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UNIFORM L p-IMPROVING FOR WEIGHTED AVERAGES ON CURVES

BETSY STOVALL

We define variable parameter analogues of the affine arclength measure on curves and prove near-optimal
L p-improving estimates for associated multilinear generalized Radon transforms. Some of our results are
new even in the convolution case.

1. Introduction

We consider weighted versions of multilinear generalized Radon transforms of the form

M0( f1, . . . , fk) :=

∫
Rd

k∏
i=1

fi ◦πi (x)a(x) dx, (1-1)

where a is a continuous cutoff function and the πi : R
d
→ Rd−1 are smooth submersions.

In [Tao and Wright 2003; Stovall 2011], near endpoint estimates of the form

|M0( f1, . . . , fk)| ≤ C
k∏

i=1

‖ fi‖L pi (Rd−1), (1-2)

with C = C(π1, . . . , πk, p1, . . . , pk), were established for M0 under the assumption that the πi satisfy
a certain finite-type condition on the support of a. In particular, it was found that the exponents on the
right in (1-2) depend on this type. These results are nearly sharp in the sense that if the type of the πi

degenerates anywhere on the set where a 6= 0, then the corresponding near endpoint estimates also fail. It
is not, however, known in general what happens when the type degenerates at some point where a 6= 0
(for instance, on the boundary of the support) or the rate at which the constants in (1-2) blow up as the
type degenerates.

Our goal is to quantify and counteract the failure of (1-2) in such situations by replacing M0 by
an appropriately weighted operator, for which we will establish near-optimal Lebesgue space bounds.
The exponents (though not the implicit constants) in these bounds will be independent of the choice of
π1, . . . , πk and the cutoff function a. Further, the weights we employ transform naturally under changes
of coordinates, so they may reasonably be viewed as generalizations of the affine arclength measure on
curves in Rd . A number of recent articles (such as [Bak et al. 2009; Dendrinos et al. 2009; Dendrinos and
Müller 2013; Dendrinos and Stovall 2012; Dendrinos and Wright 2010; Drury and Marshall 1987; Oberlin
2002; 2003; 2010; Sjölin 1974; Stovall 2010]) have been devoted to establishing uniform estimates for
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operators weighted by affine arclength measure, and these results provide much of the motivation for this
article.

A motivating example. Stating the main results of this article, or even the results of [Tao and Wright
2003; Stovall 2011] requires some notation, so we postpone this until the next section. By way of
background and motivation, we will spend the remainder of the introduction describing a concrete case
about which much is known, and which provides the inspiration for the more general operators considered
in this article. Let γ : R→ Rd be a smooth curve and a a continuous cutoff function. Consider the
operator

T0 f (x) :=
∫

R

f (x − γ (t))a(t) dt, f ∈ C0
0(R

d).

By duality, T0 : L p(Rd)→ Lq(Rd) if and only if, for all f ∈ L p(Rd) and g ∈ Lq(Rd),∣∣∣∣∫
Rd

∫
R

f (x − γ (t))g(x)a(t) dt
∣∣∣∣≤ C(γ, p, q)‖ f ‖L p(Rd )‖g‖Lq′ (Rd );

this may be compared with (1-2).
The curve γ is said to be of type (at most) N when det(γ ′(t), . . . , γ (d)(t)) vanishes to order at most

N at any point. The results of [Dendrinos and Stovall 2014] imply that if γ is of type N on the support
of a, ‖T0‖L p→Lq <∞ if (p−1, q−1) lies in the trapezoid with vertices

(0, 0), (1, 1), (p−1
N , q−1

N ) :=
( d

N+d(d+1)/2
,

d−1
N+d(d+1)/2

)
, (1− q−1

N , 1− p−1
N ). (1-3)

(The nonendpoint result was due to Tao and Wright [2003].) Further, if N is the maximal type of T0 on
{t : a(t) 6= 0}, this is sharp. If γ is not of finite type, T0 satisfies no L p(Rd)→ Lq(Rd) estimates off the
line {p = q}.

It was first noticed in [Sjölin 1974] and [Drury and Marshall 1985] that affine, as opposed to Euclidean,
arclength has a uniformizing effect on the bounds for convolution and Fourier restriction operators
associated to possibly degenerate curves. It is now known that, for a polynomial curve γ , the convolution
operator with affine arclength measure on γ ,

T f (x) :=
∫

R

f (x − γ (t))|det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1)) dt,

maps L p(Rd) boundedly into Lq(Rd) if and only if (p−1, q−1) lies on the line segment joining (p−1
0 , q−1

0 ),
(1− q−1

0 , 1− p−1
0 ), with p0, q0 defined as above (provided T 6≡ 0) [Oberlin 2002; Dendrinos et al. 2009;

Stovall 2010]. Further, the operator norms these papers established depend only on the degree of the
polynomial; for this, it is crucial that the affine arclength transforms nicely under reparametrizations and
affine transformations. Further investigations have been carried out in [Oberlin 2010; Dendrinos and
Stovall 2014] in the nonpolynomial case. The above mentioned results are essentially optimal, both in
terms of the exponents involved and in terms of pointwise estimates on the weight [Oberlin 2003] (see
Proposition 2.2). Analogous results are also known for the restricted X-ray transform [Dendrinos and
Stovall 2012; 2014]. There have also been a number of recent articles aimed at establishing uniform
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estimates for Fourier restriction to curves with affine arclength measure, for instance [Bak et al. 2009;
Dendrinos and Müller 2013; Dendrinos and Wright 2010; Stovall 2014].

Our goal in this article is to address the gap between the general results of [Tao and Wright 2003;
Stovall 2011] and the type-independent results of [Dendrinos et al. 2009; Dendrinos and Stovall 2012;
Oberlin 2002; Stovall 2010] by introducing a generalization of the affine arclength measure, well-suited
to (1-1). We will also prove near endpoint bounds for the weighted operator and, in particular, will
generalize the results of [Tao and Wright 2003; Stovall 2011] to the case when the πi completely fail to
be of finite type on the support of a. Some of our results are new even in the translation-invariant case.

2. Basic notions and statements of the main results

Notation. Throughout the article, we will use the now-standard notation A . B to mean that A ≤ C B
for some innocuous implicit constant C . The value of this constant will be allowed to change from line
to line. The meaning of “innocuous” will be specified at the beginning of most sections, though in this
section it will be specified in situ, and in the next it does not arise. Additionally, A & B if B . A, and
A∼ B if A. B and B . A. We denote the nonnegative integers by Z0. If ` is any integer, δ is an `-tuple
of real numbers and β ∈ Z`0 is a multiindex, we denote by δβ the quantity δβ1

1 · · · δ
β`
` .

We will also use some less standard notation. We consider the partial order � on Zk
0 defined by b1 � b2

if bi
1 ≤ bi

2 for 1≤ i ≤ k. We say b1 ≺ b2 if at least one of these inequalities is strict. If B⊆ Zk
0 is any set,

we define a polytope
P(B) := ch

⋃
b∈B

([0,∞)k +{b}),

where “ch” denotes the convex hull.
Fix a dimension d and an integer k ≥ 2; k may exceed d. We will consider vector fields X1, . . . , Xk ,

defined and smooth on the closure of an open set U . A word w is an element of W :=
⋃
∞

n=1{1, . . . , k}n .
To each word is associated a vector field Xw, defined recursively by X(i) := X i for 1 ≤ i ≤ k and
X(w,i) := [Xw, X i ] for w ∈W and 1≤ i ≤ k. The degree of w ∈W is the k-tuple, degw, whose i-th entry
is the number of occurrences of i in w.

All brackets of such vector fields lie in the span of the Xw: if w,w′ ∈W,

[Xw, Xw′] =
∑

deg w̃=degw+degw′
C w̃
w,w′Xw̃, (2-1)

where C w̃
w,w′ is an integer. Indeed, by the Jacobi identity,

[Xw, [Xw′, X i ]] = [[Xw, Xw′], X i ] − [X(w,i), Xw′],

so (2-1) is easily obtained by inducting on ‖degw′‖`1 [Hörmander 1967]. We note that for each b ∈ Nk

there are only finitely many words w with degw = b, so the sum in (2-1) is finite.
If I = (w1, . . . , wd) is a d-tuple of words, we define deg I :=

∑d
i=1 degwi and

λI := det(Xw1, . . . , Xwd ).
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The Newton polytope of the vector fields X1, . . . , Xk at the point x0 ∈U is defined to be

Px0 := P({deg I : I is a d-tuple of words satisfying λI (x0) 6= 0}),

and we define the Newton polytope of a set A ⊆U to be

PA := ch
(⋃

x∈A

Px

)
.

The Hörmander condition is the statement that Px0 6=∅ for each x0 ∈U . When the X i are nonvanishing
vector fields tangent to the fibers of the πi , this is the finite-type hypothesis in [Tao and Wright 2003;
Stovall 2011].

Results. Let U ⊆ Rd be an open set and let π1, . . . , πk :U → Rd−1 be smooth submersions (i.e., they
have surjective differentials). Letting ? denote the composition of the Hodge-star operator, which maps
(d−1)-forms to 1-forms, with the natural identification of 1-forms with vectors via the Euclidean metric,
we define vector fields

X j := ?(dπ1
j ∧ · · · ∧ dπd−1

j ), 1≤ j ≤ k. (2-2)

Let a be a continuous function with compact support contained in U .
Fix a d-tuple of words I0 = (w1, . . . , wd) and define the generalized affine arclength

ρ = ρI0 := |det(Xw1, . . . , Xwd )|
1/(|deg I0|1−1), (2-3)

where |b|1 denotes the `1-norm. Define a k-linear form M : [C0(Rd)]k→ C by

M( f1, . . . , fk) :=

∫
Rd

k∏
j=1

f j ◦π j (x)ρ(x)a(x) dx . (2-4)

For b ∈ Rk with |b|1 > 1, define
q(b) := b

|b|1−1
. (2-5)

It is easy to check that q equals its own inverse. The following is our main theorem.

