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We show that operators of layer potential type on surfaces that are locally graphs of Lipschitz functions
with gradients in vmo are equal, modulo compacts, to pseudodifferential operators (with rough symbols),
for which a symbol calculus is available. We build further on the calculus of operators whose symbols
have coefficients in L1\ vmo, and apply these results to elliptic boundary problems on domains with
such boundaries, which in turn we identify with the class of Lipschitz domains with normals in vmo. This
work simultaneously extends and refines classical work of Fabes, Jodeit and Rivière, and also work of
Lewis, Salvaggi and Sisto, in the context of C 1 surfaces.
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1. Introduction

We produce a symbol calculus for a class of operators of layer potential type, of the form

Kf .x/D PV
Z
@�

k.x; x�y/f .y/ d�.y/; x 2 @�; (1.1)

in the following setting. First,

k 2 C1.RnC1 � .RnC1 n 0// (1.2)

with k.x; z/ homogeneous of degree �n in z and k.x;�z/D�k.x; z/. Next, �� RnC1 is a bounded
Lipschitz domain with a little extra regularity. Namely, � is locally the upper graph of a function
'0 W R

n! R satisfying

r'0 2 L
1.Rn/\ vmo.Rn/: (1.3)

We say � is a Lip\ vmo1 domain.
Since we will be dealing with a number of variants of BMO, we recall some definitions. First,

BMO.Rn/ WD ff 2 L1loc.R
n/ W f #

2 L1.Rn/g; (1.4)

where

f #.x/ WD sup
B2B.x/

1

V.B/

Z
B

jf .y/�fB j dy; (1.5)

with B.x/ WD fBr.x/ W 0 < r <1g, Br.x/ being the ball centered at x of radius r , and fB the mean
value of f on B . There are variants giving the same space. For example, one could use cubes containing
x instead of balls centered at x, and one could replace fB in (1.5) by cB , chosen to minimize the integral.
We set

kf kBMO WD kf
#
kL1 : (1.6)

This is not a norm, since kckBMO D 0 if c is a constant; it is a seminorm. The space bmo.Rn/ is defined
by

bmo.Rn/ WD ff 2 L1loc.R
n/ W #f 2 L1.Rn/g; (1.7)

where
#f .x/ WD sup

B2B1.x/

1

V.B/

Z
B

jf .y/�fB j dyC
1

V.B1.x//

Z
B1.x/

jf .y/j dy (1.8)
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with B1.x/ WD fBr.x/ W 0 < r � 1g. We set

kf kbmo WD k
#f kL1 : (1.9)

This is a norm, and bmo.Rn/ has good localization properties.
Now, VMO.Rn/ is the closure in BMO.Rn/ of UC.Rn/\BMO.Rn/, where UC.Rn/ is the space of

uniformly continuous functions on Rn, and vmo.Rn/ is the closure in bmo.Rn/ of UC.Rn/\ bmo.Rn/.
One can use local coordinates and partitions of unity to define bmo.M/ and vmo.M/ on a class of
Riemannian manifolds M (see [Taylor 2009]). See also Appendix C of this paper for a discussion of
BMO.M/ and VMO.M/ on spaces M of homogeneous type. If M is compact, BMO.M/ coincides
with bmo.M/ and VMO.M/ coincides with vmo.M/.

With this in mind, � could be an open set in a compact .nC1/-dimensional Riemannian manifold
M , whose boundary, in local coordinates on M , is locally a graph as in (1.3), and k.x; x � y/ in (1.1)
could be the integral kernel of a pseudodifferential operator on M of order �1 with odd symbol. In fact,
lower-order terms in k.x; x�y/ yield weakly singular integral operators on functions on Lp.@�/, which
are compact on Lp.@�/, for 1<p <1, on elementary grounds. Thus it suffices for the principal symbol
to have this property.

The analysis of operators of the form (1.1) as bounded operators on Lp.@�/ for p 2 .1;1/, together
with nontangential maximal function estimates for

Kf .x/D

Z
@�

k.x; x�y/f .y/ d�.y/; x 2 RnC1 n @�; (1.10)

and nontangential convergence, was done for general Lipschitz domains in [Coifman et al. 1982], carrying
through the breakthrough initiated in [Calderón 1977], at least for k D k.x�y/.

Also key was [Fabes et al. 1978], which treated (1.1) (again with kDk.x�y/) when� has a C 1 bound-
ary and gave some applications to PDE. These applications involved looking at double layer potentials

Kdf .x/D PV
Z
@�

�.x/ � .x�y/E.x�y/f .y/ d�.y/; x 2 @�; (1.11)

where �.x/ is the unit normal to @� and E.z/ D cnjzj
�.nC1/. Such an operator is of the form

Kdf .x/D �.x/ �Kf .x/, whereK is as in (1.1) with k.z/D zE.z/ vector-valued. In [Fabes et al. 1978] it
was shown thatKd is compact when� is a bounded domain of class C 1. (See Section 3D of this paper for
a proof that Kd is compact more generally when � is a bounded Lip\ vmo1 domain.) This compactness
was applied to the Dirichlet problem for the Laplace operator on bounded C 1 domains. In fact, if

Kdf .x/D

Z
@�

�.x/ � .x�y/E.x�y/f .y/ d�.y/; x 2�; (1.12)

one has
Kdf j@� D

�
1
2
I CKd

�
f; (1.13)

so solving the Dirichlet problem �uD 0 on �, uj@� D g, in the form uD Kdf , leads to solving�
1
2
I CKd

�
f D g; (1.14)
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and the compactness of Kd implies 1
2
I CKd is Fredholm of index 0.

For a general bounded Lipschitz domain �� RnC1, (1.12)–(1.14) still hold but Kd is typically not
compact. However, it was shown in [Verchota 1984] that 1

2
I CKd is still Fredholm of index 0, using

Rellich identities as a tool. This led to much work on other elliptic boundary problems, including boundary
problems for the Stokes system, linear elasticity systems, and the Hodge Laplacian. In [Mitrea and Taylor
1999] a program was initiated that extended the study of (1.1) from k D k.x�y/ to k D k.x; x�y/, a
development that enabled the authors to work on Lipschitz domains in Riemannian manifolds. This led
to a series of papers, including [Mitrea and Taylor 2000; Mitrea et al. 2001], in which variants of Rellich
identities also played major roles.

Meanwhile, [Hofmann 1994] established compactness of Kd in (1.11) when �� RnC1 is a bounded
VMO1 domain, i.e., its boundary is locally a graph of a function '0 satisfying

r'0 2 VMO.Rn/; (1.15)

which is weaker than (1.3). This led [Hofmann et al. 2010] to establish compactness of a somewhat
broader class of operators called regular SKT domains, not just VMO1 domains; this class was introduced
by [Semmes 1991; Kenig and Toro 1997], who called them chord–arc domains with vanishing constant.
This was applied in [Hofmann et al. 2010] to the Dirichlet boundary problem for the Laplace operator, on
regular SKT domains in Riemannian manifolds, and also to a variety of boundary problems for other
second-order elliptic systems.

In these works on various elliptic boundary problems, both on Lipschitz domains and on regular SKT
domains, each elliptic system seemed to need a separate treatment. This is in striking contrast to the
now-standard theory of regular elliptic boundary problems on smoothly bounded domains for operators
with smooth coefficients. Such cases yield operators of the form (1.1) that are pseudodifferential operators
on @�, for which a symbol calculus is effective to power the analysis. One can, for example, see the
treatment of regular elliptic boundary problems in [Taylor 1996, Chapter 7, §12].

Our goal here is to develop a symbol calculus for operators of the form (1.1) in Lip\ vmo1 domains,
and to apply this symbol calculus to the analysis of some elliptic boundary problems.

We work in local graph coordinates, in which (1.1) takes the form

Kf .x/D PV
Z

Rn
k.'.x/; '.x/�'.y//f .y/†.y/ dy; x 2 Rn; (1.16)

where '.x/D .x; '0.x// with '0 W Rn! R as in (1.3). In fact, we allow '0 W R
n! R`. The surface area

element d�.y/ equals †.y/ dy. Our first major result is that, with K# given by

K#f .x/D PV
Z

Rn
k.'.x/;D'.x/.x�y//f .y/†.y/ dy; x 2 Rn; (1.17)

we have

K �K# compact on Lp.B/ (1.18)
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for p 2 .1;1/, for any ball B � Rn. Then, as we show, K#f D p.x;D/.†f /, with

p.x;D/ 2 OP.L1\ vmo/S0cl.R
n/; (1.19)

a class of pseudodifferential operators studied in [Taylor 2000] and shown to have a viable symbol
calculus. Definitions and basic results are given in Appendix C of this paper. The proof of (1.18), given
in Section 2, makes essential use of results in [Hofmann 1994] and further material in [Hofmann et al.
2010].

Since (1.16) and (1.17) are given in local graph coordinates, it is important to record how operators are
related when represented in two different such coordinates and how a symbol can be associated to such
an operator independently of the coordinate representation. These matters are handled in Section 3.

In connection with this, we mention work of Lewis, Salvaggi and Sisto [Lewis et al. 1993], providing
such an analysis on C 1 manifolds. In particular, (1.18) (for ' 2 C 1) plays a central role there. In that
work, the function k.x; z/ is required to be analytic in z 2 RnC1 n f0g. The need for such analyticity
arises from technical issues, which we can overcome here thanks to the advances in [Hofmann 1994;
Hofmann et al. 2010]. One desirable effect of not requiring such analyticity is that our results readily
allow for microlocalization. Though we do not pursue microlocal analysis on boundaries of Lip\ vmo1
domains here, we are pleased to advertise the potential to pursue such analysis.

The structure of the rest of this paper is as follows. Section 2 is devoted to a proof of the basic result
(1.18). Section 3 builds on this to produce a symbol calculus, making essential use of results on operators
of the form (1.19), recalled in Appendix C. Section 4 applies these results to some boundary problems
for elliptic systems on Lip\ vmo1 domains. These include the Dirichlet problem for a general class of
second-order, strongly elliptic systems and a class of oblique derivative problems. We also produce a
general result on regular boundary problems for first-order elliptic systems, and show how this plays out
for the Hodge–Dirac operator d C ı acting on differential forms.

A set of appendices deals with auxiliary results. Appendix A gives material used in Section 2A.
Appendix B gives a detailed analysis of just how a principal value integral like (1.1) works for such domains
as we consider here. Appendix C reviews material on the class of pseudodifferential operators (1.19).
Appendix D reviews matters related to BMO.M/ and VMO.M/ when M is a space of homogeneous
type. Appendix E proves that a bounded domain � � RnC1 is locally the upper-graph of a function
satisfying (1.3) if and only if its outward unit normal belongs to VMO.@�/.

2. From layer potential operators to pseudodifferential operators

The primary goal of this section is to establish the compactness of the difference between a singular
integral operator K of layer potential type as in (1.1) and a related operator K#, which belongs to the class
of pseudodifferential operators OP.L1\ vmo/S0cl, a class that is reviewed in Appendix C. We proceed
in stages.

2A. General local compactness results. Below, the principal value integrals PV
R

are understood in the
sense of removing small balls centered at the singularity and passing to the limit by letting their radii
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approach zero; for a more flexible view on this topic see the discussion in Appendix B. We begin by
recalling the following local compactness result:

Theorem 2.1. Assume ' W Rn! R and  W Rn! Rm are two locally integrable functions satisfying

r' 2 vmo.Rn/; D 2 bmo.Rn/; (2A.1)

and set
�.x; y/ WD '.x/�'.y/�r'.x/.x�y/; x; y 2 Rn: (2A.2)

Given F W Rm! R smooth (of a sufficiently large order M DM.m; n/ 2 N), even on Rm and such that

jF.w/j � C.1Cjwj/�1 for every w 2 Rm (2A.3)

and @˛F 2 L1.Rm/ whenever j˛j �M; (2A.4)

consider the principal value integral operator

Tf .x/ WD PV
Z

Rn
jx�yj�.nC1/F

�
 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; x 2 Rn; (2A.5)

and the associated maximal operator

T�f .x/ WD sup
">0

ˇ̌̌̌Z
y2Rn

jx�yj>"

jx�yj�.nC1/F

�
 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy

ˇ̌̌̌
; x 2 Rn: (2A.6)

Then for each p 2 .1;1/ there exists Cn;p 2 .0;1/ such that

kT�f kLp.Rn/ � Cn;p

� X
j˛j�M

k@˛F kL1.Rm/C sup
w2Rm

�
.1Cjwj/jF.w/j

��
�kr'kBMO.Rn/.1CkD kBMO.Rn//

N
kf kLp.Rn/ (2A.7)

for every f 2 Lp.Rn/. Also, with BR abbreviating B.0;R/ WD fx 2 Rn W jxj < Rg, it follows that for
each R 2 .0;1/ and p 2 .1;1/ the operator

T W Lp.BR/ �! Lp.BR/ is compact: (2A.8)

This result is given in [Hofmann et al. 2010, Theorem 4.34, p. 2725 and Theorem 4.35, p. 2726]. As
noted there, the analysis behind it is from [Hofmann 1994]. Of course, there is a natural analogue of
Theorem 2.1 when the function ' is vector-valued (implied by the scalar case by working componentwise).
Here, the goal is to prove the following version of Theorem 2.1:

Theorem 2.2. Suppose ' W Rn! R and  W Rn! Rm are two locally integrable functions satisfying

r' 2 vmo.Rn/; D 2 L1.Rn/; (2A.9)

and let the symbol �.x; y/ retain the same significance as in (2A.2). Given an even, real-valued function
F 2 CM .Rk/ (for a sufficiently large M 2 N) along with some matrix-valued function

A W Rn �! Rk�m; A 2 L1.Rn/; (2A.10)
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consider the principal value singular integral operator

TAf .x/ WD PV
Z

Rn
jx�yj�.nC1/F

�
A.x/

 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; x 2 Rn: (2A.11)

Then for each R 2 .0;1/ and p 2 .1;1/ the operator

TA W L
p.BR/ �! Lp.BR/ is compact: (2A.12)

Once again, there is a natural analogue of Theorem 2.2 when the function ' is vector-valued (implied
by the scalar case by working componentwise).

Proof of Theorem 2.2. Fix a finite number

R� > kD kL1.Rn/ (2A.13)

and abbreviate B� WD fw 2 Rm W jwj<R�g. Also, select a real-valued function � satisfying

� 2 C1.Rm/; � even in Rm; supp ��B�; �.z/D 1 whenever jzj � kD kL1.Rn/: (2A.14)

To proceed, let f#j gj2N � L
2.B�/ denote an orthonormal basis of L2.B�/ consisting of real-valued

eigenfunctions of the Dirichlet Laplacian in B� (as discussed in Appendix A). For x 2 Rn, we can write
in L2.B�/ and for a.e. z 2 B�,

F.A.x/z/D
X
j2N

bj .x/#j .z/; (2A.15)

where, for each j 2 N, we have set

bj .x/ WD

Z
B�

F.A.x/z/#j .z/ dz; x 2 Rn: (2A.16)

To estimate the bj , fix j 2 N, x 2 Rn, and observe that for each N 2 N we may write

�Nj jbj .x/j D

ˇ̌̌̌Z
B�

F.A.x/z/..��/N#j /.z/ dz

ˇ̌̌̌
D

ˇ̌̌̌Z
B�

.��z/
N ŒF .A.x/z/�#j .z/ dz

ˇ̌̌̌
� CN kAk

2N
L1.Rn/

˚
sup

jwj�R�kAkL1.Rn/
j˛jD2N

j.@˛F /.w/j
	
k#j kL1.B�/

� CA;F;R�;N j
1=2C2=n (2A.17)

by (A.9). In light of (A.8) this ultimately shows that for each N 2 N there exists a constant CN 2 .0;1/
such that

kbj kL1.Rn/ � CN j
�N for all j 2 N: (2A.18)
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Moving on, we note that combining (2A.15) with its version written for �z in place of z, and keeping
in mind that F is even, yields

F.A.x/z/D
X
j2N

bj .x/z#j .z/; (2A.19)

where, for each j 2 N, we have set

z#j .z/ WD
1
2
.#j .z/C#j .�z//; z 2 B�: (2A.20)

In particular, for each j 2 N,

z#j 2 C1loc.B�/ is even, vanishes on @B�; and satisfies ��z#j D �j z#j in B�: (2A.21)

Multiplying both sides of (2A.19) with the cut-off function � from (2A.14) then finally yields

�.z/F.A.x/z/D
X
j2N

bj .x/Fj .z/; x 2 Rn; z 2 Rm; (2A.22)

where, for each j 2 N, we have set

Fj .z/ WD �.z/z#j .z/; z 2 Rm; (2A.23)

naturally viewed as zero outside B�. Hence, for each j 2 N,

Fj 2 C1.Rm/ is an even function supported in B�; (2A.24)

and (A.11) implies that for every multi-index ˛ 2 Nm0 there exists a constant Cm;˛ 2 .0;1/ such that

k@˛Fj kL1.Rm/ � Cm;˛j
1=2C2=n: (2A.25)

Since

z D
 .x/� .y/

jx�yj
H) jzj � kD kL1.Rm/ H) �.z/D 1; (2A.26)

we deduce from (2A.22) that

TAf .x/D
X
j2N

bj .x/Tjf .x/; (2A.27)

where, for each j 2 N, we have set

Tjf .x/ WD PV
Z

Rn
jx�yj�.nC1/Fj

�
 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; x 2 Rn: (2A.28)

At this stage, Theorem 2.1 applies to each operator Tj . In concert, estimates (2A.7) and (2A.25) yield
a polynomial bound in j 2 N on the operator norms of Tj on Lp.Rn/. Then, in the context of the
expansion (2A.27), the rapid decrease (2A.18) implies the desired compactness on Lp.BR/ for TA for
each R 2 .0;1/ and p 2 .1;1/. �
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It is possible to prove Theorem 2.2 using the Fourier transform in place of spectral methods, based
on Dirichlet eigenfunction decompositions. We shall do so below and, in the process, derive further
information about the family of truncated operators (indexed by " > 0)

TA;"f .x/ WD

Z
fy2RnWjx�yj>"g

jx�yj�.nC1/F

�
A.x/

 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; (2A.29)

where x 2 Rn, including the pointwise a.e. existence of the associated principal value singular integral
operator.

Theorem 2.3. For each ">0 let TA;" be as in (2A.29), where �.x; y/ is defined as in (2A.2) for a function
' W Rn! R satisfying r' 2 BMO.Rn/, A 2L1.Rn/ is a k�m matrix-valued function,  W Rn! Rm is
Lipschitz, and F 2 CM .Rk/ is even.

Then, if M DM.m; n/ 2 N is large enough, there is a positive M0 <1 such that, for 1 < p <1,

sup
">0

kTA;"f kLp.Rn/ �
sup
">0

jTA;"f j

Lp.Rn/

� C0.1Ckr kL1.Rn//
M0kr'kBMO.Rn/kf kLp.Rn/;

(2A.30)
where the constant C0 depends on kAk1, p, n, m, k and kF kCM .B.0;kAk1R�// with

R� WD 2.kr k1C 1/: (2A.31)

Moreover,

r' 2 VMO.Rn/ H) lim
"!0C

TA;"f .x/ exists for a.e. x 2 Rn for all f 2 Lp.Rn/: (2A.32)

In fact, a more general result of this nature holds. Specifically, if B W Rn! Rm
0

is a bi-Lipschitz function
and if , for each, " > 0 we set

TA;B;"f .x/ WD

Z
fy2RnWjB.x/�B.y/j>"g

jx�yj�.nC1/F

�
A.x/

 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; (2A.33)

where x 2 Rn, then

r' 2 VMO.Rn/ H) lim
"!0C

TA;B;"f .x/ exists for a.e. x 2 Rn for all f 2 Lp.Rn/: (2A.34)

We shall prove estimate (2A.30) by reducing it to the scalar-valued case kDmD 1, with A� 1, which
is Theorem 1.10 in [Hofmann 1994]. Given (2A.30), for ' 2 vmo.Rn/ one then gets local compactness
(as in the statement of Theorem 2.2: compare (2A.12)) of the associated principal value operator by the
usual methods.

