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RESOLVENT ESTIMATES FOR THE MAGNETIC SCHRÖDINGER OPERATOR

GEORGI VODEV

We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form

G =−1+ ib(x) · ∇ + i∇ · b(x)+ V (x)

on L2(Rn), n ≥ 3, where b(x) and V (x) are large magnetic and electric potentials, respectively.

1. Introduction and statement of results

Let 1 be the (negative) Euclidean Laplacian on Rn . It is well-known that the self-adjoint realization G0

of the operator −1 on L2(Rn) has an absolutely continuous spectrum consisting of the interval [0,+∞)
and satisfies the resolvent estimate∥∥〈x〉−s∂α1

x (G0− λ
2
± iε)−1∂α2

x 〈x〉
−s
∥∥

L2→L2 ≤ Cλ|α1|+|α2|−1, λ≥ 1, (1-1)

for all multi-indices α1 and α2 such that |α1| + |α2| ≤ 2, where s > 1
2 , 0< ε ≤ 1, and the constant C > 0

does not depend on λ or ε. The same estimate still holds (see [Cardoso and Vodev 2002; Rodnianski
and Tao 2011], for example) for λ large enough for perturbations of the form −1+ V (x), where V is a
real-valued function satisfying the conditions below. Note that (1-1) for α1 = α2 = 0 together with the
ellipticity of the operator G0 imply that the estimate (1-1) holds for all multi-indices α1 and α2 such that
|α1| + |α2| ≤ 2. This fact remains valid for more general elliptic perturbations of −1.

The purpose of this work is to prove an analogue of (1-1) for perturbations by large magnetic and
electric potentials, extending the recent results in [Cardoso et al. 2013; 2014a] to a larger class (most
probably optimal) of magnetic potentials. More precisely, we study the high-frequency behavior of the
resolvent of self-adjoint operators of the form

G =−1+ ib(x) · ∇ + i∇ · b(x)+ V (x) on L2(Rn), n ≥ 3,

where b= (b1, . . . , bn) ∈ L∞(Rn
;Rn) is a magnetic potential and V ∈ L∞(Rn

;R) is an electric potential.
Hereafter, the operator ∇ · b is defined by (∇ · b)u = ∇ · (bu). Introduce the polar coordinates r = |x |,
w= x/|x | ∈Sn−1. We suppose that b(x)= bL(x)+bS(x), V (x)= V L(x)+V S(x) with long-range parts
bL and V L belonging to C1([r0,+∞)), r0� 1 with respect to the radial variable r and satisfying the
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conditions

|V L(rw)| ≤ C, (1-2)

∂r V L(rw)≤ Cr−1−δ, (1-3)

|∂k
r bL(rw)| ≤ Cr−k−δ, k = 0, 1, (1-4)

for all r ≥ r0, w ∈ Sn−1, with some constants C, δ > 0. The short-range parts satisfy

|bS(x)| + |V S(x)| ≤ C〈x〉−1−δ. (1-5)

Note that in the case bL
≡ 0, V L

≡ 0 and bS , V S satisfying (1-5), the operator G has an absolutely
continuous spectrum consisting of the interval [0,+∞) with no strictly positive eigenvalues (see [Koch
and Tataru 2006]). It follows from our result below that in the more general case when the long-range
parts are not identically zero the spectrum of the operator G has a similar structure in an interval of the
form [a,+∞) with some constant a > 0. Our main result is the following:

Theorem 1.1. Under the conditions (1-2)–(1-5), for every s > 1
2 there exist constants C, λ0 > 0 so that

for λ≥ λ0, 0< ε ≤ 1, |α1|, |α2| ≤ 1, we have the estimate∥∥〈x〉−s∂α1
x (G− λ

2
± iε)−1∂α2

x 〈x〉
−s
‖L2→L2 ≤ Cλ|α1|+|α2|−1. (1-6)

This kind of resolvent estimates plays an important role in proving uniform local energy decay,
dispersive, smoothing and Strichartz estimates for solutions to the corresponding wave and Schrödinger
equations (see [Cardoso et al. 2013; 2014b; Erdoğan et al. 2009], for example). In particular, it follows
from the above theorem that the smoothing and Strichartz estimates for solutions to the corresponding
Schrödinger equation proved in [Erdoğan et al. 2009] hold true without the continuity condition on the
magnetic potential.