Theorem 2.1. Assume that deg I0 is an extreme point of Psupp a . Then, for all p ∈ [1,∞]k satisfying
(p−1

1 , . . . , p−1
k )� q(b) and p−1

j < q j (b) when (deg I0) j 6= 0, we have the estimate

|M( f1, . . . , fk)|.
k∏

j=1

‖ f j‖L p j (Rd−1), (2-6)

for all continuous f1, . . . , fk . The implicit constant depends on the π j , a, p and b0, but not on the f j .
Thus M extends to a bounded k-linear form on

∏k
j=1 L p j (Rd−1).

The extremality hypothesis seems natural by analogy with the translation-invariant case; it also leads to
certain invariants of the weight, as we will discuss below. However, we ultimately prove a more general
result, Theorem 6.1, which does not require extremality. (We postpone stating the latter because it requires
more notation.)
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With the given weight, the above theorem is nearly sharp. Indeed, under the hypotheses and notation
above, we have the following.

Proposition 2.2. Let µ be a nonnegative Borel measure whose support is contained in U , and assume
that the bound

Mµ(χE1, . . . , χEk ) :=

∫
Rd

k∏
j=1

χE j ◦π j dµ≤ A(µ)
k∏

j=1

|E j |
1/p j (2-7)

holds for all Borel sets E1, . . . , Ek⊆Rd−1 and some constant A(µ)<∞. Ifµ 6≡0, (p1, . . . , pk)∈[1,∞]k .
If
∑

j p−1
j > 1, let bp := q(p−1

1 , . . . , p−1
k ). Then µ({x : bp /∈ Px}) = 0. If in addition bp is an extreme

point of Psuppµ, then µ is absolutely continuous with respect to Lebesgue measure and its Radon–Nikodym
derivative satisfies

dµ
dx
. A(µ)

∑
deg I=bp

|λI |
1/(|bp|1−1). (2-8)

The implicit constant in (2-8) may be chosen to depend only on d and p; A(µ) has the same value in (2-7)
and (2-8).

In the translation-invariant case, a similar result is due to Oberlin [2003] (see [Dendrinos and Stovall
2012] for the restricted X-ray transform). The final statement in the proposition only applies in the
endpoint case, which is not otherwise addressed in this article. The endpoint version of Theorem 2.1 is
known to fail without further assumptions on the X i than those made here, as can be seen by considering
the example of convolution with affine arclength on γ (t)= (t, e−1/t sin(1/tk)), t > 0, for k sufficiently
large [Sjölin 1974].

The proofs of Theorem 2.1 and Proposition 2.2 will rely on a more general result about smooth vector
fields X1, . . . , Xk on Rd . To state this result, we need some additional terminology.

Let J ∈ {1, . . . , k}d . We define deg J to be the k-tuple whose i-th entry is the number of occurrences
of i in J . If α ∈ Zd

0 is a multiindex, we define degJ α to be the k-tuple whose i-th entry is
∑

`:J`=i α`.
We define

9 J
x0
(t1, . . . , td) := exp(td X Jd ) ◦ · · · ◦ exp(t1 X J1)(x0). (2-9)

We define another polytope,

P̃x0 := P
(
{deg J + degJ α : J ∈ {1, . . . , k}d and α ∈ (Z0)

d satisfy ∂αt det D9 J
x0
(0) 6= 0}

)
.

Proposition 2.3. For each x0 ∈U , P̃x0 = Px0 . Furthermore, for each extreme point b0 of Px0 ,∑
deg I=b0

|λI (x0)| ∼
∑

J∈{1,...,k}d

∑
α∈(Z0)d :

deg J+degJ α=b0

|∂αt det D9 J
x0
(0)|. (2-10)

The implicit constants may be taken to depend only on d and b0, and in particular may be chosen to be
independent of the X i .
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Examples. We take a moment to discuss a few concrete cases where these results apply.

The translation-invariant case. Let γ :R→Rd be a smooth map and for (t, x)∈R1+d define π1(t, x)= x ,
π2(t, x)= x − γ (t). Thus the unweighted operator M0 in (1-1) is essentially convolution with Euclidean
arclength measure on γ , paired with a test function.

Using the definition above, X1 = ∂t , X2 = ∂t +γ
′
·∇x . If w is any word of length n ≥ 2 and if the first

two letters of w are 1 and 2, Xw(t, x)= γ (n)(t). If d ≥ 2, the Hörmander condition is equivalent to the
statement that the torsion of γ does not vanish to infinite order at any point. We note in particular that

|det(X1, X2, X(1,2), . . . , X(1,...,1,2))| = |det(X1, X2, X(2,1), . . . , X(2,...,2,1))| = |det(γ ′, . . . , γ (d))|

and, if U is any open set, the only extreme points of PU (unless PU is empty) are( 1
2 d(d − 1)+ 1, d

)
,

(
d, 1

2 d(d − 1)+ 1
)
.

Thus the affine arclength in this case is defined in the usual way:

ρ(t, x)= |det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1)).

By Theorem 2.1, for any smooth γ : R→ Rd and any continuous cutoff function a, the convolution
operator

T f (x)=
∫

f (x − γ (t))|det(γ ′(t), . . . , γ (d)(t))|2/(d(d+1))a(t) dt

maps L p(Rd) into Lq(Rd) whenever (p−1, q−1) lies in the interior of the trapezoid with vertices as in
(1-3) in the case N = 0. For general smooth curves this result is new but, as mentioned in the introduction,
even stronger results are known in some special cases.

Restricted X-ray transforms. Let γ : R→ Rd−1 be a smooth map and, for (s, t, x) ∈ R1+1+d−1, define
π1(s, t, x) := (t, x), π2(s, t, x) := (s, x − sγ (t)). Then the operator M0 in (1-1) is the restricted X-ray
transform

X f (t, x)=
∫

R

f (s, x − sγ (t))a(s, t) ds,

paired with a test function. Using the above definition,

X1 = ∂s, X2 = ∂t + sγ ′(t) · ∇x .

If d ≥ 3, the only (d+1)-tuples of words (w1, . . . , wd+1) with det(Xw1, . . . , Xwd+1) 6≡ 0 are, after
reordering, those satisfying

w1 = 1, w2 = 2, wi = (1, 2, . . . , 2), 3≤ i ≤ d + 1.

Thus the only extreme point of the Newton polytope is (d, 1+ 1
2 d(d − 1)), and

ρ(s, t, x)= |det(γ ′(t), . . . , γ (d−1)(t))|2/(d(d+1)),
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which is a power of the usual affine arclength. Theorem 2.1 thus gives a partial generalization of the
results of [Dendrinos and Stovall 2012], wherein a sharp strong-type bound for the X-ray transform
restricted to polynomial curves with affine arclength was established.

Generalized Loomis–Whitney. Let π1, . . . , πd : R
d
→ Rd−1 be smooth submersions. The point (1, . . . , 1)

is always extreme or in the exterior of the Newton polytope, so for ε > 0∣∣∣∣∫
Rd

d∏
i=1

fi ◦πi (x)|det(X1, . . . , Xd)(x)|1/(d−1)a(x) dx
∣∣∣∣. d∏

i=1

‖ fi‖Ld−1+ε(Rd−1),

with the implicit constant depending on the πi and ε. In the case when the X i do span at every point of the
support of a, the endpoint estimate was proved in [Bennett et al. 2005]. (The classical Loomis–Whitney
inequality is the endpoint estimate when the πi are linear and a ≡ 1.)

Outline. In Section 3, we show that the weights we employ satisfy certain natural invariants; this
makes them reasonable generalizations of the usual affine arclength measure. In Section 4, we prove
Proposition 2.3 by employing the results of [Street 2011] and a compactness argument; we also use a
combinatorial lemma, whose proof is postponed to the Appendix. In Section 5, we prove the optimality
result, Proposition 2.2. Finally, in Section 6, we prove a more general result, Theorem 6.1, which implies
Theorem 2.1. Our techniques for the proof of the main theorem are essentially those of [Christ 2008; Tao
and Wright 2003; Stovall 2011], with some modifications to handle the potential failure of the Hörmander
condition.

3. Invariants of the affine arclengths

Let U , π1, . . . , πk , and X1, . . . , Xk be as defined above. For 1≤ j ≤ k, let V j := π j (U ). Fix a d-tuple of
words I0, and assume that b0 := deg I0 is minimal in the sense that if deg I ′ ≺ deg I0, then λI ≡ 0. (This
minimality is essential.) Define ρ as in (2-3).

Proposition 3.1. Let F :U→Rd and G j :V j→Rd−1, 1≤ j≤k, be smooth maps. Define π̃ j :=G j◦π j◦F
for 1≤ j ≤ k, and let X̃ j , ρ̃ be defined as in (2-2), (2-3), with tildes inserted. Then

ρ̃ =

( k∏
j=1

|(det DG j ) ◦π j |
q j (b0)

)
|det DF |ρ ◦ F, (3-1)

where q is defined as in (2-5).

In the notation above, let a be a continuous, compactly supported function with supp a ⊆U , and define

M̃( f1, . . . , fk) :=

∫
U

k∏
j=1

f j ◦ π̃ j (x)ρ̃(x)a ◦ F(x) dx .

Proposition 3.1 implies that if each G j is equal to the identity and F is one-to-one, then

M̃( f1, . . . , fk)= M( f1, . . . , fk).



