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SHARP CONSTANT FOR A k-PLANE TRANSFORM INEQUALITY

ALEXIS DROUOT

The k-plane transform Rk acting on test functions on Rd satisfies a dilation-invariant Lp!Lq inequality
for some exponents p; q. We will make explicit some extremizers and the value of the best constant for
any value of k and d , solving the endpoint case of a conjecture of Baernstein and Loss. This extends their
own result for k D 2 and Christ’s result for k D d � 1.

1. Introduction

Let us choose d � 2, 1 � k � d � 1 and denote by Gk the set of all k-planes in Rd , meaning affine
subspaces in Rd with dimension k. We define the k-plane transform of a continuous function with
compact support f W Rd ! R as

Rkf .…/D

Z
…

f d�…;

where … 2 Gk and the measure �… is the surface Lebesgue measure on …. The operator Rk is known as
the Radon transform for k D d � 1 and as the X-ray transform for k D 1. It is known since the works of
Oberlin and Stein [1982], Drury [1984] and Christ [1984] that Rk can be extended from L

dC1
kC1 .Rd / to

LdC1.Gk; �k/ where �k is a measure defined as follows. Let us denote by Mk the submanifold of Gk of
all k-planes containing 0. The Lebesgue measure on Rd induces a natural measure on Mk : there exists a
unique probability measure �k on Mk invariant in the sense that if � is an orthogonal map and P is a
subset of Mk , then �k.P /D �k.�P /. The construction of this measure can be found in [Mattila 1995].
This induces a measure �k on Gk such that

�k.A/D

Z
…2Mk

�…?.fx 2…
?
W xC… 2 Ag/ d�k.…/; (1-1)

where �…? denotes the Lebesgue surface measure on the .d � k/-plane …?. Equation (1-1) defines a
measure on Gk invariant under translations and rotations in the following sense: if � is an orthogonal
map, P is a subset of Gk , and x 2 Rd , then �k.P /D �k.�P C x/.

The L
dC1
kC1 .Rd / to LdC1.Gk; �k/-boundedness of Rk leads to the inequality

kRkf kLdC1.Gk ;�k/
� A.k; d/kf k

L
dC1
kC1 .Rd /

(1-2)

for a certain constant A.k; d/, chosen to be optimal, that is,

A.k; d/D sup
˚
kRkf kLdC1.Gk ;�k/

W kf k
L

dC1
kC1 .Rd /

D 1
	
: (1-3)
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Functions realizing the supremum in (1-3) are called extremizers of (1-2).
Here are some standard questions about this inequality:

(1) What is the best constant?

(2) What are the extremizers?

(3) Is any extremizing sequence relatively compact, modulo the group of symmetries?

(4) What can we say about functions satisfying kRkf kdC1 � ckf kdC1
kC1

?

Some of the answers are already known for some values of k. Baernstein and Loss [1997] solved the
first question for the special case k D 2, and formulated a conjecture about the form of extremizers for a
larger class of Lp!Lq inequalities. Christ solved their conjecture and answered all the above questions
with the three papers [Christ 2011a; 2011b; 2011c] for the case k D d � 1.

By a quite different approach, we will give here a proof of Baernstein and Loss’ conjecture for any
values of k; d in the inequality (1-2). Note that this concerns only the endpoint case of their general
conjecture. The value of the extremizers provides the explicit value of the best constant in (1-2). In a
subsequent paper [Drouot 2013] we give a positive answer to the third question in the radial case, which
is much easier than the general case.

Main result. Our main result is the following theorem:

Theorem 1.1. The constant A.k; d/ in (1-2) is given by

A.k; d/D

�
2k�d

jSkjd

jSd jk

� 1
dC1

;

and some extremizers are given by

h.x/D

�
C

1CjLxj2

�kC1
2

; (1-4)

where L is any invertible affine map on Rd , and C is any positive constant.

To find the best constant in the k-plane inequality (1-2) we will use the method of competing symmetries
introduced in [Carlen and Loss 1990]. We will need the existence of an additional symmetry S of (1-2)
that changes the level sets of functions — this could be seen as a problem but it actually gives very helpful
information on the structure of the inequality. The choice of this symmetry is the generalization of a
symmetry found in [Christ 2011c] in the special case of the Radon transform.

Nevertheless, the approach followed by Carlen and Loss led them to the values of all extremizers,
using some additional work for the equality case in the rearrangement inequality. This does not work for
us, and so we do not prove that the extremizers are unique modulo the invertible affine maps. However,
we prove in Section 4 that if all extremizers are of the form F ıL with F radial and L an invertible map,
then all extremizers are of the form (1-4). Using this result, Flock [2013] proved the following theorem:

Theorem 1.2. All extremizers of (1-2) are of the form (1-4).
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For the rest of the paper, let us note the following:

� Let A and B be positive functions. We will say that A.B when there exists a universal constant C ,
which depends only on the dimension d and on the integer k, such that A � CB . A & B means
B . A, and A� B will be used when A. B and B . A.