Theorem 1.1 is proved in [Cardoso et al. 2013] assuming additionally that bS(x) is continuous with
respect to the radial variable r uniformly in w. In the case bL

≡ 0, V L
≡ 0 and bS , V S satisfying (1-5), the

estimate (1-6) is proved in [Erdoğan et al. 2009] under the extra assumption that b(x) is continuous in x .
In fact, no continuity of the magnetic potential is needed in order to have (1-6), as shown in [Cardoso
et al. 2014a]. Instead, it was supposed in [Cardoso et al. 2014a] that div bL and div bS exist as functions
in L∞. This assumption allows us to conclude that the perturbation (which is a first-order differential
operator) sends the Sobolev space H 1 into L2, a fact used in an essential way in [Cardoso et al. 2014a].
Thus, our goal in the present paper is to remove this technical condition on the magnetic potential. To this
end, we propose a new approach inspired by the global Carleman estimates proved recently in [Datchev
2014] in a different context. In what follows we will describe the main points of our proof.

There are two main difficulties in proving the above theorem. The first one is that, under our assumptions,
the commutator of the gradient and the magnetic potential is not an L∞ function. Consequently, the
perturbation does not send the Sobolev space H 1 into L2. Instead, it is bounded from H 1 into H−1.
Secondly, the magnetic potential is large, and therefore it is hard to apply perturbation arguments similar
to those used in [Cardoso et al. 2013]. Thus, to prove Theorem 1.1 we first observe that (1-6) is equivalent
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to a semiclassical a priori estimate on weighted Sobolev spaces (see (2-10) below). Furthermore, we
derive this a priori estimate from a semiclassical Carleman estimate on weighted Sobolev spaces (see
(2-7) below) with a suitably chosen phase function independent of the semiclassical parameter. To get
this Carleman estimate we first prove a semiclassical Carleman estimate on weighted Sobolev spaces for
the long-range part of the operator (see Theorem 2.1 below) and we then apply a perturbation argument.
Note that the estimate (2-1) is valid for any phase function ϕ(r) ∈ C2(R) whose first derivative ϕ′(r) is
of compact support and nonnegative. The main feature of our Carleman estimate is that it is uniform with
respect to the phase function ϕ (that is, the constant C1 does not depend on ϕ), and the weight in the
right-hand side is smaller than the usual one (that is, (〈x〉−2s

+ϕ′(|x |))−1/2 instead of 〈x〉s). Thus, we can
make this weight small on an arbitrary compact set by choosing the phase function properly. Moreover,
in the right-hand side we have the better semiclassical Sobolev H−1 norm instead of the L2 one, which is
crucial for the application we make here. Note also that Carleman estimates similar to (2-1) and (2-7)
have recently been proved in [Datchev 2014] for operators of the form −h21+ V (x, h), where V is a
real-valued long-range potential which is C1 with respect to the radial variable r . There are, however,
several important differences between the Carleman estimates in [Datchev 2014] and ours. First, the
phase function in [Datchev 2014] is of the form ϕ = ϕ1(r)/h, where ϕ1 does not depend on h and must
satisfy some conditions. Thus, the Carleman estimates in [Datchev 2014] lead to the conclusion that
the resolvent in that case is bounded by eC/h , C > 0 being a constant. Secondly, in [Datchev 2014] the
Carleman estimates are not uniform with respect to the phase function and the norm in the right-hand
side is L2 (and not H−1). Finally, the operator in [Datchev 2014] does not contain a magnetic potential.