1116 BETSY STOVALL

If we simply assume that F and all of the G j are one-to-one, the proposition implies that

sup
f1,..., fk 6≡0

M̃( f1, . . . , fk)∏k
j=1 ‖ f j‖L p j (Rd−1)

= sup
f1,..., fk 6≡0

M( f1, . . . , fk)∏k
j=1 ‖ f j‖L p j (Rd−1)

for (p−1
1 , . . . , p−1

k ) := q(b0).

We stress, however, that our theorem covers only the nonendpoint cases satisfying (p−1
1 , . . . , p−1

k ) 6= q(b0)

and b0 extreme, so it is not known that either side is finite except in certain cases; see [Bennett et al. 2005;
Dendrinos et al. 2009; Dendrinos and Stovall 2012; Oberlin 2002; Stovall 2010].

If we fix j , we may consider the family of curves γ x
j (t) := π j (x, t). For any smooth one-to-one

function φ : R→ R, (x, t) 7→ (x, φ(t)) is also smooth and one-to-one and has Jacobian determinant
φ′(t). Thus we obtain:

Corollary 3.2. The generalized affine arclength defines a parametrization-invariant measure on each of
the curves γ x

j = π j (x, t).

Proof of Proposition 3.1. We will prove the proposition first when the G j are equal to the identity and
then when F is. The general case follows by taking compositions.

In the first case, it suffices by simple approximation arguments to prove the identity when det DF 6= 0.
In this case, careful computations reveal that

X̃ j = (det DF)F∗X j ,

where F∗ is the pullback by F , given by

F∗X := (DF)−1 X ◦ F. (3-2)

For 1 ≤ i ≤ k, let Yi = F∗X i . Then, by naturality of the Lie bracket, Yw = F∗Xw for w ∈W. By
induction (with base casew= ( j)), the coordinate expression for the Lie bracket [X, X ′]= X (X ′)−X ′(X),
and the product rule, for each w ∈W,

X̃w = (det DF)|degw|1Yw +
∑

degw′≺degw

fw,w′Yw′, (3-3)

where the fw,w′ are smooth functions.
By (3-3), (3-2) and our minimality assumption,

det(X̃w1, . . . , X̃wd )= (det DF)|b0|1 det(Yw1, . . . , Ywd )+
∑

b′≺b0

∑
deg I ′=b′

f I,I ′ det(Yw′1, . . . , Yw′d )

= (det DF)|b0|1−1 det(Xw1, . . . , Xwd ) ◦ F + 0.

This completes the proof in the first case.
In the second case, when F is the identity, it is easy to compute X̃ j = [(det DG j ) ◦π j ]X j , and it can

be shown using the product rule and minimality of b0 (as above) that

det(X̃w1, . . . , X̃wd )=

k∏
j=1

[(det DG j ) ◦π j ]
b j

0 det(Xw1, . . . , Xwd ),

which implies (3-1). �
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4. Equivalence of the two polytopes: the proof of Proposition 2.3

Fix a point b0 ∈ [0,∞)k . We say that an object (such as a constant, vector, or set) is admissible if it may
be chosen from a finite collection, depending only on b0 and d , of such objects. In particular, all implicit
constants in this section will be admissible.

The proof of Proposition 2.3 will rely on a compactness result about polytopes with vertices in Zk
0:

Proposition 4.1. Let B⊆ Zk
0 and assume that b0 /∈ P(B). There exist

(i) ε > 0 and v0 ∈ (ε, 1]k such that v0 · b0+ ε < v0 · p for every p ∈ P(B), and

(ii) a finite set A⊆ Zk
0 such that b0 /∈ P(A) and P(B)⊆ P(A).

Moreover, ε, v0, A are admissible.

Note that this also applies when b0 is an extreme point of P(B), since in this case b0 /∈ P(B \ {b0}).
Assuming the validity of Proposition 4.1 for now (it will be proved in the Appendix), we devote the

remainder of the section to the proof of Proposition 2.3.
We may of course assume that x0= 0 and that U is a bounded neighborhood of 0. Furthermore, we may

assume that k > d and X i = ∂i , 1≤ i ≤ d . Indeed, if the proposition holds under this assumption, it holds
for ∂1, . . . , ∂d , X1, . . . , Xk , with k+ d replacing k. We may then transfer the result back to X1, . . . , Xk

by restricting to those b ∈ [0,∞)k+d with b1
= · · · = bd

= 0. By this assumption, P0 6=∅, and it suffices
to prove that if b0 is an extreme point of Px0 then (2-10) holds, and if b0 /∈ Px0 then b0 /∈ P̃x0 .

We begin with the case when b0 is an extreme point of P0. Fix a neighborhood V of 0, sufficiently
small for later purposes, with V ⊆U . Choose a d-tuple I0 = (w1, . . . , wd) ∈Wd with deg I0 = b0 and

|λI0(0)| = max
deg I=b0

|λI (0)|. (4-1)

(Note that I0 is admissible, since only finitely many d-tuples of words give rise to this degree.) By
smoothness of the X j , we may assume that V is so small that

1
4 |λI0(0)| ≤

1
2 max

deg I=b0
|λI (x)| ≤ |λI0(x)| ≤ 2|λI0(0)|, for all x ∈ V .

By Proposition 4.1, we may choose admissible v0 = (v
1
0, . . . , v

k
0) ∈ (0, 1]k and ε > 0 such that

v0 · b0+ ε < v0 · p for every p ∈ P0 ∩Zk
0 \ {b0}.

Lemma 4.2. For each m ≥ 1, there exists δ(m) > 0, depending on m, b0, X1, . . . , Xk such that, for all
0< δ < δ(m), the map

8δ(y1, . . . , yd) := exp
(
y1δ

v0·degw1 Xw1 + · · ·+ ydδ
v0·wd Xwd

)
(0) (4-2)

and the pullbacks

Y δj := (8
δ)∗δv

j
0 X j = (D8δ)−1δv

j
0 X j ◦8

δ (4-3)

satisfy these properties: 8δ is a diffeomorphism of the unit ball B(1) onto a neighborhood of 0 in V ,

|det D8δ(y)| ∼ δv0·b0 |λI0(0)|, y ∈ B(1), (4-4)
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‖Y δj ‖Cm(B(1)) . 1, 1≤ j ≤ k, (4-5)

|det(Y δw1
(y), . . . , Y δwd

(y))| ∼ 1, y ∈ B(1). (4-6)

Proof. Recall that W is the set of all words. Let

W0 := {w ∈W : degw · v0 ≤ d} and W1 := {w ∈W : d < degw · v0 ≤ 2d}. (4-7)

Since v0 is an admissible element of (0, 1]k , these are admissible, finite sets, and W0 contains the one-letter
words (1), (2), . . . , (k). Furthermore, W0 contains b0 since our choice of v0 and assumption that X j = ∂ j

for 1≤ j ≤ d imply that

v0 · b0 ≤ v0 · (1, . . . , 1, 0, . . . , 0)= (v0)1+ · · ·+ (v0)d ≤ d.

The vector fields Xw are all smooth, W0 ∪W1 is a finite set, and each coefficient of v0 is positive.
Thus for each M ≥ 0, for all sufficiently small δ > 0 and all w ∈W0 ∪W1,

‖δv0·degwXw‖C0(V ) ≤
1
d

dist(0, ∂V ), ‖δv0·degwXw‖C M (V ) ≤ 1. (4-8)

Additionally, by our choice of v0 and ε,

|δv0·deg IλI (0)|< δε|δv0·b0λI0(0)|, I ∈ (W0 ∪W1)
d , deg I 6= b0. (4-9)

By the Jacobi identity, if w,w′ ∈W0,

[δv0·degwXw, δv0·degw′Xw′] =
∑

deg w̃=degw+degw′
C w̃
w,w′(δ

v0·deg w̃Xw̃), (4-10)

for constants C w̃
w,w′ that are admissible because W0 is. If v0 · (degw+ degw′)≤ d , each w̃ in the sum is

an element of W0. If not, each w̃ is in W1, and we can expand

δv0·deg w̃Xw̃ =
d∑

j=1

δv0·deg w̃X j
w̃∂ j =

d∑
j=1

(δv0·deg w̃−v j
0 X j

w̃)(δ
v

j
0 X j ).

Note that v0 · deg w̃− v j
0 > 0 for w̃ ∈W1. Using (4-10) to put the pieces back together, for sufficiently

small δ > 0 and any w,w′ ∈W0,

[δv0·degwXw, δv0·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′ δ
v0·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C M (V ) . 1. (4-11)

The conclusion of the lemma is now a direct application of [Street 2011, Theorem 5.3], whose (lengthy)
proof uses compactness arguments and Gronwall’s inequality, among other tools. For the convenience
of the reader wishing to verify this, we provide a short dictionary to translate the notation. Let M be
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sufficiently large (depending on m, d, I0) and choose δ(m) > 0 sufficiently small that (4-8), (4-9) and
(4-11) all hold. Then the terms

{X1, . . . , Xq}, {d1, . . . , dq}, A, (δd X), n0(x, δ)

from [Street 2011] are, in our notation,

{Xw}w∈W0, {degw}w∈W0, {(δ
v1

0 , . . . , δv
k
0 ) : 0< δ ≤ δ(m)}, (δv0·degwXw)w∈W0, d.

A priori, the results of [Street 2011] only guarantee that for each m ≥ 0 there exists an admissible
constant η> 0 such that the conclusions hold on B(η). We want η= 1, but this is just a matter of rescaling.
Define

Dη

v0,I0
(t1, . . . , td) := (ηv0·degw1 t1, . . . , ηv0·degwd td);

then
8ηδ =8δ ◦ Dη

v0,I0
, Y ηδw = (D

η

v0,I0
)−1ηv0·degwYw ◦ Dη

v0,I0
.

