ANALYSIS & PDEVolume 7No. 52014

BEN ANDREWS AND MAT LANGFORD

CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS

CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS

BEN ANDREWS AND MAT LANGFORD

We prove a complete family of *cylindrical estimates* for solutions of a class of fully nonlinear curvature flows, generalising the cylindrical estimate of Huisken and Sinestrari [*Invent. Math.* **175**:1 (2009), 1–14, §5] for the mean curvature flow. More precisely, we show, for the class of flows considered, that, at points where the curvature is becoming large, an (m+1)-convex ($0 \le m \le n-2$) solution either becomes strictly *m*-convex or its Weingarten map becomes that of a cylinder $\mathbb{R}^m \times S^{n-m}$. This result complements the convexity estimate we proved with McCoy [*Anal. PDE* **7**:2 (2014), 407–433] for the same class of flows.

1. Introduction

Let *M* be a smooth, closed manifold of dimension *n*, and $X_0 : M \to \mathbb{R}^{n+1}$ a smooth hypersurface immersion. We are interested in smooth families $X : M \times [0, T) \to \mathbb{R}^{n+1}$ of smooth immersions $X(\cdot, t)$ solving the initial value problem

$$\begin{cases} \partial_t X(x,t) = -F(\mathcal{W}(x,t))\nu(x,t), \\ X(\cdot,0) = X_0, \end{cases}$$
(CF)

where ν is the outer normal field of the evolving hypersurface *X* and *W* the corresponding Weingarten curvature. In order that the problem (CF) be well-posed, we require that F(W) be given by a smooth, symmetric function $f : \Gamma \to \mathbb{R}$ of the principal curvatures κ_i which is monotone increasing in each argument. The symmetry of *f* ensures that *F* is a smooth, basis-invariant function of the components of the Weingarten map (or an orthonormal frame-invariant function of the components of the second fundamental form) [Glaeser 1963]. Monotonicity ensures that the flow is (weakly) parabolic. This guarantees local existence of solutions of (CF), as long as the principal curvature *n*-tuple of the initial data lies in Γ ; see [Langford 2014].

For technical reasons, we require some additional conditions:

Conditions. (i) f is homogeneous of degree one.

(ii) f is convex.

Since the normal points out of the region enclosed by the solution, we may assume, by condition (ii), that $(1, ..., 1) \in \Gamma$. Thus, by condition (i), we may further assume that f is normalised such that f(1, ..., 1) = 1.

Research partially supported by Discovery grant DP120100097 of the Australian Research Council. Langford gratefully acknowledges the support of an Australian Postgraduate Award during the completion of this work. *MSC2010:* 53C44, 35K55, 58J35.

Keywords: curvature flows, cylindrical estimates, fully nonlinear, convexity estimates.

The additional conditions (i)–(ii) have several consequences. Most importantly, they allow us to obtain a preserved cone $\Gamma_0 \subset \Gamma$ of curvatures for the flow (Lemma 2.2). This allows us to obtain uniform estimates on any degree-zero homogeneous function of curvature along the flow (Lemma 2.3); in particular, we deduce a uniform parabolicity condition (Corollary 2.4). The convexity condition then allows us to apply the second derivative Hölder estimate of [Evans 1982; Krylov 1982] to deduce that the solution exists on a maximal time interval $[0, T), T < \infty$, such that $\max_{M \times \{t\}} F \to \infty$ as $t \to T$; see [Andrews et al. 2014a, Proposition 2.6]. Thus, it is of interest to study the behaviour of solutions as $F \to \infty$. Let us recall the following curvature estimate [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]).

Theorem 1.1 (convexity estimate). Let $X : M \times [0, T) \to \mathbb{R}^{n+1}$ be a solution of (CF) such that f satisfies conditions (i)–(ii). Then, for all $\varepsilon > 0$, there is a constant $C_{\varepsilon} < \infty$ such that

 $G(x, t) \le \varepsilon F(x, t) + C_{\varepsilon}$ for all $(x, t) \in M \times [0, T)$,

where G is given by a smooth, nonnegative, degree-one homogeneous function of the principal curvatures of the evolving hypersurface that vanishes at a point (x, t) if and only if $W_{(x,t)} \ge 0$.

We remark that the constant C_{ε} depends only on ε , the dimension *n*, the choice of speed function *f*, the preserved curvature cone Γ_0 , and bounds for the initial volume and diameter [Langford 2014].

Theorem 1.1 implies that the ratio of the smallest principal curvature to the speed is almost positive wherever the curvature is large. Combining it with the differential Harnack inequality of [Andrews 1994b] and the strong maximum principle [Hamilton 1986] yields useful information about the geometry of solutions of (CF) near singularities [Andrews et al. 2014b] (cf. [Huisken and Sinestrari 1999a; 1999b]):

Corollary 1.2. Any blow-up limit of a solution of (CF) is weakly convex. In particular, any type-II blow-up limit about a type-II singularity is an eternal solution of the form X_{∞} : $(\mathbb{R}^k \times \Gamma^{n-k}) \times \mathbb{R} \to \mathbb{R}^{n+1}$, $k \in \{0, 1, ..., n-1\}$, such that $X_{\infty}|_{\mathbb{R}^k}$ is flat, and $X_{\infty}|_{\Gamma^{n-k}}$ is a strictly convex translation solution of the corresponding flow in \mathbb{R}^{n-k+1} .

Motivated by the surgery construction of [Huisken and Sinestrari 2009, §5] for 2-convex mean curvature flow, we will apply Theorem 1.1 to obtain the following family of cylindrical estimates for solutions of (CF):

Theorem 1.3 (cylindrical estimate). Let X be a solution of (CF) such that conditions (i)–(ii) hold. Suppose also that X is uniformly (m+1)-convex for some $m \in \{0, 1, ..., n-2\}$. That is, $\kappa_1 + \cdots + \kappa_{m+1} \ge \beta F$ for some $\beta > 0$. Then, for all $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that

$$G_m(x,t) \le \varepsilon F(x,t) + C_\varepsilon$$
 for all $(x,t) \in M \times [0,T)$,

where $G_m : M \times [0, T) \to \mathbb{R}$ is given by a smooth, nonnegative, degree-one homogeneous function of the principal curvatures that vanishes at a point (x, t) if and only if

$$\kappa_1(x,t) + \cdots + \kappa_{m+1}(x,t) \geq \frac{1}{c_m} f(\kappa_1(x,t),\ldots,\kappa_n(x,t)),$$

where c_m is the value F takes on the unit radius cylinder $\mathbb{R}^m \times S^{n-m}$.

We note that the constant C_{ε} will only depend on ε , β , *m*, the dimension *n*, the choice of speed function *f*, the preserved curvature cone Γ_0 , and upper bounds for the initial volume and diameter. Theorem 1.3 implies that the ratio of the quantity

$$K_m := \kappa_1 + \dots + \kappa_{m+1} - \frac{1}{c_m} F$$

to the speed is almost positive wherever the curvature is large. Observe that this quantity is nonnegative on a weakly convex hypersurface Σ only if either Σ is strictly *m*-convex or $\Sigma = \mathbb{R}^m \times S^{n-m}$. In particular, we find that, whenever $\kappa_1(x, t) + \cdots + \kappa_m(x, t)$ is small compared to the speed, the Weingarten curvature is close to that of a thin, round cylinder $\mathbb{R}^m \times S^{n-m}$. We therefore obtain a refinement of Corollary 1.2:

Corollary 1.4. Any blow-up limit of an (m+1)-convex, $0 \le m \le n-2$, solution of (CF) is either strictly *m*-convex, or a shrinking cylinder $\mathbb{R}^m \times S^{n-m}$. In particular, if the blow-up is of type-II, then this limit is of the form $X_{\infty} : (\mathbb{R}^k \times \Gamma^{n-k}) \times \mathbb{R} \to \mathbb{R}^{n+1}$ for $k \in \{0, 1, ..., m-1\}$, such that $X_{\infty}|_{\mathbb{R}^k}$ is flat and $X_{\infty}|_{\Gamma^{n-k}}$ is a strictly convex translation solution of the corresponding flow in \mathbb{R}^{n-k+1} .

