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TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS

JEAN-FRANCOIS BONY, FREDERIC HERAU AND LAURENT MICHEL

We study a semiclassical random walk with respect to a probability measure with a finite number ¢ of
wells. We show that the associated operator has exactly n¢ eigenvalues exponentially close to 1 (in the
semiclassical sense), and that the others are O(/) away from 1. We also give an asymptotic of these small
eigenvalues. The key ingredient in our approach is a general factorization result of pseudodifferential
operators, which allows us to use recent results on the Witten Laplacian.

1. Introduction

Let ¢ : R? — R be a smooth function and let / € 10, 1] denote a small parameter throughout. Under
suitable assumptions specified later, the density e/ h ig integrable and there exists Z; > 0 such that
dup(x) = Zpe= @/ dx defines a probability measure on R?. We can associate to 1, the Markov
kernel t;(x, dy) given by

1
th(x,dy) = ml|x—y|<h dpp(y). (1-1)

From the point of view of random walks, this kernel can be understood as follows: Assume that at
step n the walk is in x,; then the point X, is chosen in the small ball B(x;, /) uniformly at random
with respect to duj. The probability distribution at time # € N of a walk starting from x is given by the
kernel #;(x, dy). The long-time behavior (n — oo) of the kernel 7;/(x, dy) carries information on the
ergodicity of the random walk, and has many practical applications (we refer to [Lelievre et al. 2010] for
an overview of computational aspects). Observe that, if ¢ is a Morse function, then the density e~ 9/h
concentrates at scale /4 around minima of ¢, whereas the moves of the random walk are at scale /.

Another point of view comes from statistical physics and can be described as follows: One can associate
to the kernel #(x, dy) an operator T}, acting on the space Cy of continuous functions going to zero at
infinity by the formula

1
T = [ S0t = s [ o)

This defines a bounded operator on Cy, enjoying the Markov property (T(1) = 1).
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The transpose T;* of T}, is defined by duality on the set of bounded positive measures M b+ (resp.
bounded measures Mp). If dv is a bounded measure, we have

T7 (dv) = ([Rd Lix—y|<ain(B(y. h) ™! dv(y)) duy,. (1-2)

Assume that a particle in R is distributed according to a probability measure dv; then T » (dv) represents
its distribution after a move according to #;(x, dy), and the distribution after n steps is then given
by (T;7)"(dv). The existence of a limit distribution is strongly related to the existence of an invariant
measure. In the present context, one can easily see that T, admits the invariant measure

Avpo(x) = Zppun(B(x, h)) dpy(x),

where Z & is chosen so that dvy, o is a probability. The aim of the present paper will be to prove the
convergence of (T,7)"(dv) towards dvy, o, when n goes to infinity for any probability measure dv, and
to get precise information on the speed of convergence. Taking dv(y) = 8x(»), it turns out that it is
equivalent to study the convergence of ¢}/ (x, dy) towards dvy, . Note that, in the present setting, proving
pointwise convergence (/1 being fixed) of #; (x, dy) towards the invariant measure is an easy consequence
of a general theorem (see [Feller 1971, Theorem 2, p. 272]). The purpose of our approach is to get
convergence in a stronger topology and to obtain precise information on the behavior with respect to the
semiclassical parameter /.

Before going further, let us recall some elementary properties of 7T}, that will be useful in the sequel.
First, we can see easily from its definition that the operator 7T} can be extended as a bounded operator
both on L*°(dvy ) and L'(d Vj,00). From the Markov property and the fact that dvj, o, is stationary, it
is clear that

I Tkl oo (v 00)—> Lo (@vh.00) = 1Tl L1 (v 00)—> L1 (dv)00) = 1-
Hence, by interpolation, 7T defines also a bounded operator of norm 1 on Lz(le, dvp,oo). Finally,
observe that T, is selfadjoint on L2 (d Vp,00) (thanks again to the Markov property).

Let us go back to the study of the sequence (7,)" and explain the topology we use to study the
convergence of this sequence. Instead of looking at this evolution on the full set of bounded measures,
we restrict the analysis by introducing the stable Hilbert space

9, = L*(dvp,o0) = { f measurable on R such that [ | f(x)|? dvp.eo < oo}, (1-3)

for which we have a natural injection with norm 1, $ : #;, < M}, when identifying an absolutely
continuous measure dv, = f(x)dvp o with its density f. Using (1-2), we can see easily that T)* o § =
$ o T},. From this identification, T h* (acting on ) inherits the properties of T}:

T h* 1 Hy — ¥y, is selfadjoint and continuous with operator norm 1. (1-4)

Hence, its spectrum is contained in the interval [—1, 1]. Moreover, we will see later that —1 is sufficiently
far from the spectrum. Since we are interested in the convergence of (7,°)" in the L? topology, it is then
sufficient for our purpose to give a precise description of the spectrum of 7} near 1.
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Convergence of Markov chains to stationary distributions is a wide area of research with many
applications. Knowing that a computable Markov kernel converges to a given distribution may be very
useful in practice. In particular, it is often used to sample a given probability in order to implement Monte
Carlo methods (see [Lelievre et al. 2010] for numerous algorithms and computational aspects). However,
most results giving a priori bounds on the speed of convergence for such algorithms hold for discrete
state space (we refer to [Diaconis 2009] for a state of the art on Monte Carlo Markov chain methods).

This point of view is also used to track extremal points of any function by simulated annealing procedure.
For example, this was used in [Holley and Stroock 1988] on finite state space and in [Holley et al. 1989;
Miclo 1992] on continuous state space.

Relatedly, let us recall that the study of time-continuous processes is of current interest in statistical
physics (see for instance the work of Bovier, Eckhoff, Gayrard and Klein [Bovier et al. 2004; 2005] on
metastable states).

More recently, Diaconis and Lebeau [2009] obtained first results on discrete time processes on
continuous state space. This approach was then further developed in [Diaconis et al. 2011] to get
convergence results on the Metropolis algorithm on bounded domains of Euclidean space. Similar results
were also obtained in [Lebeau and Michel 2010; Guillarmou and Michel 2011] in various geometric
situations. In all these papers, the probability djy is independent of /, which leads ultimately to a spectral
gap of order /2. Here, the situation is quite different and somehow “more semiclassical”. This permits us
to exhibit situations with very small spectral gap of order e~¢/" The precise asymptotic of this gap (and
more generally of the eigenvalues close to 1) is driven by the tunnel effect between wells (see [Helffer
and Sjostrand 1984] for results in the case of Schrodinger operators). In this paper, we shall compute
accurately this quantity under the following assumptions on ¢:

Hypothesis 1. We suppose that ¢ is a Morse function with nondegenerate critical points and that there
exist ¢, R > 0 and some constants Cy > 0, a0 € N9 such that, for all | x| > R, we have

0% (x)] < Co, [Vo(x)|=c and ¢(x)=>c|x| forall a € Nd\{O}.
In particular, there is a finite number of critical points.

Observe that functions ¢ satisfying this assumption are at most linear at infinity. It may be possible to
relax this assumption to quadratic growth at infinity, and we guess our results hold true also in this context.
However, it doesn’t seem possible to get a complete proof with the class of symbols used in this paper.

Under the above assumption, it is clear that duy(x) = Z pe O x is a probability measure. For
the following, we call AU the set of critical points #. We denote by WO the set of minima of ¢ and by
UM the set of saddle points, i.e., the critical points with index 1 (note that this set may be empty). We
also introduce n; = mOuU ), j =0, 1, the number of elements of u,

We shall first prove the following result:

Theorem 1.1. There exist §, hy > 0 such that the following assertions hold true for h € |0, hy|: First,
o(T;) C[=1+436,1]and 0ess(T;') C[—1+8, 1=8]. Moreover, T, has exactly ng eigenvalues in [1—3h, 1],
which are in fact in [1 — eS/h, 1]. Lastly, 1 is a simple eigenvalue for the eigenstate vy, o, € ¥j.
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This theorem will be proved in the next section. The goal of this paper is to describe accurately the
eigenvalues close to 1. We will see later that describing the eigenvalues of T," close to 1 has many
common points with the spectral study of the so-called semiclassical Witten Laplacian (see Section 4).
We introduce the following generic assumptions on the critical points of ¢:

Hypothesis 2. We suppose that the values ¢ (s) — ¢ (m) are distinct for any s € UD and m € u©.

Note that this generic assumption could easily be relaxed at the cost of messy notation and less
precise statements, following, e.g., [Hérau et al. 2011], and that we chose to focus in this article on other
particularities of the problem.

Let us recall that, under the above assumptions, there exists a labeling of minima and saddle points,
UO = {my :k=1,...,n0} and UV = {sj : j =2,...,n; + 1}, which permits us to describe the
low-lying eigenvalues of the Witten Laplacian (see [Helffer et al. 2004; Hérau et al. 2011], for instance).
Observe that the enumeration of U starts with J = 2, since we will need a fictional saddle point
§1 = +o00. We shall recall this labeling procedure in the Appendix.

Let us denote by 1 = A7 (h) > A5(h) = --- = A}, (h) the ng largest eigenvalues of 7. The main result
of this paper is the following:

Theorem 1.2. Under Hypotheses 1 and 2, there exists a labeling of minima and saddle points and

constants o, hg > 0 such that, forall k =2, ..., ng and for any h € 10, hg],
. h detd”(my)| _rs, /1
1—A;(h)= ———— _— KA1 4 0(h)),
W= Garaa ™\ [ detg (sp) | (1+6(m)

where Sy, 1= ¢(si) — ¢ (my) (the Arrhenius number) and — iy, denotes the unique negative eigenvalue
of " at sy.

Remark 1.3. The leading term in the asymptotic of 1 —A} (/1) above is exactly (up to the factor (2d +4))
the one of the k-th eigenvalue of the Witten Laplacian on the 0-forms obtained in [Helffer et al. 2004].
This relationship will be transparent from the proof below.

As an immediate consequence of these results and of the spectral theorem, we get that the convergence
to equilibrium holds slowly and that the system has a metastable regime. More precisely, we have the
following result, whose proof can be found at the end of Section 5.

Corollary 1.4. Let dvy be a probability measure in ¥y, and assume first that ¢ has a unique minimum.
Then, using that o (T;’) C[—1+8,1—8h], it yields

1T, (dvg) — dvi,eollse, = O [|dvpllse, (1-5)
forall n = |In h|h=Y, which corresponds to the Ehrenfest time. But, if ¢ has several minima, we can write
(T;)"(dvy) = Ildvy, + O(h) || dvp |5, (1-6)

forall = YInh| <n < e2Sn0/ Here, T1 can be taken as the orthogonal projector on the ng functions
xie(x)e= @) =D/ \yhere yy is any cutoff function near my.
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On the other hand, we have, for anyn € N,

(T (dvi) = dvp,eollse, = (A3 (0)" [dvallse, . (1-7)

where 13 (h) is described in Theorem 1.2. Note that this inequality is optimal. In particular, for
n > |Inhlh=1eS2/ " the right-hand side of (1-7) is of order O(h)|dvy, (E

Thus, for a reasonable number of iterations (which guarantees (1-5)), 1 seems to be an eigenvalue of
multiplicity ny; whereas, for a very large number of iterations, the system returns to equilibrium. Then,
(1-6) is a metastable regime.

Since 7,(x, dy) is absolutely continuous with respect to d vy, oo, then (T;°)" (8y=x) =1 (x, dy) belongs
to 3¢y, for any n > 1. Hence, the above estimate and the fact that dvj, o is invariant show that

27 e, dy) = dvpcollse, < (5 ()" it Cx. dy) e,

Moreover, the prefactor |75 (x, dy)||s, could be easily computed but depends on x and /.

Throughout this paper, we use semiclassical analysis (see [Dimassi and Sjostrand 1999; Martinez 2002;
Zworski 2012] for expository books on this theory). Let us recall that a function m : R? — R is an order
function if there exists No € N and a constant C > 0 such that, for all x, y € R4, m(x) < C(x—y)Mom(y).
Here and throughout we use the notation (x) = (1 + |x|?) 2. This definition can be extended to functions
m:RY x C? — R* by identifying RY x C¢" with R9+24’_Given an order function m on T*R9 ~ R24,
we will denote by S°(1m) the space of semiclassical functions on T*R? whose derivatives are all bounded
by m, and by W°(m) the set of corresponding pseudodifferential operators. For any € ]0, oo] and any
order function m on R? x C?, we will denote by S 9(m) the set of symbols which are analytic with respect
to & in the strip [Im&| < 7 and bounded by some constant times m(x, £) in this strip. We will denote
by S (m) the union over 7 > 0 of S?(m). We denote by W2 (m) the set of corresponding operators. Lastly,
we say that a symbol p is classical if it admits an asymptotic expansion p(x,&;h) ~ " >0 hip i (x,&).
We will denote by Sg (m) and Sg (m) the corresponding classes of symbols.

