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COUNTEREXAMPLES TO THE WELL POSEDNESS OF
THE CAUCHY PROBLEM FOR HYPERBOLIC SYSTEMS

FERRUCCIO COLOMBINI AND GUY MÉTIVIER

This paper is concerned with the well-posedness of the Cauchy problem for first order symmetric
hyperbolic systems in the sense of Friedrichs. The classical theory says that if the coefficients of the
system and if the coefficients of the symmetrizer are Lipschitz continuous, then the Cauchy problem
is well posed in L2. When the symmetrizer is log-Lipschitz or when the coefficients are analytic or
quasianalytic, the Cauchy problem is well posed in C∞. We give counterexamples which show that these
results are sharp. We discuss both the smoothness of the symmetrizer and of the coefficients.
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1. Introduction

We consider the well-posedness of the Cauchy problem for first order symmetric hyperbolic systems in
the sense of Friedrichs [1954], who proved that if the coefficients of the system and if the coefficients of
the symmetrizer are Lipschitz continuous, then the Cauchy problem is well posed in L2. This has been
extended to hyperbolic systems which admit Lipschitzian microlocal symmetrizers (see [Métivier 2014]).

The main objective of this paper is to discuss the necessity of these smoothness assumptions and to
provide new counterexamples to the well-posedness. In the spirit of [Colombini and Spagnolo 1989;
Colombini and Nishitani 1999], we make a detailed analysis of systems in space dimension one with
coefficients which depend only on time. Even more, we concentrate our analysis on the 2× 2 system

Lu := ∂t u+
(

a(t) b(t)
c(t) d(t)

)
∂x u = ∂t u+ A(t)u. (1-1)

The symbol is assumed to be strongly hyperbolic or uniformly diagonalizable, which means that there
is a bounded symmetrizer S(t), with S−1 bounded, which is positive definite and such that S(t)A(t) is
symmetric. This is equivalent to the condition that there is δ > 0 such that

δ((a− d)2+ b2
+ c2)≤ 1

4(a− d)2+ bc. (1-2)

Métivier thanks the Centro E. De Giorgi for their hospitality.
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If the symmetrizer S and the coefficients are Lipschitz continuous then the Cauchy problem is well posed
in L2. Indeed, in this case, solutions on [0, T ]×R of Lu = f satisfy

‖u(t)‖L2 ≤ C(‖u(0)‖L2 +‖Lu‖L2) with C = C0 exp
(∫ T

0
|∂t S(s)| ds

)
. (1-3)

Lipschitz smoothness of the symmetrizer is almost necessary for well-posedness in L2, even for very
smooth coefficients:

Theorem 1.1. For each modulus of continuity ω such that t−1ω(t)→+∞ as t→0, there is a system (1-1)
with coefficients in

⋂
s>1 Gs([0, T ]), with a symmetrizer satisfying

|S(t)− S(t ′)| ≤ Cω(|t − t ′|), (1-4)

such that the Cauchy problem is ill posed in L2 in the sense that there is no constant C such that the
estimate (1-3) is satisfied.

Here and below, we denote by Gs([0, T ]) the Gevrey class of functions of order s. They are C∞ func-
tions f such that, for some constant C which depends on f ,

‖∂
j

t f ‖L∞ ≤ C j+1( j !)s for all j ∈ N.

This theorem extends to systems a similar result obtained in [Cicognani and Colombini 2006] for the
strictly hyperbolic wave equation

∂2
t u− a(t)∂2

x u = f. (1-5)

Indeed, there is a close parallel between the energy |∂t u|2+a(t)|∂x u|2 for the wave equation and (S(t)u, u)
for the system, and, in this case, the smoothness of S(t) plays a role analogous to the smoothness of a.
For the wave equation, when a is log-Lipschitz, i.e., admits the modulus of continuity ω(t)= t |ln t |, the
Cauchy problem is well posed in C∞ with a loss of derivatives proportional to time [Colombini et al.
1979]. In intermediate cases between Lipschitz and log-Lipschitz, that is when (t |ln t |)−1ω(t)→ 0 and
t−1ω(t)→+∞, the loss of derivative is effective but is arbitrarily small on any interval [Cicognani and
Colombini 2006]. The proof of these results extends immediately to systems (1-1) where the smoothness
of the symmetrizer plays the role of the smoothness of the coefficient a.

