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SINGULAR BOHR–SOMMERFELD CONDITIONS
FOR 1D TOEPLITZ OPERATORS: HYPERBOLIC CASE

YOHANN LE FLOCH

We state the Bohr–Sommerfeld conditions around a singular value of hyperbolic type of the principal
symbol of a selfadjoint semiclassical Toeplitz operator on a compact connected Riemann surface. These
conditions allow the description of the spectrum of the operator in a fixed-size neighborhood of the singu-
larity. We provide numerical computations for three examples, each associated with a different topology.

1. Introduction

Let M be a compact, connected Riemann surface with area form ω. Assume that M is endowed with
a prequantum bundle L , that is, a Hermitian, holomorphic line bundle whose Chern connection has
curvature −iω. Let K be another Hermitian holomorphic line bundle,1 and define the quantum Hilbert
space Hk as the space of holomorphic sections of L⊗k

⊗ K , for every positive integer k. We consider
(Berezin–)Toeplitz operators (see for instance [Boutet de Monvel and Guillemin 1981; Borthwick et al.
1998; Charles 2003a; Ma and Marinescu 2008] or the expository works [Ma 2010; Schlichenmaier 2010;
Zelditch 2014]) acting on Hk . The semiclassical limit corresponds to k→+∞.

The usual Bohr–Sommerfeld conditions, derived in [Charles 2006], describe the intersection of the
spectrum of a selfadjoint Toeplitz operator and a neighborhood of any regular value of its principal symbol
a0 in terms of geometric quantities. More precisely, this intersection is the union of a finite number of
families whose elements are, up to an error O(k−2), the solutions of an equation of the form

c0(λ)+ k−1(c1(λ)+ επ) ∈ 2πk−1Z,

where

• c0(λ) is the holonomy associated with the parallel transport in L along a connected component of
the level set a−1

0 (λ),

• c1(λ) contains the integral of a differential form involving the subprincipal symbol of the operator,

• ε ∈ {0, 1} is an index associated with a half-forms structure.

MSC2010: primary 58J50; secondary 53D50, 81S10, 35P20.
Keywords: semiclassical analysis, spectral theory, Toeplitz operators.

1The reader must be warned that, in this work, the letter K does not refer to the canonical bundle unless explicitly stated
otherwise.
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Precise definitions of these quantities and a more explicit formulation of the Bohr–Sommerfeld rules can
be found in Section 4F.

A natural question is whether one can write Bohr–Sommerfeld conditions near a singular value of the
principal symbol. In the case of a nondegenerate singularity of elliptic type (a local extremum), it was
answered positively in [Le Floch 2014], and the result is quite simple: roughly speaking, the singular
Bohr–Sommerfeld conditions are nothing but the limit of the regular Bohr–Sommerfeld conditions when
the energy tends to the singular value. The hyperbolic case (presence of saddle points) is much more
difficult, because of the complicated topology of a neighborhood of the singular level. For instance, in
the case of one hyperbolic point, the critical level looks like a figure eight, and crossing it has the effect
of adding (or removing) one connected component from the regular level.

Let us mention that the case of Toeplitz operators is very close to the case of pseudodifferential
operators. In this setting, the problem of describing the spectrum of a selfadjoint operator near a singular
level of hyperbolic type was handled by Colin de Verdière and Parisse [1994a; 1994b; 1999]. In this
article, we use analogous techniques to write hyperbolic Bohr–Sommerfeld conditions in the context of
Toeplitz operators. The novelty is that they can be applied in this context.

1A. Main result. Let Ak be a selfadjoint Toeplitz operator on M ; its normalized symbol a0+ h̄a1+ · · ·

is real-valued. Assume that 0 is a critical value of the principal symbol a0, that the level set 00 = a−1
0 (0)

is connected and that every critical point contained in 00 is nondegenerate and of hyperbolic type. Let
S = {s j }1≤ j≤n be the set of these critical points. 00 is a compact graph embedded in M , and each of its
vertices has degree 4 (this is a consequence of the usual Morse lemma, for instance). At each vertex s j ,
we denote by em , m = 1, 2, 3, 4, the local edges, labeled with cyclic order (1, 3, 2, 4) (with respect to
the orientation of M near s j ) and such that e1, e2 (resp. e3, e4) correspond to the local unstable (resp.
stable) manifolds. Cut n+ 1 edges of 00, each one corresponding to a cycle γi in a basis (γ1, . . . , γn+1)

of H1(00,Z), in such a way that the remaining graph is a tree T; usually T is called a spanning tree and
the basis (γ1, . . . , γn+1) is called a fundamental cycle basis (see for instance [Berge 1973, pp. 25–26]).
Our main result is the following:

Theorem (Theorem 6.1, Theorem 6.4). Zero is an eigenvalue of Ak up to O(k−∞) if and only if the
following system of 3n+ 1 linear equations with unknowns (xe ∈ Ck)e∈{edges of T} (here Ck is the set of
constant symbols; see Section 2A) has a nontrivial solution:

(1) If the edges (e1, e2, e3, e4) connect at s j (with the same convention as before for their labeling), then( xe3

xe4

)
= T j

( xe1

xe2

)
.

(2) If the edges α and β are the extremities of a cut cycle γi , then

xα = exp(ikθ(γi , k))xβ,

where the following orientation is assumed: γi can be represented as a closed path starting on the
edge α and ending on the edge β.
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Moreover, T j is a matrix depending only on a semiclassical invariant ε j (k) of the system at the singular
point s j (see (8)), and θ(γ, k) admits an asymptotic expansion in nonpositive powers of k. The first two
terms of this expansion involve regularizations of the geometric invariants (actions and index) appearing
in the usual Bohr–Sommerfeld conditions.

For spectral purposes, we use this theorem by replacing Ak by Ak − E for E varying in a fixed-size
neighborhood of the singular level. Away from the critical energy, we recover the regular Bohr–Sommerfeld
conditions (see Section 6D).

This is very similar to the results of [Colin de Verdière and Parisse 1999], but the novelty lies in the
framework that had to be set in order to extend their techniques to the Toeplitz setting (especially the
sheaf-theoretic approach to the spectral theory of Toeplitz operators), and also in the geometric invariants
that are specific to this context.

1B. Structure of the article. As said earlier, the case of Toeplitz operators is very close to the case of
pseudodifferential operators; in mathematical terms, there is a microlocal equivalence between Toeplitz
operators and pseudodifferential operators. When the phase space is the whole complex plane, this
equivalence is realized by the Bargmann transform, and allows one to use some of the results obtained in
the pseudodifferential setting. This is why the article is organized as follows: first, we discuss microlocal
properties of the Bargmann transform. Then we introduce the sheaf of microlocal solutions of the equation
(Ak − E)uk = 0, explain its structure and recall the usual Bohr–Sommerfeld conditions. In Section 5, we
construct a microlocal normal form for Ak near each critical point s j , 1≤ j ≤ n, on Bargmann spaces,
and we use the properties of the Bargmann transform and the study of Colin de Verdière and Parisse
[1994a] to describe the space of microlocal solutions of Ak near s j . Finally, we adapt the reasoning
of [Colin de Verdière and Parisse 1999; Colin de Verdière and Vũ Ngo.c 2003] to obtain the singular
Bohr–Sommerfeld conditions (in Section 6). We give numerical evidence in the last section.

2. Preliminaries and notation

2A. Symbol classes. We introduce rather standard symbol classes. Let d be a positive integer. For u in
Cd
' R2d , let m(u) = (1+‖u‖2)1/2. For every integer j , we define the symbol class Sd

j as the set of
sequences of functions in C∞(Cd)which admit an asymptotic expansion of the form a( · , k)=

∑
`≥0 k−`a`

in the sense that

• For all ` ∈ N and all α, β ∈ N2d , there exists C`,α,β > 0 such that |∂αz ∂
β

z̄ a`| ≤ C`,α,βm j .

• For all L ∈ N∗ and all α, β ∈ N2d , there exists CL ,α,β > 0 such that∣∣∣∣∂αz ∂βz̄ (a−
L−1∑
`=0

k−`a`

)∣∣∣∣≤ CL ,α,βk−Lm j .

We set Sd
=
⋃

j∈Z Sd
j . If, in the definition of S1

0, we only consider symbols independent of z, we obtain
the class Ck of constant symbols.
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2B. Function spaces. Using standard notation, we denote by S (R) the Schwartz space of functions
f ∈C∞(R) such that supt∈R |t

j f (p)(t)|<+∞ for all j, p ∈N, by D ′(R) the space of distributions on R,
and by S ′(R)⊂D ′(R) the space of tempered distributions on R (the dual space of S (R)). We recall that

S (R)=
⋂
j∈N

S j (R),

where S j (R) is the space of functions f in C j (R) with ‖ f ‖S j finite, with

‖ f ‖S j = max
0≤p≤ j

(
sup
t∈R

∣∣(1+ t2)( j−p)/2 f (p)(t)
∣∣).

The topology of S (R) is defined by the countable family of seminorms ‖ · ‖S j , j ∈ N.
We recall the definition of Bargmann spaces [Bargmann 1961; 1967], which are spaces of square-

integrable functions with respect to a Gaussian weight: for k ∈ N∗,

Bk =

{
fψk

∣∣∣ f : C 7→ C holomorphic,
∫

R2
| f (z)|2 exp(−k|z|2) dλ(z) <+∞

}
with ψ : C→ C, z 7→ exp

(
−

1
2 |z|

2
)
, ψk
: C→ C⊗k its k-th tensor power, and λ the Lebesgue measure

on R2. We denote by ‖ · ‖Bk the naturally associated L2-norm:

‖ fψk
‖Bk =

(∫
R2
| f (z)|2 exp(−k|z|2) dλ(z)

)1/2

.

Of course, this norm is still defined for elements of the form fψk satisfying the integrability condition
with f not necessarily holomorphic; when this is the case, we denote it by ‖ fψk

‖L2,exp. Furthermore,
we introduce the subspace

Sk =

{
ϕ ∈Bk

∣∣∀ j ∈ N, sup
z∈C

(
|ϕ(z)|(1+ |z|2) j/2)<+∞} (1)

of Bk , with topology induced by the obvious associated family of seminorms. It is the analogue of the
Schwartz space on the Bargmann side; see Section 3A for a more precise statement.

2C. Weyl quantization and pseudodifferential operators. We briefly recall some standard notation and
properties of the theory of pseudodifferential operators (for details, see e.g. [Colin de Verdière 2009;
Dimassi and Sjöstrand 1999; Zworski 2012]), replacing the usual small parameter h̄ by k−1, because this
is all we need in the rest of the paper.

2C1. Pseudodifferential operators. A pseudodifferential operator in one degree of freedom is an operator
(possibly unbounded) acting on L2(R) which is the Weyl quantization of a symbol a( · , k) ∈ S1, seen as
a sequence of functions defined on the cotangent space T ∗R' R2; more precisely,

(OpW
k (a)u)(x)=

k
2π

∫
R2

exp(ik(x − y)ξ)a
( x+y

2
, ξ, k

)
u(y) dy dξ.

The leading term a0 in the asymptotic expansion of a( · , k) is the principal symbol of Ak = OpW
k (a).

Ak is said to be elliptic at (x0, ξ0) ∈ T ∗R if a0(x0, ξ0) 6= 0.
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2C2. Wavefront set.

Definition 2.1. A sequence uk of elements of D ′(R) is said to be admissible if, for any pseudodif-
ferential operator Pk whose symbol is compactly supported, there exists an integer N ∈ Z such that
‖Pkuk‖L2(R) = O(k N ).

We recall the standard definition of the wavefront set WF(uk) of an admissible sequence of distributions.

Definition 2.2. Let uk be an admissible sequence in D ′(R). A point (x0, ξ0) does not belong to WF(uk) if
and only if there exists a pseudodifferential operator Pk , elliptic at (x0, ξ0), such that ‖Pkuk‖L2(R)=O(k−∞).

One can refine these definitions in the case where uk belong to S (R).

Definition 2.3. A sequence (uk)k≥1 of elements of S (R) is said to be

• S -admissible if there exists N in Z such that every Schwartz seminorm of uk is O(k N ),

• S -negligible if every Schwartz seminorm of uk is O(k−∞). We write uk = OS (k−∞).

Now, instead of using the L2-norm in Definition 2.2, one can actually consider the seminorms ‖ · ‖S j .

Lemma 2.4. A point (x0, ξ0) does not belong to WF(uk) if and only if there exists a pseudodifferential
operator Pk , elliptic at (x0, ξ0), such that Pkuk = OS (k−∞).