� A radial function will be considered throughout the paper either as a function on Rd or as a function
of the Euclidean norm, depending on the context.

� jEj denotes the Lebesgue measure of a set E, except in the case of a sphere.

� d.0;…/ denotes the Euclidean distance between 0 and a k-plane …, that is,

d.0;…/D inf
y2…
jyj:

� jSm�1j denotes the Lebesgue surface measure of the Euclidean sphere of Rm.

� ed is the vector .0; : : : ; 0; 1/.

� For a vector x in Rd , we will write x D .x0; x00/ with x0 2 Rd�1 and x00 2 R.

� kf kp denotes the Lp-norm of f with respect to a contextual measure.

� RC is the set .0;1/.

2. Preliminaries

In this section we introduce some standard notions which will be useful for what follows. We will talk
about the theory of radial, nonincreasing rearrangements of a function and about the special form of the
k-plane transform for radial functions.

Let us consider a measure � on Rd and a measurable subset E of Rd . E� denotes the unique closed
ball centered at the origin such that �.E�/D�.E/. Now for a measurable function f from Rd to Œ0;1�,
and t � 0, let us denote

Ef .t/D fx 2 Rd W jf .x/j � tg:

Then we have the following proposition:

Proposition 2.1. Let f be a measurable function from Rd to R[f˙1g. There exists a unique function
f � from Rd to Œ0;1� such that

Ejf j.t/
�
DEf �.t/: (2-1)

Moreover, f � is radial, and nonincreasing as a function of the norm. Furthermore, for all nonnegative
functions g; h 2 Lp with 1� p �1, we have:

(i) kgkp D kg�kp,

(ii) kg�� h�kp � kg� hkp,

(iii) if g � h, then g� � h�,

(iv) for all �� 0, �g� D .�g/�.
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Points (i) to (iv) show that the nonlinear operator f 7! f � is actually a properly contractive operator
(see Section 3). The map f � is called the symmetric rearrangement of f (with respect to the measure �).

We are now applying this theory to the k-plane transform. Christ [1984] proved that the k-plane
transform satisfies the rearrangement inequality

kRgkq � kR.g
�/kq: (2-2)

That way, we can look for extremizers in the class of radial, nonincreasing functions. It obviously makes
the study much easier, passing from functions on Rd to nonincreasing functions on Œ0;1/.

The geometric origin of the k-plane transform leads us to introduce the operator T defined on continuous,
compactly supported functions on RC as

Tf .r/D

Z 1
0

f
�p
s2C r2

�
sk�1 ds:

Then we have the following:

Lemma 2.2. For all radial, continuous, compactly supported functions f on Rd and … 2 G such that
d.0;…/D r , we have

Rf .…/D jSk�1j �Tf .r/: (2-3)

For a proof, see, for instance, [Baernstein and Loss 1997]. The equation (2-3) shows that T is almost
the k-plane transform. T acts on some Lebesgue spaces that we need to explicitly define, using the
correspondence (2-3). Its domain is of course the space Lp.RC; rd�1 dr/. On the other hand, we have

kRf kqq D

Z
G
jRf .…/jq d�.…/D jSk�1jq jSd�k�1j

Z 1
rD0

jTf .r/jqrd�k�1 dr;

where the last line is obtained thanks to the formula .1:1/ in [Baernstein and Loss 1997]. This shows that
T maps Lp.RC; rd�1dr/ to Lq.RC; rd�k�1dr/.

3. Best constant and value of extremizers for the k-plane inequality

Here we want to prove the following:

Theorem 3.1. An extremizer for the inequality (1-2) is given by

f .x/D

�
1

1Cjxj2

�kC1
2

: (3-1)

As a matter of fact, since any invertible affine map is a symmetry of the inequality (1-2), this theorem
is equivalent to Theorem 1.1.

Let us explain the process of the proof before the details. Our purpose here is to introduce two operators
V;S acting on Lp, such that V and S preserve the Lp-norm and

kRf kq D kRSf kq; kRf kq � kRVf kq: (3-2)
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This means that V and S globally increase the functional f 7! kRf kq=kf kp. Now using additional
properties of S and V , we will apply a theorem from [Carlen and Loss 1990] to show that for any choice
of f 2 Lp with norm 1, the sequence .V S/nf converges to an explicit function h that does not depend
on f . Using (3-2), h must be an extremizer, and h is explicitly known.