To prove Theorem 2.1 we make use of methods originating from [Cardoso and Vodev 2002]. Note that in
[Cardoso and Vodev 2002] the high-frequency behavior of the resolvent of operators of the form −1g+V
is studied, where V is a real-valued scalar potential and 1g is the negative Laplace–Beltrami operator
on unbounded Riemannian manifolds, such as, for example, asymptotically Euclidean and hyperbolic
ones. Similar techniques have been also used in [Rodnianski and Tao 2011], where actually all ranges of
frequencies are covered. In these two papers, however, no perturbations by magnetic potentials are studied.

2. Proof of Theorem 1.1

Set h = λ−1, P(h) = h2G, b̃(x, h) = hb(x), b̃L(x, h) = hχ(|x |)bL(x), b̃S(x, h) = b̃(x, h)− b̃L(x, h),
Ṽ (x, h) = h2V (x), Ṽ L(x, h) = h2χ(|x |)V L(x), Ṽ S(x, h) = Ṽ (x, h)− Ṽ L(x, h), where χ ∈ C∞(R),
χ(r)= 0 for r ≤ r0+ 1, χ(r)= 1 for r ≥ r0+ 2. Throughout this paper, H 1(Rn) will denote the Sobolev
space equipped with the semiclassical norm

‖u‖2H1 =

∑
0≤|α|≤1

‖Dα
x u‖2L2 ,

where Dx = ih∂x . Furthermore, H−1 will denote the dual space of H 1 with respect to the scalar product
〈 · , · 〉L2 with the norm

‖v‖H−1 = sup
06=u∈H1

|〈u, v〉L2 |

‖u‖H1
.
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Let ρ ∈ C∞(R) be a function independent of h such that 0≤ ρ ≤ 1 and ρ(σ)= 1 for σ ≤ 0, ρ(σ)= 0
for σ ≥ 1. Define the function ϕ(r) ∈ C∞(R) as follows: ϕ(0)= 0 and

ϕ′(r)= τρ(r − A),

where τ , A ≥ 1 are parameters independent of h to be fixed later on. Introduce the operator

P L(h)=−h21+ ihb̃L(x, h) · ∇ + ih∇ · b̃L(x, h)+ Ṽ L(x, h)

and set

P L
ϕ (h)= eϕP L(h)e−ϕ,

Pϕ(h)= eϕP(h)e−ϕ = P L
ϕ (h)+ ihb̃S(x, h) · ∇ + ih∇ · b̃S(x, h)− 2ihb̃S(x, h) · ∇ϕ+ Ṽ S(x, h),

µ(x)=
√
〈x〉−2s +ϕ′(|x |).

In this section we will show that Theorem 1.1 follows from:

Theorem 2.1. Suppose (1-2), (1-3), (1-4) hold and let 1
2 < s< 1

2(1+δ). Then, for all functions f ∈H 1(Rn)

such that 〈x〉s(P L
ϕ (h)− 1± iε) f ∈ H−1(Rn), we have the a priori estimate

‖〈x〉−s f ‖H1 ≤
C1

h
‖µ−1(P L

ϕ (h)− 1± iε) f ‖H−1 +C2

(
ε

h

)1/2

‖ f ‖L2 (2-1)

for 0< ε ≤ 1, 0< h ≤ h0(τ, A)� 1, with a constant C1 > 0 independent of f , ε, h, τ , A, and a constant
C2 > 0 independent of f , ε, h.

Let us first see that (2-1) implies the estimate

‖〈x〉−s f ‖H1 ≤
2C1

h
‖〈x〉s(Pϕ(h)− 1± iε) f ‖H−1 + 2C2

(
ε

h

)1/2

‖ f ‖L2 . (2-2)

Using that µ(x)≥ τ 1/2 for |x | ≤ A and µ(x)≥ 〈x〉−s for |x | ≥ A+ 1 together with the condition (1-4),
we get (for 0< s− 1

2 � 1)

〈x〉sµ(x)−1(
|b̃S(x, h)| + |Ṽ S(x, h)|

)
≤ Ch(τ−1/2

+ A2s−1−δ), (2-3)

