ANALYSIS & PDEVolume 7No. 72014

YOHANN LE FLOCH

SINGULAR BOHR-SOMMERFELD CONDITIONS FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE

SINGULAR BOHR–SOMMERFELD CONDITIONS FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE

YOHANN LE FLOCH

We state the Bohr–Sommerfeld conditions around a singular value of hyperbolic type of the principal symbol of a selfadjoint semiclassical Toeplitz operator on a compact connected Riemann surface. These conditions allow the description of the spectrum of the operator in a fixed-size neighborhood of the singularity. We provide numerical computations for three examples, each associated with a different topology.

1. Introduction

Let *M* be a compact, connected Riemann surface with area form ω . Assume that *M* is endowed with a prequantum bundle *L*, that is, a Hermitian, holomorphic line bundle whose Chern connection has curvature $-i\omega$. Let *K* be another Hermitian holomorphic line bundle,¹ and define the quantum Hilbert space \mathcal{H}_k as the space of holomorphic sections of $L^{\otimes k} \otimes K$, for every positive integer *k*. We consider (Berezin–)Toeplitz operators (see for instance [Boutet de Monvel and Guillemin 1981; Borthwick et al. 1998; Charles 2003a; Ma and Marinescu 2008] or the expository works [Ma 2010; Schlichenmaier 2010; Zelditch 2014]) acting on \mathcal{H}_k . The semiclassical limit corresponds to $k \to +\infty$.

The usual Bohr–Sommerfeld conditions, derived in [Charles 2006], describe the intersection of the spectrum of a selfadjoint Toeplitz operator and a neighborhood of any regular value of its principal symbol a_0 in terms of geometric quantities. More precisely, this intersection is the union of a finite number of families whose elements are, up to an error $O(k^{-2})$, the solutions of an equation of the form

$$c_0(\lambda) + k^{-1}(c_1(\lambda) + \epsilon \pi) \in 2\pi k^{-1}\mathbb{Z},$$

where

- $c_0(\lambda)$ is the holonomy associated with the parallel transport in L along a connected component of the level set $a_0^{-1}(\lambda)$,
- $c_1(\lambda)$ contains the integral of a differential form involving the subprincipal symbol of the operator,
- $\epsilon \in \{0, 1\}$ is an index associated with a half-forms structure.

MSC2010: primary 58J50; secondary 53D50, 81S10, 35P20.

Keywords: semiclassical analysis, spectral theory, Toeplitz operators.

¹The reader must be warned that, in this work, the letter K does not refer to the canonical bundle unless explicitly stated otherwise.

Precise definitions of these quantities and a more explicit formulation of the Bohr–Sommerfeld rules can be found in Section 4F.

A natural question is whether one can write Bohr–Sommerfeld conditions near a singular value of the principal symbol. In the case of a nondegenerate singularity of elliptic type (a local extremum), it was answered positively in [Le Floch 2014], and the result is quite simple: roughly speaking, the singular Bohr–Sommerfeld conditions are nothing but the limit of the regular Bohr–Sommerfeld conditions when the energy tends to the singular value. The hyperbolic case (presence of saddle points) is much more difficult, because of the complicated topology of a neighborhood of the singular level. For instance, in the case of one hyperbolic point, the critical level looks like a figure eight, and crossing it has the effect of adding (or removing) one connected component from the regular level.

Let us mention that the case of Toeplitz operators is very close to the case of pseudodifferential operators. In this setting, the problem of describing the spectrum of a selfadjoint operator near a singular level of hyperbolic type was handled by Colin de Verdière and Parisse [1994a; 1994b; 1999]. In this article, we use analogous techniques to write hyperbolic Bohr–Sommerfeld conditions in the context of Toeplitz operators. The novelty is that they can be applied in this context.

1A. *Main result.* Let A_k be a selfadjoint Toeplitz operator on M; its normalized symbol $a_0 + \hbar a_1 + \cdots$ is real-valued. Assume that 0 is a critical value of the principal symbol a_0 , that the level set $\Gamma_0 = a_0^{-1}(0)$ is connected and that every critical point contained in Γ_0 is nondegenerate and of hyperbolic type. Let $S = \{s_j\}_{1 \le j \le n}$ be the set of these critical points. Γ_0 is a compact graph embedded in M, and each of its vertices has degree 4 (this is a consequence of the usual Morse lemma, for instance). At each vertex s_j , we denote by e_m , m = 1, 2, 3, 4, the local edges, labeled with cyclic order (1, 3, 2, 4) (with respect to the orientation of M near s_j) and such that e_1, e_2 (resp. e_3, e_4) correspond to the local unstable (resp. stable) manifolds. Cut n + 1 edges of Γ_0 , each one corresponding to a cycle γ_i in a basis $(\gamma_1, \ldots, \gamma_{n+1})$ of $H_1(\Gamma_0, \mathbb{Z})$, in such a way that the remaining graph is a tree \mathcal{T} ; usually \mathcal{T} is called a spanning tree and the basis $(\gamma_1, \ldots, \gamma_{n+1})$ is called a fundamental cycle basis (see for instance [Berge 1973, pp. 25–26]). Our main result is the following:

Theorem (Theorem 6.1, Theorem 6.4). Zero is an eigenvalue of A_k up to $O(k^{-\infty})$ if and only if the following system of 3n + 1 linear equations with unknowns $(x_e \in \mathbb{C}_k)_{e \in \{\text{edges of } \mathcal{T}\}}$ (here \mathbb{C}_k is the set of constant symbols; see Section 2A) has a nontrivial solution:

(1) If the edges (e_1, e_2, e_3, e_4) connect at s_i (with the same convention as before for their labeling), then

$$\binom{x_{e_3}}{x_{e_4}} = T_j \binom{x_{e_1}}{x_{e_2}}.$$

(2) If the edges α and β are the extremities of a cut cycle γ_i , then

$$x_{\alpha} = \exp(ik\theta(\gamma_i, k))x_{\beta},$$

where the following orientation is assumed: γ_i can be represented as a closed path starting on the edge α and ending on the edge β .

Moreover, T_j is a matrix depending only on a semiclassical invariant $\varepsilon_j(k)$ of the system at the singular point s_j (see (8)), and $\theta(\gamma, k)$ admits an asymptotic expansion in nonpositive powers of k. The first two terms of this expansion involve regularizations of the geometric invariants (actions and index) appearing in the usual Bohr–Sommerfeld conditions.

For spectral purposes, we use this theorem by replacing A_k by $A_k - E$ for E varying in a fixed-size neighborhood of the singular level. Away from the critical energy, we recover the regular Bohr–Sommerfeld conditions (see Section 6D).

This is very similar to the results of [Colin de Verdière and Parisse 1999], but the novelty lies in the framework that had to be set in order to extend their techniques to the Toeplitz setting (especially the sheaf-theoretic approach to the spectral theory of Toeplitz operators), and also in the geometric invariants that are specific to this context.

1B. *Structure of the article.* As said earlier, the case of Toeplitz operators is very close to the case of pseudodifferential operators; in mathematical terms, there is a microlocal equivalence between Toeplitz operators and pseudodifferential operators. When the phase space is the whole complex plane, this equivalence is realized by the Bargmann transform, and allows one to use some of the results obtained in the pseudodifferential setting. This is why the article is organized as follows: first, we discuss microlocal properties of the Bargmann transform. Then we introduce the sheaf of microlocal solutions of the equation $(A_k - E)u_k = 0$, explain its structure and recall the usual Bohr–Sommerfeld conditions. In Section 5, we construct a microlocal normal form for A_k near each critical point s_j , $1 \le j \le n$, on Bargmann spaces, and we use the properties of the Bargmann transform and the study of Colin de Verdière and Parisse [1994a] to describe the space of microlocal solutions of A_k near s_j . Finally, we adapt the reasoning of [Colin de Verdière and Parisse 1999; Colin de Verdière and Vũ Ngọc 2003] to obtain the singular Bohr–Sommerfeld conditions (in Section 6). We give numerical evidence in the last section.

2. Preliminaries and notation

2A. *Symbol classes.* We introduce rather standard symbol classes. Let *d* be a positive integer. For *u* in $\mathbb{C}^d \simeq \mathbb{R}^{2d}$, let $m(u) = (1 + ||u||^2)^{1/2}$. For every integer *j*, we define the symbol class \mathcal{G}_j^d as the set of sequences of functions in $\mathscr{C}^{\infty}(\mathbb{C}^d)$ which admit an asymptotic expansion of the form $a(\cdot, k) = \sum_{\ell \ge 0} k^{-\ell} a_{\ell}$ in the sense that

- For all $\ell \in \mathbb{N}$ and all $\alpha, \beta \in \mathbb{N}^{2d}$, there exists $C_{\ell,\alpha,\beta} > 0$ such that $|\partial_z^{\alpha} \partial_{\overline{z}}^{\beta} a_{\ell}| \leq C_{\ell,\alpha,\beta} m^j$.
- For all $L \in \mathbb{N}^*$ and all $\alpha, \beta \in \mathbb{N}^{2d}$, there exists $C_{L,\alpha,\beta} > 0$ such that

$$\left|\partial_{z}^{\alpha}\partial_{\bar{z}}^{\beta}\left(a-\sum_{\ell=0}^{L-1}k^{-\ell}a_{\ell}\right)\right|\leq C_{L,\alpha,\beta}k^{-L}m^{j}.$$

We set $\mathscr{G}^d = \bigcup_{j \in \mathbb{Z}} \mathscr{G}_j^d$. If, in the definition of \mathscr{G}_0^1 , we only consider symbols independent of *z*, we obtain the class \mathbb{C}_k of constant symbols.

2B. *Function spaces.* Using standard notation, we denote by $\mathscr{S}(\mathbb{R})$ the Schwartz space of functions $f \in \mathscr{C}^{\infty}(\mathbb{R})$ such that $\sup_{t \in \mathbb{R}} |t^j f^{(p)}(t)| < +\infty$ for all $j, p \in \mathbb{N}$, by $\mathscr{D}'(\mathbb{R})$ the space of distributions on \mathbb{R} , and by $\mathscr{S}'(\mathbb{R}) \subset \mathscr{D}'(\mathbb{R})$ the space of tempered distributions on \mathbb{R} (the dual space of $\mathscr{S}(\mathbb{R})$). We recall that

$$\mathscr{S}(\mathbb{R}) = \bigcap_{j \in \mathbb{N}} \mathscr{S}_j(\mathbb{R}),$$

where $\mathscr{S}_{j}(\mathbb{R})$ is the space of functions f in $\mathscr{C}^{j}(\mathbb{R})$ with $||f||_{\mathscr{S}_{i}}$ finite, with

$$\|f\|_{\mathscr{S}_{j}} = \max_{0 \le p \le j} \left(\sup_{t \in \mathbb{R}} \left| (1+t^{2})^{(j-p)/2} f^{(p)}(t) \right| \right).$$

The topology of $\mathscr{S}(\mathbb{R})$ is defined by the countable family of seminorms $\|\cdot\|_{\mathscr{S}_i}, j \in \mathbb{N}$.

We recall the definition of Bargmann spaces [Bargmann 1961; 1967], which are spaces of squareintegrable functions with respect to a Gaussian weight: for $k \in \mathbb{N}^*$,

$$\mathfrak{B}_{k} = \left\{ f\psi^{k} \mid f: \mathbb{C} \mapsto \mathbb{C} \text{ holomorphic, } \int_{\mathbb{R}^{2}} |f(z)|^{2} \exp(-k|z|^{2}) d\lambda(z) < +\infty \right\}$$

with $\psi : \mathbb{C} \to \mathbb{C}, z \mapsto \exp(-\frac{1}{2}|z|^2), \psi^k : \mathbb{C} \to \mathbb{C}^{\otimes k}$ its *k*-th tensor power, and λ the Lebesgue measure on \mathbb{R}^2 . We denote by $\|\cdot\|_{\mathscr{B}_k}$ the naturally associated L^2 -norm:

$$||f\psi^{k}||_{\mathcal{B}_{k}} = \left(\int_{\mathbb{R}^{2}} |f(z)|^{2} \exp(-k|z|^{2}) d\lambda(z)\right)^{1/2}.$$

Of course, this norm is still defined for elements of the form $f\psi^k$ satisfying the integrability condition with f not necessarily holomorphic; when this is the case, we denote it by $||f\psi^k||_{L^2,exp}$. Furthermore, we introduce the subspace

$$\mathfrak{S}_{k} = \left\{ \varphi \in \mathfrak{B}_{k} \mid \forall j \in \mathbb{N}, \ \sup_{z \in \mathbb{C}} \left(|\varphi(z)| (1+|z|^{2})^{j/2} \right) < +\infty \right\}$$
(1)

of \mathfrak{B}_k , with topology induced by the obvious associated family of seminorms. It is the analogue of the Schwartz space on the Bargmann side; see Section 3A for a more precise statement.

2C. Weyl quantization and pseudodifferential operators. We briefly recall some standard notation and properties of the theory of pseudodifferential operators (for details, see e.g. [Colin de Verdière 2009; Dimassi and Sjöstrand 1999; Zworski 2012]), replacing the usual small parameter \hbar by k^{-1} , because this is all we need in the rest of the paper.

2C1. *Pseudodifferential operators.* A pseudodifferential operator in one degree of freedom is an operator (possibly unbounded) acting on $L^2(\mathbb{R})$ which is the Weyl quantization of a symbol $a(\cdot, k) \in \mathcal{G}^1$, seen as a sequence of functions defined on the cotangent space $T^*\mathbb{R} \simeq \mathbb{R}^2$; more precisely,

$$(\operatorname{Op}_{k}^{W}(a)u)(x) = \frac{k}{2\pi} \int_{\mathbb{R}^{2}} \exp(ik(x-y)\xi) a\left(\frac{x+y}{2}, \xi, k\right) u(y) \, dy \, d\xi.$$

The leading term a_0 in the asymptotic expansion of $a(\cdot, k)$ is the principal symbol of $A_k = Op_k^W(a)$. A_k is said to be *elliptic* at $(x_0, \xi_0) \in T^* \mathbb{R}$ if $a_0(x_0, \xi_0) \neq 0$. **2C2.** Wavefront set.

Definition 2.1. A sequence u_k of elements of $\mathscr{D}'(\mathbb{R})$ is said to be *admissible* if, for any pseudodifferential operator P_k whose symbol is compactly supported, there exists an integer $N \in \mathbb{Z}$ such that $\|P_k u_k\|_{L^2(\mathbb{R})} = O(k^N)$.

We recall the standard definition of the wavefront set $WF(u_k)$ of an admissible sequence of distributions.

Definition 2.2. Let u_k be an admissible sequence in $\mathscr{D}'(\mathbb{R})$. A point (x_0, ξ_0) does not belong to WF (u_k) if and only if there exists a pseudodifferential operator P_k , elliptic at (x_0, ξ_0) , such that $||P_k u_k||_{L^2(\mathbb{R})} = O(k^{-\infty})$.

One can refine these definitions in the case where u_k belong to $\mathscr{S}(\mathbb{R})$.

Definition 2.3. A sequence $(u_k)_{k\geq 1}$ of elements of $\mathscr{S}(\mathbb{R})$ is said to be

- \mathscr{S} -admissible if there exists N in \mathbb{Z} such that every Schwartz seminorm of u_k is $O(k^N)$,
- \mathscr{S} -negligible if every Schwartz seminorm of u_k is $O(k^{-\infty})$. We write $u_k = O_{\mathscr{S}}(k^{-\infty})$.

Now, instead of using the L²-norm in Definition 2.2, one can actually consider the seminorms $\|\cdot\|_{\mathscr{S}_i}$.

Lemma 2.4. A point (x_0, ξ_0) does not belong to WF (u_k) if and only if there exists a pseudodifferential operator P_k , elliptic at (x_0, ξ_0) , such that $P_k u_k = O_{\mathscr{S}}(k^{-\infty})$.

Proof. The sufficient condition comes from the previous definition, so we only prove the necessary condition. We only adapt a standard argument used when one wants to deal with \mathscr{C}^j -norms (see [Robert 1987, Proposition IV-8]). Assume that (x_0, ξ_0) does not belong to WF (u_k) ; there exists a pseudodifferential operator P_k , elliptic at (x_0, ξ_0) , such that $||P_k u_k||_{L^2(\mathbb{R})} = O(k^{-\infty})$. Consider a compactly supported smooth function χ equal to one in a neighborhood of (x_0, ξ_0) , and set $Q_k = \operatorname{Op}^W(\chi) P_k$. For every $R \in \mathbb{R}[X]$ and every integer j > 0,

$$k^{-j} \frac{d^j}{dx^j} R \operatorname{Op}^{\mathrm{W}}(\chi)$$

is a pseudodifferential operator of order 0, hence bounded $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by a constant C > 0 (by the Calderón–Vaillancourt theorem; see [Robert 1987, Theorem II-36] or [Dimassi and Sjöstrand 1999, Theorem 7.11]). Thus, one has

$$\left\| k^{-j} \frac{d^{j}}{dx^{j}} R Q_{k} u_{k} \right\|_{L^{2}(\mathbb{R})} \leq C \| P_{k} u_{k} \|_{L^{2}(\mathbb{R})} = O(k^{-\infty}).$$

Hence, $||RQ_ku_k||_{H^s(\mathbb{R})} = O(k^{-\infty})$ for every integer s > 0, where we recall that the Sobolev space $H^s(\mathbb{R})$ is the subspace of $L^2(\mathbb{R})$ whose elements have their *s* first derivatives in $L^2(\mathbb{R})$; Sobolev injections then yield that every \mathscr{C}^j -norm of RQ_ku_k is $O(k^{-\infty})$. Since this holds for every polynomial *R*, we obtain the result.

2D. *Geometric quantization and Toeplitz operators.* We also recall the standard definitions and notation in the Toeplitz setting. Unless otherwise mentioned, "smooth" will always mean \mathscr{C}^{∞} , and a section of a line bundle will always be assumed to be smooth. The space of sections of a bundle $E \to M$ will be denoted by $\mathscr{C}^{\infty}(M, E)$. Let *M* be a connected, compact Kähler manifold, with fundamental 2-form $\omega \in \Omega^2(M, \mathbb{R})$. Assume *M* is endowed with a prequantum bundle $L \to M$, that is, a Hermitian holomorphic line bundle whose Chern connection ∇ has curvature $-i\omega$. Let $K \to M$ be a Hermitian holomorphic line bundle. For every positive integer *k*, define the quantum space \mathscr{H}_k as

$$\mathscr{H}_k = H^0(M, L^k \otimes K) = \{\text{holomorphic sections of } L^k \otimes K\}$$

The space \mathcal{H}_k is a subspace of the space $L^2(M, L^k \otimes K)$ of sections of finite L^2 -norm, where the scalar product is given by

$$\langle \varphi, \psi \rangle = \int_M h_k(\varphi, \psi) \mu_M,$$

with h_k the Hermitian product on $L^k \otimes K$ induced by those of L and K, and μ_M the Liouville measure on M. Since M is compact, \mathcal{H}_k is finite-dimensional, and is thus given a Hilbert space structure with this scalar product.

