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We consider the nonlinear Hartree equation for an interacting gas containing infinitely many particles
and we investigate the large-time stability of the stationary states of the form f .��/, describing a
homogeneous quantum gas. Under suitable assumptions on the interaction potential and on the momentum
distribution f , we prove that the stationary state is asymptotically stable in dimension 2. More precisely,
for any initial datum which is a small perturbation of f .��/ in a Schatten space, the system weakly
converges to the stationary state for large times.
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1. Introduction

This article is the continuation of [Lewin and Sabin 2014], where we considered the nonlinear Hartree
equation for infinitely many particles. However, the main result of the present article does not rely on
that paper.

The Hartree equation can be written using the formalism of density matrices as�
i@t D Œ��Cw � � ;  �;

 .0/D 0:
(1)

Here  .t/ is the one-particle density matrix of the system, which is a bounded nonnegative self-adjoint
operator on L2.Rd / with d > 1, and � .t;x/ D  .t;x;x/ is the density of particles in the system at
time t . Also, w is the interaction potential between the particles, which we assume to be smooth and
rapidly decaying at infinity.
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The starting point of [Lewin and Sabin 2014] was the observation that (1) has many stationary states.
Indeed, if f 2L1.RC;R/ is such thatZ

Rd

jf .jkj2/j dk <C1;

then the operator
f WD f .��/

(the Fourier multiplier by k 7! f .jkj2/) is a bounded self-adjoint operator which commutes with ��
and whose density

�f .x/D .2�/
�d

Z
Rd

f .jkj2/ dk for all x 2 Rd

is constant. Hence, for w 2L1.Rd /, w ��f is also constant, and Œw ��f ; f �D 0. Therefore  .t/� f
is a stationary solution to (1). The purpose of [Lewin and Sabin 2014] and of this article is to investigate
the stability of these stationary states, under “local perturbations”. We do not necessarily think of small
perturbations in norm, but we typically think of  .0/� f as being compact.

The simplest choice is f � 0, which corresponds to the vacuum case. We are interested here in the
case of f ¤ 0, describing an infinite, homogeneous gas containing infinitely many particles and with
positive constant density �f > 0. Four important physical examples are:

� Fermi gas at zero temperature:

f D 1.��6 �/; � > 0I (2)

� Fermi gas at positive temperature T > 0:

f D
1

e.����/=T C 1
; � 2 RI (3)

� Bose gas at positive temperature T > 0:

f D
1

e.����/=T � 1
; � < 0I (4)

� Boltzmann gas at positive temperature T > 0:

f D e.�C�/=T ; � 2 R: (5)

In the density matrix formalism, the number of particles in the system is given by Tr  . It is clear that
Tr f DC1 in the previous examples, since f is a translation-invariant (hence noncompact) operator.
Because they contain infinitely many particles, these systems also have infinite energy. In [Lewin and
Sabin 2014], we proved the existence of global solutions to (1) in the defocusing case yw > 0, when
the initial datum 0 has a finite relative energy counted with respect to the stationary states f given
in (2)–(5), in dimensions d D 1; 2; 3. We also proved the orbital stability of f .

In this work, we are interested in the asymptotic stability of f . As usual for Schrödinger equations, we
cannot expect strong convergence in norm and we will instead prove that  .t/ * f weakly as t !˙1,
if the initial datum 0 is close enough to f . Physically, this means that a small defect added to the
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translation-invariant state f disappears for large times due to dispersive effects, and the system locally
relaxes towards the homogeneous gas. More precisely, we are able to describe the exact behavior of  .t/
for large times, by proving that

e�it�. .t/� f /e
it�
�!

t!˙1
Q˙

strongly in a Schatten space (hence, for instance, for the operator norm). This nonlinear scattering result
means that the perturbation  .t/� f of the homogeneous gas evolves for large times as in the case of
free particles:

 .t/� f '
t!˙1

eit�Q˙e�it� *
t!˙1

0:

If f � 0 and 0 D ju0ihu0j is a rank-one orthogonal projection, then (1) reduces to the well-known
Hartree equation for one function �

i@tuD .��Cw � juj
2/u;

u.0/D u0:
(6)

There is a large literature about scattering for the nonlinear equation (6), for instance [Ginibre and Velo
1980; 2000; Strauss 1981; Hayashi and Tsutsumi 1987; Mochizuki 1989; Nakanishi 1999]. The intuitive
picture is that the nonlinear term is negligible for small u, since .w � juj2/u is formally of order 3. It is
important to realize that this intuition does not apply in the case f ¤ 0 considered in this paper. Indeed
the nonlinear term is not small and it behaves linearly with respect to the small parameter  � f :

Œw � � ;  �D Œw � ��f ;  �' Œw � ��f ; f �¤ 0: (7)

One of the main purposes of this paper is to rigorously study the linear response of the homogeneous
Hartree gas f (the last term in (7)), which is a very important object in the physical literature called the
Lindhard function [Lindhard 1954; Giuliani and Vignale 2005, Chapter 4]. For a general f , our main
result requires that the interaction potential w be small enough, in order to control the linear term. Under
the natural assumption that f is strictly decreasing (as it is in the three physical examples (3)–(5)), the
condition can be weakened in the defocusing case yw > 0.

The paper is organized as follows. In the next section we state our main result and make several
comments. In Section 3 we study the linear response in detail, before turning to the higher-order terms in
the expansion of the wave operator in Section 4. Apart from the linear response, our method requires us
to treat separately the next d � 1 terms of this expansion, in spacial dimension d . Even if all the other
estimates are valid in any dimension, in this paper we only deal with the second order in dimension d D 2.

2. Main result

In the whole paper, we denote by B.H/ the space of bounded operators on the Hilbert space H. The
corresponding operator norm is kAk. We use the notation Sp.H/ for the Schatten space of all the compact
operators A on H such that Tr jAjp <1, with jAjD

p
A�A, and use the norm kAkSp.H/ WD .Tr jAjp/1=p .

We refer to [Simon 1977] for the properties of Schatten spaces. The spaces S2.H/ and S1.H/ correspond
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to Hilbert–Schmidt and trace-class operators. We often use the shorthand notation B and Sp when the
Hilbert space H is clear from the context.

Our main result is the following.

Theorem 1 (dispersion and scattering in 2D). Let f W RC! R be such thatZ 1
0

�
1C r

k
2

�
jf .k/.r/j dr <1 for k D 0; : : : ; 4 (8)

and f WD f .��/. Denote by Lg the Fourier inverse on R2 of g.k/D f .jkj2/. Let w 2W 1;1.R2/ be such
that

k LgkL1.R2/k ywkL1.R2/ < 4� (9)

or, if f 0 < 0 a.e. on RC, such that

max
�
"g yw.0/C; k LgkL1.R2/k. yw/�kL1.R2/

�
< 4�; (10)

where . yw/� is the negative part of yw and 06 "g 6 k LgkL1.R2/ is a constant depending only on g (defined
later in Section 3).

Then, there exists a constant "0 > 0 (depending only on w and f ) such that, for any 0 2 f CS4=3

with
k0� f kS4=3 6 "0;

there exists a unique solution  2 f CC 0
t .R;S

2/ to the Hartree equation (1) with initial datum 0, such
that

� � �f 2L2
t;x.R�R2/:

Furthermore,  .t/ scatters around f at t D˙1, in the sense that there exists Q˙ 2S
4 such that

lim
t!˙1

e�it�. .t/� f /e
it�
�Q˙


S4 D lim

t!˙1

 .t/� f � eit�Q˙e�it�

S4 D 0: (11)

Before explaining our strategy to prove Theorem 1, we make some comments.
First, we notice that the gases at positive temperature, (3), (4) and (5), are all covered by the theorem

with condition (10), since the corresponding f is smooth, strictly decreasing and exponentially decaying
at infinity. Our result does not cover the Fermi gas at zero temperature (2), however. We show in Section 3
that its linear response is unbounded and it is a challenging task to better understand its dynamical stability.