Proof. The sufficient condition comes from the previous definition, so we only prove the necessary
condition. We only adapt a standard argument used when one wants to deal with C j -norms (see [Robert
1987, Proposition IV-8]). Assume that (x0, ξ0) does not belong to WF(uk); there exists a pseudodifferential
operator Pk , elliptic at (x0, ξ0), such that ‖Pkuk‖L2(R)=O(k−∞). Consider a compactly supported smooth
function χ equal to one in a neighborhood of (x0, ξ0), and set Qk =OpW(χ)Pk . For every R ∈R[X ] and
every integer j > 0,

k− j d j

dx j R OpW(χ)

is a pseudodifferential operator of order 0, hence bounded L2(R)→ L2(R) by a constant C > 0 (by
the Calderón–Vaillancourt theorem; see [Robert 1987, Theorem II-36] or [Dimassi and Sjöstrand 1999,
Theorem 7.11]). Thus, one has∥∥∥∥k− j d j

dx j RQkuk

∥∥∥∥
L2(R)

≤ C‖Pkuk‖L2(R) = O(k−∞).

Hence, ‖RQkuk‖H s(R) = O(k−∞) for every integer s > 0, where we recall that the Sobolev space H s(R)

is the subspace of L2(R) whose elements have their s first derivatives in L2(R); Sobolev injections then
yield that every C j -norm of RQkuk is O(k−∞). Since this holds for every polynomial R, we obtain
the result. �
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2D. Geometric quantization and Toeplitz operators. We also recall the standard definitions and notation
in the Toeplitz setting. Unless otherwise mentioned, “smooth” will always mean C∞, and a section
of a line bundle will always be assumed to be smooth. The space of sections of a bundle E → M
will be denoted by C∞(M, E). Let M be a connected, compact Kähler manifold, with fundamental
2-form ω ∈�2(M,R). Assume M is endowed with a prequantum bundle L→ M , that is, a Hermitian
holomorphic line bundle whose Chern connection ∇ has curvature −iω. Let K → M be a Hermitian
holomorphic line bundle. For every positive integer k, define the quantum space Hk as

Hk = H 0(M, Lk
⊗ K )= {holomorphic sections of Lk

⊗ K }.

The space Hk is a subspace of the space L2(M, Lk
⊗ K ) of sections of finite L2-norm, where the scalar

product is given by

〈ϕ,ψ〉 =

∫
M

hk(ϕ, ψ)µM ,

with hk the Hermitian product on Lk
⊗ K induced by those of L and K , and µM the Liouville measure

on M . Since M is compact, Hk is finite-dimensional, and is thus given a Hilbert space structure with this
scalar product.

2D1. Admissible and negligible sequences. Let (sk)k≥1 be a sequence such that, for each k, sk belongs
to C∞(M, Lk

⊗ K ). We say that (sk)k≥1 is

• admissible if for every positive integer `, for all vector fields X1, . . . , X` on M , and for every
compact set C ⊂ M , there exist a constant c> 0 and an integer N (depending on X1, . . . , X` and C)
such that

‖∇X1 · · · ∇X`sk(p)‖ ≤ ck N for all p ∈ C;

• negligible if for all positive integers ` and N , for all vector fields X1, . . . , X` on M , and for every
compact set C ⊂ M , there exists a constant c > 0 (depending on X1, . . . , X`, C and N ) such that

‖∇X1 · · · ∇X`sk(p)‖ ≤ ck−N for all p ∈ C.

We say that (sk)k≥1 is negligible over an open set U ⊂ M if the previous estimates hold for every compact
subset of U . The microsupport MS(sk) of an admissible sequence (sk)k≥1 is the complement of the set of
points of M which admit a neighborhood where (sk)k≥1 is negligible. Finally, we say that two admissible
sequences (tk)k≥1 and (sk)k≥1 are microlocally equal on an open set U if MS(tk − sk)∩U =∅; unless
explicitly stated otherwise, the symbol ∼ will indicate microlocal equivalence.

2D2. Toeplitz operators. Let 5k be the orthogonal projector of L2(M, Lk
⊗ K ) onto Hk . A Toeplitz

operator is any sequence (Tk :Hk→Hk)k≥1 of operators of the form

Tk =5k M f ( · ,k)+ Rk,

where f ( · , k) is a sequence in C∞(M) with an asymptotic expansion f ( · , k) =
∑

`≥0 k−` f` for the
C∞ topology, M f ( · ,k) is the operator of multiplication by f ( · , k), and Rk is an operator acting on Hk
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with ‖Rk‖ = O(k−∞). Let T be the set of Toeplitz operators, and define the contravariant symbol map

σcont : T→ C∞(M)[[h̄]]

sending Tk into the formal series
∑

`≥0 h̄` f`. We will mainly work with the normalized symbol

σnorm =

(
Id+ h̄

2
1
)
σcont,

where 1= ∂∗∂ is the holomorphic Laplacian acting on C∞(M); unless otherwise mentioned, when we
talk about a subprincipal symbol, this refers to the normalized symbol.

We can define the notions of admissibility, negligibility, microsupport and microlocal equivalence for
Toeplitz operators, using the fact that their Schwartz kernels are sequences of sections of some line bundle
(see [Charles 2006, Equation (4.1)] for a more precise statement).

2D3. The case of the complex plane. Let us briefly recall how to adapt the previous constructions
to the case of the whole complex plane. We consider the Kähler manifold C ' R2 with coordinates
(x, ξ), standard complex structure and symplectic form ω0 = dξ ∧ dx . Let L0 = R2

×C→ R2 be the
trivial fiber bundle with standard Hermitian metric h0 and connection ∇0 with 1-form (1/ i)α, where
αu(v) =

1
2ω0(u, v); endow L0 with the unique holomorphic structure compatible with h0 and ∇0. For

every positive integer k, the quantum space at order k is

H0
k = H 0(R2, Lk

0)∩ L2(R2, Lk
0),

and it turns out that H0
k = Bk (see Section 2B for the definition of Bk); indeed, if we choose the

holomorphic coordinate z = 1
√

2
(x − iξ), then a section ϕ of Lk

0→ R2 is holomorphic if and only if

∂z̄ϕ+
kz
2
ϕ = 0.

Hence, for ψ : C→ C, z 7→ exp
(
−

1
2 |z|

2
)
, the section ψk is a nonvanishing element of H 0(R2, Lk

0), and
any other holomorphic section is of the form fψk , where f is a holomorphic function.

One can define the algebra of Toeplitz operators and the various symbols in a similar way as in the
compact case; see [Le Floch 2014] for details. We will call T j the class of Toeplitz operators with symbol
in S1

j . In what follows, 50
k will denote the orthogonal projector of L2(R2, Lk

0) onto H0
k , and we define

the Toeplitz operator Op( f · , k)=50
k M f ( · ,k) for f ( · , k) in S1

j .
Let us give more details about the microsupport in this setting. We start by recalling the following

inequality in Bargmann spaces [Bargmann 1961, Equation (1.7)].

Lemma 2.5. Let φk ∈Bk . Then, for every complex variable z,

|φk(z)| ≤
( k

2π

)1/2
‖φk‖Bk .

Similarly, for all vector fields X1, . . . , X p on C, there exists a polynomial P ∈ R[x1, x2] with positive
values such that, for every z ∈ C,

|(∇X1 · · · ∇X pφk)(z)| ≤ P(|z|, k)1/2‖φk‖Bk .
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Proof. The first claim is proved in [Bargmann 1961] in the case k = 1; the general case then comes from
a change of variables. The second claim can be proved in the same way. �

Lemma 2.6. Let uk be a sequence of elements of Bk and � a bounded open subset of C. Assume that
‖uk‖L2(�),exp = O(k−∞); then, for any compact subset K of �, uk and all its covariant derivatives are
uniformly O(k−∞) on K .

Proof. Choose a compactly supported smooth function η which is positive, vanishing outside � and with
constant value 1 on K , and set vk = Op(η)uk . One has

‖vk‖Bk = ‖5
0
kηuk‖Bk ≤ ‖ηuk‖L2,exp ≤ ‖uk‖L2(�),exp

since 50
k is continuous L2(R2, Lk

0)→ L2(R2, Lk
0) with norm smaller than 1. Hence, ‖vk‖Bk = O(k−∞).

By Lemma 2.5, this implies that vk and its covariant derivatives are uniformly O(k−∞) on K ; since
uk = vk + O(k−∞) on K , the same holds for uk . �

Lemma 2.7. Let (uk)k≥1 be an admissible sequence of elements of Bk and z0 ∈ C. Then z0 /∈MS(uk) if
and only if there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that ‖Tkuk‖Bk = O(k−∞).

Proof. Assume that z0 /∈MS(uk). There exists a neighborhood U of z0 such that uk is negligible on U.
Choose a compactly supported function χ ∈ C∞(C,R) with support K contained in U and such that
χ(z0)= 1, and set Tk = Op(χ). One has, for z1 ∈ C,

(Tkuk)(z1)=
k

2π

∫
K

exp
(
−

k
2
(|z1|

2
+ |z2|

2
− 2z1 z̄2)

)
χ(z2)uk(z2) dµ(z2),

which gives

|(Tkuk)(z1)| ≤
k

2π
sup

K
|uk |

∫
K

exp
(
−

k
2
|z1− z2|

2
)

dµ(z2).

This allows to estimate the norm of Tkuk :

‖Tkuk‖
2
Bk
≤

( k
2π

)2(
sup

K
|uk |

)2
∫

C

∫
K

exp(−k|z1− z2|
2) dµ(z1) dµ(z2).

Hence
‖Tkuk‖

2
Bk
≤

( k
2π

)2(
sup

K
|uk |

)2
µ(K )

∫
C

exp(−k|z1|
2) dµ(z1),

and the necessary condition is proved since the integral is O(k−1/2).
Conversely, assume that there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that ‖Tkuk‖Bk =

O(k−∞). There exists a neighborhood of z0 where Tk is elliptic. Hence, by symbolic calculus, we can
find a Toeplitz operator Sk ∈T0 such that Sk Tk ∼5

0
k near (z0, z0). Thus, there exists a neighborhood � of

z0 such that Sk Tkuk ∼ uk on �; this implies that ‖Sk Tkuk‖L2(�) = ‖uk‖L2(�)+ O(k−∞). But, since Sk is
bounded Bk→Bk by a constant C > 0 which does not depend on k, one has ‖Sk Tkuk‖L2(�)≤C‖Tkuk‖Bk ;
this yields that ‖uk‖L2(�) is O(k−∞). Lemma 2.6 then gives the negligibility of uk on �. �

Definition 2.8. A sequence (uk)k≥1 of elements of Sk is said to be

• Sk-admissible if there exists N in Z such that every Sk seminorm of uk is O(k N );
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• Sk-negligible if every Sk seminorm of uk is O(k−∞). We write uk = OSk (k
−∞).

Lemma 2.9. Let (uk)k≥1 be an admissible sequence of elements of Bk and z0 ∈ C. Then z0 /∈MS(uk) if
and only if there exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that Tkuk = OSk (k

−∞).

Proof. The proof is nearly the same as the one of Lemma 2.4. One can show that if z0 /∈MS(uk), there
exists a Toeplitz operator Tk ∈ T0, elliptic at z0, such that for every polynomial function P(z) of z only,
supz∈C |P(z)(Tkuk)(z)|=O(k−∞), using the fact that the multiplication by P(z) is a Toeplitz operator. �

3. The Bargmann transform

3A. Definition and first properties. The Bargmann transform is the unitary operator Bk : L2(R)→Bk

defined by

(Bk f )(z)=
(( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z

2
+ t2)+

√
2zt
))

f (t) dt
)
ψk(z).

We claimed earlier that the subspace Sk of Bk defined in (1) is the analogue of the Schwartz space on
the Bargmann side. The case k = 1 is treated by the following theorem.

Theorem 3.1 [Bargmann 1967, Theorem 1.7]. The Bargmann transform B1 is a bijective, bicontinuous
mapping between S (R) and S1.

This allows us to handle the general case.

Proposition 3.2. The Bargmann transform Bk is a bijection between S (R) and Sk .

Proof. If f belongs to S (R), one has, for z in C,

(Bk f )(z)=
( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z

2
+ t2)+

√
2zt
))

f (t) dt;

introducing the variables u and w such that z = k−1/2w and t = k−1/2u, this reads

(Bk f )(z)= (kπ)−1/4
∫

R

exp
(
−

1
2(w

2
+ u2)+

√
2wu

)
f (k−1/2u) du.

Hence, we have (Bk f )(z)= (kπ)−1/4(B1g)(k1/2z), where g(t)= f (k−1/2t). Obviously, the function g
belongs to S (R); thus, by the previous theorem, B1g belongs to S1. Hence, for j ∈ N, there exists a
constant C j > 0 such that, for every complex variable w,∣∣(B1g)(w) exp

(
−

1
2 |w|

2)∣∣≤ C j (1+ |w|2)− j/2.

