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EIGENVALUE DISTRIBUTION OF OPTIMAL TRANSPORTATION

BO’AZ B. KLARTAG AND ALEXANDER V. KOLESNIKOV

We investigate the Brenier map ∇8 between the uniform measures on two convex domains in Rn , or,
more generally, between two log-concave probability measures on Rn . We show that the eigenvalues
of the Hessian matrix D28 exhibit concentration properties on a multiplicative scale, regardless of the
choice of the two measures or the dimension n.

1. Introduction

Let µ and ν be two absolutely continuous probability measures on Rn . It was discovered by Brenier
[1991] and McCann [1995] that there exists a convex function 8 on Rn with (∇8)∗µ= ν, i.e.,∫

Rn
b(∇8(x)) dµ(x)=

∫
Rn

b(x) dν(x) (1)

for any ν-integrable function b :Rn
→R. Moreover, the Brenier map x 7→ ∇8(x) is uniquely determined

µ-almost everywhere. In this paper we consider the case where µ and ν are log-concave probability
measures. An absolutely continuous probability measure on Rn is called log-concave if it has a density ρ
which satisfies

ρ(λx + (1− λ)y)≥ ρ(x)λρ(y)1−λ (x, y ∈ Rn, 0< λ < 1).

The uniform measure on any convex domain is log-concave, as is the Gaussian measure. Write Supp(µ)
for the interior of the support of µ, which is an open, convex set in Rn . We make the assumption:

(?) The function 8 is C2-smooth in Supp(µ).

It follows from work of Caffarelli [1990; 1992; 1999] that (?) holds true when each of the measures µ and
ν satisfies the following additional condition: either the support of the measure is the entire Rn or else the
support is a bounded, convex domain and the density of the measure is bounded away from zero and
from infinity in this convex domain. It is fair to say that Caffarelli’s regularity theory covers most cases
of interest, yet it is very plausible that (?) is in fact always correct, without any additional conditions. For
related results on the regularity of optimal transportation, see Delanoë [1991] and Urbas [1997].

As it turns out, the positive-definite Hessian matrix D28(x) exhibits remarkable regularity in the
behavior of its eigenvalues. We write Var[X ] for the variance of the random variable X .

MSC2010: 35J96.
Keywords: transportation of measure, log-concave measures.

33

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2015.8-1
http://dx.doi.org/10.2140/apde.2015.8.33
http://msp.org


34 BO’AZ B. KLARTAG AND ALEXANDER V. KOLESNIKOV

Theorem 1.1. Let µ, ν be absolutely continuous, log-concave probability measures on Rn . Let ∇8 be
the Brenier map between µ and ν, and assume (?). Write 0 < λ1(x) ≤ · · · ≤ λn(x) for the eigenvalues
of the matrix D28(x), repeated according to their multiplicity. Let X be a random vector in Rn that is
distributed according to µ. Then, for i = 1, . . . , n,

Var[log λi (X)] ≤ 4.

Thus, on a multiplicative scale, the eigenvalues of D28 are quite stable. Note that the multiplicative
scale is indeed the natural scale in the generality of Theorem 1.1: by applying appropriate linear
transformations to µ and ν, one may effectively multiply all eigenvalues by an arbitrary positive constant.
The variance bound in Theorem 1.1 follows from a Poincaré inequality which we now formulate. For
x ∈ Supp(µ) set

3(x)= (log λ1(x), . . . , log λn(x)).

We write | · | for the standard Euclidean norm in Rn .

Theorem 1.2. Under the notation and assumptions of Theorem 1.1, for any locally Lipschitz function
f : Rn

→ R with E| f (3(X))|<∞,

Var[ f (3(X))] ≤ 4E|∇ f |2(3(X))

whenever the right-hand side is finite. At the points at which f is not continuously differentiable, we define
|∇ f | via (36) below.

Set π =3∗(µ), the push-forward of the measure µ under the map 3. Theorem 1.2 is a spectral gap
estimate for the metric-measure space (Rn, | · |, π). Gromov and Milman [1983] proved that a spectral
gap estimate implies exponential concentration of Lipschitz functions. Therefore, Theorem 1.2 admits
the following immediate corollary:

Corollary 1.3. We work under the notation and assumptions of Theorem 1.1. Let f : Rn
→ R be a

1-Lipschitz function (i.e., | f (x)− f (y)| ≤ |x − y|).
Write A = E f (3(X)). Then A is finite and

E exp
(
c| f (3(X))− A|

)
≤ 2,

where c > 0 is a universal constant.

Remark 1.4. Corollary 1.3 implies that Eec|3(X)| <∞. Consequently, one may replace the condition
E| f (3(X))| <∞ in Theorem 1.2 by the requirement that e−c|x |

| f (x)| is bounded in Rn for a certain
universal constant c > 0.

Our next result is that the diagonal elements of the matrix D28(x) are also concentrated on a logarithmic
scale, pretty much like the eigenvalues.

Theorem 1.5. We work under the notation and assumptions of Theorem 1.1. Fix v ∈ Rn , let H(x) =
log(D28(x)v · v) and let Y = H(X). Then:

(i) Var[Y ] ≤ 4.
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(ii) For any locally Lipschitz function f : R→ R with E| f (Y )|<∞,

Var[ f (Y )] ≤ 4E| f ′|2(Y ).

(iii) For any 1-Lipschitz function f : R→ R, denoting A = E f (Y ) we have that A ∈ R and

E exp(c| f (Y )− A|)≤ 2,

where c > 0 is a universal constant.

All of the assertions made so far follow from Theorem 5.1 below, which is in fact a sound reformulation
of [Klartag 2013, Theorem 1.4]. The results in [Klartag 2013] were obtained under a technical assumption
dubbed “regularity at infinity”, which we shall address in this paper. Our argument is based on analysis
of the transportation metric; this means that we use the positive-definite Hessian D28 in order to define a
Riemannian metric in Supp(µ). The weighted Riemannian manifold

Mµ,ν = (Supp(µ), D28,µ)

was studied in [Kolesnikov 2014], where it was shown that the associated Ricci–Bakry–Émery tensor is
nonnegative when µ and ν are log-concave. We will also consider the map

x 7→ D28(x)

from Supp(µ)⊆ Rn into the space of positive-definite matrices. The space of positive-definite matrices
is endowed with a natural Riemannian metric, which fits very nicely with computations related to the
weighted Riemannian manifold Mµ,ν . This leads to a certain Poincaré inequality with respect to the
standard Riemannian metric on the space of positive-definite matrices, formulated in Theorem 5.1 below.

We have tried to make the exposition self-contained, apart from the regularity theory of mass-transport.
The rest of this paper is organized as follows: In Section 2 we recall some well-known constructions
related to positive-definite matrices. In Section 3 and Section 4 we prove the main results under regularity
assumptions by employing the Bakry–Émery 02-calculus. Section 5 is devoted to the elimination of
these regularity assumptions. In Section 6 we complete the proofs of the theorems formulated above. We
denote derivatives by ∂k f = fk = ∂ f/∂xk and fi j = ∂

2 f/(∂xi∂x j ). By a smooth function we mean a
C∞-smooth one. We write log for the natural logarithm, x · y stands for the standard scalar product of
x , y ∈ Rn , and Tr(A) stands for the trace of the matrix A.

