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EXISTENCE AND ORBITAL STABILITY OF THE GROUND STATES
WITH PRESCRIBED MASS FOR THE L2-CRITICAL AND SUPERCRITICAL NLS

ON BOUNDED DOMAINS

BENEDETTA NORIS, HUGO TAVARES AND GIANMARIA VERZINI

Given ρ > 0, we study the elliptic problem

find (U, λ) ∈ H 1
0 (B1)×R such that

{
−1U + λU =U p,∫

B1
U 2 dx = ρ,

U > 0,

where B1 ⊂ RN is the unitary ball and p is Sobolev-subcritical. Such a problem arises in the search for
solitary wave solutions for nonlinear Schrödinger equations (NLS) with power nonlinearity on bounded
domains. Necessary and sufficient conditions (about ρ, N and p) are provided for the existence of
solutions. Moreover, we show that standing waves associated to least energy solutions are orbitally stable
for every ρ (in the existence range) when p is L2-critical and subcritical, i.e., 1< p ≤ 1+ 4/N , while
they are stable for almost every ρ in the L2-supercritical regime 1+ 4/N < p < 2∗ − 1. The proofs
are obtained in connection with the study of a variational problem with two constraints of independent
interest: to maximize the L p+1-norm among functions having prescribed L2- and H 1

0 -norms.

1. Introduction

In this paper, we study standing wave solutions of the nonlinear Schrödinger equation (NLS){
i ∂8
∂t
+18+ |8|p−18= 0, (t, x) ∈ R× B1,

8(t, x)= 0, (t, x) ∈ R× ∂B1

(1-1)

with B1 the unitary ball of RN , N ≥ 1, and 1< p< 2∗−1, where 2∗=∞ if N = 1, 2 and 2∗= 2N/(N−2)
otherwise. In what follows, p is always subcritical for the Sobolev immersion while criticality will be
understood in the L2-sense; see below. The main tool in our investigation will be the analysis of the
variational problem

max
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}

and in particular of its asymptotic properties in dependence of the parameter α. As we will show, when
the bounded domain �⊂ RN is chosen to be B1, the two problems are strongly related.

NLS on bounded domains appear in different physical contexts. For instance, in nonlinear optics,
with N = 2 and p = 3, they describe the propagation of laser beams in hollow-core fibers [Agrawal
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2013; Fibich and Merle 2001]. In Bose–Einstein condensation, when N ≤ 3 and p = 3, they model
the presence of an infinite well-trapping potential [Bartsch and Parnet 2014]. When considered in the
whole space RN , this equation admits the L2-critical exponent p = 1+ 4/N ; indeed, in the subcritical
case 1< p < 1+ 4/N , ground state solutions are orbitally stable while in the critical and supercritical
one they are always unstable [Cazenave and Lions 1982; Cazenave 2003]. Notice that the exponent p= 3
is subcritical when N = 1, critical when N = 2 and supercritical when N = 3. In the case of a bounded
domain, only a few papers analyze the effect of boundary conditions on stability, namely [Fibich and
Merle 2001] and the more recent [Fukuizumi et al. 2012] by Fukuizumi, Selem and Kikuchi. In these
papers, it is proved that also in the critical and supercritical cases there exist standing waves that are
orbitally stable (even though a full classification is not provided, even in the subcritical range). This
shows that the presence of the boundary has a stabilizing effect.

As is well known, two quantities are conserved along trajectories of (1-1): the energy

E(8)=

∫
B1

(1
2
|∇8|2−

1
p+1
|8|p+1

)
dx

and the mass

Q(8)=

∫
B1

|8|2 dx .

A standing wave is a solution of the form 8(t, x)= eiλtU (x), where the real-valued function U solves
the elliptic problem {

−1U + λU = |U |p−1U in B1,

U = 0 on ∂B1.
(1-2)

In (1-2), one can either consider the chemical potential λ ∈ R to be given or to be an unknown of the
problem. In the latter case, it is natural to prescribe the value of the mass so that λ can be interpreted as a
Lagrange multiplier.

Among all possible standing waves, typically the most relevant are ground state solutions. In the
literature, the two points of view mentioned above lead to different definitions of ground state; see for
instance [Adami et al. 2013]. When λ is prescribed, ground states can be defined as minimizers of the
action functional

Aλ(8)= E(8)+ 1
2λQ(8)

among its nontrivial critical points (recall that Aλ is not bounded from below); see for instance [Berestycki
and Lions 1983, p. 316]. Equivalently, they can be defined as minimizers of Aλ on the associated Nehari
manifold. Even though these solutions of (1-2) are sometimes called least energy solutions, we will
refer to them as least action solutions. In case λ is not given, one may define the ground states as the
minimizers of E under the mass constraint Q(U )= ρ for some prescribed ρ > 0 [Cazenave and Lions
1982, p. 555]. It is worth noticing that this second definition is fully consistent only in the subcritical case

p < 1+
4
N

since in the supercritical case E|{Q=ρ} is unbounded from below [Cazenave 2003]; see also Appendix A.



EXISTENCE AND STABILITY OF THE GROUND STATES FOR THE L2-CRITICAL AND SUPERCRITICAL NLS 1809

Remark 1.1. When working on the whole space RN , the two points of view above are in some sense
equivalent. Indeed, in such a situation, it is well known [Kwong 1989] that the problem

−1Z + Z = Z p, Z ∈ H 1(RN ), Z > 0

admits a solution Z N ,p that is unique (up to translations), radial and decreasing in r . Therefore, both the
problem with fixed mass and the one with given chemical potential can be uniquely solved in terms of a
suitable scaling of Z N ,p. On the other hand, NLS on RN with a nonhomogeneous nonlinearity cannot be
treated in this way, and the fixed mass problem becomes hard to tackle [Bellazzini et al. 2013; Bartsch
and de Valeriola 2013; Jeanjean 1997; Jeanjean et al. 2014].

When working on bounded domains, the two papers [Fibich and Merle 2001; Fukuizumi et al. 2012]
mentioned above deal with least action solutions. In this paper, we make a first attempt to study the case
of prescribed mass. Since we consider p also in the critical and supercritical ranges, we have to restrict
the minimization process to constrained critical points of E.

Definition 1.2. Let ρ > 0. A positive solution of (1-2) with prescribed L2-mass ρ is a positive critical
point of E|{Q=ρ}, that is, an element of the set

Pρ = {U ∈ H 1
0 (B1) : Q(U )= ρ, U > 0, there exists λ such that −1U + λU =U p

}.

A positive least energy solution is a minimizer of the problem

eρ = inf
Pρ

E.

Remark 1.3. When p is subcritical, as we mentioned, the above procedure is equivalent to the mini-
mization of E|{Q=ρ} with no further constraint. On the other hand, when p is supercritical, the set Pρ on
which the minimization is settled may be strongly irregular. Contrary to what happens for least action
solutions, no natural Nehari manifold seems to be associated to least energy solutions. Furthermore, since
we work on a bounded domain, the dependence of Pρ on ρ cannot be understood in terms of dilations.
As a consequence, no regularized version of the minimization problem defined above seems available.

Remark 1.4. Since Aλ and the corresponding Nehari manifold are even, one can immediately see that
least action solutions do not change sign so that they can be chosen to be positive. On the other hand,
since U ∈ Pρ does not necessarily imply |U | ∈Pρ , in the previous definition, we require the positivity
of U . Nonetheless, this condition can be removed in some cases, for instance when p is subcritical or
when it is critical and ρ is small (see also Remark 5.10).

Our main results deal with the existence and orbital stability of the least energy solutions of (1-2) (the
definition of orbital stability is recalled at the beginning of Section 6 below).

Theorem 1.5. Under the above notations, the following hold:

(1) If 1< p < 1+ 4/N , then for every ρ > 0, the set Pρ has a unique element, which achieves eρ .

(2) If p = 1+ 4/N , for 0 < ρ < ‖Z N ,p‖
2
L2(RN )

, the set Pρ has a unique element, which achieves eρ ;
for ρ ≥ ‖Z N ,p‖

2
L2(RN )

, we have Pρ =∅.
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(3) If 1+ 4/N < p < 2∗ − 1, there exists ρ∗ > 0 such that eρ is achieved if and only if 0 < ρ ≤ ρ∗.
Moreover, Pρ =∅ for ρ > ρ∗ whereas

#Pρ ≥ 2 for 0< ρ < ρ∗.

In this latter case, Pρ contains positive solutions of (1-2) that are not least energy solutions.

Remark 1.6. As a consequence, we have that, for p and ρ as in case (3) of the previous theorem, the
problem

find (U, λ) ∈ H 1
0 (B1)×R :

{
−1U + λU =U p,∫

B1
U 2 dx = ρ

admits multiple positive radial solutions.

Concerning the stability, following [Fukuizumi et al. 2012], we apply the abstract results in [Grillakis
et al. 1987], which require the local existence for the Cauchy problem associated to (1-1). Since this is
not known to hold for all the cases we consider, we take it as an assumption and refer to [Fukuizumi et al.
2012, Remark 1] for further details.

Theorem 1.7. Suppose that for each 80 ∈ H 1
0 (B1,C) there exist t0 > 0, only depending on ‖80‖, and a

unique solution 8(t, x) of (1-1) with initial datum 80 in the interval I = [0, t0).
Let U denote a least energy solution of (1-2) as in Theorem 1.5, and let 8(t, x)= eiλtU (x).

(1) If 1< p ≤ 1+ 4/N , then 8 is orbitally stable.

(2) If 1+ 4/N < p < 2∗− 1, then 8 is orbitally stable for a.e. ρ ∈ (0, ρ∗].

In case (2) of the previous theorem, we expect orbital stability for every ρ ∈ (0, ρ∗) and instability
for ρ = ρ∗; see Remark 6.4 ahead.

As we mentioned, [Fibich and Merle 2001; Fukuizumi et al. 2012] consider least action solutions, that
is, minimizers associated to

aλ = inf{Aλ(U ) :U ∈ H 1
0 (B1), U 6≡ 0, A′λ(U )= 0}.

