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We control a broad class of singular (or “rough”) Fourier multipliers by geometrically defined maximal
operators via general weighted L2(R) norm inequalities. The multipliers involved are related to those
of Coifman, Rubio de Francia and Semmes, satisfying certain weak Marcinkiewicz-type conditions that
permit highly oscillatory factors of the form ei |ξ |α for both α positive and negative. The maximal functions
that arise are of some independent interest, involving fractional averages associated with tangential
approach regions (related to those of Nagel and Stein), and more novel “improper fractional averages”
associated with “escape” regions. Some applications are given to the theory of L p–Lq multipliers,
oscillatory integrals and dispersive PDE, along with natural extensions to higher dimensions.

1. Introduction and statements of results

Given a Fourier multiplier m, with corresponding convolution operator Tm , there has been considerable
interest in identifying, where possible, “geometrically defined” maximal operators M for which a weighted
L2-norm inequality of the form ∫

Rn
|Tm f |2w ≤

∫
Rn
| f |2Mw (1)

holds for all admissible input functions f and weight functions w. This very general Fourier multiplier
problem was made particularly explicit in the 1970s in work of A. Córdoba and C. Fefferman [1976],
following the emergence of fundamental connections between the theory of Fourier multipliers and
elementary geometric notions such as curvature (see [Fefferman 1971; Córdoba 1977; Stein 1979], in
particular). Such control of a multiplier m by a maximal operator M, combined with an elementary duality
argument, reveals that, for p, q ≥ 2,

‖m‖p,q := ‖Tm‖L p−Lq ≤ ‖M‖
1/2
L(q/2)′−L(p/2)′

. (2)

Thus it is of particular interest to identify an “optimal” maximal operator M for which (1) holds, in the
sense that (2) permits optimal L p–Lq bounds for M to be transferred to optimal bounds for Tm .

There are a variety of results of this nature, although often formulated in terms of the convolution kernel
rather than the multiplier. For example, if T denotes a Calderón–Zygmund singular integral operator
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on Rn , such as the Hilbert transform on the line, Córdoba and Fefferman [1976] (see also [Hunt et al.
1973]) showed that for each s > 1 there is a constant Cs <∞ for which∫

Rn
|T f |2w ≤ Cs

∫
Rn
| f |2(Mws)1/s (3)

holds, where M denotes the classical Hardy–Littlewood maximal operator. This result extends to weighted
L p estimates for 1< p <∞; see [Córdoba and Fefferman 1976]. The inequality (3) may be viewed as a
consequence of the classical theory of Muckenhoupt Ap weights through the fundamental fact that if
(Mws)1/s <∞ a.e. and s > 1 then (Mws)1/s ∈ A1 ⊂ A2; see [Stein 1993] and the references there. Of
course, for any fixed s > 1 the maximal operator w 7→ (Mws)1/s in (3) is not optimal, since it fails to be
L p-bounded in the range 1< p ≤ s, while T is bounded on L p for all 1< p <∞. More recently this
was remedied by Wilson [1989], who showed that1∫

Rn
|T f |2w .

∫
Rn
| f |2 M3w, (4)

where M3
= M ◦M ◦M denotes the 3-fold composition of M with itself. As with (3), this useful result

extends to weighted L p norms for 1< p <∞; see [Wilson 1989; Pérez 1994; Reguera and Thiele 2012].
There are numerous further results belonging to the considerable theory surrounding the Ap weights; see
for example [García-Cuerva and Rubio de Francia 1985; Pérez 1995; Hytönen 2012; Lacey et al. 2014;
Hytönen et al. 2013; Lerner 2013].

In the setting of oscillatory integrals the controlling maximal operators appear to acquire a much more
interesting geometric nature, well beyond the scope of the classical Ap theory. This is illustrated well by
a compelling and seemingly very deep conjecture concerning the classical Bochner–Riesz multipliers,

mδ(ξ)= (1− |ξ |2)δ+,

where ξ ∈ Rn and δ ≥ 0. Of course, m0 is simply the characteristic function of the unit ball in Rn ,
allowing us to interpret mδ for δ > 0 as a certain regularisation of this characteristic function. The classical
Bochner–Riesz conjecture concerns the range of exponents p for which mδ is an L p-multiplier. In the
1970s, A. Córdoba [1977] and E. M. Stein [1979] raised the possibility that a weighted inequality of the
form (1) holds where M is some suitable variant of the Nikodym maximal operator

Nδw(x) := sup
T3x

1
|T |

∫
T
w;

see also [Fefferman 1971; 1973]. Here the supremum is taken over all cylindrical tubes of eccentricity less
than 1/δ that contain the point x . This maximal operator M should be geometrically defined (very much
like Nδ) and its known/conjectured bounds should be similar to those of Nδ , thus essentially implying the
full Bochner–Riesz conjecture via (2).2 Such a result is rather straightforward for n = 1 as it reduces to

1Throughout this paper we shall write A . B if there exists a constant c such that A ≤ cB. In particular, this constant will
always be independent of the input function f and weight function w. The relations A & B and A ∼ B are defined similarly.

2Similar weighted inequalities relating the Fourier restriction and Kakeya conjectures have also received some attention in the
literature; see [Bennett et al. 2006] for further discussion.
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the aforementioned inequality for the Hilbert transform. In higher dimensions this question is far from
having a satisfactory answer already for n = 2 (see [Bourgain 1991; Christ 1985; Carbery et al. 1992;
Carbery and Soria 1997a; 1997b; Carbery and Seeger 2000; Bennett et al. 2006; Duoandikoetxea et al.
2008; Lee et al. 2012; Córdoba and Rogers 2014] for some related results). The associated convolution
kernel

Kδ(x) := F−1mδ(x)=
cJn/2+δ(2π |x |)
|x |n/2+δ

= c
e2π i |ξ |

+ e−2π i |ξ |
+ o(1)

|ξ |(n+1)/2+δ ,

unlike the Hilbert kernel, is (for δ sufficiently small) very far from being Lebesgue integrable. Here Jλ
denotes the Bessel function of order λ, making Kδ highly oscillatory.

