

the right-hand side of (16.4.7) account for all of the terms containing a factor∇ J
Zh(0) for some J . Inequality

(16.4.6) now follows from (16.4.7), the pointwise decay assumptions of Theorem 16.1 (including the im-
plied estimates for h(1)), and simple algebraic estimates of the form |ab|.ςa2

+ς−1b2 (as in (16.4.4)). �

The next lemma is a companion to Lemma 16.15. In the lemma, we use the pointwise estimates of the
previous lemma to estimate the part of the second spacetime integral on the right-hand side of (12.2.1)
that was not addressed by Lemma 16.15.

Lemma 16.17 (Integral estimates for |(LI
ZF0ν)[N #µνκλ

∇µLI
ZFκλ − L̂I

Z(N
#µνκλ
∇µFκλ)]|). Under the

assumptions of Lemma 16.14, if 1≤ k ≤ ` and ε is sufficiently small, then the following integral inequality
holds for t ∈ [0, T ):

∑
|I |≤k

∫ t

0

∫
6τ

∣∣(LI
ZF0ν)

(
N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)

)∣∣w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|LI

ZF|2w(q) d3x dτ + ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+ ε
∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|LJ

ZF|2w(q) d3x dτ + ε3. (16.4.8)
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Proof. We begin by multiplying both sides of (16.4.6) by w(q) and integrating
∫ t

0

∫
6τ

d3x dτ . The
integrals corresponding to the first and last sums on the right-hand side of (16.4.6) are manifestly
bounded by the first and next-to-last terms on the right-hand side of (16.4.8). Using also the fact that
(1+ |q|)−1(1+ q−)−2µw(q). w′(q), we deduce that the integral corresponding to the third sum on the
right-hand side of (16.4.6) is bounded by the third sum on the right-hand side of (16.4.8).

To bound the integral corresponding to the second sum on the right-hand side of (16.4.6), we simply
use the Hardy inequalities of Proposition C.1 to derive the inequality

∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ. (16.4.9)

After multiplication by ε, we see that the right-hand side of the above inequality is manifestly bounded
by the second sum on the right-hand side of (16.4.8). Using the same reasoning, we obtain the following
bound for the integral corresponding to the next-to-last sum on the right-hand side of (16.4.6):

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε(1+ |q|)−2
|∇

J ′
Z h(1)|2w(q) d3x dτ

.
∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ. (16.4.10)

We then multiply (16.4.10) by ε and observe that the right-hand side of the resulting inequality is manifestly
bounded by the right-hand side of (16.4.8).

To estimate the integrals corresponding to the fourth and fifth sums on the right-hand side of (16.4.6),
we will make use of the weight w̃(q), which is defined by

w̃(q) def
= min{w′(q), (1+ t + |q|)−1+Cεw(q)}. (16.4.11)

We note that by (12.1.2) the following inequality is satisfied:

w̃(q). (1+ |q|)−1w(q). (16.4.12)

With the help of Lemma 16.13, (16.4.12), and the Hardy inequalities of Proposition C.1, we estimate
the integral corresponding to the fourth sum on the right-hand side of (16.4.6) as follows:

∑
|I |≤k

∫ t

0

∫
6τ

(1+ t + |q|)−1+Cε(1+ |q|)−(2+Cε)(1+ q−)−2µ
|∇

I
Zh(1)|2LLw(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2LLw̃(q) d3x dτ
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.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+ ε2
∫ t

0

∫
6τ

(1+ τ + |q|)−4χ2
0

(1
2
<

r
t
<

3
4

)
w′(q) d3x dτ

+ ε4
∫ t

0

∫
6τ

(1+ τ + |q|)−6w′(q) d3x dτ

+ ε2
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+ ε2
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

+

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ + |q|)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

.
∑
|I |≤k

∫ t

0

∫
6τ

|∇∇
I
Zh(1)|2w′(q) d3x dτ

+

∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ

+

∑
|J ′|≤k−2

∫ t

0

∫
6τ

(1+ τ)−1+Cε
|∇∇

J ′
Z h(1)|2w(q) d3x dτ︸ ︷︷ ︸

absent if k = 1

+ ε2, (16.4.13)

where to pass to the final inequality we have again used Proposition C.1 to estimate∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ + |q|)−1(1+ |q|)−2
|∇

I
Zh(1)|2w(q) d3x dτ

.
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
|∇∇

I
Zh(1)|2w(q) d3x dτ.

After multiplying both sides of (16.4.13) by ε, we see that the resulting right-hand side is manifestly
bounded by the right-hand side of (16.4.8) as desired. The integral corresponding to the fifth sum on the
right-hand side of (16.4.6) can be bounded via the same reasoning. �

Combining Lemmas 16.15 and 16.17, we arrive at the following corollary:

Corollary 16.18 (Estimates for the energy integrals corresponding to the F inhomogeneities). Let

Fν(I ) = L̂I
ZF

ν
+ [N #µνκλ

∇µLI
ZFκλ− L̂I

Z(N
#µνκλ
∇µFκλ)]

be the inhomogeneous term (8.1.3b) in the equations of variation (8.1.1b) satisfied by Ḟµν
def
= LI

ZFµν .
Under the assumptions of Theorem 16.1, if 0≤ k ≤ ` and ε is sufficiently small, then the following integral
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inequality holds for t ∈ [0, T ):∑
|I |≤k

∫ t

0

∫
6τ

|(LI
ZF0ν)F

ν
(I )|w(q) d3x dτ

. ε
∑
|I |≤k

∫ t

0

∫
6τ

(1+ τ)−1
∣∣∣∣(∇∇ I

Zh(1)

LI
ZF

)∣∣∣∣2w(q) d3x dτ

+ ε
∑
|I |≤k

∫ t

0

∫
6τ

(
|∇∇

I
Zh(1)|2+ |LI

ZF|2LN+ |L
I
ZF|2TT

)
w′(q) d3x dτ

+ ε
∑
|J |≤k−1

∫ t

0

∫
6τ

(1+ τ)−1+Cε
∣∣∣∣(∇∇ J

Zh(1)

LJ
ZF

)∣∣∣∣2w(q) d3x dτ︸ ︷︷ ︸
absent if k = 0

+ ε3. (16.4.14)

Appendix A: Weighted Sobolev–Moser inequalities

The propositions and corollaries stated in this section were used in Section 10 to relate the smallness
condition on the abstract initial data to a smallness condition on the initial energy of the corresponding
solution to the reduced equations. The lemmas we state are slight extensions of Lemmas 2.4 and 2.5 of
[Choquet-Bruhat and Christodoulou 1981] while the corollaries are easy (and nonoptimal) consequences
of the lemmas. Throughout the appendix, we use the abbreviations

C`
η

def
= C`

η(R
3), H `

η

def
= H `

η (R
3),

and so on (see Definitions 10.1 and 10.2). Furthermore, (x1, x2, x3) denotes the standard Euclidean
coordinate system on R3 and |x | def

=

√
(x1)2+ (x2)2+ (x3)2.

Proposition A.1 (Weighted Sobolev embedding [Choquet-Bruhat and Christodoulou 1981, Lemma 2.4]).
Let ` and `′ be integers, and let η and η′ be real numbers subject to the constraints `′ < `− 3

2 and
η′ < η+ 3

2 . Assume that v ∈ H `
η . Then v ∈ C`′

η′ , and

‖v‖C`′

η′
. ‖v‖H `

η
. (A.1)

Proposition A.2 (Weighted Sobolev multiplication properties [Choquet-Bruhat and Christodoulou 1981,
Lemma 2.5]). Let `1, . . . , `p ≥ 0 be integers, and let η1, . . . , ηp be real numbers. Suppose that v j ∈ H ` j

η j

for j = 1, . . . , p. Assume that the integer ` satisfies 0≤ `≤min{`1, . . . , `p} and `≤
∑p

j=1 ` j − (p− 1) 3
2

and that η <
∑p

j=1 η j + (p− 1)3
2 . Then

p∏
j=1

v j ∈ H `
η , (A.2)

and the multiplication map

H `1
η1
× · · ·× H `p

ηp → Hη

` , (v1, . . . , vp)→

p∏
j=1

v j (A.3)

is continuous.
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Corollary A.3. Let ` ≥ 2 be an integer, and let η ≥ 0. Assume that v j ∈ H `
η for j = 1, . . . , p and that

I1, . . . , Ip are ∇-multi-indices satisfying
∑p

j=1|I j | ≤ `. Then

(1+ |x |2)(η+
∑p

j=1|I j |)/2
p∏

i=1

∇
Iivi ∈ L2 (A.4)

and ∥∥∥∥(1+ |x |2)(η+∑p
j=1|I j |)/2

p∏
i=1

∇
Iivi

∥∥∥∥
L2
.

p∏
i=1

‖vi‖H `
η
. (A.5)

Corollary A.4. Let ` ≥ 2 be an integer, let K be a compact set, and let F( · ) ∈ C`(K) be a function.
Assume that v1 is a function on R3 such that v1(R

3)⊂ K. Furthermore, assume that ∇v1, v2 ∈ H `
η . Then

(F ◦ v1)v2 ∈ H `
η , and

‖(F ◦ v1)v2‖H `
η
. ‖v2‖H `

η
|F |K+‖(1+ |x |)v2‖L∞‖∇v1‖H `−1

η

∑̀
j=1

|F ( j)
|K‖v1‖

j−1
L∞ , (A.6)

where F ( j) denotes the array of all j -th order partial derivatives of F with respect to its arguments and
|F ( j)
|K

def
= supv∈K|F

( j)(v)|.

Appendix B: Weighted Klainerman–Sobolev inequalities

In this section, we recall the weighted Klainerman–Sobolev inequalities that were proved in [Lindblad
and Rodnianski 2010]. Throughout this section, the weight function w(q) is defined by

w
def
= w(q) def

=

{
1+ (1+ |q|)1+2γ if q > 0,
1+ (1+ |q|)−2µ if q < 0.

(B.1)

In this section, we assume that γ and µ are fixed constants satisfying 0< γ< 1 and 0< µ< 1
2 . It easily

follows from (B.1) that

w′
def
= w′(q)=

{
(1+ 2γ)(1+ |q|)2γ if q > 0,
2µ(1+ |q|)−1−2µ if q < 0,

(B.2)

and
w′ ≤ 4(1+ |q|)−1w ≤ 16µ−1(1+ q−)2µw′. (B.3)

Proposition B.1 (Weighted Klainerman–Sobolev inequality [Lindblad and Rodnianski 2010, Proposition
14.1]). There exists a C > 0 such that, for all φ(t, · ) ∈ C∞0 (R

3), the following inequality holds:

(1+ t + |x |)[(1+ |q|)w(q)]1/2|φ(t, x)| ≤ C
∑
|I |≤3

∥∥w1/2
∇

I
Zφ(t, · )

∥∥
L2, q def

= |x | − t. (B.4)

Furthermore,

(1+ t + |x |)[(1+ |q|)w(q)]1/2|∇φ(t, x)| ≤ C
∑
|I |≤3

∥∥w1/2
∇∇

I
Zφ(t, · )

∥∥
L2, q def

= |x | − t. (B.5)

Proof. Equation (B.4) was proved in the paper cited; (B.5) follows from Lemma 6.11 and (B.4). �
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Appendix C: Hardy-type inequalities

In this section, we recall the weighted Hardy-type inequalities proved in [Lindblad and Rodnianski 2010].

Proposition C.1 (Hardy inequalities [Lindblad and Rodnianski 2010, Corollary 13.3]). Let γ> 0 and
µ > 0, q def

= |x | − t , and let w(q) and w′(q) be as defined in (B.1) and (B.2), respectively. Then for
any −1≤ a ≤ 1, there exists a C > 0 such that, for all φ ∈ C∞0 (R

3), we have the integral inequality∫
R3
(1+ t + |q|)−1+a(1+ |q|)−2

|φ|2w(q) d3x ≤ C
∫

R3
(1+ t + |q|)−1+a

|∂rφ|
2w(q) d3x, (C.1)

where ∂r = ω
b∂b, ω j def

= x j/r , denotes the radial vector field.
If in addition a < 2 min{γ,µ}, then with

w̃(q) def
= min{w′(q), (1+ t + |q|)−1+aw(q)}, (C.2)

there exists a constant C > 0 such that the integral inequality∫
R3
(1+ t + |q|)−1+a(1+ |q|)−(a+2)(1+ q−)−2µ

|φ|2w(q) d3x ≤ C
∫

R3
|∂rφ|

2w̃(q) d3x, (C.3)

holds, where q−
def
= |q| if q ≤ 0 and q− = 0 if q > 0.

Corollary C.2. Assume the hypotheses of Proposition C.1, and let Pµν be a type-
(0

2

)
tensor field. Let V

and W be any two of the subsets of null frame-field vectors defined in (5.1.12). Then the same conclusions
of Proposition C.1 hold if we replace |φ| and |∂rφ| with the contraction seminorms |P|VW and |∇P|VW,
respectively, where the contraction seminorms are defined in Definition 5.8.

Proof. Let 6m be the first fundamental form of the Sr,t defined in (5.1.4b), and recall that the tensor 6m ν
µ

projects m-orthogonally onto the Sr,t . Since ∂r =
1
2(L − L), it follows from (5.1.9a), (5.1.9b), and

(5.1.10) that

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.4)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.5)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ, (C.6)

∂r (LκLλPκλ)= 1
2 LκLλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.7)

∂r ( 6m κ
µ LλPκλ)= 1

2 6m
κ
µ Lλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.8)

∂r (Lκ 6m λ
µ Pκλ)= 1

2 Lκ 6m λ
µ (∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.9)

∂r ( 6m κ
µ LλPκλ)= 1

2 6m
κ
µ Lλ(∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.10)

∂r (Lκ 6m λ
µ Pκλ)= 1

2 Lκ 6m λ
µ (∇L −∇L)Pκλ (µ= 0, 1, 2, 3), (C.11)

∂r ( 6m κ
µ 6m

λ
ν Pκλ)= 1

2 6m
κ
µ 6m

λ
ν (∇L −∇L)Pκλ (µ, ν = 0, 1, 2, 3). (C.12)

That is to say, ∂r commutes with the null decomposition of P . The conclusion of the corollary now easily
follows from applying the proposition with φ equal to the scalar-valued functions LκLλPκλ, LκLλPκλ, . . . ,
6m κ
µ 6m

λ
ν Pκλ, respectively. �
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DISPERSION FOR THE SCHRÖDINGER EQUATION ON THE LINE WITH
MULTIPLE DIRAC DELTA POTENTIALS AND ON DELTA TREES

VALERIA BANICA AND LIVIU I. IGNAT

We consider the time-dependent one-dimensional Schrödinger equation with multiple Dirac delta poten-
tials of different strengths. We prove that the classical dispersion property holds under some restrictions
on the strengths and on the lengths of the finite intervals. The result is obtained in a more general setting
of a Laplace operator on a tree with ı-coupling conditions at the vertices. The proof relies on a careful
analysis of the properties of the resolvent of the associated Hamiltonian. With respect to our earlier
analysis for Kirchhoff conditions [J. Math. Phys. 52:8 (2011), #083703], here the resolvent is no longer
in the framework of Wiener algebra of almost periodic functions, and its expression is harder to analyse.

1. Introduction

In this paper we are concerned with the dispersive properties of the Schrödinger equation with multiple
Dirac delta potentials and more generally for the Schrödinger equation on a tree with ı-coupling conditions
at the vertices.

Let us first recall that the linear Schrödinger equation on the line,�
iut .t;x/Cuxx.t;x/D 0; .t;x/ 2 R�R;

u.0;x/D u0.x/; x 2 R;
(1)

conserves the L2-norm
keit�u0kL2.R/D ku0kL2.R/ (2)

and enjoys the dispersive estimate

keit�u0kL1.R/ �
Cp
jt j
ku0kL1.R/; t ¤ 0: (3)

It is classical to obtain from these two inequalities the well-known space-time Strichartz estimates
[Strichartz 1977; Ginibre and Velo 1985], for r � 2,

keit�u0k
L

4r
r�2
t .R;Lr

x.R//
� Cku0kL2.R/: (4)
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These dispersive estimates have been successfully applied to obtain results for the nonlinear Schrödinger
equation (see, for example [Cazenave 2003; Tao 2006] and the references therein).

Our general framework in this paper refers to the Dirac delta Hamiltonian on a tree with a finite number
of vertices, with the external edges (those that have only one internal vertex as an endpoint) formed by
infinite strips. The particular case of a tree with all the internal vertices having degree two will give us
a result for the Schrödinger equation on the line with several Dirac potentials. Although the latter is a
corollary of the former, we shall start our presentation with the case of the line. This is motivated by the
fact that historically dispersive properties have been studied first in this case (only with one or with two
delta Dirac potentials) and that the previous results on graphs concern only star-shaped graphs (with only
one vertex), where the proofs are in the same spirit as on the line with one Dirac delta potential.

So we first consider the semigroup exp.�i tH˛/, where H˛ is a perturbation of the Laplace operator
with n Dirac delta potentials with real strengths f j̨ g

p
jD1

,

H˛ D��C

pX
jD1

j̨ı.x�xj /: (5)

The spectral properties of the Laplacian with multiple Dirac delta potentials on Rn have been extensively
studied. Operator H˛ has at most p eigenvalues, which are all negative and simple, and there are no
eigenvalues in the case of positive strengths ˛i > 0. The remaining part of the spectrum is absolutely
continuous and �ac.H˛/ D Œ0;1/. We will denote by Pe the L2 projection onto the subspace of the
eigenfunctions and by P the projection outside the discrete spectrum. Regarding the spectral properties
of H˛ we refer to [Albeverio et al. 2005, § II.2] and to the references within. The time-dependent
propagator of the linear Schrödinger equation has also been considered in the case of one Dirac delta
potential [Gaveau and Schulman 1986; Manoukian 1989; Adami and Sacchetti 2005; Datchev and
Holmer 2009], or one point interactions [Albeverio et al. 1994; Adami and Noja 2009; Fukuizumi
et al. 2008], or two symmetric Dirac delta potentials [Kovařík and Sacchetti 2010]. In particular, in the
case of the line with one delta interaction, without sign condition on the strength, dispersive estimates
has been proved but for e�itH˛P [Adami and Sacchetti 2005; Datchev and Holmer 2009]. A similar
result was proved to hold in the case of two-point interactions, under a condition on the delta-strength
and on the distance between the location of the point interactions [Kovařík and Sacchetti 2010]; see
also [Angulo Pava and Ferreira 2013]. Also in [Duchêne et al. 2011] the problem of dispersion for
several-delta potentials has been considered, as well as wave operator bounds from which dispersive
estimates can be obtained as a consequence. Here Jost and distorted plane functions are used in spectral
formulae. A weighted weaker than classical dispersion estimate is obtained for a class of potentials with
singularities.

Concerning the nonlinear Schrödinger equation with a Dirac delta potential, standing wave and bound
states have been analysed [Fukuizumi and Jeanjean 2008; Fukuizumi et al. 2008; Le Coz et al. 2008], as
well as the time dynamics of solitons [Holmer and Zworski 2007; Holmer et al. 2007a; 2007b].

For stating our first result concerning the case of several Dirac potentials, we need to introduce the
following functions. With the notations in Lemma 3.1 in the case when nj D 2, we define fp D det Dp
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and gp D
det zDp

det Dp
, defined by recursion as follows:

f1.!/D
2!C˛1

!C˛1

; fp.!/D
2!C p̨

!C p̨
e!ap�1fp�1.!/

�
1�

p̨

2!C p̨
e�2!ap�1gp�1.!/

�
;

where

g1.!/D
˛1

n1 !C˛1

; gp.!/D

p̨

np !C p̨
�
�2!C p̨

2!C p̨
e�2!ap�1gp�1.!/

1�
p̨

2!C p̨
e�2!ap�1gp�1.!/

:

These functions will appear naturally when computing the resolvent of H˛.

Theorem 1.1. For any f j̨ g
p
jD1

and fxj g
p
jD1

such that

@p�1
! fp

ˇ̌
!D0
¤ 0; (6)

the solution of the linear Schrödinger equation on the line with multiple delta interactions of strength j̨

located at xj satisfies the dispersion inequality

ke�itH˛Pu0kL1.R/ �
Cp
jt j
ku0kL1.R/ for all t ¤ 0: (7)

Moreover, in the case of positive strengths j̨ > 0, condition (6) is fulfilled and we have

ke�itH˛u0kL1.R/ �
Cp
jt j
ku0kL1.R/ for all t ¤ 0: (8)

We first notice that, in view of the definition of fp.!/, condition (6) is not fulfilled only in a few
explicit situations. For instance, if p D 2, the situations to be avoided are when x2�x1C

˛1C˛2

˛1˛2

D 0,
already used in [Kovařík and Sacchetti 2010].

In the previous works on dispersive estimates for one or two delta Dirac potentials, given the particular
structure of the operator H˛ , the authors obtain explicit representations of the resolvent and then of e�itH˛ .
However in the general case of multiple delta interactions an explicit representation is not easy to obtain;
even in [Albeverio et al. 1984; 2005, § II.2] the resolvent is obtained in terms of the inverse of some
matrix Dn that depends on f j̨ g

p
jD1

and on the lengths of the finite segments fxj �xj�1g
p
jD2

.
The line setting might be seen as the special case of the equation posed on a simple graph with

n vertices, with only two edges starting from any vertex and with delta connection conditions at each
vertex (x0 D�1, xpC1 D1):�

iut .t;x/Cuxx.t;x/D 0; x 2 .xj�1;xj /; j D 1; : : : ;p;

ux.t;x
C
j /�ux.t;x

�
j /D j̨ u.xj /; t > 0; j D 1; : : : ;p:

(9)

Our second framework refers to the Dirac delta Hamiltonian H�
˛ on a tree � D .V;E/ with a finite

number of vertices V , with the external edges (those that have only one internal vertex as an endpoint)
formed by infinite strips. We consider the linear Schrödinger equation in the case of a tree � , with delta
conditions of not necessarily equal strength at the vertices
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iut .t;x/DH�

˛ u.t;x/; .t;x/ 2 R��;

u.0;x/D u0.x/; x 2 �:
(10)

The presentation of the operator H�
˛ will be given in full detail in Section 2. Let us just say here that

H�
˛ acts on a function u on a graph as �@xx on each restriction of u to an edge of the tree and that its

domain consists of those functions u for which ı-coupling conditions must be fulfilled. The ı-coupling
conditions are a continuity condition for the function u and a ı-transmission condition at the level of its
first derivative at all internal vertices v:X

e2Ev

@nu.v/D ˛.v/u.v/:

The operator H�
˛ shares the same properties of H˛ above: only a finite number of negative eigenvalues,

and no eigenvalues for positive strengths, and �ac.H
�
˛ /D Œ0;1/. These properties follow as in [Albeverio

et al. 2005, § II.2].
The dispersion inequality for (10) was proved in [Banica and Ignat 2011] for the case of Kirchhoff’s

connection condition on trees, that is ˛.v/D 0 for all internal vertices of the tree (see also [Ignat 2010]).
The case of ı- and ı0-coupling on a star-shaped tree (i.e., only one vertex) has been considered in [Adami
et al. 2011], where the main result concerns the time evolution of a fast soliton for the nonlinear equation,
in the spirit of [Holmer et al. 2007a]. Finally, we mention that for the stationary nonlinear equation, the
study of bound states on a star-shaped tree with delta conditions has been analysed in a series of papers
[Adami et al. 2012a; 2012b; 2012c; 2012d].

The main result of this paper is the following, involving the expression of a determinant function
det D�p

.!/ defined by recursion in Lemma 3.1.

Theorem 1.2. Let us consider a tree � D .V;E/ with p vertices. If the strengths at the vertices and the
lengths of the finite edges are such that

@.p�1/
! det D�p

ˇ̌
!D0
¤ 0; (11)

then the solution of the linear Schrödinger equation on a tree with delta connection conditions satisfies
the dispersion inequality

ke�itH�
˛ Pu0kL1.�/ �

Cp
jt j
ku0kL1.�/ for all t ¤ 0: (12)

Moreover, in the case of positive strengths j̨ > 0, condition (11) is fulfilled and we have

ke�itH�
˛ u0kL1.�/ �

Cp
jt j
ku0kL1.�/ for all t ¤ 0: (13)

The proof of Theorem 1.2 uses elements from [Banica 2003; Banica and Ignat 2011; Gavrus 2012] in
an appropriate way related to the delta connection conditions on the tree. The starting point consists of
writing the solution in terms of the resolvent of the Laplacian, which in turn is determined by recursion
on the number of vertices. With respect to the previous works with Kirchhoff conditions, the novelty here
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is that we are no longer in the framework of the almost periodic Wiener algebra of functions, and the
expression of the resolvent is harder to analyse.

The linear solution e�itH�
˛ u0 will be shown to be a combination of oscillatory integrals, that becomes

more and more involved as the number of vertices of the tree grows. We do not have any more that
e�itH�

˛ u0 is a summable superposition of solutions of the linear Schrödinger equation on the line, as for
Kirchhoff conditions in [Banica and Ignat 2011].

Theorem 1.1 follows from Theorem 1.2 by considering the particular case of a tree � with all the
internal vertices having degree two.

As classically noticed [Rauch 1978; Jensen and Kato 1979; Journé et al. 1991; Rodnianski and Schlag
2004; Goldberg and Schlag 2004], one can expect dispersion in the absence of eigenvalues and of zero
resonances. In the ı-coupling case the nongeneric condition (6) for p D 2 is precisely in link with the
presence of a zero resonance (see formula (2.1.29) in Chapter II of [Albeverio et al. 2005]), so one might
expect that in the absence of eigenvalues the dispersion holds generically, even for more general coupling.
We shall give in Appendix C some sufficient conditions to obtain dispersion for general couplings.

Finally, we note that in the presence of eigenfunctions, the dispersion estimate cannot be valid globally
in time. Denoting by H either H˛ or H�

˛ , the general classical T T � argument and the Christ–Kiselev
lemma allow one to infer global in time Strichartz estimates as on R for e�itH P , the dispersive part of
e�itH (see for instance the short proof of Theorem 2.3 in [Tao 2006]). This together with the regularity
of the eigenfunctions of the operator H give us the following result:

Theorem 1.3. Let T > 0 and let .q; r/ and .q0; r 0/ be two 1-admissible couples, in the sense that
4 � q � 1, 2 � r � 1 and 2

q
C

1
r
D

1
2

. For any ˛ � 1, there exists a constant C > 0 such that the
homogeneous Strichartz estimates

ke�itH u0kLq..0;T /;Lr .�// � C
�
ku0kL2.�/CT 1=q

ku0kL˛.�/

�
;

and the inhomogeneous Strichartz estimatesZ t

0

e�i.t�s/H F.s/ ds


Lq..0;T /;Lr .�//

� C
�
kFkL Qq0 ..0;T /;LQr 0 .�//CT 1=q

kFkL1..0;T /;L˛.�//

�
;

hold. Here x0 stands for the conjugate of x, defined by 1

x
C

1

x0
D 1.

We shall give in Appendix B a proof inspired by [Datchev and Holmer 2009]. As a typical result
for the nonlinear Schrödinger equation based on the Strichartz estimates, one obtains the global in time
well-posedness for subcritical L2.�/ solutions:

Theorem 1.4. Let p 2 .0; 4/. For any u0 2L2.�/ there exists a unique solution

u 2 C.R;L2.�//\
\

.q;r/ 1-adm.

Lq.R;Lr .�//

of the nonlinear Schrödinger equation�
iut CHu˙jujpuD 0; t ¤ 0;

u.0/D u0; t D 0:
(14)



908 VALERIA BANICA AND LIVIU I. IGNAT

Moreover, the L2.�/-norm of u is conserved along the time: ku.t/kL2.�/ D ku0kL2.�/.

Local in time existence with lifespan depending on the L2 size of the initial data follows from a
classical fixed point argument as on R (see for instance Proposition 3.15 in [Tao 2006]). The extension to
global solutions is obtained from the conservation of the L2.�/-norm that in turn follows by taking the
imaginary part of (14) multiplied by Nu and integrating on � .

The paper is organised as follows. In the next section we introduce the framework of the Laplacian
analysis on a graph. In Section 3 we give the proof of Theorem 1.2. In Appendix A we show how the
conditions of the theorems are fulfilled for positive strengths of interactions. Appendix B contains the
proof of Theorem 1.3. In Appendix C we shall describe the approach for general coupling conditions.

2. Preliminaries on graphs and ı-coupling

In this section we present some generalities about metric graphs and introduce the Dirac delta Hamiltonian
H�
˛ on such structure. More general types of self-adjoint operators, �.A;B/, have been considered in

[Kostrykin and Schrader 2006; 1999]. We collect here some basic facts on metric graphs and on some
operators that could be defined on such structures [Kuchment 2008; 2004; 2005; Kostrykin and Schrader
2006; Gnutzmann and Smilansky 2006; Exner 2011].

Let � D .V;E/ be a graph where V is the set of vertices and E the set of edges. For each v 2 V we
denote by Ev D fe 2E W v 2 eg the set of edges branching from v. We assume that V is connected and
the degree of each vertex v of � is finite: d.v/ D jEvj <1. The edges could be of finite length and
then their ends are vertices of V , or they could have infinite length and then we assume that each infinite
edge is a ray with a single vertex belonging to V (see [Kuchment 2008] for more details on graphs with
infinite edges). The vertices are called internal if d.v/� 2 or external if d.v/D 1. In this paper we will
assume that there are no external vertices.

We fix an orientation of � and for each oriented edge e, we denote by I.e/ the initial vertex and by
T .e/ the terminal one. Of course in the case of infinite edges we have only initial vertices.

We identify every edge e of � with an interval Ie , where IeD Œ0; le � if the edge is finite and IeD Œ0;1/

if the edge is infinite. This identification introduces a coordinate xe along the edge e. In this way � is a
metric space and is often called a metric graph [Kuchment 2008].

Let v be a vertex of V and e be an edge in Ev. We set, for finite edges e,

j .v; e/D

�
0 if v D I.e/;

le if v D T .e/;

and, for infinite edges,
j .v; e/D 0 if v D I.e/:

We identify any function u on � with a collection fuege2E of functions ue defined on the edges e

of � . Each ue can be considered as a function on the interval Ie. In fact, we use the same notation ue

for both the function on the edge e and the function on the interval Ie identified with e. For a function
u W �! C, uD fuege2E , we denote by f .u/ W �! C the family ff .ue/ge2E , where f .ue/ W e! C.
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A function u D fuege2E is continuous if and only if ue is continuous on Ie for every e 2 E and,
moreover, is continuous at the vertices of �:

ue.j .v; e//D ue0.j .v; e0// for all e; e0 2Ev and v 2 V:

The space Lp.�/, 1� p <1 consists of all functions uD fuege2E on � that belong to Lp.Ie/ for
each edge e 2E and

kuk
p

Lp.�/
D

X
e2E

kue
k

p

Lp.Ie/
<1:

Similarly, the space L1.�/ consists of all functions that belong to L1.Ie/ for each edge e 2E and

kukL1.�/ D sup
e2E

kue
kL1.Ie/ <1:

The Sobolev space H m.�/, for an integer m� 1, consists of all continuous functions on � that belong to
H m.Ie/ for each e 2E and

kuk2H m.�/ D

X
e2E

kue
k

2
H m.e/ <1:

The above spaces are Hilbert spaces with the inner products

.u; v/L2.�/ D

X
e2E

.ue; ve/L2.Ie/
D

X
e2E

Z
Ie

ue.x/ve.x/ dx

and

.u; v/H m.�/ D

X
e2E

.ue; ve/H m.Ie/ D

X
e2E

mX
kD0

Z
Ie

dkue

dxk

dkve

dxk
dx:

We now define the normal exterior derivative of a function uD fuege2E at the endpoints of the edges.
For each e 2E and v an endpoint of e we consider the normal derivative of the restriction of u to the
edge e of Ev evaluated at j .v; e/, to be defined by

@ue

@ne
.j .v; e//D

�
�ue

x.0
C/ if j .v; e/D 0;

ue
x.l
�
e / if j .v; e/D le:

We now introduce H�
˛ . It generalises the classical Dirac delta interactions with strength parameters (5).

The Dirac delta Hamiltonian is defined on the domain

D
�
H�
˛

�
D

�
u 2H 2.�/ W

X
e2Ev

@ue

@ne
.j .v; e//D ˛.v/u.v/; 8v 2 V

�
: (15)

For any uD fuege2E , the operator H�
˛ acts by

.H�
˛ u/.x/D�ue

xx.x/; x 2 Ie; e 2E:

The quadratic form associated to H�
˛ is defined on H 1.�/ and it is given by

E�˛ .u/D
X
e2E

Z
Ie

jue
x.x/j

2 dxC
X
v2V

˛.v/ju.v/j2:
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When all strengths vanish this corresponds to the Kirchhoff coupling analysed in [Banica and Ignat 2011].
Finally, let us mention that there are other coupling conditions (see [Kostrykin and Schrader 1999]),

which allow one to define a “Laplace” operator on a metric graph. To be more precise, let us consider
an operator that acts on functions on the graph � as the second derivative d2=dx2, and whose domain
consists of all functions u that belong to the Sobolev space H 2.e/ on each edge e of � and satisfy the
following boundary condition at the vertices:

A.v/u.v/CB.v/u0.v/D 0 for each vertex v: (16)

Here u.v/ and u0.v/ are correspondingly the vector of values of u at v attained from directions of different
edges converging at v and the vector of derivatives at v in the outgoing directions. For each vertex v of
the tree we assume that matrices A.v/ and B.v/ are of size d.v/ and satisfy the following two conditions:

(1) the joint matrix .A.v/;B.v// has maximal rank d.v/,

(2) A.v/B.v/T D B.v/A.v/T .

Under those assumptions it was proved in [Kostrykin and Schrader 1999] that the operator under
consideration, denoted by �.A;B/, is self-adjoint. The case considered in this paper, of ı-coupling,
corresponds to the matrices

A.v/D

0BBBBBBB@

1 –1 0 � � � 0 0

0 1 –1 � � � 0 0

0 0 1 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 1 –1

0 0 0 � � � 0 –˛.v/

1CCCCCCCA
; B.v/D

0BBBBBBB@

0 0 0 � � � 0 0

0 0 0 � � � 0 0

0 0 0 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 0 0

1 1 1 � � � 1 1

1CCCCCCCA
:

More examples of matrices satisfying the above conditions are given in [Kostrykin and Schrader 1999;
Kostrykin et al. 2008].

3. Proof of Theorem 1.2

We shall use a description of the solution of the linear Schrödinger equation in terms of the resolvent. For
! > 0 such that �!2 is not an eigenvalue, let R! be the resolvent of the Laplacian on a tree

R!u0 D .H
�
˛ C!

2I/�1u0:

Before starting let us choose an orientation on the tree � . Choose an internal vertex O to be the root of
the tree and the initial vertex for all the edges that branch from it. This procedure introduces an orientation
for all the edges starting from O. For the other endpoints of the edges belonging to EO we repeat the
above procedure and inductively we construct an orientation on � .

3A. The structure of the resolvent. In order to obtain the expression of the resolvent, second-order
equations

.R!u0/
00
D !2R!u0�u0
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must be solved on each edge of the tree together with coupling conditions at each vertex. Then, on each
edge parametrised by Ie, for x 2 Ie, since ! ¤ 0,

R!u0.x/D ce e!x
C Qce e�!x

C
te.x; !/

!
; (17)

with

te.x; !/D
1

2

Z
Ie

u0.y/ e�!jx�yj dy:

Since R!u0 belongs to L2.�/, the coefficients ce and Qce are zero on the infinite edges e 2 E,
parametrised by Œ0;1/. If we denote by I the set of internal edges, we have 2jIjC jEj coefficients. The
delta conditions of continuity of R!u0 and of transmission of .R!u0/

0 at the vertices of the tree give the
system of equations on the coefficients. We have the same number of equations as of unknowns. We
denote by D�p

.!/ the matrix of the system, where p is the number of vertices of the tree, and T�p
.!/ is

the column of the free terms in the system.
Therefore the resolvent R!u0.x/ on an edge Ie is

R!u0.x/D
det M

ce

�p
.!/

det D�p
.!/

e!x
C

det M
Qce

�p
.!/

det D�p
.!/

e�!x
C

te.x; !/

!
; (18)

where M
ce

�p
.!/ and M

Qce

�p
.!/ are obtained from D�p

.!/ by replacing the column corresponding to the
unknown ce and Qce, respectively, by the column of the free terms T�p

.!/.

