
ANALYSIS & PDE

msp

Volume 7 No. 6 2014

GERASIM KOKAREV

ON MULTIPLICITY BOUNDS FOR SCHRÖDINGER EIGENVALUES
ON RIEMANNIAN SURFACES



ANALYSIS AND PDE
Vol. 7, No. 6, 2014

dx.doi.org/10.2140/apde.2014.7.1397 msp

ON MULTIPLICITY BOUNDS FOR SCHRÖDINGER EIGENVALUES
ON RIEMANNIAN SURFACES

GERASIM KOKAREV

A classical result by Cheng in 1976, improved later by Besson and Nadirashvili, says that the multiplicities
of the eigenvalues of the Schrödinger operator (−1g + ν), where ν is C∞-smooth, on a compact
Riemannian surface M are bounded in terms of the eigenvalue index and the genus of M . We prove that
these multiplicity bounds hold for an L p-potential ν, where p > 1. We also discuss similar multiplicity
bounds for Laplace eigenvalues on singular Riemannian surfaces.

1. Introduction and statements of results

Multiplicity bounds. Let M be a connected compact surface. For a Riemannian metric g and C∞-smooth
function ν on M we denote by

λ0(g, ν) < λ1(g, ν)6 · · ·6 λk(g, ν)6 · · ·

the eigenvalues of the Schrödinger operator (−1g + ν). If M has a nonempty boundary, we assume that
the Dirichlet boundary condition is imposed.

The following theorem is an improved version of the statement originally discovered by Cheng [1976]. It
is due to Besson [1980] for closed orientable surfaces and to Nadirashvili [1987] for general closed surfaces;
multiplicity bounds for general boundary value problems were obtained in [Karpukhin et al. 2013].

Theorem 1.1. Let (M, g) be a smooth compact surface, possibly with boundary. Then, for any C∞-smooth
function ν on M , the multiplicity mk(g, ν) of an eigenvalue λk(g, ν) satisfies the inequality

mk(g, ν)6 2(2−χ − l)+ 2k+ 1, k = 1, 2, . . . ,

where χ stands for the Euler–Poincaré number of M and l is the number of boundary components.

Above, we assume that l = 0 for closed surfaces. Note that even the fact that eigenvalue multiplicities
on Riemannian surfaces are bounded is by no means trivial, and as is known [Colin de Verdière 1986;
1987], fails in higher dimensions, unless some specific hypotheses on a Riemannian metric or a potential
are imposed. The key ingredient in the proof of Theorem 1.1 is the so-called Cheng’s structure theorem
[Cheng 1976]: for any solution u to the Schrödinger equation with a smooth potential and any interior point
p ∈ M there exists a neighbourhood of p and its diffeomorphism onto a ball in R2 centred at the origin
that maps the nodal set of u onto the nodal set of a homogeneous harmonic polynomial. This statement is
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based on a local approximation of solutions by harmonic homogeneous polynomials [Bers 1955] and, in
particular, implies that the nodal set of a solution u is locally homeomorphic to its tangent cone. The
latter property of nodal sets does not hold in higher dimensions [Bérard and Meyer 1982]. The structure
theorem holds for sufficiently smooth solutions to the Schrödinger equation — see the Appendix — and
consequently the multiplicity bounds in Theorem 1.1 hold for Hölder continuous potentials. Based on
Cheng’s structure theorem, the multiplicity bounds for various eigenvalues problems have been extensively
studied in the literature. We refer to the papers [Colin de Verdière 1987; Hoffmann-Ostenhof et al. 1999a;
Hoffmann-Ostenhof et al. 1999b; Karpukhin et al. 2013] and references there for the details.

The purpose of this paper is to show that the multiplicity bounds continue to hold for rather weak
potentials when no similar structure theorem for nodal sets is available. For a given real number δ ∈ (0, 2),
we consider the class K 2,δ(M), introduced in [Aizenman and Simon 1982; Simon 1982], which is formed
by absolutely integrable potentials ν such that

sup
x∈M

∫
B(x,r)
|x − y|−δ|ν(y)| d Volg(y)→ 0 as r→ 0, (1-1)

where the absolute value |x − y| above denotes the distance between x and y in the background metric g.
It is a straightforward consequence of the Hölder inequality that any L p-integrable function with p > 1
belongs to K 2,δ for some positive δ. However, unlike the traditional L p-hypothesis, the potentials from
K 2,δ(M) include certain physically important cases [Aizenman and Simon 1982; Simon 1982].

The hypothesis that ν ∈ K 2,δ(M) implies that the measures dµ± = ν±d Volg, where ν+ and ν− are
the positive and negative parts of ν, are δ-uniform:

µ±(B(x, r))6 Cr δ for any r > 0 and x ∈ M

and some constant C . By the results of Maz’ja [1985] (see also [Kokarev 2014]) for such measures µ±

the Sobolev space W 1,2(M,Volg) embeds compactly into L2(M, µ±). By standard perturbation theory
[Kato 1976] (see also [Maz’ja 1985; Simon 1982]) we then conclude that the spectrum of the Schrödinger
operator (−1g + ν) is discrete, bounded from below, and all eigenvalues have finite multiplicities. Our
main result says that they satisfy the same multiplicity bounds.

Theorem 1.2. Let (M, g) be a smooth compact surface, possibly with boundary. Then, for any absolutely
integrable potential ν from K 2,δ(M), where δ ∈ (0, 2), the multiplicity mk(g, ν) of an eigenvalue λk(g, ν)
satisfies the inequality

mk(g, ν)6 2(2−χ − l)+ 2k+ 1, k = 1, 2, . . . ,

where χ stands for the Euler–Poincaré number of M and l is the number of boundary components.

For the first eigenvalue λ1(g, ν) the above multiplicity bound is sharp when M is homeomorphic to
a sphere S2 or a projective plane RP2. When a potential ν is smooth, there is an extensive literature
[Colin de Verdière 1987; Nadirashvili 1987; Sévennec 2002] (and references therein) devoted to sharper
multiplicity bounds for the first eigenvalue. In addition, in [Hoffmann-Ostenhof et al. 1999a; 1999b] the
authors show that when M is a sphere or a disk the multiplicity bounds in Theorem 1.1 can be improved to
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mk(g, ν)6 2k−1 for k > 2. We have made no effort to improve our results in these directions. However,
it is worth mentioning that the main topological result in [Sévennec 2002] does yield a sharper multiplicity
bound for λ1(g, ν) for some closed surfaces when a potential v belongs to the space K 2,δ(M). More
precisely, if M is a closed surface whose Euler–Poincaré number χ is negative, Theorem 5 of [Sévennec
2002] implies that m1(g, ν)6 5−χ for any potential v ∈ K 2,δ(M). By the results in [Colin de Verdière
1987] this bound is sharp for T2 # T2 and #n RP2, where n = 3, 4, 5.

The multiplicity bounds in Theorem 1.1 also hold for eigenvalue problems on singular Riemannian
surfaces; we discuss them in detail in Section 5. The proof of Theorem 1.2 is based on the delicate study
of the nodal sets of Schrödinger eigenfunctions that we describe below.

Nodal sets of eigenfunctions. Let u be a solution to the eigenvalue problem

(−1g + ν)u = λu on M, (1-2)

where ν ∈ K 2,δ(M) and, if ∂M 6=∅, the Dirichlet boundary hypothesis is assumed. Recall that by results
in [Simon 1982] such an eigenfunction u is Hölder continuous. We denote by N(u) its nodal set u−1(0).

By the results in [Hoffmann-Ostenhof and Hoffmann-Ostenhof 1992; Hoffmann-Ostenhof et al. 1995]
combined with the strong unique continuation property [Sawyer 1984; Chanillo and Sawyer 1990], in
appropriate local coordinates around an interior point x0 ∈ M a nontrivial solution u has the form

u(x)= PN (x − x0)+ O(|x − x0|
N+δ) for x ∈U,

where PN is a nontrivial homogeneous harmonic polynomial on the Euclidean plane. We refer to Section 2
for a precise statement. The degree of this approximating homogeneous harmonic polynomial defines the
so-called vanishing order ordx u for any interior point x ∈ M . Each point x ∈N(u) has vanishing order
at least one, and we define N2(u) as the set of points x whose vanishing order ordx u is at least two.

