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CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING
BY CONVEX CURVATURE FUNCTIONS

BEN ANDREWS AND MAT LANGFORD

We prove a complete family of cylindrical estimates for solutions of a class of fully nonlinear curvature
flows, generalising the cylindrical estimate of Huisken and Sinestrari [Invent. Math. 175:1 (2009), 1–14,
§5] for the mean curvature flow. More precisely, we show, for the class of flows considered, that, at points
where the curvature is becoming large, an (m+1)-convex (0≤m ≤ n−2) solution either becomes strictly
m-convex or its Weingarten map becomes that of a cylinder Rm

× Sn−m . This result complements the
convexity estimate we proved with McCoy [Anal. PDE 7:2 (2014), 407–433] for the same class of flows.

1. Introduction

Let M be a smooth, closed manifold of dimension n, and X0 : M → Rn+1 a smooth hypersurface
immersion. We are interested in smooth families X : M ×[0, T )→ Rn+1 of smooth immersions X ( · , t)
solving the initial value problem{

∂t X (x, t)=−F(W(x, t))ν(x, t),
X ( · , 0)= X0,

(CF)

where ν is the outer normal field of the evolving hypersurface X and W the corresponding Weingarten
curvature. In order that the problem (CF) be well-posed, we require that F(W) be given by a smooth,
symmetric function f : 0 → R of the principal curvatures κi which is monotone increasing in each
argument. The symmetry of f ensures that F is a smooth, basis-invariant function of the components
of the Weingarten map (or an orthonormal frame-invariant function of the components of the second
fundamental form) [Glaeser 1963]. Monotonicity ensures that the flow is (weakly) parabolic. This
guarantees local existence of solutions of (CF), as long as the principal curvature n-tuple of the initial
data lies in 0; see [Langford 2014].

For technical reasons, we require some additional conditions:

Conditions. (i) f is homogeneous of degree one.

(ii) f is convex.

Since the normal points out of the region enclosed by the solution, we may assume, by condition
(ii), that (1, . . . , 1) ∈ 0. Thus, by condition (i), we may further assume that f is normalised such that
f (1, . . . , 1)= 1.
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The additional conditions (i)–(ii) have several consequences. Most importantly, they allow us to obtain a
preserved cone 00⊂0 of curvatures for the flow (Lemma 2.2). This allows us to obtain uniform estimates
on any degree-zero homogeneous function of curvature along the flow (Lemma 2.3); in particular, we
deduce a uniform parabolicity condition (Corollary 2.4). The convexity condition then allows us to apply
the second derivative Hölder estimate of [Evans 1982; Krylov 1982] to deduce that the solution exists on
a maximal time interval [0, T ), T <∞, such that maxM×{t} F→∞ as t→ T ; see [Andrews et al. 2014a,
Proposition 2.6]. Thus, it is of interest to study the behaviour of solutions as F→∞. Let us recall the
following curvature estimate [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]).

Theorem 1.1 (convexity estimate). Let X : M×[0, T )→Rn+1 be a solution of (CF) such that f satisfies
conditions (i)–(ii). Then, for all ε > 0, there is a constant Cε <∞ such that

G(x, t)≤ εF(x, t)+Cε for all (x, t) ∈ M ×[0, T ),

where G is given by a smooth, nonnegative, degree-one homogeneous function of the principal curvatures
of the evolving hypersurface that vanishes at a point (x, t) if and only if W(x,t) ≥ 0.

We remark that the constant Cε depends only on ε, the dimension n, the choice of speed function f ,
the preserved curvature cone 00, and bounds for the initial volume and diameter [Langford 2014].

Theorem 1.1 implies that the ratio of the smallest principal curvature to the speed is almost positive
wherever the curvature is large. Combining it with the differential Harnack inequality of [Andrews 1994b]
and the strong maximum principle [Hamilton 1986] yields useful information about the geometry of
solutions of (CF) near singularities [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]):

Corollary 1.2. Any blow-up limit of a solution of (CF) is weakly convex. In particular, any type-II
blow-up limit about a type-II singularity is an eternal solution of the form X∞ : (Rk

×0n−k)×R→Rn+1,
k ∈ {0, 1, . . . , n− 1}, such that X∞|Rk is flat, and X∞|0n−k is a strictly convex translation solution of the
corresponding flow in Rn−k+1.

Motivated by the surgery construction of [Huisken and Sinestrari 2009, §5] for 2-convex mean curvature
flow, we will apply Theorem 1.1 to obtain the following family of cylindrical estimates for solutions
of (CF):

Theorem 1.3 (cylindrical estimate). Let X be a solution of (CF) such that conditions (i)–(ii) hold. Suppose
also that X is uniformly (m+1)-convex for some m ∈ {0, 1, . . . , n−2}. That is, κ1+· · ·+κm+1 ≥ βF for
some β > 0. Then, for all ε > 0, there is a constant Cε > 0 such that

Gm(x, t)≤ εF(x, t)+Cε for all (x, t) ∈ M ×[0, T ),

where Gm : M ×[0, T )→ R is given by a smooth, nonnegative, degree-one homogeneous function of the
principal curvatures that vanishes at a point (x, t) if and only if

κ1(x, t)+ · · ·+ κm+1(x, t)≥ 1
cm

f (κ1(x, t), . . . , κn(x, t)),

where cm is the value F takes on the unit radius cylinder Rm
× Sn−m .
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We note that the constant Cε will only depend on ε, β, m, the dimension n, the choice of speed
function f , the preserved curvature cone 00, and upper bounds for the initial volume and diameter.
Theorem 1.3 implies that the ratio of the quantity