We will also need some matrix-valued pseudodifferential operators. Let .l 4 denote the set of real-
valued matrices with p rows and ¢ columns, and My, = Mp, ,. Let ot : T*RY — Mp.4 be a smooth
function. We will say that s is a (p, ¢)-matrix weight if A(x,§) = (a;,j(x,§));,j and a; ; is an order
function forevery i = 1,...,pand j =1,...,q. If p = g, we will simply say that « is a g-matrix
weight.

Given a (p, ¢)-matrix weight s{, we will denote by S°(s4) the set of symbols p(x, &) = (pi,j (x,€))i,j
defined on 7*R¥ with values in M, 4 such that, for all 7, j, p;.; € S°(a;,;), and by WO(Al, 4) the set of
corresponding pseudodifferential operators. Obvious extensions of these definitions leads to the definition
of matrix-valued symbols analytic w.r.t. to £ and the corresponding operators, S (s4) and W2 (s4). In the
following, we shall mainly use the Weyl semiclassical quantization of symbols, defined by

Op(p)u(x) = 2rh)~ / TN CVE (L (x4 ) E)u(y) dy dE (1-8)

T*R4
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for p € SO(s). We shall also use the following notations. Given two pseudodifferential operators 4 and
B, we shall write 4 = B + WX (m) if the difference A — B belongs to WX (m). At the level of symbols,
we shall write « = b + S*(m) instead of a — b € Sk (m).

The preceding theorem is close —in the spirit and in the proof — to the ones given for the Witten
Laplacian in [Helffer et al. 2004] and for the Kramers—Fokker—Planck operators in [Hérau et al. 2011]. In
those works, the results are deeply linked with some properties inherited from a so-called supersymmetric
structure, which allow the operators to be written as twisted Hodge Laplacians of the form

P = d;;’hAddhh’

where d is the usual differential, dy = hd +d¢ (x)A = e=?/"hd e/ is the differential twisted by ¢, and
A is a constant matrix in Jl;. Here we are able to recover a supersymmetric-type structure, and the main
ingredients for the study of the exponentially small eigenvalues are therefore available. This is contained
in the following theorem, that we give in rather general context since it may be useful in other situations.

Let us introduce the d-matrix weights 8, o : T*R¢ — Jl, given by Aij(x, &) = (ENENTT,
E;j = 8i,j(&i), and observe that (Esf);; = (§;)~!. In the following theorem, we state an exact
factorization result, which will be the key point in our approach.

Theorem 1.5. Let p(x,&;h) € S (1) and let P, = Op(p). Suppose that p(x,&; h) = po(x,€)+ SO (h)
and that, for all (x,§) € R2d, p(x,&; h) is real. Let ¢ satisfy Hypotheses 1 and 2 and assume that the
following assumptions hold true:

(i) Pple™?/M) =0;
(ii) for all x € R, the function & € RY v p(x,&; h) is even;
(i) for all § > 0, there exists o > 0 such that, for all (x,&) € T*R%, d(x,W)2 + |£]2 > & implies
Po(x,§) = a3

(iv) for any critical point u € U, we have
Po(x,8) = §1> + Vo (0)|> +r(x, §)
with r(x,€) = 0(|(x —u, £)|?) near (u, 0).

Then, for h > 0 small enough, there exists a symbol q € S®(E ) satisfying the following properties:
First, P, = d;’hQ*Qd(j,,h with Q = Op(q).
Next, q(x,&;:h) = qo(x, &) + S®(hEsA) and, for any critical point u € U, we have

qo(x.§) =1d +0(|(x —u, §)]).

If we assume additionally that r(x,£) = O(|(x —u, £)|*), then qo(x, ) =1d +0(|(x —u, £)|?) near (u, 0)
for any critical point u € .
Lastly, if p € S3(1) then g € SS(E sA).
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As already mentioned, we decided in this paper not to give results in the most general case so that
technical aspects do not hide the main ideas. Nevertheless, we would like to mention here some possible
generalizations of the preceding result.

First, it should certainly be possible to use more general order functions and to prove factorization
results for symbols in other classes (for instance S°({(x, £))?)). This should allow us to see the super-
symmetric structure of the Witten Laplacian as a special case of our result. In other words, the symbol
p(x,E:h) = |£]> + |V (x)|?> — hA¢p(x) would satisfy assumptions (i) to (iv) above.

The analyticity of the symbol p with respect to the variable £ is certainly not necessary in order to get
a factorization result (it suffices to take a nonanalytic ¢ in the conclusion to see it). Nevertheless, since
our approach consists in conjugating the operator by e=?/" it seems difficult to deal with nonanalytic
symbols. Moreover, using a regularization procedure in the proof the above theorem, it is certainly
possible to prove that the symbol ¢ above can be chosen in a class S°(E4) for some 7 > 0. Using
this additional property, it may be possible to prove some Agmon estimates, construct more accurate
quasimodes (on the 1-forms), and then to prove a full asymptotic expansion in Theorem 1.2.

A more delicate question should be to get rid of the parity assumption (ii). It is clear that this assumption
is not necessary (take g(x,£) = (£)72 (Id + diag(&;/(€))) in the conclusion), but it seems difficult to
prove a factorization result without it. For instance, if we consider the case ¢ = 0 in dimension 1 (which
doesn’t fit exactly in our framework but enlightens the situation) then P, = h Dy cannot be smoothly
factorized simultaneously on the left and on the right.

As will be seen in the proof below, the operator Q (as well as Q* Q) above is not unique. Trying to
characterize the set of all possible Q should be also a question of interest.

The optimality of assumption (iv) should be questioned. Expanding ¢o near (u, 0), we can see that we
necessarily have

Po(x.&) = Iqo(u,0)(§ —iVP)|> + O(I(x —u,§)I*)

near any critical point. In assumption (iv) we consider the case go(u,0) = Id, but it could easily be
relaxed to any invertible matrix ¢q(u, 0).

Lastly, we shall mention that, for semiclassical differential operators of order 2, a supersymmetric
structure (in the class of differential operators) was established by Hérau, Hitrik and Sjostrand [Hérau
et al. 2013]. This result requires fewer assumptions, but doesn’t hold true in any good class of symbols.

The plan of the article is the following. In the next section we analyze the structure of the operator 7"
and prove the first results on the spectrum stated in (1-1). In Section 3 we prove Theorem 1.5 and apply
it to the case of the random walk operator. In Section 4, we prove some preliminary spectral results, and
in Section 5 we prove Theorem 1.2.

2. Structure of the operator and first spectral results

In this section, we analyze the structure of the spectrum of the operator T’ h* on the space #j, = L?(d Vh,00)
(see (1-3)). But it is more convenient to work with the standard Lebesgue measure than with the
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measure d vy . We then introduce the Maxwellian ., defined by
dvp oo = Mp(x)dx, sothat .l = Znin(By, (x))Zhe_¢(x)/h, 2-1)
and we make the change of function
WUpu(x) 1= M, 2 (x)ulx),
where AUy, is unitary from L*(RY) = L2(RY, dx) to %, Letting
T =Wy Ty Uy, (2-2)

the conjugated operator acting in L2(R?), we have

Thu(x) = Zpdty " ()e= 01 /R | Lyttt > ) n (B 1) u(y) dy
Zpe~ @/ 3 Zpe~ 90/ h\2
~(atwem) Lo i) @
tn(B(x, 1)) Jix—yl<h 1n(B(y, h))

Zpe~ @/ h )5
pr(B(x. h)) )’

We let

an(x) = (adh”’)”z(

and define the operator G by

Guw = g [ wyay 3

where oy = vol(B(0, 1)) denotes the Euclidean volume of the unit ball, so that, with these notations, the
operator T} is
Ty, = apGay, (2-4)
1.€.,
Thu(x) = ap(x)G(apu)(x).
We note that
pn(Bx, h)e?™ 1

_2 _ _
ap” () = aghdZ, aghd

/ W6/ h gy, — (D hG (=81 (y).  (2-5)
[x—y|<h

We now collect some properties of G and ay,.
One simple but fundamental observation is that G is a semiclassical Fourier multiplier, G = G(hD) =
Op(G), where

1 .
G(E) = — / e7€dz forall £ eRY. (2-6)
Aq Jiz|<1

Lemma 2.1. The function G is analytic on c? and enjoys the following properties:

(i) G:RY >R
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(i) There exists 8§ > 0 such that G(R?) C [-1 + 68, 1]. Near £ = 0, we have

G(&) = 1—Bal&1* +0(E[*),
where Bg = (2d +4)~1. Forany r > 0, supig|=» |G (§)| < 1 and limg| .00 G(§) = 0.

(iii) Forall t € R?, we have G(it) € R, G(it) = 1 and, for any r > 0, inf;|>, G(it) > 1.
(iv) Forall &, 7t € R we have |G(€ +i7)| < G(i7).
Proof. The function G is analytic on C? since it is the Fourier transform of a compactly supported
distribution. The fact that G(R?) C R is clear using the change of variable z — —z. The second item was
shown in [Lebeau and Michel 2010].

We now prove (iii). The fact that G(i ) is real for any 7 € R is clear. Moreover, one can see easily that

T+ G(i7) is radial, so that there exists a function I : R — R such that, for all T € R?, G(it) = T'(|z]).
Simple computations show that I" enjoys the following properties:

e ['is even;
e [ is strictly increasing on R4 ;
e I'(0)=1.
This leads directly to the claimed properties for G(i 7).

Finally, the fact that |G(£ +it)| < G(it) for all £, T € R? is trivial, since |e?ZET1D| = =27 for
all z e RY. O

Lemma 2.2. There exist ¢, ¢; > 0 such that ¢y < ay(x) < ¢, for all x € R and h €0, 1]. Moreover,
the functions ay and a;z belong to S°(1) and have classical expansions ay, = ag + ha; + -+ and
a;z = ao_2 + ---. In addition,

ao(x) = G(iVe(x)) ™2,

a1(x) = GV (x) /2 / VIO (3 (1), 2) diz.
dag Jiz1<1

Lastly, there exist ¢y, R > 0 such that, for all |x| = R, a;z (x) = 14 c¢q for h > 0 small enough.

Proof. By a simple change of variable, we have

ah_z(x) _ 1 / @) —dx+h2)/h 4.
g J)z|<1

Since there exists C > 0 such that | V¢ (x)| < C for all x € R?, we can find some constants ¢, ¢; > 0 such
that ¢; < ay(x)™2 < ¢, for all x € R? and / €10, 1]. Moreover, thanks to the bounds on the derivatives
of ¢, we get easily that derivatives of a;z are also bounded. This shows that a;z belongs to S°(1) and,
since it is bounded from below by ¢; > 0, we get immediately that a;, € S°(1).

On the other hand, by simple Taylor expansion, we get that a; and a;z have classical expansions
and the required expressions for ag and a;. Since |V¢(x)| > ¢ > 0 for x large enough, it follows from
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Lemma 2.1(iii) that there exist ¢y, R > 0 such that, for all |[x| > R, G(iV¢(x)) > 1 + 2¢¢, and hence
a;z (x) = 14 ¢q for & > 0 sufficiently small. d
Since we want to study the spectrum near 1, it will be convenient to introduce
Ph1= 1—Th. (2—7)
Using (2-4) and (2-5), we get
Pp = ap(Vy(x) — G(hDx))ay (2-8)

with Vj(x) = a;z (x) = e?’"G(hDy)(e~®/"). As a consequence of the previous lemmas, we get the
following proposition for Pp:

Proposition 2.3. The operator Py, is a semiclassical pseudodifferential operator whose symbol p(x, &; h)
in SO (1) admits a classical expansion that reads p = po + hpy + -+ with

po(x.£)=1-G(iV(x))'GE) =0 and pi(x.§) = G1(x)G(E),

where

G1(x) = —G(i V(x)) >~ / eV (W (x)z,2) dz = —Ba Ap () + O(|x —ul),
204 J)z1<1

near any u € .

Proof. The fact that p belongs to Sgo(l) and admits a classical expansion is clear thanks to Lemma 2.1
and Lemma 2.2. From the standard pseudodifferential calculus in Weyl quantization, the symbol p
satisfies

h h
p(x.&h) =1—0ajG —2a¢a;Gh— Tao{G,ao} - T{ao,aoG} +S°(h?)
1 1
= 1-aG —2apa;Gh+ S°(h?).

Combined with Lemma 2.2, this leads to the required expressions for pg and p;.
Finally, the nonnegativity of py comes from the formula

po=G(iVe(x) ™ ((1=G(E) + (G VH(x) — 1)),
and Lemma 2.1, which implies that | — G(§) > 0 and G(i V¢ (x)) —1 > 0. O
We finish this section with the following proposition, which is a part of Theorem 1.1.