The next remark concerns the assumption (9), which says that the interactions must be small or,
equivalently, that the gas must contain few particles having a small momentum (if Lg > 0, then the
condition can be written as f .0/k ywkL1.R2/ < 2 and hence f .jkj2/ must be small for small k). Our
method does not work without condition (9) if no other information on w and f is provided. However,
under the natural additional assumption that f is strictly decreasing, we can replace condition (9) by the
weaker condition (10). The latter says that the negative part of yw and the value at zero of the positive
part should be small (with a better constant for the latter). We will explain later where condition (10)
comes from, but we mention already that we are not able to deal with an arbitrary large potential yw in a
neighborhood of the origin, even in the defocusing case. We also recall that the focusing or defocusing
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character of our equation is governed by the sign of yw and not of w, as it is for (6). This is seen from the
sign of the nonlinear termZ

Rd

Z
Rd

w.x�y/��f .x/��f .y/ dx dy D .2�/
d
2

Z
Rd

yw.k/jy��f .k/j
2 dk;

which appears in the relative energy of the system [Lewin and Sabin 2014, Equations (9)–(10)].
Then, we note that in our previous article [Lewin and Sabin 2014] we proved the existence of global

solutions under the assumption that the initial state 0 has a finite relative entropy with respect to f (and
for f being one of the physical examples (2)–(5)). By the Lieb–Thirring inequality [Frank et al. 2011;
2013; Lewin and Sabin 2014], this implies that �.t/� �f 2L1t .L

2
x/. By interpolation, we therefore

get that �.t/��f 2L
p
t .L

2
x/ for every 26 p 61. This requires, of course, that the initial perturbation

0� f be small in S4=3. Our method does not allow us to replace this condition by the fact that 0 has
a small relative entropy with respect to f .

Let us finally mention that our results hold for small initial data, where the smallness is not only quali-
tative (meaning that 0�f 2S

4=3, for instance) but also quantitative, since we need that k0�f kS4=3

be small enough. This is a well-known restriction, coming from our method of proof, based on a fixed-
point argument. The literature on nonlinear Schrödinger equations suggests that in order to remove this
smallness assumption one would need some assumption on w like yw > 0, as well as some additional
(almost) conservation laws [Cazenave 2003]. Our study of the linear response operator however indicates
that the situation is involved and more information on the momentum distribution f is certainly also
necessary.

We now explain our strategy for proving Theorem 1. The idea of the proof relies on a fixed-point
argument, in the spirit of [Lewin and Sabin 2014, Section 5]. If we can prove that ���f 2L2

t;x.RC�R2/,
then we deduce from [Yajima 1987; Frank et al. 2014] that there exists a family of unitary operators
UV .t/ 2 C 0

t .RC;B/ on L2.R2/ such that

 .t/D UV .t/0UV .t/
�

for all t 2 RC. We furthermore have

UV .t/D eit�WV .t/;

where WV .t/ is the wave operator. By iterating Duhamel’s formula, we can expand the latter in a series as

WV .t/D 1C
X
n>1

W
.n/
V
.t/; (12)

with

W
.n/
V
.t/ WD .�i/n

Z t

0

dtn

Z tn

0

dtn�1 � � �

Z t2

0

dt1 e�itn�V .tn/e
i.tn�tn�1/� � � � ei.t2�t1/�V .t1/e

it1�:

The idea is to find a solution to the nonlinear equation

�Q.t/D �
�
eit�Ww��Q

.t/.f CQ0/Ww��Q
.t/�e�it�

�
� �f ; (13)

by a fixed-point argument on the variable �Q 2L2
t;x.R�R2/, where Q WD  � f and Q0 D 0� f .



1344 MATHIEU LEWIN AND JULIEN SABIN

Inserting the expansion (12) of the wave operator WV , the nonlinear equation (13) may be written as

�Q D �
�
eit�Q0e�it�

�
�L.�Q/CR.�Q/; (14)

where L is linear and R.�Q/ contains higher-order terms. The sign convention for L is motivated by the
stationary case [Frank et al. 2013]. The linear operator L can be written

LD L1CL2;

where
L1.�Q/D��

�
eit�.W

.1/
w��Q

.t/f C f W
.1/
w��Q

.t/�/e�it�
�

and
L2.�Q/D��

�
eit�.W

.1/
w��Q

.t/Q0CQ0W
.1/
w��Q

.t/�/e�it�
�
:

Note that L2 depends on Q0 and it can always be controlled by adding suitable assumptions on Q0. On
the other hand, the other linear operator L1 does not depend on the studied solution; it only depends on
the functions w and f .

In Section 3, we study the linear operator L1 in detail, and we prove that it is a space-time Fourier
multiplier of the form yw.k/mf .!; k/ where mf is a famous function in the physics literature called
the Lindhard function [Lindhard 1954; Mihaila 2011; Giuliani and Vignale 2005], which only depends
on f and d . In particular, we investigate the question of when L1 is bounded on L

p
t;x.R�R2/, and we

show this is the case when w and f are sufficiently smooth. For the Fermi sea (2), we prove that L1 is
unbounded on L2

t;x .
The next step is to invert the linear part by rewriting (14) in the form

�Q D .1CL/�1
�
�
�
eit�Q0e�it�

�
CR.�Q/

�
(15)

and applying a fixed-point method. In the time-independent case, a similar technique was used for the
Dirac sea in [Hainzl et al. 2005]. In order to be able to invert the Fourier multiplier L1, we need that

min
.!;k/2R�R2

j yw.k/mf .!; k/C 1j> 0: (16)

Then 1CLD 1CL1CL2 is invertible if Q0 is small enough. In Section 3 we prove the simple estimate

jmf .k; !/j6 .4�/�1
k LgkL1.R2/

and this leads to our condition (9). If f is strictly decreasing, then we are able to prove that the imaginary
part of mf .k; !/ is never 0 if k ¤ 0 or ! ¤ 0. Since mf .!; k/ has a fixed sign for ! D 0 and k D 0,
everything boils down to investigating the properties of mf at .!; k/ D .0; 0/. At this point mf will
usually not be continuous, and it can take both positive and negative values. We have

lim sup
k!0
!!0

<mf .!; k/D .4�/
�1
k LgkL1.R2/

and we set
lim inf

k!0
!!0

<mf .!; k/DW �.4�/
�1"g;
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leading to our condition (10). It is well known in the physics literature that the imaginary part of
the Lindhard function plays a crucial role in the dynamics of the homogeneous Fermi gas. In our
rigorous analysis it is used to invert the linear response operator outside of the origin. The behavior of
mf .!; k/ for .!; k/! .0; 0/ is, however, involved and 1CL1 is not invertible if yw.0/ > "g=.4�/ or
yw.0/ < �k LgkL1.R2/=.4�/.

For the Fermi gas at zero temperature (2) we will prove that the minimum in (16) is always zero, except
when yw vanishes sufficiently quickly at the origin; this means that 1CL1 is never invertible. It is an
interesting open question to understand the asymptotic stability of the Fermi sea.

Once the linear response L has been inverted, it remains to study the zeroth-order term �
�
eit�Q0e�it�

�
and the higher-order terms contained in R.�Q/. At this step we use a recent Strichartz estimate in Schatten
spaces due to Frank, Lieb, Seiringer and the first author.

