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dx.doi.org/10.2140/apde.2015.8.513 msp

INVERSE SCATTERING WITH PARTIAL DATA
ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

We prove a local support theorem for the radiation fields on asymptotically hyperbolic manifolds and
use it to show that the scattering operator restricted to an open subset of the boundary of the manifold
determines the manifold and the metric modulo isometries that are equal to the identity on the open subset
where the scattering operator is known.

1. Introduction

We recall that the ball model of the hyperbolic space Hn+1 is given by

Bn+1
= {z ∈ Rn+1

: |z|< 1} equipped with the metric g =
4 dz2

(1− |z|2)2
.

It is well known that (Bn+1, g) is a complete manifold with constant curvature −1. On the other hand,
(Bn+1, (1− |z|2)2g) is the interior of a compact Riemannian manifold with boundary. This structure can
be generalized by replacing Bn+1 with the interior of a C∞ compact manifold X , with boundary ∂X , of
dimension n+ 1 and replacing 1− |z|2 with a function ρ ∈ C∞(X) which defines ∂X ; that is, ρ > 0 in
the interior of X , {ρ = 0} = ∂X , and dρ 6= 0 at ∂X . Such a function ρ will be called a boundary-defining
function. We will denote the interior of X by X̊ . If g is a Riemannian metric on X̊ such that

ρ2g = H (1-1)

is C∞ and nondegenerate up to ∂X then, according to [Mazzeo and Melrose 1987], g is complete and its
sectional curvatures approach −|dρ|2H as ρ ↓ 0. In particular, when

|dρ|H2 = 1 at ∂X, (1-2)

the sectional curvatures converge to −1 at the boundary. A Riemannian manifold (X̊ , g), where X is a
compact C∞ manifold with boundary and where (1-1) and (1-2) hold, is said to be an asymptotically
hyperbolic manifold (AHM). Any compact C∞ Riemannian manifold with boundary X can be equipped
with such a metric.

We will study certain properties of the asymptotic behavior of solutions to the Cauchy problem for the
wave equation on (X̊ , g). In particular, we will study the Friedlander radiation fields on AHM, and show
that the support of the radiation fields restricted to an open subset of ∂X controls the support of the initial

MSC2010: 35P25, 58J50.
Keywords: inverse scattering, asymptotically hyperbolic manifolds.
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514 RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

data of the Cauchy problem for the wave equation. Such theorems are usually called support theorems;
see, for example, [Helgason 1999]. When X̊ =Hn+1, the radiation fields are given by the Lax–Phillips
transform which involves the horocyclic Radon transform, and our support theorem generalizes the results
of [Lax and Phillips 1982] to this setting.

We will use this result and adapt the boundary control theory of [Belishev 1987; Belishev and Kurylev
1992; Tataru 1995; 1999], and a refinement of the results of [Belishev and Kurylev 1992] due to Kurylev
and Lassas [2002] and Katchalov, Kurylev and Lassas [Katchalov et al. 2001], to prove that the scattering
operator restricted to a nonempty open set 0 ⊂ ∂X determines (X, g) modulo isometries that are equal to
the identity on 0. There is a very large body of work on scattering and inverse scattering for Schrödinger
operators, obstacle problems, etc., however much less is known about inverse scattering on manifolds. It
was proved in [Sá Barreto 2005] that the scattering operator on the entire boundary of an AHM (X, g)
determines the manifold and the metric modulo isometries that are the identity at ∂X . Guillarmou and Sá
Barreto [2008] extended the result of [Sá Barreto 2005] to asymptotically complex hyperbolic manifolds.
Isozaki, Kurylev and Lassas [Isozaki et al. 2010; 2013] studied the case of manifolds of cylindrical ends
and asymptotically hyperbolic orbifolds; see also their survey paper [Isozaki et al. 2014]. One should
also mention the book by Isozaki and Kurylev [2014], where they discuss spectral theory and inverse
problems on AHM. If an AHM manifold is also Einstein, Guillarmou and Sá Barreto [2009] showed that
the scattering matrix at one energy determines the manifold.

2. Preliminaries and statements of the results

We begin by recalling the definition of the radiation fields and the scattering operator. Let u(t, z) satisfy
the wave equation (

D2
t −1g −

1
4 n2)u = 0 on R±× X̊ ,

u(0, z)= f1, Dt u(0, z)= f2, f1, f2 ∈ C∞0 (X̊).
(2-1)

The spectrum of the Laplacian 1g, denoted by σ(1g), was studied by [Mazzeo 1988; 1991; Mazzeo
and Melrose 1987] and more recently by Bouclet [2013]. They showed that σ(1g)= σpp(1g)∪σac(1g),
where σpp(1g) is the finite point spectrum, σac(1g) is the absolutely continuous spectrum and

σac(1g)=
[ 1

4 n2,∞
)
, σpp(1g)⊂

(
0, 1

4 n2). (2-2)

The role of the factor n2/4 in (2-1) is to shift the continuous spectrum of 1g to [0,∞).
Equation (2-1) has a conserved energy given by

E(u, ∂t u)(t)=
∫

X

(
|du(t)|2− 1

4 n2
|u(t)|2+ |∂t u(t)|2

)
d volg,

E(u, ∂t u)(0)= E( f1, f2)=

∫
X

(
|d f1|

2
−

1
4 n2
[t]| f1|

2
+ | f2|

2) d volg .

(2-3)

However, E( f1, f2) is a nonnegative quadratic form only when projected onto L2
ac(X). As in [Sá Barreto

2005], we define the energy space

HE(X)= {( f1, f2) : f1, f2 ∈ L2(X), d f1 ∈ L2(X) and E( f1, f2) <∞}
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and, if {φ j : 1≤ j ≤ N } are the eigenfunctions of 1g, we define the projector

Pac : L2(X)→ L2
ac(X), f 7→ f −

N∑
j=1

〈 f, φ j 〉φ j ,

and the space Eac(X)= Pac(HE(X)).
The wave group induces a strongly continuous group of unitary operators,

U (t) : Eac(X)→ Eac(X), ( f1, f2) 7→ (u(t), ∂t u(t)).

Next we recall the definition of the forward and backward radiation fields from [Sá Barreto 2005]. We
will work with a specific boundary defining function and, since our definition will depend on this choice,
we will recall the construction from [Graham 2000]. Since any two defining functions of ∂X , ρ and ρ̃,
satisfy ρ = eωρ̃ with ω ∈ C∞(X), if H = ρ2g and H̃ = ρ̃2g then H |∂X = e2ω(0,y) H̃ |∂X . Hence, ρ2g|∂X

determines a conformal class of metrics on ∂X . We have H = ρ2g = e2ωρ̃2g, and so H = e2ω H̃ . Since
dρ = eω(ρ̃dω+ dρ̃), we have

|dρ|2H = |dρ̃+ ρ̃dω|2
H̃
= |dρ̃|2

H̃
+ ρ̃2
|dω|2

H̃
+ 2ρ̃(∇H̃ ρ̃)ω.

Hence,

|dx |H = 1 if and only if 2(∇H̃ ρ̃)ω+ ρ̃|dω|
2
H̃
=

1
ρ̃
(1− |dρ̃|2

H̃
), ω|∂X = 0.

Since, by assumption, |dρ̃|H̃ = 1 at ∂X , this is a noncharacteristic ODE, and hence it has a solution in a
neighborhood of ∂X . Notice that the function ρ is in principle defined only on a collar neighborhood of
∂X , but it can be extended to the whole manifold as a boundary-defining function.

The boundary-defining function ρ gives an identification between [0, ε)×∂X and a collar neighborhood
U of ∂X ,

9 : [0, ε)× ∂X→U ⊂ X, (x, y) 7→ exp(x∇Hρ)(y),

where exp(x∇Hρ)(y) just means that one follows the integral curve of ∇Hρ starting at y for x units of
time. In this case,

9∗g =
dx2

x2 +
h(x)
x2 on (0, ε)× ∂X, h(0)= H |∂X ,

9 = Id on ∂X,
(2-4)

where h(x) is a C∞ family of metrics ∂X for x ∈ [0, ε). From now on we will use this identification
U ∼ [0, ε)x × ∂X .

In the coordinates (2-4), for fixed y ∈ ∂X the curve γ (s)= (s, y) is a geodesic for the metric g, the
distance between (x, y) and (x ′, y), x < x ′, is log(x ′/x), and if time t is the arc-length parameter then
t = log x ′− log x . So, to analyze global properties of u(t, z) in space and time, it is convenient to work
with an exponential compactification of R 3 t , and we choose a function T such that {T = 0} = {t = 0},
T = 1− e−t if t > 1, and T =−1+ et if t <−1. Let Y = [−1, 1] × X be the compactified space; see
Figure 1. The light cones will converge to the corners of the manifold Y and to separate them one blows
up the intersection of ∂X with {T =−1} and {T = 1}. This gives a manifold with corners Ỹ , pictured in
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light cones

{T = 1} = {t =∞}

{T = 0} = {t = 0}

{T =−1} = {t =−∞}

ϒ+

ϒ−

F+

F−

Supp u

Supp u

f1 = f2 = 0

u
=

0 Supp{ f1, f2}

Figure 1. The manifold Y = [−1, 1]× X , and Ỹ , its blow-up along ∂X×{T =±1}. All
the light cones intersect at {x = 0, T =±1} in Y , but in Ỹ they are separated at the faces
F+ and F−.

Figure 1. In local coordinates, the blow-up is the equivalent of introducing polar coordinates x = r cos θ ,
T ± 1= r sin θ .

It was proved in [Sá Barreto 2005] that, if ( f1, f2) ∈ C∞0 (X), the solution u to the wave equation
(2-1) is in C∞(Ỹ \ (ϒ+ ∪ϒ−)) (see Figure 1 for the definition of ϒ±). The analysis of the behavior of
u(t, z) on the faces ϒ± give, among other things, information about the local energy decay, and will
not be studied here. A similar discussion about the asymptotic solutions of the wave equation on de
Sitter–Schwarzschild space, including the pictures, can be found in [Melrose et al. 2014a; 2014b]; see
also [Vasy 2013].

Following Friedlander [1980; 2001], one defines the forward and backward radiation fields of u as

R+( f1, f2)= x−n/2∂t u|F+\ϒ+,

R−( f1, f2)= x−n/2∂t u|F−\ϒ− .

If we use projective coordinates x and τ+ = x/(1−T ), valid near F+ \ϒ+, and τ− = x/(1+T ), valid
near F− \ϒ−, and set s+ = log τ+ and s− =− log τ−, then, for ( f1, f2) ∈C∞0 (X̊)×C∞0 (X̊), the solution
u(t, z) to (2-1), with z = (x, y), satisfies

V+(x, s+, y)= x−n/2u(s+− log x, x, y) ∈ C∞([0, ε)x ×Rs+ × ∂X)

V−(x, s, y)= x−n/2u(s−+ log x, x, y) ∈ C∞([0, ε)x ×Rs− × ∂X).
(2-5)

In these coordinates, the forward and backward radiation fields can be expressed as

R+ : C∞0 (X̊)×C∞0 (X̊)→ C∞(R× ∂X), R+( f1, f2)(s+, y)= Ds+V+(0, s+, y),

R− : C∞0 (X̊)×C∞0 (X̊)→ C∞(R× ∂X), R−( f1, f2)(s−, y)= Ds−V−(0, s−, y).
(2-6)



INVERSE SCATTERING WITH PARTIAL DATA ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 517

It was shown in [Sá Barreto 2005] that R± extend to unitary operators

R± : Eac(X)→ L2(R× ∂X), ( f1, f2) 7→R±( f1, f2), (2-7)

where the measure on ∂X is the one induced by the metric h0 defined in (2-4).
It follows from the definitions that R± are translation representations of the wave group as in the

Lax–Phillips theory [1989], i.e.,

R±(U (T )( f1, f2))(s, y)=R±( f1, f2)(s+ T, y). (2-8)

One can define the scattering operator

S : L2(R× ∂X)→ L2(R× ∂X), S=R+ ◦R−1
−
, (2-9)

which is unitary in L2(∂X ×R) and, in view of (2-8), commutes with translations in the s variable.
The scattering matrix A(λ) is defined by conjugating S with the Fourier transform in the s variable:

A(λ)= F ◦S ◦F−1, F f (λ)=
∫

R

e−iλs f (s) ds. (2-10)

In particular, S determines A(λ), λ ∈ R and vice versa. It was proved in [Joshi and Sá Barreto 2000] that
A(λ) continues meromorphically to C \ D, where D is a discrete subset of C.

As discussed above, the distance between (x, y) and (x ′, y), x < x ′ < ε, is log(x ′/x). The finite speed
of propagation for the wave equation implies that the solution u(t, z) of (2-1) satisfies u(t, z) = 0 if
t < dg(z,Supp( f1, f2)). In particular, if f1(x ′, y) = f2(x ′, y) = 0 for all x ′ < ρ, then u(t, x) = 0 for
x < x ′ < ρ and t < log(x ′/x). This implies that V+(s, x, y) = x−n/2∂t u(s − log x, x, y) = 0 provided
x < x ′ < ρ and s = t + log x < log x ′ < log ρ. This shows that, if f1(x ′, y) = f2(x ′, y) = 0 in x ′ ≤ ρ,
then R+( f1, f2)(s, y)= 0 for s ≤ log ρ. The converse of this statement for initial data of the type (0, f )
was proved in [Sá Barreto 2005]: if f ∈ L2

ac(X) and R+(0, f )(s, y)= 0 for s ≤ log ρ� 0 and y ∈ ∂X ,
then f (x, y)= 0 in x ≤ ρ. Due to possible cancelations, one cannot expect the converse to be true for an
arbitrary pair ( f1, f2). In this paper we prove the following refinement of this result:

Theorem 2.1. Let 0 ⊂ ∂X be a nonempty open subset, let f ∈ L2
ac(X) and let s0 ∈ R. Let ε > 0 be such

that (2-4) holds in (0, ε)×∂X , and let ε=min{ε, es0}. Then R+(0, f )(s, y)= 0 in {s < s0, y ∈ 0} if and
only if , for every z = (x, y) ∈ (0, ε)=Uε,

dg(z,Supp f ) > log es0

x
, (2-11)

where dg denotes the distance function with respect to the metric g and Supp f denotes the support of f .
Another way of stating (2-11) is to say that f = 0 on the set

Ds0(0)=
{

z ∈ X : ∃q = (x, y) ∈Uε, dg(z, q) < log es0

x

}
=

⋃
(x,y)∈Uε

B
(
(x, y), log es0

x

)
, (2-12)

where B(p, r) denotes the open ball of radius r centered at p with respect to the metric g.
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If 0 = ∂X and ε = es0 then, for any z = (α, y) with α < es0 , pick q = (x, y) with x < α < es0 . Then
dg((α, y), (x, y))= log(α/x) < log(es0/x). Therefore, {(α, y) : α < es0, y ∈ ∂X} ⊂Ds0(∂X), and hence
Theorem 2.1 shows that, if f ∈ L2

ac(X) and R+(0, f )(s, y)= 0 for s ≤ s0 and y ∈ ∂X , then f (x, y)= 0
for x< es0 . This particular case of Theorem 2.1, when 0= ∂X and ε= es0 was proved in [Sá Barreto 2005].

Lax and Phillips [1982] proved Theorem 2.1 for the case when (X, g) is the hyperbolic space. In that
case the radiation field is given in terms of the horocyclic Radon transform, and their result says that,
if the integral of f over all horospheres tangent to points (0, y) with y ∈ 0 and radii less than or equal
to 1

2 es0 is equal to zero, then f = 0 in the region given by the union of these horocycles. It is useful to
explain what the set Ds0(0) is when (X, g) is the hyperbolic space, and verify that Theorem 2.1 implies
the result of Lax and Phillips. It is easier to do the computations for the half-space model of hyperbolic
space, which is given by

Hn+1
= {(x, y) : x > 0, y ∈ Rn

} with the metric g =
dx2
+ dy2

x2 .

The distance function between z = (x, y) and w = (α, y′) satisfies

cosh dg(z, w)=
x2
+α2
+ |y− y′|2

2xα
.

Since dg(z, z′)≤ log(es0/α), we obtain(
x − 1

2 es0(1+α2e−2s0)
)2
+ |y− y′|2 ≤ 1

4 e2s0(1+α2e−2s0)2−α2
=

1
4 e2s0(1−α2e−2s0)2,

which corresponds to a ball D(α) centered at
( 1

2 es0(1 + α2e−2s0), y′
)

and radius 1
2 es0(1 − α2e−2s0).

Since α < es0 , we have D(α)⊂ D(0), as shown in Figure 2. This ball is tangent to the plane x = es0 at
the point (es0, y′). When α = 0, the ball D(0) has center

( 1
2 es0, y′

)
and radius 1

2 es0 and is also tangent to
the plane {x = 0}. The boundary of D(0) is called a horosphere since it is orthogonal to the geodesics
emanating from the point (0, y′). When α = es0 , D(es0)= (es0, y′). The set Ds0(0) consists of the union

�

�

�

D(0)

D(α)

(es0 , y′)

( 1
2 es0 , y′

)

(0, y′) ∈ 0

horospheres

geodesics

Figure 2. The horospheres tangent at (0, y′) and the balls D(α).
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� � � �

� �

es0

0 0

Ds0(0)

Figure 3. The set Ds0(0) when (X, g) is the hyperbolic space is given by the union of
horospheres tangent to points on 0 and radii less than or equal to 1

2 es0 .

of horospheres with radii less than or equal to 1
2 es0 tangent to points (0, y′) with y′ ∈ 0; see Figure 3.

Theorem 2.1 can be explained in terms of the sojourn time along a geodesic. In this setting, the sojourn
time plays the role of the distance function to the boundary of X and is closely related to the Busemann
function used in differential geometry. Let γ (t) be a geodesic, parametrized by the arc length, passing
through z = γ (0) and such that γ (t)→ y ∈ ∂X as t→∞. We define

s(z, γ )= lim
t→∞

(
t + log x(γ (t))

)
.

The relationship between the sojourn times and the radiation fields for nontrapping asymptotically
hyperbolic manifolds was studied in [Sá Barreto and Wunsch 2005]. We have the following consequence
of Theorem 2.1:

Corollary 2.2. Let f and 0 ⊂ ∂X satisfy the hypotheses of Theorem 2.1; then f = 0 on the set of points
z ∈ X̊ such that there exists a geodesic γ (t), parametrized by the arc length, with γ (0)= z, γ (t)→ y ∈ 0
as t→∞, and s(z, γ ) < s0.

Proof. Suppose there exists a geodesic γ (t), parametrized by the arc length t , such that γ (0) = z,
limt→∞ γ (t)= y and

lim
t→∞

(
t + log x(γ (t))

)
= s < s0.

Since t is the arc-length parameter, d
(
z,
(
x(γ (t)), y

))
≤ t and s < s0, there exists T > 0 such that, for

t > T , γ (t) ∈U ∼ [0, ε)× ∂X where the coordinates (2-4) are valid and t + log x(γ (t)) < s0. Therefore,
if t > T ,

d
(
z, (x(t), y)

)
≤ t < s0− log x(γ (t))= log es0

x(γ (t))
.

Hence z ∈ Ds0(0). �

Theorem 2.1 says that the support of the radiation field R+(0, f ) controls the support of the initial
data (0, f ). We will use this result to adapt the boundary control method of [Belishev 1987; Belishev and
Kurylev 1992; Kurylev and Lassas 2002; Katchalov et al. 2001] to study the inverse scattering problem
with partial data.

Let 0 ⊂ ∂X be an open subset and let S denote the scattering operator as in (2-9). We define the
restriction of S to R×0 as

S0 : L2(R×0)→ L2(R×0), F 7→ (SF)|0. (2-13)
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In other words, one starts with an F ∈ L2(R× 0), finds the solution of the wave equation that has
backward radiation field equal to F , then finds the corresponding forward radiation field, and restricts it
to the subset R×0. We study the problem of determining (X, g) from S0. Recall that our definition
of S depends on the choice of the product structure (2-4). In fact, the method used in [Graham 2000]
and discussed above to construct the diffeomorphism (2-4) can also be used to show that, given two
AHM (X j , g j ), j = 1, 2, there exists ε > 0 such that (2-14) holds for both metrics. Recall that x is just
the time through which one flows along the integral curves of ∇Hρ. One can take ε to the smallest one
that works for both metrics, and one finds that there exist collar neighborhoods U j ⊂ X j of ∂X j and
C∞ diffeomorphisms

9 j : (0, ε)× ∂X j →U j

such that

9∗j g j =
dx2

x2 +
h j (x)

x2 in (0, ε)× ∂X j , h j (0)= h j0, j = 1, 2, (2-14)

where h j (x) is a C∞ family of metrics on ∂X j for x ∈ [0, ε), and 9 j = Id on ∂X j . In particular, if there
exists an open set 0 ⊂ ∂X1 ∩ ∂X2, as manifolds, then (2-14) holds on (0, ε)× 0, and h j (x) are C∞

families of metrics on 0. We prove the following:

Theorem 2.3. Let (X1, g1) and (X2, g2) be connected, asymptotically hyperbolic manifolds and suppose
there exists an nonempty open set 0 ⊂ ∂X1 ∩ ∂X2 (as manifolds). Let x be such that (2-14) holds on a
collar neighborhood of ∂X j for j = 1, 2. Suppose that h1(0) = h2(0) on 0. Let S j,0, j = 1, 2, be the
corresponding scattering operators restricted to 0, and suppose that S1,0 = S2,0 . Then there exists a C∞

diffeomorphism

9 : X1→ X2 such that 9 = Id on 0 and 9∗g2 = g1. (2-15)

Since we only know S on part of the boundary, we can only expect to recover information on the
connected components of (X, g) that contain 0, so we assume that X is connected. This result guarantees
that the scattering operator restricted to 0 determines (X, g), including its topology and C∞ structure,
modulo isometries that are equal to the identity on 0.

Theorem 2.3, and the method we use to prove it, are related to the question of reconstructing a compact
Riemannian manifold with boundary from the Dirichlet-to-Neumann map (DTNM) for the wave equation.
One may think of the scattering operator as the DTNM on the boundary at infinity. Belishev and Kurylev
[1992] showed that the DTNM for the wave equation determines a compact manifold and its Riemannian
metric using the boundary control method and a unique continuation result later proved by Tataru [1995;
1999]. Different proofs, which also rely on the result of Tataru, were given in [Katchalov et al. 2001].
This result of Tataru will be important in the proof of Theorem 2.1. The reconstruction of a compact
manifold in the case where the Dirichlet-to-Neumann map is only known on part of the boundary was
carried out by Kurylev and Lassas [2000] using a modification of the boundary control method; see also
Section 4.4 of [Katchalov et al. 2001]. We will adapt the boundary control methods to this setting by
using the radiation fields.
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3. The proof of Theorem 2.1

The sufficiency of condition (2-11) in Theorem 2.1 is just a consequence of the finite speed of propagation
for the wave equation.

Lemma 3.1. Let f ∈ L2
ac(X) be such that dg(z,Supp f ) > log(es0/x) for all z = (x, y) ∈ (0, ε)× 0.

Then R+(0, f )(s, y)= 0 if s ≤ s0 and y ∈ 0.

Proof. Let u(t, z) satisfy the wave equation (2-1) with initial data (0, f ). The finite speed of propagation
for solutions of the wave equation guarantees that u(t, z)= 0 if 0≤ t < dg(z,Supp f ). In particular, if
z= (x, y) with x <ε, y ∈0, then u(t, x, y)= 0 if 0≤ t ≤ s0− log x < dg(z,Supp f ). Since s = t+ log x ,
we have that V+(x, s, y)= x−n/2u(s− log x, x, y)= 0 provided log x ≤ s ≤ s0, x <ε, y ∈0. This implies
that R+(0, f )(s, y)= 0 if s ≤ s0 and y ∈ 0. �

We will first outline the proof of the converse, which is based on unique continuation arguments. We
state three propositions, and indicate how to use them to prove the converse of Theorem 2.1. We will
finish the proof of Theorem 2.1 at the end of the section, after we have proved the three propositions.

In the region where (2-4) holds, the Cauchy problem (2-1), with initial data (0, f ) translates into the
following initial value problem for V+(x, s, y)= x−n/2u(s+ log x, x, y):

PV+(x, s, y)= 0 in log x < s, x < ε, y ∈ ∂X,

V+(x, log x, y)= 0, Ds V+(x, log x, y)= x−n/2 f (x, y), x < ε, y ∈ ∂X,
(3-1)

where

P =−x−n/2−1(D2
t −1−

1
4 n2)xn/2

= ∂x(2∂s + x∂x)− x1h + A∂s + Ax∂x +
1
2 n A. (3-2)

Here, 1h is the (positive) Laplace operator on ∂X corresponding to the metric h(x), in local y coordinates,

1h =−
1
√
θ
∂yi (
√
θ hi j∂y j ),

where h = (hi j (x, y)), h−1
= (hi j (x, y)), θ = det(hi j ) and A =

1
√
θ
∂x
√
θ.

(3-3)

In the first proposition, we are interested in the behavior of V+(x, s, y) for x near {x = 0} and {s=−∞}.
As in [Sá Barreto 2005], we work in the compactified space Ỹ — see Figure 1 — and set

µ= e−s−/2 and ν = es+/2. (3-4)

This implies that s= 2 log ν and x =µν. Notice that µ=
√
τ+ and ν=

√
τ− and that, in these coordinates,

the lateral face 6 of Ỹ is given by 6 = {τ+ = τ− = 0} = {µ = ν = 0}, and one may think of this as
collapsing the lateral face 6, as shown in Figure 4.

In coordinates (µ, ν, y), the operator P defined in (3-2) has the form

P̃ = ∂µ∂ν −µν1h +
1
2 A(µ∂µ+ ν∂ν)+ 1

2 n A, (3-5)
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ϒ+

ϒ−

F
−
=
{ν
=

0}

6

F+
=
{µ
=

0}

{t = 0} = {µ= ν}

Figure 4. A compactification of Rt × X with the face 6 collapsed.

where h = h(µν), A = A(µν, y). If

W (µ, ν, y)= V+(µν, 2 log ν, y)= (µν)−n/2u
(

log ν
µ
,µν, y

)
, (3-6)

the Cauchy problem (3-1) becomes

P̃W = 0, µ, ν ∈ (0, ε), y ∈ ∂X,

W (µ,µ, y)= 0, ∂µW (µ,µ, y)=−µ−1−n f (µ2, y).
(3-7)

The fact that the initial data is of the form (0, f ) implies that the solution u(t, z) to (2-1) satisfies
u(t, z)=−u(−t, z), and this implies that W (µ, ν, y)=−W (ν, µ, y).

Proposition 3.2. Let f ∈ L2
ac(X) be such that R+(0, f )(s, y)= 0 in {s < s0}×0. Let u satisfy the initial

value problem for the wave equation (2-1) with initial data (0, f ), and let W (µ, ν, y) be defined as in (3-6).
Then, in the sense of distributions ∂k

µW (µ, ν, y)|{µ=0} = 0 in [0, es0/2)×0 and ∂k
νW (µ, ν, y)|{ν=0} = 0 in

[0, es0/2)×0 for k = 0, 1, . . . . Moreover, for every p ∈ 0 there exists δ > 0 such that W (µ, ν, y)= 0 if
0< µ< δ, 0< ν < δ and |y− p|< δ. (See Figure 5.)

�

�

W = 0

W
=

0

P̃W = 0

P̃W = 0

W
=

0

ν

µ

es0/2

es0/2

Figure 5. Unique continuation from infinity: if R+(0, f )(s, y)= 0 for s ≤ s0 and a.e.
y ∈ 0 then, for every p ∈ 0, there exists δ > 0 such that W (µ, ν, y) = 0 in the region
shown provided that |y− p|< δ.
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PV = 0

x

s

x

s

s = log x s = log x

es1

s0 s0

es1β

Figure 6. If PV = 0, and V = 0 in the dark region on the left, then V = 0 in
the dark region on the right. This establishes unique continuation across the wedge
{log x < s < s1, x < δ, |y− p|< δ} ∪ {x ≤ 0, s < s0, |y− p|< δ}.

Next we need to show that we can increase the size of the neighborhood where V+ = 0, and to do this
we will use an iteration scheme involving the next two propositions. We will again use variables (x, s, y),
and this time we will apply Hörmander’s unique continuation theorem [1994b, Theorem 28.2.3], to prove:

Proposition 3.3. Let V (x, s, y) ∈ H 1
loc in the region |x |< ε, y ∈ 0 and s ∈ R, satisfy PV = 0, where P

is given by (3-2). Let s1 < s0, δ > 0 and p ∈ 0 and suppose that

V (x, s, y)= 0 on {x ∈ (−ε, 0], s < s0, y ∈ 0} ∪ {log x < s < s1, x < δ, |y− p|< δ}.

Then there exists β ∈ (0, δ) such that V (x, s, y)= 0 if x < β, |y− p|< β and log x < s < s1+
1
4(s0− s1).

(Figure 6 illustrates the result.)

We know from Proposition 3.2 that V+(x, s, y) = 0 for x < δ, |y − y0| < δ and log x ≤ s ≤ log δ.
We set s1 = log δ. Proposition 3.3 shows that V+(s, x, y) = 0 in x < β < δ, |y − y0| < β < δ and
s < s1+

1
4(s0− s1). In other words, V+(x, s, y)= 0 in a larger interval in the s variable at the expense of

shrinking the neighborhood of {x = 0, y = p}.
The second piece of the scheme is a consequence of a result of Tataru [1995; 1999], and it shows that,

while the neighborhood of p might shrink, the neighborhood of x = 0 in fact does not. Figure 7 illustrates
the result.

Proposition 3.4. Let u(t, z) satisfy (2-1) with initial data f1 = 0, f2 = f ∈ L2(X). Let V+(x, s, y) =
x−n/2u(s − log x, x, y). Let p ∈ 0, and suppose that there exist s2 ∈ R, γ > 0 and δ > 0 such that
V+(x, s, y)= 0 if 0< x <γ , log x < s < s2 and |y− p|< δ. Then u(t, z)= 0 if there is (x, y) with x <γ
and |y − p| < δ such that |t | + dg(z, (x, y)) < log(es2/x), where dg is the distance with respect to the
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x

s

PV = 0

x

s s = log x s = log x
s2 s2

γ

log γ log γ

s∗

Figure 7. If PV = 0 and V = 0 in the dark region on the left, then V = 0 in the dark
region on the right.

metric g. In particular, if s∗ < s2 is such that coordinates (2-4) holds for x < es∗ , then

V+(x, s, y)= 0 if |y− p|< δ, 0< x < es∗ and log x < s < s2. (3-8)

The idea is to iterate Propositions 3.3 and 3.4 to prove Theorem 2.1. We know from Proposition 3.2
that for any p ∈ 0 there exists δ > 0 such that

V+(x, s, y)= 0 if x < δ, log x < s < log δ, |y− p|< δ.

Moreover, V+(x, s, y)= 0 if x < 0, s < s0 and y ∈ 0. Applying Proposition 3.3 with s1 = log δ, we find
that there exists β1 < δ such that

V+(x, s, y)= 0 provided x < β1, |y− p|< β1 and log x < s < log δ+ 1
4(s0− log δ).

Then Proposition 3.4 guarantees that there exists s∗� 0 independent of p such that

V+(x, s, y)= 0 if x < es∗, |y− p|< β1, s < s2 = log δ+ 1
4(s0− log δ).

The main point is that, while the neighborhood of p shrinks from one step to the next, the neighborhood
of x = 0 stays the same. Since p ∈ 0 is arbitrary, it follows that in fact

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < s2 = log δ+ 1
4(s0− log δ). (3-9)

After using this argument n times, we find that

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < sn = sn−1+
1
4(s0− sn−1).

The sequence {sn = sn−1+
1
4(s0− sn−1)} is monotone and bounded by s0. So it has a limit which is

obviously equal to s0. This implies that

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < s0. (3-10)
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This does not quite yet prove Theorem 2.1, and the proof will be completed after the proof of
Proposition 3.4. Now we will prove the three propositions above.

Proof of Proposition 3.2. First we claim that, without loss of generality, we may assume that f ∈ L2
ac(X)∩

C∞(X̊). To do this we need to characterize the range R+(0, f ), f ∈ L2
ac(X). Notice that the solution u(t, z)

of (2-1) with data (0, f ) satisfies u(−t, z)=−u(t, z), and hence V+(s, x, y)= x−n/2u(s− log x, x, y)
and V−(s, x, y)= x−n/2u(s+ log x, x, y) satisfy

V+(x,−s, y)= x−n/2u(−s− log x, x, y)=−V−(x, s, y). (3-11)

In particular, we have

R+(0, f )(−s, y)=−(∂s V+)(0,−s, y)= ∂s V−(0, s, y)=R−(0, f )(s, y).

Similarly,

R+(h, 0)(−s, y)=−R−(h, 0)(s, y).

So, if F =R+(h, f ) satisfies F∗(s, y)= F(−s, y), then

F∗(s, y)=−R−(h, 0)(s, y)+R−(0, f )(s, y).

We apply S=R+R−1
− to this identity and obtain

SF∗ =−R+(h, 0)+R+(0, f ),

and we conclude that
1
2(SF∗+ F)=R+(0, f ),
1
2(SF∗− F)=R+(h, 0).

(3-12)

Hence, SF∗ = F∗ if and only if R+(h, 0)= 0, and thus h = 0. Similarly, SF∗ =−F if and only if
R+(0, f )= 0 and hence f = 0. Therefore, we conclude that

{F ∈ L2(R× ∂X) : SF∗ = F} = {R+(0, f ) : f ∈ L2
ac(X)},

{F ∈ L2(R× ∂X) : SF∗ =−F} = {R+(h, 0) : (h, 0) ∈ Eac(X)}.
(3-13)

The same argument applied to the backward radiation field shows that

{F ∈ L2(R× ∂X) : F∗ = SF} = {R−(0, f ) : f ∈ L2
ac(X)},

{F ∈ L2(R× ∂X) : F∗ =−SF} = {R−(h, 0) : (h, 0) ∈ Eac(X)}.
(3-14)

Since R+(0, f )(s, y)=0 in {s< s0}×0, we may take the convolution of R+(0, f )withψδ(s)∈C∞0 (R)
even and supported in (−δ, δ), with

∫
ψδ(s) ds = 1. If F(s, y) = R+(0, f )(s, y) and F(s, y) = 0 for

s ≤ s0, and

Hδ(s, y)= ψδ ∗ F(s, y)=
∫

R

ψδ(s− s ′)F(s ′, y) ds ′,
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then Hδ(s, y)= 0 if s ≤ s0− δ and, since ψδ is even,

H∗δ (s, y)= Hδ(−s, y)=
∫

R

ψδ(−s− s ′)F(s ′, y) ds ′ =
∫

R

ψδ(s+ s ′)F(s ′, y) ds ′

=

∫
R

ψδ(s− s ′)F(−s ′, y) ds ′ = ψδ ∗ F∗.

But the scattering operator commutes with translations in s, and hence it commutes with convolutions
in the variable s. Therefore, in view of (3-13),

SH∗δ = ψδ ∗SF∗ = ψδ ∗ F = Hδ.

We then use (3-13) to show that there exists fδ ∈ L2
ac(X) such that Hδ = R+(0, fδ). Since R+ is

unitary, ‖F − Hδ‖L2(R×∂X) = ‖ f − fδ‖L2(X), and hence ‖ fδ − f ‖L2(X)→ 0 as δ→ 0. Moreover, since
∂2

s R+(0, f )=R+(0, (1− n2/4) f ), it follows that, for every k ≥ 0,

∂2k
s Hδ(s, y)=R+

(
0,
(
1− 1

4 n2)k fδ
)
∈ L2(R× ∂X),

and thus (1− n2/4)k fδ ∈ L2(X) for all k ≥ 0, using that R+ is unitary. Therefore, by elliptic regularity,
fδ ∈ C∞(X̊). If one proves Theorem 2.1 for f ∈ C∞(X̊)∩ L2

ac(X), then we conclude that fδ(z)= 0 for
z ∈ Ds0−δ(0). But, since fδ→ f as δ→ 0, it follows that f (z)= 0 in Ds0(0).

Next we will show that, if R(0, f )(s, y) = 0 in {s < s0} × 0, then in the sense of distributions W
vanishes to infinite order at {µ= 0, ν < es0/2}×0∪{ν = 0, µ < es0/2}×0. Recall that we are assuming
that f ∈ C∞(X̊), so the solution W to (3-7) is C∞ in the region {µ > 0, ν > 0}. The issue here is the
behavior of W at {µ= 0} ∪ {ν = 0}.

Notice that, if F(µ, y)= µ−1−n f (µ2, y), then∫ ε

0

∫
∂X
µ|F(µ, y)|2θ

1
2 (µ2, y) dy dµ= 1

2

∫ ε2

0

∫
∂X
| f (x, y)|2x−n−1θ

1
2 (x, y) dy dx ≤ 1

2‖ f ‖2L2(X). (3-15)

We know from Theorem 2.1 of [Sá Barreto 2005] that, if f ∈ C∞0 (X̊) ∩ L2
ac(X), then W has a

C∞ extension up to {µ= 0}∪{ν = 0} and, since ∂s =
1
2(ν∂ν−µ∂µ), then, provided f ∈C∞0 (X̊)∩L2

ac(X),

R+(0, f )(2 log ν, y)= 1
2 [(ν∂ν −µ∂µ)W (µ, ν, y)]

∣∣
µ=0 =

1
2ν∂νW (0, ν, y), (3-16)

and we want to show that this restriction makes sense for f ∈ L2
ac(X). We will work in the region {ν ≥µ},

but since the solution to (3-7) is odd under the change (µ, ν) 7→ (ν, µ), the same holds for the backward
radiation field in the region {ν ≤ µ}.

Again, we assume that f ∈ C∞0 (X̊)∩ L2
ac(X), and W satisfies (3-7). If one multiplies the equation

P̃W = 0 by ν∂νW −µ∂µW , one obtains the identity

1
2
√

h(µν, y)
∂µ
[(
ν|∂νW |2+µ2ν|dh(µν)W |2

)√
h
]
−

1
2
√

h(µν, y)
∂ν
[(
µ|∂µW |2+ ν2µ|dh(µν)W |2

)√
h
]

+µνδh(µν)((ν∂νW −µ∂µW )dh(µν)V )+ Q(W, µ∂µW, ν∂νW, µν∂y j W )= 0,
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µ

ν

µ0

T

Figure 8. The region of integration in (3-17).

where δh(µν) is the divergence operator on the section ∂X dual to dh(µν) with respect to the met-
ric h(µν), and Q is a quadratic form. One then integrates this identity in the region �µ0,T × ∂X ,
where �µ0,T = {µ0 ≤ µ≤ ν, µ≤ ν ≤ T } is pictured in Figure 8, uses the divergence theorem and then
the analogue of Gronwall’s inequality, to arrive at the following inequality: for 0≤µ0 ≤ T , T ∈ (0, es0/2),
with T small enough that coordinates (2-4) hold for x = µν, there exists C > 0 which does not depend
on f or W such that∫ T

µ0

∫
∂X

[
(|W |2+µ|∂µW |2+µν2

|dh(µν)W |2)
√
θ(µν)

]∣∣
ν=T dy dµ

+

∫ T

µ0

∫
∂X

[
(|W |2+ ν|∂νW |2+µ2ν|dh(µν)W |2)

√
θ(µν)

]∣∣
µ=µ0

dy dν ≤ C‖ f ‖2L2(X). (3-17)

We refer the reader to the proof of Lemma 4.1 of [Sá Barreto 2005] for the details. In fact, this follows
from equations (4.11), (4.14) and (4.15) of [Sá Barreto 2005], and (3-15) above.

We let

I (W, µ0, T )=
∫ T

µ0

∫
∂X

[
(|W |2+ ν|∂νW |2+µ2ν|dh(µν)W |2)

√
θ(µν)

]∣∣
µ=µ0

dy dν.

If f ∈ L2
ac(X) and if we take a sequence f j ∈ C∞0 (X̊)∩ L2

ac(X) with ‖ f − f j‖L2(X)→ 0, (3-17) shows
that, for fixed µ0 ∈ [0, T ],

I (W j −Wk, µ0, T )≤ C‖ f j − fk‖
2
L2(X),

and in particular, if µ0 ∈ [0, T ] and W is a solution of (3-7) with f ∈ L2
ac(X), then, for µ0 ∈ [0, T ], the

integral ∫ T

µ0

∫
∂X
ν|∂νW (µ0, ν, y)|2

√
θ(µ0ν, y) dν dy ≤ C‖ f ‖2L2(X) (3-18)

is well defined uniformly up to µ0 = 0. Since the radiation field is unitary, then in the sense of (3-18) the
restriction ν∂νW (µ0, ν, y)|{µ0=0} is well defined, and hence (3-16) holds for f ∈ L2

ac(X).
As was done in [Sá Barreto 2005], it is convenient to get rid of the term A(µ∂µ+ ν∂ν) in (3-5), by

conjugating the operator by θ−1/4. Since 1h is the positive Laplacian, we find that, in local coordinates
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near a point p ∈ 0,

Q̃ = θ1/4 P̃θ−1/4
= ∂µ∂ν +µν

∑
i, j

hi j (µν, y)∂yi ∂y j +µν
∑

j

B j (µν, y)∂y j +C(µν, y), (3-19)

where C(µν, y) and B j (µν, y) are C∞, and h−1
= (hi j ) is the matrix associated with the metric h. Let

W̃ =θ1/4W ; then Q̃W̃ =0. For φ(y)∈C∞0 (U ), where U b0 is such that (3-19) holds in [0, ε]×[0, ε]×U ,
let

G(µ, ν)=
∫
∂X

W̃ (µ, ν, y)φ(y) dy. (3-20)

Notice that this is consistent with the conjugation of P̃ by θ1/4, and the factor θ1/2 is no longer present in
the L2 product. Let

Z(µν, y, Dy)= Q̃− ∂µ∂ν = µν
∑
i, j

hi j (µν, y)∂yi ∂y j +µν
∑

j

B j (µν, y)∂y j +C(µν, y),

and let Z∗(µν, y, Dy) denote its adjoint with respect to the L2(∂X) product defined by (3-20); then

∂µ∂νG(µ, ν)=
∫
∂X

W̃ (µ, ν, y)Z∗(µν, y, Dy)φ(y) dy (3-21)

It follows from (3-17) that there exists C > 0 such that∫ T

0
|∂µ∂νG(µ, T )|2 dµ≤ C

(∑
|α|≤2

sup |∂αy φ|
)2

‖ f ‖2L2(X),∫ T

µ0

|∂µ∂νG(µ0, ν)|
2 dν ≤ C

(∑
|α|≤2

sup |∂αy φ|
)2

‖ f ‖2L2(X) for µ0 ∈ (0, T ].

(3-22)

Let us write K =
(∑
|α|≤2 sup |∂αy φ|

)
‖ f ‖L2(X). Therefore, if δ < µ < ε,

|∂νG(µ, ν)− ∂νG(δ, ν)| =
∣∣∣∣∫ µ

δ

∂s∂νG(s, ν) ds
∣∣∣∣≤ C K (µ− δ)1/2.

Hence, for ν > 0,
lim sup
δ→0

|∂νG(δ, ν)| ≤ lim inf
µ→0

|∂νG(µ, ν)|,

so limµ→0 |∂νG(µ, ν)| exists. On the other hand, R+(0, f )(s, y)= 0 for y ∈ 0 and s ≤ s0, so according
to (3-16) it follows that

∂νG(0, ν)= 0, ν ∈ (0, T ).

Now we use (3-22) to show that, if 0≤ µ≤ ν ≤ T , then there exists C > 0 such that

|∂νG(µ, ν)| =
∣∣∣∣∫ µ

0
∂s∂νG(s, ν) ds

∣∣∣∣≤ µ1/2
(∫ µ

0
|∂s∂νG(s, ν)|2 ds

)1
2

≤ µ1/2
(∫ ν

0
|∂s∂νG(s, ν)|2 ds

)1
2
≤ C Kµ1/2. (3-23)
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Since W (µ,µ, y)= 0, we have, for µ≤ ν ≤ T ,

|G(µ, ν)| =
∣∣∣∣∫ ν

µ

∂s G(µ, s) ds
∣∣∣∣≤ C Kµ1/2(ν−µ). (3-24)

This shows that, for every φ ∈ C∞0 (U ),∣∣∣∣∫
∂X

W̃ (µ, ν, y)φ(y) dy
∣∣∣∣≤ C Kµ1/2,∣∣∣∣∫

∂X
∂νW̃ (µ, ν, y)φ(y) dy

∣∣∣∣≤ C Kµ1/2.

Since C∞0 (R
2)×C∞0 (U ) spans C∞0 (R

2
×U ), it follows that for any ψ(µ, ν, y), with µ, ν ∈ [0, T ],∣∣∣∣∫

∂X
W̃ (µ, ν, y)ψ(µ, ν, y) dy

∣∣∣∣≤ C
(∑
|α|≤2

sup |∂αyψ |
)
‖ f ‖L2(X)µ

1/2,

∣∣∣∣∫
∂X
∂νW̃ (µ, ν, y)ψ(µ, ν, y) dy

∣∣∣∣≤ C
(∑
|α|≤2

sup |∂αyψ |
)
‖ f ‖L2(X)µ

1/2.

(3-25)

Now we differentiate (3-21) with respect to ∂ν . We have, for µ, ν ∈ [0, T ],

∂ν∂µ∂νG(µ, ν)=
∫
∂X

[
∂νW̃ (µ, ν, y)Z∗(µν, y, Dy)φ(y)+ W̃ (µ, ν, y)∂νZ∗(µν, y, Dy))φ(y)

]
dy,

we apply (3-25) to ψ(µ, ν, y) = Z∗(µν, y, Dy)φ(y) and ψ(µ, ν, y) = ∂νZ∗(µν, y, Dy)φ(y), and we
conclude that

|∂µ∂
2
νG(µ, ν, y)| ≤ C

(∑
|α|≤4

| sup ∂αy φ|
)
‖ f ‖L2(X)µ

1/2

Let us denote KN (φ)=
(∑
|α|≤N | sup ∂αy φ|

)
‖ f ‖L2(X). Since W̃ (µ,µ, y)= 0, we have ∂µ∂νG(µ,µ)= 0,

and so

|∂µ∂νG(µ, ν)| =
∣∣∣∣∫ ν

µ

∂µ∂
2
s G(µ, s) ds

∣∣∣∣≤ K4(φ)µ
1/2. (3-26)

On the other hand, since W (µ,µ, y)=0, it follows that (∂µW )(µ,µ, y)=−(∂νW )(µ,µ, y). In particular,
when ν = µ, we have

|∂µG(µ,µ)| ≤ C K2(φ)µ
1/2

and, since

∂µG(µ, ν)= (∂µG)(µ,µ)+
∫ ν

µ

∂s∂µG(µ, s) ds,

we have
|∂µG(µ, ν)| ≤ C(K2(φ)+ K4(φ))µ

1/2. (3-27)

Proceeding as above, since ∂νG(0, ν)= 0, it follows from (3-26) that |∂νG(µ, ν)| ≤ C K4(φ)µ
3/2 and,

since G(µ,µ)= 0, we have |G(µ, ν)| ≤ C K4(φ)µ
3/2 and |∂µ∂2

νG(µ, ν)| ≤ C K6(φ)µ
3/2. Iterating this
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argument, and using the symmetry of W , we get that, for k ≥ 0,

∂k
µG(0, ν)= 0, ∂k

νG(µ, 0)= 0, |(∂µG)(µ,µ)| = |(∂νG)(µ,µ)| ≤ Cµk . (3-28)

This shows that, in the sense of distributions, W̃ (µ, ν, y) vanishes to infinite order at

{µ= 0, ν < T }×0 ∪ {ν = 0, µ < T }×0,

where T has been chosen to be small enough that (2-4) holds for x = µν < ε. But this argument can be
used finitely many times to show this holds for any T ∈ (0, es0/2). In particular this shows that in the
sense of distributions W̃ can be extended across the wedge {µ= 0} ∪ {ν = 0} so that

Q̃W̃ = 0 in (−es0/2, es0/2)× (−es0/2, es0/2)×0 = O,

W̃ = 0 in {µ < 0, 0≤ ν < es0/2}×0 ∪ {ν < 0, 0≤ µ < es0/2}×0.
(3-29)

From (3-17) we know more about the regularity of W̃ . We also know that

W̃ ∈ C∞
(
O \ ({µ= 0, ν ≥ 0} ∪ {ν = 0, µ≥ 0})

)
,

and in fact Hörmander’s propagation of singularities theorem implies that

W F(W̃ )⊂ {µ= 0, ν ≥ 0, ξ1 = ξ2 = 0} ∪ {ν = 0, µ≥ 0, ξ1 = ξ2 = 0}, (3-30)

where ξ1 and ξ2 are dual to µ and ν respectively. If this were not true, singularities would propagate into
the region where we know W̃ is C∞. Indeed, the principal symbol of Q̃ is

q =−ξ1ξ2−µνh(µν, y, η),

and hence its bicharacteristics satisfy

µ̇=−ξ2, µ(0)= µ0, ν̇ =−ξ1, ν(0)= ν0,

ξ̇1 = ν(h+µν(∂x h)), ξ1(0)= ξ10, ξ̇2 = µ(h+µν(∂x h)), ξ2(0)= ξ20,

ẏ j =−µν∂η j h, y j (0)= y j0, η̇ j = µν∂y j h, η j (0)= η j0.

Therefore, the bicharacteristics over µ= 0 satisfy µ= 0, ξ2 = 0, y = y0 and η = η0 and

ν̇ =−ξ1, ν(0)= ν0, ν0 ≥ 0, ξ̇1 = νh(0, y0, η0), ξ1(0)= ξ10,

and hence, if we denote h0 = h(0, y0, η0),

ν(t)= ν0 cos(t
√

h0)−
ξ10
√

h0
sin(t

√
h0), ξ1(t)= ξ10 cos(t

√
h0)+ ν0

√
h0 sin(t

√
h0).

If (0, ν0, y0, ξ10, 0, η0) ∈ W F(W̃ ) with ν0 ≥ 0 and ξ10 > 0, then ν(T ) = −(ν0 + ξ1)/
√

2 < 0 for
T = 3π/(4

√
h0), and so the point(

0,− 1
√

2
(ν0+ ξ10), y0,

1
√

2
(−ξ10+ h0ν0), 0, η0

)
lies in W F(W̃ ). On the other hand, if ξ10 < 0, take T = 5π/(4

√
h0) and so
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0, 1
√

2
(−ν0+ ξ10), y0,−

1
√

2
(ξ10+ h0ν0), 0, η0

)
∈W F(W̃ ).

But this is not possible, since W̃ ∈ C∞ in {ν < 0}. The same analysis applies to {ν = 0, µ≥ 0}.
The next step is to prove the following unique continuation result:

Lemma 3.5. Let 0 ⊂ ∂X be open and not empty. Let W (µ, ν, y) satisfy (3-17), and let W̃ = θ1/4W
satisfy (3-29). Then for any p ∈ 0 there exists δ > 0 such that W̃ (µ, ν, y)= 0 provided |µ|< δ, |ν|< δ
and |y− p|< δ.

Proof. It is not clear that this result is a consequence of Theorem 1.1.2 of [Alinhac 1984], but (3-31)
below is similar to the estimates in Section 4.1 of [Alinhac 1984]. As usual, the proof of this result
is based on a Carleman estimate. However, we need to be quite careful when applying the Carleman
estimate, which is proved for C∞0 functions, to W̃ . In general, one would have to cut off and mollify W̃
and then apply Friedrich’s lemma; see for example the proof of [Hörmander 1994b, Theorem 28.3.4].
This usually requires the solution to be in H 1

loc. However, here the regularity for W̃ is given by (3-17),
which is not quite H 1

loc near {µ= 0} or {ν = 0}. We will avoid cutting W̃ in the variables (µ, ν), as the
commutator of Q̃ with the cut-off function would produce terms in ∂µW and ∂νW , which we cannot
yet control. However cut offs in the y do not offer any problem, since the commutator of Q̃ with a
cut-off function in y only would produce terms like µν∂y j W̃ , which can be controlled by (3-17). We will
prove the following Carleman inequality, which will be used to prove the stated unique continuation from
infinity, and will also be used to improve the regularity of W̃ .

Lemma 3.6. Let p ∈ 0, and let Q̃ be the operator defined in (3-19). For 0< ν0 ≤ es0/2, let

�ε = {(µ, ν, y) : |µ|< ε, |ν| ≤ ν0, |y− p|< 2ε}, 61,ε =
{
ν = ν0, 0≤ µ≤ 1

2ε, |y− p|< 2ε
}
,

�+ε = {(µ, ν, y) ∈�ε : µ≥ 0, ν ≥ 0}, 62,ε =
{
µ= 1

2ε, 0≤ ν ≤ ν0, |y− p|< 2ε
}
.

Let C0 = sup�ε |C |, where C is the zeroth order term of Q̃. Let γ > 0 be such that γC2
0ν

3
0 is small enough,

and let ϕa(µ, ν, y)= µ+ γ ν+ 1
2aγ |y− p|2, where a = 0 or a = 1. Then there exist ε0 > 0, M > 0 such

that if 0< ε < ε0 and k ≥ 1
4 , then the following estimate holds for all v(µ, ν, y) ∈ C∞(�ε) supported in

{(µ, ν, y) : µ≥ 0, ν ≥ 0, |y− p| ≤ ε}:

M‖ϕ−k Q̃v‖+Mk
∫
61,ε

[µνϕ−1
|∇yϕ

−kv|2+ k2ϕ−3−2k
|v|2] dµ dy

+Mk
∫
62,ε

[µνϕ−1
|∇yϕ

−kv|2+ k2ϕ−3−2k
|v|2] dν dy

≥ k3
‖ϕ−k−2v‖2+ k2

‖ϕ−1∂µϕ
−kv‖2+ k2

‖ϕ−1∂νϕ
−kv‖2+ k‖(µ+ γ ν)1/2ϕ−1/2

∇yϕ
−kv‖2, (3-31)

where ‖v‖2 =
∫
�+ε
|v|2 dµ dν dy.

Proof. The estimate with a = 0 was proved in [Sá Barreto 2005]. We are doing it again here for the
convenience of the reader, and we will use it to improve the regularity of W̃ . But this estimate with a = 0
is not strong enough to prove the unique continuation result, for which we need the estimate with a = 1.
We will use ϕ = ϕa in the proof to simplify the already heavy notation.



532 RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

Without loss of generality, we assume that p = 0 and that v is real-valued. We know from (3-19) that

Q̃(µ, ν, y, ∂µ, ∂ν, ∂y)= ∂µ∂ν +µν

n∑
i, j=1

hi j (µν, y)∂yi ∂y j +µν

n∑
j=1

B j (µν, y)∂y j +C(µν, y).

As usual, we define Q̃k = ϕ
−k Q̃ϕk and, since ∂µϕ = 1, ∂νϕ = γ and ∂y jϕ = aγ y j , we have

Q̃k = ϕ
−k Q̃ϕk

= Q̃(µ, ν, y, ∂µ+ kϕ−1, ∂ν + kγ ϕ−1, ∂y + kaγ yϕ−1),

and we write
Q̃k = Qk + kL,

with

L= ϕ−1(∂ν + γ ∂µ),

Qk = ∂µ∂ν + γ (k2
− k)ϕ−2

+µνhi j (µν, y)(∂yi + kaγ yiϕ
−1)(∂y j + kaγ y jϕ

−1)

+µνB j (∂y j + kaγ y jϕ
−1)+C,

where we used the notation
n∑

i j=1
Ai j Bi j = Ai j Bi j and D j E j =

∑n
j=1 D j E j to indicate sums over repeated

indices. Therefore,
‖Q̃kv‖

2
= ‖Qkv‖

2
+ k2
‖Lv‖2+ 2k〈Qkv,Lv〉, (3-32)

where
〈u, v〉 =

∫
�+ε

uv dy dµ dν and ‖v‖2 = 〈v, v〉.

The first term of (3-32) is positive and we will compute k2
‖Lv‖2+ 2k〈Qkv,Lv〉. Since v is supported

in {µ≥ 0, ν ≥ 0}, we will assume that µ≥ 0 and ν ≥ 0 in the computations below. We will also use M
for a generic constant. The first term of 〈Qkv,Lv〉 is

〈∂µ∂νv, ϕ
−1(∂ν + γ ∂µ)v〉

=
1
2

∫
�+ε

ϕ−1(∂µ(∂νv)
2
+ γ ∂ν(∂µv)

2) dy dµ dν

=
1
2

∫
�+ε

(∂µ(ϕ
−1(∂νv)

2)+ ∂ν(γ ϕ
−1∂µv)

2) dy dµ dν+ 1
2

∫
�+ε

ϕ−2(γ 2(∂µv)
2
+ (∂νv)

2) dy dµ dν

≥
1
2(γ

2
‖ϕ−1∂µv‖

2
+‖ϕ−1∂νv‖

2). (3-33)

Here we used that v and all its derivatives vanish at {µ= 0} ∪ {ν = 0}, and the boundary terms in 6 j,ε,
j = 1, 2 are nonnegative. The next term is

γ (k2
− k)〈ϕ−2v, ϕ−1(γ ∂µ+ ∂ν)v〉

=
1
2γ (k

2
− k)

∫
�+ε

ϕ−3(γ ∂µ+ ∂ν)v
2 dy dµ dν

=
1
2γ (k

2
− k)

∫
�+ε

(γ ∂µ+ ∂ν)(ϕ
−3v2) dy dµ dν+ 3γ 2(k2

− k)
∫
�+ε

ϕ−4
|v|2 dµ dy

=
1
2γ (k

2
− k)

∫
61,ε

ϕ−3v2 dµ dy+ 1
2γ

2(k2
− k)

∫
62,ε

ϕ−3v2 dν dy+ 3γ 2(k2
− k)‖ϕ−2v‖2. (3-34)
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Since we want to prove (3-31) for all k ≥ 1
4 , we need to get rid of the negative term −3kγ 2

‖ϕ−2v‖2

in (3-34). To do this we use the term ‖ϕ−1∂νv‖
2 from (3-33). Notice that ϕ−1∂νv = ∂ν(ϕ

−1v)+ γ ϕ−2v,
and hence

(ϕ−1∂νv)
2
≥ γ 2ϕ−4v2

+ 2γ ϕ−2v∂ν(ϕ
−1v)= γ 2ϕ−4v2

+ γ ϕ−1∂ν(ϕ
−1v)2.

Therefore,

‖ϕ−1∂νv‖
2
≥ 2γ 2

‖ϕ−2v2
‖

2,

and so

3γ 2(k2
− k)‖ϕ−2v‖2+ 7

16‖ϕ
−1∂νv‖

2
≥ 3γ 2(k2

− k+ 7
24

)
‖ϕ−2v‖2 ≥ 3

8 k2γ 2
‖ϕ−2v‖2.

Hence, the first two terms satisfy

〈∂µ∂νv, ϕ
−1(∂ν + γ ∂ν)v〉+ (k2

− k)〈ϕ−2v, ϕ−1(γ ∂µ+ ∂ν)v〉

≥
1
2γ

2
‖ϕ−1∂µv‖

2
+

1
16‖ϕ

−1∂νv‖
2
+

3
8 k2γ 2

‖ϕ−2v‖2

+
1
2(k

2
− k)

∫
61,ε

ϕ−3v2 dµ dy+ 1
2γ

2(k2
− k)

∫
62,ε

ϕ−3v2 dν dy. (3-35)

To estimate the third term, we integrate by parts in y j , recalling that v is compactly supported in the
y variable in the interior of �+ε . We use that hi j is symmetric to write it as

〈µνhi j (∂yi + kaγ yiϕ
−1)(∂y j + kaγ y jϕ

−1)v,Lv〉

=
1
2

∫
�+ε

µνhi j
[(∂yi + kaγ yiϕ

−1)(∂y j + kaγ y jϕ
−1)v]Lv dy dµ dν

+
1
2

∫
�+ε

µνhi j
[(∂y j + kay jϕ

−1)(∂yi + kaγ yiϕ
−1)v]Lv dy dµ dν = I + II,

where

I =−1
2

∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)[(∂yi − kaγ yiϕ

−1)Lv] dy dµ dν

−
1
2

∫
�+ε

µνhi j (∂yiv+ kaγ yiϕ
−1v)[(∂y j − kaγ y jϕ

−1)Lv] dy dµ dν,

II =−
∫
�+ε

[∂yi (µνhi j )](∂y jv+ kaγ y jϕ
−1v)Lv dy dµ dν.

We can bound II from below by using that

∂yi (µνhi j )(∂y jv+ kaγ y jϕ
−1v)Lv ≥−M(µν)3/4|∂y jv+ kaγ y jϕ

−1v| (µν)1/4|Lv|

≥ −M
(
(µν)3/2|∇yv|

2
+ k2a2γ 2(µν)3/2|y|2ϕ−2v2

+ (µν)1/2|Lv|2
)
.

Hence,

II ≥−M
(
‖(µν)3/4∇yv‖

2
+ γ 2k2a2

‖(µν)3/4|y|ϕ−1v‖2+‖(µν)1/4Lv‖2
)
. (3-36)

Using that

(∂yi − kaγ yiϕ
−1)Lv = L(∂yi − kaγ yiϕ

−1)v− aγ y jϕ
−1Lv− 2kaγ 2 yiϕ

−3v,
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we write I = I1+ I2, where

I1 =−
1
2

∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)[L(∂yiv− kaγ yiϕ

−1v)] dy dµ dν

−
1
2

∫
�+ε

µνhi j (∂yiv+ kaγ yiϕ
−1v)[L(∂y jv− kaγ y jϕ

−1v)] dy dµ dν

I2 = a
∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)(γ yiϕ

−1Lv+ 2kγ 2 yiϕ
−3v) dy dµ dν.

(3-37)

To bound the term I2 from below, we write

µνhi j (∂y jv+ kaγ y jϕ
−1v)(γ yiϕ

−1Lv+ 2kγ 2 yiϕ
−3v)

≥ −M |y|1/2µνϕ−1(|∂yiv| + kaγ |y|ϕ−1
|v|)|y|1/2(γ |Lv| + kaγ 2ϕ−2

|v|)

≥−M
(
|y|(µν)2ϕ−2

|∇yv|
2
+ γ 2
|y|(Lv)2+ k2a2γ 2

|y|3(µν)2ϕ−4
|v|2+ k2a2γ 4

|y|ϕ−4
|v|2

)
.

Therefore,

I2 ≥−Ma
(
‖|y|1/2µνϕ−1

∇yv‖
2
+ γ 2
‖|y|1/2Lv‖2+ k2a2γ 2

‖|y|3/2µνϕ−2v‖2+ k2a2γ 4
‖|y|1/2ϕ−2v‖2

)
(3-38)

Next we consider the term I1. Since L= ϕ−1(∂µ+ ∂ν), integrating by parts in µ and ν we conclude
that the term I1 satisfies

I1 =−
1
2

∫
�+ε

µνhi j L
[
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v)

]
dy dµ dν

=−
1
2

∫
�+ε

(γ ∂µ+ ∂ν)
[
(µνϕ−1hi j )(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v)

]
dy dµ dν

+
1
2

∫
�+ε

[
(γ ∂µ+ ∂ν)(µνϕ

−1hi j )
]
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v) dy dµ dν

=−
1
2

∫
61,ε

µνϕ−1hi j ((∂yi + kaγ y jϕ
−1)v)((∂y j − kaγ y jϕ

−1)v) dµ dy

−
γ

2

∫
62,ε

µνϕ−1hi j ((∂yi + kaγ y jϕ
−1)v)((∂y j − kaγ y jϕ

−1)v) dν dy

+
1
2

∫
�+ε

[
(γ ∂µ+ ∂ν)(µνϕ

−1hi j )
]
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v) dy dµ dν.

Notice that

(γ ∂µ+ ∂ν)(µνhi j (µν, y)ϕ−1)=
[
(γ ν+µ)ϕ−1

− 2γµνϕ−2]hi j
+ (µ+ γ ν)µνϕ−1(∂x hi j )

= ϕ−2[((µ+ γ ν)(µ+ γ ν+ 1
2aγ |y|2

)
− 2γµν

)
hi j (µν, y)

+µν(µ+ γ ν)
(
µ+ γ ν+ 1

2aγ |y|2
)
(∂x hi j )(µν, y)

]
= ϕ−2[(µ2

+ γ 2ν2
+

1
2aγ (µ+ γ ν)|y|2

)
hi j (µν, y)

+µν(µ+ γ ν)
(
µ+ γ ν+ 1

2aγ |y|2
)
(∂x hi j )(µν, y)

]
. (3-39)
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Hence,

|(γ ∂µ+ ∂ν)(µνhi j (µν, y)ϕ−1)| ≤ Mϕ−1(µ+ γ ν). (3-40)

On the other hand, since hi j is positive definite, we know that there exists M > 0 such that

hi j Wi W j ≥ M |W |2, W ∈ Rn, (3-41)

We conclude from (3-39), (3-40), (3-41) and the symmetry of hi j that, for ε small enough, there exists
M such that

[(∂µ+ ∂ν)(µνhi jϕ−1)](∂y jv+ kaγ y jϕ
−1v)(∂y jv− kaγ y jϕ

−1v)

= [(∂µ+ ∂ν)(µνhi jϕ−1)](∂yiv∂y jv− k2a2γ 2 yi y jϕ
−2v2)

≥ M(µ+ γ ν)ϕ−1
|∇yv|

2
−Mk2a2(µ+ γ ν)γ 2

|y|2ϕ−3
|v|2. (3-42)

Hence, for ε small enough,

I1 ≥ M‖ϕ−1/2(µ+ γ ν)1/2∇yv‖
2
−Mk2a2γ 2

‖|y|(µ+ γ ν)1/2ϕ−3/2v‖2

−M
∫
61,ε

µν(ϕ−1
|∇yv|

2
+ k2a2ϕ−3

|y|2v2) dµ dy

−M
∫
62,ε

µν(ϕ−1
|∇yv|

2
+ k2a2ϕ−3

|y|2v2) dν dy. (3-43)

We write the last term of 〈Qkv,Lv〉 as

〈µνB j (∂y j + kaγ y jϕ
−1)v+Cv,Lv〉

= 〈µνϕ−1/2B j (∂y j + kaγ y jϕ
−1)v+ϕ−1/2Cv, ϕ1/2Lv〉

≥ −‖ϕ1/2Lv‖2−‖Cϕ−1/2v‖2−Mk2a2γ 2
‖|y|µνϕ−3/2v‖2−M‖(µν)ϕ−1/2

∇yv‖
2, (3-44)

Therefore, provided ε0 is small enough, we deduce from equations (3-35), (3-36), (3-38), (3-43) and
(3-44) that

k2
‖Lv‖2+ 2k〈Qkv,Lv〉 +Mk

∫
61,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dµ dy

+Mk
∫
62,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dν dy

≥
1
2 kγ 2
‖ϕ−1∂µv‖

2
+

1
16 k‖ϕ−1∂νv‖

2
+

∫
�+ε

(k2
− k M F1(µ, ν, y))|Lv|2 dµ dν dy

+ k
∫
�+ε

|∇yv|
2(M1(µ+ γ ν)ϕ

−1
−M F2(µ, ν, y)) dµ dν dy

+ k
∫
�+ε

k2γ 4ϕ−4v2( 3
8 −M F3(µ, ν, y)

)
dµ dν dy− k

∫
�+ε

|C |ϕ−1v2 dµ dν dy, (3-45)
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where

F1(µ, ν, y)= (µν)1/2+ γ 2
|y| +ϕ,

F2(µ, ν, y)= (µν)3/2+ |y|(µν)2ϕ−2
+ (µν)2ϕ−1,

F3(µ, ν, y)= (µν)3/2|y|2ϕ2
+ |y|3(µν)2+ γ 2

|y| + |y|2(µ+ γ ν)ϕ+ |y|2(µν)2ϕ.

The term involving C is the most problematic. Recall that ϕ = µ+ γ ν+ 1
2aγ |y|2 and, since |µ| ≤ ε,

|y| ≤ ε and ν ≤ ν0, it follows that ϕ ≤ ε+ γ ν0+
1
2aγ ε2. Therefore, if C0 = sup�ε |C |,

3
8 k2γ 2ϕ−4

− |C |2ϕ−1
≥ ϕ−4( 3

8 k2γ 2
−C2

0ϕ
3)
≥ ϕ−4( 3

8 k2γ 2
− 9C2

0
(
ε3
+ γ 3ν3

0 +
1
8aγ 3ε6)).

If one picks γ such that 9γC2
0ν

3
0 <

3
256 , then

3
8 k2
− 9γC2

0ν
3
0 ≥

3
16 k2 for all k ≥ 1

4 ,

and therefore

3
8 k2γ 2ϕ−4

− |C |2ϕ−1
≥ ϕ−4( 3

16 k2γ 2
− 9C2

0
(
ε3
+

1
8aγ 3ε6)) for all k ≥ 1

4 .

Notice also that µ≤ ϕ, and hence the coefficient of |∇v|2 in (3-45) satisfies

M1(µ+ γ ν)ϕ
−1
−M((µν)3/2+ |y|(µν)2ϕ−2

+ (µν)2ϕ−1)

≥ ϕ−1(M1(µ+ γ ν)−M |((µν)3/2ϕ+ |y|µν2
+ (µν)2)

)
≥

1
2 M1(µ+ γ ν)ϕ

−1 for ε0 small enough.

One can then pick ε0, such that for every ε ∈ (0, ε0),

k2
‖Lv‖2+ 2k〈Qkv,Lv〉 +Mk

∫
61,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dµ dy

+Mk
∫
62,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dν dy

≥ M
(
k‖(µ+ γ ν)1/2ϕ−1/2

∇yv‖
2
+ k2
‖Lv‖2+ k‖ϕ−1∂µv‖

2
+ k‖ϕ−1∂νv‖

2
+ k3γ 2

‖ϕ−2v‖2
)
,

This ends the proof of Lemma 3.6. �

Next we want to use (3-31) to prove Lemma 3.5. Let χ ∈ C∞0
(
{|y| < ε/4}

)
, χ = 1 on {|y| ≤ ε/8}.