2. Positive-definite quadratic forms

This section surveys standard material on positive-definite matrices. Denote by M+n (R) the collection of
all symmetric, positive-definite n× n matrices. For a function f : (0,∞)→ R and A ∈ M+n (R) we may
define the symmetric matrix f (A) via the spectral theorem. In other words,

f
( n∑

i=1

λivi ⊗ vi

)
=

n∑
i=1

f (λi )vi ⊗ vi
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for any orthonormal basis v1, . . . , vn ∈ Rn and λ1, . . . , λn > 0, where we write x ⊗ x = (xi x j )i, j=1,...,n

for x = (x1, . . . , xn) ∈ Rn .

Lemma 2.1. For any A, B ∈ M+n (R),

‖log(A1/2 B A1/2)‖H S ≤ ‖log(A)‖H S +‖log(B)‖H S, (2)

where ‖ · ‖H S stands for the Hilbert–Schmidt norm.

Proof. For an n× n matrix T and k = 1, . . . , n we define

Dk(T )= sup
E⊆Rn

dim(E)=k

Volk(T (Bn
∩ E))

Volk(Bn ∩ E)
, (3)

where Bn
= {x ∈ Rn

| |x | < 1} and the supremum in (3) runs over all k-dimensional subspaces in Rn .
Thus, an application of the linear transformation T may increase k-dimensional volumes by a factor of at
most Dk(T ). It follows that, for any n× n matrices A and B,

Dk(AB)≤ Dk(A)Dk(B) (k = 1, . . . , n). (4)

In the case where A ∈ M+n (R), we have Dk(A) =
∏k

i=1 λi , where λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the
eigenvalues of A. Assume that A, B ∈ M+n (R). Denote the eigenvalues of the symmetric, positive-definite
matrix A1/2 B A1/2 by eγ1 ≥ · · · ≥ eγn > 0. Then, for k = 1, . . . , n,

k∏
i=1

eγi = Dk(A1/2 B A1/2)≤ Dk(A1/2)Dk(B)Dk(A1/2)= Dk(A)Dk(B)=
k∏

i=1

(eαi eβi ), (5)

where eα1 ≥ · · · ≥ eαn > 0 are the eigenvalues of A and eβ1 ≥ · · · ≥ eβn > 0 are the eigenvalues of B. We
will next apply a lemma of Weyl [1949]; see also [Polya 1950]. According to the inequality of Weyl and
Polya, the inequalities (5) entail that

n∑
i=1

h(γi )≤

n∑
i=1

h(αi +βi ) (6)

for any convex, nondecreasing function h : R→ R. For t ∈ R let t+ =max{t, 0}. The function t 7→ (t+)2

is convex and nondecreasing; hence, from (6),

n∑
i=1

((γi )+)
2
≤

n∑
i=1

((αi +βi )+)
2. (7)

By using (4) for the inverse matrices, we conclude that, for k = 1, . . . , n,

n∏
i=n−k+1

e−γi = Dk(A−1/2 B−1 A−1/2)≤ Dk(A−1)Dk(B−1)=

n∏
i=n−k+1

(e−αi e−βi ).
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The inequality of Weyl and Polya now implies that
∑n

i=1 h(−γi ) ≤
∑n

i=1 h(−αi − βi ) for any convex,
nondecreasing function h. By again using h(t)= (t+)2, we get

n∑
i=1

((−γi )+)
2
≤

n∑
i=1

((−αi −βi )+)
2. (8)

Adding (7) and (8), we finally obtain

n∑
i=1

γ 2
i ≤

n∑
i=1

(αi +βi )
2
≤

(√∑n
i=1 α

2
i +

√∑n
i=1 β

2
i

)2
, (9)

where we used the Cauchy–Schwartz inequality in the last step. By taking the square root of (9) we
deduce (2). �

For two matrices A, B ∈ M+n (R), set

dist(A, B)= ‖log(A−1/2 B A−1/2)‖H S. (10)

Equivalently, dist(A, B) equals √∑
i log2 λi ,

where λ1, . . . , λn > 0 are the eigenvalues of the matrix A−1 B which is conjugate to A−1/2 B A−1/2. The
latter equivalent definition of dist shows that, for any invertible n× n matrix T ,

dist(A, B)= dist(T t AT, T t BT ) (A, B ∈ M+n (R
n)), (11)

where T t is the transpose of the matrix T . Observe too that dist(A, B) = dist(A−1, B−1) for any
A, B ∈ M+n (R). Lemma 2.1 states that, for A, B ∈ M+n (R),

dist(A, B)≤ dist(A, Id)+ dist(Id, B), (12)

where Id is the identity matrix. From (11) and (12) one realizes that dist satisfies the triangle inequality
in M+n (R), so it is a metric. For A ∈ M+n (R

n) and a symmetric n× n matrix B, we define

‖B‖A = ‖A−1/2 B A−1/2
‖H S =

√
Tr[(A−1 B)2].

For a smooth curve γ : [a, b] → M+n (R), set

Length(γ )=
∫ b

a
‖γ̇ (s)‖γ (s) ds, (13)

where γ̇ (s)= dγ (s)/ds is a symmetric n× n matrix. Then Length is invariant under conjugations. That
is, the length of the curve γ (s) equals that of the curve T tγ (s)T for any invertible n× n matrix T .

Lemma 2.2. (i) For any A ∈ M+n (R
n) and a symmetric n× n matrix B,

lim
ε→0

dist2(A+ εB, A)
ε2 = ‖B‖2A = Tr[(A−1 B)2]. (14)
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(ii) Let A, B ∈ M+n (R
n) and consider the curve

γA,B(s)= A1/2(A−1/2 B A−1/2)s A1/2 (0≤ s ≤ 1).

Then γA,B is a curve connecting A and B with Length(γA,B)= dist(A, B).

Proof. The invariance property (11) implies that

dist(A+ εB, A)= dist(Id+εA−1/2 B A−1/2, Id).

It therefore suffices to prove (i) under the additional assumption that A = Id. Let λ1, . . . , λn > 0 be the
eigenvalues of B. It follows from (10) that

lim
ε→0

dist2(Id+εB, Id)
ε2 = lim

ε→0

∑n
i=1 log2(1+ ελi )

ε
=

n∑
i=1

λ2
i ,

and (i) follows from the fact that ‖B‖2A =
∑

i λ
2
i . We now turn to the proof of (ii). Again, we may reduce

matters to the case where A = Id by noting that

γA,B(s)= A1/2γId,A−1/2 B A−1/2(s)A1/2 (0≤ s ≤ 1).

Abbreviate γ (s)= γA,B(s)= γId,B(s). Since γ (s)= Bs , we have γ̇ (s)= Bs log(B) and hence, for any
0≤ s ≤ 1,

‖γ̇ (s)‖γ (s) = ‖B−s/2(Bs log(B))B−s/2
‖H S = ‖log(B)‖H S = dist(Id, B).

From the definition (13) it follows that Length(γ )= dist(Id, B), and (ii) is proven. �

The right-hand side of (14) depends quadratically on B, and therefore Lemma 2.2 tells us that our
distance function dist on M+n (R) is induced by a Riemannian metric. We refer to this Riemannian metric
as the standard Riemannian metric on M+n (R). The next two lemmas describe certain Lipschitz functions
on M+n (R).