This implies that, for every z in C,∣∣∣(Bk f )(z) exp
(
−

k
2
|z|2

)∣∣∣≤ C j k− j/2(1+ k|z|2)− j/2,

and since k ≥ 1, this yields ∣∣∣(Bk f )(z) exp
(
−

k
2
|z|2

)∣∣∣≤ C j (1+ |z|2)− j ,
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which means that Bk f belongs to Sk . The converse is proved in the same way, using the explicit form of
the inverse mapping:

(B∗k g)(t)=
( k
π

)1/4
∫

R

exp
(
k
(
−

1
2(z̄

2
+ t2)+

√
2z̄t − |z|2

))
g(z) dµ(z)

for g in Sk and t ∈ R. �

3B. Action on Toeplitz operators. The Bargmann transform has the good property to conjugate a Toeplitz
operator with symbol defined on C (thus acting on the spaces Bk) to a pseudodifferential operator with
symbol defined on T ∗R (thus acting on L2(R)), and conversely.

Lemma 3.3. Let Tk be a Toeplitz operator in the class T j , with contravariant symbol σcont(Tk)= f ( · , h̄).
Then B∗k Tk Bk is a pseudodifferential operator with Weyl symbol

σW (B∗k Tk Bk)(x, ξ)= I ( f ( · , h̄))(x, ξ)= 1
π h̄

∫
C

exp(−2h̄−1
|w|2) f (w+ z, h̄) dλ(w),

where z = 1
√

2
(x− iξ). The map I is continuous S j→S j . Moreover, for any f ( · , h̄) ∈S j and all p ≥ 1,

I ( f ( · , h̄))=
p−1∑
j=0

( h̄
2

) j 1 j f ( · , h̄)
j !

+ h p Rp( f ( · , h̄)), (2)

where Rp is a continuous map from S j to S j .

Proof. Thanks to [Charles and Vũ Ngo.c 2008, Theorem 5.2], we know that the result holds when
Tk =5

0
k f50

k , f being a bounded function on C not depending on k. Now, using the stationary phase
method, one can prove that the map I is continuous S j → S j with the asymptotic expansion (2), and
conclude by a density argument. �

3C. Microlocalization and Bargmann transform.

Lemma 3.4. (1) Bk maps S -admissible functions to Sk-admissible sections, and B∗k maps Sk-ad-
missible sections to S -admissible functions.

(2) Bk maps OS (k−∞) into OSk (k
−∞), and B∗k maps OSk (k

−∞) into OS (k−∞).

Proof. These results are proved by performing a change of variables, as in Proposition 3.2. �

We can now prove the link between the wavefront set and the microsupport via the Bargmann transform.

Proposition 3.5. Let uk be an admissible sequence of elements of S (R). Then (x0, ξ0) /∈WF(uk) if and
only if z0 =

1
√

2
(x0− iξ0) /∈MS(Bkuk).

Proof. Assume that z0=
1
√

2
(x0−iξ0) does not belong to MS(Bkuk); by Lemma 2.9, there exists a Toeplitz

operator Tk , elliptic at z0, such that Tk Bkukψ
k
= OSk (k

−∞). Thanks to Lemma 3.3, Pk = B∗k Tk Bk is a
pseudodifferential operator elliptic at (x0, ξ0). Furthermore, thanks to Lemma 3.4, Pkuk = B∗k Tk Bkukψk =

OS (k−∞); we conclude by Lemma 2.4. The proof of the converse follows the same steps. �
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4. The sheaf of microlocal solutions

In this section, Tk is a selfadjoint Toeplitz operator on M with normalized symbol f ( · , h̄)=
∑

`≥0 h̄` f `.
Following [Vũ Ngo. c 1998; 2000], we introduce the sheaf of microlocal solutions of the equation Tkψk = 0.

Let us recall the motivation for considering microlocal solutions: roughly speaking, they allow to split
the eigenvalue equation Tkψk = λψk into several local problems, the Bohr–Sommerfeld rules being a
necessary and sufficient condition to glue together the solutions to these problems in order to obtain a
global approximate solution to this equation. For the sake of brevity, we begin with the case λ= 0, and
we introduce a spectral parameter only in Section 4F.

4A. Microlocal solutions. For an open subset U of M , we call a sequence of sectionsψk ∈C∞(U,Lk
⊗K )

a local state over U .

Definition 4.1. We say that a local state ψk is a microlocal solution of

Tkψk = 0 (3)

on U if it is admissible and, for every x ∈U , there exists a function χ ∈ C∞(M) with support contained
in U , equal to 1 in a neighborhood of x and such that

5k(χψk)= ψk + O(k−∞), Tk(5k(χψk))= O(k−∞)

on a neighborhood of x .

One can show that if ψk ∈Hk is admissible and satisfies Tkψk = 0, then the restriction of ψk to U is a
microlocal solution of (3) on U . Moreover, the set S(U ) of microlocal solutions of this equation on U is
a Ck-module containing the set of negligible local states as a submodule (let us recall that Ck is the set of
constant symbols; see Section 2A). We denote by Sol(U ) the module obtained by taking the quotient
of S(U ) by the negligible local states; the notation [ψk] will stand for the equivalence class of ψk ∈ S(U ).

Lemma 4.2. The collection of modules Sol(U ) for U an open subset of M , together with the natural
restriction maps rU,V : Sol(V ) → Sol(U ) for U, V open subsets of M such that U ⊂ V , define a
complete presheaf.

Thus, we obtain a sheaf Sol over M , called the sheaf of microlocal solutions on M .

4B. The sheaf of microlocal solutions. One can show that if the principal symbol f0 of Tk does not
vanish on U , then Sol(U ) = {0}. Equivalently, if ψk ∈ Hk satisfies Tkψk = 0, then its microsupport is
contained in the level 00 = f −1

0 (0). This implies the following lemma.

Lemma 4.3. Let � be an open subset of 00; write �=U ∩00, where U is an open subset of M. Then
the restriction map

r� : Sol(U )→ FU (�) := r�(Sol(U )), [ψk] 7→ [ψk |�]

is an isomorphism of Ck-modules.
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We want to define a new sheaf F→ 00 that still describes the microlocal solutions of (3). In order to
do so, we will check that the module FU (�) does not depend on the open set U such that �= 00 ∩U .
We first prove:

Lemma 4.4. Let U, Ũ be two open subsets of M such that �=U ∩00 = Ũ ∩00. Then there exists an
isomorphism between Sol(U ) and Sol(Ũ ) commuting with the restriction maps.

Proof. Assume that U and Ũ are distinct and set V = U ∩ Ũ ; of course � ⊂ V . Write Ũ = V ∪W
where the open set W is such that there exists an open set X ⊂ V containing � such that W ∩ X = ∅.
Let χV , χW be a partition of unity subordinate to Ũ = V ∪W ; in particular, χV (x)= 1 whenever x ∈ X .
One can show that the class FχV (ψk) = [χVψk] belongs to Sol(Ũ ). We claim that the map FχV is an
isomorphism with the required property. �

From these two lemmas, we deduce:

Proposition 4.5. Let U, Ũ be two open subsets of M such that�=U∩00=Ũ∩00. Then FU (�)=FŨ (�).

This allows to define a sheaf F→ 00, which will be called the sheaf of microlocal solutions over 00.
Let us point out that so far, we have made no assumption on the structure (regularity) of the level 00.

4C. Regular case. Consider a point m ∈ 00 which is regular for the principal symbol f0. Then there
exists a symplectomorphism χ between a neighborhood of m in M and a neighborhood of the origin
in R2 such that ( f0 ◦χ

−1)(x, ξ)= ξ . We can quantize this symplectomorphism by means of a Fourier
integral operator [Boutet de Monvel and Guillemin 1981; Zelditch 1997; Charles 2003b; Le Floch 2014]:
there exists an admissible sequence of operators U (m)

k : C∞(R2, Lk
0)→ C∞(M, Lk

⊗ K ) such that

U (m)
k (U (m)

k )∗ ∼5k near m

and
(U (m)

k )∗U (m)
k ∼50

k,
(
U (m)

k

)∗TkU (m)
k ∼ Sk near 0,

where Sk is the Toeplitz operator

Sk =
i
√

2

(
z− 1

k
d
dz

)
,

which means that Sku = i
√

2

(
z f − 1

k
d f
dz

)
ψk if u = fψk . Consider the element 8k of C∞(R2, Lk

0)

given by
8k(z)= exp(kz2/2)ψk(z), ψ(z)= exp

(
−

1
2 |z|

2)
;

it satisfies Sk8k = 0. Choosing a suitable cutoff function η and setting 8(m)k =5
0
k(η8k), we obtain an

admissible sequence 8(m)k of elements of Bk microlocally equal to 8k near the origin and generating the
Ck-module of microlocal solutions of Skuk = 0 near the origin.

Proposition 4.6. The Ck-module of microlocal solutions of (3) near m is free of rank 1,2 generated
by U (m)

k 8
(m)
k .

2We recall that this means that this module admits a basis with one element.
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This is a slightly modified version of Proposition 3.6 of [Charles 2003b], in which the normal form is
achieved on the torus instead of the complex plane.

Thus, if 00 contains only regular points of the principal symbol f0, then F→ 00 is a sheaf of free
Ck-modules of rank 1; in particular, this implies that F→ 00 is a flat sheaf, thus characterized by its
Čech holonomy holF.

4D. Lagrangian sections. In order to compute the holonomy holF, we have to understand the structure
of the microlocal solutions. For this purpose, a family of solutions of particular interest is given by
Lagrangian sections; let us define these. Consider a curve 0 ⊂ 00 containing only regular points, and let
j : 0→ M be the embedding of 0 into M . Let U be an open set of M such that U0 = j−1(U ∩0) is
contractible; then there exists a flat unitary section t0 of j∗L→U0. Now, consider a formal series∑

`≥0

h̄`g` ∈ C∞(U0, j∗K )[[h̄]].

Let V be an open subset of M such that V ⊂ U . Then a sequence 9k ∈ Hk is a Lagrangian section
associated to (0, t0) with symbol

∑
`≥0 h̄`g` if

9k(m)=
( k

2π

)1/4
Fk(m)g̃(m, k) over V,

where

• F is a section of L→U such that

j∗F = t0 and ∂̄F = 0

modulo a section vanishing to every order along j (0), and |F(m)|< 1 if m /∈ j (0);

• g̃( · , k) is a sequence in C∞(U, K ) admitting an asymptotic expansion
∑

`≥0 k−`g̃` in the C∞ topol-
ogy such that

j∗g̃` = g` and ∂̄ g̃` = 0

modulo a section vanishing at every order along j (0).

Assume furthermore that 9k is admissible in the sense that 9k(m) is uniformly O(k N ) for some N and
the same holds for its successive covariant derivatives. It is possible to construct such a section with given
symbol

∑
`≥0 h̄`g` (see [Charles 2006, §3]). Furthermore, if 9k is a nonzero Lagrangian section, then

the constants ck ∈ Ck such that ck9k is still a Lagrangian section are the elements of the form

ck = ρ(k) exp(ikφ(k))+ O(k−∞), (4)

where ρ(k), φ(k) ∈R admit asymptotic expansions of the form ρ(k)=
∑

`≥0 k−`ρ`, φ(k)=
∑

`≥0 k−`φ`.
Lagrangian sections are important because they provide a way to construct microlocal solutions. Indeed,

if 9k is a Lagrangian section over V associated to (0, t0) with symbol
∑

`≥0 h̄`g`, then Tk9k is also a
Lagrangian section over V associated to (0, t0), and one can in principle compute the elements ĝ`, `≥ 0
of the formal expansion of its symbol as a function of the g`, ` ≥ 0 (by means of a stationary phase
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expansion). This allows to solve (3) by prescribing the symbol of 9k so that for every `≥ 0, ĝ` vanishes.
Let us detail this for the two first terms.

Introduce a half-form bundle (δ, ϕ), that is, a line bundle δ→ M together with an isomorphism of line
bundles ϕ : δ⊗2

→31,0T ∗M . Since the first Chern class of M , which is equal to its Euler characteristic,
is even, such a pair exists. Introduce the Hermitian holomorphic line bundle L1 such that K = L1⊗ δ.
Define the subprincipal form κ as the 1-form on 0 such that

κ(X f0)=− f1,

where X f0 stands for the Hamiltonian vector field associated to f0. Introduce the connection ∇1 on
j∗L1→ 0 defined by

∇
1
=∇

j∗L1 +
1
i
κ,

with ∇ j∗L1 the connection induced by the Chern connection of L1 on j∗L1. Let δ0 be the restriction of δ
to 0; the map

ϕ0 : δ
⊗2
0 → T ∗0⊗C, u 7→ j∗ϕ(u)

is an isomorphism of line bundles. Define a connection ∇δ0 on δ0 by

∇
δ0
X σ = Lδ0

X σ,

where Lδ0
X is the first-order differential operator acting on sections of δ0 such that

ϕ0
(
Lδ0

X g⊗ g
)
=

1
2 LXϕ0(g⊗2)

for every section g; here, L stands for the standard Lie derivative of forms.
It was proved in [Charles 2006, Theorems 3.3 and 3.4] that Tk9k is a Lagrangian section over V

associated to t0 with symbol ( j∗ f0)g0+ O(h̄)= O(h̄) (so 9k satisfies (3) up to order O(k−1)) and that
the subprincipal symbol of Tk9k is

( j∗ f1)g0+
1
i
(
∇

j∗L1
X f0
⊗ Id+ Id⊗Lδ0

X f0

)
g0.