In [Bennett and Harrison 2012], using arguments from [Bennett et al. 2006] in the setting of Fourier
extension operators, we gave nontrivial examples of such “optimal” control of oscillatory kernels on the
line by geometrically defined maximal operators. In particular, for integers `≥ 3, we showed that∫

R

∣∣ei( · )`
∗ f

∣∣2w . ∫
R

| f |2 M2MM4w, (5)

where

Mw(x) := sup
(y,r)∈0(x)

1
r1/(`−1)

∫ y+r

y−r
w

and

0(x)=
{
(y, r) : 0< r ≤ 1, |x − y| ≤ r−1/(`−1)}. (6)

The maximal operator M here may be interpreted as a fractional Hardy–Littlewood maximal operator
associated with an approach region 0(x). This maximal operator is similar in spirit to those studied by
Nagel and Stein [1984], although here tangential approach to infinite order is permitted. It is shown in
[Bennett and Harrison 2012] that M has a sharp bound on L(`/2)

′

, which may be reconciled via (5) with a
sharp L` bound for convolution with ei x` . We note in passing that the factors of the Hardy–Littlewood
maximal operator appearing in (5) are of secondary importance as M and M2MM4 share the same L p–Lq

mapping properties. This follows from the L p-boundedness of M for 1< p ≤∞.
In this paper we seek an understanding of the “map” m 7→ M, from Fourier multiplier to optimal

controlling maximal operator, for which (1) holds. As we shall see, an inequality of the form (1) does
indeed hold for a wide class of multipliers m and a surprisingly rich family of geometrically defined
maximal operators M. This class of multipliers is sufficiently singular to apply to a variety of highly
oscillatory convolution kernels, placing (5) in a much broader context. The maximal operators turn out
to be fractional Hardy–Littlewood maximal operators associated with a diverse family of approach and
“escape” regions in the half-space. While such operators corresponding to approach regions have arisen
before [Nagel and Stein 1984; Bennett et al. 2006; Bennett and Harrison 2012], those associated with
“escape” regions appear to be quite novel, involving improper fractional averages.

As is well known, at least in one dimension, the variation of a multiplier can play a decisive role in
determining its behaviour as an operator. For example, if a multiplier m is of bounded variation on the
line, then it often satisfies the same norm inequalities as the Hilbert transform. This is a straightforward
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consequence of the elementary identity

Tm = lim
t→−∞

m(t)I + 1
2

∫
R

(I + i M−t H Mt) dm(t). (7)

Here I denotes the identity operator on Rd , the modulation operator Mt is given by Mt f (x)= e−2π i xt f (x),
and dm(t) denotes the Lebesgue–Stieltjes measure (which we identify with |m′(t)| dt throughout). In
particular, combining this with (4) quickly leads to the inequality∫

R

|Tm f |2w .
∫

R

| f |2 M3w. (8)

Invoking classical weighted Littlewood–Paley theory for dyadic decompositions of the line (see [Wilson
2007] and [Bennett and Harrison 2012] for further discussion) leads to the following weighted version of
the Marcinkiewicz multiplier theorem (cf. [Kurtz 1980]).

Theorem 1. If m : R→ C is a bounded function which is uniformly of bounded variation on dyadic
intervals, that is,

sup
R>0

∫
R≤|ξ |≤2R

|m′(ξ)| dξ <∞, (9)

then ∫
R

|Tm f |2w .
∫

R

| f |2 M7w.

The control of m here by a power of the Hardy–Littlewood maximal operator is optimal in the sense that
Theorem 1, combined with the Hardy–Littlewood maximal theorem, implies the classical Marcinkiewicz
multiplier theorem via (2). It would seem unlikely that the particular power of M that features here is
best possible; here and throughout this paper we do not concern ourselves with such finer points.

Our goal is to establish versions of Theorem 1 which apply to much more singular (or “rougher”)
multipliers. A natural class of singular multipliers on the line, defined in terms of the so-called “r -variation”
was introduced by Coifman, Rubio de Francia and Semmes in [Coifman et al. 1988]. For a function m on
an interval [a, b] we define the r -variation of m to be the supremum of the quantity(N−1∑

j=0

|m(x j+1)−m(x j )|
r
)1/r

over all partitions a = x0 < x1 < · · · < xN = b of [a, b]. We say that m is a Vr multiplier if it has
uniformly bounded r-variation on each dyadic interval. (Of course, if r = 1 this class reduces to the
classical Marcinkiewicz multipliers.) In [Coifman et al. 1988] it is shown that if m is a Vr multiplier then
m is an L p(R) multiplier for |1/p− 1/2|< 1/r , considerably generalising the classical Marcinkiewicz
multiplier theorem on the line. With the possible exception of the endpoint, this result is sharp, as may be
seen from the specific multipliers

mα,β(ξ) :=
ei |ξ |α

(1+ |ξ |2)β/2
, α, β ≥ 0, (10)
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first studied by Hirschman [1959] (see [Stein 1970] for further discussion). Indeed mα,β is a Vr multiplier
if βr = α, while being an L p multiplier if and only if α|1/p− 1/2| ≤ β; see [Hirschman 1959; Miyachi
1981]. The endpoint case |1/p− 1/2| = 1/r remains open in general for Vr multipliers; see [Tao and
Wright 2001] for further discussion and related results.

For the purposes of identifying optimal controlling maximal operators we will confine attention to a
subclass of the Vr multipliers that retains some of the structure of the specific example (10). Before we
describe this subclass let us discuss some motivating examples.

The multiplier corresponding to the convolution kernel ei x` appearing in (5) coincides with the
(generalised) Airy function

Ai (`)(ξ)=
∫
∞

−∞

ei(x`+xξ) dx = c0
eic1|ξ |

`/(`−1)
+ o(1)

|ξ |(`−2)/(2(`−1))

as |ξ | →∞; here c0 and c1 are appropriate constants. As standard Airy function asymptotics reveal, the
variation of this multiplier on dyadic intervals is unbounded. This multiplier, with its highly oscillatory
behaviour as |ξ | →∞, belongs to a more general class of multipliers satisfying

m(ξ)= O
(
|ξ |−β

)
, m′(ξ)= O

(
|ξ |−β+α−1) (11)

as |ξ | →∞. Here α, β ≥ 0, and of course the specific multiplier in (10) is a model example. In addition
to multipliers whose derivatives can have strong singularities at infinity, it is also natural to consider those
which are singular at a point. In particular, we might hope to control multipliers satisfying (11) as |ξ |→ 0
for α, β ≤ 0. Such singular multipliers, which were studied by Miyachi [1980; 1981], arise frequently in
the study of oscillatory and oscillatory-singular integrals; see for example [Stein 1993; Miyachi 1981;
Sjölin 1981; Chanillo et al. 1986]. See also [Miyachi 1980; 1981] for a general L p(R) (and Hardy space
H p(R)) multiplier theorem under the specific hypothesis (11). The following class of multipliers, which
we denote C(α, β), involves a Marcinkiewicz-type variation condition specifically designed to capture
these Miyachi-type examples.