In this situation, the existence and positivity of the least energy solution is not an issue. Indeed, it is well
known that problem (1-2) admits a unique positive solution Rλ if and only if λ ∈ (−λ1(B1),+∞), where
λ1(B1) is the first eigenvalue of the Dirichlet Laplacian. Such a solution achieves aλ. Concerning the
stability, in the critical case [Fibich and Merle 2001] and in the subcritical one [Fukuizumi et al. 2012], it
is proved that eiλt Rλ is orbitally stable whenever λ∼−λ1(B1) and λ∼+∞. Furthermore, stability for all
λ ∈ (−λ1(B1),+∞) is proved in the second paper in dimension N =1 for 1< p≤5 whereas in the first pa-
per numerical evidence of it is provided in the critical case. In this context, our contribution is the following:

Theorem 1.8. Let us assume local existence as in Theorem 1.7, and let Rλ be the unique positive solution
of (1-2). If 1< p ≤ 1+ 4/N , then eiλt Rλ is orbitally stable for every λ ∈ (−λ1(B1),+∞).

Remark 1.9. In [Fukuizumi et al. 2012], it is also shown that, in the supercritical case p > 1+ 4/N , the
standing wave associated to Rλ is orbitally unstable for λ∼+∞. In view of Theorem 1.7(2), this marks
a substantial qualitative difference between the two notions of ground state.
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Remark 1.10. Working in B1 allows one to obtain radial symmetry, uniqueness properties and nonde-
generacy of solutions (which in turn implies smooth dependence of the solutions on suitable parameters).
These properties are not necessary for the existence results of Theorem 1.5, most of which hold also in
general bounded domains, but they are crucial in our proof of stability.

As we mentioned, we will prove the above results as a byproduct of the analysis of a different variational
problem that we think is of independent interest. The main feature of such a problem is due to the fact
that it involves an optimization with two constraints. Let �⊂ RN be a general bounded domain. For any
fixed α > λ1(�), we consider the maximization problem

Mα = sup
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}
, (1-3)

which is related to the validity of Gagliardo–Nirenberg type inequalities (Appendix A).

Theorem 1.11. Given α > λ1(�), Mα is achieved by a positive function uα ∈ H 1
0 (�), and there exist

µα > 0 and λα >−λ1(�) such that

−1uα + λαuα = µαu p
α ,

∫
�

u2
α dx = 1,

∫
�

|∇uα|2 dx = α. (1-4)

Moreover, as α→ λ1(�)
+,

uα→ ϕ1, µα→ 0+, λα→−λ1(�)

(ϕ1 denotes the first positive eigenfunction, normalized in L2).
As α→+∞,

α

λα
→

N (p− 1)
N + 2− p(N − 2)

,

and

(1) if 1< p < 1+ 4/N , then µα→+∞,

(2) if p = 1+ 4/N , then µα→‖Z N ,p‖
p−1
L2(RN )

and

(3) if 1+ 4/N < p < 2∗− 1, then µα→ 0.

Furthermore, as α → +∞, uα is a one-spike solution, and a suitable scaling of uα approaches the
function Z N ,p defined in Remark 1.1.

More detailed asymptotics are provided in Sections 3 and 4. This problem is related to the previous
one in the following way. Taking u > 0 and µ> 0 as in (1-4), the function U = µ1/(p−1)u belongs to Pρ

for ρ = µ2/(p−1). Incidentally, if one considers the minimization problem

mα = inf
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}
,

then one obtains a solution of (1-4) with µ < 0 and λ <−λ1(�). This allows one to recover the well-
known theory of ground states for the defocusing Schrödinger equation i∂8/∂t +18− |8|p−18= 0;
see Appendix B. Moreover, when α ∼ λ1(�), there exist exactly two solutions (u, µ, λ) of (1-4) that
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achieve Mα and mα , respectively. More precisely, in the context of Ambrosetti–Prodi theory [1972; 1993],
we prove that (u, µ, λ)= (ϕ1, 0,−λ1(�)) is an ordinary singular point for a suitable map, which yields
sharp asymptotic estimates as α→ λ1(�)

+. On the other hand, the estimates on Mα as α→+∞ lean on
suitable pointwise a priori controls [Esposito and Petralla 2011]: controls of this kind were initiated and
performed for the first time for critical nonlinear elliptic problems by Druet, Hebey and Robert [Druet
et al. 2004] (see also [Druet et al. 2012]).

We stress that these results about the two-constraints problem hold for a general bounded domain �.
Going back to the case �= B1, positive solutions for (1-2) have been the object of an intensive study by
a number of authors, in particular regarding uniqueness issues; among others, we refer to [Gidas et al.
1979; Kwong 1989; Kwong and Li 1992; Zhang 1992; Kabeya and Tanaka 1999; Korman 2002; Tang
2003; Felmer et al. 2008]. In our framework, we can exploit the synergy with such uniqueness results in
order to fully characterize the positive solutions of (1-4). We do this in the following statement, which
collects the results of Proposition 5.4 and of Appendix B below:

Theorem 1.12. Let �= B1 and

S= {(u, µ, λ, α) ∈ H 1
0 (�)×R3

: u > 0 and (1-4) holds}.

Then

S= S+ ∪S− ∪ {(ϕ1, 0,−λ1(B1), λ1(B1))},

where both S+ and S− are smooth curves parametrized by α ∈ (λ1(B1),+∞), corresponding to
S∩ {µ > 0} and S∩ {µ < 0}, respectively. In addition, (u, µ, λ, α) ∈ S+ (S−) if and only if u achieves
Mα (mα).

Remark 1.13. As a consequence of the previous theorem, we have that the smooth set S+ defined through
the maximization problem Mα can be used as a surrogate of the Nehari manifold in order to “regularize”
the minimization procedure introduced in Definition 1.2.

To conclude, we mention that in [Noris et al. 2014], by exploiting part of the strategy we have described,
we were able to find stable solutions with small mass for the cubic Schrödinger system with trapping
potential on RN .

This paper is structured as follows. In Section 2, we address the preliminary study of the two-constraint
problems associated to Mα and mα. Afterwards, in Section 3, we focus on the case where α ∼ λ1(�),
seen as an Ambrosetti–Prodi-type problem. Section 4 is devoted to the asymptotics as α→+∞ for Mα ,
which concludes the proof of Theorem 1.11. In Section 5, we restrict our attention to the case �= B1,
proving all the existence results (in particular Theorem 1.5), qualitative properties and more precise
asymptotics for the map α 7→ (u, µ, λ) that parametrizes S+. In particular, we show that µ′(α) > 0
whenever p ≤ 1+ 4/N whereas it changes sign in the supercritical case. Relying on such monotonicity
properties, the stability issues are addressed in Section 6, which contains the proofs of Theorems 1.7
and 1.8. Finally, in Appendix A, we collect some known results for the reader’s convenience, whereas
Appendix B is devoted to the study of S−, which concludes the proof of Theorem 1.12.
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2. A variational problem with two constraints

Let � ⊂ RN be a bounded domain, N ≥ 1. For every α ≥ λ1(�) fixed, we consider the variational
problems

mα = inf
u∈Uα

∫
�

|u|p+1 dx, Mα = sup
u∈Uα

∫
�

|u|p+1 dx,

where

Uα =

{
u ∈ H 1

0 (�) :

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx ≤ α
}
.

As we will see, these definitions of Mα and mα are equivalent to the ones given in the introduction. To
start with, we state the following straightforward properties:

Lemma 2.1. For every fixed α ≥ λ1(�),

(i) Uα 6=∅,

(ii) Uα is weakly compact in H 1
0 (�),

(iii) the functional u 7→
∫
�
|u|p+1 dx is weakly continuous and bounded in Uα and

(iv) ‖u‖L p+1(�) ≥ |�|
−(p−1)/2(p+1) for every u ∈Uα.

Lemma 2.2. For every fixed α > λ1(�), the set

Ũα =

{
u ∈ H 1

0 (�) :

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α,
∫
�

uϕ1 dx 6= 0
}

is a submanifold of H 1
0 (�) of codimension 2.

Proof. Setting F(u)=
(∫
�

u2 dx − 1,
∫
�
|∇u|2 dx

)
, it suffices to prove that, for every u ∈ Ũα, the range

of F ′(u) is R2. We have

1
2 F ′(u)[u] = (1, α), 1

2 F ′(u)[ϕ1] =

∫
�

uϕ1 dx · (1, λ1(�)),

which are linearly independent as α > λ1(�). �

Lemma 2.3. For every fixed α > λ1(�), there exists u ∈ Ũα, with u ≥ 0, such that mα =
∫
�

u p+1 dx.
Moreover, there exist λ,µ ∈ R, with µ 6= 0, such that

−1u+ λu = µu p in �. (2-1)

A similar result holds for Mα.

Proof. Let us prove the result for mα . First, the infimum is attained by a function u ∈Uα by Lemma 2.1;
by possibly taking |u|, we can suppose that u ≥ 0. Let us show that u ∈ Ũα. Notice that, with u ≥ 0
and u 6≡ 0, it holds that

∫
�

uϕ1 dx 6= 0. Assume by contradiction that
∫
�
|∇u|2 dx < α; then we have∫

�

u p+1 dx = inf
{∫

�

|v|p+1 dx : v ∈ H 1
0 (�),

∫
�

v2 dx = 1,
∫
�

|∇v|2 dx < α
}
,
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and there exists a Lagrange multiplier µ ∈ R so that∫
�

u pz dx = µ
∫
�

uz dx for all z ∈ H 1
0 (�).

Hence, µ≡ u p−1
∈ H 1

0 (�), which contradicts the fact that
∫
�

u2 dx = 1. Therefore u ∈ Ũα so that, by
Lemma 2.2, the Lagrange multiplier theorem applies, thus providing the existence of k1, k2 ∈ R such that∫

�

u pz dx = k1

∫
�

∇u · ∇z dx + k2

∫
�

uz dx for all z ∈ H 1
0 (�).

By the previous argument, we see that k1 6= 0; hence, setting µ= 1/k1 and λ= k2/k1, the proposition
is proved. �

Proposition 2.4. Given α > λ1(�), the Lagrange multipliers µ and λ associated to mα as in Lemma 2.3
satisfy µ < 0 and λ <−λ1(�). Similarly, in the case of Mα, it holds that µ > 0 and λ >−λ1(�).