Km := κ1+ · · ·+ κm+1−
1

cm
F

to the speed is almost positive wherever the curvature is large. Observe that this quantity is nonnegative
on a weakly convex hypersurface 6 only if either 6 is strictly m-convex or 6 =Rm

× Sn−m . In particular,
we find that, whenever κ1(x, t)+· · ·+κm(x, t) is small compared to the speed, the Weingarten curvature
is close to that of a thin, round cylinder Rm

× Sn−m . We therefore obtain a refinement of Corollary 1.2:

Corollary 1.4. Any blow-up limit of an (m+1)-convex, 0≤ m ≤ n− 2, solution of (CF) is either strictly
m-convex, or a shrinking cylinder Rm

× Sn−m . In particular, if the blow-up is of type-II, then this limit is
of the form X∞ : (Rk

×0n−k)×R→Rn+1 for k ∈ {0, 1, . . . ,m−1}, such that X∞|Rk is flat and X∞|0n−k

is a strictly convex translation solution of the corresponding flow in Rn−k+1.

The m = 0 case of the cylindrical estimates demonstrates that convex hypersurfaces become umbilic
at points where the curvature is blowing up, generalising a result of Huisken [1984, Theorem 5.1] for
the mean curvature flow (we note that the convergence result of [Huisken 1984] has been obtained by
the first author for the class of flows considered here without the need for such an estimate [Andrews
1994a]). Moreover, Huisken and Sinestrari [2009] have recently obtained the m = 1 case of the cylindrical
estimates for the mean curvature flow, making spectacular use of it through their surgery program, which
yields a classification of 2-convex hypersurfaces. The convexity and cylindrical estimates stated above, in
addition to generalising the Huisken–Sinestrari cylindrical estimate to all m in {0, . . . , n− 2}, constitute
a first step towards improving upon such results by allowing a larger class of evolution equations.

2. Preliminaries

We will follow the notation used in [Andrews et al. 2014b]. In particular, we recall that a smooth,
symmetric function g of the principal curvatures gives rise to a smooth function G of the components h j

i
of the Weingarten map. Equivalently, G is an orthonormal frame invariant function of the components
hi j of the second fundamental form. To simplify notation, we denote G(x, t)≡ G(W(x, t))= g(κ(x, t))
and use dots to denote derivatives of functions of curvature as follows:

ġk(z)vk =
d
ds

∣∣∣
s=0

g(z+ sv), Ġkl(A)Bkl =
d
ds

∣∣∣
s=0

G(A+ s B),

g̈ pq(z)vpvq =
d2

ds2

∣∣∣
s=0

g(z+ sv), G̈ pq,rs(A)Bpq Brs =
d2

ds2

∣∣∣
s=0

G(A+ s B).

The derivatives of g and G are related in the following way:

Lemma 2.1 [Gerhardt 1996; Andrews 1994a; 2007]. Let g : 0→ R be a smooth, symmetric function.
Define the function G : S0 :→ R by G(A) := g(λ(A)), where λ(A) denotes the eigenvalues of A (up
to order) and S0 denotes the set of symmetric matrices with eigenvalues in 0. Then, for any diagonal
A ∈ S0,
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Ġkl(A)= ġk(λ(A))δkl, (2-1)

and, for any diagonal A ∈ S0 with distinct eigenvalues and any symmetric B ∈ GL(n),

G̈ pq,rs(A)Bpq Brs = g̈ pq(λ(A))Bpp Bqq + 2
∑
p>q

ġ p(λ(A))− ġq(λ(A))
λp(A)− λq(A)

(Bpq)
2. (2-2)

We note that g̈≥ 0 if and only if (ġ p
− ġq)(z p−zq)≥ 0 for all p, q [Andrews et al. 2014b, Lemma 2.2],

so Lemma 2.1 implies that G is convex if and only if g is convex.
The following useful lemma was proved in [Andrews et al. 2014b]:

Lemma 2.2. Let f : 0 → R be a flow speed for (CF) satisfying Conditions (i)–(ii). Then, for any
admissible initial datum X0 : M→ Rn+1 there exists a cone 00 ⊂ Rn satisfying 00 \ {0} ⊂ 0 such that
the principal curvatures of the solution X : M ×[0, T )→ Rn+1 of the initial value problem (CF) satisfy
κ(x, t) := (κ1(x, t), . . . , κn(x, t)) ∈ 00 for all (x, t) ∈ M ×[0, T ).

We refer to such a cone 00 as a preserved cone for the solution X . As mentioned in the introduction,
the existence of a preserved cone allows us to obtain bounds for homogeneous functions of the curvature:

Lemma 2.3. Let X :M×[0, T )→Rn+1 be a solution of (CF) such that f satisfies conditions (i)–(ii). Let
g : 0→ R be a smooth, degree-zero homogeneous symmetric function. Then there exists c> 0 (depending
only on n, f and M0) such that

−c ≤ g(κ1(x, t), . . . , κn(x, t))≤ c for all (x, t) ∈ M ×[0, T ).

If g > 0, then there exists c > 0 such that

1
c
≤ g(κ1(x, t), . . . , κn(x, t))≤ c.