In practice, the operator V will be the symmetric rearrangement f 7! f �, and S will be a symmetry
of the inequality. The operator S is special in a certain sense: it does not preserve the class of radial
functions. Thus, if we were able to construct an extremizer such that ShD h and V hD h, the explicit
value of h could be determined. A way to construct such an extremizer is described in the next section.
But we can already note that an extremizer satisfying this condition must satisfy .V S/nhD h for all n;
this way, considering the sequence .V S/nf is probably a good idea.

Competing operators. As we said, we are following the approach introduced in [Carlen and Loss 1990].
We might also refer to the book [Bianchini et al. 2011]. First, we sum up the general results stated
Chapter II, §3.4 of this book: let B be a Banach space of real valued functions, with norm k � k. Let BC

be the cone of nonnegative functions, and assume that BC is closed. Let us introduce some definitions:

Definition 3.2. An operator A on B is called properly contractive provided that:

(i) A is norm-preserving on BC, i.e., kAf k D kf k for all f 2BC.

(ii) A is contractive on BC, i.e., for all f; g 2BC, kAf �Agk � kf �gk.

(iii) A is order-preserving on BC, i.e., for all f; g 2BC, f � g D) Af � Ag.

(iv) A is homogeneous of degree one on BC, i.e., for all f 2BC; �� 0, A.�f /D �Af .

Note that we do not need A to be linear. Some examples of such operators are for instance the radial
nonincreasing rearrangement f 7! f � or any linear isometry on B.

Definition 3.3. Given a pair of properly contractive operators S and V , it is said that S competes with V
if, for f 2BC,

f 2R.V /\SR.V /D) Sf D f:

Here R denotes the range.

Theorem 3.4. Suppose that S and V are both properly contractive, that V 2 D V and that S competes
with V . Suppose further that there is a dense set zB�BC and sets KN satisfying

S
N KN D

zB and for
all integers N , SKN �KN , VKN �KN , and VKN is relatively compact in B. Finally, suppose that
there exists a function h 2BC with ShD V hD h and such that, for all f 2BC,

kVf � hk D kf � hk D) Vf D f: (3-3)

Then, for any f 2BC,

Tf � lim
n!1

.V S/nf

exists. Moreover, ST D T and V T D T .
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An additional symmetry. Now we come back to the work of Christ. Using a correspondence between
a convolution operator that he studied in [Christ 2011a; 2011b; 2012], and the Radon transform, he
proved in [Christ 2011c] the existence of an additional symmetry for the Radon transform inequality. It is
defined as

If .u; s/D
1

jsjd
f
�
u

s
;
1

s

�
:

It then satisfies kIf kdC1
d

Dkf kdC1
d

and kRd�1If kdC1DkRd�1f kdC1. Fortunately, it happens that
this symmetry, slightly modified, also works for the Lp!Lq inequality related to the k-plane transform.

Lemma 3.5. Let S be the operator defined on Lp as

Sf .u; s/D
1

jsjkC1
f
�
u

s
;
1

s

�
;

where .u; s/ 2 Rd�1 � .R�f0g/. Then S is an isometry of Lp and satisfies the identity

kRSf kq D kRf kq (3-4)

for any nonnegative function f .

Proof. Let us check first that S is an isometry of Lp. Let us call

ˆ.x/D

�
x0

x00
;
1

x00

�
for x D .x0; x00/ 2 Rd�1 � .R�f0g/. Then its Jacobian determinant is

Jˆ.x/D
1

jx00jdC1
;

which shows that kSf kp D kf kp. Then we just have to prove (3-4). The proof is just calculation.
Denote the unique k-plane containing the linearly independent points x0; : : : ; xk 2 Rd � � � � �Rd by
….x0; : : : ; xk/ and let zRf be

zRf .x0; : : : ; xk/D

Z
Rk

f
�
x0C�1.x1� x0/C � � �C�k.xk � x0/

�
d�1 : : : d�k :

Thus we have the correspondence

V.x0; : : : ; xk/ � zRf .x0; : : : ; xk/DRf .….x0; : : : ; xk//; (3-5)

where V.x0; : : : ; xk/ is the volume of the k-simplex .x0; : : : ; xk/.