3B. The expression of det D�p
.!/. In view of the form (17) of the resolvent, we obtain on an edge Ie

R!u0.0/D ceC QceC
te.0; !/

!
;

.R!u0/
0.0/D ce! � Qce!C te.0; !/;

(19)

and, if Ie is parametrised by Œ0; a� with a<1,

R!u0.a/D ce e!a
C Qce e�!a

C
te.0; !/

!
;

.R!u0/
0.a/D ce ! e!a

� Qce ! e�!a
� te.a; !/:

(20)

3B1. The star-shaped tree case. In the case of a single vertex and n1 � 2 edges Ij , 1 � j � n1,
parametrised by Œ0;1/ we have only the coefficient Qcj on each edge Ij since each cj vanishes. The delta
conditions are continuity of the resolvent at the vertex, and the fact that the sum of the first derivatives
must be equal to ˛ times the value of the resolvent at the vertex:

.R!u0/j .0/D .R!u0/1.0/;
X

1�j�n1

.R!u0/
0
j .0/D ˛1 .R!u0/1.0/:



912 VALERIA BANICA AND LIVIU I. IGNAT

From (19) we obtain as the matrix for the system of Qc’s

D�1
.!/D

0BBBBBBBBBB@

1 –1

1 –1

: : :

1 –1

1 –1

1
!

!C˛1

!

!C˛1

� � �
!

!C˛1

!

!C˛1

!

!C˛1

1CCCCCCCCCCA
;

and as a free term column

T�1
.!/D

0BBBBBBBBB@

t2.0; !/�t1.0; !/

!

:::
tn1
.0; !/�tn1�1.0; !/

!

!�˛1

!C˛1

t1.0; !/

!
C

!

!C˛1

P
2�j�n1

tj .0; !/

!
:

1CCCCCCCCCA
By developing det D�1

.!/ with respect to its last column, we obtain by recursion that

det D�1
.!/D

n1!C˛1

!C˛1

:

Thus det D�1
does not vanish on the imaginary axis and !R!u0 can be analytically continued in a region

containing the imaginary axis.
We introduce here the matrix zD�1

.!/, which is the matrix of the coefficients of the resolvent if on
the last edge In1

we should have cn1
e!x instead of Qcn1

e�!x . This changes only the .n1; n1/-entry of
D�1

.!/, which is � !

!C˛1

instead of !

!C˛1

:

zD�1
.!/D

0BBBBBBBBBB@

1 –1

1 –1

: : :

1 –1

1 –1

1
!

!C˛1

!

!C˛1

� � �
!

!C˛1

!

!C˛1

�
!

!C˛1

1CCCCCCCCCCA
:

Moreover, the free term column remains the same for this new system. Again, by recursion, we have

det zD�1
.!/D

.n1� 2/!C˛1

!C˛1

:
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3B2. The general tree case. Any tree �p with p vertices, p � 2, can be seen as a tree �p�1 with p� 1

vertices, to which we add a new vertex on one of its infinite edges, and np � 1 new infinite edges from
it. Let us denote by N the number of edges of �p�1. By this transformation IN becomes an internal
edge, parametrised by Œ0; ap�1�, and we have in addition external edges INCj , for 1� j � np � 1. We
denote by p̨ the strength of the delta condition in the new p-th vertex. The matrix of the new system (the
unknowns of the �p�1 system, together with an extra unknown on the new internal line IN and np � 1

unknowns on the new np �1 external edges) is denoted by D�p
.!/. Notice that if we write the system of

unknowns of �p by changing the order of the unknowns (i.e., permuting columns) or the order of the
conditions at vertices (i.e., permuting lines), then the determinant remains unchanged or it changes sign,
and the ratio det zD�p

.!/=det D�p
.!/ remains unchanged.

For �p, by writing the delta conditions at the end of IN , together with the two conditions involving
the coefficients on IN at the beginning of IN , we obtain the matrix D�p

.!/ as0BBBBBBBBBBBBBBBBBB@

D�p�1
.!/ –1

�
!

!C p̨�1

e�!ap�1 e!ap�1 –1

1 –1
: : :

1 –1

1 –1
�!C p̨

!C p̨

e�!ap�1 e!ap�1
!

!C p̨

!

!C p̨

� � �
!

!C p̨

!

!C p̨

!

!C p̨

1CCCCCCCCCCCCCCCCCCA
and the free term column as

T�p
.!/D

0BBBBBBBBBBBBB@

T�p�1
.!/

tNC1.0; !/�tN .ap�1; !/

!

:::

tNCnp�1.0; !/�tNCnp�2.0; !/

!

!� p̨

!C p̨

tN .ap�1; !/

!
C

!

!C p̨

P
1�j�np�1

tNCj .0; !/

!

1CCCCCCCCCCCCCA
:

We point out that D�p
has p�1 pairs of columns that are equal at ! D 0. This implies that ! D 0 is a

zero of order at least p� 1 for D�p
. The assumption imposed in Theorem 1.1 guarantees that the order

of ! D 0 is exactly p� 1. This will avoid the existence of zero resonances for the resolvent R! . In the
case when all the strengths f˛kg

n
kD1

are positive the condition in Theorem 1.1 is fulfilled; this will be
proved in Appendix A.
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Lemma 3.1. We have the recursion formulae

det D�1
.!/D

n1!C˛1

!C˛1

;
det zD�1

.!/

det D�1
.!/
D
.n1� 2/!C˛1

n1!C˛1

;

det D�p
.!/D

np!C p̨

!C p̨
e!ap�1 det D�p�1

.!/

�
1�

.np � 2/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1
.!/

det D�p�1
.!/

�
;

det zD�p
.!/

det D�p
.!/
D

.np�2/!C p̨

np!C p̨

�
.np�4/!C p̨

np!C p̨

e�2!ap�1
det zD�p�1

.!/

det D�p�1
.!/

1�
.np�2/!C p̨

np!C p̨

e�2!ap�1
det zD�p�1

.!/

det D�p�1
.!/

: .21/

Proof. The part about �1 was proved in Section 3B1.
By developing det D�p

with respect to the last np lines, we obtain an alternated sum of determinants
of np�np minors composed of the last np lines of D�p

times the determinant of the matrix D�p
, without

the lines and columns the minor is made of. On the last np lines, there are only npC 1 columns that do
not identically vanish. The only possible way to obtain a np � np minor composed from the last np lines
of D�p

with determinant different from zero is to choose all of the last np � 1 columns together with
a previous one. This follows from the fact that if we eliminate from det D�n

both previous columns
together with np � 2 columns among the last np columns, we obtain a block-diagonal type matrix, with
first diagonal block D�p�1

with its last column replaced by zeros, so its determinant vanishes. Therefore

det D�p
D det D�p�1

det Anp � det zD�p�1
det Bnp ;

where for m� 1, Am and Bm are the m�m matrices

Am
D

0BBBBBBBBB@

e!ap�1 –1

1 –1
: : :

1 –1

1 –1

e!ap�1
!

!C p̨

!

!C p̨

� � �
!

!C p̨

!

!C p̨

!

!C p̨

1CCCCCCCCCA
;

Bm
D

0BBBBBBBBB@

e�!ap�1 –1

1 –1
: : :

1 –1

1 –1
�!C p̨

!C p̨

e�!ap�1
!

!C p̨

!

!C p̨

� � �
!

!C p̨

!

!C p̨

!

!C p̨

1CCCCCCCCCA
:

We have
det A2

D
2!C p̨

!C p̨
e!ap�1 ;
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and by developing Am with respect to the first last column we obtain the recursion formula

det Am
D

!

!C p̨
e!ap�1 C det Anp�1;

so
det Am

D
m!C p̨

!C p̨
e!ap�1 :

Similarly we obtain

det Bm
D
.m� 2/ !C p̨

!C p̨
e�!ap�1 :

Therefore we find, indeed,

det D�p
.!/D

np!C p̨

!C p̨
e!ap�1 det D�p�1

.!/

�
1�

.np � 2/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1
.!/

det D�p�1
.!/

�
:

In a similar way we get

det zD�p
.!/D

.np � 2/!C p̨

!C p̨
e!ap�1 det D�p�1

.!/�
.np � 4/!C p̨

!C p̨
e�!ap�1 det zD�p�1

.!/;

which leads directly to (21), completing the proof of the lemma. �

3C. A lower bound for det D�p
.i�/ away from 0.

Lemma 3.2. The function det D�p
.!/ is bounded away from zero by a positive constant on a strip

containing the imaginary axis:

8ı > 0; 9c�p
; ��p

> 0; 90< r�p
< 1 such that jdet D�p

.!/j> c�p
;

ˇ̌̌̌
det zD�p

.!/

det D�p
.!/

ˇ̌̌̌
< r� ;

for all ! 2 C with j<!j< �
�p

and j=!j> ı.

Proof. We shall prove this lemma by recursion on p. For p D 1, Lemma 3.1 ensures that

det D�1
.!/D

n1!C˛1

!C˛1

;
det zD�1

.!/

det D�1
.!/
D
.n1� 2/!C˛1

n1!C˛1

:

We obtain a positive lower bound for jdet D�1
.!/j if we show that it does not approach zero. Therefore

the existence of c
�1
> 0 is obtained by considering �

�1
� j˛1j

2n1

. Next, we haveˇ̌̌̌
.n1� 2/!C˛1

n1!C˛1

ˇ̌̌̌
< 1 () 0< ˛1<!C .n1� 1/j!j2;

so for any ı > 0 we get an appropriate 0< r
�1
< 1 by choosing

��1
�
.n1� 1/ı2

2j˛1j
:

Assume that we have proved this lemma for p� 1. We shall show now that it also holds for p. Now,
from the ratio information part in this lemma for �p�1 we can choose �

�p
small enough to have, for
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j<!j< �
�p

and j=!j> ı,ˇ̌̌̌
1�

.np � 2/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1
.!/

det D�p�1
.!/

ˇ̌̌̌
> c0 > 0:

Also from this lemma for �p�1 we have the existence of two positive constants c
�p�1

and �
�p�1

such that
jdet D�p�1

.!/j> c
�p�1

, for all ! 2 C with j<!j< �
�p�1

and j=!j> ı. Finally, .np!C p̨/=.!C p̨/

is bounded below by a positive constant for small enough <!, so eventually we get

9c�p
; ��p

> 0 such that jdet D�p
.!/j> c�p

for all ! 2 C with j<!j< ��p
; j=!j> ı:

We are left with showing that the ratio det zD�p
.!/=det D�p

.!/ is of modulus less than one. In view of
the recursion formula on the ratio from Lemma 3.1, we first impose as a condition on �

�p
that

Qr�p�1
WD e

2�
�p

ap�1r�p�1
< 1;

and then we have to show that for jzj< Qr
�p�1

,ˇ̌̌̌
.np � 2/!C p̨ � ..np � 4/!C p̨/z

np!C p̨ � ..np � 2/!C p̨/z

ˇ̌̌̌
< r�p

;

for all complex ! with j<!j < �
�p

and j=!j > ı, for �
�p

to be chosen and r
�p
< 1. By letting

q D .np � 2/!C p̨, the above inequality becomes

jq� .q� 2!/zj< j.qC 2!/� qzj () jq.1� z/C 2!zj< jq.1� z/C 2!j:

Expanding this last inequality we find that we have to prove that

0< j!j2.1� jzj2/Cj1� zj2..np � 2/j!j2C p̨<.!//:

Since np � 2 and jzj< Qr
�p�1

< 1, it is enough to have

0< j!j2.1� jzj2/Cj1� zj2 p̨<.!/:

Also, j<zj< Qr
�p�1

< 1, so by choosing �
�p
�

.1� Qr2
�p�1

/ı2

2j p̨j.1� Qr�p�1
/2

we get the existence of r
�p
< 1. �

3D. Vanishing of the numerator at � D 0. Recall that we have denoted by M
ce

�p
.!/ the matrix D�p

.!/

with De
�p
.!/, the column corresponding to the unknown ce, replaced by the free terms column T�p

.!/.
In particular ! det M

ce

�p
.!/ is the determinant of the matrix D�p

.!/ with the column corresponding to
the unknown ce replaced by !T�p

.!/. The same holds for M
Qce

�p
.!/ with the appropriate substitutions.

Lemma 3.3. �.!T�p
.!//.0/D

X
e2E

te.0; 0/D
e
�p
.0/C

X
e2I

te.0; 0/D
Qe
�p
.0/

Remark 3.4. From the shape of D�p
.!/ displayed in the proof of Lemma 3.1 we notice that the two

junction columns with D�p�1
.!/, corresponding to the coefficients of the resolvent on the connecting
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edge IN , are

D
IN

�p
.!/D

�
0; : : : ; 0;�1;

!

!C p̨�1
; e�!ap�1 ; 0; : : : ; 0;

�!C p̨

!C p̨
e�!ap�1

�T

and

D
QIN

�p
.!/D

�
0; : : : ; 0;�1;�

!

!C p̨�1
; e!ap�1 ; 0; : : : ; 0; e!ap�1

�T

:

In particular, these two columns are the same at ! D 0. Moreover, D�p
.!/ contains p� 1 such pairs of

columns: De
�p
.0/DD Qe

�p
.0/ for all e 2 I. Thus, the last term in the right side of Lemma 3.3 could be

either De
�p
.0/ or D Qe

�p
.0/, for e 2 I.

Proof. We will prove this identity inductively. For p D 1, .!T�1
/ is given in Section 3B1. We choose

X1 D .t1.0; 0/; t2.0; 0/; : : : ; tn1
.0; 0//T , then D�1

.0/X1 D �.!T�1
/.0/, which proves the lemma for

p D 1.
Given now Xp�1 such that D�p�1

.0/Xp�1 D�.!T�p�1
.!//.0/, we construct Xp as follows:

X T
p D .X

T
p�1; 0; tNC1.0; 0/; : : : ; tNCnp�1.0; 0//:

Using the recursion between D�p
and D�p�1

used in the proof of Lemma 3.1, the identity

!T�p
.!/D

0BBBBBBBB@

!T�p�1
.!/

tNC1.0; !/� tN .ap�1; !/
:::

tNCnp�1.0; !/� tNCnp�2.0; !/

!� p̨

!C p̨

tN .ap�1; !/C
!

!C p̨

P
1�j�np�1

tNCj .0; !/

1CCCCCCCCA
;

and the fact that te.0; 0/D te.ae; 0/ for all e 2I, we obtain that Xp satisfies D�p
.0/XpD�.!T�p

.!//.0/.
Writing this identity in terms of the columns of the matrix D�p

.0/ we obtain the desired identity. �

Lemma 3.5. ! D 0 is a root of order at least p�1 of ! det M
ce

�p
.!/ and of ! det M

Qce

�p
.!/ for all edges e.

Proof. We shall give the proof for ! det M
ce

�p
.!/; the result for ! det M

Qce

�p
.!/ will be the same. From the

shape of D�p
.!/ displayed in the proof of Lemma 3.1 and Remark 3.4 we have p� 1 pairs of columns

that are equal at ! D 0. Moreover, by Lemma 3.3, .!T�p
/.0/ is a linear combination of these columns

evaluated at ! D 0.
The derivative of a determinant is the sum of the determinants of the matrices obtained by differentiating

one column. When T�p
does not replace any of these 2.p� 1/ columns it follows that the lemma holds

since there are always two identical columns. Then by the above argument we have

@k
!.! det M

ce

�p
/.0/D 0 if 0� k � p� 3: (22)

Assume now that T�p
replaces one of these 2.p� 1/ columns. To finish the proof we must show that

@p�2
!

�
! det M

ce

�p

�
.0/D 0: (23)



918 VALERIA BANICA AND LIVIU I. IGNAT

Using again the fact that D�p
.!/ contains p � 1 pairs of columns that match at ! D 0, we only

need to show that det A�p
.0/D 0, where A�p

.!/ is D�p
.!/ with the column !T�p

.!/ replacing one
column of one pair, and one column of each of the remaining p� 2 pairs of columns is differentiated. In
particular A�p

.0/ contains one unchanged column of each of the p�1 pairs. By Lemma 3.3 we know that
.!T�p

.!//.0/ is a linear combination of the columns corresponding to external edges and of the internal
ones (each one from the p� 1 pairs), so the new determinant vanishes and the proof is finished. �

Lemma 3.6. For all edge indices � and e, !D 0 is a root of order at least p�2 of the coefficient f�;e.!/
of t�.0; !/ in ! det M

ce

�p
.!/, and the same holds for the coefficient Qf�;e.!/ of t�.0; !/ in ! det M

Qce

�p
.!/.

Proof. This result follows from the discussion that led to (22): the matrix !M
ce

�p
.!/ has p� 2 pairs of

columns that are identical at ! D 0. �

Lemma 3.7. For each edge index e and each external edge index �, ! D 0 is a root of order at least p�1

of the coefficient f�;e.!/ of t�.0; !/ in ! det M
ce

�p
.!/, and the same holds for the coefficient Qf�;e.!/ of

t�.0; !/ in ! det M
Qce

�p
.!/.

Proof. The statement corresponds to the particular case of Lemma 3.5 where all the components of T�p

are taken to be 0 except t�.0; !/, which is replaced by 1. �

Lemma 3.8. For each edge index e and each internal edge index �, !D0 is a root of order at least p�1 of
f 1
�;e
.!/Cf 2

�;e
.!/, where f 1

�;e
.!/ and f 2

�;e
.!/ are respectively the coefficients of t�.0; !/ and t�.a�; !/

in ! det M
ce

�p
.!/. The same holds for Qf 1

�;e
.!/C Qf 2

�;e
.!/, where Qf 1

�;e
.!/ and Qf 2

�;e
.!/ are respectively the

coefficients of t�.0; !/ and t�.a�; !/ in ! det M
Qce

�p
.!/.

Proof. The proof goes the same as for Lemma 3.7. �

3E. The end of the proof. Now we shall use the theorem hypothesis, @.p�1/
! det D�p

ˇ̌
!D0
¤ 0. We

obtain that ! D 0 is a root of order p� 1 of det D�p
. From the previous subsections we conclude the

following:

Lemma 3.9. !R!f .x/ can be analytically continued in a region containing the imaginary axis.

Proof. The proof is an immediate consequence of decomposition (18) for x 2 Ie , together with Lemma 3.2,
Lemma 3.5 and the fact that ! D 0 is a root of order p� 1 of det D�p

. �

Proof of Theorem 1.2. As a consequence of Lemma 3.9 we can use a spectral calculus argument to write
the solution of the Schrödinger equation with initial data u0 as

e�itH�
˛ Pu0.x/D

1

i�

Z 1
�1

e�it�2

�Ri�u0.x/ d�: (24)

In view of the definition of te and with the notations from Lemmas 3.7 and 3.8 we can also write the
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decomposition (18) as

�Ri�u0.x/D
1

2

Z
Ie

u0 e�i� jx�yj dy i C
X
�2E

f�;e.i�/

det D�p
.i�/

Z
I�

u0.y/e
i�y dy ei�x

C

X
�2E

Qf�;e.i�/

det D�p
.i�/

Z
I�

u0.y/e
i�y dy e�i�x

C

X
�2I

Z
I�

u0.y/

�
ei�y

f 1
�;e
.i�/

det D�p
.i�/
C ei�.a��y/

f 2
�;e
.i�/

det D�p
.i�/

�
dy ei�x

C

X
�2I

Z
I�

u0.y/

�
ei�y

Qf 1
�;e
.i�/

det D�p
.i�/
C ei�.a��y/

Qf 2
�;e
.i�/

det D�p
.i�/

�
dy e�i�x : (25)

Moreover, in view of the results in Lemma 3.8 and Lemma 3.7 we gather the terms as follows:

�Ri�u0.x/D
1

2

Z
Ie

iu0; e
�i� jx�yj dyC

X
�2E

Z
I�

u0.y/
f�;e.i�/

det D�p
.i�/

ei�.xCy/ dy

C

X
�2E

Z
I�

u0.y/
Qf�;e.i�/

det D�p
.i�/

ei�.y�x/ dyC
X
�2I

Z
I�

u0.y/
f 1
�;e
.i�/Cf 2

�;e
.i�/

det D�p
.i�/

ei�.xCy/ dy

C

X
�2I

Z
I�

u0.y/

Qf 1
�;e
.i�/C Qf 2

�;e
.i�/

det D�p
.i�/

ei�.y�x/ dy

C

X
�2I

Z
I�

u0.y/
.ei�.a��y/� ei�y/f 2

�;e
.i�/

det D�p
.i�/

ei�x dy

C

X
�2I

Z
I�

u0.y/
.ei�.a��y/� ei�y/ Qf 2

�;e
.i�/

det D�p
.i�/

e�i�x dy: (26)

Let e be an external edge. In view of Lemma 3.7 and the fact that ! D 0 is a root of order p � 1

of det D�p
, we obtain that the fraction f�;e.i�/=det D�p

.i�/ is upper bounded near � D 0. Outside a
neighbourhood of � D 0 we use Lemma 3.2 to infer that jdet D�p

.i�/j is positively bounded below outside
neighbourhoods of � D 0. Moreover, in view of the explicit entries of M

ce

�p
.i�/, we see that f�;e.i�/ is

upper bounded for any � 2 R since all the entries of matrix D�p
.i�/ as well as the coefficients of t� in

T�p.i�/ have absolute value less than one. Summarising, we have obtained that

f�;e.i�/

det D�p
.i�/
2L1.R/:

The derivative of this fraction is upper bounded near � D 0 by limited development at � D 0. Outside
neighbourhoods of � D 0 we have that @�f�;e.i�/ and @� det D�p

.i�/ have upper bounds of type 1=�2.
This is because each term of @�f�;e.i�/ and @� det D�p

.i�/ contains a derivative of an element of the
line given by the ı-condition involving the derivatives in the root vertex O. This vertex is the one which
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is an initial vertex for all n edges emerging from it: I.e/ D O, for all e 2 E, O 2 e. If ˛ denotes the
strength of the ı-condition in O, then this line of the matrix D�p

.i�/ is composed of 0; 1 and ˙ i�
i�C˛

,
where the minus sign appears only on the finite edges that star from O, and this line for the column matrix
i�T�p

.i�/ is �
i� �˛

i� C˛
t1.0; i�/C

i�

i� C˛

X
2�j�n

tj .0; i�/

�
:

Finally, as above, f�;e.i�/ and det D�p
.i�/ are upper bounded and from Lemma 3.2 we have that

jdet D�p
.i�/j is positively bounded below outside neighbourhoods of � D 0. In conclusion we infer that

@�
f�;e.i�/

det D�p
.i�/
2L1.R/:

The same argument using Lemmas 3.7, 3.8 and 3.6 can be performed to obtain that

Qf�;e.i�/

det D�p
.i�/

;
f 1
�;e
.i�/Cf 2

�;e
.i�/

det D�p
.i�/

;

Qf 1
�;e
.i�/C Qf 2

�;e
.i�/

det D�p
.i�/

;

.ei�.a��y/� ei�y/f 2
�;e
.i�/

det D�p
.i�/

;
.ei�.a��y/� ei�y/ Qf 2

�;e
.i�/

det D�p
.i�/

are in L1 with derivative in L1. Notice that when � belongs to an internal edge I� it follows that
the interval I� has finite length. Therefore for the last fractions we use that .ei�.a��y/� ei�y/f 2

�;e
.i�/

vanishes with order p� 1 at � D 0 and repeat the argument used above. The only difference from the
previous cases is that we will obtain bounds in terms of the parameter y. Since y is now on an internal
edge I� of finite length we obtain uniform bounds. Therefore the dispersion estimate (12) of Theorem 1.2
follows from (24) by using (26) and the classical oscillatory integral estimateˇ̌̌̌Z 1

�1

e�it�2

ei�ag.�/ d�

ˇ̌̌̌
�

Cp
jt j
.kgkL1 Ckg

0
kL1/: �

Appendix A: The multiplicity of the root !D 0 of det D�p
.!/

Here we prove that the condition (11) is fulfilled in the case of positive strengths. We shall show first the
following double property.

Lemma A.1. For all p � 1 we have the following properties:

.P1
p/ W

det zD�p

det D�p

.0/D 1; .P2
p/ W @!

�
det zD�p

det D�p

�
.0/ < 0:

Proof. Lemma 3.1 ensures that
det zD�1

det D�1

.!/D
.n1�2/!C˛1

n1 !C˛1
, and in particular

@!

�
det zD�1

det D�1

�
.!/D�

2˛1

.n1!C˛1/2
; (27)
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and the lemma follows for p D 1, since ˛1 > 0. We shall show the general case by recursion. Let us
denote by Pp.!/ and Qp.!/ the numerator and respectively the denominator in the recursion formula of
the ratio from Lemma 3.1:

Pp.!/D
.np � 2/!C p̨

np!C p̨
�
.np � 4/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1
.!/

det D�p�1
.!/

;

Qp.!/D 1�
.np � 2/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1
.!/

det D�p�1
.!/

:

We have Pp.0/DQp.0/D 0, and in view of .P1
p�1

/ we compute

@!Pp.0/D @!Qp.0/D
2

˛p
C 2ap�1� @!

�
det zD�p�1

det D�p�1

�
.0/:

Therefore .P2
p�1

/ ensures that @!Pp.0/D @!Qp.0/¤ 0 and we apply l’Hôpital’s rule to conclude .P1
p/.

Since

Pp.!/�Qp.!/D�
2!

np!C p̨

�
1� e�2ap�1!

det zD�p�1

det D�p�1

.!/

�
;

we define zPp.!/ and zQp.!/ by

Pp.!/D
2!

np!C p̨

zPp.!/; Qp.!/D
2!

np!C p̨

zQp.!/:

In particular

det zD�p

det D�p

.!/D
zPp

zQp

.!/; zPp.!/� zQp.!/D�

�
1� e�2ap�1!

det zD�p�1

det D�p�1

.!/

�
:

By using .P1
p�1

/ and .P2
p�1

/, we obtain

@!. zPp �
zQp/.0/D�2ap�1C @!

�
det zD�p�1

det D�p�1

�
.0/:

Moreover, zPp.0/D zQp.0/D
1
2 p̨@!Pp.0/D

1
2 p̨@!Qp.0/¤ 0, and we can compute

@!

�
det zD�p

det D�p

�
.0/D

@! zPp.0/ zQp.0/� zPp.0/@! zQp.0/

. zQp.0//2
D
@!. zPp �

zQp/.0/

zQp.0/

D�

2ap�1� @!

�
det zD�p�1

det D�p�1

�
.0/

p̨

2

�
2

p̨
C 2ap�1� @!

�
det zD�p�1

det D�p�1

�
.0/

� :
By using again .P2

p�1
/, we obtain .P2

p/. �

Lemma A.2. ! D 0 is a root of order p� 1 of det D�p
.!/. In particular, condition (11) is fulfilled.
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Proof. From Lemma 3.1 we have det D�1
.!/D n1!C˛, so det D�1

.0/¤ 0. Lemma 3.1 also gives us

det D�p
.!/D

np!C p̨

!C p̨
e!ap�1 det D�p�1

.!/

�
1�

.np � 2/!C p̨

np!C p̨
e�2!ap�1

det zD�p�1

det D�p�1

.!/

�
;

so by recursion it is enough to show that ! D 0 is a simple root for

1�
.np � 2/ !C p̨

np !C p̨
e�2!ap�1

det zD�p�1

det D�p�1

.!/:

This is precisely Qp.!/ from the proof of Lemma A.1, where it was proved that @!Qp.0/¤ 0. �

Appendix B: Strichartz estimates

We prove Theorem 1.3. Let us first remark that by the definition of Pe we have

Pe� D

mX
kD1

h�; 'ki'k ;

where f'kg
m
kD1

are eigenfunctions of the operator H . Since 'k 2L2.�/we have that 'k 2L1.�/\L1.�/.
Indeed, on the infinite edges the eigenfunctions corresponding to an eigenvalue � < 0 are of type
C exp.�

p
��/x. This means that they belong to L1.e/\L1.e/ for any external edge e. On the internal

edges this property trivially holds.
Then Pe is defined for any � 2Lr .�/, 1� r �1, and for any 1� r1; r2 �1 we have, by Hölder’s

inequality,

kPe�kLr2 .�/ �

mX
kD1

jh�; 'kijk'kkLr2 .�/ � k�kLr1 .�/

mX
kD1

k'kkLr 0
1 .�/
k'kkLr2 .�/

� C.�; r1; r2/k�kLr1 .�/:

Proof of Theorem 1.3. Using the dispersive estimate (12) and the mass conservation

ke�itH u0kL2.�/ D ku0kL2.�/

we obtain, by applying the classical T T � argument and Christ–Kiselev lemma [2001], the estimates

ke�itH Pu0kLq.R;Lr .�// � Cku0kL2.�/; (28)

and  Z t

0

e�i.t�s/PF.s/ds


Lq..0;T /;Lr .�//

� CkFkLQr 0 ..0;T /;LQr 0 .�//: (29)

Now using Stone’s theorem we obtain

e�itH� D e�itH P�C e�itH Pe� D e�itH P�C

mX
kD1

eit�2
k h�; 'ki'k ;

where by �k we denote the eigenvalue of the eigenfunction 'k . We claim that, for all ˛ � 1,

ke�itH Peu0kLq..0;T /;Lr .�// � C T 1=q
ku0kL˛.�/ (30)
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and Z t

0

e�i.t�s/PeF.s/ds


Lq..0;T /;Lr .�//

� C T 1=q
kFkL1..0;T /;L˛.�//: (31)

Putting together estimates (28), (29), (30) and (31) we obtain the desired result. We now prove estimates
(30) and (31).

In the case of estimate (30), using the fact that

e�itH Peu0 D

mX
kD1

eit�2
k hu0; 'ki'k

we obtain by Hölder’s inequality that, for any ˛ � 1,

ke�itH Peu0kLr .�/�

mX
kD1

jhu0; 'kijk'kkLr .�/�ku0kL˛.�/

mX
kD1

k'kkL˛0 .�/k'kkLr .�/�Cku0kL˛.�/:

Taking the Lq-norm on the time interval .0;T / we obtain estimate (30).
In a similar way we have

ke�i.t�s/H PeF.s/kLr .�/ � CkF.s/kL˛.�/:

Using Minkowski’s inequality we obtain that Z t

0

e�i.t�s/H PeF.s/ds


Lq..0;T /;Lr .�//

�

 Z t

0

ke�i.t�s/H PeF.s/kLr .�/ds


Lq.0;T /

� T 1=q

Z T

0

kF.s/kL˛.�/ds;

which proves estimate (31). �

Appendix C: General couplings

We consider general coupling conditions at each vertex v (see (16) in Section 2),

Avu.v/CBvu0.v/D 0:

Using the notations introduced in this article, we shall give the recursion formulae for obtaining det D�p

for general couplings. As a consequence, we shall give a sufficient condition for obtaining the dispersion.
We follow the approach in Section 3A for computing the resolvent. For a star-shaped graph with n1

edges Ij parametrised by x 2 Œ0;1/, with coupling conditions .A1;B1/, the resolvent on each edge Ij is

R!u0.x/D Qcj e�!x
C

1

2!

Z 1
0

u0.y/e
�!jx�yj dy:
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The coupling conditions yield as a system for the Qc’s

.A1
C!B1/

0B@ Qc1
:::

Qcn1

1CAD
0BBBBB@

P
1�j�n1

tj .0; !/

!
.b1;j! � a1;j /

:::P
1�j�n1

tj .0; !/

!
.bn1;j! � an1;j /

1CCCCCA :

We denote by D�1
.!/ the matrix of the system. We define zD�1

.!/ to be the matrix�
.A1
C!B1/1; .A

1
C!B1/2; : : : ; .A

1
�!B1/n1

�
;

where by .A1C!B1/j we mean the j-th column of A1C!B1.
The case of a general tree with p vertices can again be seen as constructed by adding a new vertex

vp to a .p� 1/-vertex tree, with coupling conditions .Ap;Bp/, from which emerge new np � 1 infinite
edges. Similarly to Lemma 3.1 we derive the recursion formulae

det D�1
.!/D det.A1

C!B1/;

det zD�1
.!/

det D�1
.!/
D

det
�
.A1C!B1/1; .A

1C!B1/2; : : : ; .A
1�!B1/n1

�
det.A1C!B1/

;

det D�p
.!/D det.Ap

C!Bp/e!ap�1 det D�p�1
.!/

�

�
1�

det
�
.Ap�!Bp/1; .A

pC!Bp/2; : : : ; .A
pC!Bp/np

�
det.ApC!Bp/

e�2!ap�1
det zD�p�1

.!/

det D�p�1
.!/

�
;

det zD�p
.!/

det D�p
.!/
D

�
det
�
.ApC!Bp/1; .A

pC!Bp/2; : : : ; .A
p�!Bp/np

�
det.ApC!Bp/

�
det
�
.Ap�!Bp/1; .A

pC!Bp/2; : : : ; .A
p�!Bp/np

�
det.ApC!Bp/

e�2!ap�1
det zD�p�1

.!/

det D�p�1
.!/

�

�

�
1�

det
�
.Ap�!Bp/1; .A

pC!Bp/2; : : : ; .A
pC!Bp/np

�
det.ApC!Bp/

e�2!ap�1
det zD�p�1

.!/

det D�p�1
.!/

��1

:

A sufficient condition for using the spectral formula as in Section 3E and then for getting the dispersion
as the following constraint, depending only on the entries of .Aj ;Bj /1�j�p, is

jdet D�p
.i!/j ¤ 0 for all ! 2 R: (32)

This is the way the Kirchhoff coupling case was ruled in [Banica and Ignat 2011] and this might be used
in other cases. In the ı-coupling case presented in this article, and probably in many other cases, such an
estimate is not valid. Then an analysis around the zeros of det D�p

.!/ has to be done starting from the
above recursion formulae.
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[Kovařík and Sacchetti 2010] H. Kovařík and A. Sacchetti, “A nonlinear Schrödinger equation with two symmetric point
interactions in one dimension”, J. Phys. A 43:15 (2010), #155205. MR 2011e:35358 Zbl 1189.35310

[Kuchment 2004] P. Kuchment, “Quantum graphs, I: Some basic structures”, Waves Random Media 14:1 (2004), S107–S128.
MR 2005h:81148 Zbl 1063.81058

[Kuchment 2005] P. Kuchment, “Quantum graphs, II: Some spectral properties of quantum and combinatorial graphs”, J. Phys.
A 38:22 (2005), 4887–4900. MR 2006a:81035 Zbl 1070.81062

[Kuchment 2008] P. Kuchment, “Quantum graphs: an introduction and a brief survey”, pp. 291–312 in Analysis on graphs and
its applications (Cambridge, 2007), edited by P. Exner et al., Proc. Sympos. Pure Math. 77, American Mathematical Society,
Providence, RI, 2008. MR 2010b:81058 Zbl 1210.05169

[Le Coz et al. 2008] S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, and Y. Sivan, “Instability of bound states of a nonlinear
Schrödinger equation with a Dirac potential”, Phys. D 237:8 (2008), 1103–1128. MR 2009k:35302 Zbl 1147.35356

[Manoukian 1989] E. B. Manoukian, “Explicit derivation of the propagator for a Dirac delta potential”, J. Phys. A 22:1 (1989),
67–70. MR 89k:81026 Zbl 0697.35146

[Rauch 1978] J. Rauch, “Local decay of scattering solutions to Schrödinger’s equation”, Comm. Math. Phys. 61:2 (1978),
149–168. MR 58 #14590 Zbl 0381.35023

http://dx.doi.org/10.1016/j.anihpc.2007.03.004
http://msp.org/idx/mr/2009i:35300
http://msp.org/idx/zbl/1145.35457
http://dx.doi.org/10.1088/0305-4470/19/10/024
http://msp.org/idx/mr/87i:81072
http://msp.org/idx/zbl/0621.35082
http://www.bcamath.org/documentos_public/archivos/personal/tesis/DIZ_SNSB-3.pdf
http://www.numdam.org/item?id=AIHPC_1985__2_4_309_0
http://msp.org/idx/mr/87b:35150
http://msp.org/idx/zbl/0586.35042
http://dx.doi.org/10.1080/00018730600908042
http://dx.doi.org/10.1080/00018730600908042
http://dx.doi.org/10.1007/s00220-004-1140-5
http://dx.doi.org/10.1007/s00220-004-1140-5
http://msp.org/idx/mr/2005g:81339
http://msp.org/idx/zbl/1086.81077
http://dx.doi.org/10.3934/jmd.2007.1.689
http://msp.org/idx/mr/2008k:35446
http://msp.org/idx/zbl/1137.35060
http://dx.doi.org/10.1007/s00220-007-0261-z
http://msp.org/idx/mr/2008k:35445
http://msp.org/idx/zbl/1126.35068
http://dx.doi.org/10.1007/s00332-006-0807-9
http://msp.org/idx/mr/2009d:35312
http://msp.org/idx/zbl/1128.35384
http://dx.doi.org/10.1137/09076996X
http://msp.org/idx/mr/2011i:35229
http://msp.org/idx/zbl/1217.35199
http://dx.doi.org/10.1215/S0012-7094-79-04631-3
http://dx.doi.org/10.1215/S0012-7094-79-04631-3
http://msp.org/idx/mr/81b:35079
http://msp.org/idx/zbl/0448.35080
http://dx.doi.org/10.1002/cpa.3160440504
http://msp.org/idx/mr/93d:35034
http://msp.org/idx/zbl/0743.35008
http://dx.doi.org/10.1088/0305-4470/32/4/006
http://msp.org/idx/mr/99m:81280
http://msp.org/idx/zbl/0928.34066
http://dx.doi.org/10.1090/conm/415/07870
http://dx.doi.org/10.1090/conm/415/07870
http://msp.org/idx/mr/2007j:34041
http://msp.org/idx/zbl/1122.34066
http://dx.doi.org/10.1090/pspum/077/2459885
http://msp.org/idx/mr/2010b:47106
http://msp.org/idx/zbl/1165.47029
http://dx.doi.org/10.1088/1751-8113/43/15/155205
http://dx.doi.org/10.1088/1751-8113/43/15/155205
http://msp.org/idx/mr/2011e:35358
http://msp.org/idx/zbl/1189.35310
http://dx.doi.org/10.1088/0959-7174/14/1/014
http://msp.org/idx/mr/2005h:81148
http://msp.org/idx/zbl/1063.81058
http://dx.doi.org/10.1088/0305-4470/38/22/013
http://msp.org/idx/mr/2006a:81035
http://msp.org/idx/zbl/1070.81062
http://dx.doi.org/10.1090/pspum/077/2459876
http://msp.org/idx/mr/2010b:81058
http://msp.org/idx/zbl/1210.05169
http://dx.doi.org/10.1016/j.physd.2007.12.004
http://dx.doi.org/10.1016/j.physd.2007.12.004
http://msp.org/idx/mr/2009k:35302
http://msp.org/idx/zbl/1147.35356
http://dx.doi.org/10.1088/0305-4470/22/1/013
http://msp.org/idx/mr/89k:81026
http://msp.org/idx/zbl/0697.35146
http://dx.doi.org/10.1007/BF01609491
http://msp.org/idx/mr/58:14590
http://msp.org/idx/zbl/0381.35023


DISPERSION FOR SCHRÖDINGER WITH ı POTENTIALS AND FOR ı TREES 927

[Rodnianski and Schlag 2004] I. Rodnianski and W. Schlag, “Time decay for solutions of Schrödinger equations with rough and
time-dependent potentials”, Invent. Math. 155:3 (2004), 451–513. MR 2005h:35295 Zbl 1063.35035

[Strichartz 1977] R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations”, Duke Math. J. 44:3 (1977), 705–714. MR 58 #23577 Zbl 0372.35001

[Tao 2006] T. Tao, Nonlinear dispersive equations: local and global analysis, CBMS Regional Conference Series in Mathematics
106, American Mathematical Society, Providence, RI, 2006. MR 2008i:35211 Zbl 1106.35001

Received 3 Dec 2012. Revised 17 Feb 2014. Accepted 1 Apr 2014.