Consequently, (3) is satisfied by 9k up to order O(k−2) if and only if(
f1+

1
i
(
∇

j∗L1
X f0
⊗ Id+ Id⊗Lδ0

X f0

))
g0 = 0 over V ∩0. (5)

This can be interpreted as a parallel transport equation: if we endow j∗L1 ⊗ δ0 with the connection
induced from ∇1 and ∇δ0 , (5) means that g0 is flat.

4E. Holonomy. We now assume that 00 is connected (otherwise, one can consider connected components
of 00) and contains only regular points; it is then a smooth closed curve embedded in M . We would like
to compute the holonomy of the sheaf F→ 00.

Proposition 4.7. The holonomy holF(00) is of the form

holF(00)= exp(ik2(k))+ O(k−∞), (6)
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where 2(k) is real-valued and admits an asymptotic expansion of the form 2(k)=
∑

`≥0 k−`2`.

In particular, this means that if we consider another set of solutions to compute the holonomy, we only
have to keep track of the phases of the transition constants.

Proof. Cover 00 by a finite number of open subsets �α in which the normal form introduced before
Proposition 4.6 applies, and let Uα

k and 8αk be as in this proposition. We obtain a family uαk of microlocal
solutions; observe that for each α, uαk is a Lagrangian section associated to 0. Hence, if �α ∩�β is
nonempty, the unique (modulo O(k−∞)) constant cαβk ∈ Ck such that uαk = cαβk uβk on �α ∩�β is of the
form given in (4):

cαβk = ρ
αβ(k) exp(ikφαβ(k))+ O(k−∞).

But if m belongs to �α ∩�β , then near m we have uαk ∼Uα
k 8

(m)
k and uβk ∼Uβ

k 8
(m)
k , where 8(m)k is an

admissible sequence of elements of Bk microlocally equal to 8k near the origin. Therefore, we have

cαβk 8
(m)
k = (U

β

k )
−1Uα

k 8
(m)
k + O(k−∞),

and the fact that the operators Uα
k , Uβ

k are microlocally unitary yields |cαβk |
2
= 1+O(k−∞). This implies

that the coefficients ραβ` in the asymptotic expansion of ραβ(k) vanish for `≥ 1, which gives the result. �

Let us be more specific and compute the first terms of this asymptotic expansion. Consider a finite
cover (�α)α of 00 by open subsets with j−1(�α) contractible, and endow a neighborhood of each �α
in M with a nontrivial microlocal solution 9α

k which is a Lagrangian section. Choose a flat unitary
section tα of the line bundle j∗L→ j−1(�α) and write, for m ∈�α,

9α
k (m)=

( k
2π

)1/4
gα(m, k)tk

α(m),

where the section gα( · , k) of j∗K →�α is the symbol of 9α
k , whose principal symbol will be denoted

by g(0)α . Now, assume that �α ∩�β 6= ∅; there exists a unique (up to O(k−∞)) cαβk ∈ Ck such that
9α

k ∼ cαβk 9
β

k on �α ∩�β .

Definition 4.8. Let A, B ∈ M and γ be a piecewise smooth curve joining A and B; denote by PA,B,γ :

L A→ L B the linear isomorphism given by parallel transport from A to B along γ . Given two sections s, t
of L→ M such that s(A) 6= 0 and t (B) 6= 0, define the phase difference between s(A) and t (B) along γ
as the number

(8s(A)−8t(B))γ = arg λA,B,γ − c0([A, B]) ∈ R/2πZ,

where λA,B,γ is the unique complex number such that PA,B,γ (s(A))= λA,B,γ t (B) and c0([A, B]) is the
(phase of the) holonomy of γ in (L ,∇) (computed with respect to some fixed trivializations at A, B).
Define in the same way the phase difference for two sections of K → M , this time using the Chern
connection of K .

Now, consider three points A, B,C ∈ M , and let γ1 and γ2 be piecewise smooth curves joining A to B
and B to C , respectively. Let γ be the concatenation of γ1 and γ2. It is easily checked that

(8s(A)−8t(B))γ1 + (8t(B)−8u(C))γ2 = (8s(A)−8u(C))γ
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for three sections s, t, u of L . Furthermore, if γ is a closed curve and A is a point on γ , then the phase
difference between s(A) and s(A) along γ is

(8s(A)−8s(A))γ = 0

by definition of the holonomy c0. This is why we write this number as a difference. Note that this still
holds true if we change the set of trivializations used to compute c0.

Coming back to our problem, denote by 8(−1)
α (A)−8(−1)

β (B) the phase difference between tα(A)
and tβ(B) along 00 in L , and by 8(0)α (A)−8

(0)
β (B) the phase difference between g(0)α (A) and g(0)β (B)

along 00 in K . Let ζ be the path in 00 starting at a point A ∈�α and ending at B ∈�α ∩�β . Since tα is
flat and the principal symbol g0 of 9α

k satisfies (5), we have

arg cαβk = k
(
c0(ζ )+8

(−1)
α (A)−8(−1)

β (B)
)
+ c1(ζ )+ holδ00

(ζ )+8(0)α (A)−8
(0)
β (B) + O(k−1),

where c1(ζ ) is the holonomy of ζ in (L1,∇
1) and holδ00

(ζ ) is the holonomy of ζ in (δ00,∇
δ00 ) (both

computed with respect to some fixed trivializations of L1 and δ00 at A, B).
Thanks to the discussion above, we know that the term

k
(
8(−1)
α (A)−8(−1)

β (B)
)
+8(0)α (A)−8

(0)
β (B)

is a Čech coboundary. The values c0(00), c1(00) and holδ00
(00) do not depend on the trivializations

chosen for the computations. Moreover, one can check that ∇δ00 has holonomy in Z/2Z, represented by
ε(00) ∈ {0, 1}. Thus, we obtain:

Proposition 4.9. The first two terms of the asymptotic expansion of the quantity 2(k) defined in
Proposition 4.7 are given by

20 = c0(00)

and
21 = c1(00)+ ε(00)π.

Since one can construct a nontrivial microlocal solution over 00 if and only if 2(k) ∈ 2πZ, we recover
the usual Bohr–Sommerfeld conditions.

Let us give another interpretation of the index ε. Consider a smooth closed curve γ immersed in M .
Denote by ι : γ → M this immersion, and by δγ = ι∗δ the pullback bundle over γ . Let ι̃ : δγ → δ be the
natural lift of ι, and define ι̃2 : δ⊗2

γ → δ⊗2 by the formula ι̃2(u⊗ v)= ι̃(u)⊗ ι̃(v). The map

ϕγ : δ
⊗2
γ → T ∗γ ⊗C, u 7→ ι∗ϕ(ι̃2(u))

is an isomorphism of line bundles. The set

{u ∈ δγ | ϕγ (u⊗2) > 0}

has one or two connected components. In the first case, we set ε(γ )= 1, and in the second case ε(γ )= 0.
One can check that this definition coincides with the one above when γ is a smooth embedded closed
curve. Notice that the value of ε(γ ) only depends on the isotopy class of γ in M .
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4F. Spectral parameter dependence. For spectral analysis, one has to do the same study as above,
replacing the operator Tk with Tk − λ, λ ∈ R; then it is natural to ask if the previous study can be done
taking into account the dependence of the operator on the spectral parameter λ.

Assume that there exists a tubular neighborhood � of 0 such that for λ close enough to 0, the
intersection 0λ∩� is regular. Then we can construct microlocal solutions of (Tk−λ)uk = 0 as Lagrangian
sections depending smoothly on a parameter (see [Charles 2003b, §2.6]); these solutions are uniform in λ.
We can then define all the previous objects with smooth dependence in λ. Proceeding this way, we obtain
the parameter-dependent Bohr–Sommerfeld conditions, which we describe below.

Let I be an interval of regular values of the principal symbol f0 of the operator. For λ ∈ I , denote
by C j (λ), 1≤ j ≤ N , the connected components of f −1

0 (λ) in such a way that for j fixed and λ1 6= λ2 ∈ I ,
C j (λ1) and C j (λ2) belong to the same connected component of f −1

0 (I ). Observe that C j (λ) is a
smooth embedded closed curve, endowed with the orientation depending continuously on λ given by
the Hamiltonian flow of f0. Define the principal action c( j)

0 ∈ C∞(I ) in such a way that the parallel
transport in L along C j (λ) is the multiplication by exp(ic( j)

0 (λ)). Define the subprincipal action c( j)
1 in

the same way, replacing L by L1 and using the connection ∇1 (depending on λ) described above. Finally,
set ε( j)

λ = ε(C j (λ)); in fact, ε( j)
λ is a constant ε( j)

λ = ε
( j) for λ in I . Fix E in I ; the Bohr–Sommerfeld

conditions (see [Charles 2006] for more details) state that there exists η > 0 such that the intersection
of the spectrum of Tk with [E − η, E + η] modulo O(k−∞) is the union of the spectra σ j , 1 ≤ j ≤ N ,
where the elements of σ j are the solutions of

g( j)(λ, k) ∈ 2πk−1Z,

where g( j)( · , k) is a sequence of functions of C∞(I ) admitting an asymptotic expansion

g( j)( · , k)=
∑
`≥0

k−`g( j)
`

with coefficients g( j)
` ∈ C∞(I ). Furthermore, one has

g( j)
0 (λ)= c( j)

0 (λ) and g( j)
1 (λ)= c( j)

1 (λ)+ ε( j)π.

5. Microlocal normal form

5A. Normal form on the Bargmann side. Let Pk be the operator defined by

Pk =
i
2

(
z2
−

1
k2
∂2

∂z2

)
with domain C[z] ⊂Bk ; it is a Toeplitz operator with normalized symbol p0(x, ξ)= xξ . We will use this
operator to understand the behavior of Ak when acting on sections localized near each s j , 1≤ j ≤ n. In
fact, we study the operator Ak − E , where E ∈ R is allowed to vary in a neighborhood of zero.

Let j ∈ [[1, n]]. The isochore Morse lemma [Colin de Verdière and Vey 1979] yields a symplectomor-
phism χE from a neighborhood of s j in M to a neighborhood of the origin in R2, depending smoothly on
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E , and a smooth function gE
j , again depending smoothly on E , such that

((a0− E) ◦χ−1
E )(x, ξ)= gE

j (xξ)

and (gE
j )
′(0) 6= 0. Using a Taylor formula, one can write

gE
j (t)= w

E
j (t)(t − f j (E))

with wE
j smooth, depending smoothly on E , and such that wE

j (0) 6= 0, and with f j a smooth function
of E with f j (0) = 0. This symplectic normal form can be quantized to the following semiclassical
normal form.

Proposition 5.1. Fix j ∈ [[1, n]]. Then there exist a smooth function f j , a Fourier integral operator
U E

k : Bk → Hk , a Toeplitz operator W E
k , elliptic at 0, and a sequence of smooth functions ε j ( · , k)

admitting an asymptotic expansion ε j (E, k)=
∑
+∞

`=0 k−`ε(`)j (E) such that

(U E
k )
∗(Ak − E)U E

k ∼W E
k
(
Pk − f j (E)− k−1ε j (E, k)

)
microlocally near s j . Furthermore,

• Uk and Wk depend smoothly on E ,

• f j (E) is the value of xξ whenever (x, ξ)= χE(m) for m ∈ 0E , and

• the first term of the asymptotic expansion of ε j (0, k) is given by

ε
(0)
j (0)=

−a1(s j )

|det(Hess(a0)(s j ))|1/2
,

where Hess(a0)(s j ) is the Hessian of a0 at s j .

The proof is an adaptation of the one in [Colin de Verdière and Parisse 1994a, §3] to the Toeplitz
setting; see also [Le Floch 2014, Theorem 5.3] for a similar result in the elliptic case.

5B. Link with the pseudodifferential setting. Now we use the Bargmann transform to understand the
structure of the space of microlocal solutions of Pk − E = 0.

Lemma 5.2. For u ∈S (R), one has

B∗k Pk Bku = 1
ik
(x∂x + 1)u.

From now on, we will denote by Sk the pseudodifferential operator (1/ ik)(x∂x + 1). This correspon-
dence will allow us to understand the space of microlocal solutions of Pk − E on a neighborhood of the
origin. Let us recall the results of [Colin de Verdière and Parisse 1994a; 1994b] that will be useful for
our study.