Proof. Let 00 be a preserved cone for the solution X . Then K := 00 ∩ Sn is compact. Since g is
continuous, the required bounds hold on K . But these extend to 00 \ {0} by homogeneity. The claim
follows since κ(x, t) ∈ 00 \ {0} for all (x, t) ∈ M ×[0, T ). �

By condition (i), the derivative ḟ of f is homogeneous of degree zero. Since ḟ k > 0 for each k, we
obtain uniform parabolicity of the flow:

Corollary 2.4. There exists a constant c> 0 (depending only on n, f and M0) such that, for any v ∈ T ∗M ,
it holds that

1
c
|v|2 ≤ Ḟ i jviv j ≤ c|v|2,

where | · | is the (time-dependent) norm on M corresponding to the (time-dependent) metric induced by
the flow.

We now recall the following evolution equation (see for example [Andrews et al. 2013]).
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Lemma 2.5. Let X : M × [0, T )→ Rn+1 be a solution of (CF) such that f satisfies conditions (i)–(ii).
Let G : M × [0, T )→ R be given by a smooth, symmetric, degree-one homogeneous function g of the
principal curvatures. Then G satisfies the evolution equation

(∂t −L)G = (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇h pq∇hrs +G|W|2F , (2-3)

where L := Ḟkl
∇k∇l is the linearisation of F , and |W|2F := Ḟklhk

r hrl .

In particular, the speed function F satisfies (∂t −L)F = F |W|2F .
As we shall see, in order to obtain Theorem 1.3, it is crucial to obtain a good upper bound on the term

Q(∇W,∇W) := (Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs

for the pinching functions Gm which we construct in the following section. The following decomposition
of Q is crucial in obtaining this bound.

Lemma 2.6. For any totally symmetric T ∈ Rn
⊗Rn

⊗Rn , we have

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs = (ġk f̈ pq

− ḟ k g̈ pq)
∣∣
zTkppTkqq

+ 2
∑
p>q

( ḟ p ġq
− ġ p ḟ q)

∣∣
z

z p − zq
((Tpqq)

2
+ (Tqpp)

2)+ 2
∑

k>p>q

(Egkpq × Efkpq)
∣∣
z · Ezkpq(Tkpq)

2 (2-4)

at any diagonal matrix B with distinct eigenvalues zi , where “×” and “ ·” are the three-dimensional
cross and dot product respectively, and we have defined the vectors

Efkpq : = ( ḟ k, ḟ p, ḟ q),

Egkpq : = (ġk, ġ p, ġq),

Ezkpq : =

(
z p − zq

(zk − z p)(zk − zq)
,

zk − zq

(zk − z p)(z p − zq)
,

zk − z p

(z p − zq)(zk − zq)

)
.

Proof. Since B is diagonal, Lemma 2.1 yields (suppressing the dependence on B)

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)Tkpq Tlrs

=

∑
k,p,q

(ġk f̈ pq
− ḟ k g̈ pq)TkppTkqq + 2

∑
k

∑
p>q

(
ġk ḟ p

− ḟ q

z p − zq
− ḟ k ġ p

− ġq

z p − zq

)
(Tkpq)

2.

We now decompose the second term into the terms satisfying k = p, k = q , k > p, p > k > q , and q > k
respectively:∑

k

∑
p>q

(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq

)
(Tkpq)

2

=

∑
p>q

(
ġ p ḟ p

− ḟ q

z p−zq
− ḟ p ġ p

− ġq

z p−zq

)
(Tppq)

2
+

∑
p>q

(
ġq ḟ p

− ḟ q

z p−zq
− ḟ q ġ p

− ġq

z p−zq

)
(Tqpq)

2

+

( ∑
k>p>q

+

∑
p>k>q

+

∑
p>q>k

)(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq

)
(Tkpq)

2
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=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)

+

∑
k>p>q

(
ġk ḟ p

− ḟ q

z p−zq
− ḟ k ġ p

− ġq

z p−zq
+ ġ p ḟ k

− ḟ q

zk−zq
− ḟ p ġk

− ġq

zk−zq
+ ġq ḟ k

− ḟ p

zk−z p
− ḟ q ġk

− ġ p

zk−z p

)
(Tkpq)

2

=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)+
∑

k>p>q

[
(ġ p ḟ q

− ḟ q ġ p)

(
1

zk−z p
−

1
zk−zq

)

−(ġk ḟ q
− ḟ k ġq)

(
1

z p−zq
+

1
zk−z p

)
+(ġk ḟ p

− ḟ k ġ p)

(
1

z p−zq
−

1
zk−zq

)]
(Tkpq)

2

=

∑
p>q

ḟ p ġq
− ġ p ḟ q

z p−zq
((Tpqq)

2
+(Tqpp)

2)+
∑

k>p>q

(Egkpq× Efkpq)·Ezkpq(Tkpq)
2. �

We complete this section by proving that (m+1)-convexity is preserved by the flow (CF), so that this
assumption need only be made on initial data:

Proposition 2.7. Let X be a solution of (CF) such that conditions (i)–(ii) are satisfied. Suppose that there
is some m ∈ {1, . . . , n− 1} and some β > 0 such that

κσ(1)(x, 0)+ · · ·+ κσ(m)(x, 0)≥ βF(x, 0)

for all x ∈ M and all permutations σ ∈ Pn . Then this estimate persists at all later times.

Proof. Denote by SM the unit tangent bundle over M ×[0, T ) and consider the function Z defined on⊕m SM by

Z(x, t, ξ1, . . . , ξm)=

m∑
α=1

h(ξα, ξα)−βF(x, t).