The proof of Theorem 1.2 is based on the following key result.

Theorem 1.3. Let (M, g) be a compact Riemannian surface, possibly with boundary, and let u be a
nontrivial eigenfunction for the Schrödinger eigenvalue problem (1-2) with ν ∈ K 2,δ(M), where δ ∈ (0, 2).
Then the set N2(u) is finite, and the complement N(u) \N2(u) has finitely many connected components.
Moreover, for any x ∈ N2(u), the number of connected components of N(u) \N2(u) incident to x is an
even integer that is at least 2 ordx u.

The theorem says that the nodal set N(u) can be viewed as a graph: the vertices are points from N2(u),
and the edges are connected components of N(u)\N2(u). This graph structure assigns to each x ∈N2(u)
its degree deg x , that is, the number of edges incident to x . If there is an edge that starts and ends at the
same point, then it counts twice. The last statement of Theorem 1.3 says that deg x > 2 ordx u for any
x ∈ N2(u). When the potential ν is smooth, Theorem 1.3 is a direct consequence of Cheng’s structure
theorem and, in this case, the degree deg x is precisely 2 ordx u.

The proof of Theorem 1.3 uses essentially Courant’s nodal domain theorem, and is based on topological
arguments, which are in turn built on the results in [Hoffmann-Ostenhof and Hoffmann-Ostenhof 1992;
Hoffmann-Ostenhof et al. 1995]. More precisely, one of the key ingredients is the study of prime ends
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of nodal domains, which leads to a construction of neighbourhoods of x ∈ N(u) where a solution also
has a finite number of nodal domains. Our method uses the properties of solutions in the interior of M
only; it largely disregards their behaviour at the boundary. Consequently, the main results (Theorems 1.2
and 1.3) hold for rather general boundary value problems as long as Courant’s nodal domain theorem
holds; cf. [Karpukhin et al. 2013, Section 6]. The statement of Theorem 1.3 continues to hold for general
solutions to the Schrödinger equation (−1+V )u= 0 that have a finite number of nodal domains. Without
the latter hypothesis for arbitrary L p-potentials, it is unknown even whether the Hausdorff dimension
of N2(u) equals zero or not.

The paper is organised in the following way. In Section 2 we collect the background material on
the strong unique continuation property, regularity of nodal sets, and recall the approximation results
from [Hoffmann-Ostenhof and Hoffmann-Ostenhof 1992; Hoffmann-Ostenhof et al. 1995]. Here we also
derive a number of consequences of these results that describe qualitative properties of nodal sets; they
are used often in our sequel arguments. In the next section we recall the notion of Carathéodory’s prime
end and show that prime ends of nodal domains have the simplest possible structure: their impression
always consists of a single point. In Section 4 we prove Theorems 1.2 and 1.3. In the last section we
discuss multiplicity bounds for eigenvalue problems on surfaces with measures. We show that Laplace
eigenvalue problems on singular Riemannian surfaces, such as Alexandrov surfaces of bounded integral
curvature, can be viewed as particular instances of such problems. The paper also has an Appendix where
we give details on Cheng’s structure theorem for the reader’s convenience.

2. Preliminaries

Background material. We start by collecting background material on solutions of the Schrödinger
equation, which is used throughout the paper. From now on we assume that a potential V belongs to
the space K 2,δ(M), where δ ∈ (0, 1). The superscript 2 in the notation for this function space refers to
the dimension of M . Note that the space K 2,δ(M) is contained in the so-called Kato space formed by
absolutely integrable functions V such that

sup
x∈M

∫
B(x,r)

ln
( 1
|x−y|

)
|ν(y)| d Volg(y)→ 0 as r→ 0;

see [Simon 1982]. Consider the Schrödinger equation
(−1g + V )u = 0 on M, (2-1)

understood in the distributional sense. As was mentioned above, by the results in [Simon 1982] its
solutions are Hölder continuous. They also enjoy the following strong unique continuation property.

Proposition 2.1. Let (M, g) be a smooth connected compact Riemannian surface, possibly with boundary,
and let x0 ∈ M be an interior point. Let u be a nontrivial solution of the Schrödinger equation (2-1) with
V ∈ K 2,δ(M), where 0< δ < 1, such that

u(x)= O(|x − x0|
`) for any ` > 0.

Then u vanishes identically on M.
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Proposition 2.1 is a consequence of the results in [Sawyer 1984], where the author proves that a
solution u of the Schrödinger equation with the potential V from the Kato space K 2(M) satisfies the
unique continuation property: if u vanishes on a nonempty open subset, then it vanishes identically. As
was pointed out in [Hoffmann-Ostenhof et al. 1995; Chanillo and Sawyer 1990], the argument in [Sawyer
1984] actually yields the strong unique continuation property.

The following fundamental statement is a combination of the main result in [Hoffmann-Ostenhof and
Hoffmann-Ostenhof 1992] with Proposition 2.1.

Proposition 2.2. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u
be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0< δ < 1. For any
interior point x0 ∈ M , there exist a coordinate chart U around x0 and a nontrivial homogeneous harmonic
polynomial PN of degree N > 0 on the Euclidean plane such that

u(x)= PN (x − x0)+ O(|x − x0|
N+δ′), where x ∈U,

for any 0< δ′ < δ.

The proposition says that for any point x ∈ M there is a well-defined vanishing order ordx u of a
solution u at x , understood as the degree of the harmonic polynomial PN . For a positive integer ` we
define the set

N`(u)= {x ∈ Int M | ordx u > `}.

Clearly, the nodal set N(u)= u−1(0) is precisely the set N1(u). Recall that a connected component of
M \N(u) is called a nodal domain of u. The combination of the Harnack inequality in [Aizenman and
Simon 1982; Simon 1982] and the unique continuation property implies that a nontrivial solution u has
different signs on adjacent nodal domains. Moreover, every point x ∈N(u) belongs to the closure of at
least two nodal domains.

Now suppose that u is an eigenfunction; that is, a solution to the eigenvalue problem (1-2). The
following version of a classical statement is used in the sequel.

Courant’s nodal domain theorem. Let (M, g) be a smooth compact Riemannian surface, possibly with
boundary, and ν ∈ K 2,δ(M), where 0< δ < 1. Then each nontrivial eigenfunction u corresponding to the
eigenvalue λk(g, ν) of eigenvalue problem (1-2) has at most k+1 nodal domains.

The proof follows standard arguments; see [Courant and Hilbert 1953]. It uses variational characteri-
sation of eigenvalues λk(g, ν), the unique continuation property, Proposition 2.1, and the continuity of
eigenfunctions up to the boundary. The latter can be deduced, for example, from the interior regularity
[Simon 1982] by straightening the boundary locally and reflecting across it in an appropriate way.

Qualitative properties of nodal sets. Let u be a solution of the Schrödinger equation (2-1). If u is
C1-smooth, then the implicit function theorem implies that the complement

N1(u) \N2(u) (2-2)
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is a collection of C1-smooth arcs. The following celebrated nodal set regularity theorem due to [Hoffmann-
Ostenhof et al. 1995] says that the latter holds under rather weak assumptions on a potential, when a
solution u is not necessarily C1-smooth.

Proposition 2.3. Let u be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M),
where 0< δ < 1. Then any point x in the complement (2-2) has a neighbourhood U ⊂ M such that the
set N1(u)∩U is the graph of a C1,δ-smooth function with nonvanishing gradient. Further, if a potential
V is Ck,α-smooth, then such a point x has a neighbourhood U such that N1(u)∩U is the graph of a
Ck+3,α-smooth function with nonvanishing gradient.

Below by nodal edges we mean the connected components of N1(u) \N2(u). By Proposition 2.3 they
are diffeomorphic to intervals of the real line, and their ends belong to the set N2(u). We say that a nodal
edge is incident to x ∈N2(u) if its closure contains x . A nodal edge is called a nodal loop if it is incident
to one point x ∈ N2(u) only. In other words, such a nodal edge starts and ends at the same point x .

The important consequence of Proposition 2.3 is the statement that nodal edges cannot accumulate to
another nodal edge. We use this fact to describe a nodal set structure around an isolated point x ∈N2(u).