The next result extends to systems the result in [Colombini et al. 1979; Colombini and Spagnolo 1989]
showing that the log-Lipschitz smoothness of the symmetrizer is a sharp condition for the well-posedness
in C∞, even for C∞ coefficients.

Theorem 1.2. For each modulus of continuity ω satisfying (t |ln t |)−1ω(t)→+∞ as t → 0, there are
systems (1-1) with C∞ coefficients, with symmetrizers which satisfy the estimate (1-4), such that the
Cauchy problem is ill posed in C∞, meaning that, for all n and all T > 0, there is no constant C such that
the estimate

‖u‖L2 ≤ C‖Lu‖Hn (1-6)

is satisfied for all u ∈ C∞0 ([0, T ]×R).
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In [Colombini and Nishitani 1999] the question of the well-posedness of the Cauchy problem is
considered under the angle of the smoothness of the coefficients alone. In this aspect, the analysis is
related to the analysis of the weakly hyperbolic wave equation (1-5) (see [Colombini et al. 1983]). If the
coefficients are C∞, the problem is well posed in all Gevrey classes Gs , but the well-posedness in C∞

is obtained only when the coefficients are analytic or belong to a quasianalytic class. Indeed, the next
theorem shows that this is sharp.

Theorem 1.3. There are example of systems (1-1) on [0, T ]×R with uniformly hyperbolic symbols and
coefficients in the intersection of the Gevrey classes

⋂
Gs for s > 1, admitting continuous symmetrizers,

such that the Cauchy problem is ill posed in C∞.

This theorem improves the similar result obtained in [Colombini and Nishitani 1999], where the
counterexample had coefficients in

⋂
Gs for s > 2. The same construction can be used to provide a

similar improvement to the known result in [Colombini and Spagnolo 1982] for the wave equation:

Theorem 1.4. There are nonnegative functions a ∈
⋂

s>1 Gs([0, T ]) such that the Cauchy problem for
the weakly hyperbolic wave equation (1-5) is ill posed in C∞.

The theorems above show that the smoothness of both the coefficients and the symmetrizer play a role
in the well-posedness in C∞. The next theorem is a kind of interpolation between the two extreme cases
of Theorem 1.2 and Theorem 1.3.

Theorem 1.5. For all s > 1 and µ < 1− 1/s, there are examples of systems (1-1) on [0, T ] ×R, with
uniformly hyperbolic symbols, coefficients in the Gevrey classes Gs and symmetrizers in the Hölder
space Cµ, such that the Cauchy problem is ill posed in C∞.

This leaves open the question of the well-posedness in C∞ when the coefficients belong to Gs and the
symmetrizer to Cµ with µ+ 1/s ≥ 1.

We end this introduction with several remarks about symmetrizers for the 2× 2 system (1-1). For
simplicity, we assume that the coefficients are real. Write

A(t)= 1
2 trA(t) Id+A1(t).

Then A2
1 = h Id with h = 1

4(a− d)2+ bc satisfying (1-2). In particular,

6(t)= A∗1(t)A1(t)+ h(t) Id

is a symmetrizer for A in the sense that 6 and 6A = 1
2(trA)6+ h A∗1+ h A1 are symmetric. In general,

6 is not a symmetrizer in the sense of Friedrichs, since it is not uniformly positive definite, unless h > 0,
which means that the system is strictly hyperbolic. More precisely, 6 ≈ h Id. But 6 has the same
smoothness as the coefficients of A.

On the other hand, since the system is uniformly diagonalizable, there are bounded symmetrizers 61(t)
which are uniformly positive definite. For instance, h−16 is a bounded symmetrizer. More generally,
writing

1
2(a− d)= h1/2a1, b = b1h1/2, c = c1h1/2, (1-7)
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one has a2
1 + b1c1 ≥ δ(a2

1 + b2
1+ c2

1)≥ δ > 0 and the symmetrizer is of the form

61 =

(
α β

β γ

)
with 2a1β = b1α− c1γ. (1-8)

Therefore, there is a cone of positive symmetrizers of dimension 2. Their smoothness depends on the
smoothness of a1, b1, c1, that is, of h−1/2 A1. There might be better choices than others. For instance,
if the system is symmetric, 61 = Id is a very smooth symmetrizer. Our discussion below concerns the
smoothness of both 6 and 61 and their possible interplay.