Since we have

inf
ξ1,...,ξm∈S(x,t)M

Z(x, t, ξ1, . . . , ξm)= κσ(1)(x, t)+ · · ·+ κσ(m)(x, t)−βF(x, t)

for some σ ∈ Pn , it suffices to show that Z remains nonnegative. First fix any t1 ∈ [0, T ) and consider
the function Zε(x, t, ξ1, . . . , ξm) := Z(x, t, ξ1, . . . , ξm)+ εe(1+C)t , where C := supM×[0,t1] |W|

2
F . Note

that C is finite since M is compact and Ḟ is bounded. Observe that Zε is positive when t = 0. We will
show that Zε remains positive on M ×[0, t1] for all ε > 0. So suppose to the contrary that Zε vanishes
at some point (x0, t0, ξ 0

1 , . . . , ξ
0
m). We may assume that t0 is the first such time. Now extend the vector

ξ 0
:= (ξ 0

1 , . . . , ξ
0
m) to a field ξ := (ξ1, . . . , ξn) near (x0, t0) by parallel translation in space and solving

∂ξ i
α

∂t
= Fξ j

αh j
i .

Since the metric evolves according to

∂t gi j =−2Fhi j
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the resulting fields have unit length. Now recall (see for example [Andrews 1994a]) the following evolution
equation for the second fundamental form:

∂t hi j = Lhi j + F̈ pq,rs
∇i h pq∇ j hrs + |W|

2
F hi j − 2Fh2

i j ,

where L := Ḟkl
∇k∇l and |W|2F := Ḟklh2

kl . It follows that

(∂t −L)(Zε(x, t, ξ))= ε(1+C)e(1+C)t
+

m∑
α=1

F̈ pq,rs
∇ξαh pq∇ξαhrs + |W(x, t)|2F Z(x, t, ξ)

≥ ε(1+C)e(1+C)t
+ |W(x, t)|2F Z(x, t, ξ).

Since the point (x0, t0, ξt=t0) is a minimum of Zε, we obtain

0≥ (∂t −L)
∣∣
(x0,t0)

(Zε(x, t, ξ))≥ ε(1+C)e(1+C)t0 −Cεe(1+C)t0 = εe(1+C)t0 > 0 .

This is a contradiction, implying that Zε cannot vanish at any time in the interval [0, t1]. Since ε > 0
was arbitrary, we find Z ≥ 0 at all times in the interval [0, t1]. Since t1 ∈ [0, T ) was arbitrary, we obtain
Z ≥ 0. �

3. Constructing the pinching function

In this section we construct the pinching functions Gm satisfying the conditions in Theorem 1.3. Let us
first introduce the pinching cones

0m := {z ∈ 0 : zσ(1)+ · · ·+ zσ(m+1) > c−1
m f (z) for all σ ∈ Hm},

where Hm is the quotient of Pn , the group of permutations of the set {1, . . . , n}, by the equivalence
relation

σ ∼ ω if σ({1, . . . ,m+1})= ω({1, . . . ,m+1}).

Using the methods of [Huisken 1984], and their adaptations to 2-convex flows in [Huisken and Sinestrari
2009] and fully nonlinear flows in [Andrews et al. 2014b], we will see that, in order to prove Theorem 1.3,
it suffices to construct a smooth function gm : 0→ R satisfying the following properties.

Properties. (i) gm(z)≥ 0 for all z ∈ 0 with equality if and only if z ∈ 0m ∩0.

(ii) gm is smooth and homogeneous of degree one.

(iii) For every ε > 0 there exists cε > 0 such that

(Ġkl
m F̈ pq,rs

− Ḟkl G̈ pq,rs
m )

∣∣
B Tkpq Tlrs ≤−cε

|T |2

F

for all B ∈ S00 satisfying Gm(B)≥ εF(B) and all totally symmetric T ∈ Rn
⊗Rn

⊗Rn , where Gm

is the matrix function corresponding to gm as described in Section 2, and 00 is a preserved cone for
the flow.
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(iv) For every δ > 0, ε > 0, and C > 0, there exist γ1 > 0, γ2 > 0 and γ3 > 0 such that

(Gm Ḟkl
− FĠkl

m )
∣∣

B B2
kl ≤−γ1 F2(Gm − δγ2 F)

∣∣
B + γ3C F2∣∣

B

for all (m+ 1)-positive B ∈ S00 satisfying Gm(B)≥ εF(B) and

λmin(B)≥−δF(B)−C.

Our construction of the pinching function gm will be similar for each choice of m. So let us fix
m ∈ {0, 1, . . . , n − 2} and assume that the flow is (m+1)-convex. We first consider the preliminary
function g : 0→ R defined by

g(z) := f (z)
∑
σ∈Hm

ϕ

(∑m+1
i=1 zσ(i)− c−1

m f (z)
f (z)

)
, (3-1)

where ϕ : R→ R is a smooth1 function which is strictly convex and positive, except on R+∪{0} where it
vanishes identically. Such a function is readily constructed; for example, we could take

ϕ(r)=
{

r4e−1/r2
if r < 0,

0 if r ≥ 0.

We note that such a function necessarily satisfies ϕ(r)− rϕ′(r) ≤ 0 and ϕ′(r) ≤ 0 with equality if and
only if r ≥ 0.

Now define the scalar G : M ×[0, T )→ R by

G(x, t) := g(κ1(x, t), . . . , κn(x, t)).

Then G is a smooth, degree-one homogeneous function of the components of the Weingarten map which
is invariant under a change of basis. Moreover, G is nonnegative and vanishes at, and only at, points for
which the sum of the smallest (m+1)-principal curvatures is not less than c−1

m F . Thus properties (i) and
(ii) are satisfied by g.

