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BOUNDARY BLOW-UP UNDER SOBOLEV MAPPINGS

AAPO KAURANEN AND PEKKA KOSKELA

We prove that for mappings in W 1,n(Bn,Rm), continuous up to the boundary and with modulus of
continuity satisfying a certain divergence condition, the image of the boundary of the unit ball has zero
n-Hausdorff measure. For Hölder continuous mappings we also prove an essentially sharp generalised
Hausdorff dimension estimate.

1. Introduction

Throughout this paper Bn denotes the unit ball in Rn and W 1,n(Bn,Rm) is the Sobolev space of
Ln(Bn,Rm)-functions f :Bn

→ Rm with weak first-order derivatives in Ln(Bn).
If f : B2

→ � ⊂ R2 is a conformal mapping, then the boundary of � can have positive Lebesgue
measure even if f extends continuously up to the boundary of the disk. If one requires more, for example
uniform Hölder continuity, then ∂� is necessarily of Lebesgue measure zero. In fact, Jones and Makarov
proved [1995, Theorem C.1] that ∂� has measure zero if f satisfies | f (z)− f (w)| ≤ ψ(|z−w|) in B2

for ψ : [0,∞)→ [0,∞) with ∫
0

∣∣∣∣ logψ(t)
log t

∣∣∣∣2 dt
t
=∞. (1)

This condition is very sharp: if the integral in (1) converges then [Jones and Makarov 1995, Section 6]
provides us with a simply connected domain � and a conformal mapping f : B2

→ � such that the
boundary of � has positive Lebesgue measure and f has the modulus of continuity ψ .

Our first result gives a surprisingly general extension of the conformal setting; notice that each uniformly
continuous conformal mapping f :B2

→� belongs to W 1,2(B2,R2).

Theorem 1.1. Let f ∈W 1,n(Bn,Rm) be a continuous mapping that satisfies

| f (z)− f (w)| ≤ ψ(|z−w|) (2)

for all z, w ∈Bn , where ψ : (0,∞)→ (0,∞) is an allowable modulus of continuity with∫
0

∣∣∣∣ logψ(t)
log t

∣∣∣∣n dt
t
=∞. (3)

Then Hn( f (∂Bn))= 0.
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Recall that every uniformly continuous map defined on Bn has a continuous extension to all of Bn . In
the above, f on ∂Bn refers to this extension, Hn(A) denotes the n-dimensional Hausdorff measure of a
set A, and the definition of an allowable modulus of continuity is given in Definition 2.2 of Section 2. For
example, both ψ(t)= Ctγ , 0< γ ≤ 1, and

ψl,s(t)= exp
(
−C

(log(Cl/t))(n−1)/n

(log(l)(Cl/t))s/n
(∏l−1

k=2 log(k)(Cl/t)
)1/n

)
are allowable, where l ≥ 2 is an integer and s > 0. Notice that ψl,s satisfies (3) if and only if s ≤ 1. Here
C > 0, log(k) t is the k-times iterated logarithm and Cl can be any constant with log(l)(Cl/2)≥ 1.

Let us look at the special case n=m = 2 of Theorem 1.1 in the Hölder continuous setting: ψ(t)=Ctγ ,
where 0 < γ ≤ 1. Consider a space-filling (Peano) curve, i.e., a continuous mapping g from the unit
circle onto a square. In one of the standard constructions, g is Hölder continuous with exponent γ = 1

2 ;
see, for example, [Buckley 1996, Theorem 3]. If one takes, say, the Poisson extension f of g to the unit
disk, then f is also Hölder continuous. It is easy to check by hand that the partial derivatives of f do
not belong to L2(B2). By Theorem 1.1, no Hölder continuous (or even continuous with control function
satisfying (3)) extension f of a space filling curve can satisfy |D f | ∈ L2(B2).

In the Hölder continuous case, Jones and Makarov actually proved that the Hausdorff dimension of
f (∂B2) is strictly less than two for conformal f . Contrary to the area zero results, this dimension estimate
is truly conformal in the following sense:

Example 1.2. Let p > 1. There exists a locally Hölder continuous homeomorphism f : R2
→ R2

with f ∈ W 1,2
loc (B

2,R2), which maps ∂B2 onto a set of positive Hg-measure for the gauge function
g(t)= t2(log(1/t))p.

This construction can be found in Section 4. Here Hg denotes the generalised Hausdorff measure with
the function g as the dimension gauge. The precise definitions are given in Section 2.