〈x〉sµ(x)−1
|b̃S(x, h)| |∇ϕ| ≤ Oτ,A(h). (2-4)

By (2-3) and (2-4),

‖µ−1(Pϕ(h)− P L
ϕ (h))〈x〉

s
‖H1→H−1 ≤ Ch(τ−1/2

+ A2s−1−δ
+ O(h)). (2-5)

By (2-1) and (2-5),

‖〈x〉−s f ‖H1

≤
C1

h
‖µ−1(Pϕ(h)− 1± iε) f ‖H−1 +

C1

h
‖µ−1(Pϕ(h)− P L

ϕ (h)) f ‖H−1 +C2

(
ε

h

)1/2

‖ f ‖L2

≤
C1

h
‖〈x〉s(Pϕ(h)−1±iε) f ‖H−1+C(τ−1/2

+A2s−1−δ
+O(h))‖〈x〉−s f ‖H1+C2

(
ε

h

)1/2

‖ f ‖L2 . (2-6)
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Taking now τ−1, A−1 and h small enough, we can absorb the second term in the right-hand side of (2-6)
to obtain (2-2).

Applying (2-2) with f = eϕg we obtain the Carleman estimate

‖〈x〉−seϕg‖H1 ≤
2C1

h
‖〈x〉seϕ(P(h)− 1± iε)g‖H−1 + 2C2

(
ε

h

)1/2

‖eϕg‖L2 . (2-7)

Since the function ϕ does not depend on h, the function eϕ is bounded by positive constants both from
below and from above. Thus, we deduce from (2-7) the a priori estimate

‖〈x〉−s g‖H1 ≤
C̃1

h
‖〈x〉s(P(h)− 1± iε)g‖H−1 + C̃2

(
ε

h

)1/2

‖g‖L2 (2-8)

with constants C̃1, C̃2 > 0 independent of h, ε and g. On the other hand, since the operator P(h) is
symmetric on L2(Rn), we have

ε‖g‖2L2 =∓ Im〈(P(h)− 1± iε)g, g〉L2 ≤ γ−1h−1
‖〈x〉s(P(h)− 1± iε)g‖2H−1 + γ h‖〈x〉−s g‖2H1 (2-9)

for every γ > 0. Taking γ small enough, independent of h, we deduce from (2-8) and (2-9) the a priori
estimate

‖〈x〉−s g‖H1 ≤
C
h
‖〈x〉s(P(h)− 1± iε)g‖H−1 (2-10)

with a constant C > 0 independent of h, ε and g. It is easy to see now that (2-10) implies the resolvent
estimate (1-6) for 0< s− 1

2 � 1. On the other hand, we clearly have that, if (1-6) holds for some s0 >
1
2 ,

it holds for all s ≥ s0. Hence (1-6) holds for all s > 1
2 .

3. Proof of Theorem 2.1

We will first prove the following:

Proposition 3.1. Under the conditions of Theorem 2.1 we have the estimate

‖〈x〉−s f ‖H1 ≤
C1

h
‖µ−1(P L

ϕ (h)− 1± iε) f ‖L2 +C2

(
ε

h

)1/2

‖ f ‖H1 (3-1)

for every 0< ε ≤ 1, 0< h ≤ h0(τ, A)� 1, with a constant C1 > 0 independent of f , ε, h, τ , A, and a
constant C2 > 0 independent of f , ε, h.

Proof. We pass to the polar coordinates (r, w) ∈ R+ × Sn−1, r = |x |, w = x/|x |, and recall that
L2(Rn)∼= L2(R+×Sn−1, rn−1 dr dw). Denote by X the Hilbert space L2(R+×Sn−1, dr dw). We also
denote by ‖ · ‖ and 〈 · , · 〉 the norm and the scalar product on L2(Sn−1). We will make use of the identity

r (n−1)/21r−(n−1)/2
= ∂2

r +
1̃w

r2 , (3-2)

where 1̃w = 1w − 1
4(n− 1)(n− 3) and 1w denotes the negative Laplace–Beltrami operator on Sn−1.