Proof of Theorem 2.3. For z 2 Rm, set Fx.z/ WD F.A.x/z/. Note that, since A 2 L1, we have that
Fx. � / 2 CM with

sup
0�j�M

kr
jFx. � /kL1.B/ controlled uniformly in x for every ball B � Rm: (2A.35)

Moreover, as before, we may suppose that

Fx. � / is supported in the ball B.0;R�/� Rm for every x 2 Rn; (2A.36)
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where R� is as in (2A.31). For notational convenience, we normalize F so that

sup
0�j�M

kr
jF. � /kL1.B.0;kAk1R�// D 1: (2A.37)

We may write

Fx.z/D c

Z
Rm

yFx.�/ cos.z � �/ d�; (2A.38)

where yFx is the Fourier transform of Fx , and we observe that, by standard estimates for the Fourier
transform and our normalization of F from (2A.37),

ess sup
x2Rn

j yFx.�/j � CR
m
� .1Cj�j/

�M : (2A.39)

Let � 2 C10 .�2; 2/ be an even function with �� 1 on Œ�1; 1� and, for � 2 Rm, t 2 R, set

E�.t/ WD cos.t/�
�

t

.1Cj�j/R�

�
: (2A.40)

Observe that, for z 2 B.0;R�/� Rm, we may replace cos.z � �/ by E�.z � �/ in (2A.38). In concert with
(2A.29) and (2A.38), this permits us to write

TA;"f .x/D

Z
fy2RnWjx�yj>"g

jx�yj�.nC1/F

�
A.x/

 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy

D c

Z
Rm

yFx.�/

�Z
fy2RnWjx�yj>"g

jx�yj�.nC1/E�

�
� �
 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy

�
d�

D c

Z
Rm
.1Cj�j/M�N yFx.�/T�;"f .x/ d�;

(2A.41)
where

T�;"f .x/ WD

Z
fy2RnWjx�yj>"g

jx�yj�.nC1/ zE�

�
� �
 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy (2A.42)

and, with N a large number to be chosen later,

zE�.t/ WD .1Cj�j/
N�ME�.t/ for all t 2 R: (2A.43)

In turn, from (2A.41) and (2A.39) we deduce thatsup
">0

jTA;"f j

Lp.Rn/

� CRm�

Z
Rm
.1Cj�j/�N

sup
">0

jT�;"f j

Lp.Rn/

d�; (2A.44)

We now set

N WDM � 2 (2A.45)

and note that this choice ensures that, for all nonnegative integers j ,ˇ̌̌̌�
d

dt

�j
zE�.t/

ˇ̌̌̌
� Cj .1Cj�j/

�2

�
1

1Cjt j=..1Cj�j/R�/

�2
� CjR

2
�.1Cjt j/

�2;
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where the constant Cj may depend on j but is independent of �. By [Hofmann 1994, Theorem 1.10,
p. 470] applied to the scalar-valued Lipschitz function � � , we then have that, for some M1 <1,sup

">0

jT�;"f .x/j

L
p
x .Rn/

� CR2�.1Cj�jR�/
M1kr'kBMO.Rn/kf kLp.Rn/: (2A.46)

Plugging the latter estimate into (2A.44) and finally choosing

M WDM1CmC 3; (2A.47)

we obtain (2A.30) thanks to (2A.45).
Finally, it remains to consider the issue of the existence of the limits in (2A.32) and (2A.34). We treat

in detail the former, since the argument for the latter is similar, granted our results in Appendix B. To
justify (2A.32), make the standing assumption that

r' 2 VMO.Rn/ (2A.48)

and recall from (2A.41), (2A.45) that

TA;"f .x/D c

Z
Rm
.1Cj�j/2 yFx.�/T�;"f .x/ d�; (2A.49)

where T�;"f .x/ is as in (2A.42). To proceed, observe that, for each f 2 Lp.Rn/,

sup
">0

ˇ̌
.1Cj�j/2 yFx.�/T�;"f .x/

ˇ̌
2 L1� .R

m/ for a.e. fixed x 2 Rn: (2A.50)

To see that this is the case, use Minkowski’s inequality along with (2A.39) and (2A.46) to estimate�Z
Rn

�Z
Rm

sup
">0

j.1Cj�j/2 yFx.�/T�;"f .x/j d�

�p
dx

�1
p

�

Z
Rm

sup
">0

j.1Cj�j/2 yFx.�/T�;"f .x/j

L
p
x .Rn/

d�

�

Z
Rm
.1Cj�j/2Œess sup

x2Rn
j yFx.�/j�

sup
">0

jT�;"f .x/j

L
p
x .Rn/

d�

� CRmC2� kr'kBMO.Rn/kf kLp.Rn/

Z
Rm
.1Cj�j/2�M .1Cj�jR�/

M1 d� <C1; (2A.51)

thanks to (2A.47). With (2A.51) in hand, the claim in (2A.50) readily follows. Next, granted (2A.48), we
claim that for each fixed function f 2 Lp.Rn/ the following holds:

for each fixed � 2 Rm; lim
"!0C

T�;"f .x/ exists for a.e. x 2 Rn: (2A.52)

Given that we have already established (2A.30), this may be justified along the lines of the proof of
Theorem 5.11, pp. 500–501 in [Hofmann 1994], based on Proposition B.2 and keeping in mind that VMO
functions may be approximated in the BMO norm by continuous functions with compact support, which,
in turn, are uniformly approximable by functions in C10 .
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In concert with the uniform integrability property (2A.50), the existence of the limit in (2A.52) makes
it possible to use Lebesgue’s dominated convergence theorem in order to write that, for a.e. x 2 Rn,

lim
"!0C

TA;"f .x/D c lim
"!0C

Z
Rm
.1Cj�j/2 yFx.�/T�;"f .x/ d�

D c

Z
Rm
.1Cj�j/2 yFx.�/ lim

"!0C
T�;"f .x/ d�: (2A.53)

This proves the claim in (2A.32) and finishes the proof of the theorem. �

2B. The local compactness of the remainder. Let ' W Rn! RnC` be a Lipschitz map of “graph” type,
i.e., assume that

'.x/D .x; '0.x// for all x 2 Rn; (2B.1)

for some
'0 W R

n
�! R` Lipschitz: (2B.2)

Note that this implies
j'.x/�'.y/j � jx�yj for all x; y 2 Rn: (2B.3)

Let

k W RnC` n f0g ! R be a smooth function, positive, homogeneous of degree �n
and satisfying k.�w/D�k.w/ for all w 2 RnC` n f0g.

(2B.4)

Then

Kf .x/ :D PV
Z

Rn
k.'.x/�'.y//f .y/ dy

D PV
Z

Rn
jx�yj�nk

�
'.x/�'.y/

jx�yj

�
f .y/ dy; x 2 Rn; (2B.5)

defines a bounded operator on Lp.Rn/ for each p 2 .1;1/. We aim to establish a finer structure when
' 2 C 1.Rn/ or, more generally, when the Jacobian D' of ' satisfies

D' 2 L1.Rn/\ vmo.Rn/: (2B.6)

Namely, we set
R WDK �K0; (2B.7)

with

K0f .x/ WD PV
Z

Rn
k.D'.x/.x�y//f .y/ dy; x 2 Rn: (2B.8)

Note that (2B.3) implies jD'.x/zj � jzj for all z 2 Rn. We have

' 2 C 1.Rn/ H) K0 2 OP C 0S0cl;

D' 2 L1.Rn/\ vmo.Rn/ H) K0 2 OP.L1\ vmo/S0cl:
(2B.9)

The latter class is studied in [Taylor 2000, Chapter 1, §11] and, for the reader’s convenience, useful
background material on this topic is presented in Appendix C. See Theorem 2.6 for a derivation of the
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second part of (2B.9) in a more general setting. As for the “remainder” R in (2B.7), we have

Rf .x/D PV
Z

Rn
r.x; y/f .y/ dy; x 2 Rn; (2B.10)

where

r.x; y/ WD k.'.x/�'.y//� k.D'.x/.x�y//D

Z 1

0

r� .x; y/ d�; (2B.11)

with
r� .x; y/ :D .rk/.'.x/�'.y/C ��.x; y// ��.x; y/;

�.x; y/ :D '.x/�'.y/�D'.x/.x�y/:
(2B.12)

The following is our first major result:

Theorem 2.4. Let ' be as in (2B.1)–(2B.2), suppose k is as in (2B.4) and define R as in (2B.7), where
K, K0 are as in (2B.5) and (2B.8), respectively. Finally, assume that (2B.6) holds. Then, for each ball
B � Rn and p 2 .1;1/, the operator

R W Lp.B/ �! Lp.B/ is compact. (2B.13)

In the case when ' 2 C 1.Rn/ and D' has a modulus of continuity satisfying a Dini condition, the
compactness result (2B.13) is straightforward. See [Taylor 2000, Chapter 3, §4].

Proof of Theorem 2.4. Note that

RD

Z 1

0

R� d�; (2B.14)

interpreted as a Bochner integral, with

R�f .x/ WD PV
Z

Rn
r� .x; y/f .y/ dy; x 2 Rn; (2B.15)

and the integral kernel r� .x; y/ as in (2B.12). Given this, and bearing in mind that the collection of
compact operators on Lp.B/ is a closed linear subspace of L.Lp.B/; Lp.B//, it suffices to show that
each operator R� has the compactness property (2B.13).

With this goal in mind, for each � 2 Œ0; 1� observe that the operator R� has the form

R�f .x/D PV
Z

Rn
jx�yj�.nC1/F

�
D'.x/.x�y/C ��.x; y/

jx�yj

�
�.x; y/f .y/ dy (2B.16)

with �.x; y/ as in (2B.12) and F WD rk. Note that the argument of F in (2B.23) is

D'.x/.x�y/C ��.x; y/D .x�y;D'0.x/.x�y/C ��0.x; y//; (2B.17)

with '0 as in (2B.1)–(2B.2) and �0.x; y/ as in (2B.12), but with ' replaced by '0. In particular, there
exists a constant C 2 .1;1/ such that

1�
jD'.x/.x�y/C ��.x; y/j

jx�yj
� C (2B.18)
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for all x, y 2 Rn and all � 2 Œ0; 1�. As such, we can alter the function F.w/ at will off the set
fw 2 RnC` W 1� jwj � C g and arrange that

F 2 C10 .R
nC`/ (2B.19)

while keeping F even.
Moving on, observe that another way of looking at the argument of F in (2B.23) is to write

D'.x/.x�y/C ��.x; y/D �.'.x/�'.y//C .1� �/D'.x/.x�y/

D Œ�'.x/C .1� �/D'.x/x�� Œ�'.y/C .1� �/D'.x/y�

D A� .x/. .x/� .y//; (2B.20)

with
A� .x/ WD

�
�I .1� �/D'.x/

�
(2B.21)

and

 .x/ WD

�
'.x/

x

�
;  W Rn �! R2nC`: (2B.22)

The bottom line is that for each � 2 Œ0; 1� we have

R�f .x/D PV
Z

Rn
jx�yj�.nC1/F

�
A� .x/

 .x/� .y/

jx�yj

�
�.x; y/f .y/ dy; x 2 Rn; (2B.23)

where A� ,  are as in (2B.21)–(2B.22) and we can assume F is even and satisfies (2B.19). Granted this,
Theorem 2.2 applies and yields that each R� has the compactness property (2B.13). �

2C. A variable coefficient version of the local compactness theorem. Here the goal is to work out a
variable coefficient version of Theorem 2.4 by treating the following class of operators. Let k be in
C1.RnC` � .RnC` n 0//. Suppose k.w; z/ is odd in z and homogeneous of degree �n in z. In addition,
assume bounds

jD˛wD
ˇ
z k.w; z/j � C˛ˇ jzj

�n�jˇ j: (2C.1)

We take ' W Rn! RnC` as in (2B.1)–(2B.2), (2B.6), and consider

Kf .x/ WD PV
Z

Rn
k.'.x/; '.x/�'.y//f .y/ dy; x 2 Rn: (2C.2)

To analyze this type of singular integral operator with variable coefficient kernel, it is convenient to expand

k.w; z/D
X
j

aj .w/�n;j .z/; (2C.3)

where, starting with orthonormal, real-valued, spherical harmonics �j on Sn�1, we have set

�n;j .z/ WD�j

�
z

jzj

�
jzj�n; z 2 Rn n f0g; (2C.4)

and where the coefficient functions aj are given by

aj .w/ WD

Z
Sn�1

k.w; z/�j .z/ dz: (2C.5)
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We can arrange that all the functions �n;j .z/ in (2C.3) are odd. There is a polynomial bound in j on
the Cm norm of �n;j jSn�1 for each m 2 N, and the coefficients aj are rapidly decreasing in Cm norm
for each m 2 N. We have

K D
X
j

Kj ; (2C.6)

where, for each j ,

Kjf .x/ WD aj .'.x//PV
Z

Rn
�n;j .'.x/�'.y//f .y/ dy; x 2 Rn: (2C.7)

The series (2C.6) converges rapidly in Lp-operator norm for each p 2 .1;1/.
Let us compare K with K#, defined as

K#f .x/ WD PV
Z

Rn
k.'.x/;D'.x/.x�y//f .y/ dy; x 2 Rn: (2C.8)

This time (2C.3) yields
K#
D

X
j

K#
j ; (2C.9)

with K#
j given by

K#
j f .x/ WD aj .'.x//PV

Z
Rn
�n;j .D'.x/.x�y//f .y/ dy; x 2 Rn: (2C.10)

We claim that the series (2C.9) is rapidly convergent in Lp-operator norm for each p 2 .1;1/. Indeed,
Theorem 2.4 directly implies that, for each j ,

Kj �K
#
j is compact on Lp.B/ (2C.11)

for each ball B � Rn and each p 2 .1;1/. The operator norm convergence of (2C.6) and (2C.9) then
yield the following variable coefficient counterpart to Theorem 2.4:

Theorem 2.5. Given K as in (2C.3) and K# as in (2C.8),

K �K# is compact on Lp.B/: (2C.12)

Moving on, we propose to further analyze (2C.8) and show that (again, see the discussion in Appendix
C for relevant definitions)

K#
2 OP.L1\ vmo/S0cl: (2C.13)

To this end, it is convenient to write

k.w;Az/D
X
j

bj .w;A/�n;j .z/ (2C.14)

for A W Rn! RnC` of the form
AD

� I
A0

�
; (2C.15)

with
bj .w;A/ WD

Z
Sn�1

k.w;Az/�j .z/ d�.z/: (2C.16)
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Again, we can arrange that only odd functions �n;j arise in (2C.14). As A0 varies over a compact
subset of L.Rn;R`/, the space of linear transformations from Rn to R`, we have uniform rapid decay of
bj .w;A/ and each of its derivatives. We have the following conclusion:

Theorem 2.6. The operator K# defined by (2C.8) satisfies

K#f .x/D
X
j

bj .'.x/;D'.x//PV
Z

Rn
�n;j .x�y/f .y/ dy; x 2 RnI (2C.17)

hence
K#f .x/D p.x;D/f .x/; x 2 Rn (2C.18)

with
p.x; �/ WD

X
j

bj .'.x/;D'.x//b�n;j .�/: (2C.19)

Consequently,
p 2 .L1\ vmo/S0cl (2C.20)

and (2C.13) follows.

3. Symbol calculus

Our goals here are to associate symbols to the operators studied in Section 2 and to examine how these
operators behave under coordinate changes.

3A. Principal symbols. Let �� RnC1 be a bounded Lip\ vmo1 domain, so @� is locally a graph of
the form (2B.1)–(2B.2), (2B.6) with `D 1. Let @�� denote the subset of @� of the form '.x/ such that
x is an Lp-Lebesgue point of D' with p > n (so in particular ' is differentiable at x). Then we set

T'.x/@
�� WD fD'.x/v W v 2 Rng whenever '.x/ 2 @��: (3A.1)

In this fashion, we can talk about the tangent bundle and cotangent bundle over @��,

T @�� and T �@��; (3A.2)

where, in the latter case, the fiber T �
'.x/

@�� is the dual space to (3A.1).
Let k.w; z/ be smooth on RnC1� .RnC1 n0/, odd in z and homogeneous of degree �n in z. Consider

Kf .x/ WD PV
Z
@�

k.x; x�y/f .y/ d�.y/; K W Lp.@�/! Lp.@�/; p 2 .1;1/: (3A.3)

In the local coordinate system described above,

Kf .x/D PV
Z

O
k.'.x/; '.x/�'.y//f .y/†.y/ dy (3A.4)

with O� Rn and d�.y/D†.y/ dy. Note that † 2 L1\ vmo. As we have seen in Section 2C,

K D p.x;D/ mod compact (3A.5)
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with p.x; �/ 2 .L1 \ vmo/S0cl odd and homogeneous of degree 0 in �. We want to associate to K a
principal symbol �K defined on T �@��. We propose

�K.'.x/; �/ WD p.x;D'.x/
T�/ (3A.6)

for x2O, '.x/2@��, with p as in (3A.5). If @� is smooth, this coincides with the classical transformation
formula for the symbol of a pseudodifferential operator. Now K DK# mod compact, with K# given by
(2C.8) with a factor of †.y/ thrown in. This factor can be changed to †.x/ mod compact, so we can
take

p.x;D/f .x/D PV
Z
k.'.x/;D'.x/.x�y//†.x/f .y/ dy: (3A.7)

The standard formula connecting a pseudodifferential operator and its symbol yields

p.x; �/D

Z
Rn
k.'.x/;D'.x/z/e�iz��†.x/ dz; (3A.8)

so (compare (3B.22)–(3B.23))

p.x;D'.x/T�/D

Z
Rn
k.'.x/;D'.x/z/e�iD'.x/z��†.x/ dz

D

Z
T'.x/@��

k.'.x/; z0/e�iz
0�� dz0; (3A.9)

since the area element of @� at w 2 @�� coincides with that of Tw@��. Hence,

�K.w; �/D

Z
Tw@��

k.w; z0/e�iz
0�� dz0; w 2 @��: (3A.10)

This last formula is independent of the choice of local coordinates on @�. If @� is smooth, (3A.10) is the
standard formula. We note that T �w@

�� inherits an inner product, and hence a volume form, as a linear
subspace of RnC1, and dz0 D†.x/ dz when w D '.x/.