The m = 0 case of the cylindrical estimates demonstrates that convex hypersurfaces become umbilic at points where the curvature is blowing up, generalising a result of Huisken [1984, Theorem 5.1] for the mean curvature flow (we note that the convergence result of [Huisken 1984] has been obtained by the first author for the class of flows considered here without the need for such an estimate [Andrews 1994a]). Moreover, Huisken and Sinestrari [2009] have recently obtained the m = 1 case of the cylindrical estimates for the mean curvature flow, making spectacular use of it through their surgery program, which yields a classification of 2-convex hypersurfaces. The convexity and cylindrical estimates stated above, in addition to generalising the Huisken–Sinestrari cylindrical estimate to all m in $\{0, ..., n - 2\}$, constitute a first step towards improving upon such results by allowing a larger class of evolution equations.

2. Preliminaries

We will follow the notation used in [Andrews et al. 2014b]. In particular, we recall that a smooth, symmetric function g of the principal curvatures gives rise to a smooth function G of the components h_i^j of the Weingarten map. Equivalently, G is an orthonormal frame invariant function of the components h_{ij} of the second fundamental form. To simplify notation, we denote $G(x, t) \equiv G(\mathcal{W}(x, t)) = g(\kappa(x, t))$ and use dots to denote derivatives of functions of curvature as follows:

$$\dot{g}^{k}(z)v_{k} = \frac{d}{ds}\Big|_{s=0} g(z+sv), \qquad \dot{G}^{kl}(A)B_{kl} = \frac{d}{ds}\Big|_{s=0} G(A+sB),$$
$$\ddot{g}^{pq}(z)v_{p}v_{q} = \frac{d^{2}}{ds^{2}}\Big|_{s=0} g(z+sv), \quad \ddot{G}^{pq,rs}(A)B_{pq}B_{rs} = \frac{d^{2}}{ds^{2}}\Big|_{s=0} G(A+sB).$$

The derivatives of g and G are related in the following way:

Lemma 2.1 [Gerhardt 1996; Andrews 1994a; 2007]. Let $g : \Gamma \to \mathbb{R}$ be a smooth, symmetric function. Define the function $G : \mathscr{G}_{\Gamma} :\to \mathbb{R}$ by $G(A) := g(\lambda(A))$, where $\lambda(A)$ denotes the eigenvalues of A (up to order) and \mathscr{G}_{Γ} denotes the set of symmetric matrices with eigenvalues in Γ . Then, for any diagonal $A \in \mathscr{G}_{\Gamma}$,

$$\dot{G}^{kl}(A) = \dot{g}^k(\lambda(A))\delta^{kl}, \qquad (2-1)$$

and, for any diagonal $A \in \mathcal{G}_{\Gamma}$ with distinct eigenvalues and any symmetric $B \in GL(n)$,

$$\ddot{G}^{pq,rs}(A)B_{pq}B_{rs} = \ddot{g}^{pq}(\lambda(A))B_{pp}B_{qq} + 2\sum_{p>q}\frac{\dot{g}^{p}(\lambda(A)) - \dot{g}^{q}(\lambda(A))}{\lambda_{p}(A) - \lambda_{q}(A)}(B_{pq})^{2}.$$
(2-2)

We note that $\ddot{g} \ge 0$ if and only if $(\dot{g}^p - \dot{g}^q)(z_p - z_q) \ge 0$ for all p, q [Andrews et al. 2014b, Lemma 2.2], so Lemma 2.1 implies that *G* is convex if and only if *g* is convex.

The following useful lemma was proved in [Andrews et al. 2014b]:

Lemma 2.2. Let $f : \Gamma \to \mathbb{R}$ be a flow speed for (CF) satisfying Conditions (i)–(ii). Then, for any admissible initial datum $X_0 : M \to \mathbb{R}^{n+1}$ there exists a cone $\Gamma_0 \subset \mathbb{R}^n$ satisfying $\overline{\Gamma}_0 \setminus \{0\} \subset \Gamma$ such that the principal curvatures of the solution $X : M \times [0, T) \to \mathbb{R}^{n+1}$ of the initial value problem (CF) satisfy $\kappa(x, t) := (\kappa_1(x, t), \dots, \kappa_n(x, t)) \in \Gamma_0$ for all $(x, t) \in M \times [0, T)$.

We refer to such a cone Γ_0 as a *preserved cone* for the solution *X*. As mentioned in the introduction, the existence of a preserved cone allows us to obtain bounds for homogeneous functions of the curvature:

Lemma 2.3. Let $X : M \times [0, T) \to \mathbb{R}^{n+1}$ be a solution of (CF) such that f satisfies conditions (i)–(ii). Let $g : \Gamma \to \mathbb{R}$ be a smooth, degree-zero homogeneous symmetric function. Then there exists c > 0 (depending only on n, f and M_0) such that

$$-c \leq g(\kappa_1(x, t), \dots, \kappa_n(x, t)) \leq c \quad for all (x, t) \in M \times [0, T).$$

If g > 0, then there exists c > 0 such that

$$\frac{1}{c} \leq g(\kappa_1(x,t),\ldots,\kappa_n(x,t)) \leq c.$$

Proof. Let Γ_0 be a preserved cone for the solution *X*. Then $K := \overline{\Gamma}_0 \cap S^n$ is compact. Since *g* is continuous, the required bounds hold on *K*. But these extend to $\overline{\Gamma}_0 \setminus \{0\}$ by homogeneity. The claim follows since $\kappa(x, t) \in \overline{\Gamma}_0 \setminus \{0\}$ for all $(x, t) \in M \times [0, T)$.

By condition (i), the derivative \dot{f} of f is homogeneous of degree zero. Since $\dot{f}^k > 0$ for each k, we obtain uniform parabolicity of the flow:

Corollary 2.4. There exists a constant c > 0 (depending only on n, f and M_0) such that, for any $v \in T^*M$, *it holds that*

$$\frac{1}{c}|v|^2 \le \dot{F}^{ij}v_iv_j \le c|v|^2,$$

where $|\cdot|$ is the (time-dependent) norm on *M* corresponding to the (time-dependent) metric induced by the flow.

We now recall the following evolution equation (see for example [Andrews et al. 2013]).

Lemma 2.5. Let $X : M \times [0, T) \to \mathbb{R}^{n+1}$ be a solution of (CF) such that f satisfies conditions (i)–(ii). Let $G : M \times [0, T) \to \mathbb{R}$ be given by a smooth, symmetric, degree-one homogeneous function g of the principal curvatures. Then G satisfies the evolution equation

$$(\partial_t - \mathscr{L})G = (\dot{G}^{kl} \ddot{F}^{pq,rs} - \dot{F}^{kl} \ddot{G}^{pq,rs}) \nabla h_{pq} \nabla h_{rs} + G|^{\mathscr{W}}|_F^2,$$
(2-3)

where $\mathscr{L} := \dot{F}^{kl} \nabla_k \nabla_l$ is the linearisation of F, and $|\mathscr{W}|_F^2 := \dot{F}^{kl} h_k^r h_{rl}$.

In particular, the speed function *F* satisfies $(\partial_t - \mathcal{L})F = F|\mathcal{W}|_F^2$.

As we shall see, in order to obtain Theorem 1.3, it is crucial to obtain a good upper bound on the term

$$Q(\nabla \mathcal{W}, \nabla \mathcal{W}) := (\dot{G}^{kl} \ddot{F}^{pq, rs} - \dot{F}^{kl} \ddot{G}^{pq, rs}) \nabla_k h_{pq} \nabla_l h_{rs}$$

for the pinching functions G_m which we construct in the following section. The following decomposition of Q is crucial in obtaining this bound.