Proof. Let (u, λ, µ) be any triplet associated to mα as in Lemma 2.3. We will prove that µ < 0. Set

w(t)= tu+ s(t)ϕ1,

where t ∈ R is close to 1, s(1)= 0 and s(t) is such that

1=
∫
�

w(t)2 dx = t2
+ 2ts(t)

∫
�

uϕ1 dx + s(t)2. (2-2)

Since

∂s

(
t2
+ 2ts

∫
�

uϕ1 dx + s2
)∣∣∣∣
(t,s)=(1,0)

= 2
∫
�

uϕ1 dx 6= 0,

then the implicit function theorem applies, and the map t 7→w(t) is of class C1 in a neighborhood of t = 1.
Differentiating (2-2) with respect to t at t = 1, we obtain

0=
∫
�

w′(1)w(1) dx =
∫
�

w′(1)u dx = 1+ s ′(1)
∫
�

uϕ1 dx,

which implies s ′(1)=−1/
∫
�

uϕ1 dx and w′(1)= u−ϕ1/
∫
�

uϕ1 dx . Thus,

1
2

d
dt

∫
�

|∇w(t)|2 dx
∣∣∣∣
t=1
=

∫
�

∇u · ∇w′(1) dx

=

∫
�

|∇u|2 dx −

∫
�
∇u · ∇ϕ1 dx∫
�

uϕ1 dx
= α− λ1(�) > 0. (2-3)

In particular, this implies the existence of ε > 0 such that w(t) ∈Uα for t ∈ (1− ε, 1]. Therefore, by the
definition of mα, ‖w(1)‖p+1 ≤ ‖w(t)‖p+1 for every t ∈ (1− ε, 1], and

d
dt

∫
�

|w(t)|p+1 dx
∣∣∣∣
t=1
≤ 0. (2-4)
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On the other hand, using (2-1) and the fact that
∫
�

uw′(1) dx = 0, we have

µ

p+ 1
d
dt

∫
�

|w(t)|p+1 dx
∣∣∣∣
t=1
= µ

∫
�

u pw′(1) dx =
∫
�

(−1u+ λu)w′(1) dx

=

∫
�

∇u · ∇w′(1) dx =
1
2

d
dt

∫
�

|∇w(t)|2 dx
∣∣∣∣
t=1

> 0

by (2-3). By comparing with (2-4), we obtain that µ < 0.
The case of Mα can be handled in the same way, obtaining that in such situation µ > 0. Finally, by

multiplying (2-1) by ϕ1, we obtain

(λ1(�)+ λ)

∫
�

uϕ1 dx = µ
∫
�

u pϕ1 dx .

As u, ϕ1 ≥ 0, we deduce that λ1(�)+ λ has the same sign as µ. �

We conclude this section with the following boundedness result, which we will need later on:

Lemma 2.5. Take a sequence {(un, µn, λn)}n such that∫
�

u2
n dx = 1,

∫
�

|∇un|
2 dx =: αn is bounded

and
−1un + λnun = µnu p

n . (2-5)

Then the sequences {λn}n and {µn}n are bounded.

Proof. By multiplying (2-5) by un , we see that

αn + λn = µn

∫
�

u p+1
n dx;

thus, if one of the sequences {λn}n or {µn}n is bounded, the other is also bounded. Recall that, by
assumption, un is bounded in H 1

0 (�); hence, it converges in the L p+1-norm to some u ∈ H 1
0 (�) up to a

subsequence. Moreover, u 6≡ 0 as
∫
�

u2 dx = 1.
For concreteness, suppose without loss of generality that µn→+∞ and that λn→+∞. From the

previous identity, we also have that

λn

µn
=

∫
�

u p+1
n dx −

αn

µn
→

∫
�

u p+1 dx =: γ 6= 0

up to a subsequence. Now take any ϕ ∈ H 1
0 (�) and use it as test function in (2-5). We obtain∫

�

∇un · ∇ϕ dx = µn

∫
�

u p
nϕ dx − λn

∫
�

unϕ dx

= µn

(∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx
)
.

As µn→+∞, we must have ∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx→ 0.
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On the other hand, ∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx→
∫
�

u pϕ dx − γ
∫
�

uϕ dx .

Thus, we have u p
≡ γ u, which is a contradiction. �

3. Asymptotics as α → λ1(�)
+

In this section, we will completely describe the solutions of the problem

−1u+ λu = µu p, u ∈ H 1
0 (�), u > 0,

∫
�

u2 dx = 1 (3-1)

for α :=
∫
�
|∇u|2 dx in a (right) neighborhood of λ1(�). For that, we will follow the theory presented in

[Ambrosetti and Prodi 1993, §3.2], which we now briefly recall.

Definition 3.1. Let X and Y be Banach spaces, U ⊆ X an open set and 8 ∈ C2(U, Y ). A point x ∈U is
said to be ordinary singular for 8 if

(a) Ker(8′(x)) is one-dimensional, spanned by a certain φ ∈ X ,

(b) R(8′(x)) is closed and has codimension 1 and

(c) 8′′(x)[φ, φ] /∈ R(8′(x)),

where Ker(8′(x)) and R(8′(x)) denote respectively the kernel and the range of the map 8′(x) : X→ Y .

We will need the following result:

Theorem 3.2 [Ambrosetti and Prodi 1993, §3.2, Lemma 2.5]. Under the previous notations, let x∗ ∈U
be an ordinary singular point for 8. Take y∗ =8(x∗) and φ ∈ X such that Ker(8′(x∗))= Rφ, 9 ∈ Y ∗

such that R(8′(x∗))=Ker(9) and consider z ∈ Z such that 9(z)= 1, where Y = Z ⊕Ker(9). Suppose

9(8′′(x∗)[φ, φ]) > 0.

Then there exist ε∗, δ > 0 such that the equation

8(x)= y∗+ εz, x ∈ Bδ(x∗),

has exactly two solutions for each 0< ε < ε∗ and no solutions for all −ε∗ < ε < 0. Moreover, there exists
σ > 0 such that the solutions can be parametrized with a parameter t ∈ (−σ, σ ), t 7→ x(t) is a C1 map
and

x(t)= x∗+ tφ+ o(
√
ε) with t =±

√
2ε

9(8′′(x∗)[φ, φ])
. (3-2)

Let us now set the framework that will allow us to apply the previous results. Given k > N , consider
X = {w ∈ W 2,k(�) : w = 0 on ∂�}, Y = Lk(�) and U = {w ∈ X : w > 0 in � and ∂νw < 0 on ∂�}.
Take 8 : X ×R2

→ Lk(�)×R2 defined by

8(u, µ, λ)=
(
1u− λu+µu p,

∫
�

u2 dx − 1,
∫
�

|∇u|2 dx
)
. (3-3)
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Remark 3.3. Note that 8 ∈ C2(U, Y ). This is immediate when p ≥ 2 while for 1 < p < 2 it can be
proved, for instance, along the lines of [Ortega and Verzini 2004, Lemma 4.1].

We start with the following result:

Lemma 3.4. Let αn→λ1(�)
+, and suppose there exists (un, µn, λn) such that8(un, µn, λn)= (0, 0, αn)

with un ≥ 0. Then un→ ϕ1 in H 1
0 (�), µn→ 0 and λn→−λ1(�). In particular,

8(u, µ, λ)= (0, 0, λ1(�)), u ≥ 0, if and only if (u, µ, λ)= (ϕ1, 0,−λ1(�)).

Proof. As un is bounded in H 1
0 (�), up to a subsequence, we have that un ⇀u weakly in H 1

0 (�). Moreover,∫
�

u2 dx = 1, u ≥ 0, and by the Poincaré inequality, λ1(�) ≤
∫
�
|∇u|2 ≤ lim inf

∫
�
|∇un|

2 dx = λ1(�),
whence u = ϕ1 and the whole sequence un converges strongly to ϕ1 in H 1

0 (�). By Lemma 2.5, we have
that µn and λn are bounded. Denote by µ∞ and λ∞ limits of subsequences of each. Then

−1ϕ1+ λ∞ϕ1 = µ∞ϕ
p
1 ,

which shows that µ∞ = 0 and λ∞ =−λ1(�). �

Lemma 3.5. The point (ϕ1, 0,−λ1(�)) ∈ U is ordinary singular for 8. More precisely, for L :=
8′(ϕ1, 0,−λ1(�)) : X ×R2

→ Lk(�)×R2, we have:

(i) Ker(L)= span{(ψ, 1,
∫
�
ϕ

p+1
1 dx)} =: span{φ}, where ψ ∈ X is the unique solution of

−1ψ − λ1(�)ψ = ϕ
p
1 −ϕ1

∫
�

ϕ
p+1
1 dx such that

∫
�

ψϕ1 dx = 0. (3-4)

(ii) R(L)= Ker(9) with 9 : Lk(�)×R2
→ R defined by 9(ξ, h, k)= k− λ1(�)h.

(iii) 9(8′′(ϕ1, 0,−λ1(�))[φ, φ]) > 0.

Proof. (i) We recall that −1− λ1(�) Id is a Fredholm operator of index 0 with

Ker(−1− λ1(�) Id)= span{ϕ1},

R(−1− λ1(�) Id)=
{
v ∈ Lk(�) :

∫
�

vϕ1 dx = 0
}
.

Therefore, by the Fredholm alternative, there exists a unique ψ ∈ X solution of (3-4). Let us check that
Ker(L)= span{(ψ, 1,

∫
�
ϕ

p+1
1 dx)}. We have

L(v,m, l)=
(
1v+ λ1(�)v− lϕ1+mϕ p

1 , 2
∫
�

ϕ1v dx, 2
∫
�

∇ϕ1 · ∇v dx
)
;

thus, (v,m, l) ∈ Ker(L) if and only if l = m
∫
�
ϕ

p+1
1 ,

∫
�
ϕ1v dx =

∫
�
∇ϕ1 · ∇v dx = 0 and

−1v− λ1(�)v = m
(
ϕ

p
1 −ϕ1

∫
�

ϕ
p+1
1 dx

)
for some m ∈ R.