2D1. Admissible and negligible sequences. Let $(s_k)_{k\geq 1}$ be a sequence such that, for each k, s_k belongs to $\mathscr{C}^{\infty}(M, L^k \otimes K)$. We say that $(s_k)_{k\geq 1}$ is

• *admissible* if for every positive integer ℓ , for all vector fields X_1, \ldots, X_ℓ on M, and for every compact set $C \subset M$, there exist a constant c > 0 and an integer N (depending on X_1, \ldots, X_ℓ and C) such that

$$\|\nabla_{X_1}\cdots\nabla_{X_\ell}s_k(p)\| \le ck^N$$
 for all $p\in C$;

• *negligible* if for all positive integers ℓ and N, for all vector fields X_1, \ldots, X_ℓ on M, and for every compact set $C \subset M$, there exists a constant c > 0 (depending on X_1, \ldots, X_ℓ , C and N) such that

$$\|\nabla_{X_1}\cdots\nabla_{X_\ell}s_k(p)\| \le ck^{-N}$$
 for all $p \in C$.

We say that $(s_k)_{k\geq 1}$ is *negligible* over an open set $U \subset M$ if the previous estimates hold for every compact subset of U. The *microsupport* $MS(s_k)$ of an admissible sequence $(s_k)_{k\geq 1}$ is the complement of the set of points of M which admit a neighborhood where $(s_k)_{k\geq 1}$ is negligible. Finally, we say that two admissible sequences $(t_k)_{k\geq 1}$ and $(s_k)_{k\geq 1}$ are *microlocally equal* on an open set U if $MS(t_k - s_k) \cap U = \emptyset$; unless explicitly stated otherwise, the symbol \sim will indicate microlocal equivalence.

2D2. Toeplitz operators. Let Π_k be the orthogonal projector of $L^2(M, L^k \otimes K)$ onto \mathcal{H}_k . A Toeplitz operator is any sequence $(T_k : \mathcal{H}_k \to \mathcal{H}_k)_{k \ge 1}$ of operators of the form

$$T_k = \prod_k M_{f(\cdot,k)} + R_k,$$

where $f(\cdot, k)$ is a sequence in $\mathscr{C}^{\infty}(M)$ with an asymptotic expansion $f(\cdot, k) = \sum_{\ell \ge 0} k^{-\ell} f_{\ell}$ for the \mathscr{C}^{∞} topology, $M_{f(\cdot,k)}$ is the operator of multiplication by $f(\cdot, k)$, and R_k is an operator acting on \mathscr{H}_k

with $||R_k|| = O(k^{-\infty})$. Let \mathcal{T} be the set of Toeplitz operators, and define the contravariant symbol map

$$\sigma_{\text{cont}}: \mathcal{T} \to \mathscr{C}^{\infty}(M)[[\hbar]]$$

sending T_k into the formal series $\sum_{\ell>0} \hbar^{\ell} f_{\ell}$. We will mainly work with the normalized symbol

$$\sigma_{\rm norm} = \left({\rm Id} + \frac{\hbar}{2} \Delta \right) \sigma_{\rm cont},$$

where $\Delta = \partial^* \partial$ is the holomorphic Laplacian acting on $\mathscr{C}^{\infty}(M)$; unless otherwise mentioned, when we talk about a subprincipal symbol, this refers to the normalized symbol.

We can define the notions of admissibility, negligibility, microsupport and microlocal equivalence for Toeplitz operators, using the fact that their Schwartz kernels are sequences of sections of some line bundle (see [Charles 2006, Equation (4.1)] for a more precise statement).

2D3. *The case of the complex plane.* Let us briefly recall how to adapt the previous constructions to the case of the whole complex plane. We consider the Kähler manifold $\mathbb{C} \simeq \mathbb{R}^2$ with coordinates (x, ξ) , standard complex structure and symplectic form $\omega_0 = d\xi \wedge dx$. Let $L_0 = \mathbb{R}^2 \times \mathbb{C} \to \mathbb{R}^2$ be the trivial fiber bundle with standard Hermitian metric h_0 and connection ∇^0 with 1-form $(1/i)\alpha$, where $\alpha_u(v) = \frac{1}{2}\omega_0(u, v)$; endow L_0 with the unique holomorphic structure compatible with h_0 and ∇^0 . For every positive integer k, the quantum space at order k is

$$\mathscr{H}_{k}^{0} = H^{0}(\mathbb{R}^{2}, L_{0}^{k}) \cap L^{2}(\mathbb{R}^{2}, L_{0}^{k}),$$

and it turns out that $\mathscr{H}_k^0 = \mathscr{B}_k$ (see Section 2B for the definition of \mathscr{B}_k); indeed, if we choose the holomorphic coordinate $z = \frac{1}{\sqrt{2}}(x - i\xi)$, then a section φ of $L_0^k \to \mathbb{R}^2$ is holomorphic if and only if

$$\partial_{\bar{z}}\varphi + \frac{kz}{2}\varphi = 0.$$

Hence, for $\psi : \mathbb{C} \to \mathbb{C}$, $z \mapsto \exp(-\frac{1}{2}|z|^2)$, the section ψ^k is a nonvanishing element of $H^0(\mathbb{R}^2, L_0^k)$, and any other holomorphic section is of the form $f\psi^k$, where f is a holomorphic function.

One can define the algebra of Toeplitz operators and the various symbols in a similar way as in the compact case; see [Le Floch 2014] for details. We will call \mathcal{T}_j the class of Toeplitz operators with symbol in \mathcal{S}_j^1 . In what follows, Π_k^0 will denote the orthogonal projector of $L^2(\mathbb{R}^2, L_0^k)$ onto \mathcal{H}_k^0 , and we define the Toeplitz operator $Op(f \cdot, k) = \Pi_k^0 M_{f(\cdot,k)}$ for $f(\cdot, k)$ in \mathcal{S}_j^1 .

Let us give more details about the microsupport in this setting. We start by recalling the following inequality in Bargmann spaces [Bargmann 1961, Equation (1.7)].

Lemma 2.5. Let $\phi_k \in \mathfrak{B}_k$. Then, for every complex variable z,

$$|\phi_k(z)| \leq \left(\frac{k}{2\pi}\right)^{1/2} \|\phi_k\|_{\mathfrak{B}_k}.$$

Similarly, for all vector fields X_1, \ldots, X_p on \mathbb{C} , there exists a polynomial $P \in \mathbb{R}[x_1, x_2]$ with positive values such that, for every $z \in \mathbb{C}$,

$$|(\nabla_{X_1}\cdots\nabla_{X_p}\phi_k)(z)| \leq P(|z|,k)^{1/2} \|\phi_k\|_{\mathcal{B}_k}.$$

Proof. The first claim is proved in [Bargmann 1961] in the case k = 1; the general case then comes from a change of variables. The second claim can be proved in the same way.

Lemma 2.6. Let u_k be a sequence of elements of \mathfrak{B}_k and Ω a bounded open subset of \mathbb{C} . Assume that $\|u_k\|_{L^2(\Omega), \exp} = O(k^{-\infty})$; then, for any compact subset K of Ω , u_k and all its covariant derivatives are uniformly $O(k^{-\infty})$ on K.

Proof. Choose a compactly supported smooth function η which is positive, vanishing outside Ω and with constant value 1 on *K*, and set $v_k = Op(\eta)u_k$. One has

$$\|v_k\|_{\mathcal{B}_k} = \|\Pi_k^0 \eta u_k\|_{\mathcal{B}_k} \le \|\eta u_k\|_{L^2, \exp} \le \|u_k\|_{L^2(\Omega), \exp}$$

since Π_k^0 is continuous $L^2(\mathbb{R}^2, L_0^k) \to L^2(\mathbb{R}^2, L_0^k)$ with norm smaller than 1. Hence, $||v_k||_{\mathcal{B}_k} = O(k^{-\infty})$. By Lemma 2.5, this implies that v_k and its covariant derivatives are uniformly $O(k^{-\infty})$ on K; since $u_k = v_k + O(k^{-\infty})$ on K, the same holds for u_k .

Lemma 2.7. Let $(u_k)_{k\geq 1}$ be an admissible sequence of elements of \mathfrak{B}_k and $z_0 \in \mathbb{C}$. Then $z_0 \notin MS(u_k)$ if and only if there exists a Toeplitz operator $T_k \in \mathcal{T}_0$, elliptic at z_0 , such that $||T_k u_k||_{\mathfrak{B}_k} = O(k^{-\infty})$.

Proof. Assume that $z_0 \notin MS(u_k)$. There exists a neighborhood \mathfrak{U} of z_0 such that u_k is negligible on \mathfrak{U} . Choose a compactly supported function $\chi \in \mathscr{C}^{\infty}(\mathbb{C}, \mathbb{R})$ with support *K* contained in \mathfrak{U} and such that $\chi(z_0) = 1$, and set $T_k = Op(\chi)$. One has, for $z_1 \in \mathbb{C}$,

$$(T_k u_k)(z_1) = \frac{k}{2\pi} \int_K \exp\left(-\frac{k}{2}(|z_1|^2 + |z_2|^2 - 2z_1\bar{z}_2)\right) \chi(z_2) u_k(z_2) d\mu(z_2),$$

which gives

$$|(T_k u_k)(z_1)| \le \frac{k}{2\pi} \sup_K |u_k| \int_K \exp\left(-\frac{k}{2}|z_1 - z_2|^2\right) d\mu(z_2).$$

This allows to estimate the norm of $T_k u_k$:

$$\|T_k u_k\|_{\mathfrak{B}_k}^2 \leq \left(\frac{k}{2\pi}\right)^2 \left(\sup_K |u_k|\right)^2 \int_{\mathbb{C}} \int_K \exp(-k|z_1-z_2|^2) \, d\mu(z_1) \, d\mu(z_2).$$

Hence

$$\|T_k u_k\|_{\mathcal{B}_k}^2 \le \left(\frac{k}{2\pi}\right)^2 \left(\sup_K |u_k|\right)^2 \mu(K) \int_{\mathbb{C}} \exp(-k|z_1|^2) \, d\mu(z_1).$$

and the necessary condition is proved since the integral is $O(k^{-1/2})$.

Conversely, assume that there exists a Toeplitz operator $T_k \in \mathcal{T}_0$, elliptic at z_0 , such that $||T_k u_k||_{\mathcal{B}_k} = O(k^{-\infty})$. There exists a neighborhood of z_0 where T_k is elliptic. Hence, by symbolic calculus, we can find a Toeplitz operator $S_k \in \mathcal{T}_0$ such that $S_k T_k \sim \Pi_k^0$ near (z_0, z_0) . Thus, there exists a neighborhood Ω of z_0 such that $S_k T_k u_k \sim u_k$ on Ω ; this implies that $||S_k T_k u_k||_{L^2(\Omega)} = ||u_k||_{L^2(\Omega)} + O(k^{-\infty})$. But, since S_k is bounded $\mathcal{B}_k \to \mathcal{B}_k$ by a constant C > 0 which does not depend on k, one has $||S_k T_k u_k||_{L^2(\Omega)} \le C ||T_k u_k||_{\mathcal{B}_k}$; this yields that $||u_k||_{L^2(\Omega)}$ is $O(k^{-\infty})$. Lemma 2.6 then gives the negligibility of u_k on Ω .

Definition 2.8. A sequence $(u_k)_{k\geq 1}$ of elements of \mathfrak{S}_k is said to be

• \mathfrak{S}_k -admissible if there exists N in \mathbb{Z} such that every \mathfrak{S}_k seminorm of u_k is $O(k^N)$;

• \mathfrak{S}_k -negligible if every \mathfrak{S}_k seminorm of u_k is $O(k^{-\infty})$. We write $u_k = O_{\mathfrak{S}_k}(k^{-\infty})$.

Lemma 2.9. Let $(u_k)_{k\geq 1}$ be an admissible sequence of elements of \mathfrak{B}_k and $z_0 \in \mathbb{C}$. Then $z_0 \notin MS(u_k)$ if and only if there exists a Toeplitz operator $T_k \in \mathcal{T}_0$, elliptic at z_0 , such that $T_k u_k = O_{\mathfrak{S}_k}(k^{-\infty})$.

Proof. The proof is nearly the same as the one of Lemma 2.4. One can show that if $z_0 \notin MS(u_k)$, there exists a Toeplitz operator $T_k \in \mathcal{T}_0$, elliptic at z_0 , such that for every polynomial function P(z) of z only, $\sup_{z \in \mathbb{C}} |P(z)(T_k u_k)(z)| = O(k^{-\infty})$, using the fact that the multiplication by P(z) is a Toeplitz operator. \Box

3. The Bargmann transform

3A. *Definition and first properties.* The Bargmann transform is the unitary operator $B_k : L^2(\mathbb{R}) \to \mathcal{B}_k$ defined by

$$(B_k f)(z) = \left(\left(\frac{k}{\pi}\right)^{1/4} \int_{\mathbb{R}} \exp\left(k\left(-\frac{1}{2}(z^2 + t^2) + \sqrt{2}zt\right)\right) f(t) \, dt \right) \psi^k(z).$$

We claimed earlier that the subspace \mathfrak{S}_k of \mathfrak{B}_k defined in (1) is the analogue of the Schwartz space on the Bargmann side. The case k = 1 is treated by the following theorem.

Theorem 3.1 [Bargmann 1967, Theorem 1.7]. *The Bargmann transform* B_1 *is a bijective, bicontinuous mapping between* $\mathscr{S}(\mathbb{R})$ *and* \mathfrak{S}_1 .

This allows us to handle the general case.

Proposition 3.2. The Bargmann transform B_k is a bijection between $\mathscr{S}(\mathbb{R})$ and \mathfrak{S}_k .

Proof. If f belongs to $\mathscr{S}(\mathbb{R})$, one has, for z in \mathbb{C} ,

$$(B_k f)(z) = \left(\frac{k}{\pi}\right)^{1/4} \int_{\mathbb{R}} \exp\left(k\left(-\frac{1}{2}(z^2 + t^2) + \sqrt{2}zt\right)\right) f(t) \, dt;$$

introducing the variables u and w such that $z = k^{-1/2}w$ and $t = k^{-1/2}u$, this reads

$$(B_k f)(z) = (k\pi)^{-1/4} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}(w^2 + u^2) + \sqrt{2}wu\right) f(k^{-1/2}u) \, du.$$

Hence, we have $(B_k f)(z) = (k\pi)^{-1/4} (B_1 g)(k^{1/2} z)$, where $g(t) = f(k^{-1/2} t)$. Obviously, the function g belongs to $\mathscr{S}(\mathbb{R})$; thus, by the previous theorem, $B_1 g$ belongs to \mathfrak{S}_1 . Hence, for $j \in \mathbb{N}$, there exists a constant $C_j > 0$ such that, for every complex variable w,

$$|(B_1g)(w)\exp(-\frac{1}{2}|w|^2)| \le C_j(1+|w|^2)^{-j/2}.$$

This implies that, for every z in \mathbb{C} ,

$$\left| (B_k f)(z) \exp\left(-\frac{k}{2}|z|^2\right) \right| \le C_j k^{-j/2} (1+k|z|^2)^{-j/2},$$

and since $k \ge 1$, this yields

$$\left| (B_k f)(z) \exp\left(-\frac{k}{2}|z|^2\right) \right| \le C_j (1+|z|^2)^{-j},$$

which means that $B_k f$ belongs to \mathfrak{S}_k . The converse is proved in the same way, using the explicit form of the inverse mapping:

$$(B_k^*g)(t) = \left(\frac{k}{\pi}\right)^{1/4} \int_{\mathbb{R}} \exp\left(k\left(-\frac{1}{2}(\bar{z}^2 + t^2) + \sqrt{2}\bar{z}t - |z|^2\right)\right)g(z)\,d\mu(z)$$

 $\in \mathbb{R}.$

for *g* in \mathfrak{S}_k and $t \in \mathbb{R}$.

3B. *Action on Toeplitz operators.* The Bargmann transform has the good property to conjugate a Toeplitz operator with symbol defined on \mathbb{C} (thus acting on the spaces \mathcal{B}_k) to a pseudodifferential operator with symbol defined on $T^*\mathbb{R}$ (thus acting on $L^2(\mathbb{R})$), and conversely.

Lemma 3.3. Let T_k be a Toeplitz operator in the class \mathcal{T}_j , with contravariant symbol $\sigma_{\text{cont}}(T_k) = f(\cdot, \hbar)$. Then $B_k^*T_k B_k$ is a pseudodifferential operator with Weyl symbol

$$\sigma^{W}(B_{k}^{*}T_{k}B_{k})(x,\xi) = I(f(\cdot,\hbar))(x,\xi) = \frac{1}{\pi\hbar} \int_{\mathbb{C}} \exp(-2\hbar^{-1}|w|^{2})f(w+z,\hbar) d\lambda(w),$$

where $z = \frac{1}{\sqrt{2}}(x - i\xi)$. The map I is continuous $\mathcal{G}_j \to \mathcal{G}_j$. Moreover, for any $f(\cdot, \hbar) \in \mathcal{G}_j$ and all $p \ge 1$,

$$I(f(\cdot,\hbar)) = \sum_{j=0}^{p-1} \left(\frac{\hbar}{2}\right)^j \frac{\Delta^j f(\cdot,\hbar)}{j!} + h^p R_p(f(\cdot,\hbar)), \tag{2}$$

where R_p is a continuous map from \mathcal{G}_j to \mathcal{G}_j .

Proof. Thanks to [Charles and Vũ Ngọc 2008, Theorem 5.2], we know that the result holds when $T_k = \prod_k^0 f \prod_k^0$, f being a bounded function on \mathbb{C} not depending on k. Now, using the stationary phase method, one can prove that the map I is continuous $\mathcal{G}_j \to \mathcal{G}_j$ with the asymptotic expansion (2), and conclude by a density argument.

3C. Microlocalization and Bargmann transform.

- **Lemma 3.4.** (1) B_k maps \mathscr{S} -admissible functions to \mathfrak{S}_k -admissible sections, and B_k^* maps \mathfrak{S}_k -admissible sections to \mathscr{S} -admissible functions.
- (2) B_k maps $O_{\mathscr{S}}(k^{-\infty})$ into $O_{\mathfrak{S}_k}(k^{-\infty})$, and B_k^* maps $O_{\mathfrak{S}_k}(k^{-\infty})$ into $O_{\mathscr{S}}(k^{-\infty})$.