Corollary 2.4. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u
be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0 < δ < 1. Let
x ∈N2(u) be an isolated point in N2(u). Then the number of nodal edges incident to x that are not nodal
loops is finite. Moreover, any sequence of nodal loops incident to x has to contract to x.

Proof. Let B be a neighbourhood of x whose closure does not contain any points in N2(u). We view B
as a unit ball in R2 centred at the origin x = 0. Suppose that there is an infinite number of nodal edges
incident to x that are not nodal loops. Denote by 0i the connected components of the intersections of
these nodal edges with the ball B whose closures 0i contain x . By Proposition 2.3, each 0i consists
of a piece of a C1-smooth nodal arc and the origin x . They form a sequence of compact subsets of B,
and hence contain a subsequence that converges to a compact subset 00 ⊂ B in the Hausdorff distance.
Clearly, the subset 00 belongs to the nodal set N(u) and contains the origin x = 0. Since the subsets 0i

contain points on the boundary ∂B, then so does 00; in particular, the limit subset 00 does not coincide
with x . Since the origin x is the only higher-order nodal point in B, then 00 \ {x} is the union of pieces
of C1-smooth nodal edges. Without loss of generality, we may assume that the sequence 0i converges to
a subset 00 such that 00 \ {x} is a piece of a nodal edge. Now to get a contradiction we may either appeal
to Proposition 2.3 directly, or argue in the following fashion. Let xi ∈ 0i ∩ ∂B be a sequence of points
that converges to a point x0 ∈ 00 ∩ ∂B. We consider the two cases.

Case 1: the complement 00 \ {x} belongs to a nodal edge that intersects ∂B at x0 transversally. By
Proposition 2.2, it is straightforward to see that the tangent line to 00 at x0 is precisely the kernel of an
approximating linear function P1 at x0. Since 00 intersects ∂B at x0 transversally, we conclude that the
sequence P1((xi − x0)/|xi − x0|) is bounded away from zero for all sufficiently large i . On the other hand,
by Proposition 2.2 we obtain P1(xi − x0)= O(|xi − x0|

1+δ), and arrive at a contradiction.

Case 2: the complement 00 \ {x} belongs to a nodal edge that is tangent to ∂B at x0. Then there exists a
sufficiently small ball B0 centred at x0 such that 00 intersects ∂B0 transversally. Choosing a sequence of
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points x ′i ∈ 0i ∩ ∂B0 that converges to a point x ′0 ∈ 00 ∩ B0, and arguing in a fashion similar to in Case 1,
we again arrive at a contradiction.

Now we demonstrate the last statement of the lemma. Suppose that there is a sequence of nodal loops
incident to x that do not contract to x . Choosing a subsequence and a sufficiently small neighbourhood B
of x , we may assume that each nodal loop intersects with ∂B. Then the argument above shows that this
sequence has to be finite. �

We proceed with another statement on local properties of the nodal set near an isolated point x ∈N2(u).

Corollary 2.5. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u
be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0 < δ < 1. Let
x ∈ N2(u) be an isolated point in N2(u). Then there exists a neighbourhood B of x , viewed as a ball
in the Euclidean plane, such that the zeroes of u on ∂B are precisely the intersections of the connected
components of N1(u) \N2(u) incident to x with ∂B.

Proof. First, since x is isolated in N2(u), one can choose a neighbourhood B such that it does not contain
other points from N2(u). Thus, for a proof of the lemma it is sufficient to show that the point x is not a
limit point of the nodal edges that are not incident to x . This can be demonstrated following an argument
similar to the one used in the proof of Corollary 2.4. �

Let x ∈N2(u) be a point isolated in N2(u) such that the number of nodal edges incident to x is finite.
The number of these nodal edges, where nodal loops are counted twice, is a characteristic of a point x ,
called the degree and denoted by deg x . It is closely related to the vanishing order ordx u. More precisely,
if a solution u is sufficiently smooth, then by Cheng’s structure theorem [1976], it equals 2 ordx u. The
following lemma describes its relationship to ordx u under rather weak regularity assumptions on u.

Lemma 2.6. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u be
a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0< δ < 1. Let x ∈N2(u)
be an isolated point in N2(u) such that the degree deg x is finite. Then deg x is an even integer that is at
least 2 ordx u.

Proof. Denote by N the vanishing order ordx u, that is, the degree of an approximating homogeneous
harmonic polynomial PN (y− x); see Proposition 2.2. Choose a sufficiently small neighbourhood B of x
such that it does not contain other points from N2(u) and does not contain nodal loops. We identify B
with a unit ball in the Euclidean plane such that the point x corresponds to the origin. By Bλ ⊂ B we
mean a neighbourhood that corresponds to a ball of radius λ, where 0 < λ < 1. Consider the rescaled
function

uλ(y)= λ−N u(λ · y)

defined on the unit circle S = {y : |y| = 1}. Proposition 2.2 implies that uλ(y) converges uniformly to the
homogeneous harmonic polynomial PN (y) as λ→ 0, when y ranges over the unit circle S. As is known,
PN (y) changes sign on S precisely 2N times, and hence the corresponding zeroes are stable under the
perturbation of PN (y). Thus, we conclude that for all sufficiently small λ > 0 the zeroes of uλ lie in
small pairwise nonintersecting neighbourhoods Ui ⊂ S, where i = 1, . . . , 2N , of the zeroes of PN (y),



1404 GERASIM KOKAREV

and each Ui contains at least one zero of uλ. Choosing a sufficiently small λ > 0, by Corollary 2.5 we
may assume that the zeroes of uλ correspond to the intersections of nodal edges incident to x with ∂Bλ.
Further, the intersections of the nodal edges incident to x with Bλ lie in the cones

Ci (λ)= {t · λUi : 0< t < 1}, where i = 1, . . . , 2N .

Since the cones Ci (λ) are pairwise nonintersecting and each of them contains at least one connected piece
of a nodal edge incident to x , we conclude that deg x is at least 2N .

Now we claim that each cone Ci (λ) contains an odd number of nodal edge pieces incident to x , and
hence the degree deg x is an even integer. Indeed, the solution u has different signs on the connected
components of Bλ \ ∪Ci (λ) adjacent to the same cone; they coincide with the signs of uλ and the
approximating homogeneous harmonic polynomial PN . Since u also has different signs on adjacent nodal
domains, each nodal edge piece incident to x contributes to the change of sign, and the claim follows in a
straightforward fashion. �

Properties of the vanishing order. The proof of Proposition 2.3 is based on the following improvement
of Proposition 2.2 due to [Hoffmann-Ostenhof et al. 1995], which is important for our considerations in
the sequel. Below we denote by B a coordinate chart viewed as a ball in the Euclidean plane, and by B1/2

the ball of half the radius of B.

Proposition 2.7. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u
be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0< δ < 1. Let B be
a coordinate chart in the interior of M viewed as a ball in the Euclidean plane. Then for a sufficiently
small B and any `> 1 there exists a constant C > 0 such that for any point y ∈ N`(u)∩ B1/2 there exists
a degree ` homogeneous harmonic polynomial P y

` such that

|u(x)− P y
` (x − y)|6 C

(
sup

B
|u|
)
|x − y|`+δ for any x ∈ B,

and the polynomials P y
` satisfy |P y

` (x̄)|6 C∗(supB |u|) for any |x̄ | = 1, where the constants C and C∗ do
not depend on a solution u.

Note that the harmonic polynomials P y
` above either vanish identically or coincide with approximating

harmonic polynomials at y from Proposition 2.2. The main estimate of Proposition 2.7 is stated in
[Hoffmann-Ostenhof et al. 1995, Theorem 1]. The bound for the values of the harmonic polynomials
on the unit circle follows from the proof, and is explained explicitly in [Hoffmann-Ostenhof et al. 1995,
p. 1256].

We proceed with studying the vanishing order ordx u as a function of x ∈ M . The following lemma is
a straightforward consequence of Proposition 2.7. We include a proof for completeness of exposition.