Lemma 2.3. Fix v ∈ Rn and set f (A) = log(Av · v) for A ∈ M+n (R). Then f is a 1-Lipschitz function
with respect to the standard Riemannian metric on M+n (R).

Proof. The map f is clearly smooth. Fix A ∈ M+n (R) and let us show that the norm of the Riemannian
gradient of f at the point A is bounded by one. For any symmetric n× n matrix B, we have

d
dt

f (A+ t B)
∣∣∣
t=0
=

Bv ·v
Av ·v

.

Thus, in order to prove the lemma, it suffices to show that

Bv ·v
Av ·v

≤ ‖B‖A = ‖A−1/2 B A−1/2
‖H S. (15)

By switching to another orthonormal basis if necessary, we may assume that A is a diagonal matrix. Denote
by λ1, . . . , λn > 0 the numbers on the diagonal of A. Let B = (bi j )i, j=1,...,n and v = (v1, . . . , vn) ∈ Rn .
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From the Cauchy–Schwartz inequality,
n∑

i, j=1

bi jviv j ≤

√∑n
i, j=1 b2

i j/(λiλ j )
√∑n

i, j=1 λiλ jv
2
i v

2
j =

√∑n
i, j=1 b2

i j/(λiλ j )

( n∑
i=1

λiv
2
i

)
,

which is equivalent to the desired inequality (15). �

Lemma 2.4. For A ∈M+n (R), let its eigenvalues be λ1(A)≥ · · · ≥ λn(A) > 0. The map3 :M+n (R)→Rn

defined via
3(A)=

(
log(λ1(A)), . . . , log(λn(A))

)
. (16)

is a 1-Lipschitz map with respect to the standard Riemannian metric on M+n (R) and the standard Euclidean
metric on Rn .

Proof. Let F ⊆ M+n (R) be the collection of all positive-definite, symmetric matrices with n distinct
eigenvalues. Then F is an open, dense set. The function 3 is continuous, since the eigenvalues vary
continuously with the matrix. It therefore suffices to prove that

|3(A1)−3(A2)| ≤ dist(A1, A2) for A1, A2 ∈ F.

Fix A1, A2 ∈ F with A1 6= A2. Consider the curve γ (s)= γA1,A2(s/ dist(A1, A2)), where γA1,A2(s) is as
in Lemma 2.2. Then γ is a length-minimizing curve between A1 and A2 parametrized by Riemannian
arclength. We claim that γ (s) ∈F for all but finitely many values of s. Indeed, the resultant of the matrix
γ (s) is a real-analytic function of s which is not identically zero; hence its zeros are isolated. Since 3◦γ
is continuous, in order to prove the lemma it suffices to show that∣∣∣∣d3(γ (s))ds

∣∣∣∣≤ 1 (17)

for all s with γ (s) ∈ F. Let us fix s0 with γ (s0) ∈ F. Let A = γ (s0) and B = γ̇ (s0). Since γ is
parameterized by arclength,

‖B‖A = ‖A−1/2 B A−1/2
‖H S = 1. (18)

Let v1, . . . , vn ∈ Rn be the orthonormal basis of eigenvectors that corresponds to the eigenvalues
λ1(A), . . . , λn(A) of the matrix A. Then,

dλi (γ (s))
ds

∣∣∣∣
s=s0

= Bvi · vi (i = 1, . . . , n). (19)

The relation (19) is standard; see, e.g., [Reed and Simon 1978, Section XII.1]. Consequently,

d3(γ (s))
ds

∣∣∣∣
s=s0

=

(
Bv1 · v1

λ1(A)
, . . . ,

Bvn · vn

λn(A)

)
. (20)

However, by (18),
n∑

i=1

(
Bvi · vi

λi (A)

)2

=

n∑
i=1

(A−1/2 B A−1/2vi · vi )
2
≤ ‖A−1/2 B A−1/2

‖
2
H S = 1. (21)

Now (17) follows from (20) and (21). �
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Corollary 2.5. Whenever A and B are positive-definite n× n matrices,

n∑
i=1

log2 λi

µi
≤ ‖log(A−1/2 B A−1/2)‖2H S,

where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A and µ1 ≥ · · · ≥ µn > 0 are the eigenvalues of B.

3. Bakry–Émery 02-calculus

Let µ and ν be two absolutely continuous, log-concave probability measures on Rn . Assume that
dµ= e−V (x)dx and dν = e−W (x)dx for certain smooth, convex functions V , W :Rn

→R. Let ∇8 be the
Brenier map between µ and ν. Caffarelli’s regularity theory states that 8 : Rn

→ R is a smooth, convex
function. Therefore (1) implies that the transport equation

−V (x)= log det D28(x)−W (∇8(x)) (22)

holds everywhere in Rn . In particular, the matrix D28(x) = (8i j (x))i, j=1,...,n is invertible and hence
positive-definite for any x ∈ Rn . The inverse to D28(x) is denoted by (D28(x))−1

= (8i j (x))i, j=1,...,n .
We use the Einstein summation convention; thus an index that appears twice in an expression, once
as a subscript and once as a superscript, is being summed upon. We also use abbreviations such as
8i

jk =8
i`8 jk` and 8i j

k =8
i`8 jm8km`. Differentiating (22), we obtain

V j (x)=−8i
j i (x)+

n∑
i=1

8i j (x)Wi (∇8(x)) ( j = 1, . . . , n, x ∈ Rn). (23)

Following [Kolesnikov 2014], we use the positive-definite matrices D28(x) in order to induce a Rie-
mannian metric on Rn and consider the weighted Riemannian manifold

M = Mµ,ν = (R
n, D28,µ).

See [Grigor’yan 2009] and Bakry, Gentil and Ledoux [Bakry et al. 2014] for background on weighted
Riemannian manifolds and the 02-calculus. For a smooth function u :Rn

→R we have |∇M u|2M =8
i j ui u j ,

where |∇M u|2M stands for the square of the Riemannian norm of the Riemannian gradient of u. The
Dirichlet form associated with the weighted Riemannian manifold Mµ,ν is defined, for smooth functions
u, v : Rn

→ R, via

0(u, v)=
∫

Rn
〈∇M u,∇Mv〉M dµ=

∫
Rn
(8i j uiv j ) dµ

whenever the integral converges. The Laplacian associated with the weighted Riemannian manifold Mµ,ν

is defined, for a smooth function u : Rn
→ R, by

Lu =8i j ui j −

n∑
j=1

W j (∇8(x))u j =8
i j ui j − (8

i j
i +8

i j Vi )u j , (24)
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where the last equality holds in view of (23). Integrating by parts, we verify that

−

∫
Rn
(Lu)v dµ=−

∫
Rn
(8i j ui j − [8

i j
i +8

i j Vi ]u j )ve−V
=

∫
Rn
(8i j uiv j ) dµ= 0(u, v)

for any smooth functions u, v :Rn
→R, one of which is compactly supported. The next step is to consider

the carré du champ of Mµ,ν : As in [Bakry and Émery 1985], for a smooth function u : K →R we define

02(u)= 1
2 L(|∇M u|2M)−〈∇M u,∇M(Lu)〉M = 1

2 L(8i j ui u j )−8
i j (Lu)i u j . (25)

Lemma 3.1. For any smooth function u : Rn
→ R, we have the pointwise inequality

02(u)≥ 1
48

ik
` 8

j`
k ui u j .