Lemma 2.6. For any totally symmetric $T \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$, we have $(\dot{G}^{kl}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs})|_B T_{kpq}T_{lrs} = (\dot{g}^k \ddot{f}^{pq} - \dot{f}^k \ddot{g}^{pq})|_z T_{kpp}T_{kqq}$ $+ 2\sum_{p>q} \frac{(\dot{f}^p \dot{g}^q - \dot{g}^p \dot{f}^q)|_z}{z_p - z_q} ((T_{pqq})^2 + (T_{qpp})^2) + 2\sum_{k>p>q} (\vec{g}_{kpq} \times \vec{f}_{kpq})|_z \cdot \vec{z}_{kpq} (T_{kpq})^2$ (2-4)

at any diagonal matrix *B* with distinct eigenvalues z_i , where "×" and "·" are the three-dimensional cross and dot product respectively, and we have defined the vectors

$$\begin{split} \vec{f}_{kpq} &:= (\dot{f}^k, \, \dot{f}^p, \, \dot{f}^q), \\ \vec{g}_{kpq} &:= (\dot{g}^k, \, \dot{g}^p, \, \dot{g}^q), \\ \vec{z}_{kpq} &:= \left(\frac{z_p - z_q}{(z_k - z_p)(z_k - z_q)}, \, \frac{z_k - z_q}{(z_k - z_p)(z_p - z_q)}, \, \frac{z_k - z_p}{(z_p - z_q)(z_k - z_q)}\right). \end{split}$$

Proof. Since *B* is diagonal, Lemma 2.1 yields (suppressing the dependence on *B*)

$$(\dot{G}^{kl}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs})T_{kpq}T_{lrs} = \sum_{k,p,q} (\dot{g}^{k}\ddot{f}^{pq} - \dot{f}^{k}\ddot{g}^{pq})T_{kpp}T_{kqq} + 2\sum_{k}\sum_{p>q} \left(\dot{g}^{k}\frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{k}\frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}}\right)(T_{kpq})^{2}.$$

We now decompose the second term into the terms satisfying k = p, k = q, k > p, p > k > q, and q > k respectively:

$$\begin{split} \sum_{k} \sum_{p>q} \left(\dot{g}^{k} \frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{k} \frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}} \right) (T_{kpq})^{2} \\ &= \sum_{p>q} \left(\dot{g}^{p} \frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{p} \frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}} \right) (T_{ppq})^{2} + \sum_{p>q} \left(\dot{g}^{q} \frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{q} \frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}} \right) (T_{qpq})^{2} \\ &+ \left(\sum_{k>p>q} + \sum_{p>k>q} \sum_{p>k>q} \right) \left(\dot{g}^{k} \frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{k} \frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}} \right) (T_{kpq})^{2} \end{split}$$

$$= \sum_{p>q} \frac{\dot{f}^{p} \dot{g}^{q} - \dot{g}^{p} \dot{f}^{q}}{z_{p} - z_{q}} ((T_{pqq})^{2} + (T_{qpp})^{2}) \\ + \sum_{k>p>q} \left(\dot{g}^{k} \frac{\dot{f}^{p} - \dot{f}^{q}}{z_{p} - z_{q}} - \dot{f}^{k} \frac{\dot{g}^{p} - \dot{g}^{q}}{z_{p} - z_{q}} + \dot{g}^{p} \frac{\dot{f}^{k} - \dot{f}^{q}}{z_{k} - z_{q}} - \dot{f}^{p} \frac{\dot{g}^{k} - \dot{g}^{q}}{z_{k} - z_{q}} + \dot{g}^{q} \frac{\dot{f}^{k} - \dot{f}^{p}}{z_{k} - z_{p}} - \dot{f}^{q} \frac{\dot{g}^{k} - \dot{g}^{p}}{z_{k} - z_{p}} \right) (T_{kpq})^{2} \\ = \sum_{p>q} \frac{\dot{f}^{p} \dot{g}^{q} - \dot{g}^{p} \dot{f}^{q}}{z_{p} - z_{q}} ((T_{pqq})^{2} + (T_{qpp})^{2}) + \sum_{k>p>q} \left[(\dot{g}^{p} \dot{f}^{q} - \dot{f}^{q} \dot{g}^{p}) \left(\frac{1}{z_{k} - z_{p}} - \frac{1}{z_{k} - z_{q}} \right) - (\dot{g}^{k} \dot{f}^{q} - \dot{f}^{k} \dot{g}^{q}) \left(\frac{1}{z_{p} - z_{q}} + \frac{1}{z_{k} - z_{p}} \right) + (\dot{g}^{k} \dot{f}^{p} - \dot{f}^{k} \dot{g}^{p}) \left(\frac{1}{z_{p} - z_{q}} - \frac{1}{z_{k} - z_{q}} \right) \right] (T_{kpq})^{2} \\ = \sum_{p>q} \frac{\dot{f}^{p} \dot{g}^{q} - \dot{g}^{p} \dot{f}^{q}}{z_{p} - z_{q}} ((T_{pqq})^{2} + (T_{qpp})^{2}) + \sum_{k>p>q} (\vec{g}_{kpq} \times \vec{f}_{kpq}) \cdot \vec{z}_{kpq} (T_{kpq})^{2}.$$

We complete this section by proving that (m+1)-convexity is preserved by the flow (CF), so that this assumption need only be made on initial data:

Proposition 2.7. Let X be a solution of (CF) such that conditions (i)–(ii) are satisfied. Suppose that there is some $m \in \{1, ..., n-1\}$ and some $\beta > 0$ such that

$$\kappa_{\sigma(1)}(x,0) + \dots + \kappa_{\sigma(m)}(x,0) \ge \beta F(x,0)$$

for all $x \in M$ and all permutations $\sigma \in P_n$. Then this estimate persists at all later times.

Proof. Denote by *SM* the unit tangent bundle over $M \times [0, T)$ and consider the function Z defined on $\bigoplus^m SM$ by

$$Z(x, t, \xi_1, \ldots, \xi_m) = \sum_{\alpha=1}^m h(\xi_\alpha, \xi_\alpha) - \beta F(x, t).$$

Since we have

$$\inf_{\xi_1,\ldots,\xi_m\in S_{(x,t)}M} Z(x,t,\xi_1,\ldots,\xi_m) = \kappa_{\sigma(1)}(x,t) + \cdots + \kappa_{\sigma(m)}(x,t) - \beta F(x,t)$$

for some $\sigma \in P_n$, it suffices to show that Z remains nonnegative. First fix any $t_1 \in [0, T)$ and consider the function $Z_{\varepsilon}(x, t, \xi_1, \dots, \xi_m) := Z(x, t, \xi_1, \dots, \xi_m) + \varepsilon e^{(1+C)t}$, where $C := \sup_{M \times [0,t_1]} |\mathcal{W}|_F^2$. Note that C is finite since M is compact and \dot{F} is bounded. Observe that Z_{ε} is positive when t = 0. We will show that Z_{ε} remains positive on $M \times [0, t_1]$ for all $\varepsilon > 0$. So suppose to the contrary that Z_{ε} vanishes at some point $(x_0, t_0, \xi_1^0, \dots, \xi_m^0)$. We may assume that t_0 is the first such time. Now extend the vector $\xi^0 := (\xi_1^0, \dots, \xi_m^0)$ to a field $\xi := (\xi_1, \dots, \xi_n)$ near (x_0, t_0) by parallel translation in space and solving

$$\frac{\partial \xi_{\alpha}^{i}}{\partial t} = F \xi_{\alpha}^{j} h_{j}^{i}$$

Since the metric evolves according to

$$\partial_t g_{ij} = -2Fh_{ij}$$

the resulting fields have unit length. Now recall (see for example [Andrews 1994a]) the following evolution equation for the second fundamental form:

$$\partial_t h_{ij} = \mathscr{L}h_{ij} + \ddot{F}^{pq,rs} \nabla_i h_{pq} \nabla_j h_{rs} + |\mathscr{W}|_F^2 h_{ij} - 2F h_{ij}^2,$$

where $\mathscr{L} := \dot{F}^{kl} \nabla_k \nabla_l$ and $|\mathscr{W}|_F^2 := \dot{F}^{kl} h_{kl}^2$. It follows that

$$\begin{aligned} (\partial_t - \mathcal{L})(Z_{\varepsilon}(x, t, \xi)) &= \varepsilon (1+C) \mathrm{e}^{(1+C)t} + \sum_{\alpha=1}^m \ddot{F}^{pq, rs} \nabla_{\xi_{\alpha}} h_{pq} \nabla_{\xi_{\alpha}} h_{rs} + |\mathcal{W}(x, t)|_F^2 Z(x, t, \xi) \\ &\geq \varepsilon (1+C) \mathrm{e}^{(1+C)t} + |\mathcal{W}(x, t)|_F^2 Z(x, t, \xi). \end{aligned}$$

Since the point $(x_0, t_0, \xi_{t=t_0})$ is a minimum of Z_{ε} , we obtain

$$0 \ge (\partial_t - \mathscr{L})\big|_{(x_0, t_0)} (Z_{\varepsilon}(x, t, \xi)) \ge \varepsilon (1+C) \mathrm{e}^{(1+C)t_0} - C\varepsilon \mathrm{e}^{(1+C)t_0} = \varepsilon \mathrm{e}^{(1+C)t_0} > 0 \,.$$

This is a contradiction, implying that Z_{ε} cannot vanish at any time in the interval $[0, t_1]$. Since $\varepsilon > 0$ was arbitrary, we find $Z \ge 0$ at all times in the interval $[0, t_1]$. Since $t_1 \in [0, T)$ was arbitrary, we obtain $Z \ge 0$.