Thus the lemma holds with a slightly smaller (η times the original) value of δ(M). �

Lemma 4.3. Let m be a sufficiently large admissible integer, and let Y1, . . . , Yk be vector fields with the
properties that

‖Y j‖Cm(B(1)) . 1, (4-12)

|det(Yw1, . . . , Ywd )| ∼ 1 on B(1); (4-13)

here we recall that (w1, . . . , wd)= I0. For J ∈ {1, . . . , k}d , define

9̃ J (t1, . . . , td) := etd YJd ◦ · · · ◦ et1YJ1 (0).

Then
max

J∈{1,...,k}d
‖det D9̃ J

‖C0(B(c0)) ∼ 1 (4-14)

for some admissible constant c0 > 0; in particular, 9̃ J is defined on the ball B(c0).

Proof. There are similar results in [Christ 2008; Christ et al. 1999; Stovall 2011; Tao and Wright 2003],
but without the uniformity, so we give a complete proof.

The upper bound ‖det D9̃ J
‖C0(B(c0))∼ 1 is an immediate consequence of (4-12) for m ≥ 2, by Picard’s

existence theorem.
For the lower bound, we first show that if m ≥ |b0|1+2, the left side of (4-14) is nonzero. For 1≤ i ≤ d

and J ∈ {1, . . . , k}i , define
9̃ J

i (t1, . . . , ti ) := eti YJi ◦ · · · ◦ et1YJ1 (0);

9̃ J
i ∈ Cm+1(B(c0)) for admissible c0 > 0 by standard ODE existence results. Supposing that the left side

of (4-14) is zero, there exists some minimal i ∈ {0, . . . , d − 1} such that

max
J∈{1,...,k}i+1

‖∂t19̃
J
i+1 ∧ · · · ∧ ∂ti+19̃

J
i+1‖C0(B(c0)) = 0.

By (4-13), the Y j cannot all vanish at zero, so this i is at least 1.
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By minimality of i , there exist J ∈ {1, . . . , k}i , t0 ∈ Ri with |t0| < c0, and ε > 0 such that 9̃ J
i is an

injective immersion on {t ∈Ri
: |t−t0|<ε}=: Bt0(ε). Our assumption and the definition of exponentiation

imply that, for all 1≤ j ≤ k and (t1, . . . , ti ) ∈ B(c0),

0=
(
∂t19̃

(J, j)
i+1 ∧· · ·∧ ∂ti+19̃

(J, j)
i+1

)
(t1, . . . , ti , 0)=

(
∂t19̃

J
i ∧· · ·∧ ∂ti 9̃

J
i
)
(t1, . . . , ti )∧Y j

(
9̃ J

i (t1, . . . , ti )
)
.

Therefore Y1, . . . , Yk are tangent to 9̃ J
i (Bc0(ε)), as must be any Lie brackets that are defined, in particular

all of those up to order m. Since m ≥ |b0|1, this contradicts (4-13). Tracing back, we see that we must
have det 9̃ J

6≡ 0 on B(c0) for some J ∈ {1, . . . , k}d .
Now we prove that there is a uniform lower bound for m := |b0|1+ 3. If not, there exists a sequence(

Y (n)1 , . . . , Y (n)k

)
satisfying hypotheses (4-12) and (4-13), but with

max
J∈{1,...,k}d

‖det D9̃(n),J
‖C0(B(c0))→ 0,

where 9̃(n),J (t1, . . . , td) := exp
(
tdY (n)Jd

)
◦ · · · ◦ exp

(
t1Y (n)J1

)
(0). By Arzelà–Ascoli, after passing to a

subsequence, each
(
Y (n)j

)
converges in Cm−1(B(1)) to some vector field Y j . Thus for |degw|1 ≤ m− 1,

Y (n)w →Yw, and by standard ODE results, for each J , the sequence (9̃(n),J ) converges to 9̃ J in Cm(B(c0)).
So Y1, . . . , Yk satisfy hypotheses (4-12) and (4-13) (the former with m = |b0|1+ 2), but det D9̃ J

≡ 0 on
B(c0) for all J ∈ {1, . . . , k}d . This is impossible, so the lower bound in (4-14) must hold. �

We return to a consideration of the vector fields X1, . . . , Xk in the next lemma, where we transfer the
inequality in Lemma 4.3 from 9̃ J to 9 J .

Lemma 4.4. For J ∈ {1, . . . , k}d and α ∈ Zd
0 , if v0 · (deg J + degJ α) < v0 · b0, then ∂α det D9 J (0)= 0.

Furthermore, ∑
J∈{1,...,k}d

∑
α∈(Z0)d

v0·(deg J+degJ α)=v0·b0

|∂α det D9 J (0)| ∼ |λI0(0)|. (4-15)

Proof. For J ∈ {1, . . . , k}d , let

9 J,δ
:=9 J

◦ Dδ
J , where Dδ

J (t1, . . . , td) := (δv
J1
0 t1, . . . , δv

Jd
0 td),

9̃ J,δ
:= etd Y δJd ◦ · · · ◦ et1Y δJ1 (0),

with Y δ1 , . . . , Y δk as in (4-3). By naturality of exponentiation, 9 J,δ
=8δ ◦ 9̃ J,δ, where 8δ is defined in

(4-2). Hence by Lemmas 4.2 and 4.3,

max
J∈{1,...,k}d

‖det D9 J,δ
‖C0(B(c0)) ∼ δ

v0·b0 |λI0(0)|, 0< δ < δ(m), (4-16)

where m =m(b0, d) is sufficiently large and δ(m) is the (inadmissible) constant from Lemma 4.2. As we
will see, the lemma follows by sending δ↘ 0.
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Let M = M(b0, d) be a sufficiently large integer, let J ∈ {1, . . . , k}d , and let P J,δ be the degree M
Taylor polynomial of det D9 J,δ, centered at 0. Then

‖P J,δ
− det D9 J,δ

‖C0(B(c0)) =

(
δ

δ(m)

)v0·deg J
‖P J,δ(m)

− det D9 J,δ(m)
‖C0(Dδ/δ(m)B(c0))

. i
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
‖det D9 J,δ(m)

‖C0(Dδ/δ(m)B(c0))

.
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
, (4-17)

where the first inequality is by Taylor’s theorem and admissibility of M , and the second is from (4-8), if
m is sufficiently large, depending on M . Motivated by this inequality, we assume that v0 ·b0 < M mini v

i
0.

By the equivalence of all norms on the space of polynomials of d variables of degree at most M ,

‖P J,δ
‖C0(B(c0)) ∼

∑
|α|1≤M

|∂αP J,δ(0)| =
∑
|α|1≤M

δv0·(deg J+degJ α)|∂α det D9 J (0)|. (4-18)

If α ∈ Zd
0 and v0 · (deg J + degJ α)≤ v0 · b0, then |α|1 ≤ (v0 · degJ α)/mini v

i
0 ≤ M , and

δv0·(deg J+degJ α)|∂α det D9 J (0)| = |∂αP J,δ(0)|. ‖P J,δ
‖C0(B(c0))

. ‖det D9 J,δ
‖C0(B(c0))+

(
δ

δ(m)

)v0·deg J+(M+1)mini v
i
0

. δv0·b0 |λI0(0)| +
(

δ

δ(m)

)v0·deg J+(M+1)mini v
i
0
.

Sending δ↘ 0, we see that

∂α det D9 J (0)= 0 whenever v0 · (deg J + degJ α) < v0 · b0, (4-19)

|∂α det D9 J (0)|. |λI0(0)| if v0 · (deg J + degJ α)= v0 · b0. (4-20)

Now for the lower bound. By (4-16) and the fact that there are only finitely many choices for J , there
exist J ∈ {1, . . . , k}d and a sequence δn ↘ 0 such that

‖det D9 J,δn‖C0(B(c0)) & δ
v0·b0
n |λI0(0)|. (4-21)

Since M mini v
i
0 > v0 · b0 and λI0(0) 6= 0, (4-21), (4-17) and (4-18) imply that for δn sufficiently

(inadmissibly) small,

δv0·b0
n |λI0(0)|. ‖P

J,δn‖C0(B(c0)) .
∑
|α|1≤M

δ
v0·(deg J+degJ α)
n |∂α det D9 J (0)|.

Applying (4-19) and letting n→∞,

|λI0(0)|.
∑

v0·(deg J+degJ α)=v0·b0

|∂α det D9 J (0)|.

This completes the proof of (4-15), and thus of Lemma 4.4. �

By our choice of v0, (4-15) is just (2-10), so to complete the proof of Proposition 2.3, it suffices to
prove the following.
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Lemma 4.5. P0 = P̃0 .

Proof. By (2-10), P̃0 contains the extreme points of P0, so P0 ⊆ P̃0. Now suppose that b0 /∈ P0. Then
there exist v0 ∈ (0, 1]k and ε > 0 such that v0 · b0+ ε < v0 · p, for all p ∈ P0. At least one extreme point
b of P0 satisfies v0 · b =maxp∈P0 v0 · p; perturbing v0 slightly, we may assume that there exists b1 ∈ P0

such that

v0 · b0 < v0 · b1 < v0 · p, for all p ∈ P0 with p 6= b1.