VALERIA BANICA: Valeria.Banica@univ-evry.fr
Laboratoire de Mathématiques et de Modélisation d’Évry (UMR 8071), Département de Mathématiques, Université d’Évry,
23 Bd. de France, 91037 Evry, France

LIVIU I. IGNAT: liviu.ignat@gmail.com
Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania

and

Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Str., 010014 Bucharest, Romania

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s00222-003-0325-4
http://dx.doi.org/10.1007/s00222-003-0325-4
http://msp.org/idx/mr/2005h:35295
http://msp.org/idx/zbl/1063.35035
http://dx.doi.org/10.1215/S0012-7094-77-04430-1
http://dx.doi.org/10.1215/S0012-7094-77-04430-1
http://msp.org/idx/mr/58:23577
http://msp.org/idx/zbl/0372.35001
http://msp.org/idx/mr/2008i:35211
http://msp.org/idx/zbl/1106.35001
mailto:Valeria.Banica@univ-evry.fr
mailto:liviu.ignat@gmail.com
http://msp.org




ANALYSIS AND PDE
Vol. 7, No. 4, 2014

dx.doi.org/10.2140/apde.2014.7.929 msp

THE CUNTZ SEMIGROUP AND STABILITY OF CLOSE C∗-ALGEBRAS

FRANCESC PERERA, ANDREW TOMS, STUART WHITE AND WILHELM WINTER

We prove that separable C∗-algebras which are completely close in a natural uniform sense have iso-
morphic Cuntz semigroups, continuing a line of research developed by Kadison–Kastler, Christensen,
and Khoshkam. This result has several applications: we are able to prove that the property of stability is
preserved by close C∗-algebras provided that one algebra has stable rank one; close C∗-algebras must
have affinely homeomorphic spaces of lower-semicontinuous quasitraces; strict comparison is preserved
by sufficient closeness of C∗-algebras. We also examine C∗-algebras which have a positive answer to
Kadison’s Similarity Problem, as these algebras are completely close whenever they are close. A sample
consequence is that sufficiently close C∗-algebras have isomorphic Cuntz semigroups when one algebra
absorbs the Jiang–Su algebra tensorially.

1. Introduction

Kadison and Kastler [1972] introduced a metric d on the C∗-subalgebras of a given C∗-algebra by
equipping the unit balls of the subalgebras with the Hausdorff metric (in norm). They conjectured
that sufficiently close C∗-subalgebras of B(H) should be isomorphic, and this conjecture was recently
established by Christensen et al. [2012] when one C∗-algebra is separable and nuclear. The one-sided
version of this result—that a sufficiently close near inclusion of a nuclear separable C∗-algebra into
another C∗-algebra gives rise to a true inclusion—was later proved by Hirshberg, Kirchberg, and White
[Hirshberg et al. 2012]. These results and others (see [Christensen et al. 2010; Cameron et al. 2012])
have given new momentum to the perturbation theory of operator algebras.

The foundational paper [Kadison and Kastler 1972] was concerned with structural properties of close
algebras, showing that the type decomposition of a von Neumann algebra transfers to nearby algebras.
We continue this theme here asking “Which properties or invariants of C∗-algebras are preserved by
small perturbations?” With the proof of the Kadison–Kastler conjecture, the answer for nuclear separable
C∗-algebras is “all of them”. Here we consider general separable C∗-algebras where already, there are
some results. Sufficiently close C∗-algebras have isomorphic lattices of ideals [Phillips 1973/74] and
algebras whose stabilisations are sufficiently close have isomorphic K-theories [Kirchberg 1996]. This was
extended to the Elliott invariant consisting of K-theory, traces, and their natural pairing, in [Christensen
et al. 2010]. A natural next step is to consider the Cuntz semigroup of (equivalence classes of) positive
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elements (in the stabilisation) of a C∗-algebra, due both to its exceptional sensitivity in determining
non-isomorphism [Toms 2008], classification results using the semigroup [Robert 2012] and the host of
C∗-algebraic properties that can be formulated as order-theoretic properties of the semigroup; for example
there is strong evidence to suggest that the behaviour of the Cuntz semigroup characterises important
algebraic regularity properties of simple separable nuclear C∗-algebras [Matui and Sato 2012; Winter
2010; 2012]. We prove that algebras whose stabilisations are sufficiently close do indeed have isomorphic
Cuntz semigroups, a surprising fact given the sensitivity of a Cuntz class to perturbations of its representing
positive element. This is in stark contrast with the case of Murray–von Neumann equivalence classes of
projections, where classes are stable under perturbations of the representing projection of size strictly less
than one. The bridge between these two situations is that we can arrange for the representing positive
element of a Cuntz class to be almost a projection in trace. We exploit this fact through the introduction
of what we call very rapidly increasing sequences of positive contractions, increasing sequences where
each element almost acts as a unit on its predecessor.

The Kadison–Kastler metric d is equivalent to a complete version dcb (given by applying d to the
stabilisations) if and only if Kadison’s Similarity Problem has a positive solution [Christensen et al.
2010; Cameron et al. 2013]; the latter is known to hold in considerable generality, for instance in the
case of Z-stable algebras [Johanesová and Winter 2012]. We show how this result, and a number of
other similarity results for C∗-algebras, can be put in a common framework using Christensen’s [1977]
property Dk and, building on [Christensen et al. 2010], make a more careful study of automatic complete
closeness and its relation to property Dk . We prove that if an algebra A has Dk for some k, then
d(A⊗K, B⊗K)≤ C(k)d(A, B), where C(k) is a constant independent of A and B; as a consequence,
sufficiently close C∗-algebras have isomorphic Cuntz semigroups provided one algebra is Z-stable.

Stability is perhaps the most basic property one could study in perturbation theory, yet proving its
permanence under small perturbations has seen very little progress. We take a significant step here by
proving that stability is indeed preserved if one of the algebras considered has stable rank one. The proof
is an application of our permanence result for the Cuntz semigroup. Another application is our proof
that stably close C∗-algebras have affinely homeomorphic spaces of lower semicontinuous 2-quasitraces.
This extends and improves results from [Christensen et al. 2010], showing that the affine isomorphism
between the trace spaces of stably close C∗-algebras obtained there is weak∗-weak∗-continuous.

The paper is organized as follows: Section 2 contains the preliminaries on the Cuntz semigroup and the
Kadison–Kastler metric; Section 3 establishes the permanence of the Cuntz semigroup under complete
closeness; Section 4 discusses property Dk and proves our permanence result for stability; Section 5
proves permanence for quasitraces.

2. Preliminaries

Throughout the paper we write A+ for the positive elements of a C∗-algebra A, A1 for the unit ball of A
and A+1 for the positive contractions in A.

In the next two subsections we review the definition and basic properties of the Cuntz semigroup. A
complete account can be found in the survey [Ara et al. 2011].
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The Cuntz semigroup. Let A be a C∗-algebra. Let us consider on (A ⊗ K)+ the relation a - b if
vnbv∗n → a for some sequence (vn) in A⊗K. Let us write a ∼ b if a - b and b - a. In this case we say
that a is Cuntz equivalent to b. Let Cu(A) denote the set (A⊗K)+/∼ of Cuntz equivalence classes. We
use 〈a〉 to denote the class of a in Cu(A). It is clear that 〈a〉 ≤ 〈b〉 ⇔ a - b defines an order on Cu(A).
We also endow Cu(A) with an addition operation by setting 〈a〉+ 〈b〉 := 〈a′+ b′〉, where a′ and b′ are
orthogonal and Cuntz equivalent to a and b respectively (the choice of a′ and b′ does not affect the Cuntz
class of their sum). The semigroup W (A) is then the subsemigroup of Cu(A) of Cuntz classes with a
representative in

⋃
n Mn(A)+.

Alternatively, Cu(A) can be defined to consist of equivalence classes of countably generated Hilbert
modules over A [Coward et al. 2008]. The equivalence relation boils down to isomorphism in the case
that A has stable rank one, but is rather more complicated in general and as we do not require the precise
definition of this relation in the sequel, we omit it. We note, however, that the identification of these two
approaches to Cu(A) is achieved by associating the element 〈a〉 to the class of the Hilbert module a`2(A).

The category Cu. The semigroup Cu(A) is an object in a category of ordered Abelian monoids denoted
by Cu introduced in [Coward et al. 2008] with additional properties. Before stating them, we require the
notion of order-theoretic compact containment. Let T be a preordered set with x, y ∈ T . We say that x is
compactly contained in y, denoted by x � y, if for any increasing sequence (yn) in T with supremum y,
we have x ≤ yn0 for some n0 ∈ N. An object S of Cu enjoys the following properties (see [Coward et al.
2008; Ara et al. 2011]), which we use repeatedly in the sequel. In particular the existence of suprema
in property P3 is a crucial in our construction of a map between the Cuntz semigroups of stably close
C∗-algebras.

P1. S contains a zero element.

P2. The order on S is compatible with addition: x1+ x2 ≤ y1+ y2 whenever xi ≤ yi , i ∈ {1, 2}.

P3. Every countable upward directed set in S has a supremum.

P4. For each x ∈ S, the set x� = {y ∈ S | y� x} is upward directed with respect to both ≤ and�, and
contains a sequence (xn) such that xn � xn+1 for every n ∈ N and supn xn = x .

P5. The operation of passing to the supremum of a countable upward directed set and the relation� are
compatible with addition: if S1 and S2 are countable upward directed sets in S, then S1+S2 is upward
directed and sup(S1+ S2)= sup S1+ sup S2, and if xi � yi for i ∈ {1, 2}, then x1+ x2� y1+ y2.

We say that a sequence (xn) in S ∈ Cu is rapidly increasing if xn � xn+1 for all n. We take the scale
6(Cu(A)) to be the subset of Cu(A) obtained as supremums of increasing sequences from A+.

For objects S and T from Cu, the map φ : S→ T is a morphism in the category Cu if

M1. φ is order-preserving;

M2. φ is additive and maps 0 to 0;

M3. φ preserves the suprema of increasing sequences;

M4. φ preserves the relation�.
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The Kadison–Kastler metric. Let us recall the definition of the metric on the collection of all C∗-
subalgebras of a C∗-algebra introduced in [Kadison and Kastler 1972].

Definition 2.1. Let A, B be C∗-subalgebras of a C∗-algebra C . Define a metric d on all such pairs as
follows: d(A, B) < γ if and only if for each x in the unit ball of A or B, there is y in the unit ball of the
other algebra such that ‖x − y‖< γ .

In this definition, we typically take C = B(H) for a Hilbert space H. The complete, or stabilised,
version of the Kadison–Kastler metric is defined by dcb(A, B)= d(A⊗K, B⊗K) inside C ⊗K (here K

is the C∗-algebra of compact operators on `2(N)); the notion dcb is used for this metric as dcb(A, B)≤ γ
is equivalent to the condition that d(Mn(A),Mn(B))≤ γ for every n.

We repeatedly use the standard fact that if d(A, B) < γ , then given a positive contraction a ∈ A+1 , there
exists a positive contraction b ∈ B+1 with ‖a− b‖< 2α. One way of seeing this is to use the hypothesis
d(A, B) < γ to approximate a1/2 by some c ∈ B1 with ‖a1/2

− c‖< γ . Then take b = cc∗ so that

‖a− b‖ ≤ ‖a1/2(a1/2
− c)‖+‖(a1/2

− c∗)c‖< 2γ.

There is also a one-sided version of closeness introduced by Christensen [1980], which is referred to
as a γ -near inclusion:

Definition 2.2. Let A, B be C∗-subalgebras of a C∗-algebra C and let γ > 0. Write A ⊆γ B if for every
x in the unit ball of B, there is y ∈ B such that ‖x − y‖ ≤ γ (note that y need not be in the unit ball of
B). Write A ⊂γ B if there exists γ ′ < γ with A ⊆γ ′ B. As with the Kadison–Kastler metric, we also
use complete, or stabilised, near inclusions: write A ⊆cb,γ B when A⊗Mn ⊆γ B ⊗Mn for all n, and
A ⊂cb,γ B when there exists γ ′ < γ with A ⊆cb,γ ′ B.

3. Very rapidly increasing sequences and the Cuntz semigroup

We start by noting that, for close C∗-algebras of real rank zero, an isomorphism between their Cuntz
semigroups can be deduced from existing results in the literature. For a C∗-algebra A, let V (A) be the
Murray and von Neumann semigroup of equivalence classes of projections in

⋃
∞

n=1 A⊗Mn and write
6(V (A))= {[p] ∈ V (A) | p= p2

= p∗ ∈ A}. This is a local semigroup in the sense that if p, q , p′ and q ′

are projections in A with p′q ′ = 0 and p ∼ p′, q ∼ q ′, then [p] + [q] = [p′ + q ′] ∈ 6(V (A)). Recall
that, if A has real rank zero, then the work of Zhang [1990] shows that V (A) has the Riesz refinement
property. By definition, this means that whenever x1, . . . , xn, y1, . . . , ym ∈ V (A) satisfy

∑
i xi =

∑
j y j ,

then there exist zi, j ∈ V (A) with
∑

j zi, j = xi and
∑

i zi, j = y j for each i, j . The case m = n = 2 of this
can be found as [Ara and Pardo 1996, Lemma 2.3], and the same proof works in general.

The Cuntz semigroup of a C∗-algebra of real rank zero is completely determined by its semigroup of
projections (see [Perera 1997] when A additionally has stable rank one and [Antoine et al. 2011] for the
general case). We briefly recall how this is done. An interval in V (A) is a nonempty, order hereditary and
upward directed subset I of V (A), which is said to be countably generated provided there is an increasing
sequence (xn) in V (A) such that I = {x ∈ V (A) | x ≤ xn for some n}. The set of countably generated
intervals is denoted by 3σ (V (A)), and it has a natural semigroup structure. Namely, if I and J have
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generating sequences (xn) and (yn) respectively, then I + J is the interval generated by (xn+ yn). Given a
positive element a in A⊗K in a σ -unital C∗-algebra of real rank zero A, put I (a)= {[p] ∈ V (A) | p- a}.
The correspondence [a] 7→ I (a) defines an ordered semigroup isomorphism Cu(A)∼=3σ (V (A)).

Theorem 3.1. Let A and B be σ -unital C∗-subalgebras of a C∗-algebra C , with d(A, B) < 1/8. If A
has real rank zero, then B also has real rank zero and Cu(A)∼= Cu(B).

Proof. That B has real rank zero follows from [Christensen et al. 2010, Theorem 6.3]. We know
from [Phillips and Raeburn 1979, Theorem 2.6] that there is an isomorphism of local semigroups
81 : 6(V (A)) → 6(V (B)) (with inverse, say, 91). This is defined as 81[p] = [q], where q is a
projection in B such that ‖p− q‖ < 1/8. Given p ∈ Mn(A), by [Zhang 1990, Theorem 3.2] we can
find projections {pi }i=1,...,n in A such that [p] =

∑
i [pi ]. Now extend 81 to 8 : V (A)→ V (B) by

8([p])=
∑

i 81([pi ]). Let us check that 8 is well defined. If [p] =
∑

i [pi ] =
∑

j [q j ] for projections pi

and q j in A, then use refinement to find elements ai j ∈ V (A) such that [pi ] =
∑

j ai j and [q j ] =
∑

i ai j .
We may also clearly choose projections zi j , z′i j ∈ A such that ai j = [zi j ] = [z′i j ], and such that zi j ⊥ zik if
j 6= k, and z′i j ⊥ z′l j if i 6= l. Then∑

81([pi ])=
∑

i

∑
j

81([zi j ])=
∑

i

∑
j

81([z′i j ])=
∑

j

∑
i

81([z′i j ])=
∑

j

81([q j ]).

Clearly 8 is additive and 8|6(V (A)) =81. Using 91, we construct an additive map 9 : V (B)→ V (A),
with 9|6(V (B))=91. Since 91◦81= id6(V (A)), it follows that 9 ◦8= idV (A). Similarly 8◦9 = idV (B).

Since Cu(A)∼=3σ (V (A)) and Cu(B)∼=3σ (V (B)), it follows that Cu(A) is isomorphic to Cu(B). �

We turn now to very rapidly increasing sequences. These provide the key tool we use to transfer
information between close algebras at the level of the Cuntz semigroup.

Definition 3.2. Let A be a C∗-algebra. We say that a rapidly increasing sequence (an)
∞

n=1 in A+1 is very
rapidly increasing if given ε > 0 and n ∈N, there exists m0 ∈N such that for m ≥m0, there exists v ∈ A1

with ‖(vamv
∗)an − an‖< ε. Say that a very rapidly increasing sequence (an)

∞

n=1 in (A⊗K)1
+

represents
x ∈ Cu(A) if supn〈an〉 = x .

The following two functions are used in the sequel to manipulate very rapidly increasing sequences.
Given a∈ A+ and ε>0, write (a−ε)+ for hε(a), where hε is the continuous function hε(t)=max(0, t−ε).
For 0≤ β < γ , let gβ,γ be the piecewise linear function on R given by

gβ,γ (t)=


0 if t ≤ β,
t−β
γ−β

if β < t < γ,

1 if t ≥ γ.

(3-1)

With this notation, the standard example of a very rapidly increasing sequence is given by

(g2−(n+1),2−n (a))∞n=1 for a ∈ A+1 .
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This sequence represents 〈a〉. In this way every element of the Cuntz semigroup of A is represented by a
very rapidly increasing sequence from (A⊗K)+1 . In the next few lemmas we develop properties of very
rapidly increasing sequences, starting with a technical observation.

Lemma 3.3. Let A be a C∗-algebra and let a, b ∈ A+1 and v ∈ A1 satisfy ‖v∗bva−a‖≤ δ for some δ > 0.
Suppose that 0< β < 1 and γ ≥ 0 satisfy γ + δβ−1 < 1, then 〈(a−β)+〉 ≤ 〈(b− γ )+〉 in Cu(A).

Proof. Let p ∈ A∗∗ denote the spectral projection of a for the interval [β, 1]. When p = 0, then
(a − β)+ = 0 and the result is trivial, so we may assume that p 6= 0. Then ap is invertible in p A∗∗ p
with inverse x satisfying ‖x‖ ≤ β−1. Compressing (v∗bva − a) by p and multiplying by x , we have
‖pv∗bvp− p‖ ≤ δβ−1. Thus

‖pv∗(b− γ )+vp− p‖ ≤ ‖(b− γ )+− b‖+‖pv∗bvp− p‖ ≤ γ + δβ−1,

and so
pv∗(b− γ )+vp ≥ (1− (γ + δβ−1))p.

As p acts as a unit on (a−β)+, we have

(a−β)+ = (a−β)
1/2
+ p(a−β)1/2+

≤ (1− (γ + δβ−1))−1(a−β)1/2+ pv∗(b− γ )+vp(a−β)1/2+

= (1− (γ + δβ−1))−1(a−β)1/2+ v∗(b− γ )+v(a−β)
1/2
+ .

Thus (a−β)+ - (b− γ )+. �

The next lemma encapsulates the fact that the element of the Cuntz semigroup represented by a very
rapidly increasing sequence (an)

∞

n=1 of contractions depends only on the behaviour of parts of the an with
spectrum near 1.

Lemma 3.4. Let (an)
∞

n=1 be a very rapidly increasing sequence in A+1 . Then for each λ < 1, the sequence
(〈(an − λ)+〉)

∞

n=1 has the property that for each n ∈ N, there is m0 ∈ N such that, for m ≥ m0, we have
〈(an − λ)+〉 � 〈(am − λ)+〉. Furthermore,

sup
n
〈(an − λ)+〉 = sup

n
〈an〉. (3-2)

Proof. Fix n ∈ N and 0 < ε < λ and take 0 < δ small enough that λ+ ε−1δ < 1. As (an)
∞

n=1 is very
rapidly increasing, there exists m0 such that for m ≥ m0, there exists v ∈ A1 with ‖(v∗amv)an − an‖< δ.
Lemma 3.3 gives

〈(an − ε)+〉 ≤ 〈(am − λ)+〉,

so that 〈(an−λ)+〉� 〈am−λ)+〉, as ε < λ. This shows that (〈(ar −λ)+〉)
∞

r=1 is upward directed and that

〈(an − δ)+〉 ≤ sup
r
〈(ar − λ)+〉,

for all n and all ε > 0, from which (3-2) follows. �



THE CUNTZ SEMIGROUP AND STABILITY OF CLOSE C∗-ALGEBRAS 935

We can modify elements sufficiently far down a very rapidly increasing sequences with contractions so
that they almost act as units for positive contractions dominated in the Cuntz semigroup by the sequence.

Lemma 3.5. Let A be a C∗-algebra.

(1) Suppose that a, b ∈ A+1 satisfy a - b. Then for all ε > 0, there exists v ∈ A with ‖v∗bva− a‖ ≤ ε
and ‖v∗bv‖ ≤ 1.

(2) Let (an)
∞

n=1 be a very rapidly increasing sequence in A+1 and suppose a ∈ A+1 satisfies 〈a〉� sup〈an〉.
Then, for every ε > 0, there exists m0 ∈ N such that, for m ≥ m0, there exists v ∈ A1 with
‖(v∗amv)a− a‖< ε.

Proof. (1). Fix ε > 0 and find r > 0 so that ‖a1+r
− a‖ ≤ ε/2. Now ar - b, so there exists w ∈ A with

‖ar
−w∗bw‖ ≤ ε/4. Thus ‖w∗bw‖ ≤ 1+ ε/4, and so, writing v = (1+ ε/4)−1/2w, we have ‖v∗bv‖ ≤ 1

and ‖w∗bw− v∗bv‖ ≤ ε/4. As such ‖ar
− v∗bv‖ ≤ ε/2 and so

‖v∗bva− a‖ ≤ ‖v∗bv− ar
‖‖a‖+‖a1+r

− a‖ ≤ ε
2
+
ε

2
= ε,

as claimed.

(2) As 〈a〉� sup〈an〉, there exists some m1 ∈N with a- am1 ∼ a2
m1

. Fix ε > 0 and by part (1), find w ∈ A
with ‖(w∗a2

m1
w)a−a‖< ε/2 and ‖w∗a2

m1
w‖≤ 1. Now set ε′= ε/(2‖w‖) and, as (an)

∞

n=1 is very rapidly
increasing, find some m0 > m1 such that for m ≥ m0 there exists t ∈ A1 with ‖(t∗am t)am1 − am1‖ ≤ ε

′.
Given such m and t , we have

‖(w∗am1 t∗am tam1w)a− a‖ ≤ ‖w∗am1‖‖(t
∗am t)am1 − am1‖‖w‖‖a‖+‖(w

∗a2
m1
w)a− a‖

≤ ‖w‖ε′+ 1
2ε = ε,

as ‖w∗am1‖ ≤ 1. Thus we can take v = tam1w ∈ A1. �

It follows immediately from part (2) above that two very rapidly increasing sequences representing the
same element of the Cuntz semigroup can be intertwined to a single very rapidly increasing sequence.

Proposition 3.6. Let (an)
∞

n=1, (a
′
n)
∞

n=1 be very rapidly increasing sequences in a C∗-algebra A representing
the same element x ∈ Cu(A). Then these sequences can be intertwined after telescoping to form a very
rapidly increasing sequence which also represents x , i.e., there exists m1 < m2 < · · · and n1 < n2 < · · ·

such that (am1, a′n1
, am2, a′n2

, . . .) is a very rapidly increasing sequence.

Given a rapidly increasing sequence in A+1 , we can use the functions gβ,γ from (3-1) to push the
spectrum of the elements of the sequence out to 1 and extract a very rapidly increasing sequence
representing the same element of the Cuntz semigroup.

Lemma 3.7. Let A be a C∗-algebra and (an)
∞

n=1 be a rapidly increasing sequence in A+1 . There exists a
sequence (mn)

∞

n=1 in N such that the sequence (g2−(mn+1),2−mn (an))
∞

n=1 is very rapidly increasing and

sup
n
〈g2−(mn+1),2−mn (an)〉 = sup

n
〈an〉.

In particular, every element of the scale6(Cu(A)) can be expressed as a very rapidly increasing sequence
of elements from A+1 .
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Proof. We will construct the mn so that an−1 - g2−(mn+1),2−mn (an) and for each 1 ≤ r < n, there exists
v ∈ A1 with

‖(v∗g2−(mn+1),2−mn (an)v)g2−(mr+1),2−mr (ar )− g2−(mr+1),2−mr (ar )‖< 2−n.

Fix n∈N and suppose m1, . . . ,mn−1 have been constructed with these properties. As (g2−(m+1),2−m (an))
∞

m=1
is a very rapidly increasing sequence representing 〈an〉, and 〈an−1〉 � 〈an〉, there exists m̃n such that
〈an−1〉 � 〈(g2−(m+1),2−m (an))〉 for m ≥ m̃n . Further, for 1≤ r < n,

〈g2−(mr+1),2−mr (ar )〉 � 〈ar 〉 � sup
m
〈(g2−(m+1),2−m (an)〉

and so the required mn can be found using part (2) of Lemma 3.5.
The resulting sequence (g2−(mn+1),2−mn (an))

∞

n=1 is very rapidly increasing by construction. Since
an−1 - g2−(mn+1),2−mn (an)- an for all n, we have supn〈g2−(mn+1),2−mn (an)〉 = supn〈an〉. �

We now consider the situation where we have two close C∗-algebras acting on the same Hilbert space.
The following lemma ensures that we can produce a well defined map between the Cuntz semigroups.

Lemma 3.8. Let A, B be C∗-algebras acting on the same Hilbert space and suppose that a ∈ A+1 and
b ∈ B+1 satisfy ‖a − b‖ < 2α for some α < 1/27. Suppose that (an)

∞

n=1 is a very rapidly increasing
sequence in A+1 with 〈a〉 � sup〈an〉. Then, there exists n0 ∈ N with the property that for n ≥ n0 and
bn ∈ B+1 with ‖bn − an‖< 2α, we have

〈(b− 18α)+〉 � 〈(bn − γ )+〉 � 〈(bn − 18α)+〉

in Cu(B), for all γ with 18α < γ < 2/3.

Proof. Fix γ with 2/3 > γ > 18α (which is possible as α < 1/27). By taking ε = 2α − ‖a − b‖ in
Lemma 3.5(2), there exists n0 ∈ N such that for n ≥ n0, there exists v ∈ A1 with

‖(v∗anv)a− a‖< 2α−‖a− b‖.

Fix such an n ≥ n0 and v ∈ A1, and take bn ∈ B+1 with ‖an − bn‖< 2α and choose some w ∈ B1 with
‖w− v‖< α. We have

‖w∗bnw− v
∗anv‖ ≤ 2‖w− v‖+‖bn − an‖< 4α

so that

‖(w∗bnw)b− b‖ ≤ ‖((w∗bnw)− 1)(b− a)‖+‖(w∗bnw− v
∗anv)a‖+‖(v∗anv)a− a‖

≤ ‖b− a‖+ 4α+‖(v∗anv)a− a‖

≤ 6α.

Taking δ = 6α, β = 18α and 2/3> γ ′ > γ > 18α so that γ ′+ δβ−1 < 1, Lemma 3.3 gives

〈(b− 18α)+〉 ≤ 〈(bn − γ
′)+〉 � 〈(bn − γ )+〉 � 〈(bn − 18α)+〉. �
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Proposition 3.9. Let A, B be C∗-algebras acting on the same Hilbert space with the property that there
exists α < 1/27 such that for each a ∈ A1 there exists b ∈ B1 with ‖a − b‖ < α. Then there is a well
defined, order-preserving map 8 :6(Cu(A))→6(Cu(B)) given by

8(sup〈an〉)= sup〈(bn − 18α)+〉,

whenever (an)
∞

n=1 is a very rapidly increasing sequence in A+1 and bn ∈ B+1 have ‖an−bn‖<2α for all n∈N.
Moreover, if d(A, B) < α for α < 1/42, then 8 is a bijection with inverse 9 :6(Cu(B))→6(Cu(A))
obtained from interchanging the roles of A and B in the definition of 8.

Proof. Suppose first that α < 1/27. To see that 8 is well defined, we apply Lemma 3.8 repeatedly.
Firstly, given a very rapidly increasing sequence (an)

∞

n=1 in A+1 representing an element x ∈6(Cu(A))
and a sequence (bn)

∞

n=1 in B+1 with ‖an − bn‖ < 2α for all n, Lemma 3.8 shows that the sequence(
〈(bn − 18α)+〉

)∞
n=1 is upward directed. Indeed, for each m, take a = am and b = bm in Lemma 3.8 so

that 〈(bm − 18α)+〉 � 〈(bn − 18α)+〉 for all sufficiently large n. As such, supn〈(bn − 18α)+〉 exists in
6(Cu(B)).

Secondly, this supremum does not depend on the choice of (bn)
∞

n=1. Consider two sequences (bn)
∞

n=1
and (b′n)

∞

n=1 satisfying ‖bn − an‖< 2α and ‖b′n − an‖< 2α for all n. For each n, Lemma 3.8 shows that
there exists m0 such that, for m ≥ m0, we have

〈(bn − 18α)+〉 � 〈(b′m − 18α)+〉, and 〈(b′n − 18α)+〉 � 〈(bm − 18α)+〉.

Thus supn〈(bn − 18α)+〉 = supn〈(b
′
n − 18α)+〉.

Thirdly, for two very rapidly increasing sequences (a′n)
∞

n=1 and (an)
∞

n=1 in A+1 with supn〈a
′
n〉≤ supn〈an〉,

and sequences (b′n)
∞

n=1 and (bn)
∞

n=1 in B+1 with ‖b′n − a′n‖, ‖bn − an‖ < 2α for all n, Lemma 3.8 gives
supn〈(b

′
n − 18α)+〉 ≤ supn〈(bn − 18α)+〉. In particular, when (a′n)

∞

n=1 and (an)
∞

n=1 represent the same
element of 6(Cu(A)), this shows that the map 8 given in the proposition is well defined. In general, this
third observation also shows that 8 is order-preserving.

Now suppose that d(A, B) < α < 1/42 and let 9 :6(Cu(B))→6(Cu(A)) be the order-preserving
map obtained by interchanging the roles of A and B above. Take x ∈6(Cu(A)) and fix a very rapidly
increasing sequence (an)

∞

n=1 in A+1 representing x . Fix a sequence (bn)
∞

n=1 in B+1 with ‖an − bn‖< 2α
for all n. For each n, Lemma 3.8 gives m > n with

〈(bn − 18α)+〉 � 〈(bm − γ )+〉 � 〈(bm − 18α)+〉,

for any γ with 18α < γ < 2/3. Passing to a subsequence if necessary, we can assume this holds for
m = n+ 1 and hence ((bn − 18α)+)∞n=1 is a rapidly increasing sequence. By Lemma 3.7, there exists
a sequence (mn)

∞

n=1 in N so that, defining b′n = g2−(mn+1),2−mn ((bn − 18α)+), we have a very rapidly
increasing sequence (b′n)

∞

n=1 in B+1 with

sup
n
〈b′n〉 = sup

n
〈(bn − 18α)+〉 =8(x).

Choose a sequence (cn)
∞

n=1 in A+1 with ‖cn − b′n‖ < 2α for each n so that the definition of 9 gives
9(8(x))= sup〈(cn − 18α)+〉. We now show that x ≤9(8(x))≤ x .
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Fix 0 < β < 1 with α(18+ 24β−1) < 1. This choice can be made as α < 1/42. Fix n ∈ N. As
〈(bn − 18α)+〉 � supr 〈b

′
r 〉, Lemma 3.5 (2) provides m0 ∈ N such that for m ≥ m0, there exists w ∈ B1

with
‖(w∗b′mw)(bn − 18α)+− (bn − 18α)+‖< 2α−‖an − bn‖. (3-3)

Take v ∈ A1 with ‖v−w‖< α. Then

‖(v∗cmv−w
∗b′mw)‖ ≤ ‖cm − b′m‖+ 2‖v−w‖< 4α. (3-4)

Combining the estimates (3-3), (3-4) and noting that ‖w∗b′mw− 1‖ ≤ 1 as w is a contraction, gives

‖(v∗cmv)an − an‖ ≤ ‖((v
∗cmv)− 1)(an − bn)‖+‖(v

∗cmv−w
∗b′mw)bn‖

+‖(w∗b′mw− 1)(bn − (bn − 18α)+)‖+‖(w∗b′mw)(bn − 18α)+− (bn − 18α)+‖

< ‖an − bn‖+ 4α+ 18α+ (2α−‖an − bn‖)= 24α.

Taking γ = 18α, δ= 24α, Lemma 3.3 gives 〈(an−β)+〉≤ 〈(cm−18α)+〉≤9(8(x)). As n was arbitrary,
supn〈(an − β)+〉 ≤ 9(8(x)). As β < 1, Lemma 3.4 gives supn〈(an − β)+〉 = supn〈an〉 = x , so that
x ≤9(8(x)).

For the reverse inequality, fix k ∈ N and apply Lemma 3.8 (with the roles of A and B reversed, b′k
playing the role of a, (b′n)

∞

n=1 the role of (an)) and γ = 1/2 (so 18α < γ < 2/3) to find some n ∈ N

such that 〈(ck − 18α)+〉 ≤ 〈(cn − 1/2)+〉. Now, just as in the proof of Lemma 3.8, there is z ∈ B1 with
‖(z∗bn+1z)bn − bn‖ ≤ 6α. Let p ∈ B∗∗ be the spectral projection of bn for [18α, 1], so that, just as in
the proof of Lemma 3.3, ‖z∗bn+1zp− p‖ ≤ 1/3. Fix y ∈ A1 with ‖y − z‖ ≤ α. Since p is a unit for
(bn − 18α)+, it is a unit for b′n = g2−(mn+1),2−mn ((bn − 18α)+), giving the estimate

‖y∗an+1 ycn − cn‖ ≤ ‖y∗an+1 ycn − z∗bn+1zcn‖+‖(z∗bn+1z− 1)(cn − b′n)‖+‖(z
∗bn+1z)b′n − b′n‖

≤ 4α+ 2α+ 1
3 = 6α+ 1

3 .

Take δ = 6α+ 1/3, β = 1/2 and γ = 0, so that γ +β−1δ = 2/3+ 12α < 1. Thus Lemma 3.3 gives

〈(cn − 1/2)+〉 ≤ 〈an+1〉,

and hence
〈(ck − 18α)+〉 ≤ 〈an+1〉 ≤ x .

Taking the supremum over k gives 9(8(x))≤ x . �

Theorem 3.10. Let A and B be C∗-algebras acting on the same Hilbert space with dcb(A, B)<α < 1/42.
Then (Cu(A),6(Cu(A))) is isomorphic to (Cu(B),6(Cu(B))). Moreover, an order-preserving isomor-
phism 8 : Cu(A)→ Cu(B) can be defined by 8(sup〈an〉) = sup〈(bn − 18α)+〉, whenever (an)

∞

n=1 is a
very rapidly increasing sequence in (A⊗K)+1 and (bn)

∞

n=1 is a sequence in (B⊗K)+1 with ‖an−bn‖< 2α
for all n ∈ N.