Lemma 3.1 is proven in [Klartag 2013] by introducing a Kähler structure and interpreting the left-hand
side of (26) below as the Hilbert–Schmidt norm of a certain Hessian operator restricted to a subspace.
There are several additional ways to prove Lemma 3.1. The brute force way involves a tedious but
straightforward computation which shows that

02(u)=8kl8i j uiku j`−8
i jkui j uk +

1
2(8

ik
` 8

j`
k +8

ik8 j`Vk`)ui u j +
1
2

n∑
i, j=1

(Wi j ◦∇8)ui u j .

This computation is more or less equivalent to reproving Bochner’s formula. Then, one proves the
pointwise inequality

8kl8i j uiku j`−8
i jkui j uk +

1
48

ik
` 8

j`
k ui u j ≥ 0 (26)

by representing the left-hand side of (26) as the trace of the square of the matrix B = (b j
i )i, j=1,...,n , where

b j
i =8

jkuki −
1
28

jk
i uk . The product A = (D28)B is a symmetric matrix; hence

Tr(B2)= Tr
[
((D28)−1/2 A(D28)−1/2)2

]
≥ 0.

Lemma 3.1 follows from (26) and from the fact that D2V and D2W are positive semidefinite matrices.

Another approach to Lemma 3.1 is to use the notation of Riemannian geometry as in [Kolesnikov
2014] and use the Bochner formula. We first observe that identity (23) in the case j = 1 has the simple
form

L81 =−V1. (27)

Differentiating (27) and using ∂k(8
i j )=−8

i j
k , we obtain

L(811)−8
jk
1 81 jk −

n∑
j,k=1

8 j181k(W jk ◦∇8)=−V11. (28)

The Bochner–Lichnerowicz–Weitzenböck formula states that, for any smooth u : Rn
→ R,

02(u)= ‖D2
M u‖2M +RicM(∇M u,∇M u), (29)
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where ‖D2
M u‖2M is the Hilbert–Schmidt norm of the Riemannian Hessian of u and RicM is the Bakry–

Émery–Ricci tensor of the weighted Riemannian manifold M = Mµ,ν . Let us analyze the term in (29)
involving the Hessian of u. The Christoffel symbols of our Riemannian metric are 0k

i j =
1
28

k
i j , and

therefore (D2
M u)i j = ui j −

1
28

k
i j uk and

‖D2
M u‖2M =8

ik8 jm(ui j −
1
28

`
i j u`

)(
umk −

1
28

s
mkus

)
.

In the particular case where u =81, we obtain (D2
M81) jk =

1
281 jk and hence ‖D2

M81‖
2
M =

1
48

k
1 j8

j
1k .

Furthermore, the vector field ∇M81 satisfies ∇M81 = ∂/∂x1 and |∇M81|
2
M =811. Since L81 =−V1,

the Bochner formula (29) for u =81 takes the form

1
2 L(811)=−〈∇M81,∇M V1〉M +

1
48

k
1 j8

j
1k +RicM(∇M u,∇M u)

=−V11+
1
48

k
1 j8

j
1k + (RicM)11. (30)

From (28) and (30), we obtain a formula for the Bakry–Émery–Ricci tensor:

(RicM)11 =
1
48

k
1 j8

j
1k +

1
2 V11+

1
2

n∑
j,k=1

8 j181k(W jk ◦∇8).

It is clear that there is nothing special about the derivative u =81, and that we could have repeated the
argument with u =∇8 · θ for any θ ∈ Rn . We thus obtain the formula

(RicM)i` =
1
48

k
i j8

j
`k +

1
2 Vi`+

1
2

n∑
j,k=1

8 j i8`k(W jk ◦∇8). (31)

Since D2V and D2W are positive semidefinite, for any smooth u : Rn
→ R we have

02(u)≥ RicM(∇M u,∇M u)≥ 1
48

ik
j 8

j`
k ui u`,

and the third proof of Lemma 3.1 is complete.

Having finished with Lemma 3.1, let us introduce one of the main ideas in this paper, which was absent
from [Klartag 2013]. The idea is to consider the map

Rn
3 x 7→ D28(x) ∈ M+n (R). (32)

Denote by (gi j (x))i, j=1,...,n the pull-back of the standard Riemannian metric on M+n (R) via the map (32).
It follows from Lemma 2.2 that gi j is given by the formula

gi j = Tr[(D28)−1
· ∂i (D28) · (D28)−1

· ∂ j (D28)] =8`ik8
k
j`. (33)

Note that the positive semidefinite matrix (gi j (x))i, j=1,...,n is not necessarily invertible, and it could happen
that distinct points of Rn have zero Riemannian distance with respect to the Riemannian metric (gi j ).
The metric gi j resembles an expression appearing in Lemma 3.1, a fact that will be exploited in the next
section.
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4. Dualizing the Bochner inequality

It is by now well known that, in the presence of convexity assumptions, Poincaré-type inequalities may be
deduced from Bochner’s formula via a dualization procedure. In this section we investigate the Poincaré
inequality that is dual to Lemma 3.1. This Poincaré inequality was also obtained in [Klartag 2013], but in
a cumbersome formulation and under an undesired assumption called “regularity at infinity”, which we
eliminate here.

We begin with an easy case. Throughout this section we assume, in addition to the smoothness
assumptions made at the beginning of Section 3, that there exists ε0 > 0 for which

D28(x)≥ ε0 · Id (x ∈ Rn) (34)

in the sense of symmetric matrices. Write C∞c (R
n) for the space of all compactly supported, smooth

functions on Rn . The following lemma is a variant of a well-known fact (see, e.g., [Strichartz 1983]), that
compactly supported functions are dense in Sobolev spaces when the Riemannian manifold is complete.
Our assumption (34) implies the completeness of the Riemannian manifold M = Mµ,ν .

Lemma 4.1. Let f ∈ L2(µ) satisfy
∫

f dµ= 0. Then there exists a sequence uk ∈ C∞c (R
n) with

‖Luk − f ‖L2(µ) −→ 0 as k→∞.

Proof. Recall that
∫
(Lu) dµ= 0 for all u ∈ C∞c (R

n). To show that the linear space {Lu | u ∈ C∞c (R
n)}

is dense, we analyze its orthogonal complement. Let f ∈ L2(µ) be in the orthogonal complement, i.e.,
for any u ∈ C∞c (R

n), ∫
Rn

f (Lu) dµ= 0. (35)

Our goal is to show that f ≡ Const. Note that (35) means that f is a weak solution of L f ≡ 0. Since L
is elliptic, f is smooth and L f ≡ 0 in the classical sense. Thus,

L( f 2)= 2 f L f + 2|∇M f |2 = 2|∇M f |2.

Therefore, for any η ∈ C∞c (R
n),∫

Rn
|∇M(η f )|2 dµ=

∫
Rn

[
η2
|∇M f |2+ 1

2∇M( f 2) · ∇M(η
2)+ f 2

|∇Mη|
2] dµ

=

∫
Rn

[
η2
|∇M f |2− 1

2η
2L( f 2)+ f 2

|∇Mη|
2] dµ=

∫
Rn
|∇Mη|

2 f 2 dµ.