By the uniqueness of ψ in (3-4), we obtain v = mψ .
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(ii) Let us prove that R(L)= {(ξ, h, λ1(�)h) : ξ ∈ Lk(�), h ∈ R}. Recalling the expression for L found
in (i), it is clear that L(v,m, l) = (ξ, h, k) implies k = λ1(�)h. As for the other inclusion, given any
ξ ∈ Lk(�), let w ∈ X be the solution of

−1w− λ1(�)w = ϕ1

∫
�

ξϕ1 dx − ξ with
∫
�

wϕ1 dx = 0,

which exists and is unique again by the Fredholm alternative. Then L(hϕ1/2 + w, 0,
∫
�
ξϕ1 dx) =

(ξ, h, λ1(�)h).

(iii) We have that

8′′(ϕ1, 0,−λ1(�))[φ, φ] = 2
(

pϕ p−1
1 ψ −ψ

∫
�

ϕ
p+1
1 dx,

∫
�

ψ2 dx,
∫
�

|∇ψ |2 dx
)

with φ and ψ defined in (i). Hence,

9(8′′(ϕ1, 0, λ1(�))[φ, φ])=

∫
�

2(|∇ψ |2− λ1(�)ψ
2) dx > 0 (3-5)

since ψ satisfies (3-4). �

Proposition 3.6. There exists ε∗ such that the equation

8(u, µ, λ)= (0, 0, λ1(�)+ ε), (u, µ, λ) ∈U ×R2,

has exactly two positive solutions for each 0< ε < ε∗ (one with µ > 0 and one with µ < 0). Moreover,
such solutions satisfy the asymptotic expansion

(u, µ, λ)= (ϕ1, 0,−λ1(�))±

√
ε∫

�
ϕ

p
1ψ dx

(
ψ, 1,

∫
�

ϕ
p+1
1 dx

)
+ o(
√
ε),

where ψ is defined in (3-4). In addition, the L p+1-norm of one of the solutions is equal to mλ1(�)+ε and
the other is equal to Mλ1(�)+ε.

Proof. We apply Theorem 3.2 with8 defined in (3-3), x∗= (ϕ1, 0,−λ1(�)) and z= (0, 0, 1). By the previ-
ous lemma, x∗ is ordinary singular for8, and, moreover, using the notation therein, 9(8′′(x∗)[φ, φ]) > 0
and 9(z)= 1. Therefore, the assumptions of Theorem 3.2 are satisfied, and there exist ε∗, δ > 0 such
that the problem

8(u, µ, λ)= (0, 0, λ1(�)+ ε), (u, µ, λ) ∈ Bδ(ϕ1, 0,−λ1(�)),

has exactly two solutions for each 0<ε<ε∗, which can be parametrized using a map t 7→ (u(t), µ(t), λ(t))
of class C1 in U ×R2. The asymptotic expansion is obtained by combining (3-2) with the fact (see (3-5))

9(8′′(ϕ1, 0, λ1(�))[φ, φ])= 2
∫
�

ϕ
p
1ψ dx .

Finally, by possibly choosing a smaller ε∗, (u(t), µ(t), λ(t)) are the unique positive solutions in U ×R2

for 0 < ε < ε∗, as a consequence of Lemma 3.4, and the statement concerning
∫
�

u(t)p+1 dx follows
from Lemma 2.3 and Proposition 2.4. �
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Remark 3.7. From the proof of Proposition 3.6, we deduce an alternative proof of [Fukuizumi et al.
2012, Theorem 17(ii)]; namely, we can show that

(µ2)′(λ1(�)
+) > 0.

This result is relevant when facing stability issues; see Corollary 6.2 ahead.

4. Asymptotics as α → +∞

In this section, we consider the case when α is large in order to conclude the proof of Theorem 1.11.
Since in that case the problems Mα and mα exhibit different asymptotics, here we only address the study
of Mα , and we postpone to Appendix B the complete description of the minimizers corresponding to mα .

Define, for any µ, λ ∈ R, the action functional associated to (2-1), namely Jµ,λ : H 1
0 (�)→ R:

Jµ,λ(u)=
1
2

∫
�

(|∇u|2+ λu2) dx −
µ

p+ 1

∫
�

|u|p+1 dx . (4-1)

Lemma 4.1. For every µ > 0 and λ ∈ R, we have that

u ∈ Ũα,

∫
�

|u|p+1 dx = Mα =⇒ Jµ,λ(u)= inf
Ũα

Jµ,λ.

Proof. By the definition of Mα,

µ

p+ 1
Mα = sup

w∈Ũα

{
µ

p+ 1

∫
�

|w|p+1 dx +
1
2

(
α−

∫
�

|∇w|2 dx
)
+
λ

2

(
1−

∫
�

w2 dx
)}
,

and hence,

Jµ,λ(u)=
α+ λ

2
−

µ

p+ 1
Mα = inf

w∈Ũα

Jµ,λ(w). �

Lemma 4.2. Fix α > λ1(�), and let (u, µ, λ) ∈ Ũα ×R+ × (−λ1(�),+∞) be any triplet associated
to Mα as in Lemma 2.3. Then the Morse index of J ′′µ,λ(u) is either 1 or 2.

Proof. If (u, µ, λ) is a triplet associated to Mα, then µ > 0 by Proposition 2.4. Equation (2-1) implies

J ′′µ,λ(u)[u, u] = −(p− 1)µ
∫
�

u p+1 dx < 0,

so that the Morse index is at least 1. Next we claim that, for such (u, µ, λ),

J ′′µ,λ(u)[φ, φ] ≥ 0 for every φ ∈ H 1
0 (�) with

∫
�

∇u · ∇φ dx =
∫
�

uφ dx = 0,

which implies that the Morse index is at most 2. Indeed, any such φ belongs to the tangent space of Ũα

at u; hence, there exists a C∞ curve γ (t) satisfying, for some ε > 0,

γ : (−ε, ε)→ Ũα, γ (0)= u, γ ′(0)= φ.
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Lemma 4.1 implies that Jµ,λ(γ (t))− Jµ,λ(γ (0))≥ 0. Hence,

0≤ Jµ,λ(γ (t))− Jµ,λ(u)= J ′µ,λ(u)[φ]t + J ′′µ,λ(u)[φ, φ]
t2

2
+ J ′µ,λ(u)[γ

′′(0)]
t2

2
+ o(t2).

Finally, (2-1) implies that J ′µ,λ(u)≡ 0, which concludes the proof. �

Lemma 4.3. Let αn→+∞, and let un ∈ H 1
0 (�), un > 0, satisfy

−1un + λnun = µnu p
n in �,

∫
�

|∇un|
2 dx = αn,

∫
�

u2
n dx = 1

for some µn > 0 and λn >−λ1(�). Then λn→+∞.

Proof. Set

Ln := ‖un‖L∞(�) = un(xn).

Since 1un(xn)≤ 0, from the equation for un , we obtain µn L p
n − λn Ln ≥ 0, i.e.,

−
λ1(�)

µn L p−1
n

<
λn

µn L p−1
n
≤ 1

(recall that λ >−λ1(�)). In particular, since µn L p−1
n ≥ µn

∫
�

u p+1
n dx ≥ αn + λn→+∞, we have (up

to subsequences)
λn

µn L p−1
n
→ λ∗ ∈ [0, 1]. (4-2)

In order to prove that λn→+∞, it only remains to show that λ∗ 6= 0. To this aim, we define

vn(x) :=
1

Ln
un

(
xn +

x

(µn L p−1
n )1/2

)
so that vn satisfies

−1vn +
λn

µn L p−1
n

vn = v
p
n in �n := (µn L p−1

n )1/2(�− xn).

Using (4-2) and reasoning as in [Gidas and Spruck 1981b, pp. 887–889], we have that vn → v in
(W 2,p

∩C1,β)loc(R
N ) for every β ∈ (0, 1). Moreover, v ≥ 0, v(0)= 1 and

−1v+ λ∗v = v p in H ,

where H is either RN or a half-space of RN and v = 0 on ∂H in case H is the half-space. Since v 6≡ 0,
the nonexistence results in [Gidas and Spruck 1981a] imply that λ∗ > 0, and this concludes the proof. �

Next, we use some results from [Esposito and Petralla 2011] in order to show that a suitable rescaling
of the solutions converges to the function Z N ,p defined in Remark 1.1. Such results rely on pointwise
estimates that take fundamental inspiration from the monograph [Druet et al. 2004] (see also [Druet et al.
2012]).
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Lemma 4.4. With the same assumptions as the previous lemma, suppose moreover that the Morse index
of J ′′µn,λn

(un) is equal to k ∈ N for every n. Then uk admits k local maxima P i
n ∈ �, i = 1, . . . , k, such

that, defining

vi,n(x)=
(
µn

λn

)1/(p−1)

un

(
x
√
λn
+ P i

n

)
(4-3)

for x ∈�i,n =
√
λn(�− Pn

i ), we have

vi,n→ Z N ,p in C1
loc(R

N ) as n→+∞ for every i .

As a consequence, for every q ≥ 1,(
µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx→ k

∫
RN

Zq
N ,p dx as n→+∞. (4-4)

Proof. Since λn→+∞ by the previous lemma, we can apply [Esposito and Petralla 2011, Theorem 3.2]
to Un := µ

1/(p−1)
n un , inferring the existence of k local maxima P i

n , i = 1, . . . , k, such that, for every
i 6= j , √

λn dist(P i
n, ∂�)→+∞,

√
λn|P i

n − P j
n | → +∞, (4-5)

and for some C, γ > 0, the following pointwise estimate holds:

un(x)= µ−1/(p−1)
n Un(x)≤ C

(
λn

µn

)1/(p−1) k∑
i=1

e−γ
√
λn |x−P i

n | for all x ∈�.

Furthermore, since vi,n solves −1vi,n + vi,n = v
p
i,n in �i,n , [Esposito and Petralla 2011, Theorem 3.1]

yields that vi,n→ Z N ,p in C1
loc(R

N ), so the only thing that remains to be proved is estimate (4-4).
To this aim, let R > 0 be fixed and rn = R/

√
λn . Then, if n is sufficiently large, (4-5) implies that, for

every i 6= j ,
Brn (P

i
n)⊂�, Brn (P

i
n)∩ Brn (P

j
n )=∅.