Proof. These results are proved by performing a change of variables, as in Proposition 3.2. \Box

We can now prove the link between the wavefront set and the microsupport via the Bargmann transform.

Proposition 3.5. Let u_k be an admissible sequence of elements of $\mathscr{S}(\mathbb{R})$. Then $(x_0, \xi_0) \notin WF(u_k)$ if and only if $z_0 = \frac{1}{\sqrt{2}}(x_0 - i\xi_0) \notin MS(B_k u_k)$.

Proof. Assume that $z_0 = \frac{1}{\sqrt{2}}(x_0 - i\xi_0)$ does not belong to $MS(B_k u_k)$; by Lemma 2.9, there exists a Toeplitz operator T_k , elliptic at z_0 , such that $T_k B_k u_k \psi^k = O_{\mathfrak{S}_k}(k^{-\infty})$. Thanks to Lemma 3.3, $P_k = B_k^* T_k B_k$ is a pseudodifferential operator elliptic at (x_0, ξ_0) . Furthermore, thanks to Lemma 3.4, $P_k u_k = B_k^* T_k B_k u_k \psi_k = O_{\mathscr{S}}(k^{-\infty})$; we conclude by Lemma 2.4. The proof of the converse follows the same steps.

4. The sheaf of microlocal solutions

In this section, T_k is a selfadjoint Toeplitz operator on M with normalized symbol $f(\cdot, \hbar) = \sum_{\ell \ge 0} \hbar^{\ell} f^{\ell}$. Following [Vũ Ngọc 1998; 2000], we introduce the sheaf of microlocal solutions of the equation $T_k \psi_k = 0$.

Let us recall the motivation for considering microlocal solutions: roughly speaking, they allow to split the eigenvalue equation $T_k \psi_k = \lambda \psi_k$ into several local problems, the Bohr–Sommerfeld rules being a necessary and sufficient condition to glue together the solutions to these problems in order to obtain a global approximate solution to this equation. For the sake of brevity, we begin with the case $\lambda = 0$, and we introduce a spectral parameter only in Section 4F.

4A. *Microlocal solutions.* For an open subset *U* of *M*, we call a sequence of sections $\psi_k \in \mathscr{C}^{\infty}(U, L^k \otimes K)$ a local state over *U*.

Definition 4.1. We say that a local state ψ_k is a microlocal solution of

$$T_k \psi_k = 0 \tag{3}$$

on U if it is admissible and, for every $x \in U$, there exists a function $\chi \in \mathscr{C}^{\infty}(M)$ with support contained in U, equal to 1 in a neighborhood of x and such that

$$\Pi_k(\chi\psi_k) = \psi_k + O(k^{-\infty}), \quad T_k(\Pi_k(\chi\psi_k)) = O(k^{-\infty})$$

on a neighborhood of x.

One can show that if $\psi_k \in \mathcal{H}_k$ is admissible and satisfies $T_k \psi_k = 0$, then the restriction of ψ_k to U is a microlocal solution of (3) on U. Moreover, the set S(U) of microlocal solutions of this equation on U is a \mathbb{C}_k -module containing the set of negligible local states as a submodule (let us recall that \mathbb{C}_k is the set of constant symbols; see Section 2A). We denote by Sol(U) the module obtained by taking the quotient of S(U) by the negligible local states; the notation $[\psi_k]$ will stand for the equivalence class of $\psi_k \in S(U)$.

Lemma 4.2. The collection of modules Sol(U) for U an open subset of M, together with the natural restriction maps $r_{U,V}$: $Sol(V) \rightarrow Sol(U)$ for U, V open subsets of M such that $U \subset V$, define a complete presheaf.

Thus, we obtain a sheaf Sol over M, called the sheaf of microlocal solutions on M.

4B. *The sheaf of microlocal solutions.* One can show that if the principal symbol f_0 of T_k does not vanish on U, then $Sol(U) = \{0\}$. Equivalently, if $\psi_k \in \mathcal{H}_k$ satisfies $T_k \psi_k = 0$, then its microsupport is contained in the level $\Gamma_0 = f_0^{-1}(0)$. This implies the following lemma.

Lemma 4.3. Let Ω be an open subset of Γ_0 ; write $\Omega = U \cap \Gamma_0$, where U is an open subset of M. Then the restriction map

$$r_{\Omega}$$
: Sol $(U) \to \mathfrak{F}_U(\Omega) := r_{\Omega}(Sol(U)), \quad [\psi_k] \mapsto [\psi_k|_{\Omega}]$

is an isomorphism of \mathbb{C}_k -modules.

We want to define a new sheaf $\mathfrak{F} \to \Gamma_0$ that still describes the microlocal solutions of (3). In order to do so, we will check that the module $\mathfrak{F}_U(\Omega)$ does not depend on the open set U such that $\Omega = \Gamma_0 \cap U$. We first prove:

Lemma 4.4. Let U, \widetilde{U} be two open subsets of M such that $\Omega = U \cap \Gamma_0 = \widetilde{U} \cap \Gamma_0$. Then there exists an isomorphism between Sol(U) and Sol(\widetilde{U}) commuting with the restriction maps.

Proof. Assume that U and \widetilde{U} are distinct and set $V = U \cap \widetilde{U}$; of course $\Omega \subset V$. Write $\widetilde{U} = V \cup W$ where the open set W is such that there exists an open set $X \subset V$ containing Ω such that $W \cap X = \emptyset$. Let χ_V, χ_W be a partition of unity subordinate to $\widetilde{U} = V \cup W$; in particular, $\chi_V(x) = 1$ whenever $x \in X$. One can show that the class $F_{\chi_V}(\psi_k) = [\chi_V \psi_k]$ belongs to $\operatorname{Sol}(\widetilde{U})$. We claim that the map F_{χ_V} is an isomorphism with the required property.

From these two lemmas, we deduce:

Proposition 4.5. Let U, \widetilde{U} be two open subsets of M such that $\Omega = U \cap \Gamma_0 = \widetilde{U} \cap \Gamma_0$. Then $\mathfrak{F}_U(\Omega) = \mathfrak{F}_{\widetilde{U}}(\Omega)$.

This allows to define a sheaf $\mathfrak{F} \to \Gamma_0$, which will be called the sheaf of microlocal solutions over Γ_0 . Let us point out that so far, we have made no assumption on the structure (regularity) of the level Γ_0 .

4C. *Regular case.* Consider a point $m \in \Gamma_0$ which is regular for the principal symbol f_0 . Then there exists a symplectomorphism χ between a neighborhood of m in M and a neighborhood of the origin in \mathbb{R}^2 such that $(f_0 \circ \chi^{-1})(x, \xi) = \xi$. We can quantize this symplectomorphism by means of a Fourier integral operator [Boutet de Monvel and Guillemin 1981; Zelditch 1997; Charles 2003b; Le Floch 2014]: there exists an admissible sequence of operators $U_k^{(m)} : \mathscr{C}^\infty(\mathbb{R}^2, L_0^k) \to \mathscr{C}^\infty(M, L^k \otimes K)$ such that

$$U_k^{(m)}(U_k^{(m)})^* \sim \Pi_k$$
 near m

and

$$(U_k^{(m)})^* U_k^{(m)} \sim \Pi_k^0, \quad (U_k^{(m)})^* T_k U_k^{(m)} \sim S_k \quad \text{near } 0,$$

where S_k is the Toeplitz operator

$$S_k = \frac{i}{\sqrt{2}} \left(z - \frac{1}{k} \frac{d}{dz} \right),$$

which means that $S_k u = \frac{i}{\sqrt{2}} \left(zf - \frac{1}{k} \frac{df}{dz} \right) \psi^k$ if $u = f \psi^k$. Consider the element Φ_k of $\mathscr{C}^{\infty}(\mathbb{R}^2, L_0^k)$ given by

$$\Phi_k(z) = \exp(kz^2/2)\psi^k(z), \quad \psi(z) = \exp(-\frac{1}{2}|z|^2);$$

it satisfies $S_k \Phi_k = 0$. Choosing a suitable cutoff function η and setting $\Phi_k^{(m)} = \Pi_k^0(\eta \Phi_k)$, we obtain an admissible sequence $\Phi_k^{(m)}$ of elements of \mathcal{B}_k microlocally equal to Φ_k near the origin and generating the \mathbb{C}_k -module of microlocal solutions of $S_k u_k = 0$ near the origin.

Proposition 4.6. The \mathbb{C}_k -module of microlocal solutions of (3) near *m* is free of rank 1,² generated by $U_k^{(m)} \Phi_k^{(m)}$.

1606

²We recall that this means that this module admits a basis with one element.

This is a slightly modified version of Proposition 3.6 of [Charles 2003b], in which the normal form is achieved on the torus instead of the complex plane.

Thus, if Γ_0 contains only regular points of the principal symbol f_0 , then $\mathfrak{F} \to \Gamma_0$ is a sheaf of free \mathbb{C}_k -modules of rank 1; in particular, this implies that $\mathfrak{F} \to \Gamma_0$ is a flat sheaf, thus characterized by its Čech holonomy hol \mathfrak{F} .

4D. Lagrangian sections. In order to compute the holonomy $hol_{\mathfrak{F}}$, we have to understand the structure of the microlocal solutions. For this purpose, a family of solutions of particular interest is given by Lagrangian sections; let us define these. Consider a curve $\Gamma \subset \Gamma_0$ containing only regular points, and let $j: \Gamma \to M$ be the embedding of Γ into M. Let U be an open set of M such that $U_{\Gamma} = j^{-1}(U \cap \Gamma)$ is contractible; then there exists a flat unitary section t_{Γ} of $j^*L \to U_{\Gamma}$. Now, consider a formal series

$$\sum_{\ell\geq 0}\hbar^{\ell}g_{\ell}\in\mathscr{C}^{\infty}(U_{\Gamma},\,j^{*}K)\llbracket\hbar\rrbracket.$$

Let *V* be an open subset of *M* such that $\overline{V} \subset U$. Then a sequence $\Psi_k \in \mathcal{H}_k$ is a *Lagrangian section* associated to (Γ, t_{Γ}) with symbol $\sum_{\ell>0} \hbar^{\ell} g_{\ell}$ if

$$\Psi_k(m) = \left(\frac{k}{2\pi}\right)^{1/4} F^k(m)\tilde{g}(m,k) \quad \text{over } V,$$

where

• F is a section of $L \to U$ such that

$$j^*F = t_{\Gamma}$$
 and $\bar{\partial}F = 0$

modulo a section vanishing to every order along $j(\Gamma)$, and |F(m)| < 1 if $m \notin j(\Gamma)$;

• $\tilde{g}(\cdot, k)$ is a sequence in $\mathscr{C}^{\infty}(U, K)$ admitting an asymptotic expansion $\sum_{\ell \ge 0} k^{-\ell} \tilde{g}_{\ell}$ in the \mathscr{C}^{∞} topology such that

 $j^* \tilde{g}_\ell = g_\ell$ and $\bar{\partial} \tilde{g}_\ell = 0$

modulo a section vanishing at every order along $j(\Gamma)$.

Assume furthermore that Ψ_k is admissible in the sense that $\Psi_k(m)$ is uniformly $O(k^N)$ for some N and the same holds for its successive covariant derivatives. It is possible to construct such a section with given symbol $\sum_{\ell \ge 0} \hbar^\ell g_\ell$ (see [Charles 2006, §3]). Furthermore, if Ψ_k is a nonzero Lagrangian section, then the constants $c_k \in \mathbb{C}_k$ such that $c_k \Psi_k$ is still a Lagrangian section are the elements of the form

$$c_k = \rho(k) \exp(ik\phi(k)) + O(k^{-\infty}), \tag{4}$$

where $\rho(k), \phi(k) \in \mathbb{R}$ admit asymptotic expansions of the form $\rho(k) = \sum_{\ell>0} k^{-\ell} \rho_{\ell}, \phi(k) = \sum_{\ell>0} k^{-\ell} \phi_{\ell}$.

Lagrangian sections are important because they provide a way to construct microlocal solutions. Indeed, if Ψ_k is a Lagrangian section over V associated to (Γ, t_{Γ}) with symbol $\sum_{\ell \ge 0} \hbar^{\ell} g_{\ell}$, then $T_k \Psi_k$ is also a Lagrangian section over V associated to (Γ, t_{Γ}) , and one can in principle compute the elements \hat{g}_{ℓ} , $\ell \ge 0$ of the formal expansion of its symbol as a function of the g_{ℓ} , $\ell \ge 0$ (by means of a stationary phase

expansion). This allows to solve (3) by prescribing the symbol of Ψ_k so that for every $\ell \ge 0$, \hat{g}_{ℓ} vanishes. Let us detail this for the two first terms.

Introduce a *half-form bundle* (δ, φ) , that is, a line bundle $\delta \to M$ together with an isomorphism of line bundles $\varphi : \delta^{\otimes 2} \to \Lambda^{1,0}T^*M$. Since the first Chern class of M, which is equal to its Euler characteristic, is even, such a pair exists. Introduce the Hermitian holomorphic line bundle L_1 such that $K = L_1 \otimes \delta$. Define the *subprincipal form* κ as the 1-form on Γ such that

$$\kappa(X_{f_0}) = -f_1,$$

where X_{f_0} stands for the Hamiltonian vector field associated to f_0 . Introduce the connection ∇^1 on $j^*L_1 \to \Gamma$ defined by

$$\nabla^1 = \nabla^{j^*L_1} + \frac{1}{i}\kappa,$$

with $\nabla^{j^*L_1}$ the connection induced by the Chern connection of L_1 on j^*L_1 . Let δ_{Γ} be the restriction of δ to Γ ; the map

$$\varphi_{\Gamma}: \delta_{\Gamma}^{\otimes 2} \to T^* \Gamma \otimes \mathbb{C}, \quad u \mapsto j^* \varphi(u)$$

is an isomorphism of line bundles. Define a connection $\nabla^{\delta_{\Gamma}}$ on δ_{Γ} by

$$\nabla_X^{\delta_\Gamma}\sigma = \mathscr{L}_X^{\delta_\Gamma}\sigma$$

where $\mathscr{L}_X^{\delta_{\Gamma}}$ is the first-order differential operator acting on sections of δ_{Γ} such that

$$\varphi_{\Gamma}\left(\mathscr{L}_{X}^{\delta_{\Gamma}}g\otimes g\right) = \frac{1}{2}\mathscr{L}_{X}\varphi_{\Gamma}(g^{\otimes 2})$$

for every section g; here, \mathcal{L} stands for the standard Lie derivative of forms.

It was proved in [Charles 2006, Theorems 3.3 and 3.4] that $T_k \Psi_k$ is a Lagrangian section over V associated to t_{Γ} with symbol $(j^* f_0)g_0 + O(\hbar) = O(\hbar)$ (so Ψ_k satisfies (3) up to order $O(k^{-1})$) and that the subprincipal symbol of $T_k \Psi_k$ is

$$(j^*f_1)g_0 + \frac{1}{i} (\nabla_{X_{f_0}}^{j^*L_1} \otimes \operatorname{Id} + \operatorname{Id} \otimes \mathscr{L}_{X_{f_0}}^{\delta_{\Gamma}})g_0.$$

Consequently, (3) is satisfied by Ψ_k up to order $O(k^{-2})$ if and only if

$$\left(f_1 + \frac{1}{i} \left(\nabla_{X_{f_0}}^{j^*L_1} \otimes \operatorname{Id} + \operatorname{Id} \otimes \mathscr{L}_{X_{f_0}}^{\delta_{\Gamma}}\right)\right) g_0 = 0 \quad \text{over } V \cap \Gamma.$$
(5)

This can be interpreted as a parallel transport equation: if we endow $j^*L_1 \otimes \delta_{\Gamma}$ with the connection induced from ∇^1 and $\nabla^{\delta_{\Gamma}}$, (5) means that g_0 is flat.

4E. *Holonomy.* We now assume that Γ_0 is connected (otherwise, one can consider connected components of Γ_0) and contains only regular points; it is then a smooth closed curve embedded in M. We would like to compute the holonomy of the sheaf $\mathfrak{F} \to \Gamma_0$.

Proposition 4.7. The holonomy $hol_{\mathfrak{F}}(\Gamma_0)$ is of the form

$$\operatorname{hol}_{\mathfrak{F}}(\Gamma_0) = \exp(ik\Theta(k)) + O(k^{-\infty}), \tag{6}$$

1608

where $\Theta(k)$ is real-valued and admits an asymptotic expansion of the form $\Theta(k) = \sum_{\ell \ge 0} k^{-\ell} \Theta_{\ell}$.

In particular, this means that if we consider another set of solutions to compute the holonomy, we only have to keep track of the phases of the transition constants.

Proof. Cover Γ_0 by a finite number of open subsets Ω_{α} in which the normal form introduced before Proposition 4.6 applies, and let U_k^{α} and Φ_k^{α} be as in this proposition. We obtain a family u_k^{α} of microlocal solutions; observe that for each α , u_k^{α} is a Lagrangian section associated to Γ . Hence, if $\Omega_{\alpha} \cap \Omega_{\beta}$ is nonempty, the unique (modulo $O(k^{-\infty})$) constant $c_k^{\alpha\beta} \in \mathbb{C}_k$ such that $u_k^{\alpha} = c_k^{\alpha\beta} u_k^{\beta}$ on $\Omega_{\alpha} \cap \Omega_{\beta}$ is of the form given in (4):

$$c_k^{\alpha\beta} = \rho^{\alpha\beta}(k) \exp(ik\phi^{\alpha\beta}(k)) + O(k^{-\infty}).$$

But if *m* belongs to $\Omega_{\alpha} \cap \Omega_{\beta}$, then near *m* we have $u_k^{\alpha} \sim U_k^{\alpha} \Phi_k^{(m)}$ and $u_k^{\beta} \sim U_k^{\beta} \Phi_k^{(m)}$, where $\Phi_k^{(m)}$ is an admissible sequence of elements of \mathcal{B}_k microlocally equal to Φ_k near the origin. Therefore, we have

$$c_k^{\alpha\beta} \Phi_k^{(m)} = (U_k^{\beta})^{-1} U_k^{\alpha} \Phi_k^{(m)} + O(k^{-\infty}),$$

and the fact that the operators U_k^{α} , U_k^{β} are microlocally unitary yields $|c_k^{\alpha\beta}|^2 = 1 + O(k^{-\infty})$. This implies that the coefficients $\rho_{\ell}^{\alpha\beta}$ in the asymptotic expansion of $\rho^{\alpha\beta}(k)$ vanish for $\ell \ge 1$, which gives the result. \Box

Let us be more specific and compute the first terms of this asymptotic expansion. Consider a finite cover $(\Omega_{\alpha})_{\alpha}$ of Γ_0 by open subsets with $j^{-1}(\Omega_{\alpha})$ contractible, and endow a neighborhood of each Ω_{α} in M with a nontrivial microlocal solution Ψ_k^{α} which is a Lagrangian section. Choose a flat unitary section t_{α} of the line bundle $j^*L \to j^{-1}(\Omega_{\alpha})$ and write, for $m \in \Omega_{\alpha}$,

$$\Psi_k^{\alpha}(m) = \left(\frac{k}{2\pi}\right)^{1/4} g_{\alpha}(m,k) t_{\alpha}^k(m),$$

where the section $g_{\alpha}(\cdot, k)$ of $j^*K \to \Omega_{\alpha}$ is the symbol of Ψ_k^{α} , whose principal symbol will be denoted by $g_{\alpha}^{(0)}$. Now, assume that $\Omega_{\alpha} \cap \Omega_{\beta} \neq \emptyset$; there exists a unique (up to $O(k^{-\infty})$) $c_k^{\alpha\beta} \in \mathbb{C}_k$ such that $\Psi_k^{\alpha} \sim c_k^{\alpha\beta} \Psi_k^{\beta}$ on $\Omega_{\alpha} \cap \Omega_{\beta}$.