However, according to our assumption (34), we have |∇Mη|
2
=8i jηiη j ≤ ε

−1
0 |∇η|

2. Let ηR be a smooth
cutoff function in Rn that equals one on a Euclidean ball of radius R centered at the origin, equals zero
outside a Euclidean ball of radius 2R, and satisfies |∇ηR| ≤ 2/R throughout Rn . Then,∫

K
|∇M(ηR f )|2 dµ≤

∫
Rn
|∇MηR|

2 f 2 dµ≤ ε−1
0

∫
Rn
|∇ηR|

2 f 2 dµ≤
2

Rε0

∫
Rn

f 2 dµ−→0 as R→∞,

since f ∈ L2(µ). Therefore, ∇ f ≡ 0 and f is constant. �
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Suppose that F is a locally Lipschitz function on a Riemannian manifold such as M+n (R). By the
Rademacher theorem, the gradient ∇F is well defined almost everywhere with respect to the Riemannian
volume measure. In order to have a function |∇F | that is defined everywhere, in this note we set

|∇F |(x)= lim sup
y→x
z→x

|F(y)− F(z)|
dist(y, z)

= lim
ε→0+

sup
y,z∈B(x,ε)

y 6=z

|F(y)− F(z)|
dist(y, z)

, (36)

where dist is the Riemannian distance and B(x, ε) = {y | dist(x, y) < ε}. Since F is locally Lipschitz,
the function |∇F | is locally bounded and upper semicontinuous. Clearly, at any point x where F is
continuously differentiable, |∇F |(x) equals the Riemannian length of ∇F(x).

Proposition 4.2. Denote by θ the push-forward of the measure µ under the map (32). Then, for any
locally Lipschitz function F : M+n (R)→ R that belongs to L2(θ) with

∫
M+n (R)

F dθ = 0,∫
M+n (R)

F2 dθ ≤ 4
∫

M+n (R)
|∇F |2 dθ

whenever the right-hand side is finite.

Proof. Since F is locally Lipschitz in L2(θ), the function f defined via

f (x)= F(D28(x)) (x ∈ Rn)

is locally Lipschitz in Rn and belongs to L2(µ). Abbreviate H = |∇F |2 and h(x)= H(D28(x)). From
the definition (36) of |∇F |, for any x ∈ Rn at which f is differentiable,

h(x)≥ sup
{∑n

i=1 V i fi
∣∣ ∑n

i, j=1 gi j V i V j
≤ 1, V 1, . . . , V n

∈ R
}
, (37)

where fi and gi j are evaluated at the point x . In the case where the matrix (gi j (x))i, j=1,...,n is invertible,
we may express the supremum in (37) in terms of the inverse matrix, yet it is the formula (37) which is
valid in the general case. Setting Ui =8i j V j , we reformulate (37) as

h(x)≥ sup
{
8i jU j fi

∣∣ gi j8
ki8`jUkU` ≤ 1, U1, . . . ,Un ∈ R

}
. (38)

The formula (38) is valid for almost any x ∈ Rn , since f is differentiable almost everywhere in Rn by the
Rademacher theorem. We would like to show that, for any u ∈ C∞c (R

n),

−

∫
Rn

f (Lu) dµ≤ 2

√∫
Rn

h2 dµ

√∫
Rn
(Lu)2 dµ. (39)

To this end we observe that, since u is compactly supported,∫
Rn
02(u) dµ= 1

2

∫
Rn

L(8i j ui u j ) dµ−
∫

Rn
8i j (Lu)i u j dµ=−

∫
Rn
8i j (Lu)i u j dµ=

∫
Rn
(Lu)2 dµ.

Therefore, Lemma 3.1 and (33) imply that, for any u ∈ C∞c (R
n),∫

Rn
(Lu)2 dµ≥ 1

4

∫
Rn
8ik8 j`gk`ui u j dµ.
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Since f is locally Lipschitz, we may safely integrate by parts and obtain that, for any u ∈ C∞c (R
n),

−

∫
Rn

f (Lu) dµ=
∫

Rn
8i j fi u j dµ≤

∫
Rn

h(x)
√

gi j8ki8`j uku` dµ(x)

≤

√∫
Rn

h2 dµ

√∫
Rn

gi j8ki8`j uku` dµ≤ 2

√∫
Rn

h2 dµ

√∫
Rn
(Lu)2 dµ

and (39) is proven. Since
∫

M+n (R)
F dθ = 0, we also have

∫
Rn f dµ= 0. From Lemma 4.1, there exists

a sequence uk ∈ C∞c (R
n) with Luk −→ − f in L2(µ). We substitute u = uk in (39), and take the

limit k→∞. This yields ∫
Rn

f 2 dµ≤ 2

√∫
Rn

h2 dµ

√∫
Rn

f 2 dµ.

Hence, ∫
Rn

f 2 dµ≤ 4
∫

Rn
h2 dµ.

Since h(x)= H(D28) with H = |∇F |2, the proposition is proven. �

5. Regularity issues

This section explains how to eliminate assumption (34) and also the smoothness assumptions of the
previous two sections.

Theorem 5.1. Assume that µ and ν are absolutely continuous, log-concave probability measures on Rn .
Let ∇8 be the Brenier map between µ and ν and assume condition (?) from Section 1. Denote by θ the
push-forward of the measure µ under the map x 7→ D28(x).

Then, for any θ -integrable, locally Lipschitz function F : M+n (R)→ R,∫
M+n (R)

F2 dθ −
(∫

M+n (R)
F dθ

)2

≤ 4
∫

M+n (R)
|∇F |2 dθ (40)

whenever the right-hand side is finite and |∇F | is interpreted as in (36).

The strategy for proving Theorem 5.1 is to approximate 8 by a sequence of functions 8N that satisfy
assumption (34), and to prove the pointwise (and even local uniform) convergence D28N (x)−→ D28(x)
as N →∞. Below we discuss two possible justifications of this convergence, as we believe that both
of them may be useful. The first proof occupies Section 5A, and is based on various results from the
regularity theory of the Monge–Ampère equation. The log-concavity of the measures is not really required
for the first proof, and it suffices to assume that the densities are locally Hölder.

The second proof, in Section 5B, is in fact an alternative approach to Caffareli’s C1,α-regularity
results in the log-concave case. The argument in Section 5B is more self-contained, and is based on
integration-by-parts arguments. The log-concavity of the target measure plays an important role here, and
we further assume a certain integrability condition on the logarithmic derivative of the density of µ. This
integrability condition is rather mild in our opinion, and it is satisfied in many cases of interest.
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5A. First proof of Theorem 5.1. As before, we write e−V and e−W for the densities of µ and ν respec-
tively. By log-concavity, the functions V and W are locally Lipschitz in the open sets Supp(µ) and
Supp(ν) respectively. From condition (?), the function8 is C2-smooth, and the push-forward equation (1)
implies that

det D28(x)= e−V (x)+W (∇8(x)) (41)

for any x ∈ Supp(µ). In particular, D28(x) is invertible, and hence positive-definite for all x ∈ Supp(µ).
Thus 8 is strictly convex. The modulus of convexity of 8 at the point x is defined to be

ω8(x; δ)= inf
{
8(y)− (8(x)+∇8(x) · (y− x))

∣∣ y ∈ Rn, |y− x | = δ
}
.