Lemma 2.8. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u be
a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0 < δ < 1. Then the
function ordx u is upper-semicontinuous in the interior of M ; that is, for any sequence xi converging to an
interior point x ∈ M , one has the inequality lim sup ordxi (u)6 ordx u.
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Proof. It is sufficient to show that if xi belong to N`(u), then so does the limit point x . Without loss of
generality, we may assume that the points xi lie in a coordinate chart B that is identified with a unit ball in
R2 centred at the origin x = 0, and xi → 0 as i→+∞. In addition, to simplify the notation, we assume
that sup|u| on B equals 1. Let P i

` be a degree ` homogeneous harmonic polynomial corresponding to xi

from Proposition 2.7. Representing u as the sum of u− P i
` and P i

` , we obtain

|u(x)|6 |u(x)− P i
` (x − xi )| + |P i

` (x − xi )|6 C |x − xi |
`+δ
+C∗|x − xi |

` for any x ∈ B,

where the second inequality for all sufficiently large i follows from Proposition 2.7. Passing to the limit
as i→+∞, we get

|u(x)|6 C ′|x |` for any x ∈ B,

and conclude that the vanishing order at the origin is at least `. �

Our last lemma says that the vanishing order ordx u is strictly upper-semicontinuous on N2(u).

Lemma 2.9. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u be
a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0< δ < 1. Then for any
sequence xi ∈ N2(u) converging to an interior point x ∈ M we have lim sup ordxi (u) < ordx u.

Proof. As in the proof of Lemma 2.8, we assume that the points xi belong to a coordinate chart B, viewed
as a unit ball in R2 centred at the origin x = 0, and xi → 0 as i→+∞. We also suppose that sup|u| on
B equals 1. First, by Lemma 2.8 we conclude that the upper limit lim sup ordxi (u) is finite; we denote it
by N . After a selection of a subsequence, we may assume that the vanishing order ordxi (u) equals N for
each xi . By Lemma 2.8 it remains to show that the vanishing order ordx u at the origin x cannot be equal
to N .

Suppose the contrary: the order of u at the origin equals N > 2. Let PN be an approximating
homogeneous harmonic polynomial for u at the origin. By Proposition 2.7, for a sufficiently large index i
we have

|PN (x)− P i
N (x − xi )|6 |u(x)− PN (x)| + |u(x)− P i

N (x − xi )|

6 C(|x |N+δ + |x − xi |
N+δ) for any x ∈ B, (2-3)

where P i
N is an approximating homogeneous harmonic polynomial at xi . Denote by λi the absolute

value |xi |, and by x̄i the point λ−1
i xi on the unit circle. Setting x = λi x̄ in inequality (2-3) and using the

homogeneity of the left-hand side, we obtain

|PN (x̄)− P i
N (x̄ − x̄i )|6 (1+ 2N+δ)Cλδi for any |x̄ | = 1. (2-4)

Without loss of generality, we may assume that the sequence x̄i converges to a point x̄0, |x̄0| = 1. Setting x̄
to be equal to x̄i in inequality (2-4) and passing to the limit as i→+∞, we see that x̄0 is a zero of PN .
Recall that the nodal set of PN consists of n straight lines passing through the origin; the vanishing
order of the origin equals N , and any other nodal point, such as x̄0, has vanishing order 1. On the other
hand, by Proposition 2.7 the polynomials P i

N are uniformly bounded on the unit circle and, since in polar
coordinates they have the form

air N cos(Nθ)+ bir N sin(Nθ),
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we conclude that, after a selection of a subsequence, they converge either to zero or to a harmonic
homogeneous polynomial P0

N of degree N . If the former case occurs, then after passing to the limit in
inequality (2-4) we see that PN (x) vanishes, and arrive at a contradiction. Now assume that the harmonic
polynomials P i

N converge to a nontrivial harmonic polynomial P0
N . Then the polynomials P i

N (x̄ − x̄i )

converge uniformly to P0
N (x̄ − x̄0) and, passing to the limit in inequality (2-4), we conclude that PN (x̄)

coincides identically with P0
N (x̄ − x̄0). Now, since N > 2, it is straightforward to arrive at a contradiction.

The polynomial PN (x̄) has precisely 2N zeroes as x̄ ranges over the unit circle, while the polynomial
P0

N (x̄ − x̄0) has at most N + 1. �

Corollary 2.10. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, and let u
be a nontrivial solution of the Schrödinger equation (2-1) with V ∈ K 2,δ(M), where 0 < δ < 1. Then
the set N2(u) is totally disconnected: every nonempty connected subset is a single point. Moreover, the
complement N(u) \N2(u) is open and dense in the nodal set.

Proof. Suppose the contrary to the first statement. Then there exists a nonempty connected subset
C ⊂ N2(u) that is not a single point. Since any point x ∈ C is the limit of a nontrivial sequence in C , by
Lemma 2.9 we conclude that C ⊂N`(u) for any `> 2. Hence, the solution u vanishes to an infinite order
at C and, by the strong unique continuation, Proposition 2.1, vanishes identically. This contradiction
demonstrates the first statement.

By Lemma 2.8 the set N2(u) is closed, and for a proof of the second statement of the corollary it
remains to show that the complement N(u) \N2(u) is dense. Suppose the contrary. Then for some point
p ∈ N(u) there exists a ball Bε(p) such that C = Bε(p)∩N(u) is contained in N2(u). By the Harnack
inequality [Aizenman and Simon 1982; Simon 1982] no point in the nodal set can be isolated, and we
conclude that any x ∈ C is the limit of a nontrivial sequence in C . Now we arrive at a contradiction in a
fashion similar to the one above. �

3. Prime ends of nodal domains

Now we study the nodal set N(u) from the point of view of the topology of nodal domains. More
precisely, we describe the structure of prime ends of nodal domains. The notion of prime end goes back
to Carathéodory [1913], who used it to describe the behaviour of conformal maps on the boundaries of
simply connected domains. Later his theory was extended to general open subsets in manifolds [Epstein
1981]. However, main applications seem to be restricted to 2-dimensional problems [Milnor 2006]. We
start by recalling the necessary definitions, following [Epstein 1981] closely.

Let �⊂ M be a connected open subset, where we view M as the interior of a compact Riemannian
surface. For a subdomain D ⊂�, we denote by ∂D the interior boundary:

∂D =�∩ D ∩ (�\D).

Definition 3.1. A chain in � is a sequence {Di }, i = 1, 2, . . . , of open connected subsets of � such that

• ∂Di is connected and nonempty for each i , and

• Di+1 ∩�⊂ Di for each i .
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Two chains {Di } and {D′i } are called equivalent if for any i there exists j > i such that D′j ⊂ Di and
D j ⊂ D′i .

Definition 3.2. A chain in � is called a topological chain if there exists a point p ∈ M such that

• the diameter of (p∪ ∂Di ) tends to zero as i→+∞, and

• dist(p, ∂Di ) > 0 for each i .

The point p above is called the principal point of {Di }. A prime point of � is the equivalence class of a
topological chain.

Clearly, for a given topological chain the principal point p ∈ � is unique. Note also that the above
definitions do not depend on a metric on M . The set of all prime points of � is denoted by �̂. It is
made into a topological space by taking the sets Û , formed by prime points represented by chains {Di }

such that each Di lies in an open subset U ⊂ �, as a topological basis. There is a natural embedding
ω :�→ �̂, defined by sending a point x ∈� to the equivalence class of a sequence of concentric balls
centred at x whose diameters tend to zero. As is shown in [Epstein 1981, Section 2], the map ω embeds �
homeomorphically onto an open subset in �̂. A prime end of � is a prime point which is not in ω(�). A
principal point of a prime end is any principal point of any representative topological chain.

Although a given topological chain has only one principal point, a prime end may have many. The
simplest example is given by considering a domain whose boundary has an oscillating behaviour similar
to the graph of sin(1/x). The collection of all principal points is a subset of the impression

⋂
Di of a

prime end. The latter does not depend on a representative topological chain, and is a compact connected
subset of the boundary ∂�. Note also that a given point x ∈ ∂� can be a principal point of many different
prime ends. We refer to [Epstein 1981; Milnor 2006] for examples and other details.

The following statement, proved in [Epstein 1981, Section 6], shows that prime ends give a useful
compactification (the so-called Carathéodory compactification) of open subdomains.

Proposition 3.1. Let (M, g) be a Riemannian surface, viewed as the interior of a compact surface, and
let �⊂ M be a connected open subset such that the first homology group H1(�,Q) is finite-dimensional.
Then there is a homeomorphism of �̂ onto a compact surface with boundary that maps the set of prime
ends onto its boundary.