We now show that property (iii) is satisfied weakly by g:

Lemma 3.1. Let G be the matrix function corresponding to the function g defined by (3-1). Then, for any
symmetric matrix B and totally symmetric 3-tensor T ,

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs ≤ 0.

Proof. We will show that each of the terms in the decomposition (2-4) in Lemma 2.6 is nonpositive. Note
that, by the invarance properties of G and F , it suffices to prove the claim for diagonal B. In fact, we can
also assume that B has distinct eigenvalues, since the result at an arbitrary diagonal matrix B may then be

1In fact, ϕ need only be twice continuously differentiable.
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obtained by taking a limit B(k)→ B such that each matrix B(k) has distinct eigenvalues. We first compute

ġk
= ḟ k

∑
σ∈Hm

ϕ(rσ )+
∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

(
δk
σ(i)−

zσ(i)
f

ḟ k
)

= ḟ k
∑
σ∈Hm

(
ϕ(rσ )−ϕ′(rσ )

∑m+1
i=1 zσ(i)

f

)
+

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )δk
σ(i)

and

g̈ pq
=

( ∑
σ∈Hm

ϕ(rσ )−
∑
σ∈Hm

ϕ′(rσ )
∑m+1

i=1 zσ(i)
f

)
f̈ pq

+

∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
,

where we have set

rσ (z) :=
∑m+1

i=1 zσ(i)− c−1
m f (z)

f (z)
.

It follows that

ġk f̈ pq
− ḟ k g̈ pq

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )δk
σ(i) f̈ pq

− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
.

If we fix the index k and set ξp = Tkpp, then, by convexity of ϕ and positivity of ḟ k , we have

− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
) m+1∑

i=1

(
δ

q
σ(i)−

zσ(i)
f

ḟ q
)
ξpξq

=− ḟ k
∑
σ∈Hm

ϕ′′(rσ )
f

(m+1∑
i=1

(
δ

p
σ(i)−

zσ(i)
f

ḟ p
)
ξp

)2

≤ 0.

On the other hand, since ϕ is monotone nonincreasing, and f is convex, we have

ϕ′(rσ )
m+1∑
i=1

δk
σ(i) f̈ pqξpξq ≤ 0

for each σ . Since both inequalities hold for all k, we deduce that∑
k,p,q

(
ġk f̈ pq

− ḟ k g̈ pq)TkppTkqq ≤ 0.

We next consider

ḟ p ġq
− ġ p ḟ q

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )(δ
q
σ(i) ḟ p

− δ
p
σ(i) ḟ q)=

∑
σ∈Oq

ϕ′(rσ ) ḟ p
−

∑
σ∈Op

ϕ′(rσ ) ḟ q .
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where we have introduced the sets

Oa :=
{
σ ∈ Hm : a ∈ σ({1, . . . ,m+ 1})

}
.

If z p > zq , we obtain

ḟ p ġq
− ġ p ḟ q

≤ ḟ p
( ∑
σ∈Oq

ϕ′(rσ )−
∑
σ∈Op

ϕ′(rσ )
)
,

We now show that the term in brackets is nonpositive whenever z p > zq .

Lemma 3.2. If z p ≥ zq , then ∑
σ∈Op

ϕ′(rσ )−
∑
σ∈Oq

ϕ′(rσ )≥ 0 .

Moreover, equality holds only if either z p = zq or rσ (z)≥ 0 for all σ ∈ Oq,p := Oq\Op.

Proof of Lemma 3.2. First note that∑
σ∈Op

ϕ′(rσ )−
∑
σ∈Oq

ϕ′(rσ )=
∑
σ∈Op,q

ϕ′(rσ )−
∑
σ∈Oq,p

ϕ′(rσ ) ,

where Oa,b := Oa\Ob. Next observe that, if σ ∈ Op,q , then

zσ(1)+ · · ·+ zσ(m+1) = z p + zσ̂ (i1)+ · · ·+ zσ̂ (im) (3-2)

for some σ̂ ∈ Hm−2(p, q) := Pn−2(p, q)/∼, where Pn−2(p, q) denotes the set of permutations of
{1, . . . , n} \ {p, q}; i1, . . . , im are m distinct elements of {1, . . . , n} \ {p, q}; and ∼ is defined by

σ̂ ∼ ω̂ if σ̂ ({i1, . . . , im})= ω̂({i1, . . . , im}).

Observe also that the converse holds (that is, (3-2) defines a bijection), so that

∑
σ∈Oq,p

ϕ′(rσ )−
∑
σ∈Op,q

ϕ′(rσ )=
∑

σ̂∈Hm−2(p,q)

(
ϕ′
(

z p +
∑m

k=1 zσ̂ (ik)− c−1
m f

f

)
−ϕ′

(
zq +

∑m
k=1 zσ̂ (ik)− c−1

m f
f

))
.

Since z p ≥ zq , the claim follows from (strict) convexity of ϕ (where it is positive). �

Thus, ∑
p>q

ḟ p ġq
− ġ p ḟ q

z p − zq

(
(Tpqq)

2
+ (Tqpp)

2)
≤ 0.

We now compute

Egkpq =

(
g
f
−

∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

zσ(i)
f

)
Efkpq +

∑
σ∈Hm

ϕ′(rσ )
m+1∑
i=1

(δk
σ(i), δ

p
σ(i), δ

q
σ(i)),
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so that

(Egkpq × Efkpq) · Ezkpq =
∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )
[(
δk
σ(i), δ

p
σ(i), δ

q
σ(i)

)
× Efkpq

]
· Ezkpq

=

∑
σ∈Hm

m+1∑
i=1

ϕ′(rσ )
[
(δ

p
σ(i) ḟ q

− δ
q
σ(i) ḟ p)(z p − zq)

(zk − z p)(zk − zq)
+
(δ

q
σ(i) ḟ k

− δk
σ(i) ḟ q)(zk − zq)

(zk − z p)(z p − zq)

+
(δk
σ(i) ḟ p

− δ
p
σ(i) ḟ k)(zk − z p)

(zk − zq)(z p − zq)

]
.