Then ω8(x; δ) is a positive, continuous function of x ∈ Supp(µ) and δ > 0 when we restrict to x and δ
for which B(x, δ)⊆ Supp(µ). Here, B(x, δ)= {y ∈ Rn

| |y− x |< δ}. Next, the Legendre transform

8∗(x)= sup
y∈Rn

8(y)<∞

[x · y − 8(y)]

is also C2-smooth and strictly convex in Supp(ν), with y 7→∇8∗(y) being the inverse map to x 7→∇8(x).
Thus, ∇8 is a C1-diffeomorphism of Supp(µ) and Supp(ν). The reader is referred to [Rockafellar 1970]
for the basic properties of the Legendre transform.

We will approximate µ and ν by sequences of probability measures µN and νN with the following
properties:

(i) The probability measures µN and νN have densities in Rn of the form e−VN and e−WN respectively.

(ii) The functions VN , WN : R
n
→ R are smooth and, for any x ∈ Rn ,

D2VN (x)≥
1
N
· Id, D2WN (x)≤ N · Id .

(iii) VN −→ V locally uniformly in Supp(µ) and, similarly, WN −→W locally uniformly in Supp(ν).

It is quite standard to approximate µ and ν in this manner. For instance, in order to obtain µN (or νN ), we
may convolve µ (or ν) with a Gaussian of tiny variance, then multiply the resulting density by a Gaussian
of huge variance, and then normalize to obtain a probability density. Denote by ∇8N the Brenier map
between µN and νN . Again, we use Caffarelli’s regularity theory to conclude that 8N : R

n
→ R is a

smooth, strictly convex function, with

det D28N (x)= e−VN (x)+WN (∇8N (x)) (x ∈ Rn). (42)

The following lemma should be known to experts on the Monge–Ampère equation, yet we could not find
it in the literature.

Lemma 5.2. There exists an increasing sequence {N j } such that

D28N j (x)−→ D28(x) as j→∞

locally uniformly in x ∈ Supp(µ).
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Proof. Fix x0 ∈ Supp(µ). It suffices to find {N j } such that D28N j −→ D28 uniformly in a neighborhood
of x0. A standard convexity argument (e.g., [Klartag 2014, Section 2]) based on (iii) and the fact that∫

e−V
=
∫

e−W
= 1 shows that there exist A, B > 0 with

min
{
inf
N

VN (x), inf
N

WN (x), V (x),W (x)
}
≥ A|x | − B (x ∈ Rn). (43)

Therefore,

sup
N

∫
Rn
|∇8N |

2e−VN (x) dx = sup
N

∫
Rn
|x |2e−WN (x) dx ≤

∫
Rn
|x |2eB−A|x | dx <∞. (44)

Recall that VN −→ V locally uniformly in Supp(µ), according to (iii). From (44) we learn that
supN ‖8N‖Ḣ1(K ) <∞ for any compact K ⊂ Supp(µ). Here,

‖u‖2Ḣ1(K ) =

∫
K
|∇u(x)|2 dx .

From the Rellich–Kondrachov compactness theorem (e.g., [Evans and Gariepy 1992, Section 4.6]), we
conclude that there exist a subsequence 8N j , numbers C j ∈ R and a certain function F : Supp(µ)→ R

such that, for any compact K ⊂ Supp(µ), the sequence 8N j +C j converges to F in L2(K ). Passing
to another subsequence, which we conveniently denote again by {8N }, and using [Rockafellar 1970,
Theorem 10.9], we may assume that F is convex and that the convergence is locally uniform in Supp(µ).
Thus, from [ibid., Theorem 24.5],

∇8N (x)−→∇F(x) as N →∞ (45)

for almost any x ∈ Supp(µ). However, (∇8N )∗µN = νN . From (iii), (43) and (45) we conclude that
(∇F)∗µ= ν. From the uniqueness of the Brenier map, we deduce that ∇F = ∇8 almost everywhere in
Supp(µ). Since 8 is C2-smooth, we may then apply [ibid., Theorem 25.7] and upgrade (45) to

∇8N (x)−→∇8(x) as N →∞ (46)

locally uniformly in Supp(µ). The convexity arguments in [ibid., Section 25] also give that∇8∗N −→∇8
∗

locally uniformly in Supp(ν). As for the modulus of convexity, we have

ω8N (x; δ)−→ ω8(x; δ) as N →∞ and ω8∗N (y; δ)−→ ω8∗(y; δ) as N →∞ (47)

locally uniformly in the sets {(x, δ) ∈ Supp(µ) × (0,∞) | B(x, δ) ⊂ Supp(µ)} and, respectively,
{(y, δ) ∈ Supp(ν)× (0,∞) | B(y, δ)⊂ Supp(ν)}.

We will now invoke the estimates of Gutierrez and Huang [2000] and Forzani and Maldonado [2004;
2005], which are constructive versions of Caffarelli’s C1,α-regularity theory. Thanks to (iii), (42), (46)
and (47), we are allowed to apply [Gutiérrez and Huang 2000, Theorem 2.1] and [Forzani and Maldonado
2004, Theorem 15] locally near x0. From the latter result, we learn that there exist α, δ, C > 0 such that,
for any x , y ∈ B(x0, δ) and N ≥ 1,

|∇8N (x)−∇8N (y)| ≤ C |x − y|α. (48)
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The function V is locally Lipschitz. From (iii) and [Rockafellar 1970, Theorem 24.5], the sequence {VN }

is uniformly locally Lipschitz. This means that, for any compact subset K ⊂ Supp(µ), the Lipschitz
constant of VN is bounded by some finite number CK , independent of N . Similarly, the sequence {WN }

is also uniformly locally Lipschitz. Together with (46) and (48), we deduce that there exists Ĉ > 0 such
that uN (x)=−VN (x)+WN (∇8N (x)) satisfies

|uN (x)− uN (y)| ≤ Ĉ |x − y|α (x, y ∈ B(x0, δ), N ≥ 1).

Recalling the Monge–Ampère equation (42), we learn that there exists C̃ > 0 such that

|det D28N (x)− det D28N (y)| ≤ C̃ |x − y|α (x, y ∈ B(x0, δ), N ≥ 1).

We are finally in good shape for applying the C2,α-estimates from [Trudinger and Wang 2008, Theorem 3.2].
These estimates yield the existence of C > 0 such that, for any x , y ∈ B(x0, δ/2) and N ≥ 1,

‖D28N (x)− D28N (y)‖H S ≤ C |x − y|α. (49)

The uniform C2,α-estimate in (49) allows us to apply the Arzella–Ascoli theorem. All we need is to let
K = B(x0, δ/2) and observe that∫

K
(18N )ξ =−

∫
K
∇8N · ∇ξ −→−

∫
K
∇8 · ∇ξ =

∫
K
(18)ξ as N →∞,

where ξ is any smooth, compactly supported function in K . Hence, the sequence
{∫

K 18N
}

N≥1 is
bounded and, since D28N is positive-definite, the sequence

{∫
K ‖D

28N‖H S
}

N≥1 is also bounded. From
(49) and the Arzella–Ascoli theorem, there exists a subsequence, still denoted by {8N }, such that
D28N −→ D28 uniformly on K = B(x0, δ/2). �

Remark 5.3. Our proof of Lemma 5.2 does not make any use of the log-concavity of µ and ν. By
inspecting the proof above, we see that Lemma 5.2 holds true as long as V and W are locally Hölder, and
VN , WN are uniformly locally Hölder.