Theorem 2 (Strichartz estimate on wave operator [Frank et al. 2014, Theorem 3]). Fix d > 1 and q

such that 1C d=2 6 q < 1, and p such that 2=p C d=q D 2. Let also 0 < " < 1=p. There exists
C D C.d;p; "/ > 0 such that for any V 2L

p
t .R;L

q
x.R

d // and any t 2 R, we have the estimatesW
.1/
V
.t/

S2q 6 CkV kLp

t L
q
x

(17)

and W
.n/
V
.t/

S2dq=ne 6

C n

.n!/
1
p
�"
kV kn

L
p
t L

q
x

for all n> 2: (18)

The estimate (17) is the dual version of

k�ei t�Ae�i t�kLp.R;Lq.Rd // 6 CkAk
S

2q
qC1

(19)

for any .p; q/ such that 2=p C d=q D d and 1 6 q 6 1C 2=d ; see [Frank et al. 2014, Theorem 1].
The estimate (19) is useful to deal with the first-order term involving Q0 in (15), leading to the natural
condition that Q0 2S

4=3 in dimension d D 2 with p D q D 2.
In dimension d , it seems natural to prove that �Q 2 L

1C2=d
t;x .R�Rd /. The estimate (18) turns out

to be enough to deal with the terms of order at least d C 1 but it does not seem to help for the terms
of order d and lower, because the wave operators W

.n/
V

with small n belong to a Schatten space with a
too-large exponent. Apart from the linear response, we are therefore left with d � 1 terms for which a
more detailed computation is necessary. We are not able to do this in any dimension (the number of such
terms grows with d ), but we can deal with the second-order term in dimension d D 2,

�
�
eit�

�
W
.2/
w��Q

.t/f CW
.1/
w��Q

.t/f W
.1/
w��Q

.t/�C f W
.2/
w��Q

.t/�
�
e�it�

�
;

which then finishes the proof of the theorem in this case. The second-order term is the topic of Section 5.
Even if our final result only covers the case d D 2, we have several estimates in any dimension d > 2.

With the results of this paper, only the terms of orders from 2 to d remain to be studied to obtain a result
similar to Theorem 1 (with � � �f 2L

1C2=d
t;x .R�Rd /) in dimensions d > 3.
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3. Linear response theory

3.1. Computation of the linear response operator. As we have explained before, we deal here with the
linear response L1 associated with the homogeneous state f . The first order in Duhamel’s formula is
defined by

Q1.t/ WD �i

Z t

0

ei.t�t 0/�Œw � �Q.t 0/; f �e
i.t 0�t/� dt 0:

We see that it is a linear expression in �Q, and we compute its density as a function of �Q.

Proposition 1 (uniform bound on L1). Let d > 1, f 2 L1.RC;R/ such that
R

Rd jf .k
2/j dk < C1,

and w 2L1.Rd /. The linear operator L1 defined for all ' 2 D.RC �Rd / by

L1.'/.t/ WD ��ŒQ1.t/�D �

�
i

Z t

0

ei.t�t 0/�Œw �'.t 0/; f �e
i.t 0�t/� dt 0

�
is a space-time Fourier multiplier by the kernel K.1/ DK.1/.!; k/D yw.k/mf .!; k/, where

ŒF�1
! mf �.t; k/ WD 2 1t>0

p
2� sin.t jkj2/ Lg.2tk/ (20)

(we recall that g.k/ WD f .k2/ and that Lg is its Fourier inverse). This means that for all ' 2 D.RC �Rd /

we have
Ft;x ŒL1.'/�.!; k/D yw.k/mf .!; k/ŒFt;x'�.!; k/ for all .!; k/ 2 R�Rd ;

where Ft;x is the space-time Fourier transform. Furthermore, if
R1

0 jxj
2�d j Lg.x/j dx < 1, then

mf 2L1
!;k
.R�Rd / and we have the explicit estimates

kmf kL1
!;k
6 1

2jSd�1j

�Z
Rd

j Lg.x/j

jxjd�2
dx

�
(21)

and

kL1kL2
t;x!L2

t;x
6 k ywkL

1

2jSd�1j

�Z
Rd

j Lg.x/j

jxjd�2
dx

�
: (22)

Proof. Let ' 2 D.RC �Rd /. In order to compute L.'/, we use the relationZ 1
0

TrŒW .t;x/Q1.t/� dt D

Z 1
0

Z
Rd

W .t;x/�Q1
.t;x/ dx dt;

valid for any function W 2 D.RC �Rd /. This leads toZ 1
0

Z
Rd

W .t;x/�Q1
.t;x/ dx dt

D
�i

.2�/d

Z 1
0

Z t

0

Z
Rd

Z
Rd

e�2i.t�t 0/k�`
� yw.t;�k/bV .t 0; k/�g�`� 1

2
k
�
�g

�
`C 1

2
k
��

d` dk dt 0dt;

where g.k/ WD f .k2/ and V D w �'. Computing the `-integral givesZ
Rd

e�2i.t�t 0/k�`
�
g
�
`� 1

2
k
�
�g

�
`C 1

2
k
��

d`D�.2�/
d
2 2i sin..t � t 0/jkj2/ Lg.2.t � t 0/k/:
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Hence, using that bV D .2�/d=2 yw y', we find thatZ 1
0

Z
Rd

W .t;x/�Q1
.t;x/ dx dt

D�2

Z 1
0

Z t

0

Z
Rd

sin..t � t 0/jkj2/ Lg.2.t � t 0/k/ yw.k/ yw.t;�k/y'.t 0; k/ dk dt 0dt:

Since g is radial, Lg is also radial and we have

jmf .!; k/j6 2

Z 1
0

ˇ̌
sin.t jkj2/

ˇ̌
j Lg.2t jkj/j dt 6 2

Z 1
0

j sin.t jkj/j
jkj

j Lg.2t/j dt 6 1

2

Z 1
0

r j Lg.r/j dr: �

We now make several remarks about the previous result.
First, the physical examples for g are

g.k/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1.jkj2 6 �/; � > 0;

e�.jkj
2��/=T ; T > 0; � 2 R;

1

e.jkj
2��/=T C 1

; T > 0; � 2 R;

1

e.jkj
2��/=T � 1

; T > 0; � < 0:

In the last three choices, g is a Schwartz function, hence Lg 2L1.Rd /. For the first choice of g (Fermi sea
at zero temperature), we have Lg.r/� r�1 sin r , which obviously does not satisfy r Lg.r/ 2L1.0;C1/.

Then, we remark that (21) is optimal without more assumptions on f . Indeed, for ! D 0 and small k,
we find

mf .0; k/D 2

Z 1
0

sin.t jkj2/ Lg.2tk/ dt �!
k!0

1

2

Z 1
0

r Lg.r/ dr D
1

2jSd�1j

Z
Rd

Lg.x/

jxjd�2
dx:

We conclude that (21) is optimal if Lg has a constant sign (for instance if f is decreasing, as in the physical
examples (3)–(5)). Similarly, (22) is optimal if both Lg and w have a constant sign (then j yw.0/j D k ywkL1).

In general the function mf is complex-valued and it is not an easy task to determine when yw.k/mf .!; k/
stays far from �1. Since the stationary linear response is real (=mf .0; k/� 0), the condition should at
least involve the maximum or the minimum of mf on the set f! D 0g, depending on the sign of yw. Even
if the function mf is bounded on R�Rd by (21), it will usually not be continuous at the point .0; 0/.
Under the additional condition that f is strictly decreasing, we are able to prove that

f=mf .!; k/D 0g D f! D 0g[ fk D 0g

and this can be used to replace the assumption on yw by one on . yw/� and yw.0/C. In order to explain this,
we first compute mf in the case of a Fermi gas at zero temperature, f .k2/D 1.jkj2 6 �/.