Proposition 5.3 [Colin de Verdière and Parisse 1994a, Proposition 3]. Let E be such that |E |< 1. The
space of microlocal solutions of (Sk − E)uk = 0 on Q = [−1, 1]2 is a free Ck-module of rank 2.
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Moreover, we know two bases of this module. Indeed, let Fk be the semiclassical Fourier transform:

(Fku)(ξ)= k
2π

∫
R

exp(−ikxξ)u(x) dx;

then the tempered distributions v( j)
k,E , j ∈ [[1, 4]], defined as

v
(1),(2)
k,E (x)= 1R∗±

(x) exp
((
−

1
2 + ik E

)
ln |x |

)
,

v
(3),(4)
k,E (x)= F−1

k

(
1R∗±

(ξ) exp
((
−

1
2 + ik E

)
ln |ξ |

))
(x),

are exact solutions of the equation (Sk−E)v( j)
k,E = 0; better than that, the pairs (v(1)k,E , v

(2)
k,E) and (v(3)k,E , v

(4)
k,E)

each form a basis of the space of solutions of this equation. Now, choose a compactly supported function
χ ∈C∞(R) with constant value 1 on a neighborhood of I = [−1, 1] and vanishing outside 2I . Define the
pseudodifferential operator 5Q by

5Qu(x)= k
2π

∫
R2

exp(ik(x − y)ξ)χ(ξ)χ(y)u(y) dy dξ.

Then 5Q maps D ′(R) into S (R), and 5Q ∼ Id on Q. Set

w
( j)
k,E =5Qv

( j)
k ;

then the w( j)
k,E , j ∈ [[1, 4]], belong to S (R), and are microlocal solutions of (Sk − E)w( j)

k,E = 0 on Q. The
matrix of the change of basis from (w

(3)
k,E , w

(4)
k,E)|Q to (w(1)k,E , w

(2)
k,E)|Q is given by

Mk(E)= µk(E)
(

1 i exp(−πk E)
i exp(−πk E) 1

)
+ O(k−∞), (7)

with

µk(E)=
1
√

2π
0
( 1

2 + ik E
)

exp
(
π

4
(2k E − i)− ik E ln k

)
.

5C. Microlocal solutions of (Pk− E)uk = 0. Now, consider the Bargmann transforms of the sequences
w
( j)
k,E : u( j)

k,E = Bkw
( j)
k,E . Propositions 5.3 and 3.5 yield:

Proposition 5.4. For E such that |E | < 1, the space of microlocal solutions of (Pk − E)uk = 0 on
Q = [−1, 1]2 ⊂ C is a free Ck-module of rank 2. Moreover, the pairs (u(1)k,E , u(2)k,E) and (u(3)k,E , u(4)k,E) are
two bases of this module; the transfer matrix is given by (7).

Remark. The sections u( j)
k,E , j = 1, . . . , 4, can be written in terms of parabolic cylinder functions.

Nonnenmacher and Voros [1997] studied these functions in order to understand the behavior of the
generalized eigenfunctions of Pk ; the result of this subtle analysis, based on Stokes lines techniques, was
not exactly what we needed here, and this is partly why we chose to use the microlocal properties of the
Bargmann transform instead.
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6. Bohr–Sommerfeld conditions

To obtain the Bohr–Sommerfeld conditions, we will recall the reasoning of [Colin de Verdière and Parisse
1999], and will also refer to [Colin de Verdière and Vũ Ngo.c 2003]. Since the general approach is the
same, we only recall the main ideas and focus on what differs in the Toeplitz setting.

6A. The sheaf of standard bases. As in Section 4, introduce the sheaf (F, 00) of microlocal solutions of
Akψk = 0 over 00; we recall that a global nontrivial microlocal solution corresponds to a global nontrivial
section of this sheaf. However, since the topology of 00 is much more complicated than in the regular
case, the condition for the existence of such a section is not as simple as saying that a holonomy must
be trivial. In particular, we have to handle what happens at critical points. To overcome this difficulty,
the idea is to introduce a new sheaf over 00 that will contain all the information we need to construct a
global nontrivial microlocal solution; roughly speaking, this new sheaf can be thought of as the limit of
the sheaf F→ 0E of microlocal solutions over regular levels as E goes to 0.

Following [Colin de Verdière and Parisse 1999], we introduce a sheaf (L, 00) of free Ck-modules of
rank 1 over 00 as follows: to each point m ∈ 00, associate the free module L(m) generated by standard
bases at m. If m is a regular point, a standard basis is any basis of the space of microlocal solutions near m.
At a critical point s j , we define a standard basis in the following way. The Ck-module of microlocal
solutions near s j is free of rank 2; moreover, it is the graph of a linear function. Indeed, number the
four local edges near s j with cyclic order 1, 3, 2, 4, so that the edges e1, e2 are the ones that leave s j .
Let us denote by Sol(e1e2) and Sol(e3e4) the modules of microlocal solutions over the disjoint union
of the local unstable edges e1, e2 and stable edges e3, e4, respectively. Sol(e1e2) and Sol(e3e4) are free
modules of rank 2, and there exists a linear map T j : Sol(e3e4)→ Sol(e1e2) such that u is a solution
near s j if and only if its restrictions satisfy u|Sol(e1e2) = T j u|Sol(e3e4). Equivalently, given two solutions
on the entering edges, there is a unique way to obtain two solutions on the leaving edges by passing
the singularity. One can choose a basis element for each F(ei ), i ∈ [[1, 4]], and express T j as a 2× 2
matrix (defined modulo O(k−∞)); one can show that the entries of this matrix are all nonvanishing. An
argument of elementary linear algebra shows that, once the matrix T j is chosen, the basis elements of
the modules F(ei ) are fixed up to multiplication by the same factor; this means that for T j fixed, the
Ck-module of basis elements is of rank 1. Moreover, the study of the previous section implies that there
exists a choice of basis elements such that T j has the following expression:

T j = exp
(
−

iπ
4

)
Ek(ε j (0, k))

(
1 i exp(−πε j (0, k))

i exp(−πε j (0, k)) 1

)
, (8)

where

Ek(t)=
1
√

2π
0
(1

2 + i t
)

exp
(

t
(
π

2
− i ln k

))
. (9)

This allows us to call the choice of the basis elements of F(ei ) a standard basis if T j is given by (8).
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(L, 00) is a locally free sheaf of rank-1 Ck-modules, and its transition functions are constants. Hence,
it is flat, thus characterized by its holonomy

holL : H1(00)→ Ck .

In terms of Čech cohomology, if γ is a cycle in 00 and �1, . . . , �` is an ordered sequence of open sets
covering the image of γ , each �i being equipped with a standard basis ui (at a critical point, we make
the abusive correspondence between a standard basis and its elements), then

holL(γ )= x1,2 · · · x`−1,`x`,1, (10)

where xi, j ∈ Ck is such that ui = xi, j u j on �i ∩� j .
Now, cut n+1 edges of 00, each one corresponding to a cycle γi in a basis (γ1, . . . , γn+1) of H1(00,Z),

in such a way that the remaining graph is a tree T. Then the sheaf (L,T) has a nontrivial global section.
The conditions to obtain a nontrivial global section of the sheaf (F, 00) of microlocal solutions on 00 are
given in the following theorem. They were already present in the work of Colin de Verdière and Parisse
in the case of pseudodifferential operators, but the fact that they extend to our setting is a consequence of
the results obtained in the previous sections.

Theorem 6.1. The sheaf (F, 00) has a nontrivial global section if and only if the following linear system
of 3n+ 1 equations with 3n+ 1 unknowns (xα ∈ Ck)α∈{edges of T} has a nontrivial solution:

(1) If the edges (α1, α2, α3, α4) connect at s j (with the same convention as before for the labeling of the
edges), then ( xα3

xα4

)
= T j

( xα1

xα2

)
(2) If α and β are the extremities of a cut cycle γi , then

xα = holL(γi )xβ,

where the following orientation is assumed: γi can be represented as a closed path starting on the
edge α and ending on the edge β.

Proof. It follows from Propositions 4.6 and 5.4 that the proof can be directly adapted from the one of
[Colin de Verdière and Vũ Ngo. c 2003, Theorem 2.7]. �

6B. Singular invariants. Of course, in order to use this result, it remains to compute the holonomy holL.
For this purpose, let us introduce some geometric quantities close to the ones used to express the regular
Bohr–Sommerfeld conditions. Let γ be a cycle in 00, and denote by s jm , m = 1, . . . , p, the critical points
contained in γ .

Definition 6.2 (singular subprincipal action). Decompose γ as a concatenation of smooth paths and paths
containing exactly one critical point; if A and B are the ordered endpoints of a path, we will call it
[A, B]. Define the subprincipal action c̃1(γ ) as the sum of the contributions of these paths, given by the
following rules:
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Pa,b

b

B

a A

s

Figure 1. Computation of c̃1([A, B]).

• If [A, B] contains only regular points, its contribution to the singular subprincipal action is

c̃1([A, B])= c1([A, B]),

as in the regular case (see Section 4E for the definition of c1([A, B]));

• If [A, B] contains the singular point s and is smooth at s, then

c̃1([A, B])= lim
a,b→s

(c1([A, a])+ c1([b, B])),

where a and b lie on the same branches as A and B, respectively;

• If [A, B] contains the singular point s and is not smooth at s, we set

c̃1([A, B])= lim
a,b→s

(
c1([A, a])+ c1([b, B])± ε(0)s ln

∣∣∣∣∫
Pa,b

ω

∣∣∣∣), (11)

where Pa,b is the parallelogram (defined in any coordinate system) built on the vectors −→sa and
−→
sb ,

±=+ if [A, B] is oriented according to the flow of Xa0 , ±=− otherwise, and

ε(0)s =
−a1(s)

|det(Hess(a0)(s))|1/2
,

as before.

Definition 6.3 (singular index). Let (γt)t be a continuous family of immersed closed curves such that
γ0 = γ and γt is smooth for t > 0. Then the function t 7→ ε(γt), t > 0, is constant; we denote by ε its
value. We define the singular index ε̃(γ ) by setting

ε̃(γ )= ε+

p∑
m=1

ρm

4
, (12)

where ρm = 0 if γ is smooth at s jm , ρm = +1 if at s jm , γ turns in the direct sense with respect to the
cyclic order (1, 3, 2, 4) of the local edges, and ρm =−1 otherwise.
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Observe that both c̃1 and ε̃ define Z-linear maps on H1(00,Z).

Theorem 6.4. Let γ be a cycle in 00. Then the holonomy holL(γ ) of γ in L has the form

holL(γ )= exp(ikθ(γ, k)), (13)

where θ(γ, k) admits an asymptotic expansion in nonpositive powers of k. Moreover, if we denote by
θ(γ, k)=

∑
`≥0 k−`θ`(γ ) this expansion, the first two terms are given by the formulas

θ0(γ )= c0(γ ), θ1(γ )= c̃1(γ )+ ε̃(γ )π. (14)

Proof. We just prove here that the holonomy has the claimed behavior. It is enough to show that one can
choose a finite open cover (�α)α of γ and a section uαk of L→�α for which the transition constants cαβk
have the required form. On the edges of γ , this follows from the analysis of Section 4. At a vertex, we
choose the standard basis U 0

k u( j)
k,ε j (0,k), where u( j)

k,E is defined in Section 5C and U E
k is the operator of

Proposition 5.1; to conclude, we observe that the restrictions of these sections to the corresponding edge
are Lagrangian sections. �

6C. Computation of the singular holonomy. This section is devoted to the proof of the second part of
Theorem 6.4. We use the method of [Colin de Verdière and Vũ Ngo.c 2003], but of course, our case is
simpler, because in the latter, the authors investigated the case of singularities in (real) dimension 4 (for
pseudodifferential operators). Let us work on microlocal solutions of the equation

(Ak − E)uk = 0, (15)

where E varies in a small interval I containing the critical value 0. The critical value separates I into
two open sets I+ and I−, with the convention I± = I ∩R∗

±
. Let D± = I± ∪ {0}, and let C± be the set of

connected components of the open set a−1
0 (I±). The smooth family of circles in the component p± is

denoted by Cp±(E), E ∈ I±.
As in Section 4, for E 6= 0, we denote by (F, 0E) the sheaf of microlocal solutions of (15) on 0E ;

remember that it is a flat sheaf of rank-1 Ck-modules, characterized by its Čech holonomy holF. The idea
is to let E go to 0 and compare this holonomy to the holonomy of the sheaf L→ 00.