The class of multipliers. For each α, β ∈ R, let C(α, β) be the class of functions m : R→ C for which

supp(m)⊆ {ξ : |ξ |α ≥ 1}, (12)

sup
ξ

|ξ |β |m(ξ)|<∞, (13)

sup
Rα≥1

sup
I⊆[R,2R]
`(I )=R−αR

Rβ
∫
±I
|m′(ξ)| dξ <∞. (14)

Here the supremum is taken over all subintervals I of [R, 2R] of length `(I )= R−αR.

Remarks.

(i) The support condition (12) has no content for α = 0. For α > 0 and α < 0 it reduces to, respectively,
supp(m) ⊆ {|ξ | ≥ 1} and supp(m) ⊆ {|ξ | ≤ 1}. A similar interpretation applies to the outermost
supremum in (14).
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(ii) The case α = 0 is of course somewhat degenerate. As is easily verified, the class C(α, β) reduces to
the classical Marcinkiewicz multipliers when α= β = 0. Further, the fractional integration multiplier
ξ 7→ |ξ |−β lies in C(0, β).

(iii) The model behaviour of a multiplier in C(α, β) in the nondegenerate case α 6= 0 is that of the Miyachi
multipliers (11) as |ξ |α→∞.

(iv) An elementary calculation reveals that if m lies in C(α, β) then m is a Vr multiplier provided βr = α.
We also note that the additional structure of the class C(α, β) yields L p–Lq estimates for certain
q 6= p — see the forthcoming Corollary 5.

(v) An elementary change of variables argument reveals that a multiplier m ∈ C(α, β) if and only if
m̃ ∈C(−α,−β), where m̃(ξ):=m(1/ξ). The main point is that the diffeomorphism R\{0}→R\{0},
ξ 7→ 1/ξ preserves dyadic intervals and (essentially) any lattice structure within them.

(vi) Unlike the Vr multipliers, if α 6= 0 the class C(α, β) is not dilation-invariant due to the distinguished
role of the unit scale R = 1. See the forthcoming Theorem 3 for a natural dilation-invariant
formulation.

We now introduce the family of maximal operators that will control these multipliers via (1).

The controlling maximal operators. For α, β ∈ R we define the maximal operator Mα,β by

Mα,β f (x)= sup
(r,y)∈0α(x)

r2β

r

∫
|y−z|≤r

f (z) dz, (15)

where

0α(x)=
{
(r, y) : 0< rα ≤ 1 and |y− x | ≤ r1−α}. (16)

This family of maximal operators is of some independent interest. When α= 0 the approach region 0α(x)
is simply a cone with vertex x , and the associated maximal operator Mα,β is equivalent to the classical
fractional Hardy–Littlewood maximal operator

M2βw(x) := sup
r>0

r2β

r

∫ x+r

x−r
w. (17)

When 0 < α < 1 the maximal operators Mα,β have also been considered before and originate in work
of Nagel and Stein [1984] on fractional maximal operators associated with more general nontangential
approach regions. However, as we have already mentioned, the above definitions also permit α ≥ 1 and
α < 0, where one sees dramatic transitions in the nature of the region 0α . In particular if α ≥ 1 then the
situation is similar to that in (6), where tangential approach to infinite order is permitted; see [Bennett
et al. 2006] for the origins of such regions. Furthermore, for α < 0 we have

0α(x)=
{
(r, y) : r ≥ 1 and |y− x | ≤ r1−α},

which may be viewed as an “escape”, rather than “approach”, region. Notice also that if β < 0 we interpret
Mα,β as an improper fractional maximal operator.
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The maximal operators Mα,β are significant improvements on the controlling maximal operators
w 7→ (Mws)1/s that typically arise via classical Ap-weighted inequalities. Crudely estimating Mα,βw

pointwise using Hölder’s inequality reveals that

Mα,βw ≤ (Mws)1/s when 2sβ = α. (18)

This allows the forthcoming Theorem 2 to be reconciled with certain Ap-weighted inequalities established
by Chanillo, Kurtz and Sampson in [Chanillo et al. 1983; 1986]. In Section 2 we provide necessary and
sufficient conditions for Mα,β to be bounded from L p to Lq . In particular, we see that Mα,β is bounded
on Ls when 2sβ = α, a property that does not follow from (18).

The main result of this paper is the following.

Theorem 2. Let α, β ∈ R. If m ∈ C(α, β) then∫
R

|Tm f |2w .
∫

R

| f |2 M6Mα,βM4w. (19)

It is interesting to contrast this result with the recent weighted variational Carleson theorem of Do and
Lacey [2012]; see also [Oberlin et al. 2012; Lacey 2007].

As may be expected, the factors of the Hardy–Littlewood maximal operator M arising in Theorem 2
are of secondary importance, and to some extent occur for technical reasons. Since M is bounded on
L p for all 1< p ≤∞, the maximal operators M6Mα,βM4 and Mα,β share the same L p–Lq bounds. The
forthcoming Theorem 4 clarifies the L p–Lq behaviour of these operators.

It is perhaps helpful to make some further remarks about the nonsingular case α = 0 of Theorem 2.
As is immediately verified, the class of multipliers C(0, β) is precisely those satisfying the conditions

sup
ξ∈R

|ξ |β |m(ξ)|<∞, (20)

and

sup
R>0

Rβ
∫

R≤|ξ |≤2R
|m′(ξ)| dξ <∞. (21)

For such “classical” multipliers, Theorem 2 reduces to the weighted inequality∫
R

|Tm f |2w .
∫

R

| f |2 M6 M2βM4w, (22)

where M2β is the fractional Hardy–Littlewood maximal operator given by (17). When β=0, the conditions
(20) and (21) become those of the classical Marcinkiewicz multiplier theorem, and the resulting inequality
(22) reduces — up to factors of M — to the classical Theorem 1. Noting that the multiplier ξ 7→ |ξ |−β

lies in C(0, β), again up to factors of M we recover the one-dimensional case of Pérez’s [1995] result.
Of course the class C(α, β) is neither scale-invariant nor facilitates quantification of the implicit

constants in Theorem 2. Our arguments, along with elementary scaling considerations, reveal the
following.
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Theorem 3. Let α, β ∈ R and λ,C > 0. If m : R→ C is such that

supp(m)⊆ {ξ : |ξ |α ≥ λα}, (23)

sup
ξ

|ξ |β |m(ξ)| ≤ C, (24)

sup
Rα≥λα

sup
I⊆[R,2R]

`(I )=(R/λ)−αR

Rβ
∫
±I
|m′(ξ)| dξ ≤ C, (25)

then there exists an absolute constant c > 0 such that∫
R

|Tm f |2w ≤ cC2
∫

R

| f |2 M6Mλ
α,βM4w, (26)

where

Mλ
α,βw(x)= sup

(y,r)∈0λα(x)

r2β

r

∫ y+r

y−r
w and 0λα(x)=

{
(y, r) : 0< rα ≤ λ−α, |x − y| ≤ λ−αr1−α}.