Definition 4.8. Let $A, B \in M$ and γ be a piecewise smooth curve joining A and B; denote by $P_{A,B,\gamma}$: $L_A \to L_B$ the linear isomorphism given by parallel transport from A to B along γ . Given two sections s, t of $L \to M$ such that $s(A) \neq 0$ and $t(B) \neq 0$, define the *phase difference* between s(A) and t(B) along γ as the number

$$(\Phi_s(A) - \Phi_t(B))_{\gamma} = \arg \lambda_{A,B,\gamma} - c_0([A, B]) \in \mathbb{R}/2\pi\mathbb{Z},$$

where $\lambda_{A,B,\gamma}$ is the unique complex number such that $P_{A,B,\gamma}(s(A)) = \lambda_{A,B,\gamma}t(B)$ and $c_0([A, B])$ is the (phase of the) holonomy of γ in (L, ∇) (computed with respect to some fixed trivializations at A, B). Define in the same way the phase difference for two sections of $K \to M$, this time using the Chern connection of K.

Now, consider three points A, B, $C \in M$, and let γ_1 and γ_2 be piecewise smooth curves joining A to B and B to C, respectively. Let γ be the concatenation of γ_1 and γ_2 . It is easily checked that

$$(\Phi_s(A) - \Phi_t(B))_{\gamma_1} + (\Phi_t(B) - \Phi_u(C))_{\gamma_2} = (\Phi_s(A) - \Phi_u(C))_{\gamma_2}$$

for three sections s, t, u of L. Furthermore, if γ is a closed curve and A is a point on γ , then the phase difference between s(A) and s(A) along γ is

$$(\Phi_s(A) - \Phi_s(A))_{\gamma} = 0$$

by definition of the holonomy c_0 . This is why we write this number as a difference. Note that this still holds true if we change the set of trivializations used to compute c_0 .

Coming back to our problem, denote by $\Phi_{\alpha}^{(-1)}(A) - \Phi_{\beta}^{(-1)}(B)$ the phase difference between $t_{\alpha}(A)$ and $t_{\beta}(B)$ along Γ_0 in *L*, and by $\Phi_{\alpha}^{(0)}(A) - \Phi_{\beta}^{(0)}(B)$ the phase difference between $g_{\alpha}^{(0)}(A)$ and $g_{\beta}^{(0)}(B)$ along Γ_0 in *K*. Let ζ be the path in Γ_0 starting at a point $A \in \Omega_{\alpha}$ and ending at $B \in \Omega_{\alpha} \cap \Omega_{\beta}$. Since t_{α} is flat and the principal symbol g_0 of Ψ_k^{α} satisfies (5), we have

$$\arg c_k^{\alpha\beta} = k \left(c_0(\zeta) + \Phi_\alpha^{(-1)}(A) - \Phi_\beta^{(-1)}(B) \right) + c_1(\zeta) + \operatorname{hol}_{\delta_{\Gamma_0}}(\zeta) + \Phi_\alpha^{(0)}(A) - \Phi_\beta^{(0)}(B) + O(k^{-1}),$$

where $c_1(\zeta)$ is the holonomy of ζ in (L_1, ∇^1) and $\operatorname{hol}_{\delta_{\Gamma_0}}(\zeta)$ is the holonomy of ζ in $(\delta_{\Gamma_0}, \nabla^{\delta_{\Gamma_0}})$ (both computed with respect to some fixed trivializations of L_1 and δ_{Γ_0} at A, B).

Thanks to the discussion above, we know that the term

$$k \left(\Phi_{\alpha}^{(-1)}(A) - \Phi_{\beta}^{(-1)}(B) \right) + \Phi_{\alpha}^{(0)}(A) - \Phi_{\beta}^{(0)}(B)$$

is a Čech coboundary. The values $c_0(\Gamma_0)$, $c_1(\Gamma_0)$ and $\operatorname{hol}_{\delta_{\Gamma_0}}(\Gamma_0)$ do not depend on the trivializations chosen for the computations. Moreover, one can check that $\nabla^{\delta_{\Gamma_0}}$ has holonomy in $\mathbb{Z}/2\mathbb{Z}$, represented by $\epsilon(\Gamma_0) \in \{0, 1\}$. Thus, we obtain:

Proposition 4.9. The first two terms of the asymptotic expansion of the quantity $\Theta(k)$ defined in *Proposition 4.7 are given by*

$$\Theta_0 = c_0(\Gamma_0)$$

and

$$\Theta_1 = c_1(\Gamma_0) + \epsilon(\Gamma_0)\pi.$$

Since one can construct a nontrivial microlocal solution over Γ_0 if and only if $\Theta(k) \in 2\pi\mathbb{Z}$, we recover the usual Bohr–Sommerfeld conditions.

Let us give another interpretation of the index ϵ . Consider a smooth closed curve γ immersed in M. Denote by $\iota : \gamma \to M$ this immersion, and by $\delta_{\gamma} = \iota^* \delta$ the pullback bundle over γ . Let $\tilde{\iota} : \delta_{\gamma} \to \delta$ be the natural lift of ι , and define $\tilde{\iota}^2 : \delta_{\gamma}^{\otimes 2} \to \delta^{\otimes 2}$ by the formula $\tilde{\iota}^2(u \otimes v) = \tilde{\iota}(u) \otimes \tilde{\iota}(v)$. The map

$$\varphi_{\gamma}: \delta_{\gamma}^{\otimes 2} \to T^* \gamma \otimes \mathbb{C}, \quad u \mapsto \iota^* \varphi(\tilde{\iota}^2(u))$$

is an isomorphism of line bundles. The set

$$\{u \in \delta_{\gamma} \mid \varphi_{\gamma}(u^{\otimes 2}) > 0\}$$

has one or two connected components. In the first case, we set $\epsilon(\gamma) = 1$, and in the second case $\epsilon(\gamma) = 0$. One can check that this definition coincides with the one above when γ is a smooth embedded closed curve. Notice that the value of $\epsilon(\gamma)$ only depends on the isotopy class of γ in M. **4F.** *Spectral parameter dependence.* For spectral analysis, one has to do the same study as above, replacing the operator T_k with $T_k - \lambda$, $\lambda \in \mathbb{R}$; then it is natural to ask if the previous study can be done taking into account the dependence of the operator on the spectral parameter λ .

Assume that there exists a tubular neighborhood Ω of Γ such that for λ close enough to 0, the intersection $\Gamma_{\lambda} \cap \Omega$ is regular. Then we can construct microlocal solutions of $(T_k - \lambda)u_k = 0$ as Lagrangian sections depending smoothly on a parameter (see [Charles 2003b, §2.6]); these solutions are uniform in λ . We can then define all the previous objects with smooth dependence in λ . Proceeding this way, we obtain the parameter-dependent Bohr–Sommerfeld conditions, which we describe below.

Let *I* be an interval of regular values of the principal symbol f_0 of the operator. For $\lambda \in I$, denote by $\mathscr{C}_j(\lambda)$, $1 \le j \le N$, the connected components of $f_0^{-1}(\lambda)$ in such a way that for *j* fixed and $\lambda_1 \ne \lambda_2 \in I$, $\mathscr{C}_j(\lambda_1)$ and $\mathscr{C}_j(\lambda_2)$ belong to the same connected component of $f_0^{-1}(I)$. Observe that $\mathscr{C}_j(\lambda)$ is a smooth embedded closed curve, endowed with the orientation depending continuously on λ given by the Hamiltonian flow of f_0 . Define the *principal action* $c_0^{(j)} \in \mathscr{C}^{\infty}(I)$ in such a way that the parallel transport in *L* along $\mathscr{C}_j(\lambda)$ is the multiplication by $\exp(ic_0^{(j)}(\lambda))$. Define the *subprincipal action* $c_1^{(j)}$ in the same way, replacing *L* by L_1 and using the connection ∇^1 (depending on λ) described above. Finally, set $\epsilon_{\lambda}^{(j)} = \epsilon(\mathscr{C}_j(\lambda))$; in fact, $\epsilon_{\lambda}^{(j)}$ is a constant $\epsilon_{\lambda}^{(j)} = \epsilon^{(j)}$ for λ in *I*. Fix *E* in *I*; the Bohr–Sommerfeld conditions (see [Charles 2006] for more details) state that there exists $\eta > 0$ such that the intersection of the spectrum of T_k with $[E - \eta, E + \eta]$ modulo $O(k^{-\infty})$ is the union of the spectra σ_j , $1 \le j \le N$, where the elements of σ_j are the solutions of

$$g^{(j)}(\lambda,k) \in 2\pi k^{-1}\mathbb{Z},$$

where $g^{(j)}(\cdot, k)$ is a sequence of functions of $\mathscr{C}^{\infty}(I)$ admitting an asymptotic expansion

$$g^{(j)}(\cdot, k) = \sum_{\ell \ge 0} k^{-\ell} g_{\ell}^{(j)}$$

with coefficients $g_{\ell}^{(j)} \in \mathscr{C}^{\infty}(I)$. Furthermore, one has

$$g_0^{(j)}(\lambda) = c_0^{(j)}(\lambda)$$
 and $g_1^{(j)}(\lambda) = c_1^{(j)}(\lambda) + \epsilon^{(j)}\pi$.

5. Microlocal normal form

5A. *Normal form on the Bargmann side.* Let P_k be the operator defined by

$$P_k = \frac{i}{2} \left(z^2 - \frac{1}{k^2} \frac{\partial^2}{\partial z^2} \right)$$

with domain $\mathbb{C}[z] \subset \mathfrak{R}_k$; it is a Toeplitz operator with normalized symbol $p_0(x, \xi) = x\xi$. We will use this operator to understand the behavior of A_k when acting on sections localized near each s_j , $1 \le j \le n$. In fact, we study the operator $A_k - E$, where $E \in \mathbb{R}$ is allowed to vary in a neighborhood of zero.

Let $j \in [[1, n]]$. The isochore Morse lemma [Colin de Verdière and Vey 1979] yields a symplectomorphism χ_E from a neighborhood of s_j in M to a neighborhood of the origin in \mathbb{R}^2 , depending smoothly on

E, and a smooth function g_i^E , again depending smoothly on E, such that

$$((a_0 - E) \circ \chi_E^{-1})(x, \xi) = g_j^E(x\xi)$$

and $(g_i^E)'(0) \neq 0$. Using a Taylor formula, one can write

$$g_j^E(t) = w_j^E(t)(t - f_j(E))$$

with w_j^E smooth, depending smoothly on E, and such that $w_j^E(0) \neq 0$, and with f_j a smooth function of E with $f_j(0) = 0$. This symplectic normal form can be quantized to the following semiclassical normal form.

Proposition 5.1. Fix $j \in [[1, n]]$. Then there exist a smooth function f_j , a Fourier integral operator $U_k^E : \mathfrak{B}_k \to \mathfrak{H}_k$, a Toeplitz operator W_k^E , elliptic at 0, and a sequence of smooth functions $\varepsilon_j(\cdot, k)$ admitting an asymptotic expansion $\varepsilon_j(E, k) = \sum_{\ell=0}^{+\infty} k^{-\ell} \varepsilon_j^{(\ell)}(E)$ such that

$$(U_k^E)^*(A_k - E)U_k^E \sim W_k^E (P_k - f_j(E) - k^{-1}\varepsilon_j(E, k))$$

microlocally near s_i. Furthermore,

- U_k and W_k depend smoothly on E,
- $f_j(E)$ is the value of $x\xi$ whenever $(x, \xi) = \chi_E(m)$ for $m \in \Gamma_E$, and
- the first term of the asymptotic expansion of $\varepsilon_i(0, k)$ is given by

$$\varepsilon_j^{(0)}(0) = \frac{-a_1(s_j)}{|\det(\operatorname{Hess}(a_0)(s_j))|^{1/2}}$$

where $\text{Hess}(a_0)(s_i)$ is the Hessian of a_0 at s_i .

The proof is an adaptation of the one in [Colin de Verdière and Parisse 1994a, §3] to the Toeplitz setting; see also [Le Floch 2014, Theorem 5.3] for a similar result in the elliptic case.

5B. *Link with the pseudodifferential setting.* Now we use the Bargmann transform to understand the structure of the space of microlocal solutions of $P_k - E = 0$.

Lemma 5.2. *For* $u \in \mathscr{S}(\mathbb{R})$ *, one has*

$$B_k^* P_k B_k u = \frac{1}{ik} (x \partial_x + 1) u.$$

From now on, we will denote by S_k the pseudodifferential operator $(1/ik)(x\partial_x + 1)$. This correspondence will allow us to understand the space of microlocal solutions of $P_k - E$ on a neighborhood of the origin. Let us recall the results of [Colin de Verdière and Parisse 1994a; 1994b] that will be useful for our study.

Proposition 5.3 [Colin de Verdière and Parisse 1994a, Proposition 3]. Let *E* be such that |E| < 1. The space of microlocal solutions of $(S_k - E)u_k = 0$ on $Q = [-1, 1]^2$ is a free \mathbb{C}_k -module of rank 2.

1612

Moreover, we know two bases of this module. Indeed, let \mathcal{F}_k be the semiclassical Fourier transform:

$$(\mathcal{F}_k u)(\xi) = \frac{k}{2\pi} \int_{\mathbb{R}} \exp(-ikx\xi)u(x) \, dx;$$

then the tempered distributions $v_{k,E}^{(j)}$, $j \in \llbracket 1, 4 \rrbracket$, defined as

$$v_{k,E}^{(1),(2)}(x) = \mathbf{1}_{\mathbb{R}^*_{\pm}}(x) \exp\left(\left(-\frac{1}{2} + ikE\right)\ln|x|\right),$$

$$v_{k,E}^{(3),(4)}(x) = \mathcal{F}_k^{-1}\left(\mathbf{1}_{\mathbb{R}^*_{\pm}}(\xi)\exp\left(\left(-\frac{1}{2} + ikE\right)\ln|\xi|\right)\right)(x),$$

are exact solutions of the equation $(S_k - E)v_{k,E}^{(j)} = 0$; better than that, the pairs $(v_{k,E}^{(1)}, v_{k,E}^{(2)})$ and $(v_{k,E}^{(3)}, v_{k,E}^{(4)})$ each form a basis of the space of solutions of this equation. Now, choose a compactly supported function $\chi \in \mathscr{C}^{\infty}(\mathbb{R})$ with constant value 1 on a neighborhood of I = [-1, 1] and vanishing outside 2*I*. Define the pseudodifferential operator Π_Q by

$$\Pi_Q u(x) = \frac{k}{2\pi} \int_{\mathbb{R}^2} \exp(ik(x-y)\xi)\chi(\xi)\chi(y)u(y)\,dy\,d\xi.$$

Then Π_Q maps $\mathscr{D}'(\mathbb{R})$ into $\mathscr{S}(\mathbb{R})$, and $\Pi_Q \sim \text{Id on } Q$. Set

$$w_{k,E}^{(j)} = \Pi_Q v_k^{(j)};$$

then the $w_{k,E}^{(j)}$, $j \in [[1, 4]]$, belong to $\mathscr{S}(\mathbb{R})$, and are microlocal solutions of $(S_k - E)w_{k,E}^{(j)} = 0$ on Q. The matrix of the change of basis from $(w_{k,E}^{(3)}, w_{k,E}^{(4)})|_Q$ to $(w_{k,E}^{(1)}, w_{k,E}^{(2)})|_Q$ is given by

$$M_k(E) = \mu_k(E) \begin{pmatrix} 1 & i \exp(-\pi kE) \\ i \exp(-\pi kE) & 1 \end{pmatrix} + O(k^{-\infty}),$$
(7)

with

$$\mu_k(E) = \frac{1}{\sqrt{2\pi}} \Gamma\left(\frac{1}{2} + ikE\right) \exp\left(\frac{\pi}{4}(2kE - i) - ikE\ln k\right).$$

5C. *Microlocal solutions of* $(P_k - E)u_k = 0$. Now, consider the Bargmann transforms of the sequences $w_{k,E}^{(j)}$: $u_{k,E}^{(j)} = B_k w_{k,E}^{(j)}$. Propositions 5.3 and 3.5 yield:

Proposition 5.4. For *E* such that |E| < 1, the space of microlocal solutions of $(P_k - E)u_k = 0$ on $Q = [-1, 1]^2 \subset \mathbb{C}$ is a free \mathbb{C}_k -module of rank 2. Moreover, the pairs $(u_{k,E}^{(1)}, u_{k,E}^{(2)})$ and $(u_{k,E}^{(3)}, u_{k,E}^{(4)})$ are two bases of this module; the transfer matrix is given by (7).

Remark. The sections $u_{k,E}^{(j)}$, j = 1, ..., 4, can be written in terms of parabolic cylinder functions. Nonnenmacher and Voros [1997] studied these functions in order to understand the behavior of the generalized eigenfunctions of P_k ; the result of this subtle analysis, based on Stokes lines techniques, was not exactly what we needed here, and this is partly why we chose to use the microlocal properties of the Bargmann transform instead.

6. Bohr–Sommerfeld conditions

To obtain the Bohr–Sommerfeld conditions, we will recall the reasoning of [Colin de Verdière and Parisse 1999], and will also refer to [Colin de Verdière and Vũ Ngọc 2003]. Since the general approach is the same, we only recall the main ideas and focus on what differs in the Toeplitz setting.