Suppose K is an `� ` system of singular integral operators. We say K is elliptic on @� if there exists
a constant C > 0 such that

k�K.w; �/vk � Ckvk for all v 2 C` and � -a.e. w 2 @��: (3A.11)

In such a case, by (3A.6), the operator p.x;D/ 2 OP.L1 \ vmo/S0cl associated to K in a local graph
coordinate system is elliptic, i.e., its symbol p.x; �/ satisfies the analogue of (3A.11). We can thus prove
the following:

Theorem 3.1. Let � � RnC1 be a bounded Lip\ vmo1 domain. If K is an ` � ` elliptic system of
singular integral operators of the form (3A.3) and satisfies the ellipticity condition (3A.11), then

K W Lp.@�/ �! Lp.@�/ is Fredholm for all p 2 .1;1/: (3A.12)

Moreover, the index of K in (3A.12) is independent of p 2 .1;1/, and we have the regularity result

1 < p < q <1 and f 2 Lp.@�/; Kf 2 Lq.@�/ H) f 2 Lq.@�/: (3A.13)
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Proof. Let fOj gj be an open cover of @� on which we have graph coordinates. (We also identify each Oj
with an open subset of Rn.) Let f j gj be a Lipschitz partition of unity on @� subordinate to this cover.
Let 'j 2 Lip.Oj / have compact support and satisfy 'j � 1 on a neighborhood of supp  j . Then

K D
X
j

KM j D

X
j

M'jKM j mod compacts; (3A.14)

where, generally speaking, M f WD  f . Now we have (see (3A.5))

M'jKM j DM'jpj .x;D/M j mod compacts; (3A.15)

with pj .x;D/ 2 OP.L1 \ vmo/S0cl elliptic. We have a parametrix ej .x;D/ 2 OP.L1 \ vmo/S0cl,
satisfying

M'i ei .x;D/M iM'jKM j DM i j mod compacts: (3A.16)

Set

E WD
X
i

M'i ei .x;D/M i : (3A.17)

Then

EK D
X
i;j

M'i ei .x;D/M iM'jKM j mod compacts

D

X
i;j

M i j mod compacts

D I mod compacts: (3A.18)

Similarly, E is a right Fredholm inverse of K, and we have (3A.12).
Going further, for each p 2 .1;1/ let �p.K/ denote the index ofK onLp.@�/. Then, if 1<p<q<1

and Np denotes the null space of K on Lp.@�/, and N0p that of K� on Lp
0

.@�/, we have

Nq � Np; N0p � N0q; hence �p.K/� �q.K/: (3A.19)

The same type of argument applies to E, yielding �p.E/� �q.E/, hence

�p.K/D �q.K/; (3A.20)

as wanted. Note that, together with (3A.19), this actually forces

Nq D Np and N0p D N0q: (3A.21)

Finally, for (3A.13), if f 2 Lp.@�/ and Kf D g 2 Lq.@�/, then g annihilates N0p. Since N0q D N0p,
g annihilates N0q , so g D K Qf for some Qf 2 Lq.@�/. Given p < q, we have f � Qf 2 Np. Hence
f � Qf 2 Nq , and thus f 2 Lq.@�/, as asserted in (3A.13). �
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3B. Transformations of operators under coordinate changes. Let ' W Rn! Rn be a bi-Lipschitz map,
so there exist a, b 2 .0;1/ such that

ajx�yj � j'.x/�'.y/j � bjx�yj for all x; y 2 Rn: (3B.1)

In addition, we assume
D' 2 vmo.Rn/: (3B.2)

Given
k 2 C1.Rn n 0/ homogeneous of degree �n; k.�z/D�k.z/; (3B.3)

we set
Kf .x/ WD PV

Z
Rn
k.x�y/f .y/ dy; x 2 Rn: (3B.4)

Let us also set
K'f .x/ WD PV

Z
Rn
k.'.x/�'.y//f .y/ dy; x 2 Rn: (3B.5)

As in the past, we let M� denote the operator of pointwise multiplication by �.

Definition 3.2. Say that ' is in T.Rn/ provided that (3B.1)–(3B.2) hold and, in addition, whenever (3B.3)
holds, the singular integral operator K' associated with ' as in (3B.5) may be decomposed as

K'f .x/D PV
Z

Rn
k.D'.x/.x�y//f .y/ dyCR'f .x/; x 2 Rn; (3B.6)

for a remainder with the property that for each cut-off function � 2 C10 .R
n/ one has

M�R'M� W L
p.Rn/ �! Lp.Rn/ compact for all p 2 .1;1/: (3B.7)

By Theorem 2.6, the principal value integral on the right-hand side of (3B.6) defines an operator

zK' 2 OP.L1\ vmo/S0cl; (3B.8)

which is bounded on Lp.Rn/ for each p 2 .1;1/.
The following is a variant of Theorem 2.4, proven by the same sort of arguments.

Theorem 3.3. Assume ' satisfies (3B.1)–(3B.2). Assume also that there exists � > 0 such that, for all
� 2 Œ0; 1�,

j�Œ'.x/�'.y/�C .1� �/D'.x/.x�y/j � �jx�yj for all x; y 2 Rn: (3B.9)

Then ' 2 T.Rn/.
In fact, given a function � 2 C10 .R

n/, one has (3B.7) provided the estimate in (3B.9) holds for all
points x, y 2 supp�.

Note the similarity of (3B.9) and (2B.18). In this connection, if †� RnC` is an n-dimensional graph
over Rn, as introduced in Section 2B, and if it is also represented as a graph over a nearby n-dimensional
linear space V , then one gets a bi-Lipschitz map from Rn to V �Rn satisfying (3B.9). In such a way, one
can represent † as a Lip\ vmo1 manifold, whose transition maps satisfy the conditions of Theorem 3.3.
See the next section for more on this.
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We proceed to a variable coefficient version of (3B.3)–(3B.7). Take k measurable on Rn�Rn, satisfying

k.x; z/ homogeneous of degree �n in z; k.x;�z/D�k.x; z/: (3B.10)

Assume k.x; z/ is smooth in z 6D 0 and that for each multiindex ˛ there exists a finite constant C˛ > 0
such that

k@˛zk. � ; z/kL1\vmo � C˛jzj
�n�j˛j; (3B.11)

where, for f 2 L1.Rn/,

kf kL1\vmo WD

�
kf kL1 if f 2 vmo;
1 if f … vmo :

(3B.12)

Then we can write
k.x; z/D

X
j�0

kj .x/jzj
�n�j

�
z

jzj

�
; (3B.13)

where f�j gj is an orthonormal set of spherical harmonics on Sn�1, all odd, and for each j 2N we have

kkj kL1\vmo � CN hj i
�N for every N 2 N: (3B.14)

In place of (3B.4)–(3B.6), we take

Kf .x/ :D PV
Z

Rn
k.x; x�y/f .y/ dy; x 2 Rn; (3B.15)

K'f .x/ :D PV
Z

Rn
k.'.x/; '.x/�'.y//f .y/ dy; x 2 Rn; (3B.16)

and write

K'f .x/D PV
Z

Rn
k.'.x/;D'.x/.x�y//f .y/ dyCR'f .x/; x 2 Rn: (3B.17)

Using (3B.13)–(3B.14), we can write these as rapidly convergent series, and deduce that

' 2 T.Rn/ H) M�R'M� W L
p.Rn/! Lp.Rn/ compact for all p 2 .1;1/ (3B.18)

whenever � 2 C10 .R
n/. Implementing this for (3B.16) involves using the following result:

Lemma 3.4. The function spaces bmo.Rn/ and vmo.Rn/ are invariant under u 7! u ı ', provided
' W Rn! Rn is a bi-Lipschitz map.

Proof. This has the same proof as Proposition D.5 (see also [Taylor 2009, Proposition 3.3; Bourdaud et al.
2002, Theorem 2, p. 516]). �

As in (3B.8), the integral on the right-hand side of (3B.17) defines an operator

zK' 2 OP.L1\ vmo/S0cl: (3B.19)

We use these results to analyze how an operator P D p.x;D/ 2 OP.L1\ vmo/S0cl transforms under
a map ' 2 T.Rn/. In more detail, given P W Lp.Rn/! Lp.Rn/, set

P'g.x/ WD Pf .'.x//; f 2 Lp.Rn/; g.x/D f .'.x//: (3B.20)
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Our hypothesis (3B.1) implies kgkLp � kf kLp , so P' W L
p.Rn/ ! Lp.Rn/. We claim that

P' 2OP.L1\vmo/S0cl, at least modulo an operator with the compactness property (3B.18). Furthermore,
we obtain a formula for its principal symbol.

We take p.x; �/ to be homogeneous of degree 0 in � . To start, we assume

p.x; �/D�p.x;��/: (3B.21)

Now
Pf .x/D PV

Z
Rn
k.x; x�y/f .y/ dy; x 2 Rn; (3B.22)

with
k.x; z/D .2�/�n

Z
Rn
p.x; �/eiz�� d�; (3B.23)

so
p.x; �/D

Z
Rn
k.x; z/e�iz�� dz: (3B.24)

Note that
p.x; �/D

X
j�0

pj .x/�j

�
�

j�j

�
; (3B.25)

with f�j gj as in (3B.13) (again, all odd) and

kpj kL1\vmo � CN hj i
�N for all N 2 N: (3B.26)

It follows that k.x; z/ satisfies (3B.10)–(3B.11). Hence, (3B.15)–(3B.19) apply. Consequently, with
J'.y/ WD jdetD'.y/j,

P'g.x/D Pf .'.x// (3B.27)

D PV
Z

Rn
k.'.x/; '.x/�y0/f .y0/ dy0 (3B.28)

D PV
Z

Rn
k.'.x/; '.x/�'.y//f .'.y//J'.y/ dy (3B.29)

D PV
Z

Rn
k.'.x/; '.x/�'.y//g.y/J'.y/ dy: (3B.30)

Applying (3B.15)–(3B.18), we have

P'g.x/D PV
Z

Rn
k.'.x/;D'.x/.x�y//g.y/J'.y/ dyCR1' ; (3B.31)

where R1' has the compactness property (3B.18). Also, J' 2 L1\ vmo, so we can use the commutator
estimate from [Coifman et al. 1976] to replace J'.y/ by J'.x/ in (3B.31), replacing R1' by R2' , also
satisfying (3B.18). Consequently, we have

P'g.x/D .2�/
�n

Z
Rn

Z
Rn
p'.x; �/e

i.x�y/��g.y/ dy d�CR2' ; (3B.32)

and
.2�/�n

Z
Rn
p'.x; �

0/eiz��
0

d� 0 D J'.x/k.'.x/;D'.x/z/: (3B.33)
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Taking � 0 DD'.x/T� gives d� 0 D J'.x/ d�. We have cancellation of the factors J'.x/, hence

.2�/�n
Z

Rn
p'.x;D'.x/

T�/eir'.x/z�� d� D k.'.x/;D'.x/z/: (3B.34)

Hence, with
�.x; �/D p'.x;D'.x/

T�/; z0 DD'.x/z; (3B.35)

we have
.2�/�n

Z
Rn
�.x; �/eiz

0�� d� D k.'.x/; z0/; (3B.36)

so
�.x; �/D

Z
Rn
k.'.x/; z0/e�iz

0�� dz0: (3B.37)

Comparison with (3B.24) yields the formula

p'.x;D'.x/
T�/D p.'.x/; �/: (3B.38)

This has been derived for p.x; �/ satisfying (3B.21). We now address the general case.

Theorem 3.5. Assume ' 2 T.Rn/. Given P 2 OP.L1\ vmo/S0cl with principal symbol p.x; �/ and P'
defined by (3B.20), one can decompose

P' D p'.x;D/CR' (3B.39)

with R' satisfying (3B.18) and p'.x;D/ 2 OP.L1\ vmo/S0cl satisfying (3B.38).

Proof. We have this when p.x; �/ satisfies (3B.21). It remains to treat the case p.x;��/D p.x; �/. For
this, we can write

p.x;D/D

nX
jD1

qj .x;D/sj .x;D/; where sj .x; �/D
�j

j�j
; qj .x; �/D p.x; �/

�j

j�j
: (3B.40)

The previous analysis holds for the factors qj .x;D/ and sj .x;D/, and our conclusion follows by basic
operator calculus for OP.L1\ vmo/S0cl. �

3C. Admissible coordinate changes on a Lip \ vmo1 surface. Let ' W Rn ! RnC` have the form
'.x/ D .x; '0.x// with D'0.x/ 2 L1.Rn/ \ vmo.Rn/, as in Section 2B. Thus ' maps Rn onto an
n-dimensional surface †. Let V � RnC` be an n-dimensional linear space. If V is not too far from Rn

(depending on kD'0kL1), then † is also a graph over V and we have the coordinate change map

 W Rn �! V;  .x/DQ'.x/; (3C.1)

where Q W RnC`! V is the orthogonal projection. Consequently,

 .x/DQ
� x

'0.x/

�
; D .x/v DQ

� v

D'0.x/v

�
: (3C.2)

Consequently,

�Œ .x/� .y/�C .1� �/D .x/.x�y/DQ
� x�y

�Œ'0.x/�'0.y/�C.1��/D'0.x/.x�y/

�
: (3C.3)
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Recall that the condition for Theorem 3.3 to apply is that (3C.3) has norm at least �jx � yj for some
� > 0, for x, y 2 Rn, � 2 Œ0; 1�. We see that the norm of (3C.3) is at least

kQ.x�y/k� .x; y/; (3C.4)

where, with Q0 denoting the orthogonal projection of RnC` onto Rn,

.x; y/D kQ.I �Q0/.�Œ'0.x/�'0.y/�C .1� �/D'0.x/.x�y//k

� kD'0kL1kQ.I �Q0/k � jx�yj: (3C.5)

Since Q.x�y/D .x�y/C .I �Q/Q0.x�y/, we deduce that the norm of (3C.3) is at least�
1�k.I �Q/Q0k�k.I �Q0/Qk � kD'0kL1

�
jx�yj: (3C.6)

Consequently, Theorem 3.3 applies as long as

k.I �Q/Q0kCk.I �Q0/Qk � kD'0kL1 < 1: (3C.7)

This in turn holds provided
kQ�Q0k< .1CkD'0kL1/

�1: (3C.8)

We have the following conclusion:

Proposition 3.6. Let  WRn! V be as constructed in (3C.1). Assume (3C.8) holds, whereQ andQ0 are
the orthogonal projections of RnC` onto V and Rn, respectively. Take a linear isomorphism J W V ! Rn.
Then J ı belongs to T.Rn/.

3D. Remark on double layer potentials. Assume that a kernel

E W RnC1 n f0g ! R, which is a smooth function, positive homogeneous of degree �.nC 1/
and satisfying E.�X/DE.X/ for all X 2 RnC1 n f0g,

(3D.1)

has been given. Also, let �� RnC1 be a bounded Lip\ vmo1 domain and consider the singular integral
operator

Kf .X/ WD PV
Z
@�

h�.X/;X �Y iE.X �Y /f .Y / d�.Y /; X 2 @�; (3D.2)

where � and � are, respectively, the outward unit normal and surface measure on @�. To study this, focus
on a local version of (3D.2) of the following sort. Let

'0 W O �! R Lipschitz with r'0 2 vmo; (3D.3)

where O�Rn is open, be such that its graph is contained in @� and define the Lipschitz map ' WO!RnC1

by setting
'.x/ WD .x; '0.x// for all x 2 O: (3D.4)

Then, in these local coordinates, K takes the form

K'f .x/D PV
Z

O
h.r'0.x/;�1/; '.x/�'.y/iE.'.x/�'.y//f .y/ dy: (3D.5)
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Its “sharp” form, obtained by replacing '.x/�'.y/ with D'.x/.x�y/, is then

K#
'f .x/ WD PV

Z
O
h.r'0.x/;�1/;D'.x/.x�y/iE.D'.x/.x�y//f .y/ dy

D PV
Z

O
hD'.x/T.r'0.x/;�1/; x�yiE.D'.x/.x�y//f .y/ dy

D 0; (3D.6)

since

D'.x/D

 
In�n

r'0.x/

!
H) D'.x/T.r'0.x/;�1/D

�
In�n r'0.x/

� r'0.x/T
�1

!
D 0: (3D.7)

In concert with our local compactness result, according to which K' �K#
' is compact on Lp for each

p 2 .1;1/, this ultimately gives that

if �� RnC1 is a bounded Lip\ vmo1 domain and E is as in (3D.1)
then K from (3D.2) is compact on Lp.@�/, for each p 2 .1;1/.

(3D.8)

Of course, the above result contains as a particular case the fact (which is a key result in the work of
Fabes, Jodeit and Rivière [Fabes et al. 1978]) that the principal value, harmonic, double layer operator

Kf .X/ WD lim
"!0C

1

!n

Z
Y2@�
jX�Y j>"

h�.Y /; Y �Xi

jX �Y jnC1
f .Y / d�.Y /; X 2 @�; (3D.9)

is compact on Lp.@�/ for each p 2 .1;1/ if �� RnC1 is a bounded C 1 domain.

3E. Cauchy integrals and their symbols. Given `2N, letM.`;C/ denote the collection of `�`matrices
with complex entries. Let D be a first-order elliptic `� ` system of differential operators on RnC1,

Du.x/D
X
j

Aj @ju; Aj 2M.`;C/: (3E.1)

Thus �D.�/D i
P
j Aj �j is invertible for each nonzero � 2 RnC1 and D has a fundamental solution

k.z/D .2�/�.nC1/
Z

RnC1
E.�/eiz�� d�; E.�/D �D.�/

�1; (3E.2)

odd and homogeneous of degree �n in z. If �� RnC1 is a bounded UR (uniformly rectifiable) domain,
we can form

Bf .x/D

Z
@�

k.x�y/f .y/ d�.y/; x 2�; (3E.3)

with nontangential limits (see (4A.3))�
Bf

ˇ̌n:t:
@�

�
.z/ WD lim

��.x/3z!x
Bf .z/D

1

2i
�D.�.x//

�1f .x/CBf .x/ (3E.4)

for � -a.e. x 2 @�, where ��.x/�� is a region of nontangential approach to x 2 @� (see (4A.2)) and

Bf .x/ WD PV
Z
@�

k.x�y/f .y/ d�.y/; x 2 @�: (3E.5)
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One is hence motivated to consider the “Cauchy integral”

CDf .x/D i

Z
@�

k.x�y/�D.�.y//f .y/ d�.y/; x 2�; (3E.6)

with nontangential limits
CDf

ˇ̌n:t:
@�
.x/D 1

2
f .x/CCDf .x/ (3E.7)

for � -a.e. x 2 @�, where

CDf .x/ WD i PV
Z
@�

k.x�y/�D.�.y//f .y/ d�.y/; x 2 @�: (3E.8)

As shown in [Mitrea et al. 2015], a reproducing formula yields

PD D
1
2
I CCD H) P 2D D PD: (3E.9)

They study this in the setting of UR domains (and also for variable coefficient situations, which for
simplicity we do not take up here in detail). The operator PD is a Calderón projector.

Here, we take � to be a Lip\ vmo1 domain and analyze the principal symbol of PD as a projection-
valued function on T �@�� n 0. To start, we recall from (3A.10) that, for B in (3E.5),

�B.w; �/D

Z
Tw@��

k.z0/e�iz
0�� dz0; w 2 @��: (3E.10)

Plugging in (3E.2) and using basic Fourier analysis, we obtain

�B.w; �/D
1

2�
PV
Z 1
�1

E.�C s�.w// ds: (3E.11)

We then have

�CD.w; �/D
i

2�
PV
Z 1
�1

�D.�C is�.w//
�1�D.�.w// ds: (3E.12)

Now �D.�C s�.w//D �D.�/C s�D.�.w//, so

�D.�C s�.w//
�1�D.�.w//D .M.w; �/C sI /

�1; (3E.13)

with
M.w; �/D �D.�.w//

�1�D.�/: (3E.14)

The invertibility of �D.�C s�.w// and of �D.�.w// imply that

SpecM.w; �/\RD∅: (3E.15)

We have

�CD.w; �/D
i

2�
PV
Z 1
�1

.sI CM.w; �//�1 ds: (3E.16)

Lemma 3.7. Assume A 2M.`;C/ and SpecA\RD∅. Then

1

2�i

Z 1
�1

.s�A/�1ei"s ds D

�
ei"APC.A/ if " > 0;
�ei"AP�.A/ if " < 0;

(3E.17)
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where PC.A/ is the projection of C` onto the linear span of the generalized eigenvectors of A associated
to eigenvalues in SpecA with positive imaginary part annihilating those associated to eigenvectors with
negative imaginary part, and P�.A/D I �PC.A/. Hence

1

2�i
PV
Z 1
�1

.s�A/�1 ds D PC.A/�
1
2
I: (3E.18)

Proof. If " > 0, the left-hand side of (3E.17) is equal to

lim
R!1

1

2�i

Z
@D
C

R

.s�A/�1 ds; (3E.19)

where DR WD fs 2 C W jsj<Rg and DCR WDDR \fs 2 C W Im s > 0g. This path integral stabilizes when
R> kAk and the desired conclusion in this case follows from the Riesz functional calculus. The treatment
of the case when " < 0 is similar. Then (3E.18) follows readily from (3E.17). �

We apply Lemma 3.7 to (3E.16) with A WD�M.w; �/. Making use of the identity PC.�M/DP�.M/,
we have the following conclusion:

Proposition 3.8. The operator CD and the associated Calderón projector, derived from the Cauchy
integral (3E.6) via (3E.7)–(3E.9), have symbols given by

�CD.w; �/D�
�
P�.M.w; �//�

1
2
I
�
D

1
2
I �P�.M.w; �// (3E.20)

and
�PD.w; �/D PC.M.w; �// (3E.21)

respectively, with M.w; �/ as in (3E.14) and PC.A/ as described in Lemma 3.7.