The hypotheses of Theorem 3 are scale-invariant. More precisely, if m satisfies (23)–(25) with parameter
λ= η, then ηβm(η · ) satisfies (23)–(25) with parameter λ= 1.

Organisation of the paper. Our proof of Theorem 2 rests crucially on a certain Littlewood–Paley type
square function estimate. This is presented in Section 3. Section 4 contains the proof of Theorem 2,
Section 5 concerns extensions to higher dimensions, and finally Section 6 is devoted to the L p–Lq

boundedness properties of the maximal operators Mα,β . We begin by presenting some applications and
interpretations of Theorem 2.

2. Applications and interpretations

Here we present three distinct applications (or interpretations) of Theorem 2.

2.1. L p–Lq multipliers. Our first application of Theorem 2 is to the theory of L p–Lq multipliers on the
line. Such a multiplier theorem will follow from Theorem 2 via (2) once we have suitable bounds on the
maximal operators Mα,β .

Theorem 4. Let 1 < p ≤ q ≤∞ and α, β ∈ R. If α > 0 then Mα,β is bounded from L p(R) to Lq(R) if
and only if

β ≥
α

2q
+

1
2

( 1
p
−

1
q

)
. (27)

If α = 0 then Mα,β is bounded from L p(R) to Lq(R) if and only if

β =
1
2

( 1
p
−

1
q

)
. (28)

If α < 0 then Mα,β is bounded from L p(R) to Lq(R) if and only if

β ≤
α

2q
+

1
2

( 1
p
−

1
q

)
. (29)
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Remarks. When α = 0 Theorem 4 of course reduces to the well-known L p–Lq boundedness properties
of the classical fractional Hardy–Littlewood maximal operator in one dimension; see [Muckenhoupt and
Wheeden 1974]. For 0≤ α < 1 (the case of nontangential approach regions) and p= q , this result follows
from the work of [Nagel and Stein 1984]. Certain particular cases of Theorem 4 in the region α > 1 are
established in [Bennett and Harrison 2012], following arguments in [Bennett et al. 2006]. Our proof,
which extends further the arguments in [Bennett et al. 2006], follows by establishing a corresponding
endpoint Hardy space result when p = 1; see Section 6.

Combining Theorems 2 and 4 yields the following unweighted Marcinkiewicz-type multiplier theorem.

Corollary 5. Let 2≤ p ≤ q <∞, α, β ∈ R and suppose m ∈ C(α, β). If one of

α > 0 and β ≥ α
(1

2
−

1
p

)
+

1
p
−

1
q
,

α = 0 and β =
1
p
−

1
q
,

or α < 0 and β ≤ α
(1

2
−

1
p

)
+

1
p
−

1
q

holds, then m is an L p(R)–Lq(R) multiplier.

Remarks. Corollary 5, which modestly generalises a number of well-known results, is optimal subject
to the (inevitable) constraint p, q ≥ 2; see [Miyachi 1980; 1981]. However, as the examples in those
papers also suggest, unless p = q, Corollary 5 is unlikely to lead to optimal results in the full range
1≤ p, q ≤∞. If α 6= 0 then, by duality and interpolation, we may conclude that m is an L p(R) multiplier
for all 1 < p <∞ satisfying the familiar condition |1/2− 1/p| ≤ β/α. This generalises the L p (as
opposed to H p) multiplier results of [Miyachi 1980] in dimension n = 1. If α = 0 then Corollary 5
reduces to the classical one-dimensional Marcinkiewicz multiplier theorem on setting p = q, since m
is a Marcinkiewicz multiplier if and only if m ∈ C(0, 0). The special case α = 0 also generalises the
classical Hardy–Littlewood–Sobolev theorem on fractional integration since the multiplier |ξ |−β belongs
to C(0, β).

2.2. Oscillatory convolution kernels on the line. The method of stationary phase permits Theorem 2 to
be applied to a variety of explicit oscillatory convolution operators on the line. For example, for a > 0
with a 6= 1 and 1− a/2≤ b < 1, consider the convolution kernel Ka,b : R\{0} → C given by

Ka,b(x)=
ei |x |a

(1+ |x |)b
.

The corresponding convolution operator is well understood on L p, with

‖Ka,b ∗ f ‖p . ‖ f ‖p ⇐⇒ p0 ≤ p ≤ p′0, (30)

where p0 = a/(a+ b− 1); see [Sjölin 1981; Jurkat and Sampson 1981]. As we shall see, an application
of Theorem 2 quickly leads to the following.
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Theorem 6. If a > 0 with a 6= 1 and 1− a/2≤ b < 1, then∫
R

|Ka,b ∗ f |2w .
∫

R

| f |2 M6Mα,βM4w, (31)

where α = a
a−1

and β = a/2+b−1
a−1

.

This theorem is optimal in the sense that it allows us to recover (30) (and indeed more general L p–Lq

estimates) from Theorem 4 via (2). Notice that if 0< a< 1 then α := a/(a−1) < 0 and so the controlling
maximal operator Mα,β corresponds to an escape region. Similarly, if a > 1 then α > 0 and so Mα,β

corresponds to an approach region. Theorem 6 may of course be viewed as a generalisation (modulo
factors of M) of the inequality (5).

In order to deduce Theorem 6 from Theorem 2 we simply observe that, up to a couple of well-behaved
“error” terms, the multiplier K̂a,b belongs to C(α, β). Let us begin by handling the portion of Ka,b in a
neighbourhood of the origin (where the kernel lacks smoothness). Let η ∈ C∞c (R) be an even function
satisfying η(x)= 1 for |x | ≤ 1, and write Ka,b = Ka,b,0+ Ka,b,∞, where Ka,b,0 = ηKa,b. Since Ka,b,0 is
rapidly decreasing, by the Cauchy–Schwarz inequality we have∫

R

|Ka,b,0 ∗ f |2w ≤ ‖Ka,b,0‖1

∫
R

| f |2|Ka,b,0| ∗w .
∫

R

| f |2 M1w,

where

M1w(x) := sup
r≥1

1
2r

∫ x+r

x−r
w.

The claimed inequality (31) for the portion of the kernel Ka,b,0 now follows from the elementary pointwise
bound

M1w . AM1w ≤Mα,βM1w ≤Mα,βMw ≤ M6Mα,βM4w,

where the averaging operator A is given by

Aw(x)= 1
2

∫ x+1

x−1
w.