2. The counterexamples

We consider systems of the form

LU := ∂tU +
(

0 a(t)
b(t) 0

)
∂xU (2-1)

with a and b real. We always assume that it is uniformly strongly hyperbolic, that is, that σ = a/b > 0
and 1/σ are bounded. Our goal is to contradict the estimates (1-3) and (1-6). We contradict the analogous
estimates which are obtained by Fourier transform in x , and, more precisely, we construct sequences of
functions uk , vk and fk in C∞([0, T ]), vanishing near t = 0, satisfying

∂t uk + ihka(t)vk = fk, ∂tvk + ihkb(t)uk = 0 (2-2)

with hk→+∞ and such that
‖ fk‖L2

‖(uk, vk)‖L2
→ 0 as k→∞ (2-3)

in the first case, or, for all j and l,

‖h j
k∂

l
t fk‖L2

‖(uk, vk)‖L2
→ 0 as k→∞ (2-4)

in the second case. Moreover, the support of these function is contained in an interval Ik = [tk, t ′k] with
0< tk < t ′k and t ′k→ 0, showing that the problem is ill posed on any interval [0, T ] with T > 0.

Exponentially amplified solutions of the wave equation. In this section we review and adapt the con-
struction of [Colombini and Spagnolo 1989]. The key remark is that the function wε(t)= e−εφ(t) cos t
satisfies

∂2
t wε +αεwε = 0 (2-5)

if

φ(t)=
∫ t

0
(cos s)2 ds, αε(t)= 1+ 2ε sin 2t − ε2(cos t)4. (2-6)

The important property of the wε is their exponential decay at +∞. More precisely,

eεt/2wε(t)= eε sin(2t)/4 cos t is 2π -periodic
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and
wε(t + 2π)= e−επwε(t). (2-7)

Next, one symmetrizes and localizes this solution. More precisely, consider χ ∈ C∞(R), supported in
]−7π, 7π [, odd, equal to 1 on [−6π,−2π ] and thus equal to −1 on [2π, 6π ], and such that, for all t ,
0≤ χ(t)≤ 1 and |∂tχ(t)| ≤ 1. For ν ∈ N, let

8ν(t)=
∫ t

0
χν(s)(cos s)2 ds, χν(t)= χ

( t
ν

)
. (2-8)

For ε > 0, wε,ν(t)= eε8ν(t) cos t satisfies

∂2
t wε,ν +αε,νwε,ν = 0, (2-9)

where
αε,ν(t)= 1+ εχν sin 2t − ε8′′ν − (ε8

′

ν)
2

= 1+ 2εχν sin 2t − εχ ′ν(cos t)2− ε2χ2
ν (cos t)4. (2-10)

For ε ≤ ε0 =
1
10 and for all ν,

|αε,ν − 1| ≤ 1
2 , (2-11)

and we always assume below that the condition ε≤ ε0 is satisfied. We note also that αε,ν = 1 for |t | ≥ 7νπ ,
since χν vanishes there.

The final step is to localize the solution in [−6νπ, 6νπ ]. Introduce an odd cut-off function ζ(t)
supported in ]−6π, 6π [ and equal to 1 for |t | ≤ 4π , and let

w̃ε,ν(t)= ζ
( t
ν

)
wε,ν(t). (2-12)

This function is supported in [−6νπ, 6νπ ] and equal to wε,ν on [−4νπ, 4νπ ]. Then

fε,ν = ∂2
t w̃ε,ν +αε,νw̃ε,ν = 2ν−1ζ ′

( t
ν

)
∂twε,ν + ν

−2ζ ′′
( t
ν

)
wε,ν (2-13)

is supported in [−6νπ,−4νπ ] ∪ [4νπ, 6νπ ].

Lemma 2.1. For all j , there is a constant C j such that, for all ε ≤ ε0 and all ν ≥ 1,

‖∂
j

t fε,ν‖L2 ≤ C jν
−1e−ενπ‖w̃ε,ν‖L2 . (2-14)

Proof. By symmetry, it is sufficient to estimate fε,ν for t ≥ 0, that is, on [4νπ, 6νπ ]. On [2νπ, 6νπ ],
χν =−1, hence 8ν −φ is constant and

wε,ν(t)= cν,εwε(t), cν,ε = eε8ν(2νπ).