6A. The sheaf of standard bases. As in Section 4, introduce the sheaf (\mathfrak{F}, Γ_0) of microlocal solutions of $A_k \psi_k = 0$ over Γ_0 ; we recall that a global nontrivial microlocal solution corresponds to a global nontrivial section of this sheaf. However, since the topology of Γ_0 is much more complicated than in the regular case, the condition for the existence of such a section is not as simple as saying that a holonomy must be trivial. In particular, we have to handle what happens at critical points. To overcome this difficulty, the idea is to introduce a new sheaf over Γ_0 that will contain all the information we need to construct a global nontrivial microlocal solution; roughly speaking, this new sheaf can be thought of as the limit of the sheaf $\mathfrak{F} \to \Gamma_E$ of microlocal solutions over regular levels as *E* goes to 0.

Following [Colin de Verdière and Parisse 1999], we introduce a sheaf (\mathfrak{L}, Γ_0) of free \mathbb{C}_k -modules of rank 1 over Γ_0 as follows: to each point $m \in \Gamma_0$, associate the free module $\mathfrak{L}(m)$ generated by *standard* bases at m. If m is a regular point, a standard basis is any basis of the space of microlocal solutions near m. At a critical point s_i , we define a standard basis in the following way. The \mathbb{C}_k -module of microlocal solutions near s_i is free of rank 2; moreover, it is the graph of a linear function. Indeed, number the four local edges near s_i with cyclic order 1, 3, 2, 4, so that the edges e_1, e_2 are the ones that leave s_i . Let us denote by $Sol(e_1e_2)$ and $Sol(e_3e_4)$ the modules of microlocal solutions over the disjoint union of the local unstable edges e_1 , e_2 and stable edges e_3 , e_4 , respectively. Sol (e_1e_2) and Sol (e_3e_4) are free modules of rank 2, and there exists a linear map $T_i : Sol(e_3e_4) \rightarrow Sol(e_1e_2)$ such that u is a solution near s_j if and only if its restrictions satisfy $u|_{Sol(e_1e_2)} = T_j u|_{Sol(e_3e_4)}$. Equivalently, given two solutions on the entering edges, there is a unique way to obtain two solutions on the leaving edges by passing the singularity. One can choose a basis element for each $\mathfrak{F}(e_i)$, $i \in [[1, 4]]$, and express T_i as a 2 × 2 matrix (defined modulo $O(k^{-\infty})$); one can show that the entries of this matrix are all nonvanishing. An argument of elementary linear algebra shows that, once the matrix T_i is chosen, the basis elements of the modules $\mathfrak{F}(e_i)$ are fixed up to multiplication by the same factor; this means that for T_i fixed, the \mathbb{C}_k -module of basis elements is of rank 1. Moreover, the study of the previous section implies that there exists a choice of basis elements such that T_i has the following expression:

$$T_j = \exp\left(-\frac{i\pi}{4}\right) \mathscr{E}_k(\varepsilon_j(0,k)) \begin{pmatrix} 1 & i\exp(-\pi\varepsilon_j(0,k))\\ i\exp(-\pi\varepsilon_j(0,k)) & 1 \end{pmatrix},\tag{8}$$

where

$$\mathscr{E}_{k}(t) = \frac{1}{\sqrt{2\pi}} \Gamma\left(\frac{1}{2} + it\right) \exp\left(t\left(\frac{\pi}{2} - i\ln k\right)\right).$$
(9)

This allows us to call the choice of the basis elements of $\mathfrak{F}(e_i)$ a standard basis if T_i is given by (8).

 (\mathfrak{L}, Γ_0) is a locally free sheaf of rank-1 \mathbb{C}_k -modules, and its transition functions are constants. Hence, it is flat, thus characterized by its holonomy

$$\operatorname{hol}_{\mathfrak{L}}: \operatorname{H}_1(\Gamma_0) \to \mathbb{C}_k.$$

In terms of Čech cohomology, if γ is a cycle in Γ_0 and $\Omega_1, \ldots, \Omega_\ell$ is an ordered sequence of open sets covering the image of γ , each Ω_i being equipped with a standard basis u_i (at a critical point, we make the abusive correspondence between a standard basis and its elements), then

$$hol_{\mathcal{L}}(\gamma) = x_{1,2} \cdots x_{\ell-1,\ell} x_{\ell,1},$$
 (10)

where $x_{i,j} \in \mathbb{C}_k$ is such that $u_i = x_{i,j}u_j$ on $\Omega_i \cap \Omega_j$.

Now, cut n + 1 edges of Γ_0 , each one corresponding to a cycle γ_i in a basis $(\gamma_1, \ldots, \gamma_{n+1})$ of $H_1(\Gamma_0, \mathbb{Z})$, in such a way that the remaining graph is a tree \mathcal{T} . Then the sheaf $(\mathfrak{L}, \mathcal{T})$ has a nontrivial global section. The conditions to obtain a nontrivial global section of the sheaf (\mathfrak{F}, Γ_0) of microlocal solutions on Γ_0 are given in the following theorem. They were already present in the work of Colin de Verdière and Parisse in the case of pseudodifferential operators, but the fact that they extend to our setting is a consequence of the results obtained in the previous sections.

Theorem 6.1. The sheaf (\mathfrak{F}, Γ_0) has a nontrivial global section if and only if the following linear system of 3n + 1 equations with 3n + 1 unknowns $(x_\alpha \in \mathbb{C}_k)_{\alpha \in \{\text{edges of } \mathcal{T}\}}$ has a nontrivial solution:

(1) If the edges $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ connect at s_j (with the same convention as before for the labeling of the edges), then

$$\binom{x_{\alpha_3}}{x_{\alpha_4}} = T_j \binom{x_{\alpha_1}}{x_{\alpha_2}}$$

(2) If α and β are the extremities of a cut cycle γ_i , then

$$x_{\alpha} = \operatorname{hol}_{\mathfrak{L}}(\gamma_i) x_{\beta},$$

where the following orientation is assumed: γ_i can be represented as a closed path starting on the edge α and ending on the edge β .

Proof. It follows from Propositions 4.6 and 5.4 that the proof can be directly adapted from the one of [Colin de Verdière and Vũ Ngọc 2003, Theorem 2.7]. \Box

6B. *Singular invariants.* Of course, in order to use this result, it remains to compute the holonomy hol_{\mathcal{L}}. For this purpose, let us introduce some geometric quantities close to the ones used to express the regular Bohr–Sommerfeld conditions. Let γ be a cycle in Γ_0 , and denote by s_{j_m} , $m = 1, \ldots, p$, the critical points contained in γ .

Definition 6.2 (singular subprincipal action). Decompose γ as a concatenation of smooth paths and paths containing exactly one critical point; if *A* and *B* are the ordered endpoints of a path, we will call it [*A*, *B*]. Define the subprincipal action $\tilde{c}_1(\gamma)$ as the sum of the contributions of these paths, given by the following rules:

Figure 1. Computation of $\tilde{c}_1([A, B])$.

• If [A, B] contains only regular points, its contribution to the singular subprincipal action is

$$\tilde{c}_1([A, B]) = c_1([A, B]),$$

as in the regular case (see Section 4E for the definition of $c_1([A, B])$);

• If [A, B] contains the singular point s and is smooth at s, then

$$\tilde{c}_1([A, B]) = \lim_{a, b \to s} (c_1([A, a]) + c_1([b, B])),$$

where *a* and *b* lie on the same branches as *A* and *B*, respectively;

• If [A, B] contains the singular point s and is not smooth at s, we set

$$\tilde{c}_1([A, B]) = \lim_{a, b \to s} \left(c_1([A, a]) + c_1([b, B]) \pm \varepsilon_s^{(0)} \ln \left| \int_{P_{a, b}} \omega \right| \right), \tag{11}$$

where $P_{a,b}$ is the parallelogram (defined in any coordinate system) built on the vectors \overrightarrow{sa} and \overrightarrow{sb} , $\pm = +$ if [A, B] is oriented according to the flow of $X_{a_0}, \pm = -$ otherwise, and

$$\varepsilon_s^{(0)} = \frac{-a_1(s)}{|\det(\operatorname{Hess}(a_0)(s))|^{1/2}},$$

as before.

Definition 6.3 (singular index). Let $(\gamma_t)_t$ be a continuous family of immersed closed curves such that $\gamma_0 = \gamma$ and γ_t is smooth for t > 0. Then the function $t \mapsto \epsilon(\gamma_t), t > 0$, is constant; we denote by ϵ its value. We define the singular index $\tilde{\epsilon}(\gamma)$ by setting

$$\tilde{\epsilon}(\gamma) = \epsilon + \sum_{m=1}^{p} \frac{\rho_m}{4},\tag{12}$$

where $\rho_m = 0$ if γ is smooth at s_{j_m} , $\rho_m = +1$ if at s_{j_m} , γ turns in the direct sense with respect to the cyclic order (1, 3, 2, 4) of the local edges, and $\rho_m = -1$ otherwise.

Observe that both \tilde{c}_1 and $\tilde{\epsilon}$ define \mathbb{Z} -linear maps on $H_1(\Gamma_0, \mathbb{Z})$.

Theorem 6.4. Let γ be a cycle in Γ_0 . Then the holonomy $\operatorname{hol}_{\mathfrak{L}}(\gamma)$ of γ in \mathfrak{L} has the form

$$\operatorname{hol}_{\mathfrak{L}}(\gamma) = \exp(ik\theta(\gamma, k)), \tag{13}$$

where $\theta(\gamma, k)$ admits an asymptotic expansion in nonpositive powers of k. Moreover, if we denote by $\theta(\gamma, k) = \sum_{\ell>0} k^{-\ell} \theta_{\ell}(\gamma)$ this expansion, the first two terms are given by the formulas

$$\theta_0(\gamma) = c_0(\gamma), \quad \theta_1(\gamma) = \tilde{c}_1(\gamma) + \tilde{\epsilon}(\gamma)\pi.$$
 (14)

Proof. We just prove here that the holonomy has the claimed behavior. It is enough to show that one can choose a finite open cover $(\Omega_{\alpha})_{\alpha}$ of γ and a section u_k^{α} of $\mathfrak{L} \to \Omega_{\alpha}$ for which the transition constants $c_k^{\alpha\beta}$ have the required form. On the edges of γ , this follows from the analysis of Section 4. At a vertex, we choose the standard basis $U_k^0 u_{k,\varepsilon_j(0,k)}^{(j)}$, where $u_{k,E}^{(j)}$ is defined in Section 5C and U_k^E is the operator of Proposition 5.1; to conclude, we observe that the restrictions of these sections to the corresponding edge are Lagrangian sections.

6C. *Computation of the singular holonomy.* This section is devoted to the proof of the second part of Theorem 6.4. We use the method of [Colin de Verdière and Vũ Ngọc 2003], but of course, our case is simpler, because in the latter, the authors investigated the case of singularities in (real) dimension 4 (for pseudodifferential operators). Let us work on microlocal solutions of the equation

$$(A_k - E)u_k = 0, (15)$$

where *E* varies in a small interval *I* containing the critical value 0. The critical value separates *I* into two open sets I^+ and I^- , with the convention $I^{\pm} = I \cap \mathbb{R}^*_{\pm}$. Let $D^{\pm} = I^{\pm} \cup \{0\}$, and let \mathfrak{C}^{\pm} be the set of connected components of the open set $a_0^{-1}(I^{\pm})$. The smooth family of circles in the component p^{\pm} is denoted by $\mathscr{C}_{p^{\pm}}(E)$, $E \in I^{\pm}$.

As in Section 4, for $E \neq 0$, we denote by (\mathfrak{F}, Γ_E) the sheaf of microlocal solutions of (15) on Γ_E ; remember that it is a flat sheaf of rank-1 \mathbb{C}_k -modules, characterized by its Čech holonomy hol \mathfrak{F} . The idea is to let *E* go to 0 and compare this holonomy to the holonomy of the sheaf $\mathfrak{L} \to \Gamma_0$.

Definition 6.5. Near each critical point s_j , we consider two families of points $A_j(E)$ and $B_j(E)$ in $\mathscr{C}^{\infty}(D^{\pm}, \bar{p}^{\pm} \setminus \{s_j\})$ lying on $\mathscr{C}_{p^{\pm}}(E)$, and such that $A_j(0)$ and $B_j(0)$ lie in the stable and unstable manifolds, respectively. Endow a small neighborhood of A_j (resp. B_j) with a microlocal solution u_{A_j} (resp. u_{B_j}) of (15) which is a Lagrangian section uniform in $E \in D^{\pm}$. Define the quantity $\Theta([A_j(E), B_j(E)], k)$ as the phase of the Čech holonomy of the path $[A_j(E), B_j(E)] \subset \Gamma_E$ joining $A_j(E)$ and $B_j(E)$ in the sheaf (\mathfrak{F}, Γ_E) computed with respect to u_{A_j} and u_{B_j} . Define in the same way the quantity $\Theta([B_j(E), A_{j'}(E)], k)$ for the path joining $B_j(E)$ and $A_{j'}(E)$.

Note that if we change the sections u_{A_j} and $u_{B_{j'}}$, the phase of the holonomy is modified by an additive term admitting an asymptotic expansion in $k \mathscr{C}^{\infty}(D^{\pm})[[k^{-1}]]$. The singular behavior of the holonomy is thus preserved; moreover, the added term is a Čech coboundary, and hence does not change the value of the holonomy along a closed path.

Figure 2. Regular and local paths.

Then, we consider continuous families of paths $(\zeta_E)_{E \in D^{\pm}}$ drawn on a circle $\mathscr{C}_{p^{\pm}}(E)$ and whose endpoints are some of the $A_i(E)$ and $B_{i'}(E)$ of the previous definition. We say that ζ_E is

- regular if ζ_0 does not contain any of the critical points s_i ,
- *local* if ζ_0 contains exactly one critical point,

and we consider only these two types of paths. The following proposition implies that a path that is local in the above sense can always be assumed to be local in the sense that it is included in a small neighborhood of the critical point that it contains.

Proposition 6.6. If $\zeta_E = [B_j(E), A_{j'}(E)]$ is a regular path, then the map $E \mapsto \Theta(\zeta_E, k)$ belongs to $\mathscr{C}^{\infty}(D^{\pm})$ and admits an asymptotic expansion in $k\mathscr{C}^{\infty}(D^{\pm})[[k^{-1}]]$. This expansion starts as follows:

$$\Theta(\zeta_E, k) = k \Big(c_0(\zeta_E) + \Phi_{B_j(E)}^{(-1)}(B_j(E)) - \Phi_{A_{j'}(E)}^{(-1)}(A_{j'}(E)) \Big) \\ + c_1(\zeta_E) + \operatorname{hol}_{\delta_{\zeta_E}}(\zeta_E) + \Phi_{B_j(E)}^{(0)}(B_j(E)) - \Phi_{A_{j'}(E)}^{(0)}(A_{j'}(E)) + O(k^{-1}); \quad (16)$$

see Section 4E for the notation.

In order to study the behavior of the holonomy of a local path with respect to E, we use the parameterdependent normal form given by Proposition 5.1. Using the notation of this proposition, we will write $\mathfrak{e}_j(E, k) = f_j(E) + k^{-1}\varepsilon_j(E, k)$. Introduce the Bargmann transform $w_{k,E}^i$ of $v_{k,E}^i$, where

$$v_{k,E}^{1,2}(x) = \mathbf{1}_{\mathbb{R}^*_{\pm}}(x)|x|^{-1/2}\exp(ik\mathfrak{e}_j(E,k)\ln|x|),$$

$$v_{k,E}^{3,4}(x) = \mathcal{F}_k^{-1}\big(\mathbf{1}_{\mathbb{R}^*_{\pm}}(x)(\xi)|\xi|^{-1/2}\exp(ik\mathfrak{e}_j(E,k)\ln|\xi|)\big)(x).$$

Let $\widetilde{w}_{k,E}^{i}$ be a sequence having microsupport in a sufficiently small neighborhood of the origin and microlocally equal to $w_{k,E}^{i}$ on it; then $\widetilde{w}_{k,E}^{i}$ is a basis of the module of microlocal solutions of $P_{k} - \mathfrak{e}_{j}(E, k)$ near the image of the edge with label *i* by the symplectomorphism χ_{E} . Consequently, the section $\phi_{k,E}^{(i)} = U_{k}^{E} \widetilde{w}_{k,E}^{i}$, where U_{k}^{E} is the operator used for the normal form, is a basis of the module of microlocal solutions of (15) near the edge e_{i} . Moreover, it displays good behavior with respect to the spectral parameter.

Lemma 6.7. The restriction of $\phi_{k,E}^{(i)}$ to a neighborhood of the edge numbered *i* is a Lagrangian section uniformly for $E \in D^{\pm}$.

Proof. First, we prove using a parameter-dependent stationary phase lemma that $w_{k,E}^i$ is a Lagrangian section associated to the image of the *i*-th edge, uniformly in $E \in D^{\pm}$. We conclude by the fact that the image of a Lagrangian section depending smoothly on a parameter by a Fourier integral operator is a Lagrangian section depending smoothly on this parameter.

We also recall the following useful lemma.

Lemma 6.8 [Colin de Verdière and Vũ Ngọc 2003, Lemma 2.18]. Set $\beta_j(E, k) = \frac{1}{2} + ik \mathfrak{e}_j(E, k)$ and

$$\nu_j^+ = \left(\frac{k}{2\pi}\right)^{1/2} \Gamma(\beta_j) \exp\left(-\beta_j \ln k - i\beta_j \frac{\pi}{2}\right),$$

$$\nu_j^- = \left(\frac{k}{2\pi}\right)^{1/2} \Gamma(\beta_j) \exp\left(-\beta_j \ln k + i\beta_j \frac{\pi}{2}\right),$$

so that

$$M_k(\mathfrak{e}_j(E,k)) = \begin{pmatrix} \nu_j^+(E,k) & \nu_j^-(E,k) \\ \nu_j^-(E,k) & \nu_j^+(E,k) \end{pmatrix}$$

where M_k was defined in (7). Then, for any $E \in I^{\pm}$,

$$-i \ln v_j^{\pm} = k \left(f_j(E) \ln |f_j(E)| - f_j(E) \right) + \varepsilon_j^{(0)}(E) \ln |f_j(E)| \mp \frac{\pi}{4} + O_E(k^{-1}).$$

The following proposition shows that the holonomy $\Theta(\zeta_E, k)$, which has a singular behavior as *E* tends to 0, can be regularized.