It thus remains to prove (31) for the portion Ka,b,∞. In order to force the support hypothesis (12) we
introduce a function ψ ∈C∞(R) such that ψ(ξ)= 0 when |ξ |α ≤ 1 and ψ(ξ)= 1 when |ξ |α ≥ 2. Writing
m0 = (1−ψ)K̂a,b,∞ and m1 = ψ K̂a,b,∞, it suffices to show that∫

R

|Tm j f |2w .
∫

R

| f |2 M6Mα,βM4w (32)

for j = 0, 1. A standard stationary phase argument (see [Sjölin 1981] for explicit details) reveals that m1

satisfies the Miyachi-type bounds (11) as |ξ |α→∞. Hence m1 ∈ C(α, β), yielding (32) for j = 1 by
Theorem 2. The multiplier m0 is less interesting, being the Fourier transform of a rapidly decreasing
function (again, see [Sjölin 1981] for further details). Arguing as we did for the portion Ka,b,0 establishes
(32) for j = 0, completing the proof.

For a more far-reaching discussion relating to the asymptotics of Fourier transforms of oscillatory
kernels, see [Stein 1993], and what Stein refers to as the “duality of phases”.
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2.3. Spatial regularity of solutions of dispersive equations. Theorem 2 has an interesting interpretation
in the context of spatial regularity of solutions to dispersive equations. For example, applying3 Theorem 2
to the multiplier m2,β given by (10) yields∫

R

∣∣ei∂2
f
∣∣2w . ∫

R

∣∣(I − ∂2)β/2 f
∣∣2 M6M2,βM4w

for all β ≥ 0. Using the scale-invariant inequality (26) with λ= t−1/2, a similar statement may be made
for the operator ei t∂2

, namely∫
R

∣∣ei t∂2
f
∣∣2w . ∫

R

∣∣(t−1 I − ∂2)β/2 f
∣∣2 M6Mt−1/2

2,β M4w,

with implicit constant independent of t > 0. It is perhaps more natural to rewrite this as∫
R

∣∣ei t∂2
f
∣∣2w . ∫

R

∣∣(I − t∂2)β/2 f
∣∣2 M6Mt M4w,

where

Mtw(x) := sup
(y,r)∈3t (x)

r2β 1
t1/2r

∫ y+t1/2r

y−t1/2r
w and 3t(x)=

{
(y, r) : 0< r ≤ 1, |x − y| ≤ t1/2/r

}
,

so that the degeneracy as t → 0 is more apparent. The resulting L p multiplier theorem at t = 1 (see
Corollary 5 in the case q = p) is the inequality∥∥ei∂2

f
∥∥

L p(R)
. ‖ f ‖W β,p

for β ≥ 2|1/2− 1/p|. Here W β,p denotes the classical inhomogeneous L p Sobolev space. This optimal
Sobolev inequality, which goes back to Miyachi [1981], describes the regularity loss in L p(R) for a
solution to the Schrödinger equation with initial data in L p(R). Naturally this interpretation applies equally
well to the wave, Airy and more general (pseudo)differential dispersive equations. Similar conclusions, at
least for the Schrödinger equation, may be reached in higher dimensions using the results of Section 5;
see also [Miyachi 1981].

3. Weighted inequalities for a lattice square function

In this section we present the forward and reverse weighted Littlewood–Paley square function estimates
that underpin our proof of Theorem 2. We formulate our results in Rn in anticipation of higher-dimensional
applications in Section 5.

Let 9 ∈ S(Rn) be such that supp(9̂)⊆ [−1, 1]n and∑
k∈Zn

9̂(ξ − k)= 1

for all ξ ∈ Rn . Such a function may of course be constructed by defining 9̂ = χ[−1/2,1/2]n ∗ φ, for a
function φ ∈ C∞c (R

n) of suitably small support and integral 1.

3Strictly speaking we are applying Theorem 2 to a portion of the multiplier supported away from the origin, and dealing with
the portion near the origin by other (elementary) means. See Section 2.2 for further details.
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For each t ∈ (0,∞)n we define the n× n dilation matrix δ(t) := diag(t1, . . . , tn), and the rectangular
box B(t) := δ(t)−1

[−1, 1]n = [−1/t1, 1/t1]× · · · × [−1/tn, 1/tn].
Now let R′ ∈ (0,∞)n and decompose Rn into a lattice of rectangles {ρk} as follows. For each k ∈Zn let

ρk = δ(R′)
(
{k}+

[
−

1
2 ,

1
2

]n)
,

making ρk the axis-parallel rectangular cell centred at δ(R′)k= (R′1k1, . . . , R′nkn) with j -th side length R′j .
Defining 9k ∈ S(Rn) by

9̂k(ξ)= 9̂(δ(R′)−1ξ − k),

we have ∑
k∈Zn

9̂k ≡ 1, (33)

supp(9̂k)⊆ ρ̃k,

for each k ∈ Zn . Here ρ̃k denotes the concentric double of ρk . Finally, let the operator Sk be given by
Ŝk f = 9̂k f̂ .

For the operators Sk we have the following essentially standard square function estimate. Very similar
results may be found in several places in the literature, including [Córdoba 1982; Rubio de Francia 1985;
Bennett et al. 2006].

Proposition 7.
∫

Rn

∑
k

|Sk f |2w .
∫

Rn
| f |2 MSw (34)

uniformly in R′, where MS denotes the strong maximal function.

A reverse weighted inequality, where the function f is controlled by the square function
(∑

k |Sk f |2
)1/2,

is rather more subtle, and is the main content of this section.

Theorem 8. Suppose R ∈ (0,∞)n is such that R j ≥ R′j for each 1≤ j ≤ n, and let ρ be an axis-parallel

rectangle in Rn of j-th side length R j . If supp( f̂ )⊆ ρ then∫
Rn
| f |2w .

∫
Rn

∑
k

|Sk f |2 MS AR,R′MSw,

where the operator AR,R′ is given by

AR,R′w(x)= sup
y∈{x}+B(R′)

1
|B(R)|

∫
{y}+B(R)

w.

Remark. As the following proof reveals, Theorem 8 continues to hold if the operators Sk are replaced by
the genuine frequency-projection operators defined by Ŝk f = χρk f̂ .

Proof of Theorem 8. We begin by exploiting the Fourier support hypothesis on f to mollify the
weight w. Let 8 ∈ S(Rn) be an even function satisfying 8̂ = 1 on [−1, 1]n . Observe that if we
define 8R ∈ S(Rn) by 8̂R(ξ) = 8̂(δ(R)−1ξ) = 8̂(ξ1/R1, . . . , ξn/Rn), then f = f ∗ (Mξρ8R). Here
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Mξρ8R(x) = e−2π i x ·ξρ8R(x) and ξρ denotes the centre of ρ. A standard application of the Cauchy–
Schwarz inequality and Fubini’s theorem reveals that∫

Rn
| f |2w =

∫
Rn
| f ∗ (Mξρ8R)|

2w ≤ ‖8R‖1

∫
Rn
| f |2|8R| ∗w .