Let V (µ, ν, y)= χ(y)W̃ (µ, ν, y). We choose ψ(y) to be a C∞0 function supported in {|y|< ε/4} with∫
ψ(y) dy = 1, and define ψδ(y)= (δ)−nψ(y/δ), δ > 0. Then, for δ small enough,

Vδ = ψδ ∗′ V ∈ C∞0 (�2ε) is supported in
{
µ≥ 0, ν ≥ 0, |y| ≤ 1

2ε
}
.

where ∗′ denotes convolution in the y variable. To see that, let ζ(µ, ν) ∈ C∞0 ; then the Fourier trans-
form ζ̂V δ satisfies

ζ̂V δ(ξ1, ξ2, η)= ψ̂(δη)(ζ̂V )(ξ1, ξ2, η),

which in view of (3-30) is rapidly decaying in any conic neighborhood of a point (ξ10, ξ20, η0) 6= 0. Hence
Vδ ∈ C∞, and (3-31) holds for Vδ. Now we would like to take the limit of (3-31) for Vδ as δ→ 0.
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Notice that ϕ ≥ ε on 62,ε and ϕ ≥ γ ν0 on 61ε and, in view of (3-17),∫
61,ε

[µν|∇yϕ
−k W̃ |2+ k2

|ϕ−2−k W̃ |2] dµ dy < M(γ ν0)
−k,∫

62,ε

[µν|∇yϕ
−k W̃ |2+ k2

|ϕ−2−k W̃ |2] dν dy < Mε−k,

(3-46)

and these terms in (3-31) do not offer any problem when passing to the limit.
One cannot use (3-31) with a = 0 to prove Lemma 3.5, however we will use it here to show that

(µ+ γ ν)−k
∇V, (µ+ γ ν)−k−1∂νV, (µ+ γ ν)−k−1∂µV,

(µ+ γ ν)−k−2V ∈ L2(�ε) with k ≥ 1
4 . (3-47)

For now, we take a= 0 and ϕ=µ+γ ν. We know from (3-17) that W̃ , [µν(µ+γ ν)]1/2∇y W̃ ∈ L2(�ε).
Since µγ ν ≤ 1

2(µ+ γ ν)
2, it follows that γ (µ+ γ ν)−1(µν)2 ≤ (µ+ γ ν)µν, and hence one can apply

Friedrich’s lemma — see, for example, Lemma 17.1.5 of [Hörmander 1994a] — to show that

lim
δ→0

∥∥(µ+ γ ν)−1/4µν[(hi j∂yi ∂y j +B j∂y j )ψδ ∗
′ V −ψδ ∗′ (hi j∂yi ∂y j +B j∂y j V )]

∥∥= 0 (3-48)

We also know from (3-17) that, for fixed T > 0, µ1/2∂µW̃ (µ, T, y) ∈ L2([0, T ]× ∂X). Hence the same
holds for V and for Vδ for all δ > 0. One can easily show that

µ(∂µVδ)2 ≥ 1
4µ
−1(logµ)−2V 2

δ − ∂µ((− logµ)−1V 2
δ ).

Since Vδ vanishes to infinite order at µ= 0, if we integrate the above on
[
0, 1

2ε
]
× ∂X we obtain∫

∂X

(
log 2

ε

)−1
Vδ
( 1

2ε, T, y
)

dy+
∫ T

0

∫
∂X
µ(∂µVδ)2 dy dµ≥

∫ T

0

∫
∂X
µ−1(logµ)−2V 2

δ dy dµ. (3-49)

Since, in view of (3-17), the left-hand side is finite for V , if one applies (3-49) to Vδ − Vδ′ it follows that
Vδ is a Cauchy sequence in the norm given by the right-hand side of (3-49). So it converges and, since Vδ
converges weakly to V , we conclude that µ−1/2

|logµ|−1V ∈ L2(�ε), and in particular

(µ+ ν)−1/4V ∈ L2(�ε). (3-50)

Since Q̃ is given by (3-19), it follows from (3-48) and (3-50) that

lim
δ→0

∥∥(µ+ ν)−1/4(Q̃(ψδ ∗′ V )−ψδ ∗′ (Q̃V ))
∥∥= 0. (3-51)

Since Q̃W̃ = 0, it follows that

Q̃V = Q̃(χ(y)W̃ )= µνhi j (W̃∂yi ∂y jχ + 2∂yiχ∂y j W̃ )+µν(B j∂y jχ)W̃ .

So we conclude that, in view of (3-17), (µ+ ν)−1/4 Q̃V ∈ L2(�ε) and hence

lim
δ→0
‖(µ+ γ ν)−k Q̃Vδ‖L2(�ε) = ‖(µ+ γ ν)

−k Q̃V ‖<∞, k = 1
4 . (3-52)
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Therefore (3-31), with a = 0 and k = 1
4 , holds for V in place of Vδ, and in particular we conclude that

(3-47) holds for k = 1
4 (notice that in this case (µ+ γ ν)ϕ−1

= 1). We then apply the argument used
above to show that (3-31) holds for k = 1

4 + 1, and hence (3-47) holds for k = 1
4 + 1, and by induction

and interpolation, this shows that (3-47) holds for all k ≥ 1
4 .

Now we use the same argument with ϕ = ϕ1 = µ+ γ ν+
1
2γ |y|

2. Notice that in this case ϕ ≥ µ+ γ ν
and we have from (3-47) that

ϕ−k
∇y V, ϕ−k−1∂νV, ϕ−k−1∂µV, ϕ−k−2V ∈ L2(�ε), k ≥ 1

4 . (3-53)

Since ϕ depends on y, it is not clear how to apply Friedrich’s lemma in the bootstrapping argument above
to prove (3-53), as one would have to analyze the commutator of the convolution and the weight, which
is of course singular. But, given (3-53), Friedrich’s lemma can be easily applied and we conclude that
(3-31) holds for V and ϕ = ϕ1. In particular we conclude from (3-46) that, for ε small enough,

Mk3ε−k
+C‖ϕ−k Q̃χ(y)W̃‖2 ≥ k3

‖ϕ−2−kχ(y)W̃‖2. (3-54)

Now we really use the power of (3-31) with a = 1: since Q̃W̃ = 0, and χ = 1 for |y| ≤ 1
8ε,

Q̃(χ(y)W̃ ) = [Q̃, χ(y)]W̃ is supported in |y| ≥ 1
8ε, and hence ϕ ≥ λε2 on the support of Q̃V , where

λ= 1
128γ . We deduce from (3-54) that, for ε small enough, there exists C = C(W̃ ) > 0 such that

C(λε2)−2k
≥ ‖ϕ−2−kχ(y)W̃‖2.

Hence, ∥∥∥∥( ϕ

λε2

)−k

χ(y)W̃
∥∥∥∥≤ C, k > 1,

and therefore W̃ (µ, ν, y) = 0 if ϕ ≤ λε2, and in particular W̃ = 0 if 0 ≤ µ ≤ 1
3λε

2, 0 ≤ γ ν ≤ 1
3λε

2

and γ |y|2 ≤ 1
3λε

2. This ends the proof of Lemma 3.5, and consequently the proof of Proposition 3.2. �

Notice that since ν0 ∈ (0, es0/2) is arbitrary, this result also establishes regularity for W̃ , and in particular
it shows that W̃ ∈ H 1

loc.

Proof of Proposition 3.3. We will use Hörmander’s unique continuation theorem, and we will find a
function whose level surfaces are strictly pseudoconvex. The key point here is that the coefficients of
the operator P defined in (3-2) do not depend on s, and hence P is invariant under translations in the
variable s. Let

ϕ(x, s, y)=−x − κ(s− s1)− |y− p|2, where κ > 0 small will be chosen later.

Since, for |y− p| < δ, V = 0 if x ∈ (−ε, 0] and s < s0, or if x < δ and log x < s < s1, we have — see
Figure 6 —

V (x, s, y)= 0 if ϕ > 0, −ε < x < δ, and |y− p|< δ. (3-55)

The principal symbol of the operator P is

p =−2σξ − xξ 2
− xh(x, y, η), (3-56)
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where (ξ, σ, η) are the dual variables to (x, s, y). Since ∇ϕ(x, s, y)= (−1,−κ,−2(y− p)), we have

p(x, s, y,∇ϕ(x, s, y))=−2κ − x
(
1+ h(x, y, 2(y− p))

)
. (3-57)

If |y − p| < β is small enough and x > −κ , then x
(
1 + h(x, y, 2(y − p))

)
> − 3

2κ , and hence
p(x, s, y,∇ϕ) <−1

2κ . Therefore ϕ is not characteristic at (x, s, y) if x >−κ and |y− p|< β, for small
enough β.

The Hamilton vector field of p is

Hp =−2ξ∂s − 2(σ + xξ)∂x − x Hh + (ξ
2
+ h+ x∂x h)∂ξ , (3-58)

where Hh denotes the Hamilton vector field of h(x, y, η) in the variables (y, η). Hence,

(Hpϕ)(x, s, y, ξ, σ, η)= 2(σ + xξ)+ 2κξ + x Hh|y− p|2 and

(H 2
pϕ)(x, s, y, ξ, σ, η)

=−2(σ + xξ)(2ξ + Hh|y− p|2+ x∂x Hh|y− p|2)− (x Hh)
2
|y− p|2+ 2(κ + x)(ξ 2

+ h+ x∂x h).

If Hpϕ = 0, it follows that

H 2
pϕ(x, s, y, ξ, σ, η)= 2(x + 3κ)ξ 2

+ 2ξ((x + κ)Hh|y− p|2+ κx∂x Hh|y− p|2)+ 2(κ + x)(h+ x∂x h)

+ x((Hh|y− p|2)2+ x Hh|y− p|2∂x Hh|y− p|2− x H 2
h |y− p|2).

If |y− p|< β is small enough, there exists C > 0 depending on h only such that

|Hp|y− p|2| ≤ Cβ|η| and |∂x Hp|y− p|2| ≤ Cβ|η|.

If we impose that−1
2κ < x<β, it follows that there exists ε0>0 depending on h such that, if β, κ ∈ (0, ε0)

are small, then there exists C > 0 such that

h+ x∂x h ≥ C |η|2,

and hence

H 2
pϕ(x, s, p, ξ, σ, η)≥ κC(ξ 2

−β|ξ ||η| + |η|2)

≥ Cκ(ξ 2
+ |η|2) if − 1

2κ < x < β, |y− p|< β and κ, δ ∈ (0, ε0).

So we conclude that there exists ε0 > 0 depending on h such that

p(x, s, y, ξ, σ, η)= Hpϕ(x, s, y, ξ, σ, η)= 0 H⇒ H 2
pϕ(x, s, y, ξ, σ, η) > 0

if (ξ, σ, η) 6= 0, −1
2κ < x < β, |y− p|< β, κ, β ∈ (0, ε0). (3-59)

Since P is of second order, we deduce from (3-57) and (3-59) that the level surfaces of ϕ are strictly
pseudoconvex in the region

−
1
2κ < x < β, |y− p|< β provided κ, β ∈ (0, ε0); (3-60)
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see for example the first paragraph of Section 28.4 of [Hörmander 1994b]. As mentioned above, the fact
that the coefficients of P do not depend on s imply that the conditions in (3-60) do not depend on s. Now
we appeal to Theorem 28.2.3 and Proposition 28.3.3 of [Hörmander 1994b] and conclude that, if

Y =
{
−

1
4κ < x < 1

2β, |y− p|< 1
√

2
β, |s− s1|< s0− s1

}
,

then there exist C > 0, τ0 > 0 and λ > 0 large such that, if ψ = eλϕ ,

C‖eτψ Pv‖2 ≥ τ 2
‖eτψv‖2+ τ‖eτψv‖2H1 for all v ∈ C∞0 (Y ) and τ ≥ τ0 > 0. (3-61)

Let θ ∈ C∞0 (Y ) with θ = 1 if − 1
8κ < x < 1

4β, |y− p|< 1
2β and |s− s1|<

3
4(s0− s1). Since PV = 0, it

follows that
P(θV )= [P, θ]V .

But, for (x, s, y) ∈ Y , V (x, s, y) is supported in the region x > 0, s > s1, so we conclude that

P(θ(x, s, y)V ) is supported in (x, s, y) ∈ Y, x ≥ 1
4β, or s− s1 ≥

3
4(s0− s1), or |y− p| ≥ 1

2β.

Therefore, by the definition of ϕ we have

ϕ(x, s, y)≤−min
{1

4β,
1
4 3κ(s0− s1),

1
4β

2} on the support of P(θV ). (3-62)

Pick κ small so that min
{1

4β,
3
4κ(s0− s1),

1
4β

2
}
=

3
4κ(s0− s1)= γ . We deduce from (3-61) and (3-62)

that
τ 2
‖eτ(e

λϕ
−e−λγ )θV ‖2 ≤ C, τ > τ0.

We remark that, due to Friedrich’s lemma, one can apply (3-61) to θV even though V is not C∞; see
[Hörmander 1994b]. Therefore, θV = 0 if eλϕ − e−λγ > 0, so θV = 0 if ϕ >−γ . So we deduce that

θV (x, s, y)= 0 provided κ(s− s1) <
1
3γ, 0< x < 1

3γ |y− p|2 < 1
3γ.

In particular,

V (x, s, y)= 0 provided s < s1+
1
4(s0− s1), 0< x < 1

3γ, |y− p|2 < 1
3γ. (3-63)

This concludes the proof of Proposition 3.3. �

Proof of Proposition 3.4. The key point in the proof is the following consequence of Tataru’s theorem
[1995; 1999]; see also [Hörmander 1997; Robbiano and Zuily 1998]. Let � be a C∞ manifold equipped
with a C∞ Riemannian metric g. Let L be a first-order C∞ operator that does not depend on t . If u(t, z)
is a C∞ function that satisfies

(D2
t −1g + L(z, Dz))u = 0 in (−T̃ , T̃ )×�,

u(t, z)= 0 in a neighborhood of {z0}× (−T, T ), T < T̃ ,

then
u(t, z)= 0 if |t | + dg(z, z0) < T, (3-64)

where dg is the distance measured with respect to the metric g.
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Since the initial data of (2-1) is (0, f ), u(t, z)=−u(−t, z). If 0< x <γ , log x < s< s1, and |y− p|<δ,
it follows from the definition of V+ that

u(t, x, y)= 0 if 0< x < γ, |y− p|< δ and |t | ≤ s2− log x = log es2

x
.

Applying (3-64) with z0 = (x, y), we obtain

u(t, z)= 0 provided |t | + dg(z; (x, y)) < log es2

x
with 0< x < δ, |y− p|< δ.

If z = (α, y) with es∗ > α > x , dg((x, y); (α, y))= log(α/x), it follows from (3-64) that

u(t, (α, y))= 0 if t + log α
x
< log es2

x
.

In particular this guarantees that u(t, α, y)= 0 if 0< t < log(es2/α) and, since s = t + logα, we have
V+(α, s, y)= 0 if α < es∗ , log x < s < s2 and |y− p|< δ. This ends the proof of Proposition 3.4. �

Proof of Theorem 2.1. As promised at the beginning of the section, we shall now finish the proof
of Theorem 2.1. We start with (3-10), which says that V+(x, s, y) = x−n/2u(s − log x, x, y) satisfies
V+(x, s, y)= 0 if y ∈ 0, x < es∗ and log x < s < s < s0.

Now we recall that V+(x, s, y) = x−n/2u(s − log x, x, y) and so, if w = (α, p) with 0 < α < es∗

and p ∈ 0, then the solution u(t, z) vanishes in a neighborhood of {w} × (0, log(es0/α)). Again we
use that the data is of the form (0, f ), and hence u(−t, z) = −u(t, z). So in fact u(t, z) vanishes in a
neighborhood of {w}× (− log(es0/α), log(es0/α)). Therefore, by (3-64),

u(t, z)= ∂t u(t, z)= 0 if |t | + dg(z, w) < log es0

α
.

In particular, when t = 0 we find that ∂t u(0, z) = f (z) = 0 provided dg(z, w) < log(es0/α), and this
concludes the proof of Theorem 2.1. �

Final remarks. The following result will be useful in the next section:

Corollary 3.7. Let (X, g) be a connected AHM and let 0 ⊂ ∂X be open, 0 6= ∅. If f ∈ L2
ac(X) and

R+(0, f )(s, y)= 0 in R×0, then f = 0. Similarly, if (h, 0) ∈ Eac(X) and R+(h, 0)(s, y)= 0 in R×0,
then h = 0.

Proof. If R+(0, f )(s, y) = 0 in R× 0, then f (z) = 0 if z ∈ Ds0(0) for every s0. Since the distance
between any two points in the interior of X is finite, it follows that f = 0.

Suppose F =R+(h, 0)(s, y)= 0 in R×0. As in the proof of Proposition 3.2, by taking the convolution
of F with φ∈C∞0 (R), even, we may assume that (1g−n2/4)kh∈ L2

ac(X) for every k≥0. Let u(t, z) satisfy
(2-1) with initial data (h, 0) and let V = ∂t u. Then V satisfies (2-1) with initial data (0, (1g − n2/4)h)
and R+(0, (1g−n2/4)h)(s, y)= 0 in R×0. But, as we have shown, this implies that (1g−n2/4)h = 0.
Since (h, 0) ∈ Eac(X), this implies that h = 0. �

One should remark that this result can be proved by applying a result of Mazzeo [1991]; see also [Vasy
and Wunsch 2005]. The solution to (2-1) with initial data (0, f ) is odd and, since R+(0, f )(s, y)= 0
for s ∈ R, y ∈ 0, it follows that R−(0, f )(s, y)= 0 for s ∈ R, y ∈ 0. Taking the Fourier transform in t ,
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we find that (
1g − λ

2
−

1
4 n2)û(λ, z)= 0

and, using that R+(0, f )(s, y)=R−(0, f )(s, y)= 0, one deduces that û(λ, z) vanishes to infinite order
at 0, using a formal power series argument as in the proof of Proposition 3.4 of [Graham and Zworski
2003]. Theorem 14 of [Mazzeo 1991] implies that û = 0 and hence u = 0. In particular, f = 0.

4. The control space

As we saw in (3-13) and (3-14), the ranges of the forward and backward radiation fields

R±(0, L2
ac(X))= {R±(0, f ) : f ∈ L2

ac(X)}

are closed subspaces of L2(R×∂X) and are characterized by the scattering operator. Moreover, since R±
are unitary, ‖R±(0, f )‖L2(R×∂X) = ‖ f ‖L2(X). The main goal of this section is to show that the ranges
{R±(0, f )|R×0} are determined by the restriction of the scattering operator to 0, as defined in (2-13).
Throughout the remainder of the paper we shall write

L2(R×0)= {F |R×0 : F ∈ L2(R× ∂X)}.

The key observation is:

Lemma 4.1. If F =R+(h, f ) ∈ L2(R×0), then

‖ f ‖L2(X) =
〈
F, 1

2(F + S0F∗)
〉
,

and in particular ‖ f ‖L2(X) is determined by S0F.

Proof. If F(s, y)=R+(h, f ) ∈ L2(R×0), so in particular F is supported in R×0 then, according to
(3-12) and the fact that R+ is unitary,〈

F, 1
2(F +S0F∗)

〉
=
〈
F, 1

2(F + (SF∗)|R×0)
〉
=
〈
F, 1

2(F +SF∗)
〉

= 〈R+(h, f ),R+(0, f )〉 = ‖ f ‖2L2(X). �

This suggests that
Cn
+

(
R+(0, f )|R×0

)
= ‖ f ‖L2(X)

defines a norm on the space {R+(0, f )|R×0 : f ∈ L2
ac(X)}. We shall prove that it does and, moreover, the

norm is determined by S0.

Theorem 4.2. Let 0 ⊂ ∂X be a nonempty open subset such that ∂X \0 does not have empty interior. The
space

M(0)± = {R±(0, f )|R×0 : f ∈ L2
ac(X)},

equipped with norm Cn
±

defined by

Cn
±
(R±(0, f )|R×0)= ‖ f ‖L2(X), (4-1)

is a Hilbert space determined by S0.
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Proof. We shall work with the forward radiation field. The proof of the result for R− is identical. Since
R+ is linear, the triangle inequality for the L2(X)-norm implies that Cn

+
is a norm, and that〈

R+(0, f )|R×0,R+(0, h)|R×0
〉
Cn
+

= 〈 f, h〉L2(X)

is an inner product. Since R+ is continuous and L2
ac(X) is complete, it follows that (M(0)+,Cn

+
) is a

Hilbert space. We need to show that it is determined by S0 . We recall from (3-12) that if F =R+( f, h)
then

1
2(F +SF∗)|R×0 =R+(0, h)|R×0. (4-2)

So, if F ∈ L2(R×0), then F∗ ∈ L2(R×0) and hence (F +SF∗)|R×0 = F +S0F∗. We shall let

L : L2(R×0)→ L2(R×0)

F 7→ 1
2(F +S0F∗).

(4-3)

Since S is unitary, it follows that ‖L‖ ≤ 1. Since R+ is unitary, given F ∈ L2(R× 0) there exists
( f, h) ∈ Eac(X) such that R+( f, h)= F . We can say the following about such initial data:

Lemma 4.3. Let 0 ⊂ ∂X be a nonempty open subset such that ∂X \ 0 contains an open set O, and
let h ∈ L2

ac(X). Then there exists at most one f such that ( f, 0) ∈ Eac(X) and R+( f, h) is supported
in R×0. Moreover, the set

C(0)= {h ∈ L2
ac(X) : there exists ( f, 0) ∈ Eac(X) such that R+( f, h)(s, y)= 0, y ∈ ∂X \0}

is dense in L2
ac(X).

Proof. First, if R+( f1, h) and R+( f2, h) are supported in R×0, then R+( f1− f2, 0) is supported in
R×0, but this implies that R+( f1− f2, 0)= 0 in R×O, and so Corollary 3.7 implies that f1 = f2.

If v∈ L2
ac(X) is such that 〈v, h〉L2(X)=0 for all h∈C(0) then, since R+ is unitary, for all ( f, 0)∈Eac(X),

〈v, h〉L2(X) = 〈R+(0, v),R+( f, h)〉L2(R×∂X)

Since h ∈ C(0) is arbitrary, it follows that

〈R+(0, v), F〉L2(R×∂X) = 0 for all F ∈ L2(R×0).

Hence R+(0, v)= 0 on R×0 and, by Corollary 3.7, v = 0. �

Lemma 4.4. If 0⊂ ∂X is open, nonempty and ∂X \0 contains an open subset, then the map L is injective
and has dense range.

Proof. If F =R+( f, h) ∈ L2(R×0), then LF =R+(0, h)|R×0 . If LF = 0 then R+(0, h)= 0 on R×0.
It follows from Corollary 3.7 that h = 0, and hence F = R( f, 0). Since there exists an open subset
O ⊂ (∂X \0), and F is supported in R×0, it follows that F = R+( f, 0) = 0 in R× O, and again by
Corollary 3.7, f = 0 and so F = 0.



544 RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

Now we prove that its range is dense. Let H ∈ L2(R×0) be orthogonal to the range of L. Suppose
that H =R+(h1, h2), with (h1, h2) ∈ Eac(X). Then for every F =R+( f, h) ∈ L2(R×0), h ∈ C(0),

0= 〈H, (F +SF∗)|R×0〉L2(R×0) = 〈H, F +SF∗〉L2(R×0) = 〈H,R+(0, h)〉L2(R×∂X)

= 〈R+(h1, h2),R+(0, h)〉L2(R×∂X)

= 〈h2, h〉L2(X).

Since C(0) is dense in L2
ac(X), h2 = 0. Hence H =R+(h1, 0)= 0 on R×O, and so H = 0. �

We shall let

F+(0)= L(L2(R×0))= {R+(0, f )|R×0 : f ∈ C(0)}, (4-4)

and equip F+(0) with the norm given by Lemma 4.1,

Cn
+
(R+(0, f ))= ‖ f ‖L2(X).

Thus (F+(0),Cn
+
) is a normed vector space and, since C(0) is dense in L2(X), F+(0) is dense in

(M+(0),Cn
+
). Hence (M+(0),Cn

+
) is the completion of (F+(0),Cn

+
) into a Hilbert space, and therefore

it is determined by S0 . Notice that the completion of F+(0) with the L2(R×0)-norm is L2(R×0). But

‖R+(0, h)|(R×0)‖L2(R×0) ≤ ‖h‖L2(X),

so Cn
+

is a stronger norm and (M+(0),Cn
+
) is a smaller space. This ends the proof of Theorem 4.2. �

5. Proof of Theorem 2.3

The operators S j,0 , j = 1, 2 were defined in terms of boundary-defining functions for which (2-14) holds
for both g1 and g2 in U j ∼ [0, ε)× ∂X j . In particular,

9∗j g j =
dx2

x2 +
h j (x)

x2 on (0, ε)×0, h1(0)= h2(0)= h0 on 0. (5-1)

Our first step will be to prove that there exists ε > 0 such that the tensors h1(x) and h2(x) are equal
on [0, ε)×0. Once this is done, if 9 j : [0, ε)× ∂X j → U j , j = 1, 2, are the maps that satisfy (2-14),
and if W1,ε =91([0, ε)×0), W2,ε =92,ε([0, ε)×0), then

9∗1 (g1|W1,ε)=9
∗

2 (g2|W2,ε) on [0, ε)×0. (5-2)

Since 9 j = Id on 0, j = 1, 2, this implies that

9ε =92 ◦9
−1
1 :W1,ε 7→W2,ε, (92 ◦91)

−1g2 = g1, 9ε = Id on 0 (5-3)

gives an isometry between neighborhoods of 0.
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The local diffeomorphism. We will prove that, if h j (x) are such that (5-1) holds, then h1(x) = h2(x)
on [0, ε)×0, and hence this gives the map 9ε defined in (5-3). Our first step in this construction will be:

Proposition 5.1. Let (X1, g1), (X2, g2) and 0 satisfy the hypotheses of Theorem 2.3, and denote by
R j,±(s, y, x ′, y′) the Schwartz kernels of R j,± acting on (0, f ). Then there exists ε > 0 such that (2-14)
holds on [0, ε)× ∂X j , j = 1, 2, and

h1(x, y, dy)= h2(x, y, dy) if x ∈ [0, ε), y ∈ 0,

R1,±(s, y, x ′, y′)=R2,±(s, y, x ′, y′) if y, y′ ∈ 0, x ′ < ε.
(5-4)

Proof. The proof of Proposition 5.1 is an adaptation of the boundary control method of [Belishev 1987;
Belishev and Kurylev 1992] to this setting. By working on an open subset of 0 if necessary, we may
assume that ∂X \0 does not have empty interior. As in [Sá Barreto 2005], pick x1 < ε and consider the
spaces

M+x1
(0)= {F ∈M+(0) : F(s, y)= 0, s ≤ log x1},

M−x1
(0)= {F ∈M−(0) : F(s, y)= 0, s ≥− log x1},

and let
P+x1
:M+(0)→M+x1

(0) and P−x1
:M−(0)→M−x1

(0) (5-5)

denote the respective orthogonal projections with respect to the norms Cn
±

defined in (4-1). Since
M±(0) and M±x1

(0) are determined by S0, the projections P±x1
are also determined by S0. Notice that

(P+x1
F)(s, y) is not necessarily equal to H(s − log x1)F(s, y), where H is the Heaviside function, as

H(s− log x1)F(s, y) may not be in M+(0).
In view of finite speed of propagation and Theorem 2.1,

M+x1
(0)= {R+(0, h)|R×0 : h ∈ L2

ac(X), h(z)= 0, z ∈ Dlog x1(0)},

M−x1
(0)= {R−(0, h)|R×0 : h ∈ L2

ac(X), h(z)= 0, z ∈ Dlog x1(0)}.

As in [Sá Barreto 2005], the key to proving Proposition 5.1 is to understand the effect of the projec-
tors P±x1

on the initial data. First we deal with the case where 1g j , j = 1, 2, have no eigenvalues. In this
case, L2(X j )= L2

ac(X j ).

Lemma 5.2. Let (X, g) be an asymptotic hyperbolic manifold such that 1g has no eigenvalues. Let x be
such that (2-4) holds in (0, ε)×∂X. For x1∈ (0, ε), let P+x1

denote the orthogonal projector defined in (5-5).
Let χx1 be the characteristic function of the set Xx1 = X \Dlog x1(0). Then, for every f ∈ L2

ac(X)= L2(X),

P+x1
(R+(0, f )|R×0)=R+(0, χx1 f )|R×0.

Proof. Since P+x1
is a projector, there exists fx1 ∈ L2(X) such that

P+x1
(R+(0, f )|R×0)=R+(0, fx1)|R×0

and, for every h ∈ L2(X) supported in Xx1 ,〈
R+(0, fx1)|R×0,R+(0, h)|R×0

〉
Cn
+

= 〈 fx1, h〉L2(X) = 〈 f, h〉L2(X).
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Hence fx1 = χx1 f . �

Next we will analyze the singularities R+(0, χx1 f ) at {s= log x1} and, as in the proof of Proposition 3.2,
we may assume that f is C∞. In the case where 0=∂X , χx1 is the characteristic function of the set {x≥ x1}

and the singularities of R+(0, χx1 f ) can be computed using the plane wave expansion of the solution to
the Cauchy problem

PV = 0, V |s=log x = 0 and ∂s V |s=log x = f (x, y)χx1, (5-6)

where P is the operator defined in (3-2). In this case, one just writes

V (x, s, y)= V+(x, s, y)+ V−(x, s, y), where

V+(x, s, y)∼
∞∑
j=1

v+j (x, y)(s− log x1)
j
+ and V−(x, s, y)∼

∞∑
j=1

v−j (x, y)(2 log x − x1− s) j
+,

where s = log x1 and s = 2 log x+ log x1 correspond to the forward and backward waves emanating from
{x = x1, s = log x}. One then computes the coefficients of the expansion by using a series of transport
equations. The wave V−(x, s, y) goes towards the interior and will hit {x = 0} for s > log x1, but the
wave V+(x, s, y) will intersect {x = 0} at s = log x1. The first coefficient in the expansion of V+(x, s, y)
is given by v+1 (x, y)= 1

2(|h|
1/4(x1, y)/|h|1/4(x, y))x−n/2−1

1 f (x1, y). Since (3-16) is well defined for L2
ac

initial data, R+(0, χx1 f )= ∂s V (x, s, y)|{x=0}, and hence near {s = log x1} one has an expansion

R+(0, χx1 f )∼ 1
2
|h|1/4(x1, y)
|h|1/4(0, y)

x−n/2−1
1 f (x1, y)(s− log x1)

0
+
+

∞∑
j=1

v j (0, y)+(s− log x1)
j
+. (5-7)

We refer the reader to the proof of Lemma 8.9 of [Sá Barreto 2005] for details.
In the case studied here, when 0 6= ∂X , this is not so clear since χx1 is the characteristic function of

Xx1 = X \Dlog x1(0), which is a more complicated set. However, if x1 is small enough, the boundary of Xx1

contains 0x1 = {(x1, y) : y ∈0}. We will show that the singularities of R+(0, χx1 f ) at {s = log x1, y ∈0}
can be computed as in the previous case. The singularities of χx1 f lie on the set

∂Dlog x1 = {z ∈ X̊ : there exists (x̄, ȳ) ∈Uε such that dg(z, (x̄, ȳ))= log x1− log x̄}

Since X̊ is complete, there exists a geodesic γ joining z ∈ ∂Dlog x1 and (x̄, ȳ) such that

γ (0)= z, γ (t̄)= (x̄, ȳ) and t̄ = dg(z, (x̄, ȳ)).

One can think of this in terms of the wave equation with γ being the projection of a null bicharacteristic
of p = 1

2(τ
2
− x2ξ 2

− x2h(x, y, η)) in {p = 0, τ = 1} starting at z and going to (x̄, ȳ). If one then sets
s = t + log x it follows that, along this bicharacteristic, s = t + log x(γ (t)). Hence, at t̂ , s(t̄)= log x1. In
these coordinates (we are using ξ by abuse of notation but we should use ξ̃ , where ξ̃ = ξ − τ/x),

{p = 0, τ = 1} =
{

p = σξ + 1
2 xξ 2
+

1
2 xh(x, y, η)= 0, σ = 1

}
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and we have that, for 1+ xξ 6= 0,

ds
dx
=

ξ

1+ xξ
,

dξ
dx
=−

ξ 2
+ h+ x∂x h
2(1+ xξ)

,
dη
dx
=−

x∂yh
2(1+ xξ)

,
dy
dx
=−

x∂ηh
2(1+ xξ)

.

So, unless ξ = η = 0, ds/dx 6= 0. But, if ξ = η = 0 at a point then, by uniqueness, ξ = η = 0 along
the curve. In the latter case s = log x1, y = ȳ ∈ 0 along the curve. If ξ 6= 0, the geodesic will reach
{x = 0} for s 6= log x1. So we conclude that (5-7) holds for y ∈ 01, where 01 is a compact subset of 0.
The precise propagation of singularities is given by:

Lemma 5.3. Let x be a defining function of ∂X such that (2-4) holds. Let M+(0) 3 F =R+(0, f )|R×0
with f smooth. Let2(x1, s, y)= 1

2 x−n/2−1
1 f (x1, y)(|h|1/4(x1, y)/|h|1/4(0, y))(s− log x1)

0
+

. There exists
ε > 0 such that, for any x1 ∈ (0, ε),

P+x1
F(s, y)−2(x1, s, y) ∈ H 1

loc(R×0). (5-8)

Since P+x1
and M+(0) are determined by S0 in view of (5-8), 2(x1, s, y) is determined by S0 provided

x1 ∈ (0, ε) and y ∈0. By assumption in Theorem 2.3, h0,1= h0,2 on 0. Therefore, |h1|(0, y)= |h2|(0, y),
y ∈ 0 and, since F =R+(0, f )|R×0 in Lemma 5.3, we obtain the following result:

Corollary 5.4. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothesis
of Theorem 2.3. Moreover, assume that 1g j , j = 1, 2, have no eigenvalues. Let R j,±, j = 1, 2, denote the
corresponding forward or backward radiation fields defined in coordinates in which (2-4) holds. Then
there exists an ε > 0 such that, for (x, y) ∈ [0, ε)×0,

|h1|
1/4(x, y)R−1

1,−F(x, y)= |h2|
1/4(x, y)R−1

2,−F(x, y) for all F ∈M−(0),

|h1|
1/4(x, y)R−1

1,+F(x, y)= |h2|
1/4(x, y)R−1

2,+F(x, y) for all F ∈M+(0).
(5-9)

Proposition 5.1 easily follows from this result. Indeed, since

R−1
j,−

(
∂2

∂s2 F
)
=
(
1g j −

1
4 n2)R−1

j,−F, (5-10)

if we apply Corollary 5.4 to ∂2
s F we obtain

|h1|
1/4(x, y)

(
1g1 −

1
4 n2)R−1

1,−F(x, y)= |h2|
1/4(x, y)

(
1g2 −

1
4 n2)R−1

2,−F(x, y). (5-11)

If R−1
1,−F = (0, f ), where F ∈M(0)− is arbitrary and the metrics have no eigenvalues, equations (5-9)

and (5-11) give

|h1|
1/4(x, y)

(
1g1 −

1
4 n2) f (x, y)= |h2|

1/4(x, y)
(
1g2 −

1
4 n2) |h1|

1/4(x, y)
|h2|1/4(x, y)

f (x, y) (5-12)

for all f ∈ C∞0 ((0, ε)× 0) ∩ L2
ac(X). Therefore the operators on both sides of (5-12) are equal. In

particular, the coefficients of the principal parts of 1g1 are equal to those of 1g2 , and hence the tensors
h1 and h2 from (2-4) are equal. This proves that

R−1
1,−(s, y, x ′, y′)=R−1

2,−(s, y, x ′, y′), y, y′ ∈ 0, x ′ ∈ [0, ε),

h1(x, y, dy)= h2(x, y, dy), y ∈ 0, x ∈ [0, ε),
(5-13)
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and of course the same holds for the forward radiation field. Since R± are unitary, R−1
± =R∗

±
, and hence

this determines the kernel of R±. This proves Proposition 5.1 in the case of no eigenvalues.
Now we remove the assumption that there are no eigenvalues. We need to show that, if S1,0 = S2,0,

then the eigenvalues of 1g1 and 1g2 are equal, and the eigenfunctions can be reordered in such a way
that their traces are equal on 0. In fact they agree to infinite order at 0. To show that, we need to appeal
to the stationary version of scattering theory, and we have to recall the relationship between the scattering
operator, the scattering matrix and the resolvent from [Sá Barreto 2005]. It was shown in [Joshi and
Sá Barreto 2000] that A(λ), defined in (2-10), continues meromorphically to C\D, where D is a discrete
set. The eigenvalues of 1g correspond to poles of A(λ) on the negative imaginary axis. Proposition 3.6
of [Graham and Zworski 2003] states that, if λ0 ∈ iR− is such that 1

4 n2
+λ2

0 is an eigenvalue of 1g, then
the scattering matrix A(λ) has a pole at λ0 and its residue is given by

Resλ0 A(λ)=
{
5λ0 if − iλ0 6∈

1
2 N,

5λ0 − Pl if − iλ0 =
1
2 l, l ∈ N,

(5-14)

where Pl is a differential operator whose coefficients depend on derivatives of the tensor h at ∂X , and the
Schwartz kernel of 5λ0 is

K (5λ0)(y, y′)=−2iλ0

N0∑
j=1

φ0
j ⊗φ

0
j (y, y′), (5-15)

where N0 is the multiplicity of the eigenvalue 1
4 n2
+ λ2

0, the φ j , 1 ≤ j ≤ N0, are the corresponding
orthonormalized eigenfunctions and φ0

j (y) is defined by

φ0
j (y)= x−n/2−λ0φ j (x, y)|x=0. (5-16)

Since A1,0 = A2,0, λ ∈ R \ 0, it follows from Theorem 1.2 of [Joshi and Sá Barreto 2000] that,
in coordinates where (2-14) is satisfied, all derivatives of h1 and h2 agree at x = 0 on 0. Therefore
the operators Pl, j in (5-14) corresponding to (X j , g j ) are the same in 0. Then (5-14), (5-15), and the
meromorphic continuation of the scattering matrix show that 1g1 and 1g2 have the same eigenvalues with
the same multiplicity. Moreover, (5-15) implies that if φ j and ψ j , 1≤ j ≤ N0, are orthonormal sets of
eigenfunctions of 1g1 and 1g2 , respectively, corresponding to the eigenvalue 1

4 n2
+ λ2

0, then there exists
a constant orthogonal (N0× N0)-matrix A such that 80

∣∣
0
= A90

∣∣
0

, where (80)T = (φ0
1, φ

0
2, . . . , φ

0
N0
)

and (90)T = (ψ0
1 , ψ

0
2 , . . . , ψ

0
N0
). So, by redefining one set of eigenfunctions from, let us say, 9 to A9,

where 9T
= (ψ1, ψ2, . . . , ψN0), we may assume that

φ0
j (y)= ψ

0
j (y), y ∈ 0, j = 1, 2, . . . , N0. (5-17)

Note that this does not change the orthonormality of the eigenfunctions in X2 because A is orthogonal.
Denote the eigenvalues of 1g1 and 1g2 , which we know are equal, by

µ j =
1
4 n2
+ λ2

j , λ j ∈ iR−, 1≤ j ≤ N . (5-18)

They are also ordered so that µ1 ≤ µ2 ≤ · · · ≤ µN .
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Again, we use that the singularities of χx1 f at 0x1 produce the singularities of R+(0, χx1 f ) at
{s = log x1, y ∈ 0} and expand the solution to (2-1) with initial data, (0, χx1 f ). However, in this
case L2(X) 6= L2

ac(X) and hence Lemma 5.2 is not valid, and we have to replace it by the following:

Lemma 5.5. Let (X, g) be an asymptotic hyperbolic manifold and let φ j , 1 ≤ j ≤ N , denote the
orthonormal set of eigenfunctions of 1g. Let x be such that (2-4) holds in (0, ε)× ∂X. For x1 ∈ (0, ε),
let P+x1

denote the orthogonal projector defined in (5-5). Let χx1 be the characteristic function of the set
Xx1 = X \Dlog x1(0). There exists ε0 such that, if ε < ε0, then for every f ∈ L2

ac(X) there exists α(x1, f ),
which is a linear function of f , such that

P+x1
(R+(0, f )|R×0)=R+

(
0, χx1

(
f −

N∑
j=1

αj (x1, f )φ j

))∣∣∣∣
R×0

.

Proof. Let h ∈ L2
ac(X) be supported in Xx1 . This means that 〈h, χx1φ j 〉= 0 for 1≤ j ≤ N . Then, since P+x1

is a projector, there exists fx1 ∈ L2
ac(X), supported in Xx1 , such that P+x1

(R+(0, f )|R×0)=R+(0, fx1)|R×0

and, for every h ∈ L2
ac(X) supported in Xx1 ,〈
R+(0, fx1)|R×0,R+(0, h)|R×0

〉
Cn
+

= 〈 fx1, h〉L2(X) = 〈 f, h〉L2(X).

Hence 〈( fx1 − f ), h〉 = 0 for all h ∈ C∞0 (X) ∩ L2
ac(X) supported in Xx1 . We claim that there exist

αj = αj (x1, f ) ∈ C such that

fx1 −χx1 f −χx1

N∑
j=1

αjφ j = 0 for x1 small enough.

If such a formula were to hold, since 〈 fx1, χx1φ j 〉 = 0 one would have to have

〈 f, χx1φk〉L2(X) =

N∑
j=1

αj 〈χx1φ j , χx1φk〉L2(X).

This gives a linear system of equations

Mα = F, αT
= (α1, . . . , αN ), FT

= (F1(x1), . . . , FN (x1)),

M jk(x1)= 〈χx1φ j , χx1φk〉L2(X), Fk(x1)= 〈 f, χx1φk〉L2(X).

Since the eigenfunctions are orthonormal, for x1= 0 we have M jk(0)= δ jk . Therefore, there exists ε0> 0,
which depends on the matrix M , and hence only on the eigenfunctions and not on f , such that the
system has a solution if x1 < ε0. Notice that, since f ∈ L2

ac(X), for x1 = 0 we have Fk(0) = 0, and
hence α(0, f )= 0.

With this choice of αj , the function

G = fx1 −χx1 f −χx1

N∑
j=1

αjφ j

is supported in Xx1 and 〈G, φ j 〉L2(X) = 0, so G ∈ L2
ac(X). But at the same time 〈F, h〉L2(X) = 0 for all

h ∈ L2
ac(X) supported in Xx1 . Therefore 〈G,G〉L2(X) = 0, and so G = 0. �
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As in [Sá Barreto 2005], we shall denote

T (x1) f =
∑

j

αj (x1, f )φ j .

Since α(0, f )= 0, T (0)= 0. Therefore one can pick ε small so that

‖T (x1)‖<
1
2 for x1 < ε. (5-19)

In this case, Lemma 5.3 and Corollary 5.4 have to be substituted by:

Lemma 5.6. Let (X, g) be an asymptotically hyperbolic manifold, and let x be a defining function of ∂X
such that (2-4) holds. Let φ j , 1 ≤ j ≤ N , denote the eigenfunctions of 1g and let T (x1) be defined as
above. Let F ∈M+(0), F =R+(0, f )|R×0 with f smooth and let

4(x1, s, y)= 1
2 x−n/2−1

1
|h|1/4(x1, y)
|h|1/4(0, y)

[
(Id−T (x1)) f

]
(x1, y)(s− log x1)

0
+
.

There exists ε > 0 such that, for any x1 ∈ (0, ε),

P+x1
F(s, y)−4(x1, s, y) ∈ H 1

loc(R×0). (5-20)

Corollary 5.7. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothesis
of Theorem 2.3. Let R j,±, j = 1, 2, denote the corresponding forward or backward radiation fields defined
in coordinates in which (2-4) holds. Then there exists an ε > 0 such that, for (x, y) ∈ (0, ε)×0,

|h1|
1/4(x, y)(Id−T1(x))R−1

1,−F(x, y)= |h2|
1/4(x, y)(Id−T2(x))R−1

2,−F(x, y) for all F ∈M−(0),

|h1|
1/4(x, y)(Id−T1(x))R−1

1,+F(x, y)= |h2|
1/4(x, y)(Id−T2(x))R−1

2,+F(x, y) for all F ∈M+(0).
(5-21)

We write R−1
j,−F(x, y)= f j (x, y), and pick ε small so that (5-19) holds. We apply (5-21) to f1 and f2

and to
(
1g1 −

1
4 n2

)
f1 and

(
1g2 −

1
4 n2

)
f2 for (x, y) ∈ [0, ε)×0 and find that

|h1(x)|1/4(Id−T1(x)) f1 = |h2(x)|1/4(Id−T2(x)) f2,

|h1(x)|1/4(Id−T1(x))
(
1g1 −

1
4 n2) f1(x, y)= |h2(x)|1/4(Id−T2(x))

(
1g2 −

1
4 n2) f2(x, y).

(5-22)

Therefore,

f2(x, y)= (Id−T2(x))−1 |h1|
1/4

|h2|1/4
(Id−T1(x)) f1(x, y)=

|h1|
1/4

|h2|1/4
f1(x, y)+ K (x) f1(x, y),

where K is a compact operator. If one substitutes this into the second equation in (5-22), one obtains

|h1|
1/4(Id−T1)

(
1g1 −

1
4 n2) f1 = |h2|

1/4(Id−T2)
(
1g2 −

1
4 n2)( |h1|

1/4

|h2|1/4
f1+ K f1

)
Hence, (

1g1 −
1
4 n2) f1(x, y)−

|h2|
1/4

|h1|1/4

(
1g2 −

1
4 n2)( |h1|

1/4

|h2|1/4
f1

)
(x, y)= (K f1)(x, y),
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where K is a compact operator. Since the operator on the left-hand side is a differential operator, and the
operator on the right-hand side is compact, they both must be equal to zero. As above, we conclude that
in coordinates (x, y), the coefficients of the operators 1g1 are equal to those of 1g2 . Hence, we must
have h1(x, y, dy)= h2(x, y, dy).

We still have to show that (5-4) holds in the case where eigenvalues exist. Let F ∈ M+(0), and
let f j =R−1

j,+F . Let v j satisfy (2-1) with initial data (0, f j ). Let V j (x, s, y)= x−n/2v j (s− log x, x, y).
Since R+(0, f j )= F , we have ∂s V j (0, s, y)= F . Since1g1 =1g2 in (0, ε)×0, for P as defined in (3-2),

P(V1− V2)= 0 in log x < s, x < ε, y ∈ 0

(V1− V2)(x, log x, y)= 0, ∂s(V1− V2)(x, log x, y)= f1(x, y)− f2(x, y) on x < ε, y ∈ 0,

∂s(V1− V2)(0, s, y)= 0, y ∈ 0, s ∈ R.

(5-23)

Now we apply Propositions 3.2, 3.3 and 3.4 as in the proof of Theorem 2.1, to conclude that there exists s∗

such that

V1(x, s, y)= V2(x, s, y) provided x < es∗, y ∈ 0, s ∈ R.

We then apply Tataru’s theorem, as in the argument used in the final step of the proof of Theorem 2.1, to
conclude that f1(z)− f2(z)= 0 for every z ∈ (0, ε)×0 such that there exists (x, y) ∈ (0, es∗)×0 with
d(z, (x, y)) < es/x . In particular this shows that f1 = f2 in (0, ε)×0. One cannot say that f1 = f2 on
X since (5-23) only holds on (0, ε)×0. Since F is arbitrary, (5-4) follows. �

Since h1(x)= h2(x) on [0, ε)×0, this finishes the construction of the map 9ε defined in (5-3). We
will use both equalities in (5-4) to extend 9ε to a global diffeomorphism 9 : X1→ X2 satisfying (2-15).

The construction of the global diffeomorphism. First we need to show that if the eigenfunctions are
reordered such that (5-17) holds, then in fact φ j,1(x, y)= φ j,2(x, y) on (0, ε)×0. To prove this we have
to appeal again to the stationary scattering theory. We know from [Joshi and Sá Barreto 2000] that the
operator

E+(λ)ψ(λ, y)= ̂R+(0, ψ)(λ, y)=
∫

R

e−iλsR+(0, f )(s, y) ds,

continues meromorphically to C \ D, where D is a discrete subset. Since their Schwartz kernels satisfy
E1(λ, y′, x, y)= E2(λ, y′, x, y) for x ∈ [0, ε) and y, y′ ∈ 0, λ ∈ R, this equality must remain for C \ D.

We also know from equation (3.15) of [Graham and Zworski 2003] that 1
4 n2
+ λ2

0 is an eigenvalue of
1g if and only if λ0 ∈ iR− is a pole of E(λ, y, z), with the same multiplicity, and its residue is given by

1
2iλ0

K∑
k=1

φ0
k (y)φk(z), y ∈ ∂X, z ∈ X, (5-24)

where φ0
k (y) is defined in (5-16) and K is the multiplicity of the eigenvalue. We know from (5-17) and

(5-18) that the eigenvalues and the traces of the eigenfunctions are equal. So if φ( j)
k (x ′, y′) j = 1, 2,
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1≤ k ≤ K , denote the eigenfunctions, we must have

K∑
k=1

(φ
(1)
k (x ′, y′)−φ(2)k (x ′, y′))φ0

k (y)= 0, x ′ ∈ [0, ε), y, y′ ∈ 0.

Since the points (x ′, y′), x ′ ∈ [0, ε) and y, y′ ∈ 0 are arbitrary and can be independently chosen, we must
have

φ
(1)
k (x ′, y′)= φ(2)k (x ′, y′) for all x ′ ∈ [0, ε), y′ ∈ 0. (5-25)

We know that the Schwartz kernels of the radiation fields R j,±, j = 1, 2, acting on data (0, f ), and the
metric tensors h j (x, y, dy), j = 1, 2, satisfy (5-4). However, if φ ∈C∞0 ((0, ε)×0) and (φ, 0)∈ Eac(X j ),
then

∂sR j,±(φ, 0)(s, y)=R j,±
(
0,
(
1g j −

1
4 n2)φ)(s, y).

Since φ is compactly supported, R+
(
0,
(
1g j −

1
4 n2

)
φ
)
(s, y)= 0 for s� 0. So,

R j,+(φ, ψ)=R j,+(0, ψ)+
∫ s

−∞

R j,+
(
0,
(
1g j −

1
4 n2)φ)(τ, y) dτ,

R j,−(φ, ψ)=R j,−(0, ψ)+
∫
∞

s
R j,−

(
0,
(
1g j −

1
4 n2)φ)(τ, y) dτ,

provided (φ, ψ) ∈ (C∞0 ((0, ε)× 0)× C∞0 ((0, ε)× 0)) ∩ Eac(X j ). Since we know from (5-13) that
1g1 =1g2 on [0, ε)×0, and we also know from (5-25) that

A((0, ε)×0) .=
(
C∞0 ((0, ε)×0)×C∞0 ((0, ε)×0)

)
∩ Eac(X1)

=
(
C∞0 ((0, ε)×0)×C∞0 ((0, ε)×0)

)
∩ Eac(X2),

we deduce that

R1,±(φ, ψ)(s, y)=R2,±(φ, ψ)(s, y), (s, y) ∈ R×0, (φ,ψ) ∈A((0, ε)×0). (5-26)

But R± are unitary operators, and so their inverses are equal to their adjoints, and we deduce from
(5-26) that the Schwartz kernels of the full operators R j,± acting on A((0, ε)×0) are determined by the
scattering operator S0 . We conclude that if F ∈ L2(R×0), and if R−1

j,±

∣∣
0
: L2(R×0)→ Eac(X1)|(0,ε)×0 ,

j = 1, 2, is given by

F(s, y) 7→ (φ j , ψ j )= (u j (0), ∂t u j (0))
∣∣
(0,ε)×0 ,

then (φ1, ψ1) = (φ2, ψ2). Here u j (t, z) denotes the solution to the Cauchy problems for the wave
equation (2-1) for the metric g j . But, on the other hand, R j,± are translation representations of the wave
group, and therefore

R−1
j,+

∣∣
0

F(s+ t)= (u j (t), ∂t u(t)),

where u j (t) satisfies (2-1) with initial data (φ, ψ) = R−1
j,±

∣∣
0
∈ A((0, ε) × 0). We conclude that, if

u j (t, z) solves (2-1) for the metric g j , with initial data supported in (0, ε)×0, then u1(t, z)= u2(t, z),
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provided z ∈ (0, ε)×0. This implies that, if U j (t, z, z′) is the forward fundamental solution of the Cauchy
problem for the wave equation in (X j , g j ), then

U1(t, z, z′)=U2(t, z, z′), z, z′ ∈ (0, ε)×0, t > 0. (5-27)

By Duhamel’s principle, if(
D2

t −1g j −
1
4 n2)Ũ j (t, t ′, z, z′)= δ(x, y)δ(t − t ′) in X j ×R,

Ũ j (0)= ∂tŨ j (0)= 0,
(5-28)

then

Ũ1(t, t ′z, z′)= Ũ2(t, t ′, z, z′), t, t ′ ∈ R+, z, z′ ∈ (0, ε)×0. (5-29)

So we have reduced the extension of the diffeomorphism to the following:

Proposition 5.8. Let (X1, g1) and (X2, g2) be AHM such that:

(A) There exists a nonempty open subset 0 ⊂ ∂X1∩ ∂X2 as manifolds and an open subset O∼ 0× (0, ε)
such that O⊂ X̊1 ∩ X̊2 as manifolds.

(B) The metric tensors g j , j = 1, 2, satisfy g1 = g2 on O.

(C) If Ũ j (t, t ′, z, z′), j = 1, 2 is the forward fundamental solution of the wave equation in (X j , g j ),
j = 1, 2, defined in (5-28), then U1(t, t ′, z, z′)=U2(t, t ′, z, z′) for t , t ′ ∈ R+ and z, z′ ∈ O.

Then there exists

9 : X1→ X2 such that 9∗g2 = g1 and 9 = Id in O. (5-30)

This is similar to the inverse boundary value problem with data on part of the boundary, studied
for example in [Katchalov et al. 2001; Kurylev and Lassas 2000], except that we are not dealing with
boundary control but control from an open set in the interior. A somewhat similar problem for closed
manifolds was studied in [Krupchyk et al. 2008]. Lassas and Oksanen [2014] also dealt with a problem of
this nature. This is also related to the problem studied by Lassas, Taylor and Uhlmann on complete real
analytic manifolds without boundary M j , j = 1, 2, where the Green functions for the Laplace operator
agree on U ×U , with U ⊂ M1 ∩M2; see Theorem 4.1 of [Lassas et al. 2003]. The difference here is that
we do not have real analyticity of the manifolds, but we are dealing with the wave equation instead of the
Laplace equation.

Proof. We adapt the proof of Theorem 4.33 in [Katchalov et al. 2001]. Instead of working with X1 and
X2, we will fix X = X1 and reconstruct (X, g) = (X1, g1) from (A), (B) and (C). Of course, we are
reconstructing (X2, g2) as well. First of all, we observe that an AHM has a uniform radius of injectivity
for the geodesic flow. In other words, there exists a ρ0 > 0 such that, if Sp X = {v ∈ Tp X : ‖v‖g = 1}, the
map

expp : [0, ρ0)× Sp X→ X, (t, v) 7→ expp(tv),
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is well defined for all p ∈ X . We pick a point p ∈ O and let ρ ∈ (0, ρ0) be such that the geodesic ball
B(p, ρ)⊂ O. Let f (t, z) ∈ C∞0 (R× B(p, ρ)), f (t, z)= 0 for t < 0, and let u f (t, z) be the solution to(

D2
t −1g −

1
4 n2)u f (t, z)= f (t, z) in R× X,

u f (0)= ∂t u f (0)= 0.
(5-31)

From the hypothesis (C) above, we know u f (t, z) for z ∈ B(p, ρ), t > 0. We then define the map

B(T ) : C∞0 ((0, T )× B(p, ρ))→ C∞((0, T )× B(p, ρ)), f 7→ u f
∣∣
(0,T )×B(p,ρ) . (5-32)

For T > 0 we will work with the space of functions

C0 = C0(p, ρ, T ) .= {φ ∈ C∞0 ((0, T ]× B(p, ρ)) : φ(T )= 0},

and the quotient space

C= C(p, ρ, T ) .= C0
/(

D2
t −1g −

1
4 n2)C0.

In other words,

C= {[ψ] : ψ ∈ C0}, where [ψ] =
{
φ ∈ C0 : there is ζ ∈ C0 such that φ = ψ +

(
D2

t −1g −
1
4 n2)ζ}.

Since we know g in O, the space C is determined by hypotheses (A), (B) and (C).
For φ ∈ C, let uφ be the solution to (5-31) in R× X . We define the map

CT : C→ C∞0 (X), φ 7→ uφ(T, z).

The formal adjoint of this map is given by

C∗T : {w ∈ C∞0 ({z ∈ X : dg(z, B(p, ρ)) < T })} → C, w 7→ v|(0,T )×B(p,ρ),

where v is the solution to the Cauchy problem(
D2

t −1g −
1
4 n2)v(t, z)= 0 in {t < T }× X,

v(T, z)= 0, ∂tv(T, z)= w.
(5-33)

As in the boundary control method, we define

ST = C∗T CT : C→ C.

The next step is to prove a Blagovestchenskii-type identity to show that ST is determined by the map B(2T ),
which the map defined in (5-32) but in the time interval (0, 2T ), and hence is determined from (A), (B)
and (C). Let φ(t, z), ψ(t, z) ∈ C and let uφ(t, z), uψ(t, z) be the solutions to (5-31), with left-hand side
φ and ψ respectively. Let

W (s, t)=
∫

X
uφ(t, z)uψ(s, z) d volg(z).
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Notice that this integration is defined over the entire manifold. But, after integrating by parts, we obtain

(∂2
t − ∂

2
s )W (s, t)=

∫
X
(φ(t, z)uψ(s, z)− uφ(t, z)ψ(s, z)) d volg(z)

=

∫
X
[φ(t, z)B(T )ψ(s, z)−ψ(s, z)B(T )φ(t, z)] d volg(z),

W (0, t)= ∂s W (0, t)= 0, W (s, 0)= ∂t W (s, 0)= 0,

and, since φ and ψ are supported in (0, T )× B(p, ρ), the last integration is restricted to B(p, ρ). We can
find W (T, T ) explicitly in terms of d’Alembert’s formula, but we need to extend φ and ψ to the interval
(0, 2T ). As in [Belishev and Kurylev 1992], we define φ̃ and ψ̃ to be the odd extensions of φ and ψ
across t = T , in other words

φ̃(t)=
{
φ(t) if t ∈ (0, T ),
−φ(2T − t) if t ∈ (T, 2T ),

and similarly for ψ̃ . This gives

W (T, T )=
∫ T

0

∫ 2T−t

t

(∫
X

(
φ̃(t, z)B(2T )(ψ̃)(s, z)−B(2T )(φ̃)(t, z)ψ̃(s, z)

)
d volg(z)

)
ds dt

Since ψ̃(s, z) is odd with respect to s = T , it follows that

W j (T, T )=
∫ T

0

∫ 2T−t

t

∫
φ̃(t, z)B(2T )(ψ̃)(s, z) d volg(z) ds dt

=

∫ T

0

∫
X
φ(t, z)

(∫ 2T−t

t
B(2T )ψ̃(s, z) ds

)
d volg(z) dt.

On the other hand, since

W (T, T )= 〈CTφ,CTψ〉 = 〈φ,C∗T CTψ〉,

it follows that

C∗T CTψ(t, z)=
∫ 2T−t

t
B(2T )ψ̃(s, z) ds.

Now we define the following inner product in the space C:

〈φ,ψ〉C = 〈uφ(T, z), uψ(T, z)〉L2(X).

As shown above, this is determined by the map B. We need to show that this is a nondegenerate inner
product. First we show that the range {uφ(T ) : φ ∈ C} is dense in the space

L2({z ∈ X j : d(z, B(p, ρ))≤ T
})
=
{
u ∈ L2(X j ) : Supp(u)⊂ {z : d(z, B(p, ρ))≤ T }

}
.

Suppose that w ∈ L2({z ∈ X j : d(z, B(p, ρ))≤ T }) is such that

〈w, uφ(T )〉 = 0 for all φ ∈ C.
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Let v satisfy (5-33) and let uφ satisfy (5-31) with right-hand side equal to φ. Integrating the identity

v
(
D2

t −1g −
1
4 n2)uφ − uφ

(
D2

t −1g −
1
4 n2)v = v(t, z)φ(t, z)

in the domain of influence of φ and w, we find that∫
B(p,ρ)×(0,T )

v(t, z)φ(t, z) dt d volg(z)= 0 for all φ ∈ C. (5-34)

But, again using the fact that v satisfies (5-33), we see that∫
B(p,ρ)×(0,T )

v(t, z)
(
D2

t −1g −
1
4 n2)φ(t, z) dt d volg(z)= 0 for all φ ∈ C0.

This means that (5-34) is satisfied for every φ ∈ C0, and hence v(t, z) = 0 in (0, T )× B(p, ρ). Now
the odd extension ṽ(t, z) of v(t, z) across t = T satisfies (5-33) in (0, 2T )×{z : d(z, B(p, ρ)) < T + ρ}
and ṽ(t, z) = 0 in (0, 2T )× B(p, ρ). An application of Tataru’s theorem implies that ṽ(t, z) = 0 if
|t |+d(z, B(p, ρ))≤ T for any q ∈ B(p, ρ). In particular, this implies that w(z)= ∂tv(T, z)= 0 provided
d(z, B(p, ρ))≤ T , and hence w = 0.

Now suppose that φ ∈ C is such that 〈φ,ψ〉C = 0 for every ψ ∈ C. From the previous discussion, it
follows that uφ(T )= 0. Then

ũ(t, z)=
{

uφ(t, z) if t < T,
−uφ(2T − t, z) if t > T

satisfies (
D2

t −1g −
1
4 n2)ũ = φ̃ in R× X j

ũ = 0 in R×{z : d(z, B(p, ρ)) > T }.

Again, Tataru’s theorem and finite speed of propagation implies that uφ ∈ C∞0 ((0, T ] × B(p, ρ)) and
uφ(T )= 0. This of course means that uφ ∈ C0, and hence [φ] = 0.

Next we define C as the Hilbert space given by the closure of C with the norm given by the inner
product 〈φ,ψ〉C, and set up a scheme which is very similar to the one used in the proof of Lemma 5.3,
which is of course similar to the arguments used in [Belishev and Kurylev 1992; Katchalov et al. 2001].
For τ ∈ (0, T ) define

Cτ = {φ ∈ C : φ(t, z)= 0, t < τ },

and let
Pτ : C→ Cτ

be the orthogonal projection to Cτ . Then, using propagation of singularities (and here we do not have to
project onto the continuous spectrum), and that the choices for t = 0 and t = T are arbitrary, we recover
the metric tensor g and the fundamental solution of wave equation in B(p, r), where r = r(p) is the
radius of injectivity of expp. In other words, we recover

g(z), z ∈ B(p, r) and Ũ (t, t ′, z, z′), t, t ′ ∈ R, z, z′ ∈ B(p, r), r = r(p).
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We repeat the process for every p ∈ O, and we would like to define M =
⋃

p∈O B(p, r(p)). However,
we have to make sure the inclusion map ı :M ↪→ X is injective, which would guarantee that ı(M) is an
open embedded submanifold of X . Therefore we need to identify the points that are in B(p, r(p)) and
B(q, r(q)). In Section 4.4.9 of [Katchalov et al. 2001], since they are working on a compact manifold,
they use the family of eigenfunctions to do that. Here the precise analogue is to use Ũ (t, t ′, z, z′),
and we shall say that z ∈ B(p, r(p)), and w ∈ B(q, r(q)) are equivalent, and we denote z ≡ w if
Ũ (t, t ′, z, z′) = Ũ (t, t ′, w, z′) for all t , t ′ > 0 and z′ ∈ O. In this case, the points z and w correspond
to the same point in X . This is the equivalent of saying that uφ(t, z) = uφ(t, w) for all t ∈ R and for
all φ ∈ C∞0 (R×O). We also use the same identification for points in O and B(p, r(p)), p ∈ O. With this
identification, we set O1 =

(⋃
p∈O B(p, r(p))

)
∪O.

We have constructed an open C∞ submanifold O1 ⊂ X such that O= O0 ⊂ O1 and such that hypotheses
(A), (B) and (C) are satisfied for O1. Now we repeat the process for O1. Thus we obtain a sequence of
C∞ open submanifolds O j ⊂ X satisfying O j ⊂ O j+1 ⊂ X , j = 0, 1, . . . , and satisfying the hypotheses
(A), (B) and (C) above. As in Section 4.4.9 of [Katchalov et al. 2001], we claim that for any compact
subset K ⊂ X there exists J ∈N such that K ⊂ OJ . To see that, we observe that, since (X, g) is complete,
there exists M > 0 such that, for any p ∈ K , δ < ε and 0′ b 0, dg(p, 0′× {δ}) ≤ M . We also assume
that δ < δ0, where δ0 is the radius of injectivity of X . Since X is complete, given a point p ∈ K there
is a geodesic µ(s), parametrized by the arc length 0 ≤ s ≤ L ≤ M , joining p to a point z ∈ 0′ × δ.
Let x0 = z and xk = µ(kδ), with k = 0, 1, . . . , [L/δ] = J . By definition x0 = z ∈ 0 × {δ} ⊂ O = Õ0.
Suppose that xk ∈ Õk ; then there exists ρ > 0 such that B(xk, ρ)⊂ Ok but, since δ is less than the radius
of injectivity, B(xk, δ)⊂ Ok+1 and, since s is the arc length, in particular xk+1 ∈ Ok+1. By induction it
follows that p ∈ OJ+1 ⊂ O[M/δ].

This shows that we can reconstruct (X̊ , g) from (A), (B) and (C). But we know a priori that (X, g) is
an AHM, and so X̊ can be compactified into a C∞ with boundary, and there exists a defining function
x of ∂X for which (2-4) holds. The construction of the function x shows that the compactification is
uniquely defined modulo diffeomorphisms that are equal to the identity in O. �
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LOW TEMPERATURE ASYMPTOTICS FOR
QUASISTATIONARY DISTRIBUTIONS IN A BOUNDED DOMAIN

TONY LELIÈVRE AND FRANCIS NIER

We analyze the low temperature asymptotics of the quasistationary distribution associated with the
overdamped Langevin dynamics (also known as the Einstein–Smoluchowski diffusion equation) in a
bounded domain. This analysis is useful to rigorously prove the consistency of an algorithm used in
molecular dynamics (the hyperdynamics) in the small temperature regime. More precisely, we show
that the algorithm is exact in terms of state-to-state dynamics up to exponentially small factors in the
limit of small temperature. The proof is based on the asymptotic spectral analysis of associated Dirichlet
and Neumann realizations of Witten Laplacians. In order to widen the range of applicability, the usual
assumption that the energy landscape is a Morse function has been relaxed as much as possible.
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1. Introduction

The motivation of this work comes from the mathematical analysis of an algorithm used in molecular
dynamics, called the hyperdynamics [Voter 1997]. The aim of this algorithm is to generate very efficiently
the discrete state-to-state dynamics associated with a continuous state space, metastable, Markovian
dynamics, by modifying the potential function. In Section 1A, we explain the principle of the algorithm
and state the mathematical problem. In Section 1B, the main result of this article is given in a simple
setting.
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1A. Molecular dynamics, hyperdynamics and the quasistationary distribution. Molecular dynamics
calculations consist in simulating very long trajectories of a particle model of matter, in order to infer
macroscopic properties from an atomic description. Examples include the study of the change of
conformation of large molecules (such as proteins), with applications in biology, or the description of the
motion of defects in materials.

In a constant-temperature environment, the dynamics used in practice contains stochastic terms which
model thermostatting. The prototypical example, which is the focus of this work, is the overdamped
Langevin dynamics,

d X t =−∇ f (X t) dt +
√

2β−1 d Bt , (1-1)

where X t ∈ R3N is the position vector of N particles, f : R3N
→ R is the potential function (assumed to

be smooth here), and β−1
= kB T with kB the Boltzmann constant and T the temperature. The stochastic

process Bt is a standard 3N -dimensional Brownian motion. The dynamics (1-1) admits the canonical
ensemble µ(dx)= Z−1 exp(−β f (x)) dx as an invariant probability measure.

To relate the macroscopic properties of matter to the microscopic phenomenon, one simulates the
process (X t)t≥0 (or processes following related dynamics, like the Langevin dynamics) over very long
times. The difficulty associated with such simulations is metastability, namely the fact that the stochastic
process remains trapped for very long times in some regions of the configurational space, called the
metastable states. The time step used to obtain stable discretization is typically 10−15 s, while the
macroscopic timescales of interest range from a few microseconds to a few seconds. At the macroscopic
level, the details of the dynamics (X t)t≥0 do not matter. The important information is the history of the
visited metastable states, the so-called state-to-state dynamics.

The principle of the hyperdynamics algorithm [Voter 1997] is to modify the potential f in order to
accelerate the exit from metastable states, while keeping a correct state-to-state dynamics. Here, we focus
on one elementary brick of this dynamics, namely the exit event from a given metastable state.