By Lemma 4.4, ∂α det D9 J (0)= 0 whenever (deg J + degJ α) · v0 < v0 · b1, so b0 /∈ P̃0. Thus P0 ⊆ P̃0,
and we are done. �

Remarks. A more direct argument, using the Baker–Campbell–Hausdorff formula, should be possible,
but the author has not been able to carry this out. Let k = d and consider vector fields X1, . . . , Xd . Using
the approximation exp(t X)=

∑N
n=0(t

n/n!)Xn−1(X)+ O(|t |N ) [Christ et al. 1999], the formula for the
Lie derivative of a determinant of d vector fields, and somewhat tedious computations, one can show that

∂αt |t=0 det Dt
(
etd Xd ◦ · · · ◦ et1 X1

)
(x0)=±

∗∑
w1,...,wd

d∏
i=1

(
αi

degi wi+1, . . . , degi wd

)
det(Xw1, Xw2, . . . , Xwd ),

where ∗ indicates the sum is over those words wi = (w
1
i , . . . , w

ni
i ) that satisfy

∑
i degwi = α+(1, . . . , 1)

and w1
i = i >w2

i ≥ · · · ≥w
ni
i (in particular, w1 = (1)). Replacing X i above with X Ji gives an alternative

proof that the right (Jacobian) side of (2-10) is bounded by the left (determinant) side, but using this
formula to bound the left of (2-10) by the right seems nontrivial.

The estimate (2-10) may fail if b is not extreme (even if it is minimal). To see this, let γ (t) := (t, . . . , td)

and define X0 := ∂t , X i := ∂t −γ
′(t) ·∇x , 1≤ i ≤ d , and take b := (1+ 1

2 d(d−1), 1, . . . , 1). In this case,
the only I with deg I = b and λI 6≡ 0 are those of the form

I = ((1), ( j1), (1, j2), . . . , (1, . . . , 1, jd)),

with the ji distinct. Thus the left side of (2-10) is a nonzero dimensional constant. On the other hand,
simple combinatorial considerations show that the right side of (2-10) must be identically zero.

Less uniform versions of (2-10) may be found in [Christ et al. 1999; Stovall 2011; Tao and Wright
2003]. Let X1, . . . , Xk be smooth vector fields and assume that there exists a d-tuple I = (w1, . . . , wd)

such that |λI | ≥ 1 on U . Let δ1, . . . , δk be scalars satisfying the smallness and weak comparability
conditions

δi ≤ K , δi ≤ K δεj , 1≤ i, j ≤ k.

Then [Tao and Wright 2003; Stovall 2011] prove that there exist N ≥ |deg I |1 and N ′ (depending on I )
such that∑
|deg I |1≤N

( k∏
i=1

δ
(deg I )i
i

)
|λI (x0)| ∼

∑
J∈{1,...,k}d

∑
α∈(Z0)d

deg J+degJ α≤N ′

( k∏
i=1

δ
deg J+degJ α

i

)
|∂αt det Dt9

J
x0
(0)|, x0 ∈U,
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with inadmissible implicit constants. It is not shown, however, how to remove the dependence of the
implicit constant on ε, K , or the X i , or, in particular, how to remove the assumption that the Hörmander
condition holds uniformly.

5. Proof of the optimality result: Proposition 2.2

The entirety of this section will be devoted to the proof of Proposition 2.2. It suffices to prove the
proposition when suppµ ⊆ V , and V and W are bounded open subsets of U with V ⊆ W , W ⊆ U .
(Recall that U is the set on which the πi , and hence the X i , are defined.) By (2-7) with Ei = πi (V )
for 1≤ i ≤ k, µ(V ) <∞.

Throughout this section, an object will be said to be admissible if it depends (or it is taken from a finite
set depending) only on d and p = (p1, . . . , pk). All implicit constants will be admissible. The constant
A(µ) will always represent precisely the quantity in (2-7), and in particular will not be allowed to change
from line to line.

First suppose that p j0 < 1. Without loss of generality, j0 = 1. We may cover π1(V ) by CV,π1ε
−(d−1)

balls Bi of radius ε, so

µ(V )≤
∑

i

∫
χB1 ◦π1

k∏
j=2

χπ j (V ) ◦π j dµ≤ A(µ)
∑

i

|B1|
1/p1

k∏
j=2

|π j (V )|1/p j

≤ C(µ, d, p, V, π2, . . . , πk)ε
(d−1)(1/p1−1).

Letting ε→ 0, we see that µ≡ 0.
We now turn to the case when

∑
j p−1

j > 1. Replacing {X1, . . . , Xk} with {∂1, . . . , ∂d , X1, . . . , Xk},
(p1, . . . , pk) with (∞, . . . ,∞, p1, . . . , pk), and k with d + k if necessary, we may assume that X i = ∂i ,
1≤ i ≤ d , without affecting either of the sets

Z := {x ∈ V : bp /∈ Px}, � := {x ∈ V : bp is an extreme point of Px},

or the quantity on the right of (2-8).
The proposition will follow from the next two lemmas.

Lemma 5.1. µ(Z)= 0.

Lemma 5.2. If ρ :=
∑

deg I=bp
|λI |

1/(|bp|1−1) and

�n := {x ∈� : 2n
≤ ρ(x)≤ 2n+1

}, n ∈ Z,

then µ(�′). A(µ)2n
|�′| for any Borel set �′ ⊆�n .

Proof of Lemma 5.1. By Proposition 4.1, there exist admissible, finite sets Ai , i = 1, . . . ,C p,d such that
bp /∈ P(Ai ) for any i and, for each x ∈ Z , there exists an i such that Px ⊆ P(Ai ). For the remainder of
the proof of the lemma, we let A=Ai be fixed and define

Z ′ := {x ∈ Z : Px ⊆ P(A)}.

It suffices to show that µ(Z ′)= 0.
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Choose admissible ε > 0 and v ∈ (ε, 1]k such that

v · bp + ε < v · b, for b ∈ P(A).

Define

W0 := {w ∈W : v · degw ≤ d}.

Let N = Nd,p be an integer whose size will be determined in a moment and which is, in particular,
larger than d/ε. Since W is compact and contained in U , the X i are smooth on U and {Xw : w ∈W0}

contains the coordinate vector fields, it follows that there exists δ0 > 0, depending on the πi , p and W ,
such that for all 0< δ ≤ δ0, I ∈Wd

0 satisfying deg I ∈ P(A), x ∈W , and w,w′ ∈W0,

|δv·deg IλI (x)|< δεδv·bp , (5-1)

‖δv·degwXw‖C0(W ) ≤
1
d

dist(V, ∂W ), ‖δv·degwXw‖C N (W ) ≤ 1, (5-2)

[δv·degwXw, δv·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′δ
v·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C N (W )

. 1.

We omit the details since they are essentially the same as arguments found in the proof of Lemma 4.2.
For x ∈ Z ′ and 0< δ ≤ δ0, choose I δx ∈Wd

0 such that

δv·deg I δx |λI δx (x)| = max
I∈Wd

0

δv·deg I
|λI (x)|.

Let
8δx(t1, . . . , td) := exp

(
t1δv·degw1 Xw1 + · · ·+ tdδv·degwd Xwd

)
(x),

B(x, δ) := {8δx(t) : |t |< 1},
(5-3)

where I δx = (w1, . . . , wd). Then B(x, δ)⊆W by (5-2) and the fact that x ∈ Z ′ ⊆ V .
By the results of [Street 2011], provided N = Nd,p is sufficiently large, these balls are doubling in the

sense that |B(x, δ)| ∼ |B(x, 2δ)|, for all x ∈ Z ′ and 0< δ ≤ δ0. (Here we are using the fact that ε and v
are admissible.) Furthermore, for x ∈ V ,

|B(x, δ)| ∼ δv·deg I δx |λI δx (x)|, (5-4)

exp(t X i )(y) ∈ B(x,Cδ) whenever y ∈ B(x, δ), |t |< δv
i
, (5-5)

where C =Cd,p. By the doubling property, the change of variables formula and (5-5), if σi : πi (W )→Rd

is any smooth section of πi (i.e., σi ◦πi is the identity) with σi (πi (V ))⊆W , then

|B(x, δ)| ∼ |B(x,Cδ)| =
∫
πi (B(x,Cδ))

∫
R

χB(x,Cδ)(et X i (σi (y)) dt dy

≥

∫
πi (B(x,δ/2))

∫
R

χB(x,Cδ)(et X i (σi (y))) dt dy & δv
i
|πi (B(x, δ))|.

(5-6)



UNIFORM L p -IMPROVING FOR WEIGHTED AVERAGES ON CURVES 1125

By the Vitali covering lemma (as stated in [Stein 1993], for instance), for each 0< δ ≤ δ0 there exists
a collection of points {x j }

Mδ

j=1 ⊆ Z ′ such that Z ′ ⊆
⋃Mδ

j=1 B(x j , δ) and such that the balls B(x j ,C−1δ)

are pairwise disjoint. By this, (2-7) and the fact that χB(x j ,δ) ≤
∏k

i=1 χπi (B(x j ,δ)) ◦πi , (5-6), (5-4) and the
definition of bp, the doubling property and (5-1), and, finally, disjointness of the B(x j , δ),

µ(Z ′)≤
Mδ∑
j=1

µ(B(x j , δ))≤ A(µ)
∑

j

k∏
i=1

|πi (B(x j , δ))|
1/pi

. A(µ)
∑

j

|B(x j ,Cδ)|
∑

i 1/pi
∏

i

δ−v
i/pi

∼ A(µ)
∑

j

|B(x j ,Cδ)|(δv·deg I δx j
−v·bp
|λI δx j

(x j )|)
∑

i 1/pi−1

. A(µ)
∑

j

|B(x j ,C−1δ)|δε
∑

i 1/pi−1
≤ A(µ)|W |δε

∑
i 1/pi−1.