Our second result gives a rather optimal positive result.

Theorem 1.3. Fix γ ∈ (0, 1], C > 0, and let g(t)= tn log(1/t). Suppose that f ∈W 1,n(Bn,Rm) satisfies

| f (z)− f (w)| ≤ C |z−w|γ

for all z, w ∈Bn . Then Hg( f (∂Bn))= 0.

Jones and Makarov proved their result via harmonic measure and hence this technique does not work
in the setting of Theorem 1.1. An alternate approach, relying on the conformal (quasi)invariance of the
(quasi)hyperbolic metric, was given in [Koskela and Rohde 1997]; see also [Nieminen 2006]. Furthermore,
Malý and Martio [1995] established Theorem 1.1 in the Hölder continuous case via a technique that we
have not been able to push further.

Let us briefly describe the idea of the proof of Theorem 1.1. We consider a Whitney decomposition
W of Bn and assign to each Q ∈W a vector fQ ∈ Rm and a radius rQ . The vector fQ will simply be
the “average” of f over Q and rQ the maximum of | fQ − f Q̃ | over all neighbours Q̃ of Q. Then the
n-integrability of the weak derivatives of f guarantees, via the Poincaré inequality, that the sequence
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{rQ}Q∈W belongs to ln . We realise f (∂Bn) as (a part of) the closure of { fQ}Q∈W in Rm . Those f (ω),
ω ∈ ∂Bn , for which one can find a sequence of Q ∈W with | fQ − f (ω)|. rQ are easily handled. For
the remaining ω ∈ ∂Bn we modify our centres fQ and radii rQ , while still retaining the ln-condition, so
that suitably blown-up balls cover these points sufficiently many times. This is where the nonintegrability
condition (3) kicks in. One cannot fully follow the above idea, and so our proof, given below in Section 3,
is more complicated.

Our approach is flexible and applies to many related problems. In order to avoid extra technicalities
we do not record such applications here. Let us simply mention that the dimension gap phenomenon
from [Hencl et al. 2012] can be shown to extend from conformal mappings to general Sobolev mappings
[Koskela and Zapadinskaya 2014].

2. Preliminaries

Let us first agree on some basic notation. Given a number a > 0, we write bac for the largest integer
less than or equal to a. Similarly, dae is the smallest integer greater than or equal to a. If A is a
finite set, ]A is the number of elements in A. If A ⊂ Rn has finite and strictly positive Lebesgue
measure and f : Rn

→ R is a Lebesgue integrable function, we denote the average (1/|A|)
∫

A f
of f over the set A by −

∫
A f or f A, where |A| is the n-dimensional Lebesgue measure of the set A.

For f : Rn
→ Rm , f A is then defined via the component functions of f . Given a point x ∈ Rn

and a nonnegative number r , B(x, r) denotes the open ball with centre x and radius r and Q(x, r)
denotes the cube {y ∈ Rn

: max{|xi − yi |}i=1,2,...,n ≤ r}. If B = B(x, r) is a ball and a is a positive
number, the notation aB stands for the ball B(x, ar). We denote the radius of a ball B by r(B).
When we write L = L( · ), we mean that the positive constant L depends only on the parameters
listed inside the parentheses. Finally, C denotes a positive constant, which may depend only on n
and m, the dimensions of the domain space and the image space, and may differ from occurrence to
occurrence.

We write Hh(A) for the generalised Hausdorff measure of a set A ⊂ Rn , given by

Hh(A)= lim
δ→0

Hh
δ (A), where Hh

δ (A)= inf
{ ∞∑

i=1

h(diam Ui ) : A ⊂
∞⋃

i=1

Ui , diam Ui ≤ δ

}
and h is a dimension gauge (a nondecreasing function with limt→0+ h(t)= h(0)= 0 and with h(t) > 0
for all t > 0). If h(t) = ta for some a ≥ 0 we simply write Ha for Hh and call it the a-dimensional
Hausdorff measure.

A sequence of pairs (ci ,Ui )
∞

i=1, where ci ≥ 0 and Ui ⊂ Rn , that satisfies χA(x)≤
∑
∞

i=1 ciχUi (x) for
all x ∈Rn is called a weighted cover of the set A. We also need a generalised weighted Hausdorff content
of a set A ⊂ Rn , given by

λh
∞
(A)= inf

{ ∞∑
i=1

ci h(diam Ui ) : (ci ,Ui )
∞

i=1 is a weighted cover of A
}
.