Proposition 2.4. There exist §, hg > 0 such that the following assertions hold true for h € 10, hg):
First, a(Ty) C [—1 4+ 6, 1] and 0ess(T) C [—1 + 8,1 — 8] Second, 1 is a simple eigenvalue for the
eigenfunction Jl/t,ll 2,

Proof. We start by proving o (7}) C [—1 + 6§, 1]. From (1-4), we already know that o(7}) C [—1, 1].
Moreover, Lemma 2.1(ii)—(iii) implies 0 < a¢(x) < 1 and G(R?) C [~1 + v, 1] for some v > 0. Thus, we
deduce that the symbol 7 (x, £) of the pseudodifferential operator 7}, € WO(1) satisfies

7(x,8) > —14+v+0(h).
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Then, Garding’s inequality yields
Ty > -1+ %v

for & small enough. Summing up, we obtain o(7}) C [—1 + 4, 1].
Let us prove the assertion about the essential spectrum. Let x € C° (R?: [0, 1]) be equal to 1 on B(0, R),
where R > 0 is as in Lemma 2.2. Since G = G(hD) € ¥°(1) and limg| oo G(§) = 0, the operator

Th— (= x)Tp (1= x) = xTh + Trx — xThx
is compact. Hence, 0ess(Th) = Oess (1 — x) T (1 — x)). Now, for all u € L2(R%), we have

(1 =0Tr(1 = Yu, u) = (Gay (1 — Y)u,ap(1 — Yu)
< lap(1 = ull* < (1 +co)~Hlull?,

since |G|lf272 <1 and |ap(1 — )| = (1 + ¢o)~'/2, thanks to Lemma 2.1(iii) and Lemma 2.2. As a
consequence, there exists § > 0 such that oes(7T3) C[—1 46,1 —4].

To finish the proof, it remains to show that 1 is a simple eigenvalue. Let k(x, y) denotes the distribution
kernel of T},. From (2-3), (2-4) and Lemma 2.2, there exists & > 0 such that, for all x, y € R4,

kn(x, ) = eh™ 1)y <p. (2-9)

We now consider 7j = T, + 1. Since | 7| = 1, the operator T}, is bounded and nonnegative. Moreover,
Jl/L}ll/ Zis clearly an eigenvector associated to the eigenvalue || T, 7|l = 2. On the other hand, (2-9) implies that
T}, is positivity-preserving (this means that u#(x) > 0 almost everywhere and u # 0 implies Thu(x) > 0
almost everywhere and T, nu # 0). Furthermore, T, 7 1s ergodic (in the sense that, for any u, v € L*(RY)
nonnegative almost everywhere and not the zero function, there exists # > 1 such that (u, T}:’v) > 0).
Indeed, let u, v be two such functions. We have (u, T;'v) = (u, T;'v), where, by (2-9), the distribution
kernel of T}' satisfies

k;(,")(x, P) = enh™ Ly <(—1)h
with &, > 0. Thus, if n > 1 is chosen such that dist(ess-supp(u), ess-supp(v)) < nh, we have (u, T}:’v) >0.

Lastly, the above properties of T, 7 and the Perron—Frobenius theorem (see Theorem XII1.43 of [Reed and
Simon 1978]) imply that 1 is a simple eigenvalue of 7}. O

3. Supersymmetric structure

In this section, we prove that the operator Id —7* admits a supersymmetric structure and prove Theorem 1.5.
We showed in the preceding section that

d-T; = UPU*

and, before proving Theorem 1.5, we state and prove as a corollary the main result on the operator Py,.
Recall here that By = (2d +4)~! and Eo is the matrix symbol defined by Esl; ; = (&;)~! for all
i,j=1,...,d.



300 JEAN-FRANCOIS BONY, FREDERIC HERAU AND LAURENT MICHEL

Corollary 3.1. There exists a classical symbol q € Sg(Esﬁ) such that the following holds true: First,
P, = L;L(p with Ly = Qdg pay, and Q = Op(g). Second, ¢ = qo + WO (hEsd) with qo(x,E) =
,8;,/2 Id +0(|(x — u, £)|?) for any critical point u € .

Proof. Since we know that Py, = a;(Vy(x) — G)ay, we only have to prove that ﬂ;l ﬁh satisfies the
assumptions of Theorem 1.5, where

P, = Vi (x) — G(hD). (3-1)

Assumption (i) is satisfied by construction.

Observe that, thanks to Proposition 2.3, ﬁh is a pseudodifferential operator and, since the variables
x and £ are separated, its symbol in any quantization is given by py(x, &) = Vi (x) — G(§). Moreover,
Lemma 2.2 and Proposition 2.3 show that p; admits a classical expansion p = Z;io hlp ;i with pj, j > 1,
depending only on x, and pg(x, §) =G(iVp(x))—G(&). Hence, it follows from Lemma 2.1 that p satisfies
assumptions (ii) and (iii).

Finally, it follows from Lemma 2.1(ii) that, near (u, 0) (for any u € U), we have

PCx.€) = Ba (1> + [V (x)1) + 0 (x —u, §)|*) + S°(h),

so that we can apply Theorem 1.5 in the case where r = O(|(x — u, £)|*). Taking into account the
multiplication by aj completes the proof for Py,. O

Proof of Theorem 1.5. Given a symbol p € S°(1) we recall first the well-known left and right quantizations

Op' (p)u(x) = Qh)™ /T €T P B ) dy d (3-2)
and
Op’ (p)u(x) = 2h)~ /T €T By dy dt. (3-3)
If p(x, v, &) belongs to SO(1), we define 6p(p), by
Go(p) ) = @y [ I ey ) dy de, G-4)

We recall the formula allowing us to pass from one of these quantizations to the other. If p(x, y,§)
belongs to S°(1), then Op(p) = Op' (p;) = Op” (p,) with

pi gy = @y [ Dz e, (3-5)
T*R4
and
pr(y.8) = Qrh)™ /T*Rd MEEB p(y 2y £ dE dz. (3-6)

Recall that we introduced the d-matrix weight < : T*RY — Mg given by od; j(x,§) = ((;;:l.)@j))—l‘
Suppose that p satisfies the hypotheses of Theorem 1.5: P = Op(p) with p € S (1), p(x,&;h) =
po(x, )+ SO(h) such that:
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(i) P(e=?") =0;
(ii) for all x € R?, the function e RY p(x,&;h) is even;
(i) for all § > 0, there exists & > 0 such that, for all (x,&) € T*RY, d(x,U)? + |£|? > § implies
po(x,8) = a;

(iv) near any critical points # € U we have

Po(x,€) = [EF + Vo ()|* +r(x,§)
with either r = O(|(x —u, £)|?) (assumption (A2)), or r = O(|(x —u, £)|*) (assumption (A2")).

The symbol p may depend on /, but we omit this dependence in order to lighten the notations.
The proof goes in several steps. First we prove that there exists a symbol § € S, go (o) such that

Py = d;’hédqg’h, where O = Op(§).

In a moment we shall prove that the operator Q can be chosen so that Q = Q* Q for some pseudodifferential
operator Q satisfying some good properties.
Let us start with the first step. For this purpose we need the following lemma:

Lemma 3.2. Let p € SO (1) and P, = Op(p). Assume that, for all x € R, the function & — p(x,&; h) is

even. Suppose also that Py, (e_¢/h) = 0. Then, there exists § € Sgo (sd) such that Py, = d; A qus,h with

0
o0o,cl”

Q = Op(q). Moreover, if p has a principal symbol then so does 4, and if p € Sgo,cl then g € S,
Remark 3.3. Since P, (e~%/") =0, it is quite clear that P} can be factorized by dg p on the right. On the
other hand, the fact that P can be factorized by d:; ;, on the left necessarily implies that PZ‘ (e=®/h)y =0.
At first glance, there is no reason for this identity to hold true, since we don’t suppose in the above lemma
that Py, is selfadjoint. This is actually verified for the following reason. Start from Op(p)(e~¢/*) = 0;

then, taking the conjugate and using the fact that ¢ is real, we get

Op(p(x, =) (e *'M) = 0.
Hence, the parity assumption on p implies that Op(p)*(e~%/") = 0.

Proof of Lemma 3.2. The fundamental, simple remark is that, if @ is a symbol such that a(x, &) = b(x, &)-£&,
then the operator Opl (a) can be factorized by 2 Dy on the right: Opl (a) = Opl (b) - h Dy, whereas the
right quantization of a can be factorized on the left: Op” (¢) = h Dy - Op” (b). We have to implement this
simple idea, dealing with the fact that our operator is twisted by e®/h.

Introduce the operator Py , = e®/ hPhe_¢/ k. Then, for any u € 9’([R{d ),

_ ih—1(y_ —1 _
Py pu(x) = )y~ / N GmNE T OI=00N (L (x 4 3). E)u(y) dy dE.

We now use the Kuranishi trick. Let 6(x, y) = fol Vo(tx 4+ (1—t)y)dt. Then ¢p(x)—p(y) =(x—y)-
f(x, y) and

_ . _1 _ _.
Pypu(x) = (2h) ™ f TN CENEOC) (L (x4 1) E)u(y) dy dE.



302 JEAN-FRANCOIS BONY, FREDERIC HERAU AND LAURENT MICHEL

Since p € Sgo, a simple change of integration path shows that Py ; is a bounded pseudodifferential
operator Py j = Op( Dg) with

Pp(x. 1.6 =p(3(x+ ). E+i0(x,)).

To get the expression of Py ; in left quantization, it suffices then to apply (3-5) to get Py , = Opl (pg)
with

Po(x. &) = Qrh)~? / g NN E D) p(L(x 4 2), £ +i6(x, 2)) dE d=
R

= Q2nh)~ fm JMECD p(Lx 4oy € 4 E+i0(x,2)) dE d=.
R

Observe that for any smooth function g : R? — R we have

d .
€@ =20 =Y [ &20;0.6) ds (3-7)
j=1
with 17 T8 =, ... €i-1,5€;,0,...,0) andy]_(s £§)=1(0,...,0,5&,&11,....&4). A very simple

observation is that, for any (x,&) € T* [F\Rd and any s € [0, 1], we have x - yi(s &= yi(s x)-&. This
will be used often in the sequel.
Let us go back to the study of pg. Since Py, (e=%/") = 0, we have P (x,0) =0 and, by (3-7), we get

d
Pe(x.6) =) &idy ;(x,6) = Zs,qqs JIER
j=1

=1

with g j = 2(qd”—i—qq”)and

ih—1lg/ 1
G 6 = @ [ D [ p(hx 0.8 0,0 +i6(x, ) ds dz dE

where the above integral has to be understood as an oscillatory integral. Since 82‘ p is bounded for any «,
integration by parts with respect to & and z shows that ¢ ;€ AW 5 (1). Moreover, by definition of yji we
have

v _ p—1E/ (v
§idy; = Qmh) d/de eMTH D o (¢ 2 E) dz dE

withci(x 2.8 =p(3(x+2), E’—H/j (1.§)+i0(x,2)) — p(3(x +2), E’—i—yj (O £)+i60(x,z)). This
symbol is clearly in SO (1), so that 1ntegrat10n by parts as before shows that &; gE 6. € S9 (1). Since &;

and §F . are both scalar, this proves that ¢* 5. € S EHD.
Observe now that

Ph=e_¢/hP¢,he¢/h=e_¢/hOp( (¢ +q¢)) (h ) ¢/h = ¢~ ¢/th¢/h dg p
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with Q = %(é"‘ + Q_) and Qi = Opl(é;t). Let Q:; =20/ h Opl(é;)t)ezd’/h; then Qf; = Gp(q;t)
with q;; = (q;il,...,qj;d) and

Gy (X, .6) =Gy ;(x, 6= 2i6(x, y))

1
=@rh)™ / o D) / 0, P(3(x+2). €'+ (5.6 =20y (5. 0(x. ) +i0(x, 2)) ds dz dE .
R2d 0
and it follows from (3-6) that Qd, = Op”(4) with gy = é; +dy- c](;t = (é;’t’l, e ’éid) and

Gy (x,6)
=Qrhyd | hTEBugE (v 4y x &) dudE’
R2d é.J
1
— Quh)2 / / o @ —E)ut+ (etu—z)]
R44 Jo
X 3§jp(%(x +u+z),n+ yji(s, £ — 2z'yji(s, O(x +u,x))+i0(x +u, z)) dsdz dudg dn.
Make the change of variables z = x + v and v = yji (s,&") + n; the above equation yields
o _ 1 h—1r(sr_ _ - /
GE(x,§) = Quhy2d /uw /0 G HE =D+ =) 0=y E (8]
X 8§jp(x + %(u +v),v+ wj?t(s, X, u, v)) dsdudvdvd§
with wji(s, xX,u,v)=i6(x4+u,x +v) —Ziyji(s, 0(x +u, x)).

Define p%(x,z) = / e~17€ p(x, £) d&, the Fourier transform of p with respect to the second variable,
and observe that, since £ — p(x, ) is even, so is z — p>(x, z). Using the above notations, we have

i . .
dn; p(x,m) = W[Rd 'z p*(x, z) dz,

and we get

Sk I T v+ A2+ (E O u—(u—v)yE (58]
16,0008 = a2 /Rmx[o,l]xw e

ot
X p2(x + L(u +v), 2)e™V5 0 gy dy dg' dv ds dz.