Definition 6.5. Near each critical point s j , we consider two families of points A j (E) and B j (E) in
C∞(D±, p̄± \ {s j }) lying on Cp±(E), and such that A j (0) and B j (0) lie in the stable and unstable mani-
folds, respectively. Endow a small neighborhood of A j (resp. B j ) with a microlocal solution u A j (resp. u B j )
of (15) which is a Lagrangian section uniform in E ∈ D±. Define the quantity 2([A j (E), B j (E)], k) as
the phase of the Čech holonomy of the path [A j (E), B j (E)] ⊂ 0E joining A j (E) and B j (E) in the sheaf
(F, 0E) computed with respect to u A j and u B j . Define in the same way the quantity2([B j (E), A j ′(E)], k)
for the path joining B j (E) and A j ′(E).

Note that if we change the sections u A j and u B j ′
, the phase of the holonomy is modified by an additive

term admitting an asymptotic expansion in k C∞(D±)[[k−1
]]. The singular behavior of the holonomy is

thus preserved; moreover, the added term is a Čech coboundary, and hence does not change the value of
the holonomy along a closed path.
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B1(E)

A1(E)
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Figure 2. Regular and local paths.

Then, we consider continuous families of paths (ζE)E∈D± drawn on a circle Cp±(E) and whose
endpoints are some of the A j (E) and B j ′(E) of the previous definition. We say that ζE is

• regular if ζ0 does not contain any of the critical points s j ,

• local if ζ0 contains exactly one critical point,

and we consider only these two types of paths. The following proposition implies that a path that is
local in the above sense can always be assumed to be local in the sense that it is included in a small
neighborhood of the critical point that it contains.

Proposition 6.6. If ζE = [B j (E), A j ′(E)] is a regular path, then the map E 7→ 2(ζE , k) belongs
to C∞(D±) and admits an asymptotic expansion in k C∞(D±)[[k−1

]]. This expansion starts as follows:

2(ζE , k)= k
(
c0(ζE)+8

(−1)
B j (E)(B j (E))−8

(−1)
A j ′ (E)

(A j ′(E))
)

+ c1(ζE)+ holδζE
(ζE)+8

(0)
B j (E)(B j (E))−8

(0)
A j ′ (E)

(A j ′(E))+ O(k−1); (16)

see Section 4E for the notation.

In order to study the behavior of the holonomy of a local path with respect to E , we use the parameter-
dependent normal form given by Proposition 5.1. Using the notation of this proposition, we will write
e j (E, k)= f j (E)+ k−1ε j (E, k). Introduce the Bargmann transform wi

k,E of vi
k,E , where

v
1,2
k,E(x)= 1R∗±

(x)|x |−1/2 exp(ike j (E, k) ln |x |),

v
3,4
k,E(x)= F−1

k

(
1R∗±

(x)(ξ)|ξ |−1/2 exp(ike j (E, k) ln |ξ |)
)
(x).

Let w̃i
k,E be a sequence having microsupport in a sufficiently small neighborhood of the origin and

microlocally equal towi
k,E on it; then w̃i

k,E is a basis of the module of microlocal solutions of Pk−e j (E, k)
near the image of the edge with label i by the symplectomorphism χE . Consequently, the section
φ
(i)
k,E = U E

k w̃
i
k,E , where U E

k is the operator used for the normal form, is a basis of the module of
microlocal solutions of (15) near the edge ei . Moreover, it displays good behavior with respect to the
spectral parameter.

Lemma 6.7. The restriction of φ(i)k,E to a neighborhood of the edge numbered i is a Lagrangian section
uniformly for E ∈ D±.
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Proof. First, we prove using a parameter-dependent stationary phase lemma that wi
k,E is a Lagrangian

section associated to the image of the i-th edge, uniformly in E ∈ D±. We conclude by the fact that the
image of a Lagrangian section depending smoothly on a parameter by a Fourier integral operator is a
Lagrangian section depending smoothly on this parameter. �

We also recall the following useful lemma.

Lemma 6.8 [Colin de Verdière and Vũ Ngo. c 2003, Lemma 2.18]. Set β j (E, k)= 1
2 + ike j (E, k) and

ν+j =
( k

2π

)1/2
0(β j ) exp

(
−β j ln k− iβ j

π

2

)
,

ν−j =
( k

2π

)1/2
0(β j ) exp

(
−β j ln k+ iβ j

π

2

)
,

so that

Mk(e j (E, k))=
(
ν+j (E, k) ν−j (E, k)
ν j
−(E, k) ν j

+(E, k)

)
where Mk was defined in (7). Then, for any E ∈ I±,

−i ln ν±j = k
(

f j (E) ln | f j (E)| − f j (E)
)
+ ε

(0)
j (E) ln | f j (E)| ∓

π

4
+ OE(k−1).

The following proposition shows that the holonomy 2(ζE , k), which has a singular behavior as E
tends to 0, can be regularized.

Proposition 6.9. Fix a component p± ∈C±, and let ζE =[A j (E), B j (E)] be a local path near the critical
point s j . Assume moreover that ζE is oriented according to the flow of a0. Then there exists a sequence
of R/2πZ-valued functions gζ ( · , k) ∈ C∞(D±), E 7→ gζE (k), admitting an asymptotic expansion in
k C∞(D±)[[k−1

]] of the form

gζ (E, k)=
+∞∑
`=−1

k−`g(`)ζ (E),

such that
gζ (E, k)=2(ζE , k)− i ln ν±j (E) (mod 2πZ) for all E ∈ I±.

The first terms of the asymptotic expansion of gζ ( · , k) are given, for E ∈ I±, by

g(−1)
ζ (E)= c0(ζE)+

(
f j (E) ln | f j (E)| − f j (E)

)
+8

(−1)
A j (E)(A j (E))−8

(−1)
B j (E)(B j (E)) (17)

and

g(0)ζ (E)= c1(ζE)+ holδζE
(ζE)∓

π

4
+ ε0

j (E) ln | f j (E)| +8
(0)
A j (E)(A j (E))−8

(0)
B j (E)(B j (E)). (18)

Proof. We can assume that the paths ζE , E ∈ D± all entirely lie in the open set �s j where the normal
form of Proposition 5.1 is valid. Endow each edge ei with the section φ(i)k,E defined earlier; by Lemma 6.7,
these sections can be used to compute a new holonomy 2̃(ζE , k). But we know how the different
sections φ(i)k,E are related: (7) shows that 2̃(ζE , k)− i ln ν±j (E)= 0. Now, coming back to the microlocal
solutions u A j , u B j , we have that 2(ζE , k) = 2̃(ζE , k)+ c(E, k), where c(E, k) admits an asymptotic
expansion in k C∞(D±)[[k−1

]]. �
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Since the sections φ(i)k,E , i = 1 . . . 4, form a standard basis at s j , they can also be used to compute the
holonomy holL. Of course, for this choice of sections, one has holL(ζ0)= 1. This allows to obtain the
following result.

Proposition 6.10. Let γ be a cycle in 00, oriented according to the Hamiltonian flow of a0, and of the
form

γ = ζ loc
1 (0)ζ reg

1 (0)ζ loc
2 (0)ζ reg

2 (0) · · · ζ loc
p (0)ζ reg

p (0),

where ζ loc
j and ζ reg

j are local and regular paths, respectively, in the sense introduced earlier. Define

g(0, k)∼
+∞∑
`=−1

g(`)(0)k−`

as the sum
g(0, k)= gζ loc

1
(0, k)+ gζ reg

1
(0, k)+ · · ·+ gζ loc

p
(0, k)+ gζ reg

p
(0, k),

where gζ loc
j

is given by Proposition 6.9 and gζ reg
j
(E, k)=2(ζ reg

j (E), k). Then

holL(γ )= exp(ig(0, k))+ O(k−∞).

Proof. Notice that g̃ζ loc
j
(0, k) = 0, where g̃ζ loc

j
( · , k) is defined as gζ loc

j
( · , k), replacing 2(ζ loc

j , k)
by 2̃(ζ loc

j , k), and hence holL(ζ loc
j (0)) = exp(i g̃ζ loc

j
(0, k)). As in the previous proof, come back to

the solutions u A j , u B j , and set

c j (E, k)= gζ loc
j
(E, k)− g̃ζ loc

j
(0, k).

Putting g̃ζ reg
j
(E, k)= 2̃(ζ reg

j (E), k), a simple computation shows that

p∑
j=1

g̃ζ reg
j
(E, k)=

p∑
j=1

(gζ reg
j
(E, k)+ c j (E, k)),

and the conclusion follows. �

This is enough to prove the second part of Theorem 6.4, recalled in the following corollary.

Corollary 6.11. The first two terms in the asymptotic expansion of the phase of holL(γ ) are given by (14).

Note that γ cannot always be obtained as a limit of smooth families of regular cycles; consider for
instance the cycles γ1, γ2, γ3 in the example treated in Section 7C (see Figures 13, 14). This is why the
proof of this result requires some care.

Proof. We start with the case of a cycle γ oriented according to the Hamiltonian flow of a0. Since
e0

j (0)= 0, formula (17) gives, for j ∈ [[1, p]],

g(−1)
ζ loc

j
(0)= c0(ζ

loc
j (0))+8(−1)

A j
(A j (0))−8

(−1)
B j

(B j (0)),

while Proposition 6.6 shows that (identifying j = p+ 1 with j = 1)

g(−1)
ζ

reg
j
(0)= c0(ζ

reg
j (0))+8(−1)

B j
(B j (0))−8

(−1)
A j+1

(A j+1(0)).
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Consequently,

g(−1)(0)= c0(γ ).

Let us now compute the subprincipal term g(0)
ζ loc

j
(0). Recall that it is equal to the limit of

c1(ζ
loc
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))∓ π

4
+ ε

(0)
j (E) ln | f j (E)| +8

(0)
A j (E)(A j (E))−8

(0)
B j (E)(B j (E))

as E goes to 0, which is equal to

8
(0)
A j (0)(A j (0))−8

(0)
B j (0)(B j (0))∓

π

4
+ lim

E→0

(
c1(ζ

loc
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))+ ε(0)j (E) ln | f j (E)|

)
.

First, we show that

lim
E→0

(
c1(ζ

loc
j (E))+ ε(0)j (E) ln | f j (E)|

)
= c̃1(ζ

loc
j (0)), (19)

where c̃1 was introduced in Definition 6.2. Decompose

c1(ζ
loc
j (E))=

∫
ζ loc

j (E)
ν+

∫
ζ loc

j (E)
κE ,

where we recall that −iν stands for the local connection 1-form associated to the Chern connection of L1,
and κE is such that κE(Xa0)=−a1. Of course, the term

∫
ζ loc

j (E) ν converges to
∫
ζ loc

j (0) ν as E tends to 0.
Moreover, we have seen that there exist a symplectomorphism χE and a smooth function gE

j such that
(gE

j )
′(0) > 0 and

(a0 ◦χ
−1
E )(x, ξ)− E = gE

j (xξ). (20)

Hence, if we denote by ã0 (resp. ã1, κ̃E ) the pullback of a0 (resp. a1, κE ) by χ−1
E , we have

X ã0(x, ξ)= (g
E
j )
′(xξ)Xxξ (x, ξ),

so that κ̃E is characterized by

κ̃E(Xxξ )=
−ã1(x, ξ)
(gE

j )
′(xξ)

.

Since (gE
j )
′(0) 6= 0, the function

b(x, ξ)=
−ã1(x, ξ)
(gE

j )
′(xξ)

is smooth (considering a smaller neighborhood of s j for the definition of ζ loc
j if necessary). Moreover,

from (20), one finds that (gE
j )
′(0)= |det(Hess(a0)(s))|−1/2, which yields b(0)= ε(0)j (0). Using a known

result (see [Guillemin and Schaeffer 1977, Theorem 2, p. 175] for instance), we can construct smooth
functions F : R2

→ R and K : R→ R such that

b(x, ξ)= K (xξ)− L Xxξ F(x, ξ);

since xξ = f j (E) whenever χ−1
E (x, ξ) belongs to 0E , this can be written

b(x, ξ)= K ( f j (E))− L Xxξ F(x, ξ).
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Therefore, the function

G = K ( f j (E)) ln |x | − F (or − K ( f j (E)) ln |ξ | − F where x = 0)

restricted to χ(0E) is a primitive of κ̃E . This yields∫
ζ loc

j (E)
κE = G(B̃ j )−G( Ã j )= K ( f j (E))(ln |xB j | − ln |xA j |)+ F(( Ã j )− F(B̃ j ), (21)

where m̃ = χE(m) for any point m ∈ M , and (xm, ξm) are the coordinates of m̃ (E being implicit to
simplify notation). Writing ln |xB j | − ln |xA j | = ln |xB j ξA j | − ln |xA j ξA j |, we obtain∫
ζ loc

j (E)
κE + ε

(0)
j (E) ln | f j (E)|

= F( Ã j )− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j | + (ε
(0)
j (E)− K ( f j (E))) ln | f j (E)|.