Here also h is a gauge function. Again we write λh
∞
= λa
∞

if h(t)= ta .
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Lemma 2.1. Let E ⊂ Rn be bounded. Let h be a continuous gauge function with h(2t)≤ ch(t) for some
c > 0. Then Hh

∞
(E)≤ cλh

∞
(E).

Proof. The lemma follows from Corollary 8.2 and the proof of Theorem 9.7 of [Howroyd 1994]; see also
[Federer 1969, 2.10.24]. �

Recall that for each open subset U of Rn there exists a Whitney decomposition W given by U=
⋃
∞

i=1 Qi ,
where Qi ∈W are cubes with mutually parallel sides, pairwise disjoint interiors and each of edge-length 2k

for some integer k, such that the relation

1
4
≤

diam Qi

dist(Qi , ∂�)
≤ 1 (4)

holds for all i = 1, 2, . . . . We write Q1 v Q2 if the Whitney cubes Q1 6= Q2 share at least one point (the
so-called neighbour cubes). We have

1
4
≤

diam Q
diam Q̃

≤ 4

whenever Q v Q̃. Therefore, the total number ]{Q̃ : Q̃ v Q} of all neighbours of a fixed cube Q does
not exceed C . See [Stein 1970] for details.

Let ω ∈ ∂Bn . By (Q j (ω))
∞

j=1 we mean the sequence of all Whitney cubes in a fixed Whitney
decomposition of Bn intersecting the radius [0, ω]. This sequence starts with a central cube and tends
to ω. For a point x ∈ [0, ω], we denote the number of Whitney cubes intersecting the segment [0, x] by
]q(0, x). It is easy to see that

c1 ≤
]q(0, x)

log(1/(1− |x |))
≤ c2 (5)

whenever ]q(0, x) > c3, where ci > 0, i = 1, 2, 3 are constants that may depend on n.
Finally, we define the allowable moduli of continuity:

Definition 2.2. A continuously differentiable increasing bijection ψ : (0,∞)→ (0,∞) is an allowable
modulus of continuity if there exists t0 < 1 and β > 0 such that for every t ≤ t0 the following conditions
hold:

log
1

ψ−1(t)
is differentiable and

(ψ−1)′(t)
ψ−1(t)

t is a decreasing function; (6)

log
1

ψ−1(t)
≤ β log

1
ψ−1(
√

t)
; (7)

(logψ(t))′t log t
logψ(t)

is a monotone function. (8)

Remark 2.3. (i) One could replace the monotonicity conditions in (6) and (8) with a pseudomonotonicity
condition (e.g., there exists a constant C > 0 such that u(t)≤Cu(s) if t ≤ s). This would only affect
the constants in the proofs.

(ii) The conditions (6) and (7) mean that the function log(1/ψ−1(t)) is a function of logarithmic type in
the sense of [Nieminen 2006, Definition 4.2].
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3. Proofs

Proof of Theorem 1.1. We may assume that m, n ≥ 2. Let f ∈W 1,n(Bn,Rm) and ψ be as in the statement
of Theorem 1.1. Denote ψ−1(t) by u(t). It follows from our assumptions (3), (6), (7), (8) and [Nieminen
2006, Remark 5.3.] that ∫

0

(
u(t)
u′(t)

)n−1 dt
tn =∞. (9)

We define α(t)= u(t)/u′(t) and λ(k)= 2−k/α(2−k) for k ∈N. By (6), λ is increasing for large k. For
simplicity we assume λ to be increasing.

Let W be a fixed Whitney decomposition of Bn . For each cube Q ∈W we define a corresponding
centre fQ and a corresponding radius rQ =max{| fQ − f Q̃ | : Q v Q̃}, which determine a family of balls
on the image side indexed by W:

B= {(Q, B( fQ, rQ)) : Q ∈W, rQ > 0}.

To simplify our notation we abbreviate (Q, B( fQ, rQ)) to B( fQ, rQ) in what follows.
We assign two new weighted collections of balls to each element in B. Given B = B(x, r) ∈ B,

we define concentric subballs Si (B) = B(x, r/2i ) for all i ∈ N and assign the weight wSi (B) = 2i to
each Si (B). We set SB = {Si (B) : i ∈ N}. Then∑

B ′∈SB

wB ′r(B ′)n =
∞∑

i=1

wSi (B)r(Si (B))n =
∞∑

i=1

2i r(B)n

2ni ≤ r(B)n.