Lemma 3.6. For all f 2 C10 , for all x0; : : : ; xk 2 Rd � � � � �Rd , linearly independent and such that
ˆ.x0/; : : : ; ˆ.xk/ exist and are linearly independent,

.zRSf /.x0; : : : ; xk/D
.zRf /.ˆ.x0/; : : : ; ˆ.xk//

jx000 � � � x
00
k
j

:
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Proof. Let us call ˛ D x000 C�1.x
00
1 � x

00
0/C � � �C�k.x

00
k
� x000/ and �D .�1; : : : ; �k/ 2 Rk . Thus

.zRSf /.x0; : : : ; xk/D

Z
Rk

1

j˛jkC1
f

�
x00C�1.x

0
1� x

0
0/C � � �C�k.x

0
k
� x00/C ed

˛

�
d�: (3-6)

Let us make the change of variables

�01 D ˛
�1�1; : : : ; �0k�1 D ˛

�1�k�1; �0k D ˛
�1: (3-7)

Then

d�0 D
jx00
k
� x000 j

j˛jkC1
d�: (3-8)

A proof of this formula is given in the Appendix. The equation (3-6) becomes

.zRSf /.x0; : : : ; xk/D

Z
Rk

f

�
ykC�

0
k.x
0
0C ed � x

00
0yk/C

k�1X
iD1

�0i .x
0
i � x

0
0� .x

00
i � x

00
0/yk/

�
d�0

jx00
k
� x000 j

;

where

yi D
x0i � x

0
0

x00i � x
00
0

:

This formula is somehow important: it shows that we are still integrating f over a k-plane. Which one?
When we computed zRSf .x0; : : : ; xk/, we were interested only in the values of f on ˆ.….x0; : : : ; xk//.
That way it is simple to guess that zRSf .x0; : : : ; xk/ is closely related to ….ˆ.x0/; : : : ; ˆ.xk//. And
indeed, we just have to check that any of the points xj can be written as

xj D ykC�
0
k.x
0
0C ed �yk/C

k�1X
iD1

�0i .x
0
i � x

0
0� .x

00
i � x

00
0/yk/ (3-9)

for a suitable choice of �0. Indeed, taking �D ej and �0 given by (3-7) for this choice of �, we get the
equality (3-9). Let us now make the other change of variables

�01 D
�1

x001 � x
00
0

; : : : ; �0k�1 D
�k�1

x00
k�1
� x000

; �0k D
�k

x000
:

We finally get

.zRSf /.x0; : : : ; xk/D

Z
Rk

f

�
y0kC�k.ˆ.x0/�y

0
k/C

k�1X
iD1

�i .y
0
i �y

0
k/

�
d�

jx000 j
Qk�1
iD1 jx

00
i � x

00
0 j

:

Let us come back to Equation (3-5), the correspondence between R and zR. We want to find a relation
between .zRSf /.x0; : : : ; xk/ and .zRf /.ˆ.x0/; : : : ; ˆ.xk//. The above algebra tells us that this is
equivalent to finding a relation between the two volumes

V.ˆ.x0/; y1; : : : ; yk/ and V.ˆ.x0/; ˆ.x1/; : : : ; ˆ.xk//:
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Lemma 3.7. V.ˆ.x0/; y1; : : : ; yk/ and V.ˆ.x0/; ˆ.x1/; : : : ; ˆ.xk// are related through

V.ˆ.x0/; ˆ.x1/; : : : ; ˆ.xk//

V .ˆ.x0/; y1; : : : ; yk/
D

kY
iD1

ˇ̌̌̌
x000
x00i
� 1

ˇ̌̌̌
:

Proof. A direct calculation shows

x00i
x00i � x

00
0

Œˆ.xi /�ˆ.x0/�D
x000x
0
i C x

00
0ed � x

00
i x
0
0� x

00
i ed

x000.x
00
i � x

00
0/

and on the other hand, by definition of yi and ˆ.x0/,

yi �ˆ.x0/D
x000x
0
i C x

00
0ed � x

00
i x
0
0� x

00
i ed

x000.x
00
i � x

00
0/

;

which proves the equality

ˆ.xi /�ˆ.x0/D

�
1�

x000
x00i

�
Œyi �ˆ.x0/�:

Thus, using that

V.ˆ.x0/; ˆ.x1/; : : : ; ˆ.xk//D V.0;ˆ.x1/�ˆ.x0/; : : : ; ˆ.xk/�ˆ.x0//;

Lemma 3.7 is proved. �

Let us go back to the proof of Lemma 3.6. Using the correspondence described in (3-5) and the
previous lemma, we finally get the equality

.zRSf /.x0; : : : ; xk/D
.zRf /.ˆ.x0/; : : : ; ˆ.xk//

jx000 � � � x
00
k
j

: �

At last, let us return to the proof of Lemma 3.5. Since the set of bad points x0; : : : ; xk (we mean points
which do not satisfy the natural assumptions of Lemma 3.6) has null Lebesgue measure in .Rd /kC1, we
do not consider them. Let us use Drury’s formula [1984]:

kRf kqq D

Z
.Rd /kC1

dx0 : : : dxkf .x0/ � � � f .xk/ � zRf .x0; : : : ; xk/
d�k : (3-10)