Proposition 2 (linear response at zero temperature). Let d > 1 and � > 0. Then, for the Fermi sea at
zero temperature f D 1.�� 6 �/, the corresponding Fourier multiplier mf .!; k/ WDmF

d
.�; !; k/ of
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the linear response operator in dimension d is given by

mF
1.�; !; k/D

1

2
p

2�jkj
log
ˇ̌̌̌
.jkj2C 2jkj

p
�/2�!2

.jkj2� 2jkj
p
�/2�!2

ˇ̌̌̌
C i

�

4
p

2�jkj

�
1.j! � jkj2j6 2

p
�jkj/� 1.j!Cjkj2j6 2

p
�jkj/

�
(23)

for d D 1; by

mF
2.�; !; k/

D
�

2
p

2

�
2�

sgn.jkj2C!/
jkj2

�
.jkj2C!/2� 4�jkj2

� 1
2

C
�

sgn.jkj2�!/
jkj2

�
.jkj2�!/2� 4�jkj2

� 1
2

C

�
C i

�

2
p

2jkj2

��
.jkj2�!/2� 4�jkj2

� 1
2

�
�
�
.jkj2C!/2� 4�jkj2

� 1
2

�

�
: (24)

for d D 2; and by

mF
d .�; !; k/D

jSd�2j�
d�1

2

.2�/
d�1

2

Z 1

0

mF
1

�
�.1� r2/; !; k

�
rd�2 dr for d > 2,

D
jSd�3j�

d�2
2

.2�/
d�2

2

Z 1

0

mF
2

�
�.1� r2/; !; k

�
rd�3 dr for d > 3. (25)

The formula for mF
d

is well known in the physics literature [Lindhard 1954; Mihaila 2011; Giuliani
and Vignale 2005, Chapter 4]. It is also possible to derive an explicit expression for mF

3
.�; !; k/; see

[Giuliani and Vignale 2005, Chapter 4]. We remark that mF
d
.�; 0; k/ coincides with the time-independent

linear response computed in [Frank et al. 2013, Theorem 2.5].
From the formulas we see that the real part of mF

d
can have both signs. It is always positive for

! D 0 and it can take negative values for ! ¤ 0. For instance, in dimension d D 2, on the curve
! D jkj2C 2

p
�jkj the imaginary part vanishes and we get

mF
2

�
�; jkj2C 2

p
�jkj; k

�
D

�
p

2

�
1�

r
1C

2
p
�

jkj

�
�!
k!0
�1: (26)

In particular, if yw.k/=
p
jkj!C1 when k! 0, then yw.k/mf .jkj2C2

p
�jkj; k/!�1 when jkj! 0.

Since, on the other hand, yw.k/mf .jkj2C2
p
�jkj; k/! 0 when jkj!1, we conclude that the function

must cross �1, so .1CL1/
�1 is not bounded.

An important feature of mF
d

, which we are going to use in the positive temperature case, is that the
imaginary part =mF

d
.�; !; k/ has a constant sign on f! > 0g and on f! < 0g. Before we discuss this in

detail, we provide the proof of the proposition.

Proof. A calculation shows that the Fourier inverse Lg1 of the radial g in dimension d D 1 is given by

Lg1.�;x/D

r
2

�

sin.
p
�jxj/

jxj
: (27)
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In dimension d > 2 we can write

Lgd .�; jxj/D
1

.2�/
d
2

Z
Rd

1.jkj2 6 �/eik�x

D
1

.2�/
d
2

Z
R

dk1

Z
Rd�1

dk?1.jk1j
2 6 �� jk?j2/eik1jxj

D
jSd�2j�

d�1
2

.2�/
d
2

Z
R

dk1

Z 1

0

1
�
jk1j

2 6 �.1� r2/
�
eik1jxjrd�2 dr

D
jSd�2j�

d�1
2

.2�/
d�1

2

Z 1

0

Lg1

�
�.1� r2/; jxj

�
rd�2 dr

D
2jSd�2j

.2�/
d
2

�
d�1

2

jxj

Z 1

0

sin
�p
�jxj

p
1� r2

�
rd�2 dr: (28)

Similarly, we have in dimension d > 3

Lgd .�; jxj/D
jSd�3j�

d�2
2

.2�/
d�2

2

Z 1

0

Lg2

�
�.1� r2/; jxj

�
rd�3 dr: (29)

Now we can compute the multiplier mF
d
.�; !; k/ for d D 1; 2. We start with d D 1, for which we have

ŒF�1
! mf;1�.t; k/D 41t>0

sin.t jkj2/ sin.2
p
�t jkj/

2t jkj
:

It remains to compute the time Fourier transform. We use the formula, valid for any a; b 2 R,Z 1
0

sin.at/ sin.bt/

t
e�it! dt

D
1
4

log
ˇ̌̌̌
.aC b/2�!2

.a� b/2�!2

ˇ̌̌̌
C i

�

8

�
sgn.a� b�!/� sgn.aC b�!/C sgn.aC bC!/� sgn.a� bC!/

�
;

and obtain (23). To provide the more explicit expression in dimension 2, we use the formula

8a 2 R;
1

a

Z 1

0

log
jaC 2

p
1� r2j

ja� 2
p

1� r2j
dr D

�

2
�
�

2

�
1�

4

a2

�1=2

C

;

which leads to the claimed form (24) of mF
2
.�; !; k/. �

Now we will use the imaginary part of mF
d

to show that 1CL1 is invertible with bounded inverse
when yw > 0 with yw.0/ not too large and f is strictly decreasing.

Corollary 1 (1CL1 in the defocusing case). Let d > 1 and f 2 L1.RC;R/ such that f 0.r/ < 0 for
all r > 0 and

R1
0 .rd=2�1jf .r/jC jf 0.r/j/ dr <1. Assume furthermore that

R
Rd jxj

2�d j Lg.x/j dx <1

with g.k/D f .jkj2/. If w 2L1.Rd / is an even function such that

k. yw/�kL1

�Z
Rd

j Lg.x/j

jxjd�2
dx

�
< 2jSd�1

j (30)
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and such that
"g yw.0/C < 2jSd�1

j; where "g WD � lim inf
k!0
!!0

<mf .!; k/

2jSd�1j
; (31)

then we have
min

.!;k/2R�Rd
j yw.k/mf .!; k/� 1j> 0

and .1CL1/ is invertible on L2
t;x.R�Rd / with bounded inverse.

Proof. First we recall that mf is uniformly bounded by (21). Therefore, we only have to look at the set

AD

�
k 2 Rd

W j yw.k/j> 1

4jSd�1j

�Z
Rd

j Lg.x/j

jxjd�2
dx

��
:

On the complement of A, we have j ywmf C 1j> 1
2

. Since yw.k/! 0 when jkj !1, A is a compact set.
Next, from the integral formula

f .jkj2/D�

Z 1
0

1.jkj2 6 s/f 0.s/ ds;

we infer that
mf .!; k/D�

Z 1
0

mF
d .s; !; k/f

0.s/ ds:

This integral representation can be used to prove that mf is continuous on R�RCn f.0; 0/g. In general,
the function mf is not continuous at .0; 0/, however.

Since mF
d
.s; 0; k/> 0 for all k and s > 0, we conclude that mf .0; k/> 0 and that

mf .0; k/ yw.k/> �mf .0; k/ yw.k/� > �k yw�kL1
1

2jSd�1j

�Z
Rd

j Lg.x/j

jxjd�2
dx

�
;

due to (21). In particular,

jmf .0; k/ yw.k/C 1j> 1�k yw�kL1
1

2jSd�1j

�Z
Rd

j Lg.x/j

jxjd�2
dx

�
> 0;

due to our assumption on . yw/�. Similarly, we have mf .!; 0/ D 0 for all ! ¤ 0 and therefore
mf .!; 0/ yw.0/C 1D 1 is invertible on fk D 0; ! ¤ 0g.

Now we look at k ¤ 0 and ! > 0 and we prove that the imaginary part of mf never vanishes. We give
the argument for d D 1, as it is very similar for d > 2, using the integral representation (24). We have

=mf .!; k/D�
�

4
p

2�jkj
�

Z 1
0

�
1
�
.! � jkj2/2 6 4sjkj2

�
� 1

�
.!Cjkj2/2 6 4sjkj2

��
f 0.s/ ds:

The difference of the two Heaviside functions is always nonnegative for ! > 0. Furthermore, it is equal
to 1 for all s in the interval

.! � jkj2/2

4jkj2
6 s 6 .!Cjkj

2/2

4jkj2
:

Therefore we have

=mf .!; k/>
�

4
p

2�jkj

Z .!Cjkj2/2

4jkj2

.!�jkj2/2

4jkj2

jf 0.s/j ds > 0
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Figure 1. Plot of <mf .!; k/ in the fermionic case (3) for d D 2, T D 100 and �D 1,
in a neighborhood of .!; k/D .0; 0/.

for all ! > 0 and k ¤ 0. For ! < 0, we can simply use that =mf .!; k/ D �=mf .�!; k/, and this
concludes the proof that the imaginary part does not vanish outside of fk D 0g[ f! D 0g.