Let Fp, >y denote the semiclassical Fourier transform with respect to v, and @h,u,_,,, its inverse.
Writing

A , + N il
fonas ) = 23 725+ b ), ) E DGOz o)
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we get
= _ i a o /
(x,8)=—F7— F F v—hz)dvd& dsd:z
31056 = Gt G ooy P P s )0 h2) o d
_ i / - oI [E—§) 0—h2)+hy = (5,2)8]
d d J
(2m)4(2h)? Jr2d x[0,1]xRd

x p2(x +v—1hz z)e iV X 0-hz )2 gy, gl g -

where we have used the fact that y; t(s, )z = .i(s, z)&’. Similarly, integrating with respect to &’ and v,
we obtain

Gy (x.6) = OO 52 (x (L yE (s, 2)), 2)e¥ D) ds dz

(277)d /[0 1]xRd e
with (pji (s,2) = z'zwjjE (s, X, —h)/jjE (s,2),h(z— yji (s, Z))). From the definition of w?—L, we get
goji(s, z)= 22)/1-i (s, 0(x —h)/ji(s, z), x)) —Z@(X hy] (s,2), x+h(z— -:t(s, Z)))
=2y (5, 2)0(x —hy[F(s.2). x) = 20 (x —hyi (5. 2), x + h(z — ¥ (5. 2))).
and, since @ is defined by ¢(x) —¢p(y) = (x — y)0(x, y), it follows easily that
1
0 (5.2) = (20 (1) = (x —hy[(5.2) = b (x + h(z = ¥ (5.2)))-

Let us write P; *(x,s,2) = (x+h( Z—Y; £ (s, Z)) ) then

' +
‘?éstj (x,0) = l / ijji (x,5,2)e% 2 s dz. (3-8)
’ 0,1]xRd

em? i
Observe now that we have the identities
)/,-i(l —5,—2) = —(z—y; (5,2)),

Z—)/J (s z) = z—y] T—s,—2)

(3-9)

forall s €[0,1], z € R?. In particular, since p? is even with respect to the second variable, we get

o (1—s,— o] (5.2)

,oji(x, 1—s,—2)e 2 = = p; T(x,s,2)e

As a consequence, by the change of variables (s, z) — (1—s, —z) in (3-8), we getqy gt (x 0)=—q; 6. (x,0),

and hence g4 (x, 0) =0. Since g4 ; belongs to SO (g i) 1) forall j, we get by the same trick as for the right
factorization that there exists some symbol ¢ = (¢;,x) € S9 (s4) such that § 4e,j(x.6)= Z k=15kqj,k(x, ).
Since we use right quantization, it follows that, for all u € ¥ ([F\Rd , (Dd),

h
Op” (dg)u = — divOp" (q)u = h D Op" (9)u,
i
where we have used the matrix-valued symbol ¢ = (¢ x). Consequently, for all u € S(RY),

Pyu = e®/ " Op” (c]¢)e_¢/hd¢,hu = dqf’he"b/h Op” (é)e_d’/hdq;’hu.
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Using again the analyticity of g, there exists § € SO (A4) such that
0 := " op” @)e" = Op().

and the factorization is proved. The fact that § admits an expansion in powers of / follows easily from
the above computations, since it is the case for p. O

Let us apply Lemma 3.2 to P, = Op(p). Then, there exists a symbol § € SO () such that
Py=d},0dg .

with Q = Op(§) and § = o + S°(h). Now the strategy is the following: we will modify the operator Q
so that the new Q is selfadjoint, nonnegative and Q can be written as the square of a pseudodifferential
operator, Q = 0* Q.

First observe that, since Py, is selfadjoint,

Pp=5(Py+ PY)=dj ,5(0 + 0%)dy .

so that we can assume in the following that Q is selfadjoint. This means that the partial operators
Qj,k = Op(gj k) satisfy Q;“k = Qk’j (or, at the level of symbols, g j = gj k). Fork =1,...,d,letus
write d(lg’h = hoy + d;¢(x). Then

d
Pr=) (d] )" Qjdy - (3-10)
J,k=1

We would like to take the square root of Q and show that it is still a pseudodifferential operator. The
problem is that we don’t even know if Q is nonnegative. Nevertheless, we can use the nonuniqueness
of operators Q such that (3-10) holds to go to a situation where Q is close to a diagonal operator with
nonnegative partial operators on the diagonal. The starting point of this strategy is the commutation

relation

[d]

S dp =0 forall j, kefl,... . d}, (3-11)

which holds thanks to d 4]) = e~/ hpy j e®/" and Schwarz’ theorem. Hence, for any bounded operator B,
we have .,
Py=dg, 0™ dy s = Y (dy ) 0T dy . (3-12)
j k=1

~

with Qm"d" = Q0+ B*, » € {0, 0o} for some %B* having one of the two following forms:

e (exchange between three coefficients) For any jg, ko, n € {1, ..., d}, the operator B>°(jgy, ko, n; B) =
(%fk)j,k=1,...,d is defined by

BFG =0 if (j, k) £{(n.n), (o, ko). (ko jo)}.
joko = —(dg )" Bdy j and  BEE 0= (B ), (3-13)

. L L .
By = (ddj)?h)*de)?h + (d¢:’h)*B*d¢])?h.
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When jy = kg, we use the convention that %700 o = —(dg ) (B + B*)d(’; 5+ Such modifications

will be used away from the critical points.

e (exchange between four coefficients) For any jo, ko, k1 €{1,. .., d}, the operator B°(joy, ko, k1; B) =
(%;),k)j,k=l,...,d is defined by

B =0 if (j, k) £ {(o. ko), (ko, jo). (o, k1), (1, jo)},

0 k 0 0

Biodko = _de?,lh and - Ry, j, = (%J'o,ko)*’ (3-14)
0 _ ko 0 _ 0 *

9Bjo,kl - de),h and 9Bkl,jo - (%J'o,kl) :

Such modifications will be used near the critical points.

Recall that the d-matrix weights o4 and Es{ are given by o; j = (&) 1(&)~" and (Esd)j k= (E)7 L.
Using the preceding remark, we can prove the following:

Lemma 3.4. Let Q =O0p(q), where G € S°(s1) is a Hermitian symbol with §(x, £; h) =G (x, £)+S° (hsd).
We let P = d;,h Qd¢,h and let p(x,&:h) = po(x,&) + S°(h) € S°(1) be its symbol. Assume that the
following assumptions hold:

(A1) For all § > 0, there exists o > 0 such that, for all (x,&) € T*R?, |&|> + d(x,W)% > § implies

(A2) Near (u,0), for any critical point u € U, we have
Po(x.8) = €17 + V()| +7(x.8) (3-15)
with r(x,£) = 0(|(x —u, £)|?).
Then, for h small enough, there exists a symbol q € S°(Es) such that
Py =d},0% Ody .

with Q = Op(q) and
q(x,&h) =1d+0(|(x —u,&)|) + S°(h) (3-16)

near (u,0) for any u € AU. Moreover, Q = FOp(E~") for some F € WO(1) that is invertible and
selfadjoint with F~1 € WO(1).
If, additionally to the previous assumptions, we suppose:

(A2') the remainder term in (3-15) satisfies r(x, £) = O(|(x —u, £)|*);

then
q(x.&:h) =1d+0(|(x —u.&)[*) + S°(h) (3-17)

near (u,0).
Finally, if § € S(s4) then q € SY(E ).
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Proof. In the following, we assume that ¢ has a unique critical point # and that # = 0. Using some
cutoff in space, we can always make this assumption without loss of generality. Given ¢ > 0, let
Wo, W1, ..., wy € S%(1) be nonnegative functions such that

wo+wy +--+wg =1 (3-18)
whose support satisfies
supp(wo) C {I&* + |V (x)|* = 2¢},

and, for all £ > 1,
supp(wg) C {I%“I2 + Ve (x)|> = & and |&|* + |9¢p(x)]> = ﬁ(lél2 + |V¢>(x)|2)}-

Let us decompose Q according to these truncations:
d
0=> 0° (3-19)
£=0

with QZ := Op(w¢q) for all £ > 0. We will modify each of the operators Qe separately, using the
following modifiers. For jo, ko, n € {1,...,d} and B € S°((&j,)! (f;‘ko)_1 (£,)7%) we write for short

B> (Jo. ko.n: B) := B> (jo. ko.n:Op(B)).

where the right-hand side is defined by (3-13). In the same way, given jo, ko,k1 € {1,...,d} and
B e So((éjo)_1 (Sko)_1 (Skl)_l) we write for short

B° (o, ko, k13 B) := B°(jo, ko, k1; Op(B)),

where the right-hand side is defined by (3-14). Observe that any operator of one of these two forms
belongs to WO (s4). Let J(s4) C WO(s4) be the vector space of bounded operators on L2(R4)d generated
by these operators. Then, (3-12) says exactly that

Pp=dj (0 +M)dyy forany M€ A(st). (3-20)

Step 1. We first remove the terms of order 1 near the origin. More precisely, we show that there exists
MO € M(s4) such that

0%:= 0% +.1° = 0p(g®) + VO (hs). (3-21)
where §° € SO(s) satisfies, near (0,0) € T*R?,
G°(x,8) = wo(x.§)(1d +p(x.§)) (3-22)
with p € S(s4) such that:

e p(x,&) =0(|(x, &)]) under the assumption (A2);
o p(x,€) =0((x, £)|?) under the assumption (A2').



308 JEAN-FRANCOIS BONY, FREDERIC HERAU AND LAURENT MICHEL

From (3-10), we have

d
Po(x.6) = Y Gojk(x.6)(E +i0jp(x)(Ex — i p(x)),

J.k=1

where Go = (o j,k)j,k denotes the principal symbol of §. Expanding g near the origin, we get

do(x.§) =40(0,0) +v(x,§)
with v(x, &) = O(|(x, £)]). Then, we deduce

d
Poe ) =3 (G0:j,4(0.0) + vj & (x. EN(E +10;$(x)) (Ex — i B p(x)). (3-23)
Jik=1
Identifying (3-15) and (3-23), we obtain §g. j x (0, 0) = §; s, which establishes (3-21)—(3-22) under the
assumption (A2).
Suppose now that (A2') is satisfied. Identifying (3-15) and (3-23) as before, we obtain
d

Y vk E)E +19;6(x))(Ek — i3k (x)) = O(|(x, ). (3-24)

j k=1
Defining A := Hess(¢)(0), we have 9;¢(x) = (Ax); + O(x?). Then, (3-24) becomes
d

D vk, E)(E 41 (Ax))) E — i (Ax)e) = O(1(x, §)]*). (3-25)

J.k=1

Let us introduce the new variables n = & + iAx and 7 = £ —i Ax. Then, (3-25) reads

d
> vk Oy =0(1(x. &)%) = 0((n. D). (3-26)
Jk=1
On the other hand, since A4 is invertible, there exist some complex numbers 05}1 P &}1 i for j, k.n=1,...,d
such that
d
Vik(x.8) =D (@} ciin + & ) + O (0. D). (3-27)
n=1

: : . d . _ _ :
Combined with (3-26), this yields } _; 4 ,—; (a]’.”knn +oz;.”knn)nj iix =0(|(n, 7)|*) and, since the left-hand
side is a polynomial of degree 3 in (n, 77), it follows that

d

D@ i+ @ )i =0 (3-28)
J.k,n=1

forany n € C?. Hence, uniqueness of coefficients of polynomials of (n, 77) implies

a;.’,k-l—ozj]fn:O forall j, k,ne{l,...,d}. (3-29)
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In particular, oc]’." K= 0. On the other hand, &J’.” K= o?’j for all j, k, n since Q is selfadjoint.
Now, we define

d d
QO:: Qo-i—/l/to with M0 := Z Z aJ’-’ B2 (jo. ko, n; wo).

0-ko
jo,ko=1 n=ko+1

It follows from symbolic calculus that Q° = Op(§°), with §° € S°(s4) given by

‘;jo,k = wy (‘?O;j,k - Z O(;l,k((i:n —i0,¢(x)) + Z Oljlin(éfn —i0p9(x))

n>k n<k

=Y o (En it () + Yt i3n¢(x))) + S°(hst)
n>j n<j
for any j, k. Moreover, from (3-29) and &, 4 i 0,6 (x) = 1, + 0(|x|?) near (0, 0), we get

d d
4, = wo (c}o;,-,k TN M Sy e ﬁj,k) 1 50(hst)
n=1 n=1
with p € SO(s4) such that 5 = O(|(x, £)|?) near the origin. Using the identity qo:j,k = 8j,k +vj k together
with (3-27), we get
G = wo(Sj,k + pjk) + SO (hst)

with p € SO(st) such that p = O(|(x, £)|?) near the origin. This implies (3-21)—(3-22) under the
assumption (A2’), and achieves the proof of Step 1.