Moreover, on this interval αε,ν = αε is bounded with derivatives bounded independently of ε, and hence

‖∂
j

t fε,ν‖L2 ≤ C jν
−1cν,ε‖(wε, ∂twε)‖L2([4νπ,6νπ ]).

By (2-7), this implies

‖∂
j

t fε,ν‖L2 ≤ C jν
−1cν,εe−ενπ‖(wε, ∂twε)‖L2([2νπ,4νπ ]).
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On the other hand,
‖wε,ν‖L2 ≥ cν,ε‖wε‖L2([2νπ,4νπ ]).

Therefore, it is sufficient to prove that there is a constant C such that, for all ν and ε,

‖(wε, ∂twε)‖L2([2νπ,4νπ ]) ≤ C‖wε‖L2([2νπ,4νπ ]).

Using (2-7) again, one has

‖(wε, ∂twε)‖
2
L2([2νπ,4νπ ]) =

ν−1∑
k=0

e−2(εk+ν)π
‖(wε, ∂twε)‖

2
L2([0,2π ])

and

‖wε‖
2
L2([2νπ,4νπ ]) =

ν−1∑
k=0

e−2(εk+ν)π
‖wε‖

2
L2([0,2π ]).

On [0, 2π ], the H 1 norms of the wε are uniformly bounded, while their L2 norms remain larger than a
positive constant. �

Construction of the coefficients and of the solutions. For k ≥ 1, let ρk = k−2. We consider intervals
Ik = [tk, t ′k] and Jk = [t ′k, tk−1] of the same length ρk = t ′k− tt = tk−1− t ′k , starting at t0 = 2

∑
∞

k=1 ρk , and
thus such that tk→ 0.

The functions a and b are defined on ]0, t0] as follows: we fix a function β ∈ C∞(R) supported in
]0, 1[ and with sequences εk , νk and δk to be chosen later on;

on Ik,
{a(t)= δkαεk ,νk (−8πνk + 16π(t − tk)νk/ρk),

b(t)= δk,

on Jk, a(t)= b(t)= δk + (δk−1− δk)β((t − t ′k)/ρk).

(2-15)

Because αε,ν = 1 for |t | ≥ 7νπ , the coefficient a equals δk near the endpoints of Ik . The use of the
function β on Jk makes a smooth transition between δk and δk−1. Therefore, a and b are C∞ on ]0, t0].
The coefficients will be chosen so that they extend smoothly up to t = 0.

This is quite similar to the choice in [Colombini and Nishitani 1999], except that we introduce a new
sequence εk , which is crucial to control the Hölder continuity of σ = a/b.

We use the family (2-12) to construct solutions of the system supported in Ik for k large. On Ik , b is
constant and (2-2) reads

∂t uk + ihkδkαkvk = fk, ∂tvk + ihkδkuk = 0 (2-16)

with

αk(t)= αεk ,νk

(
−8πνk +

16π(t − tk)νk

ρk

)
.

Therefore, a C∞ solution of (2-2) supported in Ik is

uk(t)= i∂t w̃εk ,νk

(
−8πνk +

16π(t − tk)νk

ρk

)
, vk(t)= w̃εk ,νk

(
−8πνk +

16π(t − tk)νk

ρk

)
(2-17)
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with

fk(t)= 16iπ
(
νk

ρk

)
fεk ,νk

(
−8πνk +

16π(t − tk)νk

ρk

)
(2-18)

provided that

hk =
16πνk

ρkδk
. (2-19)

3. Properties of the coefficients

We always assume that

εk ≤ ε0, εkνk→+∞, δk→ 0. (3-1)

Conditions for blow-up.

Lemma 3.1. If

(ρk)
−1e−εkνkπ → 0, (3-2)

then the blow-up property in L2, (2-3), is satisfied.

Proof. By Lemma 2.1,

‖ fk‖L2 ≤ Cρ−1
k e−εkνkπ‖vk‖L2 . �

Lemma 3.2. If
1
εkνk

ln
(

hkνk

ρk

)
→ 0, (3-3)

then the blow-up property in C∞, (2-4), is satisfied.

Proof. By Lemma 2.1, one has

‖∂ l
t h j

k fk‖L2

‖(uk, vk)‖L2
≤ Clν

−1
k h j

k

(
16πνk

ρk

)l+1

e−εkνkπ .