Proposition 6.9. Fix a component $p^{\pm} \in \mathfrak{C}^{\pm}$, and let $\zeta_E = [A_j(E), B_j(E)]$ be a local path near the critical point s_j . Assume moreover that ζ_E is oriented according to the flow of a_0 . Then there exists a sequence of $\mathbb{R}/2\pi\mathbb{Z}$ -valued functions $g_{\zeta}(\cdot, k) \in \mathscr{C}^{\infty}(D^{\pm})$, $E \mapsto g_{\zeta_E}(k)$, admitting an asymptotic expansion in $k \mathscr{C}^{\infty}(D^{\pm})[[k^{-1}]]$ of the form

$$g_{\zeta}(E,k) = \sum_{\ell=-1}^{+\infty} k^{-\ell} g_{\zeta}^{(\ell)}(E),$$

such that

$$g_{\zeta}(E,k) = \Theta(\zeta_E,k) - i \ln v_j^{\pm}(E) \pmod{2\pi \mathbb{Z}} \quad for \ all \ E \in I^{\pm}.$$

The first terms of the asymptotic expansion of $g_{\zeta}(\cdot, k)$ are given, for $E \in I^{\pm}$, by

$$g_{\zeta}^{(-1)}(E) = c_0(\zeta_E) + \left(f_j(E)\ln|f_j(E)| - f_j(E)\right) + \Phi_{A_j(E)}^{(-1)}(A_j(E)) - \Phi_{B_j(E)}^{(-1)}(B_j(E))$$
(17)

and

$$g_{\zeta}^{(0)}(E) = c_1(\zeta_E) + \operatorname{hol}_{\delta_{\zeta_E}}(\zeta_E) \mp \frac{\pi}{4} + \varepsilon_j^0(E) \ln |f_j(E)| + \Phi_{A_j(E)}^{(0)}(A_j(E)) - \Phi_{B_j(E)}^{(0)}(B_j(E)).$$
(18)

Proof. We can assume that the paths ζ_E , $E \in D^{\pm}$ all entirely lie in the open set Ω_{s_j} where the normal form of Proposition 5.1 is valid. Endow each edge e_i with the section $\phi_{k,E}^{(i)}$ defined earlier; by Lemma 6.7, these sections can be used to compute a new holonomy $\widetilde{\Theta}(\zeta_E, k)$. But we know how the different sections $\phi_{k,E}^{(i)}$ are related: (7) shows that $\widetilde{\Theta}(\zeta_E, k) - i \ln \nu_j^{\pm}(E) = 0$. Now, coming back to the microlocal solutions u_{A_j}, u_{B_j} , we have that $\Theta(\zeta_E, k) = \widetilde{\Theta}(\zeta_E, k) + c(E, k)$, where c(E, k) admits an asymptotic expansion in $k \mathscr{C}^{\infty}(D^{\pm})[[k^{-1}]]$.

Since the sections $\phi_{k,E}^{(i)}$, $i = 1 \dots 4$, form a standard basis at s_j , they can also be used to compute the holonomy hol_{\mathfrak{L}}. Of course, for this choice of sections, one has hol_{\mathfrak{L}}(ζ_0) = 1. This allows to obtain the following result.

Proposition 6.10. Let γ be a cycle in Γ_0 , oriented according to the Hamiltonian flow of a_0 , and of the form

$$\gamma = \zeta_1^{\text{loc}}(0)\zeta_1^{\text{reg}}(0)\zeta_2^{\text{loc}}(0)\zeta_2^{\text{reg}}(0)\cdots\zeta_p^{\text{loc}}(0)\zeta_p^{\text{reg}}(0).$$

where ζ_j^{loc} and ζ_j^{reg} are local and regular paths, respectively, in the sense introduced earlier. Define

$$g(0,k) \sim \sum_{\ell=-1}^{+\infty} g^{(\ell)}(0)k^{-\ell}$$

as the sum

$$g(0,k) = g_{\zeta_1^{\text{loc}}}(0,k) + g_{\zeta_1^{\text{reg}}}(0,k) + \dots + g_{\zeta_p^{\text{loc}}}(0,k) + g_{\zeta_p^{\text{reg}}}(0,k),$$

where $g_{\zeta_i^{\text{loc}}}$ is given by Proposition 6.9 and $g_{\zeta_i^{\text{reg}}}(E, k) = \Theta(\zeta_j^{\text{reg}}(E), k)$. Then

$$\operatorname{hol}_{\mathfrak{L}}(\gamma) = \exp(ig(0,k)) + O(k^{-\infty}).$$

Proof. Notice that $\tilde{g}_{\zeta_j^{\text{loc}}}(0,k) = 0$, where $\tilde{g}_{\zeta_j^{\text{loc}}}(\cdot,k)$ is defined as $g_{\zeta_j^{\text{loc}}}(\cdot,k)$, replacing $\Theta(\zeta_j^{\text{loc}},k)$ by $\tilde{\Theta}(\zeta_j^{\text{loc}},k)$, and hence $\text{hol}_{\mathfrak{L}}(\zeta_j^{\text{loc}}(0)) = \exp(i\tilde{g}_{\zeta_j^{\text{loc}}}(0,k))$. As in the previous proof, come back to the solutions u_{A_j}, u_{B_j} , and set

$$c_j(E,k) = g_{\zeta_i^{\text{loc}}}(E,k) - \tilde{g}_{\zeta_i^{\text{loc}}}(0,k)$$

Putting $\tilde{g}_{\zeta_i^{\text{reg}}}(E, k) = \widetilde{\Theta}(\zeta_j^{\text{reg}}(E), k)$, a simple computation shows that

$$\sum_{j=1}^{p} \tilde{g}_{\zeta_{j}^{\text{reg}}}(E,k) = \sum_{j=1}^{p} (g_{\zeta_{j}^{\text{reg}}}(E,k) + c_{j}(E,k)),$$

and the conclusion follows.

This is enough to prove the second part of Theorem 6.4, recalled in the following corollary.

Corollary 6.11. The first two terms in the asymptotic expansion of the phase of $hol_{\Sigma}(\gamma)$ are given by (14).

Note that γ cannot always be obtained as a limit of smooth families of regular cycles; consider for instance the cycles γ_1 , γ_2 , γ_3 in the example treated in Section 7C (see Figures 13, 14). This is why the proof of this result requires some care.

Proof. We start with the case of a cycle γ oriented according to the Hamiltonian flow of a_0 . Since $\mathfrak{e}_i^0(0) = 0$, formula (17) gives, for $j \in \llbracket 1, p \rrbracket$,

$$g_{\zeta_j^{\text{loc}}}^{(-1)}(0) = c_0(\zeta_j^{\text{loc}}(0)) + \Phi_{A_j}^{(-1)}(A_j(0)) - \Phi_{B_j}^{(-1)}(B_j(0)),$$

while Proposition 6.6 shows that (identifying j = p + 1 with j = 1)

$$g_{\zeta_j^{\text{reg}}}^{(-1)}(0) = c_0(\zeta_j^{\text{reg}}(0)) + \Phi_{B_j}^{(-1)}(B_j(0)) - \Phi_{A_{j+1}}^{(-1)}(A_{j+1}(0)).$$

1620

Consequently,

$$g^{(-1)}(0) = c_0(\gamma).$$

Let us now compute the subprincipal term $g_{\zeta_{ioc}^{(0)}}^{(0)}(0)$. Recall that it is equal to the limit of

$$c_1(\zeta_j^{\text{loc}}(E)) + \text{hol}_{\delta_{\zeta_j^{\text{loc}}(E)}}(\zeta_j^{\text{loc}}(E)) \mp \frac{\pi}{4} + \varepsilon_j^{(0)}(E) \ln |f_j(E)| + \Phi_{A_j(E)}^{(0)}(A_j(E)) - \Phi_{B_j(E)}^{(0)}(B_j(E))$$

as E goes to 0, which is equal to

$$\Phi_{A_{j}(0)}^{(0)}(A_{j}(0)) - \Phi_{B_{j}(0)}^{(0)}(B_{j}(0)) \mp \frac{\pi}{4} + \lim_{E \to 0} \left(c_{1}(\zeta_{j}^{\text{loc}}(E)) + \text{hol}_{\delta_{\zeta_{j}^{\text{loc}}(E)}}(\zeta_{j}^{\text{loc}}(E)) + \varepsilon_{j}^{(0)}(E) \ln |f_{j}(E)| \right).$$

First, we show that

$$\lim_{E \to 0} \left(c_1(\zeta_j^{\text{loc}}(E)) + \varepsilon_j^{(0)}(E) \ln |f_j(E)| \right) = \tilde{c}_1(\zeta_j^{\text{loc}}(0)),$$
(19)

where \tilde{c}_1 was introduced in Definition 6.2. Decompose

$$c_1(\zeta_j^{\text{loc}}(E)) = \int_{\zeta_j^{\text{loc}}(E)} \nu + \int_{\zeta_j^{\text{loc}}(E)} \kappa_E,$$

where we recall that $-i\nu$ stands for the local connection 1-form associated to the Chern connection of L_1 , and κ_E is such that $\kappa_E(X_{a_0}) = -a_1$. Of course, the term $\int_{\zeta_j^{\text{loc}}(E)} \nu$ converges to $\int_{\zeta_j^{\text{loc}}(0)} \nu$ as E tends to 0. Moreover, we have seen that there exist a symplectomorphism χ_E and a smooth function g_j^E such that $(g_j^E)'(0) > 0$ and

$$(a_0 \circ \chi_E^{-1})(x,\xi) - E = g_j^E(x\xi).$$
⁽²⁰⁾

Hence, if we denote by \tilde{a}_0 (resp. $\tilde{a}_1, \tilde{\kappa}_E$) the pullback of a_0 (resp. a_1, κ_E) by χ_E^{-1} , we have

$$X_{\tilde{a}_0}(x,\xi) = (g_j^E)'(x\xi) X_{x\xi}(x,\xi),$$

so that $\tilde{\kappa}_E$ is characterized by

$$\tilde{\kappa}_E(X_{x\xi}) = \frac{-\tilde{a}_1(x,\xi)}{(g_j^E)'(x\xi)}$$

Since $(g_i^E)'(0) \neq 0$, the function

$$b(x,\xi) = \frac{-\tilde{a}_1(x,\xi)}{(g_i^E)'(x\xi)}$$

is smooth (considering a smaller neighborhood of s_j for the definition of ζ_j^{loc} if necessary). Moreover, from (20), one finds that $(g_j^E)'(0) = |\det(\text{Hess}(a_0)(s))|^{-1/2}$, which yields $b(0) = \varepsilon_j^{(0)}(0)$. Using a known result (see [Guillemin and Schaeffer 1977, Theorem 2, p. 175] for instance), we can construct smooth functions $F : \mathbb{R}^2 \to \mathbb{R}$ and $K : \mathbb{R} \to \mathbb{R}$ such that

$$b(x,\xi) = K(x\xi) - L_{X_{x\xi}}F(x,\xi);$$

since $x\xi = f_j(E)$ whenever $\chi_E^{-1}(x,\xi)$ belongs to Γ_E , this can be written

$$b(x,\xi) = K(f_j(E)) - L_{X_{x\xi}}F(x,\xi).$$

Therefore, the function

$$G = K(f_j(E)) \ln |x| - F$$
 (or $-K(f_j(E)) \ln |\xi| - F$ where $x = 0$)

restricted to $\chi(\Gamma_E)$ is a primitive of $\tilde{\kappa}_E$. This yields

$$\int_{\zeta_j^{\text{loc}}(E)} \kappa_E = G(\tilde{B}_j) - G(\tilde{A}_j) = K(f_j(E))(\ln|x_{B_j}| - \ln|x_{A_j}|) + F((\tilde{A}_j) - F(\tilde{B}_j),$$
(21)

where $\tilde{m} = \chi_E(m)$ for any point $m \in M$, and (x_m, ξ_m) are the coordinates of \tilde{m} (*E* being implicit to simplify notation). Writing $\ln |x_{B_j}| - \ln |x_{A_j}| = \ln |x_{B_j}\xi_{A_j}| - \ln |x_{A_j}\xi_{A_j}|$, we obtain

$$\int_{\zeta_j^{\text{loc}}(E)} \kappa_E + \varepsilon_j^{(0)}(E) \ln |f_j(E)| = F(\tilde{A}_j) - F(\tilde{B}_j) + K(f_j(E)) \ln |x_{B_j}\xi_{A_j}| + (\varepsilon_j^{(0)}(E) - K(f_j(E))) \ln |f_j(E)|.$$

By definition of K, b(0) - K(0) = 0, hence $K(f_j(E)) = b(0) + O(f_j(E)) = \varepsilon_j^{(0)}(0) + O(f_j(E))$. Thus, the term $(\varepsilon_j^{(0)}(E) - K(f_j(E))) \ln |f_j(E)|$ tends to zero as E tends to zero; this induces

$$\lim_{E \to 0} \int_{\zeta_j^{\text{loc}}(E)} \kappa_E + \varepsilon_j^{(0)}(E) \ln |f_j(E)| = F(\tilde{A}_j) - F(\tilde{B}_j) + K(f_j(E)) \ln |x_{B_j}\xi_{A_j}|$$

(one must keep in mind that in this formula, we should write $\tilde{A}_j = \tilde{A}_j(0)$, etc.). Now, if *a* and *b* are points on $\zeta_j^{\text{loc}}(0)$ located in $[A_j, s_{m_j}]$ and $[s_{m_j}, B_j]$, respectively, then the term on the right-hand side of the previous equation is equal to

$$I = \lim_{a,b\to s_j} \left(F(\tilde{A}_j) - F(\tilde{a}) + F(\tilde{b}) - F(\tilde{B}_j) + K(f_j(E)) \ln |x_{B_j}\xi_{A_j}| \right).$$

Using (21), it is easily seen that

$$I = \lim_{a,b\to s_j} \left(\int_{[A_j,a]} \kappa_E + \int_{[b,B_j]} \kappa_E + \varepsilon_j^{(0)}(0) \ln |x_b \xi_a| \right).$$

Remembering Definition 6.2, this proves (19). Since $g_{\zeta_i^{\text{loc}}}^{(0)}$ and the quantities

$$\Phi_{A_j}^{(-1)}(A_j) - \Phi_{B_j}^{(-1)}(B_j)$$
 and $\Phi_{A_j}^{(0)}(A_j) - \Phi_{B_j}^{(0)}(B_j)$

are continuous at E = 0, the term

$$\mathrm{hol}_{\delta_{\zeta_j^{\mathrm{loc}}(E)}}(\zeta_j^{\mathrm{loc}}(E))$$

is continuous at E = 0. Hence, if we sum up all the contributions from regular and local paths, we finally obtain

$$g^{(0)}(\gamma) = \tilde{c}_1(\gamma) + \sum_{m=1}^p \frac{\rho_m \pi}{4} + \ell(\gamma),$$

where ρ_m and \tilde{c}_1 were introduced in Definitions 6.3 and 6.2, respectively, and $\ell(\gamma)$ is the quantity

$$\ell(\gamma) = \sum_{j=1}^{P} \left(\operatorname{hol}_{\delta_{\zeta_{j}^{\operatorname{reg}}(0)}}(\zeta_{j}^{\operatorname{reg}}(0)) + \lim_{E \to 0} \operatorname{hol}_{\delta_{\zeta_{j}^{\operatorname{loc}}(E)}}(\zeta_{j}^{\operatorname{loc}}(E)) \right);$$

1622

Figure 3. Computation of $\ell(\gamma)$.

it is not hard to show that $\ell(\gamma)$ is independent of the choice of the local and regular paths. Furthermore, let ϵ be the index of any smooth embedded cycle which is a continuous deformation of γ . If the regular and local paths can be chosen so that they all lie in the same connected component γ_E of Γ_E , it is clear that $\ell(\gamma) = \epsilon$, because for $E \neq 0$,

$$\sum_{j=1}^{r} \left(\operatorname{hol}_{\delta_{\zeta_{j}^{\operatorname{reg}}(E)}}(\zeta_{j}^{\operatorname{reg}}(E)) + \operatorname{hol}_{\delta_{\zeta_{j}^{\operatorname{loc}}(E)}}(\zeta_{j}^{\operatorname{loc}}(E)) \right) = \epsilon(\gamma_{E}) = \epsilon$$

If it is not the case, we remove a small path $\eta_j(E)$ of $\zeta_j^{\text{reg}}(E)$ at any point A_j or B_j where there is a change of connected component, and replace it by a smooth path $\nu_j(E)$ connecting $\zeta_j^{\text{reg}}(E)$ and $\zeta_j^{\text{loc}}(E)$ (see Figure 3). We obtain a smooth path $\tilde{\gamma}(E)$; on the one hand, one has $\epsilon(\tilde{\gamma}(E)) = \epsilon$. On the other hand, $\epsilon(\tilde{\gamma}(E))$ is the sum of the holonomies of the paths composing $\tilde{\gamma}(E)$. But, if we denote by $\tau_j(E)$ the part of $\zeta_i^{\text{reg}}(E)$ that remains when we remove $\eta_j(E)$, we have

$$\operatorname{hol}_{\delta_{\tau_j(E)}}(\tau_j(E)) = \operatorname{hol}_{\delta_{\zeta_j^{\operatorname{reg}}(E)}}(\zeta_j^{\operatorname{reg}}(E)) - \operatorname{hol}_{\delta_{\eta_j(E)}}(\eta_j(E)),$$

which implies

n

$$\operatorname{hol}_{\delta_{\tau_j(E)}}(\tau_j(E)) + \operatorname{hol}_{\delta_{\nu_j(E)}}(\nu_j(E)) \xrightarrow[E \to 0]{} \operatorname{hol}_{\delta_{\zeta_j^{\operatorname{reg}}(0)}}(\zeta_j^{\operatorname{reg}}(0))$$

because

$$\operatorname{hol}_{\delta_{\nu_j(E)}}(\nu_j(E)) - \operatorname{hol}_{\delta_{\eta_j(E)}}(\eta_j(E)) \xrightarrow{}_{E \to 0} 0$$

This shows that $\ell(\gamma) = \epsilon$, which concludes the proof for this first case, where γ is oriented according to the Hamiltonian flow of a_0 .

If the orientation of the cycle γ is opposite to the one of the flow of X_{a_0} , we only have to change the sign of the holonomy.

It remains to investigate the case where there are some paths in γ oriented according to the flow of X_{a_0} and some oriented in the opposite direction, which means γ is smooth at some critical point *s*. We can use the analysis above by introducing two local paths ζ_1^{loc} and ζ_2^{loc} at *s* as in Figure 4 (we make a small move forwards and backwards on an edge added to γ); one can obtain the claimed result by looking carefully at the obtained holonomies, remembering that the two paths have opposite orientation on the added edge. Note that the choice of the added edge does not change the result.

Figure 4. Case of a cycle γ , smooth at *s*.