Step 2. We now remove the antidiagonal terms away from the origin. More precisely, we show that there
exist some ¢ € M(s4) and some diagonal symbols G¢ € SO(s4) such that

Ot := O + M = Op(wG®) + WO (hst) (3-30)
forany £ € {1,...,d}.
For jo, ko, £ € {1,...,d} with jo # ko, let B, k,.¢ be defined by
w@(X’E)Qjo,ko(va)
|&el? + 19 ()]

By the support properties of wy, we have ﬁjo,ko,ﬁ I= SO((SJ-O)_1 (Sko)_1 (ée)_z), s0 B> (jo, ko, £; ﬁjo,ko,ﬁ)
belongs to M (s4). Defining

Bjo ko, (X, &) :=

J‘/Le = Z %oo(j()’ko?ﬁ;lgjO’kan)’
Jo#ko

the pseudodifferential calculus gives
(d5 1) OP(Bjo ko, )Y 1y = OD(wedig y) + WO (h(Ej0) ™ (6ky) ™)

which implies
0% + M = Op(weq) + M° = Op(wyg®) + WO (hst)
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with G € S°(s4) diagonal. This proves (3-30).
Step 3. Let us now prove that we can modify each QZ so that its diagonal coefficients are suitably
~{
bounded from below. More precisely, we claim that there exist ¢ > 0 and M~ € JM(s4) such that
< ~ ~0
0% := 0L+l = op(G*) + WO (hst) (3-31)

with ¢ diagonal and c}ﬁ)’io(x, £) > cwy(x,£)(&,) 2 forall ig € {1,...,d}.
For £,ig € {1,...,d}, let B;, ¢ be defined by

wy(x. §) (qle,(x o y )
2062 + 106 1) \ 007 T T g0 P+ 05,6 (0 )

where y > 0 will be specified later. The symbol j;, ¢ belongs to SO((&iy) 2 (E0)72), s0 B®(iy, ig, {; Bio.t)
is in JL(s4). Defining

Big,e(x.8) ==

~{ .
M= Z %00(107107£;ﬂi0,e)v
io#L

~ ~{ 9 e ol g
the symbolic calculus shows that O + M~ = Op(G%) + WO (hst) with ¢ diagonal and

y  yw.§)
Gioio 0 8) = {8 2 4 |9 (O

for all iy # L. (3-32)

It remains to prove that we can choose ¥ > 0 above, so that Z]f (X, 8) = cwg(x, £)(£,)72. Thanks to
assumption (A1), there exists « > 0 such that

po(x,&) >« forall (x,§&) € supp(wy). (3-33)

On the other hand, a simple commutator computation shows that Op(wy) Py, = d; i Qed@h +WOh).
Combined with (3-20), (3-30) and the definition of E[e, this yields

Op(wg) Py = d}y , 0%y + WO (h) = d}; , Op(G“)dy 5 + VO (),
and then

d
(wepo)(v.8) = 3 b 1o (6. 6) (i + 1910 d (O17) + S°(h).
ip=1

Now, using (3-32), we get

(wepo) (X, &) =Gy o (x. E) (&) + [0 () [*) + ¥ (d — Dwe(x, &) + SO(h).
Combining this relation with (3-33) and choosing y = «/(2d), we obtain

awg(x, §)
2(1&¢1> + 19¢p (x)1?)

Thus, q”f ¢ satisfies the required lower bound and (3-31) follows.

+ S%h(E) 7). (3-34)

Gg o (x.6) =
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Step 4. Lastly, we take the square root of the modified operator. Let us define
d
0:=) 0°e ¥, (3-33)

with O defined above. Thanks to (3-20), we have Pj, = (dp.n)* Qd¢,h = (dpn)* Qd¢,h and it follows
from the preceding constructions that the principal symbol ¢ of Q satisfies

G(x, €) = wo(x, §)(Ad+0(|(x, E))) + ¢ Y we(x, £) diag((§)2).
=1

Shrinking ¢ > 0 and the support of wyq if necessary, it follows that

G(x. &) > ¢ diag((&) 7).

Letting £ = Op(E) Q Op(E), and e € S(1) be the symbol of E, the pseudodifferential calculus gives
e(x, & h) = eo(x, &) + SO(h) with

eo(x.§) > cdiag((§;) (&) (&) = c1d, (3-36)

so that, for 4 > 0 small enough, e(x, &) > %c Id. Hence, we can adapt the proof of Theorem 4.8 of
[Helffer and Nier 2005] to our semiclassical setting to get that F := E'/2 belongs to W°(1) and that
F~1 e WO(1). Then, 0 = Q*Q with Q := FOp(E~") and, by construction, Q € WO(Z ).

In addition, as in Theorem 4.8 of [Helffer and Nier 2005], we can show that F = Op(e(l)/ 2) +WO(h),
so that QO = Op(qo) + Y (hEsL) with gg = e(l)/ 22~1_If, moreover, ¢ admits a classical expansion, then
qe Sg (), and the same argument shows that both e and ¢ admit classical expansions.

Let us now study go near (#,0). For (x,£) close to (#,0) we have 8 = Id +0(|£|?) and Gy =
Id +p(x, &), so

eo(x,€) = EGoE =1d +p(x,£) + O(5[*),
and we get easily gg = eé/z E-! =1d +0(|&|> + p(x, £)), which proves (3-16) and (3-17). O

This completes the proof of Theorem 1.5.

4. Quasimodes on k-forms and first exponential-type eigenvalue estimates

Pseudodifferential Hodge—Witten Laplacian on the 0-forms. This part is devoted to the rough asymp-
totic of the small eigenvalues of P} and to the construction of associated quasimodes. From Theorem 1.5,
this operator has the expression

Py =ahd;th¢’hah, 4-1)
where G is the matrix of pseudodifferential operators

G = (Op(gj ).k = Q"0 =O0p(E) ' F*FOp(E)~".
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Using Corollary 3.1 and that G is selfadjoint, we remark that g; x € SO((&) &)™) and gjk =8k,
Thus, Py, can be viewed as a Hodge—Witten Laplacian on 0-forms (or a Laplace—Beltrami operator) with
the pseudodifferential metric G™!. In the following, we will then use the notation P := Pj,.

Since ap(u) =1+ 0(h) and g(u,0) = B;1d +0(h) for all the critical points u € AU, it is natural to
consider the operator with the coefficients a; and G frozen at 1 and B, Id, respectively. For that, let
QP(RY), p=1,...,d, be the space of C*® p-forms on R?. We then define

PY = dy dyn+dendy 4-2)

the semiclassical Witten Laplacian on the de Rham complex, and PW:(P)_its restriction to the p-forms.
This operator has been intensively studied (see, e.g., [Helffer and Sjostrand 1985; Cycon et al. 2008;
Bovier et al. 2004; 2005; Helffer et al. 2004]), and a lot is known concerning its spectral properties. In
particular, from Lemma 1.6 and Proposition 1.7 of [Helffer and Sjostrand 1985], we know that there are
no exponentially small (real nonnegative) eigenvalues, and that the others are above /1/C.

From [Helffer et al. 2004; Hérau et al. 2011], we have good normalized quasimodes for P
associated to all minima of ¢. For k € {1,...,ny}, they are given by

w,(0 0 — — .
fk ( )(x) _ Xk,s(x)b](c )(h)e (¢(x) ¢(mk))/h’

where b](co) (h) = (wh)~%/* det(Hess ¢ (my))'/*(1 + O(h)), and where the Xk,e are cutoff functions
localized in sufficiently large areas containing my, € WU© In fact, we need large support (associated to
level sets of ¢) and properties for the cutoff functions yy ., so that the refined analysis of the next section
can be done. We postpone to the Appendix the construction of the cutoff functions, the definition of & > 0,
refined estimates on this family ( f, kW’ © )k, and in particular the fact that it is a quasiorthonormal free
family of functions, following closely [Helffer et al. 2004; Hérau et al. 2011].

We now define the quasimodes associated to P ©) in the following way:

0 -1 W,(0 —1,(0 - —p(my,
S0 = an) O @) = an (07 B () e (x)e @O (4-3)
for 1 <k <ngy. We then have:
Lemma 4.1. The system ( fk(o)) k 18 free, and there exists o > 0 independent of € such that
0 0 0 -
O, SO =5 4o +0(h) and PO £ = o(e/ M,

Remark 4.2. For this result to be true, it would have been sufficient to take truncation functions with
smaller support (say in a small neighborhood of each minimum mj ). We emphasize again that the more
complicated construction for the quasimodes is justified by their later use.

Proof. First, observe that
0 0 —2 W,(0) ,W,(0 - W,(0) W0
i iy = £ SO = b+ A = 0 RO 5O,
Moreover, near any minimum m, a;z —1=0(h+|x —my|?) and ¢(x) — ¢ (my) is quadratic, so

@2 = 1) 17O = o), (4-4)
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which proves the first statement. For the last statement, it is enough to notice that
0 w,(0
PO = aydy 0" Qo £
and apply Lemma A.3. O
We now prove a first rough spectral result on PO, using the preceding lemma.

Proposition 4.3. The operator P O pas exactly ny exponentially small (real nonnegative) eigenvalues,
and the remaining part of its spectrum is in [egh, +00[ for some &g > 0.

Usually, this type of result is a consequence of an IMS formula. It is possible to do that here (with
effort) but we prefer to give a simpler proof using what we know about P?>(%)_ The following proof is
based on the spectral theorem and the maxi-min principle.

Proof. Thanks to Proposition 2.4, the spectrum of PO js discrete in [0, 8] and its j-th eigenvalue is given
by
sup inf (P(O)u, u). (4-5)
dim E=j—1 u€EL, |lu]=1
Lemma 4.1 directly implies
(PO LY = 1PO LON L = 0™y

for some « > 0. Using the almost orthogonality of the fk(o), (4-5) and P > 0, we deduce that P(®) has
at least nq eigenvalues that are exponentially small.

We now want to prove that the remaining part of the spectrum of PO is above goh for some &g > 0
small enough. For this, we set

Wa
€= Vet ;D ik = 1,...,no},
and we consider u € a;l%J- with ||u]| = 1. We have, again,
(POu,u) = | FOp(E™")dy panull® = sol Op(E~")dy papull® (4-6)

for some &y > 0 independent of /2, which may change from line to line. For the last inequality, we have
used that || F~!| is uniformly bounded since F~' € WO(1). On the other hand, using 0 < P%-(1) =
—h?A ®Id +0(1), we notice that

Op(E™1)? > (—h?A+ 1)  @1d > g (P 4 1)1
for some (other) gy > 0. Therefore, using the classical intertwining relations
(PW,(I) + 1)_1/2d¢,h — d¢,h(PW’(°) + 1)—1/2’
and the fact that P>(0) = d(’;’ 1d¢.n on O-forms, we get

(POu,u) = o [|(PPO + 1)712dy papu|® = eolldy n (PP + )™ 2ajul?
:80<PW’(0)(PW’(0) + 1)_1ahu,ahu). 4-7)
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Now, let F be the eigenspace of P?>(0) agsociated to the 1 exponentially small eigenvalues, and let TT¢
(resp. I1g) be the orthogonal projectors onto € (resp. &). Then, from Proposition 1.7 of [Helffer and
Sjostrand 1985] (see also Theorem 2.4 of [Helffer and Sjostrand 1984]), we have || [T — g || = O(e~%/ 1),
Moreover, since the (ng+1)-st eigenvalue of P i5 of order &, the spectral theorem gives

PPOPTO 117! > eoh(1—g) + 0™/ ") = eoh(1 — M) + 0(e /"),
Then, using aju € €L, ||u| = 1 and Lemma 2.2, (4-7) becomes
(POu u) > eohllapu?® + 0" > 1cieoh.
Finally, this estimate and (4-5) imply that P (0) has at most 7 eigenvalues below %cleoh. Taking %0180

as the new value of ¢¢ gives the result. O

Pseudodifferential Hodge—Witten Laplacian on the 1-forms. Since we want to follow a supersymmetric
approach to prove the main theorem of this paper, we have to build an extension PO of PO defined on
1-forms which satisfies properties similar to those of P%>(1). To do this, we use the following coordinates
for w € Q' (RY) and 0 € Q2(RY):

d
W= Z wj(x)dx;, o= Z 0j k(x)dxj N dxy,
j=1 j<k

and we extend the matrix o;  as a function with values in the space of antisymmetric matrices. Recall
that the exterior derivative satisfies

(d(l)a))j’k = Oy; W — 0x,w; and (d* Vo) = — Z Oxx Ok, j - (4-8)
k

In the previous section, we saw that PO can be viewed as the Hodge—Witten Laplacian on 0-forms
with a pseudodifferential metric G™!. It is then natural to consider the corresponding Hodge—Witten
Laplacian on 1-forms. Thus, mimicking the construction in the standard case, we define

PW = Qdy papdy ,Q* +(Q7N)*dy ,Mdy , 07", (4-9)
where M is the linear operator acting on QZ(Rd ) with coefficients

M k) .ab) = 5 OP(a}(g),a8k b — Ck.a&j.b))- (4-10)

Note that M is well-defined on Q2(R?) (i.e., Mo is antisymmetric if o is antisymmetric) since
M, ) (a.b) = M, k), (b,a) = —M(j,k),(a,b)- Furthermore, we deduce from the properties of g; x that

M i)y € VO UE) &) T E) T HE) . (4-11)

Remark 4.4. When G~ is a true metric (and not a matrix of pseudodifferential operators), the operator
PO defined in (4-9) is the usual Hodge—Witten Laplacian on 1-forms. Our construction is then an
extension to the pseudodifferential case. Generalizing these structures to p-forms, it should be possible
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to define a Hodge—Witten Laplacian on the total de Rham complex. It could also be possible to define
such an operator using only abstract geometric quantities (and not explicit formulas like (4-10)).