We proceed with studying properties of nodal sets. The following lemma says that all prime ends
of nodal domains have the simplest possible structure: any of them has only one principal point that
coincides with its impression.

Lemma 3.2. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary. Let u be a
nontrivial solution to the Schrödinger equation (2-1) with a potential V ∈ K 2,δ(M), where 0< δ < 1, and
let � be its nodal domain. Then for any prime end [Di ] of � its impression

⋂
Di consists of a single

point. In particular, any prime end has only one principal point.

Proof. First, the statement holds for any prime end that has a principal point x in the complement
N(u)\N2(u). Indeed, then the point x belongs to a nodal edge, which is the image of a C1-smooth regular
path; see Proposition 2.3. By the implicit function theorem we can view a small nodal arc containing x as
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a line segment in R2. Then it is straightforward to see that any chain that has x as a principal point is
equivalent to a chain that consists of concentric semidisks centred at x whose diameters converge to zero.
Its impression consists of the point x only.

Now suppose that a given prime end has a principal point x ∈N2(u). Then we claim that its impression I
does not have any points in N(u) \N2(u). Suppose the contrary. Then, since the impression I of a prime
end is connected, we conclude that I contains a nontrivial arc C that belongs to some nodal edge; that
is, C is a connected subset of N(u) \N2(u) that is not a single point, and dist(x,C) > 0. Let {Di } be a
representative topological chain whose principal point is x , and let Ei be the set ∂Di \ I , where ∂Di is
the boundary of Di viewed as a subset of M . First, it is straightforward to see that for any y ∈ C ⊂ I
the distance dist(y, Ei ) converges to zero as i→+∞. For otherwise there is a neighbourhood U of y
in Di such that U ⊂ Di for any i . More precisely, viewing C around y as a straight segment in R2, we
may choose U to be diffeomorphic to a semidisk B+ε (y), assuming that dist(y, Ei )> 2ε. Then we obtain
the inclusions U ⊂ I ⊂ ∂�, which are impossible. Thus, we see that any point y ∈ C is the limit of a
sequence yi ∈ E i . Indeed, one can take as yi a point at which the distance dist(y, Ei ) is attained. This
implies that there is a sequence Ci ⊂ E i of subsets that converges to a nodal arc C in the Hausdorff
distance. Clearly, the sets Ei \ (∂Di ∩�) lie in the nodal set N(u), and since the interior boundaries
∂Di ∩� converge to the point x , we conclude that for a sufficiently large i the subset Ci lies in the nodal
set. Further, since the set N(u) \N2(u) is open in the nodal set (see Lemma 2.8), we see that each Ci lies
in N(u) \N2(u). Thus, without loss of generality, we may assume that the Ci are arcs of nodal edges.
Combining the latter with Proposition 2.3, or following the argument in the proof of Corollary 2.4, we
arrive at a contradiction.

Thus, the impression I does not have points in the complement N(u) \N2(u), and is contained in
N2(u). By Corollary 2.10 the set N2(u) is totally disconnected, and since the impression I is connected,
it has to coincide with the point x . �

Corollary 3.3. Under the hypotheses of Lemma 3.2, the following statements hold:

(i) Any point x ∈ ∂� is accessible; that is, it can be joined with any interior point in � by a continuous
path γ : [0, 1] → M such that γ (0)= x and the image γ (0, 1] lies in �.

(ii) For any point x ∈ ∂� and any sufficiently small neighbourhood U of x there are only finitely many
connected components U1, . . . ,Uk of�∩U such that x ∈U i , and the union

⋃
U i is a neighbourhood

of x in �.

(iii) The boundary ∂� is locally connected.

Proof. We derive the statements using the results in [Epstein 1981], which apply to open domains �⊂ M
whose first homology group H1(�,Q) is finite-dimensional. Note that all statements are local, and
hold trivially for the boundary points x ∈ N(u) \N2(u). To prove the corollary for the boundary points
x ∈ N2(u) we may assume, after cutting � along smooth simple closed paths, that � has zero genus.
Moreover, after cutting along paths joining points from N(u) \N2(u) on different boundary components
of �, we may assume that � is simply connected, and the results in [Epstein 1981] apply. Specifically, the
first statement is a consequence of our Lemma 3.2 and Theorems 7.4 and 8.2 in that reference. The second
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statement follows from Lemma 3.2 and [Epstein 1981, Theorem 8.2], and the third from Lemma 3.2 and
[Epstein 1981, Theorem 8.3]. �

4. The proofs

Proof of Theorem 1.3. Let (M, g) be a compact Riemannian surface, and u be a solution to the
Schrödinger equation (2-1) with a potential V ∈ K 2,δ(M), where 0 < δ < 1. First, we intend to
generalise Theorem 1.3 to certain subdomains �⊂ M .

Definition 4.1. A connected open subset �⊂M is called a proper subdomain with respect to a solution u
if its boundary consists of finitely many connected components and the solution u has finitely many nodal
domains in �; that is, the number of connected components of � \N(u) is finite.

If u is an eigenfunction, then by Courant’s nodal domain theorem the surface M itself is a proper
subdomain with respect to u. However, for our method it is also important to consider proper subdomains
whose closures are contained in the interior of M . The hypothesis on the finite number of boundary
components guarantees that such a domain� has finite topology and, by Proposition 3.1, is homeomorphic
to the interior of a compact surface with boundary. The second hypothesis in Definition 4.1 mimics an
important property of eigenfunctions, and is essential for our arguments in the sequel. Below we denote
by N�(u) and N`

�(u) the sets N(u)∩� and N`(u)∩� respectively.
Theorem 1.3 is a consequence of the following more general result.

Theorem 4.1. Let (M, g) be a compact Riemannian surface, possibly with boundary, and let u be a
nontrivial solution to the Schrödinger equation (2-1) with a potential V ∈ K 2,δ(M), where 0 < δ < 1.
Then for any proper subdomain � ⊂ M with respect to u the set N2

�(u) is finite, and the complement
N�(u) \N2(u) has finitely many connected components. Moreover, for any x ∈ N2

�(u) the number of
connected components of N�(u) \N2(u) incident to x (if one connected component starts and ends at x ,
then it counts twice) is an even integer that is at least 2 ordx u.

The proof of Theorem 4.1 is based on the two lemmas below. The first lemma shows that proper
neighbourhoods form a topological basis at any point x ∈�. Its proof relies on the topological consequences
of our study of prime ends in Section 3.

Lemma 4.1. Under the hypotheses of Theorem 4.1, for any point x ∈N�(x) and any sufficiently small ball
Bε(x) centred at x there exists a proper subdomain Uε(x) with respect to u such that x ∈Uε(x)⊂ Bε(x).

Proof. Let x ∈N(u) be an interior nodal point in �, and �1, . . . , �m be a collection of all nodal domains
whose closure contains x . By Corollary 3.3 for any sufficiently small open ball Bε(x)⊂� there are only
finitely many connected components � j

i , j = 1, . . . , ri , of the intersection Bε(x)∩�i whose closure
contains x . Moreover, the union Fi =

⋃
j �

j
i is a neighbourhood of x in �i . Thus, we conclude that the

set Uε(x)= Int
(⋃

Fi
)

contains x . Clearly, the connected components of the complement Uε(x) \N(u)
are precisely the domains � j

i , and it remains to show that Uε(x) has finitely many boundary components.
Choosing ε > 0 such that the metric ball Bε(x) is homeomorphic to a ball in R2, it is straightforward to
see that any boundary component of Uε(x) that lies in Bε(x) bounds a union of nodal domains. Since the
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number of nodal domains is finite, then choosing ε > 0 even smaller we conclude that Uε(x) is simply
connected, and hence its boundary is connected. Thus, the neighbourhood Uε(x) is indeed a proper
subdomain with respect to a solution u. �

The second lemma says that if the set N2
�(u) consists of isolated points, then it is necessarily finite,

and the nodal set has the structure of a finite graph with the vertex set N2
�(u).

Lemma 4.2. Under the hypotheses of Theorem 4.1, suppose that the set N2
�(u) consists of isolated points.

Then the set N2
�(u) is finite, and the complement N�(u) \N2(u) has finitely many connected components.