Removing the positive factor αkpq := [(zk − z p)(zk − zq)(z p − zq)]
−1 and setting

Pa :=
∑
σ∈Oa

ϕ′(rσ ),

we obtain

(Egkpq× Efkpq)·Ezkpq=αkpq
[
(Pp ḟ q

−Pq ḟ p)(z p−zq)
2
+(Pq ḟ k

−Pk ḟ q)(zk−zq)
2
+(Pk ḟ p

−Pp ḟ k)(zk−z p)
2].

Applying Lemma 3.2 yields

(Egkpq × Efkpq) · Ezkpq ≤ αkpq(Pq ḟ k
− Pk ḟ q)[(zk − zq)

2
− (zk − z p)

2
− (z p − zq)

2
].

Since the term in square brackets is nonnegative, applying Lemma 3.2 once more yields

(Egkpq × Efkpq) · Ezkpq ≤ 0.

This completes the proof of the lemma. �

Corollary 3.3. There exists C <∞ (depending only on n, f and M0) such that G/F ≤ C along the flow.

Proof. In view of Lemma 3.1 and the evolution equation (2-3), this is a simple application of the maximum
principle. �

In order to obtain the uniform estimate required by property (iii), we modify G in order to obtain a
function with a strict convexity property. A well-known trick (cf. [Andrews 1994b, Lemma 7.10; Huisken
and Sinestrari 1999a, Theorem 2.14; Andrews et al. 2014b, Lemma 3.3]) then allows us to extract the
required uniform estimate. First, we relabel the preliminary pinching function g→ g1 (G→ G1), and
consider the new pinching function g defined by

g := K (g1, g2) :=
g2

1

g2
, (3-3)

where g2(z)= M
∑n

i=1 zi − |z| for some large constant M � 1, for which g2 is positive along the flow.
That there is such a constant follows from applying the maximum principle to the evolution equation (2-3)
for the function G2(x, t) := g2(κ(x, t)) as in [Andrews et al. 2014b, Lemma 3.1]. Note that K̇ 1 > 0,
K̇ 2 < 0 and K̈ > 0 wherever g1 > 0.
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Observe that properties (i) and (ii) are not harmed in the transition from g1 to g. We now show that the
estimates listed in properties (iii) and (iv) are satisfied by the curvature function defined in (3-3).

Proposition 3.4. Let g be the pinching function defined by (3-3) and G its corresponding matrix function.
Then, for every ε > 0, there exists cε > 0 (depending only on ε, n, f and 00) such that

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)

∣∣
B Tkpq Tlrs ≤−cε

|T |2

F

for all B ∈ S00 satisfying G(B)≥ εF(B) and all totally symmetric T ∈ Rn
⊗Rn

⊗Rn .

Proof. First note that (suppressing dependence on B)

(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)Tkpq Tlrs = K̇ α(Ġkl

α F̈ pq,rs
− Ḟkl G̈ pq,rs

α )Tkpq Tlrs − Ḟkl K̈ αβ Ġ pq
α Ġrs

β Tkpq Tlrs

≤ K̇ 2(Ġkl
2 F̈ pq,rs

− Ḟkl G̈ pq,rs
2 )Tkpq Tlrs

≤−K̇ 2 Ḟkl G̈ pq,rs
2 Tkpq Tlrs,

where we used Lemma 3.1, convexity of K , and the inequalities K̇ 1
≥ 0 and Ḟ ≥ 0 in the first inequality,

and the inequalities Ġ2 ≥ 0 and K̇ 2
≤ 0, and convexity of F in the second. Since K̇ 2 < 0 whenever

G1 > 0 and G2 is strictly concave in nonradial directions, the claim follows exactly as in [Andrews et al.
2014b, Lemma 3.3]. �

The uniform estimate of Proposition 3.4 yields a good bound for the term Q(∇W,∇W) in the evolution
equations for the pinching functions. This is a crucial component in obtaining the L p-estimates of the
following section. This is the starting point for the Stampacchia–de Giorgi iteration argument. The
second crucial estimate is the Poincaré-type inequality, Lemma 4.2 (see also [Huisken and Sinestrari 2009,
§§4–5; in particular, Lemma 5.5]), which we can obtain with the help of property (iv). This estimate
(corresponding to [Huisken and Sinestrari 2009, Lemma 5.2]) provides an estimate on the zero order term
that occurs in contracting the Simons-type identity for Ḟ pq

∇p∇qhi j with Ġi j (see [Andrews et al. 2014b,
Proposition 4.4]).

Proposition 3.5. Let g be the pinching function defined by (3-3) and G its corresponding matrix function.
,Then for every δ > 0, ε > 0, and C > 0 there exist γ1 > 0, γ2 > 0 and γ3 > 0 (depending only on δ, ε > 0,
C , n, m, f and 00) such that

Z(B) := (FĠkl
−G Ḟkl)

∣∣
B B2

kl ≥ γ1 F2(G− δγ2 F)
∣∣

B − γ3 F2∣∣
B

for all symmetric, (m+1)-positive matrices B satisfying λ(B) ∈ 00, λmin(B) ≥ −δF(B) − C , and
Gm(B)≥ εF(B).