∫
Rn
| f |2w1, (35)

where w1 := |8R| ∗w. The final inequality here follows since the functions 8R are normalised in L1.
Now, by (33) we have

f =
∑

k

Sk f.

This raises issues of orthogonality for the operators Sk on L2(w1). Although the weight w1 is smooth,
in order for us to have any (almost) orthogonality we should expect to need an improved smoothness
consistent with a mollification by |8R′ | rather than |8R|. We thus seek an efficient way of dominating w1

by such an improved weight.4 This ingredient, which is based on an argument in [Bennett et al. 2006],
comes in two simple steps. First define the weight function w2 by

w2(x)= sup
y∈{x}+B(R′)

w1(y).

Certainly w2 dominates w1 pointwise, although w2 will not in general be sufficiently smooth for our
purposes. Let2∈S(Rn) be a nonnegative function whose Fourier transform is nonnegative and compactly
supported, and let

w3 =2R′ ∗w2,

where 2R′ is defined by 2̂R′(ξ)= 2̂(δ(R′)−1ξ)= 2̂(ξ1/R′1, . . . , ξn/R′n). By construction w3 has Fourier
support in {ξ : |ξ j |. R′j , 1≤ j ≤n} and so by Parseval’s theorem we have the desired almost orthogonality:

〈Sk f, Sk′ f 〉L2(w3) = 0 if |k− k ′|& 1. (36)

Despite its improved smoothness, this new weight w3 continues to dominate w1.

Lemma 9. w2 . w3.

Proof. By dilating 2 by an absolute constant if necessary, we may assume that 2 & 1 on [−1, 1]n .
Consequently,

w3(0)&
1

|B(R′)|

∫
B(R′)

w2(x) dx .

Now let B1, B2, . . . , B2n be the intersections of B(R′) with the 2n coordinate hyperoctants of Rn . It will
suffice to show that there exists ` ∈ {1, 2, . . . , 2n

} such that w2(x)≥w2(0) for all x ∈ B`. To see this we
suppose, for a contradiction, that there exist x` ∈ B` such that w2(x`) < w2(0) for each 1≤ `≤ 2n . Thus,
by the definition of w2 we have

sup
x∈{x`}+B(R′)

w1(x) < w2(0) for 1≤ `≤ 2n.

4This idea is somewhat reminiscent of the classical fact that if (Mws)1/s <∞ a.e. and s > 1 then w≤ (Mws)1/s ∈ A1 ⊂ A2;
see the discussion following (3).
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However, since
B(R′)⊆

2n⋃
`=1

({x`}+ B(R′)),

supx∈B(R′)w1(x) < w2(0), contradicting the definition of w2(0). �

Combining (35), Lemma 9 and the orthogonality property (36) we obtain∫
Rn
| f |2w .

∫
Rn

∑
k

|Sk f |2w3. (37)

In order to complete the proof of Theorem 8 it remains to show that w3(x). MS AR,R′MSw(x) uniformly
in x and R, R′. Since w3(x) . MSw2(x) it suffices to show that w2(x) . AR,R′MSw(x). Further, by
translation invariance, it is enough to deal with the case x = 0. To see this we define the maximal operator
M (R)

S by

M (R)
S w(y)= sup

r≥1

1
|r B(R)|

∫
{y}+r B(R)

w.

Notice that M (R)
S w ≤ MSw. Using the rapid decay of 8 and elementary considerations we have

w1(y)= |8R| ∗w(y). M (R)
S w(y).

1
|B(R)|

∫
{y}+B(R)

M (R)
S w

and so
w2(0). sup

y∈B(R′)

1
|B(R)|

∫
{y}+B(R)

MSw = AR,R′MSw(0)

uniformly in R, R′, as required. �

4. The proof of Theorem 2

The proof we present combines the essential ingredients of the standard proof of the Marcinkiewicz
multiplier theorem (see [Stein 1970; Duoandikoetxea 2001], for example) and the square function estimates
from Section 3.

By standard weighted Littlewood–Paley theory (see [Bennett and Harrison 2012] for further details) it
suffices to prove that ∫

R

|Tm f |2w .
∫

R

| f |2 M5Mα,βMw (38)

holds for functions f with Fourier support in the dyadic interval ±[R, 2R], with bounds uniform in
Rα ≥ 1.

Suppose that supp( f̂ )⊆±[R, 2R] for some Rα ≥ 1. We begin by applying Theorem 8 with n = 1,
R′ = R−αR and ρ =±[R, 2R]. For each k ∈ Z let ρk , ρ̃k , 9k and Sk be as in Section 3. By Theorem 8
we have ∫

R

|Tm f |2w .
∫

R

∑
k

|Sk Tm f |2 M AR,R′Mw (39)

uniformly in Rα ≥ 1. Of course the case R = 1 (as with the case α = 0) is somewhat degenerate here,
although we note that the conclusion (39) does retain some content.
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Next we invoke the standard representation formula

Sk Tm f (x)= m(ak)Sk f (x)+
∫
ρ̃k

Uξ Sk f (x)m′(ξ) dξ, (40)

where ak = inf ρ̃k and Uξ is defined by

Ûξ f = χ[ξ,∞) f̂ . (41)

In order to see (40), which is a minor variant of (7), we use the Fourier inversion formula to write

Sk Tm f (x)=
∫
ρ̃k

ei xξ 9̂k(ξ)m(ξ) f̂ (ξ) dξ

=−

∫
ρ̃k

∂

∂ξ

(∫
∞

ξ

9̂k(t) f̂ (t)ei xt dt
)

m(ξ) dξ

= m(ak)Sk f (x)+
∫
ρ̃k

(∫
R

χ[ξ,∞)(t)9̂k(t) f̂ (t)ei xt dt
)

m′(ξ) dξ

= m(ak)Sk f (x)+
∫
ρ̃k

Uξ Sk f (x)m′(ξ) dξ.

Applying Minkowski’s inequality to (40), we obtain(∫
R

|Sk Tm f |2 M AR,R′Mw
)1/2

≤ |m(ak)|

(∫
R

|Sk f |2 M AR,R′Mw
)1/2

+

∫
ρ̃k

(∫
R

|Uξ Sk f |2 M AR,R′Mw
)1/2

|m′(ξ)| dξ.