From the previous argument, we see that everything boils down to understanding the behavior of <mf

in a neighborhood of .0; 0/. At this point the maximal value is 1
2

R1
0 r Lg.r/ dr and the minimal value

is �"g2jSd�1j, by definition, hence the result follows. �

We remark that
<mf .!; k/ '

k!0
!!0

1

2

Z 1
0

t Lg.t/ cos
�
!

2jkj
t

�
dt

and therefore we can express

�"g WD
1

4jSd�1j
min
a2R

Z 1
0

t Lg.t/ cos.at/ dt:

In the three physical cases (3)–(5), the function f satisfies the assumptions of the corollary, and therefore
1CL1 is invertible with bounded inverse when w satisfies (30) and (31). Numerical computations show
that "g is always positive, but usually smaller than the maximum, by a factor of between 2 and 10. As an
illustration, we display the function <mf .!; k/ for T D 100 and �D 1 in Figure 1.

3.2. Boundedness of the linear response in L
p
t;x. We have studied the boundedness of L1 from L2

t;x

to L2
t;x . This is useful in dimension d D 2, where the density �Q naturally belongs to L2

t;x . However,
in other space dimensions, we would like to prove that �Q belongs to L

1C2=d
t;x , and hence it makes

sense to ask whether L1 is bounded from L
p
t;x to L

p
t;x . This is the topic of this section. The study of

Fourier multipliers acting on Lp is a classical subject in harmonic analysis. We use theorems of Stein
and Marcinkiewicz to infer the required boundedness.

Proposition 3 (boundedness of the linear response on Lp). Let w 2 L1.Rd / with jxjdC2w 2 L1.Rd /

be such that �Y
i2I

jki j
2@ki

�
yw.k/ 2L1k .R

d / for all I � f1; : : : ; dg:
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Let also h W Rd ! R be an even function such that for all ˛ 2 Nd , j˛j6 d C 3,Z
Rd

.1CjkjdC4/j@˛h.k/j dk <C1 and
�Y

i2I

@ki

�
h 2L1k .R

d / for all I � f1; : : : ; dg:

Then the Fourier multiplier
Ft

˚
1.t > 0/ sin.t jkj2/h.2tk/

	
defines a bounded operator from L

p
t;x to itself for every 1< p <1.

The conditions on h are fulfilled if, for instance, h is a Schwartz function, hence they are fulfilled for
our physical examples (3)–(5), where we take hD Lg.

Proof. We define
m1.t; k/D 1.t > 1/ yw.k/ sin.t jkj2/h.2tk/;

m2.t; k/D 1.06 t 6 1/ yw.k/ sin.t jkj2/h.2tk/;

and use a different criterion for these two multipliers.
To show that m1 defines a bounded operator on Lp, we use the criterion of Stein [1970, II §2,

Theorem 1]. We write m1.t; k/ D yw.k/ zm1.t; k/. We first prove estimates on zm1, which then imply
that m1 defines a bounded Fourier multiplier on Lp , by Stein’s theorem. Computing the inverse Fourier
transform of zm1, one has

M1.t;x/ WD ŒF
�1
k zm1�.t;x/D 1.t > 1/.2�/�d=2

Z
Rd

sin.t jkj2/h.2tk/eix�k dk:

Then, we have

rxM1.t;x/D 1.t > 1/
.2�/�d=2

.2t/dC1
i

Z
Rd

kh.k/ sin
jkj2

4t
ei x�k

2t dk: (32)

From this formula, we see that, for all .t;x/,

tdC2
jrxM1.t;x/j6 C

Z
Rd

jkj3jh.k/j dk: (33)

Next, let 16 j 6 d and notice that

xdC2
j ei x�k

2t D
ddC2

dkdC2
j

.2t/dC2.�i/dC2ei x�k
2t ;

and hence by an integration by parts we obtain

xdC2
j rxM1.t;x/D 1.t > 1/.2�/�d=22ti.�i/dC2

Z
Rd

ddC2

dkdC2
j

�
kh.k/ sin

jkj2

4t

�
ei x�k

2t dk:

When the kj -derivative hits sin.jkj2=4t/ at least once, one gains a factor of (at least) 1=.4t/, canceling
the 2t before the integral; the only term that we have to prove is bounded in t is where all the kj -derivatives
hit the term kh.k/, which is

1.t > 1/.2�/�
d
2 2i t.�i/dC2

Z
Rd

ddC2

dkdC2
j

Œkh.k/� sin
jkj2

4t
ei x�k

2t dk:
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It is also bounded, since jsin.jkj2=4t/j6 jkj2=4t . We deduce that, for all .t;x/,

jxjdC2
jrxM1.t;x/j6 C sup

˛2Nd

j˛j6dC2

Z
Rd

.1CjkjdC2/j@˛h.k/j dk: (34)

For the time derivative we use the form

M1.t;x/D 1.t > 1/.2�/�
d
2

Z
Rd

h.2tk/ sin.t jkj2/ cos.x � k/ dk

to infer that

@tM1.t;x/D 2 1.t > 1/.2�/�
d
2

Z
Rd

k � rkh.2tk/ sin.t jkj2/ cos.x � k/ dk

C1.t > 1/.2�/�
d
2

Z
Rd

jkj2h.2tk/ cos.t jkj2/ cos.x � k/ dk

D
2 1.t > 1/

.2t/dC1
.2�/�

d
2

Z
Rd

k � rkh.k/ sin
jkj2

4t
cos

x � k

2t
dk

C
1.t > 1/

.2t/dC2
.2�/�

d
2

Z
Rd

jkj2h.k/ cos
jkj2

4t
cos

x � k

2t
dk: (35)

By the same method as before, we infer

k.t;x/kdC2
j@tM1.t;x/j6 C sup

˛2Nd

j˛j6dC3

Z
Rd

.1CjkjdC4/j@˛h.k/j dk: (36)

Now let us go back to the multiplier m1. We have

F�1
x m1.t;x/D .2�/

d
2 .w ?M1.t; � //.x/;

and hence

rt;xF�1
x m1.t;x/D .2�/

d
2 .w ?rt;xM1.t; � //.x/:

First we have

jtdC2
rt;xF�1

x m1.t;x/j6 CkwkL1
x
ktdC2

rt;xM1.t;x/kL1t;x
;

which is finite thanks to (33), (34) and (36). Next,

jxjdC2
jrt;xF�1

x m1.t;x/j6C
j � jdC2w


L1

x
krt;xM1.t;x/kL1t;x

CCkwkL1
x

jxjdC2
rt;xM1.t;x/


L1t;x

:

The second term is finite also from (33) and (34), while the first term is finite by the expressions (32)
and (35). As a consequence, we can apply Stein’s theorem to m1 and we deduce that the corresponding
operator is bounded on L

p
t;x for all 1< p <1.