On the other hand, a precise choice for the operator M is not relevant in the present paper. Indeed,
for the study of the small eigenvalues of PO, only the first part (in (4-9)) of P s important (see
Lemma 4.7 below). The second part is only used to make the operator PM elliptic. Thus, any M
satisfying (4-11) and M k). (a,b) = € Op({£;) ™2 (£x) ) ® 1d should probably work.

We first show that P! acts diagonally (at the first order), as is the case for PP>(1).

Lemma 4.5. The operator P(") € WO(1) is selfadjoint on Q' (R?). Moreover,

PD = PO @1d +w0(h). (4-12)
Proof. We begin by estimating the first part of PO,

P = Qdy paidy , 0.

Let gj i € SO((&x)~1) denote the symbol of the coefficients of Q and let ddj;,h = hdj + (0;¢). Using the
composition rules of matrices, a direct computation gives

(P{")je = D Opaj.a)df a3 (dy 4, Q") = ) O(j.a)dg i (dy )" OP(Gip). ¢+13)
a a,b

We then deduce that Pl(l) is a selfadjoint operator on Q! (R?) with coefficients of class W°(1). Moreover,
this formula implies

1 _
(PM)jk = Op(a}4).afiep)ds (dl )" + WO (). (4-14)
ab
It remains to study

PV = (07 d} ,Mdy 07"

Let 4k € SO({&7)) denote the symbol of the coefficients of O~!. The formulas of (4-8), the definition
(4-10) and the composition rules of matrices imply

(P =D Oplgy (), Mdy 4 O™
o
=— Oplg, (g ;)" (Mdg 1 Q™) @)k
a,o
=— > Oplgy )4 1) Maa).b.8)(dp.n Q) .8).k

a,b,a,B

=— )" Oplgg )l 1) Mia.a).0.8)(d} , OP(ag 1) —db , OG5 1))
a,b,a,B

=-2 Y Op(g, (s 1)* Mia.a). .85, OP(d5): (4-15)
a,b,a,p
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where we have used that M, o) (5,8) = —M(a,«),(8,b)- BY (4-11), a typical term of these sums satisfies

Op(d3 (A% 1)* Miaa (5,545 OP(@54) € WO((Ea) (Ea) (Ea) ™ (Ea) ™ (80) ™ (£5) ™" (E) (55D,

and then Pz(l) € WO(1). On the other hand, using gj.k = &k,; and (4-10), we get

1 1 _
(PS)E == Op(gz})(d} ;)" OD(a2(Zasu,p — Cab8a.p) s OP(dy )
a,b,a,B
=— ) Op(gzi)(ds ;)" Op(a}(25.a8p.a — &b.agBa))dy  OP(dy )
a,b,a.p
—_1 — 1
=— )" Oplg;)(d5 )" Op(a}(2a.b8a.p — Za,p8ab))ds , OP(ag ) = (Ps )i -
a,b,a.p

so that Pz(l) is selfadjoint on Q! (R?). Finally, (4-11) and (4-15) yield

(P); =Y 0p (a%, > a7 a5k (8ap8ap — ga,ﬂga,w) (dg )*db , + WO (h)

a,b o,B
=Y Op(a;8a58).k — a34j,5Tka)(dy ) db , + WO (h), (4-16)
a,b

since

Y 8ajdih=Toa+ S h(Ea)™") and Y qajq;} =8ap+SO(h).
J J

which follow from GQ~! = O* and Q™! =1d.
Summing up the previous properties of P,(l), the operator PO = Pl(l) + Pz(l) e WO(1) is selfadjoint
on Q!(R?). Lastly, combining (4-14) and (4-16), we obtain

P =" ,)* Op(ajgap)dy , ®1d+W°(h) = ayd} ,Gdy paj ®1d+W°(h)
a,b

= PO Q1d+9°(h), @-17)
and the lemma follows. O
The next result compares PM and P,

Lemma 4.6. There exist some pseudodifferential operators (Ry)x—=o,1,2 such that
P =g, P"-) 1 Ry + Ry + Ry,

where the remainder terms enjoy the following properties:

(1) Ro is a d x d matrix whose coefficients are finite sums of terms of the form
(d4 ,)*(Op(ro) + WO (h)dy ,

witha,b e {l,...,d} and ro € S°(1) satisfying ro(x,&) = O(|(x —u, £)|?) near (u,0), u €U;
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(i1) R; is a matrix whose coefficients are finite sums of terms of the form h Op(rq )dg,h orh (dg,h)* Op(ry)
witha e {l,...,d}and r; € S°(1) satisfying r1(x,&) = O(|(x —u, £)|) near (u,0), u € U;
(ili) R, € WO(h2).
Proof. As in the proof of Lemma 4.5, we use the decomposition P(1) = Pl( Dy P2( D From Corollary 3.1
and Lemma 2.2, the coefficients appearing in these operators satisfy
ap=a+S°h) e S°),
Gab = qab + S (&)™) € S°((&) 7,
G =anh+SO(h(Ea)) € SO((Ea))
M.k (ab) = OPU( 1) (aby) + WO (h{E) T (61) T (€)™ (E)TT)
with 77, k), a.b) € S°((E) T (&) (Ea) T (€)1 and
a=1+0((x—u§)). (k) (ab) = 3B (j.abk,b —k.aj.p) + O (x —u. &)%),
Gap = BY 26ap + 0w D). G55 =B 80p +0((x —u.5))
near (u,0), u € U. Then, making commutations in (4-13) and (4-15), we obtain the desired result. [

We now make the link between the eigenvalues of P(®) and PV, For that, we will use the so-called
intertwining relations, which are a fundamental tool in the supersymmetric approach. Recall that, thanks
to Theorem 1.5, P () can be written as

PO =L5Ly with Ly= Qdysap. (4-18)
We obtain the following result:
Lemma 4.7. On 0-forms, we have
LyPO =POL,=LyL%L,. (4-19)
Moreover, for all A € R\ {0}, the operator Ly : ker(P©® — 1) — ker(P(M) — 1) is injective. Finally,
Ly (ker(P©)) = {0}.

Proof. Let us first prove (4-19). Using (4-9), (4-18) and the usual cohomology rule (i.e., d ; n=0), we

have P(I)Ld, — L¢L;L¢ + (Q_l)*d;,th(p,hQ_l Qdy pap
= LyLyLy+(Q™ ") dy ,Mdg pdg pay,
=LyLjLy=LyPO. (4-20)
Now, let u # 0 be an eigenfunction of P(?) associated to A € R. In particular, ||L¢u||2 = Alu||?
vanishes if and only if A = 0. Moreover, (4-19) yields

PO Lyu=LsPOu=1Lsu.

This implies the second part of the lemma. O
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We shall now study more precisely the small eigenvalues of P(!). Recall that s isJ=2,...,n1+1,
denote the saddle points (of index 1) of ¢. Again, we will stick to the analysis already made for the
Witten Laplacian on 1-forms PW-()_ for which we recall the following properties. From Lemma 1.6
and Proposition 1.7 of [Helffer and Sjostrand 1985], the operator P71 is selfadjoint, positive and has
exactly n; exponentially small (nonzero) eigenvalues (counted with multiplicities). We next recall the
construction of associated quasimodes made in Definition 4.3 of [Helffer et al. 2004]. Let u; denote a
normalized fundamental state of P> restricted to an appropriate neighborhood of s; with Dirichlet

w,(1)

boundary conditions. The quasimodes fJ are then defined by

S0 = 1101710 (0 (), (4-21)

where 6 is a well-chosen C§° localization function around s;. Since the fjW’(l) have disjoint support,
we immediately deduce

(PO POy =6 (4-22)

w,(1)

In particular, the family { f] :j=2,...,n1+1}is afree family of 1-forms. Furthermore, Theorem 1.4

of [Helffer and Sjostrand 1985] implies that these quasimodes have a WKB expression,
17D ) = 0 ()b (x, hye =+ G, (4-23)

where b}l)(x, h) is a normalization 1-form having a semiclassical asymptotic, and ¢ ; is the phase
associated to the outgoing manifold of £2 + |Vx¢(x)|? at (s;,0). Moreover, the phase function ¢ ;
satisfies the eikonal equation [Vy¢ j|? = |Vx¢|? and ¢+ j(x) ~ |x —s;|* near s;. For other properties
of ¢4, j, we refer to [Helffer and Sjostrand 1985]. On the other hand, Lemma 1.6 and Proposition 1.7 of
[Helffer and Sjostrand 1985] imply that there exists & > 0 independent of ¢ such that

w,(1) oW, (1) _ 5o~/ h i
P /; =0(e ). (4-24)
Lastly, we deduce from Proposition 1.7 of [Helffer and Sjostrand 1985] that there exists v > 0 such that
(P Dy u) > vi|u|? (4-25)
for all u J_Vect{f}.W’(l) cj=2,...,n1+1}.
Now, let us define the quasimodes associated to PV by
1 1/2 -1 .01
@) =gy en W (4-26)

for 2 < j <n; + 1. Note that this is possible since (Q*)~! € WO((£)). Using that (Q*)~! is close to
,B;l/ ’1d microlocally near (s, 0), we will prove that they form a good, approximately normalized and
orthogonal family of quasimodes for P M,

Lemma 4.8. The system (fj(l))j is free and, for all j, j' =2,...,n1 + 1, we have

15 = PO =0my. (G050 =8+ 0 and PO D = 0.
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Proof. From (4-26) and Corollary 3.1, we have
1 w,(1 1/2 - w,(1 w,(1
fj()_fj ()=(:Bd/ (Q*) I_Id)fj ()=OP(V)fj (1

with 7 € SO((£)?) such that, modulo S°(h(£)?), r(x, &) = O(|(x —u, £)|?) near (u, 0), u € U. Moreover,
using Taylor expansion and symbolic calculus, we can write

reeg) = Y R p(x )(x —s5j)7EP

le+pBl€{0,2}

withry g €S 0((£)?). Combined with the WKB form of the fjW’(l) given in (4-23) (and, in particular,
with ¢4 ;i (x) ~ |x —s; |2 near §j), it shows that

op(r) £ = o(h), (4-27)

which proves the first statement.
The second statement is a direct consequence of the above estimate and (4-22).
For the last estimate, we follow the same strategy. Thanks to Lemma 4.6, we have

W, w,
P(l)f}(l) — ﬂdPW,(l)f} (1 +:3dPW’(1)(f}(1) _f} (1)) T ROf}(l) + le}(l) + RZL(I) (4-28)
Proceeding as above, we write
w, 2 — w,
PW,(I)(fj(l) _fj (1)) — PW’(I)(,B;,/ (Q*) 1 —Id)fj (1)’

where, using (4-2), Corollary 3.1 and the pseudodifferential calculus, the corresponding operator can be
decomposed as

PP(B2(0%) 1 —1) = Op( S B, s g ) (x _sj)(xgﬂ)
|+ pBl€{0,2,4}
for some 7y g € SO((£)3). Thus, as in (4-27), we deduce
Ba POV — 17Dy = o). (4-29)
In the same way, we deduce from Lemma 4.6 that, for any p =0, 1, 2,

Rpﬁ;/z(Q*)‘1=0p( ) hz—'“”'/zroﬁ,,(x,s;h)(x—s,-)“sﬂ)

le+Bl€{0,2,4}
with ”01;,,3 € S°((£)3). Thus,

Ry £V = RpBy 2 (@) /7D = 0. (4-30)

Combining (4-28) with the estimates (4-24), (4-29) and (4-30), we obtain PO fj(l) = 0(h?) and this
concludes the proof of the lemma. O

The following proposition is the analogue of Proposition 4.3.
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Proposition 4.9. The operator P has exactly ny 0(h?) (real) eigenvalues, and the remaining part of
the spectrum is in [g1h, +00[ for some ¢, > 0.

The idea of the proof is to consider separately the regions of the phase space close to the critical
points AU and away from this set. In the first one, we approximate P by P%>(1) ysing that O ~ ,8:/ ’1d
microlocally near (#,0), # € AU. In the second one, we use that (the symbol of) P M s elliptic by (4-12).

