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LOCALLY CONFORMALLY FLAT ANCIENT RICCI FLOWS

GIOVANNI CATINO, CARLO MANTEGAZZA AND LORENZO MAZZIERI

We show that any locally conformally flat ancient solution to the Ricci flow must be rotationally symmetric.
As a by-product, we prove that any locally conformally flat Ricci soliton is a gradient soliton in the
shrinking and steady cases as well as in the expanding case, provided the soliton has nonnegative curvature.

1. Introduction

In this paper, we study ancient solutions to the Ricci flow. We recall that a time-dependent metric g(t) on
a Riemannian manifold M is a solution to the Ricci flow if it evolves by the equation

∂

∂t
g(t)=−2 Ricg(t) .

A solution is called ancient if it is defined for every negative time. Ancient solutions typically arise
as the limit of a sequence of suitable blow-ups as the time approaches a singular time for the Ricci
flow. In dimension two there exists a compact, rotationally symmetric, ancient solution due to King
[1990], Rosenau [1995] and Fateev, Onofri and Zamolodchikov [Fateev et al. 1993]. In dimension three,
Perelman [2003] constructed a compact, rotationally symmetric, ancient solution on the three-sphere.
In the nonrotationally symmetric case, the first construction is due to Fateev [1996] in dimension three.
Motivated by this construction, Bakas, Kong and Ni [Bakas et al. 2012] produced high-dimensional,
compact, ancient solutions to the Ricci flow which are not rotationally symmetric.

In dimension two, Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2012] have obtained
a complete classification of all compact ancient solutions to the Ricci flow. Ni [2010] showed that
any compact ancient solution to the Ricci flow which is of type I is k-noncollapsed and has positive
curvature operator has constant sectional curvature. Brendle, Huisken and Sinestrari [Brendle et al. 2011]
proved that any compact ancient solution which satisfies a suitable pinching condition must have constant
sectional curvature.

In this article, we show that any complete ancient solution to the Ricci flow in dimension n ≥ 4 which
is locally conformally flat along the flow must be rotationally symmetric.

Theorem 1.1. Let (Mn, g(t)), n ≥ 4, be a complete ancient solution to the Ricci flow which is locally
conformally flat at every time. Then (Mn, g(t)) is rotationally symmetric.
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The nonrotationally symmetric examples of Bakas, Kong and Ni show that the locally conformally
flatness assumption cannot be removed. The proof of Theorem 1.1 relies on previous work of Catino
and Mantegazza [2011] about the behavior of the Weyl tensor under the Ricci flow, combined with a
more recent result [Catino et al. 2014] concerning the classification of Riemannian manifolds admitting a
Codazzi tensor with exactly two distinct eigenvalues.

As a consequence of Theorem 1.1, we classify locally conformally flat Ricci solitons. We recall that a
complete Riemannian manifold (Mn, g) is a Ricci soliton if there exists a vector field X on Mn such that

Ric+ 1
2 LX g = λg

for some constant λ. The Ricci soliton is called shrinking if λ > 0, steady if λ = 0, and expanding if
λ < 0. If X = ∇ f for some smooth function f , then the soliton is called a gradient Ricci soliton. It
follows from the work of Perelman [2002] (see [Eminenti et al. 2008], for instance, for a direct proof)
that any compact Ricci soliton is actually a gradient soliton. Moreover, Naber [2010] has shown that
any shrinking Ricci soliton with bounded curvature has a gradient soliton structure. On the other hand,
steady and expanding Ricci solitons which do not support a gradient structure were found by [Lauret
2001; Baird and Danielo 2007; Lott 2007; Baird 2009].

In this article we prove the following result:

Theorem 1.2. Let (Mn, g, X), n ≥ 4, be a complete, locally conformally flat, shrinking or steady Ricci
soliton. Then it is a gradient Ricci soliton. The conclusion still holds in the expanding case provided the
soliton has nonnegative curvature operator.

In particular, from the classification results of locally conformally flat gradient Ricci solitons in the
shrinking case [Cao et al. 2011; Eminenti et al. 2008; Ni and Wallach 2008; Petersen and Wylie 2010;
Zhang 2009a], in the steady case [Cao and Chen 2012; Catino and Mantegazza 2011], as well as in the
expanding case [Catino and Mantegazza 2011], we obtain the following corollaries:

Corollary 1.3. Let (Mn, g, X), n ≥ 4, be a complete, locally conformally flat, shrinking Ricci soliton.
Then it is isometric to a quotient of Sn , R×Sn−1 or Rn .

Corollary 1.4. Let (Mn, g, X), n ≥ 4, be a complete, locally conformally flat, steady Ricci soliton. Then
it is isometric to a quotient of Rn or the Bryant soliton.