We obtain∣∣∣∣(µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx −

k∑
j=1

∫
BR(0)

v
q
j,n dx

∣∣∣∣= (µn

λn

)q/(p−1)

λN/2
n

∣∣∣∣∫
�

uq
n dx −

k∑
j=1

∫
Brn (P

j
n )

uq
n dx

∣∣∣∣
=

(
µn

λn

)q/(p−1)

λN/2
n

∫
�\
⋃k

j=1 Brn (P
j

n )

uq
n dx

≤ CλN/2
n

k∑
i=1

∫
�\
⋃k

j=1 Brn (P
j

n )

e−qγ
√
λn |x−P i

n | dx

≤ CλN/2
n

k∑
i=1

∫
RN \Brn (P i

n )

e−qγ
√
λn |x−P i

n | dx

= Ck
∫

RN \BR(0)
e−qγ |y| dy ≤ C1e−C2 R
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for some positive C1 and C2. As n→+∞, we have, up to subsequences,∣∣∣∣limn
(
µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx − k

∫
BR(0)

Zq
N ,p dx

∣∣∣∣≤ C1e−C2 R,

and (4-4) follows by taking R→+∞. �

Finally, the previous lemma allows us to study the asymptotic behavior of µ as α→+∞.

Lemma 4.5. With the same assumptions as the previous lemma, we have that

(1) if 1< p < 1+ 4/N , then µn→+∞,

(2) if p = 1+ 4/N , then µn→ k2/N
‖Z N ,p‖

4/N
L2(RN )

and

(3) if 1+ 4/N < p < 2∗− 1, then µn→ 0.

Furthermore,
αn

λn
→

N (p− 1)
N + 2− p(N − 2)

.

Proof. Exploiting (4-4) with q = 2 and q = p+ 1 as well as the relations ‖un‖
2
L2 = 1, ‖∇un‖

2
L2 = αn and

αn + λn = µn‖un‖
p+1
L p+1 , we can write

µ2/(p−1)
n λN/2−2/(p−1)

n → k
∫

RN
Z2

N ,p dx,

µ(p+1)/(p−1)
n λN/2−(p+1)/(p−1)

n

∫
�

u p+1
n dx→ k

∫
RN

Z p+1
N ,p dx,

αn

λn
µ2/(p−1)

n λN/2−2/(p−1)
n → k

∫
RN
|∇Z N ,p|

2 dx .

(4-6)

Now, since λn → +∞ (Lemma 4.3) and the exponent N/2− 2/(p − 1) is negative, zero or positive
respectively in the subcritical, critical and supercritical cases, the first relation in (4-6) immediately
provides the properties for µn .

On the other hand, dividing the third relation by the first one, we have

αn

λn
→

‖∇Z N ,p‖
2
L2(RN )

‖Z N ,p‖
2
L2(RN )

=
N (p− 1)

N + 2− p(N − 2)
.

The explicit evaluation of this constant can be obtained by the relations{
‖∇Z N ,p‖

2
L2(RN )

+‖Z N ,p‖
2
L2(RN )

= ‖Z N ,p‖
p+1
L p+1(RN )

,

N−2
2 ‖∇Z N ,p‖

2
L2(RN )

+
N
2 ‖Z N ,p‖

2
L2(RN )

=
N

p+1‖Z N ,p‖
p+1
L p+1(RN )

,

i.e., by testing the equation for Z N ,p either with Z N ,p itself or with x · ∇Z N ,p (recall that Z N ,p decays
exponentially at∞). The second relation is the well-known Pohozaev identity; see for instance [Berestycki
and Lions 1983, §2]. �
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End of the proof of Theorem 1.11. The fact that Mα is achieved by a triplet (u, µ, λ) with µ > 0 and
λ > −λ1(�) is a consequence of Lemma 2.3 and Proposition 2.4. Lemma 3.4 implies the asymptotic
behavior as α→ λ1(�)

+ while the results as α→+∞ follow from Lemmas 4.3, 4.4 and 4.5, recalling
that u has Morse index k, with k being either 1 or 2, by Lemma 4.2. The only thing that remains to be
proved is that both in Lemma 4.4 and in Lemma 4.5(2) k must be equal to 1; in other words, we are left
to show that, if un achieves Mαn , with αn large, then its Morse index must be 1 (and not 2).

For easier notation, in the following, we write Z = Z N ,p. Since un achieves Mαn , from (4-6), we infer
(up to subsequences)

µn ∼ k(p−1)/2
‖Z‖p−1

L2 λ1−N (p−1)/4
n , αn ∼

‖∇Z‖2L2

‖Z‖2L2

λn

and
Mαn

α
N (p−1)/4
n

=

∫
�

u p+1
n dx

α
N (p−1)/4
n

∼ k‖Z‖p+1
L p+1

λ
(p+1)/(p−1)−N/2
n

µ
(p+1)/(p−1)
n α

N (p−1)/4
n

→ k−(p−1)/2 ‖Z‖p+1
L p+1

‖∇Z‖N (p−1)/2
L2 ‖Z‖p+1−N (p−1)/2

L2

, (4-7)

where either k = 1 or k = 2. On the other hand, let us fix x0 ∈ � and η ∈ C∞0 (�) such that η(x) = 1
around x0. It is always possible to find a sequence an→ 0+ such that

wn(x) := η(x)Z N ,p

( x − x0

an

)
, w̃n :=

wn

‖wn‖L2

satisfy
∫
�

|∇w̃n|
2 dx = αn

(indeed αn→+∞ and
∫
�
|∇w̃n|

2 dx is of order a−2
n as an→ 0). Then direct calculation yields

Mαn

α
N (p−1)/4
n

≥

∫
�
w̃

p+1
n dx

α
N (p−1)/4
n

→
‖Z‖p+1

L p+1

‖∇Z‖N (p−1)/2
L2 ‖Z‖p+1−N (p−1)/2

L2

,

which, together with (4-7), forces k = 1. �

Remark 4.6. The previous argument shows that, when α is large, Mα is achieved by a single-peak
solution having Morse index 1. This was actually suggested to us by the anonymous referee in his/her
report. This also implies the sharper estimate for the asymptotics of µ:

µα ∼ Cα1−N (p−1)/4,

where C is a constant depending only on N and p (through Z N ,p).

5. Least energy solutions in the ball

From now on, we will focus on the case
� := B1.

To start with, we collect in the following theorem some well-known results about uniqueness and
nondegeneracy of positive solutions of (1-2) on the ball:
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Theorem 5.1 [Gidas et al. 1979; Kwong 1989; Kwong and Li 1992; Korman 2002; Aftalion and Pacella
2003]. Let λ ∈ (−λ1(B1),+∞) and µ > 0 be fixed. Then the problem

−1u+ λu = µu p in B1, u = 0 on ∂B1

admits a unique positive solution u, which is nondegenerate, radially symmetric and decreasing with
respect to the radial variable r = |x |.

Proof. The existence easily follows from the mountain pass lemma. The radial symmetry and monotonicity
of positive solutions is a direct consequence of [Gidas et al. 1979].

The uniqueness in the case λ > 0 was proved by Kwong [1989] for N ≥ 2. For λ ∈ (−λ1(B1), 0), the
uniqueness in dimension N ≥ 3 was proved by Kwong and Li [1992, Theorem 2] (see also [Zhang 1992])
whereas in dimension N = 2 it was proved by Korman [2002, Theorem 2.2]. The case λ= 0 is treated in
Section 2.8 of [Gidas et al. 1979].

As for the nondegeneracy, for λ > 0, this follows from [Aftalion and Pacella 2003, Theorem 1.1] since
we know that u has Morse index 1 as it is a mountain pass solution for Jµ,λ (recall that such a functional
is defined as in (4-1)). As for λ ∈ (−λ1(B1), 0], we could not find a precise reference, and for this reason,
we present here a proof, following some ideas of [Kabeya and Tanaka 1999].

Assume by contradiction that u is a degenerate solution for some λ ∈ (−λ1(B1), 0]. This means that
there exists a solution 0 6= w ∈ H 1

0 (B1) of

−1w+ λw = pu p−1w;

hence, w ∈ H 1
0,rad(B1) and J ′′µ,λ(u)[w, ξ ] = 0 for all ξ ∈ H 1

0 (B1). Moreover, we have that J ′′µ,λ(u)[u, u] =
−(p− 1)µ

∫
B1

u p+1 dx < 0, and thus,

J ′′µ,λ(u)[h, h] ≤ 0 for all h ∈ H := span{u, w}.

For δ > 0, consider the perturbed functional

Iδ(w)=
∫

B1

(
|∇w|2

2
+
λ+ δu p−1

2
w2
−
µ+ δ

p+ 1
(w+)p+1

)
dx . (5-1)

On the one hand, this functional satisfies, for every h ∈ H \ {0},

I ′′δ (u)[h, h] = J ′′µ,λ(u)[h, h] +
∫

B1

(δu p−1h2
− pδu p−1h2) dx

≤−(p− 1)δ
∫

B1

u p−1h2 dx < 0. (5-2)

On the other hand, Iδ has a mountain pass geometry for δ sufficiently small; hence, it has a critical point of
mountain pass type. Every nonzero critical point of Iδ is positive (by the maximum principle), and it solves

−1w = Vδ(r)w+ (µ+ δ)w p in B1,

w > 0 in B1,

w ∈ H 1
0 (B1)
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for Vδ(r) := −λ − δu p−1. Now this problem has a unique radial solution, which is u itself, which
is in contradiction to (5-2). The uniqueness of this perturbed problem follows from [Korman 2002,
Theorem 2.2] in case λ < 0 (in fact, Vδ(r) > 0 and d

dr [r
2n(1/2−1/(p+1))Vδ(r)] ≥ 0) while in case λ = 0

we can reason exactly as in [Felmer et al. 2008, Proposition 3.1] (the proof there is for the annulus, but
the argument also works in the case of a ball). �

Remark 5.2. As we already mentioned, the Morse index of u> 0 as a critical point of Jµ,λ is 1. Recalling
the definition of Iδ in (5-1), we have that also the Morse index of I ′′δ (u) is 1 at least if λ >−λ1(B1) and
if δ > 0 is small enough. When λ < 0, this was shown in the proof of the previous result, where we have
dealt also with the case λ= 0. The proof for λ > 0 is the same as in the latter case.