The lemma follows by sending δ to 0. �

Proof of Lemma 5.2. The proof is similar to that of Lemma 5.1. Fix n and �′ ⊆�n . Let x ∈�′. Since
�′ ⊆�, bp is an extreme point of Px . By the definition of ρ, maxdeg I=bp |λI (x)| ∼ 2n(|bp|1−1).

By Proposition 4.1 and a covering argument, we may assume that there exists a finite set A⊆ Zk
0 such

that bp /∈P(A) and for each x ∈�′, Px ⊆P(A∪{bp}). Choose ε > 0, v ∈ (ε, 1]k such that v ·bp+ε <v ·b
for each b ∈ P(A∪ {bp})∩Zk

0 \ {bp}, and let

W0 := {w ∈W : v · degw ≤ d}.

Since (1, . . . , 1, 0, . . . , 0) ∈ Px for each x ∈U , (1, . . . , 1, 0, . . . , 0) ∈ P(A∪ {bp}). Therefore we have
v · bp ≤

∑d
i=1 v

i
≤ d , so deg I = bp implies that I ∈Wd

0 .
Let N = Nd,p be a large integer. As before, there exists δn > 0, which depends on n, the πi and p,

such that for all 0< δ ≤ δn , x ∈�′, I ∈Wd
0 with deg I 6= bp, and w,w′ ∈W0,

|δv·deg IλI (x)|< δε max
deg I ′=bp

δv·deg I ′
|λI ′(x)|,

‖δv·degwXw‖C0(W ) ≤
1
d

dist(V, ∂W ), ‖δv·degwXw‖C N (W ) ≤ 1,

[δv·degwXw, δv·degw′Xw′] =
∑
w̃∈W0

cw̃,δw,w′δ
v·deg w̃Xw̃,

with ∥∥cw̃,δw,w′

∥∥
C N (W )

≤ Cd,p,

for all w,w′ ∈W0. In particular, we may choose δn sufficiently small that for each x ∈�′ and 0< δ ≤ δn ,
there exists a d-tuple I δx ∈Wd

0 such that deg I δx = bp and

δv·deg I δx |λI δx (x)| = max
I∈Wd

0

δv·deg I
|λI (x)| ∼ δv·bp 2n(|bp|1−1).
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Thus, considering the balls B(x, δ) (defined in (5-3)) for x ∈�′ and 0< δ ≤ δn ,

|B(x, δ)| ∼ 2n(|bp|1−1)δv·bp = 2n/(
∑

i 1/pi−1)δv·bp .

Since the balls B(x, δ) are doubling, for each η > 0 there exist a collection {x j }
Mδ

j=1 ⊆ �
′ and a

parameter 0< δ ≤ δn such that

�′ ⊆

Mδ⋃
j=1

B(x j , δ),

∣∣∣∣ Mδ⋃
j=1

B(x j , δ)

∣∣∣∣≤ |�′| + η,
and such that the B(x j ,C−1δ) are pairwise disjoint.

Arguing as in the proof of Lemma 5.1,

µ(�′)≤

Mδ∑
j=1

µ(B(x j , δ)). A(µ)
∑

j

|B(x j , δ)||B(x j , δ)|
∑

i 1/pi−1δ−v·bp(
∑

i 1/pi−1)

∼ A(µ)
∑

j

|B(x j , δ)|2n . A(µ)2n(|�′| + η).

Letting η→ 0 completes the proof. �

Remarks. The pointwise upper bound (2-8) is false if no assumptions are made on bp. Indeed, if bp lies
in the interior of Px0 , then for some θ < 1, bθp lies in the interior of Px0 , where θp = (θp1, . . . , θpk).
Thus for some neighborhood U of x0, bθp lies in the interior of Px for every x ∈U . Hence by the main
result in [Stovall 2011], if a is continuous with compact support in U ,∣∣∣∣∫ k∏

j=1

f j ◦π j (x)a(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖Lθp j .

Additionally, ∣∣∣∣∫ k∏
j=1

f j ◦π j (x)
∣∣log |x − x0|

∣∣a(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖L∞ .

Thus by interpolation, ∣∣∣∣∫ k∏
j=1

f j ◦π j (x)
∣∣log |x − x0|

∣∣1−θa(x) dx
∣∣∣∣. k∏

j=1

‖ f j‖L p j .

For the unweighted bilinear operator in the “polynomial-like” case, the endpoint-restricted weak-type
bounds are known and are due to Gressman [2009]; in the multilinear case, the corresponding estimates
follow by combining his techniques with arguments in [Stovall 2011]. The deduction of endpoint bounds
from the arguments in [Gressman 2009] does not seem to be immediate in the weighted case, and so
these questions remain open except for certain special configurations (such as convolution or restricted
X-ray transform along polynomial curves).
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6. Proof of the main theorem: Theorem 2.1

In this section, undecorated constants and implicit constants (C , c, ., &, ∼) will be allowed to depend
on a cutoff function a (specifically, on upper bounds for diam(supp a) and ‖a‖L∞), a point b0 ∈ Zk

0, and
exponents p1, . . . , pk (all of which will be given in a moment), as well as the π j . Other parameters
(namely ε, δ, N ) that depend on b0, p1, . . . , pk will arise later on, so implicit constants may depend on
these quantities as well. Unless otherwise stated, decorated constants and implicit constants (cd , .N ,d ,
etc.) will only be allowed to depend on the objects in their subscripts.

Let J0 ∈ {1, . . . , k}d and for x ∈ U define 9 J0
x (t) as in (2-9). Let β0 be a multiindex and define

b0 := deg J0+ degJ0
β0. Let

ρ̃(x) :=
∣∣∂β0

t |t=0 det Dt9
J0
x (t)

∣∣1/(|b0|1−1)
. (6-1)

Let a be continuous and compactly supported in U , and define the multilinear form

M̃( f1, . . . , fk) :=

∫
Rd

k∏
j=1

f j ◦π j (x)ρ̃(x)a(x) dx .

In light of Proposition 2.3, the following more general result (we need not assume that b0 is extreme)
implies Theorem 2.1.

Theorem 6.1. Let (p1, . . . , pk) ∈ [1,∞)k satisfy (p−1
1 , . . . , p−1

k ) ≺ q(b0), with p−1
i < qi (b0) when

bi
0 6= 0. Then

|M̃( f1, . . . , fk)|.
k∏

j=1

‖ f j‖L p j , (6-2)

for all continuous f1, . . . , fk .

Since J0 and β0 are fixed, we will henceforth drop the tildes from our notation, with the understanding
that we are using (6-1) instead of (2-3) to define ρ.

It suffices to prove (6-2) when the f j are nonnegative. Suppose that b j = 0 for some j . Then π j

plays no role in the definition of ρ, and p j =∞ so, by Hölder’s inequality, we may ignore f j entirely.
Thus we may assume that b j 6= 0 for each j . In fact, we may assume that, for each j , p j <∞, since
‖ f j‖L p j (π j (supp a)) . ‖ f j‖L∞ , by the compact support of a.

We only claim a nonendpoint result, so by real interpolation with the trivial (by Hölder) inequalities of
the form

M( f1, . . . , fk).
k∏

j=1

‖ f j‖L p̃ j ,

k∑
j=1

p−1
j ≤ 1,

it suffices to prove that, for all Borel sets E1, . . . , Ek and some sufficiently small ε > 0,∫
Rd

k∏
j=1

χE j ◦π j (x)ρ(x)a(x) dx .
k∏

j=1

|E j |
q j (b0)−ε. (6-3)
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Letting � := supp a ∩
k⋂

j=1
π−1

j (E j ), (6-3) will follow from

ρ(�).
k∏

j=1

|π j (�)|
q j (b0)−ε. (6-4)

If we define
α j :=

ρ(�)

|π j (�)|
, (6-5)

a bit of arithmetic shows that (6-4) is equivalent to

k∏
j=1

α
q j (q(b0)−(ε,...,ε))

j . ρ(�),

which in turn would be implied by
k∏

j=1

α
b j

0+ε

j . ρ(�), (6-6)

with a slightly smaller ε. (We recall that q equals its own inverse.)
By the coarea formula,

α j = |π j (�)|
−1
∫
π j (�)

∫
π−1

j {y}
χ�(x)ρ(x)

1
|X j (x)|

dH1(x) dy. (6-7)

Since π j is a submersion, |X j |& 1 and H1(π−1
j {y}). 1 for all y ∈ π j (�). Since ρ . 1 by smoothness

of the π j , (6-7) implies that
α j . diam(�)≤ diam(supp a). (6-8)

By taking a partition of unity, we may assume that the α j are as small as we like, in particular, that they
are smaller than 1

2 . Reordering if necessary, α1 ≤ · · · ≤ αk .
For n ∈ Z, let �n = {x ∈� : 2n

≤ ρ(x) < 2n+1
}. Then for C sufficiently large, �n =∅ for all n > C .

On the other hand, since π1 is a submersion and supp a is compact,∑
n≤logα1−C

ρ(�n).
∑

n≤logα1−C

2n
|π1(�)|. 2−Cα1|π1(�)| = 2−Cρ(�).

Thus, for C sufficiently large,

ρ

( ⋃
n≤logα1−C

�n

)
< 1

2α1|π1(�)| =
1
2ρ(�).

By pigeonholing, there exists n with logα1−C ≤ n ≤ C such that

ρ(�n)≥
(
2(|logα1| + 2C)

)−1
ρ(�)& αε1ρ(�). (6-9)

Define
αn, j :=

ρ(�n)

|π j (�n)|
, j = 1, . . . , k.