Now all that remains to be done is an easy change of variable zi Dˆ.xi /. Indeed,

kRSf kqq

D

Z
.Rd /kC1

dx0 : : : dxk
1

jx000 j
kC1

f .ˆ.x0// � � �
1

jx00
k
jkC1

f .ˆ.xk// � .zRSf .x0; : : : ; xk//
d�k

D

Z
.Rd /kC1

dx0 : : : dxk
1

jx000 j
dC1

f .ˆ.x0// � � �
1

jx00
k
jdC1

f .ˆ.xk// � .zRf .ˆ.x0/; : : : ; ˆ.xk///
d�k

D

Z
.Rd /kC1

dz0 : : : dzkf .z0/ � � � f .zk/ � zRf .z0; : : : ; zk/
d�k
D kRf kqq:

This completes the proof. �
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It is a good time to prove a claim we made earlier: affine maps are symmetries.

Lemma 3.8. Let f 2 Lp and L be an invertible affine map. Then

kR.f ıL/kq

kf ıLkp
D
kRf kq

kf kp
:

Proof. The proof is a direct consequence of the correspondence formula (3-5) and of Drury’s formula
(3-10). Indeed, let L be an invertible affine map; then

zR.f ıL/.x0; : : : ; xk/D zRf .Lx0; : : : ; Lxk/;

and with the change of variable zi D Lxi in Drury’s formula we get

kR.f ıL/kq D jdet.L/j�
1
p kRf kq;

which ends the proof. �

Our goal is now to apply the general Theorem 3.4 about competing symmetries. The operator S and
the rearrangement operator V W f 7! f � increase the Lq-norm of the k-plane transform, and preserve the
norm of Lp-functions.

Proposition 3.9. The operators V and S satisfy the assumptions of Theorem 3.4, with the Banach space
BD Lp.

Proof. S and V are both properly contractive operators. Let us check that S competes with V : choose
f; g 2 Lp, radial, nonincreasing, such that f D Sg. Then

f .u; s/D
1

jsjkC1
g
�
u

s
;
1

s

�
; (3-11)

and, specializing to s D 1, we get f .u; 1/D g.u; 1/. Since both f and g are radial, f .x/D g.x/ for all
jxj � 1. Let us choose s < 1. Specializing (3-11) to uD 0, we get

f .0; s/D
1

jsjkC1
g
�
0;
1

s

�
D

1

jsjkC1
f
�
0;
1

s

�
:

But
f
�
0;
1

s

�
D jsjkC1g.0; s/;

which shows that f .0; s/D g.0; s/. Now again, since both f and g are radial, f D g and f D Sf .
We now have to check that S and V satisfy the assumptions of Theorem 3.4. We follow the arguments

of Carlen in [Bianchini et al. 2011]. Let us define

h.x/D

�
1

1Cjxj2

�kC1
2

:

Then ShD h, V hD h, and so with

KN D ff 2 L
p
W 0� f �Nhg

it is straightforward to check that VKN �KN and SKN �KN . Moreover VKN is a compact subset
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of Lp . Indeed, let us consider a sequence fn 2 VKN . Then fn is radial, nonincreasing, and since h lies
in L1 the sequence fn is bounded in L1. Thus, by Helly’s principle, fn admits a subsequence that
converges almost everywhere. But since 0�fn�Nh, the dominated convergence theorem shows that this
subsequence also converges in Lp , which implies that VKN is relatively compact. At last, zLp D

S
N KN

is a dense subset of nonnegative elements of Lp (since nonnegative, continuous, compactly supported
functions are dense in Lp).

The hardest part is to prove the assumption (3-3). Fortunately, since h is strictly nonincreasing, it has
already been done in [Carlen and Loss 1990]. �

We now close this subsection with the final key lemma for the explicit value of extremizers:

Lemma 3.10. Let h 2 Lp such that V hD ShD h. Then there exists a constant C such that

h.x/D C

�
1

1Cjxj2

�kC1
2

:

Proof. Since h satisfies ShD V hD h, then h is equal to its own rearrangement and so is defined on (at
least) Rd �f0g. Moreover, Sh must be radial. This leads to

Sh
�
u;
p
1Cjuj2

�
D

�
1

1Cjuj2

�kC1
2

h

�
up

1Cjuj2
;