Given k > N , as before, let us take X = {w ∈ W 2,k(B1) : w = 0 on ∂B1}. Let us introduce the map
F : X ×R3

→ Lk(B1)×R2 defined by

F(u, µ, λ, α)=
(
1u− λu+µu p,

∫
B1

u2 dx − 1,
∫

B1

|∇u|2 dx −α
)

and its null set restricted to positive u,

S= {(u, µ, λ, α) ∈ X ×R3
: u > 0, F(u, µ, λ, α)= (0, 0, 0)}.

It is immediate to check that S∩ {α ≤ λ1(B1)} = {(ϕ1, 0,−λ1(B1), λ1(B1)} so that

S± := S∩ {±µ > 0} ⊂ {α > λ1(B1)}.

We are going to show that S+ can be parametrized in a smooth way on α, thus proving the part of
Theorem 1.12 regarding focusing nonlinearities. As we mentioned, the (easier) study of S− is postponed
to Appendix B. In view of the application of the implicit function theorem, we have the following:

Lemma 5.3. Let (u, µ, λ, α) ∈ S+. Then the linear bounded operator

F(u,µ,λ)(u, µ, λ, α) : X ×R2
→ Lk(B1)×R2

is invertible.

Proof. The lemma is a direct consequence of the Fredholm alternative and of the closed graph theorem
once we show that the operator above is injective. Let us suppose by contradiction the existence of
(v,m, l) 6= (0, 0, 0) such that F(u,µ,λ)(u, µ, λ, α)[v,m, l] = (0, 0, 0). This explicitly gives

−1u+ λu = µu p,

∫
B1

u2 dx = 1,
∫

B1

|∇u|2 dx = α,

−1v+ λv+ lu = pµu p−1v+mu p,

∫
B1

uv dx = 0,
∫

B1

∇u · ∇v dx = 0.
(5-3)

By testing the two differential equations by v, we obtain∫
B1

u pv dx = 0,
∫

B1

|∇v|2 dx + λ
∫

B1

v2 dx = pµ
∫

B1

u p−1v2 dx (5-4)
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so that
J ′′µ,λ(u)[u, u]< 0, J ′′µ,λ(u)[u, v] = 0, J ′′µ,λ(u)[v, v] = 0.

This implies that J ′′µ,λ(u)[h, h] ≤ 0 for every h ∈ H = span{u, v}. By defining Iδ as in (5-1), for δ > 0
small, we obtain I ′′δ (u)[h, h]< 0 for every 0 6= h ∈ H . Since H has dimension 2 (v = cu would imply
c
∫
�

u2
= 0), this contradicts Remark 5.2. �

Proposition 5.4. S+ is a smooth curve, parametrized by a map

α 7→ (u(α), µ(α), λ(α)), α ∈ (λ1(B1),+∞).

In particular, u(α) is the unique maximizer of Mα (as defined in (1-3)).

Proof. To start with, Lemma 2.3 and Proposition 2.4 imply that, for every fixed α∗ > λ1(B1), there exists
at least a corresponding point in S+. If (u∗, µ∗, λ∗, α∗) denotes any such point (not necessarily related
to Mα∗), then by Lemma 5.3, it can be continued, by means of the implicit function theorem, to an arc
(u(α), µ(α), λ(α)), defined on a maximal interval (α, α) 3 α∗, chosen in such a way that µ(α) > 0 on
this interval. Since u(α) solves the equation, standard arguments involving the maximum principle and
Hopf lemma allow one to obtain that u(α) > 0 (recall that we are using the W 2,k-topology) along the arc,
which consequently belongs to S+. We want to show that (α, α)= (λ1(B1),+∞).

Let us assume by contradiction α >λ1(�). For αn→α+, Lemma 2.5 implies that, up to a subsequence,

un ⇀ u in H 1
0 (�), λn→ λ, µn→ µ.

Thus,
−1u+ λu = µu p in �,

and the convergence un→ u is actually strong in H 2(�). Then
∫
�
|∇u|2 dx = α > λ1(�) so that µ > 0.

Thus, Lemma 5.3 allows us to reach a contradiction with the maximality of α, and therefore, α = λ1(�).
Analogously, we can show that α =+∞.

Once we know S+ is the disjoint union of smooth curves, each parametrized by α ∈ (λ1(B1),+∞),
it only remains to show that the curve of solutions is indeed unique. Suppose by contradiction that,
for αn→ λ1(B1), there exist (u1(αn), µ1(αn), λ1(αn)) 6= (u2(αn), µ2(αn), λ2(αn)) for every n. Then by
Lemma 3.4, both triplets converge to (ϕ1, 0,−λ1(B1)) in contradiction to Proposition 3.6. �

Corollary 5.5. Writing
d

dα
(u(α), µ(α), λ(α))= (v(α), µ′(α), λ′(α)),

we have
−1v+ λ′u+ λv = pµu p−1v+µ′u p, v ∈ H 1

0 (B1)

and ∫
B1

uv dx = 0,
∫

B1

∇u · ∇v dx = 1
2 , (5-5)

µ

∫
B1

u pv dx = 1
2 , µ′

∫
B1

u p+1 dx = λ′−
p− 1

2
. (5-6)
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Proof. Direct computations (by differentiating F(u(α), µ(α), λ(α), α) = 0 and testing the differential
equations by u and v) give the result. �

In the following, we address the study of the monotonicity properties of the map

α 7→ (u(α), µ(α), λ(α))

introduced above, v always denoting the derivative of u with respect to α:

Lemma 5.6. We have λ′(α) > 0 for every α > λ1(B1).

Proof. Let (h, k) ∈ R2, and let us consider the quadratic form

J ′′µ,λ(u)[hu+ kv, hu+ kv] =: ah2
+ 2bhk+ ck2.

Using Corollary 5.5, we obtain

a = J ′′µ,λ(u)[u, u] =
∫

B1

[
|∇u|2+ λu2

− pµu p+1] dx =−(p− 1)µ
∫

B1

u p+1 dx,

b = J ′′µ,λ(u)[u, v] =
∫

B1

[
∇u · ∇v+ λuv− pµu pv

]
dx =−

p− 1
2

,

c = J ′′µ,λ(u)[v, v] =
∫

B1

[
|∇v|2+ λv2

− pµu p−1v2] dx =
µ′

2µ
.

Since J ′′µ,λ(u) has (large) Morse index equal to 1 (Remark 5.2) and a < 0, we have that b2
− ac > 0, i.e.,

µ′
∫

B1

u p+1 dx >−
p− 1

2
.

The lemma follows by comparing to (5-6). �

Lemma 5.7. If ωN = |∂B1|, then

µ′
∫

B1

u p+1 dx =
p+ 1

2(p− 1)

[(
−p+ 1+

4
N

)
−

4ωN

N
ur (1)vr (1)

]
.

Proof. Recall that both u and v are radial. Since
∫

B1
u2 dx = 1, the standard Pohozaev identity gives(

N
2
− 1

)∫
B1

|∇u|2 dx +
1
2

∫
∂B1

|∇u|2(x · ν) dσ +
λN
2
=

µN
p+ 1

∫
B1

|u|p+1 dx .

Inserting the information that u is radial and the equalities α =
∫

B1
|∇u|2 dx and α+ λ= µ

∫
B1

u p+1 dx ,
we obtain

λ=
2
N

p+ 1
p− 1

α−α−
ωN

N
p+ 1
p− 1

ur (1)2.

Differentiating with respect to α, we have

λ′ =
2
N

p+ 1
p− 1

− 1−
2ωN

N
p+ 1
p− 1

ur (1)vr (1).

The result follows by recalling relation (5-6). �
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The following crucial lemma shows that, if p is subcritical or critical, then µ is an increasing function
of α:

Lemma 5.8. If p ≤ 1+ 4/N , then µ′(α) > 0 for every α > λ1(B1).

Proof. The proof goes by contradiction: suppose that µ′(α)≤ 0 for some α > λ1(B1). In the rest of the
proof, all quantities are evaluated at such α.

Step 1. Let v := d
dαu|α=α; then vr (1) < 0 in case p < 1+ 4/N and vr (1)≤ 0 if p = 1+ 4/N . This is an

immediate consequence of Lemma 5.7, since ur (1) < 0 by the Hopf lemma.

Step 2. We claim that, if r is sufficiently close to 1−, then v(r) > 0. Since v(1) = 0, this is obvious
if vr (1) < 0. Hence, it only remains to consider the case p = 1+ 4/N and vr (1)= 0.

From the equation for v written in the radial coordinate

−vrr −
N − 1

r
vr + λv+ λ

′u = pµu p−1v+µ′u p, r ∈ (0, 1),

we know (by letting r→ 1−) that vrr (1)= 0. Differentiating both sides of the above equation, we can write

−vrrr +
N − 1

r2 vr −
N − 1

r
vrr + λvr + λ

′ur = p(p− 1)µu p−2urv+ pµu p−1vr + pµ′u p−1ur ;

now, if p ≥ 2, the limit as r→ 1− yields

−vrrr (1)+ λ′ur (1)= 0.

On the other hand, if p < 2, the same identity holds since by the l’Hôpital’s rule

lim
r→1−

u p−2urv = lim
r→1−

urrv+ urvr

(2− p)u1−pur
=

urr (1)v(1)+ ur (1)vr (1)
(2− p)ur (1)

u(1)p−1
= 0.

Thus, vrrr (1) < 0 by Lemma 5.6, and the claim follows.