We start this strategy with a pseudodifferential IMS formula. For n> 0 fixed, let xo € C5° (R24:]0, 1]) be
supported in a neighborhood of size n of U and such that yo =1 near U and x 0 := (1 —X(2)) 1/2 ¢ Coo(R249),
In particular,

Xo(x &) + xao(x.§) =1 forall (x.§) e R*. (4-31)

In the sequel, the remainder terms may depend on 5, but C will denote a positive constant independent
of 1, which may change from line to line. Using Lemma 4.5 and the shorthand Op(a) = Op(«a) ® 1d, the
pseudodifferential calculus gives

PO = 20p(x5 + x3) P + PU Op(xg + x30))
= 2(0p(x0)* P + PM Op(x0)*) + 5(0p(x00)> PP + PV Op(x00)?) + ¥ (h?)
= 0p(x0) P Op(x0) + Op(Xo0) P Op(xc0)
+ 3[0p(x0). [0p(x0). PPN+ 3[0p(Xo0)- [OP(xo0). PN+ O(h?)
= 0p(x0) P Op(x0) + Op(Xo0) PV Op(xc0) + O(?). (4-32)

In the previous estimate, we have crucially used that Op(x,) ® Id are matrices of pseudodifferential
operators collinear to the identity.

Lemma 4.10. There exists §, > 0, which may depend on n, such that
Op(o0) P Op(xoo) = 85 Op(xoo)® + O(h). (4-33)
Moreover, there exists C > 0 such that, for all n > 0,

0p(x0) PV Op(x0) = (Ba — C1) Op(x0) PV Op(x0) — (Cnh + O(h?)). (4-34)

Proof. We first estimate P(!) outside of the critical points AU. Since xoo vanishes near U, Proposition 2.3
yields that there exist 8, > 0 and p, € S°(1) (which may depend on 7) such that p = p, in a vicinity of
the support of xoo and py(x, &) > 26, for all (x,§) € R24 . Then, Lemma 4.5 and the pseudodifferential
calculus (in particular, the Garding inequality) imply
Op(o0) P OP(X00) = OP(X00) P Op(xo0) + OP(x00)0(h) Op(xc0)
= Op(Xoo) Op(Py) Op(Xoo) + Op(Xoo)0(h) Op(Xoo) + O(h™)
> Op(Xoo)(28y + () Op(xoo) + O(h),

which implies (4-33) for 4 small enough. Here, we have identified as before 4 with A ® Id for scalar
operators A.
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We now consider Op(xo) P Op(xo). Thanks to Lemma 4.6, we can write

2
Op(x0) PV Op(x0) = B4 Op(x0) PV Op(x0) + Y _ Op(x0) Rk Op(xo)-
k=0

Let xo € C5° (R24:]0, 1]) be supported in a neighborhood of size 7 of (u, 0), u €9, and such that o = 1
near the support of xo. Then, for w € Q21(R?), (Ro Op(xo)w.Op(xo)w) is a finite sum of terms of the
form

Fo = ((d§ ;)*(Op(ro) + WO (h))d} , Op(xo)w;. Op(xo)wr). (4-35)
Using functional analysis and pseudodifferential calculus, we get
[Fol = [{(Op(ro o) + WO (h))d} ,, Op(x0)w;, d , Op(x0)wi )| + O(h™) ]
< (Il Op(ro o) | + O(1))lld} , Op(x0)e; Il d§ 1, OP(x0)k | + O (™) ]|
= (I10p(rof0) | + () (PP Op(xo)e. Op(x0)) + O(h*) o], (4-36)
Recall now that, for a € S°(1),
[0p(@) | L2y L2 (RE) = ll@]| oo 2y + O(h)

(see, e.g., [Zworski 2012, Theorem 13.13]). Thus, using that )¢ is supported in a neighborhood of size n
of (u,0) at which rq vanishes yields ||Op(ro Xo)|| < Cn, and (4-36) implies

|(Ro Op(x0). Op(x0)0)| < Ci(P™*® Op(x0)w. Op(x0)w) + Oh®)|w]|>.  (4-37)
As before, (R; Op(xo)®, Op(xo)w) is a finite sum of terms of the form
71 = (W(h)dg ;, Op(xo)wj. Op(Xo)wi) (4-38)
or its complex conjugate. These terms can be estimated as
71| < Chlld2 , Op(x0)s o]
<nlldg , Op(xo)w; > + 0(h*)||>

< n(P"© Op(x0)w.Op(x0)w) + 0(h?)|w|?.
and then

[{R1 Op(x0)®, Op(x0)w)| < Cr{ P © Op(x0)w, Op(x0)®w) + O(h?)||w]?. (4-39)
Combining Lemma 4.6 with the estimates (4-37), (4-39) and R, € W°(h?), we obtain
Op(x0) P Op(x0) = Ba Op(x0) PP 1 Op(x0) — C1 Op(x0) P Op(x0) — O(h?).

Since P71 = pW-(0) @ 1d + WO (h) (see Equation (1.9) of [Helffer and Sjostrand 1985], for example),
this inequality gives (4-34). ([
Let IT denote the orthogonal projection onto Vect{ fj(l) :j=2,...,n1+1}. Using the previous lemma

and its proof, we can describe the action of PO on II:



322 JEAN-FRANCOIS BONY, FREDERIC HERAU aAND LAURENT MICHEL
Lemma 4.11. The rank of 11 is ny for h small enough. Moreover,

PO =0(h?) and TIPD =0h?). (4-40)
Finally, there exists €1 > 0 such that

(1-PWA—TI) > e1h(1 — ) (4-41)

for h small enough.

Proof. Since the functions fj(l) are almost orthogonal (i.e., (fj(l), fj(,l)) = §j, j» + 0(h)), the rank of TI
is n1. Moreover, (4-40) is a direct consequence of Lemma 4.8.

We now give the lower bound for P on the range of 1 — IT. Let €(!) denote the space spanned by

the ka’(l), k=2,...,n;+1and F the eigenspace associated to the 1y first eigenvalues of P,

Let IT¢), I1ga) denote the corresponding orthogonal projectors. It follows from [Helffer and Sjostrand
1985] that ||ITeay — Hgm || = 0(e~¢/") for some ¢ > 0. On the other hand, it follows from the first
estimate of Lemma 4.8 that || IT — IT4) || = O(#). Combining these two estimates, we get

ITT = Mg || = O(7).
Using this bound and the spectral properties of P we get
PYM) > vh —vhTga) > vh —vhTL + O(h?) (4-42)

for some v > 0. From (4-23) and integration by parts, we also have Op(jo)IT1 = IT + O(4°°). Estimate
(4-42) together with (4-31), (4-32), (4-33) and (4-34) give
P = 0p(x0) PV Op(x0) + Op(Xoo) P! Op(3xc0) + O(h?)
> (B4 — Cn) Op(x0) PV Op(x0) + 8y Op(xe0) — (Cnh + O(h?))
> vh(Ba — Cn) Op(x0)> — vh(Ba — CIT + 8, Op(Xoo)® — (Ch + O(h?))
> vh(Ba —Cn) —vh(Bg — C)TL — (Cyh + O(h?)). (4-43)

Thus, taking n > 0 small enough and applying 1 — I1, we finally obtain (4-41) for some ¢; > 0. O

Proof of Proposition 4.9. From Proposition 2.4 and Lemma 4.5, the operator P is bounded and its
essential spectrum is above some positive constant independent of /. Next, the maxi-min principle
together with (4-40) implies that P(!) has at least rank(IT) = n, eigenvalues below C/2. In the same
way, (4-41) yields that P (M has at most 7, eigenvalues below ¢ 4. Finally,

PO =1-mPOU-m)+0PVU-I)+1-)PVIO+0PVIT>—-Ch?

proves that all the spectrum of P (M is above —Ch2. O



TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS 323

5. Eigenspace analysis and proof of the main theorem

Now we want to project the preceding quasimodes onto the generalized eigenspaces associated to
exponentially small eigenvalues, and prove the main theorem. Recall that we have built in the preceding
section quasimodes fk(o), k=1,... ,ng, for P with good support properties. To each quasimode we
will associate a function in E(®, the eigenspace associated to the O(h2) eigenvalues. For this, we first
define the spectral projector

1
n© — __/(Z—P“’))—l dz, (5-1)
2wi Jy,

where y = dB (O, %eoh) and g¢ > 0 is defined in Proposition 4.3. From the fact that PO s selfadjoint,
we get that
o© =o(1).

For the following, we denote the corresponding projection by
0 0
e = (1),
Lemma 5.1. The system (e](co)) k is free and spans E©. Further, there exists a > 0 independent of & such

that
0) _ fk(o) + @(e_“/h) and (e,(co), e](c(,))) = Sp i + O(h).

Proof. The proof follows [Helffer and Sjostrand 1985] (see also [Dimassi and Sjostrand 1999]). We
sketch it for the sake of completeness and to give the necessary modifications. Using (5-1) and the Cauchy
formula, we get

1
® O _ O O 0 _ / (c— PO)1 £ 4. / 17O g
i Jy
= %/(Z—P(O))_IZ_IP(O)fk(O) dz.
14

Since P© is selfadjoint and according to Proposition 4.3, we have
I= PO =0k
uniformly for z € y. Using also the second estimate in Lemma 4.1, this yields
Iz = POYT' 71 PO fO) = a2/ ),
and, after integration,

”e(o) _ fk(o)” — @(/’l_le_a/h).

Decreasing o, we obtain the first estimate of the lemma. In particular, this implies that the family (ek )) k
is free. Using that E () is of dimension n¢, the family (e P )) & spans E ©),
For the last equality of the lemma, we just have to notice that

(e, ey = (£, £ + 0™t = 83 pr + O(h) + O™/ ) = 5 g + O(h),
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according to Lemma 4.1. The proof is complete. O

We can do a similar study for the analysis of P for which we know that exactly n1; (real) eigenvalues
are O(h?), and among them at least 7o — 1 are exponentially small. Note that there is no particular reason
for the remaining ones to also be exponentially small.

To the family of quasimodes ( fj(l) )j, we now associate a family of functions in £ M the eigenspace
associated to the O(h?2) eigenvalues for P(1). By the spectral properties of the selfadjoint operator P(1),
its spectral projector onto E(!) is given by

1
n® = —,/(Z—P“))—1 dz, (5-2)
2ri Jy,

where y = 3B(0, $&1h), with &; defined in Proposition 4.9. In the sequel, we write
(1) _ g, M0
e = m( fj ).
Mimicking the proof of Lemma 5.1, one can show that the family (e](.l)) ;j satisfies the following estimates:

Lemma 5.2. The system (ejgl)) j is free and spans E M. Further, we have
e}l) = fj(l) +0(h) and (e}l), e](,l)) =4, jr +0(h).

Thanks to the preceding lemmas, the families (e,(co)) , and (e}l)) ;j are orthonormal, apart from an O(/)
factor. To accurately compute the eigenvalues of PO and prove the main theorem, we need more precise
estimates of exponential type. For this, we will use the intertwining relation L PO = P(I)Ld,.

More precisely, we denote by L the ny X ng matrix of this restriction of L4 with respect to the bases
1 0
(e} ))j and (e](c ))k:
1 0
Lig:= (e, Lge”). (5-3)

The classical way (e.g., [Helffer et al. 2004; Helffer and Sjostrand 1985]) to compute the exponentially
small eigenvalues of P ©) is to then accurately compute the singular values of L. For this, we first state a
refined lemma about exponential estimates.

Lemma 5.3. There exists a > 0 independent of € such that
LyL /= 0(e™/h), (5-4)
1)

and also a smooth 1-form r; such that

1 1 1 1 -
Ly = Dy=rLyrD and 1V =0(@e/h).
Proof. We first note that
1 1/2 -1 W,(1
2 w,(1
=By Loan(d} , 177D). (5-5)
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On the other hand, (4-2) and (4-24) give
W,(1 w,(1 w,(1 w,(1 w,(1 —
Idy 17N < dy 1PN+ Ndgp P17 = (PO PO WDy gemalty

for some o > 0 independent of ¢. Since aj and Ly are uniformly bounded operators, (5-5) provides the
required estimate.