Remark 3.9. Extensions of the results in this section to variable coefficient operators (acting between
vector bundles) and to domains on manifolds can be worked out using the formalism developed in [Mitrea
et al. 2015; � 2015].

4. Applications to elliptic boundary problems

Here we apply the results of Sections 2–3 to several classes of elliptic boundary problems, including
the Dirichlet problem for general strongly elliptic, second-order systems and general regular boundary
problems for first-order elliptic systems of differential operators.

4A. Single layers and boundary problems for elliptic systems. Let M be a smooth, compact, .nC1/-
dimensional manifold equipped with a Riemannian metric tensor

g D
X
j;k

gjk dxj ˝ dxk with gjk 2 C 2: (4A.1)

Also, consider a Lip\ vmo1 domain ��M (see the discussion in the last part of Appendix E). Having
some fixed � 2 .0;1/, for each x 2 @� define the nontangential approach region with vertex at x by
setting

��.x/ WD fy 2� W dist.x; y/ < .1C �/ dist.y; @�/g: (4A.2)
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Next, given an arbitrary u W �! C, define its nontangential maximal function and its pointwise non-
tangential boundary trace at x 2 @�, respectively, as

.N�u/.x/ WD supfju.y/j W y 2 ��.x/g;
�
u
ˇ̌n:t:
@�

�
.x/ WD lim

��.x/3y!x
u.y/ (4A.3)

whenever the limit exists. The parameter � plays a somewhat secondary role in the proceedings, since for
any �1, �2 2 .0;1/ and p 2 .0;1/ there exists C D C.�1; �2; p/ 2 .1;1/ with the property that

C�1kN�1ukLp.@�/ � kN�2ukLp.@�/ � CkN�1ukLp.@�/ (4A.4)

for each u W�! C. Given this, we will simplify notation and write N in place of N� .
Moving on, let L be a second-order, strongly elliptic, k � k system of differential operators on M .

Assume that, locally,

LuD
X
i;j

@jA
ij .x/@juC

X
j

Bj .x/@juCV.x/u; (4A.5)

where
Aij 2 C 2; Bj 2 C 1; V 2 L1: (4A.6)

Also, suppose

L WH 1;p.M/ �!H�1;p.M/ is an isomorphism for 1 < p <1: (4A.7)

We want to solve the Dirichlet boundary problem

LuD 0 on �; u
ˇ̌n:t:
@�
D f 2 Lp.@�/; Nu 2 Lp.@�/ (4A.8)

via the layer potential method. To this end, let E denote the Schwartz kernel of L�1, so that

L�1v.x/D

Z
M

E.x; y/v.y/ d Vol.y/; x 2M; (4A.9)

where d Vol stands for the volume element on M . Then, with � denoting the surface measure on @�,
define the single layer potential operator and its boundary version by

Sg.x/ WD

Z
@�

E.x; y/g.y/ d�.y/; x 2M n @�; and Sg WD Sg
ˇ̌n:t:
@�

on @�: (4A.10)

We want to solve (4A.8) in the form

uD Sg; where g is chosen so that Sg D f: (4A.11)

As such, if H s;p.@�/ with 1 < p <1 and �1� s � 1 denotes the Lp-based scale of Sobolev spaces of
fractional order s on @�, we would like to show

S WH�1;p.@�/ �! Lp.@�/ is Fredholm of index 0: (4A.12)

Since the adjoint of S is the single layer associated with L� (which continues to be a second-order,
strongly elliptic, k � k system of differential operators on M ), this is further equivalent (with q WD p0 the
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Hölder conjugate exponent of p) to the condition that

S W Lq.@�/ �!H 1;q.@�/ is Fredholm of index 0: (4A.13)

Such a result was established for q close to 2, when � is a Lipschitz domain, in Chapter 3 of [Mitrea et al.
2001]. The argument made use of a Rellich-type identity. In the scalar case the result was established (in
the setting of regular SKT domains) in [Hofmann et al. 2010, Section 6.4], and applied in Section 7.1
of that paper to the Dirichlet problem. If @� is smooth, it is standard that S is in OPS�1.@�/ and it is
strongly elliptic, from which (4A.12) and (4A.13) follow. Here is what we propose:

Proposition 4.1. Let � be a Lip\ vmo1 domain and let L be a second-order, strongly elliptic, k � k
system of differential operators on M as in (4A.5)–(4A.6) and satisfying (4A.7). Then (4A.12) holds for
all p 2 .1;1/ and (4A.13) holds for all q 2 .1;1/.

Proof. We start with the proof of (4A.13). Pick L1\ vmo vector fields Xj , 1� j �N , tangent to @�,
such that

NX
jD1

jXj .x/j � A > 0 for a.e. x 2 @�: (4A.14)

Then let rT f WD fXjf W1� j �N g. We have rT S WLq.@�/!Lq.@�/ for all q 2 .1;1/. Theorem 2.4
(or rather its standard “variable coefficient” extension) implies

rT S D k0.x;D/CR; k0.x;D/ 2 OP.L1\ vmo/S0cl (4A.15)

with R compact on Lq.@�/. At this point we make the following:

Claim. We have the (overdetermined) ellipticity property

kk0.x; �/vk � A0kvk; A0 > 0: (4A.16)

Assuming for now this claim (whose proof will be provided later), we obtain that

k�0 .x;D/k0.x;D/ 2 OP.L1\ vmo/S0cl mod compacts (4A.17)

is a (determined) elliptic operator, so it has a parametrixQ 2OP.L1\vmo/S0cl (see Appendix C). Hence,

Qk�0 .x;D/rT S D I CR1; with R1 compact on Lq.@�/: (4A.18)

This implies that

S W Lq.@�/ �!H�1;q.@�/ is semi-FredholmI (4A.19)

namely, it has closed range and finite-dimensional null space.
To complete the argument, we take a continuous family L� , � 2 Œ0; 1�, of second-order, strongly elliptic

operators on M such that L1 D L and L0 is scalar. This gives a norm-continuous family

S� W L
q.@�/ �!H 1;q.@�/; all semi-Fredholm: (4A.20)
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We know that S0 is Fredholm of index 0. Hence, so are all the operators S� in (4A.20). This gives
(4A.13), which, by duality, also yields (4A.12).

Now we return to the proof of the claim made in (4A.16). That is, we shall establish the (overdetermined)
ellipticity of k0.x;D/2OP.L1\vmo/S0cl arising in (4A.15) (which is equal modulo a compact operator
to rT S). To begin, we discuss the smooth case. If @� is smooth and L is strongly elliptic of second
order with smooth coefficients, then actually S is in OPS�1.@�/ and this operator is strongly elliptic. In
fact, given .x; �/ 2 T �@� n 0, and with � 2 T �x @� the outward unit conormal to @�, we have

�S .x; �/D Cn

Z C1
�1

�E .x; �C t�/ dt D Cn

Z C1
�1

�L.x; �C t�/
�1 dt: (4A.21)

This is seen as in [Taylor 1996, (11.11)–(11.12) in Chapter 7], where we take mD�2, xn D 0. Strong
ellipticity of S then follows from (4A.21), keeping in mind the strong ellipticity of L. Specifically,
�S .x; �/ is positive homogeneous of degree �1 in � and the integrals in (4A.21) are absolutely convergent
since j�L.x; �C t�.x//�1j � C.j�j2C t2/�1. Thus, for any section � and any 0 6D � 2 T �x @�� T

�
xM ,

we may estimate

h��S .x; �/�; �ix D Cn

Z C1
�1

h��L.x; �C t�.x//
�1�; �i dt � C j�j2

Z C1
�1

.j�j2C t2/�1 dt

� C j�j2j�j�1 (4A.22)

for some C > 0. This yields the strong ellipticity of S . Next, since �XjS D �Xj �S , the ellipticity of rT S
is an immediate consequence of what we have just proved and (4A.14).

To tackle the case when � is a Lip\ vmo1 domain, we take local graph coordinates '.x/D .x; '0.x//
and arrange that the vector fields fXj g1�j�N include those associated with coordinate differentiation.
The integral kernel E.x; y/ has the form

E.x; y/DE0.x; x�y/C r.x; y/; (4A.23)

where E0.x; z/ is smooth on fz ¤ 0g and homogeneous of degree �.n� 1/ in z (note that dim @�D n)
and r.x; y/ has lower order. See the analysis in [Mitrea et al. 2001]. Locally, the operator S has the form

Sg.x/D

Z
Rn
E0.'.x/; '.x/�'.y//g.y/†.y/ dyCRg.x/; x 2 Rn; (4A.24)

where d�.y/ D †.y/ dy and R denotes the integral operator with kernel r.x; y/. Hence, for each
j 2 f1; : : : ; ng,

@jSg.x/D PV
Z

Rn
@j'.x/ � r2E0.'.x/; '.x/�'.y//g.y/†.y/ dyCRjg.x/; x 2 Rn; (4A.25)

where here and below Rj will denote (perhaps different) operators that are compact on Lp for 1<p <1.
Theorem 2.4 (or rather its natural “variable coefficient” extension from Section 2C) gives

@jSg.x/D PV
Z

Rn
@j'.x/ � r2E0.'.x/;D'.x/.x�y//g.y/†.y/ dyCRjg.x/; x 2 RnI (4A.26)
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that is,
@jSg.x/D Tj .x;D/.†g/.x/CRjg.x/; x 2 Rn; (4A.27)

where Tj .x;D/.†g/.x/ is given by the principal value integral in (4A.26). We therefore have that
Tj .x;D/ is in OP.L1\ vmo/S0cl, with symbol

Tj .x; �/D

Z
Rn
e�iz��@j'.x/ � r2E0.'.x/;D'.x/z/ dz: (4A.28)

Given that L is a k � k system, Tj .x; �/ is a k � k matrix, i.e., Tj .x; �/ 2M.k;C/ for � ¤ 0 and a.e. x.
We need to show that there exists C > 0 such that, for all � ¤ 0 and v 2 Ck ,X

j

kTj .x; �/vk � Ckvk for a.e. x: (4A.29)

Recall that ' has the form (2B.1), so D'.x/ W Rn! RnC1 has the form

D'.x/D
� I

D'0.x/

�
; D'0.x/ W R

n
! R (4A.30)

for a.e. x 2 Rn. Freezing coefficients at a point where ' is differentiable, we can rephrase our task as
follows: Let L0.�/ be a matrix in M.k;C/ whose entries are homogeneous polynomials of degree 2
in � 2 RnC1 and which is positive definite for each � ¤ 0. For � 6D 0 set E0.�/ WD L0.�/�1. In addition,
consider a linear mapping A W Rn! RnC1 of the form

AD
� I
A0

�
; A0 W R

n
! R: (4A.31)

Let A0 run over a compact set in L.Rn;R/. Also let L0 and E0DL�10 run over compact sets of symbols.
Take

Tj .�/ WD

Z
Rn
e�iz��Aej � rE0.Az/ dz; (4A.32)

where fej g1�j�n denotes the standard orthonormal basis of Rn. We need to prove that there exists a
finite constant C > 0 such that, for all v 2 Ck and � ¤ 0,X

j

kTj .�/vk � Ckvk; (4A.33)

uniformly in A0, L0, E0. This is equivalent to the ellipticity of rT S if '.x/DAx, so @� is a hyperplane
in RnC1. In this case, the previous analysis applies, since S 2OPS�1.@�/ is strongly elliptic, and (4A.33)
follows.

This finishes the proof of the claim in (4A.16), which, in turn, finishes the proof of Proposition 4.1. �

We next note a regularity result, under the assumption that� is a Lip\ vmo1 domain. Let us temporarily
denote

Ss;p D S WH
s;p.@�/ �!H sC1;p.@�/; s 2 f0;�1g; (4A.34)

with adjoint
S�s;p D S

�
WH�1�s;q.@�/ �!H�s;q.@�/; q D p0: (4A.35)
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Clearly the null spaces Ker.Ss;p/ and Ker.S�s;p/ of these operators satisfy

Ker.S0;p/� Ker.S�1;p/; Ker.S��1;p/� Ker.S�0;p/; (4A.36)

so the vanishing index property established in Proposition 4.1 forces

Ker.S0;p/D Ker.S�1;p/ and Ker.S��1;p/D Ker.S�0;p/: (4A.37)

Also,

1 < p < Qp <1 H) Ker.S0; Qp/D Ker.S0;p/; Ker.S�0;p/D Ker.S�0; Qp/ (4A.38)

and, again, the aforementioned vanishing index property implies

Ker.S0;p/D Ker.S0; Qp/: (4A.39)

Collectively, (4A.37) and (4A.39) prove the following regularity result:

Proposition 4.2. Assume that� is a Lip\ vmo1 domain inM and suppose L is a second-order, strongly
elliptic system of differential operators on M as in (4A.5)–(4A.6) and satisfying (4A.7). Then, given
f 2H�1;p.@�/ for some p 2 .1;1/, one has

Sf D 0 H) f 2
\

1<q<1

Lq.@�/: (4A.40)

Recall that standard Lipschitz theory (see [Mitrea et al. 2001]) gives

f 2 Lp.@�/ with p 2 .1;1/ and u WD Sf H)

8<:
LuD 0 on M n @�;
Nu; N.ru/ 2 Lp.@�/;

u
ˇ̌n:t:
@�
D Sf;

(4A.41)

and

f 2H�1;p.@�/ with p 2 .1;1/ and u WD Sf H)

8<:
LuD 0 on M n @�;
Nu 2 Lp.@�/;

u
ˇ̌n:t:
@�
D Sf:

(4A.42)

In addition, we single out the following additional properties. Let H s;p.�/, with s 2 R and p 2 .1;1/
stand for theLp-based Sobolev space of fractional smoothness s in�. Also, let Tr WH 1;2.�/!H

1
2
;2.@�/

denote the boundary trace operator in the sense of Sobolev spaces, and set H 1;2
0 .�/ WD Ker Tr. Then

f 2 L2.@�/ H) u WD Sf 2H 1.�/; TruD u
ˇ̌n:t:
@�
D Sf: (4A.43)

These considerations are relevant in the context of the following well-posedness result:

Theorem 4.3. Suppose � � M is a Lip\ vmo1 domain and suppose L is a second-order, strongly
elliptic system of differential operators on M as in (4A.5)–(4A.6) and satisfying (4A.7). Set

�C WD�; �� WDM n� (4A.44)
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and assume that the following nondegeneracy conditions hold:

u 2H
1;2
0 .�C/; LuD 0 in �C H) uD 0 in �C;

u 2H
1;2
0 .��/; LuD 0 in �� H) uD 0 in ��:

(4A.45)

Then
S WH�1;p.@�/ �! Lp.@�/ is invertible for each p 2 .1;1/;

S W Lp.@�/ �!H 1;p.@�/ is invertible for each p 2 .1;1/:
(4A.46)

In particular, the Dirichlet problem

LuD 0 in �; u
ˇ̌n:t:
@�
D f 2 Lp.@�/; Nu 2 Lp.@�/ (4A.47)

is well posed and its unique solution is given by uD S.S�1f /, where S�1f 2H�1;p.@�/.
Furthermore, the regularity problem

LuD 0 in �; u
ˇ̌n:t:
@�
D f 2H 1;p.@�/; Nu; N.ru/ 2 Lp.@�/; (4A.48)

is well posed and its unique solution is given by uD S.S�1f /, where S�1f 2 Lp.@�/.

It is worth pointing out that the nondegeneracy conditions in (4A.45) hold, in particular, if the system
in question is of the form

LDD�D; (4A.49)

where
D is a first-order system with the unique continuation property, (4A.50)

in the sense that, if u 2H 1;2.M/ is such that DuD 0 on M and u vanishes on some nonempty open
subset of M , then necessarily uD 0 everywhere on M . As a consequence, Theorem 4.3 applies to the
Laplace–Beltrami operator on a Riemannian manifold, in which scenario the present well-posedness
results complement those in [Mitrea and Taylor 1999].

Proof of Theorem 4.3. First, we shall show that

f 2 L2.@�/ and Sf D 0 H) f D 0: (4A.51)

Suppose f is as in the left-hand side of (4A.51) and set u WD Sf in M n @�. In light of (4A.43), the
hypothesis (4A.45) then yields uD 0 both in �C and in ��. Recall that L is as in (4A.5)–(4A.6) and set
(with � D .�i /i denoting the outward unit conormal to �)

„˙f WD
X
i;j

�iA
ij .@jSf /

ˇ̌n:t:
@�˙

: (4A.52)

Then, on the one hand, the jump formulas from [Mitrea et al. 2001, Theorem 2.9, p. 21] yield

„˙f D
�
�
1
2
I CK�

�
f; (4A.53)

where K� is a principal value singular integral operator on @� and I is the identity. As such, we have
the jump relation

f D„�f �„Cf: (4A.54)
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On the other hand, clearly u D Sf D 0 on �C [�� implies „˙f D 0. We conclude that f D 0,
finishing the proof of (4A.51).

In turn, (4A.51), Proposition 4.2, and Proposition 4.1 imply that, for each p 2 .1;1/, the operator S
is an isomorphism in (4A.12) and (4A.13). This proves the claims in (4A.46). With these in hand, the
fact that the Dirichlet and regularity boundary value problems (4A.47)–(4A.48) may be solved in the
form uD S.S�1f / follows from (4A.41)–(4A.42).

Turning to the uniqueness part, it suffices to show that any solution u of the homogeneous version of
the Dirichlet problem (4A.47) vanishes identically in �. To this end, we introduce the Green function

G.x; y/ WD �.x; y/�S
�
S�1.E.x; � /j@�/

�
.y/; .x; y/ 2��� n diag; (4A.55)

where the intervening single layer potential operators are associated with L�. For each fixed x 2�, the
function E.x; � /j@� belongs to H 1;q.@�/ for any q 2 .1;1/. Thus, on account of (4A.46) we see that
G.x; y/ is well defined. To proceed, consider a sequence of Lipschitz subdomains �j of � such that
�j %� as j !1 as in [Mitrea and Taylor 1999, Appendix A]; in particular, their Lipschitz character
is controlled uniformly in j . Let Gj stand for the Green function corresponding to �j . By construction,
Gj .x; � /j@�j D 0 and we claim that, for each q 2 .1;1/, there exists a constant Cq 2 .0;1/ with the
property that

sup
j2N

kNj .r2Gj .x; � //kLq.@�j / � Cq: (4A.56)

This follows from the fact that if Sj denotes the single layer constructed in relation to @�j then, for each
q 2 .1;1/, the operator norm of S�1j WH 1;q.@�j /! Lq.@�j / is uniformly bounded in j . In turn, this
is seen from (4A.18) and reasoning by contradiction.

For each j 2N let �j denote the surface measure on @�j . Integrations by parts against these Green
functions give that, if u solves the homogeneous version of the Dirichlet problem (4A.47) and if x 2� is
an arbitrary fixed point, then for j 2 N sufficiently large we have

ju.x/j D

ˇ̌̌̌Z
�j

h.L�Gj .x; � //.y/; u.y/i d Vol.y/
ˇ̌̌̌

D

Z
@�j

O
�
juj � jr2Gj .x; � /j

�
d�j

� CkukLp.@�j /; (4A.57)

where the last step utilizes Hölder’s inequality and (4A.56). Because kukLp.@�j /! 0 by Lebesgue’s
dominated convergence theorem (and the manner in which �j %� as j !1), we ultimately obtain
u.x/D 0. Given that x 2� was arbitrary, the desired uniqueness statement follows.