In mathematical terms, the problem is as follows (we refer to [Le Bris et al. 2012] for the mathematical
proofs of the statements below). Assuming that the process remains trapped for a very long time in a
domain �+ ⊂ R3N (�+ is a metastable state,1 as mentioned above), it is known that the process reaches
a local equilibrium called the quasistationary distribution (QSD) ν attached to the domain �+, before
leaving it. We assume that �+ is a smooth bounded domain in R3N . The probability distribution ν has
support �+ and is such that, for all smooth test function ϕ : R3N

→ R,

lim
t→∞

E(ϕ(X t)|τ > t)=
∫
�+

ϕ dν, (1-2)

where
τ = inf{t > 0 : X t 6∈�+}

is the first exit time from �+ for X t . The metastability of the well �+ can be quantified through
the rate of convergence of the limit in (1-2); in the following, it is assumed that this convergence is
infinitely fast. From a PDEs viewpoint, ν has a density v with respect to the Boltzmann–Gibbs measure

1We use the notation �+ since, in the following, we will need a subdomain �− such that �− ⊂�+.
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µ(dx) = e−β f (x) dx , v being the first eigenvector of the infinitesimal generator of the dynamics (1-1)
with Dirichlet boundary conditions on ∂�+:{

−∇ f · ∇v+β−11v =−λv in �+,

v = 0 on ∂�+,
(1-3)

where −λ < 0 is the first eigenvalue. In other words,

dν =
1�+(x)v(x) exp(−β f (x)) dx∫

�+
v(x) exp(−β f (x)) dx

.

Starting from the QSD ν (namely if X0∼ ν), the way the stochastic process X t , solution to (1-1), leaves the
well �+ is known: the law of the pair of random variables (τ, Xτ ) (exit time, exit point) is characterized
by the following three properties, the first two of which are the building blocks of a Markovian transition
starting from �+:

(i) τ and Xτ are independent.

(ii) τ is exponentially distributed with parameter λ:

τ ∼ E(λ), (1-4)

where the notation ∼ is used to indicate the law of a random variable.

(iii) The exit point distribution has an analytic expression in terms of v: for all smooth test functions
ϕ : ∂�+→ R,

Eν(ϕ(Xτ ))=−

∫
∂�+

ϕ∂n(v exp(−β f )) dσ

βλ
∫
�+
v(x) exp(−β f (x)) dx

, (1-5)

where, for any smooth function w :�+→ R, ∂nw =∇w · n denotes the outward normal derivative,
σ is the Lebesgue measure on ∂�+ and Eν indicates the expectation for the stochastic process X t

following (1-1) and starting under the QSD, X0 ∼ ν.

In practical cases of interest, the typical exit time is very large (E(τ )= 1/λ is very large). The principle
of the hyperdynamics is to modify the potential f in the state �+ to lead to smaller exit times, while
keeping a correct statistics on the exit points. Let us make this more precise, and let us consider the
process X δ f

t which evolves on a new potential f + δ f :

d X δ f
t =−∇( f + δ f )(X δ f

t ) dt +
√

2β−1 d Bt . (1-6)

Instead of simulating (X t)t≥0 following the dynamics (1-1) and considering the associated random
variables (τ, Xτ ), the hyperdynamics algorithm consists in simulating (X δ f

t )t≥0 and considering the
associated random variables (τ δ f , X δ f

τ δ f ), where τ δ f is the first exit time from �+ for X δ f
t .

The assertion underlying the hyperdynamics algorithm is the following: under appropriate assumptions
on the perturbation δ f , (i) the exit point distribution of X δ f

t from �+ is (almost) the same as the exit
point distribution of X t from �+, and (ii) the exit time distribution for X t can be inferred from the exit
time distribution for X δ f

t by a simple multiplicative factor (see (1-7)–(1-8) below).
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More precisely, the assumptions on δ f in [Voter 1997] can be stated as follows: (i) δ f is sufficiently
small that �+ is still a metastable state for X δ f

t , and (ii) δ f is zero on the boundary of �+. The
first hypothesis implies that we can assume that X δ f

0 is distributed according to the QSD νδ f associated
with (1-6) and�+. The aim of this paper is to prove that, in the small temperature regime (namely β→∞)
and under appropriate assumptions on δ f , we indeed have the equality in law

(τ, Xτ )
L
' (Bτ δ f , X δ f

τ δ f ), (1-7)

where, in the left-hand side, X0 ∼ ν and, in the right-hand side, X δ f
0 ∼ ν

δ f . The so-called boost factor B
has the expression

B =

∫
�+

exp(−β f )∫
�+

exp(−β( f + δ f ))
=

∫
�+

exp(βδ f )
exp(−β( f + δ f ))∫
�+

exp(−β( f + δ f ))
. (1-8)

The second formula is interesting because it shows that B can be approximated through ergodic averages
on the process (X δ f

t )t≥0 (and this is actually exactly what is done in practice).
In view of the formulas (1-4)–(1-5) for the laws of the distributions of the two random variables exit

time and exit point, a crucial point for the mathematical analysis of the hyperdynamics algorithm is to
study how the first eigenvalue λ and the normal derivative ∂nv (v being the first eigenvector; see (1-3))
are modified when changing the potential f to f + δ f . More precisely, we would like to check that,
in the limit β→∞, λδ f

= Bλ and, up to a multiplicative constant, ∂nv
δ f
∝ ∂nv, where, with obvious

notation, (−λδ f , vδ f ) denotes the first eigenvalue–eigenfunction pair solution to (1-3) when f is replaced
by f + δ f .

1B. The main results in a simple setting. Let us state the main results obtained in this paper in a simple
and restricted setting. For the potential f , we assume that there exists a subdomain�− such that�−⊂�+
and:

(i) f and f
∣∣
∂�+

are Morse functions, namely C∞ functions with nondegenerate critical points;

(ii) |∇ f | 6= 0 in �+ \�−, ∂n f > 0 on ∂�− and min∂�+ f ≥min∂�− f ;

(iii) the critical values of f in �− are all distinct and the differences f (U (1))− f (U (0)), where U (0)

ranges over the local minima of f
∣∣
�−

and U (1) ranges over the critical points of f
∣∣
�−

with index 1,
are all distinct;

(iv) the maximal value of f at critical points, denoted by cvmax=max{ f (x) : x ∈�+, |∇ f (x)| = 0} =
max{ f (x) : x ∈�−, |∇ f (x)| = 0}, satisfies

min
∂�−

f − cvmax> cvmax−min
�−

f. (1-9)

Concerning the perturbation δ f , let us assume that f + δ f satisfies the same four above hypotheses as f ,
and that, in addition,

δ f = 0 on �+ \�−.
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Under these assumptions on f and δ f , it can be shown that the first eigenvalue–eigenfunction pairs
(−λ, v) and (−λδ f , vδ f ), the respective solutions to (1-3) with the potential f and f + δ f , satisfy the
following estimate: for some positive constant c, in the limit β→∞,

λδ f

λ
= B(1+O(e−βc)),

where, we recall, B is defined by (1-8) and

∂nv
∣∣
∂�+

‖∂nv‖L1(∂�+)

=

∂nv
δ f
∣∣
∂�+

‖∂nvδ f ‖L1(∂�+)

+O(e−βc) in L1(∂�+).

These results are simple consequences of the general Theorem 2.4 below (see Corollary 2.9) together
with Proposition 7.1 and Remark 7.2.

For readers who are familiar with the Agmon distance, let us note that condition (1-9) can actually be
replaced by Hypothesis 2 (stated in Section 2) and condition (7-1). Condition (7-1) explicitly states that
the potential function f on ∂�− should be larger than the largest barrier (difference of potential between
index-one critical points and local minima) within �−.

1C. Outline of the article. The main result of this article, Theorem 2.4, gives general asymptotic formulas
for the first eigenvalue λ and the normal derivative ∂nv in the limit of small temperature. This theorem will
be proven under assumptions involving the low-lying spectra of Witten Laplacians on �− and on�+\�−.
These assumptions hold for potentials satisfying the four conditions (i)–(iv) stated above, but they are
also valid in much more general cases. In particular, we have in mind assumptions stated only in terms
of �+ (see Remark 7.4), or potentials not fulfilling the Morse assumption (see Section 7B).

The outline of the article is as follows: In Section 2, we specify our general assumptions and state
the two main theorems, Theorem 2.4 and Theorem 2.10. In Section 3, exponential decay estimates for
the eigenvectors in terms of Agmon distances are reviewed. In Section 4, approximate eigenvectors for
the Dirichlet Witten Laplacians on �+ are constructed in terms of eigenvectors for the Neumann Witten
Laplacians on �− and eigenvectors for the Dirichlet Witten Laplacians on the shell �+ \�−. Following
the strategy of [Helffer et al. 2004; Helffer and Nier 2006; Le Peutrec 2009; 2010b; 2011; Le Peutrec
et al. 2013], accurate approximations of singular values of the Witten differential d f,h are computed using
matrix arguments in Section 5. Theorem 2.4 and Theorem 2.10 are finally proved in Section 6. The
general assumptions used to prove the theorems are then thoroughly discussed and illustrated with various
examples in Section 7. Our approach relies on the introduction of boundary Witten Laplacians (namely
Witten Laplacians with Dirichlet or Neumann boundary conditions) and requires notions and notation of
Riemannian differential geometry. A short presentation of these notions is given in the Appendix.

2. Assumptions and statements of the main results

In order to prove the main result, we first need to restate the eigenvalue problem (1-3) with the standard
notation used in the framework of Witten Laplacians, which will be our central tool. It is easy to check
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that (λ, v) satisfies (1-3) if and only if (λ1, u1) satisfies

1
D,(0)
f,h (�+)u1 = λ1u1

with

h =
2
β
, λ1 =

4
β
λ= 2hλ, u1 = exp

(
−

1
2β f

)
v = exp

(
−

f
h

)
v

and where 1D,(0)
f,h (�+) is the Witten Laplacian on zero-forms on �+ ⊂ Rd , d = 3N , with homogeneous

Dirichlet boundary conditions on ∂�+ (see (2-3) below for more general formulas on p-forms),

1
D,(0)
f,h (�+)u1 = (−h∇ +∇ f ) · ((h∇ +∇ f )u1)=−h21u1+ (|∇ f |2− h1 f )u1. (2-1)

Notice that the operator 1D,(0)
f,h (�+) is a positive symmetric operator. We recall that �+ is the metastable

domain of interest, and �− is a subdomain of �+, where the potential f is modified in the hyperdynamics
algorithm. We will thus study how the first eigenvalue λ1 and eigenfunction u1 of the Witten Laplacian
1

D,(0)
f,h (�+) depend on f

∣∣
�−

. We will state the results in a very general setting, namely for open, regular,
bounded, connected subsets �− and �+ of a d-dimensional Riemannian manifold (M, g) such that
�− ⊂�+.

The first assumption we make on f is the following:

Hypothesis 1. The function f : M→ R is a C∞ function satisfying

|∇ f |> 0 on �+ \�− , ∂n f > 0 on ∂�− and min
∂�+

f ≥min
∂�−

f. (2-2)

In (2-2), n denotes the unit normal vector on ∂�− that points outward from �−. This first assumption
has simple consequences that will be used repeatedly.

Lemma 2.1. Under Hypothesis 1, for all x ∈�+ \�−,

f (x)≥min
∂�−

f >min
�−

f =min
�+

f.

Proof. The last equality is a simple consequence of the fact that the critical points are in �− and of
the inequality min∂�+ f ≥ min∂�− f . Let us now consider the first inequality. Let us denote by γx(t)
the gradient trajectory γ̇x =−∇ f (γx) starting from x ∈�+ (γx(0)= x). Let us consider x ∈�+ \�−
such that f (x) < min∂�+ f . Since t 7→ f (γx(t)) is nonincreasing, (γx(t))t≥0 remains in the bounded
domain �+ and is thus well defined for all positive times. Moreover, necessarily, the distance of γx(t)
to the set of critical points of f tends to 0 as t →∞. This implies that there exists t0 > 0 such that
γx(t0) ∈�− and, thus, f (x)= f (γx(0))≥ f (γx(t0))≥min∂�− f . This concludes the proof of the first
inequality. The second inequality is a consequence of the assumption ∂n f > 0 on ∂�−, and is proven by
considering the trajectory (γx(t))t≥0 with x ∈ arg min∂�− f . �

Remark 2.2. One can easily check, using the same arguments, that the condition ∂n f > 0 on ∂�+,
together with the two first conditions of Hypothesis 1, implies min∂�+ f >min∂�− f .

The second assumption on f is:
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Hypothesis 2. There exists c0 > 0 such that the set of critical points of f in �+ is included in
{ f <min∂�+ f − c0}:

{x ∈�+ : ∇ f (x)= 0} ⊂
{

x ∈�+ : f (x) <min
∂�+

f − c0
}
.

In addition to Hypotheses 1 and 2, our main results are stated under assumptions on the spectrum of
the Witten Laplacians associated with f on �− and �+ \�− (see Hypotheses 3 and 4 below). We will
discuss more explicit assumptions on f for which those additional hypotheses are satisfied in Section 7.
Let us first define the Witten Laplacians. We refer the reader to [Witten 1982; Helffer and Sjöstrand
1985b; Cycon et al. 1987; Burghelea 1997; Zhang 2001] for introductory texts on the semiclassical
analysis of Witten Laplacians and its famous application to Morse inequalities, and related results.

The Witten Laplacians are defined on
∧

C∞(M)=
⊕d

p=0
∧p C∞(M) as

1 f,h = (d∗f,h + d f,h)
2
= d∗f,hd f,h + d f,hd∗f,h,

where d f,h = e− f/h(hd)e f/h and d∗f,h = e f/h(hd∗)e− f/h . (2-3)

On a domain �⊂ M and for m ∈ N, the Sobolev space
∧

W m,2(�) is defined as the set of u ∈3L2(�)

such that, locally, ∂αx u ∈
∧

L2(�) for all α ∈Nd with |α| ≤m (this property does not depend on the local
coordinate system (x1, . . . , xd)). When� is a regular bounded domain,

∧
W m,2(�) coincides with the set

of u ∈
∧

L2 such that there exists ũ ∈
∧

W m,2(M) such that ũ
∣∣
�
= u. The spaces

∧
W s,2(�) for s ∈R are

then defined by duality and interpolation. For m = 1, the quantity
√
‖u‖2L2(�)

+‖du‖2L2(�)
+‖d∗u‖2L2(�)

is equivalent to the W 1,2(�)-norm. This is a well-known result when �= Rd . The extension to a regular,
bounded domain is proved by using local charts and the reflexion principle; see [Taylor 1997; Chazarain
and Piriou 1982].

In a regular, bounded domain � of M , various self-adjoint realizations of 1 f,h can be considered:

• The Dirichlet realization 1D
f,h(�) with domain

D(1D
f,h(�))=

{
ω ∈

∧
W 2,2(�) : tω

∣∣
∂�
= 0, td∗f,hω

∣∣
∂�
= 0

}
.

This is the Friedrichs extension of the closed quadratic form

D(ω, ω′)= 〈d f,hω, d f,hω
′
〉L2 +〈d∗f,hω, d∗f,hω

′
〉L2 (2-4)

defined on the domain ∧
W 1,2

D (�)=
{
ω ∈

∧
W 1,2(�) : tω

∣∣
∂�
= 0

}
.

Its restriction to zero-forms (functions) is simply the operator (2-1) on � with homogeneous Dirichlet
boundary conditions. It is associated with the stochastic process (1-1) killed at the boundary.

• The Neumann realization 1N
f,h(�) with domain

D(1N
f,h)(�)=

{
ω ∈

∧
W 2,2(�) : nω

∣∣
∂�
= 0, nd f,hω

∣∣
∂�
= 0

}
.
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This is the Friedrichs extension of the closed quadratic form (2-4) defined on the domain∧
W 1,2

N (�)=
{
ω ∈

∧
W 1,2(�) : nω

∣∣
∂�
= 0

}
.

Its restriction to zero-forms (functions) is simply the operator (2-1) on � with homogeneous Neumann
boundary conditions. It is associated with the stochastic process (1-1) reflected at the boundary.

We will handle exponentially small quantities and we shall use the following notation, which is
convenient when comparing them.

Definition 2.3. Let (E, ‖ ‖) be a normed space. For two functions a : R+→ E and b : R+→ R+, we
write:

• a(h)=O(b(h)) if there exist h0 > 0 and C > 0 such that ‖a(h)‖ ≤ Cb(h) for all h ∈ (0, h0);

• a(h)= Õ(b(h)) if, for every ε > 0, a(h)=O(b(h)eε/h), or, equivalently,

∀ε > 0 ∃h0 > 0 ∃C > 0 ∀h ∈ (0, h0) ‖a(h)‖ ≤ Cb(h)eε/h .

Notice that a(h) = Õ(b(h)) is equivalent to lim suph→0 h log(‖a(h)‖/b(h)) ≤ 0. Note in particular
the identity O(e−c1/h)Õ(e−c2/h)= Õ(e−(c1+c2)/h)=O(e−c′/h) for any fixed c′ < c1+ c2, independently
of h ∈ (0, h0).

We are now in position to state the two additional hypotheses on f , which are stated as assumptions on
the eigenvalues of Witten Laplacians on �− and �+ \�−. We assume that there exist a constant c0 > 0
and a function ν : (0, h0)→ (0,+∞) with

∀ε > 0 ∃Cε > 1
1

Cε
e−ε/h

≤ ν(h)≤ h, (2-5)

or, equivalently,

log
(
ν(h)

h

)
≤ 0 and lim

h→0
h log(ν(h))= 0,

and such that the following hypotheses are fulfilled:

Hypothesis 3. The Neumann Witten Laplacian defined on �− and restricted to forms of degree 0 and 1,
1

N ,(p)
f,h (�−), p = 0, 1, satisfies

#
[
σ(1

N ,(p)
f,h (�−))∩ [0, ν(h)]

]
=: m N

p (�−) , (2-6)

σ(1
N ,(p)
f,h (�−))∩ [0, ν(h)] ⊂ [0, e−c0/h

] (2-7)

with m N
p (�−) independent of h ∈ (0, h0). Throughout, eigenvalues are counted with multiplicity, and the

symbol # denotes the cardinal of a finite ensemble.
In addition, there exists in �− an open neighborhood V− of ∂�− such that any eigenfunction ψ(h) of

1
N ,(0)
f,h (�−) associated with a small nonzero eigenvalue µ(h) (namely 0< µ(h)≤ ν(h)) satisfies

‖ψ(h)‖L2(V−) = Õ(
√
µ(h)). (2-8)
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Hypothesis 4. The Dirichlet Witten Laplacian on �+ \�− restricted to one-forms satisfies

#
[
σ(1

D,(1)
f,h (�+ \�−))∩ [0, ν(h)]

]
=: m D

1 (�+ \�−) , (2-9)

σ(1
D,(1)
f,h (�+ \�−))∩ [0, ν(h)] ⊂ [0, e−c0/h

] (2-10)

with m D
1 (�+ \�−) independent of h ∈ (0, h0).

Our main results concern the smallest eigenvalue as well as properties of the associated eigenfunction
of 1D,(0)

f,h (�+).

Theorem 2.4. Assume Hypotheses 1, 2, 3, 4 and that h ∈ (0, h0) with h0 > 0 small enough. The
eigenvalues contained in [0, ν(h)] of the Dirichlet Witten Laplacians 1D,(p)

f,h (�+) for p = 0, 1, satisfy:

m D
0 (�+) := #

[
σ(1

D,(0)
f,h (�+))∩ [0, ν(h)]

]
= m N

0 (�−),

m D
1 (�+) := #

[
σ(1

D,(1)
f,h (�+))∩ [0, ν(h)]

]
= m N

1 (�−)+m D
1 (�+ \�−),

σ (1
D,(p)
f,h (�+))∩ [0, ν(h)] ⊂ [0, e−c/h

].

Let (u(1)k )1≤k≤m D
1 (�+\�−)

be an orthonormal basis of the spectral subspace Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−))

and set

κ f =min
∂�+

f −min
�+

f.

The smallest eigenvalue of 1D,(0)
f,h (�+) satisfies, in the limit h→ 0,

lim
h→0

h log λ(0)1 (�+)=−2κ f , (2-11)

λ
(0)
1 (�+)=

h2∑m D
1 (�+\�−)

k=1

∣∣∫
∂�+

e− f/hu(1)k (n)(σ ) dσ
∣∣2∫

�+
e−2 f (x)/h dx

(1+O(e−c/h)) (2-12)

for some constant c > 0 and u(1)k (n)(σ )= inu(1)k (σ ) with the interior product notation (A-1). Moreover,
the nonnegative L2(�+)-normalized eigenfunction u(0)1 satisfies∥∥∥∥u(0)1 −

e− f/h(∫
�+

e−2 f (x)/h dx
)1/2

∥∥∥∥
W 2.2(�+)

=O(e−c/h), (2-13)

∥∥∥∥d f,hu(0)1 +

m D
1 (�+\�−)∑

k=1

h
∫
∂�+

e− f (σ )/hu(1)k (n)(σ ) dσ(∫
�+

e−2 f (x)/h dx
)1/2 u(1)k

∥∥∥∥
W p,2(V)

=O(e−(κ f+cV )/h) (2-14)

for all p ∈N, where V is any neighborhood of ∂�+ lying in�+\�− and cV > 0 is a constant independent
of p and h. The symbols dσ and n(σ ), respectively, denote the infinitesimal volume on ∂�+ and the
outward normal vector at σ ∈ ∂�+.

We would like to stress again that Theorem 2.4 does not require f to be a Morse function on �+, nor
on ∂�+.
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Remark 2.5. It would be interesting for practical applications to relax the assumption |∇ f | > 0 on
�+ \�− in Hypothesis 1 in order to be able to consider saddle points on ∂�+.

Remark 2.6. While proving these results, we will actually show that, necessarily, m D
1 (�+ \�−) 6= 0;

see Remark 5.6 below.

Remark 2.7. All the terms in the sum in (2-14) are exponentially small, but at least one is larger than
the remainder O(e−(κ f+cV )/h) (see (5-10) and Proposition 6.4). The number of terms which are indeed
larger than the remainder depends on the precise value of cV , which depends on the geometry, the global
topology of the domain and the function f (the possibility of several terms is discussed in Remarks 7.7
and 7.9 after Proposition 7.5). In particular, if f is a Morse function, the heights of the generalized critical
points of index 2 along ∂�+ play a role.

Remark 2.8. In spectral theory, it is natural to work with complex-valued functions or complex-valued
forms. In view of the probabilistic interpretation of our results, the above result is stated — and, actually,
most of the analysis of this text is carried out — with real-valued functions or forms. One exception is
Section 4A, which requires functional calculus and resolvents for complex spectral parameters. Notice
that it is straightforward to write a complex-valued version of the previous results, by replacing the real
scalar product by the hermitian scalar product. For example, in (2-14), this simply consists in changing∫
∂�+

e− f (σ )/hu(1)k (n)(σ ) dσ to
∫
∂�+

e− f (σ )/hu(1)k (n)(σ ) dσ .

Note that the numerators in the estimates (2-12) and (2-14) of the eigenvalue λ(0)1 (�+) and of d f,hu(0)1
depend only on the values of f and the geometry of �+ around ∂�+. More precisely, they do not change
when f is modified inside �−. This allows us to understand the variations of λ(0)1 (�+) and ∂nu(0)1

∣∣
∂�+

with respect to f , which is needed in the hyperdynamics algorithm (see Section 1A).

Corollary 2.9. Let f1 and f2 be two functions which fulfill Hypotheses 1, 2, 3 and 4. Let λ(0)1 ( f1) be
the first eigenvalue of 1D,(0)

f1,h (�+) associated with the nonnegative normalized eigenvector u(0)1 ( f1), and
λ
(0)
1 ( f2) the first eigenvalue of 1D,(0)

f2,h (�+) associated with the eigenvector u(0)1 ( f2). Assume additionally
f1 = f2 in �+ \�−. The quantities λ(0)1 ( f1,2) and ∂n[e− f1,2/hu(0)1 ( f1,2)]

∣∣
∂�+
= e− f1,2/h

[∂nu(0)1 ( f1,2)]
∣∣
∂�+

satisfy

λ
(0)
1 ( f2)

λ
(0)
1 ( f1)

=

∫
�+

e−2 f1(x)/h dx∫
�+

e−2 f2(x)/h dx
(1+O(e−c/h)), (2-15)

∂n[e− f2/hu(0)1 ( f2)]
∣∣
∂�+

‖∂n[e− f2/hu(0)1 ( f2)]‖L1(∂�+)

=

∂n[e− f1/hu(0)1 ( f1)]
∣∣
∂�+

‖∂n[e− f1/hu(0)1 ( f1)]‖L1(∂�+)

+O(e−c/h) in L1(∂�+). (2-16)

Other corollaries and variations of Theorem 2.4 are given in Section 6. Among the consequences, one
can prove the following result when, additionally, f

∣∣
∂�+

is a Morse function and ∂n f > 0 on ∂�+.

Theorem 2.10. Assume Hypotheses 1, 2, 3 and 4 and h ∈ (0, h0) with h0 > 0 small enough. Assume
moreover that f

∣∣
∂�+

is a Morse function and ∂n f > 0 on ∂�+. Then the first eigenvalue λ(0)1 (�+) of
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1
D,(0)
f,h (�+) and the corresponding L2(�+)-normalized nonnegative eigenfunction u(0)1 satisfy

λ
(0)
1 (�+)=

∫
∂�+

2∂n f (σ )e−2 f (σ )/h dσ∫
�+

e−2 f (x)/h dx
(1+O(h)), (2-17)

−

∂n[e− f/hu(0)1 ]
∣∣
∂�+

‖∂n[e− f/hu(0)1 ]‖L1(∂�+)

=

(2∂n f )e−2 f/h
∣∣
∂�+

‖(2∂n f )e−2 f/h‖L1(∂�+)

+O(h) in L1(∂�+). (2-18)

The proof of Theorem 2.4 is given in Proposition 3.12, Lemma 5.9, Proposition 6.1 and Proposition 6.8.
The proof of Corollary 2.9 is given in Section 6D. The proof of Theorem 2.10 is given in Section 7A2.

3. A priori exponential decay and first consequences

By applying Agmon’s type estimate (see, for example, [Helffer 1988; Dimassi and Sjöstrand 1999] for a
general introduction) for boundary Witten Laplacians, we give here exponential decay estimates for the
eigenvectors of 1N

f,h(�−), 1
D
f,h(�+ \�−) and 1D

f,h(�+).

3A. Agmon identity. We shall use an identity for boundary Witten Laplacians, proved in [Helffer and
Nier 2006] in the Dirichlet case and in [Le Peutrec 2010b] in the Neumann case.

Lemma 3.1. Let � be a regular bounded domain of (M, g) and let 1D
f,h(�) (resp. 1N

f,h(�)) be the
Dirichlet (resp. Neumann) realization of 1 f,h(�). Let ϕ be a real-valued Lipschitz function on �. Then,
for any real-valued ω ∈ D(1D

f,h(�)) (resp. ω ∈ D(1N
f,h(�))),

〈ω, e2ϕ/h1D
f,h(�)ω〉L2(�)

= h2
‖deϕ/hω‖2L2(�)

+ h2
‖d∗eϕ/hω‖2L2(�)

+〈(|∇ f |2− |∇ϕ|2+ hL∇ f + hL∗
∇ f )e

ϕ/hω, eϕ/hω〉L2(�)

− h
∫
∂�

〈ω,ω〉T ∗σ �e2ϕ(σ)/h ∂ f
∂n
(σ ) dσ.

〈ω, e2ϕ/h1N
f,h(�)ω〉L2(�)

= h2
‖deϕ/hω‖2L2(�)

+ h2
‖d∗eϕ/hω‖2L2(�)

+〈(|∇ f |2− |∇ϕ|2+ hL∇ f + hL∗
∇ f )e

ϕ/hω, eϕ/hω〉L2(�)

+ h
∫
∂�

〈ω,ω〉T ∗σ �e2ϕ(σ)/h ∂ f
∂n
(σ ) dσ.

In the previous formulas, the notation LX refers to the Lie derivative; see (A-2). We shall use this
lemma with specific functions ϕ associated with the metric |∇ f |2g.

Lemma 3.2. Let� be an open subset of M , f ∈ C∞(�), and let dAg be the geodesic pseudodistance on�
associated with the possibly degenerate metric |∇ f |2g. The function (x, y) 7→ dAg(x, y) is Lipschitz (and
thus almost everywhere differentiable) and satisfies

|∇x dAg(x, y0)| ≤ |∇ f (x)| for all y0 ∈� and for a.e. x ∈�,

| f (x)− f (y)| ≤ dAg(x, y) for all x, y ∈�. (3-1)



572 TONY LELIÈVRE AND FRANCIS NIER

The equality dAg(x, y)= | f (x)− f (y)| occurs if there is an integral curve of ∇ f joining x to y. Moreover,
for any A⊂�, the function x 7→ dAg(x, A) (where dAg(x, A)= infa∈A dAg(x, a)) is Lipschitz and satisfies

|∇x dAg(x, A)| ≤ |∇ f (x)| for a.e. x ∈�.

Proof. The Lipschitz property comes from the triangular inequality for dAg(x, y). It carries over to
dAg(x, A). The comparison between | f (x)− f (y)| and dAg(x, y) comes from

| f (x)− f (y)| =
∣∣∣∣∫ 1

0
∇ f (γ (t)) · γ̇ (t) dt

∣∣∣∣≤ ∫ 1

0
|∇ f (γ (t))||γ̇ (t)| dt = |γ |Ag

for any C1-path γ joining x to y and denoting by |γ |Ag its length according to dAg. �

Remark 3.3. A detailed discussion about the equality dAg(x, y) = | f (x)− f (y)| when f is a Morse
function, which involves the notion of generalized integral curves of ∇ f , can be found in [Helffer and
Sjöstrand 1985b].

3B. Exponential decay for the eigenvectors of 1N,( p)
f,h (�−) ( p= 0, 1). Notice that, from Hypothesis 1,

there exists an open set U such that

U ⊂�− and |∇ f | 6= 0 in �− \U. (3-2)

The following proposition will be useful to prove that all the eigenvectors of 1N ,(p)
f,h are exponentially

small in the neighborhood of ∂�− (see Proposition 3.5). It actually holds for any open set U ⊂�− which
contains all the critical points, without the additional requirement U ⊂�−.

Proposition 3.4. Let U be an open subset of �− such that |∇ f | 6= 0 in �− \U and let dAg(x,U ) be the
Agmon distance to U defined for x ∈�−. There exists a constant C > 0 independent of h ∈ [0, h0] such
that every normalized eigenvector ωλh of 1N

f,h(�−) associated with an eigenvalue λh ∈ [0, ν(h)] satisfies

‖edAg( · ,U )/hωλh‖L2(�−\U ) ≤ ‖e
dAg( · ,U )/hωλh‖L2(�−) ≤ C,

‖edAg( · ,U )/hωλh‖W 1,2(�−\U ) ≤ ‖e
dAg( · ,U )/hωλh‖W 1,2(�−) ≤

C
h1/2 .

Proof. The function dAg( · ,U ) vanishes in U and satisfies the properties of Lemma 3.2 with (�, A)=
(�−,U ). Let us now apply Lemma 3.1 on 1N

f,h(�−) with the function ϕ = (1−αh)dAg( · ,U ) (where
α is a positive constant to be fixed later on) and a normalized eigenvector ω: 1N

f,h(�−)ω = λω, where
λ ∈ [0, ν(h)]. With ∂ f/∂n > 0 on ∂�−, ν(h)≤ h and |∇ϕ|2 ≤ (1−αh)|∇ f |2 (for h < 1/α), we obtain

0≥ h2
‖deϕ/hω‖2L2(�−)

+ h2
‖d∗eϕ/hω‖2L2(�−)

+ h[α〈eϕ/hω, |∇ f |2eϕ/hω〉L2(�−)−C f ‖eϕ/hω‖2L2(�−)
].

(3-3)
Here, we have used the fact that, for any vector field X , LX +L∗X is a differential operator of order 0
involving derivatives of X and g that are uniformly bounded in �−.

Using (3-2), choose α such that αminx∈�−\U |∇ f (x)|2 ≥ 2C f and add 2C f h‖eϕ/hω‖2L2(U ) on both
sides of the inequality (3-3). Using the fact that

2C f h ≥ 2C f h‖ω‖2L2(U ) = 2C f h‖eϕ/hω‖2L2(U ),
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one obtains

2C f h ≥ h2
‖deϕ/hω‖2L2(�−)

+ h2
‖d∗eϕ/hω‖2L2(�−)

+C f h‖eϕ/hω‖2L2(�−)
.

This implies ‖e(1−αh)dAg( · ,U )/hω‖2L2(�−)
≤ 2 and

‖(hd)e(1−αh)dAg( · ,U )/hω‖2L2(�−)
+‖(hd)∗e(1−αh)dAg( · ,U )/hω‖2L2(�−)

≤ 2C f h.

Since dAg( · ,U ) is a Lipschitz (and thus also bounded) function on �−, this ends the proof. �

Here is a useful consequence of Proposition 3.4:

Proposition 3.5. Let (ψ (0)j )1≤ j≤m N
0 (�−)

(resp. (ψ (1)k )1≤k≤m N
1 (�−)

) be an orthonormal basis of eigenvectors
of 1N ,(0)

f,h (�−) (resp. 1
N ,(1)
f,h (�−)) associated with the eigenvalues lying in [0, ν(h)] (or, owing to

Hypothesis 3, in [0, e−c0/h
]). Let U ⊂ �− be an open set satisfying (3-2). Let χ

−
∈ C∞0 (�−) be a

cut-off function such that 0≤ χ
−
≤ 1 and χ

−
≡ 1 on a neighborhood of U. The functions v(0)j = χ−ψ

(0)
j ,

1≤ j ≤m N
0 (�−) (resp. one-forms v(1)k =χ−ψ

(1)
k , 1≤ k≤m N

1 (�−)) belong to the domain D(1D,(0)
f,h (�+))

(resp. D(1D,(1)
f,h (�+))) of the Dirichlet realization of 1 f,h in �+ and they satisfy: for h ∈ [0, h0],

m N
0 (�−)∑
j=1

‖ψ
(0)
j − v

(0)
j ‖W 1,2(�−)+

m N
1 (�−)∑
k=1

‖ψ
(1)
k − v

(1)
k ‖W 1,2(�−) =O(e−cχ

−
/h
),

(〈v
(0)
j , v

(0)
j ′ 〉L2(�+)) j, j ′ = Idm N

0 (�−)
+O(e−cχ

−
/h
), (〈v

(1)
k , v

(1)
k′ 〉L2(�+))k,k′ = Idm N

1 (�−)
+O(e−cχ

−
/h
),

〈v
(0)
j ,1

D,(0)
f,h (�+)v

(0)
j 〉L2(�+) =O(e−cχ

−
/h
), 〈v

(1)
k ,1

D,(1)
f,h (�+)v

(1)
k 〉L2(�+) =O(e−cχ

−
/h
),

where the O(e−cχ
−
/h
) remainders can be bounded from above by Cχ−e−cχ

−
/h for some constants Cχ− ,

cχ− > 0 independent of h ∈ [0, h0]. Throughout, Idm denotes the identity matrix of size m×m.

Proof. Let ψ be a L2(�−)-normalized eigenvector of 1N ,(p)
f,h (�−), p = 0, 1, associated with the

eigenvalue λ=O(e−c0/h), and set v = χ
−
ψ . Since χ

−
belongs to C∞0 (�−) the form v = χ

−
ψ belongs

to D(1D,(p)
f,h (�+)).

The W 1,2(�−) estimates as well as the result on the Gram matrices are consequences of

‖ψ − v‖W 1,2(�−) = ‖(1−χ−)ψ‖W 1,2(�−) ≤ ‖ψ‖W 1,2(�−\{χ−=1}) ≤ C ′χ−e−c′χ
−
/h (3-4)

for some constants c′χ− > 0 and C ′χ− > 0. The estimate (3-4) is derived from Proposition 3.4 by using
the fact that there exists c > 0 such that dAg(x,U )≥ c for all x ∈�− \ {χ− = 1} (this is a consequence
of (3-2)).

For the last estimate of Proposition 3.5, we use Lemma 3.1 with ϕ = 0. Considering first the estimate
on 1D

f,h with �=�+, ω = v = χ
−
ψ and then the estimate on 1N

f,h with �=�−, ω = ψ , one obtains

〈χ
−
ψ,1D

f,h(�+)χ−ψ〉L2(�+)

= h2
‖dχ

−
ψ‖2L2(�+)

+ h2
‖d∗χ

−
ψ‖2L2(�+)

+〈(|∇ f |2+ hL∇ f + hL∗
∇ f )χ−ψ, χ−ψ〉L2(�+)+ 0 (3-5)
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and (since ∂ f/∂n > 0 on ∂�−)

e−c0/h
≥ λ≥ h2

‖dψ‖2L2(�−)
+ h2
‖d∗ψ‖2L2(�−)

+〈(|∇ f |2+ hL∇ f + hL∗
∇ f )ψ,ψ〉L2(�−). (3-6)

By considering the difference between (3-5) and (3-6), we thus have

〈χ
−
ψ,1D

f,h(�+)χ−ψ〉L2(�+)

≤ e−c0/h
+ h2(‖dχ

−
ψ‖2L2(�+)

−‖dψ‖2L2(�−)
)+ h2(‖d∗χ

−
ψ‖2L2(�+)

−‖d∗ψ‖2L2(�−)
)

+
(
〈(|∇ f |2+ hL∇ f + hL∗

∇ f )χ−ψ, χ−ψ〉L2(�+)−〈(|∇ f |2+ hL∇ f + hL∗
∇ f )ψ,ψ〉L2(�−)

)
.

The last three terms in the right-hand side are all of order O(e−cχ
−
/h
). Indeed, for the first term (the two

other terms are estimated in the same way),∣∣‖dχ
−
ψ‖2L2(�+)

−‖dψ‖2L2(�−)

∣∣= |〈d(1−χ
−
)ψ, d(1+χ

−
)ψ〉L2(�−)|

≤ C ′′χ−‖ψ‖
2
W 1,2(�−\{χ−=1}) ≤ C (3)

χ−
e−2c′χ

−
/h
,

using again (3-4). This proves the last estimate. �

According to the terminology of [Le Peutrec 2009], the property on the Gram matrices in Proposition 3.5
is equivalent to the almost orthonormality of the family (v(p)j )1≤ j≤m N

p (�−)
, p = 0, 1, in L2(�+).

Definition 3.6. A finite family of h-dependent vectors (uh
k )1≤k≤N in a Hilbert space H is almost orthonor-

mal if the Gram matrix satisfies

(〈uh
j , uh

k 〉)1≤ j, k≤N = IdN +O(e−c/h)

for some c > 0 independent of h.

We end this subsection with some remarks on the spectrum of 1N ,(0)
f,h (�−), which we denote (as

usual, in increasing order and with multiplicity) by (µ(0)k (�−))k≥1. The first eigenvalue of 1N ,(0)
f,h (�−) is

µ
(0)
1 (�−)= 0 associated with the eigenvector

ψ
(0)
1 =

e− f/h(∫
�−

e−2 f (x)/h dx
)1/2 .

One can prove that the second eigenvalue µ(0)2 (�−) of 1N ,(0)
f,h (�−) is exponentially large compared

to e−2κ f /h , where we recall κ f =min∂�+ f −min�+ f =min∂�+ f −min�− f .

Proposition 3.7. Let cvmax be the maximum critical value of f in �−:

cvmax=max{ f (x) : x ∈�−,∇ f (x)= 0}.

Then the second eigenvalue µ(0)2 (�−) of 1N ,(0)
f,h (�−) satisfies

lim inf
h→0

h log(µ(0)2 (�−))≥−2(cvmax−min
�−

f )≥−2κ f + 2c0,

where c0 denotes the positive constant used in Hypothesis 2.
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Proof. The second inequality −2(cvmax−min�− f ) ≥ −2κ f + 2c0 is of course a consequence of
Hypothesis 2. To prove the first inequality, let us reason by contradiction and assume that there exists
ε0 > 0 and a sequence hn such that limn→∞ hn = 0 and

min
{
σ(1

N ,(0)
f,hn

(�−)) \ {0}
}
≤ Ce−2(cvmax−min�− f+ε0)/hn .

To simplify the notation, let us drop the subscript n in hn . Let ψ (0)2 be a normalized eigenfunction
of 1N ,(0)

f,h (�−) associated with µ(0)2 (�−) > 0. It is orthogonal to ψ (0)1 in L2(�−) and it satisfies: for
any �⊂�−,

‖d f,hψ
(0)
2 ‖

2
L2(�)
≤‖d f,hψ

(0)
2 ‖

2
L2(�−)

=〈ψ
(0)
2 ,1

N ,(0)
f,h (�−)ψ

(0)
2 〉L2(�−)=µ

(0)
2 ≤Ce−2(cvmax−min�− f+ε0)/h .

In particular, for �=
{

x ∈�− : f (x) < cvmax+1
2ε0
}
, this gives

‖d(e( f−min�− f )/hψ
(0)
2 )‖2L2(�)

≤ h−2 max
x∈�
|e( f (x)−min�− f )/h

|
2
‖d f,hψ

(0)
2 ‖

2
L2(�)

≤ Ch−2e−2(cvmax−min�− f+ε0)/h max
x∈�
|e( f (x)−min�− f )/h

|
2
≤ C ′e−ε0/h .

Using the spectral gap estimate for the Neumann Laplacian in � (or equivalently the Poincaré–Wirtinger
inequality on �), there is a constant Ch (depending on ψ (0)2 ) such that

‖ψ
(0)
2 −Che−( f−min�− f )/h

‖L2(�) =O(e−ε0/(2h)).

Equivalently, there is a constant Ch such that

‖ψ
(0)
2 −Chψ

(0)
1 ‖L2(�) =O(e−ε0/(2h)). (3-7)

Further, using Proposition 3.4 with U =
{

x ∈ �− : f (x) < cvmax+1
4ε0
}
⊂ �, and a lower bound on

dAg(x,U ) (see (3-4) for a similar argument), one obtains

‖ψ
(0)
1 ‖L2(�−\�)+‖ψ

(0)
2 ‖L2(�−\�) ≤ Cε0e−cε0/h . (3-8)

The two estimates (3-7) and (3-8) contradict the orthogonality of ψ (0)2 and ψ (0)1 in L2(�−) in the limit
h→ 0 (actually n→∞). �

3C. Exponential decay for the eigenvectors of 1D,( p)
f,h (�+ \�−). In this section, we will check that

σ(1
D,(0)
f,h (�+ \�−)) ∩ [0, ν(h)] = ∅ and provide the same results as in the previous section for the

eigenvectors of 1D,(1)
f,h (�+ \�−). Let us start with an equivalent of Proposition 3.4.

Proposition 3.8. Let V be a subset of �+ \�− such that ∂�+ ⊂ V and let dAg(x,V) be the Agmon
distance to V defined for x ∈�+ \�−. There exists a constant C > 0 independent of h ∈ [0, h0] such that
every normalized eigenvector ψ of 1D,(1)

f,h (�+ \�−) associated with an eigenvalue λ ∈ [0, ν(h)] satisfies

‖edAg( · ,V)/hψ‖W 1,2(�+\�−)
≤

C
h
.
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Proof. The proof follows ideas from [Dimassi and Sjöstrand 1999]. Using Lemma 3.1, the fact that λ≤ h
and the assumption on the sign of the normal derivative of f on ∂�− stated in Hypothesis 1, we have

0≥ h2
‖deϕ/hψ‖2L2(�+\�−)

+h2
‖d∗eϕ/hψ‖2L2(�+\�−)

+〈(|∇ f |2−|∇ϕ|2)eϕ/hψ, eϕ/hψ〉L2(�+\�−)

− hC f ‖eϕ/hψ‖2L2(�+\�−)
− h

∫
∂�+

〈ψ,ψ〉∧ T ∗σ �+e2ϕ(σ)/h ∂ f
∂n
(σ ) dσ. (3-9)

Using the trace theorem, there exists a constant CV such that, for any ω ∈
∧

W 1,2(V),∫
∂�+

〈ω,ω〉∧ T ∗σ �+ dσ ≤ CV [‖ω‖
2
L2(V)+‖ω‖W 1,2(V)‖ω‖L2(V)].

By applying this inequality to ω = eϕ/hψ and using

‖ω‖2W 1,2(V) ≤ CV [‖ω‖
2
L2(V)+‖dω‖

2
L2(V)+‖d

∗ω‖2L2(V)],

the last term of (3-9) is estimated by∣∣∣∣h∫
∂�+

〈ψ,ψ〉∧ T ∗σ �+e2ϕ(σ)/h ∂ f
∂n
(σ ) dσ

∣∣∣∣≤ 1
2 h2
[‖deϕ/hψ‖2L2(V)+‖d

∗eϕ/hψ‖2L2(V)] +C f,V‖eϕ/hψ‖2L2(V)

≤
1
2 h2
[‖deϕ/hψ‖2L2(�+\�−)

+‖d∗eϕ/hψ‖2L2(�+\�−)
] +C f,V

since ϕ ≡ 0 on V . Taking ϕ = (1−αh)dAg(x,V) in (3-9) gives (using |∇ϕ|2 ≤ (1−αh)|∇ f |2 and the
inequality ‖eϕ/hψ‖2

L2(�+\�−)
= ‖eϕ/hψ‖2L2(V)+‖e

ϕ/hψ‖2
L2(�+\�−∪V)

≤ C ′V +‖e
ϕ/hψ‖2

L2(�+\�−∪V)
)

C ′f,V ≥
1
2 h2
[‖deϕ/hψ‖2L2(�+\�−)

+‖d∗eϕ/hψ‖2L2(�+\�−)
]

+ h
(
α min

x∈�+\�−∪V
|∇ f (x)|2−C f

)
‖eϕ/hψ‖2L2(�+\�−∪V)

.

By taking α large enough, this yields the exponential decay estimate

‖edAg( · ,V)/hψ‖W 1,2(�+\�−)
≤

C ′′f,V
h
. �

We are now in position to state the main result of this section, which can be seen as an equivalent of
Proposition 3.5 for 1D,(p)

f,h (�+ \�−).

Proposition 3.9. (1) There is a constant c > 0 such that

σ(1
D,(0)
f,h (�+ \�−))∩ [0, c] =∅ for all h ∈ (0, h0). (3-10)

(2) Let (ψ (1)k )m N
1 (�−)+1≤k≤m N

1 (�−)+m D
1 (�+\�−)

be an orthonormal basis of eigenvectors of1D,(1)
f,h (�+\�−)

associated with the eigenvalues in [0, ν(h)], and let χ
+
∈ C∞(�+) be such that χ

+
≡ 1 in a neighborhood

of ∂�+ and χ
+
≡ 0 in a neighborhood of �−. For all k ∈ {m N

1 (�−)+ 1, . . . ,m N
1 (�−)+m D

1 (�+ \�−)},
set v(1)k = χ+ψ

(1)
k . Then

m N
1 (�−)+m D

1 (�+\�−)∑
k=m N

1 (�−)+1

‖ψ
(1)
k − v

(1)
k ‖W 1,2(�+\�−)

=O(e−cχ
+
/h
), (3-11)
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that is, the one-forms v(1)k are close to ψ (1)k for k ∈ {m N
1 (�−)+ 1, . . . ,m N

1 (�−)+m D
1 (�+ \�−)}. They

are almost orthonormal in L2(�+):

(〈v
(1)
k , v

(1)
k′ 〉L2(�+))k,k′ = Idm D

1 (�+\�−)
+O(e−cχ

+
/h
).

Moreover, they belong to D(1D,(1)
f,h (�+)) and they satisfy

〈v
(1)
k ,1

D,(1)
f,h (�+)v

(1)
k 〉L2(�+) =O(e−cχ

+
/h
) and d∗f,hv

(1)
k ≡ 0 in {χ

+
= 1}.

All the O(e−cχ
+
/h
) remainders can be bounded from above by Cχ+e−cχ

+
/h for some constants Cχ+ , cχ+ > 0

independent of h ∈ [0, h0].

Proof. (1) The lower bound on the spectrum of1D,(0)
f,h (�+\�−) comes from Lemma 3.1, used with ϕ= 0,

and Hypothesis 1: for any function ω ∈ D(1D,(0)
f,h (�+ \�−)),

〈ω,1
D,(0)
f,h (�+ \�−)ω〉L2(�+\�−)

= h2
‖dω‖2L2(�+\�−)

+h2
‖d∗ω‖2L2(�+\�−)

+〈(|∇ f |2+hL∇ f +hL∗
∇ f )ω, ω〉L2(�+\�−)

≥C f ‖ω‖
2
L2(�+\�−)

.

(2) Let us start by proving that d∗f,hv
(1)
k ≡ 0 in {χ

+
= 1}. Let ψ be an eigenvector of 1D,(1)

f,h (�+ \�−)

associated with an eigenvalue λ ∈ [0, ν(h)]. Then, d∗f,hψ belongs to D(1D,(0)
f,h (�+ \�−)) and

1
D,(0)
f,h (d∗f,hψ)= λd∗f,hψ,

according to [Helffer and Nier 2006] (see also (4-3) below). Using now (3-10) and λ ≤ ν(h) ≤ h, this
implies

d∗f,hψ ≡ 0, (3-12)

and thus d∗f,hv ≡ 0 in {χ
+
≡ 1}.

All the other estimates are proved like in Proposition 3.5 as consequences of the exponential decay
estimate for the eigenvector ψ , stated in Proposition 3.9, using a neighborhood V ⊂ �+ \�− of ∂�+
such that χ

+
≡ 1 in a neighborhood of V .

For example, for (3-11), using dAg(x,V)≥ 2c′χ+ > 0 for x ∈ supp(1−χ
+
), Proposition 3.9 provides

‖(1−χ
+
)ψ‖W 1,2(�+\�−)

≤ C ′χ+e−c′χ
+
/h
. (3-13)

The proofs of the two other estimates on 〈v(1)k , v
(1)
k′ 〉L2(�+) and 〈v(1)k ,1

D,(1)
f,h (�+)v

(1)
k 〉L2(�+) follow the

same lines as in the proof of Proposition 3.5. �

3D. Exponential decay for the eigenvectors of 1D,( p)
f,h (�+), ( p= 0, 1). We will use the two operators

1N
f,h(�−) and 1D

f,h(�+ \�−) to analyze the spectrum of 1D
f,h(�+).

Definition 3.10. On
∧

L2(�+)=
∧

L2(�−)⊕
∧

L2(�+\�−), let1⊕f,h(�+) be the self-adjoint operator
1N

f,h(�−)⊕1
D
f,h(�+ \�−).

In other words, for any form u such that u1�− ∈ D(1N
f,h(�−)) and u1�+\�− ∈ D(1D

f,h(�+ \�−))

(namely if u ∈ D(1⊕f,h(�+))),

1⊕f,h(�+)u =1
N
f,h(�−)(u1�−)+1

D
f,h(�+ \�−)(u1�+\�−).
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It is easy to check that the spectrum of 1⊕,(p)f,h (�+) is the union of the two spectra σ(1N ,(p)
f,h (�−))

and σ(1D,(p)
f,h (�+\�−)). Bases of eigenvectors are given by the direct sum structure. In particular, we have

m⊕p (�+)= m N
p (�−)+m D

p (�+ \�−),

where m⊕p (�+)= #
[
σ(1⊕f,h(�+))∩ [0, ν(h)]

]
denotes the number of small eigenvalues of 1⊕f,h(�+).

Proposition 3.11. Let U be an open set satisfying (3-2). Let (ψ (p)k )1≤k≤m D
p (�+)

, p = 0 or 1, be an
orthonormal basis of eigenvectors of 1D,(p)

f,h (�+) associated with the eigenvalues in [0, ν(h)], and let
χ ∈ C∞(�+) be such that χ ≡ 1 in a neighborhood of ∂�+∪U and χ ≡ 0 in a neighborhood of ∂�−. For
all k ∈ {1, . . . ,m D

p (�+)}, set v(p)k = χψ
(p)
k . The forms v(p)k are close to ψ (p)k for k ∈ {1, . . . ,m D

p (�+)}:

m D
p (�+)∑
k=1

‖ψ
(p)
k − v

(p)
k ‖W 1,2(�+) =O(e−cχ/h).

They are almost orthonormal in L2(�+):

(〈v
(p)
k , v

(p)
k′ 〉L2(�+))k,k′ = Idm D

p (�+)
+O(e−cχ/h).

Moreover, they belong to the domain D(1⊕,(p)f,h (�+)) and they satisfy

〈v
(p)
k ,1

⊕,(p)
f,h (�+)v

(p)
k 〉L2(�+) =O(e−cχ/h).

All the O(e−cχ/h) remainders can be bounded from above by Cχe−cχ/h for some constants Cχ , cχ > 0
independent of h ∈ [0, h0].

Proof. The proof for p = 0 follows the same lines as the proofs of Proposition 3.4 and Proposition 3.5,
because the boundary term in Lemma 3.1 disappears for functions vanishing along ∂�+.

For p= 1, the boundary term has to be taken into account as we did in the proofs of Proposition 3.8 and
Proposition 3.9. A neighborhood V of ∂�+ has to be introduced and the function ϕ used in Lemma 3.1 is
ϕ(x)= (1−αh)dAg(x,U ∪V) with α > 0 large enough. �

Notice that the number m D
p (�+) of small eigenvalues for 1D,(p)

f,h (�+) is a priori dependent on h. We
did not explicitly indicate this dependency since the result of the next section is that m D

p (�+) is actually
independent of h.

3E. On the number of small eigenvalues of1D,( p)
f,h (�+). Using the results of the three previous sections,

one can show that the number m D
p (�+) of eigenvalues of1D,(p)

f,h (�+) in [0, ν(h)], is actually independent
of h ∈ (0, h0).

Proposition 3.12. For p ∈ {0, 1}, the number of eigenvalues of 1D,(p)
f,h (�+) lying in [0, ν(h)] is given by

m D
p (�+)= m N

p (�−)+m D
p (�+ \�−) ,

where we recall (see (3-10)) that m D
0 (�+ \�−)= 0. Moreover all these eigenvalues are exponentially

small, i.e., there exists c′0 > 0 such that

σ(1
D,(p)
f,h (�+))∩ [0, ν(h)] ⊂ [0, e−c′0/h

] for all h ∈ (0, h0), p = 0, 1.
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Proof. This is obtained as an application of the min–max principle. Indeed, we know that the spectrum
of 1D,(p)

f,h (�+) is given by the formula

λ
(p)
k (�+)= sup

{ω1,...,ωk−1}

Q(ω1, . . . , ωk−1) for k ≥ 1,

where

Q(ω1, . . . , ωk−1)= inf
v

{
〈v,1

D,(p)
f,h (�+)v〉L2(�+)

‖v‖2L2(�+)

: v ∈ D(1D,(p)
f,h (�+)), v ∈ Span(ω1, . . . , ωk−1)

⊥

}
.

By convention, for k = 1, the supremum is taken over an empty set (and can thus be neglected). Using
Proposition 3.5 and Proposition 3.9, one can build m p := m N

p (�−)+m D
p (�+ \�−), almost orthonormal

vectors for which the Rayleigh quotients associated with 1D,(p)
f,h (�+) are exponentially small. Let us

fix ε > 0 and consider {ω1, . . . , ωm p−1} such that λ(p)m p (�+) ≤ Q(ω1, . . . , ωm p−1)+ ε. Since, in the
limit h→ 0, the m p vectors built in Proposition 3.5 and Proposition 3.9 are linearly independent, there
exists a linear combination v ∈ D(1D,(p)

f,h (�+)) of these vectors which is in Span(ω1, . . . , ωm p−1)
⊥.

Using the estimates on the Rayleigh quotients and the almost orthonormality of these vectors, one
obtains that 〈v,1D,(p)

f,h (�+)v〉L2(�+)/‖v‖
2
L2(�+)

= O(e−c/h) for some positive constant c. This implies
that Q(ω1, . . . , ωk−1)=O(e−c/h) and thus λ(p)m p

(�+)=O(e−c/h). Therefore, one gets m D
p (�+)≥m p =

m N
p (�−)+m D

p (�+ \�−).
Similar reasoning on 1⊕,(p)f,h (�+) using Proposition 3.11 gives the opposite inequality m⊕p (�+) =

m N
p (�−)+m D

p (�+ \�−)≥ m D
p (�+). This ends the proof. �

4. Quasimodes for 1D,(0)
f,h (�+) and 1D,(1)

f,h (�+)

In this section, we specify the quasimodes which will be useful for the analysis of the spectrum of
1

D,(0)
f,h (�+) lying in [0, ν(h)]. In our context, for p = 0, 1, a quasimode for 1D,(p)

f,h (�+) is simply
a function v in the domain D(1D,(p)

f,h (�+)) such that 〈v,1D,(p)
f,h (�+)v〉L2(�+)/‖v‖

2
L2(�+)

= O(e−c/h).
Quasimodes for 1D,(0)

f,h (�+) (resp. 1D,(1)
f,h (�+)) will be built from the eigenvectors of 1N ,(0)

f,h (�−) (resp.
of 1N ,(1)

f,h (�−) and 1D,(1)
f,h (�+ \�−)).

4A. The restricted differential β. We recall here basic properties of boundary Witten Laplacians.

Proposition 4.1. Let � be a regular bounded domain of (M, g) and consider the Dirichlet (resp.
Neumann) realization A = 1D

f,h(�) (resp. A = 1N
f,h(�)) of the Witten Laplacian with form domain

Q(A) = W 1,2
D (�) (resp. Q(A) = W 1,2

N (�)). The differential d f,h and codifferential d∗f,h satisfy the
commutation property: for all z ∈ C \ σ(A) and u ∈ Q(A),

d f,h(z− A)−1u = (z− A)−1d f,hu and d∗f,h(z− A)−1u = (z− A)−1d∗f,hu.

Consequently, for any ` ∈ R+,

d f,h ◦ 1[0,`](A(p))= 1[0,`](A(p+1)) ◦ d f,h, and d∗f,h ◦ 1[0,`](A(p))= 1[0,`](A(p−1)) ◦ d∗f,h, (4-1)
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where A(p) denotes the restriction of A to p-forms. Moreover, if F (p)` denotes the spectral subspace
Ran 1[0,`](A(p)), the chain complex

0−→ F (0)` −→ · · · −→ F (p−1)
`

−d f,h
−−−→ F (p)`

−d f,h
−−−→ F (p+1)

` −→ · · · −→ F (d)` −→ 0 (4-2)

is quasi-isomorphic to the relative (resp. absolute) Hodge–de Rham chain complex. The Witten codifferen-
tial d∗f,h implements the dual chain complex.

Relative and absolute homologies are standard notions in algebraic topology and Morse theory (see,
for example, [Hatcher 2002; Milnor 1963]). Their translations to cohomology and boundary value Hodge
theory is presented, for example, in [Taylor 1997; Schwarz 1995]. A quasi-isomorphism is a morphism
of complexes which induces an isomorphism of homology groups.

We refer to [Chang and Liu 1995; Helffer and Nier 2006; Le Peutrec 2010b] for the adaptation to
boundary cases of these well-known properties of Witten Laplacians [Cycon et al. 1987, Chapter 11].

Let us give two consequences of that result that are useful in our context. First, the following property,
which was already used in the proof of Proposition 3.9, holds (using the notation of Proposition 4.1):

A(p)ψ = λψ =⇒
{

A(p+1)d f,hψ = λd f,hψ

A(p−1)d∗f,hψ = λd∗f,hψ
(4-3)

with the convention A(−1)
= A(d+1)

= 0. Secondly, we have the orthogonal decompositions

F` = Ker
[
A
∣∣

F`

] ⊥
⊕Ran

[
d f,h

∣∣
F`

] ⊥
⊕Ran

[
d∗f,h

∣∣
F`

]
,

Ran
[
d∗f,h

∣∣
F`

]⊥
= Ker

[
d f,h

∣∣
F`

]
= Ker

[
A
∣∣

F`

] ⊥
⊕Ran

[
d f,h

∣∣
F`

]
,

Ran
[
d f,h

∣∣
F`

]⊥
= Ker

[
d∗f,h

∣∣
F`

]
= Ker

[
A
∣∣

F`

] ⊥
⊕Ran

[
d∗f,h

∣∣
F`

]
,

(4-4)

where F` =
⊕d

p=0 F (p)` . In our problem, we shall use the following notation:

Definition 4.2. Consider the Dirichlet realization 1D
f,h(�+) of 1 f,h on �+. For p = 0, 1, the operators

5(p) are the spectral projections

5(p)
= 1[0,ν(h)](1

D,(p)
f,h (�+)), p = 0, 1,

and their range is denoted by F (p). Moreover, the Witten differential d f,h restricted to F (0) is written
as β = d f,h

∣∣
F (0) : F

(0)
→ F (1), so that 1D,(0)

f,h (�+)
∣∣

F (0) = β
∗β, where β∗ = d∗f,h

∣∣
F (1) : F

(1)
→ F (0).

A consequence of the commutation properties (4-1) is the identity

β =5(1)d f,h = d f,h5
(0)
=5(1)β5(0). (4-5)

Moreover, (4-4) becomes
F (0) = Ran[β∗], since Ker(β)= {0}

because βu = d f,hu = 0 and u = 0 on ∂� imply u = 0, and

F (1) = Ker[β∗]
⊥

⊕Ran[β] = Ker[1D,(1)
f,h (�+)]

⊥

⊕Ran(β)
⊥

⊕Ran
[
d∗f,h

∣∣
F (2)
]
. (4-6)
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4B. Truncated eigenvectors. Let us recall the eigenvectors that have been introduced in Propositions 3.5
and 3.9:

• (ψ
(0)
j )1≤ j≤m N

0 (�−)
are eigenvectors for the operator 1N ,(0)

f,h (�−) associated with the eigenvalues
0=µ(0)1 (�−)≤ C0e−2(κ f−c0)/h

≤µ
(0)
2 (�−)≤ · · · ≤µ

(0)
m N

0 (�−)
(�−)≤ e−c0/h

≤ ν(h). The first eigen-
vector ψ (0)1 associated with the eigenvalue µ(0)1 (�−)= 0 is ψ (0)1 = e− f/h1�−/

(∫
�−

e−2 f (x)/h dx
)1/2

.

The lower bound on µ(0)2 (�−) stated above is valid for sufficiently small h and was proven in
Proposition 3.7.

• (ψ
(1)
k )1≤k≤m N

1 (�−)
are eigenvectors for the operator 1N ,(1)

f,h (�−) associated with the m N
1 (�−) eigen-

values smaller than ν(h). Using (4-3), those eigenvectors can be labeled so that

ψ
(1)
k = (µ

(0)
k+1(�−))

−1/2d f,hψ
(0)
k+1 = (µ

(0)
k+1(�−))

−1/2βψ
(0)
k+1 for k ∈ {1, . . . ,m N

0 (�−)− 1}.

Notice that we may have m N
1 (�−) = m N

0 (�−)− 1. If not, using (4-6), β∗ψ (1)k = d∗f,hψ
(1)
k = 0

for k ≥ m N
0 (�−).

• (ψ
(1)
k )m N

1 (�−)+1≤k≤m N
1 (�−)+m D

1 (�+\�−)
are eigenvectors for the operator 1D,(1)

f,h (�+ \�−) associated
with the m D

1 (�+\�−) eigenvalues smaller than ν(h). From (3-12) in the proof of Proposition 3.9,
we know that d∗f,hψ

(1)
k = β

∗ψ
(1)
k = 0.

In Proposition 3.12 we proved that m D
0 (�+)=m N

0 (�−) and m D
1 (�+)=m N

1 (�−)+m D
1 (�+\�−). The

families (ψ (0)j )1≤ j≤m D
0 (�+)

and (ψ (1)k )1≤k≤m D
1 (�+)

are orthonormal bases of eigenvectors for 1⊕,(0)f,h (�+)

and 1⊕,(1)f,h (�+), respectively, restricted to the spectral range [0, ν(h)]. These two families will be used
to construct quasimodes for the operator 1D,(p)

f,h (�+) restricted to the spectral range [0, ν(h)]. This will
require some appropriate truncations or extrapolations, detailed below.

Let us start with ψ (0)1 and let us introduce

ψ̃
(0)
1 =

e− f/h1�+(x)(∫
�+

e−2 f (x)/h dx
)1/2 . (4-7)

These two functions are exponentially close in L2(�+), that is,

‖ψ
(0)
1 − ψ̃

(0)
1 ‖L2(�+) ≤ Ce−c/h,

owing to f (x)≥min∂�− f >min�+ f for all x ∈�+ \�− and the following upper and lower bounds of
the integral factor:

Lemma 4.3. Let � be a regular bounded domain of (M, g) and let f belong to C∞(�) such that min� f
is achieved in �. Then there exists a constant C f > 0 such that

1
C f

hd/2e−2(min� f )/h
≤

∫
�

e−2 f (x)/h dx ≤ Volg(�)e−2(min� f )/h,

where Volg(�) denotes the volume of � for the metric g.
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�− �+ \�−�+ \�−

δ+ δ+U
|

|

|

|
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1
0

0
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|

0
1

1
0

χ
(1)
−

χ
(0)
−

χ
+

χ0

Figure 1. Positions of the domains �+, �− and U , and of the supports of the cut-off
functions χ (0)− , χ (1)− , χ

+
, χ0.

Proof. The upper bound is obvious since e−2 f (x)/h
≤ e−2(min� f )/h for all x ∈ �. For the lower bound,

write ∫
�

e−2 f (x)/h dx =
∫
�

∫
+∞

2 f (x)
e−t/h dt

h
dx =

∫
+∞

2 min� f
Volg(2 f < t)e−t/h dt

h

= e−2(min� f )/h
∫
+∞

0
Volg

(
2 f < 2 min

�
f + hs

)
e−s ds.

We assumed the existence of x0 ∈� such that f (x0)=min� f . Using the Taylor expansion of f around x0,
there exist r > 0, h0> 0 and s0> 0 such that the ball B(x0, (hs)1/2/r) is included in

{
f <min� f + 1

2 hs
}

for all s < s0 and h < h0. Since Volg[B(x0, (hs)1/2/r)] ≥ (hs)d/2/Cr , we get∫
�

e−2 f (x)/h dx ≥
1

Cr
e−2(min� f )/h

∫ s0

0
e−s(hs)d/2 ds ≥

hd/2e−2(min� f )/h

C f
. �

Compared to the standard Laplace estimate, the interest of Lemma 4.3 is that it holds even if the
minimum of f is degenerate.

In all of what follows, U denotes a fixed subset of �− satisfying (3-2). Let us introduce various cut-off
functions, which all satisfy 0≤ χ ≤ 1. We refer to Figure 1 for an illustration of these cut-off functions
with respect to the three sets U ⊂�− ⊂�+.

• χ
(0)
− and χ (1)− are two cut-off functions like χ

−
in Proposition 3.5, that is, χ (p)− ∈C∞0 (�−) and χ (p)− ≡ 1

in a neighborhood of U with the additional condition that χ (0)− ≡ 1 in a neighborhood of suppχ (1)− .

• χ
+

is chosen as in Proposition 3.9, that is, χ
+
∈C∞(�+), χ+≡1 in a neighborhood of ∂�+ and χ

+
≡0

in a neighborhood of �−. Let us introduce c+ > 0 such that χ
+
≡ 1 on {x ∈�+ : d(x, ∂�+)≤ c+}.

• χ0 belongs to C∞0 (�+), χ0≡ 1 in a neighborhood of �− and is chosen in such a way that its gradient
is supported in {x ∈�+ : d(x, ∂�+)≤ δ+}, where δ+ ∈ (0, c+) will be fixed later.

We are now in position to introduce a family of quasimodes for the operator 1D,(p)
f,h (�+).

Definition 4.4. Let χ (0)− , χ (1)− , χ
+

and χ0 be the cut-off functions defined above. Let (ψ (0)j )1≤ j≤m D
0 (�+)

and
(ψ

(1)
k )1≤k≤m D

1 (�+)
be the previously gathered families of eigenvectors of1N ,(p)

f,h (�−) and1D,(1)
f,h (�+\�−),
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and finally let ψ̃ (0)1 be given by (4-7). The families of vectors (v(0)j )1≤ j≤m D
0 (�+)

and (v(1)k )1≤k≤m D
1 (�+)

are
defined by:

• v
(0)
1 = χ0ψ̃

(0)
1 ;

• v
(0)
j = χ

(0)
− ψ

(0)
j for j ∈ {2, . . . ,m D

0 (�+)};

• v
(1)
k = χ

(1)
− ψ

(1)
k for k ∈ {1, . . . ,m N

1 (�−)};

• v
(1)
k = χ+ψ

(1)
k for k ∈ {m N

1 (�−)+ 1, . . . ,m D
1 (�+)}.

Proposition 4.5. The families (v(0)j )1≤ j≤m D
0 (�+)

and (v(1)k )1≤k≤m D
1 (�+)

of Definition 4.4 satisfy:

(1) They are almost orthonormal in L2(�+):

(〈v
(0)
j , v

(0)
j ′ 〉L2(�+))1≤ j, j ′≤m D

0 (�+)
= Idm D

0 (�+)
+O(e−c/h),

(〈v
(1)
k , v

(1)
k′ 〉L2(�+))1≤k,k′≤m D

1 (�+)
= Idm D

1 (�+)
+O(e−c/h)

for some constant c > 0 independent of δ+.

(2) The elements v(0)j , 1≤ j ≤ m D
0 (�+) (resp. v(1)k , 1≤ k ≤ m D

1 (�+)) belong to D(1D,(0)
f,h (�+)) (resp.

1
D,(1)
f,h (�+)) and satisfy

〈v
(0)
j ,1

D,(0)
f,h (�+)v

(0)
j 〉L2(�+) =O(e−c/h) and 〈v

(1)
k ,1

D,(1)
f,h (�+)v

(1)
k 〉L2(�+) =O(e−c/h),

respectively, for some constant c > 0 independent of δ+.

(3) Let us consider the spectral projections 5(0) and 5(1) associated with 1D
f,h(�+) introduced in

Definition 4.2. The elements v(0)j , 1≤ j ≤ m D
0 (�+) (resp. v(1)k , 1≤ k ≤ m D

1 (�+)) satisfy:

‖v
(0)
j −5

(0)v
(0)
j ‖L2(�+) =O(e−c/h) and ‖v

(1)
k −5

(1)v
(1)
k ‖L2(�+) =O(e−c/h),

respectively, for some constant c > 0 independent of δ+.