1p
1Cjuj2

�
D

�
1

1Cjuj2

�kC1
2

h.ed /;

using that h is radial. But, since hD Sh is also radial,

Sh
�
u;
p
1Cjuj2

�
D Sh

�
0;
p
1C 2juj2

�
D h

�
0;
p
1C 2juj2

�
:

Thus, we get the equality

h.x/D h.0; jxj/D

�
2

1Cjxj2

�kC1
2

h.ed / (3-12)

for all x 2 Rd such that jxj � 1. For jxj< 1, the equality ShD h shows that (3-12) is also right, which
proves the lemma. �

Proof of the main theorem. Now we have all the material that we need to prove Theorem 3.1. Let f0� 0
be any function with Lp-norm equal to 1. Let us define the limit

h0 D Tf0 D lim
n!1

.V S/nf0:

Using that R is bounded from Lp! Lq , and equations (2-2), (3-4),

kRh0kq D lim
n!1

kR.V S/nf0kq � kRf0kq: (3-13)

Moreover, by Theorem 3.4, V h0DSh0D h0, so h satisfies the assumptions of Lemma 3.10. We then get

h0.x/D h0.ed /

�
2

1Cjxj2

�kC1
2

:
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Because of normalization and positivity of f0, h0.ed / can take only one value. It then follows from
(3-13) that h0 maximizes the norms of Rf0, and thus it is an extremizer.

Value of the best constant. Here we compute the value of the best constant. We use the correspondence
(2-3) described in the previous section, and only think about T and its related measurable spaces instead
of R. Let h be the radial extremizer

h.r/D

�
1

1C r2

�kC1
2

:

A family of integrals will be useful to compute its Lp-norm and the Lq-norm of Th. These integrals are
defined as Z 1

0

tm

.1C t2/
n
2

dt:

A calculation shows that Z 1
0

tm

.1C t2/
n
2

dt D
�
�
1
2
.mC 1/

�
�
�
1
2
.n�m� 1/

�
�
�
1
2
n
� ;

where � is the standard Euler gamma function. Then

khkpp D

Z 1
0

rd�1 dr

.1C r2/
dC1

2

D
�
�
1
2
d
�
�
�
1
2

�
2�
�
1
2
.d C 1/

� :
Moreover,

Th.r/D
1

p
1C r2

Z 1
0

uk�1 du

.1Cjuj2/
kC1

2

;

and this leads to

kThkqq D

�
�.k� 1/�.kC 1/

�.2k/

�dC1�.d � k� 1/�.d C 1/
�.2d � k/

:

The use of the fundamental relation

1
2
jSn�1j�

�
1
2
n
�
D �

n
2

leads to

A.k; d/D
kRhkq

khkp
D �

d�k
2.dC1/ ��

�
1
2
.d C 1/

� k
dC1 ��

�
1
2
.kC 1/

�� d
dC1 D

�
2k�d

jSkjd

jSd jk

� 1
dC1

:

4. The question of uniqueness

We shall discuss here the question of the uniqueness of extremizers of (1-2). For the sake of simplicity,
we will assume d � 3. This is not a restricting assumption: indeed, for the case d D 2, the only k-plane
transform is the Radon transform, and this has been thoroughly studied in [Christ 2011c].

The uniqueness problem for the Radon transform was solved in the same reference. The main tool for
the proof is the following:
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Theorem 4.1. Let k D d � 1, and let f be a nonnegative extremizer. Then there exist a radial, non-
increasing, nonnegative extremizer F and an invertible affine map L such that f D F ıL.

Then it turned out that the work was almost all done. Christ characterized all the extremizers using
the uniqueness Theorem 4.1 two times, in a certain sense. His approach is very interesting because the
question of uniqueness is curiously intertwined with the question of existence. Here we want to develop a
different approach, for an arbitrary 1� k � d � 1, assuming that a result similar to Theorem 4.1 is true.
More accurately, we want to prove the following:

Theorem 4.2. Let 1 � k � d � 1. Assume that any extremizer for the k-plane transform inequality
(1-2) can be written F ıL with F a radial, nonincreasing extremizer and L an affine map. Then any
nonincreasing radial extremizer is of the form

x 7!

�
1

aC bjxj

�kC1
2

: (4-1)

As we mentioned in the introduction, the ad hoc assumption in this theorem was proved to be true by
Flock [2013], inducing the complete characterization of extremizers.

One of the main tools here will be the use of the symmetry S combined with the fact that an extremizer
is a radial function composed with an affine map. Thus we will use again the competing symmetry theory.
From now we will assume that k is such that any extremizer for (1-2) can be written f ıLwith f radial and
L an affine map. Our main lemma follows; it shows that radial extremizers enjoy additional symmetries.