Observe also that
r (n−1)/2∂x j r

−(n−1)/2
= w j∂r + r−1q j (w, ∂w), (3-3)
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where w j = x j/|x | and q j is a first-order differential operator on Sn−1, independent of r , antisymmetric
on L2(Sn−1). It is easy to see that the operators Q j (w,Dw)= ihq j (w, ∂w) and 3w =−h21̃w ≥ 0 satisfy
the estimate

‖Q j (w,Dw)v‖ ≤ C‖31/2
w v‖+Ch‖v‖ for all v ∈ H 1(Sn−1), (3-4)

with a constant C > 0 independent of h and v. Set u = r (n−1)/2 f ,

P±(h)= r (n−1)/2(P L(h)− 1± iε)r−(n−1)/2,

P±ϕ (h)= r (n−1)/2(P L
ϕ (h)− 1± iε)r−(n−1)/2

= eϕP±(h)e−ϕ.

Using (3-2) and (3-3) we can write the operator P±(h) in the coordinates (r, w) as follows:

P±(h)= D2
r +

3w

r2 − 1± iε+ Ṽ L
+

n∑
j=1

w j
(
b̃L

j (rw, h)Dr +Dr b̃L
j (rw, h)

)
+ r−1

n∑
j=1

(b̃L
j (rw, h)Q j (w,Dw)+ Q j (w,Dw)b̃L

j (rw, h)),

where we have put Dr = ih∂r . Since the function ϕ depends only on the variable r , this implies

P±ϕ (h)= D2
r +

3w

r2 − 1± iε+ Ṽ L
+W − 2ihϕ′Dr +

n∑
j=1

w j (b̃L
j (rw, h)Dr +Dr b̃L

j (rw, h))

+ r−1
n∑

j=1

(
b̃L

j (rw, h)Q j (w,Dw)+ Q j (w,Dw)b̃L
j (rw, h)

)
,

where

W =−h2ϕ′(r)2− h2ϕ′′(r)− 2ihϕ′
n∑

j=1

w j b̃L
j .

Set

8s(r)= ‖〈r〉−su(r, · )‖2+‖〈r〉−sDr u(r, · )‖2+‖〈r〉−sr−131/2
w u(r, · )‖2,

9s = ‖〈r〉−su‖2L2(X)+‖〈r〉
−sDr u‖2L2(X)+‖〈r〉

−sr−131/2
w u‖2L2(X) =

∫
∞

0
8s(r) dr,

M±(r)= ‖P±ϕ (h)u(r, · )‖
2,

M± =

∫
∞

0
µ−2 M±(r) dr,

N (r)= ‖u(r, · )‖2+‖Dr u(r, · )‖2,

N=

∫
∞

0
N (r) dr,

E(r)=−〈(r−23w − 1+ Ṽ L)u(r, · ), u(r, · )〉+ ‖Dr u(r, · )‖2

− 2r−1
n∑

j=1

Re〈b̃L
j (rw, h)Q j (w,Dw)u(r, · ), u(r, · )〉.

To prove (3-1) we will make use of the method of [Cardoso and Vodev 2002; Rodnianski and Tao 2011]
(used there in the case when the magnetic potential is identically zero), which is based on the observation
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that the first derivative of the function E(r) has a nice lower bound. The situation is more complex in the
presence of a nontrivial magnetic potential, but we will show in what follows that the method still works.
To be more precise, observe first that, in view of (1-1), (1-3) and (3-4), we have

E(r)≥−‖r−131/2
w u(r, · )‖2+ 1

2‖u(r, · )‖
2
+‖Dr u(r, · )‖2− O(h)8(1+δ)/2(r), (3-5)

provided h is taken small enough. Furthermore, using that Im〈b̃L
j Dr u,Dr u〉 = 0 and Q∗j = Q j , it is easy

to check that E(r) satisfies the identity — see also [Cardoso et al. 2013; 2014a], where the same identity
is used in an essential way —