The multiplier m2 is treated differently. We show that

m2 2L1
t .R;B.L

p
x !Lp

x//;

which is enough to show that m2 defines a bounded operator on L
p
t;x . Indeed, for any ' 2L

p
t;x , define
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the Fourier multiplication operator Tm2
by

.Tm2
'/.t;x/D

Z
R

F�1
x

�
m2.t � t 0; � /.Fx'/.t

0; � /
�
.x/ dt 0:

Then, we have

kTm2
'.t/kLp

x
6
Z

R

F�1
x Œm2.t � t 0; � /.Fx'/.t

0; � /�


L
p
x

dt 0 6
Z

R

km2.t � t 0/kB.L
p
x!L

p
x/
k'.t 0/kLp

x
dt 0;

and hence
kTm2

'kLp
t;x
6 km2kL1

t .R;B.L
p
x!L

p
x//
k'kLp

t;x
:

Hence, let us show that km2kLp
x!L

p
x
2 L1

t . We estimate km2kLp
x!L

p
x

by the Marcinkiewicz theorem
[Grafakos 2008, Corollary 5.2.5]. Namely, we have to show that for indices 16 i1; : : : ; i` 6 d all different,
we have

ki1
� � � ki`

@ki1
� � � @ki`

m2.t; k/ 2L1k ;

and if so the Marcinkiewicz theorem tells us that

km2.t/kLp
x!L

p
x
6 C sup

i1;:::;i`

kki1
� � � ki`

@ki1
� � � @ki`

m2.t; k/kL1
k
:

A direct computation shows that

jki1
� � � ki`

@ki1
� � � @ki`

m2.t; k/j6 C 106t61

X
I�fi1;:::;i`g

X
J�I

jki1
j
2
� � � jki`

j
2
j@I yw.k/jj.@J g/.2tk/j;

hence

kki1
� � � ki`

@ki1
� � � @ki`

m2.t; k/kL1
k
6 C 106t61 sup

I;J�fi1;:::;i`g

jki1
j
2
� � � jki`

j
2
j@I yw.k/j


L1

k

k@J gkL1
k
;

which is obviously an L1
t –function. �

4. Higher-order terms

In this section, we explain how to treat the higher-order terms in (14). We recall the decomposition of the
solution for all t > 0:

�Q.t/D �
�
eit�Ww��Q

.t/.f CQ0/Ww��Q
.t/�e�it�

�
� �f :

We first estimate the terms involving Q0, in dimension 2.

Lemma 1. Let Q0 2S
4=3.L2.R2// and V 2L2

t;x.RC �R2/. Then, we have the following estimate for
all n;m> 0:��eit�W

.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
L2

t;x.RC�R2/
6 CkQ0kS4=3

C nCmkV knCm

L2
t;x

.n!/
1
4 .m!/

1
4

for some C > 0 independent of Q0, n, m and V .
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Proof. Defining W
.0/
V
.t/ WD 1, for n;m> 0 the density of

eit�W
.n/
V
.t/Q0W

.m/
V
.t/�e�it�

is estimated by duality in the following fashion. Let U 2L2
t;x.RC�R2/. The starting point is the formulaZ 1

0

Z
R2

U.t;x/�
�
eit�W

.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
.t;x/ dx dt

D

Z 1
0

Tr
�
U.t;x/eit�W

.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
dt:

By cyclicity of the trace, we have

Tr
�
U.t;x/eit�W

.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
D Tr

�
W
.m/
V
.t/�e�it�U.t;x/eit�W

.n/
V
.t/Q0

�
:

A straightforward generalization of Theorem 2 shows that we haveZ 1
0

W
.m/
V
.t/�e�it�U.t;x/eit�W

.n/
V
.t/ dt


S4

6 kU kL2
t;x

C nkV kn
L2

t;x

.n!/
1
4

C mkV km
L2

t;x

.m!/
1
4

;

and hence using that Q0 2S
4=3 and Hölder’s inequality we infer that

��eit�W
.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
L2

t;x
6 kQ0kS4=3

C nkV kn
L2

t;x

.n!/
1
4

C mkV km
L2

t;x

.m!/
1
4

:

This concludes the proof of the lemma. �

When d > 2, the corresponding result is:

Lemma 2. Let d > 2, Q0 2 S
dC2
dC1 .L2.Rd //, 1 < q 6 1C 2=d and p such that 2=pC d=q D d . Let

V 2L
p0

t L
q0

x .RC �Rd /. Then, we have the following estimate for any n, m> 0:

��eit�W
.n/
V
.t/Q0W

.m/
V
.t/�e�it�

�
L

p
t L

q
x.RC�Rd /

6 CkQ0k
S

dC2
dC1

C nCmkV knCm

L
p0

t L
q0

x

.n!/
1

2q0 .m!/
1

2q0

for some C > 0 independent of Q0, n, m and V .

The proof follows the same lines as for d D 2, and relies on the following estimate for any n, m:Z 1
0

W
.m/
V
.t/�e�it�U.t;x/eit�W

.n/
V
.t/ dt


SdC2

6 kU k
L

p0

t L
q0

x

C nkV kn
L

p0

t L
q0

x

.n!/
1

2q0

C mkV km
L

p0

t L
q0

x

.m!/
1

2q0

:

We see that the terms involving Q0 can be treated in any dimension, provided that Q0 is in an adequate
Schatten space. This is not the case for the terms involving f , for which we can only deal with the
higher orders.
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Lemma 3. Let d > 1, g WRd!R such that Lg 2L1.Rd /, 1< q6 1C2=d and p such that 2=pCd=qDd .
Let V 2L

p0

t L
q0

x .RC �Rd /. Then, for all n;m such that nCmC 1> 2q0, we have

��eit�W
.n/
V
.t/f W

.m/
V
.t/�e�it�

�
L

p
t L

q
x
6 Ck LgkL1

C nkV kn
L

p0

t L
q0

x

.n!/
1

2q0

C mkV km
L

p0

t L
q0

x

.m!/
1

2q0

;

where f D g.�ir/.

Proof. Again we argue by duality. Let U 2 L
p0

t L
q0

x . Without loss of generality, we can assume that
U , V > 0. Then, we evaluateZ 1

0

Tr
�
U.t;x/eit�W

.n/
V
.t/f W

.m/
V
.t/�e�it�

�
dt

D .�i/nim

Z 1
0

dt

Z
06s16���6sm6t

ds1 � � � dsm

Z
06t16���6tn6t

dt1 � � � dtn

�Tr
�
V .s1;x�2is1r/ � � �V .sm;x�2ismr/U.t;x�2i tr/V .tn;x�2i tnr/ � � �V .t1;x�2i t1r/f

�
;

where we used the relation
e�it�W .t;x/eit�

DW .t;x� 2i tr/:

In the spirit of [Frank et al. 2014], we gather the terms using the cyclicity of the trace as

Tr
�
V .s1;x�2is1r/ � � �V .sm;x�2ismr/U.t;x�2i tr/�V .tn;x�2i tnr/ � � �V .t1;x�2i t1r/f

�
D Tr

�
V .s1;x� 2is1r/

1
2 V .s2;x� 2is2r/

1
2 � � �V .sm;x� 2ismr/

1
2 U.t;x� 2i tr/

1
2

�U.t;x� 2i tr/
1
2 V .tn;x� 2i tnr/

1
2 � � �V .t1;x� 2i t1r/

1
2 f V .s1;x� 2is1r/

1
2

�
: (37)

The first ingredient to estimate this trace is [Frank et al. 2014, Lemma 1], which states that

k'1.˛x� iˇr/'2.x� iır/kSr 6
k'1kLr .Rd /k'2kLr .Rd /

.2�/
d
r j˛ı�ˇ j

d
r

for all r > 2: (38)

The second ingredient, to treat the term with f , is a generalization of this inequality involving f .

Lemma 4. There exists a constant C > 0 such that for all t , s 2 R we have

k'1.xC 2i tr/g.�ir/'2.xC 2isr/kSr 6
k LgkL1.Rd /

.2�/
d
2

k'1kLr .Rd /k'2kLr .Rd /

.2�/
d
r jt � sj

d
r

(39)

for all r > 2.

We remark that (39) reduces to (38) when g D 1 and Lg D .2�/
d
2 ı0. We postpone the proof of this

lemma, and use it to estimate (37) in the following way:ˇ̌
Tr
�
V .s1;x� 2is1r/ � � �V .sm;x� 2ismr/U.t;x� 2i tr/V .tn;x� 2i tnr/ � � �V .t1;x� 2i t1r/f

�ˇ̌
6 C
kV .s1/kLq0 � � � kV .sm/kLq0kU.t/kLq0kV .tn/kLq0kV .t1/kLq0

js1� t1j
d

2q0 � � � jsm� t j
d

2q0 jt � tnj
d

2q0 � � � jt2� t1j
d

2q0

:
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Here, we have used the condition nCmC1> 2q0 to ensure that the operator inside the trace is trace-class
by Hölder’s inequality. From this point the proof is identical to the proof of [Frank et al. 2014, Theorem 3].