By (6-9) and the triviality ρ(�n)≤ρ(�), together with the proof of (6-8) and the small diameter of supp a,

αε1α j . αn, j ≤
1
2 .
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Therefore (6-6) follows from

ρ(�n)&
k∏

j=1

(αn, j )
b j

0+ε, (6-10)

with a slightly smaller value of ε. Henceforth, we let ρ0 := 2n (for this value of n) and drop the n from
the notation in (6-10). We note that ρ(�)∼ ρ0|�|. Reordering again, we may continue to assume that
α1 ≤ · · · ≤ αk .

Let δ > 0 be a small constant (depending on ε, b0, d), which will be determined later on. Cover � by
cdα
−δd
1 balls of radius αδ1. By pigeonholing, there exists �′ ⊆� with

ρ(�′)& αδd1 ρ(�).

Arguing as above, the parameters α′j := |π j (�
′)|−1ρ(�′) satisfy

α1+δd
1 ≤ αδd1 α j . α

′

j . diam(�′)≤ αδ1. (6-11)

Thus, for δ sufficiently small, (6-10) would follow from

ρ(�′)&
k∏

j=1

(α′j )
b j

0+ε,

with a slightly smaller value of ε.
Since α′j . diam(supp a), we may assume that the α′j are as small as we like (depending on the π j ,

ε and δ). Thus (6-11) implies that, for each 1≤ j ≤ k,

diam(�′)≤ c(α′j )
δ,

for some slightly smaller value of δ and with c as small as we like. By the same argument as for (6-8),

α′j . ρ0 diam(�′). ρ0(α
′

j )
δ,

whence ρ0 ≥ c−1(α′j )
1−δ, again with a slightly smaller value of δ.

In summary, to complete the proof of Theorem 6.1 (and thereby that of Theorem 2.1) it suffices to
prove the following.

Lemma 6.2. Let ε > 0 be sufficiently small depending on b0 and δ > 0 be sufficiently small depending on
ε, b0. Let �⊆ supp a be a Borel set, and define α1, . . . , αk as in (6-5). Assume that α1 ≤ . . .≤ αk , that

ρ0 ≤ ρ(x)≤ 2ρ0 for all x ∈�,

and that
αk < c, ρ0 ≥ c−1α1−δ

k , diam(�)≤ cαδ1. (6-12)

Then for c sufficiently small, depending on the π j , b0, ε, δ, we have

k∏
j=1

α
b j

0+ε

j . ρ(�). (6-13)
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We note in particular that all constants and implicit constants are independent of ρ0, �, and the α j .
We devote the remainder of this section to the proof of Lemma 6.2. We use the method of refinements,

which originated in [Christ 1998] and was further developed in similar contexts in [Christ 2008; Tao and
Wright 2003].

Recalling (6-1),
|∂β0 det D9 J0

x0
(0)| ∼ ρ|b0|1−1

0 =: λ0, for x0 ∈�. (6-14)

As in [Tao and Wright 2003], for w > 0, we say that a set S ⊆ [−w,w] is a central set of width w if,
for any interval I ⊆ [−w,w],

|I ∩ S|.
(
|I |
w

)ε
|S|.

Lemma 6.3. For each subset�′⊆� with ρ(�′)& αCε
1 ρ(�) and each 1≤ j ≤ k, there exists a refinement

〈�′〉 j ⊆�
′ with ρ(〈�′〉 j )& α2Cε

1 ρ(�′) such that, for each x ∈ 〈�′〉 j , there is a central set

F j (x, 〈�′〉 j )⊆ {t : |t |. αδ1 and et X j (x) ∈ 〈�′〉 j } (6-15)

whose width w j and measure satisfy

ρ−1
0 α2Cε

1 α j . w j ≤ cαδ1 and |F j (x, 〈�′〉 j )|& ρ−1
0 α2Cε

1 α j . (6-16)

This lemma has essentially the same proof as [Tao and Wright 2003, Lemma 8.2], but we sketch the
argument for the convenience of the reader.

Sketch proof of Lemma 6.3. First we discard shorter-than-average π j fibers in�′, leaving a subset�′′⊆�′

with ρ(�′′)& ρ(�′) such that, for each x ∈�′′,∣∣{t : |t |. αδ1 and et X j (x) ∈�′′}
∣∣& |�′|

|π j (�′)|
& αCε

1 ρ−1
0 α j .

Next, if S ⊆ [−cαδ1, cαδ1] is a measurable set, it contains a translate S′ of a central set of measure at
least |S|1+2ε and width at most cαδ1. Indeed, take S′ = S∩ I ′, where I ′ is a minimal length dyadic interval
with |S ∩ I ′| ≥ (|I ′|/αδ1)

ε
|S|.

Using the exponential map, each π j fiber in �′′ is naturally associated to a set S ⊆ [−cαδ1, cαδ1]; S can
be refined to a translate S′ of a central set, and S′ is then a fiber of the set 〈�′〉 j . By the definition
of exponentiation, for x ∈ 〈�′〉 j the set F j (x, 〈�′〉 j ) in (6-15) contains 0, and it is easy to see that a
0-containing translate of a central set of width w is a central set of width 2w. Finally, by pigeonholing,
we can select only those fibers having the most popular dyadic width (there are at most logα1 options). �

Write J0 = ( j1, . . . , jd). With �0 :=�, for 1≤ i ≤ d we define

�i := 〈�i−1〉 jd−i+1 .

By Lemma 6.3, for each i , ρ(�i )& αCε
1 ρ(�).

Fix x0 ∈�d . Let
F1 := F j1(x0, �d), x1(t) := et X j1 (x0),
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and for 2≤ i ≤ d, let

Fi :=
{
(t1, . . . , ti ) : (t1, . . . , ti−1) ∈ Fi−1, ti ∈ F ji (xi−1(t1, . . . , ti−1), �d−i+1)

}
xi (t1, . . . , ti ) := eti X ji xi−1(t1, . . . , ti−1).

By construction, for each i and each (t1, . . . , ti ) ∈ Fi ,

xi (t1, . . . , ti ) ∈�d−i+1 ⊆�d−i ,

so F ji+1(xi (t1, . . . , ti ),�d−i ) is a central set whose width and measure satisfy (6-16) (with ji+1 in place
of j). Furthermore,

9 J0
x0
(Fd)⊆� and |Fd |& ρ

−d
0 αCε

1 αdeg J0; (6-17)

here we recall that deg J is the k-tuple whose i-th entry is the number of appearances of i in the d-tuple J .
Let 9N

x0
be the degree N Taylor polynomial of 9 J0

x0 , where N ≥ |b0|1+1 is a large integer to be chosen
later. Let Qw =

∏d
i=1[−wi , wi ] and let Q1 = Q(1,...,1). By scaling, the equivalence of all norms on the

degree N polynomials in d variables, and (6-14),

‖det D9N
x0
‖C0(Qw)

= sup
t∈Q1

|det D9N
x0
(w1t1, . . . , wd td)| ∼N ,d

∑
β

wβ |∂β det D9N
x0
(0)|

≥ wβ0 |∂β0 det D9N
x0
(0)| ∼ wβ0λ0.

Thus, by (6-16), the definition of λ0, and some arithmetic,

‖det D9N
x0
‖C0(Qw)

& ρd−1
0 αCε

1 α
degJ0

β0 . (6-18)

(We recall that degJ β is the k-tuple whose i-th entry equals
∑

`:J`=i β`.)

Lemma 6.4. If P is any degree N polynomial on Rd , there is a subset F ′d ⊆ Fd such that |F ′d |&N ,ε,d |Fd |

and

|P(t)|&N ,ε,d ‖P‖C0(Qw)
for t ∈ F ′d .

The lemma follows from [Christ 2008, Lemma 6.2] or [Tao and Wright 2003, Lemma 7.3]. Roughly, if
S is a central set of width w0 and p is a degree N polynomial, p is close to ‖p‖C0([−w0,w0]) on most of S.
This is because the set where p is small is the union of at most N small intervals. Recalling how our set
Fd was constructed (from a “tower” of central sets), it is possible to iterate d times to obtain the lemma.

Now we use 9N
x0

to control 9 J0
x0 via the following lemma, which just paraphrases [Christ 2008,

Lemma 7.1]. We recall that Q1 is the unit cube.

Lemma 6.5. Let N ,C1, c2, c3> 0. There exists a constant c0> 0, depending on C1, c2, c3, N and d , such
that the following holds. Let 9 : Q1→ Rd be twice continuously differentiable and let 9N

: Rd
→ Rd be

a degree N polynomial. Set J9 := ‖det D9‖C0(Q1) and assume that

‖9‖C0(Q1) ≤ C1, ‖9 −9
N
‖C2(Q1) ≤ c0J2

9 . (6-19)
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Let G ⊆ Q1 be a Borel set with the property that, for any degree N d polynomial P : Rd
→ R,∣∣{t ∈ G : |P(t)| ≥ c2‖P‖C0(Q1)}

∣∣≥ c3|G|. (6-20)

Then
|9(G)| ≥ c0|G|‖det D9N

‖C0(Q1).

For the complete details, see [Christ 2008]. We give a quick sketch of that argument here.

Sketch proof of Lemma 6.5. Let P = det D9N and let G ′ denote the set on the left of (6-20). By (6-19),

|det D9(t)| ∼ |P(t)| ∼ ‖P‖C0(Q1) ∼ J9, for t ∈ G ′, and ‖9N
‖C2(Q1) ≤ 2C1. (6-21)

This first series of inequalities above imply that∫
G ′
|det D9| ≥ c1/2

0 |G|‖det D9N
‖C0(Q1).