In order to simplify the notation, we denote the sequence {8N j } from Lemma 5.2 by {8N }. Properties
(i), (ii) and (iii) above are still satisfied.

Corollary 5.4. Denote by θN the push-forward of the measure µN under the map x 7→ D28N (x). Then,
for any bounded, continuous function b : M+n (R)→ R,∫

M+n (R)
b dθN −→

∫
M+n (R)

b dθ as N →∞. (50)

Furthermore, if b : M+n (R)→ R is bounded and upper semicontinuous, then

lim sup
N→∞

∫
M+n (R)

b dθN ≤

∫
M+n (R)

b dθ. (51)

Proof. In order to prove (50), we need to show that∫
Rn

b(D28N (x))e−VN (x) dx −→
∫

Rn
b(D28(x))e−V (x) dx as N →∞.
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This follows from Lemma 5.2 and from the dominated convergence theorem, since (43) provides an
integrable majorant. Next, assume that b is bounded and upper semicontinuous. Then, for any x ∈Supp(µ),

lim sup
N→∞

b(D28N (x))e−VN (x) ≤ b(D28(x))e−V (x).

Now (51) follows from Fatou’s lemma, since we have an integrable majorant by (43). �

Proof of Theorem 5.1. Assume first that the locally Lipschitz function F is compactly supported. We
observe that, for any fixed N , assumption (34) holds true. Indeed, we may apply a refinement of
Caffarelli’s contraction theorem [2000] which appears in [Kolesnikov 2010], and thus obtain from (ii)
that, for any x ∈ Rn ,

D28N (x)≥
1

N 2 · Id .

We may therefore apply Proposition 4.2 and conclude that, for any N ≥ 1,∫
M+n (R)

F2 dθN −

(∫
M+n (R)

F dθN

)2

≤ 4
∫

M+n (R)
|∇F |2 dθN .

Recall that |∇F |2 is upper semicontinuous and bounded, while F is continuous and bounded. By taking
the limit as N →∞ and using Corollary 5.4, we obtain that∫

M+n (R)
F2 dθ −

(∫
M+n (R)

F dθ
)2

≤ 4
∫

M+n (R)
|∇F |2 dθ,

and (40) is proven in the case where F is a compactly supported function.

The next step is to prove (40) under the additional assumption that F ∈ L2(θ). To that end, we select a
smooth function θR :M+n (R)→[0, 1] such that θR equals one on B(Id, R) and vanishes outside B(Id, 2R),
with |∇θR| ≤ 2/R. Set FR = θR F . We have just proven that (40) holds true when F is replaced by FR .
Clearly, FR −→ F in L2(θ) as R→∞. All that remains is to show that

lim sup
R→∞

∫
M+n (R)

|∇FR|
2 dθ ≤

∫
M+n (R)

|∇F |2 dθ. (52)

The functions θR and F are continuous, and we may therefore use the Leibnitz rule

|∇FR| ≤ |F ||∇θR| + θR|∇F | ≤ |∇F | + 2|F |/R,

where we interpret |∇F | and |∇FR| in the sense of definition (36). Since F , |∇F | ∈ L2(θ), (52) follows
in the case where F ∈ L2(θ).

Finally, to eliminate the assumption that F is in L2(θ), we replace F by FR =max{−R,min{F, R}},
apply the inequality for FR , and let R tend to infinity. For all but countably many values of R,
the level set {A ∈ M+n (R) | F(A) = R} has zero θ-measure. Consequently, we have the inequality∫
|∇FR|

2 dθ ≤
∫
|∇F |2 dθ for all but countably many values of R, and (40) follows. �
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5B. Second proof: log-concave target measure. In our second proof we will exploit the fact that ν is
log-concave, but we will not require the log-concavity of µ. Throughout this subsection we make the
following additional assumption:

(A) For some p > n, ∫
Rn
|∇V |pe−V dx <∞,

where the derivatives Vi are understood in the logarithmic derivative sense, i.e.,∫
Rn
ξVi dµ=−

∫
Rn
ξi dµ, ξ ∈ C∞c (R

n), i = 1, . . . , n.

By the Morrey embedding theorem (see, e.g., [Evans and Gariepy 1992, Section 4.5]), the function V
is locally Hölder. We will approximate µ and ν by sequences of probability measures µN and νN having
properties (i), (ii) and (iii) from Section 5A. We also require a fourth property:

(i) There exists p > n such that

sup
N

∫
Rn
|∇VN |

pe−VN dx <∞.

The approach outlined in Section 5A — to convolve with a tiny Gaussian and then multiply by the density
of a huge Gaussian — also yields property (iv). Recall that the Brenier map ∇8N between µN and νN is
smooth and that it satisfies (42). The central ingredient of this subsection is the following a priori estimate:

Proposition 5.5. Assume that functions V , W and 8 are smooth on the entire Rn and that ν is a log-
concave measure. Then, for every q ≥ 2, 0 < τ < 1, i = 1, . . . , n, there exists C(q, τ ) > 0 such that∫

Rn
8

q
ii dµ≤ C(q, τ )

(∫
Rn
|Vi |

2q/(2−τ) dµ+
∫

Rn
|xi |

2q/τ dν
)
. (53)

Proof. Assume in addition that D2W ≥ (1/C) · Id, D2V ≤ C · Id. In this case, D28 ≤ C2
· Id. Recall

formula (28):

L(8i i )−8
jk
i 8i jk −

n∑
j,k=1

8 j i8ik W jk ◦∇8=−Vi i ,

which is obtained by differentiating the change of variables formula (22) along xi . Let us multiply this
formula by 8p

ii , p ≥ 0, and formally integrate by parts with respect to µ. Using the convexity of W we
obtain ∫

Vi i8
p
ii dµ≥ p

∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉 dµ+

∫
8

p
ii8

jk
i 8i jk dµ. (54)

Let us justify this formula. To this end, we fix a compactly supported function η ≥ 0 and integrate with
respect to η ·µ:∫

Vi i8
p
iiη dµ

≥

∫
〈(D28)−1

∇η,∇8i i 〉8
p
ii dµ+ p

∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉η dµ+

∫
8

p
ii8

jk
i 8i jkη dµ.
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Applying the Cauchy inequality yields

−

∫
〈(D28)−1

∇η,∇8i i 〉8
p
ii dµ

≤
4
ε

∫
〈(D28)−1

∇η,∇η〉

η
8

p+1
i i dµ+ ε

∫
〈(D28)−1

∇8i i ,∇8i i 〉8
p−1
i i η dµ.

Finally,∫
Vi i8

p
iiη dµ+ 4

ε

∫
〈(D28)−1

∇η,∇η〉

η
8

p+1
i i dµ

≥ (p− ε)
∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉η dµ+

∫
8

p
ii8

jk
i 8i jkη dµ.