Proof. (1) The families (ψ (0)j )1≤ j≤m D
0 (�+)

and (ψ (1)k )1≤k≤m D
1 (�+)

are orthonormal bases of eigenvectors
of 1⊕,(0)f,h and 1⊕,(1)f,h , respectively. Proposition 3.5 implies that the family (χ (0)− ψ

(0)
j )1≤ j≤m D

0 (�+)
is

almost orthonormal. The estimate ‖χ0ψ̃
(0)
1 − χ

(0)
− ψ

(0)
1 ‖L2(�+) ≤ Ce−c/h (which is a consequence of

Lemma 4.3 and f (x) ≥ min∂�− f > min�+ f for all x ∈ �+ \ �−) ends the proof of the almost
orthonormality of (v(0)j )1≤ j≤m D

0 (�+)
. For p = 1, the two families (v(1)k = χ

(1)
− ψ

(1)
k )1≤k≤m1(�−) and

(v
(1)
k = χ+ψ

(1)
k )m N

1 (�−)+1≤k≤m D
1 (�+)

have disjoint supports and therefore lie in orthogonal subspaces
of L2(�+). Also, the almost orthonormality of both families is again a consequence of the exponential
decay of the ψ (1)k ; see Proposition 3.5 and Proposition 3.11.

(2) With the chosen truncations, all the vectors v(0)j (resp. v(1)k ) belong to the domain D(1D,(0)
f,h (�+))

(resp. D(1D,(1)
f,h (�+))). In all cases except p = 0 and k = 1, we obtain, for v = χψ (we omit the index k

and the superscript (p)) and Aψ = λψ , where A =1N
f,h(�−) or A =1D

f,h(�+ \�−),

〈v,1D
f,h(�+)v〉L2(�+) = ‖d f,hv‖

2
L2 +‖d∗f,hv‖

2
L2(�+)

≤ 〈ψ, Aψ〉+C‖ψ‖2W 1,2({χ 6=1}) ≤ Ce−c/h,
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owing to 〈ψ, Aψ〉 = λ = O(e−c0/h) and to the estimates on ψ − v given in Proposition 3.5 and
Proposition 3.11. For p = 0 and k = 1, it is even simpler because d f,hψ̃

(0)
1 = 0 implies

〈v
(0)
1 ,1

D,(0)
f,h (�+)v

(0)
1 〉L2(�+) = ‖d f,h(χ0ψ̃

(0)
1 )‖2L2(�+)

= ‖(hdχ0)ψ̃
(0)
1 ‖

2
L2(�+)

≤ Ce−c/h

as a consequence of Lemma 4.3 (see (5-8) below for a more precise estimate).

(3) All the v(0)j and v(1)k satisfy 〈v, Av〉L2(�+) =O(e−c/h) with A=1D,(0)
f,h (�+) or A=1D,(1)

f,h (�+), and
recall that 5(0) and 5(1) are the spectral projectors 1[0,ν(h)](A). The last estimates are consequences of

ν(h)‖1(ν(h),+∞)(A)v‖2L2(�+)
≤ 〈v, Av〉L2(�+) ≤ Ce−c/h

together with the fact that limh→0 h log ν(h)= 0; see (2-5). �

In the next section, we will need these calculations:

Proposition 4.6. The coefficients 〈v(1)k , d f,hv
(0)
j 〉L2(�+), j ∈ {1, . . . ,m D

0 (�+)}, k ∈ {1, . . . ,m D
1 (�+)},

satisfy:

(1) For j = 1 and k ∈ {1, . . . ,m N
1 (�−)}, 〈v

(1)
k , d f,hv

(0)
1 〉L2(�+) = 0.

(2) For j = 1 and k ∈ {m N
1 (�−)+ 1, . . . ,m D

1 (�+)},

〈v
(1)
k , d f,hv

(0)
1 〉L2(�+) =−

h
∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2 ,

where dσ is the infinitesimal volume on ∂�+ and n(σ ) the outward normal vector at σ ∈ ∂�+.

(3) For j ∈ {2, . . . ,m D
0 (�+)} and k ∈ {1, . . . ,m N

1 (�−)},

〈v
(1)
k , d f,hv

(0)
j 〉L2(�+) =

√
µ
(0)
j (�−)(δk, j−1+O(e−c/h)).

(4) For j ∈ {2, . . . ,m D
0 (�+)} and k ∈ {m N

1 (�−)+ 1, . . . ,m D
1 (�+)}, 〈v

(1)
k , d f,hv

(0)
j 〉L2(�+) = 0.

Proof. Cases (1) and (4) are due to the disjoint supports of d f,hv
(0)
j and v(1)k (see Figure 1).

Case (3) comes from the computation

d f,hv
(0)
j = d f,h(χ

(0)
− ψ

(0)
j )= χ

(0)
− d f,hψ

(0)
j + (hdχ (0)− )∧ψ

(0)
j

=

√
µ
(0)
j (�−)χ

(0)
− ψ

(1)
j−1+ψ

(0)
j hdχ (0)− .

The condition χ (0)− ≡ 1 in a neighborhood of suppχ (1)− then leads to

〈v
(1)
k , d f,hv

(0)
j 〉L2(�+) = 〈χ

(1)
− ψ

(1)
k ,

√
µ
(0)
j (�−)ψ

(1)
j−1〉L2(�−)

=

√
µ
(0)
j (�−)δk, j−1+

√
µ
(0)
j (�−)‖(1−χ

(1)
− )ψ

(1)
k ‖L2(�−),

and we conclude with the exponential decay of ψ (1)k given by (3-4) in the proof Proposition 3.5.
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For case (2), we first use

d f,hv
(0)
1 = d f,h(χ0ψ̃

(0)
1 )=

e− f/h(∫
�+

e−2 f (x)/h dx
)1/2 h dχ0.

The assumption on the supports of χ0 and χ+ (see Figure 1) implies that dχ0 is supported in the interior
of {x ∈�+ : χ+(x)= 1}, so that(∫

�+

e−2 f (x)/h dx
)1

2

〈v
(1)
k , d f,hv

(0)
j 〉 = 〈χ+ψ

(1)
k , e− f/hh dχ0〉 = 〈ψ

(1)
k , e− f/hh dχ0〉.

The definition of the Hodge ? operation gives

〈ψ
(1)
k , e− f/hh dχ0〉 = h

∫
�+

dχ0 ∧ [?(e
− f/hψ

(1)
k )] = −h

∫
�+\�−

d(1−χ0)∧ [?(e
− f/hψ

(1)
k )].

We recall (see (3-12) in the proof of Proposition 3.9) that d∗f,hψ
(1)
k = 0 in �+ \�−, which means

d[?(e− f/hψ
(1)
k )] = (−1)1+1 ?

[
e− f/h

h
d∗f,hψ

(1)
k

]
= 0 in �+ \�− .

Hence, we get

d(1−χ0)∧ [?(e
− f/hψ

(1)
k )] = d

[
(1−χ0)∧ [?(e

− f/hψ
(1)
k )]

]
,

and Stokes’ formula yields

〈ψ
(1)
k , e− f/hh dχ0〉 = −h

∫
∂�+

e− f/h ?ψ
(1)
k =−h

∫
∂�+

e− f/h t(?ψ (1)k ).

Using the relations (A-8), t?= ?n, and (A-10) ω1∧ (?nω2)= 〈ω1, inω2〉∧p−1 T ∗σ �+
dσ along ∂�+ (where

dσ is the infinitesimal volume on ∂�+ and n(σ ) the outward normal vector at σ ∈ ∂�+) with p = 1,
ω1 = 1 and ω2 = ψ

(1)
k , we get

〈ψ
(1)
k , e− f/hh dχ0〉 = −h

∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ.

This concludes the proof of case (2), and of Proposition 4.6. �

5. Analysis of the restricted differential β

It is in this section that the assumption (2-8) is used. We assume that the open subset U of �− that has
been used to build the cut-off functions in the previous section satisfies (in addition to (3-2))

U ∪V− =�−, (5-1)

where V− is the neighborhood of ∂�− introduced in the assumption (2-8).
The main result of this section is the following:
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Proposition 5.1. The singular values of β = d f,h
∣∣

F (0) : F (0)→ F (1), labeled in decreasing order, are
given by

s j (β)=

√
µ
(0)
m D

0 (�+)+1− j
(�−)(1+O(e−c/h)) for j ∈ {1, . . . ,m D

0 (�+)− 1},

sm D
0 (�+)

(β)=

h
√∑m D

1 (�+)

k=m N
1 (�−)+1

∣∣∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ

∣∣2√∫
�+

e−2 f (x)/h dx
(1+O(e−c/h))

for some c > 0.

According to the notation of Section 4B, (µ(0)j (�−))1≤ j≤m D
0 (�+)

are the eigenvalues of 1N ,(0)
f,h (�−)

and (ψ (1)k )m N
1 (�−)+1≤k≤m D

1 (�+)
are the eigenvectors of 1D,(1)

f,h (�+ \�−). Notice that, contrary to the
eigenvalues of the operators considered in the previous sections which were labeled in increasing order,
the singular values are naturally labeled in decreasing order. Of course, the singular values of β are
related to the small eigenvalues of 1D,(0)

f,h (�+) through the relation

σ(1
D,(0)
f,h (�+))∩ [0, ν(h)] = {sk(β)

2
: 1≤ k ≤ m D

0 (�+)}, (5-2)

since 1D,(0)
f,h

∣∣
F (0) = β

∗β. Proposition 5.1 will thus be instrumental in proving Theorem 2.4.
The idea of the proof of Proposition 5.1 follows the linear algebra argument used in [Helffer et al. 2004;

Helffer and Nier 2006; Le Peutrec 2010b; Le Peutrec et al. 2013] and well summarized in [Le Peutrec 2009].
Notice that β = d f,h

∣∣
F (0) is a finite-dimensional linear operator. The proof then relies on the following

fundamental property for singular values of matrices. Let us denote by sk(B), k ∈ {1, . . . ,max(n0, n1)},
the singular values of a matrix B ∈Mn1,n0(C). Then, for any matrices C0 ∈Mn0(C) and C1 ∈Mn1(C),

sk(BC0)≤ sk(B)‖C0‖, sk(C1 B)≤ ‖C1‖sk(B), (5-3)

and, for any matrices C0 ∈ GLn0(C) and C1 ∈ GLn1(C),

1

‖C−1
0 ‖‖C

−1
1 ‖

sk(B)≤ sk(C1 BC0)≤ ‖C0‖‖C1‖sk(B), (5-4)

where ‖A‖ = (max σ(AAT ))1/2 denotes the spectral radius of a matrix A. The inequalities (5-3) are
specific and simple cases of the Ky Fan inequalities (see, for example, [Simon 1979] for a generalization).
In particular, when C∗pC p= Idn p +O(ε) (p= 0, 1), the k-th singular value of B is close to the k-th singular
value of C1 BC0, that is, sk(C1 BC0)= sk(B)(1+O(ε)). In particular, computing the singular values of β
in almost orthonormal bases (according to Definition 3.6) changes every sk(β) into sk(β)(1+O(e−c/h)).
To analyze the singular values of β, we will use the almost orthonormal bases built in the previous section.

Remark 5.2. Our approach, which emphasizes the differential d f,h and allows almost orthonormal
changes of bases, is very close to [Bismut and Zhang 1994] (see in particular their Section 6), where an
isomorphism between the Thom–Smale complex and the Witten complex is constructed.2 The interest of
our technique, following [Helffer and Nier 2006; Le Peutrec 2010b; Le Peutrec et al. 2013], is that the

2F. Nier thanks J. M. Bismut for mentioning this point.
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hierarchy of long range tunnel effects can be analyzed accurately using a Gauss elimination algorithm
(see [Le Peutrec 2009]). This makes more explicit the inductive process which was used by Bovier,
Eckhoff, Gayrard and Klein [Bovier et al. 2004; 2005]. Actually, the present analysis shows that the
Thom–Smale transversality condition and the Morse condition are not necessary: introducing the suitable
block structure associated with the assumed geometry of the tunnel effect (see in particular Hypothesis 2)
suffices.

5A. Structure of β. The estimates ‖v(0)j −5
(0)v

(0)
j ‖L2(�+) = O(e−c/h) and ‖v(1)k −5

(1)v
(1)
k ‖L2(�+) =

O(e−c/h) of Proposition 4.5 together with the results stated in Proposition 4.5(1) ensure that

B(0) = (5(0)v
(0)
j )1≤ j≤m D

0 (�+)
and B(1) = (5(1)v

(1)
k )1≤k≤m D

1 (�+)

are almost orthonormal bases of F (0) and F (1). The same holds for their dual bases (in L2(�+)), denoted
by B(0),∗ and B(1),∗. The matrix of β = d f,h

∣∣
F (0) : F

(0)
→ F (1) in the bases B(0), B(1),∗ is given by

M(β,B(0),B(1),∗)= B = (bk, j )1≤k≤m D
1 (�+), 1≤ j≤m D

0 (�+)
with bk, j = 〈5

(1)v
(1)
k , β5(0)v

(0)
j 〉L2(�+).

Remember that the coefficients are equivalently written, by using (4-5), as

bk, j = 〈5
(1)v

(1)
k , β5(0)v

(0)
j 〉L2(�+) = 〈5

(1)v
(1)
k , d f,hv

(0)
j 〉L2(�+) = 〈v

(1)
k , d f,h5

(0)v
(0)
j 〉L2(�+). (5-5)

Following the various cases discussed in Proposition 4.6, where the scalar products 〈v(1)k , d f,hv
(0)
j 〉L2(�+)

were studied, we shall write the matrix B in block form:

B =
(

B1,1 B1,2

B2,1 B2,2

)
, where


B1,1 = (〈5

(1)v
(1)
k , d f,hv

(0)
1 〉L2(�+))1≤k≤m N

1 (�−)
,

B1,2 = (〈5
(1)v

(1)
k , d f,hv

(0)
j 〉L2(�+))2≤ j≤m D

0 (�+), 1≤k≤m N
1 (�−)

,

B2,1 = (〈5
(1)v

(1)
k , d f,hv

(0)
1 〉L2(�+))m N

1 (�−)+1≤k≤m D
1 (�+)

,

B2,2 = (〈5
(1)v

(1)
k , d f,hv

(0)
j 〉L2(�+))2≤ j≤m D

0 (�+),m N
1 (�−)+1≤k≤m D

1 (�+)

In the following, we will give some estimates of each of these blocks in the asymptotic regime h→ 0.
We let

C0 = 2‖∇ f ‖L∞(supp(∇χ0)). (5-6)

Notice that C0 > 0. We assume that δ+ > 0 is chosen so that

δ+ <
κ f

C0
. (5-7)

The assumption (2-8) will be useful to study the blocks B1,2 and B2,2 and the parameter δ+ > 0 (see
Figure 1) will be further adjusted when considering the blocks B1,1 and B2,1.

5B. The blocks B1,2 and B2,2. Estimates for both blocks rely on assumption (2-8). Let us start with B1,2.

Lemma 5.3. The coefficients of B1,2 satisfy

bk, j = 〈5
(1)v

(1)
k , d f,hv

(0)
j 〉L2(�+) =

√
µ
(0)
j (�−)(δk, j−1+O(e−c/h))

for j ∈ {2, . . . ,m D
0 (�+)} and k ∈ {1, . . . ,m N

1 (�−)}.
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Proof. Let us first estimate ‖d f,hv
(0)
j ‖L2(�+) by writing

d f,hv
(0)
j = d f,h(χ

(0)
− ψ

(0)
j )= χ

(0)
− d f,hψ

(0)
j + hψ (0)j dχ (0)− = χ

(0)
−

√
µ
(0)
j (�−)ψ

(1)
j−1+ hψ (0)j dχ (0)− .

Since supp dχ (0)− ⊂ �− \U ⊂ V− (see (5-1)), (2-8) implies ‖d f,hv
(0)
j ‖L2(�+) = Õ

(√
µ
(0)
j (�−)

)
. The

difference
|〈5(1)v

(1)
k , d f,hv

(0)
j 〉L2(�+)−〈v

(1)
k , d f,hv

(0)
j 〉L2(�+)|

is thus bounded from above by

‖5(1)v
(1)
k − v

(1)
k ‖L2(�+)Õ

(√
µ
(0)
j (�−)

)
≤ Ce−c′/(2h)

√
µ
(0)
j (�−),

owing to the estimate ‖5(1)v
(1)
k −v

(1)
k ‖=O(e−c′/h) obtained in Proposition 4.5(3). The result then comes

from the expression of 〈v(1)k , d f,hv
(0)
j 〉L2(�+) given in Proposition 4.6(3). �

The estimate of the block B2,2 follows the same lines:

Lemma 5.4. The coefficients of B2,2 satisfy

bk, j = 〈5
(1)v

(1)
k , d f,hv

(0)
j 〉L2(�+) =O

(√
µ
(0)
j (�−)e

−c/h)
for j ∈ {2, . . . ,m D

0 (�+)} and k ∈ {m N
1 (�−)+ 1, . . . ,m D

1 (�+)}.

Proof. Using ‖d f,hv
(0)
j ‖ = Õ

(√
µ
(0)
j (�−)

)
again, ‖5(1)v

(1)
k − v

(1)
k ‖ = O(e−c′/h) and, according to

Proposition 4.6(4), 〈v(1)k , d f,hv
(0)
j 〉 = 0 we get |bk, j | ≤ Ce−c′/(2h)

√
µ
(0)
j (�−). �

5C. The block B1,1. In this section, the value of the parameter δ+ is adjusted. This value will possibly
be changed twice more: for the estimate of the block B2,1 and in the final proof of Theorem 2.4; see
Sections 6A and 6B. Remember that the constant c occurring in the remainders O(e−c/h) introduced in
Proposition 4.5 does not depend on δ+ > 0.

Lemma 5.5. For any k ∈ {1, . . . ,m N
1 (�−)}, the matrix element bk,1 satisfies

bk,1 = 〈5
(1)v1

k , d f,hv
(0)
1 〉L2(�+) =O(e−(κ f+c−C0δ+)/h),

where κ f =min∂�+ f −min�+ f , and the constants c > 0 and C0 > 0 (defined by (5-6)) are independent
of δ+ > 0. In particular, when δ+ > 0 is chosen smaller than c/C0, one gets

bk,1 =O(e−(κ f+c)/h)

for a positive constant c, which depends on δ+.

Proof. Remember that v(0)1 = χ0ψ̃
(0)
1 = χ0e− f/h/

(∫
�+

e−2 f (x)/h dx
)1/2, where ∇χ0 is supported in

{x ∈�+ : d(x, ∂�+) < δ+} (see Figure 1). The Witten differential of v(0)1 satisfies

d f,hv
(0)
1 =

e− f/h(∫
�+

e−2 f (x)/h dx
)1/2 (h dχ0)
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and its L2-norm can be estimated by

‖d f,hv
(0)
1 ‖

2
L2(�+)

≤ Cχ0

∫
supp(∇χ0)

e−2 f (x)/h dx∫
�+

e−2 f (x)/h dx
.

With f (x)≥min∂�+ f − 1
2C0δ+ for x ∈ supp(∇χ0) (where C0 is defined by (5-6) and does not depend

on δ+) and the lower bound
∫
�+

e−2 f (x)/h dx ≥ hd/2e−2(min�+ f )/h/C1 of Lemma 4.3, we get

‖d f,hv
(0)
1 ‖

2
L2(�+)

≤ C1h−d/2e−2(κ f−C0δ+/2)/h
≤ C2e−2(κ f−C0δ+)/h (5-8)

provided that h is small enough. Then, like in Lemma 5.3, using

|bk,1−〈v
(1)
k , d f,hv

(0)
1 〉L2(�+)| ≤ ‖5

(1)v
(1)
k − v

(1)
k ‖L2(�+)‖d f,hv

(0)
1 ‖L2(�+) ≤ C3e−c′/he−(κ f−C0δ+)/h,

the equality 〈v(1)k , d f,hv
(0)
1 〉 = 0 (see Proposition 4.6(1)) yields the result. �

Remark 5.6. If m D
1 (�+ \�−)= 0 (and thus m N

1 (�−)= m D
1 (�+)), the previous lemma shows that

〈5(0)v
(0)
1 , β∗β5(0)v

(0)
1 〉F (0) = ‖β5

(0)v
(0)
1 ‖

2
F (0) =

m N
1 (�−)∑
k=1

|bk,1|
2(1+O(e−c/h))=O(e−(κ f+c)/h).

This implies that β∗β (and therefore 1D,(0)
f,h (�+)) has an eigenvalue of the order O(e−(κ f+c)/h), which

contradicts Lemma 5.9 below. Therefore, m D
1 (�+ \�−) is not zero.

5D. The block B2,1. We shall first give an approximate expression for the coefficients of the column B2,1.

Proposition 5.7. For any k ∈ {m N
1 (�−)+ 1, . . . ,m D

1 (�+)}, the matrix element

bk,1 = 〈5
(1)v1

k , d f,hv
(0)
1 〉L2(�+)

satisfies

bk,1 =−
h
∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2 +O(e−(κ f+c)/h), (5-9)

where c is a positive constant which depends on δ+ > 0 chosen to be sufficiently small, and κ f =

min∂�+ f −min�+ f . Moreover, these coefficients bk,1 satisfy

lim
h→0

h log
[ m D

1 (�+)∑
k=m N

1 (�−)+1

|bk,1|
2
]
=−2κ f . (5-10)

The estimate (5-10) shows that the approximation (5-9) is meaningful, in the sense that some of the
coefficients bk,1 are indeed larger than the error term O(e−(κ f+c)/h). In particular, we have

m D
1 (�+)∑

k=m N
1 (�−)+1

|bk,1|
2
=

h2∑m D
1 (�+)

k=m N
1 (�−)+1

(∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ

)2∫
�+

e−2 f (x)/h dx
(1+O(e−c/h)). (5-11)
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Proof. The first statement is proved like in Lemma 5.5, after recalling

〈v
(1)
k , d f,hv

(0)
1 〉 = −

h
∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2 ,

according to Proposition 4.6(2).
For the equality (5-10), the upper bound

lim sup
h→0

h log
[ m D

1 (�+)∑
k=m N

1 (�−)+1

|bk,1|
2
]
≤−2κ f

is a consequence of∣∣∣∣
∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2

∣∣∣∣≤ C

(∫
∂�+
|inψ

(1)
k (σ )|2 dσ

)1/2(∫
�+

e−2( f (x)−min�+ f )/h dx
)1/2 e−κ f /h,

where the denominator is bounded from below by Lemma 4.3. The numerator is estimated by∥∥ψ (1)k

∣∣
∂�+

∥∥
L2(∂�+)

≤ C‖ψ (1)k ‖W 1,2(V) =O(h−1)= Õ(1)

owing to Proposition 3.8, since dAg(x,V)= 0 for x ∈ V . Using Lemma 5.5, the lower bound for (5-10) is
equivalent to

lim inf
h→0

h log
[ m D

1 (�+)∑
k=1

|bk,1|
2
]
≥−2κ f . (5-12)

Since bk,1 = 〈5
(1)v

(1)
k , d f,h5

(0)v
(0)
1 〉L2(�+) is the k-th component of d f,h5

(0)v
(0)
1 ∈ F (1) in the almost

orthonormal basis B(1),∗ of F (1), the inequality (5-12) is equivalent to

lim inf
h→0

h log(‖d f,h5
(0)v

(0)
1 ‖

2
L2(�+)

)= lim inf
h→0

h log
(
〈5(0)v

(0)
1 ,1

D,(0)
f,h (�+)5

(0)v
(0)
1 〉L2(�+)

)
≥−2κ f .

With ‖5(0)v
(0)
1 ‖L2(�+) = 1+O(e−c/h), the last inequality is a consequence of

lim inf
h→0

h log
[
min σ(1D,(0)

f,h (�+))
]
≥−2κ f ,

which is proved in the next lemma. �

Remark 5.8. Using Lemma 5.5, the asymptotic result (5-10) is actually equivalent to

lim
h→0

h log
[ m D

1 (�+)∑
k=1

|bk,1|
2
]
=−2κ f .

We end this section with an estimate on the bottom of the spectrum of 1D,(0)
f,h (�+), which was used to

conclude the proof of Proposition 5.7 above.
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Lemma 5.9. The bottom of the spectrum of 1D,(0)
f,h (�+) satisfies

lim
h→0

h log
[
min σ(1D,(0)

f,h (�+))
]
=−2κ f .

In particular, we have

∀ε > 0 ∃Cε > 1 ∃hε > 0 ∀h ∈ (0, hε] min σ(1D,(0)
f,h (�+))≥

1
Cε

e−2(κ f+ε)/h .

Proof. Let us introduce a function w(0)1 defined similarly to v(0)1 by w(0)1 = χ̃0ψ̃
(0)
1 , where χ̃0 is a C∞0 (�+)

function, equal to 1 in a neighborhood of �− and such that dχ̃0 is supported in {x ∈�+ : d(x, ∂�+)≤ δ}.
The estimate lim suph→0 h log

[
min σ(1D,(0)

f,h (�+))
]
≤−2κ f is then a consequence of the computation

〈w
(0)
1 ,1 f,hw

(0)
1 〉L2(�+) = ‖d f,hw

(0)
1 ‖

2
L2(�+)

= Õ(e−2(κ f−C0δ)/h) (5-13)

by considering δ arbitrarily small. The last equality is proved like (5-8) above.
It remains to prove that lim infh→0 h log

[
min σ(1D,(0)

f,h (�+))
]
≥ −2κ f . The proof is very similar to

that of Proposition 3.7. Assume on the contrary that there exists ε0 > 0 and a sequence hn such that
limn→∞ hn = 0 and

min σ(1D,(0)
f,hn

(�+))≤ Ce−2(κ f+ε0)/hn .

To simplify the notation, let us drop the subscript n in hn . The previous inequality means that there exists
vh ∈ L2(�+) and λh ≥ 0 such that

1
D,(0)
f,h vh = λhvh in �+, vh

∣∣
∂�+
= 0, ‖vh‖L2(�+) = 1, (5-14)

λh = 〈vh,1
D,(0)
f,h (�+)vh〉L2(�+) = ‖d f,hvh‖

2
L2(�+)

≤ Ce−2(κ f+ε0)/h . (5-15)

For a small t > 0, let us consider the domain

�t =
{

x ∈�+ : f (x) <min
∂�+

f + t
}
.

With d f,h = e−( f−min�+ f )/h(hd)e( f−min�+ f )/h , the estimate (5-15) implies

‖d(e( f−min�+ f )/hvh)‖L2(�t ) ≤ h−1 max
x∈�t

e( f (x)−min�+ f )/h
‖d f,hvh‖L2(�t )

≤ Ch−1e−(ε0−t)/h
=O(e−ε0/(2h)) (5-16)

as soon as t < 1
2ε0.

For a given t ∈
(
0, 1

2ε0
)
, let us now prove that ‖vh‖L2(�t ) is close to 1, using the same reasoning as

in the proof of Proposition 3.4. There exists is an open neighborhood V of {x ∈�− : ∇ f (x)= 0} such
that V ⊂�t and

dAg(�+ \�t ,V)≥ c > 0, (5-17)

where c can be chosen independently of t , and ε0 and is positive according to Hypothesis 2. Applying
Lemma 3.1 with �=�+ and ϕ = (1−αh)dAg( · ,V), one gets, for h < 1/α (similarly to (3-3)),

0≥ h2
‖d(eϕ/hvh)‖

2
L2(�+)

+ h
[
α〈eϕ/hvh, |∇ f |2eϕ/hvh〉L2(�+)−C f ‖eϕ/hvh‖

2
L2(�+)

]
.
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By choosing α sufficiently large that αmin�+\V |∇ f |2 ≥ 2C f , we get

0≥ h2
‖d(eϕ/hvh)‖

2
L2(�+)

+ h
[
C f ‖eϕ/hvh‖

2
L2(�+\V)−C f ‖eϕ/hvh‖

2
L2(V)

]
.

Using the fact that ‖eϕ/hvh‖
2
L2(V) = ‖vh‖

2
L2(V) ≤ 1, we obtain, by adding 2C f h‖vh‖

2
L2(V) on both sides of

the previous inequality,

2C f h ≥ 2C f h‖vh‖
2
L2(V) ≥ h2

‖d(eϕ/hvh)‖
2
L2(�+)

+ hC f ‖eϕ/hvh‖
2
L2(�+)

.

This implies, in particular,
‖edAg( · ,V)/hvh‖

2
L2(�+)

≤ 2,

and thus, using (5-17),
‖vh‖

2
L2(�+\�t )

≤ Ce−c/h .

This implies
‖e( f−min�+ f )/hvh‖L2(�t ) ≥ ‖vh‖L2(�t ) ≥ 1−Ce−c/h, (5-18)

where, we recall, c is independent of t and ε0, supposed to be small enough.
The two estimates (5-16) and (5-18) lead to a contradiction. Indeed, let us now set t = 1

4ε0. The
Poincaré–Wirtinger inequality or, equivalently, the spectral gap estimate for the Neumann Laplacian
in �ε0/4, implies that there exists a constant Ch such that

‖(e( f−min�+ f )/hvh)−Ch‖L2(�ε0/4)
=O(e−ε0/(2h)),

and therefore
‖(e( f−min�+ f )/hvh)−Ch‖W 1,2(�ε0/4)

=O(e−ε0/(2h)).

Since �ε0/4 ∩ ∂�+ has a nonempty interior Uε0 , the trace theorem implies

‖(e( f−min�+ f )/hvh)−Ch‖L2(Uε0 )
=O(e−ε0/(2h)).

Since vh
∣∣
∂�+
≡ 0 and since Uε0 is fixed by ε0 and independent of h, this implies Ch =O(e−ε0/(2h)). We

are led to

1−Ce−c/h
≤ ‖vh‖L2(�ε0/4)

≤ ‖e( f−min�+ f )/hvh‖L2(�ε0/4)
≤ ‖Ch‖L2(�ε0/4)

+Ce−ε0/(2h)
≤ C ′e−ε0/(2h),

which is impossible when h is small enough. �

This lemma shows the equality (2-11) stated in Theorem 2.4.

5E. Singular values of β. We are now in position to complete the proof of Proposition 5.1.

Proof of Proposition 5.1. Let e(0) = (e(0)1 , . . . , e(0)m D
0 (�+)

) (resp. e(1) = (e(1)1 , . . . , e(1)
m D

1 (�+)
)) denote an

orthonormal basis of F (0) (resp. of F (1)) and let C0 (resp. C1) be the matrix of the change of basis from
e(0) (resp. from B(1),∗) to B(0) (resp. to e(1)). Let A = M(β, e(0), e(1)) denote the matrix of β in the bases
e(0) and e(1), so that

A = C1 BC0,
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where, we recall, B = M(β,B(0),B(1),∗). Using the fact that B(0) and B(1) are almost orthonormal bases,
the matrices C0 and C1 satisfy C∗pC p = Id+O(ε), so that (according to (5-4))

s j (β)= s j (A)= s j (C1 BC0)= s j (B)(1+O(e−c/h)).

The singular values of β can be understood from those of B, up to exponentially small relative errors.
Now Lemmas 5.3, 5.4, 5.5 and Proposition 5.7 can be gathered (using the block structure of B

introduced in Section 5A), in the asymptotic regime h→ 0, as

B =



O(bk0,1e−c/h) b1,2 O(b2,3e−c/h) . . . O(bm D
0 −1,m D

0
e−c/h)

... O(b1,2e−c/h) b2,3
. . .

...
...

...
...

. . . O(bm D
0 −1,m D

0
e−c/h)

O(bk0,1e−c/h) O(b1,2e−c/h) O(b2,3e−c/h) · · · bm D
0 −1,m D

0

O(bk0,1e−c/h) O(b1,2e−c/h) O(b2,3e−c/h) · · · O(bm D
0 −1,m D

0
e−c/h)

...
...

...
. . .

...

O(bk0,1e−c/h) O(b1,2e−c/h) O(b2,3e−c/h) · · · O(bm D
0 −1,m D

0
e−c/h)

bm N
1 +1,1 O(b1,2e−c/h) O(b2,3e−c/h) · · · O(bm D

0 −1,m D
0

e−c/h)

...
...

...
. . .

...

bm D
1 ,1

O(b1,2e−c/h) O(b2,3e−c/h) · · · O(bm D
0 −1,m D

0
e−c/h)



,

where we used m D
0 (resp. m N

1 , m D
1 ) instead of m D

0 (�+) (resp. m N
1 (�−), m D

1 (�+)) and where k0 is a
(possibly h-dependent) index such that |bk0,1| = maxm N

1 +1≤k≤m D
1
|bk,1|. By Gaussian elimination (see

[Le Peutrec 2009] for more details), one can find a matrix R ∈Mm D
1
(R) with ‖R‖ =O(e−c/h) such that

(Idm D
1
+R)B = B̃ =

 0(m D
0 − 1, 1) B̃1,2

0(m N
1 −m D

0 + 1, 1) 0(m N
1 −m D

0 + 1,m D
0 − 1)

B̃3,1 0(m D
1 −m N

1 ,m D
0 − 1)


with

B̃3,1 =

bm N
1 +1,1
...

bm D
1 ,1

 and B̃1,2 =


b1,2(1+O(e−c/h)) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 bm D

0 −1,m D
0
(1+O(e−c/h))

 ,

where 0(i, j) is the null matrix in Mi, j (R). We deduce that the singular values of B are approximated
(up to exponentially small relative error terms) by the ones of B̃, which are given by its block structure.
We find (recall that the singular values are labeled in decreasing order):

s j (B)= |bm D
0 − j,m D

0 − j+1|(1+O(e−c/h)) for j ∈ {1, . . . ,m D
0 − 1}
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and

sm D
0
(B)2 =

[ m D
1∑

k=m N
1 +1

|bk,1|
2
]
(1+O(e−c/h)).

We conclude the proof of Proposition 5.1 using the approximate values of bk,k+1 (k ∈ {1, . . . ,m D
0 − 1})

and bk,1 (k ∈ {m N
1 + 1, . . . ,m D

1 }) given in Lemma 5.3 and Proposition 5.7:

|bm D
0 − j,m D

0 − j+1| =

√
µ
(0)
m D

0 − j+1
(�−)(1+O(e−c/h)) for j ∈ {1, . . . ,m D

0 − 1},

m D
1∑

k=m N
1 +1

|bk,1|
2
=

h2∑m D
1

k=m N
1 +1

(∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ

)2∫
�+

e−2 f (x)/h dx
+O(e−(2κ f+c)/h).

In particular, for h small enough, we indeed have

|bm D
0 −1,m D

0
|
2
≥ · · · ≥ |b1,2|

2
≥

m D
1∑

k=m N
1 +1

|bk,1|
2,

the last inequality being a consequence of (5-10) and |b1,2|
2
=µ

(0)
2 (�−)(1+O(e−c/h))≥Cεe−2(κ f−c0)/h

using Proposition 3.7. �

6. Proof of Theorem 2.4 and two corollaries

Proposition 5.1 already provides a precise asymptotic result on the exponentially small eigenvalues of
1

D,(0)
f,h (�+), using (5-2):

λ
(0)
j (�+)= sm D

0 (�+)+1− j (β)
2
= µ

(0)
j (�−)(1+O(e−c/h)) for j ∈ {2, . . . ,m D

0 (�+)}, (6-1)

λ
(0)
1 (�+)= sm D

0 (�+)
(β)2 =

h2∑m D
1 (�+)

k=m N
1 (�−)+1

(∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ

)2∫
�+

e−2 f (x)/h dx
(1+O(e−c/h)), (6-2)

the second estimate being a consequence of Proposition 5.7 (see (5-11)). This is essentially the result of
Theorem 2.4 about λ(0)1 (�+) (see (2-12)); it remains to show that the basis (ψ (1)k )m N

1 (�−)+1≤k≤m D
1 (�+)

in
(6-2) (which was introduced in Section 4B) can be replaced by any orthonormal basis (u(1)k )1≤k≤m D

1 (�+\�−)

of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)). This will be done in Section 6C.

In addition, it also remains to prove the estimates (2-13) and (2-14) on the eigenvector u(0)1 associated
with the smallest eigenvalue λ(0)1 (�+). This will be the subject of Sections 6A and 6B. We recall that
the spectral subspace associated with λ(0)1 (�+) is one-dimensional (since λ(0)2 (�+)≥ λ

(0)
1 (�+)ec/h). We

thus have

u(0)1 =
50v

(0)
1

‖50v
(0)
1 ‖L2(�+)

, (6-3)
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where 50 denotes the spectral projection associated with λ(0)1 (�+):

50 = 1
{λ
(0)
1 (�+)}

(1
D,(0)
f,h (�+)). (6-4)

The fact that 50v
(0)
1 6= 0 follows from the fact that 505

(0)
=50 and the estimate, for small h,

〈5(0)v
(0)
1 ,1

D,(0)
f,h 5(0)v

(0)
1 〉L2(�+)

‖5(0)v
(0)
1 ‖

2
L2(�+)

=

‖d f,h5
(0)v

(0)
1 ‖

2
L2(�+)

‖5(0)v
(0)
1 ‖

2
L2(�+)

= ‖β5(0)v
(0)
1 ‖

2
L2(�+)

(1+O(e−c/h))

=

m D
1 (�+)∑

k=m N
1 (�−)+1

|bk,1|
2(1+O(e−c/h))

= λ
(0)
1 (�+)(1+O(e−c/h))≤ λ

(0)
2 (�+)e−c/h (6-5)

for some positive constant c. The second and third equalities are consequences of the almost orthonormality
of the bases B(0) and B(1),∗ (see Proposition 4.5). The third one comes from (6-2) and (5-11). The last
inequality is a consequence of (6-1) and Proposition 3.7.

Finally, Section 6D is devoted to two corollaries of Theorem 2.4.

6A. Approximation of u(0)1 . Let us first prove the estimate (2-13) on u(0)1 .

Proposition 6.1. There exists c > 0 such that∥∥∥∥u(0)1 −
e− f/h(∫

�+
e−2 f (x)/h dx

)1/2

∥∥∥∥
W 2,2(�+)

=O(e−c/h).

Proof. Since
∥∥v(0)1 − e− f/h/

(∫
�+

e−2 f (x)/h dx
)1/2∥∥

W 2,2(�+)
=O(e−c/h) (which is a simple consequence

of Lemma 4.3), it suffices to prove ‖u(0)1 − v
(0)
1 ‖W 2,2(�+) =O(e−c/h).

Let us first prove the result in the L2(�+)-norm. From (6-5), we have ‖d f,h5
(0)v

(0)
1 ‖

2
L2(�+)

≤

λ
(0)
2 (�+)e−c/h , and thus

λ
(0)
2 (�+)

∥∥1
[λ
(0)
2 (�+),+∞)

(1
D,(0)
f,h (�+))5

(0)v
(0)
1

∥∥2
L2(�+)

≤ 〈5(0)v
(0)
1 ,1

D,(0)
f,h (�+)5

(0)v
(0)
1 〉L2(�+)

≤ λ
(0)
2 (�+)e−c/h .

Since 50 =505
(0), we deduce∥∥50v

(0)
1 −5

(0)v
(0)
1

∥∥
L2(�+)

=
∥∥1
[λ
(0)
2 (�+),+∞)

(1
D,(0)
f,h (�+))5

(0)v
(0)
1

∥∥
L2(�+)

=O(e−c/h).

Using in addition the facts that ‖5(0)v
(0)
1 −v

(0)
1 ‖L2(�+) =O(e−c/h) and ‖v(0)1 ‖L2(�+) = 1+O(e−c/h) (see

Proposition 4.5), this proves

‖u(0)1 − v
(0)
1 ‖L2(�+) =O(e−c′/h). (6-6)
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The estimate in the W 2,2(�+)-norm is then obtained by a bootstrap argument that will be used many
times again below. The following equations hold:{

1
(0)
f,hu(0)1 = λ

(0)
1 (�+)u

(0)
1 ,

u(0)1

∣∣
∂�+
= 0,

and

{
1
(0)
f,hv

(0)
1 = gh,

v
(0)
1

∣∣
∂�+
= 0,

where gh is defined by the equation gh =1
(0)
f,hv

(0)
1 and, using the same arguments as in the proof of (5-8),

‖gh‖L2(�+) =O(e−(κ f−C0δ+)/h). Recall that, by the assumption (5-7), δ+ is small enough that C0δ+ < κ f ,
and thus ‖gh‖L2(�+) = O(e−c/h). We then deduce that, with 1H denoting the Hodge Laplacian (A-3),
u(0)1 − v

(0)
1 solves {

1
(0)
H (u(0)1 − v

(0)
1 )= g̃h,

(u(0)1 − v
(0)
1 )
∣∣
∂�+
= 0.

Again, g̃h is defined by the first equation. Using the formula (A-6), which relates the Hodge and the
Witten Laplacians and the estimate (6-6), ‖g̃h‖L2(�+) =O(e−c′/h). The elliptic regularity of the Dirichlet
Hodge Laplacian then implies ‖u(0)1 − v

(0)
1 ‖W 2,2(�+) =O(e−c′/h). �

6B. Approximation of d f,hu(0)1 . We now consider d f,hu(0)1 . In this section, we will first prove (2-14)
using for the u(1)k the special basis considered in Section 5. This will be generalized to any orthonormal
basis of Ran 1[0,ν(h)](1

D,(1)
f,h (�+ \�−)) in the next section.

Let us start with an estimate in the L2(�+)-norm.

Proposition 6.2. Let B∗1 = (wk)1≤k≤m D
1 (�+)

be the basis of F (1) = Ran 1[0,ν(h)](1
D,(1)
f,h (�+)) dual (in

L2(�+)) to B1 = (5
(1)v

(1)
k )1≤k≤m D

1 (�+)
. Then the eigenvector u(0)1 of 1D,(0)

f,h (�+) given by (6-3) satisfies

∥∥∥∥d f,hu(0)1 −

m D
1 (�+)∑

k=m N
1 (�−)+1

bk,1wk

∥∥∥∥
L2(�+)

=O(e−(κ f+c)/h) (6-7)

for some c > 0 and where the coefficients bk,1 are defined by (5-5).

Proof. By definition of the matrix B = M(β,B(0),B(1)∗),

d f,h(5
(0)v

(0)
1 )= β(5(0)v

(0)
1 )=

m D
1 (�+)∑
k=1

bk,1wk =

m D
1 (�+)∑

k=m N
1 (�−)+1

bk,1wk + rh

with ‖rh‖L2(�+) =O(e−(κ f+c)/h), this estimate being a consequence of the almost orthonormality of the
one-forms wk , and of Lemma 5.5. Equation (6-7) is thus equivalent to:∥∥d f,h(u

(0)
1 −5

(0)v
(0)
1 )
∥∥

L2(�+)
=O(e−(κ f+c)/h).

Notice that

u(0)1 −5
(0)v

(0)
1 = ‖50v

(0)
1 ‖
−1
L2(�+)

(50−5
(0))v

(0)
1 + (‖50v

(0)
1 ‖
−1
L2(�+)

− 1)5(0)v
(0)
1 .
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We recall that ‖50v
(0)
1 ‖L2(�+)=1+O(e−c/h) and ‖d f,h5

(0)v
(0)
1 ‖L2(�+)=‖β5

(0)v
(0)
1 ‖L2(�+)= Õ(e−κ f /h)

(see (6-5)). This implies that∥∥d f,h(u
(0)
1 −5

(0)v
(0)
1 )
∥∥

L2(�+)
=
∥∥d f,h((50−5

(0))v
(0)
1 )
∥∥

L2(�+)
(1+O(e−c/h))+O(e−(κ f+c)/h).

Moreover, using the fact that 505
(0)
=50 and 5(0)

−50 = 1
[λ
(0)
2 (�+),+∞)

(1
D,(0)
f,h (�+)) commutes with

1
D,(0)
f,h (�+),

‖d f,h((50−5
(0))v

(0)
1 )‖2L2(�+)

= 〈(5(0)
−50)v

(0)
1 ,1

D,(0)
f,h (�+)(5

(0)
−50)v

(0)
1 〉L2(�+)

= ‖β5(0)v
(0)
1 ‖

2
L2(�+)

− λ
(0)
1 (�+)‖50v

(0)
1 ‖

2
L2(�+)

= λ
(0)
1 (�+)(1+O(e−c/h))− λ

(0)
1 (�+)(1+O(e−c/h))

=O(e−2(κ f+c′)/h).

The third equality is obtained from (6-5) and the last one from the estimate on the bottom of the spectrum
in Lemma 5.9. This concludes the proof of (6-7). �

To perform a bootstrap argument to extend the previous result to stronger norms, we need an intermediate
lemma:

Lemma 6.3. For any p ∈ N, there exists C p > 0 and Np ∈ N such that

‖u‖W p,2(�+) ≤ C ph−Np‖u‖L2(�+) for all u ∈ F (1) = Ran 1[0,ν(h)](1
D,(1)
f,h (�+)).

Proof. Let us introduce an orthonormal basis (ek)1≤k≤m D
1 (�+)

of eigenvectors of 1D,(1)
f,h (�+) associated

with the small eigenvalues λ(1)k (�+)≤ ν(h), so 1D,(1)
f,h ek = λ

(1)
k ek . We have

‖d f,hek‖
2
L2(�+)

+‖d∗f,hek‖
2
L2(�+)

= λ
(1)
k ≤ ν(h).

For any u ∈ F (1), there exist some reals (uk)1≤k≤m D
1 (�+)

such that

u =
m D

1 (�+)∑
k=1

ukek with
m D

1 (�+)∑
k=1

|uk |
2
= ‖u‖2L2(�+)

.

Lemma 6.3 will be proven if one can show that, for all p ∈ N, there exist C p > 0 and Np ∈ N such that
‖ek‖W p,2(�+) ≤ C ph−Np for all k ∈ {1, . . . ,m D

1 (�+)}. From

4‖|∇ f |ek‖
2
L2(�+)

+ 2‖d f,hek‖
2
L2(�+)

+ 2‖d∗f,hek‖
2
L2(�+)

≥ h2
[‖dek‖

2
L2(�+)

+‖d∗ek‖
2
L2(�+)

]

(which is obtained from the formulas (A-4) and (A-5) that relate d f,h to d and d∗f,h to d∗), we deduce
‖ek‖W 1,2(�+) ≤ Ch−1. Then the equation 1D,(1)

f,h (�+)ek = λ
(1)
k ek can be written{

1
(1)
H ek = rk(h)

tek
∣∣
∂�+
= 0, td∗ek

∣∣
∂�+
= ρk(h)

with ‖rk(h)‖L2(�+)+‖ρk(h)‖W 1/2,2(∂�+) = O(h−2). The estimate on ρk(h) follows from 0 = td∗f,hek =

h td∗ek + i∇ f ek , so that ‖ρk(h)‖W 1/2,2(∂�+) = h−1
‖i∇ f ek‖W 1/2,2(∂�+) ≤ Ch−1

‖ek‖W 1,2(�+) ≤ C ′h−2. The
estimate on rk(h) comes from the relation (A-6) between the Hodge and the Witten Laplacians. The
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elliptic regularity of the above system (see, for example, [Schwarz 1995, Theorem 2.2.6]) implies
‖ek‖W 2,2(�+) =O(h−2). Finally, the result for a general p ∈ N is obtained by a bootstrap argument. �

We are now in position to restate the result of Proposition 6.2 in terms of the W p,2(V)-norm.

Proposition 6.4. Let (ψ (1)k )m N
1 (�−)+1≤k≤m D

1 (�+)
be the orthonormal basis of eigenvectors chosen in

Section 4B and let χ+ be the cut-off function of Definition 4.4. For any p ∈ N, there exists a constant
C p > 0 such that ∥∥∥∥d f,hu(0)1 −

m D
1 (�+)∑

k=m N
1 (�−)+1

bk,1ψ
(1)
k

∥∥∥∥
W p,2(V)

≤ C pe−(κ f+c)/h,

where V is any neighborhood of ∂�+ contained in {χ+ = 1}, c is a positive constant and, we recall (see
Proposition 5.7), the coefficients bk,1 defined by (5-5) satisfy

bk,1 =−
h
∫
∂�+

e− f (σ )/h inψ
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2 +O(e−(κ f+c)/h).

Proof. From Proposition 6.2 and Lemma 6.3, we deduce

∥∥∥∥d f,hu(0)1 −

m D
1 (�+)∑

k=m N
1 (�−)+1

bk,1wk

∥∥∥∥
W p,2(�+)

≤ C ph−Np e−(κ f+c)/h
≤ C ′pe−(κ f+c/2)/h .

Since, by the almost orthonormality of the family (5(1)v
(1)
k )1≤k≤m D

1 (�+)
, ‖wk−5

(1)v
(1)
k ‖L2(�+)=O(e−c/h)

and max{|bk,1|,m N
1 (�−)+ 1≤ k ≤ m D

1 (�+)} = Õ(e−κ f /h) (see Proposition 5.7), Lemma 6.3 also leads
to ∥∥∥∥d f,hu(0)1 −

m D
1 (�+)∑

k=m N
1 (�−)+1

bk,15
(1)v

(1)
k

∥∥∥∥
W p,2(�+)

≤ C ′′pe−(κ f+c/2)/h .

By recalling the definition of v(1)k = χ+ψ
(1)
k , it suffices now to check that ‖v(1)k −5

(1)v
(1)
k ‖W p,2(�+) is of

order O(e−c′/h) for some c′ > 0. We already know

‖v
(1)
k −5

(1)v
(1)
k ‖L2(�+) =O(e−c/h)

from Proposition 4.5.
For the W 1,2(�+) estimates, notice that

‖d f,hv
(1)
k ‖

2
L2(�+)

+‖d∗f,hv
(1)
k ‖

2
L2(�+)

= 〈v1
k ,1

D,(1)
f,h (�+)v

(1)
k 〉L2(�+) =O(e−c/h)

(again from Proposition 4.5), while 5(1)v
(1)
k ∈ F (1) = Ran 1[0,ν(h)](1

D,(1)
f,h (�+)) implies

‖d f,h5
(1)v

(1)
k ‖

2
L2(�+)

+‖d∗f,h5
(1)v

(1)
k ‖

2
L2(�+)

= 〈5(1)v1
k ,1

D,(1)
f,h (�+)5

(1)v
(1)
k 〉L2(�+) =O(e−c/h).
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We deduce

‖d(v(1)k −5
(1)v

(1)
k )‖2L2(�+)

+‖d∗(v(1)k −5
(1)v

(1)
k )‖2L2(�+)

≤
2
h2

[
‖d f,h(v

(1)
k −5

(1)v
(1)
k )‖2L2(�+)

+‖d∗f,h(v
(1)
k −5

(1)v
(1)
k )‖2L2(�+)

+2‖|∇ f |(v(1)k −5
(1)v

(1)
k )‖2L2(�+)

]
≤

Ce−2c/h

h2 .

This gives the W 1,2 estimate ‖v(1)k −5
(1)v

(1)
k ‖W 1,2(�+) = Õ(e−c/h).

The W p,2 estimates (p ≥ 2) are then obtained by an argument based on the elliptic regularity of
the (nonhomogeneous) Dirichlet Hodge Laplacian. On the one hand, ‖5(1)v

(1)
k ‖L2(�+) = 1+O(e−c/h),

5(1)v
(1)
k ∈ F (1) and

∥∥1D,(1)
f,h

∣∣
F (1)
∥∥=O(e−c/h) (see Proposition 3.12) imply that ‖1D,(1)

f,h 5(1)v
(1)
k ‖L2(�+)=

O(e−c/h). Lemma 6.3 can then be used to obtain ‖1D,(1)
f,h 5(1)v

(1)
k ‖W p,2(�+) = Õ(e−c/h) for any inte-

ger p. Here,
∥∥1D,(1)

f,h

∣∣
F (1)
∥∥ = supu∈F (1)(‖1

D,(1)
f,h u‖L2(�+)/‖u‖L2(�+)) is simply the spectral radius of

the finite-dimensional operator 1D,(1)
f,h : F (1) → F (1). On the other hand, Lemma 6.5 below implies

‖1
D,(1)
f,h v

(1)
k ‖W p,2(�+) = ‖1

D,(1)
f,h (χ+ψ

(1)
k )‖W p,2(�+) =O(e−c/h) for any integer p, using the arguments of

the proofs of Proposition 3.5 or 3.9 to get the estimate on the truncated eigenvector from the exponential
decay of the eigenvector. Thus, for p ≥ 1, if ‖(v(1)k −5

(1)v
(1)
k )‖W p,2(�+) = Õ(e−c/h) then the difference

v
(1)
k −5

(1)v
(1)
k satisfies{

1
(1)
H (v

(1)
k −5

(1)v
(1)
k )= rk(h),

t(v(1)k −5
(1)v

(1)
k )= 0, td∗(v(1)k −5

(1)
k v

(1)
k )= %k(h)

with ‖rk(h)‖W p,2(�+) = Õ(e−c/h) and ‖%k(h)‖W p−1/2,2(�+) = Õ(e−c/h).
This implies ‖(v(1)k −5

(1)v
(1)
k )‖W p+2,2(�+) = Õ(e−c/h). A bootstrap argument (induction on p) thus

shows that, for any p, ‖v(1)k −5
(1)v

(1)
k ‖W p,2(�+) = Õ(e−c/h)≤O(e−c′/h) for any c′ < c. �

We end this section with an estimate on the exponential decay (in a neighborhood of suppχ+) of the
eigenvectors of 1D,(1)

f,h (�+ \�−) in C∞ norm. This is a refinement of Proposition 3.8, which was needed
in the previous proof.

Lemma 6.5. For every ε ∈ (0, 1), there exists a function ϕε ∈ C∞0 (�+\�−) such that, for all x ∈�+\�−,

|∇ϕε(x)| ≤ (1− ε)|∇ f (x)|,

d(x, ∂�+ ∪ ∂�−)≤ 1
2ε =⇒ ϕε(x)= 0,

ϕε(x)≥ 0 and dAg(x, ∂�+ ∪ ∂�−)−Cε ≤ ϕε(x),

where C > 0 is a constant independent of ε. For every p ∈ N, and once ϕε is fixed, there exist Cε,p > 0
and Np > 0 independent of h ∈ [0, h0] such that every normalized eigenvector ψ of 1D,(1)

f,h (�+ \�−)

associated with an eigenvalue λ ∈ [0, ν(h)] satisfies

‖eϕε/hψ‖W p,2(�+\�−)
≤ Cε,ph−Np .

As explained in the proof, we cannot state this result with ϕε equal to the Agmon distance to a neigh-
borhood of ∂�+ as in Proposition 3.8 because the Agmon distance is not a sufficiently regular function.
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Proof. The function ϕε ∈ C∞0 (�+ \�−) is built as an accurate enough mollified version of θε(x) =
(1− 2ε)dAg(x,Vε+ ∪Vε−), where

Vε
±
= {x ∈�+ \�− : d(x, ∂�±)≤ ε}.

Indeed, the function θε is a Lipschitz function such that

|∇θε(x)| ≤ (1− 2ε)|∇ f (x)| a.e.,

d(x, ∂�+ ∪ ∂�−)≤ ε =⇒ θε(x)= 0,

d(x, ∂�+ ∪ ∂�−)−C1ε ≤ θε(x)≤ d(x, ∂�+ ∪ ∂�−)

hold in �+ \ �−, with C1 ≥ 0 independent of ε. Since θε fulfills uniform Lipschitz estimates and
|∇ f (x)| ≥ c > 0 on �+ \�−, all the properties of ϕε are obtained by considering the convolution of θε
with a mollifier with a sufficiently small compact support. We cannot simply take ϕε=dAg(x, ∂�+∪∂�−),
or even ϕε = dAg( · ,Vε+ ∪Vε−), because the argument requires us to consider high-order derivatives of ϕε.

Let ψ be a normalized eigenvector of 1D,(1)
f,h (�+ \�−) associated with an eigenvalue λ ∈ [0, ν(h)].

We already know from Proposition 3.8 that

‖eϕε/hψ‖W 1,2(�+\�−)
≤ Cεh−1. (6-8)

The argument to obtain the estimates in W p,2(�+ \�−)-norms is based on a bootstrap argument, using
the elliptic regularity of nonhomogeneous Dirichlet boundary problems for the Hodge Laplacian.

Indeed, we have
e−ϕε/h1 f,heϕε/h

=1 f,h − hL∇ϕε + hL∗
∇ϕε
− |∇ϕε|

2,

and thus
1 f,h(eϕε/hψ)= λeϕε/hψ − heϕε/hL∇ϕεψ + heϕε/hL∗

∇ϕε
ψ − |∇ϕε|

2eϕε/hψ.

Using the fact that 1 f,h = h2(dd∗+ d∗d)+ h(L∇ f +L∗
∇ f )+ |∇ f |2, we obtain

1Hv

= h−2(λv− heϕε/hL∇ϕεe−ϕε/hv+ heϕε/hL∗
∇ϕε

e−ϕε/hv−|∇ϕε|
2v− hL∇ f v− hL∗

∇ f v−|∇ f |2v), (6-9)

where
v = eϕε/hψ.

For the boundary conditions, we have, of course,

tv = 0, (6-10)

and
0= td∗f,hψ = eϕε/h td∗f,hψ = td∗f,heϕε/hψ + eϕε/h t i∇ϕεψ.

The condition ϕε=0 in a neighborhood of ∂�+∪∂�− implies∇ϕε=0 on ∂�+∪∂�−, and thus t i∇ϕεψ=0.
Since d∗f,h = hd∗+ i∇ f , we thus obtain

td∗v =−1
h

i∇ f v. (6-11)
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By considering the boundary value problem (6-9)–(6-11) and using the W 1,2(�+ \�−) estimate (6-8),
we thus obtain, by the elliptic regularity of the Dirichlet Hodge Laplacian,

‖eϕε/hψ‖W 2,2(�+\�−)
≤ C2,εh−3.

This is due to the fact that the right-hand side in (6-9) (resp. (6-11)) is a differential operator of order 1
(resp. 0). The W p,2(�+ \�−) estimates for p ≥ 3 are then obtained by induction on p. �

6C. Change of basis in F(1). In the previous sections, the estimates (2-12) and (2-14) of the eigen-
value λ(0)1 and d f,hu(0)1 in a neighborhood of ∂�+ have been proven with the basis (ψ(1)k )m N

1 (�−)+1≤k≤m D
1 (�+)

of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)). The aim of this section is to show that the estimates (2-12) and (2-14)

are valid for any almost orthonormal basis (according to Definition 3.6)

(u(1)k )1≤k≤m D
1 (�+\�−)

of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)).

The next proposition thus concludes the proof of Theorem 2.4.

Remark 6.6. We thus prove a slightly more general result than the one stated in Theorem 2.4, since it is
only required that (u(1)k )1≤k≤m D

1 (�+\�−)
is an almost orthonormal basis of Ran 1[0,ν(h)](1

D,(1)
f,h (�+ \�−)).

Remark 6.7. All the results below extend to complex-valued eigenbases, by simply replacing the real
scalar product by the hermitian scalar product.

Proposition 6.8. Let λ(0)1 be the first eigenvalue of1D,(0)
f,h (�+) and u(0)1 the associated L2(�+)-normalized

nonnegative eigenfunction. For any almost orthonormal basis

(u(1)k )1≤k≤m D
1 (�+\�−)

of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)),

the approximate expressions (2-12) and (2-14) for λ(0)1 and d f,hu(0)1 hold true.

Proof. Let (u(1)k )1≤k≤m D
1 (�+\�−)

be an almost orthonormal basis of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)). Then

there exists a matrix C(h)= (ck,k′)1≤k,k′≤m D
1 (�+\�−)

such that

C(h)C(h)∗ = Idm D
1 (�+\�−)

+O(e−c/h), C(h)∗C(h)= Idm D
1 (�+\�−)

+O(e−c/h),

and ψ
(1)
k+m N

1 (�−)
=

m D
1 (�+\�−)∑

k′=1

ck,k′u
(1)
k′ for all k ∈ {1, . . . ,m D

1 (�+ \�−)}. (6-12)

Here, C(h)∗ denotes the transpose of the matrix C(h).
Let L1 (resp. L2) be a continuous linear mapping from Ran 1[0,ν(h)](1

D,(1)
f,h (�+ \�−)), the finite-

dimensional space endowed with the scalar product of L2(�+ \�−), to R (resp. to some vector space E).
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Then, using (6-12),

m D
1 (�+)∑

k=m N
1 (�−)+1

L1(ψ
(1)
k )L2(ψ

(1)
k )=

m D
1 (�+\�−)∑
k,k1,k2=1

ck,k1ck,k2 L1(u
(1)
k1
)L2(u

(1)
k2
)

=

m D
1 (�+\�−)∑

k′=1

L1(u
(1)
k′ )L2(u

(1)
k′ )+O(‖L1‖‖L2‖e−c/h), (6-13)

where ‖L1‖ and ‖L2‖ denote the operator norms of the linear mappings L1 and L2.
The estimate (2-12) is then a consequence of (6-2) and (6-13) with

L1 = L2 : Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−))→ R, u 7→ −

∫
∂�+

e− f (σ )/h inu(σ ) dσ(∫
�+

e−2 f (x)/h dx
)1/2

with ‖L1‖ = ‖L2‖ = Õ(e−κ f /h) due to λ(0)1 (�+)= Õ(e−2κ f /h) (see (6-2)) and the orthonormality of the
basis (ψ (1)k+m N

1 (�−)
)1≤k≤m D

1 (�+\�−)
. The estimate (2-14) is a consequence of Proposition 6.4 and of (6-13)

with L1 like before and

L2 : Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−))→

1∧
W p,2(V), u 7→ u

∣∣
V

with ‖L2‖ = Õ(1) according to Lemma 6.3 applied with 1D,(1)
f,h (�+ \�−) instead of 1D,(1)

f,h (�+). �

6D. Corollaries. The estimate (2-14) contains accurate information about the trace ∂nu(0)1

∣∣
∂�+

:

Corollary 6.9. Let n : σ 7→ n(σ ) be the outward normal vector field on ∂�+ and let ∂n = ind be the
outward normal derivative for functions. For any almost orthonormal basis (u(1)k )1≤k≤m D

1 (�+\�−)
of

Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)), the normal derivative of the nonnegative and normalized first eigenfunc-

tion u(0)1 of 1D,(0)
f,h (�+) satisfies

∂nu(0)1 (σ )≤ 0 for all σ ∈ ∂�+

and∥∥∥∥∂nu(0)1

∣∣
∂�+
+

m D
1 (�+\�−)∑

k=1

∫
∂�+

e− f (σ )/h inu(1)k (σ ) dσ(∫
�+

e−2 f (x)/h dx
)1/2 inu(1)k

∥∥∥∥
W p,2(∂�+)

=O(e−(κ f+c)/h) for all p ∈ N

for some c > 0 independent of p.

Proof. The sign condition for ∂nu(0)1 (σ ) is a consequence of u(0)1 ≥ 0 in �+ and u(0)1

∣∣
∂�+
= 0.

The trace theorem with (2-14) implies

d f,hu(0)1

∣∣
∂�+
=−h

m D
1 (�+\�−)∑

k=1

∫
∂�+

e− f (σ )/h inu(1)k (σ ) dσ(∫
�+

e−2 f (x)/h dx
)1/2 u(1)k +O(e−(κ f+c)/h)
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in any Sobolev space W p,2(∂�+). Recalling

d f,hu(0)1 = hdu(0)1 + u(0)1 d f and u(0)1

∣∣
∂�+
= 0

yields the result. �

Proof of Corollary 2.9. First, note that the equality

∂n[e− f1,2/hu(0)1 ( f1,2)]
∣∣
∂�+
= e− f1,2/h

[∂nu(0)1 ( f1,2)]
∣∣
∂�+

is simply due to the Dirichlet boundary condition u(0)1

∣∣
∂�+
= 0. The identity (2-15) is then a direct

consequence of (2-12), since the same basis (u(1)k )1≤k≤m D
1 (�+\�−)

can be picked for f1 and f2 because
these two functions coincide on �+ \�−.

Second, for (2-16), it is more convenient to write (2-14) with f j , j = 1, 2, in the form(∫
�+

e−2 f j (x)/h dx
)1

2

d f j ,hu(0)1 ( f j )

=−h
m D

1 (�+\�−)∑
k=1

(∫
∂�+

e− f j (σ )/h inu(1)k (σ ) dσ
)

u(1)k +O(e−(min∂�+ f j+c)/h),

the estimate being true in any Sobolev space
∧1 W p,2(V). Using the fact that f1 ≡ f2 ≡ f in �+ \�−,

taking the trace along ∂�+ and multiplying by e−( f−min∂�+ f )/h , which is less than 1 on ∂�+, and then
by e(min∂�+ f )/h , lead to(∫

�+

e−2 f j (x)/h dx
)1

2

e−( f−2 min∂�+ f )/h∂nu(0)1 ( f j )
∣∣
∂�+

=−

m D
1 (�+\�−)∑

k=1

(∫
∂�+

e−( f (σ )−min∂�+ f )/h inu(1)k (σ ) dσ
)

e−( f−min∂�+ f )/h inu(1)k +O(e−c/h),

the estimate being true in L1(∂�+). The left-hand side is negative and its L1-norm is thus given by
the absolute value of its integral. Let us estimate this norm, using Lemma 4.3 and Lemma 5.9: for any
positive ε,

−

(∫
�+

e−2 f j (x)/h dx
)1

2
∫
∂�+

e−( f−2 min∂�+ f )/h∂nu(0)1 ( f j )(σ ) dσ

=

m D
1 (�+\�−)∑

k=1

(∫
∂�+

e−( f (σ )−min∂�+ f )/h inu(1)k (σ ) dσ
)2

+O(e−c/h)

= e(2 min∂�+ f )/hλ
(0)
1 ( f1)h−2

∫
�+

e−2 f1(x)/h dx +O(e−c/h)

≥ Cεe(2 min∂�+ f )/he−2(κ f+ε)/hh−2 1
C f1

hd/2e−(2 min�+ f1)/h
+O(e−c/h)

= Cεe−2ε/h h−2+d/2

C f1

+O(e−c/h)≥ Ce−c/(2h).
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Thus,

−

e− f j/h∂nu(0)1 ( f j )
∣∣
∂�+∥∥e− f j/h∂nu(0)1 ( f j )

∣∣
∂�+

∥∥
L1(∂�+)

=

∑m D
1 (�+\�−)

k=1

(∫
∂�+

e−( f (σ )−min∂�+ f )/h inu(1)k (σ ) dσ
)
e−( f−min∂�+ f )/h inu(1)k∑m D

1 (�+\�−)

k=1

(∫
∂�+

e−( f (σ )−min∂�+ f )/h inu(1)k (σ ) dσ
)2

+O(e−c/(2h)).

This concludes the proof, since the right-hand side does not depend on f j . �

7. About Hypotheses 3 and 4

We have chosen to set the Hypotheses 3 and 4 in terms of some spectral properties of the Witten Laplacians
1N

f,h(�−) and 1D
f,h(�− \�−) in order to be general enough and to cover possible further advances about

the low spectrum of Witten Laplacians. These hypotheses can actually be translated into very explicit and
simple geometric conditions on the function f when f is a Morse function such that f

∣∣
∂�+

is a Morse
function. We recall that a Morse function is a C∞ function whose critical points are all nondegenerate.
Section 7A is devoted to a verification of Hypotheses 3 and 4 when f and f

∣∣
∂�+

are Morse functions,
using the results of [Helffer and Nier 2006; Le Peutrec 2010b]. Theorem 2.10 is then obtained as a
consequence of the accurate results under the Morse conditions and the estimates stated in Corollary 2.9.

Finally, Section 7B is devoted to a discussion about potentials that are not Morse functions. In particular,
examples of functions f which are not Morse functions and for which Hypotheses 3 and 4 hold are
presented.

7A. The case of a Morse function f .

7A1. Verifying Hypotheses 3 and 4. Let us first specify the assumptions which allow us to use the results
of [Helffer and Nier 2006; Le Peutrec 2010b], in addition to Hypotheses 1 and 2, which were already
explicitly formulated in terms of the function f :

Hypothesis 5. The functions f and f
∣∣
∂�+

are Morse functions.

Hypothesis 6. The critical values of f are all distinct and the differences f (U (1))− f (U (0)), where U (0)

ranges over the local minima of f and U (1) ranges over the critical points of f with index 1, are all
distinct.

Although f
∣∣
∂�−

is not assumed to be a Morse function (see the discussion below), Hypotheses 1, 5
and 6 ensure that the results of [Helffer and Nier 2006; Le Peutrec 2010b] on small eigenvalues of
1D

f,h(�+), 1
N
f,h(�−) and 1D

f,h(�+ \�−) apply. Following [Le Peutrec 2010b], Hypothesis 6 is useful
to get accurate scaling rates for the small eigenvalues of 1N ,(0)

f,h (�−). In particular, the information on
the size of the second eigenvalue µ(0)2 (�−) > µ

(0)
1 (�−)= 0 of 1N ,(0)

f,h (�−) is important to prove (2-8)
in Hypothesis 3. Hypothesis 6 also implies that f has a unique global minimum. Hypothesis 6 could
certainly be relaxed.
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Let us recall the general results of [Helffer and Nier 2006; Le Peutrec 2010b] on the number and the
scaling of small eigenvalues for boundary Witten Laplacians in a regular domain � (see also [Chang and
Liu 1995; Laudenbach 2011] for related results). The potential f is assumed to be a Morse function f
on � such that |∇ f | 6= 0 on ∂� and f

∣∣
∂�

is also a Morse function. The notion of critical points with
index p for f has to be extended as follows, in order to take into account points on the boundary ∂�.

• In the interior �: A generalized critical point with index p is, as usual, a critical point at which the
Hessian of f has p negative eigenvalues. It is a local minimum for p = 0, a saddle point for p = 1 and a
local maximum for p = dim M = d .

• Along the boundary ∂� in the Dirichlet case: A generalized critical point with index p ≥ 1 is a critical
point σ of f

∣∣
∂�

with index p − 1 such that the outward normal derivative is positive (∂n f (σ ) > 0).
Therefore, along the boundary, there is no generalized critical point with index 0, and critical points with
index 1 coincide with the local minima σ of f

∣∣
∂�

such that ∂n f (σ ) > 0. Intuitively, this definition can
be understood by interpreting the homogeneous Dirichlet boundary conditions as an extension of the
potential by −∞ outside �.