Now we show the second and third equalities, following closely the proof of Lemma 5.1. Using (5-1),
the intertwining relation (see Lemma 4.7) and the Cauchy formula, we have

1 1 1 1
Lo~y = L5 ;O gz g0
H(O)L* f~(1) _L* f~(1)
(z pOy-1p* f(”dz— e W g,
27'[1 Ti v o]

=5 /(z PO~ =1 pO@ L £ g, (5-6)
i

where y = 0B (0 min(eg, 81)h) Using again Lemma 4.7, this becomes
1
[ 1 1 1
*(eJ() fj())_ i/(z P(O)) IZ 1[*[ [*fj()dz

1
* _ p()y—1_-1 * (1)
¢27_”_/y(z PU)T 2T Ly Ly f; dz.
We then let
m_ (1 _ p()y—1 _—1 )
r; _(2711'/),(2 Py z dz)L¢L¢fj , (5-7)
and the preceding equality reads
1 1 1
Ly — )y =L (5-8)

Moreover, as in proof of Lemma 5.1, we have

o /(z PO =L g — ™).
i

Combining with (5-4), this shows that rj(l)

= 0(e~%/") for some (new) o > 0. d
We begin the study of the matrix L with the following lemma:

Lemma 5.4. There exists &' > 0 such that, if ¢ > 0 is sufficiently small and fixed, we have, for all
25] §n1+1and2§k§n0,

0 _ ’
Lig =/ Ly ) + 0= St/ h),

Moreover, Lj 1 =0 forall2 < j <n;+ 1.
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Proof. We first treat the case kK = 1. Since fl(o) is collinear to a;le_‘i’/ kit belongs to ker(P®).
Then, ego) =1©® fl(o) = fl(o) satisfies L¢e§0) = 0 from Lemma 4.7. In particular, L; { = 0 for all
2<j<m+L

We now assume 2 < k < ng. Using Lemma 4.7 and the definition of e{*), we can write

Lig = (e Lye”) = (e, L@ £9) = (0 O Ly £0)
— (H(l)e](.l), L¢fk(0)> _ (6‘](1)7L¢fk(0)) _ <fj(1)’L¢fk(0)) + (ej(l) —j}(l), L¢f}§o))
= (5 Lo SO + (L5 e = 1) £,
From Lemma 5.3, this becomes
Lig = Lo OV + (LD 1)
= (Lo O + D Lo 1O, (5-9)
Now, since Q is bounded and according to Lemma A.3, we have
L¢fk(0) = Qdy SO = (=S —Cah),
Using Lemma 5.3 again, this yields
(r" Ly f7) = O(e™ Sk ta=Calh) (5-10)
with @ > 0 independent of ¢. Taking ¢ > 0 small enough, the lemma follows from (5-9) and (5-10). O

Now we recall the explicit computation of the matrix L. This is just a consequence of the study of the
corresponding Witten Laplacian.

Lemma 5.5. Forall2 < j <ny+ 1 and 2 <k <ngy, we have
I, h 1/2 1/2|det@” (my)
e=\ed+ar) Mk

det¢”(sg)
Ljy = 0(e~ Skt hy  forail j #k,

1/4
e Sk 4 0(h)) =: B4y (h)e™SK/ "

and

where Sy, := ¢ (sx) — ¢ (my) and —uy, denotes the unique negative eigenvalue of ¢ at sy,.

Proof. First, we note that

1 0 1/2 w,(1 w,(0
SO L 0y = B2 D dy 17O,

by (4-3), (4-26) and Ly = Qdy pay. Thus, Lemma 5.4 implies

w, w, — /
Lj,k = ’Bcli/z(f] (l)sd¢,hfk (0)) +0(e (Sk+a )/h)

The first term is exactly the approximate singular value of dy 5 computed in [Helffer et al. 2004]. The
result is then a direct consequence of Proposition 6.4 of [Helffer et al. 2004]. O

Now we are able to compute the singular values of L (i.e., the eigenvalues of (L*L)/?).
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Lemma 5.6. There exists o’ > 0 such that the singular values vy (L) of L, enumerated in a suitable order,

satisfy
(L) = |Li x| (1+ 0¥y forall 1 <k < ny.

Proof. Since the first column of L consists of zeros, we get v1 = 0. Moreover, the other singular
values of L are those of the reduced matrix L’ with entries L}, ¢ = Lj+1,k+1 for I = j =ny and
1 <k <ng—1. We shall now use that the dominant term in each column of L’ lies on the diagonal.
Define the (ng — 1) x (ng — 1) diagonal matrix D by

D :=diag(Lx414+1:k=1,...,n9—1).

Notice that D is invertible, thanks to the ellipticity of £ (%), and that vg (D) = |Lg41 k+1]- We also
define the 1y x (ng — 1) characteristic matrix of L’

U =ik
From Lemma 5.5, there is a constant &’ > 0 such that
L'= (U +0(e*/")D. (5-11)

The Fan inequalities (see, for example, Theorem 1.6 of [Simon 1979]) therefore give

(L)) = (140" M)vi (D). (5-12)
To get the opposite estimate, we remark that U*U =1d,,—;. Then, (5-11) implies

D=(1+0*")YWu*L,

and, as before,

v (D) = (140 M)w(L). (5-13)
The lemma follows from vi 11 (L) = vg (L), (5-12), (5-13) and vg (D) = | L 41 k+1]- d

Now, Theorem 1.2 is a direct consequence of the explicit computations of Lemma 5.5 and of the
following equivalent formulation:

Lemma 5.7. The nonzero exponentially small eigenvalues of Py, are of the form
h(€3(h) + O(h))e Sk for 2 <k < ny.

Proof.  According to Lemma 5.1 and Lemma 5.2, the bases (e,(co))k and (ej(l)) j of E ©) and EM
respectively are orthonormal up to O(/) small errors. Let (él(co) )i and (éj(.l) )j be the corresponding
orthonormalizations (obtained by taking square roots of the Gramians), which differ from the original
bases by O(/) small recombinations. Then, with respect to the new bases, the matrix of L takes the
form L = (1 4+ 0(h))L(1 + O(h)). Using the Fan inequalities, we see that the conclusion of Lemma 5.6
is also valid for L (note that there is no need to have exponentially small errors here). Since the matrix of
the restriction of P© to E(® with respect to the basis (é,(co)) k 1s given by L*L, the lemma follows. O
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We end this section by showing that the main theorems stated in Section 1 imply the metastability of
the system.

Proof of Corollary 1.4. We first prove (1-5) and (1-7). If ¢ has a unique minimum, Theorem 1.1 gives
|3 (dvp) = dvicolls, < (1=8h)" [dvylla, = e "= HI vy s,
Using that n In(1 — /) ~ —8hn, this estimate yields
1T, (dvi) = dvp,eollse, < hlldvalis,
for n = [Inh|h~!. In the same way, if ¢ has several minima, Theorem 1.2 implies
1T (dva) = dvhollag, < G5 (M) dvpllse, = e "2 HI M R dvy g,
Using now that nIn(A3 (h)) ~n(A5(h) — 1) ~ —Cnhe=52/" for some C > 0, this estimate yields

1T, (dvg) = dvp,eollse, < hlldvalis,
for n > [Inh|h=1eS2/ k.
It remains to show (1-6). From Theorem 1.1, Theorem 1.2 and the proof of (1-5), we can write

no

(T (dvy) = Y (Ap ()" Tdvy, + O(h) | dvp 5,
k=1
for n > |Inh|h~'. Here, Il is the spectral projector of T  associated to the eigenvalue A; (/). If we
assume in addition that n < e2570/ " then (A (h)" =1+0(h) forany k =1,...,ng. Thus, the previous
equation becomes
(T;))" (dvp) = TOdvy, + O(h) [ dv e, (5-14)

since [T© =TT +---+ I1,,. Let
8 = G m |

From (A-1), we immediately get gz = ka’(O) + O(h). Moreover, as in (4-4), we have

14" = 1N =@ =D ROl = 0.
Combining with Lemma 5.1, we deduce
gr = e +0(h). (5-15)
Using Lemma 5.1 one more time, the bases (e,(co))k and (g )x of Im 1 and Im 11, respectively, are
almost orthogonal, in the sense that
(e, ey =8 +0(h) and (gg. gxr) = Sppr +O(h).

This then yields
=09 +0o), (5-16)
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and (1-6) follows from (5-14). O

Appendix: Quasimodes, truncation procedure and labeling

In this appendix, we gather from [Helffer et al. 2004; Hérau et al. 2011] the refined construction of
quasimodes on 0-forms for the Witten Laplacian, and the labeling procedure linking each minima with a
saddle point of index 1. We recall briefly the construction proposed in [Hérau et al. 2011] (which was in
the Fokker—Planck case there) but in a generic situation where all ¢ (s) — ¢ (m) are distinct for m in the
set of minima and s in the set of saddle points of ¢.

In the following, we will denote by £(0) = {x € R" : ¢(x) < ¢} the sublevel set associated to the
value o € R. Let s be a saddle point of ¢ and B(s,r) = {x € R"” : |[x —s| < r}. Then, for r > 0 small
enough, the set

B(s,r)NL(P(s)) ={x € B(s.r) : ¢(x) <p(s)}
has precisely 2 connected components, Cj (s, r) with j =1, 2.

Definition A.1. We say that s € R” is a separating saddle point (ssp) if it is either co or it is a usual
saddle point such that C; (s, r) and C, (s, r) are contained in different connected components of the set
{x eR": p(x) < @d(s)}. We denote by SSP the set of ssps.

We also introduce the set of separating saddle values (ssv), SSV = {¢(s) : s € SSP} with the convention
that ¢ (00) = +o00.

A connected component E of the sublevel set (o) will be called a critical component if either
JENSSP # @ or E =R".

Let us now explain the way we label the critical points. We first order the saddle points in the following
way. We recall from [Helffer et al. 2004] that {SSV = n¢ and then enumerate the ssvs in a decreasing
way: 00 = 01 > 0 > -+ > Op,. T0 each ssv 0; we can associate a unique ssp: we define s; = 0o and,
forany j =2,...,n¢, we let s; be the unique ssp such that ¢(s;) = o; (note that this s; is unique thanks
to Hypothesis 2).

Then we can proceed to the labeling of minima. We denote by m | the global minimum of ¢, E; = R4
and by S; = ¢(s1) — ¢ (m) = 400 the critical Arrhenius value.

Next we observe that the sublevel set £(07) = {x € R" : ¢(x) < 0g,} is the union of two critical
components, with one containing m ;. The remaining connected component of the sublevel set £(o>)
will be denoted by E, and its minimum by m,. To the pair (m,, s,) of critical points we associate the
Arrhenius value S = ¢(s2) — ¢ (m>).

Continuing the labeling procedure, we decompose the sublevel set £(o3) into its connected components
and perform the labeling as follows: we omit all those components that contain the already labeled minima
mj and m,. Some of these components may be noncritical. There is only one critical one remaining, and
we denote it by E3. We then let m3 be the point of global minimum of the restriction of ¢ to E3 and
S3 = ¢(s3) — p(m3).

We go on with this procedure, proceeding in the order dictated by the elements of the set SSV,
arranged in the decreasing order, until all ny local minima m have been enumerated. In this way we have
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associated each local minima to one ssp: to each local minimum my, there is one critical component Ej
containing my, and one ssp s;. We emphasize that in this procedure some of the saddle points (the
noncritical ones) may not have been enumerated. For convenience, we enumerate these remaining saddle
points from ny 4 1 to ny + 1. Note that, with this labeling, u® = {$2,...,84,+1}. We then have

minima = {my,...,my,}, SSP={s; =00,52,...,8n,}

We summarize the preceding discussion in the following proposition:
Proposition A.2. The families of minima W©® = {my 1k = 1,...,no}, separating saddle points {sy :
k=1,...,n9} and connected sets { Ej. : k = 1,...,nq} satisfy:

(1) s1 =00, E1 = R" and m is the global minimum of ¢.

(ii) For every k > 2, Ey, is compact, Ey, is the connected component containing my, in

{x eR":p(x) < P(sk)}
and ¢(my) = ming, ¢.
(iii) If sy € Ey for some k, k' € {1,...,ng}, thenk’ > k.

To ensure that the eigenvalues A} are decreasing, if necessary we relabel the pairs of minima and
critical saddle points so that the sequence Sy, is decreasing.

Using [Helffer et al. 2004; Hérau et al. 2011], we shall now introduce suitable refined quasimodes,
adapted to the local minima of ¢ and the simplified labeling, described in Proposition A.2. Let g9 > 0
be such that the distance between critical points is larger than 10gy and such that, for every critical
point w and k € {1, ...,no}, we have either u € E, or dist(u, Ej) > 10gq. Also let Cy > 1, to be defined
later, and note that £y may also be taken smaller later. For 0 < ¢ < g9 we build a family of functions
Xk.e» k €{1,...,n¢} as follows: for k = 1, we let 1, = 1 and, for k > 2, we consider the open set
Ey e = Ep\ B(sg, ), and let yy . be a C§°-cutoff function supported in Ey ; + B(0,&/Cp) and equal
to 1in Ey . + B(0,&/(2Cy)). Then, we define the quasimodes for 1 < k < ng by

SO = b o ()™ @0 mE, (A-D)

where by, is a normalization constant, given thanks to the stationary phase theorem by
by (h) = (wh)™4/* det(Hess ¢ (my))/* (bgo + hb i +-+-), bro=1.

Then, for gy small enough and Cy large enough, there exists C > 0 such that, for all 0 < ¢ < gy, we have
the following lemma:

Lemma A.3. The system ( ka’(O)) is free and there exists o > 0 uniform in & < g¢ such that
W, w, - W, —(Sk—
PO 1O =8k + 0 M), dpp fiO =0 SkmCA N,

and, in particular,
PW,(O)ka,(O) — @(e—a/h).

Proof. This is a direct consequence of the statement and proof of Proposition 5.3 in [Hérau et al. 2011]. O
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