6D. *Derivation of the Bohr–Sommerfeld conditions.* The previous results allow to compute the spectrum of A_k in an interval of size O(1) around the singular energy. Indeed, let γ_E , $E \in I^{\pm}$ be a connected component of the level $a_0^{-1}(E)$ and γ be the cycle in Γ_0 obtained by letting E go to 0. Then one can choose the local and regular paths used to compute the holonomy $\text{hol}_{\mathfrak{L}}(\gamma)$ so that they all lie on γ_E , and define g(E, k) as the sum

$$g(E, k) = g_{\zeta_1^{\text{loc}}}(E) + g_{\zeta_1^{\text{reg}}}(E) + \dots + g_{\zeta_p^{\text{loc}}}(E) + g_{\zeta_p^{\text{reg}}}(E).$$

Furthermore, the matrix of change of basis associated to the sections $\phi_{k,E}^{(i)}$ is given by

$$T_j(E) = \exp\left(-\frac{i\pi}{4}\right) \mathscr{C}_k(k\mathfrak{e}_j(E,k)) \begin{pmatrix} 1 & i\exp(-k\pi\mathfrak{e}_j(E,k))\\ i\exp(-k\pi\mathfrak{e}_j(E,k)) & 1 \end{pmatrix},$$

where the function \mathscr{C}_k is defined in (9). To compute eigenvalues near *E*, apply Theorem 6.1 with T_j replaced by $T_j(E)$ and hol $\mathfrak{L}(\gamma)$ by $\exp(ig(E, k))$. Applying Stirling's formula, we obtain

$$T_j(E) = \exp(ik\theta(E,k)) \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + O(k^{-1}), \quad f_j(E) > 0,$$

and

$$T_j(E) = \exp(ik\theta(E,k)) \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} + O(k^{-1}), \quad f_j(E) < 0,$$

with $\theta(E, k) = f_j(E) \ln |f_j(E)| - f_j(E) + k^{-1}(\varepsilon_j^{(0)}(E) \ln |f_j(E)| - \pi/4)$. Together with equations (17) and (18), this ensures that we recover the usual Bohr–Sommerfeld conditions away from the critical energy.

In the rest of the paper, we will look for eigenvalues of the form $k^{-1}e + O(k^{-2})$, where *e* is allowed to vary in a compact set. Hence, we have to replace A_k by $A_k - k^{-1}e$; this operator still has principal symbol a_0 , but its subprincipal symbol is $a_1 - e$. Thanks to Theorem 6.4, we are able to compute the singular holonomy and the invariants ε_j up to $O(k^{-2})$; hence, we approximate the spectrum up to an error of order $O(k^{-2})$.

6E. *The case of a unique saddle point.* If Γ_0 contains a unique saddle point, it is not difficult to write the Bohr–Sommerfeld conditions in a more explicit form. The critical level Γ_0 looks like a figure eight. We choose the convention for the cut edges and cycles as in Figure 5.

Figure 5. The singular level $\Gamma_0 = a_0^{-1}(0)$ and the choice of cut edges and cycles.

Let *s* be the saddle point, and let $\varepsilon(e, k)$ be the invariant associated to the operator $A_k - k^{-1}e$ at *s*; one has $\varepsilon^{(0)}(e) = \varepsilon^{(0)}(0) + e |\det(\operatorname{Hess}(a_0)(s))|^{-1/2}$. Denote by $h_j(e, k) = \exp(i\theta_j(e, k))$ the holonomy of the loop γ_j in \mathfrak{L} ; remember that θ_j is given by

$$\theta_i(e,k) = k c_0(\gamma_i) + \tilde{c}_1(\gamma_i) + \tilde{\epsilon}(\gamma_i)\pi + O(k^{-1}).$$

The Bohr-Sommerfeld conditions are given by the holonomy equations

$$x_4 = h_2 x_1, \quad x_3 = h_1 x_2,$$

and by the transfer relation at the critical point

$$\binom{x_3}{x_4} = T\binom{x_1}{x_2},$$

where $T = T(\varepsilon)$ is defined in (8). Using Lemma 2 of [Colin de Verdière and Parisse 1994b], the quantization rule can in fact be written as a real scalar equation.

Proposition 6.12. The equation $A_k u_k = k^{-1} e u_k + O(k^{-\infty})$ has a normalized eigenfunction if and only if *e* satisfies the condition

$$\frac{1}{\sqrt{1 + \exp(2\pi\varepsilon)}} \cos\left(\frac{\theta_1 - \theta_2}{2}\right) = \sin\left(\frac{\theta_1 + \theta_2}{2} + \frac{\pi}{4} + \varepsilon \ln k - \arg\Gamma\left(\frac{1}{2} + i\varepsilon\right)\right),\tag{22}$$

where we wrote for the sake of brevity θ_i , ε instead of $\theta_i(e, k)$, $\varepsilon(e, k)$ (see definitions above).

7. Examples

We conclude by investigating two examples on the torus and one on the sphere; these examples present various topologies. More precisely, using the terminology of [Oshemkov 1994; Bolsinov and Fomenko 2004] for atoms (neighborhoods of singular levels of Morse functions), we provide an example of a type *B* atom—the only type in complexity 1 (here, complexity means the number of critical points on the singular level) in the orientable case—and two examples of atoms of complexity 2: one is of type C_2 (*xy* on the sphere S^2) and the other is of type C_1 (Harper's Hamiltonian on the torus \mathbb{T}^2). It is a remarkable fact that these two examples are natural not only as the canonical realization of the atom on a surface but also because they come from the simplest possible Toeplitz operators with critical level of given type.

Note that there are two other types of atoms of complexity 2 in the orientable case (more precisely, types D_1 and D_2); it would be interesting to realize each of them as a hyperbolic level of the principal symbol of a selfadjoint Toeplitz operator and to complete this study. Note that in the context of pseudodifferential operators, Colin de Verdière and Parisse [1999] treated the case of a type D_1 atom (the triple well potential) among some other examples. More generally, one could use the classification of Bolsinov, Fomenko and Oshemkov to write the Bohr–Sommerfeld conditions for all cases in low complexity (≤ 3 for instance); however, the case of two critical points already gives rise to rather tedious computations.

The details of the quantization of the torus and the sphere are quite standard. Nevertheless, for the sake of completeness, we will recall a few of them at the beginning of each paragraph.

7A. *Height function on the torus.* Firstly, we consider the quantization of the height function on the torus. This is one of the first examples in Morse theory, perhaps because this is the simplest and most intuitive example with critical points of each type. In particular, the description of the two hyperbolic levels is quite simple.

Endow \mathbb{R}^2 with the linear symplectic form ω_0 and let $L_0 \to \mathbb{R}^2$ be the complex line bundle with Hermitian form and connection defined in Section 2D3. Let *K* be the canonical line of \mathbb{R}^2 with respect to its standard complex structure $j: K = \{\alpha \in (\mathbb{R}^2)^* \otimes \mathbb{C} \mid \alpha(j \cdot) = i\alpha\}$. Choose a half-form line, that is, a complex line δ with an isomorphism $\varphi : \delta^{\otimes 2} \to K$. There is a natural scalar product on *K* such that the square of the norm of α is $i\alpha \wedge \overline{\alpha}/\omega_0$; endow δ with the scalar product $\langle \cdot, \cdot \rangle_{\delta}$ such that φ is an isometry. The half-form bundle we work with, that we still denote by δ , is the trivial line bundle with fiber δ over \mathbb{R}^2 .

Consider a lattice Λ with symplectic volume 4π . The Heisenberg group $H = \mathbb{R}^2 \times U(1)$ with product

$$(x, u) \cdot (y, v) = \left(x + y, uv \exp\left(\frac{i}{2}\omega_0(x, y)\right)\right)$$

acts on the bundle $L_0 \to \mathbb{R}^2$, with action given by the same formula. This action preserves the prequantum data, and the lattice Λ injects into H; therefore, the fiber bundle L_0 reduces to a prequantum bundle L over $\mathbb{T}^2 = \mathbb{R}^2 / \Lambda$. The action extends to the fiber bundle L_0^k by

$$(x, u) \cdot (y, v) = \left(x + y, u^k v \exp\left(\frac{ik}{2}\omega_0(x, y)\right)\right).$$

We let the Heisenberg group act trivially on δ . We obtain a half-form bundle $\tilde{\delta}$ over \mathbb{T}^2 and an action

$$T^*: \Lambda \to \operatorname{End}(\mathscr{C}^{\infty}(\mathbb{R}^2, L_0^k \otimes \delta)), \quad u \mapsto T_u^*.$$

The Hilbert space $\mathcal{H}_k = H^0(M, L^k \otimes \tilde{\delta})$ can naturally be identified with the space $\mathcal{H}_{\Lambda,k}$ of holomorphic sections of $L_0^k \otimes \delta \to \mathbb{R}^2$ which are invariant under the action of Λ , endowed with the Hermitian product

$$\langle \varphi, \psi \rangle = \int_D \langle \varphi, \psi \rangle_{\delta} |\omega_0|,$$

where *D* is the fundamental domain of the lattice. Furthermore, $\Lambda/2k$ acts on $\mathcal{H}_{\Lambda,k}$. Let *e* and *f* be generators of Λ satisfying $\omega_0(e, f) = 4\pi$; one can show that there exists an orthonormal basis $(\psi_\ell)_{\ell \in \mathbb{Z}/2k\mathbb{Z}}$

Figure 6. Height function on the torus.

of $\mathcal{H}_{\Lambda,k}$ such that

$$\left. \begin{array}{l} T_{e/2k}^*\psi_\ell = w^\ell\psi_\ell \\ T_{f/2k}^*\psi_\ell = \psi_{\ell+1} \end{array} \right\} \quad \text{for all } \ell \in \mathbb{Z}/2k\mathbb{Z},$$

with $w = \exp(i\pi/k)$. The sections ψ_{ℓ} can be expressed in terms of Θ functions.

Set $M_k = T_{e/2k}^*$ and $L_k = T_{f/2k}^*$. Let (q, p) be coordinates on \mathbb{R}^2 associated to the basis (e, f) and [q, p] be the equivalence class of (q, p). Both M_k and L_k are Toeplitz operators, with respective principal symbols $[q, p] \mapsto \exp(2i\pi p)$ and $[q, p] \mapsto \exp(2i\pi q)$, and vanishing subprincipal symbols. For more details, see for instance [Charles and Marché 2011, §2.2, §3.1].

It is a well-known fact that \mathbb{T}^2 is diffeomorphic to the surface shown in Figure 6, which is obtained by rotating a circle of radius *r* around a circle of radius R > r contained in the *yz* plane; the diffeomorphism is given by the explicit formulas

$$x = r \sin(2\pi q), \quad y = (R + r \cos(2\pi q)) \cos(2\pi p), \quad z = (R + r \cos(2\pi q)) \sin(2\pi p).$$

Hence, the Hamiltonian that we consider is

$$a_0(q, p) = (R + r\cos(2\pi q))\sin(2\pi p)$$

on the fundamental domain D. We try to quantize it, that is, find a selfadjoint Toeplitz operator A_k with principal symbol a_0 . The Toeplitz operators

$$B_k = \frac{1}{2i}(M_k - M_k^*), \quad C_k = R\Pi_k + \frac{r}{2}(L_k + L_k^*),$$

are selfadjoint, and

$$\sigma_{\text{norm}}(B_k) = \sin(2\pi p) + O(\hbar^2), \quad \sigma_{\text{norm}}(C_k) = R + r\cos(2\pi q) + O(\hbar^2).$$

Hence $A_k = \frac{1}{2}(B_k C_k + C_k B_k)$ is a selfadjoint Toeplitz operator with normalized symbol $a_0 + O(\hbar^2)$. Its matrix in the basis $(\psi_\ell)_{\ell \in \mathbb{Z}/2k\mathbb{Z}}$ is written as

$$\begin{pmatrix} R\alpha_{0} & \frac{r}{4}(\alpha_{0}+\alpha_{1}) & 0 & \cdots & 0 & \frac{r}{4}(\alpha_{2k-1}+\alpha_{0}) \\ \frac{r}{4}(\alpha_{0}+\alpha_{1}) & R\alpha_{1} & \frac{r}{4}(\alpha_{1}+\alpha_{2}) & 0 & \cdots & 0 \\ 0 & \frac{r}{4}(\alpha_{1}+\alpha_{2}) & R\alpha_{2} & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \frac{r}{4}(\alpha_{0}+\alpha_{2k-1}) & 0 & \cdots & 0 & \frac{r}{4}(\alpha_{2k-2}+\alpha_{2k-1}) & R\alpha_{2k-1} \end{pmatrix}$$
(23)

with $\alpha_{\ell} = \sin(\ell \pi / k)$.

The level $\Gamma_{R-r} = a_0^{-1}(R-r)$ contains one hyperbolic point $s = (\frac{1}{2}, \frac{1}{4})$. It is the union of the two branches

$$p = \frac{1}{2\pi} \arcsin \frac{R-r}{R+r\cos(2\pi q)} \quad \text{and} \quad p = \frac{1}{2} - \frac{1}{2\pi} \arcsin \frac{R-r}{R+r\cos(2\pi q)}$$

The Hamiltonian vector field associated to a_0 is given by

$$X_{a_0}(q, p) = \frac{1}{2}(R + r\cos(2\pi q))\cos(2\pi p)\frac{\partial}{\partial q} + \frac{r}{2}\sin(2\pi q)\sin(2\pi p)\frac{\partial}{\partial p}.$$

Moreover, one has

$$\varepsilon^{(0)} = \frac{e}{\pi\sqrt{r(R-r)}}.$$
(24)

We choose the cycles γ_1 and γ_2 with the convention given in Section 6E. We have to compute the principal and subprincipal actions of γ_1 , γ_2 and their indices $\tilde{\epsilon}$. Let us detail the calculations in the case of γ_1 .

We parametrize γ_1 by

$$q \mapsto \left(q, \frac{1}{2} - \frac{1}{2\pi} \arcsin \frac{R - r}{R + r \cos(2\pi q)}\right)$$

The principal action is given by

$$c_0(\gamma_1) = 2I(R, r) - 2\pi,$$
 (25)

where I(R, r) is the integral

$$I(R,r) = \int_0^1 \arcsin \frac{R-r}{R+r\cos(2\pi q)} \, dq;$$

unfortunately, we do not know any explicit expression for this integral, so for numerical computations, once the radii R and r are fixed, we obtain the value of I(R, r) thanks to numerical integration routines.

On γ_1 , the subprincipal form reads

$$\kappa_0 = \frac{-2e \, dq}{\sqrt{(R + r \cos(2\pi q))^2 - (R - r)^2}}$$

Figure 7. Eigenvalues in $[R-r-10k^{-1}, R-r+10k^{-1}]$; in red diamonds, the eigenvalues of A_k obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr–Sommerfeld conditions. The results are indexed with respect to the eigenvalue closest to the critical energy, labeled as 0. Even for k = 10, the method is very accurate.

One can obtain an explicit primitive thanks to any computer algebra system. Furthermore, some computations show that the symplectic area of the parallelogram $R_{a,b}$ is equal to

$$\int_{R_{a,b}} \omega = 8\pi \sqrt{\frac{r}{R-r}} \left(q_a - \frac{1}{2}\right) \left(\frac{1}{2} - q_b\right).$$

This yields the following value for the subprincipal action:

$$\tilde{c}_1(\gamma_1) = \varepsilon^{(0)} \ln\left(\frac{32}{\pi} \sqrt{\frac{r}{R}} \left(1 - \frac{r}{R}\right)\right).$$
(26)

Finally, the index associated to half-forms is $\tilde{\epsilon}(\gamma_1) = \frac{1}{4}$. For γ_2 , one can check that

$$c_0(\gamma_2) = 2I(R, r), \quad \tilde{c}_1(\gamma_2) = \varepsilon^{(0)} \ln\left(\frac{32}{\pi}\sqrt{\frac{r}{R}\left(1 - \frac{r}{R}\right)}\right), \quad \tilde{\epsilon}(\gamma_2) = \frac{1}{4}.$$
 (27)

With this data, one can test the Bohr–Sommerfeld condition for different pairs (R, r). We illustrate this with (R, r) = (4, 1) (note that we have tested several pairs). We compare the eigenvalues obtained numerically from the matrix (23) and the ones derived from the Bohr–Sommerfeld conditions (22) in the interval $I = [R - r - 10k^{-1}, R - r + 10k^{-1}]$. In Figure 7, we plot the theoretical and numerical eigenvalues; Figure 8 shows the error between the eigenvalues and the solutions of the Bohr–Sommerfeld conditions for fixed k, while Figure 9 is a graph of the logarithm of the maximal error in the interval I as a function of $\ln k$.

7B. *xy on the 2-sphere.* Let us consider another simple example, but this time with two saddle points on the critical level. We will quantize the Hamiltonian $a_0(x, y, z) = xy$ on the sphere S^2 . Let us briefly recall the details of the quantization of this surface.

Figure 8. Absolute value of the difference between the numerical and theoretical eigenvalues; the error is smaller near the critical energy (R - r = 3 in this case).

Figure 9. Logarithm of the maximal error as a function of the logarithm of k; the error displays a behavior in $O(k^{-2})$, as expected.

Start from the complex projective plane \mathbb{CP}^1 and let $L = \mathbb{O}(1)$ be the dual bundle of the tautological bundle

$$\mathbb{O}(-1) = \{ (u, v) \in \mathbb{CP}^1 \times \mathbb{C}^2 \mid v \in u \},\$$

with natural projection. *L* is a Hermitian, holomorphic line bundle; let us denote by ∇ its Chern connection. The 2-form $\omega = i \operatorname{curv}(\nabla)$ is the symplectic form on \mathbb{CP}^1 associated with the Fubini–Study Kähler structure, and $L \to \mathbb{CP}^1$ is a prequantum bundle. Moreover, the canonical bundle is naturally identified with $\mathbb{O}(-2)$, hence one can choose the line bundle $\delta = \mathbb{O}(-1)$ as a half-form bundle. The state space $\mathcal{H}_k = H^0(\mathbb{CP}^1, L^k \otimes \delta)$ can be identified with the space $\mathbb{C}_{p_k}[z_1, z_2]$ of homogeneous polynomials of degree $p_k = k - 1$ in two variables. The polynomials

$$P_{\ell}(z_1, z_2) = \sqrt{\frac{(p_k + 1)\binom{p_k}{\ell}}{2\pi}} z_1^{\ell} z_2^{p_k - \ell}, \quad 0 \le \ell \le p_k,$$

form an orthonormal basis of \mathcal{H}_k . The sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ is diffeomorphic to \mathbb{CP}^1 via the stereographic projection (from the north pole to the plane z = 0). The symplectic form ω on \mathbb{CP}^1 is carried to the symplectic form $\omega_{S^2} = -\frac{1}{2}\Omega$, with Ω the usual area form on S^2 (the one which gives the area 4π). The operator A_k acting on the basis $(P_\ell)_{0 \le \ell \le p_k}$ by

$$A_k P_{\ell} = \frac{i}{p_k^2} (\alpha_{\ell,k} P_{\ell-2} - \beta_{\ell,k} P_{\ell+2}),$$

with

$$\alpha_{\ell,k} = \sqrt{\ell(\ell-1)(p_k - \ell + 1)(p_k - \ell + 2)}$$

and

$$\beta_{\ell,k} = \sqrt{(\ell+1)(\ell+2)(p_k - \ell - 1)(p_k - \ell)}$$

is a Toeplitz operator with principal symbol $a_0(x, y, z) = xy$ and vanishing subprincipal symbol (for more details, one can consult [Bloch et al. 2003, §3] for instance). Note that $\alpha_{\ell,k} = \beta_{p_k-\ell,k}$, which implies that if λ is an eigenvalue of A_k , then $-\lambda$ is also.