Proof. From the definition of G we have

Z = K̇ 1 Z1+ K̇ 2 Z2,

where

Zi (B) := (FĠkl
i −Gi Ḟkl)

∣∣
B B2

kl .
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Thus, since K̇ 2
= 2g1/g2 is uniformly bounded below when g ≥ ε f , it suffices to prove the estimate

for Z1.
So let B be a symmetric, (m+1)-positive matrix with eigenvalues z1 ≤ · · · ≤ zn . Then

Z1(B)= f ġ p
1 z2

p − g1 ḟ pz2
p =

∑
p>q

(
ġ p

1 ḟ q
− ġq

1 ḟ p)z pzq(z p − zq)=
∑
p>q

(
Pp ḟ q

− Pq ḟ p)z pzq(z p − zq)

=

( ∑
p>q>l

+

∑
p>l≥q

+

∑
l≥p>q

)(
Pp ḟ q

− Pq ḟ p)z pzq(z p − zq),

where we recall the notation Pa :=
∑

σ∈Oa
ϕ′(rσ ) and we have defined l ≤m as the number of nonpositive

eigenvalues zi . Recalling that Pp ḟ q
− Pq ḟ p

≥ 0 whenever z p ≥ zq , we discard the final sum and part of
the first to obtain

Z1(B)≥
n∑

p=m+2

m+1∑
q=l+1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)+

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)

=

n∑
p=m+2

m+1∑
q=l+1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq)− f 2

l∑
i=1

zi

+ f 2
l∑

i=1

zi +

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq).

So consider the term

S1(z) :=
n∑

p=m+2

m+1∑
q=l+1

(Pp(z) ḟ q(z)− Pq(z) ḟ p(z))z pzq(z p − zq)− f (z)2
l∑

i=1

zi .

Observe that S1 ≥ 0. We claim that S1(z) > 0 for all z in the cone

0ε,l := {z ∈ 00 : g(z)≥ ε f (z), z1 ≤ · · · ≤ zl ≤ 0< zl+1 ≤ · · · ≤ zn}.

Suppose, to the contrary, that S1(z) = 0 for some z ∈ 0ε,l . Then z1 = · · · = zl = 0 and, for all
p>m+1≥q> l, (Pp(z) ḟ q(z)−Pq(z) ḟ p(z))z pzq(z p−zq)=0. But, by Lemma 3.2, the latter implies that,
for all p>m+1≥q> l, either z p= zq , or rσ (λ)≥0 for all σ ∈Oq,p. Note that the latter case cannot occur:
since p>m+1≥q , there is a permutation σ ∈Oq,p such that 0≤rσ (z)= (z1+· · ·+zm+1−c−1

m f (z))/ f (z),
which implies g1(z)= 0, contradicting z ∈ 0ε,l . On the other hand, if z p = zq for all p > m+ 1≥ q > l,
then we again obtain the contradiction g1(z) = 0. Thus, S1 > 0 on 0ε,l . Since S1 is homogeneous of
degree three, it follows that

S1 ≥ c1 f 2g

on 0ε,l , where c1 :=minl min0ε,l
S1
f 2g

> 0.
Now consider

S2 := f 2
l∑

i=1

λi +

n∑
p=l+1

l∑
q=1

(Pp ḟ q
− Pq ḟ p)z pzq(z p − zq).
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Note that, by homogeneity, c2 := sup{Pp(z) ḟ q(z)− Pq(z) ḟ p(z) : z ∈ 00, 1≤ p, q ≤ n}<∞. Thus, S2

is easily controlled using the “convexity estimate” λ1 ≥−δ f −C :

S2 ≥−l f 2(δ f +C)+ (n− l)c2zn

l∑
q=1

zq(zn − zq)≥−n f 2(δ f +C)+ 2nc2c2
3 f 2

l∑
q=1

zq

≥−n f 2(δ f +C)− 2nc2c2
3 f 2(δF +C)≥−n(1+ 2c2c2

3) f 2(δ f +C),

where c3 :=max{|zi |/ f (z) : z ∈ 00, 1≤ i ≤ n}.
The claim follows. �

We note that the above estimate is only useful in the presence of the convexity estimate Theorem 1.1,
since then, for any δ > 0, there is a constant Cδ > 0 for which 0δ,Cδ := {z ∈00 : zi >−δ f (z)−Cδ for all i}
is preserved by the flow.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, it suffices to obtain, for any ε > 0, an upper bound on the function

Gε,σ :=

(G
F
− ε

)
Fσ

for some σ > 0. We will use the estimates of Propositions 3.5 and 3.4 to obtain bounds on the spacetime
L p-norms of the positive part of Gε,σ , so long as p is sufficiently large and σ sufficiently small, just as in
[Huisken and Sinestrari 1999b; 1999a; 2009] (see also [Andrews et al. 2014b] where these techniques
are applied in the fully nonlinear setting). A Stampacchia–de Giorgi iteration procedure similar to that
used in [Huisken 1984] (see also [Huisken and Sinestrari 1999b; Andrews et al. 2014b]) then allows us to
extract a supremum bound on Gε,σ .

We begin with an evolution equation for Gε,σ :

Lemma 4.1 [Andrews et al. 2014b]. The function Gε,σ satisfies the evolution equation

(∂t −L)Gε,σ = Fσ−1(Ġkl F̈ pq,rs
− Ḟkl G̈ pq,rs)∇kh pq∇lhrs

+
2(1− σ)

F
〈∇Gε,σ ,∇F〉F −

σ(1− σ)
F2 |∇F |2F + σGε,σ |W|

2
F , (4-1)

where 〈u, v〉F := Ḟklukul .