Lemma 4.3. Let f be a radial, nonincreasing extremizer for (1-2). Then there exists a real number �> 0
such that

.V S/2f .r/D �
d
p f .�r/:

Proof. Since f is a radial, nonincreasing extremizer, then f is not the (almost everywhere) null function:
there exists �0 > 0 such that f .�0ed /¤ 0. Because of dilation-invariance, we can assume �0 D 1.

Sf is also an extremizer. It follows that there exist F W RC! R, nonincreasing, a linear invertible
map L and a vector x0 2 Rd such that

Sf .x/D F.jx0CLxj/: (4-2)

Computing Sf
�
u;
p
juj2C 1

�
, we get

f .ed /

�
1

1Cjuj2

�kC1
2

D F
�
jx0CLuC

p
1Cjuj2Led j

�
(4-3)

for all u 2 Rd�1 � f0g. Let C D f .ed /¤ 0, and I � RC the interval made of points that can be written
jx0CLuC

p
1Cjuj2Led j for some u2Rd�1�f0g. We claim that the map F is strictly decreasing on I .

Indeed, let us assume that there exists 0 < ˛ < ˇ such that F is constant on Œ˛; ˇ�. Pick u 2 Rd�1 � f0g

such that jx0CLuC
p
1Cjuj2Led j 2 .˛; ˇ/. For t close to 1, jx0CLtuC

p
1C t2juj2Led j 2 .˛; ˇ/,
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and thus for t close to 1 the map

t 7! F
�
jx0CLuC

p
1Cjuj2Led j

�
is constant. Because of (4-3), this is a contradiction.

The function F is then injective on I . Formula (4-3) shows that jx0CLuC
p
1Cjuj2Led j must be

a function of juj2 only. To conclude the proof, we require the following lemma:

Lemma 4.4. Let L be an invertible linear map such that jx0CLuC
p
1Cjuj2Led j depends only on juj.

Then L.Rd�1 � f0g/ � .span.Led //?, and LjRd�1�f0g preserves the norm, modulo a multiplicative
constant. Moreover, there exists s0 2 Rd such that x0 D s0Led .

Proof. Let us choose uD r� 2 Sd�2 � f0g. Thenˇ̌
x0C rL� C

p
1C r2Led

ˇ̌2
D r2jL� j2C

ˇ̌p
1C r2Led C x0

ˇ̌2
C 2rhL�;

p
1C r2Led C x0i

depends only on r , and so does r2jL� j2 C 2rhL�;
p
1C r2Led C x0i. As a consequence, jL� j is a

constant and hL�;
p
2Led Cx0i is a constant. Here we must assume d � 3, so the sphere Sd�2 contains

an infinity of points.
The condition that jL� j is constant holds only ifLjRd�1�f0g preserves the norm, modulo a multiplicative

constant. Thus the quantity

hL�;
p
1C r2Led C x0i

must depend only on r . Specializing at � and �� , for all r , hL�;
p
1C r2Led C x0i D 0. But since

L is invertible, the space spanned by L� has dimension d � 1. Thus the space spanned by the vectors
p
1C r2Led Cx0 for r � 0 has dimension 1, which proves that there exists s0 such that s0Led D x0. �

Composing with an isometry, we can assume that L.Rd�1 � f0g/ � Rd�1 � f0g. Moreover, jLuj
depends only on juj, which implies that L restricted to Rd�1 � f0g must be a multiple of an isometry.
We then deduce that there exist a > 0; b > 0; s0 such that jL.uC sed /C x0j2 D a2juj2C b2.sC s0/2,
for all .u; s/ 2 Rd�1 �R. Thus we get the fundamental relation between f and F :

Sf .uC sed /D F
�p
a2juj2C b2.sC s0/

2
�
:

Now, changing F to G D F.
p
ab � /, G remains nonincreasing, and we get

Sf .uC sed /D F
�p
a2juj2C b2.sC s0/

2
�
DG

�r
a

b
juj2C

b

a
.sC s0/2

�
;

reducing the number of unknown parameters in our system. Thus, we have accomplished the first step in
our identification program: we know how the operator S acts on radial extremizers. Now we have to
understand how V acts on functions g whose form is

g W uC sed 7!G

�r
cjuj2C

1

c
.sC s0/2

�
:
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First, we can assume that s0D 0: indeed, g. � � s0ed /�D g�. Moreover, G is decreasing and so the level
sets of g are ellipsoids cjuj2C c�1s2 � R2. The corresponding rearranged sets are balls of radius R0,
with R0 satisfying the relation

R0d D
Rd�1

c
d�1

2

c
1
2RD

Rd

c
d�2

2

:

Thus

Vg.sed /DG.c
d�2
2d s/D

1

.c
d�1

d s/kC1
f

�
ed

c
d�1

d s

�
;

coming back to the relation defining G, and using that f is radial. And then

Vg.sed /D
1

.c
d�1

d s/kC1
f

�
ed

c
d�1

d s

�
:

This characterizes the action of the operator V S on radial extremizers. More simply, calling �D c
d�1

d ,
we have

V Sf .x/D
1

�kC1jxjkC1
f

�
ed

�jxj

�
:

Let us use again the competing symmetry theory: to construct an explicit extremizer of (1-2) we used
iterations of V S, applied to any function. Let us choose f0 a radial extremizer. Then V Sf0 is still a
radial extremizer, and we know that there exists � such that

V Sf0.r/D
�
1

�r

�kC1
f0

�
1

�r

�
:

Let us do that again: there exists �0 such that

.V S/2f0.r/D
�
1

�0r

�kC1
.V Sf0/

�
1

�0r

�
D

�
1

�0r

�0r

�

�kC1
f0

�
�0r

�

�
D

1

�kC1
f0

�
�0r

�

�
:

Since the operator V S preserves the norm, we must have ��0d D 1. Using the parameter � such that
�0 D ��, we conclude the proof of Lemma 4.3. �

That proves that the operator V S acts on radial, nonincreasing extremizers as a dilation. Now let us
consider fn D .V S/2nf0. For each n, there exists �n such that

.V S/2nf0.r/D .�n/
d
p f0.�nr/:

But the sequence fn converges in Lp to the extremizer h described in Theorem 3.1. Thus it converges
weakly to a nonzero function, which is possible if and only if �n converges to a nonzero value. That
ends the proof of Theorem 4.2: every nonnegative radial extremizer can be written

x 7!

�
1

aC bjxj2

�kC1
2

with a; b > 0.
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Appendix

Here we prove the jacobian formula (3-8). Define

‰.�1; : : : �k/D .˛
�1�1; : : : ; ˛

�1�k�1; �k/:

We want to compute J .�/D jdet.r /.�1; : : : ; �k/j. Note first that

@˛�1

@�i
D ˛�2.x00i � x

00
0/:

Thus

J .�/D

ˇ̌̌̌
ˇ̌̌̌
ˇ
�˛�2.x001 � x

00
0/�1C˛

�1 : : : �˛�2.x001 � x
00
0/�k�1 �˛�2.x001 � x

00
0/

:::
: : :

:::
:::

�˛�2.x00
k�1
� x000/�1 : : : �˛�2.x00

k�1
� x000/�k�1C˛

�1 �˛�2.x00
k�1
� x000/

�˛�2.x00
k
� x000/�1 : : : �˛�2.x00

k
� x000/�k�1 �˛�2.x00

k
� x000/

ˇ̌̌̌
ˇ̌̌̌
ˇ

D j˛j�k�1 jx00k � x
00
0 j

ˇ̌̌̌
ˇ̌̌̌
ˇ
y1�1C 1 : : : y1�k�1 y1

:::
: : :

:::
:::

yk�1�1 : : : yk�1�k�1C 1 yk�1
�1 : : : �k�1 1

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

where yi D�˛�1.x00i �x
00
0/. We claim that the determinant appearing in the last line is always equal to 1.

Indeed, consider the polynomial

P.z/D det

0BBB@
y1�1C 1 : : : y1�k�1 y1

:::
: : :

:::
:::

yk�1�1 : : : yk�1�k�1C 1 yk�1
�1 : : : �k�1 z

1CCCA :
It is of degree 1 in z. Moreover, we have

P 0.1/D det

0B@y1�1C 1 : : : y1�k�1
:::

: : :
:::

yk�1�1 : : : yk�1�k�1C 1

1CAD 1Chy; �i; (A-1)

P.2/D 2Chy; �i: (A-2)

Here hy; �i D
Pk�1
iD1 �iyi . The formulas (A-1), (A-2) both come from the following lemma:

Lemma A.1. If u; v 2 Rp, then
det.1Cutv/D 1Chu; vi:

Proof. The matrix utv is of rank one. As a consequence, its only eigenvalue is its trace hu; vi. The
characteristic polynomial of �utv is then

det.z1Cutv/D zp�1.zChu; vi/:

Evaluating this at z D 1 proves the lemma. �
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Applying this lemma to uD �, v D y leads to (A-1), and uD .�; 1/, v D .y; 1/ leads to (A-2). Thus

P.z/D .1Ch�; yi/z� h�; yi:

Evaluate this at z D 1 to get the asserted claim, and then

J .�/D j˛j�k�1 jx00k � x
00
0 j:
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