Since Uξ =
1
2(I + i M−ξ H Mξ ), where Mξ f (x) := e−2π i xξ f (x) and H is the Hilbert transform, an

application of (4) yields ∫
R

|Uξ Sk f |2 M AR,R′Mw .
∫

R

|Sk f |2 M4 AR,R′Mw

uniformly in ξ , k and R. Using this along with the hypotheses (13) and (14) yields∫
R

|Sk Tm f |2 M AR,R′Mw . R−2β
∫

R

|Sk f |2 M4 AR,R′Mw

uniformly in k and R. Here we have used the fact that |ak | ∼ R. Thus by (39) and Proposition 7 we have∫
R

|Tm f |2w . R−2β
∫

R

| f |2 M5 AR,R′Mw

uniformly in Rα ≥ 1. Inequality (38) now follows from the elementary observation that

R−2β AR,R−αRw(x).Mα,βw(x)

uniformly in x and Rα ≥ 1.
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5. Extensions to higher dimensions

Theorem 2 has a natural generalisation to higher dimensions. It should be pointed out that this generalisa-
tion, being of Marcinkiewicz type in formulation, is not motivated by multipliers of the form (11), but
rather by tensor products of such one-dimensional multipliers. For the sake of simplicity we confine our
attention to two dimensions. Just as with the classical Marcinkiewicz multiplier theorem, this is already
typical of the general situation.

For α, β ∈ R2 let C(α, β) denote the class of functions m : R2
→ C for which

supp(m)⊆ {ξ ∈ R2
: |ξ1|

α1 ≥ 1, |ξ2|
α2 ≥ 1}, (42)

sup
ξ2

sup
ξ1

|ξ2|
β2 |ξ1|

β1 |m(ξ1, ξ2)|<∞, (43)

sup
ξ2

|ξ2|
β2

{
sup

R
α1
1 ≥1

sup
I1⊆[R1,2R1]

`(I1)=R
−α1
1 R1

Rβ1
1

∫
±I1

∣∣∣ ∂m
∂ξ1

∣∣∣ dξ1

}
<∞, (44)

sup
ξ1

|ξ1|
β1

{
sup

R
α2
2 ≥1

sup
I2⊆[R2,2R2]

`(I2)=R
−α2
2 R2

Rβ2
2

∫
±I2

∣∣∣ ∂m
∂ξ2

∣∣∣ dξ2

}
<∞, (45)

sup
R
α2
2 ≥1

sup
I2⊆[R2,2R2]

`(I2)=R
−α2
2 R2

sup
R
α1
1 ≥1

sup
I1⊆[R1,2R1]

`(I1)=R
−α1
1 R1

Rβ2
2 Rβ1

1

∫
±I2

∫
±I1

∣∣∣ ∂2m
∂ξ1∂ξ2

∣∣∣ dξ1dξ2 <∞. (46)

Although these conditions might appear rather complicated, it is straightforward to verify that the
tensor product C(α1, β1)⊗C(α2, β2) is contained in C(α, β), and that C(0, 0) is precisely the classical
Marcinkiewicz multipliers on R2.

Theorem 10. If m ∈ C(α, β) then∫
R2
|Tm f |2w .

∫
R2
| f |2 M9

SMα,βM7
Sw,

where

Mα,βw(x)= sup
(r1,y1)∈0α1 (x1)

sup
(r2,y2)∈0α2 (x2)

r2β1
1

r1

r2β2
2

r2

∫
|y1−z1|≤r1

∫
|y2−z2|≤r2

w(z) dz

and MS denotes the strong maximal function.

Proof of Theorem 10. The proof we present is very similar to the one-dimensional case. By standard
weighted Littlewood–Paley theory (again, see [Bennett and Harrison 2012] for details) it suffices to prove
that ∫

R2
|Tm f |2w .

∫
R2
| f |2 M8

SMα,βMSw (47)

holds for functions f with Fourier support in (±[R1, 2R1])× (±[R2, 2R2]), with bounds uniform in
Rα1

1 , Rα2
2 ≥ 1.

Assuming such a restriction we can apply Theorem 8 with n = 2, R′ = (R−α1
1 R1, R−α2

2 R2) and
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ρ = (±[R1, 2R1]) × (±[R2, 2R2]). For each k ∈ Z2 let ρk , ρ̃k , 9k and Sk be as in Section 3. By
Theorem 8 we have ∫

R2
|Tm f |2w .

∫
R2

∑
k∈Z2

|Sk Tm f |2 MS AR,R′MSw (48)

uniformly in R.
In what follows π1, π2 : R

2
→ R denote the coordinate projections π1x = x1 and π2x = x2, and for

each k we define ak ∈R2 by ak = (infπ1ρ̃k, infπ2ρ̃k), making ak the bottom-left vertex of the axis-parallel
rectangle ρ̃k .

Now, taking our cue again from the standard proof of the classical Marcinkiewicz multiplier theorem,
we write

Sk Tm f (x)=m(ak)Sk f (x)+
∫
π1ρ̃k

U (1)
ξ1

Sk f (x) ∂m
∂ξ1

(ξ1, π2ak) dξ1+

∫
π2ρ̃k

U (2)
ξ2

Sk f (x) ∂m
∂ξ2

(π1ak, ξ2) dξ2

+

∫
ρ̃k

U (2)
ξ2

U (1)
ξ1

Sk f (x) ∂
2m

∂ξ1∂ξ2
(ξ1, ξ2) dξ1dξ2, (49)

where U ( j)
ξ j

denotes the operator Uξ j , defined in (41), acting in the j-th variable. Applying Minkowski’s
inequality we obtain(∫

R2
|Sk Tm f |2 MS AR,R′MSw

)1/2

≤ |m(ak)|

(∫
R2
|Sk f |2 MS AR,R′MSw

)1/2

+

∫
π1ρ̃k

(∫
R2
|U (1)
ξ1

Sk f |2 MS AR,R′MSw

)1/2 ∣∣∣∣ ∂m
∂ξ1

(ξ1, π2ak)

∣∣∣∣ dξ1

+

∫
π2ρ̃k

(∫
R2
|U (2)
ξ2

Sk f |2 MS AR,R′MSw

)1/2 ∣∣∣∣ ∂m
∂ξ2

(π1ak, ξ2)

∣∣∣∣ dξ2

+

∫
ρ̃k

(∫
R2
|U (2)
ξ2

U (1)
ξ1

Sk f |2 MS AR,R′MSw

)1/2 ∣∣∣∣ ∂2m
∂ξ1∂ξ2

(ξ1, ξ2)

∣∣∣∣ dξ.