This tends to 0 if

εkνkπ − j ln hk − (l + 1) ln
(
νk

ρk

)
→+∞.

If (3-3) is satisfied, this is true for all j and l. �

Smoothness of the coefficients.

Lemma 3.3. If
ln(νk/ρk)

|ln(δkεk)|
→ 0, (3-4)

then the functions a and b are C∞ up to t = 0.
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Proof. Both a and b are O(δk) and thus converge to 0 when t→ 0. Moreover, for j ≥ 1,

|∂
j

t a| ≤ C j

{
δkεk(νk/ρk)

j on Ik,

δkρ
− j
k on Jk .

The worst situation occurs on Ik and the right-hand side is bounded if

j ln
(
νk

ρk

)
− |ln(δkεk)|

is bounded from above. This is true for all j under the assumption (3-4), implying that a is C∞ on [0, t0].
The proof for b is similar and easier. �

Next, we investigate the possible Gevrey regularity of the coefficients. For that we need to make a
special choice of the cut-off functions χ and β which occur in the construction of a and b. We can
choose them in a class contained in

⋂
s>1 Gs and containing compactly supported functions (see, e.g.,

[Mandelbrojt 1952]). We choose them so that there is a constant C such that, for all j ,

sup
t
(|∂

j
t χ(t)| + |∂

j
t β(t)|)≤ C j+1 j !(ln j)2 j . (3-5)

Lemma 3.4. If (3-5) is satisfied then, for j ≥ 1,

sup
t∈Ik∪Jk

(
|∂

j
t a(t)| + |∂ j

t b(t)|
)
≤ K j+1δkεk

((
νk

ρk

)j

+

(
1
ρk

)j

j !(ln j)2 j
)
. (3-6)

Proof. On Ik we take advantage of the explicit form (2-10) of αε,ν : it is a finite sum of sine and cosines
with coefficients of the form χ(t/ν). Scaled on Ik , each derivative of the trigonometric functions yields
a factor νk/ρk , while the derivatives of χνk have only a factor 1/ρk . Since χ ′ and χ2 satisfy estimates
similar to (3-5), we conclude that a satisfies

|∂
j

t a(t)| ≤ εkδk K j
∑
l≤ j

(
νk

ρk

)j−l

C l+1l!(ln l)2l,

implying the estimate (3-6) on Ik . On Ik , b is constant. On Jk things are clear by scaling, since the
coefficients are functions of β((t − t ′k)/ρk). �

To estimate quantities such as δk(νk/ρk)
j , we use the following inequalities for a > 0 and x ≥ 1:

e−x xa
≤ aa (3-7)

and

e−ex
xa
≤

{
|ln a|a when a ≥ e,
1 when a ≤ e.

(3-8)

Corollary 3.5. Suppose that δk = e−ηk and that, for s > s ′ > 1,(
νk

ρk

)
≤ Cηs

k and
(

1
ρk

)j

≤ Cηs′−1
k . (3-9)

Then the coefficients belong to the Gevrey class Gs .
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If , for some p > 0 and q > 0,

ηk ≥ ekq
and

(
νk

ρk

)
≤ Ck pηk, (3-10)

then the coefficients belong to
⋂

s>1 Gs .

Proof. We neglect εk and only use the bound εk ≤ ε0. In the first case, we obtain from (3-7) that

δk

(
νk

ρk

)j

≤ e−ηk (Cηk)
s j
≤ (C ′ j) js, δk

(
1
ρk

)j

≤ (C ′′ j) j (s′−1),

implying that

|∂
j

t (a, b)| ≤ K j+1 j s j .

In the second case, combining (3-7) and (3-8)

e−ηk

(
νk

ρk

)j

≤ C ′ j j j k pj e−ηk/2 ≤ C ′′ j j j (1+ ln j)pj/q .

Using (3-8) again for the second term, we obtain that

|∂
j

t (a, b)| ≤ K j+1 j j (ln j)r j

with r =max{p, 4}/q. In particular, the right-hand side is estimated by K k+1
s j js for all s > 1, proving

that the functions a and b belong to
⋂

s>1 Gs . �

Smoothness of the symmetrizer.