The second collection is defined in a similar way. If B = B(x, r) is a ball in B, we choose the
smallest number k0(r) ∈ N such that 2−k0(r) ≤ r . Next, for each k = k0(r), k0(r)+ 1, . . . , we choose
Rk(B) = B(x, α(2−k)) and set RB = {Rk(B) : k = k0(r), k0(r)+ 1, . . . }. The weights we assign this
time are wRk(B) = λ(k) for all k = k0(r), k0(r)+ 1, . . . . Similarly to the above,

∑
B ′∈RB

wB ′r(B ′)n =
∞∑

k=k0(r)

wRk(B)r(Rk(B))n =
∞∑

k=k0(r)

(α(2−k))nλ(k)

≤

∞∑
k=k0(r)

(α(2−k))n
λ(k)n

λ(0)n−1 =
1

λ(0)n−1

∞∑
k=k0(r)

2−nk
≤

2 · 2−nk0(r)

λ(0)n−1 ≤
2

λ(0)n−1 r(B)n.

Finally, we define our weighted collection of balls by setting F=
⋃

B∈B

(
SB ∪RB

)
.

Let us now estimate the weighted sums of the n-th powers of the radii of the balls in F. Let
N (Q)= Q ∪

⋃
Q̃vQ Q̃ be the union of Q ∈W and all neighbours Q̃ of Q. For neighbouring cubes Q

and Q̃, we obtain, via the Hölder and Poincaré inequalities, that

| fQ − f Q̃ | ≤ −

∫
Q
| f − fN (Q)| +−

∫
Q′
| f − fN (Q)| ≤ C−

∫
N (Q)
| f − fN (Q)| ≤ C

(
−

∫
N (Q)
| f − fN (Q)|

n
)1/n

≤ C
(
−

∫
N (Q)
|D f |n

)1/n

.
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Hence, we have the estimate

rn
Q =max{| fQ − f Q̃ |

n
: Q v Q̃} ≤ C

∫
N (Q)
|D f |n

for each Q ∈W and some constant C > 0. Next, using the fact that the inequality
∑

Q∈W χN (Q)(y)≤ C
holds for every y ∈ Rn , we estimate∑

B∈F

wBr(B)n ≤ C(λ(0))
∑
B∈B

r(B)n = C(λ(0))
∑
Q∈W

rn
Q ≤ C(λ(0))

∑
Q∈W

∫
N (Q)
|D f |n

≤ C1

∫
⋃

Q∈W N (Q)
|D f |n ≤ C1

∫
Bn
|D f |n <∞, (10)

where C1 > 0 is some constant depending on n, m and λ(0) only.
We may assume that there is at least one Q ∈ W with rQ > 0; otherwise f (∂Bn) is a singleton.

Let ω ∈ ∂Bn . We consider the radius [0, ω] and the sequence (Q j (ω))
∞

j=1. We fix a large integer
l0 = l0(ω, f ) ∈ N so that there are elements of the sequence ( fQ j (ω))

∞

j=1 outside B( f (ω), 2−l0+1) if
( fQ j (ω))

∞

j=1 contains at least one element different from f (ω). If such an integer does not exist there
necessarily is some Q = Qw ∈W with fQ = f (ω) and rQ > 0. In this case, we choose l0 = l0(ω, f ) ∈N

so that 2−l0 < rQω
. In both cases we also require that 2−l0+1 < t0. This allows us to use the properties (6)

and (7).
For the purposes of our “porosity argument”, we would like to make the number l0 independent of the

point ω. This is done by considering the decomposition

∂Bn
=

⋃
l∈N

El, where El = {ω ∈ ∂Bn
: l0(ω, f )≤ l}.

Setting Fl = f (El), we then have f (∂Bn)=
⋃

i∈N Fl .
Let us fix l0 ∈ N. Our aim is to prove that Hn

∞
(Fl0)= 0.