We denote the summands on the right side by I , II, III, IV .
For I we use the facts that |π1ak | ∼ R1 and |π2ak | ∼ R2, along with (43) to obtain

I . R−β2
2 R−β1

1

(∫
R2
|Sk f |2 MS AR,R′MSw

)1/2

uniformly in k. For II, following the proof of Theorem 2, we apply (4) in the first variable to obtain

II .
∫
π1ρ̃k

(∫
R2
|Sk f |2 M4

S AR,R′MSw

)1/2 ∣∣∣∣ ∂m
∂ξ1

(ξ1, π2ak)

∣∣∣∣ dξ1,

which by (44) yields

II . R−β2
2 R−β1

1

(∫
R2
|Sk f |2 M4

S AR,R′MSw

)1/2

uniformly in k. By (45) and symmetry, it follows that III satisfies the same bound. The final term IV is
potentially the most interesting as it involves using a weighted bound on the double Hilbert transform. By
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a twofold application of (4), followed by (46), we obtain

IV . R−β2
2 R−β1

1

(∫
R2
|Sk f |2 M7

S AR,R′MSw

)1/2

.

Thus, by (48) and Proposition 7 we have∫
R2
|Tm f |2w . R−2β2

2 R−2β1
1

∫
R2
|Sk f |2 M8

S AR,R′MSw

uniformly in Rα1
1 , Rα2

2 ≥ 1. Inequality (47) now follows on observing that

R−2β2
2 R−2β1

1 AR,R′w(x).Mα,βw(x)

uniformly in x and Rα1
1 , Rα2

2 ≥ 1. �

Remarks. The above arguments raise certain basic questions about weighted inequalities for various
multiparameter operators in harmonic analysis. For instance, for which powers k ∈ N do we have∫

Rn
|T f |2w .

∫
Rn
| f |2 Mk

Sw

for classical product Calderón–Zygmund operators T on Rn with n ≥ 2? As we have seen, crudely
applying the one-dimensional result of Wilson [1989] separately in each variable allows us to take k = 3n.
Reducing this power would of course lead to a reduction in the number of factors of MS in the statement
of Theorem 10.

As we have already discussed, since Theorem 10 involves Marcinkiewicz-type hypotheses it really
belongs to the “multiparameter” theory of multipliers. It is conceivable that a variant may be obtained
involving a Hörmander-type hypothesis on sublacunary annuli in Rn; that is, involving hypotheses on
quantities of the form ∫

R j≤|ξ |<R j+1

∣∣∣( ∂
∂ξ

)γ
m(ξ)

∣∣∣2 dξ

for certain sublacunary sequences (R j ) and multi-indices γ . A very general result of this type (which
might permit the radii (R j ) to accumulate away from zero) is likely to be difficult as it would naturally
apply to the Bochner–Riesz multipliers. There are of course many other conditions that one might impose,
from the above all the way down to the higher-dimensional analogue of the Miyachi condition (11) in
[Miyachi 1980; 1981]; see also [Carbery 1985].

6. Proof of Theorem 4

In this section we give a proof of Theorem 4. Our argument is a generalisation of those in [Bennett et al.
2006; Bennett and Harrison 2012]; see also [Nagel and Stein 1984]. As the case α = 0 reduces to the
L p–Lq boundedness of the classical fractional Hardy–Littlewood maximal function, we may assume that
α 6= 0.

The claimed necessity of the conditions (27), (28) and (29) follows from testing the putative L p–Lq
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bound for Mα,β on the characteristic function fν = χ[−ν,ν]. The necessary conditions follow by taking
limits as both ν→ 0 and ν→∞. We leave these elementary calculations to the reader.

It will suffice to establish the L p–Lq boundedness of Mα,β for exponents 1< p ≤ q ≤∞ on the sharp
line

β =
α

2q
+

1
2

( 1
p
−

1
q

)
. (50)

As our proof of Theorem 4 rests on a Hardy space estimate, it is necessary to regularise the averaging in
the definition of Mα,β . To this end let P be a nonnegative, compactly supported bump function which is
positive on [−1, 1], let Pr (x)= r−1 P(x/r), and define the maximal operator M̃α,β by

M̃α,βw(x)= sup
(y,r)∈0α(x)

r2β
|Pr ∗w(y)|.

Since Mα,βw . M̃α,βw pointwise uniformly, it suffices to prove that M̃α,β is bounded from L p(R) to
Lq(R) when (50) holds. Since M̃α,0 is bounded on L∞(R), and M̃α,1/2 is bounded from L1(R) to L∞(R),
by analytic interpolation [Stein 1970] it suffices to prove that M̃α,α/2 is bounded from H 1(R) to L1(R).
We establish this by showing that

‖M̃α,α/2a‖1 . 1 (51)

uniformly in H 1-atoms a. By translation invariance we may suppose that the support interval I of a is
centred at the origin. Our estimates will be based on the standard and elementary pointwise bound

|Pr ∗ a(x)|.


1/|I | if r ≤ |I |, |x | ≤ 5

2 |I |,
|I |/r2 if r ≥ |I |, |x | ≤ 5

2r ,
0 otherwise,

which follows from the smoothness of P and the mean value zero property of a. As the nature of 0α is
fundamentally different in the cases α < 0, 0< α ≤ 1 and α > 1, we divide the analysis into three cases.
For α < 0 and α > 0 the interesting situation is, respectively, when |I |& 1 and |I |. 1.

Case 1: α < 0. Elementary considerations reveal that if |I |. 1 then

M̃α,α/2a(x).
{
|I | if |x |. 1,
|I |/|x |−(2−α)/(1−α) otherwise,

and if |I |& 1 then

M̃α,α/2a(x).
{
|I |−1
|x |α/(1−α) if |x |. |I |1−α,

|I ||x |−(2−α)/(1−α) otherwise.

In both cases (51) follows by direct calculation.

Case 2: 0< α ≤ 1. For technical reasons it is convenient to deal first with the particularly simple case
α = 1. If |I |& 1 then arguing similarly we obtain

M̃1,1/2a(x).
{
|I |−1 if |x |. |I |,
0 otherwise,
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and if |I |. 1 then

M̃1,1/2a(x).
{

1 if |x |. 1,
0 otherwise.

Clearly in both cases (51) follows immediately.
Suppose now that 0< α < 1. If |I |& 1 then

M̃α,α/2a(x).
{
|I |−1 if |x |. |I |,
0 otherwise,

and if |I |. 1 then

M̃α,α/2a(x).


|I |−(1−α) if |x |. |I |1−α,
|I ||x |−(2−α)/(1−α) if |I |1−α . |x |. 1,
0 otherwise.

Again, in both cases (51) follows directly.

Case 3: α > 1. If |I |& 1 then

M̃α,α/2a(x).
{
|I |−1 if |x |. |I |,
|I |−1
|x |α/(1−α) otherwise,

and if |I |. 1 then

M̃α,α/2a(x).
{
|I |−(1−α) if |x |. |I |1−α,
|I |−1
|x |α/(1−α) if |I |1−α . |x |.

Once again (51) follows.
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