The proof of the last lemma appears at the end of the section. Now we proceed with the proof of
Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.2 for a proof of the theorem it is sufficient to show that the set
N2
�(u) consists of isolated points in �. The second statement of the theorem is a direct consequence

of Lemma 2.6. First, we consider the case of proper subdomains �⊂ M whose closures are contained
in the interior of M , �⊂ M . Given such a subdomain �, it is straightforward to see that the maximal
vanishing order `=max{ordx u}, where x ∈�, is finite. Indeed, otherwise there exists a point p ∈� that
is the limit of points xi ∈� such that ordxi (u)→+∞ as i→+∞. Then, by Lemma 2.8, the solution u
vanishes to an infinite order at p, and the strong unique continuation, Proposition 2.1, implies that u
vanishes identically.

Let �⊂ M be a proper subdomain whose closure is contained in the interior of M . We prove that the
set N2

�(u) is finite by induction on the maximal vanishing order `. Clearly, the statement holds for all
solutions u and proper subdomains � such that the maximal vanishing order equals 2. Indeed, in this case
by Lemma 2.9 the set N2

�(u) consists of isolated points and, by Lemma 4.2, is finite. Now we perform an
induction step. Suppose that the set N2

�(u) is finite for all solutions u to the Schrödinger equation (2-1)
on M and all proper subdomains � whose closure is contained in the interior of M that satisfy

max{ordx u : x ∈�}6 `− 1.

Now let u be a solution on M and � a proper subdomain such that the maximal vanishing order equals `,

max{ordx u : x ∈�} = `.

By Lemma 2.9 the set N`
�(u) consists of isolated points in �. Pick a point p ∈N2

�(u). By Lemma 4.1, it
has a neighbourhood U that is a proper subdomain such that U ⊂�. Then the neighbourhood U may
contain only finitely many points p1, p2, . . . , pm whose vanishing order equals `. Since the domain
U0=U \{p1, . . . , pm} is proper with respect to u, the induction hypothesis implies that the set N2(u)∩U0

is finite. Hence, so is the set N2(u)∩U . Thus, we conclude that N2
�(u) consists of isolated points in �

and, by Lemma 4.2, is finite.
The statement that the set N2

�(u) consists of isolated points in � for an arbitrary proper subdomain
�⊂ M follows directly from the case considered above together with Lemma 4.1. �
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Proof of Theorem 1.2. Now we show how Theorem 1.3 implies the multiplicity bounds. We give an
argument following the strategy described in [Karpukhin et al. 2013, Section 6]. It relies on two lemmas
that appear below. The first lemma gives a lower bound for the number of nodal domains via the vanishing
order of points x ∈ N2(u).

Lemma 4.3. Under the hypotheses of Theorem 1.2, for any nontrivial eigenfunction u of an eigenvalue
λk(g, ν) the number of its nodal domains is at least

∑
(ordx u − 1)+ χ + l, where the sum is taken

over all points in N2(u) and χ and l stand for the Euler–Poincaré number and the number of boundary
components of M respectively.

Before giving a proof we introduce some notation that is useful in the sequel. First, by Theorem 4.1,
the nodal set N(u) of any eigenfunction u on M can be viewed as a finite graph, called a nodal graph. Its
vertices are points in N2(u) and the edges are connected components of N(u) \N2(u). Below we denote
by M a closed surface, viewed as the image of M under collapsing its boundary components to points,
and by χ̄ its Euler–Poincaré number. Let N(u) be the corresponding image of a nodal graph N(u), called
the reduced nodal graph. Its edges are the same nodal arcs, and there are two types of vertices: vertices
that correspond to the boundary components that contain limit points of nodal lines, called boundary
component vertices, and genuine vertices that correspond to the points in N2(u), called interior vertices.
By faces of the graph N(u) we mean the connected components of the complement M \N(u). Clearly,
they can be identified with the nodal domains of an eigenfunction u.

Proof of Lemma 4.3. Let N(u) be a reduced nodal graph in M . By Theorem 4.1 it is a finite graph, and let
v, e and f be the number of its vertices, edges and faces respectively. We also denote by r the number of
boundary component vertices in N(u). Recall that the number of edges satisfies the relation 2e=

∑
deg x ,

where the sum is taken over all vertices. Since an eigenfunction u has different signs on adjacent nodal
domains, the degree of each boundary component vertex is at least two, and we obtain

e > r + 1
2

∑
deg x > r +

∑
ordx u,

where the sum is taken over all interior vertices x ∈N2(u). The second inequality above follows from the
relation deg x > 2 ordx u; see Theorem 4.1. Viewing the number of vertices v as the sum r +

∑
1, where

the sum is again taken over x ∈ N2(u), by the Euler inequality [Giblin 2010, p. 207] we have

f > e− v+ χ̄ >
∑

(ordx u− 1)+ χ̄ ,

where χ̄ = χ + l is the Euler–Poincaré number of M . Since f is precisely the number of nodal domains,
we are done. �

We proceed with the second lemma. In the case when the potential of a Schrödinger equation is
smooth it is due to [Nadirashvili 1987]; see also [Karpukhin et al. 2013]. The proof relies essentially on
Proposition 2.2.

Lemma 4.4. Let (M, g) be a compact Riemannian surface, possibly with boundary, and let u1, . . . , u2n

be a collection of nontrivial linearly independent solutions to the Schrödinger equation (2-1) with a
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potential V ∈ K 2,δ(M), where 0< δ < 1. Then for a given interior point x ∈ M there exists a nontrivial
linear combination u =

∑
αi ui whose vanishing order ordx u at the point x is at least n.

Proof. Let V be a linear space spanned by the functions u1, . . . , u2n , and Vi its subspace formed by
solutions u ∈ V whose vanishing order at x is at least i , ordx u > i . Clearly, the subspaces Vi form a
nested sequence, Vi+1 ⊂ Vi . The lemma claims that Vn is nontrivial. Suppose the contrary, that the
subspace Vn is trivial. Then, it is straightforward to see that the dimension of V satisfies the inequality

dim V 6 1+
n−1∑
i=1

dim(Vi/Vi+1);

the equality occurs if the space V does not coincide with V1. By Proposition 2.2, the factor space Vi/Vi+1

can be identified with a subspace of homogeneous harmonic polynomials on R2 of degree i . When the
degree i is at least 1, the space of such polynomials has dimension two, and we obtain

dim V 6 1+ 2(n− 1)= 2n− 1.

Thus, we arrive at a contradiction with the hypotheses of the lemma. �

Now we finish the proof of Theorem 1.2. Suppose the contrary to its statement. Then there exist at
least 2(2−χ − l)+ 2k+ 2 linearly independent eigenfunctions corresponding to the eigenvalue λk(µ, g).
Pick an interior point x ∈ M . By Lemma 4.4 there exists a new eigenfunction u whose vanishing order at
the point x is at least 2−χ − l + k+ 1. Now Lemma 4.3 implies that the number of the nodal domains
of u is at least k+ 2. Thus, we arrive at a contradiction with Courant’s nodal domains theorem. �

Proof of Lemma 4.2. Since the set N2
�(u) consists of isolated points, we can view the nodal set N�(u)

as a graph: the vertices are points in N2
�(u), and the edges are connected components of N�(u) \N2

�(u).
Recall that the degree deg x of a vertex x ∈N2

�(u) is defined as the number of edges incident to x ; if one
edge starts and ends at x , then it counts twice. The following lemma says that the degree of each vertex
has to be finite.

Lemma 4.5. Under the hypotheses of Theorem 4.1, suppose that the set N2
�(u) consists of isolated points.

Then the degree deg x of any point x ∈ N2
�(u) is finite.

Proof. By Corollary 2.4 it is sufficient to show that the number of nodal loops that start and end at a given
point x ∈ N2

�(u) is finite. Suppose the contrary, that the number of such nodal loops is infinite. Let � be
a compactification of �, obtained by adding one point for each boundary component. By Proposition 3.1
it is homeomorphic to a closed surface, and we denote by χ̄ its Euler–Poincaré number. Let 0 be a
subgraph in the nodal graph formed by one vertex x and m+ 2− χ̄ nodal loops that start and end at x ,
where m is the number of nodal domains of u in �. Denote by v = 1, e = m+ 2− χ̄ and f the number
of vertices, edges and faces of 0 respectively. Here by the faces of 0 we mean the connected components
of �\0. Clearly, they are unions of nodal domains, and f 6m. On the other hand, viewing 0 as a graph
in �, by Euler’s inequality [Giblin 2010, p. 207], we obtain

f > e− v+ χ̄ = m+ 1.
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This contradiction demonstrates the lemma. �

Now we prove the statement of Lemma 4.2: the set N2
�(u) is finite, and the complement N�(u)\N2(u)

has finitely many connected components. The argument below is based on the results in Section 2, and is
close in the spirit to the one in [Karpukhin et al. 2013, Section 3].