E ′(r) :=
d E(r)

dr

=
2
r
〈r−23wu(r, · ), u(r, · )〉−

〈
∂ Ṽ L

∂r
u(r, · ), u(r, · )

〉
− 2

n∑
j=1

Re
〈
∂(b̃L

j (rw, h)/r)

∂r
Q j (w,Dw)u(r, · ), u(r, · )

〉

− 2
n∑

j=1

Re
〈
w j
∂ b̃L

j (rw, h)

∂r
u(r, · ),Dr u(r, · )

〉
+ 2h−1 Im〈P±ϕ (h)u(r, · ),Dr u(r, · )〉

∓ 2εh−1 Re〈u(r, · ),Dr u(r, · )〉+ 4〈ϕ′Dr u(r, · ),Dr u(r, · )〉

− 2h−1 Im〈W u(r, · ),Dr u(r, · )〉. (3-6)

In view of (1-2), (1-3), (3-4) and (3-6), we obtain the inequality

E ′(r)≥
2
r
‖r−131/2

w u(r, · )‖2+ 4ϕ′‖Dr u(r, · )‖2− 2h−1
‖P±ϕ (h)u(r, · )‖‖Dr (r, · )‖

− O(h)8(1+δ)/2(r)− O(εh−1)N (r). (3-7)

Since 8(1+δ)/2(r)≤8s(r) for 1
2 < s ≤ 1

2(1+ δ), we obtain from (3-7)

E ′(r)≥
2
r
‖r−131/2

w u(r, · )‖2+ 4ϕ′‖Dr u(r, · )‖2− γ−1h−2µ−2 M±(r)

− γµ2
‖Dr (r, · )‖2− O(h)8s(r)− O(εh−1)N (r)

≥
2
r
‖r−131/2

w u(r, · )‖2− γ−1h−2µ−2 M±(r)− O(h+ γ )8s(r)− O(εh−1)N (r) (3-8)

for every 0< γ � 1. By (3-5) and (3-8),

〈r〉−2s(E(r)+ r E ′(r))≥8s(r)− γ−1h−2µ−2 M±(r)− O(h+ γ )8s(r)− O(εh−1)N (r). (3-9)

Integrating (3-8) from t (t > 0) to +∞ we get

E(t)=−
∫
∞

t
E ′(r) dr ≤ O(γ−1h−2)M±+ O(εh−1)N+ O(h+ γ )9s . (3-10)
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Let ψ > 0 be a function independent of h and such that
∫
∞

0 ψ(r) dr <∞. Multiplying (3-10) by ψ(t)
and integrating from 0 to +∞, we get∫

∞

0
ψ(r)E(r) dr ≤ O(γ−1h−2)M±+ O(εh−1)N+ O(h+ γ )9s . (3-11)

Observe now that we have the identity∫
∞

0
〈r〉−2s(E(r)+ r E ′(r)) dr =

∫
∞

0
ψ(r)E(r) dr, (3-12)

where ψ(r)= 2sr〈r〉−2s−1. Combining (3-9), (3-11) and (3-12) and taking γ and h small enough, we
conclude

9s ≤ O(h−2)M±+ O(εh−1)N. (3-13)

Clearly, (3-13) implies (3-1). �

We will now show that (2-1) follows from (3-1) and the following:

Lemma 3.2. Let ` ∈ R. Then we have the estimate

‖µ−`(P L
ϕ (h)− i)−1µ`‖H−1→H1 ≤ C (3-14)

for 0< h ≤ h0(τ, A)� 1, with a constant C > 0 independent of h, τ and A.