Lemma 3.6. Suppose that ω is a continuous and increasing function on [0, 1] such that t−1ω(t) is
decreasing. If

εk ≤ ω

(
ρk

νk

)
(3-11)

then σ = a/b satisfies

|σ(t)− σ(t ′)| ≤ Cω(|t − t ′|). (3-12)

In particular, if µ≤ 1 and

lim sup
k

εk

(
νk

ρk

)µ
<+∞, (3-13)

then σ is Hölder continuous of exponent µ. If

εk

(
νk

ρk

)
≤ C ln

(
νk

ρk

)θ
, (3-14)

then ω(t)= t |ln t |θ is a modulus of continuity for σ .
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Proof. On Jk , σ̃ = σ − 1 vanishes and, on Ik ,

σ̃ = εkαεk ,νk

(
−8πνk +

16π(t − tk)νk

ρk

)
,

and thus

|σ̃ | ≤ Cεk, |∂t σ̃ | ≤
Cεkνk

ρk
. (3-15)

Hence, for t and t ′ in Ik ,

|σ̃ (t)− σ̃ (t ′)| ≤ Cεk min
{

1,
|t − t ′|νk

ρk

}
.

If ρk/νk ≤ |t − t ′|, we use the first estimate and

|σ̃ (t)− σ̃ (t ′)| ≤ Cεk ≤ Cω
(
ρk

νk

)
≤ Cω(|t − t ′|).

If |t − t ′| ≤ ρk/νk , we use the second estimate and the monotonicity of t−1ω(t):

|σ̃ (t)− σ̃ (t ′)| ≤ Cεk

(
νk

ρk

)
|t − t ′| ≤ C

(
νk

ρk

)
ω

(
ρk

νk

)
|t − t ′| ≤ Cω(|t − t ′|).

This shows that (3-12) is satisfied when t and t ′ belong to the same interval Ik .
If t belongs to Ik and t ′ ∈ Jk , then σ̃ (t ′)= σ̃ (t ′k)= 0 and

|σ̃ (t)− σ̃ (t ′)| ≤ Cω(|t − t ′k |)≤ Cω(|t − t ′|).

Similarly, if t < t ′ and t and t ′ do not belong to the same Ik ∪ Jk , there are endpoints t j and tl such that
t j ≤ t ≤ t j−1 ≤ tl ≤ t ′ ≤ tl−1. Since σ̃ vanishes at the endpoints of Ik and on Jk ,

|σ̃ (t)− σ̃ (t ′)| ≤ C |σ̃ (t)− σ̃ (t j )| + |σ̃ (t)− σ̃ (t j )|

≤ Cω(|t − t j−1)+Cω(|tl − t ′|)≤ Cω(|t − t ′|),

and the lemma is proved. �

4. Proof of the theorems

We now adapt the choice of the parameters εk , νk and δk so that the coefficients and the symmetrizer
satisfy the properties stated in the different theorems. We will choose two increasing functions, f and g,
on {x ≥ 1} and define εk and δk in terms of νk through the relations

εkνk

ρk
= f

(
νk

ρk

)
, δk = e−ηk , ηk = g

(
νk

ρk

)
. (4-1)

Recall that ρk=k−2. The sequence of integers νk will be chosen to converge to+∞, and thus νk/ρk→+∞.
The conditions (3-1) are satisfied if, at +∞,

f (x)� x, g(x)→+∞. (4-2)
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Here φ(x)�ψ(x) means that ψ(x)/φ(x)→∞. In particular, the first condition implies that εk→ 0, so
that the condition ε ≤ ε0 is certainly satisfied if k is large enough.

One has

|ln(δkεk)| = ηk + ln
(
νk

ρk

)
+ ln f

(
νk

ρk

)
.

Hence, by Lemma 3.3, the coefficients a and b are C∞ when

ln x � g(x)� x, (4-3)

since with (4-2) this implies that |ln(δkεk)| ∼ ηk � ln(νk/ρk).

Proof of Theorem 1.1. Given the modulus of continuity ω, we choose f (x)= xω(x−1). The assumption
on ω is that f is increasing and f (x)→+∞ at infinity. The essence of the theorem is that f can grow
to infinity as slowly as one wants. Lemma 3.6 implies that ω is a modulus of continuity for σ = a/b. By
Lemma 3.1, the blow-up property (2-3) occurs when

k2e−k−2 f (k2νk)π → 0.