• Along the boundary ∂� in the Neumann case: A generalized critical point with index p is a critical
point σ of f

∣∣
∂�

with index p such that the outward normal derivative is negative (∂n f (σ )< 0). Therefore,
along the boundary, a generalized critical point with index 0 is a local minimum of f

∣∣
�

and a critical
point with index 1 is a saddle point σ of f

∣∣
∂�

such that ∂n f (σ ) < 0. Intuitively, this definition can
be understood by interpreting the homogeneous Neumann boundary conditions as an extension of the
potential by +∞ outside �.

The number of generalized critical points in� with index p is denoted by m̃ D
p (�) or m̃ N

p (�), depending
on whether the boundary Witten Laplacian on � with Dirichlet or Neumann boundary conditions is
considered.

One result of [Helffer and Nier 2006; Le Peutrec 2010b] says that, for ν(h)= h6/5, one has, for the
Dirichlet Witten Laplacian,

#
[
σ(1

D,(p)
f,h (�))∩ [0, ν(h)]

]
= m̃ D

p (�), σ (1
D,(p)
f,h (�))∩ [0, ν(h)] ⊂ [0, e−c0/h

],

and, for the Neumann boundary Witten Laplacian,

#
[
σ(1

N ,(p)
f,h (�))∩ [0, ν(h)]

]
= m̃ N

p (�), σ (1
N ,(p)
f,h (�))∩ [0, ν(h)] ⊂ [0, e−c0/h

]

for some positive constant c0. These results rely, like in [Cycon et al. 1987] for the boundaryless case, on
the introduction of an h-dependent partition of unity and a rough analysis of boundary local models.

Let us now apply these general results in our context. Under Hypotheses 1 and 5, we have:

• m̃ N
p (�−) is the number of critical points with index p in the interior of �−.

• m̃ D
p (�+ \�−) is the number of critical points σ with index p− 1 of f

∣∣
∂�+

such that ∂n f (σ ) > 0.
In particular, m̃ D

0 (�+ \�−)= 0, and m̃ D
1 (�+ \�−) is the number of local minima of f

∣∣
∂�+

with
positive normal derivatives.
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• m̃ D
p (�+) is the number of critical points with index p in the interior of�− plus the number of critical

points σ of f
∣∣
∂�+

with index p− 1 such that ∂n f (σ ) > 0. For p = 0, m̃ D
0 (�+) equals m̃ N

0 (�−)

while m̃ D
1 (�+) is m N

1 (�−) augmented by the number of local minima of f
∣∣
∂�+

with positive normal
derivatives.

As already mentioned above, we can use the results of [Helffer and Nier 2006; Le Peutrec 2010b] without
assuming that f

∣∣
∂�−

is a Morse function. The reason is that ∂n f > 0 on ∂�− and, thus, there is no
generalized critical point on ∂�− associated with 1N ,(p)

f,h (�−) and 1D,(p)
f,h (�+ \�−).

In summary, using these results, conditions (2-6), (2-7), (2-9) and (2-10) are fulfilled with ν(h)= h6/5,
some c0> 0 and m N ,D

p (�)= m̃ N ,D
p (�), p ∈ {0, 1} and�=�− or�=�+\�−. Hence, all the conditions

of Hypotheses 3 and 4 are satisfied except (2-8). Note in particular that two of the results in Theorem 2.4,

m D
0 (�+)= m N

0 (�−) and m D
1 (�+)= m N

1 (�−)+m D
1 (�+ \�−),

are consistent with the relations on the numbers of generalized critical points:

m̃ D
0 (�+)= m̃ N

0 (�−) and m̃ D
1 (�+)= m̃ N

1 (�−)+ m̃ D
1 (�+ \�−).

As explained in the proof below, Hypothesis 6 is particularly useful to verify condition (2-8) in Hypothesis 3.
The following proposition thus yields a simple set of assumptions on f such that Theorem 2.4 holds:

Proposition 7.1. Assume Hypotheses 1, 5 and 6 and let U (0) (resp. U (1)) denote the set of critical points
with index 0 (resp. 1) of f

∣∣
�−

. Let us consider the Agmon distance dAg introduced in Lemma 3.2. Then
the inequality

dAg(∂�−,U (0)) > max
U (1)∈U (1),U (0)∈U (0)

f (U (1))− f (U (0)) (7-1)

implies (2-8). As a consequence, the inequality (7-1) together with Hypotheses 1, 2, 5 and 6 are sufficient
conditions for the results of Theorem 2.4 and its corollaries to hold.

Figures 2 and 3 give examples of functions f for which the inequality (7-1) together with Hypothe-
ses 1, 2, 5 and 6 are fulfilled. Figure 4 is an example of a function f which satisfies Hypotheses 1, 2, 5
and 6, but not the inequality (7-1).

Remark 7.2. Since dAg(x, y)≥ | f (x)− f (y)| (see (3-1)), the condition (1-9) given in the introduction
is a sufficient condition for (7-1). Condition (1-9) also implies Hypothesis 2. Thus, a set of sufficient
conditions for Theorem 2.4 to hold is Hypotheses 1, 5 and 6 together with (1-9). This is indeed the simple
setting presented in the introduction (see the four assumptions stated in Section 1B).

Remark 7.3. It may happen that U (1) =∅. In this case, the inequality (7-1) is automatically satisfied,
and there are no exponentially small nonzero eigenvalue for 1N ,(0)

f,h (�−). Consistently, (2-8) is a void
condition in this case.

Proof of Proposition 7.1. By the previous discussion, it only remains to prove that Hypotheses 1, 5 and 6
together with (7-1) imply (2-8) for the proposition to hold. According to [Le Peutrec 2010b], the smallest
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�− �+

2
2

1

0
0

1

1

Figure 2. A two-dimensional example where the inequality (7-1) together with Hy-
potheses 1, 2, 5 and 6 are fulfilled. The generalized critical points are labeled by their
indices.

nonzero eigenvalue of 1N ,(0)
f,h (�−) (namely µ(0)2 (�−)), satisfies, under Hypotheses 5 and 6, the inequality

lim
h→0

h log(µ(0)2 (�−))=−2( f (U (1)
j1 )− f (U (0)

j0 ))≥−2 max
U (1)∈U (1),U (0)∈U (0)

f (U (1))− f (U (0)),

where U (0)
j0 and U (1)

j1 are two critical points of index 0 and 1, respectively.
Let us now consider the exponential decay near ∂�− of an eigenfunction of1N ,(0)

f,h (�−) associated with
a nonzero, exponentially small eigenvalue. A stronger version of Proposition 3.4 can be given because
under Hypotheses 1, 5 and 6 the critical points of f

∣∣
�−

which are not local minima are not associated
with small eigenvalues of 1N ,(0)

f,h (�−) (they are so-called nonresonant wells; see [Helffer and Sjöstrand
1985a]). Indeed, when U is a critical point of f

∣∣
�−

with U 6∈ U (0), the local model of 1D,(0)
f,h (B(U, r))

has his spectrum included in [h/C(U, r),+∞) for r > 0 small enough (see, for example, [Cycon et al.
1987]). Then, Corollary 2.2.7 of [Helffer and Sjöstrand 1985a] implies that any normalized eigenfunction
ψ(h) of 1N ,(0)

f,h (�−) associated with an eigenvalue µ(h) ∈ [0, e−c0/h
] satisfies

∀ε > 0 ∃Cε > 0 ∀x ∈�− |ψh(x)| ≤ Cε(e−(dAg(x,U0)+ε)/h)

(compare with the result of Proposition 3.4). Hence, condition (7-1) implies that, in a small neighbor-
hood V− of ∂�−, the eigenfunction ψ(h) is estimated by

‖ψ(h)‖L2(V−) = Õ(e−dAg(V−,U (0))/h)≤ C exp
(
−

maxU (1)∈U (1),U (0)∈U (0) f (U (1))− f (U (0))+ c
h

)
≤ Õ

(√
µ
(0)
2 (�−)

)
≤ Õ(

√
µ(h))

provided that µ(h) 6= µ(0)1 (�−)= 0. This is exactly (2-8). �
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⌦+

⌦�

Fig.3: A 1-dimensional example where Hypotheses 4, 5, 6 and the condition (7.1) are
fulfilled.

⌦+

⌦�

Fig.4: A 1-dimensional example where Hypotheses 4, 5, 6 are fulfilled without the
condition (7.1). This is corrected after pushing down the left-hand side local minimum or
by considering wider domains ⌦+ and ⌦� while keeping the same monotony of f outside

⌦� .

39

Figure 3. A one-dimensional example where the inequality (7-1) together with Hypothe-
ses 1, 2, 5 and 6 are fulfilled.

⌦+

⌦�

Fig.4: A 1-dimensional example where Hypotheses 4, 5, 6 are fulfilled without the
condition (7.1). This is corrected after pushing down the left-hand side local minimum or
by considering wider domains ⌦+ and ⌦� while keeping the same monotony of f outside

⌦� .

7.1.2 Assumptions in terms of ⌦+ only

Actually simple assumptions on ⌦+ ensure the existence of the intermediate open subset ⌦� so that
Hypotheses 4, 5, 6 and the condition (7.1) hold.

Hypothesis 7. The function f is a Morse function such that f
��
@⌦+

is a Morse function with

@nf
��
@⌦+

> 0 .

Hypothesis 8. The critical values of f in ⌦+ are all distinct and the di↵erences f(U (1)) � f(U (0)),
where U (0) ranges over the local minima of f and U (1) ranges over the critical points of f with index 1 ,
are all distinct.

Hypothesis 9. The critical values of f are smaller than min@⌦+
f .

Proposition 7.4. Let U (0) (resp. U (1)) be the set of local minima (resp. critical points with index 1) of
f . Assume Hypotheses 7, 8 and 9 with the additional condition

dAg(@⌦+, U (0)) > max
U(1)2U(1) , U(0)2U(0)

f(U (1)) � f(U (0)) . (7.2)

39

Figure 4. A one-dimensional example where Hypotheses 1, 2, 5 and 6 are fulfilled, but
the inequality (7-1) is not satisfied. The condition (7-1) would be fulfilled with a lower
local minimum on the left-hand side, for example (see Figure 3).

Remark 7.4 (assumptions in terms of �+ only). Let us assume that Hypotheses 2, 5 and 6 hold. Then, it
is easy to check that, if

∂n f
∣∣
∂�+

> 0 (7-2)

and
dAg(∂�+,U (0)) > max

U (1)∈U (1),U (0)∈U (0)
f (U (1))− f (U (0)), (7-3)

then there exists a regular open domain�− such that�−⊂�+ and Hypothesis 1 and condition (7-1) hold.
Indeed, conditions (7-2) and (7-3) are open and allow small deformation from �+ to some subset �−.
Note that condition (7-2) implies that this small deformation can be chosen so that all the critical points
of f are indeed in �−; this is exactly Hypothesis 1. As a consequence, under Hypotheses 2, 5 and 6
and assumptions (7-2) and (7-3), the results of Theorem 2.4 hold for a well-chosen domain �− such
that �− ⊂�+.
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In addition, following Remark 7.2 above, it is easy to check that the inequality

min
∂�+

f − cvmax> cvmax−min
�+

f (7-4)

is a sufficient condition for (7-3). It also implies Hypothesis 2. Thus, under Hypotheses 5 and 6 and the
two assumptions (7-2) and (7-4), the results of Theorem 2.4 hold for a well-chosen domain �− such
that �− ⊂�+.

7A2. Proof of Theorem 2.10. In this section, more explicit formulas for λ(0)1 (�+) and ∂n(e− f/hu(0)1 ) are
given under the Morse assumption on f and f

∣∣
∂�+

. We shall prove:

Proposition 7.5. Assume Hypotheses 1, 2, 5, 6, the condition (7-1) and, moreover,

∂n f > 0 on ∂�+ . (7-5)

Then the first eigenvalue λ(0)1 (�+) of 1D,(0)
f,h (�+) satisfies

λ
(0)
1 (�+)=

m D
1 (�+\�−)∑

k=1

(
h det(Hess f )(U0)

π det
(
Hess f

∣∣
∂�+

)
(U (1)

k )

)1
2

2∂n f (U (1)
k )e−2( f (U (1)

k )− f (U0))/h(1+O(h)) (7-6)

=

∫
∂�+

2∂n f (σ )e−2 f (σ )/h dσ∫
�+

e−2 f (x)/h dx
(1+O(h)), (7-7)

where U0 is the (unique) global minimum of f in�+ and the U (1)
k are the local minima of f

∣∣
∂�+

. Moreover,

the normalized nonnegative eigenfunction u(0)1 of 1D,(0)
f,h (�+) associated with λ(0)1 (�+) satisfies

−

∂n[e− f/hu(0)1 ]
∣∣
∂�+∥∥∂n[e− f/hu(0)1 ]

∥∥
L1(∂�+)

=

(2∂n f )e−2 f/h
∣∣
∂�+

‖(2∂n f )e−2 f/h
∥∥

L1(∂�+)

+O(h) in L1(∂�+). (7-8)

Remark 7.6. The hypothesis ∂n f > 0 on ∂�+ ensures that the set of all the local minima U (1)
k of f

∣∣
∂�+

coincides with the set of generalized critical points with index 1 for 1D
f,h(�+ \�−). The results of

Proposition 7.5 also hold under the more general assumption that ∂n f (σ ) > 0 when σ ∈ ∂�+ is such that
f (σ )≤min∂�+ f + ε0 for some ε0 > 0, by adapting the arguments below.

Remark 7.7. It is possible to write explicitly a first-order approximation for the probability density
−∂n(e− f/hu(0)1 )

∣∣
∂�+

/‖∂n(e− f/hu(0)1 )‖L1(∂�+), in the spirit of the approximation (7-6) for λ(0)1 (�+). This
approximation uses second-order Taylor expansions of f around the local minima U (1)

k ; see (7-20) below.
More precisely, this approximation becomes

−

∂n[e− f/hu(0)1 ]
∣∣
∂�+

‖∂n[e− f/hu(0)1 ]‖L1(∂�+)

=

∑m D
1 (�+\�−)

k=1 tk(h)Gk(h)∑m D
1 (�+\�−)

k=1 tk(h)
+O(h), (7-9)

where the Gk(h) are Gaussian densities centered at the U (1)
k and the weights tk(h) are such that

limh→0 h log tk(h) = − f (U (1)
k ). When f

∣∣
∂�+

has a unique global minimum, the sums in (7-6) and
(7-9) reduce to a single term.
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Remark 7.8. As explained in Remark 7.4 above, it is again possible to write a set of assumptions in
terms of �+ only. In particular, the results of Proposition 7.5 hold under Hypotheses 2, 5 and 6 and
assumptions (7-2) and (7-3).

Remark 7.9. It is possible to extend our analysis to the case of an h-dependent function f = fh such that
our assumptions are verified with uniform constants. For example, the results hold if the values f (U (1)

k )

of f at the local minima U (1)
k are moved in an O(h) range without changing f − f (U (1)

k ) locally. This
would change the coefficients tk(h) in (7-9) accordingly by O(1) factors.

Most of our effort will be devoted to the proof of Proposition 7.5. Let us first conclude the proof of
Theorem 2.10 using the result of Proposition 7.5.

Proof of Theorem 2.10. Let f be a function such that Hypotheses 1, 2, 3 and 4 are satisfied. Let us assume
moreover that f

∣∣
∂�+

is a Morse function and ∂n f > 0 on ∂�+. It is possible to build a C∞ function f̃
such that f̃ = f on �+ \�− and Hypotheses 1, 2, 5 and 6 and condition (7-1) are satisfied by f̃ . This
relies in particular on the fact that Morse functions are dense in C∞ functions. The condition (7-1) may
require us to slightly change the local minimal values of the Morse function f̃ .

The function f̃ now fulfills all the requirements of Proposition 7.5 and thus, with obvious notation,

λ̃
(0)
1 (�+)=

∫
∂�+

2∂n f (σ )e−2 f (σ )/h dσ∫
�+

e−2 f̃ (x)/h dx
(1+O(h))

and

−

∂n[e− f̃ /h ũ(0)1 ]
∣∣
∂�+

‖∂n[e− f̃ /h ũ(0)1 ]‖L1(∂�+)

=

(2∂n f )e−2 f/h
∣∣
∂�+

‖(2∂n f )e−2 f/h‖L1(∂�+)

+O(h) in L1(∂�+).

Here, we have used the fact that f̃ = f on �+ \�−. Notice that the function f̃ satisfies Hypotheses 1, 2,
3 and 4 by the results of the previous section. We thus conclude the proof by referring to Corollary 2.9. �

The proof of Proposition 7.5 is done in two steps: We first apply Theorem 2.4 using a very specific
basis of Ran 1[0,ν(h)](1

D,(1)
f,h (�+ \�−)) to get estimates of

λ
(0)
1 (�+) and −

∂n(e− f/hu(0)1 )
∣∣
∂�+

‖∂n(e− f/hu(0)1 )‖L1(∂�+)

in terms of second-order Taylor expansions of f around the local minima U (1)
k (see (7-6) and (7-20)). We

then show that these expansions coincide with (7-7) and (7-8).
Before this, we explain how to build the almost orthonormal basis of Ran 1[0,ν(h)](1

D,(1)
f,h (�+ \�−))

that is needed to prove our results. This construction relies heavily on the Morse assumption on f
and f

∣∣
∂�+

(see Hypothesis 5). We need the results of [Helffer and Nier 2006, Chapter 4] on approximate
formulas for a basis of the eigenspace of 1D,(1)

f,h (�+ \�−) associated with O(e−c0/h) eigenvalues (see
also [Le Peutrec 2010a] for a more general analysis). In what follows, it is assumed that Hypotheses 1, 5
and 6 and condition (7-5) hold. The one-forms of that basis are constructed via a WKB expansion around
each local minimum U (1)

k of f
∣∣
∂�+

(1≤ k ≤ m D
1 (�+ \�−)). In a neighborhood Vk of U (1)

k , consider the
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function ϕk defined in a neighborhood of U (1)
k as follows: We assume that all the Vk are disjoint subsets

of �+ \�−. The function ϕk satisfies the eikonal equation

|∇ϕk |
2
= |∇ f |2, ϕk

∣∣
∂�+
= ( f − f (U (1)

k ))
∣∣
∂�+

, ∂nϕk
∣∣
∂�+
=−∂n f

∣∣
∂�+

.

In the neighborhood Vk , one can build coordinates (x ′, xd)= (x1, . . . , xd−1, xd) such that:

• The open set �+ looks like a half-space:

�+ ∩Vk = {(x ′, xd) : |x ′| ≤ r, xd < 0},

∂�+ ∩Vk = {(x ′, xd) : |x ′| ≤ r, xd
= 0}.

• The metric has the form gd,d(x)(dxd)2+
∑d−1

i, j=1 gi, j (x) dx i dx j with gi, j (0) = δi, j (notice that a
different normalization of gd,d(0) was used in [Helffer and Nier 2006]).

• The coordinates (x ′, xd) are Morse coordinates both for f and ϕk :

f (x)− f (U (1)
k )= ∂n f (U (1)

k )xd
+

1
2

d−1∑
j=1

λ j (x j )2, ϕk(x)=−∂n f (U (1)
k )xd

+
1
2

d−1∑
j=1

λ j (x j )2, (7-10)

where the λ j are the eigenvalues of Hess
(

f
∣∣
∂�+

)
(U (1)

k ).

In [Helffer and Nier 2006] a local self-adjoint realization of 1(1)f,h around U (1)
k is introduced with the

same boundary conditions along ∂�+ as for 1D,(1)
f,h (�+), with a unique exponentially small eigenvalue

ζk(h)= O(e−ck/h). A corresponding approximate eigenvector is given by the WKB expansion (in the
limit of small h)

zwkb,(1)
k (x, h)= ak(x, h)e−ϕk(x)/h, where ak(x, h)∼ ak,0(x) dxd

+

∞∑
`=1

bk,`h` (7-11)

with bk,` =
∑d

j=1 ak,`, j (x) dx j and ak,0(0) = 1. The symbol ∼ stands for the equality of asymptotic
expansions. Let z(1)k be the eigenvector of the self-adjoint realization of 1(1)f,h around U (1)

k introduced
above, associated with ζk(h) and normalized by i∂xd z(1)k (0)= i∂xd zwkb,(1)

k (0). It is shown in [Helffer and
Nier 2006, Proposition 4.3.2(b,d)] that the estimates

∀α ∈ Nd
∃Cα > 0 ∃Nα ∈ N |∂αx z(1)k (x)| ≤ Cαh−Nαe−ϕk(x)/h, (7-12)

∀N ∈ N ∀α ∈ Nd
∃Cα,N > 0 |∂αx (z

wkb,(1)
k − z(1)k )(x)| ≤ CN ,αhN e−ϕk(x)/h (7-13)

hold for all x in a neighborhood V ′k ⊂Vk of U (1)
k . Notice that the one-forms zwkb,(1)

k and z(1)k are real-valued.
By taking a cut-off function χk ∈ C∞0 (V ′k) with χk ≡ 1 in a neighborhood of U (1)

k , a normalized quasimode
for 1D,(1)

f,h (�+ \�−) is given by

w
(1)
k =

χkz(1)k

‖χkz(1)k ‖L2(V ′k)
.

The set of functions (w(1)k )k∈{1,...,m D
1 (�+\�−)}

is orthonormal, owing to the disjoint supports of the functions
(χk)k∈{1,...,m D

1 (�+\�−)}
. According to [Helffer and Nier 2006, Proposition 6.6], those quasimodes belong
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to the form domain of 1D,(1)
f,h (�+ \�−), and there exist two constants C , c > 0 such that

‖d f,hw
(1)
k ‖

2
L2(�+)

+‖d∗f,hw
(1)
k ‖

2
L2(�+)

≤ Ce−c/h (7-14)

holds for all k∈{1, . . . ,m D
1 (�+\�−)}. In addition, the estimates (7-12) and (7-13) with ζk(h)=O(e−ck/h)

imply that the w(1)k solve{
1
(1)
f,hw

(1)
k = rk on �+ \�−,

tw(1)k

∣∣
∂�+∪∂�−

= 0, td∗f,hw
(1)
k

∣∣
∂�−
= 0, td∗f,hw

(1)
k

∣∣
∂�+
= ρk,

(7-15)

where rk and ρk satisfy

∀p∈N ∃C p > 0 ∀k ∈ {1, . . . ,m D
1 (�+\�−)} ‖rk‖W p,2(�+\�−)

+‖ρk‖W p+1/2,2(∂�+)≤C pe−c′/h (7-16)

for some c′ > 0. The construction of the almost orthonormal basis of Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)) is

completed with the next lemma.

Lemma 7.10. Assume Hypotheses 1, 5 and 6 and condition (7-5), and set

u(1)k = 1[0,ν(h)](1
D,(1)
f,h (�+ \�−))w

(1)
k

for any k ∈ {1, . . . ,m D
1 (�+ \ �−)}. Then (u(1)k )k∈{1,...,m D

1 (�+\�−)}
is an almost orthonormal basis of

Ran 1[0,ν(h)](1
D,(1)
f,h (�+ \�−)).

Moreover,

∃c > 0 ∀p ∈ N ∃C p > 0 ∀k ∈ {1, . . . ,m D
1 (�+ \�−)} ‖u

(1)
k −w

(1)
k ‖W p,2(�+\�−)

≤ C pe−c/h (7-17)

for all sufficiently small h.

Proof. Let us introduce v(1)k = u(1)k −w
(1)
k for k ∈ {1, . . . ,m D

1 (�+ \�−)}. The one-form v
(1)
k belongs to

the form domain of 1D,(1)
f,h (�+ \�−) and the spectral theorem leads to

ν(h)‖v(1)k ‖
2
L2(�+\�−)

≤ ‖d f,hw
(1)
k ‖

2
L2(�+\�−)

+‖d∗f,hw
(1)
k ‖

2
L2(�+\�−)

≤ Ce−c/h
≤ Ce−c1/h

owing to (7-14) and σ(1
D,(1)
f,h (�+ \ �−)) ∩ [0, ν(h)] ⊂ [0, e−c0/h

]. With (2-5), this implies that
‖v
(1)
k ‖

2
L2(�+\�−)

=O(e−c2/h). By using

h2(‖dv(1)k ‖
2
L2(�+\�−)

+‖d∗v(1)k ‖
2
L2(�+\�−)

)

≤ 2‖d f,hv
(1)
k ‖

2
L2(�+\�−)

+ 2‖d∗f,hv
(1)
k ‖

2
L2(�+\�−)

+C‖v(1)k ‖
(2)
L2(�+\�−)

,

we obtain

‖v
(1)
k ‖

2
W 1,2(�+\�−)

=O(h−2e−c2/h)=O(e−c2/(2h)).

Thus, the almost orthonormality property of (u(1)k )k∈{1,...,m D
1 (�+\�−)}

is due to the orthonormality of
(w

(1)
k )k∈{1,...,m D

1 (�+\�−)}
.
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The W p,2 estimates (7-17) are then obtained by a bootstrap argument (induction on p) using the elliptic
regularity of the Hodge Laplacian. With 1D,(1)

f,h (�+ \�−)u
(1)
k = Õ(e−c0/h) in any W p,2 (see Lemma 6.3),

(7-15) leads to{
1Hv

(1)
k = r ′k(h)− h−2(1 f,h − h21H )v

(1)
k ,

tv(1)k

∣∣
∂�+∪∂�−

= 0, td∗v(1)k

∣∣
∂�−
= 0, td∗v(1)k

∣∣
∂�+
=−h−1ρk − h−1 i∇ f v

(1)
k ,

where ‖r ′k(h)‖W p,2(�+\�−)
satisfies the same estimate (7-16) as ‖rk(h)‖W p,2(�+\�−)

. Using the fact that
the zeroth-order differential operator 1 f,h − h21H = |∇ f |2+ h(L∇ f +L∗

∇ f ) is bounded in L∞-norm,
we thus obtain the W p,2 estimates (7-17) by induction on p. �

Proof of Proposition 7.5. Let us apply Theorem 2.4 and Corollary 6.9 to the almost orthonormal basis
(u(1)k )1≤k≤m D

1 (�+\�−)
introduced in Lemma 7.10 (see Remark 6.6). From the estimate (7-17) and the fact

that limh→0 h log λ(0)1 (�+)=−2κ f , we deduce

λ
(0)
1 (�+)=

h2∑m D
1 (�+\�−)

k=1

(∫
∂�+

e− f/h inw
(1)
k (σ ) dσ

)2∫
�+

e−2 f (x)/h dx
(1+O(e−c/h)),

∂nu(0)1

∣∣
∂�+
=−

m D
1 (�+\�−)∑

k=1

∫
∂�+

e− f (σ )/h inw
(1)
k (σ ) dσ(∫

�+
e−2 f (x)/h dx

)1/2 inw
(1)
k +O(e−(κ f+c)/h),

where the last remainder term is measured in W p,2(∂�+)-norm for any p ∈ N. In particular, we deduce

e− f/h(∫
�+

e−2 f (x)/h dx
)1/2 ∂nu(0)1

∣∣
∂�+
=−

m D
1 (�+\�−)∑

k=1

(∫
∂�+

θk(σ ) dσ
)
θk +O(e−(2κ f+c)/h) in L1(∂�+)

and

λ
(0)
1 (�+)= h2

m D
1 (�+\�−)∑

k=1

(∫
∂�+

θk dσ
)2

(1+O(e−c/h)), (7-18)

where θk =
(
e− f/h/

(∫
�+

e−2 f (x)/h dx
)1/2)inw

(1)
k

∣∣
∂�+

.

Using ∂nu(0)1

∣∣
∂�+
≤ 0 and the fact that the θk have disjoint supports, the following estimates hold:

(∫
�+

e−2 f (x)/h dx
)− 1

2∥∥e− f/h∂nu(0)1

∣∣
∂�+

∥∥
L1(∂�+)

=

m D
1 (�+\�−)∑

k=1

(∫
∂�+

θk(σ ) dσ
)2

+O(e−(2κ f+c)/h)

= h−2λ
(0)
1 (�+)(1+ Õ(e−c/h)).

In the last equality, we used (2-11) to get a lower bound on λ(0)1 (�+). By recalling that the Dirichlet
boundary condition u(0)1

∣∣
∂�+
= 0 implies

∂n[e− f/hu(0)1 ]
∣∣
∂�+
= e− f/h∂nu(0)1

∣∣
∂�+

,
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we thus get

−

∂n[e− f/hu(0)1 ]
∣∣
∂�+

‖∂n[e− f/hu(0)1 ]‖L1(∂�+)

=

∑m D
1 (�+\�−)

k=1

(∫
∂�+

θk dσ
)
θk∑m D

1 (�+\�−)

k=1

(∫
∂�+

θk dσ
)2
+ Õ(e−c/h) in L1(∂�+). (7-19)

In order to get estimates from (7-18) and (7-19) in terms of f , it remains to approximate the quantities θk

and
∫
∂�+

θk dσ in the limit h→ 0. Recall that

θk =
e− f/h(∫

�+
e−2 f (x)/h dx

)1/2 inw
(1)
k

∣∣
∂�+

and w
(1)
k =

χkz(1)k

‖χkz(1)k ‖L2(V ′k)
.

The estimates are obtained using the Laplace method and the WKB expansion (7-11) together with (7-13)
to approximate z(1)k .

•

∫
�+

e−2 f (x)/h dx : A direct application of the Laplace method gives∫
�+

e−2 f (x)/h dx = e−2 f (U0)/h(πh)d/2
(
det(Hess f )(U0)

)−1/2
(1+O(h)),

where U0 is the unique global minimum of f .

• ‖χkz(1)k ‖L2(V ′k): Recall the coordinates around U (1)
k used in (7-10) and (7-11). Using these coordinates

and (7-13), there is a C∞0 ({xd
≤ 0}) function α(x, h)∼

∑
∞

k=0 αk(x)hk with α0(0)= 1 such that

‖χkz(1)k ‖
2
L2(V ′k)

=

∫
{xd≤0}

e−2ϕk(x)/hα(x, h) dx1
· · · dxd

=

∫
{xd≤0}

e2∂n f (U (1)
k )xd/he−

∑d−1
j=1 λ j (x j )2/hα(x, h) dx1

· · · dxd

=
h

2∂n f (U (1)
k )

(πh)(d−1)/2
√
λ1 · · · λd−1

(1+O(h))

=
(πh)(d+1)/2

2π∂n f (U (1)
k )

(
det(Hess f

∣∣
∂�+

)(U (1)
k )

)1/2 (1+O(h)).

We applied the Laplace method to get the estimate of the integral (using the fact that ∂n f (U (1)
k ) > 0

by (7-5)).

• θk : On the one hand, using f (x)= f (U (1)
k )+ ∂n f (U (1)

k )xd
+

1
2

∑d−1
j=1 λ j (x j )2 in a neighborhood of

U (1)
k (see (7-10)), we have, on ∂�+ (so that xd

= 0),

χk
e− f/h(∫

�+
e− f (x)/h dx

)1/2

= χke−( f (U (1)
k )− f (U0))/h(πh)−d/4(det(Hess f )(U0)

)1/4e−
∑d−1

j=1 λ j (x j )2/(2h)(1+O(h)).
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On the other hand, the function inw
(1)
k

∣∣
∂�+
= χk inz(1)k

∣∣
∂�+

/‖χkz(1)k ‖L2(V ′k) satisfies

inw
(1)
k

∣∣
∂�+
= χk

√
2π∂n f (U (1)

k )
(
det
(
Hess f

∣∣
∂�+

)
(U (1)

k )
)1/4

(πh)(d+1)/4 e−
∑d−1

j=1 λ j (x j )2/(2h)(1+O(h)).

From these two estimates, θk satisfies

θk = Akχke−
∑d−1

j=1 λ j (x j )2/h(1+O(h)),
where

Ak =

√
2π∂n f (U (1)

k )

(πh)(2d+1)/4

(
det
(
Hess f

∣∣
∂�+

)
(U (1)

k )
)1/4(det(Hess f )(U0)

)1/4e−( f (U (1)
k )− f (U0))/h .

•

∫
∂�+

θk : The Laplace method implies that∫
e−

∑d−1
j=1 λ j (x j )2/h dx1

· · · dxd−1

=
(πh)(d−1)/2
√
λ1 · · · λd−1

(1+O(h))= (πh)(d−1)/2(det
(
Hess f

∣∣
∂�+

)
(U (1)

k )
)−1/2

(1+O(h)).

We thus obtain

∫
∂�+

θk =

√
2π∂n f (U (1)

k )
(
det(Hess f )(U0)

)1/4

(πh)3/4
(
det
(
Hess f

∣∣
∂�+

)
(U (1)

k )
)1/4 e−( f (U (1)

k )− f (U0))/h(1+O(h)).

Putting together the above information and using (7-18) and (7-19) finally implies

λ
(0)
1 (�+)=

√
h det(Hess f )(U0)

π

m D
1 (�+\�−)∑

k=1

2∂n f (U (1)
k )√

det
(
Hess f

∣∣
∂�+

)
(U (1)

k )

e−2( f (U (1)
k )− f (U0))/h(1+O(h)),

which is exactly (7-6), and

−

∂n[e− f/hu(0)1 ]
∣∣
∂�+∥∥∂n[e− f/hu(0)1 ]

∥∥
L1(∂�+)

=

∑m D
1 (�+\�−)

k=1 ∂n f (U (1)
k )e−2( f (U (1)

k )− f (U0))/hχke−
∑d−1

j=1 λ j (x j )2/h

(πh)(d−1)/2
∑m D

1 (�+\�−)

k′=1

(
∂n f (U (1)

k′ )/

√
det
(
Hess f

∣∣
∂�+

)
(U (1)

k′ )
)
e−2( f (U (1)

k′ )− f (U0))/h
(1+O(h)). (7-20)

We thus obtain estimates of λ(0)1 (�+) and−∂n(e− f/hu(0)1 )
∣∣
∂�+

/‖∂n(e− f/hu(0)1 )‖L1(∂�+) in terms of second-
order Taylor expansions of f around the local minima U (1)

k . This ends the first step of the proof.
Actually, the two estimates (7-6) and (7-20) can be rewritten in a simpler form using the Laplace method

again. By recalling the equality f (x) = f (U (1)
k )+ ∂n f (U (1)

k )xd
+

1
2

∑d−1
j=1 λ j (x j )2 in a neighborhood
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of U (1)
k , the Laplace method gives, by similar computations to those performed above,∫

∂�+
2∂n f (σ )e−2 f (σ )/h dσ∫
�+

e−2 f (x)/h dx

=

√
h det(Hess f )(U0)

π

m D
1 (�+\�−)∑

k=1

2∂n f (U (1)
k )√

det
(
Hess f

∣∣
∂�+

)
(U (1)

k )

e−2( f (U (1)
k )− f (U0))/h(1+O(h)),

(2∂n f )e−2 f/h
∣∣
∂�+

‖(2∂n f )e−2 f/h‖L1(∂�+)

=

∑m D
1 (�+\�−)

k=1 ∂n f (U (1)
k )e−2( f (U (1)

k )− f (U0))/hχke−
∑d−1

j=1 λ j (x j )2/h

(πh)(d−1)/2
∑m D

1 (�+\�−)

k′=1 (∂n f (U (1)
k′ )/

√
det
(
Hess f

∣∣
∂�+

)
(U (1)

k′ ))e
−2( f (U (1)

k′ )− f (U0))/h
+O(h),

where the last remainder term is measured in L1(∂�+)-norm. Comparing with the two estimates (7-6)
and (7-20) above, we thus obtain (7-7) and (7-8). This concludes the proof. �

7B. Beyond Morse assumptions. In this section, we discuss Hypotheses 3 and 4 for functions f which
do not fulfill the Morse assumptions of Hypothesis 5 above. In Sections 7B2 and 7B3, we present two
examples (respectively in dimension 1 and 2) of functions f which do not fulfill Hypothesis 5 but for
which Hypotheses 3 and 4 still hold true. Section 7B1 is first devoted to a few remarks that will be useful
in the examples we will discuss below.

7B1. General remarks. First, we will use the duality between the chain complexes associated with
d f,h and d∗f,h . More precisely, conjugating with the Hodge ?-operator exchanges p- and (dim M−p)-
forms, d and d∗, f and − f , Neumann and Dirichlet boundary conditions. This was used extensively in
[Le Peutrec 2011; Le Peutrec et al. 2013].

Second, the following lemma will also be useful. It is a variant of Proposition 3.7.

Lemma 7.11. Let� be a regular bounded domain of the Riemannian manifold (M, g) and let f ∈ C∞(�)
be such that (∇ f )−1({0}) has a unique nonempty connected component in �.

• If ∂n f
∣∣
∂�
> 0 then the two first eigenvalues of 1N ,(0)

f,h (�) satisfy

µ
(0)
1 (�)= 0 and lim

h→0
h logµ(0)2 (�)= 0.

• If ∂n f
∣∣
∂�
< 0 and |∇ f |2− h1 f ≥ 0 in � for all h ∈ (0, h0), then the first eigenvalue of 1D,(0)

f,h (�)

satisfies

lim
h→0

h log λ(0)1 (�)= 0.

Proof. Up to the addition of a constant to the function f (which only affects the normalization of e− f/h),
one may assume without loss of generality that f ≡0 on (∇ f )−1({0}) (using the connectedness assumption
on (∇ f )−1({0})). Then, f ≥ 0 in � when ∂n f

∣∣
∂�
> 0, and f ≤ 0 when ∂n f

∣∣
∂�
< 0.
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The fact that µ(0)1 (�) = 0 is obvious, by considering the associated eigenvector e− f/h . The Witten
Laplacian acting on functions is the Schrödinger-type operator

1
(0)
f,h =−h21+ |∇ f |2− h(1 f ).

Since the function |∇ f |2− h1 f is uniformly bounded in �, the two inequalities

lim sup
h→0

h logµ(0)2 (�)≤ 0 and lim sup
h→0

h log λ(0)1 (�)≤ 0

are consequences of the min–max principle. For the Dirichlet case, any fixed nonzero function in
C∞0 (�) will provide an O(1) Rayleigh quotient. For the Neumann case, consider two regular functions
χ1, χ2 ∈ C∞0 (�) such that suppχ1 ∩ suppχ2 = ∅ and ‖χ1‖L2(�) = ‖χ2‖L2(�) = 1, and take ψh =

α1(h)χ1 + α2(h)χ2 such that ‖ψh‖
2
L2 = |α1(h)|2 + |α2(h)|2 = 1 and 〈ψh, e− f/h

〉L2(�) = 0. We get
〈ψh,1

N ,(0)
f,h ψh〉L2(�) =O(1) and the min–max principle applied to 1N ,(0)

f,h (�) on the orthogonal of e− f/h

yields µ(0)2 (�)=O(1) as h→ 0.
Let us first consider the case where ∂n f

∣∣
∂�

< 0 and |∇ f |2 − h1 f ≥ 0. It remains to prove
that lim infh→0 h log λ(0)1 (�) ≥ 0. Let ω be a normalized eigenfunction associated with λ(0)1 (�), so
1

D,(0)
f,h (�)ω = λ

(0)
1 (�)ω and ‖ω‖L2(�) = 1. Using Lemma 3.1 with ϕ = 0 and the Poincaré inequality,

we get

λ
(0)
1 (�)≥ h2

‖∇ω‖2L2(�)
≥ C�h2.

This concludes the proof in the case ∂n f
∣∣
∂�
< 0 and |∇ f |2− h1 f ≥ 0.

Let us now consider the case ∂n f
∣∣
∂�
> 0. It remains to prove that lim infh→0 h logµ(0)2 (�)≥ 0. Let

us reason by contradiction, by assuming that there exists c > 0 and a sequence (hn)n∈N such that

lim
n→∞

hn = 0 and µ
(0)
2 (�)≤ e−c/hn with c > 0.

Notice that µ(0)2 (�) depends on n. Let us introduce ωn , a normalized eigenfunction associated with
µ
(0)
2 (�), so 1N ,(0)

f,hn
ωn =µ

(0)
2 (�)ωn and ‖ωn‖L2(�) = 1. Notice that

∫
�
ωne− f/hn = 0. For ε > 0, consider

the open set

Kε =
{

x ∈� : d
(
x, (∇ f )−1({0})

)
< ε

}
,

so that K ε is contained in � for ε ∈ (0, ε0) and ε0 sufficiently small. Take a partition of unity χ2
1 +χ

2
2 ≡ 1

in � such that χi ∈ C∞(�), χ1 ≡ 1 in a neighborhood of Kε/2 and suppχ1 ⊂ Kε. The IMS localization
formula (see, for example, [Cycon et al. 1987]) gives

e−c/hn ≥ 〈ωn,1
N ,(0)
f,hn

(�)ωn〉L2(�)

= 〈χ1ωn,1
N ,(0)
f,hn

(�)χ1ωn〉L2(�)+〈χ2ωn,1
N ,(0)
f,hn

(�)χ2ωn〉L2(�)− h2
n

2∑
j=1

‖ωn∇χ j‖
2
L2(�)

. (7-21)

The lower bound (which is a consequence of |∇ f |2 > 0 on suppχ2 and ∂nχ2 = 0 on ∂�)

〈χ2ωn,1
N ,(0)
f,hn

(�)χ2ωn〉L2(�) ≥ 〈χ2ωn, |∇ f |2χ2ωn〉L2(�)−Chn‖χ2ωn‖
2
L2(�)
≥

1
Cε
‖χ2ωn‖

2
L2(�)
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for n sufficiently large together with (7-21) implies

∀δ > 0 ∀ε > 0 ∃N ∈ N ∀n ≥ N ‖ωn‖
2
L2(Kε)

≥ 1− δ.

Since (∇ f )−1({0}) is assumed to be connected and, for every point of the open set Kε, the gradient flow
associated with f defines a path to (∇ f )−1({0}), Kε is a connected open set. The function vn = ωn

∣∣
Kε

belongs to W 1,2(Kε) with

h2
ne−2Cε2/hn‖de f/hnvn‖

2
L2(Kε)

≤ ‖d f,hvn‖
2
L2(Kε)

≤ e−c/hn ,

thanks to the fact that
∃C > 0 ∀x ∈ Kε 0≤ f (x)≤ Cε2.

By choosing ε > 0 so that c− 2Cε2 > 0, the spectral gap estimate for the Neumann Laplacian in � (or
equivalently the Poincaré–Wirtinger inequality in �) provides a constant Cn such that

lim
n→∞
‖e f/hnvn −Cn‖L2(Kε)

= 0.

We thus deduce

lim
n→∞
‖ωn −Cne− f/hn‖L2(Kε)

= 0 with ‖ωn‖
2
L2(Kε)

≥ 1− δ, ‖ωn‖L2(�) = 1.

For δ < 1, this is in contradiction with
∫
�
ωne− f/hn = 0. �

7B2. A one-dimensional example. In this section, we exhibit a simple one-dimensional example of a
function f satisfying Hypotheses 3 and 4 though not being a Morse function. An extension is then briefly
discussed.

Proposition 7.12. Consider a function f ∈ C∞(�+), �+ = (a+, b+) with a+ < b+ two real numbers,
such that

f −1(0)= ( f ′)−1(0)= [a1, b1], −∞< a+ < a1 ≤ b1 < b+ <+∞,

f ′(a+) < 0 and f ′(b+) > 0.

Then, for any �− = (a−, b−) such that a+ < a− < a1 ≤ b1 < b− < b+, Hypotheses 3 and 4 are valid with
m N

0 (�−)= 1, m N
1 (�−)= 0 and m D

1 (�+ \�−)= 2.

Notice that, for this example, Hypotheses 1 and 2 are also satisfied, which means that the results of
Theorem 2.4 are valid.

Proof. On an interval I with the Euclidean metric, the one-forms can be written as u(1) = u1(x) dx . The
Witten Laplacians 1(p)f,h(I ) with p = 0, 1 are then given by

1
(0)
f,h(I )u

(0)
= (−h2∂x,x + |∂x f |2− h(∂x,x f ))u(0),

1
(1)
f,h(I )(u1dx)=

[
(−h2∂x,x + |∂x f |2+ h(∂x,x f ))u1

]
dx .

The Dirichlet boundary conditions are given by

u(0) = 0 on ∂ I and − h∂x u1+ (∂x f )u1 = 0 on ∂ I,
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while the Neumann boundary conditions are given by

h∂x u(0)+ (∂x f )u(0) = 0 on ∂ I and u1 = 0 on ∂ I.

This is a particular case of the general duality recalled at the beginning of Section 7B1. Let us now check
Hypotheses 3 and 4.

First, e− f/h belongs to the kernel of 1N ,(0)
f,h (�−). A direct application of Lemma 7.11 shows that (2-6)

holds for p=0 with m N
0 (�−)=1. Second, by the duality argument, proving that (2-6) holds for p=1 with

m N
1 (�−)= 0 is equivalent to proving that there are no exponentially small eigenvalues for 1D,(0)

− f,h (�−)

(notice that f has been changed to − f ). But this is a consequence of the second part of Lemma 7.11,
since f is convex. Finally, note that the condition (2-8) is empty, since the only exponentially small
eigenvalue of 1N ,(0)

f,h (�−) is 0. This shows that Hypothesis 3 holds.
The open set �+ \�− is the disjoint union of the two open intervals (a+, a−) and (b−, b+). On each

of them, ∂x f does not vanish and the Morse assumptions of Hypothesis 5 are satisfied. On (a+, a−)
(resp. (b−, b+)), f has one generalized critical point of index 1 at a+ (resp. at b+). Therefore, using the
results of [Helffer and Nier 2006] (see Section 7A1), (2-9) holds with m D

1 (�+ \�−)= 2. This shows
that Hypothesis 4 holds. �

It is not difficult to treat the case when f ∈ C∞([a+, b+]) has a finite number of critical intervals,

( f ′)−1({0})=
2N+1⋃
n=1

[an, bn], a+ < a1 ≤ b1 < · · ·< a2N+1 ≤ b2N+1 < b+,

with f ′(a+) < 0 and f ′(b+) > 0. Again, �− = (a−, b−), with a+ < a− < a1 < b2N+1 < b− < b+.
The local problems around every [an, bn] can be studied with the help of the duality argument and
Lemma 7.11. Using an argument based on a partition of unity, one can check that (2-6) and (2-9) hold
with m N

0 (�−)= 2N+1, m N
1 (�−)= 2N and m D

1 (�+ \�−)= 2N+2. Hypothesis 1 is of course satisfied.
Ensuring that Hypothesis 2 and condition (2-8) hold then requires us to correctly choose the heights of
the critical values. They hold, for example, when max1≤n≤2N+1 f (ai ) <min{ f (a+), f (b+)} and when
f (a1) and f (b2N+1) are the two smallest critical values.

7B3. A two-dimensional example. This example is inspired by the work of [Bismut 1986; Helffer and
Sjöstrand 1987; 1988] on Bott inequalities. We consider the following C∞ radial functions in R2:

ϕin(x)= e−1/(|x |2−1)21[0,1](|x |),

ϕext ≡ 0 for |x | ≤ 1, ϕext strictly convex in {|x |> 1}.

The domain �+ is the disc D((−R, 0), 2R) and �− the disc D((−R, 0), 2R − 1) with R > 3. The
function f is defined by f (x)= ϕin(x)+ ϕext

( 1
2 x
)
. The level sets of the function f are represented in

Figure 5.

Proposition 7.13. When R > 3 is chosen large enough, the above triple (�+, �−, f ) fulfills Hypothe-
ses 1, 2, 3 and 4 with m N

0 (�−)= 1, m N
1 (�−)= 1 and m D

1 (�+ \�−)= 1.
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2 2 1

Figure 5. Only �+ is represented. The level sets of f are represented by dashed lines.
The black area is the 0 level set. The dots indicate the generalized critical points, together
with their indices (for Dirichlet boundary conditions).

Proof. Thanks to the convexity assumption on x 7→ ϕext
( 1

2 x
)

and its local behavior around {|x | = 2},
Hypotheses 1 and 2 hold for R > 3 large enough.

The choice of non-0-centered disks for �+ and �− while f is a radial function implies that f
∣∣
∂�+

has
a unique local minimum and therefore, using the results recalled in Section 7A1, (2-9) is satisfied with
m D

1 (�+ \�−)= 1. This shows that Hypothesis 4 holds.
The fact that (2-6) holds for p = 0 with m N

0 (�−)= 1 is a direct application of Lemma 7.11. This also
implies that the condition (2-8) is void. It only remains to prove that (2-6) holds for p=1 with m N

1 (�−)=1.
We will actually prove that (2-6) holds for p = 2 with m N

2 (�−)= 1. Then the quasi-isomorphism with
the absolute cohomology of the disc (see Section 4A) gives m N

2 (�−)−m N
1 (�−)+m N

0 (�−)= 1, which
indeed implies m N

1 (�−)= 1. Moreover, by the duality argument, (2-6) holds for p= 2 with m N
2 (�−)= 1

if (2-9) holds for p = 0 with m D
0 (�−) = 1, f being changed into − f . The proof of this claim will

conclude the demonstration.
In the rest of this proof, m D

0 (�−) denotes the number of small eigenvalues for 1D,(0)
− f,h (�−). The

function − f has a local minimum at x = (0, 0). Applying the min–max principle with a quasimode
χ(x)e f (x)/h , where χ is a smooth nonnegative function such that χ ≡ 1 on

{
|x | ≤ 1

4

}
and χ ≡ 0 on{

|x | ≥ 1
2

}
, implies that m D

0 (�−)≥ 1.
Let us now consider ω ∈ D(1D,(0)

− f,h (�−)), a normalized eigenvector associated with an exponentially
small eigenvalue, so 〈ω,1D,(0)

− f,h (�−)ω〉L2(�−) ≤ e−c/h for some c > 0. Let χ2
1 + χ

2
2 = 1 be a partition

of unity on �− with χ2
1 ≡ 1 on {|x | ≤ ε} and χ2

1 ≡ 0 on {|x | ≥ 2ε} (for ε < 1
4 ). The IMS localization

formula gives

〈ω,1
D,(0)
− f,h (�−)ω〉L2(�−)

= 〈χ1ω,1
D,(0)
− f,h (�−)χ1ω〉L2(�−)+〈χ2ω,1

D,(0)
− f,h (�−)χ2ω〉L2(�−)− h2

2∑
j=1

‖ω∇χ j‖
2
L2(�−)

. (7-22)
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Figure 6. A variant of Figure 5 with N = 4. The supports of the additional terms in f
(compared with Figure 5) are represented by the white disks.

The second term of the right-hand side equals 〈χ2ω,1
D,(0)
− f,h (�)χ2ω〉L2(�−\�ε) with�ε={x ∈�− : |x |≤ ε}.

Our choice of the function f (x)= ϕin(x)+ϕext
( 1

2 x
)

ensures that, for h ∈ (0, h0) with h0 small enough,
|∇ f |2+ h1 f is nonnegative on �− \�ε. The second part of Lemma 7.11 thus implies that there exists a
function ν of h such that

〈χ2ω,1
D,(0)
− f,h (�)χ2ω〉L2(�−\�ε) ≥ ν(h)‖χ2ω‖

2
L2(�−\�ε)

with lim infh→0 h log ν(h) = 0. In addition, exponential decay estimates based on the Agmon identity
imply that

∑2
j=1 ‖ω∇χ j‖

2
L2(�−)

=O(e−c/h), since |∇ f |> 0 on supp(χ1)∪ supp(χ2) (this is obtained by
adapting the arguments of Proposition 3.4, for example). By using the IMS localization formula (7-22),
we thus obtain that ‖χ2ω‖L2(�\�ε) goes to zero when h goes to zero, and thus that limh→0 ‖χ1ω‖L2(�−) =

limh→0 ‖ω‖L2(�ε) = 1. Using then the same argument as in the end of the proof of the first part of
Lemma 7.11, we obtain that, for sufficiently small ε, limh→0 ‖ω−Che f/h

‖L2(�ε) = 0 for some constant
Ch ∈ R. The two limits limh→0 ‖ω‖L2(�ε) = 1 and limh→0 ‖ω−Che f/h

‖L2(�ε) = 0 imply that, in the
asymptotic h→ 0, ω cannot be orthogonal to χe f/h (recall that χ ≡ 1 on �ε), which is in the spectral
subspace associated with exponentially small eigenvalues. This concludes the proof. �

It is not difficult to adapt the previous argument to the case when the function f has several local
maxima. Set (x0, r0) = (0, 1) and consider a finite number of points and radii (xk, rk)1≤k≤N such that
the open discs D(xk, rk), k = 0, . . . , N , are all disjoint and included in D(0, 2). Let us consider the
function f (x)= ϕext

( 1
2 x
)
+
∑N

k=0 ϕin((x − xk)/rk) (see Figure 6). Then Hypotheses 1, 2, 3 and 4 hold
with m N

0 (�−)= 1, m N
1 (�−)= N + 1 and m D

1 (�+ \�−)= 1.

Remark 7.14. Interestingly, one can extend the last example to build a function f for which Hypothesis 3
is not satisfied. Consider an infinite sequence (xk, rk)k∈N with x0 = 0 and r0 = 1 such that the
open discs D(xk, rk), k ≥ 0, are all disjoint and included in D(0, 2). Take the function f (x) =
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ϕext
( 1

2 x
)
+
∑
∞

k=0(r
k
k /(1+ k2))ϕin((x − xk)/rk) in the domain �− = D((−R, 0), 2R − 1) with R > 3

large enough. By Lemma 7.11, we know m N
0 (�−)= 1, while quasimodes associated with every xk show

that the number of eigenvalues of 1N ,(2)
f,h (�−) (or equivalently 1D,(0)

− f,h (�−)) lying in [0, e−δ/h
] is larger

than any fixed n ∈ N for h sufficiently small. Using, as in the proof of Proposition 7.13, the identity
m N

2 (�−)−m N
1 (�−)+m N

0 (�−)= 1, the number of eigenvalues of 1N ,(1)
f,h (�−) lying in [0, e−δ/h

] is thus
also larger than any n ∈ N for h sufficiently small. Thus Hypothesis 3 is not satisfied.

Actually, there are up to now no satisfactory necessary and sufficient conditions which guarantee that
Witten Laplacians with general C∞ potentials have a finite number of exponentially small eigenvalues.

Appendix: Riemannian geometry formulas

For the sake of completeness and in order to help the reader not so familiar with those tools, here is a list
of formulas of Riemannian geometry which were used in this text. We refer the reader, for example, to
[Abraham and Marsden 1978; Cycon et al. 1987; Gallot et al. 2004; Sternberg 1964; Goldberg 1970]
for introductory texts in differential and Riemannian geometry. We also consider here only real-valued
differential forms (the extension to complex-valued differential forms is easy).

Let (M, g) be a d-dimensional Riemannian manifold. The tangent (resp. cotangent) bundle is denoted
by T M (resp. T ∗M) and its fiber over x ∈ M by Tx M (resp. T ∗x M). The exterior algebra over T ∗x M
is
∧

T ∗x M =
⊕d

p=0
∧p T ∗x M endowed with the exterior product ∧, and the associated fiber bundle is

denoted by
∧

T ∗M =
⊕∧p T ∗M . The exterior product of p elements (ϕi )1≤i≤p of T ∗x M is defined by

ϕ1 ∧ · · · ∧ϕp =
∑

σ∈S{1,...,p}

ε{1,...,p}(σ )ϕσ(1)⊗ · · ·⊗ϕσ(p),

where εE(π) is the signature of the permutation π ∈ SE . Differential forms are sections of this fiber
bundle and their regularity is encoded by the notation:

∧
C∞(M) is the set of C∞-differential forms,∧

L2(M) is the set of L2-differential forms, and so on. This notation was used in the present text
for the sake of conciseness. A more standard and general notation would be C∞(M;

∧
T ∗M), where

C∞(M; E) more generally stands for the set of C∞ sections of the differential fiber bundle (E,5) on M
with 5 : E→ M (a section x 7→ s(x) satisfies 5(s(x))= x).

In a local coordinate system (x1, . . . , xd), a basis of
∧p T ∗x M is formed by the elements

dx I
= dx i1 ∧ · · · ∧ dx i p , I = {i1, . . . , i p}, i1 < · · ·< i p.

Here and in the following, I = {i1, . . . , i p} denotes a subset of {1, . . . , d} with #I = p elements, which
can be described equivalently as an ordered p-tuple (i1, . . . , i p) with i1 < · · ·< i p.

A differential form ω ∈
∧p T ∗M is written

ω =
∑

#I=p

ωI (x) dx I ,

and its differential is given by

dω =
∑

#I=p

∂x iωI (x) dx i
∧ dx I .
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Remember that the exterior product is bilinear associative and antisymmetric:

ω1 ∧ω2 = (−1)p1 p2ω2 ∧ω1, ωi ∈

pi∧
T ∗x M.

The differential and the ∧ product satisfy d ◦ d = 0 and

d(ω1 ∧ω2)= dω1 ∧ω2+ (−1)p1ω1 ∧ dω2, ωi ∈

pi∧
C∞(M).

A C∞ vector field X on M is a C∞ section of T M , that is, X ∈ C∞(M; T M). The interior product iX is
the local operation defined for Xx ∈ Tx M and ωx ∈

∧p T ∗x M by

iXxωx(T2, . . . , Tp)= ωx(Xx , T2, . . . , Tp) for all T2, . . . , Tp ∈ Tx M. (A-1)

For X ∈ C∞(M; T M) and ωi ∈
∧pi C∞(M), one has

iX (ω1 ∧ω2)= (iXω1)∧ω2+ (−1)p1ω1 ∧ (iXω2).

When 8 : M→ N is a C∞ map, 8∗ denotes the functorial push-forward and 8∗ the functorial pull-back.
For a C∞ map 8 and two forms ω1, ω2, one has

8∗(dω1)= d(8∗ω1), 8∗(ω1 ∧ω2)= (8
∗ω1)∧ (8

∗ω2).

When 8 is a diffeomorphism, ω a p-form and X a vector field,

8∗ iXω = i8∗X8
∗ω.

When 8 is a diffeomorphism given by the exponential map of a vector field X , we can define the Lie
derivative

LXω =
d
dt
(et X )∗ω

∣∣∣
t=0

for ω ∈
∧

C∞(M). (A-2)

The Lie derivative satisfies

LX (ω1 ∧ω2)= (LXω1)∧ω2+ω1 ∧ (LXω2),

and Cartan’s magic formula says
LX = iX ◦ d + d ◦ iX .

Differential forms dω with degree p+ 1 can be integrated along a (p+1)-chain, or more specifically a
(p+1)-dimensional submanifold with boundary; let us write it as C with boundary ∂C . Stokes’ formula
is written ∫

C
dω =

∫
∂C
ω,

and it is the ground for de Rham’s cohomology.
The Riemannian structure adds the pointwise dependent scalar product g(x) given by

〈S, T 〉Tx M =
∑

1≤i, j≤d

gi, j (x)Si T j
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with a dual metric (gi, j (x))1≤i, j≤d := g(x)−1 defined on T ∗x M . This is also written with Einstein’s
conventions as

g = gi, j dx i dx j , gi, j g j,k
= δk

i .

Both g(x) and g(x)−1 are extended by tensor product to
∧

Tx M and
∧

T ∗x M : for ω, ω′ ∈
∧p C∞(M),

〈ω′, ω〉∧p T ∗x M =
∑

#I=p

∑
#J=p

( p∏
k=1

gik , jk

)
ω′IωJ ,

where I = {i1, . . . , i p} (i1 < · · ·< i p) and J = { j1, . . . , jp} ( j1 < · · ·< jp). The Riemannian infinitesimal
volume (denoted simply by dx in the text) is in an oriented local coordinate system:

d Volg(x)= (det g)1/2 dx1
∧ · · · ∧ dxd

= (det g)1/2 dx1
· · · dxd .

Those scalar products as nondegenerate bilinear forms allow identifications between forms and vectors.
Here are examples: when ω = ωi (x)dx i is a one-form, the vector ω# is given by (ω#)i = gi, jω j ; when
X = X i∂x i is a vector field, X [ is the one-form defined by (X [)i = gi, j X j . As an application, the gradient
for a function is nothing but ∇ f = (d f )#. Similarly, the Hessian of a function f at a point x , initially
defined as a bilinear form, can be viewed a linear map of Tx M .

Another duality between forms of complementary degrees p+ p′ = d = dim M is provided by the
Hodge ? operator. When the Riemannian manifold (M, g) is orientable (locally this is always the case),
the operator ? :

∧p C∞(M)→
∧d−p C∞(M) is defined by∫

〈ω′, ω〉∧p T ∗x M d Volg(x)=
∫
ω′ ∧ (?ω), ω, ω′ ∈

p∧
C∞(M).

In a coordinate system it is given by

(?ω)J =
∑

I

δ
{1,...,d}
I∪J ε{1,...,d}(I, J )(det g)1/2(ω#)I ,


I = {i1, . . . , i p}, i1 < · · ·< i p,

J = { j1, . . . , jd−p}, j1 < · · ·< jd−p,

(I, J )= (i1, . . . , i p, j1, . . . , jd−p),

where δB
A =1 when A= B and δB

A =0 otherwise. We have the additional properties, for ω, ω′∈
∧p C∞(M),

?(λω+ω′)= λ ?ω+ ?ω′, λ ∈ C∞(M),
? ? ω = (−1)p(d+1)ω,

ω∧ (?ω′)= ω′ ∧ (?ω),

?1= d Volg(x) (assuming M is oriented).

The codifferential d∗ is defined as the formal adjoint of the differential d :
∧

C∞(M)→
∧

C∞(M),

〈dω,ω′〉 = 〈ω, d∗ω′〉.
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With the Hodge ? operator (do the identification on a compact oriented manifold without boundary with∫
M dη = 0), 

?d∗ω = (−1)pd ?ω,
?dω = (−1)p+1d∗ ?ω,
d∗ω = (−1)pd+d+1 ? d ?ω

for all ω ∈
p∧
C∞(M).

The Hodge Laplacian is then given by

1H = (d + d∗)2 = dd∗+ d∗d. (A-3)

It is possible to write d∗ and 1H in a coordinate system. For example,

(d∗ω)I =−gi, jδ J
i∪I εJ (i, I )∇ jωJ , (i, I )= (i, i1, . . . , i p−1),

∇ jωJ = ∂x jωJ −

p∑
`=1

ωI∪{k}\i`εI∪{k}\i`(i1, . . . , i`−1, k, i`+1, . . . i p)0
k
i` j ,

0k
i`, j =

1
2 gk,m(∂x i` g j,m + ∂x j gm,i` − ∂xm gi`, j ),

where one recognizes the covariant derivative ∇ j associated with the metric g (the Levi–Civita connection)
and the Christoffel symbols 0 j

k `. The writing of 1H involves the Riemann curvature tensor and is known
as Weitzenbock’s formula. We wrote the above example to convince the unfamiliar reader that the explicit
writing in a coordinate system is not always more informative than the intrinsic formula.

Here is the example of the Witten Laplacian, 1 f,h = (d f,h + d∗f,h)
2
= d∗f,hd f,h + d f,hd∗f,h :

d f,h = e− f/h(hd)e f/h
= hd + d f∧, (A-4)

d∗f,h = e f/h(hd∗)e− f/h
= hd∗+ i∇ f , (A-5)

1 f,h = d f,hd∗f,h + d∗f,hd f,h = (hd + d f∧)(hd∗+ i∇ f )+ (hd∗+ i∇ f )(hd + d f∧)

= h2(dd∗+ d∗d)+ [(d f∧) ◦ i∇ f + i∇ f ◦ (d f∧)] + h[d i∇ f + i∇ f d] + h[(d f∧) ◦ d∗+ d∗ ◦ (d f∧)]

= h21H+ |∇ f |2+ h(L∇ f +L∗
∇ f ), (A-6)

where we used iX (d f ∧ ω) = d f (X)ω − d f ∧ (iXω) with X = ∇ f , Cartan’s magic formula and an
easy identification of L∗

∇ f . No explicit computation of d∗ or the Hodge Laplacian is necessary to
understand the structure of the Witten Laplacian. In particular, LX + L∗X is clearly a zeroth-order
differential operator because in a coordinate system the formal adjoint of a j (x)∂x j in L2(Rd , %(x) dx)
equals −a j (x)∂x j + b[a, %](x), where b[a, %] is the multiplication by a function of x . The operator
L∇ f + L∗

∇ f is not the local action of a tensor field on M because it does not follow the change of
coordinates rule for tensors. Actually, one can give a meaning to the general expression

1
(p)
f,h = h21

(p)
H + |∇ f |2− h(1 f )+ 2h(Hess f )p,

where (Hess f )p is an element of the curvature tensor algebra (see [Jammes 2012] and references therein).
Let us conclude this appendix with integration by parts formulas in the case of a manifold with a

boundary. All these formulas rely first on Stokes’ formula
∫
�

dω =
∫
∂�
ω when ω ∈

∧d−1 C∞(�).
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Note that the right-hand side of Stokes’ formula may equivalently (and more explicitly) be written∫
∂�
ω =

∫
∂�

j∗ω, where j : ∂�→ � is the natural embedding map (a trace along ∂� is taken and,
pointwise, j∗ωx is evaluated only on (d−1)-vectors tangent to ∂�). Another expression taken initially
from [Schwarz 1995] is also convenient. For σ ∈ ∂� let n(σ ) be the outward normal vector and write,
for any element X ∈ Tσ M , X = XT + Xnn.

For ω ∈
∧p C∞(�), define tω and nω = ω− tω by

∀σ ∈ ∂� ∀X1, . . . , X p ∈ Tσ� tω(X1, . . . , X p)= ω(X1,T , . . . , X p,T ).

If (x1, . . . , xd)= (x ′, xd) is a coordinate system in a neighborhood V of σ0 ∈ ∂� such that �∩V is given
locally by {xd < 0}, ∂�∩V by {xd

= 0} and n = ∂xd , then a p-form can be written

ω =
∑

#I=p
d 6∈I

ωI dx I
+

∑
#I ′=p−1

d 6∈I ′

ωI ′dx I ′
∧ dxd ,

and the operators t and n act as

tω =
∑

#I=p
d 6∈I

ωI dx I , nω =
∑

#I ′=p−1
d 6∈I ′

ωI ′dx I ′
∧ dxd .

Stokes’ formula can be written now as
∫
�

dω =
∫
∂�

tω for ω ∈
∧d−1 C∞(�), but contrary to the

operator j∗ the operator t makes sense in a collar neighborhood of ∂�; locally tω(x ′,xd ) = tω(x ′,0) by
definition. In particular, the formula

t dω = d tω

makes sense for any ω ∈
∧

C∞(�) and it is rather easy to check with the above coordinates description.
One also gets, in the same way,

tω = in(n[ ∧ω) for ω ∈
∧

C∞(�), (A-7)

?n= t?, ?t = n?, (A-8)

td = d t, nd∗ = d∗n, (A-9)

tω1 ∧ ?nω2 = 〈ω1, inω2〉
∧p T ∗σ �× d Volg,∂� for ωi ∈

p∧
C∞(�), (A-10)

where we recall that d Volg,∂�(X1, . . . , Xd−1)= d Volg(n, X1, . . . , Xd−1).
The above formulas, for example lead to the following integration by parts for ω1, ω2 ∈

∧p C∞(�):

〈d f,hω1, d f,hω2〉L2(�)+〈d
∗

f,hω1, d∗f,hω2〉L2(�)

= 〈ω1,1 f,hω2〉L2(�)+ h
∫
∂�

(tω2)∧ ?nd f,hω1− h
∫
∂�

(td∗f,hω1)∧ (?nω2).

This shows, for example, that 1D
f,h (resp. 1N

f,h) with its form domain W 1,2
D = {ω ∈

∧
W 1,2
: tω= 0} (resp.

W 1,2
N = {ω ∈

∧
W 1,2

: nω = 0}) is associated with the Dirichlet form ‖d f,hω‖
2
+‖d∗f,hω‖

2. Interpreting
the weak formulation of 1 f,hω = f leads to the operator domains D(1D

f,h) and D(1N
f,h) (we refer the
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reader to [Helffer and Nier 2006] for details). The boundary terms of Lemma 3.1 are obtained in a very
similar way.
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DYNAMICS OF COMPLEX-VALUED MODIFIED KDV SOLITONS
WITH APPLICATIONS TO THE STABILITY OF BREATHERS

MIGUEL A. ALEJO AND CLAUDIO MUÑOZ

We study the long-time dynamics of complex-valued modified Korteweg–de Vries (mKdV) solitons,
which are distinguished because they blow up in finite time. We establish stability properties at the H 1

level of regularity, uniformly away from each blow-up point. These new properties are used to prove that
mKdV breathers are H 1-stable, improving our previous result [Comm. Math. Phys. 324:1 (2013) 233–
262], where we only proved H 2-stability. The main new ingredient of the proof is the use of a Bäcklund
transformation which relates the behavior of breathers, complex-valued solitons and small real-valued
solutions of the mKdV equation. We also prove that negative energy breathers are asymptotically stable.
Since we do not use any method relying on the inverse scattering transform, our proof works even under
L2(R) perturbations, provided a corresponding local well-posedness theory is available.
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1. Introduction

Consider the modified Korteweg–de Vries (mKdV) equation on the real line

ut + (uxx + u3)x = 0, (1-1)

where u = u(t, x) is a complex-valued function and (t, x) ∈ R2. Note that (1-1) is not U (1)-invariant.
In the case of real-valued initial data, the associated Cauchy problem for (1-1) is globally well posed
for initial data in H s(R) for any s > 1

4 ; see Kenig, Ponce and Vega [Kenig et al. 1993], and Colliander,
Keel, Staffilani, Takaoka and Tao [Colliander et al. 2003]. Additionally, the (real-valued) flow map is not

MSC2010: primary 35Q51, 35Q53; secondary 37K10, 37K40.
Keywords: mKdV equation, Bäcklund transformation, solitons, breather, stability.

629

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2015.8-3
http://dx.doi.org/10.2140/apde.2015.8.629
http://msp.org
http://dx.doi.org/10.1007/s00220-013-1792-0
http://dx.doi.org/10.1007/s00220-013-1792-0


630 MIGUEL A. ALEJO AND CLAUDIO MUÑOZ

uniformly continuous if s < 1
4 [Kenig et al. 2001].1 In order to prove this last result, Kenig, Ponce and

Vega considered a very particular class of solutions of (1-1) called breathers, discovered by Wadati [1973].