3. Constructing the pinching function

In this section we construct the pinching functions G_m satisfying the conditions in Theorem 1.3. Let us first introduce the *pinching cones*

$$\Gamma_m := \{ z \in \Gamma : z_{\sigma(1)} + \dots + z_{\sigma(m+1)} > c_m^{-1} f(z) \text{ for all } \sigma \in H_m \},\$$

where H_m is the quotient of P_n , the group of permutations of the set $\{1, ..., n\}$, by the equivalence relation

$$\sigma \sim \omega$$
 if $\sigma(\{1, \ldots, m+1\}) = \omega(\{1, \ldots, m+1\})$

Using the methods of [Huisken 1984], and their adaptations to 2-convex flows in [Huisken and Sinestrari 2009] and fully nonlinear flows in [Andrews et al. 2014b], we will see that, in order to prove Theorem 1.3, it suffices to construct a smooth function $g_m : \Gamma \to \mathbb{R}$ satisfying the following properties.

Properties. (i) $g_m(z) \ge 0$ for all $z \in \Gamma$ with equality if and only if $z \in \overline{\Gamma}_m \cap \Gamma$.

- (ii) g_m is smooth and homogeneous of degree one.
- (iii) For every $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that

$$\left(\dot{G}_{m}^{kl}\ddot{F}^{pq,rs}-\dot{F}^{kl}\ddot{G}_{m}^{pq,rs}\right)\Big|_{B}T_{kpq}T_{lrs} \leq -c_{\varepsilon}\frac{|T|^{2}}{F}$$

for all $B \in \mathcal{G}_{\Gamma_0}$ satisfying $G_m(B) \ge \varepsilon F(B)$ and all totally symmetric $T \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$, where G_m is the matrix function corresponding to g_m as described in Section 2, and Γ_0 is a preserved cone for the flow.

(iv) For every $\delta > 0$, $\varepsilon > 0$, and C > 0, there exist $\gamma_1 > 0$, $\gamma_2 > 0$ and $\gamma_3 > 0$ such that

$$(G_m \dot{F}^{kl} - F \dot{G}_m^{kl}) \Big|_B B_{kl}^2 \le -\gamma_1 F^2 (G_m - \delta \gamma_2 F) \Big|_B + \gamma_3 C F^2 \Big|_B$$

for all (m + 1)-positive $B \in \mathcal{G}_{\Gamma_0}$ satisfying $G_m(B) \ge \varepsilon F(B)$ and

$$\lambda_{\min}(B) \ge -\delta F(B) - C$$

Our construction of the pinching function g_m will be similar for each choice of m. So let us fix $m \in \{0, 1, ..., n-2\}$ and assume that the flow is (m+1)-convex. We first consider the preliminary function $g: \Gamma \to \mathbb{R}$ defined by

$$g(z) := f(z) \sum_{\sigma \in H_m} \varphi \left(\frac{\sum_{i=1}^{m+1} z_{\sigma(i)} - c_m^{-1} f(z)}{f(z)} \right),$$
(3-1)

where $\varphi : \mathbb{R} \to \mathbb{R}$ is a smooth¹ function which is strictly convex and positive, except on $\mathbb{R}_+ \cup \{0\}$ where it vanishes identically. Such a function is readily constructed; for example, we could take

$$\varphi(r) = \begin{cases} r^4 e^{-1/r^2} & \text{if } r < 0, \\ 0 & \text{if } r \ge 0. \end{cases}$$

We note that such a function necessarily satisfies $\varphi(r) - r\varphi'(r) \le 0$ and $\varphi'(r) \le 0$ with equality if and only if $r \ge 0$.

Now define the scalar $G: M \times [0, T) \to \mathbb{R}$ by

$$G(x,t) := g(\kappa_1(x,t),\ldots,\kappa_n(x,t)).$$

Then G is a smooth, degree-one homogeneous function of the components of the Weingarten map which is invariant under a change of basis. Moreover, G is nonnegative and vanishes at, and only at, points for which the sum of the smallest (m+1)-principal curvatures is not less than $c_m^{-1}F$. Thus properties (i) and (ii) are satisfied by g.

We now show that property (iii) is satisfied weakly by g:

Lemma 3.1. *Let G be the matrix function corresponding to the function g defined by* (3-1)*. Then, for any symmetric matrix B and totally symmetric* 3-*tensor T*,

$$\left(\dot{G}^{kl}\ddot{F}^{pq,rs}-\dot{F}^{kl}\ddot{G}^{pq,rs}\right)\Big|_{B}T_{kpq}T_{lrs}\leq0.$$

Proof. We will show that each of the terms in the decomposition (2-4) in Lemma 2.6 is nonpositive. Note that, by the invarance properties of *G* and *F*, it suffices to prove the claim for diagonal *B*. In fact, we can also assume that *B* has distinct eigenvalues, since the result at an arbitrary diagonal matrix *B* may then be

¹In fact, φ need only be twice continuously differentiable.

obtained by taking a limit $B^{(k)} \rightarrow B$ such that each matrix $B^{(k)}$ has distinct eigenvalues. We first compute

$$\dot{g}^{k} = \dot{f}^{k} \sum_{\sigma \in H_{m}} \varphi(r_{\sigma}) + \sum_{\sigma \in H_{m}} \varphi'(r_{\sigma}) \sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{k} - \frac{z_{\sigma(i)}}{f} \dot{f}^{k} \right)$$
$$= \dot{f}^{k} \sum_{\sigma \in H_{m}} \left(\varphi(r_{\sigma}) - \varphi'(r_{\sigma}) \frac{\sum_{i=1}^{m+1} z_{\sigma(i)}}{f} \right) + \sum_{\sigma \in H_{m}} \sum_{i=1}^{m+1} \varphi'(r_{\sigma}) \delta_{\sigma(i)}^{k}$$

and

$$\begin{split} \ddot{g}^{pq} &= \left(\sum_{\sigma \in H_m} \varphi(r_{\sigma}) - \sum_{\sigma \in H_m} \varphi'(r_{\sigma}) \frac{\sum_{i=1}^{m+1} z_{\sigma(i)}}{f} \right) \ddot{f}^{pq} \\ &+ \sum_{\sigma \in H_m} \frac{\varphi''(r_{\sigma})}{f} \sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^p - \frac{z_{\sigma(i)}}{f} \dot{f}^p\right) \sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^q - \frac{z_{\sigma(i)}}{f} \dot{f}^q\right), \end{split}$$

where we have set

$$r_{\sigma}(z) := \frac{\sum_{i=1}^{m+1} z_{\sigma(i)} - c_m^{-1} f(z)}{f(z)}$$

It follows that

$$\dot{g}^{k}\ddot{f}^{pq} - \dot{f}^{k}\ddot{g}^{pq} = \sum_{\sigma \in H_{m}} \sum_{i=1}^{m+1} \varphi'(r_{\sigma})\delta_{\sigma(i)}^{k}\ddot{f}^{pq} - \dot{f}^{k}\sum_{\sigma \in H_{m}} \frac{\varphi''(r_{\sigma})}{f}\sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{p} - \frac{z_{\sigma(i)}}{f}\dot{f}^{p}\right)\sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{q} - \frac{z_{\sigma(i)}}{f}\dot{f}^{q}\right).$$

If we fix the index k and set $\xi_p = T_{kpp}$, then, by convexity of φ and positivity of \dot{f}^k , we have

$$-\dot{f}^{k}\sum_{\sigma\in H_{m}}\frac{\varphi''(r_{\sigma})}{f}\sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{p} - \frac{z_{\sigma(i)}}{f}\dot{f}^{p}\right)\sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{q} - \frac{z_{\sigma(i)}}{f}\dot{f}^{q}\right)\xi_{p}\xi_{q}$$
$$= -\dot{f}^{k}\sum_{\sigma\in H_{m}}\frac{\varphi''(r_{\sigma})}{f}\left(\sum_{i=1}^{m+1} \left(\delta_{\sigma(i)}^{p} - \frac{z_{\sigma(i)}}{f}\dot{f}^{p}\right)\xi_{p}\right)^{2} \le 0.$$

On the other hand, since φ is monotone nonincreasing, and f is convex, we have

$$\varphi'(r_{\sigma})\sum_{i=1}^{m+1}\delta_{\sigma(i)}^{k}\ddot{f}^{pq}\xi_{p}\xi_{q}\leq 0$$

for each σ . Since both inequalities hold for all k, we deduce that

$$\sum_{k,p,q} \left(\dot{g}^k \ddot{f}^{pq} - \dot{f}^k \ddot{g}^{pq} \right) T_{kpp} T_{kqq} \le 0.$$