Corollary 1.5. Let (Mn, g, X), n ≥ 4, be a complete, locally conformally flat, expanding Ricci soliton
with nonnegative curvature operator. Then it is a rotationally symmetric gradient expanding Ricci soliton.

We note that rotationally symmetric gradient expanding Ricci solitons were constructed in [Bryant
2005; Cao 1997; Feldman et al. 2003].

2. Notations and preliminaries

The Riemann curvature operator of a Riemannian manifold (Mn, g) is defined as in [Gallot et al. 1990]
by

Riem(X, Y )Z =∇Y∇X Z −∇X∇Y Z +∇[X,Y ]Z .
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In a local coordinate system the components of the (3, 1)-Riemann curvature tensor are given by
Rl

i jk∂/∂x l
= Riem(∂/∂x i , ∂/∂x j )∂/∂xk and we denote by Ri jkl = glmRm

i jk its (4, 0)-version. With
this choice, we have that the round sphere Sn has positive curvature, meaning that

Riem(v,w, v,w)= Ri jklv
iw jvkwl > 0

for every couple u and v of nonparallel vector fields. The Ricci tensor is obtained by the contraction
Rik = g jlRi jkl , and R = gikRik will denote the scalar curvature. The so-called Weyl tensor is then
defined by the following decomposition formula (see [Gallot et al. 1990, Chapter 3, Section K]) in
dimension n ≥ 3:

Wi jkl = Ri jkl +
R

(n−1)(n−2)
(gik g jl − gil g jk)−

1
n−2

(Rik g jl −Ril g jk +R jl gik −R jk gil). (2-1)

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as can be easily seen by the
formula above, all of its contractions with the metric are zero.

In dimension three, W is identically zero on every Riemannian manifold, whereas, when n ≥ 4, the
vanishing of the Weyl tensor is a relevant condition, since it is equivalent to the locally conformally
flatness of (Mn, g). We recall that this latter condition means that around every point p ∈ Mn there exists
a smooth function f defined in a open neighborhood Up of p such that the conformal deformation g̃ of
the original metric g defined by g̃i j = e f gi j is flat. In particular, the Riemann tensor associated to g̃ is
zero in Up.

We also recall that, in dimension n = 3, locally conformally flatness is equivalent to the vanishing of
the Cotton tensor

Ci jk =∇kRi j −∇ j Rik −
1

2(n−1)
(∇kRgi j −∇ j Rgik).

By direct computation, we can see that the tensor Ci jk satisfies the symmetries

Ci jk =−Cik j , Ci jk +C jki +Cki j = 0; (2-2)

moreover, it is trace-free in any two indices:

gi j Ci jk = gikCi jk = g jkCi jk = 0 (2-3)

by its skew-symmetry and the Schur lemma. We note that, for n ≥ 4,

∇
lWi jkl =−

n−3
n−2

Ci jk, (2-4)

and we refer the reader to [Besse 1988] for the detailed computation. It follows from this formula that,
in every dimension n ≥ 3, the vanishing of the Cotton tensor is a necessary condition for a Riemannian
manifold (Mn, g) to be locally conformally flat. We also note that the vanishing of the Cotton tensor can
be rephrased in terms of the so-called Schouten tensor

Si j = Ri j −
1

2(n−1)
Rgi j
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by saying that S must satisfy the Codazzi equation

(∇X S)Y = (∇Y S)X, X, Y ∈ TM.

Any symmetric two-tensor satisfying this condition is called a Codazzi tensor (see [Besse 1988, Chapter 16]
for a general overview on Codazzi tensors). Hence, if (Mn, g), n≥3, is a locally conformally flat manifold,
then the Schouten tensor is a Codazzi tensor.

3. Proof of Theorem 1.1

Let (Mn, g(t)), n ≥ 4, be a complete ancient solution to the Ricci flow. We assume that, along the
flow, the Weyl tensor remains identically zero. As was observed in [Catino and Mantegazza 2011], this
condition implies a strong rigidity on the eigenvalues of the Ricci tensor. More precisely, one has the
following result:

Lemma 3.1 [Catino and Mantegazza 2011, Corollary 1.2]. Let (Mn, g), n ≥ 4, be a solution to the Ricci
flow such that the Weyl tensor remains identically zero at every time. Then, at every point, either the
Ricci tensor is proportional to the metric or it has an eigenvalue of multiplicity n − 1 and another of
multiplicity 1.

By the results in [Chen 2009; Zhang 2009a], which generalize the well-known Hamilton–Ivey curvature
estimate, we know that every complete ancient solution g(t) to the Ricci flow whose Weyl tensor is
identically zero for all times is forced to have nonnegative curvature operator for every time t . Moreover,
by Hamilton’s strong maximum principle for systems in [Hamilton 1986], we have that either the metric
has strictly positive curvature operator or it splits a line. By Theorem 1.167 in [Besse 1988], a Riemannian
product (R× N n−1, ds× h) is locally conformally flat if and only if the manifold (N n−1, h) has constant
curvature; hence, one of the following possibilities holds: (Mn, g(t)) is flat, or it is a quotient of a
rescaling of R×Sn−1, or it has positive curvature operator. Since the first two cases satisfy the conclusion
of the theorem, from now on we assume that (Mn, g(t)) is a complete, locally conformally flat, ancient
solution to the Ricci flow with positive curvature operator.