Fix x ∈ Fl0 . Take any ω ∈ El0 such that x = f (ω) and define the sequence of concentric annuli
Al(x) = B(x, 2−l+1) \ B(x, 2−l) with l = l0, l0+ 1, . . . . Next, we assign a suitable set Pl(x) of cubes
from W to each annulus Al(x), l = l0, l0+ 1, . . . . If fQ j (ω) = x for all j ∈ N, we put Pl(x)= {Qω} for
each l≥ l0, where Qω is the cube defined earlier. Otherwise, all the sets Pl(x)with l≥ l0 consist of elements
from (Q j (ω))

∞

j=1. If an annulus Al(x) with some l ≥ l0 contains no centres from ( fQ j (ω))
∞

j=1 we define
Pl(x)={Qm(ω)}, where an integer m ∈N is chosen so that fQm−1(ω) 6∈ B(x, 2−l+1) but fQm(ω)∈ B(x, 2−l);
if, in contrast, there is at least one centre fQ j (ω) in Al(x) we take Pl(x) = {Qk(ω) : k = m1, . . . ,m2},
where m1, m2 ∈ N are such that fQm1−1(ω) 6∈ B(x, 2−l+1), fQm2+1(ω) ∈ B(x, 2−l) and fQk(ω) ∈ Al(x) for
all k = m1, . . . ,m2. Moreover, it is possible to choose the sets Pl(x) above so that the inequality k1 ≤ k2

is valid whenever Qk1(ω) ∈ Pl1(x), Qk2(ω) ∈ Pl2(x) and l1 < l2.
Denoting

θl(x)=
{

1 if ]Pl(x)≤ c̃0λ(l),
0 otherwise
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for l ≥ l0 and a constant c̃0 > λ
−1(0), which we will specify later, we would like to prove that there exists

an integer l1 ≥ 2l0 such that
l∑

k=l0

θk(x)≥
l
2

(11)

for each l ≥ l1. In other words, at least half of the annuli do not contain too many centres from ( fQ j (ω))
∞

j=1.
There is nothing to prove if fQ j (ω) = x for all j ∈ N; otherwise, the proof is by contradiction:

Let us assume that (11) does not hold for some l ≥ 2l0. Take the smallest number J ∈ N such that
fQ j (ω) ∈ B(x, 2−l) for all j > J and let ω′ ∈ [0, ω] be the point of Q J (ω)∩ [0, ω] which is closest to ω.
Now, the assumption on the continuity of f and the properties of our Whitney decomposition imply

2−l
≤ | fQ J (ω)− x | = | fQ J (ω)− f (ω)| ≤ −

∫
Q J

| f (y)− f (ω)| dy ≤ ψ(2(1− |ω′|)).

That is,
u(2−l)

2
≤ 1− |ω′|.

Next, we connect this estimate to the number of Whitney cubes that precede Q J in (Q j (ω))
∞

i=1.
Using (5), we observe that

log
2

u(2−l)
≥ log

1
1− |ω′|

≥
1
c2
]q(0, ω′).

In the calculation above we may have to adjust the choice of l0 to ensure ]q(0, ω′) > c3 (see (5)).
Finally, we obtain a lower bound for ]q(0, ω′) using the assumption that we have at least bl/2c− l0+ 2
annuli Ak(x) with θk(x) = 0. We notice that the sets Pk(x) with θk(x) = 0 contain different cubes for
different k, and if k ≤ l then the cubes in Pk(x) precede Q J (ω) in (Q j (ω))

∞

j=1. We have

c2 log
2

u(2−l)
≥ ]q(0, ω′)≥

∑
k=l0,...,l
θk(x)=0

]Pk(x)≥
bl/2c+1∑

k=l0

c̃0λ(k)≥ c̃0

bl/2c+1∑
k=l0

2−ku′(2−k)

u(2−k)

≥ c̃0

(
log

1
u(2−l/2)

− log
1

u(2−l0)

)
≥ c̃0β

−1 log
1

u(2−l)
− c̃0 log

1
u(2−l0)

.

Choosing c̃0 > c2β, this cannot hold when l is large enough. Thus there is a number l1 = l1(c̃0, l0, u)
such that (11) holds for all l ≥ l1.

Our next step is to prove that, if θk(x)= 1 for some k and Pk(x)= {Q1, . . . , Qm}, then it is possible
to find a collection of balls {B1, . . . , Bm′} from the families SB( fQi ,rQi )

or RB( fQi ,rQi )
having radii at least

a constant times α(2−k) and such that
∑m′

i=1wBi is at least a constant times λ(k). Moreover, we choose
different balls for different k.

Let us fix k ≥ l0 such that θk(x)= 1. Suppose first that the annulus Ak(x) contains no centres from
( fQ j (ω))

∞

j=1. Then the set Pk(x) consists of a single cube Q ∈W with fQ ∈ B(x, 2−k). The definitions of
rQ and l0 imply that rQ > 2−k and hence k≥ k0(rQ). Thus, we may choose the ball Rk(B( fQ, rQ)), which,
by definition, has radius α(2−k) and weight λ(k). In addition, the centre of this ball lies in B(x, 2−k).
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Assume now that the annulus Ak(x) contains at least one of the centres from ( fQ j (ω))
∞

j=1. Then, by
the definitions of Pk(x) and rQ , ∑

Q∈Pk(x)

2rQ ≥ 2−k .