The level $a_0^{-1}(0)$ is critical, and contains two saddle points: the poles N (north) and S (south). It is the union of the two great circles x = 0 and y = 0. We choose the cut edges and cycles as indicated in Figure 10.

Figure 10. Choice of the cycles and cut edges.

Set $h_j = \text{hol}_{\mathfrak{L}}(\gamma_j) = \exp(i\theta_j)$; remember that $\theta_j = kc_0(\gamma_j) + \tilde{c}_1(\gamma_j) + \tilde{\epsilon}(\gamma_j)\pi + O(k^{-1})$. The holonomy equations read

$$y_2 = x_3, \quad y_4 = h_1 x_1, \quad y_3 = h_2 x_2, \quad x_4 = h_3 y_1,$$
 (28)

while the transfer equations are given by

$$\binom{x_3}{x_4} = T_S \binom{x_1}{x_2}, \quad \binom{y_3}{y_4} = T_N \binom{y_1}{y_2}.$$
(29)

The system (28) + (29) has a solution if and only if the matrix

$$U = T_S \begin{pmatrix} 0 & \exp(-i\theta_1) \\ \exp(-i\theta_2) & 0 \end{pmatrix} T_N \begin{pmatrix} 0 & \exp(-i\theta_3) \\ 1 & 0 \end{pmatrix}$$

admits 1 as an eigenvalue. The matrix U is unitary, and if we write $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a straightforward computation shows that

$$|a|^{2} = |d|^{2} = \frac{1 - 2\cos(\theta_{2} - \theta_{1})\exp(-\pi(\varepsilon_{S} + \varepsilon_{N})) + \exp(-2\pi(\varepsilon_{S} + \varepsilon_{N}))}{(1 + \exp(-2\pi\varepsilon_{S}))(1 + \exp(-2\pi\varepsilon_{N}))};$$

hence, by Lemma 2 of [Colin de Verdière and Parisse 1994b], 1 is an eigenvalue of U if and only if

$$|a|\sin\Bigl(\frac{\arg(ad)-\pi}{2}-\arg a\Bigr)=\sin\Bigl(\frac{\arg(ad)-\pi}{2}\Bigr).$$

This amounts to the equation

$$|a|\cos\left(\frac{\arg z - \arg w}{2}\right) = \sin\left(\frac{\arg z + \arg w}{2} + \arg\Gamma\left(\frac{1}{2} + i\varepsilon_N\right) + \arg\Gamma\left(\frac{1}{2} + i\varepsilon_S\right) - (\varepsilon_S + \varepsilon_N)\ln k\right),$$

with

$$z = \exp(-i(\theta_2 + \theta_3)) - \exp(-\pi(\varepsilon_S + \varepsilon_N) - i(\theta_1 + \theta_3))$$

and

$$w = \exp(-i\theta_1) - \exp(-\pi(\varepsilon_N + \varepsilon_S) - i\theta_2).$$

One has

$$\varepsilon_S^{(0)} = \varepsilon_N^{(0)} = \varepsilon^{(0)} = \frac{e}{2}.$$
 (30)

Moreover, the principal actions are

$$c_0(\gamma_1) = -\frac{\pi}{2}, \quad c_0(\gamma_2) = \frac{\pi}{2}, \quad c_0(\gamma_3) = \pi.$$
 (31)

Then, one finds for the subprincipal actions

$$\tilde{c}_1(\gamma_1) = 2\varepsilon^{(0)} \ln 2 = \tilde{c}_1(\gamma_2), \quad \tilde{c}_1(\gamma_3) = 0.$$
 (32)

Finally, the indices $\tilde{\epsilon}$ are

$$\tilde{\epsilon}(\gamma_1) = \frac{3}{2}, \quad \tilde{\epsilon}(\gamma_2) = \frac{1}{2}, \quad \tilde{\epsilon}(\gamma_3) = 1.$$
(33)

1632

Figure 11. Eigenvalues in $[-2k^{-1}, 2k^{-1}]$; in red diamonds, the eigenvalues of A_k obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr–Sommerfeld conditions.

Figure 11 shows the theoretical eigenvalues obtained by using these results, as well as the numerical evaluation of the eigenvalues of A_k from its matrix form.

7C. *Harper's Hamiltonian on the torus.* Keeping the conventions and notation of the first example, we consider the Hamiltonian (sometimes known as Harper's Hamiltonian since it is related to Harper's equation [Helffer and Sjöstrand 1988])

$$a_0(q, p) = 2(\cos(2\pi p) + \cos(2\pi q))$$

on the torus. The operator $A_k = M_k + M_k^* + L_k + L_k^*$ is a Toeplitz operator with principal symbol a_0 and vanishing subprincipal symbol. Its matrix in the basis $(\psi_\ell)_{\ell \in \mathbb{Z}/2k\mathbb{Z}}$ is

$(2\alpha_0)$	1	0	•••	0	1
1	·	۰.	·		0
0	۰.	۰.	·	۰.	÷
÷	۰.	۰.	۰.	۰.	0
0		۰.	۰.	۰.	1
1	0	• • •	0	1	$2\alpha_{2k-1}$

where

$$\alpha_{\ell} = \cos \frac{\ell \pi}{k}, \quad 0 \le \ell \le 2k - 1$$

The critical level $\Gamma_0 = a_0^{-1}(0)$ contains two hyperbolic points: $s_1 = (0, \frac{1}{2})$ and $s_2 = (\frac{1}{2}, 0)$. On the fundamental domain, it is the union of the four segments described in Figure 12; hence, its image on the torus it is the union of two circles that intersect at two points.

Figure 12. Critical level Γ_0 on the fundamental domain; the arrows indicate the direction of the Hamiltonian flow of a_0 .

Figure 13. Choice of the cycles and cut edges.

Figure 14. Cycles on the fundamental domain.

Figure 15. Eigenvalues in $[-10k^{-1}, 10k^{-1}]$; in red diamonds, the eigenvalues of A_k obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr–Sommerfeld conditions.

We choose the cycles and cut edges as in Figure 13 (for a representation of the two circles in a two-dimensional view) and Figure 14 (for a representation of the cycles on the fundamental domain).

We write the holonomy equations

$$y_1 = x_3, \quad y_3 = h_1 x_2, \quad y_4 = h_2 x_1, \quad x_4 = h_3 y_1,$$
 (34)

and the transfer equations

$$\binom{x_3}{x_4} = T_2 \binom{x_1}{x_2}, \quad \binom{y_3}{y_4} = T_1 \binom{y_1}{y_2}, \tag{35}$$

where $h_j = \text{hol}_{\mathfrak{L}}(\gamma_j) = \exp(i\theta_j)$. Following the same steps as in the previous example, one can show that the system (34) + (35) has a solution if and only if *e* is a solution of the scalar equation

$$|a|\cos\left(\frac{\arg w - \arg z}{2}\right) = \cos\left(\frac{\arg z + \arg w}{2} + \arg\Gamma\left(\frac{1}{2} + i\varepsilon_1\right) + \arg\Gamma\left(\frac{1}{2} + i\varepsilon_2\right) - (\varepsilon_1 + \varepsilon_2)\ln k\right),$$

with

$$|a|^{2} = \frac{\exp(-2\pi\varepsilon_{1}) + \exp(-2\pi\varepsilon_{2}) + 2\cos(\theta_{2} - \theta_{1})\exp(-\pi(\varepsilon_{1} + \varepsilon_{2}))}{(1 + \exp(-2\pi\varepsilon_{1}))(1 + \exp(-2\pi\varepsilon_{2}))}$$
$$w = \exp(-\pi\varepsilon_{2} - i(\theta_{2} + \theta_{3})) + \exp(-\pi\varepsilon_{1} - i(\theta_{1} + \theta_{3})),$$

and

 $z = \exp(-\pi\varepsilon_1 - i\theta_2) + \exp(-\pi\varepsilon_2 - i\theta_1).$

Moreover, one has

$$\varepsilon_1^{(0)} = \varepsilon_2^{(0)} = \frac{e}{2\pi} := \varepsilon^{(0)}.$$
(36)

It remains to compute the quantities θ_j (up to $O(k^{-1})$). The principal actions are easily computed:

$$c_0(\gamma_1) = -\pi, \quad c_0(\gamma_2) = 3\pi, \quad c_0(\gamma_1) = -2\pi.$$
 (37)

Furthermore, one can check that the subprincipal actions are given by

$$\tilde{c}_1(\gamma_1) = 2\varepsilon^{(0)} \ln \frac{8}{\pi} = \tilde{c}_1(\gamma_2), \quad \tilde{c}_1(\gamma_3) = 0.$$
 (38)

Finally, one has

$$\tilde{\epsilon}(\gamma_1) = \tilde{\epsilon}(\gamma_2) = \tilde{\epsilon}(\gamma_3) = 0. \tag{39}$$

The results thus obtained are displayed in Figure 15.

Acknowledgements

I would like to thank San Vũ Ngọc and Laurent Charles for their helpful remarks and suggestions. I am also grateful to the referees for their very useful comments. This work benefited from the support of the Centre Henri Lebesgue (program "Investissements d'avenir" — ANR-11-LABX-0020-01).

References

- [Bargmann 1967] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform, II: A family of related function spaces. Application to distribution theory", *Comm. Pure Appl. Math.* **20** (1967), 1–101. MR 34 #1836 Zbl 0149.09601
- [Berge 1973] C. Berge, *Graphs and hypergraphs*, North-Holland Mathematical Library **6**, North-Holland, New York, 1973. MR 50 #9640 Zbl 0254.05101
- [Bloch et al. 2003] A. Bloch, F. Golse, T. Paul, and A. Uribe, "Dispersionless Toda and Toeplitz operators", *Duke Math. J.* 117:1 (2003), 157–196. MR 2003m:37121 Zbl 1024.37047
- [Bolsinov and Fomenko 2004] A. V. Bolsinov and A. T. Fomenko, *Integrable Hamiltonian systems: Geometry, topology, classification*, Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2004j:37106 Zbl 1056.37075
- [Borthwick et al. 1998] D. Borthwick, T. Paul, and A. Uribe, "Semiclassical spectral estimates for Toeplitz operators", *Ann. Inst. Fourier (Grenoble)* **48**:4 (1998), 1189–1229. MR 2000c:58048 Zbl 0920.58059
- [Charles 2003a] L. Charles, "Berezin–Toeplitz operators, a semi-classical approach", *Comm. Math. Phys.* 239:1-2 (2003), 1–28. MR 2004m:53158 Zbl 1059.47030
- [Charles 2003b] L. Charles, "Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators", *Comm. Partial Differential Equations* **28**:9-10 (2003), 1527–1566. MR 2005d:53142 Zbl 1038.53086
- [Charles 2006] L. Charles, "Symbolic calculus for Toeplitz operators with half-form", J. Symplectic Geom. 4:2 (2006), 171–198. MR 2007k:58042 Zbl 1123.58016
- [Charles and Marché 2011] L. Charles and J. Marché, "Knot state asymptotics, I: AJ conjecture and abelian representations", preprint, 2011, Available at http://www.math.jussieu.fr/~marche/knot1.pdf.
- [Charles and Vũ Ngọc 2008] L. Charles and S. Vũ Ngọc, "Spectral asymptotics via the semiclassical Birkhoff normal form", *Duke Math. J.* **143**:3 (2008), 463–511. MR 2009d:58049 Zbl 1154.58015
- [Dimassi and Sjöstrand 1999] M. Dimassi and J. Sjöstrand, *Spectral asymptotics in the semi-classical limit*, London Mathematical Society Lecture Note Series **268**, Cambridge University Press, 1999. MR 2001b:35237 Zbl 0926.35002
- [Guillemin and Schaeffer 1977] V. Guillemin and D. Schaeffer, "On a certain class of Fuchsian partial differential equations", *Duke Math. J.* **44**:1 (1977), 157–199. MR 55 #3504 Zbl 0356.35080
- [Helffer and Sjöstrand 1988] B. Helffer and J. Sjöstrand, *Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique)*, Mém. Soc. Math. France (N.S.) **34**, Société Mathématique de France, Paris, 1988. MR 91d:81024 Zbl 0714.34130

1636

[[]Bargmann 1961] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform", *Comm. Pure Appl. Math.* **14** (1961), 187–214. MR 28 #486 Zbl 0107.09102

- [Le Floch 2014] Y. Le Floch, "Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: Elliptic case", *Comm. Partial Differential Equations* **39**:2 (2014), 213–243. MR 3169784 Zbl 06291152
- [Ma 2010] X. Ma, "Geometric quantization on Kähler and symplectic manifolds", pp. 785–810 in *Proceedings of the International Congress of Mathematicians, II* (Hyderabad, 2010), edited by R. Bhatia et al., Hindustan Book Agency, New Delhi, 2010. MR 2012g:53188 Zbl 1229.53088
- [Ma and Marinescu 2008] X. Ma and G. Marinescu, "Toeplitz operators on symplectic manifolds", *J. Geom. Anal.* **18**:2 (2008), 565–611. MR 2010f:53161 Zbl 1152.81030
- [Boutet de Monvel and Guillemin 1981] L. Boutet de Monvel and V. Guillemin, *The spectral theory of Toeplitz operators*, Annals of Mathematics Studies **99**, Princeton University Press, 1981. MR 85j:58141 Zbl 0469.47021
- [Nonnenmacher and Voros 1997] S. Nonnenmacher and A. Voros, "Eigenstate structures around a hyperbolic point", *J. Phys. A* **30**:1 (1997), 295–315. MR 98e:81063 ZbI 0922.58026
- [Oshemkov 1994] A. A. Oshemkov, "Morse functions on two-dimensional surfaces: Coding of singularities", *Trudy Mat. Inst. Steklov.* **205**:Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem (1994), 131–140. In Russian; translated in *Proc. Steklov Inst. Math.* **205** (1995), 119–127. MR 97m:57045 Zbl 0995.37007
- [Robert 1987] D. Robert, Autour de l'approximation semi-classique, Progress in Mathematics **68**, Birkhäuser, Boston, 1987. MR 89g:81016 Zbl 0621.35001
- [Schlichenmaier 2010] M. Schlichenmaier, "Berezin–Toeplitz quantization for compact Kähler manifolds: A review of results", *Adv. Math. Phys.* (2010), Art. ID 927280. MR 2011g:53201 Zbl 1207.81049
- [Colin de Verdière 2009] Y. Colin de Verdière, "Méthodes semi-classiques et théorie spectrale", Notes de cours, 2009, Available at http://www-fourier.ujf-grenoble.fr/~ycolver/All-Articles/93b.pdf.
- [Colin de Verdière and Parisse 1994a] Y. Colin de Verdière and B. Parisse, "Équilibre instable en régime semi-classique, I: Concentration microlocale", *Comm. Partial Differential Equations* **19**:9-10 (1994), 1535–1563. MR 96b:58112 Zbl 0819.35116
- [Colin de Verdière and Parisse 1994b] Y. Colin de Verdière and B. Parisse, "Équilibre instable en régime semi-classique, II: Conditions de Bohr–Sommerfeld", *Ann. Inst. H. Poincaré Phys. Théor.* **61**:3 (1994), 347–367. MR 97a:81041 Zbl 0845.35076
- [Colin de Verdière and Parisse 1999] Y. Colin de Verdière and B. Parisse, "Singular Bohr–Sommerfeld rules", *Comm. Math. Phys.* **205**:2 (1999), 459–500. MR 2000k:81088 Zbl 1157.81310
- [Colin de Verdière and Vey 1979] Y. Colin de Verdière and J. Vey, "Le lemme de Morse isochore", *Topology* **18**:4 (1979), 283–293. MR 80k:57059 Zbl 0441.58003
- [Colin de Verdière and Vũ Ngọc 2003] Y. Colin de Verdière and S. Vũ Ngọc, "Singular Bohr–Sommerfeld rules for 2D integrable systems", *Ann. Sci. École Norm. Sup.* (4) **36**:1 (2003), 1–55. MR 2004h:58040 Zbl 1028.81026
- [Vũ Ngọc 1998] S. V. Ngọc, *Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités*, Ph.D. thesis, Université Grenoble 1, 1998, Available at http://perso.univ-rennes1.fr/san.vu-ngoc/articles/newthese.pdf.
- [Vũ Ngọc 2000] S. Vũ Ngọc, "Bohr–Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type", Comm. Pure Appl. Math. 53:2 (2000), 143–217. MR 2001m:81081 Zbl 1027.81012
- [Zelditch 1997] S. Zelditch, "Index and dynamics of quantized contact transformations", *Ann. Inst. Fourier (Grenoble)* **47**:1 (1997), 305–363. MR 99a:58082 Zbl 0865.47018
- [Zelditch 2014] S. Zelditch, "Quantum dynamics from the semi-classical viewpoint", preprint, 2014, Available at http:// www.math.northwestern.edu/~zelditch/Preprints/OXUPRESSFV.dvi.
- [Zworski 2012] M. Zworski, *Semiclassical analysis*, Graduate Studies in Mathematics **138**, Amer. Math. Soc., Providence, RI, 2012. MR 2952218 Zbl 1252.58001

Received 23 Sep 2013. Revised 7 Jul 2014. Accepted 19 Aug 2014.

YOHANN LE FLOCH: ylefloch@post.tau.ac.il School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski zworski@math.berkeley.edu University of California Berkeley, USA

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Yuval Peres	University of California, Berkeley, USA peres@stat.berkeley.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
László Lempert	Purdue University, USA lempert@math.purdue.edu	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachussets Institute of Technology, USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Da Frank.Merle@u-cergy.fr	an Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2014 is US \$180/year for the electronic version, and \$355/year (+\$50, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW[®] from MSP.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2014 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 7 No. 7 2014

Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group YONGSHENG HAN, GUOZHEN LU and ERIC SAWYER						
Rigidity of equality cases in Steiner's perimeter inequality FILIPPO CAGNETTI, MARIA COLOMBO, GUIDO DE PHILIPPIS and FRANCESCO MAGGI	1535					
Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case YOHANN LE FLOCH						
Resolvent estimates for the magnetic Schrödinger operator GEORGI VODEV						
Local and nonlocal boundary conditions for μ -transmission and fractional elliptic pseudodif- ferential operators GERD GRUBB						
On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger bierarchy	1683					

XUWEN CHEN and PAUL SMITH