As we have seen in the previous section, the relation (2-4) implies that the Cotton tensor is identically
zero, hence the Schouten tensor

Si j = Ri j −
1

2(n−1)
Rgi j

is a Codazzi tensor. Moreover, from Lemma 3.1, we know that, at every point, either the metric is Einstein
or the Ricci tensor (and so the Schouten tensor) has two distinct eigenvalues of multiplicity 1 and n− 1,
respectively. Now, it was proved by Bando [1987] that solutions to the Ricci flow are real analytic. To be
precise, Bando showed that any Ricci flow solutions is real analytic if Mn is compact or if it is complete
with uniformly bounded curvature. This result was recently improved by Kotschwar [2013], who showed a
local version of Bando’s result. It follows that, if the metric is Einstein in some open subset of Mn , then it
is Einstein everywhere and, by conformally flatness and positivity of the curvature, the manifold (Mn, g)
must be isometric to a quotient of Sn . Thus, either (Mn, g(t)) has constant positive sectional curvature
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or the Schouten tensor has an eigenvalue of multiplicity 1 and a different one of multiplicity n− 1 at
every point of some open dense subset U of Mn . In the latter case, we apply to such an open set U the
following classification result of Riemannian manifolds admitting a Codazzi tensor with two distinct
eigenvalues:

Lemma 3.2 [Catino et al. 2014, Theorem 2.1]. Let T be a Codazzi tensor on the Riemannian manifold
(U, g) with n ≥ 3. Suppose that, at every point of U , the tensor T has exactly two distinct eigenvalues ρ
and σ , of multiplicity 1 and n− 1, respectively. Finally, we let W = {p ∈U | dσ(p) 6= 0}. Then we have
that:

(1) The closed set W =W ∪ ∂W with the metric g|W is locally isometric to the warped product of some
(n−1)-dimensional Riemannian manifold on an interval of R and σ is constant along the “leaves”
of the warped product.

(2) The boundary of W , if present, is given by the disjoint union of connected, totally geodesic hypersur-
faces where σ is constant.

(3) Each connected component of the complement of W in U , if present, has σ constant and it is foliated
by totally geodesic hypersurfaces.

We are going to show that, under our assumptions, case (3) cannot occur and W = U . In fact, if a
connected component of the complement of W in U is present, the proof of this lemma (see also [Besse
1988, Proposition 16.11]) shows that the totally geodesic foliation of (U, g(t)) is integrable. Then, since
the manifold (U, g(t)) has nonnegative sectional curvature, it follows from [Abe 1973, Corollary 2]
that such a component must split a flat factor. This is clearly in contradiction with the positivity of the
curvature, hence it must be that U =W in this lemma and (U, g(t)) is locally a warped product of some
(n−1)-dimensional manifold on an interval of R. Since (U, g(t)) is locally conformally flat with positive
curvature operator, we have that the (n−1)-dimensional fibers of the warped product are isometric to Sn−1

and the metric is rotationally symmetric. By the density of U in Mn , this conclusion clearly holds for the
whole (Mn, g). This concludes the proof of Theorem 1.1.

Remark 3.3. We would like to note that the same argument shows that the conclusion of Theorem 1.1
still holds if one consider a Ricci flow solution (Mn, g(t)), n ≥ 4, defined on some time interval I ⊆ R,
which is locally conformally flat with nonnegative curvature operator for every t ∈ I .

4. Proof of Theorem 1.2

Now we turn our attention to the classification of locally conformally flat Ricci solitons. Let (Mn, g, X)
be a complete, locally conformally flat shrinking or steady Ricci soliton. In particular, it generates a
self-similar ancient solution g(t) to Ricci flow (see [Zhang 2009b]) which is locally conformally flat at
every time t . Hence, Theorem 1.1 implies that the manifold is rotationally symmetric with nonnegative
curvature operator. As we observed in Remark 3.3, the conclusion still holds if we consider an expanding
Ricci soliton with nonnegative curvature operator. To prove Theorem 1.2 we then apply the following
result:
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Lemma 4.1 [Catino and Mantegazza 2011, Proposition 2.6]. Let (Mn, g, X) be a complete, locally
warped, locally conformally flat Ricci soliton with nonnegative Ricci tensor; then it is a gradient Ricci
soliton with a potential function f : Mn

→ R (hence, X = ∇ f ) depending only on the r variable of the
warping interval.
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