Since ]Pk(x)≤ c̃0λ(k), we observe that ∑
Q∈Pk(x)

2rQ≥α(2−k)/2c̃0

2rQ ≥
2−k

2
.

For each Q ∈ Pk(x) with 2rQ ≥ α(2−k)/2c̃0 we choose a number nQ ∈ N so that

2nQ−1α(2
−k)

2c̃0
≤ 2rQ < 2nQ

α(2−k)

2c̃0

and pick a ball B̃ = SnQ (B( fQ, rQ))= B( fQ, rQ/2nQ ) ∈ SB( fQ ,rQ). By the definition of Si (B), we have
wB̃ = 2nQ and

r(B̃)=
rQ

2nQ
≥
α(2−k)

8c̃0
.

For the sum of the weights
∑

Q 2nQ of all the balls obtained in such a manner, we observe that

α(2−k)

2c̃0

∑
Q∈Pk(x)

2rQ≥α(2−k)/2c̃0

2nQ >
∑

Q∈Pk(x)
2rQ≥α(2−k)/2c̃0

2rQ ≥
2−k

2
.

Hence, we have a collection of balls {B1, . . . , Bm} ⊂ F with weights sum
∑m

i=1wBi > c̃0λ(k) and of
radii at least α(2−k)/8c̃0. Moreover, all these balls have their centres in the annulus Ak(x) and hence in
the ball B(x, 2−k+1).

We have proved that there exists a number l1 = l1(l0, c̃0) such that, for each ω ∈ El0 and l ≥ l1, among
the numbers l0, . . . , l there are at least dl/2e integers k ∈ {l0, . . . , l} such that θk(x)= 1. For these k we
are able to find a finite collection of balls {Bi }i∈I ⊂ F with weight-sum

∑
i∈I wBi at least λ(k) and of

radii at least α(2−k)/8c̃0, so that the centres of the balls Bi , i ∈ I , lie in the ball B(x, 2−k+1). Here c̃0 is a
positive constant depending only on β, n and λ(0), and the balls are different for a fixed ω and different k.

Fix l ≥ l1. We modify our family F according to l. If B ∈ F and there is k ∈ {l0 + 1, . . . , l}
such that α(2−k)/8c̃0 ≤ r(B) < α(2−k+1)/8c̃0, we replace B with the ball B̃ = (λ(k)/λ(l))B and set
wB̃ = (λ(l)/λ(k))

nwB . The radius of B̃ satisfies r(B̃) ≥ (λ(k)/λ(l))α(2−k)/8c̃0 = 2−k/8c̃0λ(l) and
the equality wB̃r(B̃)n = wBr(B)n holds. Similarly, we replace a ball B with r(B) ≥ α(2−l0)/8c̃0 with
the ball B̃ = (λ(l0)/λ(l))B and set wB̃ = (λ(l)/λ(l0))

nwB . Again, we have r(B̃) ≥ 2−l0/8c̃0λ(l) and
wB̃r(B̃)n = wBr(B)n . Finally, Fl is the collection of balls obtained in this manner from the balls in F.
For this family of balls, we notice (see (10)) that∑

B∈Fl

wBr(B)n ≤
∑
B∈F

wBr(B)n <∞. (12)
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If ω∈ El0 , x= f (ω) and k ∈{l0, . . . , l} is such that θk(x)=1, then there is a collection {Bi }i∈I ⊂F with
the properties mentioned above. If for some i ∈ I the ball Bi is replaced by the ball B̃i = (λ(ki )/λ(l))Bi

while creating Fl , we necessarily have ki ≤ k. Therefore, the inequalities∑
i∈I

wB̃i
=

∑
i∈I

(
λ(l)
λ(ki )

)n

wBi ≥

(
λ(l)
λ(k)

)n ∑
i∈I

wBi ≥

(
λ(l)
λ(k)

)n

λ(k)= λ(l)n
1

λ(k)n−1

and r(B̃i ) ≥ 2−ki /(8c̃0λ(l)) ≥ 2−k/(8c̃0λ(l)) hold (by (6), λ is increasing). Since, for each i ∈ I , the
centre of a ball B̃i is contained in B(x, 2−k+1), we have x ∈ 16c̃0λ(l)B̃i . Hence, we observe that∑