�

Proof of Lemma 4. The inequality is immediate if r D1. Hence, by complex interpolation, we only have
to prove it for r D 2. We have

k'1.t;xC2i tr/g.�ir/'2.s;xC2isr/k2
S2D Tr

�
'1.x/

2ei.t�s/�g.�ir/'2.x/
2ei.s�t/�g.�ir/

�
D
.2�/�2d

jt�sjd

“
'1.x/

2
ˇ̌�
Lg�e�i j � j

2

4.t�s/
�
.x�y/

ˇ̌2
'2.y/

2 dx dy

6 .2�/
�2d

jt�sjd
k Lgk2

L1k'1k
2
L2k'2k

2
L2 : �

In dimension d , we want to prove that �Q belongs to L
1C2=d
t;x , hence we consider q D 1C 2=d and

q0D 1Cd=2. The previous result estimates the terms of order nCmC1> dC2, that is, nCm> dC1.
The case nCm D 1 corresponds exactly to the linear response studied in the previous section. In
dimension d D 2, we see that we are still lacking the case nCmD 2, which is what we call the second
order. The next section is devoted to this order. We are not able to treat the terms with 1< nCm6 d in
other dimensions.

5. Second order in 2D

The study of the linear response is not enough to prove dispersion for the Hartree equation in 2D. We
also have to estimate the second-order term, which we first compute explicitly in any dimension, and then
study only in dimension 2.

5.1. Exact computation in any dimension. Define the second-order term in the Duhamel expansion
of Q.t/,

Q2.t/ WD .�i/2
Z t

0

ds

Z s

0

dt1 ei.t�s/�ŒV .s/; ei.s�t1/�ŒV .t1/; f �e
i.t1�s/��ei.s�t/�;

where we again used the notation V D w � �Q. We explicitly compute its density. To do so, we let
W 2 D.RC �Rd / and use the relationZ 1

0

Z
Rd

W .t;x/�Q2
.t;x/ dx dt D

Z 1
0

TrŒW .t/Q2.t/� dt:

For any .p; q/ 2 Rd �Rd we have

yQ2.t;p; q/D�
1

.2�/d

Z t

0

ds

Z s

0

dt1

Z
Rd

dq1 ei.t�s/.p2�q2/

�
�bV .s;p� q1/e

i.s�t1/.q
2
1
�q2/bV .t1; q1� q/.g.q/�g.q1//

� bV .s; q1� q/ei.s�t1/.p
2�q2

1
/bV .t1;p� q1/.g.q1/�g.p//

�
:
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Using that

TrŒW .t/Q2.t/�D
1

.2�/
d
2

Z
Rd�Rd

yw.t; q�p/ yQ2.t;p; q/ dp dq;

we arrive at the formulaZ 1
0

Z
Rd

W .t;x/�Q2
.t;x/ dx dt

D

Z 1
0

Z 1
0

Z 1
0

Z
Rd�Rd

dt ds dt1dk d`K.2/.t � s; s� t1I k; `/ yw.t;�k/y�Q.s; k � `/y�Q.t1; `/;

with

K.2/.t; sI k; `/D 1t>01s>0

4 yw.`/ yw.k � `/

.2�/
d
2

sin.tk � .k � `// sin.` � .tkC s`// Lg.2.tkC s`//:

5.2. Estimates in 2D.

Proposition 4. Assume that g 2L1.R2/ is such that jxjaj Lg.x/j 2L1.R2/ for some a> 3. Assume also
that w is such that .1Cjkj1=2/j yw.k/j 2L1.R2/. Then, if �Q 2L2

t;x.R�R2/, we have

k�Q2
kL2

t;x.R�R2/ 6 Ck.1Cj � j2/
a
2 LgkL1k.1Cj � j

1
2 / ywkL1k�Qk

2

L2
t;x.R�R2/

; (40)

for some constant C.g; w/ depending only on g and w.

Proof. First, we have the estimateˇ̌̌̌Z
R3

G.t1� t2; t2� t3/f1.t1/f2.t2/f3.t3/ dt1 dt2 dt3

ˇ̌̌̌
6 CkGkL2L1

3Y
iD1

kfikL2

for any G, and henceˇ̌̌̌Z
R3

K.2/.t1� t2; t2� t3I k; `/ yw.t1;�k/y�Q.t2; k � `/y�Q.t3; `/ dt1 dt2 dt3

ˇ̌̌̌
6
K.2/.t; sI k; `/


L2

t L1
s
k yw. � ;�k/kL2ky�Q. � ; k � `/kL2ky�Q. � ; `/kL2 :

Let us therefore estimate kK.2/.t; sI k; `/kL2
t L1

s
. To do so, we use the bounds jsin.tk � .k � `//j6 1 and

jsin.` � .tkC s`//j6 j`jjtkC s`j to get

kK.2/.t; sI k; `/k2
L2

t L1
s
6 16 yw.`/2 yw.k � `/2

.2�/d
`2

Z
R

dt

ˇ̌̌̌Z
R

ds jtkC s`jj Lg.2.tkC s`//j

ˇ̌̌̌2
:

We let

uD `sC t
k � `

`
and v D

s
k2�

.k � `/2

`2
t

and notice that

jtkC s`j D

�
`2

�
sC t

k � `

`2

�2

C

�
k2
�
.k � `/2

`2

�
t2

�1
2

D

p
u2C v2:
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Since Lg is a radial function, we find that

`2

Z
R

dt

ˇ̌̌̌Z
R

ds jtkCs`jj Lg.2.tkCs`//j

ˇ̌̌̌2
D

j`j

.k2`2� .k � `/2/
1
2

Z
R

dv

ˇ̌̌̌Z
R

du
p

u2Cv2
ˇ̌
Lg.2
p

u2Cv2/
ˇ̌ˇ̌̌̌2
:

The double integral on the right is finite under some mild decay assumptions on Lg; for instance, it is finite
if j Lg.r/j6 C.1C r2/�a=2 for some a> 3. Noticing that .k2`2� .k � `/2/1=2 D j det.k; `/j, we thus have

jhW; �Q2
ij

6Ck.1Cj � j2/
a
2 LgkL1

Z
R2d

dk d`
k yw. � ;�k/kL2 j yw.k � `/jky�Q. � ; k � `/kL2 j`j

1
2 j yw.`/jky�Q. � ; `/kL2

j det.k; `/j
1
2

:

We prove the following inequality of Hardy–Littlewood–Sobolev type:

Lemma 5. For any functions f , g, h we haveˇ̌̌̌Z
R2�R2

f .k/g.k � `/h.`/

j det.k; `/j
1
2

dk d`

ˇ̌̌̌
6 Ckf kL2kgkL2khkL2 : (41)

Proof. Since det.k; `/D k1`2� k2`1, we first fix k1 ¤ 0, `1 ¤ 0, k1 ¤ `1 and estimateˇ̌̌̌Z
R2

f .k1; k2/g.k1� `1; k2� `2/h.`1; `2/

jk1`2� k2`1j
1
2

dk2d`2

ˇ̌̌̌

6
�Z

R2

jf .k1; k2/j
3
2 jg.k1� `1; k2� `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2

�1
3

�

�Z
R2

jf .k1; k2/j
3
2 jh.`1; `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2

�1
3

�

�Z
R2

jg.k1� `1; k2� `2/j
3
2 jh.`1; `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2

�1
3

:

We then haveZ
R2

jf .k1; k2/j
3
2 jg.k1� `1; k2� `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2