We next consider

$$\dot{f}^p \dot{g}^q - \dot{g}^p \dot{f}^q = \sum_{\sigma \in H_m} \sum_{i=1}^{m+1} \varphi'(r_\sigma) (\delta^q_{\sigma(i)} \dot{f}^p - \delta^p_{\sigma(i)} \dot{f}^q) = \sum_{\sigma \in O_q} \varphi'(r_\sigma) \dot{f}^p - \sum_{\sigma \in O_p} \varphi'(r_\sigma) \dot{f}^q.$$

where we have introduced the sets

$$O_a := \left\{ \sigma \in H_m : a \in \sigma(\{1, \ldots, m+1\}) \right\}.$$

If $z_p > z_q$, we obtain

$$\dot{f}^{p}\dot{g}^{q}-\dot{g}^{p}\dot{f}^{q}\leq\dot{f}^{p}\bigg(\sum_{\sigma\in O_{q}}\varphi'(r_{\sigma})-\sum_{\sigma\in O_{p}}\varphi'(r_{\sigma})\bigg),$$

We now show that the term in brackets is nonpositive whenever $z_p > z_q$.

Lemma 3.2. If $z_p \ge z_q$, then

$$\sum_{\sigma \in O_p} \varphi'(r_{\sigma}) - \sum_{\sigma \in O_q} \varphi'(r_{\sigma}) \ge 0.$$

Moreover, equality holds only if either $z_p = z_q$ or $r_{\sigma}(z) \ge 0$ for all $\sigma \in O_{q,p} := O_q \setminus O_p$.

Proof of Lemma 3.2. First note that

$$\sum_{\sigma \in O_p} \varphi'(r_{\sigma}) - \sum_{\sigma \in O_q} \varphi'(r_{\sigma}) = \sum_{\sigma \in O_{p,q}} \varphi'(r_{\sigma}) - \sum_{\sigma \in O_{q,p}} \varphi'(r_{\sigma}),$$

where $O_{a,b} := O_a \setminus O_b$. Next observe that, if $\sigma \in O_{p,q}$, then

$$z_{\sigma(1)} + \dots + z_{\sigma(m+1)} = z_p + z_{\hat{\sigma}(i_1)} + \dots + z_{\hat{\sigma}(i_m)}$$
(3-2)

for some $\hat{\sigma} \in H_{m-2}(p,q) := P_{n-2}(p,q)/\sim$, where $P_{n-2}(p,q)$ denotes the set of permutations of $\{1, \ldots, n\} \setminus \{p, q\}; i_1, \ldots, i_m$ are *m* distinct elements of $\{1, \ldots, n\} \setminus \{p, q\};$ and \sim is defined by

$$\hat{\sigma} \sim \hat{\omega}$$
 if $\hat{\sigma}(\{i_1,\ldots,i_m\}) = \hat{\omega}(\{i_1,\ldots,i_m\}).$

Observe also that the converse holds (that is, (3-2) defines a bijection), so that

$$\sum_{\sigma \in O_{q,p}} \varphi'(r_{\sigma}) - \sum_{\sigma \in O_{p,q}} \varphi'(r_{\sigma}) = \sum_{\hat{\sigma} \in H_{m-2}(p,q)} \left(\varphi'\left(\frac{z_p + \sum_{k=1}^m z_{\hat{\sigma}(i_k)} - c_m^{-1}f}{f}\right) - \varphi'\left(\frac{z_q + \sum_{k=1}^m z_{\hat{\sigma}(i_k)} - c_m^{-1}f}{f}\right) \right).$$

Since $z_p \ge z_q$, the claim follows from (strict) convexity of φ (where it is positive).

Thus,

$$\sum_{p>q} \frac{\dot{f}^p \dot{g}^q - \dot{g}^p \dot{f}^q}{z_p - z_q} \left((T_{pqq})^2 + (T_{qpp})^2 \right) \le 0.$$

We now compute

$$\vec{g}_{kpq} = \left(\frac{g}{f} - \sum_{\sigma \in H_m} \varphi'(r_\sigma) \sum_{i=1}^{m+1} \frac{z_{\sigma(i)}}{f}\right) \vec{f}_{kpq} + \sum_{\sigma \in H_m} \varphi'(r_\sigma) \sum_{i=1}^{m+1} (\delta^k_{\sigma(i)}, \delta^p_{\sigma(i)}, \delta^q_{\sigma(i)}),$$

so that

$$(\vec{g}_{kpq} \times \vec{f}_{kpq}) \cdot \vec{z}_{kpq} = \sum_{\sigma \in H_m} \sum_{i=1}^{m+1} \varphi'(r_{\sigma}) \Big[\Big(\delta^k_{\sigma(i)}, \delta^p_{\sigma(i)}, \delta^q_{\sigma(i)} \Big) \times \vec{f}_{kpq} \Big] \cdot \vec{z}_{kpq} \\ = \sum_{\sigma \in H_m} \sum_{i=1}^{m+1} \varphi'(r_{\sigma}) \Big[\frac{(\delta^p_{\sigma(i)} \dot{f}^q - \delta^q_{\sigma(i)} \dot{f}^p)(z_p - z_q)}{(z_k - z_p)(z_k - z_q)} + \frac{(\delta^q_{\sigma(i)} \dot{f}^k - \delta^k_{\sigma(i)} \dot{f}^q)(z_k - z_q)}{(z_k - z_p)(z_p - z_q)} \\ + \frac{(\delta^k_{\sigma(i)} \dot{f}^p - \delta^p_{\sigma(i)} \dot{f}^k)(z_k - z_p)}{(z_k - z_q)(z_p - z_q)} \Big]$$

Removing the positive factor $\alpha_{kpq} := [(z_k - z_p)(z_k - z_q)(z_p - z_q)]^{-1}$ and setting

$$P_a := \sum_{\sigma \in O_a} \varphi'(r_{\sigma}),$$

we obtain

$$(\vec{g}_{kpq} \times \vec{f}_{kpq}) \cdot \vec{z}_{kpq} = \alpha_{kpq} \left[(P_p \dot{f}^q - P_q \dot{f}^p) (z_p - z_q)^2 + (P_q \dot{f}^k - P_k \dot{f}^q) (z_k - z_q)^2 + (P_k \dot{f}^p - P_p \dot{f}^k) (z_k - z_p)^2 \right]$$

Applying Lemma 3.2 yields

$$(\vec{g}_{kpq} \times \vec{f}_{kpq}) \cdot \vec{z}_{kpq} \le \alpha_{kpq} (P_q \dot{f}^k - P_k \dot{f}^q) [(z_k - z_q)^2 - (z_k - z_p)^2 - (z_p - z_q)^2].$$

Since the term in square brackets is nonnegative, applying Lemma 3.2 once more yields

$$(\vec{g}_{kpq} \times f_{kpq}) \cdot \vec{z}_{kpq} \le 0.$$

This completes the proof of the lemma.

Corollary 3.3. There exists $C < \infty$ (depending only on n, f and M_0) such that $G/F \leq C$ along the flow.

Proof. In view of Lemma 3.1 and the evolution equation (2-3), this is a simple application of the maximum principle. \Box

In order to obtain the uniform estimate required by property (iii), we modify G in order to obtain a function with a strict convexity property. A well-known trick (cf. [Andrews 1994b, Lemma 7.10; Huisken and Sinestrari 1999a, Theorem 2.14; Andrews et al. 2014b, Lemma 3.3]) then allows us to extract the required uniform estimate. First, we relabel the preliminary pinching function $g \rightarrow g_1 (G \rightarrow G_1)$, and consider the new pinching function g defined by

$$g := K(g_1, g_2) := \frac{g_1^2}{g_2},$$
(3-3)

 \square

where $g_2(z) = M \sum_{i=1}^{n} z_i - |z|$ for some large constant $M \gg 1$, for which g_2 is positive along the flow. That there is such a constant follows from applying the maximum principle to the evolution equation (2-3) for the function $G_2(x, t) := g_2(\kappa(x, t))$ as in [Andrews et al. 2014b, Lemma 3.1]. Note that $\dot{K}^1 > 0$, $\dot{K}^2 < 0$ and $\ddot{K} > 0$ wherever $g_1 > 0$. Observe that properties (i) and (ii) are not harmed in the transition from g_1 to g. We now show that the estimates listed in properties (iii) and (iv) are satisfied by the curvature function defined in (3-3).