B∈Fl

wBχ16c̃0λ(l)B(y)≥
∑

k=l0,...,l
θk(y)=1

λ(l)n
1

λ(k)n−1 ≥
λ(l)n

4

l∑
k=l1

1
λ(k)n−1 ≥

λ(l)n

4
Gl

for each y ∈ Fl0 , where Gl =
∑l

k=l1
1/λ(k)n−1. That is, (4wB/(λ(l)nGl), 16c̃0λ(l)B)B∈Fl is a weighted

cover of the set Fl0 . We observe also that the diameters of all balls in this cover are at least 2−l . This
information will be used in the proof of Theorem 1.3 below.

Finally, using the weighted cover obtained above and (12), we estimate the weighted Hausdorff
n-content λn

∞
(Fl0):

λn
∞
(Fl0)≤

4
λ(l)nGl

∑
B∈Fl

wB
(
diam(16c̃0λ(l)B)

)n
≤

42n+1c̃n
0

Gl

∑
B∈Fl

wB(diam B)n

≤
25n+2c̃n

0

Gl

∑
B∈Fl

wBr(B)n ≤
A

Gl
,

where the constant A depends on β, n, m, ‖ f ‖W 1,n(Bn,Rm) and λ(0) but not on l0 or l.
Now Lemma 2.1 implies Hn

∞
(Fl0)≤ C A/Gl . Here C depends only on the dimension n. Hence, we

are done as soon as we can show that Gl→∞ as l→∞. Towards this end, we have

Gl =

l∑
k=l1

1
λ(k)n−1 =

l∑
k=l1

u(2−k)n−1

2−k(n−1)u′(2−k)n−1 ≥

∫ 2−l1

2−l

(
u(t)
u′(t)

)n−1 dt
tn ,

and the right-hand side diverges as l→∞ by the assumptions on the modulus of continuity. �

The proof of Theorem 1.3 is similar to the proof of Theorem 1.1. We only point out the required
changes.

Proof of Theorem 1.3. Let f be as in statement of the theorem. Our notation will be the same as in
previous proof. That is, α(t)= γ t and λ(k)= 1/γ .

Fix a small ε > 0. Then there exists a δ > 0 such that∫
Bn\B(0,1−δ)

|D f |n ≤ ε. (13)

Let W δ be the set of the cubes in W which are contained in Bn
\ B(0, 1− δ) and whose neighbour cubes

are also contained in Bn
\B(0, 1−δ). We define our collection of balls to be B δ

= {B( fQ, rQ) : Q ∈W δ
}.
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Then, proceeding as in the previous proof, we define F δ analogously to F and obtain the estimate
(see (10)) ∑

B∈F δ

wBr(B)n ≤ C1ε. (14)

Let ω ∈ ∂Bn . We define the number l0 = l0(ω, f, δ) as in the previous proof, but instead of all cubes
in (Q j (ω))

∞

j=1 we consider only those which are contained in W δ. Again, we split ∂Bn into sets
El = {ω ∈ ∂Bn

: l0(ω) ≤ l} and consider a fixed f (El ′). With the same method as earlier we find for
large l a collection of balls F δ

l with weights such that (8wBγ /(l − l1), (16c̃0/γ )B)B∈F δ
l

is a weighted
cover of the set f (El ′), the radii of the balls (16c̃0/γ )B are at least 2−l and∑

B∈F δ
l

wBr(B)n ≤ C1ε.

We may assume that our ε > 0 is so small that all balls in our weighted cover have radii smaller than 1
2 .

With this weighted cover, we obtain

λg
∞
( f (El ′))≤

4γ
l − l1

∑
B∈F δ

l

wB

(
diam

(
16c̃0

γ
B
))n

log
1

diam((16c̃0/γ )B)

≤
4γ

l − l1

∑
B∈F δ

l

wB

(
diam

(
16c̃0

γ
B
))n

log 2l
≤

22+5n c̃n
0

γ n−1

l
l − l1

∑
B∈F δ

l

wBr(B)n ≤
23+5n c̃n

0C1

γ n−1 ε.