Proof. We have d(A⊗K, B⊗K) < α < 1/42. By definition,

6(Cu(A⊗K))= Cu(A) and 6(Cu(A⊗K))= Cu(B).



THE CUNTZ SEMIGROUP AND STABILITY OF CLOSE C∗-ALGEBRAS 939

By applying Proposition 3.9 to A⊗K and B⊗K, we obtain mutually inverse order-preserving bijections
8 :Cu(A⊗K)→Cu(B⊗K) and9 :Cu(B⊗K)→Cu(A⊗K), given by8(sup〈an〉)= sup〈(bn−18α)+〉,
whenever (an)

∞

n=1 is a very rapidly increasing sequence in (A ⊗ K)+1 and (bn)
∞

n=1 is a sequence in
(B⊗K)+1 with ‖an − bn‖< 2α for all n ∈ N. Given a very rapidly increasing sequence (an)

∞

n=1 in A+1
representing an element x ∈ 6(Cu(A)), we can find a sequence (bn)

∞

n=1 in B+1 with ‖an − bn‖ < 2α,
so that 8(x)= sup〈(bn − 18α)+〉 ∈6(Cu(B)). Since 8 and 8−1 are order-preserving bijections, they
also preserve the relation� of compact containment and suprema of countable upward directed sets, as
these notions are determined by the order relation ≤. Further, taking an = bn = 0 for all n shows that
8(0Cu(A)) = 0Cu(B). Finally, note that 8 preserves addition: given very rapidly increasing sequences
(an)

∞

n=1 and (a′n)
∞

n=1 in (A⊗K)+1 representing x and y in Cu(A), the sequence (an ⊕ a′n) is very rapidly
increasing in M2(A⊗K)∼= A⊗K. If (bn)

∞

n=1, (b
′
n)
∞

n=1 have ‖an − bn‖, ‖a′n − b′n‖< 2α for all n, then

‖(an ⊕ a′n)− (bn ⊕ b′n)‖< 2α,

and has

((bn ⊕ b′n)− 18α)+ = (bn − 18α)+⊕ (b′n − 18α)+.

In this way we see that 8(x + y)=8(x)+8(y). �

In particular properties of a C∗-algebra which are determined by its Cuntz semigroup transfer to
completely close C∗-algebras. One of the most notable of these properties is that of strict comparison.

Corollary 3.11. Let A and B be C∗-algebras acting on the same Hilbert space with dcb(A, B) < 1/42
and suppose that A has strict comparison. Then so too does B.

4. Z-stability and automatic complete closeness

Given a C∗-algebra A ⊂B(H), [Cameron et al. 2013] shows that the metrics d(A, · ) and dcb(A, · ) are
equivalent if and only if A has a positive answer to Kadison’s [1955] similarity problem. The most useful
reformulation of the similarity property for working with close C∗-algebras is due to Christensen [1982,
Theorem 3.1] and Kirchberg [1996]. Combining these, it follows that a C∗-algebra A has a positive
answer to the similarity problem if and only if A has Christensen’s [1980] property Dk for some k.

Definition 4.1. Given an operator T ∈B(H), we write ad(T ) for the derivation ad(T )(x)= xT − T x . A
C∗-algebra A has property Dk for some k > 0 if, for every nondegenerate representation π : A→B(H),
the inequality

d(T, π(A)′)≤ k‖ad(T )|π(A) ‖ (4-1)

holds for all T ∈B(H). A von Neumann algebra A is said to have the property D∗k if the inequality (4-1)
holds for all unital normal representations π on H and all T ∈B(H).

By taking weak∗-limit points, it follows that if A is a weak∗-dense C∗-subalgebra of a von Neumann
algebra M and A has property Dk , then M has property D∗k .
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That property Dk converts near containments to completely bounded near containments originates in
[Christensen 1980, Theorem 3.1]. The version we give below improves on the bounds γ ′ = 6kγ from
there and γ ′ = (1+ γ )2k

− 1 from [Christensen et al. 2010, Corollary 2.12].

Proposition 4.2. Suppose that A has property Dk for some k > 0. Then for γ > 0, every near inclusion
A ⊆γ B (or A ⊂γ B) with A and B acting nondegenerately on the same Hilbert space, gives rise to a
completely bounded near inclusion A ⊆cb,γ ′ B (or A ⊂cb,γ ′), where γ ′ = 2kγ .

Proof. Suppose A⊆γ B is a near inclusion of C∗-algebras acting nondegenerately on H and fix n ∈N. Let
C =C∗(A, B) and let π :C→B(K) be the universal representation of C . Then π(A)′′ has property D∗k so
that π(A)′′⊆cb,2kγ π(B)′′, by [Cameron et al.≥ 2014, Proposition 2.2.4]. By definition, for n ∈N we have
π(A)′′⊗Mn ⊆2kγ π(B)′′⊗Mn . As π is the universal representation of C , the Hahn–Banach argument
used to deduce [Christensen 1980, equation (3)] from [ibid., equation (2)] gives A⊗Mn ⊆2kγ B⊗Mn ,
as required. The result when we work with strict near inclusions A ⊂γ B follows immediately. �

C∗-algebras with no bounded traces (such as stable algebras) were shown to have the similarity property
in [Haagerup 1983]. Using the property Dk version of this fact, the previous proposition gives automatic
complete closeness when one algebra has no bounded traces. The argument below which transfers the
absence of bounded traces to a nearby C∗-algebra essentially goes back to [Kadison and Kastler 1972,
Lemma 9]. We use more recent results in order to get better estimates.

Corollary 4.3. Suppose that A and B are C∗-algebras which act nondegenerately on the same Hilbert
space and satisfy d(A, B) < γ for γ < (2+ 6

√
2)−1. Suppose that A has no bounded traces (for example

if A is stable). Then B has no bounded traces, and therefore A⊂cb,3γ B, B ⊂cb,3γ A and dcb(A, B) < 6γ .

Proof. Suppose d(A, B) < (2+ 6
√

2)−1 and τ : B→ C is a bounded trace. Let π : B→B(H) be the
GNS-representation of B corresponding to τ . Then there is a larger Hilbert space H̃ and a representation
π̃ : C∗(A, B)→B(H̃) such that π is a direct summand of π̃ |B . That is, the projection p from H̃ onto H

is central in π̃(B) and π(b)= pπ̃(b)p for all b ∈ B. Then, by [Kadison and Kastler 1972, Lemma 5], we
have d(π̃(A)′′, π̃(B)′′)≤ d(A, B), and hence there is a projection q ∈ π̃(A)′′ with ‖p− q‖ ≤ γ /

√
2 by

[Khoshkam 1984, Lemma 1.10(ii)]. If q is an infinite projection in π̃(A)′′, then as d(A, B)< (2+6
√

2)−1,
one can follow the argument of [Christensen et al. 2010, Lemma 6.1] (using the estimate ‖p−q‖<γ/

√
2

in place of ‖p− q‖ < 2γ ) to see that p is infinite in π̃(B)′′, giving a contradiction. If q is finite, then
qπ̃(A)′′q has a finite trace ρ and ρ ◦ π̃ |A defines a bounded trace on A, and again we have a contradiction.
Thus B has no bounded traces.

Theorem 2.4 of [Christensen 1977] shows that a properly infinite von Neumann algebra has property
D∗3/2. As such, every C∗-algebra with no bounded traces has property D3/2. Since A and B both have
property D3/2, Proposition 4.2 gives A ⊂cb,3γ B and B ⊂cb,3γ A, whence dcb(A, B) < 6γ . �

Corollary 4.4. Suppose that A and B are C∗-algebras which act nondegenerately on the same Hilbert
space and satisfy d(A, B) < 1/252 and suppose that A has no bounded traces (for example, when A is
stable). Then (

Cu(A),6(Cu(A))
)
∼=
(
Cu(B),6(Cu(B))

)
.
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Proof. Combine Corollary 4.3 with Theorem 3.10, noting that 6d(A, B) < 1/42. �

We can use the Cuntz semigroup to show that stability transfers to close C∗-algebras provided one
algebra has stable rank one. To detect stability for a σ -unital C∗-algebra we use the following criterion
from [Ortega et al. 2012, Lemma 5.4] which reformulates the earlier characterisation from [Hjelmborg
and Rørdam 1998].

Lemma 4.5. Let A be a σ -unital C∗-algebra and let c ∈ A be a strictly positive element. Then, A is
stable if and only if for every ε > 0, there is b ∈ A+ such that (c− ε)+ ⊥ b and (c− ε)+ - b.

Following [Robert and Santiago 2010], we say that a C∗-algebra A has weak cancellation provided
Cu(A) satisfies the property that x+ z� y+ z implies x ≤ y. It was proved in [Rørdam and Winter 2010,
Theorem 4.3] that if A has stable rank one, then W (A) has the property defining weak cancellation. When
A has stable rank one, so too does A⊗K [Rieffel 1983, Theorem 3.6], and so A has weak cancellation.

Lemma 4.6. Let A be a σ -unital C∗-algebra with weak cancellation. Then A is stable if and only if
Cu(A)=6(Cu(A)).

Proof. If A is stable, we have 6(Cu(A)) = Cu(A). Indeed, given n ∈ N, choose an automorphism
θn : K⊗K→ K⊗K with θn(K⊗ e11) = K ⊗ Mn and let ψ : A→ A⊗K be an isomorphism. Then
(ψ−1

⊗ idK)(idA⊗ θn)(ψ⊗ idK) is an automorphism of A⊗K which maps A⊗ e11 onto A⊗Mn . In this
way the class of a positive element in A⊗Mn lies in the scale 6(Cu(A)). For x ∈ (A⊗K)+ and ε > 0,
we have (x − ε)+ ∈

⋃
∞

n=1(A⊗Mn), and hence 〈(x − ε)+〉 ∈6(Cu(A)). Since the scale is defined to be
closed under suprema, it follows that Cu(A)=6(Cu(A)).

Conversely, let c ∈ A be a strictly positive element so that 6(Cu(A)) = {x ∈ Cu(A) : x ≤ 〈c〉}
and let ε > 0 be given. The hypothesis ensures that 2〈c〉 ≤ 〈c〉, and so we can find δ > 0 such that
2〈(c− ε/4)+〉 � 〈(c− δ)+〉. Now write

(c− δ)+ = (c− δ)+gε/2, ε(c)+ (c− δ)+(1M(A)− gε/2, ε(c)),

and observe that

〈(c− δ)+gε/2, ε(c)〉 ≤ 〈gε/2, ε(c)〉 = 〈(c− ε/2)+〉 � 〈(c− ε/4)+〉.

We now have that

2〈(c− ε/4)+〉 � 〈(c− δ)+〉 ≤ 〈(c− ε/2)+〉+ 〈(c− δ)+(1M(A)− gε/2, ε(c))〉

and so weak cancellation enables us to conclude that

〈(c− ε/4)+〉 ≤ 〈(c− δ)+(1− gε/2, ε(c))〉.

Let b = (c− δ)+(1− gε/2, ε(c)). It is clear that b ⊥ (c− ε)+ and that (c− ε)+ ≤ (c− ε/4)+ - b. Thus
we may invoke Lemma 4.5 to conclude that A is stable. �

Theorem 4.7. Let A and B be σ -unital C∗-algebras with A stable and d(A, B) < 1/252 and suppose
either A or B has stable rank one. Then B is stable.
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Proof. By Corollary 4.4, we have an isomorphism

(Cu(A),6(Cu(A))∼= (Cu(B),6(Cu(B)).

Since A is stable Cu(A)=6(Cu(A)). Our isomorphism condition now tells us that Cu(B)=6(Cu(B)).
If B has stable rank one, then it has weak cancellation, whereas if A has stable rank one, A has weak
cancellation and, as weak cancellation is a property of the Cuntz semigroup, so too does B. The result
now follows from Lemma 4.6. �

We now turn to the situation in which one C∗-algebra is Z-stable. Christensen [1977] shows that
McDuff II1 factors have property D5/2, and hence via the estimates of [Pisier 1998], have similarity length
at most 5. (In fact, McDuff factors, and more generally II1 factors with Murray and von Neumann’s
property 0 have length 3 [Christensen 2001], but at present we do not know how to use this fact to obtain
better estimates for automatic complete closeness of close factors with property 0.)

Analogous results have been established in a C∗-setting, in particular, Z-stable C∗-algebras [Johanesová
and Winter 2012] and C∗-algebras of the form A⊗ B, where B is nuclear and has arbitrarily large unital
matrix subalgebras [Pop 2004] have similarity degree (and hence length) at most 5. See also [Li and
Shen 2008]. Here we show how to use the original von Neumann techniques from [Christensen 1977]
to show that a class of algebras generalising both these examples have property D5/2 (recapturing the
upper bound 5 on the length). A similar result has been obtained independently by Hadwin and Li [2014,
Corollary 1] working in terms of the similarity degree as opposed to property Dk . Once we have this Dk

estimate, Proposition 4.2 applies. In particular we obtain uniform estimates on the cb-distance dcb(A, B)
in terms of d(A, B) when A is Z-stable.

Given a von Neumann algebra M ⊂ B(H) and x ∈ B(H), write cowM(x) for the weak∗-closed con-
vex hull of {uxu∗ : u ∈ U(M)}. If M is injective, then by Schwartz’s property P, cowM(x) ∩ M′ is
nonempty for all x ∈ B(H). Note that for a nondegenerately represented C∗-algebra A ⊂ B(H), we
have ‖ad(T )|A‖ = ‖ad(T )|A′′‖. We say that an inclusion A ⊂ C of C∗-algebras is nondegenerate if the
inclusion map is nondegenerate.

Proposition 4.8. Let C be a C∗-algebra and A, B ⊂ C be commuting nondegenerate C∗-subalgebras
which generate C . Suppose B is nuclear and has no nonzero finite-dimensional representations. Then C
has property D5/2, and hence similarity length at most 5.

Proof. Suppose C is nondegenerately represented on H and fix x ∈B(H). The nondegeneracy assumption
ensures that A and B are nondegenerately represented on H. Note that C ′′ has no finite type I part as B
has no nonzero finite-dimensional representations. Let p be the central projection in C ′′ so that C ′′ p is
type II1 and C ′′(1− p) is properly infinite. Fix a unital type I∞ subalgebra M0⊂ (1− p)C ′′(1− p) and let
M= (M0∪ pB)′′ which is injective. By Schwartz’s property P, there exists y ∈ cowM(x)∩ (M∪{p})

′. As in
Theorems 2.3 and 2.4 of [Christensen 1977], ‖y− x‖ ≤ ‖ad(x)|C ′′‖ and ‖ad(y)|C ′′‖ ≤ ‖ad(x)|C ′′‖. Write
y1= yp and y2= y(1− p). If p 6= 1, then the properly infinite algebra M0 lies in C ′′(1− p)∩{y2, y∗2 }

′ and
so by Corollary 2.2 of the same reference, ‖ad(y2)|C ′′(1−p)‖ = 2d(y2,C ′(1− p)). Take x2 ∈ C ′′(1− p)
with ‖x2− y2‖ = ‖ad(y2)|C ′′(1−p)‖/2≤ ‖ad(x)|C ′′‖/2.
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If p 6= 0, then we argue exactly as in the proof of [Christensen 1977, Proposition 2.8] to produce first
z1 ∈ A′ p with ‖y1− z1‖≤ ‖ad(y1)|C ′′ p‖/2≤‖ad(x)|C ′′‖/2. Continuing with Christensen’s proof, as B ′′ p
and A′′ p commute, cowB ′′ p(z1) is contained in A′ p and hence there exists x1 ∈ cowB ′′ p(z1)∩ B ′ p with

‖x1− z1‖ ≤ ‖ad(z1)|B ′′ p‖ ≤ ‖ad(z1− y1)|B ′′ p‖ ≤ 2‖z1− y1‖ ≤ ‖ad(x)|C ′′‖.

Then

‖y1− x1‖ ≤ ‖y1− z1‖+‖z1− x1‖ ≤
3
2‖ad(x)|C ′′‖.

If p = 0, take x1 = 0 and the same inequality holds. The element x1+ x2 ∈ C ′ has

‖x − (x1+ x2)‖ ≤ ‖x − y‖+‖(y1− x1)+ (y2− x2)‖

≤ ‖ad(x)|C ′′‖+max(‖y1− x2‖, ‖y2− x2‖)≤
5
2‖ad(x)C ′′‖.

Therefore C has property D5/2, and so by [Pisier 1998, Remark 4.7] has length at most 5. �

Corollary 4.9. Let A be a Z-stable C∗-algebra. Then A has property D5/2 and length at most 5.

The main result of [Christensen et al. 2010] — a reference we will abbreviate to [CSSW] for the
remainder of this section — is that the similarity property transfers to close C∗-algebras. This work is
carried out with estimates depending on the length and length constant of A, but it is equally possible
to carry out this work entirely in terms of property Dk so it can be applied to Z-stable algebras. Our
objective is to obtain a version of [CSSW, Corollary 4.6] replacing the hypothesis that A has length at
most ` and length constant at most K with the formally weaker hypothesis that A has property Dk (if A
has the specified length and length constants, then it has property Dk for k = K`/2, conversely if A has
property Dk , then it has length at most b2kc, but a length constant estimate is not known in this case;
see [Pisier 1998, Remark 4.7]). This enables us to use Corollary 4.9 obtain an isomorphism between
the Cuntz semigroups of sufficiently close C∗-algebras when one algebra is Z-stable. To achieve a Dk

version of [CSSW, Section 4], we adjust the hypotheses in Lemma 4.1, Theorem 4.2 and Theorem 4.4 of
that reference in turn, starting with Lemma 4.1. We begin by isolating a technical observation.

Lemma 4.10. Let M be a finite von Neumann algebra with a faithful tracial state acting in standard
form on H and let J be the conjugate linear modular conjugation operator inducing an isometric
antisomorphism x 7→ J x J of M onto M′ ∼=Mop. Suppose that S is another von Neumann algebra acting
nondegenerately on H with M′ ⊂γ S. If M has property D∗k , then M′ ⊂cb,2kγ S.

Proof. As J is isometric, M ⊂γ JSJ , so that M ⊂cb,2kγ JSJ by Proposition 4.2. Now, for each
n ∈ N, let Jn denote the isometric conjugate linear operator of component-wise complex conjugation
on Cn so that J ⊗ Jn is a conjugate linear isometry on H⊗Cn . We can conjugate the near inclusion
M⊗Mn ⊂2kγ J S J ⊗Mn by J ⊗ Jn to obtain M′⊗Mn ⊂2kγ S⊗Mn , as required. �

The next lemma is the modification of [CSSW, Lemma 4.1]. The expression for β below is a slight
improvement over that of the original.
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Lemma 4.11. Let M and N be von Neumann algebras of type II1 faithfully and nondegenerately rep-
resented on H with common centre Z which admits a faithful state. Suppose d(M,N) = α and M has
property D∗k . If α satisfies

24(12
√

2k+ 4k+ 1)α < 1
200 ,

then d(M′,N′) < 2β + 1200kα(1+β), where β = 96kα(600k+ 1).

Proof. This amounts to showing that the hypothesis in [CSSW, Lemma 4.1] that M contains an weak∗-
dense C∗-algebra A of length at most ` and length constant at most K can be replaced by the statement
that M has property D∗k (and that the specified expressions on β are valid). The hypothesis that M has
such a weak∗-dense C∗-algebra is initially used to see that M has property Dk at the beginning of the
lemma and then applied to a unital normal representation to obtain [CSSW, equation (4.5)]. As such
property D∗k suffices for this estimate.

The other use of this hypothesis comes on p. 385 in the last paragraph of the lemma, to obtain [CSSW,
equation (4.28)]. Using the notation of this paragraph, the von Neumann algebra TM is a cutdown of M

acting as M⊗ IG on H⊗G by the projection ei0,i0 from the commutant of M on this space. Since ei0,i0 is
unitarily equivalent in this commutant to a projection of the form e⊗ g0, where e is a projection from
the commutant of M on H of full central support and g0 is a minimal projection in B(G), it follows that
ei0,i0 has full central support in the commutant of M on H⊗G. As such TM is isomorphic to M, so has
property D∗k . Thus Lemma 4.10 can be applied to the near inclusion T ′M ⊂48(600kα+α) T ′N2

from [CSSW,
equation (4.25)] giving

T ′M ⊂cb,96k(600kα+α)) T ′N2
.

It then follows that
TM⊗B(`2(3))⊂96k(600kα+α) TN⊗B(`2(3)),

which is precisely [CSSW, equation (4.28)] with our new estimate for β replacing that of the original.
We then deduce that d(M′,N′)≤ 2β+1200kα(1+β) in just the same way that [CSSW, equation (4.30)]
is obtained from [CSSW, equation (4.28)]. �

Now we adjust Theorem 4.2 of [CSSW]. The resulting constant β is obtained by taking α = 11γ in the
previous lemma. Note that there is an unfortunate omission in the value of β in Theorem 4.2 of [CSSW],
which should be given by taking α = 11γ in Lemma 4.1 of [CSSW], so should be K ((1+ 316800kγ +
528γ )`− 1); this has no knock-on consequences to Theorem 4.4 of [CSSW], where the correct value of
β is used.

Lemma 4.12. Let A and B be C∗-algebras acting on a Hilbert space and suppose that d(A, B) = γ .
Suppose A has property Dk and 24(12

√
2k+ 4k+ 1)γ < 1/2200. Then

d(A′, B ′)≤ 10γ + 2β + 13200kγ (1+β),

where β = 1056k(600kγ + γ ).

Proof. This amounts to replacing the hypothesis that A has length at most ` and length constant at most
K with the condition that A has property Dk in Theorem 4.2 of [CSSW]. The length hypothesis on A
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is used to show that certain II1 von Neumann closures of A satisfy [CSSW, Lemma 4.1], but since the
weak∗-closure of a C∗-algebra with property Dk has property D∗k , Lemma 4.11 can be used in place of
that lemma. Note that in the proof of [CSSW, Theorem 4.2] the reference to injective von Neumann
algebras having property D1 is incorrect (it is an open question whether

∏
∞

n=1 Mn has the similarity
property). The correct statement is that these algebras have property D∗1 , which is all that is used. �

Finally we can convert Theorem 4.4 of [CSSW]. Note the typo in the statement of this theorem; the
definition of k̃ should be k/(1− 2η− 2kγ ) rather than k/(1− 2η− kγ ). The same change should be
made in Corollary 4.6 of [CSSW].

Proposition 4.13. Let A and B be C∗-subalgebras of some C∗-algebra C with d(A, B) < γ and suppose
A has property Dk . Write β = 1056(600kγ + γ ) and η= 10γ + 2β+ 13200kγ (1+β) and suppose that

24(12
√

2k+ 4k+ 1)γ <
1

2200
, 2η+ 2kγ < 1. (4-2)

Then dcb(A, B)≤ 4k̃γ , where

k̃ =
k

1− 2η− 2kγ
.

Proof. We check that B has property Dk̃ . This amounts to weakening the hypothesis of [CSSW,
Theorem 4.4] in just the same way as the preceding lemmas. Applying Lemma 4.12 in place of Theorem 4.2
of [CSSW] in the proof of their Theorem 4.4 shows that under the hypotheses of this proposition B has
property Dk̃ , where

k̃ =
k

1− 2η− 2kγ
.

This is valid as property Dk descends to quotients so, following the proof of [CSSW, Theorem 4.4], the
algebra ρ(A) inherits property Dk allowing the use of Lemma 4.12 above in place of [CSSW, Theorem 4.2].
Note that one should take care with issues of degeneracy here. In particular, the representation π of B in
the proof of Theorem 4.4 of [CSSW] should be assumed nondegenerate.

Proposition 4.2 now shows that B ⊂cb,2k̃ A and A ⊂cb,2k B. Therefore

dcb(A, B)≤ 2 max(2k̃γ, 2kγ )= 4k̃γ. �

Corollary 4.14. Let A be a C∗-algebra generated by two commuting nondegenerate C∗-subalgebras one
of which is nuclear and has no finite-dimensional irreducible representations. Suppose that A ⊂B(H)

and B is another C∗-subalgebra of B(H) with d(A, B) < γ for γ < 1/6422957. Then dcb(A, B) < 1/42
and (Cu(A),6(Cu(A))∼= (Cu(B),6(Cu(B)).

Proof. By Proposition 4.8, A has property Dk for k = 5/2 so in Proposition 4.13, β = 1585056γ and
η= 3203122γ +52306848000γ 2, so that 2η+2kγ < 1011γ < 1 for γ < 10−11. The bound on γ ensures
that (4-2) holds so that Proposition 4.13 applies. Further this bound gives

4kγ
1−2η−2kγ

<
1
42
,

and so the result follows from Proposition 4.13 and Theorem 3.10. �



946 FRANCESC PERERA, ANDREW TOMS, STUART WHITE AND WILHELM WINTER

In particular, C∗-algebras sufficiently close to Z-stable algebras are automatically completely close
and have the Cuntz semigroup of a Z-stable algebra. The question of whether the property of Z-stability
transfers to sufficiently close subalgebras raised in [Christensen et al. 2012] remains open.

Corollary 4.15. Let A be a Z-stable C∗-algebra and suppose that B is another C∗-algebra acting on the
same Hilbert space as A with d(A, B) < 1/6422957. Then dcb(A, B) < 1/42, and (Cu(A),6(Cu(A)) is
isomorphic to (Cu(B),6(Cu(B)). In particular, B has the Cuntz semigroup of a Z-stable algebra.

5. Quasitraces

In this section we use our isomorphism between the Cuntz semigroups of completely close C∗-algebras
to give an affine homeomorphism between the lower semicontinuous quasitraces on such algebras.
This isomorphism is compatible with the affine isomorphism of the trace spaces of close C∗-algebras
constructed in [Christensen et al. 2010, Section 5].

Given a C∗-algebra A, write T (A) for the cone of lower semicontinuous traces on A and QT2(A)
for the cone of lower semicontinuous 2-quasitraces on A. Precisely, a trace τ on A is a linear function
τ : A+ → [0,∞] vanishing at 0 and satisfying the trace identity τ(xx∗) = τ(x∗x) for all x ∈ A. A
2-quasitrace is a function τ : A+→ [0,∞] vanishing at 0 which satisfies the trace identity and which is
linear on commuting elements of A+. Write Ts(A) for the simplex of tracial states on A and QT2,s(A)
for the bounded 2-quasitraces on A of norm one. Lower semicontinuous traces and 2-quasitraces on A
extend uniquely to lower semicontinuous traces and 2-quasitraces respectively on A⊗K; see [Blanchard
and Kirchberg 2004, Remark 2.27(viii)].

In [Elliott et al. 2011, Section 4], Elliott, Robert and Santiago extend earlier work of Blackadar and
Handelman, setting out how functionals on Cu(A) arise from elements of QT2(A). Precisely, a functional
on Cu(A) is a map f : Cu(A)→ [0,∞] which is additive, order-preserving, has f (0)= 0 and preserves
the suprema of increasing sequences. Given τ ∈ QT2(A), the expression dτ (〈a〉) = limn→∞ τ(a1/n)

gives a well defined functional on Cu(A), where we abuse notation by using τ to denote the exten-
sion of the original lower semicontinuous 2-quasitrace to A ⊗ K. Alternatively, one can define dτ
by dτ (〈a〉) = limn→∞ τ(an), where (an)

∞

n=1 is any very rapidly increasing sequence from (A ⊗ K)+1
representing 〈a〉. Conversely, given a functional f on Cu(A), a lower semicontinuous 2-quasitrace on
A⊗K (and hence on A) is given by τ f (a)=

∫
∞

0 f
(
〈(a− t)+〉

)
dt . With this notation, the assignments

τ 7→ dτ and f 7→ τ f are mutually inverse (see [ibid., Proposition 4.2]).
The topology on QT2(A) is specified by saying that a net (τi ) in QT2(A) converges to τ ∈ QT2(A) if

and only if
lim sup

i
τi ((a− ε)+)≤ τ(a)≤ lim inf

i
τi (a)

for all a ∈ A+ and ε > 0. With this topology QT2(A) is a compact Hausdorff space [ibid., Theorem 4.4]
and T (A) is compact in the induced topology [ibid., Theorem 3.7]. In a similar fashion, the cone of
functionals on Cu(A) is topologised by defining λi → λ if and only if

lim sup
i

λi
(
〈(a− ε)+〉

)
≤ λ(〈a〉)≤ lim inf

i
λi (〈a〉)
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for all a ∈ (A ⊗ K)+ and ε > 0. Theorem 4.4 of [ibid.] shows that the affine map τ 7→ dτ is a
homeomorphism between the cone QT2(A) and the cone of functionals on the Cuntz semigroup.

Theorem 5.1. (1) Let A, B be C∗-algebras acting nondegenerately on a Hilbert space, with dcb(A, B)<
1/42. The isomorphism 8 :

(
Cu(A),6(Cu(A))

)
→

(
Cu(B),6(Cu(B))

)
given by Theorem 3.10

induces an affine homeomorphism

8̂ : QT2(B)→ QT2(A)

satisfying
d8̂(τ )(x)= dτ (8(x)) (5-1)

for all x ∈ Cu(A) and τ ∈ QT2(B).

(2) Suppose additionally that A and B are unital and dcb(A, B) < γ < 1/2200. Then 8̂ is compatible
with the map 9 : Ts(B)→ Ts(A) given in Lemma 5.4 of [Christensen et al. 2010]. Precisely, for
τ ∈ Ts(B), we have 8̂(τ ) ∈ Ts(A)⊂ QT2(A) and 8̂(τ )=9(τ).

Proof. Part (1) of the theorem is a consequence of Theorem 3.10 and [Elliott et al. 2011, Proposition 4.2]:
given τ ∈ QT2(B), define 8̂(τ ) to be the lower semicontinuous 2-quasitrace induced by the functional
dτ ◦8 on Cu(A). It is immediate from the construction that the map 8̂ is affine, bijective and the identity
(5-1) holds.

To show that 8̂ is continuous, we use the homeomorphism between the cone of lower semicontinuous
quasitraces and functionals on the Cuntz semigroup in [Elliott et al. 2011, Theorem 4.4]. Consider a net
(τi ) in QT2(B) with τi → τ . Fix a ∈ A+, then

dτ
(
8(〈a〉)

)
≤ lim inf

i
dτi

(
8(〈a〉)

)
,

as dτi → dτ . Now take ε > 0 and fix a contraction b∈ (B⊗K )+ with8(〈a〉)=〈b〉. As
(
〈(b−1/n)+〉

)∞
n=1

is very rapidly increasing with supremum 〈b〉, there exists n ∈N with 8
(
〈(a− ε)+〉

)
≤ 〈(b− 1/n)+〉. As

lim sup
i

dτi (〈b−
1
n )+〉)≤ dτ (〈b〉),

it follows that
lim sup

i
d8̂(τi )

(
〈(a− ε)+〉

)
≤ d8̂(τ )(〈a〉)≤ lim inf

i
d8̂(τ )(〈a〉).

Thus d8̂(τi )
→ d8̂(τ ) and so, using the homeomorphism between QT2(A) and functionals on Cu(A), we

have 8̂(τi )→ 8̂(τ ). Therefore 8̂ is continuous, and hence a homeomorphism between QT2(B) and
QT2(A).

For the second part we first need to review the construction of the map 9 from [Christensen et al.
2010], which we again abbreviate [CSSW]. Suppose dcb(A, B) < γ < 1/2200. Write C = C∗(A, B)
and let C ⊂ B(H) be the universal representation of C so that M = A′′ and N = B ′′ are isometrically
isomorphic to A∗∗ and B∗∗ respectively. Note that the Kaplansky density argument of [Kadison and
Kastler 1972, Lemma 5] gives dcb(M,N) ≤ dcb(A, B). Following the proof of [CSSW, Lemma 5.4]
we can find a unitary u ∈ (Z(M)∪ Z(N))′′ such that Z(uMu∗) = Z(N) and ‖u − 1C‖ ≤ 5γ . We write
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A1 = u Au∗ and M1 = uMu∗. There is now a projection zfin ∈ Z(M1) = Z(N) which simultaneously
decomposes M1 =M1zfin⊕M1(1− zfin) and N= Nzfin⊕N(1− zfin) into the finite and properly infinite
parts respectively (see [CSSW, Lemma 3.5] or [Kadison and Kastler 1972]). Given a tracial state τ on B,
there is a unique extension τ ′′ to N, which then factors uniquely through the centre valued trace TrNzfin on
Nzfin. That is, τ ′′(x) = (φτ ◦ TrNzfin)(xzfin) for some state φτ on Nzfin. The map 9 in [CSSW] is then
given by defining 9(τ)(y)= (φτ ◦TrM1zfin)(uyu∗zfin) for y ∈ A.

Now fix τ ∈ Ts(B). For m ∈ N and a ∈ (A⊗ Mm)
+

1 , consider the standard very rapidly increasing
sequence (g2−(n+1),2−n (a))∞n=1 which represents 〈a〉. Let pn ∈M⊗Mm be the spectral projection for a for
[2−(n+1), 1], so that the alternating sequence

g2−2,2−1(a), p1, g2−3,2−2(a), p2, g2−4,2−3(a), p3, . . .

is very rapidly increasing. Then

d9(τ)(〈a〉)= sup
n
(9(τ))(g2−n,2−(n+1)(a))= sup

n
9(τ)′′(pn). (5-2)

Choose bn ∈ (B⊗Mm)
+

1 with ‖g2−(n+1),2−n (a)−bn‖≤2γ and projections qn ∈N⊗Mm with ‖pn−qn‖≤2γ
by a standard functional calculus argument [Christensen 1974/75, Lemma 2.1]. Note that dcb(M1,N)≤11γ
and the algebras (M1⊗Mm)(zfin⊗ 1m) and (N1⊗Mm)(zfin⊗ 1m) have the same centre. Since∥∥(u⊗ 1m)p(u⊗ 1m)

∗(zfin⊗ 1m)− q(zfin⊗ 1m)
∥∥< 1

2 ,

Lemma 3.6 of [CSSW] applies to show that

(TrM1zfin ⊗ trm)
(
(u⊗ 1m)pn(u⊗ 1m)

∗(zfin⊗ 1m)
)
= (TrNzfin ⊗ trm)(q(zfin⊗ 1m)).

This ensures that 9(τ)′′(pn)= τ
′′(qn) for all n.

As each (qn − 18γ )+ = qn , the sequence

(b1− 18γ )+, q1, (b2− 18γ )+, q2, (b3− 18γ )+, q3, . . .

is upwards directed by Lemma 3.8 and the supremum of this sequence defines 8(〈a〉). We then have

dτ (8(〈a〉))= sup
n
τ ′′(qn). (5-3)

Indeed, dτ (8(〈a〉)) is given by sup τ(cn), where (cn)
∞

n=1 is any very rapidly increasing sequence in
(B⊗K)+ representing 8(〈a〉). But, working in Cu(N), Proposition 3.6 shows that any such very rapidly
increasing sequence (cn)

∞

n=1 can be intertwined with the very rapidly increasing sequence (qn)
∞

n=1 after
telescoping, and this establishes (5-3). Combining (5-2) and (5-3), we have

d9(τ)(〈a〉)= d8̂(τ )(〈a〉) (5-4)

for all m ∈N and a ∈ (A⊗Mm)+. As functionals on the Cuntz semigroup preserve suprema, (5-4) holds
for all a ∈ (A⊗K)+, whence 9(τ)= 8̂(τ ). �
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The homeomorphism between the lower semicontinuous quasitraces can be used to establish the
weak∗-continuity of the map between the tracial state spaces of close unital C∗-algebras from [CSSW,
Section 5] resolving a point left open there. In particular this shows that the map defined in [CSSW]
provides an isomorphism between the Elliott invariants of completely close algebras.

For any closed two-sided ideal I E A, the subcone TI (A) of T (A) consists of those τ ∈ T (A) such
that the closed two-sided ideal generated by {x ∈ A+ : τ(x) <∞} is I . Proposition 3.11 of [Elliott et al.
2011] shows that the relative topology on TI (A) is the topology of pointwise convergence on the positive
elements of the Pedersen ideal of I . In particular, Ts(A)⊂ TA(A). In particular, the induced topology on
Ts(A) is just the weak∗-topology.

Corollary 5.2. Suppose that A and B are unital C∗-algebras acting nondegenerately on a Hilbert space
with dcb(A, B) < 1/42 and d(A, B) < 1/2200. Then the affine isomorphism 9 : Ts(B)→ Ts(A) between
tracial state spaces in [Christensen et al. 2010, Section 5] is a homeomorphism with respect to the
weak∗-topologies.

We end with two further corollaries of Theorem 5.1.

Corollary 5.3. Let A and B be unital C∗-algebras acting nondegenerately on the same Hilbert space
with dcb(A, B) < 1/2200. Suppose every bounded 2-quasitrace on A is a trace, then the same property
holds for B.