Now set E := max{Gε,σ , 0}. We need to obtain spacetime L p-estimates for E . Let us first observe
that integration by parts and application of Young’s inequality, in conjunction with Lemma 2.3 and
Proposition 3.4, yields the estimate (cf. [Andrews et al. 2014b])

d
dt

∫
E p dµ≤−

(
A1 p(p− 1)− A2 p

3
2
)∫

E p−2
|∇Gε,σ |

2 dµ

−
(
B1 p− B2 p

1
2
) ∫

E p |∇W|2

F2 dµ+C1σ p
∫

E p
|W|2dµ (4-2)

for some positive constants A1, A2, B1, B2, C1 (which depend only on ε, n, m, f and M0).



CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS 1105

To estimate the final term, we make use of Proposition 3.5 in a similar manner to [Huisken and
Sinestrari 2009, §5]. We first observe:

Lemma 4.2. There are positive constants A3, A4, A5, B3, B4,C2, independent of p and σ , such that∫
E p Z(W)

F
dµ≤

(
A3 p

3
2 + A4 p

1
2 + A5

) ∫
E p−2
|∇Gε,σ |

2 dµ+
(
B3 p

1
2 + B4

) ∫
E p |∇W|2

F2 dµ.

Proof. As in [Andrews et al. 2014b, §4], contraction of the commutation formula for ∇2W with Ḟ and Ġ
yields the identity

LGε,σ =−Fσ−1 Q(∇W,∇W)+ Fσ−1 Z(W)+ Fσ−2(FĠkl
−G Ḟkl)∇k∇l F

+
σ

F
Gε,σLF − 2(1−σ)

F
〈∇F,∇Gε,σ 〉F +

σ(1−σ)
F2 Gε,σ |∇F |2F .

The claim is now proved using integration by parts and Young’s inequality, with the help of Lemma 2.3
and Proposition 3.4 (see [Andrews et al. 2014b, Lemma 4.2]). �

Corollary 4.3. For all ε > 0 there exist constants ` > 0 and L <∞ (depending only on ε, n, m, f and
M0) such that for all p > L and 0< σ < `p−

1
2 there is a constant K = Kε,σ,p (depending only on ε, n, m,

f , M0, σ and p) for which the following estimate holds:∫
(Gε,σ )

p
+ dµ≤

∫
(Gε,σ ( · , 0))p

+ dµ0+ t Kµ0(M),

where µ0 is the measure induced on M by the initial immersion.

Proof. Recall Proposition 3.5. Setting δ = ε/(2γ2) and applying the convexity estimate, we obtain

Z(W)

F
≥
ε

2
γ1 F2

− γ3Cε/(2γ2)F (4-3)

whenever G− εF > 0. We now use Young’s inequality to obtain (cf. [Huisken and Sinestrari 2009, §5])

F = F−σ p F1+σ p
≤ F−σ p

(
bq

q
Fq(1+σ p)

+
b−q ′

q ′

)
for any b > 0 and q > 0, where q ′ is the Hölder conjugate of q: 1

q
+

1
q ′
= 1. Choosing q = 2+σ p

1+σ p
, so

that q ′ = 2+ σ p, we obtain

F ≤ b(2+σ p)/(1+σ p) 1+ σ p
2+ σ p

F2
+

b−(2+σ p)

2+ σ p
F−σ p

≤ b(2+σ p)/(1+σ p)F2
+ b−(2+σ p)F−σ p.

Now choose b :=
(

εγ1

4γ3Cε/(2γ2)

)1+σ p
2+σ p

, so that

γ3Cε/(2γ2)F ≤
εγ1

4
F2
+ K F−σ p,

where

K := γ3Cε/(2γ2)

(
εγ1

4γ3Cε/(2γ2)

)−(1+σ p)

.
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Returning to Equation (4-3), we find

εγ1

4
F2
≤ K F−σ p

+
Z(W)

F
.

Estimating Gε,σ ≤ c1 Fσ and |W|2 ≤ c2 F2, we obtain

E p
|W|2 ≤ K̃ + c3 E p Z(W)

F

for some constants K̃ > 0 (depending on F , M0, ε, σ and p) and c3 > 0 (depending on F , M0, and ε).
Combining Lemma 4.2 and inequality (4-2) now yields

d
dt

∫
E p dµ≤ Kε,σ,pµ0(M)−

(
α0 p2

−α1σ p
5
2 −α2 p

3
2 −α3 p

) ∫
E p−2
|Gε,σ |

2 dµ

−
(
β0 p−β1σ p

3
2 −β2σ p−β3 p

1
2
) ∫

E p |∇W|2

F2 dµ

for some positive constants αi and βi , which depend on ε but not on σ or p, and Kε,σ,p, which depends
on ε, σ and p.

It is clear that L > 0 and ` > 0 may be chosen such that(
α0 p2

−α1σ p
5
2 −α2 p

3
2 −α3 p

)
≥ 0 and

(
β0 p−β1σ p

3
2 −β2σ p−β3 p

1
2
)
≥ 0

for all p> L and 0<σ <`p−
1
2 . The claim then follows by integrating with respect to the time variable. �

The proof of Theorem 1.3 is completed by proceeding with Huisken’s Stampacchia–de Giorgi iteration
argument. We omit these details as the arguments required already appear in [Andrews et al. 2014b, §5]
with no significant changes necessary.
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