Here we assumed l to be so large that l/(l − l1) ≤ 2. Lemma 2.1 implies H
g
∞( f (El ′)) ≤ Aε. Here A

depends on γ , n and m but not on l ′ or l; therefore, we have H
g
∞( f (∂Bn)) ≤ Aε; see [Howroyd 1994,

Corollary 8.2] or [Federer 1969, 2.10.22]. Letting ε tend to zero gives H
g
∞( f (∂Bn))= 0, which implies

Hg( f (∂Bn))= 0. �

4. Example

In this section, we work in R2 and use the notation ‖x‖ =max{|x1|, |x2|}. Let p > 1
2 . We will construct a

locally Hölder continuous mapping f : R2
→ R2 that belongs to W 1,2

loc (R
2,R2) and maps ∂B2 onto a set

of positive Hg-measure, where g(t)= t2(log(1/t))2p.
The mapping is a composition of two locally Hölder continuous mappings. The second mapping is

defined in [Herron and Koskela 2003, Proposition 5.1]. It is a homeomorphism h : R2
→ R2 that is

the identity mapping outside [0, 1]2 and maps a small Cantor set C ⊂ [0, 1]2 onto a large Cantor set
C′ ⊂ [0, 1]2 with positive Hg-measure. It was checked in [Koskela et al. 2009] that this mapping belongs
to W 1,2

loc (R
2,R2) if p > 1

2 .
Next, we elaborate on the construction of h and prove that it is Hölder continuous in [0, 1]2. Let σ < 1

2 .
We use the notation 2rk = σ

k and 2Rk =
1
2σ

k−1 for k ∈ N. The set C is defined as follows: In the first
generation we have one square Q0= [0, 1]2 with side length 2r0. We split this square into four subsquares
P1i , i = 1, 2, 3, 4, of side length 2R1. We define Q1i to be the square of side length 2r1 centred at the
centre of P1i . Then P1i and Q1i generate the frame A1i = P1i \ Q1i . Next, we divide all squares Q1i into
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squares P2 j , j = 1, . . . , 42. Then we define Q2 j and A2 j as in the first step. We proceed inductively.
Thus, we obtain for all k ∈ N sets Qki , Pki and Aki , where i = 1, . . . , 22k , and we set C=

⋂
k
⋃

i Qki .
The set C′ and sets Q′ki , P ′ki and A′ki with k ∈ N and i = 1, . . . , 22k are defined in the same way,

using 2r ′1 =
1
2(log 4)−p, 2R′2 = r ′1, and 2r ′k = (log 4)−p2−kk−p and 2R′k = (log 4)−p2−k(k − 1)−p for

other k ∈ N.
The mapping h is defined so that it maps the frame Aki to the frame A′ki via a “radial” stretching and is

continuous in [0, 1]2. The radial stretching which maps A={x : rk ≤‖x‖≤ Rk} to A′={x : r ′k ≤‖x‖≤ R′k}
is

ρ(x)= (a‖x‖+ b)
x
‖x‖

, where a =
R′k − r ′k
Rk − rk

and b =
Rkr ′k − R′krk

Rk − rk
.

If x , y ∈ A then ‖x − y‖ ≤ 2Rk =
1
2σ

k−1 and

a ≤
4σ

1− 2σ
(2σ)−k

≤ C(σ )σ−(1−β)k ≤ C(σ )‖x − y‖β−1,

where β = log 2/ log (1/σ). Similarly,

|b|
|rk |
≤

4
1− 2σ

(2σ)−k
≤ C(σ )‖x − y‖β−1.

The mapping ρ is Hölder continuous with exponent β, as

‖ρ(x)− ρ(y)‖ ≤ Ca‖x − y‖+ 2
|b|
|rk |
‖x − y‖ ≤ C(σ )‖x − y‖β .

If x ∈ Aki and y ∈ Qk+1, j ⊂ Pki , then ‖x−y‖≥ Rk+1−rk+1=C(σ )σ k and ‖h(x)−h(y)‖≤ 2R′k ≤ 2−k .
These imply

‖h(x)− h(y)‖
‖x − y‖β

≤ C(σ ).

The β-Hölder continuity of h easily follows from the continuity estimates obtained above.
The first mapping G : R2

→ R2 is a (locally Hölder continuous) quasiconformal mapping for which
C⊂ G(∂B2). Such a mapping was constructed in [Gehring and Väisälä 1973].

Finally, the composition h ◦G : R2
→ R2 is a homeomorphism with h ◦G(∂B2)⊃ C′. Moreover, it

is locally Hölder continuous and h ◦G ∈ W 1,2
loc (R

2,R2) by quasiconformality of G and the change of
variable formula; see, for example, [Astala et al. 2009, Section 3.8].
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