Definition 1.1 (see, e.g., [Wadati 1973; Lamb 1980]). Let α, β > 0 and x1, x2 ∈ R be fixed parameters.
The mKdV breather is a smooth solution of (1-1) given explicitly by the formula

B = B(t, x;α, β, x1, x2) := 2
√

2∂x

[
arctan

β sin(αy1)

α cosh(βy2)

]
,

=
2
√

2αβ(α cos(αy1) cosh(βy2)−β sin(αy1) sinh(βy2))

α2 cosh2(βy2)+β2 sin2(αy1)
, (1-2)

where

y1 := x + δt + x1, y2 := x + γ t + x2, (1-3)

and

δ := α2
− 3β2, γ := 3α2

−β2. (1-4)

Breathers are oscillatory bound states. They are periodic in time (after a suitable space shift) and
localized in space. The parameters α and β are scaling parameters, x1, x2 are shifts, and −γ represents
the velocity of a breather. As we will see later, the main difference between solitons2 and breathers is
given at the level of the oscillatory scaling α, which is not present in the case of solitons. For a detailed
account of the physics of breathers, see, e.g., [Lamb 1980; Ablowitz and Clarkson 1991; Aubry 1997;
Alejo 2012; Alejo and Muñoz 2013] and references therein.

Numerical computations (see Gorria, Alejo and Vega [Gorria et al. 2013]) showed that breathers are
numerically stable. Next, in [Alejo and Muñoz 2013] we constructed a Lyapunov functional that controls
the dynamics of H 2 perturbations of (1-2). The purpose of this paper is to improve this previous result
and show that mKdV breathers are indeed H 1-stable, i.e., stable in the energy space.

Theorem 1.2. Let α, β > 0 be fixed scalings. There exist parameters η0, A0, depending on α and β only,
such that the following holds: Consider u0 ∈ H 1(R), and assume that there exists η ∈ (0, η0) such that

‖u0− B(0, · ;α, β, 0, 0)‖H1(R) ≤ η. (1-5)

Then there exist functions x1(t), x2(t) ∈ R such that the solution u(t) of the Cauchy problem for the mKdV
equation (1-1) with initial data u0 satisfies

sup
t∈R

‖u(t)− B(t, · ;α, β, x1(t), x2(t))‖H1(R) ≤ A0η, (1-6)

sup
t∈R

|x ′1(t)| + |x
′

2(t)| ≤ C A0η, (1-7)

for some constant C > 0.

1However, one can construct a solution in L2; see [Christ et al. 2012].
2See (1-8).
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The initial condition (1-5) can be replaced by any initial breather profile of the form B(t0;α, β, x0
1 , x0

2)

with t0, x0
1 , x0

2 ∈ R, thanks to the invariance of the equation under translations in time and space.3

Moreover, using the Miura transform [Miura et al. 1968], one can prove a natural stability property in
L2(R;C) for an associated complex-valued KdV breather.

One can also use the scaling invariance of the equation, u(t, x) 7→ λu(λ3t, λx), to reduce the problem
to the case where α equals 1 and β > 0 is arbitrary, but for symmetry reasons we shall not follow this
approach.4

Additionally, from the proof, the shifts x1(t) and x2(t) in Theorem 1.2 can be described almost
explicitly5, which is a substantial improvement with respect to [Alejo and Muñoz 2013], where no exact
control on the shift parameters was given. We obtain such a control with no additional decay assumptions
on the initial data other than being in H 1(R).

Theorem 1.2 places breathers as stable objects at the same level of regularity as mKdV solitons, even
if they are very different in nature. To be more precise, a (real-valued) soliton is a solution of (1-1) of the
form

u(t, x)= Qc(x − ct), Qc(s) :=
√

cQ(
√

cs), c > 0, (1-8)

with

Q(s) :=

√
2

cosh(s)
= 2
√

2∂s[arctan(es)],

and where Qc > 0 satisfies the nonlinear ODE

Q′′c − cQc+ Q3
c = 0, Qc ∈ H 1(R). (1-9)

We recall that solitons are H 1-stable (Benjamin [1972], Bona, Souganidis and Strauss [Bona et al. 1987]).
See also the works by Grillakis, Shatah and Strauss [Grillakis et al. 1987] and Weinstein [1986] for the
nonlinear Schrödinger case.

Even more surprising is the fact that Theorem 1.2 will arise as a consequence of a suitable stability
property of the zero solution and of complex-valued mKdV solitons, which are singular solutions.

A complex-valued soliton is a solution of the form (1-8) of (1-1) with a complex-valued scaling and
velocity, i.e.,

u(t, x) := Qc(x − ct),
√

c := β + iα, α, β > 0; (1-10)

see Definition 2.1 for a precise interpretation. In Lemma 2.2 we give a detailed description of the singular
nature of (1-10). On the other hand, very little is known about mKdV (1-1) when the initial data is
complex-valued. For instance, it is known that it has finite-time blow-up solutions, the most important

3Indeed, if u(t, x) solves (1-1), then, for any t0, x0 ∈ R and c > 0, u(t − t0, x − x0), c1/2u(c3/2t, c1/2x), u(−t,−x) and
−u(t, x) are solutions of (1-1).

4For example, if (1-6) holds, then v0(y) := u0(y/α)/α satisfies

α

∫
R

(
v0− B

(
0, · ; 1,

β

α
, 0, 0

))2
=

∫
R
(u0− B(0, · ;α, β, 0, 0))2 ≤ η2.

5See (7-9).
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examples being the complex solitons themselves; see, e.g., Bona, Vento and Weissler [Bona et al. 2013]
and references therein for more details. According to [Bona et al. 2013], blow-up in the complex-valued
case can be understood as the intersection with the real line x ∈ R of a curve of poles of the solution after
being extended to the complex plane (i.e., now x is replaced by z ∈ C). Blow-up in this case seems to
have better properties than the corresponding critical blow-up described by Martel and Merle [2002].

Let H 1(R;C) denote the standard Sobolev space of complex-valued functions f (x) ∈ C, x ∈ R. In
this paper we prove the following stability property for solitons, far away from each blow-up time:

Theorem 1.3. There exists an open set of initial data in H 1(R;C) for which the mKdV complex solitons
are well-defined and stable in H 1(R;C) for all times uniformly separated from a countable sequence of
finite blow-up times with no limit points. Moreover, one can define a mass and an energy, both invariant
for all time.

We cannot prove an all-time stability result using the H 1(R;C)-norm because even complex solitons
leave that space at each blow-up time, and several computations in this paper break down. However, the
previous result states that the Cauchy problem is almost globally well-posed around a soliton, and the
solution can be continued after (or before) every blow-up time. The novelty with respect to the local
Cauchy theory [Kenig et al. 1993] is that now it is possible to define an almost global solution instead of
defining a local solution on each subinterval of time defined by two blow-up points, because from the
proof we will recognize that the behavior before and after the blow-up time are deeply linked. From this
property, the existence and invariance of uniquely well-defined mass and energy will be quite natural. For
this particular problem, we answer positively the questions about existence, uniqueness and regularity
after blow-up posed by Merle [1992]. See Theorem 4.5 and its corollaries for a more detailed statement.

Lastly, we prove that breathers behaving as standard solitons are asymptotically stable in the energy
space. For previous results for the soliton and multisoliton case, see Pego and Weinstein [1994] and
Martel and Merle [2005].

Theorem 1.4. Under the hypotheses of Theorem 1.2, there exists c0 > 0 depending on η, with c0(η)→ 0
as η→ 0, such that the following holds: There exist β∗ and α∗ (depending on η) close enough to β and α,
respectively, for which

lim
t→+∞

‖u(t)− B(t; · , α∗, β∗, x1(t), x2(t))‖H1(x≥c0t) = 0. (1-11)

In particular, the asymptotic of u(t) has new and explicit velocity parameters δ∗ = (α∗)2− 3(β∗)2 and
γ ∗ = 3(α∗)2− (β∗)2 at the leading order.

The previous result is more interesting when γ < 0; see (1-4). In this case, the breather has negative
energy (see [Alejo and Muñoz 2013, p. 9]) and it moves rightwards in space (the so-called physically
relevant region). We recall that working in the energy space implies that small solitons moving to the
right in a very slow fashion are allowed (the condition c0 > 0 is essential; see, e.g., [Martel and Merle
2005]). Indeed, there are explicit solutions of (1-1) composed of one breather and one very small soliton
moving rightwards, which contradicts any sort of global asymptotic stability result in the energy space
[Lamb 1980]. Additionally, we cannot ensure that the left portion of the real line {x < 0} corresponds to
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radiation only. Following [Lamb 1980], it is possible to construct a solution to (1-1) composed of two
breathers, one very small with respect to the other one, the latter with positive velocity and the former
with small but still negative velocity (just take the corresponding scaling parameters α and β both small
so that −γ < 0). Such a solution has no radiation at infinity. Of course, working in a neighborhood of the
breather using weighted spaces rules out such small perturbations.

The mechanism under which α∗ and β∗ are chosen is very natural and reflects the power and simplicity
of the arguments of the proof: under different scaling parameters, it was impossible to describe the
dynamics as in Theorem 1.2. We do indeed have two linked results: in some sense Theorem 1.2 is a
consequence of Theorem 1.4 and vice versa.

It is also important to emphasize that (1-1) is a well-known completely integrable model [Miura et al.
1968; Ablowitz and Clarkson 1991; Lamb 1980; Lax 1968; Schuur 1986], with infinitely many conserved
quantities and a suitable Lax pair formulation. The inverse scattering theory has been applied in [Schuur
1986] to describe the evolution of rapidly decaying initial data, by purely algebraic methods. Solutions are
shown to decompose into a very particular set of solutions: solitons, breathers and radiation. Moreover, as
a consequence of the integrability property, these nonlinear modes interact elastically during the dynamics,
and no dispersive effects are present at infinity. In particular, even more complex solutions are present,
such as multisolitons (explicit solutions describing the interaction of several solitons [Hirota 1972]).
Multisolitons for mKdV and several integrable models of Korteweg–de Vries-type are stable in H 1; see
Maddocks and Sachs [1993] for the KdV case and in a more general setting see Martel, Merle and Tsai
[Martel et al. 2002].

However, the proof of Theorem 1.2 does not involve any method relying on the inverse scattering
transform [Miura et al. 1968; Schuur 1986], nor the steepest descent machinery [Deift and Zhou 1993],6

which allows us to work in the very large energy space H 1(R). Note that if the inverse scattering methods
are allowed, one could describe the dynamics of very general initial data with more detail. But if this is
the case, additional decay and/or spectral assumptions are always needed, and, except with well-prepared
initial data, such conditions are difficult to verify. We claim that our proof works even if the initial data is
in L2(R) provided mKdV is locally well-posed at that level of regularity, which remains a very difficult
open problem.

Comparing with [Alejo and Muñoz 2013], where we have proved that mKdV breathers are H 2-stable,
now we are not allowed to use the third conservation law associated to mKdV,7

F[u](t)= 1
2

∫
R

u2
xx(t, x) dx − 5

2

∫
R

u2u2
x(t, x) dx + 1

4

∫
R

u6(t, x) dx,

nor the elliptic equation satisfied by any breather profile,

B(4x)− 2(β2
−α2)(Bxx + B3)+ (α2

+β2)2 B+ 5B B2
x + 5B2 Bxx +

3
2 B5
= 0

6Note that Deift and Zhou [1993] consider the defocusing mKdV equation, which has no smooth solitons or breathers.
7See (4-13) and (4-14) for the other two low-regularity conserved quantities.
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since the dynamics is no longer in H 2. Moreover, since breathers are bound states, there is no associated
decoupling in the dynamics as time evolves as in [Martel et al. 2002], which makes the proof of the H 1

case even more difficult. We need a different method of proof.

We follow a method of proof that is in the spirit of the seminal work by Merle and Vega [2003] (see also
Alejo, Muñoz and Vega [Alejo et al. 2013]), where the L2-stability of KdV solitons has been proved. In
those cases, the use of the Miura and Gardner transformations were the new ingredients to prove stability
where the standard energy is missing. Recently, the Miura transformation has been studied at very low
regularity by Buckmaster and Koch [2014]; using this information, they showed that KdV solitons are
orbitally stable under H−1 perturbations leading to a H n

∩ H−3/4 solution, where n ≥−1 is an integer.

More precisely, we will make use of the Bäcklund transformation [Lamb 1980, p. 257] associated to
mKdV to obtain new conserved quantities, additional to the mass and energy. Mizumachi and Pelinovsky
[2012] and Hoffmann and Wayne [2013] described a similar approach for the NLS and sine-Gordon
equations and their corresponding one-solitons. However, unlike those previous works, and in order to
control any breather, we use the Bäcklund transformation twice: one to control an associated complex-
valued mKdV soliton, and a second one to get almost complete control of the breather.

Indeed, solving the Bäcklund transformation in the vicinity of a breather leads (formally) to the
emergence of complex-valued mKdV solitons, which blow up in finite time. A difficult problem arises at
the level of the Cauchy theory, and any attempt to prove stability must face the ill-posedness behavior
of the complex-valued mKdV equation (1-1). However, after a new use of the Bäcklund transformation
around the complex soliton we end up with a small, real-valued H 1(R) solution of mKdV which is stable
for all time. The fact that a second application of the Bäcklund transformation leads to a real-valued
solution is not trivial and is a consequence of a deep property called the permutability theorem [Lamb
1980]. Roughly speaking, that result states that the order under which we perform two inversions of the
Bäcklund transformation does not matter. After some work we are able to give a rigorous proof of the
following fact: we can invert a breather using Bäcklund towards two particularly well-chosen complex
solitons first, and then invert once again to obtain two small solutions — say a and b — and the final result
must be the same. Even better, one can show that a has to be the conjugate of b, which gives the real
character of the solution. Now, the dynamics is real-valued and simple. We use the Kenig–Ponce–Vega
theory [Kenig et al. 1993] to evolve the system to any given time. Using this trick we avoid dealing with
the blow-up times of the complex soliton — for a while — and at the same time we prove a new stability
result for them.

However, unlike [Mizumachi and Pelinovsky 2012; Hoffman and Wayne 2013], we cannot invert the
Bäcklund transformation at any given time, and in fact each blow-up time of the complex-valued mKdV
soliton is a dangerous obstacle for the breather stability. In order to extend the stability property up to the
blow-up times we discard the method involving the Bäcklund transformation. Instead we run a bootstrap
argument starting from a fixed time very close to each singular point, using the fact that the real-valued
mKdV dynamics is continuous in time. Finally, using energy methods related to the stability of single
solitons we are able to extend the uniform bounds in time to any singularity point, with a universal
constant A0 as in Theorem 1.2.



DYNAMICS OF COMPLEX-VALUED MODIFIED KDV SOLITONS 635

From the proof it will be evident that, even if there is no global well-posedness theory (with uniform
bounds in time) below H s , s< 1

4 , one can prove stability of breathers in spaces of the form H 1
∩H s , s< 1

4 ,
following the ideas of Buckmaster and Koch [2014]. We thank Professor Herbert Koch for mentioning to
us this interesting property.

Our results apply without significant modifications to the case of the sine-Gordon (SG) equation in
Rt ×Rx ,

ut t − uxx + sin u = 0, (u, ut)(t, x) ∈ R2, (1-12)

and its corresponding breather [Lamb 1980, p. 149]. See [Birnir et al. 1994; Denzler 1993; Soffer and
Weinstein 1999] for related results. Note that SG is globally well-posed in L2

× H−1; then we have that
breathers are stable under small perturbations in that space. Since the proofs are very similar, and in order
to avoid repetition, we skip the details.

Moreover, following our proof it is possible to give a new proof of the global H 1-stability of two-solitons,
first proved in [Martel et al. 2002].

We also claim that k-breathers (k ≥ 2), namely solutions composed of k different breathers, are
H 1-stable. Following the proof of Theorem 1.2, one can show by induction that a k-breather can be
obtained from a (k−1)-breather after two Bäcklund transformations using a fixed set of complex conjugate
parameters, as in Lemmas 2.4 and 5.1. After proving this identity, the rest of the proof adapts with no
deep modifications.

This paper is organized as follows: In Section 2 we introduce the complex-valued soliton profiles.
Section 3 is devoted to the study of the mKdV Bäcklund transformation in the vicinity of a given complex-
valued mKdV solution. In Section 4 we apply the previous results to prove Theorem 1.3 (see Theorem 4.5).
Section 5 deals with the relation between complex soliton profiles and breathers. In Section 6 we apply
the results from Section 3 to the case of a perturbation of a breather solution. Finally, in Sections 7 and 8
we prove Theorems 1.2 and 1.4.

2. Complex-valued mKdV soliton profiles

Definition 2.1. Consider parameters α, β > 0, x1, x2 ∈ R. We introduce the localized profile

Q̃ = Q̃(x;α, β, x1, x2),

defined as

Q̃ := 2
√

2 arctan
(
eβy2+iαy1

)
, (2-1)

where y1 and y2 are (re)defined as

y1 := x + x1, y2 := x + x2. (2-2)

Note that

lim
x→−∞

Q̃(x)= 0. (2-3)
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We define the complex-valued soliton profile as follows:

Q := ∂x Q̃

=
2
√

2(β + iα)eβy2+iαy1

1+ e2(βy2+iαy1)
(2-4)

=
√

2
β cosh(βy2) cos(αy1)+α sinh(βy2) sin(αy1)

cosh2(βy2)− sin2(αy1)

+ i
√

2
α cosh(βy2) cos(αy1)−β sinh(βy2) sin(αy1)

cosh2(βy2)− sin2(αy1)
. (2-5)

Finally, we write
Q̃t := −(β + iα)2 Q, (2-6)

and
Q̃1 := ∂x1 Q̃, Q̃2 := ∂x2 Q̃. (2-7)

Note that Q is complex-valued and is pointwise convergent to the soliton Qβ2 as α→ 0. A second
condition satisfied by Q̃ and Q is the following periodicity property: for all k ∈ Z,{

Q̃(x;α, β, x1+ kπ/α, x2)= (−1)k Q̃(x;α, β, x1, x2),

Q(x;α, β, x1+ kπ/α, x2)= (−1)k Q(x;α, β, x1, x2).
(2-8)

We remark that, in what follows, Q̃ and Q may blow up in finite time.

Lemma 2.2. Consider the complex-valued soliton profile defined in (2-1)–(2-5). Assume that, for x2 fixed
and some k ∈ Z,

x1 = x2+
π

α

(
k+ 1

2

)
. (2-9)

Then Q̃ and Q cannot be defined at x =−x2. Moreover, if x1 = x2 = 0, then Q( · ;α, β, 0, 0) ∈ H 1(R;C).

Remark. We emphasize that, given x2 fixed, the set of points x1 of the form (2-9) for some k ∈ Z is a
countable set of real numbers with no limit points.

Remark. The complex-valued function arctan z (leading to the definition of Q̃) has two branches of
discontinuities of the form im with m ∈ R, |m| ≥ 1, appearing from the standard branch of the complex
logarithm function Re z < 0, Im z = 0. Such discontinuities may induce singularities on the function Q.
Fortunately, both Q and functions of the type sine and cosine of arguments of the form Q̃ are smooth
except on the points determined by Lemma 2.2. Throughout this paper we shall work with functions of
the latest form instead of the original Q̃.

Proof. Fix x2 ∈ R. If (2-9) is satisfied for some k ∈ Z, we have that, at x =−x2,

y1 = x + x1 =
π

α

(
k+ 1

2

)
, y2 = x + x2 = 0,

and
sinh(βy2)= 0, cos(αy1)= 0. (2-10)
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Therefore, under (2-9), we have from (2-1) and (2-5) that Q̃ and Q cannot be defined at x =−x2. Finally,
if x1 = x2 = 0, we have

k+ 1
2 = 0, k ∈ Z,

which is impossible. �

Lemma 2.3. Fix α, β > 0 and x1, x2 ∈ R such that (2-9) is not satisfied. Then we have

Qxx − (β + iα)2 Q+ Q3
= 0 for all x ∈ R, (2-11)

and
Q2

x − (β + iα)2 Q2
+

1
2 Q4
= 0 for all x ∈ R. (2-12)

Moreover, the previous identities can be extended to any x1, x2 ∈ R by continuity.

Proof. This is direct from the definition. �

Assume that (2-9) does not hold. Consider the sine and cosine functions applied to complex numbers.
We have, from (2-1) and (2-4),

sin
Q̃
√

2
= sin(2 arctan eβy2+iαy1)

= 2eβy2+iαy1 cos2(arctan eβy2+iαy1)

=
2eβy2+iαy1

1+ e2(βy2+iαy1)
=

1
β + iα

Q
√

2
. (2-13)

Similarly, from this identity we have

Qx − (β + iα) cos
(

Q̃
√

2

)
Q = 0, (2-14)

so that, from (2-6) and (2-12),

Q̃t + (β + iα)
[

Qx cos
Q̃
√

2
+

Q2
√

2
sin

Q̃
√

2

]
=−(β + iα)2 Q+ Q2

x Q−1
+

1
2 Q3
= 0.

So far, we have proved the following result:

Lemma 2.4. Let Q be a complex-valued soliton profile with scaling parameters α, β > 0 and shifts
x1, x2 ∈ R such that (2-9) is not satisfied. Then we have

Q
√

2
− (β + iα) sin

Q̃
√

2
≡ 0, (2-15)

and

Q̃t + (β + iα)
[

Qx cos
Q̃
√

2
+

Q2
√

2
sin

Q̃
√

2

]
≡ 0, (2-16)

where sin z and cos z are defined on the complex plane in the usual sense.

We finish this section with a simple computational lemma.
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Lemma 2.5. Fix x1, x2 such that (2-9) is not satisfied. Then, for all α, β > 0 we have

N :=
1
2

∫ x

−∞

Q2
=

2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)
, (2-17)

and
1
2

∫
R

Q2
= 2(β + iα), (2-18)

no matter what x1, x2 are. Finally, if we let L1 := log(1+ e2(βx2+iαx1)),∫ x

0
N= log(1+ e2(βy2+iαy1))− L1. (2-19)

Note that the previous formula is well-defined, since x1 and x2 do not satisfy (2-9).

Proof. It is not difficult to check that (2-17) is satisfied. Note that

lim
x→−∞

∣∣∣∣2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)

∣∣∣∣= 0.

Identity (2-18) is a consequence of the fact that

lim
x→+∞

2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)
= 2(β + iα).

Finally, (2-19) is easy to check. �

3. Bäcklund transformation for mKdV

Lemma 2.4 is a consequence of a deeper result. In what follows, we fix a primitive f̃ of f , i.e.,

f̃x := f, (3-1)

where f is assumed only to be in L2(R). Notice that, even if f = f (t, x) is a solution of mKdV, a
corresponding term f̃ (t, x) may be unbounded in space.

Definition 3.1 (see, e.g., [Lamb 1980]). Let

(ua, ub, va, vb,m) ∈ H 1(R;C)2× H−1(R;C)2×C.

We set
G := (G1,G2), G = G(ua, ub, va, vb,m),

where

G1(ua, ub, va, vb,m) :=
ua − ub
√

2
−m sin

ũa + ũb
√

2
, (3-2)

and

G2(ua, ub, va, vb,m) := va − vb+m
[
((ua)x + (ub)x) cos

ũa + ũb
√

2
+

u2
a + u2

b
√

2
sin

ũa + ũb
√

2

]
. (3-3)

For the moment we do not specify the range of G(ua, ub, va, vb,m) for data (ua, ub, va, vb,m) in
H 1(R;C)2× H−1(R;C)2×C. However, thanks to Lemma 2.4, we have the following result:
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Lemma 3.2. Assume that x1 and x2 do not satisfy (2-9). Then

G(Q, 0, Q̃t , 0, β + iα)≡ (0, 0).

The previous identity can be extended by zero to the case where x1 and x2 satisfy (2-9), in such a form
that G(Q, 0, Q̃t , 0, β+iα), as a function of (x1, x2)∈R2, is now well-defined and continuous everywhere.

In what follows we consider the invertibility of the Bäcklund transformation on complex-valued
functions. See [Hoffman and Wayne 2013] for the statement involving the real-valued solitons in the
sine-Gordon case and [Mizumachi and Pelinovsky 2012] for the case of nonlinear Schrödinger solitons.

Proposition 3.3. Let X0
:= (u0

a, u0
b, v

0
a, v

0
b,m0) ∈ H 1(R;C)2× H−1(R;C)2×C be such that

Re m0 > 0, (3-4)

G(X0)= (0, 0), (3-5)

sin
ũ0

a + ũ0
b

√
2
∈ H 1(R;C), (3-6)

and lim
−∞

(ũ0
a + ũ0

b)= 0, lim
+∞

(ũ0
a + ũ0

b)=
√

2π. (3-7)

Assume additionally that the ODE

µ0
x −m0 cos

(
ũ0

a + ũ0
b

√
2

)
µ0
= 0, (3-8)

has a smooth solution µ0
= µ0(x) ∈ C satisfying

µ0
∈ H 1(R;C), |µ0(x)|> 0,

∣∣∣∣µ0
x(x)
µ0(x)

∣∣∣∣≤ C, (3-9)

and
∫

R

sin
(

ũ0
a + ũ0

b
√

2

)
µ0
6= 0. (3-10)

Then there exist ν0 > 0 and C > 0 such that the following is satisfied: For any 0 < ν < ν0 and any
(ua, va) ∈ H 1(R;C)× H−1(R;C) satisfying

‖ua − u0
a‖H1(R;C) < ν, (3-11)

G is well-defined in a neighborhood of X0 and there exists an unique (ub, vb,m) defined in an open subset
of H 1(R,C)× H−1(R;C)×C such that

G(ua, ub, va, vb,m)≡ (0, 0), (3-12)

‖ũa + ũb− ũ0
a − ũ0

b‖H2(R;C) ≤ Cν, (3-13)

‖ub− u0
b‖H1(R;C)+ |m−m0

|< Cν, (3-14)

sin
ũa + ũb
√

2
∈ H 1(R;C), (3-15)

and lim
−∞
(ũa + ũb)= 0, lim

+∞
(ũa + ũb)=

√
2π. (3-16)
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Proof. Given ua , ub, m and va well-defined, vb is uniquely defined from (3-3). We solve for ub and m
now. We will use the implicit function theorem.

We make a change of variables in order to specify a suitable range for G and to be able to prove (3-16).
Define

uc := ua + ub− u0
c, u0

c := u0
a + u0

b ∈ H 1(R;C), (3-17)

and similarly for ũc and ũ0
c :

(ũc)x = uc, (ũ0
c)x = u0

c .

In what follows, we will look for a suitable ũc with decay, and then we find ub. Indeed, note that given
uc and ua , ub can be easily obtained. Then, with a slight abuse of notation, we consider G defined as
follows:

G = (G1,G2), G = G(ua, ũc, va, vb,m),

and
G : H 1(R;C)× H 2(R;C)× H−1(R;C)2×C−→ H 1(R;C)× H−1(R;C)

(ua, ũc, va, vb,m) 7−→ G(ua, ũc, va, vb,m),

where, from (3-2),

G1(ua, ũc, va, vb,m) :=
2ua − u0

c − uc
√

2
−m sin

ũ0
c + ũc
√

2
, (3-18)

and, from (3-3),

G2(ua, ũc, va, vb,m)

:= va − vb+m
[
(u0

c + uc)x cos
ũ0

c + ũc
√

2
+

u2
a + (u

0
c + uc− ua)

2
√

2
sin

ũ0
c + ũc
√

2

]
. (3-19)

Clearly G as in (3-18)–(3-19) defines a C1 functional in a small neighborhood of X1 given by

X1
:= (u0

a, 0, v0
a, v

0
b,m0) ∈ H 1(R;C)× H 2(R;C)× H−1(R;C)2×C, (3-20)

where G is well-defined according to (3-6). Let us apply the implicit function theorem at this point. By
(3-18) we have to show that

uc+m0 cos
(

ũ0
c
√

2

)
ũc = f −m sin

ũ0
c
√

2

has a unique solution (ũc,m) such that ũc ∈ H 2(R;C) for any f ∈ H 1(R;C) with linear bounds. From
(3-7), we have

lim
x→±∞

cos
ũ0

c
√

2
=∓1, (3-21)

so that we can assume

µ0(x)= exp
(

m0
∫ x

0
cos

ũ0
c
√

2

)
.
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Note that µ0 decays exponentially in space as x→±∞. We have

µ0uc+ (µ
0)x ũc = µ

0
[

f −m sin
ũ0

c
√

2

]
.

Using (3-10), we choose m ∈ C such that∫
R

µ0
[

f −m sin
ũ0

c
√

2

]
= 0, (3-22)

so that
|m| ≤ C‖ f ‖L2(R;C)

with C > 0 depending on the quantity
∣∣∫

R
µ0 sin(ũ0

c/
√

2)
∣∣ 6= 0 and ‖µ0

‖L2(R;C).8 We get

ũc =
1
µ0

∫ x

−∞

µ0
[

f −m sin
ũ0

c
√

2

]
. (3-23)

Finally, note that we have uc ∈ H 1(R;C). Indeed, first of all, thanks to (3-22), (3-8) and (3-21),

lim
x→±∞

ũc = lim
x→±∞

µ0

µ0
x

[
f −m sin

ũ0
c
√

2

]
= 0.

If s ≤ x �−1, from (3-21) we get∣∣∣∣µ0(s)
µ0(x)

∣∣∣∣= ∣∣∣∣exp
(
−m0

∫ x

s
cos

ũ0
c
√

2

)∣∣∣∣≤ Ce−Re m0(x−s),

so that we have, for x < 0 and large,9

|ũc(x)| ≤ C
∫ x

−∞

e−(Re m0)(x−s)
∣∣∣∣ f (s)−m sin

ũ0
c(s)
√

2

∣∣∣∣ ds

≤ C1(−∞,x]e−(Re m0)( · ) ?

∣∣∣∣ f −m sin
ũ0

c
√

2

∣∣∣∣, Re m0 > 0.

A similar result holds for x > 0 large, after using (3-22). Therefore, from Young’s inequality,

‖ũc‖L2(R;C) ≤ C
∥∥∥∥ f −m sin

ũ0
c
√

2

∥∥∥∥
L2(R;C)

≤ C‖ f ‖L2(R;C), (3-24)

as desired. On the other hand,

(ũc)x =

[
f −m sin

ũ0
c
√

2

]
−

µ0
x

(µ0)2

∫ x

−∞

µ0
[

f −m sin
ũ0

c
√

2

]
.

Since µ0
x/µ

0 is bounded (see (3-9)), we have ũc ∈ H 1(R;C). Finally, it is easy to see that ũc ∈ H 2(R;C).
Note that the constant involving the boundedness of the linear operator f 7→ ũc depends on the H 1-norm
of µ0, which blows up if (2-9) is satisfied.

8Note that ‖µ0
‖L2(R;C) blows up as (2-9) is attained.

9Here the symbol ? denotes convolution.
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It turns out that we can apply the implicit function theorem to the operator G described in (3-18)–(3-19),
so that (3-12) is satisfied, provided (3-11) holds.

First of all, note that (3-15) and (3-16) follow from ũc ∈ H 2(R;C).
On the other hand, the estimate (3-13) is equivalent to

‖ũc‖H2(R;C) ≤ Cν.

We will obtain this estimate using the almost linear character of the operator G around the point X1.
Since ũc satisfies (3-18), we have

2ua − (ũc)x
√

2
−m sin

ũ0
c + ũc
√

2
= 0.

Recall that ũc depends on ua . Near u0
a , one has

∂t ũc[u0
a + th]

∣∣
t=0 = w[h] + O(h2),

where w = w[h] solves the derivative equation

wx +m0 cos
(

ũ0
c
√

2

)
w =−2h−m[h] sin

ũ0
c
√

2
.

Here m[h] is a constant that makes the right-hand side integrable, just as in (3-23). From (3-11) we know
that ‖ua−u0

a‖H1(R;C) < ν. We shall use h := ua−u0
a . Following the computations after (3-23), we obtain

the desired conclusion (see, e.g., (3-24)). We conclude that the L2 norm of ũc is bounded by Cν. For the
derivatives of ũc, the proof is very similar. �

Later we will need a second invertibility theorem. This time we assume that m is fixed, ub ∼ u0
b is

known and we look for ua ∼ u0
a . Note that the positive sign in front of (3-2) will be essential for the

proof, otherwise we cannot take m fixed.

Proposition 3.4. Let X0
= (u0

a, u0
b, v

0
a, v

0
b,m0) ∈ H 1(R;C)2× H−1(R,C)×C be such that (3-4), (3-5),

(3-6) and (3-7) are satisfied. Assume additionally that the ODE

(µ1)x +m cos
(

ũ0
a + ũ0

b
√

2

)
µ1
= 0 (3-25)

has a smooth solution µ1
= µ1(x) ∈ C satisfying

|µ1(x)|> 0,
∣∣∣∣µ1

x(x)
µ1(x)

∣∣∣∣≤ C,
1
µ1 ∈ H 1(R;C), (3-26)

and G is smooth in a small neighborhood of X0. Then there exists ν1 > 0 and a fixed constant C > 0 such
that for all 0< ν < ν1 the following is satisfied: for any (ub, vb,m) ∈ H 1(R;C)× H−1(R;C)×C such
that

‖ub− u0
b‖H1(R;C)+ |m−m0

|< ν, (3-27)
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G is well-defined and there exist unique (ua, va) ∈ H 1(R,C)× H−1(R;C) such that

G(ua, ub, va, vb,m)≡ (0, 0),∫
R

(ua − ub)

(
1
µ1

)
x
= 0. (3-28)

‖ũa + ũb− ũ0
a − ũ0

b‖H2(R;C) ≤ Cν, (3-29)

lim
−∞
(ũa + ũb)= 0, lim

+∞
(ũa + ũb)=

√
2π, (3-30)

and ‖ua − u0
a‖H1(R;C) < Cν. (3-31)

Proof. Given ua , ub and vb well-defined, va is uniquely defined from (3-3). We solve for ua now.
We follow the ideas of the proof of Proposition 3.3. However, this time we consider G defined in the

opposite sense: using (3-17),

G = (G3,G4), G = G(ũc, ub, va, vb,m),

G : H 2(R;C)× H 1(R;C)× H−1(R;C)2×C−→ H 1(R;C)× H−1(R;C)

(ũc, ub, va, vb,m) 7−→ G(ũc, ub, va, vb,m)

with ∫
R

(ũc)x

(
1
µ1

)
x
= 0, (3-32)

where, from (3-2),

G3(ũc, ub, va, vb,m) :=
u0

c + uc− 2ub
√

2
−m sin

ũ0
c + ũc
√

2
, (3-33)

and, from (3-3),

G4(ũc, ub, va, vb,m)

:= va − vb+m
[
(u0

c + uc)x cos
ũ0

c + ũc
√

2
+
(u0

c + uc− ub)
2
+ u2

b
√

2
sin

ũ0
c + ũc
√

2

]
. (3-34)

Clearly G as in (3-33)–(3-34) defines a C1 functional in a small neighborhood of X2 given by

X2
:= (0, u0

b, v
0
a, v

0
b,m0) ∈ H 2(R;C)× H 1(R;C)× H−1(R;C)2×C, (3-35)

where G is well-defined according to (3-6) and G(X2)= (0, 0).
Fix m close enough to m0. Now we have to show that

uc−m cos
(

ũ0
c
√

2

)
ũc = f (3-36)

has a unique solution ũc such that uc ∈ H 2(R;C) for any f ∈ H 1(R;C). Indeed, consider µ1 given by
(3-25). It is not difficult to check that (see conditions (3-4), (3-27) and (3-7))

Re m > 0, lim
±∞

cos
ũ0

c
√

2
=∓1, and µ1

= exp
(
−m

∫ x

0
cos

ũ0
c
√

2

)
. (3-37)
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Note that, by (3-37) and (3-4), |µ1(x)| is exponentially growing in space as x→±∞. From (3-36),

(µ1ũc)x = µ
1 f,

so that, thanks to (3-26),

ũc =
1
µ1µ

1(0)ũc(0)+
1
µ1

∫ x

0
µ1 f.

Clearly lim±∞ ũc = 0 for f ∈ H 1(R;C). In order to ensure uniqueness, we seek ũc satisfying∫
R

uc

(
1
µ1

)
x
= 0,

which is nothing but (3-32) and (3-28), which is justified by (3-26). Let us show that ũc ∈ L2(R;C). We
have, for x > 0 large,

|ũc(x)| ≤ C
∫ x

0
e−(Re m)(x−s)

| f (s)| ds = Ce−(Re m)( · ) ? | f |, Re m > 0.

A similar estimate can be established if x < 0. Therefore, using Young’s inequality,

‖ũc‖L2(R;C) ≤ C‖ f ‖L2(R;C),

as desired. Now we check that uc ∈ H 1(R;C). Indeed, we have

uc = f −
µ1

x

(µ1)2

∫ x

0
µ1 f.

Since µ1
x/µ

1 is bounded, we have proven that uc ∈ L2(R;C). A new iteration proves that uc ∈ H 1(R;C).
Estimates (3-29)–(3-31) are consequences of the implicit function theorem and can be proved as in the
previous proposition. The proof is complete. �

We finish this section by pointing out the role played by the Bäcklund transformation in the mKdV
dynamics. We recall the following standard result:

Theorem 3.5. Let m ∈ C be a fixed parameter, and I ⊂ R an open time interval. Assume that
ub ∈ C(I ; H 1(R;C)) solves (1-1), i.e.,

(ub)t + ((ub)xx + u3
b)x = 0, (3-38)

in the H 1-sense. Assume, moreover that ub is close to u0
b and that (3-25) and (3-26) hold. Define

vb := −((ub)xx + u3
b) as a distribution in H−1(R;C). Then, for each t ∈ I , the corresponding solution

(ua(t), va(t)) of G1 = G2 = 0 for m fixed, obtained in the space H 1(R;C)× H−1(R;C), satisfies the
following:

(1) ua ∈ C(I ; H 1(R;C));

(2) (ua)t := (va)x is well-defined in H−2(R;C); and

(3) ua solves (1-1) in the H 1-sense.
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Proof. The first step is an easy consequence of the continuous character of the solution map given by the
implicit function theorem. By density we can assume ub(t) ∈ H 3(R;C). From (3-2) we have

(ua)x − (ub)x = m cos
(

ũa + ũb
√

2

)
(ua + ub), (3-39)

and

(ua)xx − (ub)xx = m cos
(

ũa + ũb
√

2

)
((ua)x + (ub)x)−

m
√

2
sin
(

ũa + ũb
√

2

)
(ua + ub)

2.

Therefore, from (3-3) and (3-2),

va − vb =−((ua)xx − (ub)xx)−
m
√

2
sin
(

ũa + ũb
√

2

)
[(ua + ub)

2
+ (u2

a + u2
b)]

= −((ua)xx − (ub)xx)− (ua − ub)(u2
a + uaub+ u2

b)

=−((ua)xx + u3
a)− ((ub)xx + u3

b).

We have from (3-38) that (vb)x + ((ub)xx + u3
b)x = 0. Therefore,

(va)x + ((ua)xx + u3
a)x = 0. (3-40)

Finally, if (ua)t = (va)x , we have that ua solves (1-1). In order to prove this result, we compute the time
derivative in (3-2): we get

(ua)t − (ub)t = m cos
(

ũa + ũb
√

2

)
((ũa)t + (ũb)t). (3-41)

Note that, given ub, the solution ua is uniquely defined, thanks to the implicit function theorem. Addi-
tionally, from (3-3),

(va)x − (vb)x +m
[
((ua)xx + (ub)xx) cos

ũa + ũb
√

2
−

1
√

2
((ua)x + (ub)x)(ua + ub) sin

ũa + ũb
√

2

+
√

2(ua(ua)x + ub(ub)x) sin
ũa + ũb
√

2
+
(u2

a + u2
b)

2
(ua + ub) cos

ũa + ũb
√

2

]
= 0.

We use (3-2) and (3-3) in the previous identity, and get

(va)x − (vb)x +

[
m((ua)xx + (ub)xx) cos

ũa + ũb
√

2
+ (u2

a − uaub+ u2
b)((ua)x − (ub)x)

]
= 0.

Finally, we use (3-39) to obtain

(va)x − (vb)x +m cos
(

ũa + ũb
√

2

)
((ua)xx + u3

a + (ub)xx + u3
b)= 0,

so (3-38) and (3-40) imply

(va)x − (vb)x = m cos
(

ũa + ũb
√

2

)
(va + vb),

so that from (3-41) and the uniqueness we are done. �
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4. Dynamics of complex-valued mKdV solitons

In what follows we will apply the results from the previous section in a neighborhood of the complex
soliton at time zero. Define (cf. (2-1)),

Q̃0
:= Q̃(x;α, β, 0, 0), (4-1)

and similarly for Q0 and Q̃0
t . Recall that, by Lemma 2.2, the complex soliton Q0 is well-defined

everywhere if (2-9) is not satisfied. Finally, given any

z̃0
b ∈ Ḣ 1(R;C),

we define z0
b by the identity (see (3-1), for instance)

z0
b := (z̃

0
b)x ,

and, in term of distributions,

w0
b := −((z

0
b)xx + (z0

b)
3) ∈ H−1(R;C).

Lemma 4.1. There exists ν0 > 0 and C > 0 such that, for all 0 < ν < ν0, the following holds. For all
z0

b ∈ H 1(R;C) satisfying

‖z0
b‖H1(R;C) < ν, (4-2)

there exist unique y0
a ∈ H 1(R,C), y1

a ∈ H−1(R,C) and m ∈ C of the form

y0
a(x)= y0

a [z
0
b](x), y1

a(x)= y1
a [z

0
b, w

0
b](x), m := β + iα+ q0 (4-3)

such that

‖y0
a‖H1(R;C)+ |q

0
| ≤ Cν, z̃0

a + ỹ0
a ∈ H 2(R;C),

and G(Q0
+ z0

b, y0
a , Q̃0

t +w
0
b, y1

a ,m)≡ (0, 0). (4-4)

Note that both z̃0
a and ỹ0

a may be unbounded functions, but the sum is bounded on R.

Proof. Let Q0 be the soliton profile with parameters β, α and x1 = x2 = 0 (cf. (4-1)). We apply
Proposition 3.3 with

u0
a := Q0, u0

b := 0, v0
a := Q̃0

t , v0
b := 0 and m0

:= β + iα.

Clearly ũ0
a + ũ0

b = Q̃0 satisfies (3-6)–(3-7). From (2-15) we have

(Q0)x − (β + iα) cos
(

Q̃0
√

2

)
Q0
= 0, Q0(−∞)= 0, (4-5)

so that we have (cf. (3-8)–(3-9))

µ0
= Q0.
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Clearly Q0 is never zero. Moreover, |(Q0)−1 Q0
x | is bounded on R. Now we prove that∫

R

sin
(

Q̃0
√

2

)
Q0
6= 0.

From (2-15) and (2-18),∫
R

sin
(

Q̃0
√

2

)
Q0
=

1
√

2(β + iα)

∫
R

(Q0)2 =
4(β + iα)
√

2(β + iα)
= 2
√

2. �

Before continuing, we need some definitions. We write

α∗ := α+ Im q0, β∗ := β +Re q0, (4-6)

so that m in (4-3) satisfies
m = β + iα+ q0

= β∗+ iα∗.

Since q0 is small, we have that β∗ and α∗ are positive quantities. Similarly, define

δ∗ := (α∗)2− 3(β∗)2, γ ∗ := 3(α∗)2− (β∗)2, (4-7)

and compare with (1-4).
Consider the kink profile Q̃ introduced in (2-1). We consider, for all t ∈ R, the complex (kink) profile

Q̃∗(t, x) := Q̃(x;α∗, β∗, δ∗t + x1, γ
∗t + x2), (4-8)

with δ∗ and γ ∗ defined in (4-7), x1 and x2 possibly depending on time, and

Q∗(t, x) := ∂x Q̃∗(t, x). (4-9)

It is not difficult to see that (see, e.g., (1-10))

Q∗(t, x)= Qc(x − ct − x̂),
√

c = β∗+ iα∗, x̂ ∈ C,

which is a complex-valued solution of mKdV (1-1). Technically, the complex soliton Q∗(t) has velocity
−γ ∗ = (β∗)2 − 3(α∗)2, a quantity that is always smaller than the corresponding speed (β∗)2 of the
associated real-valued soliton Q(β∗)2 obtained by sending α∗ to zero. Finally, as in (2-6) we define

Q̃∗t (t, x) := −(β∗+ iα∗)2 Q∗(t, x).

Lemma 4.2. Fix α, β > 0. Assume that x1, x2 are time-dependent functions such that

|x ′1(t)| + |x
′

2(t)| � |δ
∗
− γ ∗| = 2((α∗)2+ (β∗)2). (4-10)

Then there exists a sequence of times tk ∈ R, k ∈ Z such that (2-9) is satisfied. In particular, (tk) is a
sequence with no limit points.

Proof. Note that (2-9) now reads

(δ∗− γ ∗)tk + (x1− x2)(tk)=
π

α∗

(
k+ 1

2

)
.
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By (4-7), δ∗ − γ ∗ = −2((α∗)2 + (β∗)2) 6= 0, and using (4-10) and the mean and intermediate value
theorems applied to the smooth function

f (t) := (δ∗− γ ∗)t + (x1− x2)(t),

at each value π

α∗

(
k+ 1

2

)
, k ∈ Z, we see that f satisfies

f ′(t)=−2((α∗)2+ (β∗)2)+ (x ′1− x ′2)(t)∼−2((α∗)2+ (β∗)2). �

We conclude that Q̃∗ and Q∗ defined in (4-8) and (4-9) are well-defined except for an isolated sequence
of times tk . We impose now the condition

t ∈ R satisfies t 6= tk for all k ∈ Z. (4-11)

In what follows we will solve the Cauchy problem associated to mKdV with suitable initial data.
Indeed, we will assume that

y0
a is a real-valued function and y0

a ∈ H 1(R). (4-12)

We will need the following:10

Theorem 4.3 ([Kenig et al. 1993]). For any y0
a ∈H 1(R), there exists a unique11 solution ya ∈C(R, H 1(R))

with initial data ya(0)= y0
a ∈ H 1(R) to mKdV , and

sup
t∈R

‖ya(t)‖H1(R) ≤ C‖y0
a‖H1(R)

with C > 0 independent of time. Moreover, the mass

M[ya](t) :=
1
2

∫
R

y2
a(t, x) dx = M[y0

a ] (4-13)

and energy

E[ya](t) :=
1
2

∫
R

(ya)
2
x(t, x) dx − 1

4

∫
R

(ya)
4(t, x) dx = E[y0

a ] (4-14)

are conserved quantities.

Let ya ∈ C(R, H 1(R)) denote the corresponding solution for mKdV with initial data y0
a . Since

‖y0
a‖H1 ≤ Cη, we have, for a (possibly different) constant C > 0,

sup
t∈R

‖ya(t)‖H1(R) ≤ Cη. (4-15)

In particular, we can define, for all t ∈ R,

ỹa(t) :=
∫ x

0
ya(t, s) ds,

and
(ỹa)t(t) := −((ya)xx(t)+ y3

a(t)) ∈ H−1(R) (4-16)

10We recall that this result is consequence of the local Cauchy theory and the conservation of mass and energy (4-13)–(4-14).
11In a certain sense; see [Kenig et al. 1993].
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because ya(t) ∈ L p(R) for all p ≥ 2.

Lemma 4.4. Assume that a time t ∈R and y0
a are such that (4-11) and (4-12) hold. Then there are unique

zb = zb(t) ∈ H 1(R;C) and wb = wb(t) ∈ H−1(R;C) such that, for all t 6= tk ,

z̃b+ ỹa ∈ H 2(R;C), (4-17)

1
√

2
(Q∗+ zb− ya)= (β + iα+ q0) sin

Q̃∗+ z̃b+ ỹa
√

2
, (4-18)

where Q̃ and Q are defined in (4-8) and (4-9). Moreover, we have

0= Q̃∗t +wb− (ỹa)t + (β + iα+ q0)

[
(Q∗x + (zb)x + (ya)x) cos

Q̃∗+ z̃b+ ỹa
√

2

+
(Q∗+ zb)

2
+ y2

a
√

2
sin

Q̃∗+ z̃b+ ỹa
√

2

]
, (4-19)

and, for all t 6= tk ,
‖zb(t)‖H1(R;C) < Cν (4-20)

with C uniformly bounded provided t is uniformly far from each tk .

Proof. We will use Proposition 3.4. For that it is enough to recall that, from (2-15) and (2-16), and for
all t 6= tk ,12

1
√

2
Q∗ = (β + iα+ q0) sin

Q̃∗
√

2
(4-21)

and

Q̃∗t + (β + iα+ q0)

[
Q∗x cos

Q̃∗
√

2
+
(Q∗)2
√

2
sin

Q̃∗
√

2

]
= 0,

so that we can apply Proposition 3.4 at X0
= (Q∗, 0, Q̃∗t , 0,m), where, by, (4-21) we have m= (β+iα+q0).

It is not difficult to see that the function µ1 in (3-25) is given by

µ1
= (Q∗)−1,

and (3-26) is satisfied. Note that we require the estimate (4-15) in order to obtain (4-18)–(4-19). Finally,
(4-20) is a direct consequence of (3-31). �

Remark. Since, from (4-4), we get

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

,

we have that (4-18) implies by uniqueness that

(Q∗+ zb− ya)(t = 0)= Q0
+ z0

b− y0
a ,

12It is interesting to note that the shifts x1, x2 on Q∗(t, x) cannot be modified, otherwise there is no continuity at t = 0.
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i.e.,
(Q∗+ zb)(t = 0)= Q0

+ z0
b.

We are ready to prove a detailed version of Theorem 1.3, a result on complex-valued solitons.

Theorem 4.5. There exists ν0 > 0 such that for all 0< ν < ν0 the following holds: Consider the initial
data u0

b := Q0
+ z0

b ∈ H 1(R;C), where

‖z0
b‖H1(R;C) < ν.

Assume in addition that the corresponding function y0
a given by Lemma 4.1 is real-valued and belongs

to H 1(R). Fix ε0 > 0. Then, for all t such that |t − tk | ≥ ε0, with tk defined in Lemma 4.2, the function
ub := Q∗+ zb, with zb introduced in Lemma 4.4, is an H 1 complex-valued solution of mKdV , it satisfies
(ub)t = (Q∗+ zb)t = (Q̃∗t +wb)x and

sup
|t−tk |≥ε0

‖ub(t)− Q∗(t)‖H1(R;C) ≤ Cε0ν. (4-22)

Remark. The quantity ε0 > 0 is just an auxiliary parameter and it can be made as small as required;
however, the constant Cε0 in (4-22) becomes singular as ε0 approaches zero.

Remark. In Corollary 6.5 we will prove that there is an open set in H 1(R;C) leading to y0
a being

real-valued. The openness of this set will be a consequence of the implicit function theorem.

Proof. We apply Lemma 4.1. Assuming (4-12) we have y0
a real-valued, so that there is an mKdV

dynamics ya(t) constructed in Theorem 4.3. Lastly, we apply Lemma 4.4 to obtain the dynamical function
Q∗(t)+ zb(t). Theorem 3.5 gives the conclusion. �

Now we will prove that the mass and energy,

1
2

∫
R

u2
b(t) and 1

2

∫
R

(ub)
2
x(t)−

1
4

∫
R

u4
b(t), (4-23)

remain conserved for all time without using the mKdV equation (1-1), only the Bäcklund transformation
(4-18). The fact that z̃b+ ỹa is in H 1(R;C) will be essential for the proof.

Corollary 4.6. Assume that t 6= tk for all k ∈ Z. Then the quantity

1
2

∫
R

(Q∗+ zb)
2(t) (4-24)

is well-defined and independent of time, and

1
2

∫
R

(Q∗+ zb)
2(t)= 1

2

∫
R

(y0
a)

2
+ 2(β + iα+ q0). (4-25)

Moreover, (4-25) can be extended in a continuous form to every t ∈ R.

Proof. Using (4-18) and multiplying each side by (1/
√

2)(Q∗+ zb+ ya), we obtain

1
2(Q

∗
+ zb− ya)(Q∗+ zb+ ya)=−(β + iα+ q0)

[
cos

Q̃∗+ z̃b+ ỹa
√

2

]
x
.
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Using (2-15) and (2-14),

cos
Q̃∗+ z̃b+ ỹa
√

2
= cos

Q̃∗
√

2
cos

z̃b+ ỹa
√

2
− sin

Q̃∗
√

2
sin

z̃b+ ỹa
√

2

=
1

(β∗+ iα∗)

[
Q∗x
Q∗

cos
z̃b+ ỹa
√

2
−

Q∗
√

2
sin

z̃b+ ỹa
√

2

]
. (4-26)

We integrate on R to obtain

1
2

∫
R

(Q∗+ zb− ya)(Q∗+ zb+ ya)=−(β + iα+ q0) cos
Q̃∗+ z̃b+ ỹa
√

2

∣∣∣∣∞
−∞

.

Since lim±∞ Q∗ = 0, lim±∞ Q∗x/Q∗ =∓(β∗+ iα∗) (see (2-4)) and lim±∞(z̃b+ ỹa)= 0, we get (4-24)–
(4-25), because the mass of ya(t) is conserved. �

Corollary 4.7. Assume that t 6= tk for all k ∈ Z. Then the quantity

E[Q∗+ zb](t) :=
1
2

∫
R

(Q∗+ zb)
2
x(t)−

1
4

∫
R

(Q∗+ zb)
4(t) (4-27)

is well-defined and independent of time. Moreover, it satisfies

1
2

∫
R

(Q∗+ zb)
2
x(t)−

1
4

∫
R

(Q∗+ zb)
4(t)= E[y0

a ] −
2
3(β
∗
+ iα∗)3.

Finally, this quantity can be extended in a continuous way to every t ∈ R.

Proof. Let m = (β + iα+ q0). From (4-18) we have

(Q∗+ zb)x − (ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya). (4-28)

Multiplying by (Q∗+ zb)x + (ya)x , we get

(Q∗+ zb)
2
x − (ya)

2
x = m cos

(
Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)(Q∗+ zb+ ya)x

= m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)[
(Q∗+ zb)(Q∗+ zb)x + ya(ya)x

+ya(Q∗+ zb)x + (Q∗+ zb)(ya)x
]
. (4-29)

On the other hand, we multiply (4-28) by ya and (Q∗+ zb) to obtain

ya(Q∗+ zb)x − ya(ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)ya,

and

(Q∗+ zb)(Q∗+ zb)x − (Q∗+ zb)(ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)(Q∗+ zb).
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If we subtract the latter from the former we get

ya(Q∗+ zb)x + (Q∗+ zb)(ya)x

= (Q∗+ zb)(Q∗+ zb)x + ya(ya)x +m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[y2

a − (Q
∗
+ zb)

2
]. (4-30)

Substituting (4-30) into (4-29),

(Q∗+ zb)
2
x − (ya)

2
x

= m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x +m2 cos2
(

Q̃∗+ z̃b+ ỹa
√

2

)
[y2

a − (Q
∗
+ zb)

2
]. (4-31)

Finally, we use (4-18) once again. We multiply by (Q∗+ zb+ ya):

1
√

2
[(Q∗+ zb)

2
− y2

a ] = m sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya).

Substituting in (4-31) we finally arrive to the identity

(Q∗+ zb)
2
x − (ya)

2
x = m cos

(
Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x

−m3
√

2 cos2
(

Q̃∗+ z̃b+ ỹa
√

2

)
sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya).

The last term on the right-hand side above can be recognized as a total derivative. After integration and
using (4-26), we obtain∫

R

[(Q∗+ zb)
2
x − (ya)

2
x ] = m

∫
R

cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x +
2
3

m3 cos3
(

Q̃∗+ z̃b+ ỹa
√

2

)∣∣∣∣+∞
−∞

=
m
√

2

∫
R

sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)[(Q∗+ zb)

2
+ y2

a ] −
4
3

m3

=
1
2

∫
R

[(Q∗+ zb)
2
− y2

a ][(Q
∗
+ zb)

2
+ y2

a ] −
4
3

m3

=
1
2

∫
R

[(Q∗+ zb)
4
− y4

a ] −
4
3

m3.

Finally,
1
2

∫
R

(Q∗+ zb)
2
x −

1
4

∫
R

(Q∗+ zb)
4
=

1
2

∫
R

(ya)
2
x −

1
4

∫
R

y4
a −

2
3
(β + iα+ q0)3.

Since the right-hand side above is conserved for all time, we have proved (4-27). �

5. Complex solitons versus breathers

We introduce now the notion of breather profile. Given parameters x1, x2 ∈ R and α, β > 0, we consider
y1 and y2 defined in (2-2). Let B̃ be the localized profile

B̃ = B̃(x;α, β, x1, x2) := 2
√

2 arctan
β sin(αy1)

α cosh(βy2)
, (5-1)
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and, with a slight abuse of notation, we redefine

B := B̃x . (5-2)

Note that
B̃(−∞)= B̃(+∞)= 0 (5-3)

and, for k ∈ Z, {
B̃(x;α, β, x1+ kπ/α, x2)= (−1)k B̃(x;α, β, x1, x2),

B(x;α, β, x1+ kπ/α, x2)= (−1)k B(x;α, β, x1, x2).
(5-4)

Now we introduce the directions associated to the shifts x1 and x2. Given a breather profile of parameters
α, β, x1 and x2, we define

B1 = B1(x;α, β, x1, x2) := ∂x1 B, (5-5)

B2 = B2(x;α, β, x1, x2) := ∂x2 B (5-6)

and, for δ and γ defined in (1-4),
B̃t := δB1+ γ B2. (5-7)

We also have
B̃t + Bxx + B3

= 0; (5-8)

see [Alejo and Muñoz 2013] for a proof of this identity.
If x1 or x2 are time-dependent variables, we assume that the associated B j corresponds to the partial

derivative with respect to the time-independent variable x j , evaluated at x j (t).
In this section we will prove that there is a deep interplay between complex solitons and breather

profiles. We start with the following identities:

Lemma 5.1. Let (B, Q) be a pair breather-soliton profiles with scaling parameters α, β > 0 and shifts
x1, x2 ∈ R. Assume that (2-9) is not satisfied. Then we have

B− Q
√

2
− (β − iα) sin

B̃+ Q̃
√

2
≡ 0, (5-9)

and B̃t − Q̃t + (β − iα)
[
(Bx + Qx) cos

B̃+ Q̃
√

2
+

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

]
≡ 0. (5-10)

Proof. Let us assume (5-9) and prove (5-10). We have from (2-6) and (2-11) that

Q̃t =−(β + iα)2 Q =−(Qxx + Q3).

Using (5-9), we have

Bx − Qx − (β − iα)(B+ Q) cos
B̃+ Q̃
√

2
= 0,

and

Bxx − Qxx − (β − iα)(Bx + Qx) cos
B̃+ Q̃
√

2
+ (β − iα)

(B+ Q)2
√

2
sin

B̃+ Q̃
√

2
= 0,
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so that, using (5-9) and (5-8) once again,

B̃t − Q̃t + (β − iα)
[
(Bx + Qx) cos

B̃+ Q̃
√

2
+

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

]
=−(Bxx + B3)+ Qxx + Q3

+

[
Bxx − Qxx + (β − iα)

(B+ Q)2
√

2
sin

B̃+ Q̃
√

2

]
+ (β − iα)

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

= Q3
− B3

+
√

2(β − iα)(B2
+ Q2

+ B Q) sin
B̃+ Q̃
√

2
= Q3

− B3
+ (B2

+ Q2
+ B Q)(B− Q)= 0.

The proof of (5-9) is a tedious but straightforward computation which deeply exploits the nature of the
breather and soliton profiles. For the proof of this result, see the Appendix. �

Corollary 5.2. Under the assumptions of Lemma 5.1, for any x ∈ R one has

B− Q
√

2
− (β + iα) sin

B̃+ ˜Q
√

2
≡ 0 in R,

where Q is the complex-valued soliton with parameters β and −α.

In order to prove some results in the next section, we need several additional identities.

Corollary 5.3. Under the assumptions of Lemma 5.1, for any x ∈ R one has

cos
B̃+ Q̃
√

2
= 1−

1
2(β − iα)

∫ x

−∞

(B2
− Q2) and lim

x→±∞
cos
(

B̃+ Q̃
√

2

)
(x)=∓1.

Remark. Note that both limits above make sense since, from (2-15) and (2-14), we have, for all x ,

cos
B̃+ Q̃
√

2
= cos

B̃
√

2
cos

Q̃
√

2
− sin

B̃
√

2
sin

Q̃
√

2

=
1

β + iα

[
Qx

Q
cos

B̃
√

2
−

Q
√

2
sin

B̃
√

2

]
.

In particular,

lim
±∞

cos
B̃+ Q̃
√

2
=

1
β + iα

×∓(β + iα)=∓1.

Proof. We multiply by (1/
√

2)(B+ Q) in (5-9). We get

1
2
(B2
− Q2)− (β − iα) sin

B̃+ Q̃
√

2
×

1
√

2
(B+ Q)= 0,

i.e.,
1
2
(B2
− Q2)+ (β − iα)∂x cos

B̃+ Q̃
√

2
= 0.
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From (2-1) and (5-1), one has

lim
x→−∞

cos
B̃+ Q̃
√

2
= 1.

Therefore, after integration,

1
2

∫ x

−∞

(B2
− Q2)+ (β − iα)

[
cos

B̃+ Q̃
√

2
− 1

]
= 0,

as desired. �

Lemma 5.4. M := 2β
[

1+
α(β sin(2αy1)+α sinh(2βy2))

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]
.

Proof. See, e.g., [Alejo and Muñoz 2013]. �

The following result is not difficult to prove:

Corollary 5.5. We have∫ x

0
M= 2βx + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− L0, (5-11)

where
L0 := log(α2

+β2
−β2 cos(2αx1)+α

2 cosh(2βx2)).

Corollary 5.6. Under the assumptions of Lemma 5.1, we have

−(β − iα)
∫ x

0
cos

B̃+ Q̃
√

2
= (β + iα)x + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− log(1+ e2βy2+2iαy1)− L0+ L1,

with L0 and L1 as defined in (5-11) and (2-19).

Proof. We have, from Corollaries 5.3 and 5.5 and (2-19),∫ x

0
cos

B̃+ Q̃
√

2

= x −
1

β − iα

∫ x

0
(M−N)

= x −
1

β − iα
[2βx + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− log(1+ e2(βy2+iαy1))− L0+ L1]

= −
1

β − iα

[
(β + iα)x + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))

− log(1+ e2(βy2+iαy1))− L0+ L1
]
,

as desired. �

Corollary 5.7. Assume that x1, x2 ∈ R do not satisfy (2-9). Consider the function

µ(x;α, β, x1, x2) := 2
√

2α2β2 cosh(βy2) cos(αy1)+ i sinh(βy2) sin(αy1)

α2 cosh2(βy2)+β2 sin2(αy1)
= β B̃1− iα B̃2. (5-12)
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Then we have

lim
x→±∞

µ(x)= 0 (5-13)

and µx = (β − iα) cos
(

B̃+ Q̃
√

2

)
µ. (5-14)

Proof. Identity (5-13) is trivial. Let us prove (5-14). First of all, note that (cf. (2-7))

β Q̃1− iα Q̃2 ≡ 0. (5-15)

On the other hand, from (5-9) we have

(B̃1− Q̃1)x − (β − iα) cos
(

B̃+ Q̃
√

2

)
(B̃1+ Q̃1)= 0.

Similarly,

(B̃2− Q̃2)x − (β − iα) cos
(

B̃+ Q̃
√

2

)
(B̃2+ Q̃2)= 0.

We then have

µx = (β B̃1− iα B̃2)x

= (β − iα) cos
(

B̃+ Q̃
√

2

)
µ+ (β Q̃1− iα Q̃2)x + (β − iα) cos

(
B̃+ Q̃
√

2

)
(β Q̃1− iα Q̃2)

= (β − iα) cos
(

B̃+ Q̃
√

2

)
µ.

The proof is complete. �

Lemma 5.8. Assume that (2-9) does not hold. Then µ defined in (5-12) has no zeroes, i.e., |µ(x)|> 0 for
all x ∈ R.

Proof. From (5-12) we have µ(x)= 0 if and only if cos(βy1)= 0 and sinh(αy2)= 0, i.e., from (2-10) we
have that (2-9) is satisfied. �

Now we consider the opposite case, where the sign in front of (5-14) is negative. We finish this section
with the following result:

Lemma 5.9. Assume that (2-9) does not hold. Then

µ1(x;α, β, x1, x2) :=
1
µ
(x;α, β, x1, x2),

with µ as defined in (5-12), is well-defined, has no zeroes and satisfies

lim
x→±∞

|µ1(x)| = +∞ and µ1
x =−(β − iα) cos

(
B̃+ Q̃
√

2

)
µ1.

Proof. This is a direct consequence of Corollary 5.7 and Lemma 5.8. �
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6. Double Bäcklund transformation for mKdV

Assume that x1 and x2 do not satisfy (2-9). Consider the breather and soliton profiles B and Q defined in
(5-2) and (2-5), which are well-defined by Lemma 2.2. From Lemma 5.1, we have the following result:

Lemma 6.1. We have, for all x ∈ R,

G(B, Q, B̃t , Q̃t , β − iα)= (0, 0).

Note that the previous identity can be extended by zero to the case where x1 and x2 satisfy (2-9), in
such a form that now G(B, Q, B̃t , Q̃t , β − iα) as a function of x1 and x2 is well-defined and continuous
everywhere in R2 (and identically zero).

Define (cf. (5-1)–(5-7)),
B̃0(x;α, β) := B̃(x;α, β, 0, 0),
B̃0

t (x;α, β) := δ B̃1(x;α, β, 0, 0)+ γ B̃2(x;α, β, 0, 0),
B0(x;α, β) := ∂x B̃(x;α, β, 0, 0).

(6-1)

Finally, for z0
a ∈ H 1(R) we define

ω0
a := −((z

0
a)xx + (z0

a)
3) ∈ H−1(R). (6-2)

We will use Lemma 6.1 and apply Propositions 3.3 and 3.4 in a neighborhood of the complex soliton and
the breather at time zero. Recall that, by Lemma 2.2, the complex soliton Q0 is everywhere well-defined
since (2-9) is not satisfied.

Lemma 6.2. There exists η0 > 0 and a constant C > 0 such that, for all 0< η < η0, the following holds:
Assume that z0

a ∈ H 1(R) satisfies

‖z0
a‖H1(R) < η, ω0

a defined by (6-2).

Then there exist unique z0
b ∈ H 1(R,C), ω0

b ∈ H−1(R;C) and m1 ∈ C of the form

z0
b(x)= z0

b[z
0
a](x), ω0

b(x)= ω
0
b[z

0
a, ω

0
a](x), m1 = m1[z0

a] := β − iα+ p0

such that

‖z0
b‖H1(R;C)+ |p

0
| ≤ Cη,

z̃a + z̃b ∈ H 2(R;C),

and G(B0
+ z0

a, Q0
+ z0

b, B̃0
t +ω

0
a, Q̃0

t +ω
0
b,m1)≡ (0, 0).

Proof. Let Q0 and B0 be the soliton and breather profiles defined in (4-1) and (6-1). We will apply
Proposition 3.3 with

u0
a := B0, u0

b := Q0, v0
a := B̃0

t , v0
b := Q̃0

t , m0
:= β + iα.
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Clearly Re m0
= β > 0, so that (3-4) is satisfied. On the other hand, (3-5) is a consequence of Lemma 6.1.

From (5-9), condition (3-6) reads

sin
B̃0
+ Q̃0
√

2
=
(B0
− Q0)

√
2(β − iα)

∈ H 1(R;C).

Condition (3-7) is clearly satisfied (see (2-3) and (5-3)). From Corollary 5.7 we have

µ0
= β(B̃1)

0
− iα(B̃2)

0.

Note that, from Lemmas 2.2 and 5.8, µ0 has no zeroes in the complex plane and it is exponentially
decreasing in space. Finally, let us show that∫

R

µ0 sin
B̃0
+ Q̃0
√

2
=

4iαβ
β − iα

.

First of all, we have from (5-15) that

[β(B̃1)
0
− iα(B̃2)

0
] sin

B̃0
+ Q̃0
√

2

= [β(B̃1+ Q̃1)
0
− iα(B̃2+ Q̃2)

0
] sin

B̃0
+ Q̃0
√

2
+ [−β(Q̃1)

0
+ iα(Q̃2)

0
] sin

B̃0
+ Q̃0
√

2
.

Consequently,

[β(B̃1)
0
− iα(B̃2)

0
] sin

B̃0
+ Q̃0
√

2
=−
√

2β∂x1

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0+ iα
√

2∂x2

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0.
Therefore, if R1, R2 > 0 are independent of x1 and x2,∫ R1

−R2

µ0 sin
B̃0
+ Q̃0
√

2
=
√

2
∫ R1

−R2

{
−β∂x1

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0+ iα∂x2

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0}
=
√

2
{
−β∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
+ iα∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2

}∣∣∣∣0.
Now we use Corollary 5.6: we have

∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

1
β − iα

[
2iαe2βy2+2iαy1

1+ e2βy2+2iαy1
−

2αβ2 sin(2αy1)

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]∣∣∣∣R2

−R1

.

We have that

lim
R1,R2→∞

∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

2iα
β − iα

.

Similarly,

∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

1
β − iα

[
2βe2βy2+2iαy1

1+ e2βy2+2iαy1
−

2α2β sinh(2βy2)

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]∣∣∣∣R2

−R1
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and

lim
R1,R2→∞

∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

2β − 4β
β − iα

=
2β

β − iα
.

Adding the previous identities, we finally obtain∫
R

µ0 sin
B̃0
+ Q̃0
√

2
=

[
2iαβ
β − iα

+
2iαβ
β − iα

]
=

4iαβ
β − iα

6= 0.