Step 3. Let r := inf{r : v > 0 in (r, 1)} (r > 0 since
∫

B1
uv dx = 0). We claim that v ≤ 0 in Br . If not,

there would be 0≤ r1 < r2 ≤ r with the property that v > 0 in (r1, r2) and riv(ri )= 0. Defining

v1 := v|Br2\Br1
, v2 := v|B1\Br ,

we have that vi ∈ H 1
0 (B1) and vi ≥ 0 for i = 1, 2, and v1 and v2 are linearly independent. One can use

the equation for v in order to evaluate

J ′′µ,λ(u)[v, vi ] =

∫
B1

(∇v · ∇vi + (λ− pµu p−1)vvi ) dx =
∫

B1

(µ′u pvi − λ
′uvi ) dx < 0

and obtain

J ′′µ,λ(u)[t1v1+ t2v2, t1v1+ t2v2]< 0 whenever t2
1 + t2

2 6= 0

in contradiction to the fact that the Morse index of u is 1 (Remark 5.2).
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Step 4. Once we know that v ≤ 0 in Br and that v > 0 in B1 \ Br , we can combine the first equations
in (5-5) and (5-6), together with the fact that u is monotone decreasing with respect to r , to write

1
2µ
=

∫
B1

u pv dx =
∫

B1\Br

u pv dx +
∫

Br

u pv dx

≤

(
max
B1\Br

u p−1
) ∫

B1\Br

uv dx +
(

min
Br

u p−1
) ∫

Br

uv dx

= u p−1(r)
∫

B1\Br

uv dx + u p−1(r)
∫

Br

uv dx = 0,

a contradiction. �

Remark 5.9. When 1+4/N < p< 2∗−1, Lemma 4.5 implies µ(+∞)= 0. Since also µ(λ1(B1)
+)= 0,

we deduce that µ′ must change sign in the supercritical regime. Numerical experiments suggest that
this should happen only once so that µ should have a unique global maximum and be strictly monotone
elsewhere; see Remark 6.4 ahead.

We are ready to prove the existence of least energy solutions for (1-2).

Proof of Theorem 1.5. Recalling Definition 1.2, let ρ > 0 be fixed, and let U ∈ Pρ . Then∫
B1

U 2 dx = ρ, U > 0, −1U + λU =U p

for some λ. Then, setting u = ρ−1/2U, direct calculations yield∫
B1

u2 dx = 1, u > 0, −1u+ λu = ρ(p−1)/2u p.

Writing
∫

B1
|∇u|2 dx = α, this amounts to saying that (u, ρ(p−1)/2, λ, α) ∈ S+. Equivalently,

U ∈ Pρ ⇐⇒ ρ = µ2/(p−1), U = µ1/(p−1)u for some (u, µ, λ, α) ∈ S+.

We divide the end of the proof into three cases.

Case 1: 1< p < 1+ 4/N . By Lemmas 4.5 and 5.8 and Proposition 5.4, we have that, for every ρ, there
exists exactly one point in S+ satisfying µ2/(p−1)

= ρ.

Case 2: p = 1+4/N . The same as the previous case, taking into account that, by Lemma 4.5, Pµ2/(p−1) is
not empty if and only if µ < ‖Z N ,p‖

p−1
L2(RN )

.

Case 3: 1+ 4/N < p < 2∗− 1. Since in this case µ(λ1(B1))= µ(+∞)= 0 (by Lemma 4.5), then

µ∗ = max
(λ1(B1),+∞)

µ

is well defined and achieved. Furthermore, Pµ2/(p−1) is empty for µ > µ∗, and it contains at least two
points for 0< µ< µ∗. It remains to prove that, if 0< ρ ≤ ρ∗ = (µ∗)(p−1)/2, then eρ is achieved. This is
immediate whenever Pρ is finite. Otherwise, let un = u(αn), with µ(αn)= ρ

(p−1)/2, denote a minimizing
sequence. Then Lemma 4.5 implies that αn is bounded, and by continuity, the same is true for λn . We
deduce that, up to subsequences, un→ u∗ ∈ Pµ, and Jµ,0(u∗)= eρ . �
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Remark 5.10. By comparing Theorem 1.5 and Proposition A.1, we have that, when p ≤ 1+ 4/N and
positive least energy solutions exist, the condition U > 0 may be safely removed from Definition 1.2
without altering the problem (in fact, also the condition −1U +λU =U p+1 for some λ is not necessary).
On the other hand, in other cases, it is essential. For instance, when p is critical, then the set of not
necessarily positive solutions with fixed mass

P′ρ = {U ∈ H 1
0 (B1) : Q(U )= ρ, there exists λ such that −1U + λU =U p

}

is not empty also when ρ ≥ ‖Z N ,p‖
2
L2(RN )

, as illustrated in [Fibich and Merle 2001, Figure 1].

6. Stability results

In this section, we discuss orbital stability of standing wave solutions eiλtU (x) for the NLS (1-1). We
recall that such solutions are called orbitally stable if for each ε > 0 there exists δ > 0 such that, whenever
80 ∈ H 1

0 (B1,C) is such that ‖80−U‖H1
0 (B1,C)

< δ and 8(t, x) is the solution of (1-1) with 8(0, · )=80

in some interval [0, t0), then 8(t, · ) can be continued to a solution in 0≤ t <∞ and

sup
0<t<∞

inf
s∈R
‖8(t, · )− eiλsU‖H1

0 (B1,C)
< ε;

otherwise, they are called unstable. To do this, we lean on the following result, which expresses in our
context the abstract theory developed in [Grillakis et al. 1987]:

Proposition 6.1 [Fukuizumi et al. 2012, Proposition 5]. Let us assume local existence as in Theorems 1.7
and 1.8, and let Rλ be the unique positive solution of (1-2).

• If ∂λ‖Rλ‖2L2 > 0, then eiλt Rλ is orbitally stable.

• If ∂λ‖Rλ‖2L2 < 0, then eiλt Rλ is unstable.

Corollary 6.2. Let (u(α), µ(α), λ(α), α)∈S+ with U (α)=µ1/(p−1)(α)u(α) denoting the corresponding
solution of (1-2) (with λ= λ(α)).

• If µ′(α) > 0, then eiλ(α)tU (α) is orbitally stable.

• If µ′(α) < 0, then eiλ(α)tU (α) is unstable.

Proof. Taking into account Proposition 5.4 and Lemma 5.6, and reasoning as in the proof of Theorem 1.5,
we have that Rλ(α) = µ1/(p−1)(α)u(α) so that

∂λ‖Rλ‖2L2 =
(µ2/(p−1))′(α)

λ′(α)
=

2µ(3−p)/(p−1)(α)

(p− 1)λ′(α)
µ′(α). �

We recall that µ′ may be negative only when p is supercritical. This case is enlightened by the following
lemma:

Lemma 6.3. Let p>1+4/N , and consider the map α 7→ (u(α), µ(α), λ(α)) defined as in Proposition 5.4.
If α1 < α2 are such that

µ(α) > µ(α1)= µ(α2)=: µ for every α ∈ (α1, α2),
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then
Jµ,0(u(α1)) < Jµ,0(u(α2)).

Proof. Writing M(α)= Mα =
∫

B1
u p+1(α) dx , we have that

2Jµ,0(αi )= αi −
2µ

p+ 1
M(αi ).

Now, (5-6) yields M ′(α)= (p+1)
∫

B1
u pv dx = (p+1)/(2µ(α)), where as usual v := d

dαu. The Lagrange
theorem applied to M forces the existence of α∗ ∈ (α1, α2) such that

M(α2)−M(α1)

α2−α1
=

p+ 1
2µ(α∗)

<
p+ 1
2µ

,

which is equivalent to the desired statement. �

We are ready to give the proofs of our stability results.

Proof of Theorems 1.7 and 1.8. The proof in the subcritical and critical cases is a direct consequence
of Lemma 5.8 and Corollary 6.2 (recall that in this case there is a full correspondence between least
energy solutions and least action ones). To show Theorem 1.7(2), we prove stability for any ρ > 0 such
that µ= ρ(p−1)/2 is a regular value of the map α 7→ µ(α), the conclusion following by the Sard lemma.
Recalling that µ(λ1(B1))=µ(+∞)= 0, we have that, if µ is regular, then its counterimage {α :µ(α)=µ}
is the union of a finite number of pairs {αi,1, αi,2}, each of which satisfies the assumptions of Lemma 6.3,
and moreover, µ′(αi,1)> 0>µ′(αi,2). Since such a counterimage is in 1-to-1 correspondence with Pρ and

E(U (αi, j ))= E(µ1/(p−1)u(αi, j ))= µ
2/(p−1) Jµ,0(u(αi, j )),

we deduce from Lemma 6.3 that the least energy solution corresponds to αi,1, for some i , and the
conclusion follows again by Corollary 6.2. �

Remark 6.4. In the supercritical case p > 1+ 4/N , we expect orbital stability for every ρ ∈ (0, ρ∗) and
instability for ρ = ρ∗. Indeed, in case N = 3 and p = 3, we have plotted numerically the graph of µ(α)
in Figure 1. The picture suggests that µ has a unique local maximum µ∗, associated to the maximal value
of the mass ρ∗ = (µ∗)(p−1)/2. For any µ < µ∗, we have exactly two solutions, and the least energy one
corresponds to µ′(α) > 0; hence, it is associated with an orbitally stable standing wave. For µ= µ∗, we
have exactly one solution; in that case, the abstract theory developed in [Grillakis et al. 1987] predicts the
corresponding standing wave to be unstable.

Appendix A: Gagliardo–Nirenberg inequalities

It is proved in [Weinstein 1983] that the sharp Gagliardo–Nirenberg inequality

‖u‖p+1
L p+1(RN )

≤ CN ,p‖u‖
p+1−N (p−1)/2
L2(RN )

‖∇u‖N (p−1)/2
L2(RN )

(A-1)

holds for every u ∈ H 1(RN ) and that the best constant CN ,p is achieved by (any rescaling of) Z N ,p.



1832 BENEDETTA NORIS, HUGO TAVARES AND GIANMARIA VERZINI

20 40 60 80
Α

2

4

6

8

10

Μ

Figure 1. Numerical graph of α 7→ µ(α) in the supercritical case N = 3 and p = 3
(continuous line) and of the map α 7→ α−1/2

·
√

3
∫

R3 Z2
3,3 dx (dashed line). The latter is

the theoretical asymptotic expansion of µ(α) as α→+∞ as predicted by Lemmas 4.4
and 4.5.