By definition of K , b(0)− K (0)= 0, hence K ( f j (E))= b(0)+ O( f j (E))= ε
(0)
j (0)+ O( f j (E)). Thus,

the term (ε
(0)
j (E)− K ( f j (E))) ln | f j (E)| tends to zero as E tends to zero; this induces

lim
E→0

∫
ζ loc

j (E)
κE + ε

(0)
j (E) ln | f j (E)| = F( Ã j )− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j |

(one must keep in mind that in this formula, we should write Ã j = Ã j (0), etc.). Now, if a and b are
points on ζ loc

j (0) located in [A j , sm j ] and [sm j , B j ], respectively, then the term on the right-hand side of
the previous equation is equal to

I = lim
a,b→s j

(
F( Ã j )− F(ã)+ F(b̃)− F(B̃ j )+ K ( f j (E)) ln |xB j ξA j |

)
.

Using (21), it is easily seen that

I = lim
a,b→s j

(∫
[A j ,a]

κE +

∫
[b,B j ]

κE + ε
(0)
j (0) ln |xbξa|

)
.

Remembering Definition 6.2, this proves (19). Since g(0)
ζ loc

j
and the quantities

8
(−1)
A j

(A j )−8
(−1)
B j

(B j ) and 8
(0)
A j
(A j )−8

(0)
B j
(B j )

are continuous at E = 0, the term
holδ

ζ loc
j (E)

(ζ loc
j (E))

is continuous at E = 0. Hence, if we sum up all the contributions from regular and local paths, we
finally obtain

g(0)(γ )= c̃1(γ )+

p∑
m=1

ρmπ

4
+ `(γ ),

where ρm and c̃1 were introduced in Definitions 6.3 and 6.2, respectively, and `(γ ) is the quantity

`(γ )=

p∑
j=1

(
holδ

ζ
reg
j (0)

(ζ
reg
j (0))+ lim

E→0
holδ

ζ loc
j (E)

(ζ loc
j (E))

)
;
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ηj(E)

ζ loc
j (E)

γ

νj(E)

Aj(0)

γ

Aj(0)

ζ loc
j (E)

τj(E)

ζreg
j (E)

τj(E)

Figure 3. Computation of `(γ ).

it is not hard to show that `(γ ) is independent of the choice of the local and regular paths. Furthermore,
let ε be the index of any smooth embedded cycle which is a continuous deformation of γ . If the regular
and local paths can be chosen so that they all lie in the same connected component γE of 0E , it is clear
that `(γ )= ε, because for E 6= 0,

p∑
j=1

(
holδ

ζ
reg
j (E)

(ζ
reg
j (E))+ holδ

ζ loc
j (E)

(ζ loc
j (E))

)
= ε(γE)= ε.

If it is not the case, we remove a small path η j (E) of ζ reg
j (E) at any point A j or B j where there is a

change of connected component, and replace it by a smooth path ν j (E) connecting ζ reg
j (E) and ζ loc

j (E)
(see Figure 3). We obtain a smooth path γ̃ (E); on the one hand, one has ε(γ̃ (E))= ε. On the other hand,
ε(γ̃ (E)) is the sum of the holonomies of the paths composing γ̃ (E). But, if we denote by τ j (E) the part
of ζ reg

j (E) that remains when we remove η j (E), we have

holδτ j (E)
(τ j (E))= holδ

ζ
reg
j (E)

(ζ
reg
j (E))− holδη j (E)

(η j (E)),

which implies

holδτ j (E)
(τ j (E))+ holδν j (E)

(ν j (E))−→
E→0

holδ
ζ

reg
j (0)

(ζ
reg
j (0))

because

holδν j (E)
(ν j (E))− holδη j (E)

(η j (E))−→
E→0

0.

This shows that `(γ )= ε, which concludes the proof for this first case, where γ is oriented according to
the Hamiltonian flow of a0.

If the orientation of the cycle γ is opposite to the one of the flow of Xa0 , we only have to change the
sign of the holonomy.

It remains to investigate the case where there are some paths in γ oriented according to the flow of Xa0

and some oriented in the opposite direction, which means γ is smooth at some critical point s. We can
use the analysis above by introducing two local paths ζ loc

1 and ζ loc
2 at s as in Figure 4 (we make a small

move forwards and backwards on an edge added to γ ); one can obtain the claimed result by looking
carefully at the obtained holonomies, remembering that the two paths have opposite orientation on the
added edge. Note that the choice of the added edge does not change the result. �
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γs

ζ loc
1

ζ loc
2

Figure 4. Case of a cycle γ , smooth at s.

6D. Derivation of the Bohr–Sommerfeld conditions. The previous results allow to compute the spec-
trum of Ak in an interval of size O(1) around the singular energy. Indeed, let γE , E ∈ I± be a connected
component of the level a−1

0 (E) and γ be the cycle in 00 obtained by letting E go to 0. Then one can
choose the local and regular paths used to compute the holonomy holL(γ ) so that they all lie on γE , and
define g(E, k) as the sum

g(E, k)= gζ loc
1
(E)+ gζ reg

1
(E)+ · · ·+ gζ loc

p
(E)+ gζ reg

p
(E).

Furthermore, the matrix of change of basis associated to the sections φ(i)k,E is given by

T j (E)= exp
(
−

iπ
4

)
Ek(ke j (E, k))

(
1 i exp(−kπe j (E, k))

i exp(−kπe j (E, k)) 1

)
,

where the function Ek is defined in (9). To compute eigenvalues near E , apply Theorem 6.1 with T j

replaced by T j (E) and holL(γ ) by exp(ig(E, k)). Applying Stirling’s formula, we obtain

T j (E)= exp(ikθ(E, k))
(

1 0
0 1

)
+ O(k−1), f j (E) > 0,

and

T j (E)= exp(ikθ(E, k))
(

0 i
i 0

)
+ O(k−1), f j (E) < 0,

with θ(E, k)= f j (E) ln | f j (E)| − f j (E)+ k−1(ε
(0)
j (E) ln | f j (E)| −π/4). Together with equations (17)

and (18), this ensures that we recover the usual Bohr–Sommerfeld conditions away from the critical energy.
In the rest of the paper, we will look for eigenvalues of the form k−1e+ O(k−2), where e is allowed

to vary in a compact set. Hence, we have to replace Ak by Ak − k−1e; this operator still has principal
symbol a0, but its subprincipal symbol is a1− e. Thanks to Theorem 6.4, we are able to compute the
singular holonomy and the invariants ε j up to O(k−2); hence, we approximate the spectrum up to an
error of order O(k−2).

6E. The case of a unique saddle point. If 00 contains a unique saddle point, it is not difficult to write
the Bohr–Sommerfeld conditions in a more explicit form. The critical level 00 looks like a figure eight.
We choose the convention for the cut edges and cycles as in Figure 5.
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γ2

1

4
γ1

s
2

3

Figure 5. The singular level 00 = a−1
0 (0) and the choice of cut edges and cycles.

Let s be the saddle point, and let ε(e, k) be the invariant associated to the operator Ak − k−1e at s;
one has ε(0)(e)= ε(0)(0)+ e |det(Hess(a0)(s))|−1/2. Denote by h j (e, k)= exp(iθ j (e, k)) the holonomy
of the loop γ j in L; remember that θ j is given by

θ j (e, k)= k c0(γ j )+ c̃1(γ j )+ ε̃(γ j )π + O(k−1).

The Bohr–Sommerfeld conditions are given by the holonomy equations

x4 = h2x1, x3 = h1x2,

and by the transfer relation at the critical point( x3
x4

)
= T

( x1
x2

)
,

where T = T (ε) is defined in (8). Using Lemma 2 of [Colin de Verdière and Parisse 1994b], the
quantization rule can in fact be written as a real scalar equation.

Proposition 6.12. The equation Akuk = k−1e uk + O(k−∞) has a normalized eigenfunction if and only
if e satisfies the condition

1√
1+ exp(2πε)

cos
(
θ1− θ2

2

)
= sin

(
θ1+ θ2

2
+
π

4
+ ε ln k− arg0

( 1
2 + iε

))
, (22)

where we wrote for the sake of brevity θ j , ε instead of θ j (e, k), ε(e, k) (see definitions above).

7. Examples

We conclude by investigating two examples on the torus and one on the sphere; these examples present
various topologies. More precisely, using the terminology of [Oshemkov 1994; Bolsinov and Fomenko
2004] for atoms (neighborhoods of singular levels of Morse functions), we provide an example of a
type B atom — the only type in complexity 1 (here, complexity means the number of critical points
on the singular level) in the orientable case — and two examples of atoms of complexity 2: one is of
type C2 (xy on the sphere S2) and the other is of type C1 (Harper’s Hamiltonian on the torus T2). It is a
remarkable fact that these two examples are natural not only as the canonical realization of the atom on a
surface but also because they come from the simplest possible Toeplitz operators with critical level of
given type.
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Note that there are two other types of atoms of complexity 2 in the orientable case (more precisely, types
D1 and D2); it would be interesting to realize each of them as a hyperbolic level of the principal symbol
of a selfadjoint Toeplitz operator and to complete this study. Note that in the context of pseudodifferential
operators, Colin de Verdière and Parisse [1999] treated the case of a type D1 atom (the triple well potential)
among some other examples. More generally, one could use the classification of Bolsinov, Fomenko and
Oshemkov to write the Bohr–Sommerfeld conditions for all cases in low complexity (≤ 3 for instance);
however, the case of two critical points already gives rise to rather tedious computations.

The details of the quantization of the torus and the sphere are quite standard. Nevertheless, for the
sake of completeness, we will recall a few of them at the beginning of each paragraph.

7A. Height function on the torus. Firstly, we consider the quantization of the height function on the
torus. This is one of the first examples in Morse theory, perhaps because this is the simplest and most
intuitive example with critical points of each type. In particular, the description of the two hyperbolic
levels is quite simple.

Endow R2 with the linear symplectic form ω0 and let L0 → R2 be the complex line bundle with
Hermitian form and connection defined in Section 2D3. Let K be the canonical line of R2 with respect
to its standard complex structure j : K = {α ∈ (R2)∗⊗C | α( j · ) = iα}. Choose a half-form line, that
is, a complex line δ with an isomorphism ϕ : δ⊗2

→ K . There is a natural scalar product on K such
that the square of the norm of α is iα∧ ᾱ/ω0; endow δ with the scalar product 〈 · , · 〉δ such that ϕ is an
isometry. The half-form bundle we work with, that we still denote by δ, is the trivial line bundle with
fiber δ over R2.

Consider a lattice 3 with symplectic volume 4π . The Heisenberg group H = R2
×U (1) with product

(x, u) · (y, v)=
(

x + y, uv exp
( i

2
ω0(x, y)

))
acts on the bundle L0→R2, with action given by the same formula. This action preserves the prequantum
data, and the lattice 3 injects into H ; therefore, the fiber bundle L0 reduces to a prequantum bundle L
over T2

= R2/3. The action extends to the fiber bundle Lk
0 by

(x, u) · (y, v)=
(

x + y, ukv exp
( ik

2
ω0(x, y)

))
.

We let the Heisenberg group act trivially on δ. We obtain a half-form bundle δ̃ over T2 and an action

T ∗ :3→ End(C∞(R2, Lk
0⊗ δ)), u 7→ T ∗u .

The Hilbert space Hk = H 0(M, Lk
⊗ δ̃) can naturally be identified with the space H3,k of holomorphic

sections of Lk
0⊗ δ→ R2 which are invariant under the action of 3, endowed with the Hermitian product

〈ϕ,ψ〉 =

∫
D
〈ϕ,ψ〉δ |ω0|,

where D is the fundamental domain of the lattice. Furthermore, 3/2k acts on H3,k . Let e and f be
generators of3 satisfying ω0(e, f )= 4π ; one can show that there exists an orthonormal basis (ψ`)`∈Z/2kZ
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r R

Figure 6. Height function on the torus.

of H3,k such that

T ∗e/2kψ` = w
`ψ`

T ∗f/2kψ` = ψ`+1

}
for all ` ∈ Z/2kZ,

with w = exp(iπ/k). The sections ψ` can be expressed in terms of 2 functions.
Set Mk = T ∗e/2k and Lk = T ∗f/2k . Let (q, p) be coordinates on R2 associated to the basis (e, f ) and
[q, p] be the equivalence class of (q, p). Both Mk and Lk are Toeplitz operators, with respective principal
symbols [q, p] 7→ exp(2iπp) and [q, p] 7→ exp(2iπq), and vanishing subprincipal symbols. For more
details, see for instance [Charles and Marché 2011, §2.2, §3.1].

It is a well-known fact that T2 is diffeomorphic to the surface shown in Figure 6, which is obtained by
rotating a circle of radius r around a circle of radius R > r contained in the yz plane; the diffeomorphism
is given by the explicit formulas

x = r sin(2πq), y = (R+ r cos(2πq)) cos(2πp), z = (R+ r cos(2πq)) sin(2πp).