Note that for the proof of uniqueness we could have avoided using the approximating family �j %�

and, instead, worked directly with the Green function for L� constructed as in (4A.55), by reasoning as in
the proof of [Hofmann et al. 2010, Theorem 7.2, p. 2831] as carried out in Step 3 on pp. 2832–2837. �

In the last part of this section we discuss the Poisson problem for strongly elliptic systems with data
in Sobolev–Besov spaces in Lipschitz domains with normal in vmo. Throughout, retain the setting of
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Theorem 4.3. For starters, from (4A.46) and complex interpolation we deduce, with the help of [Fabes
et al. 1998, Lemma 8.4], that

S WH s�1;p.@�/ �!H s;p.@�/ is invertible for each p 2 .1;1/ and s 2 Œ0; 1�: (4A.58)

With Bp;qs .@�/ for p, q 2 .0;1� and 0 6D s 2 .�1; 1/ denoting the scale of Besov spaces on @�, real
interpolation then also gives that

S W B
p;q
s�1.@�/ �! Bp;qs .@�/ is invertible for p 2 .1;1/; q 2 .0;1� and s 2 .0; 1/: (4A.59)

Furthermore, the action of the single layer potential operator S on Sobolev–Besov spaces on Lipschitz
domains has been studied in [Mitrea and Taylor 2000]. The emphasis there is on the Hodge–Laplacian
but the approach (which utilizes size estimates for the integral kernel and its derivatives) is general
enough to work in the present setting. Indeed, the mapping properties from [Mitrea and Taylor 2000,
Lemmas 7.2–7.3] are directly applicable here. They imply that if Bp;qs .�/ for p, q 2 .0;1� and s 2 R

stands for the scale of Besov spaces in �, the single layer operator induces well-defined and bounded
linear mappings in the following contexts:

S W Bp;p�s .@�/ �! B
p;p

1C 1
p
�s
.�/ for 1� p �1 and 0 < s < 1; (4A.60)

S W Bp;p�s .@�/ �!H 1C 1
p
�s;p.�/ for 1 < p <1 and 0 < s < 1; (4A.61)

S WH�s;p.@�/ �! B
p;maxfp;2g
1�sC 1

p

.�/ for 1 < p <1 and 0� s � 1: (4A.62)

Theorem 4.4. Suppose � � M is a Lip\ vmo1 domain and suppose L is a second-order, strongly
elliptic system of differential operators on M as in (4A.5)–(4A.6) and satisfying (4A.7) and (4A.45). In
addition, assume that L�, the adjoint of L, also satisfies the nondegeneracy conditions in (4A.45).

Then, for any p 2 .1;1/ and any s 2 .0; 1/, the Poisson problem with a Dirichlet boundary condition,8̂<̂
:
LuD f 2H sC 1

p
�2;p.�/;

TruD g 2 Bp;ps .@�/;

u 2H sC 1
p
;p.�/;

(4A.63)

has a unique solution.

Proof. Extend the given f 2H sC 1
p
�2;p.�/ to some Qf 2H sC 1

p
�2;p.M/, then consider

v WD .L�1 Qf /j� 2H
sC 1

p
;p.�/: (4A.64)

In particular, h WD Tr v 2 Bp;ps .@�/ and a solution u of the boundary value problem (4A.63) is given by

u WD v�S.S�1.h�g// in �; (4A.65)

with S�1 the inverse of the operator in (4A.59) (with q D p) and S considered as in (4A.61).
There remains to prove uniqueness. The existence result just established may be interpreted (taking

g D 0) as the statement that

L WH
sC 1

p
;p

0 .�/ �!H sC 1
p
�2;p.�/ is surjective for each p 2 .1;1/ and s 2 .0; 1/ (4A.66)
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in the class of operators L described in the statement. Since the class in question is stable under taking
adjoints, writing (4A.66) for L� then taking adjoints yields (after adjusting notation) that

L WH
sC 1

p
;p

0 .�/ �!H sC 1
p
�2;p.�/ is injective for each p 2 .1;1/ and s 2 .0; 1/: (4A.67)

With this in hand, the fact that any null solution of (4A.63) necessarily vanishes identically in � readily
follows. This completes the proof of the theorem. �

4B. Oblique derivative problems. To start, let �� Rn be a bounded, regular SKT domain, so its unit
normal field � belongs to vmo.@�/. We have tangential vector fields

@�jk D �k@j � �j @k; 1� j; k � n (4B.1)

(see [Hofmann et al. 2010, Section 3.6]).
Let �jk , 1� j , k � n, be real-valued functions on @� and define the tangential vector field

X WD

nX
j;kD1

�jk@�jk : (4B.2)

Assume that for each j , k 2 f1; : : : ; ng we have

�jk�j ; �jk�k 2 vmo.@�/\L1.@�/: (4B.3)

Given p 2 .1;1/, the goal here is to study the oblique derivative problem

�uD 0 on �; .@� CX/uD f on @�; Nu; N.ru/ 2 Lp.@�/; (4B.4)

where f 2 Lp.@�/ is given. Above, @�u and Xu are understood, respectively, as

@�u WD

nX
jD1

�j
�
.@ju/

ˇ̌n:t:
@�

�
and Xu WD

nX
j;kD1

�jk@�jk
�
u
ˇ̌n:t:
@�

�
: (4B.5)

We look for a solution of (4B.4) in the form

u WD Sg in �; (4B.6)

where g 2Lp.@�/ is yet to be determined and S is the harmonic single layer potential operator associated
with �. That is,

Sg.x/ WD

Z
@�

E.x�y/g.y/ d�.y/; x 2�; (4B.7)

with E denoting the standard fundamental solution for the Laplacian in Rn, i.e., for all x 2 Rnnf0g,

E.x/ WD

�
jxj2�n=.!n�1.2�n// if n� 3;
1
2�

ln jxj if nD 2;
(4B.8)

where !n�1 is the surface measure of the unit sphere Sn�1 in Rn. As shown in [Hofmann et al. 2010,
Section 4],

@�Sg
ˇ̌n:t:
@�
D
�
�
1
2
I CK�

�
g; (4B.9)
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where
K� W Lp.@�/! Lp.@�/ is compact for every p 2 .1;1/: (4B.10)

Meanwhile,
X.Sg/D Cg WD

X
j;k

.Ajkg�Bjkg/ on @�; (4B.11)

where
Ajkg.x/ WD PV

Z
@�

ajk.x/@jE.x�y/g.y/ d�.y/; x 2 @�; (4B.12)

and
Bjkg.x/ WD PV

Z
@�

bjk.x/@kE.x�y/g.y/ d�.y/; x 2 @�; (4B.13)

with
ajk.x/ WD �jk.x/�k.x/; bjk.x/ WD �jk.x/�j .x/: (4B.14)

The following provides a key to the study of (4B.4):

Lemma 4.5. If �� Rn is a bounded, regular SKT domain and (4B.3) holds, then

AjkCA
�
jk and BjkCB

�
jk are compact on Lp.@�/ for all p 2 .1;1/: (4B.15)

Proof. For each j 2 f1; : : : ; ng,

Fjg.x/ WD PV
Z
@�

@jE.x�y/g.y/ d�.y/; x 2 @�; (4B.16)

defines an operator of Calderón–Zygmund type that is bounded on Lp.@�/ for all p 2 .1;1/, since �
is a UR domain. Then

AjkCA
�
jk D Œajk; Fj �; BjkCB

�
jk D Œbjk; Fk�; (4B.17)

so (4B.15) follows from a general commutator estimate of Coifman–Rochberg–Weiss-type (see [Hofmann
et al. 2010, Section 2.4]), since ajk , bjk 2 vmo.@�/. �

In light of (4B.9) and (4B.11), solving the oblique derivative boundary value problem (4B.4) via the
single layer representation (4B.6) is equivalent to finding a function g 2 Lp.@�/ satisfying�

�
1
2
I CC CK�

�
g D f: (4B.18)

In this regard, the following Fredholmness result is particularly relevant.

Proposition 4.6. If � is bounded, regular SKT domain in Rn and if (4B.3) holds, then

�
1
2
I CC CK� W L2.@�/! L2.@�/ is Fredholm of index 0: (4B.19)

Proof. By Lemma 4.5, we can write C CK� D zC CK2, where

zC � WD � zC and K2 is a compact operator on Lp.@�/ for all p 2 .1;1/ (4B.20)

Then, for g 2 L2.@�/,
<
��
�
1
2
I C zC

�
g; g

�
D�

1
2
kgk2

L2.@�/
; (4B.21)
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which, in turn, shows that
�
1
2
I C zC is invertible on L2.@�/: (4B.22)

Since the operator in (4B.19) is a compact perturbation of this, the desired conclusion follows. �

Corollary 4.7. In the setting of Proposition 4.6, there exists " > 0 such that

�
1
2
I CC CK� W Lp.@�/! Lp.@�/ is Fredholm of index 0 (4B.23)

whenever jp� 2j< ".

Proof. For p close to 2, that

�
1
2
I C zC W Lp.@�/! Lp.@�/ is invertible (4B.24)

follows from (4B.22) and the stability results in [Šneı̆berg 1974] (see also [Kalton and Mitrea 1998]).
Meanwhile, the operator in (4B.23) is a compact perturbation of that in (4B.24) for all p 2 .1;1/. �

In the context of Corollary 4.7, one wonders whether (4B.23) holds for all p 2 .1;1/. We show that it
does hold if � is a bounded Lip\ vmo1 domain in Rn:

Proposition 4.8. If � is a bounded Lip\ vmo1 domain in Rn and if (4B.3) holds, then the Fredholmness
result (4B.23) is true for all p 2 .1;1/.

Proof. For starters, we note that, since (4B.3) and (4B.14) imply that ajk , bjk 2 vmo.@�/, it follows
from Lemma E.1 that ajk ı�, bjk ı� 2 vmo.U / whenever � W U ! @� is a coordinate chart for @� (in
the sense of Definition E.3). Keeping this in mind it follows that, in the present setting, the operator C
defined by (4B.11) belongs to OP.L1\ vmo/S0cl, and (4B.20) implies that its principal symbol is purely
imaginary. Hence, for each s 2 R, Fs WD �12I C sC is an elliptic operator in OP.L1\ vmo/S0cl. Thus,
these operators Fs are all Fredholm on Lp.@�/ and all have index independent of s. Clearly, F0 has
index zero, hence so does F1, and the desired conclusion follows. �

We are now ready to state our main Fredholm solvability result for the oblique derivative problem.
This builds on the earlier work of Calderón [1985]. Other extensions in the Euclidean setting are in
[Kenig and Pipher 1988; Pipher 1987]; see also [Mitrea et al. � 2015] for some recent refinements in the
two-dimensional setting. For Lipschitz domains on manifolds see [Mitrea and Taylor 1999].

Theorem 4.9. Let � is a bounded Lip\ vmo1 domain in Rn with outward unit normal �. Assume that
(4B.3) holds and define the tangential vector field X as in (4B.2). Finally, fix p 2 .1;1/.

Then, for any boundary datum f 2 Lp.@�/ satisfying finitely many (necessary) linear conditions,
the oblique derivative problem (4B.4) has a solution. Moreover, such a solution is unique modulo a
finite-dimensional linear space, whose dimension coincides with the number of linearly independent
constraints required for the boundary data.

Hence, the oblique derivative problem (4B.4) is Fredholm solvable with index zero.

Proof. Fatou results in Lipschitz domains give that

�uD 0 on � and Nu; N.ru/ 2 Lp.@�/ H) u
ˇ̌n:t:
@�

exists and u
ˇ̌n:t:
@�
2H 1;p.@�/: (4B.25)



152 STEVE HOFMANN, MARIUS MITREA AND MICHAEL E. TAYLOR

Going further, from (4B.25) and the well-posedness of the Lp regularity problem for the Laplacian in
bounded Lip\ vmo1 domains established in Theorem 4.3, it follows that

uD 0 on � and Nu; N.ru/ 2 Lp.@�/ H) uD Sg in � for some (unique) g 2 Lp.@�/:
(4B.26)

In turn, from (4B.26) we deduce that, if the boundary datum f 2 Lp.@�/ is such that the oblique
derivative problem (4B.4) has a solution u, then there exists a (unique) function g 2 Lp.@�/ with the
property that

f D .@� CX/uD .@� CX/.Sg/D
�
�
1
2
I CC CK�

�
g: (4B.27)

This analysis shows that the oblique derivative problem (4B.4) is solvable precisely for boundary data f
belonging to the image of the operator �1

2
I CC CK� on Lp.@�/. By Proposition 4.8, this is a closed

subspace of Lp.@�/ of finite codimension. The above analysis also shows that the space of null solutions
for the oblique derivative problem (4B.4) is isomorphic to the kernel of the operator �1

2
I CC CK� on

Lp.@�/. Again, by Proposition 4.8, this is a finite-dimensional subspace of Lp.@�/. Moreover, since
the operator in question has index zero, we conclude that the number of (necessary) linear conditions
which the boundary data must satisfy coincides with the dimension of the space of null solutions. Hence,
the problem in question is Fredholm solvable with index zero. �

4C. Regular boundary problems for first-order elliptic systems. Suppose��M a Lip\ vmo1 domain
and let D be a first-order elliptic differential operator on M . It is permissible that D acts on sections of a
vector bundle E!M . In local coordinates, assume that

Du.x/D
X
j

Aj .x/@ju.x/CB.x/u.x/; where Aj 2 C 2; B 2 C 1: (4C.1)

As in Section 3E (see especially Remark 3.9), we associate to D a Cauchy integral CD and a projection PD,
which is an element of OP.L1\ vmo/S0cl in local graph coordinates.

When � is smooth, there is a well-established theory of regular boundary problems associated to D

(though sometimes regular boundary conditions do not exist). We want to investigate the situation where
��M is a Lip\ vmo1 domain.

Let F ! @�� be an L1\ vmo vector bundle of rank k, so F is locally trivializable to Ck �O with
transition matrices in L1\ vmo. Let

B W Lp.@�;E/ �! Lp.@�; F / (4C.2)

be an operator that, in local graph coordinates and local trivializations of E and F , satisfies

B 2 OP.L1\ vmo/S0cl: (4C.3)

We can use analogues of (3A.6)–(3A.10) to define

�B.x; �/ WEx �! Fx (4C.4)
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for almost all .x; �/2T �@��n0. Extending the setup used when @� is smooth, we propose the following
criterion for regularity:

�B.x; �/ W �PD.x; �/Ex �! Fx is an isomorphism for a.e. .x; �/ 2 T �@�� n 0 (4C.5)

and there exists C > 0 such that, for almost all .x; �/ 2 T �@�� n 0,

v 2Ex; �PDv D v H) k�B.x; �/vk � Ckvk: (4C.6)

Note that (4C.5)–(4C.6) is equivalent to (4C.6) alone plus

dim �PD.x; �/Ex D dimFx : (4C.7)

Also, �PD.x;��/D I � �PD.x; �/, so, if dim @�� 2, the left-hand side of (4C.7) is equal to 1
2

dimEx .
Here is our basic Fredholm result:

Proposition 4.10. Assume � � M is a Lip\ vmo1 domain and suppose D W E ! E is a first-order
elliptic differential operator as in (4C.1). Under the hypotheses (4C.5)–(4C.6), the operator

B W PDL
p.@�;E/ �! Lp.@�; F / is Fredholm (4C.8)

for each p 2 .1;1/.

Proof. The hypotheses imply that �BPD.x; �/ W Ex ! Fx is surjective for almost every .x; �/, and
furthermore

BPDP
�
DB
�
2 OP.L1\ vmo/S0cl is elliptic. (4C.9)

Hence B has a right Fredholm inverse, so B in (4C.8) has closed range of finite codimension. Also,

f 2 PDL
p.@�;E/; Bf D 0 (4C.10)

is equivalent to � B

I�PD

�
f D 0; f 2 Lp.@�;E/; (4C.11)

and the operator on the left-hand side of (4C.11) (call it Q) is an element of OP.L1 \ vmo/S0cl (mod
compacts) with symbol �Q.x; �/ injective, and furthermore

Q�Q 2 OP.L1\ vmo/S0cl is elliptic. (4C.12)

Thus, Q has a left Fredholm inverse, so its null space in Lp.@�;E/ is finite dimensional. This proves
(4C.8). �

Theorem 4.11. Under the hypotheses of Proposition 4.10, the boundary problem8<:
DuD 0 on �;
Nu 2 Lp.@�/;

BuD f 2 Lp.@�; F /;

(4C.13)

is Fredholm solvable for each p 2 .1;1/.
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Proof. To restate the result, consider

Hp.�;D/ WD fu 2 C 1.�;E/ W DuD 0 on �; Nu 2 Lp.@�/g: (4C.14)

In [Mitrea et al. � 2015], a Fatou-type lemma is established showing that each u 2 Hp.�;D/ has a
boundary trace provided � is a regular SKT domain. From there, results in [Mitrea et al. 2015, §3.1] (see
also [Mitrea et al. � 2015]) imply that the boundary trace yields an isomorphism

� WHp.�;D/ ��!PDL
p.@�;E/ (4C.15)

for p 2 .1;1/. The assertion of Theorem 4.11 is that, if B satisfies the hypotheses of Proposition 4.10,
then

B ı � WHp.�;D/ �! Lp.@�; F / is Fredholm. (4C.16)

In light of (4C.15), the result (4C.16) is equivalent to (4C.8). �

As we have mentioned, sometimes D has no boundary conditions of the form (4C.2)–(4C.4) satisfying
the regularity condition (4C.5)–(4C.6). In Section 4D we shall give important examples (well known for
smooth boundaries) of regular boundary conditions for DD dCd� acting on differential forms. Here, we
record a simple example (also well known) of a first-order elliptic operator with no such regular boundary
condition. Namely, we take a bounded �� R2 (possibly with smooth boundary) and set

DD
@

@x1
C i

@

@x2
(4C.17)

acting on complex-valued u, so Ex D C. In this case, �D.x; �/u D i.�1 C i�2/u, or, if we identify
� D .�1; �2/ 2 R2 with �1C i�2 2 C, �D.x; �/uD i�u; hence,

M.x; �/D ��1�: (4C.18)

Now � runs over the orthogonal complement of �, i.e., over real multiples of i�. We have

M.x; i�/D i; M.x;�i�/D�i; (4C.19)

so
PC.M.x; i�//D I; PC.M.x;�i�//D 0: (4C.20)

Since the ranges have different dimensions, there is no way to achieve (4C.5) for both �D i� and �D�i�.
Returning to the setting of Proposition 4.10 and Theorem 4.11, we see from (4C.9) that the operator B

in (4C.8) has a right Fredholm inverse that is an element of OP.L1 \ vmo/S0cl, and that this operator
is independent of p 2 .1;1/. Since B in (4C.8) is Fredholm, this right Fredholm inverse is also a left
Fredholm inverse for each p 2 .1;1/. Call it

H W Lp.@�; F / �! PDL
p.@�;E/: (4C.21)

Using this observation, we can prove the following:

Proposition 4.12. Under the hypotheses of Proposition 4.10, the index of B in (4C.8), and hence the
index of B ı � in (4C.11), is independent of p.
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Proof. Setting Vp D PDL
p.@�;E/ and Wp D Lp.@�; F /, our setup is

B W Vp!Wp; H WWp! Vp Fredholm inverses (4C.22)

for p 2 .1;1/. Setting

Kerp B WD ff 2 Vp W Bf D 0g; Cokerp B WD f' 2W 0p W B
�' D 0g; (4C.23)

we have
1 < p < q <1 H) Kerq B � Kerp B; Cokerp B � Cokerq B

H) indexq B � indexp B: (4C.24)

The same argument gives

1 < p < q <1 H) indexqH � indexpH; (4C.25)

and, since indexp B D� indexpH , we have

1 < p; q <1 H) indexp B D indexq B; (4C.26)

as desired. �

The results (4C.24)–(4C.26) also imply that

1 < p; q <1 H) Kerp B D Kerq B: (4C.27)

Let us set

H
p
B.�/ WD fu 2Hp.�;D/ W BuD 0 on @�g: (4C.28)

Then, the isomorphism (4C.15) gives

� WH
p
B.�/

��!PDL
p.@�;E/\KerB D Kerp B: (4C.29)

Thus (4C.27) yields the following:

Corollary 4.13. Under the hypotheses of Proposition 4.10, the space H
p
B.�/ defined in (4C.28) is

independent of p 2 .1;1/.