Proof. Given τ ∈ QT2,s(B), its image 8̂(τ ) lies in QT2,s(A)= Ts(A). By Theorem 5.1 (2) (applied with
A and B interchanged)

τ = 8̂−1(8̂(τ ))=9−1(8̂(τ )) ∈ Ts(B),

as claimed. �

The question of whether exactness transfers to (completely) close C∗-algebras raised in [Christensen
et al. 2010] remains open, but we do at least obtain the following corollary.

Corollary 5.4. Let A and B be unital C∗-algebras acting nondegenerately on the same Hilbert space
with dcb(A, B) < 1/2200 and suppose A is exact. Then every bounded 2-quasitrace on B is a trace.

Proof. This is immediate from Haagerup’s result [1991] that bounded 2-quasitraces on exact C∗-algebras
are traces and the previous corollary. �

We end by noting that the isomorphism between the Cuntz semigroups of completely close algebras
in Theorem 3.10 can also be used to directly recapture an isomorphism between the Elliott invariants
in significant cases. Let CuT be the functor A 7→ Cu(A⊗C(T)) mapping the category of C∗-algebras
into the category Cu introduced in [Coward et al. 2008] and let Ell be the Elliott invariant functor taking
values in the category Inv whose objects are the 4-tuples arising from the Elliott invariant. Let C be the
subcategory of separable, unital, simple finite and Z-stable algebras A with QT2(A)= T (A) (for example
if A is exact). Then, building on work from [Brown et al. 2008; Brown and Toms 2007], Theorem 4.2
of [Antoine et al. 2014] provides functors F : Inv→ Cu and G : Cu→ Inv such that there are natural
equivalences of functors F ◦Ell|C ∼=CuT|C and G ◦CuT|C

∼= Ell|C (a similar result for simple unital ASH
algebras which are not type I and have slow dimension growth can be found in [Tikuisis 2011]). Note that
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in Theorem 4.2 of [Antoine et al. 2014] there is an implicit nuclearity hypothesis, which is only actually
used in order to see QT2(A)= T (A); therefore the result holds in the generality stated. Thus if A and B
are Z-stable C∗-algebras with dcb(A, B) sufficiently small, and A is simple, separable, unital finite and
has QT2(A)= T (A), then B enjoys all these properties. Further, since tensoring by an abelian algebra
does not increase the complete distance between A and B (see [Christensen 1980, Theorem 3.2] for this
result in the context of near inclusions—the same proof works for the metric dcb), CuT(A)∼= CuT(B) by
Theorem 3.10. Thus Ell(A)∼= Ell(B).
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WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC SPACES

JEAN-PHILIPPE ANKER AND VITTORIA PIERFELICE

We consider the Klein–Gordon equation associated with the Laplace–Beltrami operator � on real
hyperbolic spaces of dimension n� 2; as � has a spectral gap, the wave equation is a particular case of
our study. After a careful kernel analysis, we obtain dispersive and Strichartz estimates for a large family
of admissible couples. As an application, we prove global well-posedness results for the corresponding
semilinear equation with low regularity data.

1. Introduction

Dispersive properties of the wave and other evolution equations have been proved to be very useful
in the study of nonlinear problems. The theory is well-established for the Euclidean wave equation in
dimension n� 3: �

@2t u.t; x/��xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/:

(1)

The Strichartz estimates

krR�RnukLp.I I PH��;q.Rn// . kf k PH1.Rn/
CkgkL2.Rn/CkF kL zp0.I I PH z�;zq0.Rn//

hold for solutions u to the Cauchy problem (1) on any (possibly unbounded) time interval I � R under
the assumptions that

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�

and the couples .p; q/; . zp; zq/ 2 Œ2;1�� Œ2;1/ satisfy

2

p
C n�1

q
D n�1

2
and 2

zp C
n�1
zq D n�1

2
: (2)

We refer to [Ginibre and Velo 1995; Keel and Tao 1998] for more details.
These estimates serve as a tool for several existence results about the nonlinear wave equation in the

Euclidean setting. The problem of finding minimal regularity conditions on the initial data ensuring
local well-posedness for semilinear wave equations was addressed in [Kapitanski 1994] and then almost
completely answered in [Lindblad and Sogge 1995; Keel and Tao 1998] (see Figure 5 in Section 6). In
general, local solutions cannot be extended to global ones unless further assumptions are made on the

MSC2010: primary 35L05, 43A85, 43A90, 47J35; secondary 22E30, 35L71, 58D25, 58J45, 81Q05.
Keywords: hyperbolic space, wave kernel, semilinear wave equation, semilinear Klein–Gordon equation, dispersive estimate,

Strichartz estimate, global well-posedness.
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nonlinearity or on the initial data. A successful machinery was developed towards the global existence
of small solutions to the semilinear wave equation

�
@2t u.t; x/��xu.t; x/D F.u/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/

(3)

with power-like nonlinearities

F.u/� juj . > 1/: (4)

The results depend on the space dimension n. After the pioneer work of John [1979] in dimension nD 3,
Strauss [1989] conjectured that the problem (3) is globally well posed in dimension n� 2 for small initial
data provided that

 > 0 D 1

2
C 1

n�1 C
r�

1

2
C 1

n�1
�2
C 2

n�1: (5)

On one hand, the negative part of the conjecture was established by Sideris [1984], who proved blow-up
for nonlinearities F.u/D juj with 1 <  < 0 and for rather general initial data. On the other hand, the
positive part of the conjecture was proved for any dimension in several steps (see, e.g., [Klainerman and
Ponce 1983; Georgiev et al. 1997; D’Ancona et al. 2001] and [Georgiev 2000] for a comprehensive survey).

Analogous results hold for the Klein–Gordon equation

@2t u.t; x/��xu.t; x/Cu.t; x/D F.t; x/

though its study has not been carried out as thoroughly as for the wave equation; in particular, the
sharpness of several well-posedness results is yet unknown (see [Bahouri and Gérard 1999; Ginibre and
Velo 1985; Machihara et al. 2004; Nakanishi 1999] and the references therein).

In view of the rich Euclidean theory, it is natural to look at the corresponding equations on more
general manifolds. Here we consider real hyperbolic spaces Hn, which are the most simple examples
of noncompact Riemannian manifolds with negative curvature. For geometric reasons, we expect better
dispersive properties and hence stronger results than in the Euclidean setting.

Consider the wave equation associated to the Laplace–Beltrami operator �D�Hn on Hn:
�
@2t u.t; x/��xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/:

(6)

The operator �� is positive on L2.Hn/, and its L2-spectrum is the half-line Œ�2;C1/, where � D
.n� 1/=2. Thus, (6) may be considered as a special case of the family of Klein–Gordon equations

�
@2t u.t; x/��xu.t; x/C cu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(7)

where

c � ��2 D�.n� 1/
2

4
(8)

is a constant. In the limit case c D��2, (7) is called the shifted wave equation.
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Pierfelice [2008] obtained Strichartz estimates for the nonshifted wave equation (6) with radial data
on a class of Riemannian manifolds containing all hyperbolic spaces. The wave equation (6) was also
investigated on the 3-dimensional hyperbolic space by Metcalfe and Taylor [2011; 2012], who proved
dispersive and Strichartz estimates with applications to small-data global well-posedness for the semilinear
wave equation. In his recent thesis, Hassani [2011a; 2011b] obtains a first set of results on noncompact
Riemannian symmetric spaces of higher rank.

To our knowledge, the shifted wave equation (7) in the limit case c D ��2 was first considered by
Fontaine [1994; 1997] in low dimensions nD 3 and nD 2. Tataru [2001] obtained dispersive estimates for
the operators sin

�
t
p
�C �2�=

p
�C �2 and cos

�
t
p
�C �2� acting on inhomogeneous Sobolev spaces

on Hn and then transferred them to Rn in order to get well-posedness results for the Euclidean semilinear
wave equation (see also [Georgiev 2000]). Complementary results were obtained by Ionescu [2000], who
investigated Lq! Lq Sobolev estimates for the above operators on all hyperbolic spaces.

A more detailed analysis of the shifted wave equation was carried out in [Anker et al. 2012]. There
Strichartz estimates were obtained for a wider range of couples than in the Euclidean setting, and conse-
quently stronger well-posedness results were shown to hold for the nonlinear equations. Corresponding
results for the Schrödinger equation were obtained in [Anker and Pierfelice 2009; Anker et al. 2011;
Ionescu and Staffilani 2009].

In the present paper, we study the family of equations (7) in the remaining range c > ��2 and in
dimension n� 2, which includes the particular case c D 0 and nD 3 considered in [Metcalfe and Taylor
2011; 2012]. In order to state and describe our results, it is convenient to rewrite the constant (8) as

c D �2� �2 with � > 0 (9)

and to introduce the operator

D D
p
��� �2C �2 (10)

as well as
zD D

p
��� �2C Q�2; (11)

where Q� > � is another fixed constant. Thus, our family of equations (7) becomes
�
@2t u.t; x/CD2xu.t; x/D F.t; x/;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(12)

the wave equation (6) corresponding to the choice � D � and the shifted wave equation to the limit
case � D 0.

Let us now describe the content of this paper and present our main results, which we state for simplicity
in dimension n� 3. In Section 2, we recall the basic tools of spherical Fourier analysis on real hyperbolic
spaces Hn. After analyzing carefully the integral kernel of the half-wave operator

W �
t D zD��eitD

in Section 3, we prove in Section 4 the following dispersive estimates, which combine the small time
estimates [Anker et al. 2012] for the shifted wave equation and the large time estimates [Anker and
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Pierfelice 2009] for the Schrödinger equation:

kW �
t kLq!Lq0 .

�jt j�.n�1/.1=2�1=q/ if 0 < jt j< 1;
jt j�3=2 if jt j � 1;

where 2 < q <1 and � � .nC 1/.1=2� 1=q/. Notice that we don’t deal with the limit case q D1,
where Metcalfe and Taylor [2011] have obtained an H 1! BMO estimate in dimension nD 3.

In Section 5, we deduce the Strichartz estimates

krR�HnukLp.I IH��;q.Hn// . kf kH1.Hn/CkgkL2.Hn/CkF kL zp0.I IH z�;zq0.Hn//
for solutions u to (12). Here I � R is any time interval,

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�
;

and the couples .1=p; 1=q/ and .1= zp; 1=zq/ belong to the triangle
n�
1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� n�1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o
: (13)

These estimates are similar to those obtained in [Anker et al. 2012] for the shifted wave equation except
that they involve standard Sobolev spaces and no exotic ones. Notice that the range (13) of admissible
couples for Hn is substantially wider than the range (2) for Rn, which corresponds to the lower edge of
the triangle (13).

In Section 6, we apply the results of the previous sections to the problem of global existence with
small data for the corresponding semilinear equations. In contrast with the Euclidean case, where the
range of admissible nonlinearities F.u/� juj is restricted to  > 0, we prove global well-posedness for
powers  > 1 arbitrarily close to 1. This result improves in particular [Metcalfe and Taylor 2011], where
global well-posedness for (6) was obtained in the case nD 3 and � D � under the assumption  > 5

3
.

As already observed for the Schrödinger equation [Anker and Pierfelice 2009; Anker et al. 2011] and
for the shifted wave equation [Anker et al. 2012; 2014], the fact that better results hold for Hn than for Rn

may be regarded as a consequence of the stronger dispersion properties in negative curvature. The final
section is the Appendix, where we estimate some oscillatory integrals occurring in the kernel analysis
carried out in Section 3.

2. Essentials about real hyperbolic spaces

In this paper, we consider the simplest class of Riemannian symmetric spaces of the noncompact type,
namely real hyperbolic spaces Hn of dimension n� 2. We refer to Helgason’s books [2001; 2000; 1994]
and to Koornwinder’s survey [1984] for their algebraic structure and geometric properties as well as
for harmonic analysis on these spaces, and we shall be content with the following information. Hn can
be realized as the symmetric space G=K, where G D SO.1; n/0 and K D SO.n/. In geodesic polar
coordinates, the Laplace–Beltrami operator on Hn writes

�Hn D @2r C .n� 1/ coth r@r C sinh�2 r�Sn�1 :
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The spherical functions '� on Hn are normalized radial eigenfunctions of �D�Hn :
�
�'� D�.�2C �2/'�;
'�.0/D 1;

where � 2 C and �D .n� 1/=2. They can be expressed in terms of special functions:

'�.r/D �.n=2�1;�1=2/�
.r/D 2F1

��
2
C i �

2
; �
2
� i �

2
I n
2
I � sinh2 r

�
;

where �.˛;ˇ/
�

denotes the Jacobi functions and 2F1 the Gauss hypergeometric function. In the sequel, we
shall use the Harish-Chandra formula

'�.r/D
Z

K

dk e�.�Ci�/H.a�rk/ (14)

and the basic estimate

j'�.r/j � '0.r/. .1C r/e��r 8� 2 R; r � 0: (15)

We shall also use the Harish-Chandra expansion

'�.r/D c.�/ˆ�.r/C c.��/ˆ��.r/ 8� 2 C nZ; r > 0; (16)

where the Harish-Chandra c-function is given by

c.�/D �.2�/

�.�/

�.i�/

�.i�C �/ (17)

and
ˆ�.r/D .2 sinh r/i���2F1

��
2
� i �

2
;���1

2
� i �

2
I 1� i�I � sinh�2 r

�

D .2 sinh r/��ei�r
C1X

kD0
�k.�/e

�2kr

� e.i���/r as r!C1: (18)

The coefficients �k.�/ in the expansion (18) are rational functions of � 2 C that satisfy the recurrence
formula 8

<̂

:̂

�0.�/D 1;
�k.�/D

�.�� 1/
k.k� i�/

k�1X

jD0
.k� j /�j .�/:

Their classical estimates were improved as follows in [Anker et al. 2011, Lemma 2.1].

Lemma 2.1. Let 0 < " < 1 and �" D f� 2 C j Re�� "j�j; Im�� �1C "g. Then there exist � � 0 and,
for every ` 2 N, C` � 0 such that

j@`��k.�/j � C`k�.1Cj�j/�`�1 8k 2 N�; � 2 C n�": (19)

Under suitable assumptions, the spherical Fourier transform of a bi-K-invariant function f on G is
defined by

Hf .�/D
Z

G

dg f .g/'�.g/;
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and the following inversion formula holds:

f .x/D const
Z C1

0

d� jc.�/j�2Hf .�/'�.x/:

Here is a well-known estimate of the Plancherel density:

jc.�/j�2 . j�j2.1Cj�j/n�3 8� 2 R: (20)

Via the spherical Fourier transform, the Laplace–Beltrami operator � corresponds to

��2� �2

and hence the operators D D
p
��� �2C �2 and zD D

p
��� �2C Q�2 to

p
�2C �2 and

p
�2C Q�2:

Recall eventually the definition of Sobolev spaces on Hn and the Sobolev embedding theorem. We refer to
[Triebel 1992] for more details about function spaces on Riemannian manifolds. Let � 2R and 1<q <1.
Then H�;q.Hn/ denotes the image of Lq.Hn/ under .��/��=2 (in the space of distributions on Hn)
equipped with the norm

kf kH�;q D k.��/�=2f kLq :

In this definition, we may replace .��/��=2 byD�� D .����2C�2/��=2 as long as � >2j1=2�1=qj�
and in particular by zD�� D .��� �2C Q�2/��=2 since Q� > �. If � DN is a nonnegative integer, then
H�;q.Hn/ coincides with the Sobolev space

W N;q.Hn/D ff 2 Lq.Hn/ j rjf 2 Lq.Hn/ 8j; 1� j �N g

defined in terms of covariant derivatives. In the L2 setting, we write H� .Hn/ instead of H�;2.Hn/.

Proposition 2.2. Let 1 < q1; q2 <1 and �1; �2 2 R such that �1� �2 � n=q1�n=q2 � 0. Then

H�1;q1.Hn/�H�2;q2.Hn/:

By this inclusion, we mean that there exists a constant C � 0 such that

kf kH�2;q2 � Ckf kH�1;q1 8f 2 C1c .Hn/:

3. Kernel estimates

In this section, we derive pointwise estimates for the radial convolution kernel w�t of the operator
W �
t D zD��eitD for suitable exponents � 2 R. By the inversion formula of the spherical Fourier

transform,

w�t .r/D const
Z C1

�1
d� jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 :
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Contrarily to the Euclidean case, this kernel has different behaviors depending on whether t is small or
large, and therefore, we cannot use any rescaling. Let us split up

w�t .r/D w�;0t .r/Cw�;1t .r/

D const
Z C1

�1
d��0.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2

C const
Z C1

�1
d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2

using smooth, even cut-off functions �0 and �1 on R such that

�0.�/C�1.�/D 1 and
�
�0.�/D 1 8j�j � �;
�1.�/D 1 8j�j � �C 1:

We shall first estimate w�;0t and next a variant of w�;1t . The kernel w�;1t has indeed a logarithmic
singularity on the sphere r D t when � D .nC 1/=2. We bypass this problem by considering the analytic
family of operators

eW �;1
t D e�

2

�..nC1/=2��/�1.D/ zD
��eitD

in the vertical strip 0� Re � � .nC 1/=2 and the corresponding kernels

zw�;1t .r/D const e�
2

�..nC1/=2��/
Z C1

�1
d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 : (21)

Notice that the gamma function (which occurs naturally in the theory of Riesz distributions) will allow
us to deal with the boundary point � D .nC 1/=2 while the exponential function yields boundedness at
infinity in the vertical strip.

3A. Estimate of w0t D w
�;0
t .

Theorem 3.1. Let � 2 R. The following pointwise estimates hold for the kernel w0t :

(i) For every t 2 R and r � 0, we have

jw0t .r/j. '0.r/:
(ii) Assume that jt j � 2. Then for every 0� r � jt j=2, we have

jw0t .r/j. jt j�3=2.1C r/'0.r/:
Proof. Recall that

w0t .r/D const
Z �C1

���1
d��0.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit

p
�2C�2 : (22)

By symmetry, we may assume that t > 0.
It follows from the estimates (15) and (20) that

jw0t .r/j.
Z �C1

���1
d��2'0.r/. '0.r/;
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proving (i). We prove (ii) by substituting in (22) the first integral representation of '� in (14) and by
reducing in this way to Fourier analysis on R. Specifically,

w0t .r/D
Z

K

dk e��H.a�rk/
Z C1

�1
d� a.�/eit.

p
�2C�2�H.a�rk/�=t/;

where a.�/D const�0.�/jc.�/j�2.�2C Q�2/��=2. Since
Z

K

dk e��H.a�rk/ D '0.r/

and jH.a�rk/j � r , it remains for us to estimate the oscillatory integral

I.t; x/D
Z C1

�1
d� a.�/eit.

p
�2C�2�x�=t/

by jt j�3=2.1C jxj/. This is obtained by the method of stationary phase. More precisely, we apply
Lemma A.1 in the Appendix, whose assumption (A-1) is fulfilled according to (20). �

3B. Estimate of zw1
t D zw

�;1
t .

Theorem 3.2. The following pointwise estimates hold for the kernel zw1t , uniformly in � 2 C with
Re � D .nC 1/=2:

(i) Assume that jt j � 2. Then for every r � 0, we have

j zw1t .r/j. jt j�1:
(ii) Assume that 0 < jt j � 2.

(a) If r � 3, then zw1t .r/D O.r�1e��r/.

(b) If 0� r � 3, then j zw1t .r/j.
�jt j�.n�1/=2 if n� 3;
jt j�1=2.1� logjt j/ if nD 2:

Throughout the proof of Theorem 3.2, we may assume again by symmetry that t > 0.

Proof of Theorem 3.2(i). By evenness, we have

zw1t .r/D 2 const e�
2

�..nC1/=2��/
Z C1

0

d��1.�/jc.�/j�2.�2C Q�2/��=2'�.r/eit
p
�2C�2 : (23)

If 0� r � t=2, we resume the proof of Theorem 3.1(ii), using Lemma A.2 instead of Lemma A.1, and
conclude that

j zw1t .r/j. t�1'0.r/: (24)

If r � t=2, we substitute in (23) the Harish-Chandra expansion (16) of '�.r/ and reduce this way again
to Fourier analysis on R. Specifically, our task consists in estimating the expansion

zw1t .r/D .sinh r/��
C1X

kD0
e�2krfIC;1

k
.t; r/C I�;1

k
.t; r/g (25)
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involving oscillatory integrals

I
˙;1
k

.t; r/D
Z C1

0

d� a˙k .�/e
i.t
p
�2C�2˙r�/

with amplitudes

a˙k .�/D 2 const e�
2

�..nC1/=2��/�1.�/c.��/
�1.�2C Q�2/��=2�k.˙�/:

Notice that a˙
k
.�/ is a symbol of order

d D
��1 if k D 0;
�2 if k 2 N�

uniformly in � 2C with Re � D .nC1/=2. This follows indeed from the expression (17) of the c-function
and from the estimate (19) of the coefficients �k . Consequently, the integrals

I
˙;1
k

.t; r/D O.k�/ (26)

are easy to estimate when k > 0 while IC;10 .t; r/ and especially I�;10 .t; r/ require more work. As far
as the penultimate integral is concerned, we integrate by parts

I
C;1
0 .t; r/D

Z C1

0

d� aC0 .�/e
it�.�/;

using eit�.�/ D .i t�0.�//�1 @
@�
eit�.�/ and the following properties of �.�/Dp�2C �2C .r=t/�:

� �0.�/D �p
�2C�2 C

r

t
� r
t
� 1
2

,

� �00.�/D �2.�2C �2/�3=2 is a symbol of order �3.

We obtain this way
I
C;1
0 .t; r/D O.r�1/ (27)

and actually
I
C;1
0 .t; r/D O.r�1/

by repeated integrations by parts. Let us turn to the last integral, which we rewrite as follows:

I
�;1
0 .t; r/D

Z C1

0

d� a�0 .�/eit.
p
�2C�2��/ei.t�r/�:

After performing an integration by parts based on ei.t�r/� D �i.t � r/�1 @
@�
ei.t�r/� and by using the

fact that

 .�/D
p
�2C �2��D �2p

�2C �2C� (28)

is a symbol of order �1, we obtain

I
�;1
0 .t; r/D O

�
t

jr�t j
�
: (29)
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This estimate is enough for our purpose as long as r stays away from t . If jr � t j � 1, let us split up

eit .�/ D 1CO.t .�//

and

I
�;1
0 .t; r/D

Z C1

0

d� a�0 .�/ei.t�r/�CO.t/ (30)

accordingly. The remaining integral was estimated in [Anker et al. 2011] at the end of the proof of
Theorem 4.2(ii): Z C1

0

d� a�0 .�/ei.t�r/� D O.1/: (31)

By combining the estimates (26), (27), (29), (30), and (31), we deduce from (25) that

j zw1t .r/j. e��r t . t�1 8r � t
2
� 1

uniformly in � 2 C with Re � D .nC 1/=2. This concludes the proof of Theorem 3.2(i). �
Let us turn to the small time estimates in Theorem 3.2.

Proof of Theorem 3.2(ii)(a). Since 0 < t � 2 and r � 3, we can resume the proof of Theorem 3.2(i) in the
case r � t C 1� t=2. By using the expansion (25) and the estimates (26), (27), and (29), we obtain

j zw1t .r/j. r�1e��r

uniformly in � 2 C with Re � D .nC 1/=2. This concludes the proof of Theorem 3.2(ii)(a). �
Proof of Theorem 3.2(ii)(b). Let us rewrite and expand (23) as follows:

zw1t .r/D 2 const e�
2

�..nC1/=2��/
Z C1

0

d��1.�/jc.�/j�2.�2C Q�2/��=2eit .�/eit�'�.r/ (32)

D
Z C1

0

d� a.�/eit�'�.r/C
Z C1

0

d� b.�/eit�'�.r/; (33)

where  is given by (28),

a.�/D 2 const e�
2

�..nC1/=2��/�1.�/jc.�/j
�2.�2C Q�2/��=2

is a symbol of order .n� 3/=2, uniformly in � 2 C with Re � D .nC 1/=2, and

b.�/D 2 const e�
2

�..nC1/=2��/�1.�/jc.�/j
�2.�2C Q�2/��=2feit .�/� 1g

is a symbol of .n� 5/=2, uniformly in 0 < t � 2 and � 2 C with Re � D .nC 1/=2. The first integral in
(33) was analyzed in [Anker et al. 2011, Appendix C] and estimated there by

C

�
t�.n�1/=2 if n� 3;
t�1=2.1� logjt j/ if nD 2:

The second integral is easier to estimate for instance by Ct�.n�2/=2. This concludes the proof of
Theorem 3.2(ii)(b). �
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Remark 3.3. As far as local estimates of wave kernels are concerned, we might have used the Hadamard
parametrix [Hörmander 2007, §17.4] instead of spherical analysis.

Remark 3.4. The kernel analysis carried out in this section still holds for the operators D�� zD�z�eitD ,
provided that we assume Re � CRe z� D .nC 1/=2 in Theorem 3.2.

4. Dispersive estimates

In this section, we obtain Lq
0!Lq estimates for the operator W �

t D zD��eitD , which will be crucial for
our Strichartz estimates in next section. Let us split up its kernel w�t D w�;0t Cw�;1t as before. We will
handle the contribution of w�;0t , using the pointwise estimates obtained in Section 3A and the following
criterion (see for instance [Anker et al. 2011, Theorem 3.4]) based on the Kunze–Stein phenomenon:

Lemma 4.1. There exists a constant C > 0 such that, for every radial measurable function � on Hn and
for every 2� q <1 and f 2 Lq0.Hn/,

kf � �kLq � Cqkf kLq0
�Z C1

0

dr .sinh r/n�1j�.r/jq=2'0.r/
�2=q

:

For the second part w�;1t , we resume the Euclidean approach, which consists of interpolating analyti-
cally between L2! L2 and L1! L1 estimates for the family of operators

eW �;1
t D e�

2

�..nC1/=2��/�1.D/ zD
��eitD (34)

in the vertical strip 0� Re � � .nC 1/=2.

4A. Small-time dispersive estimates.

Theorem 4.2. Assume that 0 < jt j � 2, 2 < q <1, and � � .nC 1/.1=2� 1=q/. Then

k zD��eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if n� 3;
jt j�.1=2�1=q/.1� logjt j/1�2=q if nD 2:

Proof. We divide the proof into two parts, corresponding to the kernel decomposition wt D w0t Cw1t .
By applying Lemma 4.1 and using the pointwise estimates in Theorem 3.1(i), we obtain on one hand

kf �w0t kLq .
�Z C1

0

dr .sinh r/n�1'0.r/jw0t .r/jq=2
�2=q
kf kLq0

.
�Z C1

0

dr .1C r/q=2C1e�.q=2�1/�r
�2=q
kf kLq0

. kf kLq0 8f 2 Lq
0

:

On the other hand, in order to estimate the Lq
0!Lq norm of f 7! f �w1t , we proceed by interpolation

for the analytic family (34). If Re � D 0, then

kf � zw1t kL2 . kf kL2 8f 2 L2:
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If Re � D .nC 1/=2, we deduce from the pointwise estimates in Theorem 3.2(ii) that

kf � zw1t kL1 . jt j�.n�1/=2kf kL1 8f 2 L1:
By interpolation, we conclude for � D .nC 1/.1=2� 1=q/ that

kf �w1t kLq . jt j�.n�1/.1=2�1=q/kf kLq0 8f 2 Lq
0

: �

4B. Large-time dispersive estimate.

Theorem 4.3. Assume that jt j � 2, 2 < q <1, and � � .nC 1/.1=2� 1=q/. Then

k zD��eitDkLq0!Lq . jt j�3=2:
Proof. We divide the proof into three parts, corresponding to the kernel decomposition

wt D 1B.0;jt j=2/w0t C1HnnB.0;jt j=2/w0t Cw1t :

Estimate 1. By applying Lemma 4.1 and using the pointwise estimate in Theorem 3.1(ii), we obtain

kf � f1B.0;jt j=2/w0t gkLq .
�Z jt j=2

0

dr .sinh r/n�1'0.r/jw0t .r/jq=2
�2=q
kf kLq0

.
�Z jt j=2

0

dr .1C r/qC1e�.q=2�1/�r
�2=q

„ ƒ‚ …
<C1

jt j�3=2kf kLq0 8f 2 Lq
0

:

Estimate 2. By applying Lemma 4.1 and using the pointwise estimate in Theorem 3.1(i), we obtain

kf � f1HnnB.0;jt j=2/w0t gkLq .
�Z C1

jt j=2
dr .sinh r/n�1'0.r/jw0t .r/jq=2

�2=q
kf kLq0

.
�Z C1

jt j=2
dr rq=2C1e�.q=2�1/�r

�2=q

„ ƒ‚ …
.jt j�1

kf kLq0 8f 2 Lq
0

:

Estimate 3. We proceed by interpolation for the analytic family (34). If Re � D 0, then

kf � zw1t kL2 . kf kL2 8f 2 L2:
If Re � D .nC 1/=2, we deduce from Theorem 3.2(i) that

kf � zw1t kL1 . jt j�1kf kL1 8f 2 L1:
By interpolation, we obtain for � D .nC 1/.1=2� 1=q/ that

kf �w1t kLq . jt j�1kf kLq0 8f 2 Lq
0

:

We conclude the proof of Theorem 4.3 by summing up the previous estimates. �



WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC SPACES 965

4C. Global dispersive estimates. As noticed in Remark 3.4, similar results hold for the operators
D�� zD�z�eitD .

Corollary 4.4. Let 2 < q <1 and �; z� 2 R such that � C z� � .nC 1/.1=2� 1=q/. Then

kD�� zD�z�eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1: (35)

In particular, if 2 < q <1 and � � .nC 1/.1=2� 1=q/, then

k zD��eitDkLq0!Lq C
 zD1�� e

itD

D


Lq
0!Lq .

�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1: (36)

These results hold in dimension n� 3. In dimension nD 2, there is an additional logarithmic factor in the
small time bound, which becomes jt j�.1=2�1=q/.1� logjt j/1�2=q .

Remark 4.5. On L2.Hn/, we know by spectral theory that

� eitD is a 1-parameter group of unitary operators,

� D�� zD�z� is a bounded operator if � C z� � 0.

Remark 4.6. Let us specialize our results for the wave equation (6). In this case, we have D Dp��,
and we may take zD DD. Let 2 < q <1 and � � .nC 1/.1=2� 1=q/. Then

kD��eitDkLq0!Lq .
�jt j�.n�1/.1=2�1=q/ if 0 < jt j � 1;
jt j�3=2 if jt j � 1 (37)

in dimension n� 3 and

kD��eitDkLq0!Lq .
�jt j�.1=2�1=q/.1� logjt j/1�2=q if 0 < jt j � 1;
jt j�3=2 if jt j � 1

in dimension nD 2. Let us compare (37) with the dispersive estimates by Metcalfe and Taylor [2011;
2012] in dimension nD 3. Actually, the weaker bound jt j�6.1=2�1=q/, obtained in [Metcalfe and Taylor
2011, §3] when jt j is large and 2 < q < 4, was improved in [Metcalfe and Taylor 2012] after the release
of a preprint version of the present paper. On the other hand, these authors are able to deal with the
endpoint case q D1, using local Hardy and BMO spaces on Hn.

5. Strichartz estimates

We shall assume n� 4 throughout this section and discuss the dimensions nD 3 and nD 2 in the final
remarks. Consider the linear equation (12) on Hn, whose solution is given by Duhamel’s formula:

u.t; x/D .cos tDx/f .x/C sin tDx
Dx

g.x/

„ ƒ‚ …
uhom.t;x/

C
Z t

0

ds
sin.t � s/Dx

Dx
F.s; x/

„ ƒ‚ …
uinhom.t;x/

:

Definition 5.1. A couple .p; q/ will be called admissible (see Figure 1) if .1=p; 1=q/ belongs to the
triangle n�

1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� n�1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o
: (38)
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1

1
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1
2

1
2

� 1
n�1

1
p

1
q

Figure 1. Admissibility in dimension n� 4.

Theorem 5.2. Let .p; q/ and . zp; zq/ be two admissible couples, and let

� � nC1
2

�
1

2
� 1
q

�
and z� � nC1

2

�
1

2
� 1zq

�
: (39)

Then the following Strichartz estimate holds for solutions to the Cauchy problem (12):

krR�HnukLpH��;q . kf kH1 CkgkLp0L2 CkF kL zp0H z�;zq0 : (40)

Proof. We shall prove the following estimate, which amounts to (40):

k zD��C1=2x u.t; x/kLpt Lqx Ck zD
���1=2
x @tu.t; x/kLpt Lqx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
: (41)

Consider the operator

Tf .t; x/D zD��C1=2x
e˙itDxp
Dx

f .x/;

initially defined from L2.Hn/ into L1.RIH� .Hn//, and its formal adjoint

T �F.x/D
Z C1

�1
ds zD��C1=2x

e�isDxp
Dx

F.s; x/;

initially defined from L1.RIH�� .Hn// into L2.Hn/. The T T � method consists in proving first the
Lp
0

.RILq0.Hn//! Lp.RILq.Hn// boundedness of the operator

T T �F.t; x/D
Z C1

�1
ds zD�2�C1x

e˙i.t�s/Dx
Dx

F.s; x/
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and of its truncated version

TF.t; x/D
Z t

�1
ds zD�2�C1x

e˙i.t�s/Dx
Dx

F.s; x/;

for every admissible couple .p; q/ and for every � � .nC 1/.1=2� 1=q/=2, and in decoupling next the
indices.

We may disregard the endpoint case .p; q/D .1; 2/, which is easily dealt with, using the boundedness
on L2.Hn/ of eitD (t 2 R) and zD��C1=2D�1=2 (� � 0). Thus, assume that .p; q/ is an admissible
couple that is different from the endpoints .1; 2/ and .2; 2.n� 1/=.n� 3//. It follows from (36) that the
norms kT T �F.t; x/kLpt Lqx and kTF.t; x/kLpt Lqx are bounded above by


Z

0<jt�sj<1
ds jt � sj�˛kF.s; x/k

L
q0

x


L
p
t

C

Z

jt�sj�1
ds jt � sj�3=2kF.s; x/k

L
q0

x


L
p
t

; (42)

where ˛ D .n � 1/.1=2 � 1=q/ 2 .0; 1/. On one hand, the convolution kernel jt � sj�3=21fjt�sj�1g
defines obviously a bounded operator from Lp1.R/ to Lp2.R/ for all 1 � p1 � p2 �1 in particular
from Lp

0

.R/ to Lp.R/ since p � 2. On the other hand, the convolution kernel jt � sj�˛1f0<jt�sj�1g
with 0 < ˛ < 1 defines a bounded operator from Lp1.R/ to Lp2.R/ for all 1 < p1; p2 <1 such that
0� 1=p1� 1=p2 � 1�˛ in particular from Lp

0

.R/ to Lp.R/ since p � 2 and 2=p � ˛.
At the endpoint .p; q/D .2; 2.n� 1/=.n� 3//, we have ˛ D 1. Thus, the previous argument breaks

down and is replaced by the refined analysis carried out in [Keel and Tao 1998]. Notice that the problem
lies only in the first part of (42) and not in the second one, which involves an integrable convolution
kernel on R.