After applying Proposition 3.3, we are done. �

Now we address the following very important question: is the y0
a given in Lemma 4.1 real-valued for

all x ∈ R? In general, it seems that the answer is negative; however, if z0
a in Lemma 6.2 is real-valued,

and z0
b from Lemma 6.2 satisfies (4-2), then the corresponding function y0

a given in Lemma 4.1 is also
real-valued. This property is a consequence of a deep result called the permutability theorem, which we
explain below.

First of all, from Lemma 6.2 we have

1
√

2
(B0
+ z0

a − Q0
− z0

b)= (β − iα+ p0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
(6-3)

for some small p0
∈ C, and

sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
∈ H 1(R;C). (6-4)

Now, by taking η0 smaller if necessary, such that Cη < ν0 for all 0< η < η0, Lemma 4.1 also applies.
We get

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

, (6-5)

for some small q0.
We need some auxiliary notation. Define

β∗ := β +Re p0, α∗ := α− Im p0,

so that (compare with (4-6))
β − iα+ p0

= β∗− iα∗.

We also consider
Q̃0
∗
:= Q̃( · ; −α∗, β∗, 0, 0), Q0

∗
:= Q( · ; −α∗, β∗, 0, 0).

Note that, since p0 is small, we have that Q0
∗

and Q0 share the same properties, i.e., they are close enough.
Indeed,

‖Q0
∗
− Q0

‖H1(R;C) ≤ Cη. (6-6)

Moreover, thanks to Lemma 2.4 applied to Q0
∗
,

1
√

2
Q0
∗
= (β − iα+ p0) sin

Q̃0
∗
√

2
.
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Consequently, applying Proposition 3.4 starting at y0
a and using (6-6), we can define z0

d via the identity

1
√

2
(Q0
+ z0

d − y0
a)= (β − iα+ p0) sin

˜Q0
+ z̃0

d + ỹ0
a

√
2

. (6-7)

Similarly, using (4-6) and (6-1) we define

(B̃0)∗ := B̃0( · ;α∗, β∗), (B0)∗ := B( · ;α∗, β∗), (6-8)

so that from Lemma 5.1 we have

1
√

2
((B0)∗− (Q0)∗)= (β∗− iα∗) sin

(B̃0)∗+ (Q̃0)∗
√

2
,

and applying Corollary 5.2 we get

1
√

2
((B0)∗− (Q0)∗)= (β + iα+ q0) sin

(B̃0)∗+ (Q̃0)∗
√

2
.

Using that

‖(B0)∗− B0
‖H1(R) ≤ Cη, ‖(Q0)∗− Q0

‖H1(R;C) ≤ Cη,

we can use Proposition 3.4 to obtain

1
√

2
(B0
+ z0

c − Q0
− z0

d)= (β + iα+ q0) sin
B̃0
+ z̃0

c +
˜Q0
+ z̃0

d
√

2
(6-9)

for some z0
c small. Note that the coefficients (β − iα+ p0) and (β + iα+ q0) were left fixed this time.

Note additionally that z0
d and z0

c are bounded functions. Now we can state a permutability theorem [Lamb
1980, p. 246]. This is part of a more general result, standard in the mathematical physics literature; see
[Wahlquist and Estabrook 1973] for a formal proof in the Korteweg–de Vries (KdV) case.

Theorem 6.3 (permutability theorem). We have

z̃0
c ≡ z̃0

a. (6-10)

In particular, z0
c is an H 1 real-valued function.

Proof. Define

u0 := y0
a , u1 := Q0

+ z0
b, u2 := Q0

+ z0
d , (6-11)

u12 := B0
+ z0

a, u21 := B0
+ z0

c, (6-12)

and κ1 := β + iα+ q0, κ2 := β − iα+ p0. (6-13)
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Since p0 and q0 are small quantities, we have κ1 6= κ2, and both are nonzero complex numbers. Equations
(6-5), (6-3), (6-7) and (6-9) now read

u1− u0
√

2
= κ1 sin

ũ1+ ũ0
√

2
, (6-14)

u12− u1
√

2
= κ2 sin

ũ12+ ũ1
√

2
, (6-15)

u2− u0
√

2
= κ2 sin

ũ2+ ũ0
√

2
,

u21− u2
√

2
= κ1 sin

ũ21+ ũ2
√

2
.

Note that u1 and u2 are obtained via the implicit function theorem and therefore there is an associated
uniqueness property for solutions obtained in a small neighborhood of the breather. The idea is to prove
that ũ21 ≡ ũ12. Define ũ3 via the identity

ũ3− ũ1

2
√

2
=− arctan

[
κ1− κ2

κ1+ κ2
tan

ũ12− ũ0

2
√

2

]
. (6-16)

Whenever u1 = Q0, u12 = B0, u0 = 0, κ1 = β + iα and κ2 = β − iα, we get from (1-2) that

ũ3− Q̃0

2
√

2
=− arctan

[
i
α

β
tan

B̃0

2
√

2

]
=− arctan

(
i

sin(αx)
cosh(βx)

)
=− arctan

eiαx
− e−iαx

eβx + e−βx .

Therefore, using (2-1),

ũ3 = 2
√

2 arctan(e(β+iα)x)− 2
√

2 arctan
eiαx
− e−iαx

eβx + e−βx

= 2
√

2 arctan
e(β+iα)x

− (eiαx
− e−iαx)/(eβx

+ e−βx)

1+ e(β+iα)x(eiαx − e−iαx)/(eβx + e−βx)

= 2
√

2 arctan(e(β−iα)x)

= Q̃0.

Consequently, under the smallness assumptions in (6-11)–(6-13) (the open character of these sets is
essential) we have that ũ3 is still well-defined on the real line with values in the complex plane, and it is
close to ˜Q0, as well as to ũ2.

Let us find an equation for ũ3. As usual, define u3 := (ũ3)x . We claim that

u3− u0
√

2
= κ2 sin

ũ3+ ũ0
√

2
; (6-17)

in other words, ũ3 ≡ ũ2. Similarly, if ũ4 solves

ũ2− ũ4

2
√

2
=− arctan

[
κ1− κ2

κ1+ κ2
tan

ũ21− ũ0

2
√

2

]
, (6-18)
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then
u4− u0
√

2
= κ1 sin

ũ4+ ũ0
√

2
,

which implies ũ4 ≡ ũ1. Finally, from (6-16) and (6-18) we have ũ12 ≡ ũ21, which proves (6-10). Even
better, we have13

tan
ũ12− ũ0

2
√

2
=−

κ1+ κ2

κ1− κ2
tan

ũ2− ũ1

2
√

2
. (6-19)

Now let us prove (6-17). First of all, denote

` :=
κ1+ κ2

κ1− κ2
. (6-20)

We have, from (6-16),
ũ12− ũ0
√

2
=−2 arctan

[
` tan

ũ3− ũ1

2
√

2

]
,

so that

u12− u0 =
−`(u3− u1) sec2((ũ3− ũ1)/(2

√
2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
.

We also check that

sin
ũ12− ũ0
√

2
=
−2` tan((ũ3− ũ1)/(2

√
2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
,

and

cos
ũ12− ũ0
√

2
=

1− `2 tan2((ũ3− ũ1)/(2
√

2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
.

Substituting in (6-15) and using (6-14) we obtain

−`
u3−u1
√

2
sec2 ũ3− ũ1

2
√

2

=κ1 sin
ũ1+ũ0
√

2

[
1+`2 tan2 ũ3− ũ1

2
√

2

]
+κ2 sin

ũ1+ũ0
√

2

[
1−`2 tan2 ũ3−ũ1

2
√

2

]
−2`κ2 cos

ũ1+ũ0
√

2
tan

ũ3−ũ1

2
√

2
.

Using (6-20) and (6-14), we have

u3− u0−
√

2κ1 sin
ũ1+ ũ0
√

2

=−
√

2 cos2 ũ3− ũ1

2
√

2

[
(κ1− κ2) sin

ũ1+ ũ0
√

2

(
1+ ` tan2 ũ3− ũ1

2
√

2

)
− 2κ2 cos

ũ1+ ũ0
√

2
tan

ũ3− ũ1

2
√

2

]
,

i.e., after some standard trigonometric simplifications,

u3− u0 =
√

2κ2 sin
ũ1+ ũ0
√

2
cos

ũ3− ũ1
√

2
+
√

2κ2 cos
ũ1+ ũ0
√

2
sin

ũ3− ũ1

2
√

2
=
√

2κ2 sin
ũ3+ ũ0
√

2
,

as desired. �

Another consequence of the previous result is the following equivalent result:

13Note that this identity is well-defined at one particular set of functions, then extended by continuity.



DYNAMICS OF COMPLEX-VALUED MODIFIED KDV SOLITONS 663

Corollary 6.4. We have

z0
d ≡ z0

b and p0
= q0.

In other words, α∗ = α∗ and β∗ = β∗.

Proof. Note that z0
a ≡ z0

c . From (6-9) we have

1
√

2
(B0
+ z0

a − Q0
− z0

d)= (β − iα+ q0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

d
√

2
.

The result follows from (6-3) and the uniqueness of z0
b and p0 as implicit functions of z0

a . �

The key result of this paper is the following surprising property:

Corollary 6.5. The function y0
a is real-valued. Moreover, there is a small ball of data z0

a in H 1(R) for
which the corresponding data z0

b lies in an open set of H 1(R;C).

Proof. The second statement is a consequence of the implicit function theorem. On the other hand, the
first one is consequence of the permutability theorem. First of all, note that

β + iα+ q0 = β − iα+ p0
= β∗− iα∗. (6-21)

Now, from (6-19) we get

tan
B0
+ z0

a − y0
a

2
√

2
=−

β +Re p0

i(α− Im p0)
tan

Q̃0
+ z̃0

b−
˜Q0
− z̃b

0

2
√

2
,

so

tan
B0
+ z0

a − y0
a

2
√

2
=−

β +Re p0

(α− Im p0)
tanh

Im(Q̃0
+ z̃0

b)
√

2
,

from which we have that y0
a(x) is real-valued for all x ∈ R. �

The main advantage of the double Bäcklund transformation is that now the dynamics of y0
a is real-valued.

We apply Theorem 4.5 with the initial data z0
b to get a complex solution of mKdV, ub(t)= Q∗(t)+ zb(t)

defined for all t 6= tk and satisfying (4-22).
Now we reconstruct za(t). As in (6-8), let us define, using (5-1), (4-6) and (4-7),

B̃∗(t, x) := B̃(x;α∗, β∗, δ∗t + x1, γ
∗t + x2) (6-22)

and

B∗(t, x)= ∂x B̃∗(t, x), B̃∗j (t, x) := B̃ j (x;α∗, β∗, x1, x2)
∣∣
x1=δ∗t+x1, x2=γ ∗t+x2

. (6-23)

In other words, we recover the original breather in (1-2) with scaling parameters α∗ and β∗ and shifts x1,
x2, provided they do not depend on time. Finally, as in (5-7) we define

B̃∗t (t, x) := δ B̃∗1 (t, x)+ γ B̃∗2 (t, x).
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Lemma 6.6. Assume that t ∈ R is such that (4-11) holds. Then there are unique za = za(t) ∈ H 1(R;C)

and wa = wa(t) ∈ H−1(R;C) such that

z̃a + z̃b ∈ H 2(R;C), (6-24)

1
√

2
(B∗+ za − Q∗− zb)= (β − iα+ p0) sin

B̃∗+ z̃a + Q̃∗+ z̃b
√

2
, (6-25)

where B̃∗ and B∗ are defined in (6-22) and (6-23). Moreover, we have

0= B̃∗t +wa − Q̃∗t −wb

+ (β − iα+ p0)

[
(B∗x + (za)x + Q∗x + (zb)x) cos

B̃∗+ z̃a + Q̃∗+ z̃b
√

2

+
(B∗+ za)

2
+ (Q∗+ zb)

2
√

2
sin

B̃∗+ z̃a + Q̃∗+ z̃b
√

2

]
(6-26)

and, for all t 6= tk ,
‖za(t)‖H1(R;C) ≤ Cη.

Proof. We apply Proposition 3.4 at the point

X0
:= (B∗, Q∗, B̃∗t , Q̃∗t , β − iα+ p0),

because a slight variation of Lemma 6.1 shows that (compare with (6-21))

G(B∗, Q∗, B̃∗t , Q̃∗t , β − iα+ p0)= (0, 0).

Since p0 is small,
Re(β − iα+ p0) > 0.

On the other hand, (3-6) is a consequence of (6-4). Similarly, from (2-3) we get that (3-7) is satisfied.
Finally, in order to ensure that (3-26) is clearly satisfied, we apply Lemma 5.9: we get

µ1
=

1
µ∗
, where µ∗ := β∗ B̃∗1 − iα∗ B̃∗2 ;

see Corollary 5.7 and (6-23). Then we conclude thanks to Proposition 3.4. �

Corollary 6.7. The function za(t) as defined in (6-25) is real-valued.

Proof. The same proof as in Corollary 6.5 works mutatis mutandis, since now ya(t) is real-valued. �

Proposition 6.8. For all t 6= tk , ua = B∗+ za is an H 1 real-valued solution to mKdV with initial data u0.
Therefore, by uniqueness,14 B∗+ za ≡ u.

Proof. Since ub = Q∗+ zb solves mKdV, we use (6-25)–(6-26) and Theorem 3.5 to conclude. �

14Technically, what we need is a result about unconditional uniqueness, however, from [Kwon and Oh 2012] one can conclude
that such a result is valid for mKdV on the line if we consider data with H1 regularity.
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7. Stability of breathers

We now prove Theorem 1.2. We assume that u0 ∈ H 1(R) satisfies (1-5) for some η small. Let
u ∈ C(R; H 1(R)) be the — unique in a certain sense — associated solution of the Cauchy problem (1-1)
with initial data u(0)= u0. Finally, we recall the conserved quantities of mass (4-13) and energy (4-14).

Proof of Theorem 1.2. Consider ε0 > 0 small but fixed, A0 > 1 and 0< η < η0 small. From Lemmas 6.2
and 6.6 the proof is not difficult, and we follow standard methods; see [Martel et al. 2002] for instance.
Indeed, define the tubular neighborhood

V(A0, η) :=
{
U ∈ H 1(R)

∣∣ inf
x̃1,x̃2∈R

‖U − B( · ;α, β, x̃1, x̃2)‖ ≤ A0η
}
. (7-1)

Note that B represents here the breather profile defined in (5-2). The original breather B(t) from (1-2) can
be recovered using (6-22) as follows (there is a slight abuse of notation here, but it is easily understood):

B(t, x;α, β, x1, x2)= B(x;α, β, δt + x1, γ t + x2).

Clearly u(t) ∈ V(A0, η) for small t > 0. Define the set

Jε0 := {t > 0 | |t − tk |> ε0 for all k ∈ Z}.

We will prove that u(t) is in V(A0, η) for all t ∈ Jε0 provided A0 is chosen large enough.
We argue by reductio ad absurdum. Assume that, for some T0 ∈ Jε0 , we have

inf
x̃1,x̃2∈R

‖u(T0)− B( · ;α, β, x̃1, x̃2)‖H1(R) = A0η, (7-2)

and, for any δ > 0 small, δ < 1
100ε0, if T1 := T0+ δ then

inf
x̃1,x̃2∈R

‖u(T1)− B( · ;α, β, x̃1, x̃2)‖H1(R) > A0η. (7-3)

We also assume that T0 is the first positive time in Jε0 with this property. We will show that, under this
last assumption, after fixing A0 > 1 large enough we will have

u(T0) ∈ V
( 1

2 A0, η
)
, (7-4)

which contradicts (7-2)–(7-3) and therefore proves the result for all positive times far from the points tk .
First of all, by taking η0 > 0 smaller if necessary, and η ∈ (0, η0), we can ensure that there are unique
x1(t), x2(t) ∈ R defined on [0, T0] such that

z(t, x) := u(t, x)− B(x;α, β, δt + x1(t), γ t + x2(t)) (7-5)

satisfies ∫
R

z(t, x)B1(x;α, β, δt + x1(t), γ t + x2(t)) dx = 0, (7-6)

and ∫
R

z(t, x)B2(x;α, β, δt + x1(t), γ t + x2(t)) dx = 0. (7-7)
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The directions B1 and B2 are defined in (5-5)–(5-6) (see [Alejo and Muñoz 2013] for a similar statement
and its proof). Moreover, we have

‖z(0)‖H1(R) . η,

and similar estimates for x1(0) and x2(0), with constants not depending on large A0. Therefore, (2-9) is
not satisfied for x1(0) and x2(0). For the sake of simplicity, we can assume x1(0)= x2(0)= 0, otherwise
we perform a shift in space and time on the solution to set them equal to zero.

Define z0
a := z(0) and apply Lemma 6.2, and then Lemma 4.1 to the corresponding z0

b obtained from
Lemma 6.2. We will obtain a real-valued seed y0

a , small in H 1(R). Note that the constants involved in
each inversion do not depend on A0. In particular, the differences between α and α∗, and β and β∗, are
not dependent on A0:

|α−α∗| + |β −β∗|. η. (7-8)

Next, we let the mKdV equation evolve with initial data y0
a . From Theorem 4.3 we have the bound

(4-15) for the dynamics ya(t). On the other hand, the decomposition (7-6)–(7-7) implies that

|x ′1(t)| + |x
′

2(t)|. A0η, (7-9)

from which the set of points where condition (4-11) is not satisfied is still a countable set of isolated
points (see Lemma 4.2).

Now we are ready to apply Lemmas 4.4 and 6.6 with parameters α∗, β∗ and shifts x1(t) and x2(t) in
(4-8), (4-9) and (6-22)–(6-23). In that sense, we have chosen a unique set of parameters for each fixed
time t , and the mKdV solution that we choose is the same as the original u(t). Indeed, just notice that,
at t = 0, we have, from (4-18) at t = 0 and (6-5),

1
√

2
(Q∗(0)+ zb(0)− y0

a)= (β + iα+ q0) sin
Q̃∗(0)+ z̃b(0)+ ỹ0

a
√

2
,

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

.

Using the uniqueness of the solution obtained by the implicit function theorem in a neighborhood of the
base point, we have

zb(0)= Q0
− Q∗(0)+ z0

b ∼ z0
b. (7-10)

Now we use (6-25) at t = 0 and (6-3):

1
√

2
(B∗(0)+ za(0)− Q∗(0)− zb(0))= (β − iα+ p0) sin

B̃∗(0)+ z̃a(0)+ Q̃∗(0)+ z̃b(0)
√

2
,

and
1
√

2
(B0
+ z0

a − Q0
− z0

b)= (β − iα+ p0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
.
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From (7-10), we have

1
√

2
(B∗(0)+ za(0)− Q0

− z0
b)= (β − iα+ p0) sin

B̃∗(0)+ z̃a(0)+ Q̃0
+ z̃0

b
√

2
.

Once again, since B0 and B∗(0) are close, using the uniqueness of the solution obtained via the implicit
function Theorem, we conclude that

B∗(0)+ za(0)= B0
+ z0

a.

Since both initial data are the same, we conclude that the solution obtained via the Bäcklund transformation
is u(t).

Note that the constants involved in the inversions are not dependent on A0. We finally get

sup
|t−tk |≥ε0

‖u(t)− B∗(t)‖H1(R) ≤ C0η, (7-11)

where

B∗(t, x) := B(x;α∗, β∗, δ∗t + x1(t), γ ∗t + x2(t)).

Finally, from (7-8) and after redefining the shift parameters and choosing t = T0, we get the desired
conclusion since, for A0 large enough, we have C0 ≤

1
2 A0 and (7-4) is proved.

Now we deal with the remaining case, t ∼ tk . Fix k ∈ Z. Note that za = u− B∗ satisfies the equation

(za)t + [(za)xx + 3(B∗)2za + 3B∗z2
a + z3

a]x + x ′1(t)B
∗

1 + x ′2(t)B
∗

2 = 0 (7-12)

in the H 1-sense. In what follows, we will prove that, maybe taking ε0 smaller but independent of k, we
have

sup
|t−tk |≤ε0

‖u(t)− B∗(t)‖H1(R) ≤ 4A0η. (7-13)

Since A0 grows with ε0 small, this implies that, after choosing η0 smaller if necessary, such an operation
can be performed without any risk.

In what follows, we assume that there is T ∗ ∈ (tk − ε0, tk + ε0] such that, for all t ∈ [tk − ε0, T ∗],

‖za(t)‖H1(R) ≤ 4A0η, (7-14)

and T ∗ is maximal in the sense of the above definition (i.e., there is no T ∗∗ > T ∗ satisfying the previous
property). If T ∗ = tk + ε0, there is nothing to prove and (7-13) holds.

Assume T ∗ < tk + ε0. Now we consider the quantity

1
2

∫
R

z2
a(t), t ∈ [t0− ε0, T ∗].

We have, from (7-12),

∂t
1
2

∫
R

z2
a(t)=

∫
R

(za)x [3(B∗)2za + 3B∗z2
a + z3

a](t)+ x ′1(t)
∫

R

za(t)B∗1 + x ′2(t)
∫

R

za(t)B∗2 .
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Using (7-14) and (7-9), we have, for some — explicit — fixed constant C > 0 depending only on α, β,
and η0 even smaller if necessary, ∣∣∣∣∂t

1
2

∫
R

z2
a(t)

∣∣∣∣≤ C A2
0η

2.

After integration in time and using (7-11), we have∫
R

z2
a(T
∗)≤

∫
R

z2
a(t0− ε0)+Cε0 A2

0η
2
≤ 1.9A2

0η
2,

if ε0 is small but fixed. A similar estimate can be obtained for ‖(za)x(t)‖H1(R) by proving an estimate of
the form ∣∣∣∣∂t

1
2

∫
R

(za)
2
x(t)

∣∣∣∣≤ C A2
0η

2.

Therefore, estimate (7-14) has been bootstrapped, which implies that T ∗= t0+ε0. Note that the estimates
do not depend on k, but only on the length of the intervals, which is about ε0.15

We conclude that there is Ã0 > 0 fixed such that

sup
t∈R

‖u(t)− B∗(t)‖H1(R) ≤ Ã0η.

Finally, estimates (1-6) and (1-7) are obtained from (7-9), using the fact that α∗ and β∗ are close to α
and β in terms of Cη. The proof is complete. �

Remark. From the proof and the results in [Colliander et al. 2003], it is easy to show that the evolution
of breathers can be estimated in a polynomial form in time for any s > 1

4 , however, in order to make
things simpler, we will not address this issue.

Corollary 7.1. We have, for all t 6= tk ,

1
2

∫
R

(B∗+ za)
2(t)= 1

2

∫
R

(Q∗+ zb)
2(t)+ 2(β∗− iα∗)= M[y0

a ] + 4β∗.

Moreover, this identity can be extended to any t ∈ R.

Proof. In the same way as Corollary 4.6. �

Finally, we recall that γ ∗ = 3(α∗)2− (β∗)2 and E[u] = 1
2

∫
R

u2
x −

1
4

∫
R

u4.

Corollary 7.2. Assume that t 6= tk for all k ∈ Z. Then we have

E[B∗+ za](t)= E[Q∗+ zb](t)− 4
3(β
∗
− iα∗)3 = E[y0

a ] +
4
3β
∗γ ∗.

Finally, this quantity can be extended in a continuous form to every t ∈ R.

Proof. In the same way as Corollary 4.7. �

15Note that an argument involving the uniform continuity of the mKdV flow will not work in this particular case since the
sequence of times (tk) is unbounded.
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8. Asymptotic stability

We finally prove Theorem 1.4. Note that, for some c0 > 0 depending on η > 0,

lim
t→+∞

‖ya(t)‖H1(x≥c0t) = 0. (8-1)

This result can be obtained by adapting the proof for the soliton case in [Martel and Merle 2005]. Indeed,
consider

φ(x) := K
π

arctan(ex/K ), K > 0,

so that

lim
−∞

φ = 0, lim
+∞

φ = 1, φ′′′ ≤
1

K 2φ
′, φ′ > 0 on R. (8-2)

Fix c0, t0 > 0. Consider the quantities

I (t) := 1
2

∫
R

y2
a(t)φ

(
x − c0t0+ 1

2 c0(t0− t)
)
,

J (t) :=
∫

R

[ 1
2(ya)

2
x(t)−

1
4 y4

a(t)+
1
2 y2

a(t)
]
φ
(
x − c0t0+ 1

2 c0(t0− t)
)
.

It is not difficult to see that

I ′(t)=−1
4

c0

∫
R

y2
aφ
′(t)+ 1

2

∫
R

y2
aφ
′′′(t)− 3

2

∫
R

(ya)
2
xφ
′(t)+ 3

4

∫
R

y4
aφ
′(t),

so that, using (8-2), and if c0 > 0 is small (and, depending on η, even smaller if necessary),

I ′(t)≤ 0.

We then have

I (t0)≤ I (0)= 1
2

∫
R

y2
a(0)φ(x − c0t0)

and

lim
t→+∞

I (t)= 0.

A similar result holds for J (t), which proves (8-1).
Note that z̃b+ ỹa ∈ H 2(R;C) (see (4-17)). In what follows, we will prove that this function satisfies

better estimates than ya and zb if x is large.
Fix t 6= tk large with |t − tk | ≥ ε0. We use the notation

z̃c := ỹa + z̃b. (8-3)

From (3-29) we have

‖z̃c(t)‖H2(R;C) ≤ Cν
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with C = C(ε0) independent of time. From the Bäcklund transformation (4-18) we obtain

(z̃c)x − 2ya =
√

2(β + iα+ q0)

[
sin

Q̃∗+ z̃c
√

2
− sin

Q̃∗
√

2

]
=
√

2(β + iα+ q0)

[
sin

Q̃∗
√

2

{
cos

z̃c
√

2
− 1

}
+ sin

z̃c
√

2
cos

Q̃∗
√

2

]
= Q∗

{
cos

z̃c
√

2
− 1

}
+
√

2 sin
(

z̃c
√

2

)
Q∗x
Q∗
.

Assume now that x > c0t/2. Then we have, for some fixed constant c > 0,∣∣∣∣Q∗x
Q∗
+m

∣∣∣∣≤ e−cx , m = β + iα+ q0
= β∗+ iα∗,

and
(z̃c)x +mz̃c = g,

where

g := Q∗
{

cos
z̃c
√

2
− 1

}
+
√

2
{

sin
z̃c
√

2
−

z̃c
√

2

}
Q∗x
Q∗
+ z̃c

{
Q∗x
Q∗
+m

}
+ 2ya.

Solving the previous ODE, we get

z̃c(t, x)= z̃c
(
t, 1

2 c0t
)
e−m(x−c0t/2)

+

∫ x

c0t/2
g(t, s)e−m(x−s) ds,

so that

|z̃c(t, x)|.
∣∣z̃c
(
t, 1

2 c0t
)∣∣e−β∗(x−c0t/2)

+

∫ x

c0t/2
|g(t, s)|e−β

∗(x−s) ds.

From Young’s inequality we get

‖z̃c(t)‖L2(x≥c0t) .
∣∣z̃c
(
t, 1

2 c0t
)∣∣e−β∗c0t/2

+‖g(t)‖L2(x≥c0t)e
−β∗c0t .

Clearly, ∣∣z̃c
(
t, 1

2 c0t
)∣∣. ‖z̃c(t)‖H1(R;C) ≤ Cν, ‖g(t)‖L2(x≥c0t) ≤ Cν2

+Cνe−ct
+ o(1).

Passing to the limit, we obtain that, for all Tn→+∞ with |Tn − tk | ≥ ε0 for all n and k,

lim
n→+∞

‖z̃c(Tn)‖L2(x≥c0Tn) = 0.

A similar result can be obtained for zc and (zc)x . From (8-3), we get

lim
n→+∞

‖zb(Tn)‖H1(x≥c0Tn) = 0. (8-4)

Finally, we repeat the same strategy with (6-25) and (6-24) to obtain

lim
t→+∞

‖za(Tn)‖H1(x≥c0Tn) = 0.

Note that, since the flow map is continuous in time with values in H 1, we can extend the result to any
sequence Tn→+∞ by choosing an ε0 > 0 smaller but still independent of k.



DYNAMICS OF COMPLEX-VALUED MODIFIED KDV SOLITONS 671

Appendix A: Proof of Lemma 5.1

We will use the specific character of the breather and soliton profiles. Since (2-9) does not hold, both Q̃
and Q are well-defined everywhere. We have

sin
B̃+ Q̃
√

2
= sin(2(arctan21+ arctan22)),

where, from (2-1) and (5-1), 22 := eβy2+iαy1 and 21 :=
β sin(αy1)

α cosh(βy2)
. The expression in the previous

display equals

2
[
sin(arctan21) cos(arctan22)+ sin(arctan22) cos(arctan21)]

× [cos(arctan21) cos(arctan22)− sin(arctan21) sin(arctan22)
]

= 2
[
tan(arctan21) cos2(arctan21) cos2(arctan22)− sin2(arctan21) tan(arctan22) cos2(arctan22)

+ cos2(arctan21) tan(arctan22) cos2(arctan22)− sin2(arctan22) tan(arctan21) cos2(arctan21)
]
.

Since sin2(arctan z)= z2

1+z2 and cos2(arctan z)= 1
1+z2 , we have

sin
B̃+ Q̃
√

2
=

2(21−2
2
122+22−2

2
221)

(1+22
1)(1+2

2
2)

. (A-1)

On the other hand,

1
√

2
(B− Q)= 2∂x(arctan21− arctan22)= 2

(
21,x

1+22
1
−

22,x

1+22
2

)
= 2

(1+22
2)21,x − (1+22

1)22,x

(1+22
1)(1+2

2
2)

.

Hence, collecting terms and factoring, from (5-9) we are led to prove that

(1+22
2)21,x − (1+22

1)22,x − (β − iα)(21−2
2
122+22−2

2
221)= 0. (A-2)

Now we perform some computations. We have, from (2-1),

22,x = (β + iα)22, (A-3)

α(β + iα22
1) cosh2(βy2)= β(α cosh2(βy2)+ iβ sin2(αy1)) (A-4)

and

21,x =

(
β sin(αy1)

α cosh(βy2)

)
x
=
αβ cos(αy1) cosh(βy2)−β

2 sin(αy1) sinh(βy2)

α cosh2(βy2)
,

so that

21,x − (β − iα)21 = β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
(A-5)

and

[21,x + (β − iα)21]2
2
2 = β

[
αe−iαy1 cosh(βy2)+βe−βy2 sin(αy1)

α cosh2(βy2)

]
e2(βy2+iαy1)

= β22

[
αeβy2 cosh(βy2)+βeiαy1 sin(αy1)

α cosh2(βy2)

]
. (A-6)
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Using (A-3), (A-4), (A-5) and (A-6) we have that the left-hand side of (A-2) is

(1+22
2)21,x − 2(β + iα22

1)22− (β − iα)(1−22
2)21

= [21,x − (β − iα)21] + [21,x + (β − iα)21]2
2
2− 2(β + iα22

1)22

= β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
+β22

[
αeβy2 cosh(βy2)+βeiαy1 sin(αy1)− 2α cosh2(βy2)− 2iβ sin2(αy1)

α cosh2(βy2)

]
= β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
+β22

[
−αe−βy2 cosh(βy2)+βe−iαy1 sin(αy1)

α cosh2(βy2)

]
= 0,

which proves (A-2).
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L p ESTIMATES FOR BILINEAR
AND MULTIPARAMETER HILBERT TRANSFORMS

WEI DAI AND GUOZHEN LU

Muscalu, Pipher, Tao and Thiele proved that the standard bilinear and biparameter Hilbert transform does
not satisfy any L p estimates. They also raised a question asking if a bilinear and biparameter multiplier
operator defined by

Tm( f1, f2)(x) :=
∫

R4
m(ξ, η) f̂1(ξ1, η1) f̂2(ξ2, η2)e2π i x ·((ξ1,η1)+(ξ2,η2)) dξ dη

satisfies any L p estimates, where the symbol m satisfies

|∂αξ ∂
β
η m(ξ, η)|.

1
dist(ξ, 01)|α|

·
1

dist(η, 02)|β|

for sufficiently many multi-indices α = (α1, α2) and β = (β1, β2), 0i (i = 1, 2) are subspaces in R2 and
dim01 = 0, dim02 = 1. Silva partially answered this question and proved that Tm maps L p1× L p2→ L p

boundedly when 1
p1
+

1
p2
=

1
p with p1, p2 > 1, 1

p1
+

2
p2
< 2 and 1

p2
+

2
p1
< 2. One notes that the admissible

range here for these tuples (p1, p2, p) is a proper subset of the admissible range of the bilinear Hilbert
transform (BHT) derived by Lacey and Thiele.

We establish the same L p estimates as BHT in the full range for the bilinear and d-parameter (d ≥ 2)
Hilbert transforms with arbitrary symbols satisfying appropriate decay assumptions and having singularity
sets 01, . . . , 0d with dim0i = 0 for i = 1, . . . , d − 1 and dim0d = 1. Moreover, we establish the same
L p estimates as BHT for bilinear and biparameter Fourier multipliers of symbols with dim01=dim02=1
and satisfying some appropriate decay estimates. In particular, our results include the L p estimates as
BHT in the full range for certain modified bilinear and biparameter Hilbert transforms of tensor-product
type with dim01 = dim02 = 1 but with a slightly better logarithmic decay than that of the bilinear and
biparameter Hilbert transform BHT⊗BHT.
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1. Introduction

The bilinear Hilbert transform is defined by

BHT( f1, f2)(x) := p.v.
∫

R

f1(x − t) f2(x + t)
dt
t
; (1-1)

or, equivalently, it can be written as the bilinear multiplier operator

BHT : ( f1, f2) 7→

∫
ξ<η

f̂1(ξ) f̂2(η)e2π i x(ξ+η) dξ dη, (1-2)

where f1 and f2 are Schwartz functions on R. M. Lacey and C. Thiele proved the following celebrated
L p estimates for the bilinear Hilbert transform:

Theorem 1.1 [Lacey and Thiele 1997; 1999]. The bilinear operator BHT maps L p(R)× Lq(R) into
Lr (R) boundedly for any 1< p, q ≤∞ with 1

p +
1
q =

1
r and 2

3 < r <∞.

There are lots of works related to bilinear operators of BHT type. J. Gilbert and A. Nahmod [2001] and
F. Bernicot [2008] proved that the same L p estimates as BHT are valid for bilinear operators with more
general symbols. Uniform estimates were obtained by Thiele [2002], L. Grafakos and X. Li [2004] and Li
[2006]. A maximal variant of Theorem 1.1 was proved by Lacey [2000]. C. Muscalu, Thiele and T. Tao
[Muscalu et al. 2004b] and J. Jung [≥ 2015] investigated various trilinear variants of the bilinear Hilbert
transform. For more related results involving estimates for multilinear singular multiplier operators, we
refer to, for example, [Christ and Journé 1987; Coifman and Meyer 1978; 1997; Fefferman and Stein
1982; Grafakos and Torres 2002a; 2002b; Journé 1985; Kenig and Stein 1999; Muscalu and Schlag 2013;
Muscalu et al. 2002; Thiele 2006] and the references therein.

Since Lacey and Thiele [1997; 1999] established the L p estimates for 2
3 < p<∞, whether the bilinear

operators of BHT type satisfy L p estimates all the way down to 1
2 has remained an open problem. Though

we do not have a counterexample yet for the L p estimates for the bilinear Hilbert transform in the range
of 1

2 < p < 2
3 , we have established in [Dai and Lu ≥ 2015b] a counterexample for a modified version of

bilinear operators of BHT type. To describe this result, we denote by FL p(R) the space consisting of all
functions f whose Fourier transform f̂ satisfies f̂ ∈ L p(R). The Hausdorff–Young inequality indicates
that ‖ f̂ ‖L p′ (R) .p ‖ f ‖L p(R) for 1 ≤ p ≤ 2. Then, by Theorem 1.1, it implies that the bilinear Hilbert
transform maps FL p′1× L p2→ L p for p1 ≥ 2 and maps L p1×FL p′2→ L p for p2 ≥ 2 with 1

p1
+

1
p2
=

1
p .

Thus it will be interesting to know whether the bilinear operators of BHT type map FL p′1× L p2→ L p for
p1 < 2 or L p1×FL p′2→ L p for p2 < 2 boundedly with 1

p1
+

1
p2
=

1
p . Our work in [Dai and Lu ≥ 2015b]

gives a negative answer to the boundedness of FL p′1 × L p2 → L p for p1 < 2 and L p1 ×FL p′2 → L p

for p2 < 2.
To date, we are still not aware of any uniform L p estimates for bilinear Fourier multiplier operator of

BHT type in the range p ∈
( 1

2 ,
2
3

)
. By decomposing the bilinear multiplier operator Tm into a summation

of infinitely many bilinear paraproducts without modulation invariance, we have proved in [Dai and Lu
≥ 2015b] that there exists a class of symbols m (with one-dimensional singularity sets), which also satisfy
the symbol estimates of BHT type operators investigated in [Gilbert and Nahmod 2001] and are arbitrarily
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close to the symbols of BHT type operators, such that the corresponding bilinear multiplier operators Tm

associated with symbols m satisfy L p estimates all the way down to 1
2 .

In multiparameter cases, there are also large amounts of literature devoted to studying the estimates
of multiparameter and multilinear operators (see [Chen and Lu 2014; Dai and Lu ≥ 2015a; Demeter
and Thiele 2010; Hong and Lu 2014; Kesler ≥ 2015; Luthy 2013; Muscalu and Schlag 2013; Muscalu
et al. 2004a; 2006; Silva 2014] and the references therein). In the bilinear and biparameter cases, let 0i

(i = 1, 2) be subspaces in R2, we consider operators Tm defined by

Tm( f1, f2)(x) :=
∫

R4
m(ξ, η) f̂1(ξ1, η1) f̂2(ξ2, η2)e2π i x ·((ξ1,η1)+(ξ2,η2)) dξ dη, (1-3)

where the symbol m satisfies1

|∂αξ ∂
β
η m(ξ, η)|.

1
dist(ξ, 01)|α|

·
1

dist(η, 02)|β|
(1-4)

for sufficiently many multi-indices α = (α1, α2) and β = (β1, β2). If dim01 = dim02 = 0, Muscalu,
J. Pipher, Tao and Thiele proved in [Muscalu et al. 2004a; 2006] that Hölder-type L p estimates are
available for Tm ; however, if dim01 = dim02 = 1, let Tm be the double bilinear Hilbert transform on
polydisks BHT⊗BHT defined by

BHT⊗BHT( f1, f2)(x, y) := p.v.
∫

R2
f1(x − s, y− t) f2(x + s, y+ t)

ds
s

dt
t
; (1-5)

they also proved in [Muscalu et al. 2004a] that the operator BHT⊗BHT does not satisfy any L p estimates
of Hölder type by constructing a counterexample. In fact, consider bounded functions f1(x, y) =
f2(x, y)= ei xy ; one has formally

BHT⊗BHT( f1, f2)(x, y)= ( f1 · f2)(x, y)
∫

R2

e2ist

st
ds dt = iπ( f1 · f2)(x, y)

∫
R

sgn(s)
s

ds,

then localize functions f1, f2 and let f N
1 (x, y)= f N

2 (x, y)= ei xyχ[−N ,N ](x)χ[−N ,N ](y). One can verify
the pointwise estimate

|BHT⊗BHT( f N
1 , f N

2 )(x, y)| ≥
∣∣∣∣∫ N

10

−
N
10

∫ N
10

−
N
10

e2ist

st
ds dt

∣∣∣∣+ O(1)≥ C log N + O(1) (1-6)

for every x , y ∈
[
−

1
100 N , 1

100 N
]

and sufficiently large N ∈ Z+, which indicates that no Hölder-type L p

estimates are available for the bilinear operator BHT⊗BHT. When dim01 = 0 and dim02 = 1, there is
the following problem:

Question 1.2 [Muscalu et al. 2004a, Question 8.2]. Let dim01= 0 and dim02= 1 with 02 nondegenerate
in the sense of [Muscalu et al. 2002]. If m is a multiplier satisfying (1-4), does the corresponding operator
Tm defined by (1-3) satisfy any L p estimates?

1Throughout this paper, A . B means that there exists a universal constant C > 0 such that A ≤ C B. If necessary, we use
explicitly A .?,...,? B to indicate that there exists a positive constant C?,...,?, continuously depending only on the quantities
appearing in the subscript, such that A ≤ C?,...,?B.
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P. Silva [2014] answered this question partially and proved that Tm defined by (1-3), (1-4) with
dim01 = 0 and dim02 = 1 maps L p

× Lq
→ Lr boundedly when 1

p +
1
q =

1
r with p, q > 1, 1

p +
2
q < 2

and 1
q +

2
p < 2. One should observe that the admissible range for these tuples (p, q, r) is a proper subset

of the region p, q > 1 and 3
4 < r <∞, which is also properly contained in the admissible range of BHT

(see Theorem 1.1).
Naturally, we may wonder whether the biparameter bilinear operator Tm given by (1-3), (1-4) (with

appropriate decay assumptions on the symbol m and singularity sets 01, 02 satisfying dim01 = 0 or 1,
dim02 = 1) satisfies the same L p estimates as BHT.

To study this problem, we must find the implicit decay assumptions on symbol m to preclude the
existence of those kinds of counterexamples constructed in (1-6) for BHT⊗BHT. To this end, let us
consider first the bilinear operator Tm ⊗BHT of tensor product type that is defined by

Tm ⊗BHT( f1, f2)(x, y) := p.v.
∫

R2
f1(x − s, y− t) f2(x + s, y+ t)

K (s)
t

ds dt, (1-7)

where the symbol m(ξ 1
1 , ξ

1
2 ) = m(ζ ) := K̂ (ζ ) with ζ := ξ 1

1 − ξ
1
2 has one-dimensional nondegenerate

singularity set 01. Let f1(x, y)= f2(x, y)= ei xy ; one can easily derive that

Tm ⊗BHT( f1, f2)(x, y)= ( f1 · f2)(x, y)
∫

R2
K (s)

e2ist

t
ds dt. (1-8)

From (1-8) and the above counterexample constructed in (1-6) for the operator BHT⊗BHT, we observe
that one sufficient condition for precluding the existence of these kinds of counterexamples is K ∈ L1

or, equivalently, m = K̂ ∈ F(L1). From the Riemann–Lebesgue theorem, we know that a necessary
condition for m ∈ F(L1) is m(ζ )→ 0 as |ζ | →∞. Moreover, if K ∈ L1(R) is odd, one can even derive
that

∣∣∫
R

m(ζ )/ζ dζ
∣∣. ‖K‖L1 (this indicates that many uniformly continuous functions with logarithmic

decay rate do not belong to F(L1)). Therefore, in order to guarantee that the same L p estimates as the
bilinear Hilbert transform are available for the bilinear operators Tm ⊗BHT and BHT⊗BHT, we need
some appropriate decay assumptions on the symbol.

The purpose of this paper is to prove the same L p estimates as BHT for modified bilinear operators
Tm ⊗BHT with arbitrary nonsmooth symbols which decay faster than the logarithmic rate.

For d ≥ 2, any two generic vectors ξ1 = (ξ
i
1)

d
i=1, ξ2 = (ξ

i
2)

d
i=1 in Rd generate naturally the following

collection of d vectors in R2:

ξ̄1 = (ξ
1
1 , ξ

1
2 ), ξ̄2 = (ξ

2
1 , ξ

2
2 ), . . . , ξ̄d = (ξ

d
1 , ξ

d
2 ). (1-9)

Let m = m(ξ) = m(ξ̄ ) be a bounded symbol in L∞(R2d) that is smooth away from the subspaces
01 ∪ · · · ∪0d−1 ∪0d and satisfies

dist(ξ̄d , 0d)
|αd | ·

∫
R2(d−1)

∣∣∂α1
ξ̄1
· · · ∂

αd

ξ̄d
m(ξ̄ )

∣∣∏d−1
i=1 dist(ξ̄i , 0i )2−|αi |

d ξ̄1 · · · d ξ̄d−1 ≤ B <+∞ (1-10)
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for sufficiently many multi-indices α1, . . . , αd , where dim0i = 0 for i = 1, . . . , d − 1 and 0d :=

{(ξ d
1 , ξ

d
2 ) ∈ R2

: ξ d
1 = ξ

d
2 }. Denote by T (d)

m the bilinear multiplier operator defined by

T (d)
m ( f1, f2)(x) :=

∫
R2d

m(ξ) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ. (1-11)

Our result for bilinear operators T (d)
m satisfying (1-10) and (1-11) is the following:

Theorem 1.3. For any d≥ 2, the bilinear, d-parameter multiplier operator T (d)
m maps L p1(Rd)×L p2(Rd)

into L p(Rd) boundedly for any 1< p1, p2 ≤∞ with 1
p =

1
p1
+

1
p2

and 2
3 < p<∞. The implicit constants

in the bounds depend only on p1, p2, p, d and B.

Remark 1.4. For arbitrarily small ε > 0, let mε
= mε(ξ) = mε(ξ̄ ) be a bounded symbol in L∞(R2d)

that is smooth away from the subspaces 01 ∪ · · · ∪0d−1 ∪0d defined as in Theorem 1.3 and satisfying
differential estimates

|∂
α1
ξ̄1
· · · ∂

αd

ξ̄d
mε(ξ̄ )|.

d−1∏
i=1

(
1

dist(ξ̄i , 0i )|αi |
· 〈log2 dist(ξ̄i , 0i )〉

−(1+ε)
)
·

1
dist(ξ̄d , 0d)|αd |

(1-12)

for sufficiently many multi-indices α1, . . . , αd ; then mε satisfies conditions (1-10).

As shown in [Muscalu et al. 2004a], the bilinear and biparameter Hilbert transform does not satisfy any
L p estimates. This is the case when the singularity sets 01 and 02 satisfy dim01 = dim02 = 1. Thus, it
is natural to ask if the L p estimates will break down for any bilinear and biparameter Fourier multiplier
operator with dim01 = dim02 = 1. In other words, will a nonsmooth symbol with the same dimensional
singularity sets but with a slightly better decay than that for the bilinear and biparameter Hilbert transform
assure the L p estimates? Our next two theorems will address this issue.

For d = 2 and arbitrarily small ε > 0, let m̃ε
= m̃ε(ξ)= m̃ε(ξ̄ ) be a bounded symbol in L∞(R4) that

is smooth away from the subspaces 01 ∪02 and satisfies

|∂
α1
ξ̄1
∂
α2
ξ̄2

m̃ε(ξ̄ )|.
2∏

i=1

1
dist(ξ̄i , 0i )|αi |

· 〈log2 dist(ξ̄1, 01)〉
−(1+ε) (1-13)

for sufficiently many multi-indices α1, α2, where 〈x〉 :=
√

1+ x2 and 0i := {(ξ
i
1, ξ

i
2) ∈ R2

: ξ i
1 = ξ

i
2}

for i = 1, 2. Denote by T (2)
m̃ε the bilinear multiplier operator defined by

T (2)
m̃ε ( f1, f2)(x) :=

∫
R4

m̃ε(ξ) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ. (1-14)

Our result for bilinear operators T (2)
m̃ε satisfying (1-13) and (1-14) is the following:

Theorem 1.5. For d = 2 and any ε > 0, the bilinear and biparameter multiplier operator T (2)
m̃ε maps

L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1 < p1, p2 ≤∞ with 1
p =

1
p1
+

1
p2

and 2
3 < p <∞.

The implicit constants in the bounds depend only on p1, p2, p, ε and tend to infinity as ε→ 0.

Our result for modified bilinear and biparameter Hilbert transform of tensor product type with a slightly
better decay than that of BHT⊗BHT is the following:



680 WEI DAI AND GUOZHEN LU

Theorem 1.6. For any ε > 0, let the bilinear and biparameter operator BHTε⊗BHT be defined by

BHTε⊗BHT( f1, f2)(x1, x2)= p.v.
∫

R2
f1(x − s) f2(x + s)

9ε(s1)

s2
ds1 ds2

with the function 9ε satisfying

|∂
α1
ξ̄1
9̂ε(ξ 1

1 − ξ
1
2 )|. |ξ

1
1 − ξ

1
2 |
−|α1| · 〈log2 |ξ

1
1 − ξ

1
2 |〉
−(1+ε) (1-15)

for sufficiently many multi-indices α1; then it satisfies the same L p estimates as T (2)
m̃ε .

Remark 1.7. For simplicity, we will only consider the biparameter case d = 2 and 0i = {(0, 0)}
(i = 1, . . . , d− 1) in the proof of Theorem 1.3. It will be clear from the proof (see Section 4) that we can
extend the argument to the general d-parameter and dim0i = 0 (i = 1, . . . , d−1) cases straightforwardly.
We will only prove Theorem 1.5 in Section 5 and omit the proof of Theorem 1.6, since one can observe
from the discretization procedure in Section 2 that the bilinear and biparameter operator BHTε⊗BHT
can be reduced to the same bilinear model operators 5̃ε

EP
as T (2)

m̃ε .

It’s well known that a standard approach to prove L p estimates for one-parameter n-linear operators
with singular symbols (e.g., Coifman–Meyer multiplier, BHT and one-parameter paraproducts) is by the
generic estimates of the corresponding (n+1)-linear forms consisting of estimates for different sizes and
energies (see [Jung ≥ 2015; Muscalu and Schlag 2013; Muscalu et al. 2002; 2004b]), which relies on
the one-dimensional BMO theory, or, more precisely, the John–Nirenberg-type inequalities to get good
control over the relevant sizes. Unfortunately, there is no routine generalization of such approach to
multiparameter settings, for instance, we don’t have analogues of the John–Nirenberg inequalities for
dyadic rectangular BMO spaces in the two-parameter case (see [Muscalu and Schlag 2013]). To overcome
these difficulties, Muscalu et al. [2004a] developed a completely new approach to prove L p estimates
for biparameter paraproducts; their essential idea is to apply the stopping-time decompositions based
on hybrid square and maximal operators MM, MS, SM and SS, the one-dimensional BMO theory and
Journé’s lemma, and hence could not be extended to solve the general d-parameter (d ≥ 3) cases. As to the
general d-parameter (d ≥ 3) cases, by proving a generic decomposition (see Lemma 4.1), Muscalu et al.
[2006] simplified the arguments they introduced in [Muscalu et al. 2004a], and this simplification works
equally well in all d-parameter settings. Recently, a pseudodifferential variant of the theorems in [Muscalu
et al. 2004a; 2006] has been established in [Dai and Lu ≥ 2015a]. Moreover, J. Chen and G. Lu [Chen and
Lu 2014] offer a different proof than those in [Muscalu et al. 2004a; 2006] to establish a Hörmander-type
theorem of L p estimates (and weighted estimates as well) for multilinear and multiparameter Fourier
multiplier operators with limited smoothness in multiparameter Sobolev spaces.

However, in this paper, in order to prove our main results, Theorems 1.3 and 1.5 in biparameter settings,
we have at least two different difficulties from [Muscalu et al. 2004a; 2006]. First, observe that if one
restricts the sum of tritiles P ′′ ∈ P′′ in the definitions of discrete model operators (see Section 2) to a
tree then one essentially gets a tensor product of two discrete paraproducts on x1 and x2, respectively,
which can be estimated by the MM, MS, SM and SS functions, but, due to the extra degree of freedom
in frequency in the x2 direction, there are infinitely many such tensor products of paraproducts in the
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summation, so it’s difficult for us to carry out the stopping-time decompositions by using the hybrid
square and maximal operators as in [Muscalu et al. 2004a; 2006]. Second, in the proof of Theorem 1.5,
note that there are infinitely many tritiles P ′ ∈ P′ with the property that IP ′ = I0 for a certain fixed
dyadic interval I0 of the same length as IP ′ , so we can’t estimate

∑
P ′ |IP ′ |. | Ĩ | for all dyadic intervals

IP ′ ⊆ Ĩ with comparable lengths, and hence we can’t apply Journé’s lemma as in [Muscalu et al. 2004a]
either. By making use of the L2 sizes and L2 energies estimates of the trilinear forms, the almost
orthogonality of wave packets associated with different tiles of distinct trees and the decay assumptions on
the symbols, we are able to overcome these difficulties in the proof of Theorems 1.3 and 1.5 in biparameter
settings.

Nevertheless, in the proof of Theorem 1.5 in general d-parameter settings (d ≥ 3), one easily observes
that the generic decomposition will destroy the perfect orthogonality of wave packets associated with
distinct tiles which have disjoint frequency intervals in both the x1 and x2 directions, thus we can’t
apply the generic decomposition to extend the results of Theorem 1.5 to higher parameters d ≥ 3 as in
[Muscalu et al. 2006]. For the proof of Theorem 1.3, we are able to apply the generic decomposition
lemma (Lemma 4.1) to the d−1 variables x1, . . . , xd−1. Although one can’t obtain that supp83,`

P̃ ′3
⊗83

P ′′3
is entirely contained in the exceptional set U as in [Muscalu et al. 2006], one can observe that the support
set is contained in U in all the variables x1, . . . , xd−1, but not the last, xd . Therefore, we only need to
consider the distance from the support set to the set E ′3 in the xd direction and obtain enough decay factors
for summation; the extension of the proof to the general d-parameter (d ≥ 3) cases is straightforward.

The rest of this paper is organized as follows. In Section 2 we reduce the proof of Theorem 1.3 and
Theorem 1.5 to proving restricted weak type estimates of discrete bilinear model operators 5EP and 5̃ε

EP

(Proposition 2.17). Section 3 is devoted to giving a review of the definitions and useful properties about
trees, L2 sizes and L2 energies introduced in [Muscalu et al. 2004b]. In Sections 4 and 5 we carry
out the proof of Proposition 2.17, which completes the proof of our main theorems, Theorem 1.3 and
Theorem 1.5, respectively.

2. Reduction to restricted weak type estimates of discrete bilinear model operators 5EP
and 5̃ε

EP

2A. Discretization. As we can see from the study of multiparameter and multilinear Coifman–Meyer
multiplier operators (see, e.g., [Muscalu et al. 2002; 2004a; 2004b; 2006]), a standard approach to obtain
L p estimates of bilinear operators T (d)

m and T (2)
m̃ε is to reduce them into discrete sums of inner products

with wave packets (see [Thiele 2006]).

2A1. Discretization for bilinear, biparameter operators T (2)
m with 01={(0, 0)}. We will use the following

discretization procedure. First, we need to decompose the symbol m(ξ) in a natural way. To this end, for
the first spatial variable x1, we decompose the region {ξ̄1 = (ξ

1
1 , ξ

1
2 ) ∈ R2

\ {(0, 0)}} by using Whitney
squares with respect to the singularity point {ξ 1

1 = ξ
1
2 = 0}, while, for the last spatial variable x2, we

decompose the region {ξ̄2 = (ξ
2
1 , ξ

2
2 ) ∈ R2

: ξ 2
1 6= ξ

2
2 } by using Whitney squares with respect to the

singularity line 02 = {ξ
2
1 = ξ

2
2 }. In order to describe our discretization procedure clearly, let us first recall

some standard notation and definitions in [Muscalu et al. 2004b].
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An interval I on the real line R is called dyadic if it is of the form I = 2−k
[n, n+1] for some k, n ∈ Z.

An interval is said to be a shifted dyadic interval if it is of the form 2−k
[ j + α, j + 1+ α] for some

k, j ∈ Z and α ∈
{
0, 1

3 ,−
1
3

}
. A shifted dyadic cube is a set of the form Q = Q1× Q2× Q3, where each

Q j is a shifted dyadic interval and they all have the same length. A shifted dyadic quasicube is a set
Q = Q1× Q2× Q3, where Q j ( j = 1, 2, 3) are shifted dyadic intervals satisfying the less restrictive
condition |Q1| ' |Q2| ' |Q3|. One easily observes that, for every cube Q ⊆ R3, there exists a shifted
dyadic cube Q̃ such that Q ⊂ 7

10 Q̃ (the cube having the same center as Q̃ but with side length 7
10 that

of Q̃) and diam(Q)' diam(Q̃).
The same terminology will also be used in the plane R2. The only difference is that the previous cubes

become squares. For any cube or square Q, we will denote the side length of Q by `(Q) and denote the
reflection of Q with respect to the origin by −Q hereafter.

Definition 2.1 [Muscalu and Schlag 2013; Muscalu et al. 2006]. For J ⊆ R an arbitrary interval, we say
that a smooth function 8J is a bump adapted to J if and only if the following inequalities hold:

|8
(l)
J (x)|.l,α

1
|J |l
·

1
(1+ dist(x, J )/|J |)α

(2-1)

for every integer α ∈N and for sufficiently many derivatives l ∈N. If 8J is a bump adapted to J , we say
that |J |−

1
28J is an L2-normalized bump adapted to J .

Now let ϕ ∈ S(R) be an even Schwartz function such that supp ϕ̂ ⊆
[
−

3
16 ,

3
16

]
and ϕ̂(ξ) = 1

on
[
−

1
6 ,

1
6

]
, and define ψ ∈ S(R) to be the Schwartz function whose Fourier transform satisfies

ψ̂(ξ) := ϕ̂(ξ/4) − ϕ̂(ξ/2) and supp ψ̂ ⊆
[
−

3
4 ,−

1
3

]
∪
[ 1

3 ,
3
4

]
, such that 0 ≤ ϕ̂(ξ), ψ̂(ξ) ≤ 1. Then,

for every integer k ∈ Z, we define ϕ̂k , ψ̂k ∈ S(R) by

ϕ̂k(ξ) := ϕ̂

(
ξ

2k

)
, ψ̂k(ξ) := ψ̂

(
ξ

2k

)
= ϕ̂k+2(ξ)− ϕ̂k+1(ξ) (2-2)

and observe that

supp ϕ̂k ⊆
[
−

3
16 · 2

k, 3
16 · 2

k], supp ψ̂k ⊆
[
−

3
4 · 2

k,− 1
3 · 2

k]
∪
[1

3 · 2
k, 3

4 · 2
k],

and supp ψ̂k ∩ supp ψ̂k′ =∅ for any integers k, k ′ ∈ Z such that |k− k ′| ≥ 2, and supp ϕ̂ ∩ supp ψ̂k =∅
for any integer k ≥ 0. One easily obtains the homogeneous Littlewood–Paley dyadic decomposition

1=
∑
k∈Z

ψ̂k(ξ) for all ξ ∈ R \ {0} (2-3)

and inhomogeneous Littlewood–Paley dyadic decomposition

1= ϕ̂(ξ)+
∑

k≥−1

ψ̂k(ξ) for all ξ ∈ R. (2-4)

As a consequence, we get a decomposition for the product 1(ξ 1
1 , ξ

1
2 )= 1(ξ 1

1 ) · 1(ξ
1
2 ) as follows:

1(ξ 1
1 , ξ

1
2 )=

∑
k′∈Z

ϕ̂k′(ξ
1
1 )ψ̂k′(ξ

1
2 )+

∑
k′∈Z

ψ̂k′(ξ
1
1 )
ˆ̃
ψk′(ξ

1
2 )+

∑
k′∈Z

ψ̂k′(ξ
1
1 )ϕ̂k′(ξ

1
2 ) (2-5)
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for every (ξ 1
1 , ξ

1
2 ) 6= (0, 0), where

ˆ̃
ψk′ :=

∑
|k−k′|≤1, k∈Z

ψ̂k for all k ′ ∈ Z.

By breaking the characteristic function of the plane (ξ 1
1 , ξ

1
2
) into finite sums of smoothed versions of

characteristic functions of cones as in (2-5), we can decompose the operator T (2)
m into a finite sum of

several parts in the x1 direction. Since all the operators obtained in this decomposition can be treated in
the same way, we will only discuss one of them in detail. More precisely, let

Q̃′ :=
{

Q̃′ = Q̃′1× Q̃′2 ⊆ R2
: Q̃′1 := 2k′[

−
1
2 ,

1
2

]
, Q̃′2 := 2k′[ 1

24 ,
25
24

]
for all k ′ ∈ Z

}
. (2-6)

For each square Q̃′ ∈ Q̃′, we define bump functions φQ̃′i ,i
(i = 1, 2) adapted to intervals Q̃′i and satisfying

supp φQ̃′i ,i
⊆

9
10 Q̃′i by

φQ̃′1,1
(ξ) := ϕ̂

(
ξ

`(Q̃′)

)
= ϕ̂k′(ξ) (2-7)

and

φQ̃′2,2
(ξ) := ψ̂

(
ξ

`(Q̃′)

)
·χ{ξ>0} = ψ̂k′(ξ) ·χ{ξ>0}, (2-8)

respectively, and finally define smooth bump functions φQ̃′ adapted to Q̃′ and satisfying suppφQ̃′ ⊆
9
10 Q̃′

by
φQ̃′(ξ

1
1 , ξ

1
2 ) := φQ̃′1,1

(ξ 1
1 ) ·φQ̃′2,2

(ξ 1
2 ). (2-9)

Without loss of generality, we will only consider the smoothed characteristic function of the cone
{(ξ 1

1 , ξ
1
2 ) ∈ R2

: |ξ 1
1 |. |ξ

1
2 |, ξ

1
2 > 0} in the decomposition (2-5) from now on, which is defined by∑

Q̃′∈Q̃′

φQ̃′(ξ
1
1 , ξ

1
2 ). (2-10)

As to the x2 direction, we consider the collection Q′′ of all shifted dyadic squares Q′′ = Q′′1 × Q′′2
satisfying

Q′′ ⊆ {(ξ 2
1 , ξ

2
2 ) ∈ R2

: ξ 2
1 6= ξ

2
2 }, dist(Q′′, 02)' 104 diam(Q′′). (2-11)

We can split the collection Q′′ into two disjoint subcollections, that is, define

Q′′I := {Q
′′
∈Q′′ : Q′′ ⊆ {ξ 2

1 < ξ
2
2 }}, Q′′II := {Q

′′
∈Q′′ : Q′′ ⊆ {ξ 2

1 > ξ
2
2 }}. (2-12)

Since the set of squares
{ 7

10 Q′′ : Q′′ ∈Q′′
}

also forms a finitely overlapping cover of the region {ξ 2
1 6= ξ

2
2 },

we can apply a standard partition of unity and write the symbol χ
{ξ2

1 6=ξ
2
2 }

as

χ
{ξ2

1 6=ξ
2
2 }
=

∑
Q′′∈Q′′

φQ′′(ξ
2
1 , ξ

2
2 )=

( ∑
Q′′∈Q′′I

+

∑
Q′′∈Q′′II

)
φQ′′(ξ

2
1 , ξ

2
2 )= χ{ξ2

1<ξ
2
2 }
+χ
{ξ2

1>ξ
2
2 }
, (2-13)

where each φQ′′ is a smooth bump function adapted to Q′′ and supported in 8
10 Q′′.
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One can easily observe that we only need to discuss in detail one term in the decomposition (2-13),
since the other term can be treated in the same way. Without loss of generality, we will only consider the
first term in (2-13), that is, the characteristic function χ

{ξ2
1<ξ

2
2 }

of the upper half plane with respect to the
singularity line 02, which can be written as

χ
{ξ2

1<ξ
2
2 }
=

∑
Q′′∈Q′′I

φQ′′(ξ
2
1 , ξ

2
2 ). (2-14)

In a word, we only need to consider the bilinear operator T (2)
m,(lh,I) given by

T (2)
m,(lh,I)( f1, f2)(x) :=

∑
Q̃′∈Q̃′

Q′′∈Q′′I

∫
R4

m(ξ)φQ̃′(ξ̄1)φQ′′(ξ̄2) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ (2-15)

from now on, and the proof of Theorem 1.3 can be reduced to proving the L p estimates

‖T (2)
m,(lh,I)( f1, f2)‖L p(R2) .p,p1,p2,B ‖ f1‖L p1 (R2) · ‖ f2‖L p2 (R2) (2-16)

as long as 1< p1, p2 ≤∞ and 0< 1
p =

1
p1
+

1
p2
< 3

2 .
On one hand, since ξ 1

1 ∈ suppφQ̃′1,1
⊆ `(Q̃′)

[
−

3
16 ,

3
16

]
and ξ 1

2 ∈ suppφQ̃′2,2
⊆ `(Q̃′)

[ 1
3 ,

3
4

]
, it follows

that−ξ 1
1 −ξ

1
2 ∈ `(Q̃

′)
[
−

15
16 ,−

7
48

]
, and, as a consequence, there exists an interval Q̃′3 := `(Q̃

′)
[
−

25
24 ,−

1
24

]
and a bump function φQ̃′3,3

adapted to Q̃′3 such that suppφQ̃′3,3
⊆ `(Q̃′)

[
−

23
24 ,−

1
8

]
⊆

9
10 Q̃′3 and φQ̃′3,3

≡ 1
on `(Q̃′)

[
−

15
16 ,−

7
48

]
.

On the other hand, observe that there exist bump functions φQ′′i ,i (i = 1, 2) adapted to the shifted
dyadic interval Q′′i such that suppφQ′′i ,i ⊆

9
10 Q′′i and φQ′′i ,i ≡ 1 on 8

10 Q′′i (i = 1, 2), respectively, and
suppφQ′′ ⊆

8
10 Q′′, thus one has φQ′′1,1 · φQ′′2,2 ≡ 1 on suppφQ′′ . Since ξ 2

1 ∈ suppφQ′′1,1 ⊆
9

10 Q′′1 and
ξ 2

2 ∈ suppφQ′′2,2 ⊆
9
10 Q′′2, it follows that −ξ 2

1 − ξ
2
2 ∈ −

9
10 Q′′1 −

9
10 Q′′2, and, as a consequence, one can

find a shifted dyadic interval Q′′3 with the property that − 9
10 Q′′1 −

9
10 Q′′2 ⊆

7
10 Q′′3 and also satisfying

|Q′′1| = |Q
′′

2| ' |Q
′′

3|. In particular, there exists a bump function φQ′′3,3 adapted to Q′′3 and supported in
9

10 Q′′3 such that φQ′′3,3 ≡ 1 on − 9
10 Q′′1 −

9
10 Q′′2.

We denote by Q̃′ the collection of all cubes Q̃′ := Q̃′1× Q̃′2× Q̃′3 with Q̃′1× Q̃′2 ∈ Q̃′ and Q̃′3 defined
as above, and denote by Q′′ the collection of all shifted dyadic quasicubes Q′′ := Q′′1 × Q′′2 × Q′′3 with
Q′′1 × Q′′2 ∈Q′′I and Q′′3 defined as above.

Definition 2.2 [Muscalu et al. 2004b]. We say that a collection of shifted dyadic quasicubes (cubes) is
sparse if and only if, for every j = 1, 2, 3:

(i) If Q and Q̃ belong to this collection and |Q j |< |Q̃ j |, then 108
|Q j | ≤ |Q̃ j |.

(ii) If Q and Q̃ belong to this collection and |Q j | = |Q̃ j |, then 108 Q j ∩ 108 Q̃ j =∅.

In fact, it is not difficult to see that the collection Q′′ can be split into a sum of finitely many sparse
collection of shifted dyadic quasicubes. Therefore, we can assume from now on that the collection Q′′ is
sparse.

Assuming this we then observe that, for any Q′′ in such a sparse collection Q′′, there exists a unique
shifted dyadic cube Q̃′′ in R3 such that Q′′ ⊆ 7

10 Q̃′′ and with the property that diam(Q′′)' diam(Q̃′′).
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This allows us in particular to assume further that Q′′ is a sparse collection of shifted dyadic cubes (that
is, |Q′′1| = |Q

′′

2| = |Q
′′

3| = `(Q
′′)).

Now consider the trilinear form3
(2)
m,(lh,I)( f1, f2, f3) associated to T (2)

m,(lh,I)( f1, f2), which can be written
as

3
(2)
m,(lh,I)( f1, f2, f3)

:=
∫

R2
T (2)

m,(lh,I)( f1, f2)(x) f3(x) dx

=

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∫
ξ1+ξ2+ξ3=0

m Q̃′,Q′′(ξ1, ξ2, ξ3)

3∏
i=1

( fi ∗ (φ̌Q̃′i ,i
⊗ φ̌Q′′i ,i ))

∧(ξi ) dξ1 dξ2 dξ3, (2-17)

where ξi = (ξ
1
i , ξ

2
i ) for i = 1, 2, 3, while

m Q̃′,Q′′(ξ1, ξ2, ξ3) := m(ξ1, ξ2) · (φ̃Q̃′ ⊗ (φQ′′1×Q′′2 · φ̃Q′′3,3))(ξ1, ξ2, ξ3), (2-18)

where φ̃Q̃′ is an appropriate smooth function of (ξ 1
1 , ξ

1
2 , ξ

1
3 ) which is supported on a slightly larger

cube (with a constant magnification independent of `(Q̃′)) than supp(φQ̃′1,1
(ξ 1

1 )φQ̃′2,2
(ξ 1

2 )φQ̃′3,3
(ξ 1

3 )) and
equals 1 on supp(φQ̃′1,1

(ξ 1
1 )φQ̃′2,2

(ξ 1
2 )φQ̃′3,3

(ξ 1
3 )), the function φQ′′1×Q′′2 (ξ

2
1 , ξ

2
2 ) is one term of the partition

of unity defined in (2-14), and φ̃Q′′3,3 is an appropriate smooth function of ξ 2
3 supported on a slightly

larger interval (with a constant magnification independent of `(Q′′)) than suppφQ′′3,3 which equals 1 on
suppφQ′′3,3. We can decompose m Q̃′,Q′′(ξ1, ξ2, ξ3) as a Fourier series,

m Q̃′,Q′′(ξ1, ξ2, ξ3)=
∑

En1,En2,En3∈Z2

C Q̃′,Q′′

En1,En2,En3
e2π i(n′1,n

′

2,n
′

3)·(ξ
1
1 ,ξ

1
2 ,ξ

1
3 )/`(Q̃

′)e2π i(n′′1,n
′′

2,n
′′

3)·(ξ
2
1 ,ξ

2
2 ,ξ

2
3 )/`(Q

′′), (2-19)

where the Fourier coefficients C Q̃′,Q′′

En1,En2,En3
are given by

C Q̃′,Q′′

En1,En2,En3
=

∫
R6

m Q̃′,Q′′
(
(`(Q̃′)ξ 1

1 , `(Q
′′)ξ 2

1 ), (`(Q̃
′)ξ 1

2 , `(Q
′′)ξ 2

2 ), (`(Q̃
′)ξ 1

3 , `(Q
′′)ξ 2

3 )
)

× e−2π i(En1·ξ1+En2·ξ2+En3·ξ3) dξ1 dξ2 dξ3. (2-20)

Then, by a straightforward calculation, we can rewrite (2-17) as

3
(2)
m,(lh,I)( f1, f2, f3)

=

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∑
En1,En2,En3∈Z2

C Q̃′,Q′′

En1,En2,En3

∫
R2

3∏
j=1

( f j ∗ (φ̌Q̃′j , j ⊗ φ̌Q′′j , j ))

(
x −

( n′j
`(Q̃′)

,
n′′j

`(Q′′)

))
dx . (2-21)

Definition 2.3 [Muscalu et al. 2004b; Thiele 2006]. An arbitrary dyadic rectangle of area 1 in the phase-
space plane is called a Heisenberg box or tile. Let P := IP×ωP be a tile. An L2-normalized wave packet
on P is a function 8P which has Fourier support supp 9̂P ⊆

9
10ωP and obeys the estimates

|8P(x)|. |IP |
−

1
2

(
1+

dist(x, IP)

|IP |

)−M
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for all M > 0, where the implicit constant depends on M .