4D. Absolute and relative boundary conditions for the Hodge–Dirac operator. Let� be a Lip\ vmo1
domain in a smooth Riemannian manifold M . Let d denote the exterior derivative on M , denote by
ı D d� its adjoint, then define the Hodge–Dirac operator

D WD d C ı (4D.1)

acting on sections of

E WDƒ�CM: (4D.2)

We take F WDƒ�
C
@�� and

Bu WD j �u; (4D.3)
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the pull-back associated to j W @�� ,!M . We claim that .D; B/ given by (4D.1) and (4D.3) satisfy the
regularity conditions (4C.5)–(4C.6), i.e.,

�B.x; �/ W PC.M.x; �//Ex �! Fx isomorphically (4D.4)

for almost every .x; �/ 2 T �@�� n 0, with a uniform lower bound of the form

v 2 Fx; PC.M.x; �//v D v H) k�B.x; �/vk � Ckvk: (4D.5)

Recall that PC.M.x; �// is the projection of Ex onto the span of the generalized eigenvectors of M.x; �/
associated with eigenvalues with positive imaginary part, annihilating those associated with eigenvalues
with negative imaginary part, where

M.x; �/D �D.x; �/
�1�D.x; �/: (4D.6)

Checking (4D.4)–(4D.5) is a purely algebraic problem, and to do this algebra it suffices to take the case

M WD RnC1; � WD fx 2 RnC1 W xnC1 < 0g: (4D.7)

Let ^ and _ denote, respectively, the exterior and interior product of forms. The following calculation
shows that we have symbols independent of x:

�D.�/uD i� ^u� i� _u; �B.�/uD j
�uD � _ .� ^u/: (4D.8)

In addition, �D.�/
2 D j�j2I and, more generally, the anticommutator identity holds:

�D.�/�D.�/C �D.�/�D.�/D 2h�; �iI: (4D.9)

Consequently, �D.�/
�1 D �D.�/ and, for � 2 T �@� n 0,

M.�/D �D.�/�D.�/D��D.�/�D.�/I (4D.10)

hence
M.�/2 D�j�j2I; (4D.11)

so
SpecM.�/D fi j�j;�i j�jg: (4D.12)

Note that if � , � belong to T �@�D Rn and have the same length, then M.�/ and M.�/ are conjugate if
n� 2, since then one can pass from � to � by an element of SO.n/. On the other hand, M.��/D�M.�/.
It follows that

dimPC.M.�//D
1
2

dimEx D dimFx (4D.13)

for all � ¤ 0. For nD 1, this can be checked by a simple direct calculation.
Having this, all we need to show to establish (4D.4)–(4D.5) is that

v 2ƒ�CRnC1; � 2 Rn; j�j D 1; M.�/v D iv; j �v D 0 (4D.14)

implies
v D 0: (4D.15)
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Indeed, (4D.14) implies
�D.�/v D i�D.�/v D�� ^ vC � _ vI (4D.16)

hence, since j �v D 0 forces � ^ v D 0, we obtain

�D.�/v D � _ v: (4D.17)

Now the right-hand side of (4D.17) belongs to ƒ�
C

Rn. But, if �^vD 0 and � 2 Rn n0, the left-hand side
of (4D.17) cannot belong to ƒ�

C
Rn unless it is zero. This implies �D.�/vD 0, and hence (4D.15) follows.

A similar argument applies if we replace B in (4D.3) by

BuD � _u
ˇ̌n:t:
@�
: (4D.18)

Then we need to show that

v 2ƒ�CRnC1; � 2 Rn; j�j D 1; M.�/v D iv; � _ v D 0 (4D.19)

implies (4D.15). Indeed, (4D.19) implies

�D.�/v D�� ^ v: (4D.20)

If � _ v D 0 and � 2 Rn n 0, one cannot factor out a � on the left-hand side of (4D.20) unless this term
vanishes, so again we get (4D.15).

The boundary condition (4D.3) is called the relative boundary condition for d C ı, and (4D.18) is
called the absolute boundary condition for d C ı. The arguments above establish the following:

Proposition 4.14. The absolute boundary condition (4D.18) and the relative boundary condition (4D.3)
are each regular boundary conditions for the elliptic operator d C ı. Consequently, specializing (4C.28),
the spaces

HA.�/ WD fu 2Hp.�; d C ı/ W � _u
ˇ̌n:t:
@�
D 0g;

HR.�/ WD fu 2Hp.�; d C ı/ W � ^u
ˇ̌n:t:
@�
D 0g;

(4D.21)

where p 2 .1;1/ and, as in (4C.14),

Hp.�; d C ı/ WD fu 2 C 1.�;ƒ�C/ W .d C ı/uD 0 in �; Nu 2 Lp.@�/g; (4D.22)

are finite dimensional. Furthermore, by Corollary 4.13 the spaces in (4D.21) are independent of p2 .1;1/.

Here, ƒ�
C
WD
Ln
`D0ƒ

`
C

, where n WD dim�. We also set

ƒoC WD
M
` odd

ƒ`C; ƒeC WD
M
` even

ƒ`C; (4D.23)

Hp
� .�; d C ı/ WDHp.�; d C ı/\C 0.�;ƒ�C/; � D o or e; (4D.24)

H�
b .�/ WDHb.�/\C 0.�;ƒ�C/; b D A or R; � D o or e: (4D.25)

Note that
d C ı W C 1.�;ƒoC/ �! C 0.�;ƒeC/;

d C ı W C 1.�;ƒeC/ �! C 0.�;ƒoC/;
(4D.26)
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so

Hp.�; d C ı/DHp
e .�; d C ı/˚Hp

o .�; d C ı/; (4D.27)

Hb.�/DHe
b.�/˚Ho

b.�/; b D A or R: (4D.28)

In this vein, we wish to note that if we also consider

zHA.�/ WD fu 2Hp.�; d ˚ ı/ W � _u
ˇ̌n:t:
@�
D 0g; (4D.29)

zHR.�/ WD fu 2Hp.�; d ˚ ı/ W � ^u
ˇ̌n:t:
@�
D 0g; (4D.30)

where

Hp.�; d ˚ ı/ WD fu 2 C 1.�;ƒ�C/ W duD ıuD 0 on �; Nu 2 Lp.@�/g; (4D.31)

then from [Mitrea 2001, Theorem 6.1] it follows that

zHA.�/DHA.�/ and zHR.�/DHR.�/: (4D.32)

In more detail, (4D.32) was demonstrated for p close to 2 in [Mitrea 2001] in the setting of a general
Lipschitz domain. However, the independence of HA.�/ and HR.�/ from p, plus the obvious inclusions
zHA.�/�HA.�/ and zHR.�/�HR.�/, imply that zHA.�/ and zHR.�/ are also independent of p.

Auxiliary results

We collect here a number of auxiliary results that are useful in the body of the paper.

Appendix A. Spectral theory for the Dirichlet Laplacian. Specifically, fix an arbitrary bounded open
set O� Rn and, for any given p 2 .1;1/ and k 2 Z, denote by W k;p.O/ the standard Lp-based Sobolev
space of smoothness order k. Also, let VW k;p.O/ be the closure of C10 .O/ in W k;p.O/.

Let �D be the realization of the Laplacian with (homogeneous) Dirichlet boundary condition as an
unbounded linear operator in the context of the Hilbert space L2.O/, with domain

Dom.�D/ WD fu 2 VW 1;2.O/ W�u 2 L2.O/g: (A.1)

Then ��D is a nonnegative self-adjoint operator mapping Dom.�D/ isomorphically onto L2.O/, and its
inverse

GD WD .��D/
�1
W L2.O/ �! L2.O/ (A.2)

is self-adjoint, nonnegative and compact. In particular, ��D has a pure point spectrum

0 < �1 � �2 � � � � � �j � �jC1 � � � � (A.3)

listed according to their (finite) multiplicities. See, for example, [Dautray and Lions 1990, p. 82].
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Let us temporarily write �j .O/ in place of �j in order to emphasize the dependence on the underlying
domain O. The classical Rayleigh–Ritz min–max principle asserts (see, e.g., [Dautray and Lions 1990,
Theorem 10, p. 102]) that, for each j 2 N,

�j .O/D min
Vj� VW

1;2.O/
dimVjDj

max
u2Vj nf0g

R
O jruj

2R
O juj

2
: (A.4)

Assume now that zO is a bounded, open subset of Rn such that O� zO. Given that extension by zero is a
well-defined, norm-preserving mapping from VW 1;2.O/ into VW 1;2.zO/, it readily follows from (A.4) that
the following domain monotonicity property holds:

�j .O/� �j .zO/ for all j 2 N: (A.5)

In this vein, let us also mention that each �j .O/ is invariant with respect to translations and rotations of O,
and one has the scaling property

�j .cO/D c�2�j .O/ for all c 2 .0;1/; j 2 N: (A.6)

Finally, pick a complete set of normalized eigenfunctions f#j gj2N � L
2.O/ for ��D . Thus,

#j 2 VW
1;2.O/; k#j kL2.O/ D 1 and ��#j D �j#j for each j 2 N: (A.7)

Lemma A.1. Let O be a bounded, open subset of Rn.
Then there exist c1, c2 2 .0;1/ depending only on n and O such that

c1j
2=n
� �j � c2j

2=n for each j 2 N: (A.8)

Also, there exists CO;n 2 .0;1/ with the property that

k#j kL1.O/ � CO;nj
1=2C2=n for each j 2 N: (A.9)

Moreover, for each j 2 N one has
#j 2 C1loc.O/ (A.10)

and, for every compact subsetK of O and every multi-index ˛2Nn0 , there exists a constantCO;K;˛ 2 .0;1/

with the property that
k@˛#j kL1.K/ � CO;K;˛j

1=2C2=n: (A.11)

Proof. When O is the cube .0; 1/n in Rn, the pure point spectrum of the Dirichlet Laplacian is given by

f�j ..0; 1/
n/gj2N D f4�

2.k21 C � � �C k
2
n/ W ki 2 N; 1� i � ng; (A.12)

an identification that takes into account multiplicities. From this one can deduce Weyl’s asymptotic
formula

�j ..0; 1/
n/�

4�2j 2=n

�n=2�.n=2C 1/
; (A.13)
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valid for large values of j 2N, and the estimates in (A.8) follow in this scenario from (A.13). The general
situation when O is an arbitrary bounded open set in Rn may then be handled based on the special case
just treated and the comments in (A.5)–(A.6).

The operator GD in (A.2) is an integral operator whose kernel is the negative of the Green function for
O, i.e.,

GDu.x/D�

Z
O
G.x; y/u.y/ dy; x 2 O; (A.14)

for each u 2 L2.O/. Since (see [Grüter and Widman 1982]) we have

jG.x; y/j �
Cn

jx�yjn�2
; x; y 2 O; (A.15)

(assuming n > 2; the case nD 2, when a logarithm is involved, is treated analogously), it follows that
GD behaves like a fractional integral operator of order 2; hence (see [Stein 1970]),

GD W L
p.O/ �! Lq.O/ linearly and boundedly if

�
q <1 and 1=q � 1=p� 2=n; or
q D1 and p > n=2:

(A.16)

Iterating, it follows that

.GD/
k
W L2.O/ �! L1.O/ boundedly if k > n=4: (A.17)

On the other hand, for each fixed j 2 N, from (A.7) we have #j D �jGD#j , which, inductively, implies
#j D �

k
j .GD/

k#j for each k 2N. Consequently, if k WD Œn=4�C1 then k 2N satisfies k 2 .n=4; n=4C1�;
hence, we may estimate

k#j kL1.O/ D k�
k
j .GD/

k#j kL1.O/

� k.GD/
k
kL.L2.O/;L1.O//�

k
j k#j kL2.O/

� CO;nj
2k=n
� CO;nj

1=2C2=n (A.18)

by (A.17), (A.7) and (A.8). This proves (A.9).
Finally, (A.10)–(A.11) follow from (A.7), (A.9) and elliptic regularity. �

Appendix B. Truncating singular integrals. If U � Rn, call ˆ W U ! Rm bi-Lipschitz if there exist
M1, M2 with 0 <M1 �M2 <1 such that

M1jx�yj � jˆ.x/�ˆ.y/j �M2jx�yj for all x; y 2 U: (B.1)

When U is an open set, it is known from [Rademacher 1919] that necessarily m � n, ˆ is an open
mapping, the Jacobian matrix DˆD .@k ĵ /1�j�m;1�k�n exists a.e. in U , and

rankDˆ.x/D n for a.e. x 2 U: (B.2)

Lemma B.1. Let A W Rn! Rm and B W Rn! Rm
0

be functions satisfying

jA.x/�A.y/j �M jx�yj and (B.3)

M�1jx�yj � jB.x/�B.y/j �M jx�yj for all x; y 2 Rn (B.4)
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for some positive constant M . Also let F W Rm! R be an odd function of class C 1. Finally, fix a point
x 2 Rn where both DA.x/, DB.x/ exist, rankDB.x/D n and, for each " > 0, consider

U."/ :D fy 2 Rn W 1 > jx�yj> "g;

V ."/ :D fy 2 Rn W jDB.x/.x�y/j> "; jx�yj< 1g;

W."/ :D fy 2 Rn W jB.x/�B.y/j> "; jx�yj< 1g:

(B.5)

Then, whenever any of the three limits

lim
"&0

Z
U."/

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
dy; (B.6)

lim
"&0

Z
V."/

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
dy; (B.7)

lim
"&0

Z
W."/

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
dy (B.8)

exists (in R), it follows that all exist and are equal.

Proof. Without loss of generality we can take xD0 and assume thatA.0/D0, B.0/D0. As a consequence
of this normalization and (B.3), we have

jA.y/j

jyj
�M for all y 2 Rn n f0g: (B.9)

The fact thatDA.0/;DB.0/ exist implies that we can find a function � W .0;1/! Œ0;1/ with the property
that �.t/& 0 as t & 0 and

jB.y/�DB.0/yjC jA.y/�DA.0/yj � jyj�.jyj/ for all y 2 Rn: (B.10)

In particular,

jA.y/CA.�y/j D j.A.y/�DA.0/y/C .A.�y/�DA.0/.�y//j

� jA.y/�DA.0/yjC jA.�y/�DA.0/.�y/j

� 2jyj�.jyj/ for all y 2 Rn: (B.11)

Recall that the matrix DB.0/ is assumed to have rank n. Hence, kDB.0/k> 0 and, letting

�."/ WD
˚
y 2 Rn W "� jyj � "=kDB.0/k

	
(B.12)

for each " > 0,

V."/ nU."/��."/ for all " > 0: (B.13)

Observing that U."/ and V."/ are symmetric with respect to the origin, employing the properties of F
and �, and keeping in mind (B.10), (B.13), (B.11) and (B.9), we may use the mean value theorem in order
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to estimate the absolute value of the difference of the limits in (B.6) and (B.7) by

lim
"&0

ˇ̌̌̌Z
V."/nU."/

1

jyjn
F

�
A.y/

jyj

�
dy

ˇ̌̌̌
D lim
"&0

1

2

ˇ̌̌̌Z
V."/nU."/

1

jyjn

�
F

�
A.y/

jyj

�
CF

�
A.�y/

jyj

��
dy

ˇ̌̌̌
(B.14)

D lim
"&0

1

2

ˇ̌̌̌Z
V."/nU."/

1

jyjn

�
F

�
A.y/

jyj

�
�F

�
�
A.�y/

jyj

��
dy

ˇ̌̌̌
�
�

sup
j�j�M

jrF.�/j
�

lim
"&0

Z
�."/

�.jyj/jyj�n dy

� C lim
"&0

�."/D 0: (B.15)

This proves that the limits in (B.6) and (B.7) exist simultaneously and are equal.
In order to prove the simultaneous existence and coincidence of the limits in (B.7) and (B.8), observe

that for each y 2 V."/nW."/ we have M�1jyj � jB.y/j � ", so jyj � "M . That is,

y 2 V."/nW."/ H) jyj � "M: (B.16)

In turn, this forces

j.DB/.0/yj � j.DB/.0/y �B.y/jC jB.y/j � "M�."M/C " (B.17)

and, further,
y 2 V."/nW."/ H) " < j.DB/.0/yj � "M�."M/C ": (B.18)

From (B.16) and (B.18) we may therefore conclude that

V."/nW."/�ZŒ"IM�."M/�; (B.19)

where, in general, we define

ZŒ"I a� WD fy 2 Rn W " < jDB.0/yj � "aC "g for all " > 0 and a > 0: (B.20)

Let Hk
N be the k-dimensional Hausdorff measure in RN . To estimate the n-dimensional Lebesgue measure

of ZŒ"I a�, note first that, for each a > 0 fixed,

ZŒ"I a�D "ZŒ1I a� for all " > 0: (B.21)

On the other hand, if we set Hn WD fDB.0/y W y 2 Rng � Rm
0

then, since DB.0/ is a rank-n matrix, it
follows that Hn is an n-dimensional plane in Rm

0

and DB.0/ W Rn!Hn is a linear isomorphism. As
such, we obtain

Hn
n.ZŒ1I a�/DHn

n.fy 2 Rn W 1 < jDB.0/yj � aC 1g/

� CHn
m0.fz 2Hn W 1 < jzj � aC 1g/: (B.22)

A moment’s reflection shows that

lim
a!0C

Hn
m0.fz 2Hn W 1 < jzj � aC 1g/D 0: (B.23)
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From this, (B.21), (B.19) and the fact that �."M/! 0 as "! 0C, we may conclude that

lim
"!0C

Hn
n.V ."/nW."//

"n
D 0: (B.24)

Since the expression .1=jyjn/F.A.y/=jyj/ restricted to V."/nW."/ is pointwise of the order "�n in a
uniform fashion, we deduce from (B.24) that

lim
"!0C

Z
V."/nW."/

1

jyjn
F

�
A.y/

jyj

�
dy D 0; (B.25)

as desired.
Finally, an argument analogous to (B.18) gives that

"� "M�."M/ < j.DB/.0/yj � " for all y 2W."/nV."/: (B.26)

Thus, for reasons similar to those discussed above, we also have

lim
"!0C

Z
W."/nV."/

1

jyjn
F

�
A.y/

jyj

�
dy D 0; (B.27)

which completes the proof of the lemma. �

The main result in this appendix, pertaining to the manner in which singular integrals are truncated,
reads as follows:

Proposition B.2. Let A W Rn ! Rm be a Lipschitz function and assume that F W Rm ! R is an odd
function of class CN for some sufficiently large integer N D N.m/. Also, suppose B W Rn! Rm

0

is a
bi-Lipschitz function and pick p 2 .1;1/. Then, for each fixed f 2 Lp.Rn/, the limit

lim
"&0

Z
fy2RnWjB.x/�B.y/j>"g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
f .y/ dy (B.28)

exists at a.e. point x 2 Rn. Moreover, this limit is independent of the choice of the function B , in the sense
that for each given f 2 Lp.Rn/ the limit (B.28) is equal to

lim
"&0

Z
fy2RnWjx�yj>"g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
f .y/ dy (B.29)

for a.e. x 2 Rn.

As a preamble, we deal with a simple technical result. In the sequel, we agree to let M stand for the
usual Hardy–Littlewood maximal operator.

Lemma B.3. Assume that

C1jx�yj � �.x; y/� C2jx�yj for all x; y 2 Rn (B.30)

and

jk.x; y/j �
C0

jx�yjn
for all x; y 2 Rn (B.31)
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for some finite positive constants C0, C1, C2. Then

�.x/ :D
ˇ̌̌̌Z
jx�yj>"
y2Rn

k.x; y/f .y/dy �

Z
�.x�y/>"
y2Rn

k.x; y/f .y/ dy

ˇ̌̌̌
� C0.C

�n
1 CC

n
2 /Mf .x/ (B.32)

for all x 2 Rn.