Proposition 3.4. Let g be the pinching function defined by (3-3) and G its corresponding matrix function. Then, for every $\varepsilon > 0$, there exists $c_{\varepsilon} > 0$ (depending only on ε , n, f and Γ_0) such that

$$\left(\dot{G}^{kl}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs}\right)\Big|_{B}T_{kpq}T_{lrs} \le -c_{\varepsilon}\frac{|T|^{2}}{F}$$

for all $B \in \mathcal{G}_{\Gamma_0}$ satisfying $G(B) \ge \varepsilon F(B)$ and all totally symmetric $T \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$.

Proof. First note that (suppressing dependence on *B*)

$$\begin{aligned} (\dot{G}^{kl}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs})T_{kpq}T_{lrs} &= \dot{K}^{\alpha}(\dot{G}^{kl}_{\alpha}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs}_{\alpha})T_{kpq}T_{lrs} - \dot{F}^{kl}\ddot{K}^{\alpha\beta}\dot{G}^{pq}_{\alpha}\dot{G}^{rs}_{\beta}T_{kpq}T_{lrs} \\ &\leq \dot{K}^{2}(\dot{G}^{kl}_{2}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs}_{2})T_{kpq}T_{lrs} \\ &\leq -\dot{K}^{2}\dot{F}^{kl}\ddot{G}^{pq,rs}_{2}T_{kpq}T_{lrs}, \end{aligned}$$

where we used Lemma 3.1, convexity of K, and the inequalities $\dot{K}^1 \ge 0$ and $\dot{F} \ge 0$ in the first inequality, and the inequalities $\dot{G}_2 \ge 0$ and $\dot{K}^2 \le 0$, and convexity of F in the second. Since $\dot{K}^2 < 0$ whenever $G_1 > 0$ and G_2 is strictly concave in nonradial directions, the claim follows exactly as in [Andrews et al. 2014b, Lemma 3.3].

The uniform estimate of Proposition 3.4 yields a good bound for the term $Q(\nabla W, \nabla W)$ in the evolution equations for the pinching functions. This is a crucial component in obtaining the L^p -estimates of the following section. This is the starting point for the Stampacchia–de Giorgi iteration argument. The second crucial estimate is the Poincaré-type inequality, Lemma 4.2 (see also [Huisken and Sinestrari 2009, §§4–5; in particular, Lemma 5.5]), which we can obtain with the help of property (iv). This estimate (corresponding to [Huisken and Sinestrari 2009, Lemma 5.2]) provides an estimate on the zero order term that occurs in contracting the Simons-type identity for $\dot{F}^{pq}\nabla_p\nabla_q h_{ij}$ with \dot{G}^{ij} (see [Andrews et al. 2014b, Proposition 4.4]).

Proposition 3.5. Let g be the pinching function defined by (3-3) and G its corresponding matrix function. ,Then for every $\delta > 0$, $\varepsilon > 0$, and C > 0 there exist $\gamma_1 > 0$, $\gamma_2 > 0$ and $\gamma_3 > 0$ (depending only on δ , $\varepsilon > 0$, C, n, m, f and Γ_0) such that

$$Z(B) := (F\dot{G}^{kl} - G\dot{F}^{kl})|_{B}B_{kl}^{2} \ge \gamma_{1}F^{2}(G - \delta\gamma_{2}F)|_{B} - \gamma_{3}F^{2}|_{B}$$

for all symmetric, (m+1)-positive matrices B satisfying $\lambda(B) \in \Gamma_0$, $\lambda_{\min}(B) \ge -\delta F(B) - C$, and $G_m(B) \ge \varepsilon F(B)$.

Proof. From the definition of G we have

$$Z = \dot{K}^1 Z_1 + \dot{K}^2 Z_2,$$

where

$$Z_i(B) := \left(F\dot{G}_i^{kl} - G_i\dot{F}^{kl}\right)\Big|_B B_{kl}^2.$$

Thus, since $\dot{K}^2 = 2g_1/g_2$ is uniformly bounded below when $g \ge \varepsilon f$, it suffices to prove the estimate for Z_1 .

So let *B* be a symmetric, (m+1)-positive matrix with eigenvalues $z_1 \leq \cdots \leq z_n$. Then

$$Z_{1}(B) = f \dot{g}_{1}^{p} z_{p}^{2} - g_{1} \dot{f}^{p} z_{p}^{2} = \sum_{p > q} \left(\dot{g}_{1}^{p} \dot{f}^{q} - \dot{g}_{1}^{q} \dot{f}^{p} \right) z_{p} z_{q} (z_{p} - z_{q}) = \sum_{p > q} \left(P_{p} \dot{f}^{q} - P_{q} \dot{f}^{p} \right) z_{p} z_{q} (z_{p} - z_{q})$$
$$= \left(\sum_{p > q > l} + \sum_{p > l \ge q} + \sum_{l \ge p > q} \right) \left(P_{p} \dot{f}^{q} - P_{q} \dot{f}^{p} \right) z_{p} z_{q} (z_{p} - z_{q}),$$

where we recall the notation $P_a := \sum_{\sigma \in O_a} \varphi'(r_{\sigma})$ and we have defined $l \le m$ as the number of nonpositive eigenvalues z_i . Recalling that $P_p \dot{f}^q - P_q \dot{f}^p \ge 0$ whenever $z_p \ge z_q$, we discard the final sum and part of the first to obtain

$$Z_{1}(B) \geq \sum_{p=m+2}^{n} \sum_{q=l+1}^{m+1} (P_{p}\dot{f}^{q} - P_{q}\dot{f}^{p})z_{p}z_{q}(z_{p} - z_{q}) + \sum_{p=l+1}^{n} \sum_{q=1}^{l} (P_{p}\dot{f}^{q} - P_{q}\dot{f}^{p})z_{p}z_{q}(z_{p} - z_{q})$$

$$= \sum_{p=m+2}^{n} \sum_{q=l+1}^{m+1} (P_{p}\dot{f}^{q} - P_{q}\dot{f}^{p})z_{p}z_{q}(z_{p} - z_{q}) - f^{2} \sum_{i=1}^{l} z_{i}$$

$$+ f^{2} \sum_{i=1}^{l} z_{i} + \sum_{p=l+1}^{n} \sum_{q=1}^{l} (P_{p}\dot{f}^{q} - P_{q}\dot{f}^{p})z_{p}z_{q}(z_{p} - z_{q})$$

So consider the term

$$S_1(z) := \sum_{p=m+2}^n \sum_{q=l+1}^{m+1} (P_p(z)\dot{f}^q(z) - P_q(z)\dot{f}^p(z))z_p z_q(z_p - z_q) - f(z)^2 \sum_{i=1}^l z_i.$$

Observe that $S_1 \ge 0$. We claim that $S_1(z) > 0$ for all z in the cone

$$\Gamma_{\varepsilon,l} := \{ z \in \Gamma_0 : g(z) \ge \varepsilon f(z), \ z_1 \le \cdots \le z_l \le 0 < z_{l+1} \le \cdots \le z_n \}.$$

Suppose, to the contrary, that $S_1(z) = 0$ for some $z \in \Gamma_{\varepsilon,l}$. Then $z_1 = \cdots = z_l = 0$ and, for all $p > m+1 \ge q > l$, $(P_p(z)\dot{f}^q(z) - P_q(z)\dot{f}^p(z))z_pz_q(z_p-z_q) = 0$. But, by Lemma 3.2, the latter implies that, for all $p > m+1 \ge q > l$, either $z_p = z_q$, or $r_\sigma(\lambda) \ge 0$ for all $\sigma \in O_{q,p}$. Note that the latter case cannot occur: since $p > m+1 \ge q$, there is a permutation $\sigma \in O_{q,p}$ such that $0 \le r_\sigma(z) = (z_1 + \cdots + z_{m+1} - c_m^{-1}f(z))/f(z)$, which implies $g_1(z) = 0$, contradicting $z \in \Gamma_{\varepsilon,l}$. On the other hand, if $z_p = z_q$ for all $p > m+1 \ge q > l$, then we again obtain the contradiction $g_1(z) = 0$. Thus, $S_1 > 0$ on $\Gamma_{\varepsilon,l}$. Since S_1 is homogeneous of degree three, it follows that

$$S_1 \ge c_1 f^2 g$$

on $\Gamma_{\varepsilon,l}$, where $c_1 := \min_l \min_{\Gamma_{\varepsilon,l}} \frac{S_1}{f^2 g} > 0$. Now consider

$$S_2 := f^2 \sum_{i=1}^l \lambda_i + \sum_{p=l+1}^n \sum_{q=1}^l (P_p \dot{f}^q - P_q \dot{f}^p) z_p z_q (z_p - z_q)$$