Hence, the Hamiltonian that we consider is

a0(q, p)= (R+ r cos(2πq)) sin(2πp)

on the fundamental domain D. We try to quantize it, that is, find a selfadjoint Toeplitz operator Ak with
principal symbol a0. The Toeplitz operators

Bk =
1
2i
(Mk −M∗k ), Ck = R5k +

r
2
(Lk + L∗k),

are selfadjoint, and

σnorm(Bk)= sin(2πp)+ O(h̄2), σnorm(Ck)= R+ r cos(2πq)+ O(h̄2).
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Hence Ak =
1
2(BkCk +Ck Bk) is a selfadjoint Toeplitz operator with normalized symbol a0+ O(h̄2). Its

matrix in the basis (ψ`)`∈Z/2kZ is written as

Rα0
r
4(α0+α1) 0 · · · 0 r

4(α2k−1+α0)
r
4(α0+α1) Rα1

r
4(α1+α2) 0 · · · 0

0 r
4(α1+α2) Rα2

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . Rα2k−2

r
4(α2k−2+α2k−1)

r
4(α0+α2k−1) 0 · · · 0 r

4(α2k−2+α2k−1) Rα2k−1


(23)

with α` = sin(`π/k).
The level0R−r =a−1

0 (R−r) contains one hyperbolic point s=
(1

2 ,
1
4

)
. It is the union of the two branches

p = 1
2π

arcsin R−r
R+r cos(2πq)

and p = 1
2
−

1
2π

arcsin R−r
R+r cos(2πq)

.

The Hamiltonian vector field associated to a0 is given by

Xa0(q, p)= 1
2
(R+ r cos(2πq)) cos(2πp) ∂

∂q
+

r
2

sin(2πq) sin(2πp) ∂
∂p
.

Moreover, one has

ε(0) =
e

π
√

r(R− r)
. (24)

We choose the cycles γ1 and γ2 with the convention given in Section 6E. We have to compute the
principal and subprincipal actions of γ1, γ2 and their indices ε̃. Let us detail the calculations in the case
of γ1.

We parametrize γ1 by

q 7→
(

q, 1
2
−

1
2π

arcsin R−r
R+r cos(2πq)

)
.

The principal action is given by

c0(γ1)= 2I (R, r)− 2π, (25)

where I (R, r) is the integral

I (R, r)=
∫ 1

0
arcsin R−r

R+r cos(2πq)
dq;

unfortunately, we do not know any explicit expression for this integral, so for numerical computations,
once the radii R and r are fixed, we obtain the value of I (R, r) thanks to numerical integration routines.

On γ1, the subprincipal form reads

κ0 =
−2e dq√

(R+ r cos(2πq))2− (R− r)2
.
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Figure 7. Eigenvalues in [R−r−10k−1, R−r+10k−1
]; in red diamonds, the eigenvalues

of Ak obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr–Sommerfeld conditions. The results are indexed with respect to the eigenvalue
closest to the critical energy, labeled as 0. Even for k = 10, the method is very accurate.

One can obtain an explicit primitive thanks to any computer algebra system. Furthermore, some computa-
tions show that the symplectic area of the parallelogram Ra,b is equal to∫

Ra,b

ω = 8π
√

r
R−r

(
qa −

1
2

)(1
2 − qb

)
.

This yields the following value for the subprincipal action:

c̃1(γ1)= ε
(0) ln

(
32
π

√
r
R

(
1− r

R

))
. (26)

Finally, the index associated to half-forms is ε̃(γ1)=
1
4 . For γ2, one can check that

c0(γ2)= 2I (R, r), c̃1(γ2)= ε
(0) ln

(
32
π

√
r
R

(
1− r

R

))
, ε̃(γ2)=

1
4 . (27)

With this data, one can test the Bohr–Sommerfeld condition for different pairs (R, r). We illustrate
this with (R, r)= (4, 1) (note that we have tested several pairs). We compare the eigenvalues obtained
numerically from the matrix (23) and the ones derived from the Bohr–Sommerfeld conditions (22) in
the interval I = [R − r − 10k−1, R − r + 10k−1

]. In Figure 7, we plot the theoretical and numerical
eigenvalues; Figure 8 shows the error between the eigenvalues and the solutions of the Bohr–Sommerfeld
conditions for fixed k, while Figure 9 is a graph of the logarithm of the maximal error in the interval I as
a function of ln k.

7B. x y on the 2-sphere. Let us consider another simple example, but this time with two saddle points
on the critical level. We will quantize the Hamiltonian a0(x, y, z)= xy on the sphere S2. Let us briefly
recall the details of the quantization of this surface.
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Figure 8. Absolute value of the difference between the numerical and theoretical eigen-
values; the error is smaller near the critical energy (R− r = 3 in this case).
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Figure 9. Logarithm of the maximal error as a function of the logarithm of k; the error
displays a behavior in O(k−2), as expected.

Start from the complex projective plane CP1 and let L = O(1) be the dual bundle of the tautological
bundle

O(−1)= {(u, v) ∈ CP1
×C2

| v ∈ u},

with natural projection. L is a Hermitian, holomorphic line bundle; let us denote by ∇ its Chern
connection. The 2-form ω = i curv(∇) is the symplectic form on CP1 associated with the Fubini–Study
Kähler structure, and L → CP1 is a prequantum bundle. Moreover, the canonical bundle is naturally
identified with O(−2), hence one can choose the line bundle δ = O(−1) as a half-form bundle. The state
space Hk = H 0(CP1, Lk

⊗ δ) can be identified with the space Cpk [z1, z2] of homogeneous polynomials
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of degree pk = k− 1 in two variables. The polynomials

P`(z1, z2)=

√
(pk + 1)

(pk
`

)
2π

z`1z pk−`

2 , 0≤ `≤ pk,

form an orthonormal basis of Hk . The sphere S2
= {(x, y, z) ∈ R3

| x2
+ y2
+ z2
= 1} is diffeomorphic

to CP1 via the stereographic projection (from the north pole to the plane z = 0). The symplectic form ω

on CP1 is carried to the symplectic form ωS2 =−
1
2�, with � the usual area form on S2 (the one which

gives the area 4π ). The operator Ak acting on the basis (P`)0≤`≤pk by

Ak P` =
i
p2

k
(α`,k P`−2−β`,k P`+2),

with

α`,k =
√
`(`− 1)(pk − `+ 1)(pk − `+ 2)

and

β`,k =
√
(`+ 1)(`+ 2)(pk − `− 1)(pk − `),

is a Toeplitz operator with principal symbol a0(x, y, z)= xy and vanishing subprincipal symbol (for more
details, one can consult [Bloch et al. 2003, §3] for instance). Note that α`,k = βpk−`,k , which implies that
if λ is an eigenvalue of Ak , then −λ is also.

The level a−1
0 (0) is critical, and contains two saddle points: the poles N (north) and S (south). It is

the union of the two great circles x = 0 and y = 0. We choose the cut edges and cycles as indicated in
Figure 10.

x1

γ3

y2
y1

N

S

x4

y4 y3

x2

γ1

x3

γ2

Figure 10. Choice of the cycles and cut edges.
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Set h j = holL(γ j )= exp(iθ j ); remember that θ j = kc0(γ j )+ c̃1(γ j )+ ε̃(γ j )π+O(k−1). The holonomy
equations read

y2 = x3, y4 = h1x1, y3 = h2x2, x4 = h3 y1, (28)

while the transfer equations are given by( x3
x4

)
= TS

( x1
x2

)
,

( y3
y4

)
= TN

( y1
y2

)
. (29)

The system (28) + (29) has a solution if and only if the matrix

U = TS

(
0 exp(−iθ1)

exp(−iθ2) 0

)
TN

(
0 exp(−iθ3)

1 0

)
admits 1 as an eigenvalue. The matrix U is unitary, and if we write U =

(a
c

b
d

)
, a straightforward

computation shows that

|a|2 = |d|2 =
1− 2 cos(θ2− θ1) exp(−π(εS + εN ))+ exp(−2π(εS + εN ))

(1+ exp(−2πεS))(1+ exp(−2πεN ))
;

hence, by Lemma 2 of [Colin de Verdière and Parisse 1994b], 1 is an eigenvalue of U if and only if

|a| sin
(arg(ad)−π

2
− arg a

)
= sin

(arg(ad)−π
2

)
.

This amounts to the equation

|a| cos
(arg z− argw

2

)
= sin

(arg z+ argw
2

+ arg0
(1

2 + iεN
)
+ arg0

( 1
2 + iεS

)
− (εS + εN ) ln k

)
,

with

z = exp(−i(θ2+ θ3))− exp(−π(εS + εN )− i(θ1+ θ3))

and

w = exp(−iθ1)− exp(−π(εN + εS)− iθ2).

One has

ε
(0)
S = ε

(0)
N = ε

(0)
=

e
2
. (30)

Moreover, the principal actions are

c0(γ1)=−
π

2
, c0(γ2)=

π

2
, c0(γ3)= π. (31)

Then, one finds for the subprincipal actions

c̃1(γ1)= 2ε(0) ln 2= c̃1(γ2), c̃1(γ3)= 0. (32)

Finally, the indices ε̃ are

ε̃(γ1)=
3
2 , ε̃(γ2)=

1
2 , ε̃(γ3)= 1. (33)
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Figure 11. Eigenvalues in [−2k−1, 2k−1
]; in red diamonds, the eigenvalues of Ak

obtained numerically; in blue crosses, the theoretical eigenvalues derived from the
Bohr–Sommerfeld conditions.

Figure 11 shows the theoretical eigenvalues obtained by using these results, as well as the numerical
evaluation of the eigenvalues of Ak from its matrix form.

7C. Harper’s Hamiltonian on the torus. Keeping the conventions and notation of the first example,
we consider the Hamiltonian (sometimes known as Harper’s Hamiltonian since it is related to Harper’s
equation [Helffer and Sjöstrand 1988])

a0(q, p)= 2(cos(2πp)+ cos(2πq))

on the torus. The operator Ak = Mk +M∗k + Lk + L∗k is a Toeplitz operator with principal symbol a0 and
vanishing subprincipal symbol. Its matrix in the basis (ψ`)`∈Z/2kZ is

2α0 1 0 . . . 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 . . . 0 1 2α2k−1


where

α` = cos `π
k
, 0≤ `≤ 2k− 1.

The critical level 00 = a−1
0 (0) contains two hyperbolic points: s1 =

(
0, 1

2

)
and s2 =

( 1
2 , 0

)
. On the

fundamental domain, it is the union of the four segments described in Figure 12; hence, its image on the
torus it is the union of two circles that intersect at two points.
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Figure 12. Critical level 00 on the fundamental domain; the arrows indicate the direction
of the Hamiltonian flow of a0.
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Figure 13. Choice of the cycles and cut edges.
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Figure 14. Cycles on the fundamental domain.
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Figure 15. Eigenvalues in [−10k−1, 10k−1
]; in red diamonds, the eigenvalues of Ak

obtained numerically; in blue crosses, the theoretical eigenvalues derived from the Bohr–
Sommerfeld conditions.

We choose the cycles and cut edges as in Figure 13 (for a representation of the two circles in a
two-dimensional view) and Figure 14 (for a representation of the cycles on the fundamental domain).

We write the holonomy equations

y1 = x3, y3 = h1x2, y4 = h2x1, x4 = h3 y1, (34)

and the transfer equations ( x3
x4

)
= T2

( x1
x2

)
,

( y3
y4

)
= T1

( y1
y2

)
, (35)

where h j = holL(γ j ) = exp(iθ j ). Following the same steps as in the previous example, one can show
that the system (34) + (35) has a solution if and only if e is a solution of the scalar equation

|a| cos
(argw− arg z

2

)
= cos

(arg z+ argw
2

+ arg0
( 1

2 + iε1
)
+ arg0

( 1
2 + iε2

)
− (ε1+ ε2) ln k

)
,

with

|a|2 =
exp(−2πε1)+ exp(−2πε2)+ 2 cos(θ2− θ1) exp(−π(ε1+ ε2))

(1+ exp(−2πε1))(1+ exp(−2πε2))
,

w = exp(−πε2− i(θ2+ θ3))+ exp(−πε1− i(θ1+ θ3)),

and
z = exp(−πε1− iθ2)+ exp(−πε2− iθ1).

Moreover, one has
ε
(0)
1 = ε

(0)
2 =

e
2π
:= ε(0). (36)

It remains to compute the quantities θ j (up to O(k−1)). The principal actions are easily computed:

c0(γ1)=−π, c0(γ2)= 3π, c0(γ1)=−2π. (37)
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Furthermore, one can check that the subprincipal actions are given by

c̃1(γ1)= 2ε(0) ln 8
π
= c̃1(γ2), c̃1(γ3)= 0. (38)

Finally, one has
ε̃(γ1)= ε̃(γ2)= ε̃(γ3)= 0. (39)

The results thus obtained are displayed in Figure 15.
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