Thus, T T � and T are bounded from Lp
0

.RILq0.Hn// to Lp.RILq.Hn// for every admissible couple
.p; q/. As a consequence, T � is bounded from Lp

0

.RILq0.Hn// to L2.Hn/ and T is bounded from
L2.Hn/ to Lp.RILq.Hn//. We deduce in particular that

k zD��C1=2x .cos tDx/f .x/kLpt Lqx . k zDx�C1=2e
˙itDxf .x/kLpt Lqx . kD

1=2
x f .x/kL2x

and
 zD��C1=2x

sin tDx
Dx

g.x/

L
p
t L

q
x

. k zD��C1=2x D�1x e˙itDxg.x/kLpt Lqx . kD
�1=2
x g.x/kL2x :

In summary,

k zD��C1=2x uhom.t; x/kLpt Lqx . kD
1=2
x f .x/kL2x CkD

�1=2
x g.x/kL2x : (43)

We next decouple the indices in the Lp
0

Lq
0 ! LqLq estimate of T T � and T. Let .p; q/ ¤ . zp; zq/

be two admissible couples, and let � � .nC 1/.1=2� 1=q/=2 and z� � .nC 1/.1=2� 1=zq/=2. Since T
and T � are separately continuous, the operator

T T �F.t; x/D
Z C1

�1
ds zD���z�C1x

e˙i.t�s/Dx
Dx

F.s; x/
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is bounded from L zp0.RILzq0.Hn// to Lp.RILq.Hn//. According to [Christ and Kiselev 2001], this result
remains true for the truncated operator

TF.t; x/D
Z t

�1
ds zD���z�C1x

e˙i.t�s/Dx
Dx

F.s; x/

and hence for
zTF.t; x/D

Z t

0

ds zD���z�C1x

sin.t � s/Dx
Dx

F.s; x/

as long as p and zp are not both equal to 2. For the remaining case, where p D zp D 2 and 2 < q ¤ zq �
2.n� 1/=.n� 3/, we argue as in the proof of [Anker et al. 2011, Theorem 6.3] by resuming part of the
bilinear approach in [Keel and Tao 1998]. Hence,

k zD��C1=2x uinhom.t; x/kLpt Lqx . k zD
z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
(44)

for all admissible couples .p; q/ and . zp; zq/.
The Strichartz estimate

k zD��C1=2x u.t; x/kLpt Lqx . kD
1=2
x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x

is obtained by summing up the homogeneous estimate (43) and the inhomogeneous estimate (44). As far
as it is concerned, the Strichartz estimate of

@tu.t; x/D�.sin tDx/Dxf .x/C .cos tDx/g.x/C
Z t

0

ds Œcos.t � s/Dx�F .s; x/

is obtained in the same way and is actually easier. More precisely, we consider this time the operator

zT f .t; x/D zD��x e˙itDxf .x/
and its adjoint

zT �F.x/D
Z C1

�1
ds zD��x e�isDxF.s; x/: �

By using the Sobolev embedding theorem, Theorem 5.2 can be extended to all couples .1=p; 1=q/ and
.1= zp; 1=zq/ in the square �

0; 1
2

�� �0; 1
2

�[ ˚�0; 1
2

�	
: (45)

Corollary 5.3. Let .p; q/ and . zp; zq/ be two couples corresponding to the square (45), and let �; z� 2 R.
Assume that � � �.p; q/, where

�.p; q/D nC1
2

�
1

2
� 1
q

�
Cmax

n
0;
n�1
2

�
1

2
� 1
q

�
� 1
p

o
D

8
<̂

:̂

nC1
2

�
1

2
� 1
q

�
if 1
p
� n�1

2

�
1

2
� 1
q

�
;

n
�
1

2
� 1
q

�
� 1
p

if 1
p
� n�1

2

�
1

2
� 1
q

�
;

and similarly, z� � �. zp; zq/ .see Figure 2/. Then the conclusion of Theorem 5.2 holds for solutions to the
Cauchy problem (12). More precisely, we have again the Strichartz estimate

krR�HnukLpH��;q . kf kH1 CkgkL2 CkF kL zp0H z�;zq0 ; (40)
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Figure 2. Case n� 4.

which amounts to

k zD��C1=2x u.t; x/kLpt Lqx Ck zD
���1=2
x @tu.t; x/kLpt Lqx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z��1=2
x F.t; x/k

L
zp0

t L
zq0

x
: (41)

Proof. We may restrict to the limit cases � D �.p; q/ and z� D �. zp; zq/. Define Q by

1

Q
D

8
<̂

:̂

1

q
if 1
p
� n�1

2

�
1

2
� 1
q

�
;

1

2
� 2

n�1
1

p
if 1
p
� n�1

2

�
1

2
� 1
q

�

and zQ similarly. Since .p;Q/ and . zp; zQ/ are admissible couples, it follows from Theorem 5.2 and more
precisely from (41) that

k zD�†C1=2x u.t; x/k
L
p
t L

Q
x
Ck zD�z†�1=2x @tu.t; x/kLpt LQx
. kD1=2x f .x/kL2x CkD

�1=2
x g.x/kL2x Ck zD

z†�1=2
x F.t; x/k

L
zp0

t L
zQ0

x

; (46)

where †D .nC 1/.1=2� 1=Q/=2 and z†D .nC 1/.1=2� 1= zQ/=2. Since � �†D n.1=Q� 1=q/, we
have

k zD��C1=2x u.t; x/kLpt Lqx . k zD
�†C1=2
x u.t; x/k

L
p
t L

Q
x

(47)

according to the Sobolev embedding theorem (Proposition 2.2). Similarly,

k zD z†�1=2x F.t; x/k
L
zp0

t L
zQ0

x

. k zDz��1=2x F.t; x/k
L
zp0

t L
zq
x
: (48)

We conclude by combining (46), (47), and (48). �
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Figure 3. Case nD 3.

Remark 5.4. Theorem 5.2 and Corollary 5.3 hold true in dimension nD 3 with the same proofs. Notice
that the endpoint .p; q/ D .2;1/ is excluded (see Figure 3). These results hold in particular for the
3-dimensional wave equation (6) and include the Strichartz estimates obtained by Metcalfe and Taylor
[2011, §4] in the smaller region

n�
1

p
;
1

q

�
2
h
0;
1

2

i
�
�
0;
1

2

i ˇ̌
ˇ 1
p
� 3

�
1

2
� 1
q

�o
n
n�
1

2
;
1

3

�o
:

0 1

1

1
2

1
2

1
4

1
p

1
q

Figure 4. Case nD 2.
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Remark 5.5. The analysis carried out in this section still holds in dimension nD 2 except for the first
convolution kernel in (42), which becomes

jt � sj�˛.1� logjt � sj/ˇ1f0<jt�sj<1g

with ˛ D 1=2 � 1=q and ˇ D 2.1=2 � 1=q/. Consequently, the admissibility region in Theorem 5.2
becomes n�

1

p
;
1

q

�
2
�
0;
1

2

i
�
�
0;
1

2

� ˇ̌
ˇ 1
p
>
1

2

�
1

2
� 1
q

�o
[
n�
0;
1

2

�o

and the inequalities � � �.p; q/, z� � �. zp; zq/ in Corollary 5.3 (see Figure 4) become strict in the triangle
n�
1

p
;
1

q

�
2
�
0;
1

4

�
�
�
0;
1

2

� ˇ̌
ˇ 1
p
� 1
2

�
1

2
� 1
q

�o
:

6. Global well-posedness in Lp.R; Lq.Hn//

In this section, following the classical fixed-point scheme, we use the Strichartz estimates obtained in
Section 5 to prove global well-posedness for the semilinear equation

�
@2t u.t; x/CD2xu.t; x/D F.u.t; x//
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/

(49)

on Hn with power-like nonlinearities

F.u/� juj . > 1/

and small initial data f and g. We assume n� 3 throughout the section and discuss the 2-dimensional
case in the final remark. The statement and proof of our result involve the powers

1 D 1C 3

n
; 2 D 1C 2

n�1
2
C 2

n�1
; conf D 1C 4

n�1;

3 D

8
ˆ̂<
ˆ̂:

1

n

�
nC6
2
C 2

n�1 C
r
4nC

�
6�n
2
C 2

n�1
�2 �

if n� 5;

1C 2
n�1
2
� 1

n�1
if n� 6;

4 D
8
<
:
1C 4

n�2 if n� 5;
n�1
2
C 3

nC1 �
r�

n�3
2
C 3

nC1
�2
� 4 n�1

nC1 if n� 6;

(50)

which are computed in Table 1, and the curves

�1./D nC1
4
� .nC1/.nC5/

8n

1

�nC1
2n

; �2./D nC1
4
� 1

�1; and �3./D n

2
� 2

�1: (51)

The powers 1, 2, and conf and the curves C1, C2, and C3 parametrized by �1, �2, and �3 occur
already in the Euclidean setting. More precisely, they are involved in the conditions, illustrated in Figure 5,
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n 1 2 conf 3 4

3 2 2 3 11Cp73
6

' 3:26 5

4 7
4
D 1:75 25

13
' 1:92 7

3
' 2:33 5

2
' 2:5 3

5 8
5
' 1:6 9

5
' 1:8 2 6Cp21

5
' 2:12 7

3
' 2:33

6 3
2
D 1:5 49

29
' 1:69 9

5
D 1:8 43

23
' 1:87 2

� 7 < 2 < conf < 3 < 4 < 2

Table 1. Critical powers.

of minimal regularity � on the initial data f and g that are needed in order to ensure local well-posedness
of (49). We refer again to [Kapitanski 1994; Lindblad and Sogge 1995; Keel and Tao 1998] for more
details. Notice that, in dimension nD 3, 1 coincides with 2 and there is no curve C1.

As mentioned in the introduction, global well-posedness of (49) on Rn requires additional conditions.
Recall that smooth solutions with small-amplitude blow up or not depending on whether  is smaller or
larger than the critical power 0 defined in (5).

In Section 5, we have obtained Strichartz estimates on Hn for a range of admissible couples that is
wider than on Rn. As a consequence, we deduce in this section stronger well-posedness results for (49).
In particular, we prove global well-posedness for small initial data in H� .Hn/�H��1.Hn/ if 1<  < 1
and � > 0 is small. Thus, there is no blow-up for small powers  > 1 on Hn in sharp contrast with Rn.

0

1

1
2

n
2

C1
C2

C3

1 2 conf

�

Figure 5. Regularity for local well-posedness on Rn in dimension n� 3.
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n
2

C1
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C3

1 2 4conf

�

Figure 6. Regularity for global well-posedness on Hn in dimension n� 3.

Theorem 6.1. Assume that the nonlinearity F satisfies

jF.u/j � C juj and jF.u/�F.v/j � C.juj�1Cjvj�1/ju� vj: (52)

Then in dimension n � 3, (49) is globally well posed for small initial data in H� .Hn/ �H��1.Hn/
provided that 8

ˆ̂̂
<
ˆ̂̂
:

� D 0C if 1 <  � 1;
� D �1./ if 1 <  � 2;
� D �2./ if 2 �  � conf;

� D �3./ if conf �  � 4;
(53)

where � D 0C stands for any � > 0 sufficiently close to 0 (see Figure 6). More precisely, in each case,
there exist 2� p; q <1 and ı; " > 0 such that, for any initial data .f; g/ 2H� .Hn/�H��1.Hn/ with
norm � ı, the Cauchy problem (49) has a unique solution u with norm � " in the Banach space

X D C.RIH� .Hn//\C 1.RIH��1.Hn//\Lp.RILq.Hn//:

Remark 6.2. In dimension nD3, 1 coincides with 2, the second and third conditions in (53) boil down to

� � �2./ if 1 D 2 <  � conf;

and there is no curve C1 in Figure 6.
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Proof of Theorem 6.1 for 1 <  � conf. We resume the fixed-point method based on Strichartz estimates.
Define uDˆ.v/ as the solution to the Cauchy problem

�
@2t u.t; x/CD2xu.t; x/D F.v.t; x//;
u.0; x/D f .x/; @t jtD0u.t; x/D g.x/;

(54)

which is given by Duhamel’s formula:

u.t; x/D .cos tDx/f .x/C sin tDx
Dx

g.x/C
Z t

0

ds
sin.t � s/Dx

Dx
F.s; x/:

On one hand, according to Theorem 5.2, the Strichartz estimate

ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
Cku.t; x/kLpt Lqx

. kf .x/kH�
x
Ckg.x/kH��1

x
CkF.v.t; x//k

L
zp0

t H
�Cz��1;zq0

x

holds whenever 8
<
:
.p; q/ and . zp; zq/ are admissible couples;

� � nC1
2

�
1

2
� 1zq

�
and z� � nC1

2

�
1

2
� 1zq

�
:

On the other hand, by our nonlinear assumption (52) and by the Sobolev embedding theorem (Proposition
2.2), we have

kF.v.t; x//k
L
zp0

t H
�Cz��1;zq0

x
. kjv.t; x/jk

L
zp0

t H
�Cz��1;zq0

x
. kjv.t; x/jk

L
zp0

t L
zQ0

x

. kv.t; x/k
L
 zp0

t L
 zQ0

x

;

provided that
� C z� � 1; 1 < zQ0 � zq0 <1; and n

zQ0 �
n

zq0 � 1� � � z�: (55)

In order to remain within the same function space, we require in addition that

 zp0 D p and  zQ0 D q:
In summary,

ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
Cku.t; x/kLpt Lqx

� C ˚kf .x/kH�
x
Ckg.x/kH��1

x
Ckvk

L
p
t L

q
x

	
(56)

if the following set of conditions is satisfied:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

(a) .p; q/ and . zp; zq/ are admissible couples;

(b) � � nC1
2

�
1

2
� 1
q

�
, z� � nC1

2

�
1

2
� 1zq

�
, and � C z� � 1;

(c)


p
C 1

zp D 1;

(d) 1� 
q
C 1zq � 1C

1���z�
n

;

(e) q > :

(57)



WAVE AND KLEIN–GORDON EQUATIONS ON HYPERBOLIC SPACES 975

For such a choice, ˆ maps the Banach space

X D C.RIH� .Hn//\C 1.RIH��1.Hn//\Lp.RILq.Hn//;
equipped with the norm

kukX D ku.t; x/kL1t H�
x
Ck@tu.t; x/kL1t H��1

x
CkukLpt Lqx ;

into itself. Let us show that ˆ is a contraction on the ball

X" D fu 2X j kukX � "g;
provided that " > 0 and kf kH� CkgkH��1 are sufficiently small. Let v; Qv 2X , uDˆ.v/, and QuDˆ. Qv/.
By resuming the arguments leading to (56) and by using in addition Hölder’s inequality, we obtain the
estimate

ku� QukX � CkF.v/�F. Qv/k
L
zp0

t L
zQ0

x

� Ckfjvj�1Cj Qvj�1gjv� Qvjk
L
zp0

t L
zQ0

x

� C ˚kvk�1
L
p
t L

q
x
CkQvk�1

L
p
t L

q
x

	kv� QvkLpt Lqx
� C ˚kvk�1X CkQvk�1X

	kv� QvkX : (58)

Thus, if we assume kvkX � ", k QvkX � ", and kf kH� CkgkH��1 � ı, then (56) and (58) yield

kukX � CıCC" ; k QukX � CıCC" ; and ku� QukX � 2C"�1kv� QvkX :
Hence,

kukX � "; k QukX � "; and ku� QukX � 1
2
kv� QvkX

if C"�1 � 1
4

and Cı � 3
4
". One concludes by applying the fixed-point theorem in the complete metric

space X".
It remains for us to check that the set of conditions (57) can be fulfilled in the various cases (53).

Notice that we may assume the following equalities in (57)(b):

� D nC1
2

�
1

2
� 1
q

�
and z� D nC1

2

�
1

2
� 1zq

�
:

Thus, (57) reduces to the set of conditions:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

(a) .p; q/ and . zp; zq/ are admissible couples;

(b) 1

q
C 1zq �

n�1
nC1;

(c)


p
C 1

zp D 1;

(d)(i)


q
C 1zq � 1;

(d)(ii)
�
2n

n�1 �
nC1
n�1

�
1

q
C 1zq �

nC1
n�1 ;

(e) q > :

(59)
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We shall discuss these conditions first in high dimensions and next in low dimensions.

I Assume that n� 6.
Firstly notice that conf < 2. As  � conf and q > 2, (59)(e) is trivially satisfied. Secondly, we claim

that (59)(a) and (59)(c) reduce to the single condition



q
C 1zq �

 C 1
2
� 2

n�1 (60)

in the square

RD
h
1

2
� 1

n�1;
1

2

�
�
h
1

2
� 1

n�1;
1

2

�
: (61)

More precisely, if .p; q/ and . zp; zq/ are admissible couples satisfying (59)(c), then .1=q; 1=zq/ is a point in
the square R satisfying (60). Conversely, if .1=q; 1=zq/ 2R satisfies (60), then there exists a 1-parameter
family of admissible couples .p; q/ and . zp; zq/ satisfying (59)(c). All these claims can be deduced from
Figure 7.

1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1
2

1
2

1� 
2

1� 
2

1
2

� 1


1
n�1

1
2

� 2�
n�1


p

C 1
zp D 1


q

C 1
zq D C1

2
� 2
n�1

Figure 7. Case  < 2.
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(62)(b)

(62)(d)(i)

(62)(d)(ii)

�
1
q1
; 1zq1

�

Figure 8. Sector S .

Thirdly, as  � conf, (60) follows actually from (59)(d)(i). Fourthly, we claim that (59)(b) follows
from (59)(d)(i) and (59)(d)(ii). Consider indeed the three lines

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

(b) 1

q
C 1zq D

n�1
nC1;

(d)(i)


q
C 1zq D 1;

(d)(ii)
�
2n

n�1 �
nC1
n�1

�
1

q
C 1zq D

nC1
n�1

(62)

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 9. Case 1 <  � 1C 2

n
.
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�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 10. Case 1C 2

n
�  � 1C 2

n�1 .

in the plane with coordinates .1=q; 1=zq/. On one hand, they meet at the same point, whose coordinates are
8
<̂

:̂

1

q1
D 2

nC1
1

�1;
1

zq1 D
n�1
nC1 �

2

nC1
1

�1:
(63)

On the other hand, the coefficients of 1=q occur in increasing order in (62):

1 <  <
2n

n�1 �
nC1
n�1 :

Hence, (59)(b) follows from (59)(d)(i) and (59)(d)(ii), which define the sector S with vertex .1=q1; 1=zq1/
and edges (62)(d)(i) and (62)(d)(ii) depicted in Figure 8.

In summary, the set of conditions (59) reduce to the three conditions (59)(d)(i), (59)(d)(ii), and (61) in
the plane with coordinates .1=q; 1=zq/. In order to conclude, we examine the possible intersections of the

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 11. Case 1C 2

n�1 �  � 1.
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�
1
q1
; 1zq1

�

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

Figure 12. Case 1 <  � 2.

sector S defined by (59)(d)(i) and (59)(d)(ii) with the square R defined by (61), and we determine in
each case the minimal regularity � D .nC 1/.1=2� 1=q/=2.

� Case 1: 1 <  � 1.
In the following three subcases, the minimal regularity condition is � > 0 as 1=q > 1=2 can be chosen

arbitrarily close to 1
2

:

ı Subcase 1.1: 1 <  � 1C 2

n
(see Figure 9).

ı Subcase 1.2: 1C 2

n
�  � 1C 2

n�1 (see Figure 10).

ı Subcase 1.3: 1C 2

n�1 �  � 1 (see Figure 11).

� Case 2: 1 <  � 2 (see Figure 12).
The minimal regularity � D �1./ is reached at the boundary point

�
1

q
;
1

zq
�
D
�
nC5
4n

1

�.nC1/=2n;
1

2
� 1

n�1
�
:

� Case 3: 2 �  � conf (see Figure 13).

�
1
2
; 1
2

�

�
1
2

� 1
n�1 ;

1
2

� 1
n�1

�

�
1
q1
; 1zq1

�

Figure 13. Case 2 �  � conf.
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;

1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2

� 1
n�1

1


1


1
2

1
2

1
2

� 1


1
n�1

1
2

� 2


1
n�1


p

C 1
zp D 1


q

C 1
zq D C1

2
� 2
n�1

Figure 14. Case  � 2.

The minimal regularity � D �2./ is reached at the vertex .1=q1; 1=zq1/. In the limit case  D conf,
notice that all indices 1=q1, 1=zq1, 1=p1 D .n� 1/.1=2� 1=q1/=2, and 1= zp1 D .n� 1/.1=2� 1=zq1/=2
become equal to the Strichartz index .n� 1/=2.nC 1/D 1=2� 1=.nC 1/.

�
1
q1
; 1zq1

�

Figure 15. Case 1 <  � 2.
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�
1
q1
; 1zq1

�

Figure 16. Subcase 2 �  < 2.

This concludes the proof of Theorem 6.1 for 1 <  � conf and n� 6.

I Assume that nD 4 or 5.
Let us adapt the proof above. If  � 2, (59)(e) must be checked and (59)(a) and (59)(c) reduce again

to (60) but this time in the slightly larger square

RD
h
1

2
� 1

n�1;
1

2

�
�
h
1

2
� 1

n�1;
1

2

i
(64)

(see Figure 14). Thus, (59) reduces to
�

(59)(d)(i), (59)(d)(ii), and (64) if 1 <  < 2;
(59)(d)(i), (59)(d)(ii), (59)(e), and (64) if 2�  � conf:

The case-by-case study of the intersection S \R is carried out as above and yields the same results. The
only difference lies in the fact that the sector S exits the square R through the top edge instead of the left
edge (see Figures 15, 16, and 17 below). Notice that (59)(e) is satisfied as q1 >  when 2�  � conf.

� Case 2: 1 <  � 2 (see Figure 15).

� Case 3: 2 �  < conf.

ı Subcase 3.1: 1 <  � 2 (see Figure 16).

ı Subcase 3.2: 2 �  < 2 (see Figure 17).

This concludes the proof of Theorem 6.1 for 1 <  � conf and nD 4; 5.

I Assume that nD 3.

�
1
q1
; 1zq1

�

Figure 17. Subcase 2�  � conf.
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Figure 18. Case  D 2.

The proof works the same except that the square becomes

RD
(�
0; 1
2

�� �0; 1
2

�
if 1 <  < 2;

�
0; 1
2

�� �0; 1
2

�
if 2�  � conf

(65)

and that .1=q1; 1=zq1/ enters the square R through the vertex
�
1
2
; 0
�

instead of the bottom edge. This
happens when  D 2 (see Figure 18), and in this case, (59)(e) is satisfied. It is further satisfied when
2 <  � conf as q1 >  .

This concludes the proof of Theorem 6.1 for 1 <  � conf. �

Proof of Theorem 6.1 for conf �  � 4. We resume the fixed-point method above, using Corollary 5.3
instead of Theorem 5.2, and obtain in this way the set of conditions

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

(a) 2� p �1 and 2� q <1 satisfy 1

p
� n�1

2

�
1

2
� 1
q

�
;

(ã) 2� zp �1 and 2� zq <1 satisfy 1

zp �
n�1
2

�
1

2
� 1zq

�
;

(b) � � n
�
1

2
� 1
q

�
� 1
p

, z� � n
�
1

2
� 1zq

�
� 1zp , and � C z� � 1;

(c)


p
C 1

zp D 1;

(d) 1� 
q
C 1zq � 1C

1���z�
n

;

(e) q > :

(66)

We may assume that

� D n
�
1

2
� 1
q

�
� 1
p

and z� D n
�
1

2
� 1zq

�
� 1zp :

With this choice, the conditions

� C z� � 1 and


q
C 1zq � 1C

1���z�
n

become
1

p
C 1

zp C 1� n
�
1� 1

q
� 1zq

�
(67)
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and
1

p
C 1

zp C 1� . � 1/
n

q
: (68)

Notice moreover that (67) follows from (68), combined with =qC1=zq� 1, and that (68) can be rewritten
as follows, using (66)(c):

1

p
C n
q
� 2

�1:

Thus, (66) reduces to the set of conditions

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

(a) 2� p �1 and 2� q <1 satisfy 1

p
� n�1

2

�
1

2
� 1
q

�
;

(ã) 2� zp �1 and 2� zq <1 satisfy 1

zp �
n�1
2

�
1

2
� 1zq

�
;

(c)


p
C 1

zp D 1;

(d)(i)


q
C 1zq � 1;

(d)(ii)
1

p
C n
q
� 2

�1;
(e) q > :

(69)

Among these conditions, consider first (69)(a) and (69)(d)(ii). In the plane with coordinates .1=p; 1=q/,
the two lines 8

<̂

:̂

(a) 1

p
C n�1

2

1

q
D n�1

4
;

(d)(ii) 1

p
C n
q
D 2

�1
(70)

0

1
2

1
2

1
p

1
q

�
1
p2
; 1
q2

�
1
2

� 1
n�1

(70)(a)

(70)(d)(ii)

2
n.�1/

Figure 19. Case 4: conf �  � 3.
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0

1
2

1
2

1
p

1
q

(70)(a)

(70)(d)(ii)

2
n.�1/

1
n

�
2
�1 � 1

2

�

Figure 20. Case 5: 3 �  � 4.

meet at the point .1=p2; 1=q2/ given by
8
<̂

:̂

1

p2
D n�1
nC1

�
n

2
� 2

�1
�
;

1

q2
D 1

nC1
�
4

�1 �
n�1
2

�
:

(71)

As  varies between conf and 3, this point moves on the line (70)(a) between the Strichartz point
.1=2�1=.nC1/; 1=2�1=.nC1// and the Keel–Tao endpoint .1=2; 1=2�1=.n�1//, where it exits the
square

�
0; 1
2

�� �0; 1
2

�
. Thus, (69)(a) and (69)(d)(ii) determine the regions depicted in Figure 19 and in

Figure 20. For later use, notice that the minimal regularity

� D n
�
1

2
� 1
q

�
� 1
p
� �3./ (72)

is reached on the boundary line (70)(d)(ii) and that

p2 < 2: (73)

This inequality holds indeed when  D conf, and it remains true as  increases while p2 decreases.
Let us next discuss all conditions (69), first in high dimensions and next in low dimensions.

I Assume that n� 6.
Firstly, notice that (69)(e) is trivially satisfied in this case. On one hand, we have indeed  � 4 � 2.

On the other hand, it follows from (69)(d)(ii) that

1

q
� 2

n.�1/ �
2

n.conf�1/ D
1

2

�
1� 1

n

�
<
1

2
:

Hence,  � 2 < q.
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Secondly, we claim that (69)(a), (69)(ã), (69)(c), and (69)(d)(ii) reduce to the conditions

8
<̂

:̂

(a)


q
C 1zq �

 C 1
2
� 2

n�1;

(d)(ii)


q
C n�1

2n

1

q
� nC3

4n
C 2

n

1

�1
(74)

in the rectangle

RD
�
0;
1

n

�
2

�1 �
1

2

�i
�
�
0;
1

2
� 2�
n�1

i
: (75)

Actually, they even reduce to the single condition (74)(d)(ii) if  � 3. All these claims are obtained by
examining Figures 21 and 22 as we did with Figure 7 in the case  � conf.

1
p

1
zp

1
q

1
zq

�
1
p2
; 1
q2

�

�
1
zp2
; 1zq2

� �
1
p2
; 1zp2

�

�
1
q2
; 1zq2

�

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

� 1
n�1

1
2

1� 
2

1
n

�
2
�1 � 1

2

�

1
2

� 2�
n�1

(69)(c)

(70)(a)

(70)(d)(ii)

(76)(a)

(76)(d)(ii)

Figure 21. Case 4: conf �  � 3.
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1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1
2

1� 
2

1
n

�
2
�1 � 1

2

�

1
n

�
2
�1 � 1

2

�

1
2

� 2�
n�1

(69)(c)

(70)(d)(ii)(76)(d)(ii)

Figure 22. Case 5: 3 �  � 4.

(76)(a)

(76)(d)(i)

(76)(d)(ii)

�
1
q2
; 1zq2

�

�
1
q3
; 1zq3

�

Figure 23. Convex region C .
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0

1
q

1
zq

�
1
q2
; 1zq2

�
�
1
q3
; 1zq3

�

1
n

�
2
�1 � 1

2

�

1
2

� 2�
n�1

(76)(a)
(76)(d)(i)

(76)(d)(ii)

Figure 24. Case 4: conf �  � 3.

Thirdly, in the plane with coordinates .1=q; 1=zq/, the conditions (69)(d)(i), (74)(a), and (74)(d)(ii)
define the convex region C in Figure 23 with edges

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

(a)


q
C 1zq D

 C 1
2
� 2

n�1;

(d)(i)


q
C 1zq D 1;

(d)(ii)


q
C n�1

2n

1

zq D
nC3
4n
C 2

n

1

�1

(76)

0

1
q

1
zq

�
1
q3
; 1zq3

�

1
n

�
2
�1 � 1

2

�

1
2

� 2�
n�1

(76)(d)(i)

(76)(d)(ii)

Figure 25. Case 5: 3 �  � 4.
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and with vertices given by
8
<̂

:̂

1

q2
D 4

nC1
1

�1 �
1

2

n�1
nC1;

1

zq2 D
n

nC1 �
4

nC1
1

�1 C
1

2
� 2

n�1 �
4

nC1;
1

q3
D 4

nC1
1

�1 �
1

2

nC3
nC1

1


;

1

zq3 D
3

2

n�1
nC1 �

4

nC1
1

�1:
(77)

In order to conclude, it remains for us to determine the possible intersections of the convex region C
above with the rectangleR defined by (75) and in each case the minimal regularity �Dn.1=2�1=q/�1=p.

� Case 4: conf �  � 3 (see Figure 24).

� Case 5: 3 �  � 4 (see Figure 25).
In both cases, the minimal regularity � D �3./ is reached when .1=p; 1=q/ and .1=q; 1=zq/ lie on the

edges (70)(d)(ii) and (76)(d)(ii). See Figures 21 and 22. This concludes the proof of Theorem 6.1 for
conf <  � 4 and n� 6.

I Assume that 3� n� 5.
Then  � conf � 2, and Figures 21 and 22 become Figures 26 and 27, respectively. Consequently,

the four conditions (69)(a), (69)(ã), (69)(c), and (69)(d.ii) reduce again to the two conditions (74)(a)

1
p

1
zp

1
q

1
zq

�
1
p2
; 1
q2

�

�
1
zp2
; 1zq2

� �
1
p2
; 1zp2

�

�
1
q2
; 1zq2

�

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1


1
2

1
2

� 2
n�1

1


1
n

�
2
�1 � 1

2

�

(69)(c)

(70)(a)

(70)(d)(ii)

(76)(a)

(76)(d)(ii)

Figure 26. Case 4: conf �  � 3.
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1
p

1
zp

1
q

1
zq

1
2

1
2

1
2

1
2

1
2

� 1
n�1

1


1
2

1
n

�
2
�1 � 1



�

1
n

�
2
�1 � 1

2

�

(69)(c)

(70)(d)(ii)(76)(d)(ii)

Figure 27. Case 5: 3 �  � 4.

0

1
2

1
q

1
zq

�
1
q2
; 1zq2

�
�
1
q3
; 1zq3

�

1
n

�
2
�1 � 1

2

�

(76)(a)

(76)(d)(i)

(76)(d)(ii)

Figure 28. Case 4: conf �  � 3.
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0

1
2

1
q

1
zq

�
1
q3
; 1zq3

�

1
n

�
2
�1 � 1

2

�

(76)(d)(i)

(76)(d)(ii)

Figure 29. Case 5: 3 �  � 4.

and (74)(d)(ii) if conf �  � 3, and actually to the single condition (74)(d)(ii) if 3 �  � 4, but this
time in the rectangle

RD
�
0;
1

n

�
2

�1 �
1

2

�i
�
�
0;
1

2

i
: (78)

Moreover, (69)(e) is satisfied as 1=q � .2=. � 1/� 1=2/=n < 1= .
We conclude again by examining the possible intersections C \R of the convex region defined by

(69)(d)(i), (74)(a), and (74)(d)(ii) with the rectangle (78) and by determining in each case the minimal
regularity � D n.1=2� 1=q/� 1=p.

� Case 4: conf �  � 3 (see Figure 28).

� Case 5: 3 �  � 4 (see Figure 29).

In both cases, the minimal regularity � D �3./ is reached again when .1=p; 1=q/ and .1=q; 1=zq/ lie
on the edges (70)(d)(ii) and (76)(d)(ii). See Figures 26 and 27. This concludes the proof of Theorem 6.1
for conf <  � 4 and 3� n� 5. �

0

1

1 2 3

1
2

1
4

zC1
C2

C3

conf D 5

�

Figure 30. Regularity for global well-posedness on H2.
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Remark 6.3. In dimension nD 2, the statement of Theorem 6.1 holds true with (53) replaced by
8
ˆ̂̂
<
ˆ̂̂
:

� D 0C if 1 <  � 2;
� D z�1./C if 2�  � 3;
� D �2./ if 3 <  < 5;
� D �3./C if 5�  <1;

(79)

where z�1./D 3=4� 3=2 . Notice that the condition q >  is not redundant if 2 <  < 3 and that it is
actually responsible for the curve zC1.

Remark 6.4. In dimension nD 3, Metcalfe and Taylor [2011] obtain a global existence result beyond
 D 4. In [Anker and Pierfelice � 2014], we extend the results of our present paper to Damek–Ricci
spaces as we did for the Schrödinger equation in [Anker et al. 2011] and for the shifted wave equation in
[Anker et al. 2014], and we also discuss the case  > 4 in this more general setting.

Appendix A

In this appendix, we collect some lemmas in Fourier analysis on R, which are used in the kernel analysis
carried out in Section 3.

Lemma A.1. Consider the oscillatory integral

I.t; x/D
Z C1

�1
d� a.�/eit�.�/

where the phase is given by

�.�/D
p
�2C �2� x�

t

.recall that � is a fixed constant > 0/ and the amplitude a 2 C1c .R/ has the behavior at the origin

a.�/D O.�2/: (A-1)

Then

jI.t; x/j. 1Cjxj
.1Cjt j/3=2 8jxj � jt j

2
:

Proof. Let us compute the first two derivatives

�0.�/D �p
�2C�2 �

x

t
and �00.�/D �2.�2C �2/�3=2: (A-2)

The phase � has a single stationary point:

�0 D � x
t

�
1� x

2

t2

��1=2
; (A-3)

which remains bounded under our assumption jxj � jt j=2:

j�0j � �p
3
� �: (A-4)
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For later use, let us compute

�.�0/D �
�
1� x

2

t2

�1=2
and �00.�0/D ��1

�
1� x

2

t2

�3=2
:

Since �00 > 0, we can perform a global change of variables �$ � on R so that

�.�/��.�0/D �2:
Specifically,

�D �.�/.���0/;
where

�.�/D
�Z 1

0

ds .1� s/�00�.1� s/�0C s�
��1=2

:

This way, our oscillatory integral becomes

I.t; x/D eit�.�0/
Z

R

d� Qa.�/e.�1Cit/�2 ;
where

Qa.�/D d�

d�
a.�.�//e�

2

is again a smooth function with compact support whose derivatives are controlled uniformly in t and x as
long as jxj � jt j=2. Using Taylor’s formula, let us expand

Qa.�/D
3X

jD0
Qaj�j C Qa4.�/�4;

where

Qa0 D
�

2

�00.�0/
�1=2

a.�0/D O.�20/D O
�
x2

t2

�
;

the other constants Qa1, Qa2, and Qa3, and the function Qa4.�/, as well as its derivatives, are bounded uniformly
in t and x. Let us split up accordingly

I.t; x/D
4X

jD0
Ij .t; x/;

where
Ij .t; x/D Qaj eit�.�0/

Z

R

d��j e.�1Cit/�2 .j D 0; 1; 2; 3/
and

I4.t; x/D eit�.�0/
Z

R

d� Qa4.�/�4e.�1Cit/�2 :

The first and third expressions are handled by elementary complex integration:

I0.t; x/D Qa0
p
�eit�.�0/.1� i t/�1=2 D O

�
x2

t2.1Cjt j/1=2
�
D O

� 1Cjxj
.1Cjt j/3=2

�
;

I2.t; x/D Qa2
p
�

2
eit�.�0/.1� i t/�3=2 D O

�
.1Cjt j/�3=2�:
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The expressions I1.t; x/ and I3.t; x/ vanish by oddness. The expression I4.t; x/ is obviously bounded
by the finite integral Z

R

d��4e��2 :

In order to improve this estimate when jt j is large, let us split up
Z

R

d�D
Z

j�j�jt j�1=2
d�C

Z

j�j>jt j�1=2
d�:

The first integral is easily estimated, using the uniform boundedness of Qa4.�/:
ˇ̌
ˇ̌
Z

j�j�jt j�1=2
d� Qa4.�/�4e.�1Cit/�2

ˇ̌
ˇ̌.

Z

j�j�jt j�1=2
d��4 . jt j�5=2:

After two integration by parts, using �e.�1Cit/�2 D .2.�1C i t//�1 @
@�
e.�1Cit/�2 , the second integral is

estimated by

jt j�5=2Cjt j�2
Z

R

d� .1Cj�j/2e��2 :

Altogether,
I4.t; x/D O..1Cjt j/�2/;

and this concludes the proof of Lemma A.1. �

Lemma A.2. Consider the oscillatory integral

J.t; x/D
Z C1

�1
d� a.�/eit�.�/

where the phase is given again by

�.�/D
p
�2C �2� x�

t

and the amplitude a.�/ is now a symbol .of any order/ on R, which vanishes on the interval Œ��; ��. Then

J.t; x/D O.jt j�1/ 8x; 0� jxj � jt j
2
:

Proof. According to (A-2), (A-3), and (A-4),

� � has a single stationary point �0 2
h
� �p

3
;
�p
3

i
, which remains away from the support of a,

� j�0.�/j D
ˇ̌
ˇ �p
�2C�2 �

x

t

ˇ̌
ˇ� 1p

2
� 1
2
> 0 on supp a,

� �00 is a symbol of order �3.

These facts allow us to perform several integrations by parts based on

eit�.�/ D 1

it�0.�/
@

@�
eit�.�/

and to reach the conclusion. �
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PROBABILISTIC GLOBAL WELL-POSEDNESS FOR THE SUPERCRITICAL
NONLINEAR HARMONIC OSCILLATOR

AURÉLIEN POIRET, DIDIER ROBERT AND LAURENT THOMANN

Thanks to an approach inspired by Burq and Lebeau [Ann. Sci. Éc. Norm. Supér. (4) 6:6 (2013)], we prove
stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we
show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity
is almost surely locally well-posed in L2.Rd / for any d � 2. Then, we show that we can combine this
result with the high-low frequency decomposition method of Bourgain to prove a.s. global well-posedness
results for the cubic equation: when d D 2, we prove global well-posedness in Hs.R2/ for any s > 0, and
when d D 3 we prove global well-posedness in Hs.R3/ for any s > 1

6
, which is a supercritical regime.