Note that, by homogeneity, $c_2 := \sup\{P_p(z) \dot{f}^q(z) - P_q(z) \dot{f}^p(z) : z \in \Gamma_0, \ 1 \le p, \ q \le n\} < \infty$. Thus, S_2 is easily controlled using the "convexity estimate" $\lambda_1 \ge -\delta f - C$:

$$S_{2} \ge -lf^{2}(\delta f + C) + (n - l)c_{2}z_{n} \sum_{q=1}^{l} z_{q}(z_{n} - z_{q}) \ge -nf^{2}(\delta f + C) + 2nc_{2}c_{3}^{2}f^{2} \sum_{q=1}^{l} z_{q}$$
$$\ge -nf^{2}(\delta f + C) - 2nc_{2}c_{3}^{2}f^{2}(\delta F + C) \ge -n(1 + 2c_{2}c_{3}^{2})f^{2}(\delta f + C),$$

where $c_3 := \max\{|z_i|/f(z) : z \in \Gamma_0, 1 \le i \le n\}.$

The claim follows.

We note that the above estimate is only useful in the presence of the convexity estimate Theorem 1.1, since then, for any $\delta > 0$, there is a constant $C_{\delta} > 0$ for which $\Gamma_{\delta,C_{\delta}} := \{z \in \Gamma_0 : z_i > -\delta f(z) - C_{\delta} \text{ for all } i\}$ is preserved by the flow.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, it suffices to obtain, for any $\varepsilon > 0$, an upper bound on the function

$$G_{\varepsilon,\sigma} := \left(\frac{G}{F} - \varepsilon\right) F^{\sigma}$$

for some $\sigma > 0$. We will use the estimates of Propositions 3.5 and 3.4 to obtain bounds on the spacetime L^{p} -norms of the positive part of $G_{\varepsilon,\sigma}$, so long as p is sufficiently large and σ sufficiently small, just as in [Huisken and Sinestrari 1999b; 1999a; 2009] (see also [Andrews et al. 2014b] where these techniques are applied in the fully nonlinear setting). A Stampacchia–de Giorgi iteration procedure similar to that used in [Huisken 1984] (see also [Huisken and Sinestrari 1999b; Andrews et al. 2014b]) then allows us to extract a supremum bound on $G_{\varepsilon,\sigma}$.

We begin with an evolution equation for $G_{\varepsilon,\sigma}$:

Lemma 4.1 [Andrews et al. 2014b]. The function $G_{\varepsilon,\sigma}$ satisfies the evolution equation

$$(\partial_{t} - \mathcal{L})G_{\varepsilon,\sigma} = F^{\sigma-1}(\dot{G}^{kl}\ddot{F}^{pq,rs} - \dot{F}^{kl}\ddot{G}^{pq,rs})\nabla_{k}h_{pq}\nabla_{l}h_{rs} + \frac{2(1-\sigma)}{F}\langle\nabla G_{\varepsilon,\sigma},\nabla F\rangle_{F} - \frac{\sigma(1-\sigma)}{F^{2}}|\nabla F|_{F}^{2} + \sigma G_{\varepsilon,\sigma}|\mathcal{W}|_{F}^{2}, \quad (4-1)$$

where $\langle u, v \rangle_F := \dot{F}^{kl} u_k u_l$.

Now set $E := \max\{G_{\varepsilon,\sigma}, 0\}$. We need to obtain spacetime L^p -estimates for E. Let us first observe that integration by parts and application of Young's inequality, in conjunction with Lemma 2.3 and Proposition 3.4, yields the estimate (cf. [Andrews et al. 2014b])

$$\frac{d}{dt} \int E^{p} d\mu \leq -\left(A_{1}p(p-1) - A_{2}p^{\frac{3}{2}}\right) \int E^{p-2} |\nabla G_{\varepsilon,\sigma}|^{2} d\mu
- \left(B_{1}p - B_{2}p^{\frac{1}{2}}\right) \int E^{p} \frac{|\nabla^{\circ}W|^{2}}{F^{2}} d\mu + C_{1}\sigma p \int E^{p} |^{\circ}W|^{2} d\mu \quad (4-2)$$

for some positive constants A_1 , A_2 , B_1 , B_2 , C_1 (which depend only on ε , n, m, f and M_0).

To estimate the final term, we make use of Proposition 3.5 in a similar manner to [Huisken and Sinestrari 2009, §5]. We first observe:

Lemma 4.2. There are positive constants A_3 , A_4 , A_5 , B_3 , B_4 , C_2 , independent of p and σ , such that

$$\int E^{p} \frac{Z(\mathbb{W})}{F} d\mu \leq \left(A_{3} p^{\frac{3}{2}} + A_{4} p^{\frac{1}{2}} + A_{5}\right) \int E^{p-2} |\nabla G_{\varepsilon,\sigma}|^{2} d\mu + \left(B_{3} p^{\frac{1}{2}} + B_{4}\right) \int E^{p} \frac{|\nabla \mathbb{W}|^{2}}{F^{2}} d\mu.$$

Proof. As in [Andrews et al. 2014b, §4], contraction of the commutation formula for $\nabla^{2}W$ with \dot{F} and \dot{G} yields the identity

$$\begin{aligned} \mathscr{L}G_{\varepsilon,\sigma} &= -F^{\sigma-1}Q(\nabla^{\mathscr{W}},\nabla^{\mathscr{W}}) + F^{\sigma-1}Z(^{\mathscr{W}}) + F^{\sigma-2}(F\dot{G}^{kl} - G\dot{F}^{kl})\nabla_{k}\nabla_{l}F \\ &+ \frac{\sigma}{F}G_{\varepsilon,\sigma}\mathscr{L}F - 2\frac{(1-\sigma)}{F}\langle\nabla F,\nabla G_{\varepsilon,\sigma}\rangle_{F} + \frac{\sigma(1-\sigma)}{F^{2}}G_{\varepsilon,\sigma}|\nabla F|_{F}^{2}.\end{aligned}$$

The claim is now proved using integration by parts and Young's inequality, with the help of Lemma 2.3 and Proposition 3.4 (see [Andrews et al. 2014b, Lemma 4.2]). \Box

Corollary 4.3. For all $\varepsilon > 0$ there exist constants $\ell > 0$ and $L < \infty$ (depending only on ε , n, m, f and M_0) such that for all p > L and $0 < \sigma < \ell p^{-\frac{1}{2}}$ there is a constant $K = K_{\varepsilon,\sigma,p}$ (depending only on ε , n, m, f, M_0, σ and p) for which the following estimate holds:

$$\int (G_{\varepsilon,\sigma})_+^p d\mu \leq \int (G_{\varepsilon,\sigma}(\cdot,0))_+^p d\mu_0 + tK\mu_0(M),$$

where μ_0 is the measure induced on M by the initial immersion.

Proof. Recall Proposition 3.5. Setting $\delta = \varepsilon/(2\gamma_2)$ and applying the convexity estimate, we obtain

$$\frac{Z(\mathfrak{W})}{F} \ge \frac{\varepsilon}{2} \gamma_1 F^2 - \gamma_3 C_{\varepsilon/(2\gamma_2)} F$$
(4-3)

whenever $G - \varepsilon F > 0$. We now use Young's inequality to obtain (cf. [Huisken and Sinestrari 2009, §5])

$$F = F^{-\sigma p} F^{1+\sigma p} \le F^{-\sigma p} \left(\frac{b^q}{q} F^{q(1+\sigma p)} + \frac{b^{-q'}}{q'} \right)$$

for any b > 0 and q > 0, where q' is the Hölder conjugate of q: $\frac{1}{q} + \frac{1}{q'} = 1$. Choosing $q = \frac{2+\sigma p}{1+\sigma p}$, so that $q' = 2 + \sigma p$, we obtain

$$F \le b^{(2+\sigma p)/(1+\sigma p)} \frac{1+\sigma p}{2+\sigma p} F^2 + \frac{b^{-(2+\sigma p)}}{2+\sigma p} F^{-\sigma p} \le b^{(2+\sigma p)/(1+\sigma p)} F^2 + b^{-(2+\sigma p)} F^{-\sigma p}$$