When dealing with H 1
0 (�), � 6= RN , one can prove that the identity holds with the same best constant:

in fact, one inequality is trivial, and the other is obtained by constructing a suitable competitor of the form
u(x)= (h Z N ,p(kx)− j)+, for suitable h, k and j , and exploiting the exponential decay of Z . Contrary
to the previous case, now such a constant cannot be achieved; otherwise, we would contradict [Weinstein
1983]. This is related to the maximization problem (1-3) since

CN ,p = sup
H1

0 (�)\{0}

‖u‖p+1
L p+1(�)

‖u‖p+1−N (p−1)/2
L2(�)

‖∇u‖N (p−1)/2
L2(�)

= sup
α≥λ1(�)

Mα

αN (p−1)/4 .

By the above considerations, we deduce that

Mα < CN ,pα
N (p−1)/4 for every α, lim

α→+∞

Mα

αN (p−1)/4 = CN ,p (A-2)

in perfect agreement with the estimates at the end of Section 4.
For the reader’s convenience, we deduce the following well-known result:

Proposition A.1. Let ρ > 0 be fixed. The infimum

inf{E(U ) :U ∈ H 1
0 (�) and Q(U )= ρ}

(i) is achieved by a positive function if either 1< p<1+4/N or p=1+4/N and ρ<‖Z N ,p‖
2
L2(RN )

, and

(ii) equals −∞ if either 1+ 4/N < p < 2∗− 1 or p = 1+ 4/N and ρ > ‖Z N ,p‖
2
L2(RN )

.

Proof. As usual, writing u = ρ−1/2U and µ= ρ(p−1)/2, we have that the above minimization problem is
equivalent to

inf{Jµ,0(u) : u ∈ H 1
0 (�) and ‖u‖L2(�) = 1},
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where Jµ,λ is defined in (4-1). In turn, this problem can be written as

inf
α≥λ1(�)

1
2α−

µ

p+ 1
Mα.

The proposition follows from (A-2), recalling that, when p = 1+ 4/N ,

CN ,p =

(
1+

2
N

)(∫
RN

Z2
N ,p dx

)−2/N

by the Pohozaev identity. �

Appendix B: The defocusing case µ < 0

In this case, it is not necessary to restrict to spherical domains; therefore, in this appendix, we consider
a generic smooth, bounded domain �. As in Section 5, we work in the space X = {w ∈ W 2,k(�) :

w = 0 on ∂�}, for some k > N , and with the map F : X ×R3
→ Lk(�)×R2 defined by

F(u, µ, λ, α)=
(
1u− λu+µu p,

∫
�

u2 dx − 1,
∫
�

|∇u|2−α
)
.

We aim to provide a full description of the set

S− = {(u, µ, λ, α) ∈ X ×R3
: u > 0, µ < 0, F(u, µ, λ, α)= (0, 0, 0)},

thus concluding the proof of Theorem 1.12.

Lemma B.1. Let (u, µ, λ, α) ∈ S−. Then the linear bounded operator

F(u,µ,λ)(u, µ, λ, α) : X ×R2
→ Lk(�)×R2

is invertible.

Proof. As in the proof of Lemma 5.3, it is sufficient to prove injectivity.
As in that proof, we assume the existence of a nontrivial (v,m, l) such that (5-3) and (5-4) hold. Since

∂νu < 0 on ∂�, we can test the equation for u by v2/u ∈ H 1
0 (�), obtaining∫

�

(µu p−1v2
− λv2) dx =

∫
�

∇u · ∇
(
v2

u

)
dx =

∫
�

∇u ·
(

2
v

u
∇v−

v2

u2∇u
)

dx

=−

∫
�

∣∣∣v
u
∇u−∇v

∣∣∣2 dx +
∫
�

|∇v|2 dx

≤

∫
�

(pµu p−1v2
+mu pv− luv− λv2) dx

=

∫
�

(pµu p−1v2
− λv2) dx .

Therefore, with µ < 0 and p > 1, we must have v ≡ 0. Finally, by testing the equation for v by u, we
deduce that l = m

∫
�

u p+1 dx , concluding the proof. �
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Proposition B.2. S− is a smooth curve, and it can be parametrized by a unique map

α 7→ (u(α), µ(α), λ(α)), α ∈ (λ1(�),+∞).

In particular, u(α) is the unique minimizer associated to mα (as defined in (1-3)). Furthermore, µ′(α) < 0
and λ′(α) < 0 for every α.

Proof. One can use Lemma B.1 and reason as in the proof of Proposition 5.4 in order to prove that S−

consists of a unique, smooth curve parametrized by α ∈ (λ1(�),+∞) so that u(α) must achieve mα.
Moreover, all the relations contained in Corollary 5.5 are true also in this case.

In order to show the monotonicity of µ and λ, we remark that one can also prove, in a standard way, that
u is the global unique minimizer of the related functional Jµ,λ, which is bounded below and coercive since
µ < 0. Since u is nondegenerate (by virtue of Lemma B.1), we obtain that J ′′µ,λ(u)[w,w]> 0 for every
nontrivial w. But then one can reason as in the proof of Lemma 5.6: using the corresponding notation,
we have that in this case both c > 0 and b2

− ac < 0. This, together with (5-6), concludes the proof. �

Remark B.3. By the above results, it is clear that S− may be parametrized also with respect to λ (or µ).
Under this perspective, uniqueness and continuity for the case p= 3 were proved in [Berger and Fraenkel
1970] (for the problem without mass constraint).

We conclude by showing some asymptotic properties of S− as α→+∞ (the case α→ λ1(�)
+ has

been considered in Section 3). Such properties are well known in the case p = 3 since they have been
studied in a different context (among others, we cite [Berger and Fraenkel 1970; Bethuel et al. 1993;
André and Shafrir 1998; Serfaty 2001]) and the proof can be adapted to general p.

Proposition B.4. Under the notation of Proposition B.2, we have that, as α → +∞, µ→ −∞ and
λ→−∞. Furthermore, if ∂� is smooth, then

u→ |�|−1/2 strongly in L p+1(�),
λ

µ
→ |�|−(p−1)/2,

α

λ
→ 0

as α→+∞.

Proof. Since we know that µ is decreasing and that for each µ < 0 there exists a solution, we must have
µ(α)→−∞. Moreover, λ≤−α→−∞.

Next we are going to show that, under the assumption that ∂� is smooth,∫
�

u p+1
→ |�|−(p−1)/2. (B-1)

To this aim, notice that, by the uniqueness proved in the previous proposition, u satisfies

Jµ,0(u)=min
{

Jµ,0(ϕ) : ϕ ∈ H 1
0 (�),

∫
�

ϕ2 dx = 1
}
.

For x ∈�, setting d(x) := dist(x, ∂�), we construct a competitor function for the energy Jµ,0(u) as

ϕµ(x)=
{

k−1
|�|−1/2 if d(x)≥ (−µ)−1/2,

k−1
|�|−1/2(−µ)1/2d(x) if 0≤ d(x)≤ (−µ)−1/2,
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where k is such that ‖ϕµ‖L2(�) = 1. With the aid of the coarea formula, and using the fact that ∂� is
smooth, it is possible to check that k = 1+O((−µ)−1/2), and thus,∫

�

|∇ϕµ|
2 dx = O(

√
−µ),

∫
�

(ϕq
µ− |�|

−q/2) dx = O((−µ)−1/2) (B-2)

for every q > 1. By rewriting Jµ,0 in the form

Jµ,0(ϕ)=
∫
�

{
|∇ϕ|2

2
−

µ

p+ 1
(|ϕ|p+1

− |�|−(p+1)/2)

}
dx −

µ

p+ 1
|�|−(p−1)/2,

and by using the estimates (B-2) with q = p+ 1, we obtain

Jµ,0(u)≤ Jµ,0(ϕµ)= O(
√
−µ)−

µ

p+ 1
|�|−(p−1)/2

so that

0≤
∫
�

(u p+1
− |�|−(p+1)/2) dx ≤ O((−µ)−1/2)→ 0

(by using Lemma 2.1(iv)) so that (B-1) is proved.
Now, for each L2-normalized ϕ, we rewrite Jµ,0(ϕ) as

Jµ,0(ϕ)=
∫
�

{
|∇ϕ|2

2
−

µ

p+ 1
(|ϕ|(p+1)/2

− |�|−(p+1)/4)2
}

dx

−
2µ

p+ 1
|�|−(p+1)/4

∫
�

(|ϕ|(p+1)/2
− |�|−(p+1)/4) dx −

µ

p+ 1
|�|−(p−1)/2.

Reasoning as before (using this time (B-2) for q = (p+ 1)/2), one shows that∫
�

(|u|(p+1)/2
− |�|−(p+1)/4)2 dx + 2|�|−(p+1)/2

∫
�

(|u|(p+1)/2
− |�|−(p+1)/2) dx ≤ O((−µ)−1/2).

If p ≥ 3, by the Hölder inequality, we have that the second integral in the left-hand side above is
nonnegative while for p < 3 it tends to 0 as α→+∞. The latter statement is a consequence of both the
Hölder and interpolation inequalities, which yield∫

�

u(p+1)/2 dx ≤ |�|(3−p)/4, ‖u‖L(p+1)/2(�) ≥ ‖u‖
(p−3)/(p−1)
L p+1(�)

,

as well as of (B-1). Thus, we have concluded that

u(p+1)/2
→ |�|−(p+1)/4 in L2(�).

In particular, up to a subsequence, u→ |�|−1/2 a.e., and there exists h ∈ L2 (independent of α) so that
|u|(p+1)/2

≤ h. We can now conclude by applying Lebesgue’s dominated convergence theorem.
To proceed with the proof, notice that, from the equality α+ λ= µ

∫
�

u p+1 dx and Lemma 2.1(iv),
we deduce

λ≤ µ|�|−(p−1)/2. (B-3)
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On the other hand, we have

−λ≤ (p+ 1)Jµ,0(u)≤ (p+ 1)Jµ,0(ϕµ)≤ C(−µ)1/2−µ|�|−(p−1)/2.

Dividing the last inequality by −µ and letting µ→−∞, we obtain

lim sup
λ

µ
≤ |�|−(p−1)/2,

which together with (B-3) provides the convergence of µ.
The last part of the statement is obtained by combining the previous asymptotics with the identity

α/µ=−µ+
∫
�

u p+1 dx . �
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