It remains to show that 9 is finite-to-one on G ′, so that |9(G ′)|&
∫

G ′ |det D9|.
First the local case. For c0 sufficiently small and B any ball with radius c1/2

0 J9 and center in G ′,
9,9N may be shown to be one-to-one on 10B and to satisfy

|det D9(t)| ∼ |P(t)| ∼ J9, t ∈ 10B. (6-22)

We cover G ′ by a finitely overlapping collection of such balls B.
Globally, we know (it is an application of Bezout’s theorem) that 9N is at most CN ,d-to-one on G ′.

Thus a point x ∈ Rd lies in 9N (10B) for at most CN ,d balls B ∈ B. We are done if we can show that
9(B) ⊆ 9N (10B). By the mean value theorem (applied to (9N )−1), then Cramer’s rule, (6-21) and
(6-22),

dist
(
9N (B), (9N (10B))c

)
≥ dist(B, (10B)c)‖(D9N )−1

‖
−1
C0(10B) > c1/2

0 J9 diam(B).

The right side is just c0J2
9 ≥ dist(9(B),9N (B)), so we are done. �

Let Dw denote the dilation Dw(t1, . . . , td) = (w1t1, . . . , wd td). We will apply Lemma 6.5 with
9 =9

J0
x0 ◦ Dw, 9N

=9N
x0
◦ Dw and G = DwFd . By Lemma 6.4, we just need to verify (6-19).

Since w j ≤ 1 for each j , ‖9‖C2(Q1) ≤ ‖9
J0
x0 ‖C2(Qw)

. 1. For the error bound,

‖9 J0
x0
−9N

x0
‖C2(Qw)

.max
i
wN−1

i ‖9 J0
x0
‖C N+1(Qw)

. (cαδ1)
N , (6-23)

where c is as in (6-12). (Recall that implicit constants do not depend on c.) We choose N larger than
δ−1(10 degJ0

β0+ 10d) and then choose c sufficiently small. Combining (6-23), (6-12) and (6-18),

‖9 J0
x0
−9N

x0
‖C2(Qw)

≤ c0

(∏
j

w j

)2

‖det D9N
x0
‖

2
C0(Qw)

.

For c0 sufficiently small, this implies that

‖det D9 J0
x0
− det D9N

x0
‖C0(Qw)

< 1
2‖det D9N

x0
‖C0(Qw)

,
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so ‖det D9 J0
x0 ‖C0(Qw)

≥
1
2‖det D9N

x0
‖C0(Qw)

. Rescaling gives us (6-19).
Applying Lemma 6.5, inequality (6-18), and b0 = deg J0+ degJ0

β0,

|�| ≥ |9 J0
x0
(Fd)|& |Fd |ρ

d−1
0 αCε

1 α
degJ0

β0 & ρ−1
0 α2Cε

1 αb0 .

The proof of Theorem 2.1 is finally complete.

Appendix: proof of Proposition 4.1

In this section we prove Proposition 4.1, which was used in proving Propositions 2.2 and 2.3. We fix, for
the remainder of this section, a point b0 ∈ [0,∞)k . An object is admissible if it may be chosen from a
finite collection, depending only on b0, of such objects, and all implicit constants will be admissible (i.e.,
depending only on b0).

The following two lemmas show that conclusions (i) and (ii) of Proposition 4.1 are equivalent.

Lemma A.1. If A ⊆ Zk
0 is a finite set and b0 /∈ P(A), there exist ε > 0 and v0 ∈ (ε, 1]k such that

v0 · b0+ ε < v0 · p for every p ∈ P(A).

Lemma A.2. If v0 ∈ (0, 1]k , there exists a finite set A⊆ Zk
0 such that b0 /∈ P(A) and

{b ∈ Zk
0 : v0 · b0 < v0 · b} ⊆ P(A).

Proof of Lemma A.1. We may assume that b0 6= (0, . . . , 0) and A 6= ∅; otherwise, the result is trivial.
Since b0 /∈P(A), there exists v1 ∈ Rk such that v1 · b0 < v1 · p for every p ∈P(A). Since P(A) contains
a translate of [0,∞)k , v1 ∈ [0,∞)k . We may assume that v1 ∈ [0, 1]k . Let

δ := 1
2 |b0|

−1
1 min

b∈A
v1 · (b− b0).

Since A is finite, δ > 0. Let v2 := v1+ (δ, . . . , δ). Then v2 ∈ [δ, 1+ δ]k . If b ∈A,

b · v2 = v1 · b0+ v1 · (b− b0)+ δ|b|1 ≥ v2 · b0+ δ|b0|1 ≥ v2 · b0+ δ.

The conclusion thus holds with ε := 1
2δ/(1+ δ), v0 := v2/(1+ δ). �

Proof of Lemma A.2. Let ε :=mini v
i
0 and let N := dkε−1(b0 · v0+ 1)e. If p ∈ Zk

0 and |p|1 ≥ N ,

v0 · p ≥min
j
v

j
0 max

i
pi
≥ ε

(N
k

)
≥ b0 · v0+ 1,

so the conclusion holds with

A := {b ∈ Zk
0 : |b|1 ≤ N and v0 · b > v0 · b0}. �

The following lemma implies that the conclusions of Proposition 4.1 hold whenever B is a finite set
with #B≤ k+ 1.

Lemma A.3. Let B⊆ Zk
0 be a finite set. Assume that #B ≤ k+ 1 and that b0 /∈ P(B). Then there exist

admissible ε > 0 and v0 ∈ (ε, 1]k such that b · v0 > b0 · v0+ ε for every p ∈ P(B).
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The same proof shows that, for any finite B with b0 /∈ P(B), there exist ε > 0 and v0 ∈ (ε, 1]k , taken
from a finite list that depends only on b0 and m, such that b · v0 > b0 · v0+ ε for every p ∈ P(B), but for
simplicity we only prove the version that we use.

Proof. The conclusion is trivial if B=∅, so we write B= {b1, . . . , bm} with m ≤ k+ 1. By Lemma A.1,
the conclusion is trivial if {b1, . . . , bm} is admissible; we will reduce to this case.

If |bi |1> |b0|1, 1≤ i ≤m, the conclusion holds with v0= (1, . . . , 1), ε= 1
2(d|b0|1+1e−1). Reindexing

if necessary, we may assume that |b1|1 ≤ |b0|1, in which case {b1} is admissible.
Assume that for some j < m, {b1, . . . , b j } is admissible. By assumption, b0 /∈P({b1, . . . , b j }), so by

Lemma A.1 there exist admissible ε j > 0, v j ∈ (ε j , 1]k such that v j · b0+ ε j < v j · bi for 1≤ i ≤ j . If
v j ·b0+ ε j < v j ·bi for every i , the conclusion of the lemma holds with ε = ε j , v0 = v j . Otherwise, after
reindexing, we may assume that v j ·b j+1≤ v j ·b0. Therefore b j+1 is admissible, and hence {b1, . . . , b j+1}

is admissible as well. The procedure must terminate after at most m ≤ k+ 1 steps, and so the lemma is
proved. �

Lemma A.3 has the following corollary.

Lemma A.4. Under the hypotheses of Lemma A.3, there exists an admissible ε > 0 such that if

b(θ) :=
m∑

i=1

θi bi

is any convex combination of b1, . . . , bm , there exists an i , 1≤ i ≤ k such that bi (θ)≥ bi
0+ ε.

Proof. By Lemma A.3, there exist admissible ε > 0, v0 ∈ (ε, 1]k such that

ε < (b(θ)− b0) · v0 ≤

( k∑
i=1

vi
0

)
max

1≤i≤k
(bi (θ)− bi

0)≤ max
1≤i≤k

(bi (θ)− bi
0). �

Finally, we are ready to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Let C > |b0|1 be a large constant, to be determined (admissibly) in a moment.
Define A :=B′ ∪B′′, where

B′ := {b ∈B : |b|1 ≤ C},

B′′ := {Cei : 1≤ i ≤ k}.

Here ei denotes the i-th standard basis vector. Then, since P(B′′)=P({b∈Zk
0 : |b|1≥C}), P(B)⊆P(A).

It remains to show that, for C sufficiently large, b0 /∈ P(A).
Assume that b0 ∈ P(A). By Carathéodory’s theorem from combinatorics (see, for instance, [Ziegler

1995, p. 46]), b0�
∑k+1

l=1 θlal , for some a1, . . . , ak+1 ∈A and 0≤ θl ≤ 1 satisfying
∑

l θl = 1. Reindexing
if necessary,

b0 �

j∑
l=1

θlCeil +

k+1∑
l= j+1

θlbl, (A-1)

where b j+1, . . . , bk+1 ∈B′. Since C > |b0|1,
k+1∑

l= j+1
θl > 0 and, since b0 /∈ P(B′)⊆ P(B),

j∑
l=1
θl > 0.
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Let

b(θ) :=
( k+1∑

l= j+1

θl

)−1 k+1∑
l= j+1

θlbl .

By Lemma A.4, there exists an i , 1≤ i ≤ k+1 such that bi (θ)≥ bi
0+ ε, where ε > 0 depends only on b0

(crucially, not on C). By (A-1),

b0 �

( k+1∑
l= j+1

θ j

)
b(θ),

so, comparing the i-th coordinates, we see that

k+1∑
l= j+1

θ j ≤
bi

0

bi
0+ ε

≤
|b0|∞

|b0|∞+ ε
,

so
j∑

l=1

θ j ≥ 1−
|b0|∞

|b0|∞+ ε
=

ε

|b0|∞+ ε
. (A-2)

On the other hand, by (A-1) and the fact that all coordinates of the bi are nonnegative,
∑ j

l=1 θ j ≤ |b0|1/C .
For C = C(ε, b0) sufficiently large (admissible since ε is), this contradicts (A-2), and the proof of
Proposition 4.1 is complete. �
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