Proof. A direct size estimate gives

�.x/�

Z
jx�yj>"; �.x;y/<"

y2Rn

C0

jx�yjn
jf .y/j dyC

Z
jx�yj<"; �.x;y/>"

y2Rn

C0

jx�yjn
jf .y/j dy DW I C II; (B.33)

where the last equality defines I , II. We have:

I �
C0

"n

Z
C1jx�yj<"

jf .y/j dy �
C0

C n1
Mf .x/ (B.34)

and

II �
C0C

n
2

"n

Z
jx�yj<"

jf .y/j dy � C0C
n
2 Mf .x/: (B.35)

The desired conclusion follows. �

Below, we shall also make use of the following standard result:

Lemma B.4. Let fT"g">0 be a family of operators with the following properties:

(1) There exists a dense subset V of Lp.Rn/ such that for any f 2V the limit lim"!0C T"f .x/ exists
for almost every x 2 Rn.

(2) The maximal operator T�f .x/ WD supfjT"f .x/j W " > 0g is bounded on Lp.Rn/.

Then, the limit lim"!0C T"f .x/ exists for any f 2 Lp.Rn/ at almost any x 2 Rn, and the operator

Tf .x/ WD lim
"!0C

T"f .x/ (B.36)

is bounded on Lp.Rn/.

Proof. The boundedness of the operator T is an immediate consequence of (2), once we prove the
existence of the limit in (B.36). In this regard, having fixed f 2 Lp.Rn/, we aim to show thatˇ̌

fx 2 Rn W lim sup
"!0C

T"f .x/ 6D lim inf
"!0C

T"f .x/g
ˇ̌
D 0: (B.37)

Fix � > 0 and consider

S WD
˚
x 2 Rn W

ˇ̌
lim sup
"!0C

T"f .x/� lim inf
"!0C

T"f .x/
ˇ̌
> �

	
: (B.38)

Also, fix ı > 0 and select h 2 V such that kf � hkLp.Rn/ < ı. Then

S � S1[S2; (B.39)
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where
S1 WD

˚
x 2 Rn W

ˇ̌
lim sup
"!0C

T"f .x/� lim
"!0C

T"h.x/
ˇ̌
> 1
2
�
	
;

S2 WD
˚
x 2 Rn W

ˇ̌
lim inf
"!0C

T"f .x/� lim
"!0C

T"h.x/
ˇ̌
> 1
2
�
	
:

(B.40)

Then the measure of the set S1 can be estimated by

jS1j �
ˇ̌
fx 2 Rn W T�.f � h/.x/ > �=2g

ˇ̌
�

�
2

�

�p Z
Rn
jT�.f � h/.x/j

p dx

� C

�
2

�

�p
kf � hk

p

Lp.Rn/
� C

�
2

�

�p
ıp: (B.41)

Since ı > 0 was arbitrary, this proves that jS1j D 0. The same consideration works for the set S2; hence
also jS j D 0 by (B.39). This concludes the proof of Lemma B.4. �

We are now ready to present:

Proof of Proposition B.2. For each bi-Lipschitz function B defined in Rn, consider the truncated singular
integral operator

TB;"f .x/ WD

Z
fy2RnWjB.x/�B.y/j>"g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
f .y/ dy; x 2 Rn; (B.42)

where " > 0. The maximal operator associated with the family fTB;"g">0 is defined as

TB;�f .x/ WD sup
">0

jTB;"f .x/j; x 2 Rn: (B.43)

In particular, corresponding to the case when B D I , the identity on Rn, we have

TI;"f .x/D

Z
fy2RnWjx�yj>"g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
f .y/ dy; x 2 Rn; (B.44)

and

TI;�f .x/D sup
">0

jTI;"f .x/j; x 2 Rn: (B.45)

We proceed is a number of steps.

Step 1. Given p 2 .1;1/ there exists a constant C 2 .0;1/ with the property that, for each Lipschitz
function A W R! R and for each " > 0, the truncated Cauchy integral operator

CA;"f .x/ WD

Z
fy2RWjx�yj>"g

f .y/

x�yC i.A.x/�A.y//
dy; x 2 R; (B.46)

satisfies

kCA;"f kLp.R/ � C.1CkA
0
kL1.R//kf kLp.R/: (B.47)

This is the Coifman–McIntosh–Meyer theorem [Coifman et al. 1982]. An elegant proof is given by
M. Melnikov and J. Verdera [1995].
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Step 2. Given p 2 .1;1/ there exists a constant C 2 .0;1/ with the property that, if ˇ 2 .1;1/ and
if B W R! R is a Lipschitz function satisfying ˇ�1 < B 0.x/ < ˇ for a.e. x 2 R, then for each " > 0 and
each � 2 Œ�1; 1� the operator

zCB;�;"f .x/ WD

Z
fy2RWjx�yj>"g

f .y/

�.x�y/i CB.x/�B.y/
dy; x 2 R; (B.48)

satisfies
kzCB;�;"f kLp.R/ � Cˇ

4
kf kLp.R/: (B.49)

To prove (B.49), changing variables s WD B.x/ and t WD B.y/ allows us to write

.zCB;�;"f /.B
�1.s//D

Z
jB�1.s/�B�1.t/j>"

f .B�1.t//ŒB 0.B�1.t//��1

s� t C i�.B�1.s/�B�1.t//
dt: (B.50)

Based on this and Lemma B.3, we then obtain the pointwise estimate

j.zCB;�;"f /.B
�1.s//j � jC�B�1;"..f =B

0/ ıB�1/.s/jCCˇ3Mf .B�1.s// (B.51)

for all s 2 R. Then (B.49) follows from (B.51) with the help of (B.47).

Step 3. Suppose F.z/ is an analytic function in the open strip fz 2 C W jIm zj< 2g. Let A W R! R be a
Lipschitz function with kA0kL1.R/�M . Then, for each p2 .1;1/ there exists a constantC DCp 2 .0;1/
such that, for each " > 0, the operator

KA;F;"f .x/ WD

Z
jx�yj>"

1

x�y
F

�
A.x/�A.y/

x�y

�
f .y/ dy; x 2 R; (B.52)

satisfies
kKA;F;"f kLp.R/ � C.1CM

4/ supfjF.z/j W z 2 C; jIm zj< 2gkf kLp.R/: (B.53)

To justify (B.53), let 1
˙
WD f� D u˙ i W juj � 2M g, 2

˙
WD f� D ˙2M C iv W jvj � 1g, and set

 WD 1
C
[ 2
C
[ 1�[ 

2
�. Since F is analytic for z 2 C with jIm zj< 2, Cauchy’s reproducing formula

yields

F.s/D
1

2�i

Z


F.�/

� � s
d� D

1

2�i

Z
1
C
[1�

F.�/

� � s
d�C

1

2�i

Z
2
C
[2�

F.�/

� � s
d�: (B.54)

Accordingly,

KA;F;"f .x/D
1

2�i

Z
1
C
[1�

F.�/

Z
jx�yj>"

1

x�y

f .y/

� � A.x/�A.y/
x�y

dy d�

C
1

2�i

Z
2
C
[2�

F.�/

Z
jx�yj>"

1

x�y

f .y/

� � A.x/�A.y/
x�y

dy d�

D ICC I�C IICC II�; (B.55)

where

I˙ WD �
1

2�

Z
1
˙

F.�/

Z
jx�yj>"

f .y/

x�yC i ŒA˙
�
.x/�A˙

�
.y/�

dy d� (B.56)
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with A˙
�
.x/ WD �ŒA.x/� .< �/x�, and

II˙ WD
1

2�i

Z
2
˙

F.�/

Z
jx�yj>"

f .y/

.Im �/.x�y/i C ŒB˙.x/�B˙.y/�
dy d� (B.57)

with B˙.x/ WD �ŒA.x/� 2Mx�. At this point, the proof of (B.53) is concluded by invoking the results
from Steps 1–2.

Step 4. Suppose F 2 CN .R/, N � 6, and assume that A W R ! R is a Lipschitz function with
kA0kL1.R/ � M . Then, for each p 2 .1;1/, there exists a constant C D Cp 2 .0;1/ such that
the operator (B.52) satisfies, for each " > 0,

kKA;F;"f kLp.R/ � C.1CM
4/ supfjF .k/.x/j W jxj �M C 1; 0� k � 6gkf kLp.R/: (B.58)

In dealing with (B.58), there is no loss of generality in assuming that F is supported in the interval
Œ�M � 1;M C 1�. With “hat” denoting the Fourier transform we have

KA;F;"f .x/D

Z
R

bF .�/�Z
fy2RWjx�yj>"g

1

x�y
ei�

A.x/�A.y/
x�y f .y/ dy

�
d�: (B.59)

Note that the inner integral above is precisely the truncated Cauchy operator (B.46) corresponding to the
choice F.z/ WD exp.iz/ and with A replaced by �A. Consequently, (B.58) follows from (B.59) with the
help of (B.53).

Step 5. Suppose F 2 CN .Rm/, N � mC 5, F is odd, and assume that A W Rn ! Rm is a Lipschitz
function with kDAkL1.Rn;Rm/ �M . Then, for each p 2 .1;1/, there exists a constant C DCp 2 .0;1/
such that, for each " > 0, the operator

KA;F;"f .x/ WD

Z
jx�yj>"

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
f .y/ dy; x 2 Rn; (B.60)

satisfies

kKA;F;"f kLp.Rn/ � C.1CM
4/ supfj@˛F.x/j W jxj �M C 1; j˛j �mC 5gkf kLp.Rn/: (B.61)

In the case nD 1, since F is odd we may write

1

jx�yj
F

�
A.x/�A.y/

jx�yj

�
D

1

x�y
F

�
A.x/�A.y/

x�y

�
; (B.62)

so (B.61) follows from an argument similar to the one used in the treatment of Step 4, based on writing

KA;F;"f .x/D

Z
Rm

bF .�/�Z
fy2RWjx�yj>"g

1

x�y
eih�;

A.x/�A.y/
x�y

if .y/ dy

�
d� (B.63)

and invoking the result established in Step 3. For n> 1 we can reduce the problem to the one-dimensional
case by the classical method of rotation.

Step 6. Retain the same assumptions as in Step 5. Then there is a constant C such that

jfx 2 Rn W jKA;F;"f .x/j> �gj �
C

�
kf kL1.Rn/ (B.64)
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for every function f 2L1.Rn/\L2.Rn/ and every positive number �. In particular, KA;F;" extends to a
bounded operator from L1.Rn/ into L1;1.Rn/ (where L1;1.Rn/ stands for the weak-L1 space in Rn).

This follows from Step 5 (with p D 2) and the classical Calderón–Zygmund lemma.

Step 7. Retain the same assumptions as in Step 5. There exists a finite constant C > 0 depending only on
the dimension with the property that, for each fixed "0 > 0, the following Cotlar-type estimate holds:

K
."/
A;F;�f .x/� CMf .x/C 2M.KA;F;"0f /.x/ for all " > "0 (B.65)

for each f 2 Lipcomp.R
n/ and each x 2 Rn, where

K
."/
A;F;�f .x/ WD sup

"0>"

jKA;F;"0f .x/j: (B.66)

Without loss of generality, it suffices to prove (B.65) for x D 0, so we focus on showing that

jKA;F;"f .0/j � CMf .0/C 2M.KA;F;"0/f .0/ for all " > "0: (B.67)

Then (B.67) implies (B.65) by suitably taking the supremum.
The first step is to observe that, for all x 2 Rn and for all " > 0,

jKA;F;"f .x
0/�KA;F;"f .x/j � CMf .0/ provided jx� x0j � "=2: (B.68)

To see that this is the case, abbreviate k.x; y/ WD F
�
.A.x/�A.y//=jx�yj

�
=jx�yjn, then write

jKA;F;"f .x
0/�KA;F;"f .x/j �

ˇ̌̌̌Z
jx�yj�"

.k.x0; y/� k.x; y//f .y/ dy

ˇ̌̌̌
C

ˇ̌̌̌Z
jx0�yj�"

k.x0; y/f .y/ dy �

Z
jx�yj�"

k.x0; y/f .y/ dy

ˇ̌̌̌
DW I C II: (B.69)

The term II can be bounded by a multiple of Mf .0/ using an argument similar to that in Lemma B.3.
The estimate for I follows from the mean vale theorem, the nature of the kernel k.x; y/, and the standard
inequality

"

Z
jyj�"

jyj�n�1jf .y/j dy � CMf .0/ for all " > 0: (B.70)

Turning to the proof of (B.67) in earnest, fix " > "0 > 0 then introduce f1 WD f�B.0;"/ and set
f2 WD f �f1. In particular, this entails

KA;F;"f .0/DKA;F;"0f2.0/: (B.71)

Then, for each x 2 B.0; "=2/, by (B.68) we have

jKA;F;"0f2.x/�KA;F;"0f2.0/j � CMf .0/I (B.72)

therefore,

jKA;F;"0f2.0/j � jKA;F;"0f .x/jC jKA;F;"0f1.x/jCCMf .0/ for a.e. x 2 B.0; "=2/: (B.73)
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We finish the proof by analyzing the weak-L1 norms of the above functions. To this end, define

N.f / WD sup
�>0

�
��.fx 2 B W jf .x/j> �g/

�
; (B.74)

where B WD B.0; "=2/ and � stands for the n-dimensional Lebesgue measure restricted to the ball B of
constant density jBj�1. Observe that f .x/ D ˛ on B implies N.f / D ˛ for any constant ˛, and that
N.f1Cf2Cf3/� 2N.f1/C 4N.f2/C 4N.f3/ for all functions f1, f2 and f3. Then the estimate

jKA;F;"f .0/j D jKA;F;"0f2.0/j � 2N.KA;F;"0f /C 4N.KA;F;"0f1/C 4CMf .0/ (B.75)

follows from (B.71), these observations and (B.73). It remains to note that the right-hand side above can
be further bounded using Chebyshev’s inequality, which yields N.KA;F;"0f /� CM.KA;F;"0f /.0/, and
the weak-L1 boundedness result from Step 6, which eventually gives N.KA;F;"0f1/� CMf .0/. From
these, (B.67) follows.

Step 8. Retain the same assumptions as in Step 5 and consider the maximal operator

KA;F;�f .x/ WD sup
">0

jKA;F;"f .x/j; x 2 Rn: (B.76)

Then for each p 2 .1;1/ there exists a constant C D C.F;A;m; n; p/ 2 .0;1/ with the property that

kKA;F;�f kLp.Rn/ � Ckf kLp.Rn/ for all f 2 Lp.Rn/: (B.77)

To see this, fix an arbitrary f 2 Lp.Rn/ and first observe from (B.66) that for each x 2 Rn we have

K
."/
A;F;�f .x/%KA;F;�f .x/ as "& 0: (B.78)

Based on this, Lebesgue’s monotone convergence theorem, (B.65), (B.61) and the boundedness of the
Hardy–Littlewood maximal function, we obtain

kKA;F;�f kLp.Rn/ D lim
"!0C

kK
."/
A;F;�f kLp.Rn/

� C lim
"!0C

.kMf kLp.Rn/CkM.KA;F;"=2f /kLp.Rn//� Ckf kLp.Rn/; (B.79)

completing the proof of (B.77).
In terms of the maximal operator TI;� from (B.45), estimate (B.77) yields

kTI;�f kLp.Rn/ � Ckf kLp.Rn/ for all f 2 Lp.Rn/: (B.80)

In order to show the existence of the pointwise limit in (B.29), the strategy is to return to the various
particular operators discussed in Steps 1–5 and show that, in each case, such a pointwise convergence
holds for such operators acting on functions in Lp , almost everywhere in Rn. In all cases, we shall make
use of the abstract scheme described in Lemma B.4.

Step 9. Pointwise convergence for the Cauchy operator (B.46): Let V WD .1C iA0/Lipcomp.R/, which is
a dense subclass of Lp.R/, 1 < p <1, since A is real-valued and Lipschitz. We claim that

for any h 2 V, lim"!0C CA;"h.x/ exists for a.e. x 2 R: (B.81)
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Indeed, if hD .1C iA0/f with f 2 Lipcomp.R/, then we can write

CA;"h.x/D

Z
1>jx�yj>"

1C iA0.y/

x�yC i.A.x/�A.y//
.f .y/�f .x// dy

�f .x/

Z
1>jx�yj>"

�.1C iA0.y//

x�yC i.A.x/�A.y//
dy

C

Z
jx�yj>1

1C iA0.y/

x�yC i.A.x/�A.y//
f .y/ dy

DW I C IIC III: (B.82)

Using the fact that f is a compactly supported Lipschitz function, it is immediate that lim"!0C I and
lim"!0C III exist at every x 2 R. Furthermore, the fundamental theorem of calculus gives

II D�f .x/ ln
�
�1C i.A.x/�A.xC "//="

1C i.A.x/�A.x� "//="

�
(B.83)

and the limit as "! 0C of the right-hand side exists for almost every x 2 R since, by Rademacher’s
theorem, the Lipschitz function A is a.e. differentiable. This concludes the proof of (B.81).

Finally, a combination of (B.81), Lemma B.4 and (a suitable version of) the maximal inequality (B.80)
gives that for f 2 Lp.R/ the limit lim"!0C CA;"f .x/ exists for almost every x 2 R.

Step 10. Pointwise convergence for the Cauchy operator (B.48).

Using Step 9, (B.50) and Lemma B.1, it follows that, for each function f 2 Lp.R/, the limit
lim"!0C zCB;�;"f .x/ exists for almost every x 2 R.

Step 11. Pointwise convergence for the operator (B.52). Specifically, we claim that, if f 2 Lp.R/, the
limit lim"!0KA;F;"f .x/ exists for almost every x 2 R.

In order to prove this claim, fix f 2Lp.R/ and recall I˙, II˙ as defined in (B.55). The goal is to first
show that lim"!0 IC exists for almost every x 2 R. To this end, for x, � 2 R set

F �;x" WD F.�/

Z
jx�yj>"

f .y/

x�yC i ŒA˙
�
.x/�A˙

�
.y/�

dy: (B.84)

Then, employing Step 9 it follows that for each � 2 1
C

the limit

lim
"!0C

F �;x" (B.85)

exists for almost every x 2 R. Next, we want to prove that sup">0 jF
�;x
" j 2 L

1
�
.1
C
/ for almost every

x 2 R. To see the latter we writeZ
R

ˇ̌̌̌Z
1
C

sup
">0

jF �;x" j d�

ˇ̌̌̌2
dx �

Z
1
C

Z
R

�
sup
">0

jF �;x" j
�2
dx d� � Ckf kL2.R/: (B.86)

The first inequality in (B.86) is standard, while for the second one we have used (a suitable version of)
the maximal inequality (B.80). The above analysis provides all the ingredients necessary for invoking
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Lebesgue’s dominated convergence theorem, which, in turn, allows us to conclude that

lim
"!0C

IC D lim
"!0C

�
�
1

2�

Z
1
C

F �;x" d�

�
exists at almost every point x 2 R. (B.87)

Similarly, one shows that lim"!0C I�, lim"!0C II˙ exist for almost every x 2 R, and thus the earlier
claim is proved.

Step 12. Pointwise convergence for the operator (B.58).

The fact that for f 2 Lp.R/, the limit lim"!0C KA;F;"f .x/ exists for almost every x 2 R follows by
a reasoning similar to the one in Step 11. This time the identity (B.59) replaces the expressions in (B.55)
and the decay properties of the Fourier transform bF .�/ in are used when applying Lebesgue’s dominated
convergence theorem.

Step 13. For each given f 2 Lp.Rn/, the limit (B.29) exists for a.e. x 2 Rn.

Indeed, the case n D 1 has been treated in Step 12. Finally, in the case n > 1, the existence of the
limit in question for f 2 C10 .R

n/ follows via the rotation method from the one-dimensional result (and
Lebesgue’s dominated convergence theorem). Granted this, we may invoke Lemma B.4 and the maximal
inequality (B.80) in order to finish, keeping in mind that C10 .R

n/ is dense in Lp.Rn/.
In summary, at this point we know that

for each f 2 Lp.Rn/, the limit lim"!0C TI;"f .x/ exists for a.e. x 2 Rn: (B.88)

In turn, this readily yields that

lim
"&0

Z
fy2RnW1>jx�yj>"g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
dy exists for a.e. x 2 Rn: (B.89)

With this in hand and relying on Lemma B.1, we deduce that, for each bi-Lipschitz function B ,

lim
"&0

Z
fy2RnWjB.x/�B.y/j>"; jx�yj<1g

1

jx�yjn
F

�
A.x/�A.y/

jx�yj

�
dy exists for a.e. x 2 Rn (B.90)

and the limits in (B.89) and (B.90) are equal. Having proved this, it follows that

for each f 2 C10 .R
n/, lim"!0C TB;"f .x/ exists for a.e. x 2 Rn and is equal to lim"!0C TI;"f .x/.