We are going to use (3-1) with f = (P L
ϕ (h)− i)−1g. In view of the identity

1= (1− i ∓ iε)(P L
ϕ (h)− i)−1

+ (P L
ϕ (h)− i)−1(P L

ϕ (h)− 1± iε)

and Lemma 3.2, we have

‖〈x〉−s g‖H1 ≤ 2‖〈x〉−s(P L
ϕ (h)− i)−1g‖H1 +‖〈x〉−s(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖H1 A

≤
2C1

h
‖µ−1(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖L2

+ 2C2

(
ε

h

)1/2

‖(P L
ϕ (h)− i)−1g‖H1 +C3‖(P L

ϕ (h)− i)−1(P L
ϕ (h)− 1± iε)g‖H1

≤
2C1

h
‖µ−1(P L

ϕ (h)− i)−1µ‖H−1→L2‖µ−1(P L
ϕ (h)− 1± iε)g‖H−1

+ 2C2

(
ε

h

)1/2

‖(P L
ϕ (h)− i)−1

‖L2→H1‖g‖L2

+C3‖(P L
ϕ (h)− i)−1

‖H−1→H1‖(P L
ϕ (h)− 1± iε)g‖H−1

≤
C ′1
h
‖µ−1(P L

ϕ (h)−1± iε)g‖H−1+C ′2

(
ε

h

)1/2

‖g‖L2+C ′3‖(P
L
ϕ (h)−1± iε)g‖H−1 (3-15)

with a constant C ′1 > 0 independent of ε, h, τ , A and g, and constants C ′2, C ′3 > 0 independent of ε, h
and g. Since the function µ is bounded on Rn , there exists 0< h0(ϕ)� 1 such that for 0< h ≤ h0 the
last term in the right-hand side of (3-15) can be bounded by the first one. Thus we get (2-1) from (3-15).
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4. Proof of Lemma 3.2

It is easy to see that the estimate (3-14) holds with ` = 0 and P L
ϕ (h) replaced by −h21. Indeed,

in this case the L2
→ L2 bound is trivial, while the H−1

→ H 1 bound follows from the fact that
‖ f ‖H s ∼ ‖(1− h21)s/2 f ‖L2 , s =−1, 1. We will use this to show that (3-14) with `= 0 still holds for
first-order perturbations of the form −h21+ Q(h), where

Q(h)=
∑
|α|=1

q(1)α (x, h)Dα
x +

∑
|α|=1

Dα
x q(2)α (x, h)+ q0(x, h)

with coefficients satisfying

|q(1)α (x, h)| + |q(2)α (x, h)| + |q0(x, h)| ≤ Ch for all x ∈ Rn. (4-1)

Clearly, (4-1) implies
‖Q(h)‖H1→H−1 ≤ Ch. (4-2)

By (4-2) and the resolvent identity

(−h21+ Q(h)− i)−1
= (−h21− i)−1

+ (−h21− i)−1 Q(h)(−h21+ Q(h)− i)−1,

we get

‖(−h21+ Q(h)− i)−1
‖H−1→H1

≤‖(−h21−i)−1
‖H−1→H1+‖(−h21−i)−1

‖H−1→H1‖Q(h)‖H1→H−1‖(−h21+Q(h)−i)−1
‖H−1→H1

≤ C + O(h)‖(−h21+ Q(h)− i)−1
‖H−1→H1 . (4-3)

Now, taking h small enough (depending on the coefficients of Q(h)) we can absorb the last term in the
right-hand side of (4-3) and obtain the desired estimate with a constant C > 0 independent of q(1)α , q(2)α ,
q0 and h.

Thus, to prove (3-14) it suffices to show that the operator µ−`P L
ϕ (h)µ

` equals −h21 plus a first-order
differential operator with coefficients satisfying (4-1). To do so, observe first that µ−`P L

ϕ (h)µ
`
= P L

ψ (h),
where ψ = ϕ− ` logµ. Furthermore, we have

P L
ψ (h)=−h21+ (i b̃L

− h∇ψ) · h∇ + h∇ · (i b̃L
− h∇ψ)− h2

|∇ψ |2− 2ihb̃L
· ∇ψ + Ṽ L .

It is easy to see that |ψ ′(r)| is bounded on R, and hence |∇ψ(|x |)| is bounded on Rn . This together with
the assumptions on b̃L and Ṽ L imply the desired properties of the coefficients of the operator P L

ψ (h). �
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