Assume that η has the form η = ξ(∇8), where ξ is compactly supported. We obtain∫
Vi i8

p
iiη dµ+ 4C p+2

ε

∫
|∇ξ |2

ξ
dν

≥ (p− ε)
∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉η dµ+

∫
8

p
ii8

jk
i 8i jkη dµ.

It remains to construct a sequence of functions 1 ≥ ξN ≥ 0 satisfying limN ξN (x) = 1 for ν-a.e. x and
limN

∫
|∇ξN |

2/ξN dν = 0. Then, by applying the Fatou lemma we justify (54).
It is helpful to keep in mind that 8 jk

i 8i jk = Tr[(D28)−1/2 D28i (D28)−1/2
]
2
≥ 0. From (54),∫

Vi i8
p
ii dµ≥ p

∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉 dµ.

Let us integrate by parts the left-hand side:
∫

Vi i8
p
ii dµ =

∫
V 2

i 8
p
ii dµ − p

∫
Vi8

p−1
i i 8i i i dµ. The

justification of this integration by parts is much easier, since D28 and D2V are bounded. Applying

2|8i i i Vi | ≤ 2|Vi |
√
8i i · 〈(D28)−1∇8i i ,∇8i i 〉 ≤ V 2

i 8i i +〈(D28)−1
∇8i i ,∇8i i 〉,

one obtains ∫
V 2

i 8
p
ii dµ≥

∫
8

p−1
i i 〈(D

28)−1
∇8i i ,∇8i i 〉 dµ. (55)

Let us show that the right-hand side controls powers of the second derivative 8i i . Indeed, for every
q ≥ 2 and ε > 0, 0≤ τ ≤ 1, the following estimate holds:∫

8
q
ii dµ=−(q − 1)

∫
8i8i i i8

q−2
i i dµ+

∫
8i Vi8

q−1
i i dµ

≤ ε

∫
82

i8
q−τ
i i dµ+

(q − 1)2

4ε

∫
8

q−3+τ
i i 〈(D28)−1

∇8i i ,∇8i i 〉 dµ

+
q − 1

q

∫
8

q
ii dµ+

1
q

∫
|8i Vi |

q dµ.
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Finally,∫
8

q
ii dµ≤

∫
|8i Vi |

q dµ+ qε
∫
82

i8
q−τ
i i dµ+

q(q − 1)2

4ε

∫
8

q−3+τ
i i 〈(D28)−1

∇8i i ,∇8i i 〉 dµ

≤

∫
|8i Vi |

q dµ+ qε
∫
82

i8
q−τ
i i dµ+

q(q − 1)2

4ε

∫
8

q−2+τ
i i V 2

i dµ.

Applying the Hölder inequalities

82
i8

q−τ
i i ≤

q − τ
q

8
q
ii +

τ

q
|8i |

2q/τ ,

8
q−2+τ
i i V 2

i ≤ ε8
q
ii +C(ε, q, τ )|Vi |

2q/(2−τ),

|8i Vi |
q
≤

1
2(2− τ)|Vi |

2q/(2−τ)
+

1
2τ |8i |

2q/τ ,

choosing a sufficiently small ε, and applying the change of variables formula
∫
|8i |

q dµ=
∫
|xi |

q dν,
we easily obtain the claim.

Finally, let us get rid of the assumption that D2W ≥ (1/C)·Id, D2V ≤C ·Id. To this end we approximate
µ and ν by measures with smooth potentials satisfying D2WN ≥ (1/CN ) · Id, D2VN ≤ CN · Id satisfying
limN

∫
|(VN )i |

2q dµN =
∫
|Vi |

2q dµ and limN
∫
|xi |

2q dνN =
∫
|xi |

2q dν. It remains to show that the
weak Lq(µ)-limit of (8N )i i coincides with8i i . The latter can be easily shown with the help of integration
by parts and identifications of the pointwise limit limN ∇8N with ∇8 (see the proof of Lemma 5.2). �

Remark 5.6. The conclusion of Proposition 5.5 holds without any additional smoothness assumptions.
This can be verified by smooth approximations (again, see [Kolesnikov 2013] for details). Finally, we see
that (53) holds for every log-concave measure ν and measure µ satisfying

∫
|Vi |

2q/(2−τ) dµ <∞, where
Vi is the logarithmic derivative of µ along xi .

Second proof of Lemma 5.2. Let us demonstrate how Proposition 5.5 implies (48) above without appealing
to the works by Forzani and Maldonado [2004; 2005] and Gutierrez and Huang [2000] related to Caffarelli’s
C1,α-regularity theory. We know that supN

∫
|∇VN |

pe−VN dx <∞, p > n. Since ν is log-concave, all
the moments of ν are finite. Thus, Proposition 5.5 implies

sup
N

∫
‖D28N‖

p′
H Se−VN dx <∞

for any n < p′ < p. Applying the fact that the VN are uniformly locally bounded from below, we see
that supN

∫
BR
‖D28N‖

p′
H S dx <∞ for every R. The result then follows from the Morrey embedding

theorem. �

6. Corollaries to Theorem 5.1

Proof of Theorem 1.2. For A ∈ M+n (R), define

F(A)= f (log λ1(A), . . . , log λn(A)),
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where 0<λ1(A)≤ · · · ≤ λn(A) are the eigenvalues of A. According to Lemma 2.4, for any A ∈ M+n (R),

|∇F |(A)≤ |∇ f |(log λ1(A), . . . , log λn(A)). (56)

Since f is locally Lipschitz and the eigenvalues vary continuously with the matrix A, (56) implies
that F is locally Lipschitz. Denote by θ the push-forward of the probability measure µ under the map
x 7→ D28(x). Since E| f (3(X))| <∞, F ∈ L1(θ). Since E|∇ f |2(3(X)) <∞,

∫
|∇F |2 dθ <∞. We

may apply Theorem 5.1 and conclude that∫
M+n (R)

F2 dθ −
(∫

M+n (R)
F dθ

)2

≤ 4
∫

M+n (R)
|∇F |2 dθ.

The left-hand side equals Var[ f (3(X))]. Glancing at (56), we thus obtain

Var[ f (3(X))] ≤ 4E|∇ f |2(3(X)),

and the proof is complete. �

Proof of Theorem 1.1. Substitute f (x) = xi in Theorem 1.2. Then f is a 1-Lipschitz function, and
by Remark 1.4 we have E| f (3(X))| < ∞. Thus, the application of Theorem 1.2 is legitimate, and
Theorem 1.1 follows. �

Proof of Theorem 1.5. The argument is almost identical to the proof of Theorem 1.1, with Lemma 2.3
replacing Lemma 2.4. �

Let us end this paper with a few remarks concerning future research. If we make further assumptions
regarding the log-concave measures in question, it should be possible to prove concentration inequalities
for the eigenvalues of D28 themselves and not only for their logarithms. For example, there is a soft
argument which shows that, when ∇8 is the Brenier map between the uniform measure on K and the
uniform measure on T , ∫

K
18≤ nV (K , . . . , K , T ),

where V stands for mixed volume. The details will be discussed elsewhere. Another possible research
direction is to investigate whether phenomena similar to Theorem 1.1 occur also in a nonlinear setting,
when transporting measures with convexity properties supported on Riemannian manifolds.
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