Furthermore, we also obtain almost sure global well-posedness results with scattering for NLS on Rd

without potential. We prove scattering results for L2-supercritical equations and L2-subcritical equations
with initial conditions in L2 without additional decay or regularity assumption.

1. Introduction and results

1A. Introduction. It is known from several works that a probabilistic approach can help to give insight
into the dynamics of dispersive nonlinear PDEs, even for low Sobolev regularity. This point of view
was initiated by Lebowitz, Rose and Speer [1988], developed by Bourgain [1994; 1996] and Zhidkov
[2001], and enhanced by Tzvetkov [2006; 2008; 2010], Burq and Tzvetkov [2008a; 2008b], Oh [2009/10;
2009], Colliander and Oh [2012] and others. In this paper we study the Cauchy problem for the nonlinear
Schrödinger–Gross–Pitaevskii equation(

i
@u

@t
C�u� jxj2uD˙jujp�1u; .t;x/ 2 R�Rd ;

u.0/D u0;
(1-1)

with d � 2, p � 3 an odd integer and where u0 is a random initial condition.
Much work has been done on dispersive PDEs with random initial conditions since the papers of Burq

and Tzvetkov [2008a; 2008b]. In these articles, the authors showed that, thanks to a randomisation of the
initial condition, one can prove well-posedness results even for data with supercritical Sobolev regularity.
We also refer to [Burq and Tzvetkov 2014; Thomann 2009; Burq et al. 2010; Poiret 2012a; 2012b;

Robert was partly supported by the grant “NOSEVOL” ANR-2011-BS01019 01. Thomann was partly supported by the grant
“HANDDY” ANR-10-JCJC 0109 and by the grant “ANAÉ” ANR-13-BS01-0010-03.
MSC2010: 35P05, 35Q55, 35R60.
Keywords: harmonic oscillator, supercritical nonlinear Schrödinger equation, random initial conditions, scattering, global

solutions.
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de Suzzoni 2013; Nahmod and Staffilani 2013] for strong solutions in a probabilistic sense. Concerning
weak solutions, see [Burq et al. 2012; � 2014; Nahmod et al. 2013].

More recently, Burq and Lebeau [2013] considered a different randomisation method, and thanks to
fine spectral estimates they obtained better stochastic bounds, which enabled them to improve the previous
known results for the supercritical wave equation on a compact manifold. In [Poiret et al. 2013] we
extended the results of [Burq and Lebeau 2013] to the harmonic oscillator in Rd . This approach enables
us to prove a stochastic version of the usual Strichartz estimates with a gain of d=2 derivatives, which
we will use here to apply to the nonlinear problem. These estimates (the result of Proposition 2.1) can
be seen as a consequence of [Poiret et al. 2013, Inequality (1.6)], but we give here an alternative proof
suggested by Nicolas Burq.

Consider a probability space .�;F;P/ and let fgngn�0 be a sequence of real random variables, which
we will assume to be independent and identically distributed. We assume that the common law � of gn

satisfies, for some c > 0, the boundZ C1
�1

ex d� � ec2

for all  2 R: (1-2)

This condition implies in particular that the gn are centred variables. It is easy to check that (1-2) is
satisfied for centred Gauss laws and for any centred law with bounded support. Under condition (1-2),
we can prove the Khinchin inequality (Lemma 2.3), which we will use in the sequel.

Let d � 2. We denote by
H D��Cjxj2

the harmonic oscillator and by f'j j j � 1g an orthonormal basis of L2.Rd / of eigenvectors of H (the
Hermite functions). The eigenvalues of H are the f2.`1C � � � C `d /C d j ` 2 Ndg, and we can order
them in a non-decreasing sequence f�j j j � 1g, repeated according to their multiplicities, and so that
H'j D �j'j .

We define the harmonic Sobolev spaces for s � 0, p � 1 by

Ws;p
DWs;p.Rd /D fu 2Lp.Rd / jH s=2u 2Lp.Rd /g;

Hs
DHs.Rd /DWs;2:

The natural norms are denoted by kukWs;p and up to equivalence of norms, for 1< p <C1, we have
[Yajima and Zhang 2004, Lemma 2.4]

kukWs;p D kH s=2ukLp � k.��/s=2ukLp CkhxisukLp :

For j � 1, let
I.j /D fn 2 N j 2j � �n < 2.j C 1/g:

Observe that, for all j � d=2, I.j /¤∅ and that #I.j /� cdj d�1 when j !C1.
Let s 2 R. Any u 2Hs.Rd / can be written in a unique fashion as

uD

C1X
jD1

X
n2I.j/

cn'n:
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Following a suggestion of Nicolas Burq, we introduce the condition

jck j
2
�

C

#I.j /

X
n2I.j/

jcnj
2 for all j � 1 and k 2 I.j /; (1-3)

which means that the coefficients have almost the same size on each level of energy I.j /. Observe that
this condition is always satisfied in dimension d D 1. We define the set As �Hs.Rd / by

As D

�
uD

C1X
jD1

X
n2I.j/

cn'n 2Hs.Rd /
ˇ̌̌

condition (1-3) holds for some C > 0

�
:

It is easy to check the following properties:

� If u 2As , then for all c 2 C, cu 2As .

� The set As is neither closed nor open in Hs .

� The set As is invariant under the linear Schrödinger flow e�itH .

� The set As depends on the choice of the orthonormal basis .'n/n�1. Indeed, given u 2Hs , it is easy
to see that there exists a Hilbertian basis .z'n/n�1 such that u 2 zAs , where zAs is the space based
on .z'n/n�1.

Let  2As . We define the probability measure � on Hs via the map

�!Hs.Rd /;

! 7! ! D

C1X
jD1

X
n2I.j/

cngn.!/'n:

In other words, � is defined by the condition, that for all measurable F WHs! R,Z
Hs.Rd /

F.v/ d� .v/D

Z
�

F.!/ dP.!/:

In particular, we can check that � satisfies:

� If  2HsnHsC", then � .HsC"/D 0.

� Assume that for all j � 1 such that I.j /¤∅ we have cj ¤ 0. Then for all nonempty open subsets
B �Hs , � .B/ > 0.

Finally, we denote by Ms the set of all such measures, Ms D
S
2As

f� g.

1B. Main results. Before we state our results, let us recall some facts concerning the deterministic study
of the nonlinear Schrödinger equation (1-1). We say that (1-1) is locally well-posed in Hs.Rd / if, for any
initial condition u0 2Hs.Rd /, there exists a unique local in time solution u 2 C.Œ�T;T �IHs.Rd //, and
if the flow-map is uniformly continuous. We denote by

sc D
d

2
�

2

p�1
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the critical Sobolev index. Then one can show that NLS is well-posed in Hs.Rd / when s >max.sc ; 0/,
and ill-posed when s < sc . We refer to the introduction of [Thomann 2009] for more details on this topic.

1B1. Local existence results. We are now able to state our first result on the local well-posedness of (1-1).

Theorem 1.1. Let d � 2, let p� 3 be an odd integer, and fix �D� 2M0. Then there exists†�L2.Rd /

with �.†/D 1 and such that:

(i) For all u0 2† there exist T > 0 and a unique local solution u to (1-1) with initial data u0 satisfying

u.t/� e�itH u0 2 C.Œ�T;T �IHs.Rd //; (1-4)

for some s such that d
2
�

2
p�1

< s < d
2

.

(ii) More precisely, for all T > 0, there exists †T �† with

�.†T /� 1�C exp
�
�cT �ıkk�2

L2.R2/

�
; C; c; ı > 0;

and such that for all u0 2†T the lifespan of u is larger than T .

Let  D
C1P
nD0

cn'n.x/. Then

u!0 WD

C1X
nD0

gn.!/cn'n.x/

is a typical element in the support of � . Another way to state Theorem 1.1 is: for any T > 0, there
exists an event �T �� such that

P.�T /� 1�C exp
�
�cT �ıkk�2

L2.Rd /

�
; C; c; ı > 0;

and that for all ! 2�T , there exists a unique solution of the form (1-4) to (1-1) with initial data u!
0

.
We will see in Proposition 2.1 that the stochastic approach yields a gain of d=2 derivatives compared

to the deterministic theory. To prove Theorem 1.1 we only have to gain sc D d=2�2=.p�1/ derivatives.
The solution is constructed by a fixed point argument in a Strichartz space X s

T
� C.Œ�T;T �IHs.Rd //

with continuous embedding, and uniqueness holds in the class X s
T

.
The deterministic Cauchy problem for (1-1) was studied by Oh [1989] (see also [Cazenave 2003,

Chapter 9] for more references). Thomann [2009] has proven an almost sure local existence result for (1-1)
in the supercritical regime (with a gain of 1

4
of a derivative), for any d � 1. This local existence result

was improved by [Burq et al. 2010] when d D 1 (gain of 1
2

a derivative), by [Deng 2012] when d D 2,
and by Poiret [2012a; 2012b] in any dimension.

Remark 1.2. The results of Theorem 1.1 also hold true for any quadratic potential

V .x/D
X

1�j�d

j̨ x2
j ; j̨ > 0; 1� j � d;

and for more general potentials such that V .x/� hxi2.
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1B2. Global existence and scattering results for NLS. As an application of the results of the previous
part, we are able to construct global solutions to the nonlinear Schrödinger equation without potential,
which scatter when t !˙1. Consider the equation(

i
@u

@t
C�uD˙jujp�1u; .t;x/ 2 R�Rd :

u.0/D u0:
(1-5)

The well-posedness indexes for this equation are the same as for (1-1). Namely, (1-5) is well-posed in
H s.Rd / when s >max.sc ; 0/, and ill-posed when s < sc .

For the next result, we will need an additional condition on the law �. We assume that

P.jgnj< �/ > 0 for all � > 0; (1-6)

which ensures that the random variable can take arbitrarily small values. Then we can prove:

Theorem 1.3. Let d � 2, let p � 3 be an odd integer, and fix � D � 2M0. Assume that (1-6) holds.
Then there exists †�L2.Rd / with �.†/ > 0 and such that:

(i) For all u0 2† there exists a unique global solution u to (1-5) with initial data u0 satisfying

u.t/� eit�u0 2 C.RIHs.Rd //;

for some s such that d
2
�

2
p�1

< s < d
2

.

(ii) For all u0 2† there exist states fC; f� 2Hs.Rd / such that when t !˙1,

ku.t/� eit�.u0Cf˙/kH s.Rd /! 0:

(iii) If we assume that the distribution of � is symmetric, then

�
�
u0 2L2.Rd / W assertion (ii) holds true

ˇ̌
ku0kL2.Rd / � �

�
! 1;

when �! 0.

We can show [Poiret 2012a, Théorème 20] that for all s>0, if u0 62H� .Rd / then �.H� .Rd //D0. This
shows that the randomisation does not yield a gain of derivative in the Sobolev scale; thus Theorem 1.3
gives results for initial conditions not covered by the deterministic theory.

There is a large literature on the deterministic local and global theory with scattering for (1-5). We refer
to [Banica et al. 2008; Nakanishi and Ozawa 2002; Carles 2009] for such results and more references.

We do not give here the details of the proof of Theorem 1.3, since one can follow the main lines of the
argument of Poiret [2012a; 2012b] but with different constants (see, e.g., [Poiret 2012b, Théorème 4]).
The proof of (i) and (ii) is based on the use of an explicit transform, called the lens transform L, which
links the solutions of (1-5) to solutions of NLS with harmonic potential. The transform L has been used
in different contexts; see [Carles 2009] for scattering results and more references. More precisely, for
u.t;x/ W

�
�
�
4
; �

4

�
�Rd ! C we define

v.t;x/D Lu.t;x/D

�
1p

1C4t2

�d=2

u

�
arctan.2t/

2
;

xp
1C4t2

�
ei jxj2t=.1C4t2/;
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then u is a solution to
i
@u

@t
�HuD � cos.2t/

1
2

d.p�1/�2
jujp�1u

if and only if v satisfies i @v=@t C�v D �jvjp�1v. Theorem 1.1 provides solutions with lifespan larger
than �=4 for large probabilities, provided that the initial conditions are small enough.

Part (iii) is stated in [Poiret 2012a, Théorème 9], and can be understood as a small data result.
In Theorem 1.3 we assumed that d � 2 and that p � 3 was an odd integer, so we had p � 1C 4=d ,

or, in other words, we were in an L2-supercritical setting. Our approach also allows to get results in an
L2-subcritical context, i.e., when 1C 2=d < p < 1C 4=d .

Theorem 1.4. Let d D 2 and 2< p < 3. Assume that (1-6) holds and fix �D � 2M0. Then there exists
†�L2.R2/ with �.†/ > 0 and such that for all 0< " < 1:

(i) For all u0 2† there exists a unique global solution u to (1-5) with initial data u0 satisfying

u.t/� eit�u0 2 C.RIH1�".R2//:

(ii) For all u0 2† there exist states fC; f� 2H1�".R2/ such that when t !˙1,

ku.t/� eit�.u0Cf˙/kH 1�".R2/! 0:

(iii) If we assume that the distribution of � is symmetric, then

�
�
u0 2L2.R2/ W assertion (ii) holds true

ˇ̌
ku0kL2.R2/ � �

�
! 1;

when �! 0.

In the case p� 1C2=d , Barab [1984] showed that a nontrivial solution to (1-5) never scatters; therefore
even with a stochastic approach one can not have scattering in this case. When d D 2, the condition p > 2

in Theorem 1.4 is therefore optimal. Usually, deterministic scattering results in L2-subcritical contexts
are obtained in the space H 1\F.H 1/. Here we assume u0 2L2, and thus we relax both the regularity
and the decay assumptions (this latter point is the most striking in this context). Again we refer to [Banica
et al. 2008] for an overview of scattering theory for NLS.

When � 2M� for some 0< � < 1 we are able to prove the same result with "D 0. Since the proof is
much easier, we give it before the case � D 0 (see Section 3B).

Finally, we point out that in Theorem 1.4 we are only able to consider the case d D 2 because of the
lack of regularity of the nonlinear term jujp�1u.

1B3. Global existence results for NLS with quadratic potential. We also get global existence results for
defocusing Schrödinger equation with harmonic potential. For d D 2 or d D 3, consider the equation(

i
@u

@t
�HuD juj2u; .t;x/ 2 R�Rd ;

u.0/D u0;
(1-7)

and denote by E the energy of (1-7), namely

E.u/D kuk2
H1.Rd /

C
1
2
kuk4

L4.Rd /
:
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Deterministic global existence for (1-7) has been studied by Zhang [2005] and by Carles [2011] in the
case of time-dependent potentials.

When d D 3, our global existence result for (1-7) is the following:

Theorem 1.5. Let d D 3, 1
6
< s < 1 and fix �D � 2Ms . Then there exists a set †�Hs.R3/ such that

�.†/D 1 and that the following holds true:

(i) For all u0 2†, there exists a unique global solution to (1-7), which reads

u.t/D e�itH u0Cw.t/; w 2 C.R;H1.R3//:

(ii) The previous line defines a global flow ˆ, which leaves the set † invariant:

ˆ.t/.†/D†; for all t 2 R:

(iii) There exist C; cs > 0 such that, for all t 2 R,

E.w.t//� C.M Cjt j/csC;

where M is a positive random variable such that

�.u0 2Hs.R3/ WM >K/� Ce
�cKı=kk2

Hs.R3/ :

Here the critical Sobolev space is H1=2.R3/; thus the local deterministic theory, combined with
the conservation of the energy, immediately gives global well-posedness in H1.R3/. Using a kind of
interpolation method due to Bourgain, one may obtain deterministic global well-posedness in Hs.R3/

for some 1=2< s < 1. Instead, for the proof of Theorem 1.5, we will rely on the almost well-posedness
result of Theorem 1.1, and this gives global well-posedness in a supercritical context.

The constant cs > 0 can be computed explicitly (see (4-16)), and we do not think that we have obtained
the optimal rate. By reversibility of the equation, it is enough to consider only positive times.

With a similar approach, in dimension d D 2, we can prove:

Theorem 1.6. Let d D 2, 0< s < 1 and fix �D � 2Ms . Then there exists a set †�Hs.R2/ such that
�.†/D 1 and that, for all u0 2†, there exists a unique global solution to (1-7),

u.t/D e�itH u0Cw.t/; w 2 C.R;H1.R2//:

In addition, statements (ii) and (iii) of Theorem 1.5 are also satisfied with cs D
1�s

s
.

Here the critical Sobolev space is L2.R2/; thus Theorem 1.6 shows global well-posedness for any
subcritical cubic nonlinear Schrödinger equations in dimension two.

Using the smoothing effect, which yields a gain of 1
2

a derivative, a global well-posedness result
for (1-1), in the defocusing case, was given in [Burq et al. 2010] in the case d D 1, for any p � 3.
The global existence is proved for a typical initial condition on the support of a Gibbs measure, which
is
T
�>0 H�� .R/. This result was extended by Deng [2012] in dimension d D 2 for radial functions.

However, this approach has the drawback that it relies on the invariance of a Gibbs measure, which is a
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rigid object, and is supported in rough Sobolev spaces. Therefore it seems difficult to adapt this strategy
in higher dimensions.

Here instead we obtain the results of Theorems 1.5 and 1.6 as a combination of Theorem 1.1 with the
high-low frequency decomposition method of [Bourgain 1999, p. 84]. This approach has been successful
in different contexts, and has been first used together with probabilistic arguments by Colliander and Oh
[2012] for the cubic Schrödinger below L2.S1/ and later on by Burq and Tzvetkov [2014] for the wave
equation.

1C. Notations and plan of the paper. In this paper c;C > 0 denote constants, the value of which may
change from line to line. These constants will always be universal, or uniformly bounded with respect to
the other parameters.

We let L
p
T
DL

p

Œ�T;T �
DLp.�T;T / for T > 0 and we write L

p
x DLp.Rd /. We denote the harmonic

oscillator on Rd by H D ��C jxj2 D
Pd

jD1.�@
2
j C x2

j /, and for s � 0 we define the Sobolev space
Hs by the norm kukHs D kH s=2ukL2.Rd /. More generally, we define the spaces Ws;p by the norm
kukWs;p D kH s=2ukLp.Rd /. If E is a Banach space and � is a measure on E, we write L

p
� DLp.d�/

and kukLp
�E D

kukEL
p
�

.
The rest of the paper is organised as follows. In Section 2 we recall some deterministic results on

the spectral function, and prove stochastic Strichartz estimates. Section 3 is devoted to the proof of
Theorem 1.1 and of the scattering results for NLS without potential. Finally, in Section 4 we study the
global existence for the Schrödinger–Gross–Pitaevskii equation (1-1).

2. Stochastic Strichartz estimates

The main result of this section is the following probabilistic improvement of the Strichartz estimates.

Proposition 2.1. Let s 2 R and �D � 2Ms . Let 1� q <C1, 2� r �C1, and set ˛ D d
�

1
2
�

1
r

�
if

r <C1 and ˛ < d=2 if r DC1. Then there exist c;C > 0 such that, for all � 2 R,

�
�
u 2Hs.Rd / W

e�i.tC�/H u


L
q

Œ0;T �
WsC˛;r .Rd /

>K
�
� Ce

�cK 2=T 2=qkk2
Hs.Rd / :

When r D C1, this result expresses a gain �-a.s. of d=2 derivatives in space compared to the
deterministic Strichartz estimates (see the bound (3-2)).

Proposition 2.1 is a consequence of [Poiret et al. 2013, Inequality (1.6)], but we give here a self-
contained proof suggested by Nicolas Burq.

There are two key ingredients in the proof of Proposition 2.1. The first one is a deterministic estimate on
the spectral function given in Lemma 2.2, and the second is the Khinchin inequality stated in Lemma 2.3.

2A. Deterministic estimates of the spectral function. We define the spectral function �H for the har-
monic oscillator by

�H .�Ix;y/D
X
�j��

'j .x/'j .y/;

and this definition does not depend on the choice of f'j j j 2 Ng.



PROBABILISTIC GLOBAL WELL-POSEDNESS FOR NLS 1005

Let us recall some results of �H , which were essentially obtained by Thangavelu [1993, Lemma 3.2.2,
p. 70] (see also [Karadzhov 1995] and [Poiret et al. 2013, Section 3] for more details).

Thanks to the Mehler formula, we can prove

�H .�Ix;x/� C�d=2 exp
�
�c
jxj2

�

�
for all x 2 Rd and �� 1: (2-1)

One also has the following more subtle bound, which is the heart of [Karadzhov 1995]:

j�H .�C�Ix;x/��H .�Ix;x/j � C.1Cj�j/�d=2�1 for �� 1; j�j � C0�: (2-2)

This inequality gives a bound on �H in energy interval of size �1, which is the finest one can obtain.
Then we can prove (see [Poiret et al. 2013, Lemma 3.5]):

Lemma 2.2. Let d � 2 and assume that j�j � c0, r � 1 and � � 0. Then there exists C > 0 such that for
all �� 1

k�H .�C�Ix;x/��H .�Ix;x/kLr .Rd / � C�
1
2

d.1C1=r/�1:

2B. Proof of Proposition 2.1. To begin with, recall the Khinchin inequality, which shows a smoothing
property of the random series in the Lk spaces for k � 2; for example, see [Burq and Tzvetkov 2008a,
Lemma 4.2].

Lemma 2.3. There exists C > 0 such that for all real k � 2 and .cn/ 2 `
2.N/X

n�1

gn.!/ cn


Lk

P

� C
p

k

�X
n�1

jcnj
2

�1
2

:

Now we fix  D
C1P
nD0

cn'n 2As and let ! D
C1P
nD0

gn.!/cn'n.

Firstly, we treat the case r <C1. Set ˛ D d
�

1
2
�

1
r

�
and set � D sC ˛. Observe that it suffices to

prove the estimation for K�kkHs.Rd /.
Let k � 1. By definition,Z

Hs.Rd /

e�i.tC�/H u
k

L
q

Œ0;T �
W�;r .Rd /

d�.u/D

Z
�

e�i.tC�/H !
k

L
q

Œ0;T �
W�;r .Rd /

dP.!/

D

Z
�

e�i.tC�/H H�=2!
k

L
q

Œ0;T �
Lr .Rd /

dP.!/: (2-3)

Since e�i.tC�/H H�=2!.x/D
C1P
nD0

gn.!/cn�
�=2
n e�i.tC�/�n'n.x/, by Lemma 2.3 we get

e�i.tC�/H H�=2!.x/


Lk
P
� C
p

k
e�i.tC�/H H�=2!.x/


L2

P
D C
p

k

�C1X
nD0

��n jcnj
2
j'n.x/j

2

�1
2

:
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Assume that k � r . By the integral Minkowski inequality, the previous line and the triangle inequality we
get e�i.tC�/H H�=2!


Lk

P Lr
x
�
e�i.tC�/H H�=2!


Lr

xLk
P

� C
p

k

C1X
kD0

��k jck j
2
j'k j

2

 1
2

Lr=2.Rd /

� C
p

k

�C1X
jD1

 X
k2I.j/

��k jck j
2
j'k j

2


Lr=2.Rd /

�1
2

: (2-4)

Condition (1-3) implies that for all x 2 Rd and k 2 I.j /D fn 2 N j 2j � �n < 2.j C 1/g

��k jck j
2
j'k.x/j

2
� Cj �

X
n2I.j/

jcnj
2 j'k.x/j

2

#I.j /
;

and thus, by Lemma 2.2 and the fact that #I.j /� cj d�1, X
k2I.j/

��k jck j
2
j'k.x/j

2


Lr=2.Rd /

� Cj �
X

n2I.j/

jcnj
2

P
k2I.j/ j'k.x/j

2


Lr=2.Rd /

#I.j /

� Cj �Cd.1=r�1=2/
X

n2I.j/

jcnj
2

D Cj s
X

n2I.j/

jcnj
2:

The latter inequality together with (2-4) givese�i.tC�/H H�=2!


Lk
P Lr

x
� C
p

kkkHs.Rd /;

and for k � r , by Minkowski,e�i.tC�/H H�=2!


Lk
P L

q

Œ0;T �
Lr

x
� C
p

k T 1=q
kkHs.Rd /:

Then, using (2-3) and the Bienaymé–Chebishev inequality, we obtain

�
�
u 2Hs

W ke�i.tC�/H ukLq

Œ0;T �
W�;r .Rd / >K

�
�
�
K�1
ke�i.tC�/H H�=2!kLk

P L
q

Œ0;T �
Lr

x

�k
�
�
CK�1

p
k T 1=q

kkHs.Rd /

�k
:

Finally, if K�kkHs.Rd /, we can choose k DK2
ı

2C T 2=qkk2
Hs.Rd /

� r , which yields the result.
Now assume r DC1. We use the Sobolev inequality to get kukWs;1 �CkukWQs;Qr with QsD sC2d= Qr

for Qr � 1 large enough; hence we can apply the previous result for r <C1.

Remark 2.4. A similar result to Proposition 2.1 holds, with the same gain of derivatives, when I.�/ is
replaced with the dyadic interval J.j /D fn 2 N j 2j � �n < 2jC1g. Then the condition (1-3) becomes
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jck j
2
�

C

#J.j /

X
n2J .j/

jcnj
2 for all j � 1 and k 2 J.j /; (2-5)

which seems more restrictive. Indeed neither condition imply the other.
Observe that if we want to prove the result under condition (2-5), the subtle estimate (2-2) is not

needed; (2-1) is enough.

Remark 2.5. For d D 1, condition (1-3) is always satisfied but condition (2-2) is not. Instead we can use
that k'kkp � C�

��.p/

k
with �.p/ > 0 for p > 2 [Koch and Tataru 2005]. For example if p > 4 we have

�.p/D 1
4
� .p� 1/=6p. Thus we get the Proposition 2.1 with s D p�.p/=4 (see [Thomann 2009; Burq

et al. 2010], where this is used).

Remark 2.6. Another approach could have been to exploit the particular basis .'n/n�1, which satisfies
the good L1 estimates given in [Poiret et al. 2013, Theorem 1.3], and to construct the measures � as the
image measures of random series of the form

!.x/D
X
n�1

cngn.!/'n.x/;

with cn 2 `
2.N/ not necessarily satisfying (1-3). A direct application of the Khinchin inequality (as

in [Thomann 2009, Proposition 2.3]) then gives the same bounds as in Proposition 2.1. Observe that
condition (1-3) is also needed in this approach, but it directly intervenes in the construction of the 'n.

We believe that the strategy we adopted here is slightly more general, since it seems to work even in
cases where we do not have a basis of eigenfunctions that satisfy bounds analogous to [Poiret et al. 2013,
Theorem 1.3], as for example in the case of the operator ��Cjxj4.

3. Application to the local theory of the supercritical Schrödinger equation

3A. Almost sure local well-posedness. This subsection, devoted to the proof of Theorem 1.1, follows
the argument of [Poiret 2012b].

Let u0 2 L2.Rd /. We look for a solution to (1-1) of the form u D e�itH u0C v, where v is some
fluctuation term more regular than the linear profile e�itH u0. By the Duhamel formula, the unknown v
has to be a fixed point of the operator

L.v/ WD �i

Z t

0

e�i.t�s/H
je�isH u0C v.s/j

p�1.e�isH u0C v.s// ds; (3-1)

in some adequate functional space, which is a Strichartz space.
To begin with, we recall the Strichartz estimates for the harmonic oscillator. A couple .q; r/2 Œ2;C1�2

is called admissible if
2

q
C

d

r
D

d

2
and .d; q; r/¤ .2; 2;C1/;
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and if one defines
X s

T WD

\
.q;r/

admissible

Lq.Œ�T;T �IWs;r .Rd //;

then for all T > 0 there exists CT > 0 such that for all u0 2Hs.Rd / we have

ke�itH u0kX s
T
� CT ku0kHs.Rd /: (3-2)

We will also need the inhomogeneous version of Strichartz: For all T > 0, there exists CT > 0 such that
for all admissible couples .q; r/ and functions F 2Lq0.ŒT;T �IWs;r 0.Rd //,Z t

0

e�i.t�s/H F.s/ ds


X s

T

� CT kFkLq0 .Œ�T;T �;Ws;r 0 .Rd //; (3-3)

where q0 and r 0 are the Hölder conjugates of q and r . We refer to [Poiret 2012b] for a proof.
The next result is a direct application of the Sobolev embeddings and Hölder.

Lemma 3.1. Let .q; r/ 2 Œ2;1Œ� Œ2;1�, and let s; s0 � 0 be such that s� s0 >
d

2
�

2

q
�

d

r
. Then there

exist �;C > 0 such that for any T � 0 and u 2X s
T

,

kukLq.Œ�T;T �;Ws0;r .Rd // � C T �
kukX s

T
:

We now introduce the appropriate sets in which we can profit from the stochastic estimates of the
previous section. Fix �D � 2M0 and, for K � 0 and " > 0, define the set Gd .K/ as

Gd .K/D
˚
w 2L2.Rd / j kwkL2.Rd / �K and ke�itHwk

L
1="

Œ�2�;2��
Wd=2�";1.Rd /

�K
	
:

Then by Proposition 2.1,

�.Gd .K/
c/��

�
kwkL2.Rd />K

�
C�

�
ke�itHwk

L
1="

Œ�2�;2��
Wd=2�";1.Rd /

>K
�
�Ce

�cK 2=kk2
L2 : (3-4)

We want to perform a fixed point argument on L with initial condition u0 2Gd .K/ for some K > 0

and " > 0 small enough. We begin by establishing some estimates.

Lemma 3.2. Let s 2
�

d
2
�

2
p�1

; d
2

�
. For " > 0 small enough there exist C > 0 and � > 0 such that for

any 0< T � 1, u0 2Gd .K/, v 2X s
T

and fi D v or fi D e�itH u0,H s=2.v/

pY
iD2

fi


L1.Œ�T;T �;L2.Rd //

� C T �
�
Kp
Ckvk

p

X s
T

�
; (3-5)

and H s=2.e�itH u0/

pY
iD2

fi


L1.Œ�T;T �;L2.Rd //

� C T �
�
Kp
Ckvk

p

X s
T

�
: (3-6)

Proof. First we prove (3-5). Thanks to the Hölder inequality,jrjs.v/ pY
iD2

fi


L1.Œ�T;T �;L2.Rd //

� kjrj
s.v/kL1.Œ�T;T �;L2.Rd //

pY
iD2

kfikLp�1.Œ�T;T �;L1.Rd //
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and hxisv pY
iD2

fi


L1.Œ�T;T �;L2.Rd //

� khxisvkL1.Œ�T;T �;L2.Rd //

pY
iD2

kfikLp�1.Œ�T;T �;L1.Rd //

� kvkL1.Œ�T;T �;H s.Rd //

pY
iD2

kfikLp�1.Œ�T;T �;L1.Rd //:

If fi D v, then as s >
d

2
�

2

p�1
, we can use Lemma 3.1 to obtain

kvkLp�1.Œ�T;T �;L1.Rd // � C T �
kvkX s

T
:

If fi D e�itH u0, then by definition of Gd .K/ we have, for " > 0 small enough,

ke�itH u0kLp�1.Œ�T;T �;L1.Rd // � T �
ke�itH u0kL1=".Œ�2�;2��;Wd=2�";1.Rd // � T �K:

We now turn to (3-6). Thanks to the Hölder inequality, we havejrjs.e�itH u0/

pY
iD2

fi


L1.Œ�T;T �;L2.Rd //

� kjrj
s.e�itH u0/kLp.Œ�T;T �;L2dp.Rd //

pY
iD2

kfikLp.Œ�T;T �;L2dp.p�1/=.dp�1/.Rd //

� ke�itH u0kLp.Œ�T;T �;Ws;2dp.Rd //

pY
iD2

kfikLp.Œ�T;T �;L2dp.p�1/=.dp�1/.Rd //:

If fi D e�itH u0, by interpolation we obtain, for some 0� � � 1,

ke�itH u0kLp.Œ�T;T �;L2dp.p�1/=.dp�1/.Rd // � C T �
ku0k

1��
L2.Rd /

ke�itH u0k
�
L1=".Œ�T;T �;L1.Rd //

� C T �K:

If fi D v, as s >
d

2
�

2

p�1
>

d

2
�

2

p
�

d.dp�1/

2dp.p�1/
(because p � 3 and d � 2), then thanks to Lemma 3.1

we find
kvkLp.Œ�T;T �;L2dp.p�1/=.dp�1/.Rd // � C T �

kvkX s
T
: �

We are now able to establish the estimates that will be useful in the application of a fixed point theorem.

Proposition 3.3. Let s 2
�

d
2
�

2
p�1

; d
2

�
. Then for " > 0 small enough, there exist C > 0 and � > 0 such

that if u0 2Gd .K/ for some K > 0. For any v; v1; v2 2X s
T

and 0< T � 1,Z t

0

e�i.t�s/H
je�isH u0C vj

p�1.e�isH u0C v/ ds


X s
T

� C T �.Kp
Ckvk

p

X s
T

/;

andZ t

0

e�i.t�s/H
je�isH u0C v1j

p�1.e�isH u0C v1/ ds

�

Z t

0

e�i.t�s/H
je�isH u0C v2j

p�1.e�isH u0C v2/ ds


X s
T

� C T �
kv1� v2kX s

T

�
Kp�1

Ckv1k
p�1

X s
T

Ckv2k
p�1

X s
T

�
:
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Proof. We only prove the first claim, since the proof of the second is similar. Using the Strichartz
inequalities (3-3), we obtainZ t

0

e�i.t�s/H
je�isH u0C vj

p�1.e�isH u0C v/ ds


X s

T

� C
je�isH u0C vj

p�1.e�isH u0C v/


L1
Œ�T;T �

Hs.Rd /
:

Then, using Lemma 3.2, we obtain the existence of � > 0 such that for any u0 2Gd .K/, 0< T � 1

and v 2X s
T

,H s=2
�
je�isH u0C vj

p�1.e�isH u0C v/
�

L1.Œ�T;T �;L2.Rd //
� C T �

�
Kp
Ckvk

p

X s
T

�
: �

Proof of Theorem 1.1. We now complete the contraction argument on L defined in (3-1) with some
u0 2Gd .K/. According to Proposition 3.3, there exist C > 0 and � > 0 such that

kL.v/kX s
T
� C T �

�
Kp
Ckvk

p

X s
T

�
kL.v1/�L.v2/kX s

T
� C T �

kv1� v2kX s
T

�
Kp�1

Ckv1k
p�1

X s
T

Ckv2k
p�1

X s
T

�
:

Hence, if we choose T > 0 such that K D .8C T �/�1=.p�1/, then L is a contraction in the space
BX s

T
.0;K/ (the ball of radius K in X s

T
). Thus if we set †T DGd .K/, with the previous choice of K,

the result follows from (3-4). �

Proof of Theorem 1.3. We introduce(
i
@w

@t
�Hw D˙ cos.2t/

1
2

d.p�1/�2
jwjp�1w; .t;x/ 2 R�Rd ;

v.0/D u0;
(3-7)

and let s 2
�

d
2
�

2
p�1

; d
2

�
, T D �

4
and 1� " > 0. Thanks to Proposition 3.3, there exist C > 0 and � > 0

such that if u0 2Gd .K/ for some K > 0 then, for all v,Z t

0

e�i.t�s/H
�
cos.2s/

d
2
.p�1/�2

je�isH u0Cvj
p�1.e�isH u0Cv/

�
ds


X s

T

�C T �
�
Kp
Ckvk

p

X s
T

�
: (3-8)

As in Theorem 1.1, we can choose K D .8C T �/�1=.p�1/ to obtain, for u0 2 Gd .K/, a unique local
solution w D e�itH u0C v in time interval

�
�
�
4
; �

4

�
to (3-7) with v 2X 1

T
.

We set uDLv. Then u is a global solution to (1-5). Thanks to [Poiret 2012b, Propositions 20 and 22],
we obtain that uD eit�u0C v

0 with v0 2X 1
T

.
Moreover, thanks to (3-8), we have thatZ t

0

e�i.t�s/H
�
cos.2s/

d
2
.p�1/�2

je�isH u0C vj
p�1.e�isH u0C v/

�
ds 2 C0

�
Œ�T;T �;Hs.Rd /

�
:

Then there exist L 2Hs such that

lim
t!T

e�itH

Z t

0

e�isH
�
cos.2s/

d
2
.p�1/�2

je�isH u0C vj
p�1.e�isH u0C v/

�
ds�L


Hs.Rd /

D 0:
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Using [Poiret 2012b, Lemma 70], we obtain that

lim
t!T

u.t/� eit�u0� eit�.�ie�iTH L/


H s.Rd /
D 0:

Finally, to establish Theorem 1.3, it suffices to set †DGd .K/ and to prove that �.u0 2Gd .K// > 0.
We can write

u0 D �

�
H

N

�
u0C .1��/

�
H

N

�
u0 WD Œu0�N C Œu0�

N ;

where � is a truncation function. Using the triangle inequality and independence, we obtain that

�.u0 2Gd .K//� �
�
Œu0�N 2Gd .K=2/

�
�
�
Œu0�

N
2Gd .K=2/

�
:

For all N , �
�
Œu0�N 2Gd .K=2/

�
> 0 because the hypothesis (1-6) is satisfied and thanks to Proposition 2.1

we have
�
�
Œu0�

N
2Gd .K=2/

�
� 1�Ce

�cK 2=kŒu0�
N k2

L2 ! 1 as N !1;

and there exists N such that �
�
Œu0�

N 2Gd .K=2/
�
> 0. �

3B. Almost sure local well-posedness of the time dependent equation and scattering for NLS. This
section is devoted to the proof of Theorem 1.4. The strategy is similar to the proof of Theorem 1.3: we
solve the equation which is mapped by L to (1-5) up to time T D �=4 and we conclude as previously.
The difference here is that the nonlinear term of the equation we have to solve is singular at time T D�=4.
More precisely, we consider the equation(

i
@u

@t
�HuD˙ cos.2t/p�3jujp�1u; .t;x/ 2 R�R2;

u.0/D u0;
(3-9)

when 2< p < 3.