Let � be a closed surface obtained by collapsing boundary components of � to points. By N� we
denote the reduced nodal graph in �, defined in the proof of Theorem 1.2. Recall that its edges are the
same nodal edges, and there are two types of vertices: vertices that correspond to the boundary components
of � that contain limit points of nodal lines, called boundary component vertices, and genuine vertices
that correspond to the points in N2

�(u), called interior vertices. For a proof of the lemma it is sufficient to
show that N�(u) is a finite graph. Our strategy is to show that

(i) each boundary component vertex has a finite degree, and

(ii) the number of interior vertices is finite in �.

We are going to construct new graphs in � by resolving interior vertices in the following fashion. Let
x ∈ N2

�(u) be an interior vertex. By Lemma 4.5 its degree is finite, and by Lemma 2.6 it is an even
integer 2n. Let B be a small disk centred at x that does not contain other vertices. By Corollary 2.5
we may assume that nodal edges nonincident to x lie in the complement � \ B. Moreover, since the
degree is finite, we may also assume that each nodal loop incident to x intersects ∂B in at least two points.
Consider the intersections of nodal edges with B, and let 0i , where i = 0, . . . , 2n− 1, be their connected
components incident to x . Pick points yi ∈ 0i ∩ ∂B, one for each i = 0, . . . , 2n− 1. By the resolution of
a vertex x we mean a new graph obtained by removing sub-arcs between x and yi in each nodal edge
incident to x and rounding them off by nonintersecting arcs in B joining the points y2 j and y2 j+1. If there
was an edge that starts and ends at x , then such a procedure may make it into a loop. We remove all such
loops, if they occur. A new graph, obtained by the resolution of one vertex, has one vertex less and at
most as many faces as the original graph.

Proof of (i). Suppose the contrary. Let us resolve all interior vertices in N�(u) in the way described
above. The result is a graph 0 whose only vertices are boundary component vertices in N�(u); let v
be their number. Moreover, it has at most as many faces as N�(u)— that is, no more than the number
of nodal domains. Since there is a boundary component vertex in N�(u) whose degree is infinite, the
same vertex has an infinite degree in 0. Let us remove all edges in 0 except for at least v+m+ 1− χ̄ of
them, where m is the number of nodal domains and χ̄ is the Euler–Poincaré number of �. The result is
a finite graph; it has precisely v vertices, and we denote by e and f the number of its edges and faces
respectively. By Euler’s inequality, we obtain

f > e− v+ χ̄ = m+ 1.

On the other hand, since removing an edge does not increase the number of faces, we have f 6 m. Thus,
we arrive at a contradiction.

Proof of (ii). Suppose the contrary, and let v be the number of boundary component vertices in N�(u).
Let us resolve all interior vertices except for v +m + 1− χ̄ of them. The result is a finite graph; we
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denote by v′, e′ and f ′ the number of its vertices, edges and faces respectively. Clearly, we have

v′ 6 2v+m+ 1− χ̄ and e′ > 2(v+m+ 1− χ̄),

where in the second inequality we used Lemma 2.6, saying that the degree of each vertex x ∈N2
�(u) is at

least 4. Combining these inequalities with the Euler inequality, we obtain

f ′ > e′− v′+ χ̄ > m+ 1.

On the other hand, we have f ′ 6 m. Thus, we arrive at a contradiction. �

5. Eigenvalue problems on singular Riemannian surfaces

Eigenvalue problems on surfaces with measures. The purpose of this section is to discuss multiplicity
bounds on singular Riemannian surfaces. We start with recalling a useful general setting of eigenvalue
problems on surfaces with measures, following [Kokarev 2014].

Let (M, g) be a compact Riemannian surface, possibly with boundary, and let µ be a finite absolutely
continuous (with respect to d Volg) Radon measure on M that satisfies the decay condition

µ(B(x, r))6 Cr δ, for any r > 0 and x ∈ M, (5-1)

and some constants C and δ > 0. Denote by L1
2(M,Volg) the space formed by distributions whose

derivatives are in L2(M,Volg). Then by the results of Maz’ja [1985] (see also [Kokarev 2014]) the
embedding

L2(M, µ)∩ L1
2(M,Volg)⊂ L2(M, µ)

is compact, the Dirichlet form
∫
|∇u|2 d Volg is closable in L2(M, µ), and its spectrum is discrete. We

denote by
λ0(g, µ) < λ1(g, µ)6 · · ·6 λk(g, µ)6 · · ·

the corresponding eigenvalues, and by mk(g, µ) their multiplicities. As above, we always suppose that
the Dirichlet boundary hypothesis is imposed if the boundary of M is nonempty. The eigenfunctions
corresponding to an eigenvalue λk(g, µ) are distributional solutions to the Schrödinger equation

−1gu = λk(g, µ)µu on M. (5-2)

The latter fact ensures that the analysis in Sections 2–4 carries over to yield the following result.

Theorem 5.1. Let (M, g) be a smooth compact Riemannian surface, possibly with boundary, endowed
with a finite absolutely continuous Radon measure µ that satisfies hypothesis (5-1). Then the multiplicity
mk(g, µ) of a Laplace eigenvalue λk(g, µ) satisfies the inequality

mk(g, µ)6 2(2−χ − l)+ 2k+ 1 for any k = 1, 2, . . . ,

where χ stands for the Euler–Poincaré number of M and l is the number of boundary components.
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Proof. First, we claim that the decay hypothesis (5-1) on the measure µ implies that its density belongs to
the space K 2,δ′(M) for some 0< δ′ < δ. Indeed, by Fubini’s theorem and the change of variable formula,
we obtain ∫

B(x,r)
|x − y|−δ

′

dµ=
∫
+∞

r−δ′
µ{y : |x − y|−δ

′

> t} dt =
∫
+∞

r−δ′
µ(B(x, t−1/δ′)) dt

= δ′
∫ r

0
s−δ

′
−1µ(B(x, s)) ds 6 Cδ′

∫ r

0
sδ−δ

′
−1 ds.

Second, using a variational characterisation of eigenvalues λk(g, µ), it is also straightforward to check
that the standard proof of Courant’s nodal domains theorem carries over for eigenfunctions u which
satisfy (5-2). Hence, Theorem 4.1 applies, and then the argument in the proof of Theorem 1.2 carries
over directly to yield the multiplicity bounds. �

Note that, since the Dirichlet energy is conformally invariant, if the measure µ is the volume measure
of a metric h conformal to g then the quantities λk(g, µ) are precisely the Laplace eigenvalues of a
metric h. More generally, the eigenvalue problems on surfaces with singular metrics can be also often
viewed as particular instances of the setting of eigenvalues on measures. Below we discuss this point of
view in more detail.

Let (M, g) be a Riemannian surface and h be a Riemannian metric of finite volume defined on the
set M \ S, where S is a closed nowhere dense subset of zero measure. Here the set S plays the role of a
singular set of h on M . Denote by µ the volume measure of the metric h. In the literature, e.g., [Cheeger
1983], the Dirichlet spectrum of a singular metric h is normally defined as the spectrum of the Dirichlet
form

u 7→
∫

M\S
|∇u|2 d Volh (5-3)

defined on the space C ⊂ L2(M, µ) of smooth compactly supported functions in M \ S. Suppose that
the set S has zero Dirichlet capacity, the metric h is conformal on M \ S to the metric g, and its volume
measure µ satisfies the decay hypothesis (5-1). Then, it is straightforward to see that the spectrum of h is
discrete and coincides with the set of eigenvalues λk(g, µ) defined above. Moreover, the construction
makes sense even if a metric h is not smooth on M \ S as long as the Dirichlet form (5-3) is well-defined.
Theorem 5.1 gives multiplicity bounds for such eigenvalue problems. We end by discussing two examples:
metrics with conical singularities and, more generally, Alexandrov surfaces of bounded integral curvature.