This condition is satisfied if νk satisfies

f (k2νk)≥ k3. (4-4)

Let f1(x)=min{ f (x), ln x}. We choose g(x)= x/ f1(x) and νk such that

2k3
≤ f1(k2νk)≤ 4k3.

Note that this implies (4-4). We show that the conditions (3-10) are satisfied with p = q = 3 and C = 4
and a suitable choice of νk , so that, by Corollary 3.5, the coefficients belong to

⋂
s>1 Gs and the theorem

is proved.
Indeed, since f1(k2νk)≤ 4k3, the condition νk/ρk ≤ 4k3ηk is satisfied. Moreover, since ln(k2νk)≥ 2k3,

νk ≥ k−2e2k3
≥ ek3

for k large. �

Proof of Theorem 1.2. The proof is similar. Given the modulus of continuityω, we choose f (x)= xω(x−1).
The assumption on ω is now that

ln x � f (x). (4-5)

The essence of the theorem is now that f (x)/ ln x can grow to infinity as slowly as one wants. By
Lemma 3.6, ω is a modulus of continuity for σ = a/b.

By Lemma 3.2, the blow-up property (2-4) is satisfied if

ln hk = ηk + ln
(
νk

ρk

)
+ ln(16π)� εkνk;

that is, if

ρk f
(
νk

ρk

)
� g

(
νk

ρk

)
+ ln

(
νk

ρk

)
. (4-6)
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Let ψ(x)= f (x)/ ln x and g(x)=
√
ψ(x) ln x . Then

ψ(x)� 1, ln x � g(x)� f (x).

Therefore, the condition (4-6) is satisfied when ρk
√
ψ(νk/ρk)→ +∞, and for that it is sufficient to

choose νk such that

ψ(k2νk)≥ k5. (4-7)

The condition g(x)� ln x implies that the coefficients are C∞, and the theorem is proved. �

Proof of Theorem 1.5. With s > 1 and 0< µ< 1− 1/s, we choose

g(x)= x1/s
� f (x)= x1−µ. (4-8)

The choice of f implies that σ = a/b ∈ Cµ. The choice of g implies that

νk

ρk
≤

(
g
(
νk

ρk

))s

= ηs
k .

With s ′ ∈ ]1, s[, the condition

ρ−1
k ≤ η

s′−1
k

is satisfied when k2
≤ (k2νk)

(s′−1)/s , that is, when

νk ≥ k2p, where p =
1+ s− s ′

s ′− 1
. (4-9)

In this case, Corollary 3.5 implies that the coefficients a and b belong to the Gevrey class Gs .
The blow-up property (2-4) is satisfied when (4-6) holds, that is, when

k−2(k2νk)
1−µ
� (k2νk)

1/s,

which is true if

νk ≥ k2q , where q =
µ+ 1/s

1−µ− 1/s
.

Therefore, if νk ≥ k2 max{p,q}, the system satisfies the conclusions of Theorem 1.5. �

Proof of Theorem 1.3. The analysis above shows that if one looks for coefficients in
⋂

s>1 Gs , one must
choose g, and thus f , close to x . We choose here

g(x)=
x

(ln x)2
� f (x)=

x
ln x
� x

Since f (x)/x→ 0 at infinity, the symmetrizer is continuous up to t = 0, but not in Cµ for any µ > 0.
The ill-posedness in C∞ is again guaranteed by the condition (4-6), that is, ln(k2νk)� k2. In particular,

it is satisfied when

νk ≥ ek3
. (4-10)
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By Corollary 3.5, to finish the proof of Theorem 1.3 it is sufficient to show that one can choose νk

satisfying (4-10) such that νk/ρk ≤ 4k6ηk . This condition reads ln(k2νk)≤ 2k3, or

νk ≤ k−2e2k3

which is compatible with (4-10) if k is large enough. �

Proof of Theorem 1.4. Let a ∈
⋂

s>1 Gs denote the coefficient constructed for the proof of Theorem 1.3.
The definition (2-15) shows that a ≥ 0, and indeed a > 0, for t > 0. The functions vk defined at (2-17) are
supported in Ik and are solutions of the wave equation (1-5) with source term fk , and we have shown that

‖h j
k∂

l
t fk‖L2

‖vk‖L2
→ 0 as k→∞. �
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