Now choose $b := \left(\frac{\varepsilon \gamma_1}{4\gamma_3 C_{\varepsilon/(2\gamma_2)}}\right)^{\frac{1+\sigma p}{2+\sigma p}}$, so that

$$\gamma_3 C_{\varepsilon/(2\gamma_2)} F \leq \frac{\varepsilon \gamma_1}{4} F^2 + K F^{-\sigma p},$$

where

$$K := \gamma_3 C_{\varepsilon/(2\gamma_2)} \left(\frac{\varepsilon \gamma_1}{4\gamma_3 C_{\varepsilon/(2\gamma_2)}} \right)^{-(1+\sigma_p)}$$

Returning to Equation (4-3), we find

$$\frac{\varepsilon\gamma_1}{4}F^2 \le KF^{-\sigma p} + \frac{Z(\mathcal{W})}{F}.$$

Estimating $G_{\varepsilon,\sigma} \leq c_1 F^{\sigma}$ and $|\mathcal{W}|^2 \leq c_2 F^2$, we obtain

$$E^{p}|\mathcal{W}|^{2} \leq \widetilde{K} + c_{3}E^{p}\frac{Z(\mathcal{W})}{F}$$

for some constants $\widetilde{K} > 0$ (depending on F, M_0 , ε , σ and p) and $c_3 > 0$ (depending on F, M_0 , and ε). Combining Lemma 4.2 and inequality (4-2) now yields

$$\begin{aligned} \frac{d}{dt} \int E^{p} d\mu &\leq K_{\varepsilon,\sigma,p} \mu_{0}(M) - \left(\alpha_{0} p^{2} - \alpha_{1} \sigma p^{\frac{5}{2}} - \alpha_{2} p^{\frac{3}{2}} - \alpha_{3} p\right) \int E^{p-2} |G_{\varepsilon,\sigma}|^{2} d\mu \\ &- \left(\beta_{0} p - \beta_{1} \sigma p^{\frac{3}{2}} - \beta_{2} \sigma p - \beta_{3} p^{\frac{1}{2}}\right) \int E^{p} \frac{|\nabla^{\circ} W|^{2}}{F^{2}} d\mu \end{aligned}$$

for some positive constants α_i and β_i , which depend on ε but not on σ or p, and $K_{\varepsilon,\sigma,p}$, which depends on ε , σ and p.

It is clear that L > 0 and $\ell > 0$ may be chosen such that

$$(\alpha_0 p^2 - \alpha_1 \sigma p^{\frac{5}{2}} - \alpha_2 p^{\frac{3}{2}} - \alpha_3 p) \ge 0$$
 and $(\beta_0 p - \beta_1 \sigma p^{\frac{3}{2}} - \beta_2 \sigma p - \beta_3 p^{\frac{1}{2}}) \ge 0$

for all p > L and $0 < \sigma < \ell p^{-\frac{1}{2}}$. The claim then follows by integrating with respect to the time variable. \Box

The proof of Theorem 1.3 is completed by proceeding with Huisken's Stampacchia–de Giorgi iteration argument. We omit these details as the arguments required already appear in [Andrews et al. 2014b, §5] with no significant changes necessary.

References

- [Andrews 1994b] B. Andrews, "Harnack inequalities for evolving hypersurfaces", *Math. Z.* **217**:2 (1994), 179–197. MR 95j:58178 Zbl 0807.53044
- [Andrews 2007] B. Andrews, "Pinching estimates and motion of hypersurfaces by curvature functions", *J. Reine Angew. Math.* **608** (2007), 17–33. MR 2008i:53087 Zbl 1129.53044
- [Andrews et al. 2013] B. Andrews, J. McCoy, and Y. Zheng, "Contracting convex hypersurfaces by curvature", *Calc. Var. Partial Differential Equations* **47**:3-4 (2013), 611–665. MR 3070558 Zbl 1288.35292
- [Andrews et al. 2014a] B. Andrews, M. Langford, and J. McCoy, "Convexity estimates for fully non-linear surface flows", preprint, 2014, http://maths-people.anu.edu.au/~langford/ConvexityEstimatesSurfaces.pdf. To appear in J. Differential Geom.
- [Andrews et al. 2014b] B. Andrews, M. Langford, and J. McCoy, "Convexity estimates for hypersurfaces moving by convex curvature functions", *Anal. PDE* **7**:2 (2014), 407–433. MR 3218814
- [Evans 1982] L. C. Evans, "Classical solutions of fully nonlinear, convex, second-order elliptic equations", *Comm. Pure Appl. Math.* **35**:3 (1982), 333–363. MR 83g:35038 Zbl 0469.35022
- [Gerhardt 1996] C. Gerhardt, "Closed Weingarten hypersurfaces in Riemannian manifolds", *J. Differential Geom.* **43**:3 (1996), 612–641. MR 97g:53067 Zbl 0861.53058
- [Glaeser 1963] G. Glaeser, "Fonctions composées différentiables", Ann. of Math. (2) 77 (1963), 193–209. MR 26 #624 Zbl 0106.31302

[[]Andrews 1994a] B. Andrews, "Contraction of convex hypersurfaces in Euclidean space", *Calc. Var. Partial Differential Equations* 2:2 (1994), 151–171. MR 97b:53012 Zbl 0805.35048

CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS 1107

- [Hamilton 1986] R. S. Hamilton, "Four-manifolds with positive curvature operator", J. Differential Geom. 24:2 (1986), 153–179. MR 87m:53055 Zbl 0628.53042
- [Huisken 1984] G. Huisken, "Flow by mean curvature of convex surfaces into spheres", J. Differential Geom. 20:1 (1984), 237–266. MR 86j:53097 Zbl 0556.53001
- [Huisken and Sinestrari 1999a] G. Huisken and C. Sinestrari, "Convexity estimates for mean curvature flow and singularities of mean convex surfaces", *Acta Math.* **183**:1 (1999), 45–70. MR 2001c:53094 Zbl 0992.53051
- [Huisken and Sinestrari 1999b] G. Huisken and C. Sinestrari, "Mean curvature flow singularities for mean convex surfaces", *Calc. Var. Partial Differential Equations* **8**:1 (1999), 1–14. MR 99m:58057 Zbl 0992.53052
- [Huisken and Sinestrari 2009] G. Huisken and C. Sinestrari, "Mean curvature flow with surgeries of two-convex hypersurfaces", *Invent. Math.* **175**:1 (2009), 137–221. MR 2010a:53138 Zbl 1170.53042
- [Krylov 1982] N. V. Krylov, "Boundedly inhomogeneous elliptic and parabolic equations", *Izv. Akad. Nauk SSSR Ser. Mat.* **46**:3 (1982), 487–523. In Russian; translated in *Math. USSR Izv.* **20**:3 (1983), 459–492. MR 84a:35091 Zbl 0529.35026
- [Langford 2014] M. Langford, Motion of hypersurfaces by curvature, Ph.D. thesis, Australian National University, 2014.

Received 8 Oct 2013. Accepted 30 Jun 2014.

BEN ANDREWS: ben.andrews@anu.edu.au

Mathematical Sciences Institute, Australian National University, ACT 0200, Australia

and

Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

MAT LANGFORD: mathew.langford@uni-konstanz.de Mathematical Sciences Institute, Australian National University, ACT 0200, Australia and

Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski

zworski@math.berkeley.edu

University of California Berkeley, USA

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Yuval Peres	University of California, Berkeley, USA peres@stat.berkeley.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
László Lempert	Purdue University, USA lempert@math.purdue.edu	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachussets Institute of Technology, USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Da Frank.Merle@u-cergy.fr	an Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2014 is US \$180/year for the electronic version, and \$355/year (+\$50, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW[®] from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2014 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 7 No. 5 2014

Resonance widths for the molecular predissociation ALAIN GRIGIS and ANDRÉ MARTINEZ	1027
Quasimodes and a lower bound on the uniform energy decay rate for Kerr–AdS spacetimes GUSTAV HOLZEGEL and JACQUES SMULEVICI	1057
Cylindrical estimates for hypersurfaces moving by convex curvature functions BEN ANDREWS and MAT LANGFORD	1091
Uniform L ^p -improving for weighted averages on curves BETSY STOVALL	1109
Propagation of singularities for rough metrics HART F. SMITH	1137
Well-posedness of Lagrangian flows and continuity equations in metric measure spaces LUIGI AMBROSIO and DARIO TREVISAN	1179
Erratum to "Poisson statistics for eigenvalues of continuum random Schrödinger operators" JEAN-MICHEL COMBES, FRANCOIS GERMINET and ABEL KLEIN	1235