Example I: metrics with conical singularities. Let M be a closed smooth surface and h be a metric on
M with a number of conical singularities. Recall that a point p ∈ M is called a conical singularity of
order α >−1 (or angle 2π(α+1)) if in an appropriate local complex coordinate the metric h has the form
|z|2αρ(z)|dz|2, where ρ(z) > 0. In other words, near p the metric is conformal to the Euclidean cone
of total angle 2π(α+ 1). As is known, such a metric h is conformal to a genuine Riemannian metric g
on M away from the singularities. If a surface M has a nonempty boundary, we do not exclude an infinite
number of conical singularities accumulating to the boundary, and suppose that the volume measure
Volh satisfies the decay hypothesis (5-1). For a surface with a finite number of conical singularities the
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hypothesis on the volume measure is always satisfied. The Dirichlet integral with respect to the metric h
is defined as an improper integral; by the conformal invariance, it satisfies the relation∫

M
|∇u|2h d Volh =

∫
M
|∇u|2g d Volg

for any smooth function u. Thus, we conclude that the Laplace eigenvalues and their multiplicities of a
metric h coincide with the quantities λk(g,Volh) and mk(g,Volh), defined above, and Theorem 5.1 yields
the multiplicity bounds. Note that if a metric h has only a finite number of conical singularities, then the
multiplicity bounds can also be obtained from arguments in [Karpukhin et al. 2013].

Example II: Alexandrov surfaces of bounded integral curvature. The most significant class of surfaces,
illustrating our approach, is formed by the so-called Alexandrov surfaces of bounded integral curvature.
Below we recall this notion and give a brief outline of its relevance to our setting; more details and
references on the subject can be found in the surveys [Reshetnyak 1993; Troyanov 2009]. Eigenvalue
problems on Alexandrov surfaces of bounded integral curvature are treated in detail in [Kokarev ≥ 2014].

Definition. A metric space (M, d), where M is a compact smooth surface, is called an Alexandrov surface
of bounded integral curvature if:

(i) the topology induced by d coincides with the original surface topology on M ;

(ii) the metric space (M, d) is a geodesic length space; that is, any two points x and y ∈ M can be joined
by a path whose length is d(x, y);

(iii) the metric d is a C0-limit of distances of smooth Riemannian metrics gn on M whose integral
curvatures are bounded; that is,

sup
n

∫
M
|Kgn | d Volgn <+∞,

where Kgn stands for the Gauss curvature of a metric gn .

This is a large class of singular surfaces that contains, for example, all polyhedral surfaces as well as
surfaces with conical singularities and their limits under the integral curvature bound. The hypothesis (iii)
implies that after a selection of a subsequence the signed measures Kgn dVolgn converge weakly to a
measure ω on M . By the result of Alexandrov [Alexandrov and Zalgaller 1967], the measure ω is
an intrinsic characteristic of (M, g); it does not depend on an approximating sequence of Riemannian
metrics gn , and is called the curvature measure of an Alexandrov surface. As an example, consider the
surface of a unit cube in R3. The metric on it is defined as the infimum of Euclidean lengths of all paths
that lie on the surface of the cube and join two given points. As is known [Reshetnyak 1993; Troyanov
2009], its curvature measure is

∑
(π/2)δp, where δp is the Dirac mass and the sum runs over all vertices p

of the cube.
Recall that a point x ∈ M is called a cusp if ω(x)= 2π . By the results of [Reshetnyak 1960; Huber

1960], any Alexandrov surface of bounded integral curvature and without cusps can be regarded as being
“conformally equivalent” to a smooth Riemannian metric on a background compact surface. This means
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that the distance function on such a surface has the form

d(x, y)= inf
γ

{∫ 1

0
eu(γ (t))

|γ̇ (t)|g dt
}

for some function u and a smooth background Riemannian metric g; the infimum above is taken over
smooth paths γ joining x and y. The conformal factor eu here can be very singular, and is an L2p-
function, where p > 1. More precisely, the function u is the difference of weakly subharmonic functions
[Reshetnyak 1960; 1993], and the set

S = {x ∈ M : eu(x)= 0}

has zero capacity in M [Hayman and Kennedy 1976, Theorem 5.9].
Thus, an Alexandrov surface without cusps can be viewed as a surface with a “Riemannian metric”

h = eug on M \ S, whose distance function is precisely the original metric d . This “Riemannian metric”
yields the Alexandrov volume measure dµh = e2udVolg, which is another intrinsic characteristic of
(M, d); it can be also defined via approximations by Riemannian metrics. More precisely, Alexandrov
and Zalgaller [1967] show that if gn is a sequence of Riemannian metrics that satisfy the hypothesis (iii)
in the definition of an Alexandrov surface, then its volume measures Volgn converge weakly to µh .

Since the set S has zero capacity, by conformal invariance it is straightforward to conclude that the
relation ∫

M\S
|∇u|2h dµh =

∫
M
|∇u|2g d Volg

holds for any smooth function u. Thus, the eigenvalues λk(g, µh) of the Dirichlet form
∫
|∇u|2 d Volg in

L2(M, µh) are indeed natural versions of Laplace eigenvalues on an Alexandrov surface without cusps.
Since e2u is an L p-function, where p > 1, we conclude that the Alexandrov volume measure µh satisfies
the decay hypothesis (5-1). In particular, the multiplicities mk(g, µh) are finite and satisfy the inequalities
in Theorem 5.1.

Appendix: Cheng’s structure theorem

The purpose of this section is to give details on Cheng’s structure theorem, discussed in Section 1. It is
based on the following lemma.

Lemma A.1. Let u be a C1,1-smooth function defined in a neighbourhood of the origin in Rn that satisfies
the relation

u(x)= PN (x)+ O(|x |N+δ) as x→ 0, (A-1)

where PN is a homogeneous polynomial of order N such that |∇PN (x)|> C |x |N−1. Then there exists a
neighbourhood U of the origin and a Lipschitz homeomorphism 8 of it that preserves the origin and such
that u(x)= PN (8(x)) for any x ∈U. Moreover, if u is C2-smooth, then 8 is a C1-diffeomorphism.

Proof outline. The second term on the right-hand side can be viewed as the product α(x)|x |N+δ
′
−1, where

0< δ′< δ and α(x) is a function that is C1-smooth away from the origin and behaves like O(|x |1+δ−δ
′

)
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as x → 0. It is then straightforward to see that α is C1-smooth in a neighbourhood of the origin and,
differentiating relation (A-1), we obtain

∇u(x)=∇PN (x)+ O(|x |N+δ
′
−1) as x→ 0.

Given the last relation, if u is C2-smooth, the existence of the C1-diffeomorphism 8 follows from the
argument in the proof of [Cheng 1976, Lemma 2.4]. This argument also works when u is C1,1-smooth,
and in this case it yields a local Lipschitz homeomorphism 8 such that u(x)= PN (8(x)). �

In dimension two any homogeneous harmonic polynomial of degree N > 1 satisfies the hypothesis
|∇PN (x)| > C |x |N−1 and, combining the lemma above with Proposition 2.2, we obtain the following
improved version of Cheng’s result.

Cheng’s structure theorem. Let u be a C1,1-smooth solution of the Schrödinger equation

(−1+ V )u = 0 on �⊂ R2, (A-2)

where V ∈ K 2,δ(�). Then for any nodal point p ∈ N(u) there is a neighbourhood U and a Lipschitz
homeomorphism 8 of U onto a neighbourhood of the origin such that u(x)= PN (8(x)) for any x ∈U ,
where PN is an approximating homogeneous harmonic polynomial at p. Moreover, if u is C2-smooth,
then 8 is a C1-diffeomorphism.

Cheng [1976] also states similar results in arbitrary dimension. However, in dimension n > 2 there
are homogeneous harmonic polynomials for which the hypothesis |∇PN (x)|> C |x |N−1 fails, and thus
Lemma A.1 cannot be used. As is shown in [Bérard and Meyer 1982, Appendix E], the latter hypothesis
is necessary for the conclusion of Lemma A.1 to hold.
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