Let us first consider the easier case � > 0.

3B1. Proof of Theorem 1.4 in the case � > 0. Let � > 0 and �D � 2M� , and for K � 0 and " > 0

define the set F� .K/ as

F� .K/D
˚
w 2H� .R2/ j kwkH� .R2/ �K and ke�itHwk

L
1="

Œ0;2��
W1C��";1.R2/

�K
	
:

The parameter " > 0 will be chosen small enough that we can apply Proposition 2.1 and get

�.F� .K/
c/� �.kwkH� >K/C�

�
ke�itHwk

L
1="

Œ0;2��
W1C��";1 >K

�
� Ce�cK 2=kk2

H� :

The next proposition is the key in the proof of Theorem 1.4 when � > 0.

Proposition 3.4. Let � > 0. There exist C > 0 and � > 0 such that if u0 2 F� .K/ for some K > 0 then
for any v; v1; v2 2X 1

T
and 0< T � 1,Z t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C vj
p�1.e�i�H u0C v/

�
d�


X 1

T

� C T �.Kp
Ckvk

p

X 1
T

/ (3-10)
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andZ t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C v1j
p�1.e�i�H u0C v1/

�
d�

�

Z t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C v2j
p�1.e�i�H u0C v2/

�
d�


X 1

T

� C T �
kv1� v2kX 1

T

�
Kp�1

Ckv1k
p�1

X 1
T

Ckv2k
p�1

X 1
T

�
: (3-11)

Proof. We first prove (3-10). Using the Strichartz inequalities (3-3), we obtainZ t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C vj
p�1.e�i�H u0C v/

�
d�


X 1

T

� C
cos.2�/p�3

je�i�H u0C vj
p�1.e�i�H u0C v/


L1
Œ�T;T �

H1.R2/
:

We use the formula

r.jujp�1u/D
pC 1

2
jujp�1

ruC
p� 1

2
jujp�3u2

r Nu: (3-12)

We let f D e�isH u0, thenr.jfCvjp�1.fCv//


L2.R2/
� C

jfCvjp�1
r.fCv/


L2.R2/

CC
jfCvjp�3.fCv/2r.fCv/


L2.R2/

� C
fCvkp�1

L1.R2/
krv


L2.R2/

CCkfCvk
p�1

L2.p�1/.R2/
krfCvkL1.R2/:

Thereforejf C vjp�1.f C v/


H1.R2/

� C
�
kf k

p�1

L1.R2/
Ckvk

p�1

L1.R2/

�
kvkH1.R2/CC

�
kf k

p�1

L2.p�1/.R2/
Ckvk

p�1

L2.p�1/.R2/

�
kf kW1;1.R2/:

Now observe that kvkL1
Œ�T;T �

L2.p�1/ � kvkX 1
T

as well as, for all r < C1, kvkLr
Œ�T;T �

L1 � kvkX 1
T

.
Then, for all q > 1,jf C vjp�1.f C v/


L

q

Œ�T;T �
H1.R2/

� C T �
��
kf k

p�1

L1�
Œ�T;T �

L1.R2/
Ckvk

p�1

X 1
T

�
kvkX 1

T

C
�
kf k

p�1

L1�
Œ�T;T �

L2.p�1/.R2/
Ckvk

p�1

X 1
T

�
kf kL1�

Œ�T;T �
W1;1.R2/

�
� C T �

�
Kp
Ckvk

p

X 1
T

�
: (3-13)

Choose q > 1 so that q0.3�p/ < 1. We have k cos.2�/p�3k
L

q0

Œ�T;T �

<1; thus from (3-13) and Hölder,

we infercos.2�/p�3
jf C vjp�1.f C v/


L1.Œ�T;T �;H1.R2//

� Ck cos.2�/p�3
k

L
q0

Œ�T;T �

jf C vjp�1.f C v/


L
q

Œ�T;T �
H1.R2/

� C T �.Kp
Ckvk

p

X 1
T

/:
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For the proof of (3-11) we can proceed similarly. Namely, we use the estimatesˇ̌
jz1j

p�1
� jz2j

p�1
ˇ̌
� C.jz1j

p�2
Cjz2j

p�2/jz1� z2j (3-14)

and ˇ̌
jz1j

p�3z2
1 � jz2j

p�3z2
2

ˇ̌
� C.jz1j

p�2
Cjz2j

p�2/jz1� z2j;

which are proven in [Cazenave et al. 2011, Remark 2.3] together with (3-12). �

3B2. Proof of Theorem 1.4 in the case � D 0. The strategy of the proof in this case is similar, at the price
of some technicalities, since the Leibniz rule (3-12) does not hold true for non-integer derivatives. Actually,
when � D 0, we will have to work in X s

T
for s < 1 because the probabilistic term e�itH u0 62W1;1.R2/.

Moreover, we are not able to obtain a contraction estimate in X s
T

. Therefore, we will do a fixed point
in the space fkvkX s

T
�Kg endowed with the weaker metric induced by X 0

T
. We can check that this space

is complete. Actually, by the Banach–Alaoglu theorem, the closed balls of each component space of X s
T

are compact for the weak? topology.
For 0< s < 1, we use the following characterisation of the usual H s.R2/ norm:

kgkH s.R2/ D

�Z
R2�R2

jg.x/�g.y/j2

jx�yj2sC2
dx dy

�1=2

: (3-15)

For �D � 2M0, K � 0 and " > 0, define the set zF0.K/ as

zF0.K/D
˚
w 2L2.R2/ j kwkL2.R2/ �K; ke�itHwk

L
1="

Œ0;2��
W1�";1.R2/

�K

and
.e�itHw/.x/� .e�itHw/.y/


L1

t2Œ0;2��

�Kjx�yj1�"
	
:

The next result states that zF0.K/ is a set with large measure.

Lemma 3.5. If " > 0 is small enough,

�
�
. zF0.K//

c
�
� Ce

�cK 2=kk2
L2.R2/ :

Proof. We only have to study the contribution of the Lipschitz term in zF0.K/, since the others are
controlled by Proposition 2.1.

We fix  D
C1P
nD0

cn'n 2A0 and set ! D
C1P
nD0

gn.!/cn'n. Let k � 1. By definition,

Z
L2.R2/

e�itH u.x/� e�itH u.y/
k

L1
Œ0;2��

d�.u/

D

Z
�

e�itH !.x/� e�itH !.y/
k

L1
Œ0;2��

dP.!/: (3-16)
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We have e�itH !.x/� e�itH !.y/D
C1P
nD0

gn.!/cne�it�n.'n.x/�'n.y//. By Khinchin (Lemma 2.3)
we get

e�itH !.x/� e�itH !.y/


Lk
P
� C
p

k

�C1X
nD0

jcnj
2
j'n.x/�'n.y/j

2

�1=2

D C
p

k

�C1X
jD1

X
n2I.j/

jcnj
2
j'n.x/�'n.y/j

2

�1=2

;

Recall that k 2 I.j /D fn 2 N j 2j � �n < 2.j C 1/g and that #I.j /� cj . Next, by condition (1-3), we
deduce that

e�itH !.x/� e�itH !.y/


Lk
P
� C
p

k

�C1X
jD1

j�1

� X
`2I.j/

jc`j
2

� X
n2I.j/

j'n.x/�'n.y/j
2

�1=2

Now we need the following estimate, proven in [Imekraz et al. 2014, Lemma 6.1]:X
n2I.j/

j'n.y/�'n.x/j
2
� C jy �xj2j:

Therefore, we obtain e�itH !.x/� e�itH !.y/


Lk
P
� C
p

k jx�yjkkL2.R2/;

and for k � q an integration in time and Minkowski yielde�itH !.x/� e�itH !.y/


Lk
P L

q

Œ0;2��

� C
p

k jx�yjkkL2.R2/:

However, since the case q DC1 is forbidden, the previous estimate is not enough to have a control on
the L1

Œ0;2��
-norm. To tackle this issue, we claim that for k � q we havee�itH !.x/� e�itH !.y/


Lk

P W
1;q

Œ0;2��

� C
p

kkkL2.R2/: (3-17)

Then by a usual Sobolev embedding argument we get (by taking q� 1 large enough) that for all " > 0e�itH !.x/� e�itH !.y/


Lk
P L1

Œ0;2��

� C
p

k jx�yj1�"kkL2.R2/;

which in turn by (3-16) implies that

�
�
u 2L2.R2/ j

e�itH u.x/� e�itH u.y/


L1
Œ0;2��

>Kjx�yj1�"
�
� Ce

�cK 2=kk2
L2 ;

as we did in the end of the proof of Proposition 2.1.
Let us now prove (3-17). We have

@t .e
�itH !.x/� e�itH !.y//D�i

C1X
nD0

gn.!/�ncne�it�n.'n.x/�'n.y//;



PROBABILISTIC GLOBAL WELL-POSEDNESS FOR NLS 1015

and with the previous arguments we get

@t .e
�itH !.x/� e�itH !.y//


Lk

P
� C
p

k

�C1X
jD1

� X
`2I.j/

jc`j
2

� X
n2I.j/

j'n.x/�'n.y/j
2

�1=2

� C
p

kkkL2.R2/;

where here we have used the Thangavelu–Karadzhov estimate (see [Poiret et al. 2013, Lemma 3.5])

sup
x2R2

X
n2I.j/

j'n.x/j
2
� C:

We conclude the proof of (3-17) by integrating in time and using Minkowski. �

We will also need the following technical result.

Lemma 3.6. Let u02
zF0.K/ and f .t;x/De�itH u0.x/. Let 2�q<C1 and g2Lq.Œ�T;T �IL2.R2//.

Then, if " > 0 is small enough in the definition of zF0.K/,�Z
R2�R2

jf .t;x/�f .t;y/j2jg.t;x/j2

jx�yj2sC2
dx dy

�1=2
L

q

Œ�T;T �

� CKkgkLq

Œ�T;T �
L2.R2/: (3-18)

Proof. We consider such f;g, and we split the integral. On the one hand, we use that f is Lipschitz:Z
jx�yj�1

jf .t;x/�f .t;y/j2jg.t;x/j2

jx�yj2sC2
dx dy �K2

Z
x2R2

jg.t;x/j2
�Z

yWjx�yj�1

dy

jx�yj2sC2"

�
dx

� CK2
kg.t; � /k2

L2.R2/
;

provided that sC " < 1. We take the L
q

Œ�T;T �
-norm, and we see that this contribution is bounded by the

right side of (3-18).
On the other handZ
jx�yj�1

jf .t;x/�f .t;y/j2jg.t;x/j2

jx�yj2sC2
dx dy

� Ckf .t; � /k2
L1.R2/

Z
x2R2

jg.t;x/j2
�Z

yWjx�yj�1

dy

jx�yj2sC2

�
dx

� Ckf .t; � /k2
L1.R2/

kg.t; � /k2
L2.R2/

if s > 0. Now we take the L
q

Œ�T;T �
-norm, and use the fact that kf kLq

Œ0;2��
L1.R2/ �K if " < 1=q. �

We now state the main estimates of this section.

Proposition 3.7. There exist C > 0 and � > 0 such that if u0 2
zF0.K/ for some K > 0 then for any

v; v1; v2 2X s
T

and 0< T � 1,Z t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C vj
p�1.e�i�H u0C v/

�
d�


X s

T

� C T �
�
Kp
Ckvk

p

X s
T

�
; (3-19)
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andZ t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C v1j
p�1.e�i�H u0C v1/

�
d�

�

Z t

0

e�i.t��/H
�
cos.2�/p�3

je�i�H u0C v2j
p�1.e�i�H u0C v2/

�
d�


X 0

T

� C T �
kv1� v2kX 0

T

�
Kp�1

Ckv1k
p�1

X s
T

Ckv2k
p�1

X s
T

�
: (3-20)

Proof. Let u0 2
zF0.K/ and set f D e�isH u0. Let 2 < p < 3, then there exists q � 1 such that

q0.3�p/ < 1, which in turn implies k cos.2s/p�3k
L

q0

Œ�T;T �

� C T � . Next, if s < 1 is large enough we
have, by Sobolev,

kvkL1
Œ�T;T �

L2.p�1/.R2/ � kvkX s
T

and kvk
L

q.p�1/

Œ�T;T �
L1.R2/

� kvkX s
T
: (3-21)

First we prove (3-19). From Strichartz and Hölder, we getZ t

0

e�i.t�s/H
�
cos.2s/p�3

jf C vjp�1.f C v/
�

ds


X s

T

� C
cos.2s/p�3

jf C vjp�1.f C v/


L1
Œ�T;T �

Hs.R2/

� Ckcos.2s/p�3
k

L
q0

Œ�T;T �

jf C vjp�1.f C v/


L
q

Œ�T;T �
Hs.R2/

� C T �
jf C vjp�1.f C v/


L

q

Œ�T;T �
Hs.R2/

: (3-22)

By using the characterization (3-15), we will prove thatjf C vjp�1.f C v/


L
q

Œ�T;T �
Hs.R2/

� C
�
Kp
Ckvk

p

X s
T

�
: (3-23)

The term khxisjf Cvjp�1.f Cv/kLq

Œ�T;T �
L2.R2/ is easily controlled; thus we only detail the contribution

of the H s norm. With (3-14), it is easy to check that, for all x;y 2 R2,ˇ̌
jf C vjp�1.f C v/.x/� jf C vjp�1.f C v/.y/j

ˇ̌
� C jv.x/� v.y/j

�
jv.x/jp�1

Cjv.y/jp�1
Cjf .x/jp�1

Cjf .y/jp�1
�

CC jf .x/�f .y/j
�
jv.x/jp�1

Cjv.y/jp�1
Cjf .x/jp�1

Cjf .y/jp�1
�
:

By (3-21) the contribution in L
q

Œ�T;T �
H s.R2/ of the first term in the previous expression is at most

C
�
kf k

p�1

L
q.p�1/

Œ�T;T �
L1.R2/

Ckvk
p�1

L
q.p�1/

Œ�T;T �
L1.R2/

�
kvkX s

T
� C

�
Kp�1

Ckvk
p�1

X s
T

�
kvkX s

T
:

To bound the second term, we apply Lemma 3.6, which gives a contribution of at most�
kf k

p�1

L
q.p�1/

Œ�T;T �
L2.p�1/.R2/

Ckvk
p�1

L
q.p�1/

Œ�T;T �
L2.p�1/.R2/

�
K � C

�
Kp�1

Ckvk
p�1

X s
T

�
K;

which concludes the proof of (3-23).
The proof of (3-20) is in the same spirit, and even easier. We do not write the details. �
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Thanks to the estimates of Proposition 3.7, for K > 0 small enough (see the proof of Theorem 1.3
for more details) we are able to construct a unique solution v 2 C.Œ��=4; �=4�IL2.R2// such that
v 2 L1.Œ��=4; �=4�IHs.R2//. By interpolation we deduce that v 2 C.Œ��=4; �=4�IHs0.R2// for all
s0 < s. The end of the proof of Theorem 1.4 is similar to the proof of Theorem 1.3, using here Lemma 3.5.

4. Global well-posedness for the cubic equation

4A. The case of dimension d D 3. We now turn to the proof of Theorem 1.5, which is obtained thanks
to the high-low frequency decomposition method of [Bourgain 1999, p. 84].

Let 0� s < 1 and fix �D � 2Ms . For K � 0 define the set Fs.K/ as

Fs.K/D
˚
w 2Hs.R3/ j kwkHs.R3/ �K; kwkL4.R3/ �K and ke�itHwk

L
1="

Œ0;2��
W3=2Cs�";1.R3/

�K
	
:

Then, by Proposition 2.1,

�
�
.Fs.K//

c
�

� �.kwkHs >K/C�.kwkL4 >K/C�
�
ke�itHwk

L
1="

Œ0;2��
W3=2Cs�";1 >K

�
� Ce�cK 2=kk2

Hs : (4-1)

Now we define a smooth version of the usual spectral projector. Let � 2 C1
0
.�1; 1/, so that 0� �� 1,

with �D 1 on
�
�

1
2
; 1

2

�
. We define the operators SN D �

�
H
N 2

�
as

SN

�C1X
nD0

cn'n

�
D

C1X
nD0

�

�
�n

N 2

�
cn'n;

and we write
vN D SN v; vN

D .1�SN /v:

It is clear that for any � � 0 we have kSN kH�!H� D 1. Moreover, by [Burq et al. 2010, Proposition 4.1],
for all 1� r �C1, kSN kLr!Lr � C , uniformly in N � 1.

It is straightforward to check that

kvN kH1 �N 1�s
kvkHs ; kvN

kL2 �N�s
kvkHs : (4-2)

Next, let u0 2 Fs.N
"/. By the definition of Fs.N

"/ and (4-2), ku0;N kH1 � N 1�sku0kHs � N 1�sC".
The nonlinear term of the energy can be controlled by the quadratic term. Indeed

ku0;N k
4
L4 � CN "

�N 2.1�sC"/;

and thus
E.u0;N /� 2N 2.1�sC"/: (4-3)

We also have
ku0;N kL2 � ku0kHs �N ":

For a nice description of the stochastic version of the low-high frequency decomposition method we
use here, we refer to the introduction of [Colliander and Oh 2012]. To begin with, we look for a solution
u to (1-7) of the form uD u1C v1, where u1 is the solution to
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@u1

@t
�Hu1 D ju1j2u1; .t;x/ 2 R�R3;

u1.0/D u0;N ;

(4-4)

and where v1 D e�itH uN
0
Cw1 satisfies8<:i

@w1

@t
�Hw1 D jw1C e�itH uN

0
Cu1j2.w1C e�itH uN

0
Cu1/� ju1j2u1; .t;x/ 2 R�R3;

w1.0/D 0:

(4-5)

Since (4-4) is H1-subcritical, by the usual deterministic arguments there exists a unique global solution
u1 2 C.R;H1.R3//.

We now turn to (4-5), for which we have the next local existence result.

Proposition 4.1. Let 0 < s < 1 and � D � 2 Ms . Set T D N�4.1�s/�" with " > 0. Assume that
E.u1/� 4N 2.1�sC"/ and ku1kL1

Œ0;T �
L2 � 2N ". Then:

(i) There exists a set †1
T
�Hs , which only depends on T , so that

�.†1
T /� 1�C exp

�
�cT �ıkk�2

Hs.R3/

�
; with some ı > 0.

(ii) For all u0 2†
1
T

there exists a unique solution w1 2 C.Œ0;T �;H1.R3// to (4-5), which satisfies the
bounds

kw1
kL1

Œ0;T �
H1 � CN ˇ.s/Cc"; (4-6)

with

ˇ.s/D

�
�

5
2

if 0� s � 1
2
;

2s� 7
2

if 1
2
� s � 1;

(4-7)

and
kw1
kL1

Œ0;T �
L2 � CN�9=2C2sCc": (4-8)

Proof. In the next lines, we write C aC D C aCb", for some absolute quantity b > 0. Since d D 3, for
T > 0 we define the space X 1

T
D L1.Œ0;T �IH1.R3//\L2.Œ0;T �IW1;6.R3//. Let " > 0, and define

†1
T
D Fs.N

"/. By (4-1) and the choice T DN�4.1�s/�", the set †1
T

satisfies (i).
Let u0 2 †

1
T

. To simplify the notations in the proof, we write w D w1, uD u1 and f D e�itH uN
0

.
We define the map

L.w/D�i

Z t

0

e�i.t�s/H
�
jf CuCwj2.f CuCw/� juj2u

�
.s/ ds: (4-9)

First we prove (4-6). By Strichartz (3-3),

kL.w/kX 1
T
� C

jf CuCwj2.f CuCw/� juj2u


L1
T

H1CL2W1;6=5 : (4-10)

By estimating the contribution of every term, we now prove that

kL.w/kX 1
T
� CN ˇ.s/C

CN 0�
kwkX 1

T
CN�2.1�s/C

kwk3
X 1

T

; (4-11)
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where ˇ.s/ < .1� s/ is as in the statement. It is enough to prove that L maps a ball of size CN ˇ.s/C

into itself for times T DN�4.1�s/�". With similar arguments one can show that L is a contraction (we
do not write the details) and get w satisfying (4-6).

Observe that the complex conjugation is harmless with respect to the norms considered; thus we can
forget it. By the definition of †1

T
D Fs.N

"/ and (4-2) we have the estimates used in the sequel: for all
� < 3

2
,

kf kL1
T

L2 � CN�sC" and kH�=2f kL1�
T

L1 � CN ��3=2�sC2": (4-12)

Let us prove the second estimate in detail:

kH�=2f kL1�
T

L1 DN �

� H

N 2

��=2�
1��

�
H

N 2

��
e�itH u0


L1�

T
L1

� CN �

� H

N 2

�.3=2Cs�"/=2�
1��

�
H

N 2

��
e�itH u0


L1�

T
L1

� CN ��3=2�sC"
ke�itH u0kL1�

T
W3=2Cs�";1

� CN ��3=2�sC2";

where we have used that x�=2.1��.x//� Cx.3=2Cs�"/=2.1��.x//.
Observe also that by assumption

kukL1
T

L2 � CN "; kukL1
T

H1 � CN 1�sC"; and kukL1
T

L4 � CN .1�sC"/=2:

We now estimate each term in the right side of (4-10):

� Source terms: Observe that L
4=3
T

W1;3=2 �L1
T

H1CL2W1;6=5. By Hölder and (4-12),

kf u2
kL1

T
H1CL2W1;6=5 � Ckf uH 1=2uk

L
4=3

T
L3=2 CCku2H 1=2f kL1

T
L2

� C T 3=4�
kukL1

T
H1kukL1

T
L6kf kL1�

T
L1 CC T 1�

kuk2
L1

T
L4kH

1=2f kL1�
T

L1

� CN�5=2C
CCN�7=2C2sC

� CN ˇ.s/C;

where we have set ˇ.s/Dmax
�
�

5
2
;�7

2
C 2s

�
, which is precisely (4-7). Similarly,

kf 2ukL1
T

H1 � Ckf 2H 1=2ukL1
T

L2 CCkufH 1=2f kL1
T

L2

� C T 1�
kukL1

T
H1kf k2L1�

T
L1 CC T 1�

kukL1
T

L2kf kL1�
T

L1kH
1=2f kL1�

T
L1

� C T 1�N�2�3sC
CC T 1�N�2�2sC

� CN�6C2sC
� CN ˇ.s/C:

Finally,

kf 3
kL1

T
H1 � Ckf 2H 1=2f kL1

T
L2 � C T 1�

kH 1=2f kL1�
T

L1kf kL1�
T

L1kf kL1
T

L2

� C T 1�N�1=2�sCN�3=2�sCN�sC
� CN�6CsC

� CN ˇ.s/C:
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� Linear terms in w:

kwf 2
kL1

T
H1 � Ckf 2H 1=2wkL1

T
L2 CCkwfH 1=2f kL1

T
L2

� C T 1�
kf k2L1�

T
L1kwkL1T H1 CC T 1�

kwkL1
T

L2kf kL1�
T

L1kH
1=2f kL1�

T
L1

� CN�6C2sC
kwkX 1

T
� CN 0�

kwkX 1
T
:

Using that kwk
L

4=3C

T
L1�

� C T 1=2�kwkL4
T

L1� � C T 1=2�kwkL4
T

W1;3 and X 1
T
�L4.Œ0;T �IW1;3/,

kwu2
kL1

T
H1CL2W1;6=5 � Cku2H 1=2wkL1

T
L2 CCkwuH 1=2uk

L
4=3C

T
L3=2�

� Ckuk2
L4

T
L6
kwkL2

T
W1;6 CCkwk

L
4=3C

T
L1�
kukL1

T
L6kukL1

T
H1

� C T 1=2�
kuk2

L1
T

H1kwkX 1
T
� CN 0�

kwkX 1
T
:

� The cubic term in w: by Sobolev and X 1
T
�L4�.Œ0;T �IW1;3C/�L4�.Œ0;T �IL1/, we have

kw3
kL1

T
H1 � Ckw2H 1=2wkL1

T
L2 � CkwkL1

T
H1kwk2

L2
T

L1

� C T 1=2�
kwk3

X 1
T

� CN�2.1�s/C
kwk3

X 1
T

:

� Quadratic terms in w: with similar arguments, we check that they are controlled by the previous ones.

This completes the proof of (4-11). Hence, for all u0 2†
1
T

, L has a unique fixed point w.
Let w 2X 1

T
be defined this way, and let us prove that kwkX 0

T
�CN�9=2C2sC, which will imply (4-8).

By the Strichartz inequality (3-3),

kwkX 0
T
� C

jf CuCwj2.f CuCw/� juj2u


L1
T

L2CL2L6=5 :

As previously, the main contribution in the source term is

kf u2
kL1

T
L2 � T 1�

kuk2
L1

T
L4kf kL1�

T
L1 � CN�4.1�s/C1�s�3=2�sC

D CN�9=2C2sC:

For the cubic term we write

kw3
kL1

T
L2 � kwkL1

T
L2kwk2

L2
T

L1
� C T 1=2�

kwkL1
T

L2kwk2
X 1

T

� CN�2.1�s/Cˇ.s/C
kwkL1

T
L2 � CN 0�

kwkX 0
T
;

which gives a control by the linear term.
The other terms are controlled with similar arguments, and we leave the details to the reader. This

finishes the proof of Proposition 4.1. �

Lemma 4.2. Under the assumptions of Proposition 4.1, for all u0 2†
1
T

we have

jE.u1.T /Cw1.T //�E.u1.T //j � CN 1�sCˇ.s/C:
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Proof. Write uD u1 and w D w1. A direct expansion and Hölder give

jE.u.T /Cw.T //�E.u.T //j

� 2kukL1
T

H1kwkL1
T

H1 Ckwk2L1
T

H1 CCkwkL1
T

L4kuk3L1
T

L4 CCkwk4
L1

T
L4 :

Since ˇ.s/� .1� s/, we directly have

2kukL1
T

H1kwkL1
T

H1 Ckwk2L1
T

H1 � CN 1�sCˇ.s/C:

By Sobolev and Proposition 4.1,

kwkL1
T

L4 � CkwkL1
T

H3=4 � Ckwk
1=4

L1
T

L2kwk
3=4

L1
T

H1 � CN �.s/C; (4-13)

with �.s/Dmax.�3C s=2;�15=4C 2s/� .1� sCˇ.s//=3. Hence,

kwk3
L1

T
L4 � CN 1�sCˇ.s/C:

From the bounds kukL1
T

L4 � CN .1�s/=2 and (4-13), we infer

kwkL1
T

L4kuk3L1
T

L4 � CN ı.s/C;

where ı.s/Dmax.�3Cs=2;�15=4C2s/� 1�sCˇ.s/ (with equality when 0< s� 1
2

). This completes
the proof. �

With the results of Proposition 4.1 and Lemma 4.2, we are able to iterate the argument. At time t D T ,
write uD u2C v2 where u2 is the solution to8<:i

@u2

@t
�Hu2 D ju2j2u2; .t;x/ 2 R�R3;

u2.T /D u1.T /Cw1.T / 2H1.R3/;
(4-14)

and where v2 D e�itH uN
0
Cw2 satisfies8<:i

@w2

@t
�Hw2 D

ˇ̌
w2C e�itH uN

0
Cu2

ˇ̌2
.w2C e�itH uN

0
Cu2/� ju2j2u2; .t;x/ 2 R�R3;

w2.T /D 0:

By Proposition 4.1, w1.T / 2H1.R3/; thus (4-14) is globally well-posed. Then, thanks to Lemma 4.2, by
the conservation of the energy,

E.u2/DE.u1.T /Cw1.T //� 4N 2.1�sC"/;

and, by the conservation of the mass,

ku2
kL1

T
L2 D ku1.T /Cw1.T /kL2 � 2N ":

Therefore there exists a set †2
T
�Hs with

�.†2
T /� 1�C exp.�cT �ıkk�2

Hs /;
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and such that for all u0 2 †
2
T

there exists a unique w2 2 C.ŒT; 2T �;H1.R3// that satisfies the result
of Proposition 4.1, with the same T > 0. Here we use crucially that the large deviation bounds of
Proposition 2.1 are invariant under time shift � .

Fix a time A>0. We can iterate the previous argument and construct uj , vj andwj for 1� j �bA=T c

such that the function uj is the solution to (4-14) with initial condition

uj .t D .j � 1/T /D uj�1..j � 1/T /Cwj�1..j � 1/T /;

then we set vj .t/D e�itH uN
0
Cwj .t/, where the function wj is the solution to8<:i

@wj

@t
�Hwj D jwj C e�itH uN

0
Cuj j2.wj C e�itH uN

0
Cuj /� juj j2uj ; .t;x/ 2 R�R3;

wj ..j � 1/T /D 0:

This enables us to define a unique solution u to the initial problem (1-7) defined by u.t/D uj .t/C vj .t/

for t 2 Œ.j � 1/T; j T �, with 1� j � bA=T c provided that u0 2 �
A
T , where �A

T
WD
TbA=T c

jD1
†

j
T

.

Thanks to the exponential bounds, we have�..�A
T
/c/�C exp.�cT �ı=2kk�2

Hs /, with T DN�4.1�s/�".
For uniform bounds on the energy and the mass, it remains to check whether E.uj /� 4N 2.1�sC"/

and kujkL2.R3/ � 2N " for all 1� j � bA=T c. By Lemma 4.2, for T DN�4.1�s/�,

E.uj /�E.u0;N /CCAT �1N 1�sCˇ.s/C
� 2N 2.1�sC"/

CCAN ˇ.s/C5.1�s/C; (4-15)

which satisfies the prescribed bound if and only if 3.1� s/Cˇ.s/ < 0.

� If 1
2
� s � 1, the condition is 3.1� s/C 2s� 7

2
< 0, or equivalently s > �1

2
, which is satisfied.

� If 0� s � 1
2

, the condition is 3.1� s/� 5
2
< 0, or equivalently s > 1

6
. The same argument applies to

control kujkL2 .
If 1

6
< s < 1, we optimise in (4-15) with the choice of N � 1 so that A � cN�3.1�s/�ˇ.s/, and get

that, for 1� j � bA=T c,
E.uj /� CAcsC;

with

cs D

8̂<̂
:

2.1�s/

6s�1
if 1

6
< s � 1

2
;

2.1�s/

2sC1
if 1

2
� s � 1:

(4-16)

Denote by �A D �A
T

the set defined with the previous choice of N and T DN�4.1�s/�".

Lemma 4.3. Let 1
6
< s < 1. Then for all A 2N and all u0 2 �

A there exists a unique solution to (1-7) on
Œ0;A�, which reads

u.t/D e�itH u0Cw.t/; with w 2 C
�
Œ0;A�;H1.R3/

�
; sup

t2Œ0;A�

E
�
w.t/

�
� CAcsC:

Proof. On the time interval Œ.j � 1/T; j T � we have u D uj C vj where vj D e�itH uN
0
C wj and

uj D e�itH u0;NCzj , for some zj 2C.Œ0;C1Œ;H1.R3//. Therefore, if we definew2C.Œ0;A�;H1.R3//
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by w.t/D zj .t/Cwj .t/ for t 2 Œ.j �1/T; j T � and 1� j � bA=T c, we get u.t/D e�itH u0Cw.t/ for
all t 2 Œ0;A�. Next, for t 2 Œ.j � 1/T; j T �,

E.w.t//� CE.zj /CCE.wj /� CE.uj /CCE.e�itH u0;N /CCE.wj /� CAcsC;

which was the claim. �

We are now able to complete the proof of Theorem 1.5. Set

‚D

C1\
kD1

[
A�k

�A and †D‚CH1:

We have �.‚/D lim
k!1

�
�S
A�k

�A
�

and �
�S
A�k

�A
�
� 1� c exp.�kıkk�2

Hs /. So �.‚/D 1, and thus
�.†/D 1.

By definition, for all u0 2‚, there exists a unique global solution to (1-7), which reads

u.t/D e�itH u0Cw.t/; w 2 C.R;H1.R3//:

Then by Lemma 4.3 for all u0 2‚, there exists a unique w 2 C.Œ0;C1Œ;H1.R3//, which satisfies, for
all N , the bound

sup
t2Œ0;N �

E.w.t//� CN csC:

Now, if U0 2† then U0 D u0C v with u0 2‚, v 2H1 and we can use the method of Proposition 4.1,
Lemma 4.2 and Lemma 4.3 with U0;N replaced by u0;N Cv. And the set † satisfies properties (i) and (ii).

Coming back to the definition of †j
T

, we have e�itH .†
j
T
/D†

j
T

for all t 2 R; thus e�itH .‚/D‚.
Finally, thanks to property (i), the set † is invariant under the dynamics and property (iii) is satisfied.

4B. The case of dimension d D 2. In this section, we prove Theorem 1.6. The proof is analogous to
Theorem 1.5 in a simpler context; that is why we only explain the key estimates.

According to Proposition 2.1, we set

Fs.K/D
˚
w 2Hs.R2/ j kwkHs.R2/ �K; kwkL4.R2/ �K and ke�itHwk

L
1="

Œ0;2��
W1Cs�";1.R2/

�K
	
;

and we fix u0 2 Fs.N
"/.

Then, if f D e�itH uN
0

, we have

kf kL1
Œ0;2��

L2 � CN�sC" and kH�=2f kL1�
Œ0;2��

;L1 � CN ��1�sC":

In Proposition 4.1 we can choose T DN�2.1�s/�" to have

ku1
kL1

T
L2 � CN " and ku1

kL1
T

H1 � CN 1�sC":

Moreover, as u0 2 Fs.N
"/, we obtain

ku0;N kL4 � CN ":
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Hence, we establish

E.u1/D ku1
k

2
H1.R2/

C
1
2
ku1
k

4
L4.R2/

D ku0;N k
2
H1.R2/

C
1
2
ku0;N k

4
L4.R2/

�N 2.1�sC"/
CCN 4"

� 4N 2.1�sC"/;

and
ku1
kL1

T
L4 � CN .1�sC"/=2:

In Proposition 4.1, we obtain kw1kL1
Œ0;T �

H1 � CN�1C and kw1kL1
Œ0;T �

L2 � CN�2C. The proof is
essentially the same. We define the map L as in (4-9). For the first estimate, we prove that

kL.w/kX 1
T
� CN�1C

CN 0�
kwkX 1

T
CN�2.1�s/C

kwk3
X 1

T

:

We only give details for the source terms. First,

kf u2
k

L
1C
T

W1;2�CL1
T

H1 � Ckf uH 1=2uk
L

1C
T

L2�CCku2H 1=2f kL1
T

L2

� C T 1�
kukL1

T
H1kukL1

T
L1�kf kL1�

T
L1CC T 1�

kuk2
L1

T
L4kH

1=2f kL1�
T

L1

� C T 1�max.N 1�3sC;N 1�2sC/� C T 1�N 1�2sC
� CN�1C:

Similarly,

kf 2ukL1
T

H1 � Ckf 2H 1=2ukL1
T

L2 CCkufH 1=2f kL1
T

L2

� C T 1�
kukL1

T
H1kf k2L1�

T
L1 CC T 1�

kukL1
T

L2kf kL1�
T

L1kH
1=2f kL1�

T
L1

� C T 1�max.N�1�3sC;N�1�2sC/� C T 1�N�1�2sC
� CN�3C

� CN�1C:

Finally,

kf 3
kL1

T
H1 � Ckf 2H 1=2f kL1

T
L2 � C T 1�

kH 1=2f kL1�
T

L1kf kL1�
T

L1kf kL1
T

L2

� C T 1�N�sCN�1�sCN�sC
� CN�3�sC

� CN�1C:

Analogously to Lemma 4.2, we obtain jE.u1.T /Cw1.T //�E.u1.T //j � CN�sC, because here
ˇ.s/D 1� and the estimates on u1 are the same as in dimension d D 3.

Finally, the globalisation argument holds if (4-15) is satisfied, that is to say

CAT �1N�sC
� 4N 2.1�s/C;

which is equivalent to 2.1� s/� s < 2.1� s/, hence s > 0. In this case, we set A� cN s and we get that,
for 0� t �A,

E.w.t//� CAcsC; with cs D
1�s

s
:

Theorem 1.6 follows.
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