(B.91)
Let us also note that, thanks to (B.80) and Lemma B.3,

kTB;�f kLp.Rn/ � Ckf kLp.Rn/ for all f 2 Lp.Rn/: (B.92)

From (B.91), (B.92) and Lemma B.4 we may finally conclude that for each fixed f 2 Lp.Rn/ the limit
(B.28) exists at a.e. point x 2 Rn and is equal to (B.29). This finishes the proof of Proposition B.2. �
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Appendix C. Background on OP.L1 \ vmo/S 0
cl . If X is a Banach space of functions on Rn, we say

a function p on points .x; �/ 2 Rn �Rn belongs to the symbol class XSm1;0,

p 2XSm1;0; (C.1)

provided p. � ; �/ 2X for each � 2 Rn and

k@˛�p. � ; �/kX � C˛h�i
m�j˛j for all ˛ 2 Nn0; (C.2)

where h�i WD .1Cj�j2/1=2 and N0 WD N[f0g. If, in addition,

p.x; �/�
X
j�0

pj .x; �/; pj .x; r�/D r
m�jpj .x; �/ for r; j�j � 1; (C.3)

in the sense that for every k 2 N the difference p�
Pk�1
jD0 pj belongs to XSm�k1;0 , we say

p 2XSmcl : (C.4)

The associated operator p.x;D/ is given by

p.x;D/uD .2�/�n=2
Z
p.x; �/ Ou.�/eix�� d�: (C.5)

If (C.1) holds, we say p.x;D/ 2 OPXSm1;0, and if (C.4) holds, we say p.x;D/ 2 OPXSmcl .
Here we single out the spaces

L1.Rn/; bmo.Rn/; vmo.Rn/; L1.Rn/\ vmo.Rn/ (C.6)

to play the role of X . Here bmo is the localized variant of BMO, and vmo that of VMO. We summarize
some results about the associated pseudodifferential operators. Details can be found in [Taylor 2000,
Chapter 1, §11], which builds on work in [Chiarenza et al. 1991; Taylor 1997, §6]. A key ingredient in
the proofs of these results is the classical commutator estimate of [Coifman et al. 1976],

kŒMg ; B�ukLp � CpkgkbmokukLp (C.7)

given B 2 OPS01;0. Here Mgu WD gu is the operator of multiplication by g.
The following extension appears in [Taylor 2000, Proposition 11.1]:

Proposition C.1. If p.x;D/ 2 OP.bmo/S0cl and B D b.x;D/ 2 OPS01;ı , ı < 1, with B scalar, then

Œp.x;D/; B� W Lp.Rn/ �! Lp.Rn/; 1 < p <1: (C.8)

If p 2 vmoS0cl and b 2 S0
1;ı

have compact x-support, this commutator is compact.

This result in turn helps prove the following, which may be found in [Taylor 2000, Proposition 11.3].

Proposition C.2. Assume that

p 2 L1S0cl; q 2 .L1\ vmo/S0cl; (C.9)

with compact x-support. Then

p.x;D/q.x;D/D a.x;D/CK; a.x; �/D p.x; �/q.x; �/; (C.10)
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with K compact on Lp.Rn/ for 1 < p <1.

The following result has a proof parallel to that of Proposition C.2:

Proposition C.3. Assume q 2 .L1\ vmo/S0cl, with compact x-support, and set

q�.x; �/D q.x; �/�: (C.11)

Then
q.x;D/� D q�.x;D/CK; (C.12)

with K compact on Lp.Rn/ for 1 < p <1.

To proceed, we have the following useful result, which appears in [Taylor 2000, Proposition 11.4].

Proposition C.4. The space L1\ vmo is a closed subalgebra of L1.Rn/.

Putting Propositions C.2 and C.4 together yields the following:

Corollary C.5. Assume that
p; q 2 .L1\ vmo/S0cl; (C.13)

with compact x-support. Then

p.x;D/q.x;D/D a.x;D/CK; (C.14)

with K compact on Lp.Rn/ for 1 < p <1 and

aD pq 2 .L1\ vmo/S0cl: (C.15)

Generally, if A is a C �-algebra and B a closed *-subalgebra of A containing the identity element, and
if f 2B, then f is invertible in B if and only if it is invertible in A. To see this, consider hD f �f and
expand H.z/D .hC 1� z/�1 in a power series about z D 0. The radius of convergence is greater than 1
if f is invertible in A. Clearly, H.z/ 2B for jzj< 1 if f 2B, so H.1/ 2B.

Consequently, we have

a 2 L1\ vmo; a�1 2 L1 H) a�1 2 L1\ vmo : (C.16)

This holds for matrix-valued a.x/. Similarly, if

p 2 .L1\ vmo/S0cl is elliptic, (C.17)

so that there exist Cj <1 such that

jp.x; �/�1j � C1 for j�j � C2; (C.18)

then
.1�'.�//p.x; �/�1 2 .L1\ vmo/S0cl; (C.19)

where ' 2 C10 .R
n/ is equal to 1 for j�j � C2. This allows the construction of Fredholm inverses of

elliptic operators with coefficients in L1\ vmo.
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Appendix D. Analysis on spaces of homogeneous type. We begin by discussing a few results of a
general nature, valid in the context of spaces of homogeneous type. Recall that .†; �/ is a quasimetric
space if † is a set (of cardinality at least two) and the mapping � W†�†! Œ0;1/ is a quasidistance;
that is, there exists C 2 Œ1;1/ such that, for every x, y, z 2†, � satisfies

�.x; y/D 0() x D y; �.y; x/D �.x; y/; �.x; y/� C.�.x; z/C �.z; y//: (D.1)

A space of homogeneous type in the sense of Coifman and Weiss [1977] is a triplet .†; �; �/ such that
.†; �/ is a quasimetric space and � is a Borel measure on † (equipped with the topology canonically
induced by �) that is doubling. That is, there exists C 2 .0;1/ such that

0 < �.B�.x; 2r//� C�.B�.x; r// for all x 2† and r > 0; (D.2)

where B�.x; r/ is the �-ball of center x and radius r given by fy 2† W �.x; y/ < rg.
Then the John–Nirenberg space of functions of bounded mean oscillations, BMO.†;�/, consists of

functions f 2 L1loc.†;�/ for which kf kBMO.†;�/ <C1. As usual, we have set

kf kBMO.†;�/ WD

�
supR>0M1.f IR/ if �.†/DC1;ˇ̌R
† f d�

ˇ̌
C supR>0M1.f IR/ if �.†/ <C1;

(D.3)

where, for p 2 Œ1;1/, we have set

Mp.f IR/ :D sup
x2†

sup
r2.0;R�

�Z
�
B�.x;r/

ˇ̌̌̌
f �

Z
�
B�.x;r/

f d�

ˇ̌̌̌p
d�

�1
p

;

and
Z
�
B�.x;r/

f d� :D
1

�.B�.x; r//

Z
B�.x;r/

f d�:

(D.4)

Following [Sarason 1975], if UC.†;�/ stands for the space of uniformly continuous functions on X , we
introduce VMO.†;�/, the space of functions of vanishing mean oscillations on †, where

VMO.†;�/ is the closure of UC.†;�/\BMO.†;�/ in BMO.†;�/: (D.5)

We have the following useful equivalent characterization of VMO on compact spaces of homogeneous
type. To state it, we denote by C ˛.†; �/ the space of real-valued Hölder functions of order ˛ > 0 on the
quasimetric space .†; �/. That is, C ˛.†; �/ is the collection of all real-valued functions f on † with the
property that

kf kC˛.†;�/ WD sup
x2†

jf .x/jC sup
x;y2†;x 6Dy

jf .x/�f .y/j

�.x; y/˛
<C1: (D.6)

For further reference, let us also set

C ˛0 .X; �/ WD ff 2 C ˛.†; �/ W suppf boundedg: (D.7)

The following two propositions contain results proved in [Hofmann et al. 2010; Mitrea et al. 2013].
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Proposition D.1. Assume that .†; �; �/ is a compact space of homogeneous type. Then

VMO.†;�/ is the closure of C ˛.†; �/\BMO.†;�/ in BMO.†;�/ (D.8)

for every ˛ 2 R such that

0 < ˛ �

�
log2

�
sup

x;y;z2†
not all equal

�.x; y/

maxf�.x; z/; �.z; y/g

���1
: (D.9)

Proposition D.2. Let .†; �; �/ be a space of homogeneous type. Then, for each p 2 Œ1;1/,

distBMO.f;VMO.†;�//� lim sup
r!0C

�
sup
x2†

Z
�
B�.x;r/

Z
�
B�.x;r/

jf .y/�f .z/jp d�.y/ d�.z/

�1
p

� lim sup
r!0C

�
sup
x2†

Z
�
B�.x;r/

ˇ̌̌̌
f �

Z
�
B�.x;r/

f d�

ˇ̌̌̌p
d�

�1
p

(D.10)

uniformly for f 2 BMO.†;�/ (i.e., the constants do not depend on f ), where the distance is measured
in the BMO norm. In particular, for each p 2 Œ1;1/,

distBMO.f;VMO.†;�//� lim
R!0C

Mp.f IR/ uniformly for f 2 BMO.†;�/; (D.11)

whereMp.f IR/ is defined as in (D.4). Moreover, for each function f 2BMO.†;�/ and each p2 Œ1;1/,

f 2 VMO.†;�/ ” lim
r!0C

�
sup
x2†

Z
�
B�.x;r/

ˇ̌̌̌
f �

Z
�
B�.x;r/

f d�

ˇ̌̌̌p
d�

�1
p

D 0: (D.12)

For future purposes, we find it convenient to restate (D.11) in a slightly different form. More specifically,
in the context of Proposition D.2, given f 2 L2loc.†;�/, x 2† and R > 0, we set

kf k�.B�.x;R// WD sup
B�B�.x;R/

�Z
�
B

jf �fB j
2 d�

�1
2
; (D.13)

where the supremum is taken over all �-balls B included in B�.x;R/ and fB WD �.B/�1
R
B f d�. It is

then clear from the definitions that

sup
x2†

kf k�.B�.x;R//�M2.f IR/: (D.14)

Consequently, (D.11) yields:

Corollary D.3. With the above notation and conventions,

lim
R!0C

�
sup
x2†

kf k�.B�.x;R//
�
� distBMO.f;VMO.†;�// (D.15)

uniformly for f 2 BMO.†;�/.

We continue by translating Proposition C.4 (which was formulated in the Euclidean context) to spaces
of homogeneous type.
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Proposition D.4. Assume that .†; �; �/ is a space of homogeneous type. Then there exists a constant
C 2 .0;1/ such that

distBMO.fg;VMO.†;�//

� Ckf kL1.†;�/ distBMO.g;VMO.†;�//CCkgkL1.†;�/ distBMO.f;VMO.†;�//; (D.16)

for any f , g 2 L1.†;�/, where all distances are considered in the space BMO.†;�/.
Moreover,

VMO.†;�/\L1.†;�/ is a closed C � subalgebra of L1.†;�/; (D.17)

and

f 2 VMO.†;�/\L1.†;�/ and 1

f
2 L1.†;�/ H)

1

f
2 VMO .†;�/\L1.†;�/: (D.18)

Proof. Note that (D.16) implies (D.17) and also (D.18), via the same type of argument used to establish
(C.16). As such, it suffices to prove (D.16). To this end, if f , g 2 L1.†;�/ then, for any x 2†, r > 0
and y, z 2 B�.x; r/, we have

jf .y/g.y/�f .z/g.z/j � jf .y/jjg.y/�g.z/jC jg.z/jjf .y/�f .z/j

� kf kL1.X;�/jg.y/�g.z/jC kgkL1.X;�/jf .y/�f .z/j: (D.19)

With this in hand, (D.16) follows with the help of the first equivalence in (D.10). �

Another useful result pertains to the manner in which one can control the distance to VMO under
composition by a Lipschitz function.

Proposition D.5. Assume that .†; �; �/ is a space of homogeneous type. Let F W Rm! R be a Lipschitz
function. Then there exists a constant C 2 .0;1/ such that, for every f W†! Rm with components in
BMO.†;�/,

distBMO.F ıf;VMO.†;�//� CkrF kL1.Rm/ distBMO.f;VMO.†;�//: (D.20)

where the distances are considered in the space BMO.†;�/. In particular,

f 2 VMO.†;�/ H) F ıf 2 VMO.†;�/: (D.21)

Proof. Fix x 2† and r > 0, arbitrary. Using the fact that F is Lipschitz we may then estimate, for every
y, z 2 B�.x; r/,

jF.f .y//�F.f .z//j � krF kL1.Rm/jf .y/�f .x/j: (D.22)

Then the desired conclusion readily follows from this and the first equivalence in (D.10). �
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Appendix E. On the class of Lip \ vmo1 domains. The starting point in this appendix is the following
result.

Lemma E.1. Let ' W Rn! R be a Lipschitz function, with graph

† WD f.x; '.x// W x 2 Rng � RnC1: (E.1)

Set � WDHnb†, where Hn is the n-dimensional Hausdorff measure in RnC1. Then

f 2 VMO.†;�/ ” f . � ; '. � // 2 VMO.Rn/: (E.2)

Proof. For each given point X D .x; '.x// 2 † with x 2 Rn and each given radius r > 0, set
�.X; r/ WD fY 2 † W jY � X j < rg. Then fix X0 D .x0; '.x0// 2 † for some x0 2 Rn and pick
some r > 0. Consider c WD

R
�B.x0;r/

f .x; '.x// dx. ThenZ
�
�.X0;r/

ˇ̌̌̌
f �

Z
�
�.X0;r/

f d�

ˇ̌̌̌
d�

D

Z
�
�.X0;r/

ˇ̌̌̌
.f � c/�

Z
�
�.X0;r/

.f � c/ d�

ˇ̌̌̌
d�

� 2

Z
�
�.X0;r/

jf � cj d�

D 2

Z
�
fx2RnWjx�x0j2C.'.x/�'.x0//2<r2g

jf .x; '.x//� cj

q
1Cjr'.x/j2 dx

� C

Z
�
fx2RnWjx�x0j<rg

jf .x; '.x//� cj dx: (E.3)

Bearing in mind the significance of c, the left-pointing implication in (E.2) follows from (D.12) (with
p D 1). For the opposite implication, pick c0 WD

R
��.X0;r/

f d�. Then, for some sufficiently large M > 0

depending on the Lipschitz constant of ', we haveZ
�
B.x0;r/

ˇ̌̌̌
f .x; '.x//�

Z
�
B.x0;r/

f .y; '.y// dy

ˇ̌̌̌
dx

� 2

Z
�
fx2RnWjx�x0j<rg

jf .x; '.x//� c0j dx

� C

Z
�
fx2RnWjx�x0j2C.'.x/�'.x0//2<.Mr/2g

jf .x; '.x//� c0j

q
1Cjr'.x/j2 dx

� C

Z
�
�.X0;r/

ˇ̌̌̌
f �

Z
�
�.X0;r/

f d�

ˇ̌̌̌
d�: (E.4)

Based on this and (D.12), the right-pointing implication in (E.2) now follows. �

In turn, Lemma E.1 is an important ingredient in the proof of the following result:

Lemma E.2. Assume that ' W Rn! R is a Lipschitz function, and let † as in (E.1) denote its graph. Set
� WD Hnb†, where Hn is the n-dimensional Hausdorff measure in RnC1, and let � D .�1; : : : ; �nC1/
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stand for the unit normal to † (defined �-a.e.). Then

�j 2 VMO.†;�/ for 1� j � nC 1 ” @j' 2 VMO.Rn/ for 1� j � n: (E.5)

Proof. Recall that the components �j W†! R of the unit normal to the Lipschitz surface † satisfy

�j .x; '.x//D

�
@j'.x/=

p
1Cjr'.x/j2 if 1� j � n;

�1=
p
1Cjr'.x/j2 if j D nC 1

(E.6)

for a.e. x 2 Rn. As regards (E.5), assume first that

@j' 2 VMO.Rn/ for each j 2 f1; : : : ; ng (E.7)

and consider the functions Fj W Rn! R, 1� j � nC 1, given by

Fj .x/ WD

�
xj =

p
1Cjxj2 if 1� j � n;

�1=
p
1Cjxj2 if j D nC 1

(E.8)

for each x D .x1; : : : ; xn/ 2 Rn. A straightforward computation gives that there exists a dimensional
constant such that, for every x 2 Rn,

jrFj .x/j �

�
Cn=

p
1Cjxj2 if 1� j � n;

Cn=.1Cjxj
2/ if j D nC 1:

(E.9)

In particular, each function Fj WRn!R is Lipschitz. Upon noting from (E.6) and (E.8) that �j .x; '.x//D
Fj .r'.x// for a.e. x 2 Rn, this implies, in concert with (E.7) and (D.21), that �j . � ; '. � // 2 VMO.Rn/
for each j 2 f1; : : : ; nC 1g. Having established this, we may then conclude that �j 2 VMO.†;�/ for
1� j � nC 1 by invoking Lemma E.1. This proves the left-pointing implication in (E.5).

In the opposite direction, assume

�j 2 VMO.†;�/ for each j 2 f1; : : : ; nC 1g: (E.10)

Then Lemma E.1 gives

�j . � ; '. � // 2 VMO.Rn/\L1.Rn/ for each j 2 f1; : : : ; nC 1g: (E.11)

Since, from (E.6) and the fact that ' is Lipschitz, we have

1=�nC1. � ; '. � // 2 L
1.Rn/; (E.12)

we deduce from (D.18), (E.11) with j D nC 1, and (E.12) that

1=�nC1. � ; '. � // 2 VMO.Rn/\L1.Rn/: (E.13)

Given that VMO.Rn/\L1.Rn/ is an algebra (see (D.17) in Proposition D.4), it follows from (E.11)
and (E.13) that

�j . � ; '. � //=�nC1. � ; '. � // 2 VMO.Rn/\L1.Rn/ for each j 2 f1; : : : ; ng: (E.14)

In light of (E.6) this ultimately entails @j' 2 VMO.Rn/ for 1� j � n, as wanted. �

We are now in a position to define the class of Lip\ vmo1 domains.
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Definition E.3. Assume that C 2 .0;1/ and let � be a nonempty, open subset of Rn, with diameter at
most C . One calls � a bounded Lipschitz domain, with Lipschitz character controlled by C , if there
exists r 2 .0; C / with the property that for every x0 2 @� one can find a rigid transformation T WRn!Rn

and a Lipschitz function ' W Rn�1! R with kr'kL1.Rn�1/ � C such that

T .�\B.x0; r//D T .B.x0; r//\f.x
0; xn/ 2 Rn�1 �R W xn > '.x

0/g: (E.15)

Whenever this is the case, call �.x0/ WD .x0; '.x0// a coordinate chart for @�.
If, in addition, @j' 2 vmo.Rn�1/ for each j 2 f1; : : : ; n� 1g, then we shall say that � is a bounded

Lip\ vmo1 domain.

Both the class of Lipschitz domains and the class of Lip\ vmo1 domains may be naturally defined in
the manifold setting by working in local coordinates, in a similar fashion as above (see also the discussion
in [Hofmann et al. 2007]).

We conclude this appendix by proving the following characterization of the class of Lip\ vmo1
domains:

Proposition E.4. Let � be a Lipschitz domain with outward unit normal �. Then

� 2 vmo.@�/ ” � is a Lip\ vmo1 domain: (E.16)

Proof. This is a consequence of Lemma E.2 and definitions. �
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