D

Z
R2

jf .k1; k2/j
3
2 jg.k1� `1; `2/j

3
2

jk2.k1� `1/� `2k1j
1
2

dk2d`2

D
1

jk1jjk1� `1j

Z
R2

jf .k1; k2=.k1� `1//j
3
2 jg.k1� `1; `2=k1/j

3
2

jk2� `2j
1
2

dk2d`2

6 C

jk1jjk1� `1j
kf .k1; � =.k1� `1//k

3
2

L2kg.k1� `1; � =k1/k
3
2

L2

6 C

jk1j
1
4 jk1� `1j

1
4

kf .k1; � /k
3
2

L2kg.k1� `1; � /k
3
2

L2 ;
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and, in the same fashion,Z
R2

jf .k1; k2/j
3
2 jh.`1; `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2 6
C

jk1j
1
4 j`1j

1
4

kf .k1; � /k
3
2

L2kh.`1; � /k
3
2

L2 ;Z
R2

jg.k1� `1; k2� `2/j
3
2 jh.`1; `2/j

3
2

jk1`2� k2`1j
1
2

dk2d`2 6
C

j`1j
1
4 jk1� `1j

1
4

kg.k1� `1; � /k
3
2

L2kh.`1; � /k
3
2

L2 :

As a consequence, we haveˇ̌̌̌Z
R2

f .k1; k2/g.k1� `1; k2� `2/h.`1; `2/

jk1`2� k2`1j
1
2

dk2d`2

ˇ̌̌̌
6C
kf .k1; � /kL2kg.k1� `1; � /kL2kh.`1; � /kL2

jk1j
1
6 j`1j

1
6 jk1� `1j

1
6

:

We now need a multilinear Hardy–Littlewood–Sobolev-type inequality. Integrating over .k1; `1/ we find
thatˇ̌̌̌Z

R2�R2

f .k/g.k � `/h.`/

j det.k; `/j
1
2

dk d`

ˇ̌̌̌
6 C

Z
R2

kf .k1; � /kL2kg.k1� `1; � /kL2kh.`1; � /kL2

jk1j
1
6 j`1j

1
6 jk1� `1j

1
6

dk1d`1

6C

�Z
R2

kg.k1� `1; � /k
3
2

L2kh.`1; � /k
3
2

L2

jk1j
1
2

dk1d`1

�1
3

�

�Z
R2

kf .k1; � /k
3
2

L2kg.k1� `1; � /k
3
2

L2

j`1j
1
2

dk1d`1

�1
3

�

�Z
R2

kf .k1; � /k
3
2

L2kh.`1; � /k
3
2

L2

jk1� `1j
1
2

dk1d`1

�1
3

6 Ckf kL2kgkL2khkL2 ;

where in the last line we have used the 2D Hardy–Littlewood–Sobolev inequality. �

From the lemma, we deduce that

jhW; �Q2
ij6 C

.1Cj � j2/a
2 Lg


L1
k.1Cj � j

1
2 / ywkL1k�Qk

2

L2
t;x

;

which ends the proof of the proposition. �

6. Proof of the main theorem

Proof of Theorem 1. Let T > 0. Assume also that kQ0kS4=3 6 1. We solve the equation

�Q.t/D �
�
eit�Ww��Q

.t/.f CQ0/Ww��Q
.t/�e�it�

�
� �f

D �
�
eit�Q0e�it�

�
�L.�Q/CR.�Q/

by a fixed-point argument. Here LD L1CL2, where L1 was studied in Section 3 and

L2.�Q/D��
�
eit�.W

.1/
w��Q

.t/Q0CQ0W
.1/
w��Q

.t/�/e�it�
�
:
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As explained in Proposition 1 and in Corollary 1, under the assumption (9) (or (10) when f is strictly
decreasing), .1CL1/ is invertible with bounded inverse on L2

t;x . The operator 1CLD 1CL1CL2 is
invertible with bounded inverse when

kL2k<
1

k.1CL1/�1k
:

By Lemma 1, we have
kL2k6 CkwkL1kQ0kS4=3

and therefore the condition can be expressed as

kQ0kS4=3 <
1

CkwkL1k.1CL1/�1k
:

Then, we can write
�Q.t/D .1CL/�1

�
�
�
eit�Q0e�it�

�
CR.�Q/

�
:

For any ' 2L2
t;x.Œ0;T ��R2/, define

F.'/.t/D �
�
eit�Q0e�it�

�
CR.'/:

We apply the Banach fixed-point theorem to the map .1CL/�1F . To do so, we expand F as

F.'/.t/D �
�
eit�Q0e�it�

�
C

X
nCm>2

�
�
eit�Ww�'.t/Q0Ww�'.t/

�e�it�
�

C

X
nCmD2

�
�
eit�W

.n/
w�'.t/f W

.m/
w�'.t/

�e�it�
�
C

X
nCm>3

�
�
eit�W

.n/
w�'.t/f W

.m/
w�'.t/

�e�it�
�
:

By the Strichartz estimate (19), we have��eit�Q0e�it�
�

L2
t;x
6 CkQ0kS4=3 :

By Lemma 1, we have X
nCm>2

�
�
eit�Ww�'.t/Q0Ww�'.t/

�e�it�
�

L2
t;x

6 CkQ0kS4=3

X
nCm>2

C nCmkw �'knCm

L2
t;x

.n!/
1
4 .m!/

1
4

:

By Proposition 4, we have X
nCmD2

�
�
eit�W

.n/
w�'.t/f W

.m/
w�'.t/

�e�it�
�

L2
t;x

6 Ck.1Cj � j2/
a
2 LgkL1k.1Cj � j

1
2 / ywkL1k'k

2

L2
t;x

:

Finally, by Lemma 3 we have X
nCm>3

�
�
eit�W

.n/
w�'.t/f W

.m/
w�'.t/

�e�it�
�

L2
t;x

6 Ck LgkL1

X
nCm>3

C nCmkw �'knCm

L2
t;x

.n!/
1
4 .m!/

1
4

:

We deduce that, for all ' 2L2
t;x.Œ0;T ��R2/, we have the estimate

k.1CL/�1F.'/kL2
t;x
6 Ck.1CL/�1

k
�
kQ0kS4=3 CA

�
k'kL2

t;x

��
;
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where we used the notation

A.z/D C
X

nCm>2

C nCm.kwkL1z/nCm

.n!/
1
4 .m!/

1
4

CC
.1Cj � j2/a

2 Lg


L1

.1Cj � j 12 / yw
L1

z2

CCk LgkL1

X
nCm>3

C nCm.kwkL1z/nCm

.n!/
1
4 .m!/

1
4

:

We have A.z/DO.z2/ as z! 0. As a consequence, there exist C0, z0 > 0, depending only on kwkL1 ,
k.1Cj � j2/a=2 LgkL1k.1Cj � j

1=2/ ywkL1 and k LgkL1 , such that

jA.z/j6 C0z2

for all jzj6 z0. Choosing

RDmin
�

z0;
1

2C0k.1CL/�1k

�
and

kQ0kS4;3 6min
�

1;
R

2Ck.1CL/�1k

�
leads to the estimate

k.1CL/�1F.'/kL2
t;x
6R

for all k'kL2
t;x
6R, independently of the maximal time T > 0. Similar estimates show that F is also a

contraction on this ball, up to diminishing R if necessary. The Banach fixed-point theorem shows that
there exists a solution for any time T > 0, with a uniform estimate with respect to T . Having built this
solution '0 2L2

t;x.RC �R2/, we define the operator  as

 .t/D eit�Ww�'0
.t/.f CQ0/Ww�'0

.t/�e�it�:

We have '0 D � � �f by definition.
From [Frank et al. 2014, Theorem 3], we know that Ww�'0

� 1 2 C 0
t .RC;S

4/ and that Ww�'0
� 1

admits a strong limit in S4 when t !1, which gives that  � f 2 C 0.RC;S
4/ and our scattering

result (11). Next, we remark that since w 2 W 1;1.R2/ � L2.R2/, we have w � '0 2 L2
t .L
1
x \L2

x/.
From [Lewin and Sabin 2014, Lemma 7] and the fact that g 2 L2.R2/ (due to (8)), we deduce that
.Ww�'0

.t/ � 1/f 2 C 0.RC;S
2/. This now shows that  � f 2 C 0.RC;S

2/. Of course, we can
perform the same procedure for negative times and this finishes the proof of Theorem 1. �
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