Now we define φ
n′i
Q̃′i ,i
:= e2π in′i ξ

1
i /`(Q̃

′)
· φQ̃′i ,i

and φ
n′′i
Q′′i ,i
:= e2π in′′i ξ

2
i /`(Q

′′)
· φQ′′i ,i for i = 1, 2, 3. Since

any Q̃′ ∈ Q̃′ and Q′′ ∈ Q′′ are both shifted dyadic cubes, there exist integers k ′, k ′′ ∈ Z such that
`(Q̃′) = |Q̃′1| = |Q̃

′

2| = |Q̃
′

3| = 2k′ and `(Q′′) = |Q′′1| = |Q
′′

2| = |Q
′′

3| = 2k′′ , respectively. By splitting
the integral region R2 into the union of unit squares, using the L2-normalization procedure and simple
calculations, we can rewrite (2-21) as
3
(2)
m,(lh,I)( f1, f2, f3)

=

∑
En1,En2,En3∈Z2

∑
Q̃′∈ Q̃′
Q′′∈Q′′

∫ 1

0

∫ 1

0

∑
Ĩ ′ dyadic,
| Ĩ ′|=2−k′

∑
I ′′ dyadic,
|I ′′|=2−k′′

C Q̃′,Q′′

En1,En2,En3

| Ĩ ′|
1
2 × |I ′′|

1
2

3∏
j=1

〈 f j , φ̌
n′j ,ν

′

Ĩ ′,Q̃′j , j
⊗ φ̌

n′′j ,ν
′′

I ′′,Q′′j , j 〉 dν
′ dν ′′

=:

∑
En1,En2,En3∈Z2

∫ 1

0

∫ 1

0

∑
EP:=P̃ ′⊗P ′′∈EP

CQ EP ,En1,En2,En3

|I EP |
1
2

3∏
j=1

〈 f j ,8
j,En j ,ν

EPj
〉 dν, (2-22)

where 〈 · , · 〉 denotes the complex scalar L2 inner product, and we have:

• Fourier coefficients CQ EP ,En1,En2,En3 := C Q̃′,Q′′

En1,En2,En3
;

• tritiles P̃ ′ := (P̃ ′1, P̃ ′2, P̃ ′3) and P ′′ := (P ′′1 , P ′′2 , P ′′3 );

• tiles P̃ ′i := I P̃ ′i
×ωP̃ ′i

, where I P̃ ′i
:= Ĩ ′= 2−k′

[l ′, l ′+1]=: I P̃ ′ and the frequency intervals are ωP̃ ′i
:= Q̃′i

for i = 1, 2, 3;

• tiles P ′′j := IP ′′j ×ωP ′′j , where IP ′′j := I ′′ = 2−k′′
[l ′′, l ′′ + 1] =: IP ′′ and the frequency intervals are

ωP ′′j := Q′′j for j = 1, 2, 3;

• frequency cubes Q P̃ ′ := ωP̃ ′1
×ωP̃ ′2

×ωP̃ ′3
and Q P ′′ := ωP ′′1 ×ωP ′′2 ×ωP ′′3 ;

• P̃′ denotes a collection of such tritiles P̃ ′ and P′′ denotes a collection of such tritiles P ′′;

• bitiles EP1, EP2 and EP3 defined by

EP1 := (P̃ ′1, P ′′1 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[

−
1
2 ,

1
2

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′1
)
,

EP2 := (P̃ ′2, P ′′2 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[ 1

24 ,
25
24

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′2
)
,

EP3 := (P̃ ′3, P ′′3 )=
(
2−k′
[l ′, l ′+ 1]× 2k′[

−
25
24 ,−

1
24

]
, 2−k′′

[l ′′, l ′′+ 1]× Q′′3
)
;

• the biparameter tritile EP := P̃ ′⊗ P ′′ = ( EP1, EP2, EP3);

• rectangles I EPi
:= I P̃ ′i

× IP ′′i = I P̃ ′ × IP ′′ =: I EP for i = 1, 2, 3, and hence |I EP | = |I P̃ ′ × IP ′′ | = |I EP1
| =

|I EP2
| = |I EP3

| = 2−k′
· 2−k′′ ;

• the double frequency cube Q EP := (Q P̃ ′, Q P ′′)= (ωP̃ ′1
×ωP̃ ′2

×ωP̃ ′3
, ωP ′′1 ×ωP ′′2 ×ωP ′′3 );

• EP := P̃′×P′′ denotes a collection of such biparameter tritiles EP;

• L2-normalized wave packets 8
i,n′i ,ν

′

P̃ ′i
associated with the Heisenberg boxes P̃ ′i defined by

8
i,n′i ,ν

′

P̃ ′i
(x1) := φ̌

n′i ,ν
′

Ĩ ′,Q̃′i ,i
(x1) := 2−k′/2φ̌

n′i
Q̃′i ,i
(2−k′(l ′+ ν ′)− x1) for i = 1, 2, 3;
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• L2-normalized wave packets 8
i,n′′i ,ν

′′

P ′′i
associated with the Heisenberg boxes P ′′i defined by

8
i,n′′i ,ν

′′

P ′′i
(x2) := φ̌

n′′i ,ν
′′

I ′′,Q′′i ,i
(x2) := 2−k′′/2φ̌

n′′i
Q′′i ,i

(2−k′′(l ′′+ ν ′′)− x2) for i = 1, 2, 3;

• smooth bump functions 8i,Eni ,ν

EPi
:=8

i,n′i ,ν
′

P̃ ′i
⊗8

i,n′′i ,ν
′′

P ′′i
for i = 1, 2, 3.

We have the following rapid decay estimates of the Fourier coefficients CQ EP ,En1,En2,En3 with respect to the
parameters En1, En2, En3 ∈ Z2:

Lemma 2.4. The Fourier coefficients CQ EP ,En1,En2,En3 satisfy estimates

|CQ EP ,En1,En2,En3 |.
3∏

j=1

1
(1+ |En j |)M ·C|I P̃ ′ |

(2-23)

for any biparameter tritile EP ∈ EP, where M is sufficiently large and the sequence Ck′ := C|I P̃ ′ |
for

|I P̃ ′ | = 2−k′ (k ′ ∈ Z) satisfies ∑
k′∈Z

Ck′ ≤ B <+∞. (2-24)

Proof. Let `(Q P̃ ′)= 2k′ and `(Q P ′′)= 2k′′ for k ′, k ′′ ∈ Z. For any En1, En2, En3 ∈ Z2 and EP ∈ EP, we deduce
from (2-18) and (2-20) that

CQ EP ,En1,En2,En3

=

∫
R6

m Q P̃ ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))e

−2π i(En1·ξ1+En2·ξ2+En3·ξ3) dξ1 dξ2 dξ3, (2-25)

where

m Q P̃ ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))

:= m(2k′ ξ̄1, 2k′′ ξ̄2)φ̃Q P̃ ′
(2k′ξ 1

1 , 2k′ξ 1
2 , 2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ). (2-26)

Since supp(φ̃Q P̃ ′
(ξ 1

1 , ξ
1
2 , ξ

1
3 )φωP ′′1

×ωP ′′2
(ξ̄2)φ̃ωP ′′3

,3(ξ
2
3 ))⊆ Q P̃ ′ × Q P ′′ , we have that

supp(φ̃Q P̃ ′
(2k′ξ 1

1 , 2k′ξ 1
2 , 2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ))⊆ Q0
P̃ ′
× Q0

P ′′,

where the cubes Q0
P̃ ′

and Q0
P ′′ are defined by

Q0
P̃ ′
= ω0

P̃ ′1
×ω0

P̃ ′2
×ω0

P̃ ′3
:= {(ξ 1

1 , ξ
1
2 , ξ

1
3 ) ∈ R3

: (2k′ξ 1
1 , 2k′ξ 1

2 , 2k′ξ 1
3 ) ∈ Q P̃ ′}, (2-27)

Q0
P ′′ = ω

0
P ′′1
×ω0

P ′′2
×ω0

P ′′3
:= {(ξ 2

1 , ξ
2
2 , ξ

2
3 ) ∈ R3

: (2k′′ξ 2
1 , 2k′′ξ 2

2 , 2k′′ξ 2
3 ) ∈ Q P ′′} (2-28)

and satisfy |Q0
P̃ ′
| ' |Q0

P ′′ | ' 1. From the properties of the Whitney squares we constructed above, one
obtains that dist(2k′ ξ̄1, 01)' 2k′ for any ξ̄1 ∈ ω

0
P̃ ′1
×ω0

P̃ ′2
and dist(2k′′ ξ̄2, 02)' 2k′′ for any ξ̄2 ∈ ω

0
P ′′1
×ω0

P ′′2
.
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One can deduce from (2-25), (2-26) and integrating by parts sufficiently many times that

|CQ EP ,En1,En2,En3 |

.
3∏

j=1

1
(1+ |En j |)M

×

∫
Q0

P̃ ′
×Q0

P ′′

∣∣∂α1
ξ1
∂
α2
ξ2
∂
α3
ξ3

[
m Q P̃ ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))
]∣∣ dξ1 dξ2 dξ3

.
3∏

j=1

1
(1+ |En j |)M

∫
ω0

P ′′1
×ω0

P ′′2

dist(2k′′ ξ̄2, 02)
|α′′|

∫
ω0

P̃ ′1
×ω0

P̃ ′2

dist(2k′ ξ̄1, 01)
|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(2k′ ξ̄1, 2k′′ ξ̄2)| d ξ̄1 d ξ̄2

.
3∏

j=1

1
(1+ |En j |)M ·

1
`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

dist(ξ̄2, 02)
|α′′|

∫
ωP̃ ′1
×ωP̃ ′2

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

=:

3∏
j=1

1
(1+ |En j |)M ·C|I P̃ ′ |

,

where the multi-indices αi := (α
1
i , α

2
i ) for i = 1, 2, 3 and |α1| = |α2| = |α3| = M are sufficiently large,

the multi-indices α′ := (α′1, α
′

2, α
′

3), α
′′
:= (α′′1 , α

′′

2 , α
′′

3 ) with α′i ≤ α
1
i and α′′j ≤ α

2
j for i , j = 1, 2, 3. This

proves the estimates (2-23).
Moreover, for |I P̃ ′ | = 2−k′ , we define the sequence Ck′ := C|I P̃ ′ |

(k ′ ∈ Z). From the estimates (1-10)
for symbol m(ξ̄1, ξ̄2), we get that

dist(ξ̄2, 02)
|α′′|
·

∫
R2

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄ )| d ξ̄1 ≤ B <+∞, (2-29)

and hence we can deduce the following summable property for the sequence {Ck′}k′∈Z:

∑
k′∈Z

Ck′ ≤
1

`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

dist(ξ̄2, 02)
|α′′|

∫
⋃

P̃ ′∈P̃′

(ωP̃ ′1
×ωP̃ ′2

)P̃ ′

dist(ξ̄1, 01)
|α′|−2
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

≤
1

`(Q P ′′)2

∫
ωP ′′1
×ωP ′′2

B d ξ̄2 ≤ B <+∞. (2-30)

This ends the proof of the summable estimate (2-24). �

Observe that the rapid decay with respect to the parameters En1, En2, En3 ∈ Z2 in (2-23) is acceptable for
summation, all the functions 8

i,n′i ,ν
′

P̃ ′i
(i = 1, 2, 3) are L2-normalized and are wave packets associated

with the Heisenberg boxes P̃ ′i uniformly with respect to the parameters n′i , and all the functions 8
j,n′′j ,ν

′′

P ′′j
( j = 1, 2, 3) are L2-normalized and are wave packets associated with the Heisenberg boxes P ′′j uniformly
with respect to the parameters n′′j ; therefore we only need to consider from now on the part of the trilinear
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form 3
(2)
m,(lh,I)( f1, f2, f3) defined in (2-22) corresponding to En1 = En2 = En3 = E0,

3̇
(2)
m,(lh,I)( f1, f2, f3) :=

∫ 1

0

∫ 1

0

∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1,ν
EP1
〉〈 f2,8

2,ν
EP2
〉〈 f3,8

3,ν
EP3
〉 dν, (2-31)

where CQ EP := CQ EP ,E0,E0,E0
, we have parameters ν = (ν ′, ν ′′) and 8i,ν

EPi
:=8

i,E0,ν
EPi

for i = 1, 2, 3.

Remark 2.5. We should point out two important properties of the tritiles in P′′ (see [Muscalu and Schlag
2013; Muscalu et al. 2004b]). First, if one knows the position of P ′′1 , P ′′2 or P ′′3 , then one knows precisely
the positions of the other two as well. Second, if one assumes for instance that all the frequency intervals
ωP ′′1 of the P ′′1 tiles intersect each other (say, they are nonlacunary about a fixed frequency ξ0), then
the frequency intervals ωP ′′2 of the corresponding P ′′2 tiles are disjoint and lacunary around ξ0 (that is,
dist(ξ0, ωP ′′2 )' |ωP ′′2 | for all P ′′ ∈ P′′). A similar conclusion can also be drawn for the P ′′3 tiles modulo
certain translations. This observation motivates the introduction of trees in Definition 3.1.

We review the following definitions from [Muscalu et al. 2004b].

Definition 2.6. A collection P of tritiles is called sparse if all tritiles in P have the same shift and the
sets {Q P : P ∈ P} and {IP : P ∈ P} are sparse.

Definition 2.7. Let P and P ′ be tiles. Then we write:

(i) P ′ < P if IP ′ ( IP and ωP ⊆ 3ωP ′ ;

(ii) P ′ ≤ P if P ′ < P or P ′ = P;

(iii) P ′ . P if IP ′ ⊆ IP and ωP ⊆ 106ωP ′ ;

(iv) P ′ .′ P if P ′ . P but P ′ � P .

Definition 2.8. A collection P of tritiles is said to have rank 1 if the following properties are satisfied for
all P , P ′ ∈ P:

(i) If P 6= P ′, then Pj 6= P ′j for 1≤ j ≤ 3.

(ii) If ωPj = ωP ′j for some j , then ωPj = ωP ′j for all 1≤ j ≤ 3.

(iii) If P ′j ≤ Pj for some j , then P ′j . Pj for all 1≤ j ≤ 3.

(iv) If in addition to P ′j ≤ Pj one also assumes that 108
|IP ′ | ≤ |IP |, then one has P ′i .

′ Pi for every i 6= j .

It is not difficult to see that the collection of tritiles P′′ can be written as a finite union of sparse
collections of rank 1; thus we may assume further that P′′ is a sparse collection of rank 1 from now on.

The bilinear operator corresponding to the trilinear form 3̇
(2)
m,(lh,I)( f1, f2, f3) can be written as

5̇EP( f1, f2)(x)=
∫ 1

0

∫ 1

0

∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1,ν
EP1
〉〈 f2,8

2,ν
EP2
〉8

3,ν
EP3
(x) dν. (2-32)

Since 5̇EP( f1, f2) is an average of some discrete bilinear model operators depending on the parameters
ν = (ν1, ν2) ∈ [0, 1]2, it is enough to prove the Hölder-type L p estimates for each of them, uniformly
with respect to parameters ν = (ν1, ν2). From now on, we will do this in the particular case when the
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parameters ν = (ν1, ν2)= (0, 0), but the same argument works in general. By Fatou’s lemma, we can also
replace the summation in the definition (2-32) of 5̇EP( f1, f2) on the collection EP= P̃′×P′′ by arbitrary
finite collections P̃′ and P′′ of tritiles, and prove the estimates are uniform with respect to different choices
of the set EP.

Therefore, one can reduce the bilinear operator 5̇EP further to the discrete bilinear model operator 5EP
defined by

5EP( f1, f2)(x) :=
∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉83
EP3
(x), (2-33)

where 8 j
EPj
:= 8

j,(0,0)
EPj

for j = 1, 2, 3, respectively, EP = P̃′ ×P′′ with an arbitrary finite collection P̃′

of tritiles and an arbitrary finite sparse collection P′′ of rank 1. As discussed above, we now reach a
conclusion that the proof of Theorem 1.3 can be reduced to proving the following L p estimates for
discrete bilinear model operators 5EP:

Proposition 2.9. If the finite set EP is chosen arbitrarily, as above, then the operator 5EP given by (2-33)
maps L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1 < p1, p2 ≤ ∞ satisfying 1

p =
1
p1
+

1
p2

and
2
3 < p < ∞. Moreover, the implicit constants in the bounds depend only on p1, p2, p, B and are
independent of the particular choice of the finite collection EP.

2A2. Discretization for bilinear, biparameter operators T (2)
m̃ε . We will use the discretization procedure

as follows. First, we need to decompose the symbol m̃ε(ξ) in a natural way. To this end, for both the
spatial variables xi (i = 1, 2), we decompose the regions {ξ̄i = (ξ

i
1, ξ

i
2) ∈ R2

: ξ i
1 6= ξ

i
2} by using Whitney

squares with respect to the singularity lines 0i = {ξ
i
1 = ξ

i
2} (i = 1, 2) respectively. Since the Whitney

dyadic square decomposition for the x2 direction has already been described in (2-11), (2-12), (2-13) and
(2-14) in Section 2A1, we only need to discuss the Whitney decomposition with respect to the singularity
line 01 in the x1 direction.

To be specific, we consider the collection Q′ of all shifted dyadic squares Q′ = Q′1× Q′2 satisfying

Q′ ⊆ {(ξ 1
1 , ξ

1
2 ) ∈ R2

: ξ 1
1 6= ξ

1
2 }, dist(Q′, 01)' 104 diam(Q′). (2-34)

We can split the collection Q′ into two disjoint subcollections, that is, define

Q′I := {Q
′
∈Q′ : Q′ ⊆ {ξ 1

1 < ξ
1
2 }}, Q′II := {Q

′
∈Q′ : Q′ ⊆ {ξ 1

1 > ξ
1
2 }}. (2-35)

Since the set of squares { 7
10 Q′ : Q′ ∈Q′} also forms a finitely overlapping cover of the region {ξ 1

1 6= ξ
1
2 },

we can apply a standard partition of unity and write the symbol χ
{ξ1

1 6=ξ
1
2 }

as

χ
{ξ1

1 6=ξ
1
2 }
=

∑
Q′∈Q′

φQ′(ξ
1
1 , ξ

1
2 )=

( ∑
Q′∈Q′I

+

∑
Q′∈Q′II

)
φQ′(ξ

1
1 , ξ

1
2 )= χ{ξ1

1<ξ
1
2 }
+χ
{ξ1

1>ξ
1
2 }
, (2-36)

where each φQ′ is a smooth bump function adapted to Q′ and supported in 8
10 Q′.

Notice that, by splitting the symbol m̃ε(ξ), we can decompose the operator T (2)
m̃ε correspondingly into

a finite sum of several parts, and we only need to discuss one of them in detail. From the decompositions
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(2-13) and (2-36), we obtain that

m̃ε(ξ̄1, ξ̄2)=

( ∑
Q′∈Q′I
Q′′∈Q′′I

+

∑
Q′∈Q′I
Q′′∈Q′′II

+

∑
Q′∈Q′II
Q′′∈Q′′I

+

∑
Q′∈Q′II
Q′′∈Q′′II

)
φQ′(ξ

1
1 , ξ

1
2 )φQ′′(ξ

2
1 , ξ

2
2 ) · m̃

ε(ξ̄1, ξ̄2)

=: m̃ε
I,I(ξ̄1, ξ̄2)+ m̃ε

I,II(ξ̄1, ξ̄2)+ m̃ε
II,I(ξ̄1, ξ̄2)+ m̃ε

II,II(ξ̄1, ξ̄2). (2-37)

One can easily see that we only need to discuss in detail one term in the decomposition (2-37), since the
other terms can be treated in the same way. Without loss of generality, we will only consider the third
term in (2-37), which can be written as

m̃ε
II,I(ξ̄1, ξ̄2) :=

∑
Q′∈Q′II
Q′′∈Q′′I

m̃ε(ξ̄1, ξ̄2)φQ′(ξ
1
1 , ξ

1
2 )φQ′′(ξ

2
1 , ξ

2
2 ). (2-38)

In other words, we only need to consider the bilinear operator T (2)
m̃ε

II,I
given by

T (2)
m̃ε

II,I
( f1, f2)(x) :=

∑
Q′∈Q′II
Q′′∈Q′′I

∫
R4

m̃ε(ξ)φQ′(ξ̄1)φQ′′(ξ̄2) f̂1(ξ1) f̂2(ξ2)e2π i x ·(ξ1+ξ2) dξ (2-39)

from now on, and the proof of Theorem 1.5 can be reduced to proving the following L p estimates for T (2)
m̃ε

II,I
:

‖T (2)
m̃ε

II,I
( f1, f2)‖L p(R2) .ε,p,p1,p2 ‖ f1‖L p1 (R2) · ‖ f2‖L p2 (R2) (2-40)

as long as 1< p1, p2 ≤∞ and 0< 1
p =

1
p1
+

1
p2
< 3

2 .
Observe that there exist bump functions φQ′i ,i (i = 1, 2) adapted to the shifted dyadic interval Q′i such

that suppφQ′i ,i ⊆
9

10 Q′i and φQ′i ,i ≡ 1 on 8
10 Q′i (i = 1, 2) respectively, and suppφQ′ ⊆

8
10 Q′, so one has

φQ′1,1 ·φQ′2,2 ≡ 1 on suppφQ′ . Since ξ 1
1 ∈ suppφQ′1,1 ⊆

9
10 Q′1 and ξ 1

2 ∈ suppφQ′2,2 ⊆
9
10 Q′2, it follows that

−ξ 1
1 − ξ

1
2 ∈ −

9
10 Q′1−

9
10 Q′2, and, as a consequence, one can find a shifted dyadic interval Q′3 with the

property that − 9
10 Q′1−

9
10 Q′2 ⊆

7
10 Q′3 and also satisfying |Q′1| = |Q

′

2| ' |Q
′

3|. In particular, there exists
a bump function φQ′3,3 adapted to Q′3 and supported in 9

10 Q′3 such that φQ′3,3 ≡ 1 on − 9
10 Q′1 −

9
10 Q′2.

Recall that the smooth functions φQ′′j , j ( j = 1, 2, 3) and shifted dyadic intervals Q′′3 have already been
defined in Section 2A1.

We denote by Q′ the collection of all shifted dyadic quasicubes Q′ :=Q′1×Q′2×Q′3 with Q′1×Q′2 ∈Q′II
and Q′3 defined as above, and denote by Q′′ the collection of all shifted dyadic quasicubes Q′′ :=
Q′′1 × Q′′2 × Q′′3 with Q′′1 × Q′′2 ∈Q′′I and Q′′3 defined in Section 2A1.

In fact, it is not difficult to see that the collections Q′ and Q′′ can be split into a sum of finitely many
sparse collection of shifted dyadic quasicubes. Therefore, we can assume from now on that the collections
Q′ and Q′′ are sparse.

Assuming this, we then observe that, for any Q′ in such a sparse collection Q′, there exists a unique
shifted dyadic cube Q̃′ in R3 such that Q′ ⊆ 7

10 Q̃′ and with the property that diam(Q′)' diam(Q̃′). This
allows us in particular to assume further that Q′ is a sparse collection of shifted dyadic cubes (that is,
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|Q′1| = |Q
′

2| = |Q
′

3| = `(Q
′)). Similarly, we can also assume that Q′′ is a sparse collection of shifted

dyadic cubes.
Now consider the trilinear form 3

(2)
m̃ε

II,I
( f1, f2, f3) associated to T (2)

m̃ε
II,I
( f1, f2), which can be written as

3
(2)
m̃ε

II,I
( f1, f2, f3)

:=
∫

R2
T (2)

m̃ε
II,I
( f1, f2)(x) f3(x) dx

=

∑
Q′∈Q′
Q′′∈Q′′

∫
ξ1+ξ2+ξ3=0

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3)

3∏
j=1

( f j ∗ (φ̌Q′j , j ⊗ φ̌Q′′j , j ))
∧(ξ j ) dξ1 dξ2 dξ3, (2-41)

where ξi = (ξ
1
i , ξ

2
i ) for i = 1, 2, 3, while

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3) := m̃ε(ξ1, ξ2) · ((φQ′1×Q′2 · φ̃Q′3,3)⊗ (φQ′′1×Q′′2 · φ̃Q′′3,3))(ξ1, ξ2, ξ3), (2-42)

where φ̃Q′3,3 is an appropriate smooth function of ξ 1
3 which equals 1 on suppφQ′3,3 and is supported on a

slightly larger interval (with a constant magnification independent of `(Q′)) than suppφQ′3,3, and φ̃Q′′3,3

is an appropriate smooth function of ξ 2
3 which equals 1 on suppφQ′′3,3 and is supported on a slightly

larger interval (with a constant magnification independent of `(Q′′)) than suppφQ′′3,3. We can decompose
m̃ε

Q′,Q′′(ξ1, ξ2, ξ3) as a Fourier series,

m̃ε
Q′,Q′′(ξ1, ξ2, ξ3)=

∑
El1,El2,El3∈Z2

C̃ε,Q′,Q′′

El1,El2,El3
e2π i(l ′1,l

′

2,l
′

3)·(ξ
1
1 ,ξ

1
2 ,ξ

1
3 )/`(Q

′)e2π i(l ′′1 ,l
′′

2 ,l
′′

3 )·(ξ
2
1 ,ξ

2
2 ,ξ

2
3 )/`(Q

′′), (2-43)

where the Fourier coefficients Cε,Q′,Q′′

El1,El2,El3
are given by

C̃ε,Q′,Q′′

El1,El2,El3
=

∫
R6

m̃ε
Q′,Q′′

(
(`(Q′)ξ 1

1 , `(Q
′′)ξ 2

1 ), (`(Q
′)ξ 1

2 , `(Q
′′)ξ 2

2 ), (`(Q
′)ξ 1

3 , `(Q
′′)ξ 2

3 )
)

× e−2π i(El1·ξ1+El2·ξ2+El3·ξ3) dξ1 dξ2 dξ3. (2-44)

Then, by a straightforward calculation, we can rewrite (2-41) as

3
(2)
m̃ε

II,I
( f1, f2, f3)

=

∑
Q′∈Q′
Q′′∈Q′′

∑
El1,El2,El3∈Z2

C̃ε,Q′,Q′′

El1,El2,El3

∫
R2

3∏
i=1

( fi ∗ (φ̌Q′i ,i ⊗ φ̌Q′′i ,i ))

(
x −

(
l ′i

`(Q′)
,

l ′′i
`(Q′′)

))
dx . (2-45)

Now we define φ
l ′i
Q′i ,i
:= e2π il ′i ξ

1
i /`(Q

′)
·φQ′i ,i and φ

l ′′i
Q′′i ,i
:= e2π il ′′i ξ

2
i /`(Q

′′)
·φQ′′i ,i for i = 1, 2, 3. Since any

Q′ ∈ Q′ and Q′′ ∈ Q′′ are shifted dyadic cubes, there exist integers k ′, k ′′ ∈ Z such that `(Q′)= |Q′1| =
|Q′2| = |Q

′

3| = 2k′ and `(Q′′)= |Q′′1| = |Q
′′

2| = |Q
′′

3| = 2k′′ , respectively. By splitting the integral region
R2 into the union of unit squares, the L2-normalization procedure and simple calculations, we can
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rewrite (2-45) as

3
(2)
m̃ε

II,I
( f1, f2, f3)

=

∑
El1,El2,El3∈Z2

∑
Q′∈Q′
Q′′∈Q′′

∫ 1

0

∫ 1

0

∑
I ′ dyadic
|I ′|=2−k′

∑
I ′′ dyadic
|I ′′|=2−k′′

C̃ε,Q′,Q′′

El1,El2,El3

|I ′|
1
2 × |I ′′|

1
2

3∏
i=1

〈 fi , φ̌
l ′i ,λ
′

I ′,Q′i ,i
⊗ φ̌

l ′′i ,λ
′′

I ′′,Q′′i ,i
〉 dλ′ dλ′′

=:

∑
El1,El2,El3∈Z2

∫ 1

0

∫ 1

0

∑
EP:=P ′⊗P ′′∈EP

C̃ε

Q EP ,El1,El2,El3

|I EP |
1
2

3∏
i=1

〈 fi ,8
i,Eli ,λ
EPi
〉 dλ, (2-46)

where we have:

• Fourier coefficients C̃ε

Q EP ,El1,El2,El3
:= C̃ε,Q′,Q′′

El1,El2,El3
;

• tritiles P ′ := (P ′1, P ′2, P ′3) and P ′′ := (P ′′1 , P ′′2 , P ′′3 );

• tiles P ′i := IP ′i × ωP ′i , where IP ′i := I ′ = 2−k′
[n′, n′ + 1] =: IP ′ and the frequency intervals are

ωP ′i := Q′i for i = 1, 2, 3;

• tiles P ′′j := IP ′′j ×ωP ′′j , where IP ′′j := I ′′ = 2−k′′
[n′′, n′′+ 1] =: IP ′′ and the frequency intervals are

ωP ′′j := Q′′j for j = 1, 2, 3;

• frequency cubes Q P ′ := ωP ′1 ×ωP ′2 ×ωP ′3 and Q P ′′ := ωP ′′1 ×ωP ′′2 ×ωP ′′3 ;

• P′ denotes a collection of such tritiles P ′ and P′′ denotes a collection of such tritiles P ′′;

• bitiles EP1, EP2 and EP3 defined by

EPi := (P ′i , P ′′i )= (2
−k′
[n′, n′+ 1]× Q′i , 2−k′′

[n′′, n′′+ 1]× Q′′i ) for i = 1, 2, 3;

• the biparameter tritile EP := P ′⊗ P ′′ = ( EP1, EP2, EP3);

• rectangles I EPi
:= IP ′i × IP ′′i = IP ′ × IP ′′ =: I EP for i = 1, 2, 3, and hence |I EP | = |IP ′ × IP ′′ | = |I EP1

| =

|I EP2
| = |I EP3

| = 2−k′
· 2−k′′ ;

• the double frequency cube Q EP := (Q P ′, Q P ′′)= (ωP ′1 ×ωP ′2 ×ωP ′3, ωP ′′1 ×ωP ′′2 ×ωP ′′3 );

• EP := P′×P′′ denotes a collection of such biparameter tritiles EP;

• L2-normalized wave packets 8
i,l ′i ,λ

′

P ′i
associated with the Heisenberg boxes P ′i defined by

8
i,l ′i ,λ

′

P ′i
(x1) := φ̌

l ′i ,λ
′

I ′,Q′i ,i
(x1) := 2−k′/2φ̌

l ′i
Q′i ,i
(2−k′(n′+ λ′)− x1) for i = 1, 2, 3,

• L2-normalized wave packets 8
i,l ′′i ,λ

′′

P ′′i
associated with the Heisenberg boxes P ′′i defined by

8
i,l ′′i ,λ

′′

P ′′i
(x2) := φ̌

l ′′i ,λ
′′

I ′′,Q′′i ,i
(x2) := 2−k′′/2φ̌

l ′′i
Q′′i ,i

(2−k′′(n′′+ λ′′)− x2) for i = 1, 2, 3,

• smooth bump functions 8i,Eli ,λ
EPi
:=8

i,l ′i ,λ
′

P ′i
⊗8

i,l ′′i ,λ
′′

P ′′i
for i = 1, 2, 3.

We have the following rapid decay estimates of the Fourier coefficients C̃ε

Q EP ,El1,El2,El3
with respect to the

parameters El1, El2, El3 ∈ Z2:
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Lemma 2.10. The Fourier coefficients C̃ε

Q EP ,El1,El2,El3
satisfy estimates

|C̃ε

Q EP ,El1,El2,El3
|.

3∏
j=1

1

(1+ |El j |)M
· 〈log2 `(Q P ′)〉

−(1+ε) (2-47)

for any biparameter tritile EP ∈ EP, where M is sufficiently large.

Proof. Let `(Q P ′) = 2k′ and `(Q P ′′) = 2k′′ for k ′, k ′′ ∈ Z. For any ε > 0, El1, El2, El3 ∈ Z2 and EP ∈ EP, we
deduce from (2-42) and (2-44) that

C̃ε

Q EP ,El1,El2,El3

=

∫
R6

m̃ε
Q P ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))e
−2π i(El1·ξ1+El2·ξ2+El3·ξ3) dξ1 dξ2 dξ3, (2-48)

where

m̃ε
Q P ′ ,Q P ′′

((2k′ξ 1
1 , 2k′′ξ 2

1 ), (2
k′ξ 1

2 , 2k′′ξ 2
2 ), (2

k′ξ 1
3 , 2k′′ξ 2

3 ))

:= m̃ε(2k′ ξ̄1, 2k′′ ξ̄2)φωP ′1
×ωP ′2

(2k′ ξ̄1)φ̃ωP ′3
,3(2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ). (2-49)

Since supp(φωP ′1
×ωP ′2

(ξ̄1)φ̃ωP ′3
,3(ξ

1
3 )φωP ′′1

×ωP ′′2
(ξ̄2)φ̃ωP ′′3

,3(ξ
2
3 ))⊆ Q P ′ × Q P ′′ , we have that

supp(φωP ′1
×ωP ′2

(2k′ ξ̄1)φ̃ωP ′3
,3(2k′ξ 1

3 )φωP ′′1
×ωP ′′2

(2k′′ ξ̄2)φ̃ωP ′′3
,3(2k′′ξ 2

3 ))⊆ Q0
P ′ × Q0

P ′′,

where the cubes Q0
P ′ and Q0

P ′′ are defined by

Q0
P ′ = ω

0
P ′1
×ω0

P ′2
×ω0

P ′3
:= {(ξ 1

1 , ξ
1
2 , ξ

1
3 ) ∈ R3

: (2k′ξ 1
1 , 2k′ξ 1

2 , 2k′ξ 1
3 ) ∈ Q P ′}, (2-50)

Q0
P ′′ = ω

0
P ′′1
×ω0

P ′′2
×ω0

P ′′3
:= {(ξ 2

1 , ξ
2
2 , ξ

2
3 ) ∈ R3

: (2k′′ξ 2
1 , 2k′′ξ 2

2 , 2k′′ξ 2
3 ) ∈ Q P ′′} (2-51)

and satisfy |Q0
P ′ | ' |Q

0
P ′′ | ' 1. From the properties of the Whitney squares we constructed above, one

obtains that dist(2k′ ξ̄1, 01)' 2k′ for any ξ̄1 ∈ ω
0
P ′1
×ω0

P ′2
and dist(2k′′ ξ̄2, 02)' 2k′′ for any ξ̄2 ∈ ω

0
P ′′1
×ω0

P ′′2
.

By taking advantage of the estimates (1-13) for symbol m̃ε(ξ̄ ), one can deduce from (2-48), (2-49)
and integrating by parts sufficiently many times that

|C̃ε

Q EP ,El1,El2,El3
|

.
3∏

j=1

1

(1+ |El j |)M

×

∫
Q0

P ′×Q0
P ′′

∣∣∂α1
ξ1
∂
α2
ξ2
∂
α3
ξ3

[
m̃ε

Q P ′ ,Q P ′′
((2k′ξ 1

1 , 2k′′ξ 2
1 ), (2

k′ξ 1
2 , 2k′′ξ 2

2 ), (2
k′ξ 1

3 , 2k′′ξ 2
3 ))
]∣∣ dξ1 dξ2 dξ3

.
3∏

j=1

1

(1+ |El j |)M

∫
ω0

P ′′1
×ω0

P ′′2

dist(2k′′ ξ̄2, 02)
|α′′|

∫
ω0

P ′1
×ω0

P ′2

dist(2k′ ξ̄1, 01)
|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m̃ε(2k′ ξ̄1, 2k′′ ξ̄2)| d ξ̄1 d ξ̄2
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.
3∏

j=1

1

(1+ |El j |)M
·2−2k′2−2k′′

∫
ωP ′′1
×ωP ′′2

∫
ωP ′1
×ωP ′2

dist(ξ̄2, 02)
|α′′|
·dist(ξ̄1, 01)

|α′|
|∂α

′

ξ̄1
∂α
′′

ξ̄2
m̃ε(ξ̄1, ξ̄2)| d ξ̄1 d ξ̄2

.
3∏

j=1

1

(1+ |El j |)M
· 〈log2 `(Q P ′)〉

−(1+ε),

where the multi-indices αi := (α
1
i , α

2
i ) for i = 1, 2, 3 and |α1| = |α2| = |α3| = M are sufficiently large,

the multi-indices α′ := (α′1, α
′

2, α
′

3), α
′′
:= (α′′1 , α

′′

2 , α
′′

3 ) with α′i ≤ α
1
i and α′′j ≤ α

2
j for i , j = 1, 2, 3. This

ends our proof of the estimates (2-47). �

Note that the rapid decay with respect to the parameters El1, El2, El3 ∈ Z2 in (2-47) is acceptable for
summation, all the functions8

i,l ′i ,λ
′

P ′i
(i=1, 2, 3) are L2-normalized and are wave packets associated with the

Heisenberg boxes P ′i uniformly with respect to the parameters l ′i , and all the functions8
j,l ′′j ,λ

′′

P ′′j
( j = 1, 2, 3)

are L2-normalized and are wave packets associated with the Heisenberg boxes P ′′j uniformly with respect
to the parameters l ′′j , therefore we only need to consider from now on the part of the trilinear form
3
(2)
m̃ε

II,I
( f1, f2, f3) defined in (2-46) corresponding to El1 = El2 = El3 = E0,

3̇
(2)
m̃ε

II,I
( f1, f2, f3) :=

∫ 1

0

∫ 1

0

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1,λ
EP1
〉〈 f2,8

2,λ
EP2
〉〈 f3,8

3,λ
EP3
〉 dλ, (2-52)

where C̃ε
Q EP
:= C̃ε

Q EP ,E0,E0,E0
, we have parameters λ= (λ′, λ′′), and 8i,λ

EPi
:=8

i,E0,λ
EPi

for i = 1, 2, 3.
The tritiles P ′= (P ′1, P ′2, P ′3) in the collection P′ also satisfy the same properties (as P ′′ ∈P′′) described

in Remark 2.5. It is not difficult to see that both the collections of tritiles P′ and P′′ can be written as
a finite union of sparse collections of rank 1; thus we may assume further that P′ and P′′ are sparse
collections of rank 1 from now on.

The bilinear operator corresponding to the trilinear form 3̇
(2)
m̃ε

II,I
( f1, f2, f3) can be written as

˙̃
5ε
EP
( f1, f2)(x)=

∫ 1

0

∫ 1

0

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1,λ
EP1
〉〈 f2,8

2,λ
EP2
〉8

3,λ
EP3
(x) dλ. (2-53)

Since ˙̃5ε
EP
( f1, f2) is an average of some discrete bilinear model operators depending on the parameters

λ = (λ1, λ2) ∈ [0, 1]2, it is enough to prove the Hölder-type L p estimates for each of them, uniformly
with respect to parameters λ= (λ1, λ2). From now on, we will do this in the particular case when the
parameters λ= (λ1, λ2)= (0, 0), but the same argument works in general. By Fatou’s lemma, we can also
replace the summation in the definition (2-53) of ˙̃5ε

EP
( f1, f2) on the collection EP= P′×P′′ by arbitrary

finite collections P′ and P′′ of tritiles, and prove the estimates are uniform with respect to different choices
of the set EP.

Definition 2.11. A finite collection EP= P′×P′′ of biparameter tritiles is said to be sparse and of rank 1
if both the finite collections P′ and P′′ are sparse and of rank 1.
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Therefore, one can reduce the bilinear operator ˙̃5ε
EP

further to the discrete bilinear model operator 5̃ε
EP

defined by

5̃ε
EP
( f1, f2)(x) :=

∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉83
EP3
(x), (2-54)

where 8 j
EPj
:= 8

j,(0,0)
EPj

for j = 1, 2, 3, and the finite set EP = P′ ×P′′ is an arbitrary sparse collection
(of biparameter tritiles) of rank 1. As discussed above, we now reach a conclusion that the proof of
Theorem 1.5 can be reduced to proving the following L p estimates for discrete bilinear model operators 5̃ε

EP
:

Proposition 2.12. If the finite set EP is an arbitrary sparse collection of rank 1, then the operator 5̃ε
EP

given
by (2-54) maps L p1(R2)× L p2(R2)→ L p(R2) boundedly for any 1< p1, p2 ≤∞ satisfying 1

p =
1
p1
+

1
p2

and 2
3 < p <∞. Moreover, the implicit constants in the bounds depend only on ε, p1, p2, p and are

independent of the particular finite sparse collection EP of rank 1.

2B. Multilinear interpolations. First, let’s review the following terminologies and definitions of multi-
linear interpolation arguments:

Definition 2.13 [Muscalu and Schlag 2013; Muscalu et al. 2002]. An n-tuple β = (β1, . . . , βn) is said to
be admissible if and only if β j < 1 for every 1≤ j ≤ n,

∑n
j=1 β j = 1 and there is at most one index j for

which β j < 0. An index j is called good if β j ≥ 0 and bad if β j < 0. A good tuple is an admissible tuple
that contains only good indices; a bad tuple is an admissible tuple that contains precisely one bad index.

Definition 2.14 [Muscalu et al. 2002]. Let E , E ′ be sets of finite measure. We say that E ′ is a major
subset of E if E ′ ⊆ E and |E ′| ≥ 1

2 |E |.

Definition 2.15 [Muscalu and Schlag 2013; Muscalu et al. 2002]. If β = (β1, . . . , βn) is an admissible
tuple, we say that an n-linear form 3 is of restricted weak type β if and only if, for every sequence
E1, . . . , En of measurable sets with positive and finite measure, there exists a major subset E ′j of E j for
the bad index j (if there is one) such that

|3( f1, . . . , fn)|. |E1|
β1 · · · |En|

βn (2-55)

for all measurable functions | fi | ≤ χE ′i (i = 1, . . . , n), where we adopt the convention E ′i = Ei for good
indices i . If β is bad with bad index j0, and it happens that one can choose the major subset E ′j0 ⊆ E j0 in
a way that depends only on the measurable sets E1, . . . , En and not on β, we say that 3 is of uniformly
restricted weak type.

Definition 2.16 [Muscalu and Schlag 2013]. Let 1< p1, p2≤∞ and 0< p<∞ be such that 1
p =

1
p1
+

1
p2

.
An arbitrary bilinear operator T is said to be of the restricted weak type (p1, p2, p) if and only if, for all
measurable sets E1, E2, E of finite measure, there exists E ′ ⊆ E with |E ′| ' |E | such that∣∣∣∣∫

Rd
T ( f1, f2)(x) f (x) dx

∣∣∣∣. |E1|
1/p1 |E2|

1/p2 |E ′|1/p′ (2-56)

for every | f1| ≤ χE1 , | f2| ≤ χE2 and | f | ≤ χE ′ .
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By using multilinear interpolation (see [Grafakos and Tao 2003; Janson 1988; Muscalu and Schlag
2013; Muscalu et al. 2002]) and the symmetry of the operators 5EP and 5̃ε

EP
, we can reduce further the

proof of Proposition 2.9 and Proposition 2.12 to proving the following restricted weak type estimates for
the model operators 5EP and 5̃ε

EP
:

Proposition 2.17. Let p1 and p2 be such that p1 is strictly larger than 1 and arbitrarily close to 1 and p2

is strictly smaller than 2 and arbitrarily close to 2 and such that, for 1
p :=

1
p1
+

1
p2

, one has 2
3 < p < 1.

Then both the model operators 5EP and 5̃ε
EP

defined in (2-33) and (2-54) are of the restricted weak type
(p1, p2, p). Moreover, the implicit constants in the bounds depend only on p1, p2, p, ε and B, and are
independent of the particular choice of the finite collection EP.

Indeed, first we should note that, if p1, p2, p are as in Propositions 2.9 and 2.12, then the 3-tuple( 1
p1
, 1

p2
, 1

p′
)

lies in the interior of the convex hull of the following six extremal points: β1
:=
(
−

1
2 ,

1
2 , 1

)
,

β2
:=
(
−

1
2 , 1, 1

2

)
, β3
:=
( 1

2 ,−
1
2 , 1

)
, β4
:=
(
1,− 1

2 ,
1
2

)
, β5
:=
( 1

2 , 1,−1
2

)
and β6

:=
(
1, 1

2 ,−
1
2

)
. Then,

if we assume that Proposition 2.17 has been proved, from the symmetry of operators 5EP and 5̃ε
EP

and
their adjoints we deduce that both the trilinear forms associated to bilinear operators 5EP and 5̃ε

EP
are

of uniformly restricted weak type β for 3-tuples β = (β1, β2, β3) arbitrarily close to the six extremal
points β1, . . . , β6 inside their convex hull and satisfying that, if β j is close to 1

2 for some j = 1, 2, 3,
then β j is strictly larger than 1

2 . By using the multilinear interpolation lemma, [Muscalu and Schlag 2013,
Lemmas 9.4 and 9.6] or [Muscalu et al. 2002, Lemma 3.8], we first obtain restricted weak type estimates
of 3 for good tuples inside the smaller convex hull of the three coordinate points (1, 0, 0), (0, 1, 0) and
(0, 0, 1). After that, we use the interpolation lemma [Muscalu and Schlag 2013, Lemma 9.5] or [Muscalu
et al. 2002, Lemma 3.10] to obtain restricted weak type estimates of 3 for bad tuples and finally conclude
that restricted weak type estimates of 3 hold for all tuples β inside the convex hull of the six extremal
points β1, . . . , β6.

It only remains to convert these restricted weak type estimates into strong type estimates. To do this,
one just has to apply (exactly as in [Muscalu et al. 2002]) the multilinear Marcinkiewicz interpolation
theorem in [Janson 1988] in the case of good tuples and the interpolation lemma [Muscalu et al. 2002,
Lemma 3.11] in the case of bad tuples. This ends the proof of Propositions 2.9 and 2.12, and, as a
consequence, completes the proof of our main results, Theorems 1.3 and 1.5. Therefore, we only have
the task of proving Proposition 2.17 from now on.

3. Trees, L2 sizes and L2 energies

3A. Trees. We should recall that, for discrete bilinear paraproducts, the frequency intervals have already
been organized with the lacunary properties (see [Muscalu and Schlag 2013; Muscalu et al. 2004a; 2006]),
so we could use square function and maximal function estimates to handle the corresponding terms
easily, at least in the Banach case. By the properties of the collection P′′ of tritiles we have explained in
Remark 2.5, we can organize our collections of tritiles P′, P′′ into trees as in [Grafakos and Li 2004],
which satisfy lacunary properties about a certain frequency. We review the following standard definitions
and properties for trees from [Muscalu et al. 2004b]:
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Definition 3.1. Let P be a sparse rank-1 collection of tritiles and j ∈ {1, 2, 3}. A subcollection T ⊆ P is
called a j-tree if and only if there exists a tritile PT (called the top of the tree) such that

Pj ≤ PT, j (3-1)

for every P ∈ T .

Remark 3.2. A tree does not necessarily have to contain the corresponding top PT . From now on, we
will write IT and ωT, j for IPT and ωPT , j for j = 1, 2, 3. Then, we simply say that T is a tree if it is a
j-tree for some j = 1, 2, 3.

For every given dyadic interval I0, there are potentially many tritiles P in P′ and P′′ with the property
that IP = I0. Due to this extra degree of freedom in frequency, we have infinitely many trees in our
collections P′ and P′′. We need to estimate each of these trees separately, and then add all these estimates
together, by using the almost orthogonality conditions for distinct trees. This motivates the following
definition:

Definition 3.3. Let 1 ≤ i ≤ 3. A finite sequence of trees T1, . . . , TM is said to be a chain of strongly
i-disjoint trees if and only if:

(i) Pi 6= P ′i for every P ∈ Tl1 and P ′ ∈ Tl2 with l1 6= l2.

(ii) Whenever P ∈ Tl1 and P ′ ∈ Tl2 with l1 6= l2 are such that 2ωPi ∩2ωP ′i 6=∅, then if |ωPi |< |ωP ′i | one
has IP ′ ∩ ITl1

=∅ and if |ωP ′i |< |ωPi | one has IP ∩ ITl2
=∅.

(iii) Whenever P ∈ Tl1 and P ′ ∈ Tl2 with l1 < l2 are such that 2ωPi ∩2ωP ′i 6=∅, then if |ωPi | = |ωP ′i | one
has IP ′ ∩ ITl1

=∅.

3B. L2 sizes and L2 energies. Following [Muscalu et al. 2004b], we give the definitions of standard
norms on sequences of tiles:

Definition 3.4. Let P be a finite collection of tritiles, j ∈ {1, 2, 3}, and let f be an arbitrary function. We
define the size of the sequence (〈 f,8 j

Pj
〉)P∈P by

size j
(
(〈 f,8 j

Pj
〉)P∈P

)
:= sup

T⊆P

(
1
|IT |

∑
P∈T

|〈 f,8 j
Pj
〉|

2
)1

2

, (3-2)

where T ranges over all trees in P that are i-trees for some i 6= j . For j = 1, 2, 3, we define the energy
of the sequence (〈 f,8 j

Pj
〉)P∈P by

energy j
(
(〈 f,8 j

Pj
〉)P∈P

)
:= sup

n∈Z

sup
T

2n
(∑

T∈T

|IT |

)1
2

, (3-3)

where now T ranges over all chains of strongly j-disjoint trees in P (which are i-trees for some i 6= j)
having the property that (∑

P∈T

|〈 f,8 j
Pj
〉|

2
)1

2

≥ 2n
|IT |

1
2 (3-4)
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for all T ∈ T and such that (∑
P∈T ′
|〈 f,8 j

Pj
〉|

2
)1

2

≤ 2n+1
|IT ′ |

1
2 (3-5)

for all subtrees T ′ ⊆ T ∈ T.

The size measures the extent to which the sequences (〈 f,8 j
Pj
〉)P∈P ( j = 1, 2, 3) can concentrate

on a single tree and should be thought of as a phase-space variant of the BMO norm. The energy is a
phase-space variant of the L2 norm. As the notation suggests, the number 〈 f,8 j

Pj
〉 should be thought of

as being associated with the tile Pj ( j = 1, 2, 3) rather than the full tritile P .
Let P be a finite collection of tritiles. Denote by 5P the discrete bilinear operator given by

5P( f1, f2)(x)=
∑
P∈P

1

|IP |
1
2

〈 f1,8
1
P1
〉〈 f2,8

2
P2
〉83

P3
(x).

The following proposition provides a way of estimating the trilinear form associated with the bilinear
operator 5P( f1, f2). We define

3P( f1, f2, f3) :=

∫
R

5P( f1, f2)(x) f3(x) dx .

Proposition 3.5 [Muscalu et al. 2004b]. Let P be a finite collection of tritiles. Then

|3P( f1, f2, f3)|.
3∏

j=1

(
size j

(
(〈 f j ,8

j
Pj
〉)P∈P

))θ j
(
energy j

(
(〈 f j ,8

j
Pj
〉)P∈P

))1−θ j (3-6)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+θ2+θ3= 1; the implicit constants depend on the θ j but are independent
of the other parameters.

3C. Estimates for sizes and energies. In order to apply Proposition 3.5, we need to estimate further the
sizes and energies appearing on the right-hand side of (3-6).

Lemma 3.6 [Muscalu and Schlag 2013; Muscalu et al. 2004b]. Let j ∈ {1, 2, 3} and f ∈ L2(R). Then
one has

size j
(
(〈 f,8 j

Pj
〉)P∈P

)
. sup

P∈P

1
|IP |

∫
R

| f |χ̃M
IP

dx (3-7)

for every M > 0, where the approximate cutoff function χ̃M
IP
(x) equals (1+ dist(x, IP)/|IP |)

−M and the
implicit constants depend on M.

Lemma 3.7 (Bessel-type estimates [Muscalu et al. 2004b]). Let j ∈ {1, 2, 3} and f ∈ L2(R). Then

energy j
(
(〈 f,8 j

Pj
〉)P∈P

)
. ‖ f ‖L2 . (3-8)

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by carrying out the proof of Proposition 2.17 for model operators
5EP defined in (2-33) with EP= P̃′×P′′.
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Fix indices p1, p2, p as in the hypothesis of Proposition 2.17. Fix arbitrary measurable sets E1, E2, E3

of finite measure (by using the scaling invariance of 5EP, we can assume further that |E3| = 1). Our
goal is to find E ′3 ⊆ E3 with |E ′3| ' |E3| = 1 such that, when | f1| ≤ χE1 , | f2| ≤ χE2 and | f3| ≤ χE ′3 , the
trilinear form 3EP( f1, f2, f3) defined by

3EP( f1, f2, f3) :=

∫
R2
5EP( f1, f2)(x) f3(x) dx (4-1)

satisfies the estimate

|3EP( f1, f2, f3)| =

∣∣∣∣∑
EP∈EP

CQ EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉〈 f3,8

3
EP3
〉

∣∣∣∣.p,p1,p2,B |E1|
1/p1 |E2|

1/p2, (4-2)

where p1 is larger than but close to 1, while p2 is smaller than but close to 2.
In order to prove our Theorem 1.3 in biparameter settings, one can easily observe that the main difficulty

from [Muscalu et al. 2004a; 2006] is that, if we restrict the sum of tritiles P ′′ ∈ P′′ in the definition of
discrete model operators5EP to a tree, then we essentially get a tensor product of two discrete paraproducts
on x1 and x2 respectively, which can be estimated by the MM, MS, SM and SS functions, but, due to the
extra degree of freedom in frequency in the x2 direction, there are infinitely many such tensor products of
paraproducts in the summation, so it’s difficult for us to carry out the stopping-time decompositions by
using the hybrid square and maximal operators as in [Muscalu et al. 2004a; 2006]. Instead, we will make
use of the L2 size and L2 energy estimates of the trilinear forms, the almost orthogonality of wave packets
associated with different tiles and the decay assumptions on the symbols. Furthermore, we can extend
our proof of Theorem 1.3 to general d-parameter settings (d ≥ 3) by applying the generic decomposition
lemma (Lemma 4.1) to the d−1 variables x1, . . . , xd−1. Although one can’t obtain that supp83,`

P̃ ′3
⊗83

P ′′3
is entirely contained in the exceptional set U as in [Muscalu et al. 2006], one can show that this support
set is contained in U in all the variables x1, . . . , xd−1, but not xd . Therefore, we only need to consider
the distance from this support set to the set E ′3 in the xd direction and obtain enough decay factors for
summation; the extension of the proof from biparameter case to the general d-parameter (d ≥ 3) cases is
straightforward.

From [Muscalu et al. 2006], we can find the following generic decomposition lemma:

Lemma 4.1. Let J ⊆ R be a fixed interval. Then every smooth bump function φJ adapted to J can be
naturally decomposed as

φJ =
∑
`∈N

2−100`φ`J ,

where, for every ` ∈ N, φ`J is also a bump function adapted to J but having the additional property that
supp(φ`J )⊆ 2` J . If in addition we assume that

∫
R
φJ (x) dx = 0, then the functions φ`J can be chosen so

that
∫

R
φ`J (x) dx = 0 for every ` ∈ N.

We use 2` J to denote the interval having the same center as J but with length 2` times that of J .
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By using Lemma 4.1, we can estimate the left-hand side of (4-2) by

|3EP( f1, f2, f3)|.
∑
`∈N

2−100`3`
EP
( f1, f2, f3). (4-3)

The trilinear forms 3`
EP
( f1, f2, f3) (` ∈ N) are defined by

3`
EP
( f1, f2, f3) :=

∑
EP∈EP

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|, (4-4)

where the new biparameter wave packets are 83,`
EP3
:= 8

3,`
P̃ ′3
⊗ 83

P ′′3
with the additional property that

supp(83,`
P̃ ′3
)⊆ 2` I P̃ ′3

= 2` I P̃ ′ .

For every ` ∈ N, we define the sets

�−10` :=

2⋃
j=1

{
x ∈ R2

:MM
(
χE j

|E j |

)
(x) > C210`

}
(4-5)

and

�̃−10` := {x ∈ R2
:MM(χ�−10`)(x) > 2−`}, (4-6)

where the double maximal operator MM is given by

MM(h)(x, y) := sup
dyadic rectangle R

(x,y)∈R

1
|R|

∫
R
|h(u, v)| du dv. (4-7)

Finally, we define the exceptional set

U :=
⋃
`∈N

�̃−10`. (4-8)

It is clear that |U | < 1
10 if C is a large enough constant, which we fix from now on. Then, we define

E ′3 := E3 \U and note that |E ′3| ' 1.
Now fix ` ∈ N, and split the trilinear form 3`

EP
( f1, f2, f3) defined in (4-4) into two parts as follows:

3`
EP
( f1, f2, f3)

=

∑
EP∈EP:

I EP∩�
c
−10` 6=∅

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|+

∑
EP∈EP:

I EP∩�
c
−10`=∅

|CQ EP |

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3,`
EP3
〉|

=:3`
EP,I
( f1, f2, f3)+3

`
EP,II
( f1, f2, f3), (4-9)

where Ac denotes the complement of a set A.

4A. Estimates for trilinear form 3`
EP,I

( f1, f2, f3). We can decompose the collection P̃′ of tritiles into

P̃′ =
⋃
k′∈Z

P̃′k′, (4-10)
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where

P̃′k′ := {P̃
′
∈ P̃′ : |I P̃ ′ | = 2−k′

}. (4-11)

As a consequence, we can split the trilinear form 3`
EP,I
( f1, f2, f3) into

3`
EP,I
( f1, f2, f3)=

∑
k′∈Z

∑
EP∈P̃′k′×P′′:

I EP∩�
c
−10` 6=∅

|CQ EP |
|I P̃ ′ |

|IP ′′ |
1
2

2∏
j=1

∣∣∣∣〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣× ∣∣∣∣〈〈 f3,8
3,l
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉∣∣∣∣. (4-12)

By Lemma 2.4, we can estimate the Fourier coefficients CQ EP :=CQ EP ,E0,E0,E0
for each EP ∈ P̃′k′×P′′ (k ′ ∈Z)

by

|CQ EP |. Ck′ with
∑
k′∈Z

Ck′ ≤ B <+∞. (4-13)

For each fixed P̃ ′ ∈ P̃′, we define the subcollection

P′′
P̃ ′
:= {P ′′ ∈ P′′ : I EP ∩�

c
−10` 6=∅}.

Therefore, by using Proposition 3.5, we derive the estimates

3`
EP,I
( f1, f2, f3)

.
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

|I P̃ ′ |

×

[ 2∏
j=1

(
energy j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′

))1−θ j
(

size j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′

))θ j
]

×

(
size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

))θ3
(

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

))1−θ3

(4-14)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the right-hand side of (4-14), note that I EP ∩�

c
−10` 6=∅ and supp f3 ⊆ E ′3 ⊆ R2

\U ; we
apply the size estimates in Lemma 3.6 and get, for each P̃ ′ ∈ P̃′k′ ,

size1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 210`
|E1|, (4-15)

size2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 210`
|E2|, (4-16)

size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

)
. sup

P ′′∈P′′
P̃ ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 1, (4-17)
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where M > 0 is sufficiently large. By applying the energy estimates in Lemma 3.7 and Hölder estimates,
we have, for each P̃ ′ ∈ P̃′k′ ,

energy1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E1

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-18)

energy2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E2

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-19)

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′

)
.

∥∥∥∥〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∥∥∥∥
L2(R)

.

(∫
E ′3

χ̃
100,`
I P̃ ′

(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-20)

where the approximate cutoff function χ̃100,`
I P̃ ′

(x1) decays rapidly (of order 100) away from the interval I P̃ ′

at scale |I P̃ ′ | and satisfies the additional property that supp χ̃100,`
I P̃ ′
⊆ 2` I P̃ ′ .

Now we insert the size and energy estimates (4-15)–(4-20) into (4-14) and get

3`
EP,I
( f1, f2, f3)

. 210`
|E1|

θ1 |E2|
θ2
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

(∫
E1

χ̃100
I P̃ ′

dx
)1−θ1

2
(∫

E2

χ̃100
I P̃ ′

dx
)1−θ2

2
(∫

E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2
. (4-21)

Since |I P̃ ′ | = 2−k′ for every P̃ ′ ∈ P̃′k′ , all the dyadic intervals I P̃ ′ are disjoint, thus, by using Hölder’s
inequality, we can estimate the inner sum in the right-hand side of (4-21) by

2∏
j=1

( ∑
P̃ ′∈P̃′k′

∫
E j

χ̃100
I P̃ ′

dx
)1−θ j

2
( ∑

P̃ ′∈P̃′k′

∫
E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2
. |E1|

(1−θ1)/2|E2|
(1−θ2)/2. (4-22)

Combining the estimates (4-13), (4-21) and (4-22), we arrive at

3`
EP,I
( f1, f2, f3). 210`

|E1|
θ1 |E2|

θ2 |E1|
(1−θ1)/2|E2|

(1−θ2)/2
∑
k′∈Z

Ck′

.θ1,θ2,θ3,B 210`
|E1|

(1+θ1)/2|E2|
(1+θ2)/2 (4-23)

for every ` ∈ N and 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. We finally get the estimate

3`
EP,I
( f1, f2, f3).p,p1,p2,B 210`

|E1|
1/p1 |E2|

1/p2 (4-24)

for every ` ∈ N and p, p1, p2 satisfying the hypothesis of Proposition 2.17.
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4B. Estimates for the trilinear form 3`
EP,II

( f1, f2, f3). If I EP ⊆�−10`, then 2` I P̃ ′× IP ′′ ⊆ �̃−10`. There-

fore, for each fixed P̃ ′ ∈ P̃′, we define the corresponding subcollection of P′′ by

P′′
P̃ ′
:= {P ′′ ∈ P′′ : I EP ⊆�−10`},

then we can decompose the collection P′′
P̃ ′

further, as follows:

P′′
P̃ ′
=

⋃
d ′′∈N

P′′
P̃ ′,d ′′

, (4-25)

where
P′′

P̃ ′,d ′′
:= {P ′′ ∈ P′′

P̃ ′
: 2` I P̃ ′ × 2d ′′ IP ′′ ⊆ �̃−10`} (4-26)

and d ′′ is maximal with this property.
Now we apply both the decompositions of P̃′ and P′′

P̃ ′
defined in (4-10) and (4-25) at the same time,

and split the trilinear form 3`
EP,II
( f1, f2, f3) into

3`
EP,II
( f1, f2, f3)

=

∑
k′∈Z

∑
P̃ ′∈P̃′k′

|CQ EP ||I P̃ ′ |
∑
d ′′∈N

∑
P ′′∈P′′

P̃ ′,d′′

1

|IP ′′ |
1
2

2∏
j=1

∣∣∣∣〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣× ∣∣∣∣〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉∣∣∣∣. (4-27)

In the inner sum of (4-27), since 2` I P̃ ′ × 2d ′′ IP ′′ ⊆ �̃−10`,

supp(83,`
P̃ ′3
)⊆ 2` I P̃ ′ and supp f3 ⊆ E ′3 ⊆ R2

\U,

we can assume hereafter in this subsection that

| f3| ≤ χE ′3χ2` I P̃ ′
χ(2d′′ IP ′′ )

c . (4-28)

By using Proposition 3.5 and (4-13), we derive from (4-27) the estimates

3`
EP,II
( f1, f2, f3)

.
∑
k′∈Z

Ck′
∑

P̃ ′∈P̃′k′

|I P̃ ′ |
∑
d ′′∈N

[ 2∏
j=1

(
energy j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′,d′′

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P̃ ′j
〉

|I P̃ ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′

P̃ ′,d′′

))θ j
]

×

(
size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

))θ3
(

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

))1−θ3

(4-29)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the inner sum in the right-hand side of (4-29), note that I EP ⊆�−10`, P ′′ ∈ P′′

P̃ ′,d ′′
and f3

satisfies (4-28), so we apply the size estimates in Lemma 3.6 and get, for each P̃ ′ ∈ P̃′k′ and d ′′ ∈ N,
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size1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 211`+d ′′
|E1|, (4-30)

size2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 211`+d ′′
|E2|, (4-31)

size3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

)
. sup

P ′′∈P′′
P̃ ′,d′′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 2−(M−100)d ′′, (4-32)

where M > 0 is arbitrarily large. Similar to the energy estimates obtained in (4-18), (4-19) and (4-20), by
applying the energy estimates in Lemma 3.7 and Hölder estimates we have, for each P̃ ′ ∈ P̃′k′ and d ′′ ∈N,

energy1

((〈〈 f1,8
1
P̃ ′1
〉

|I P̃ ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E1

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-33)

energy2

((〈〈 f2,8
2
P̃ ′2
〉

|I P̃ ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E2

χ̃100
I P̃ ′
(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-34)

energy3

((〈〈 f3,8
3,`
P̃ ′3
〉

|I P̃ ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′

P̃ ′,d′′

)
.

(∫
E ′3

χ̃
100,`
I P̃ ′

(x1)

|I P̃ ′ |
dx1 dx2

)1
2

, (4-35)

where the approximate cutoff function χ̃100,`
I P̃ ′

(x1) decays rapidly (of order 100) away from the interval I P̃ ′

at scale |I P̃ ′ | and satisfies the additional property that supp χ̃100,`
I P̃ ′
⊆ 2` I P̃ ′ .

Now we insert the size and energy estimates (4-30)–(4-35) into (4-29); by using the estimates (4-13),
(4-22) and Hölder’s inequality, we then get

3`
EP,II
( f1, f2, f3)

. 211`
|E1|

θ1 |E2|
θ2
∑
k′∈Z

Ck′
∑
d ′′∈N

2−(Mθ3−100)d ′′
2∏

j=1

( ∑
P̃ ′∈P̃′k′

∫
E j

χ̃100
I P̃ ′

dx
)1−θ j

2
×

( ∑
P̃ ′∈P̃′k′

∫
E ′3

χ̃
100,`
I P̃ ′

dx
)1−θ3

2

.θ1,θ2,θ3,B,M 211`
|E1|

(1+θ1)/2|E2|
(1+θ2)/2

∑
d ′′∈N

2−(Mθ3−100)d ′′ . (4-36)

for every ` ∈ N and 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1+ θ1)= p1 strictly larger than 1 and close to 1, and 2/(1+ θ2)= p2 strictly smaller than 2 and close
to 2. The series over d ′′ ∈N in (4-36) is summable if we choose M large enough (say, M ' 200θ−1

3 ). We
finally get the estimate

3`
EP,II
( f1, f2, f3).p,p1,p2,B 211`

|E1|
1/p1 |E2|

1/p2 (4-37)

for every ` ∈ N and p, p1, p2 satisfying the hypothesis of Proposition 2.17.
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4C. Conclusions. By inserting the estimates (4-9), (4-24) and (4-37) into (4-3), we finally get

|3EP( f1, f2, f3)|.p,p1,p2,B

∑
`∈N

2−100`212`
|E1|

1/p1 |E2|
1/p2 .p,p1,p2,B |E1|

1/p1 |E2|
1/p2, (4-38)

which completes the proof of Proposition 2.17 for the model operators 5EP.
This concludes the proof of Theorem 1.3.

5. Proof of Theorem 1.5

In this section, we prove Theorem 1.5 by carrying out the proof of Proposition 2.17 for the model
operators 5̃ε

EP
defined in (2-54) with EP= P′×P′′.

Fix indices p1, p2, p as in the hypothesis of Proposition 2.17. Fix arbitrary measurable sets E1, E2, E3

of finite measure (by using the scaling invariance of 5̃ε
EP
, we can assume further that |E3| = 1). Our goal

is to find E ′3 ⊆ E3 with |E ′3| ' |E3| = 1 such that, for any functions | f1| ≤ χE1 , | f2| ≤ χE2 and | f3| ≤ χE ′3 ,
one has the corresponding trilinear forms 3̃ε

EP
( f1, f2, f3) defined by

3̃ε
EP
( f1, f2, f3) :=

∫
R2
5̃ε
EP
( f1, f2)(x) f3(x) dx (5-1)

satisfy estimates

|3̃ε
EP
( f1, f2, f3)| =

∣∣∣∣∑
EP∈EP

C̃ε
Q EP

|I EP |
1
2

〈 f1,8
1
EP1
〉〈 f2,8

2
EP2
〉〈 f3,8

3
EP3
〉

∣∣∣∣.ε,p,p1,p2 |E1|
1/p1 |E2|

1/p2, (5-2)

where p1 is larger than but close to 1, while p2 is smaller than but close to 2.
In the proof of Theorem 1.5 in biparameter settings, besides the difficulty that one can’t carry out

the stopping-time decompositions by using the hybrid square and maximal operators as in [Muscalu
et al. 2004a; 2006], we can’t apply Journé’s lemma as in [Muscalu et al. 2004a] either, since we can’t
get the estimate

∑
P ′ |IP ′ | . | Ĩ | for all dyadic intervals IP ′ ⊆ Ĩ with comparable lengths. Therefore,

in order to prove Theorem 1.5, we will take advantage of the almost orthogonality of wave packets
associated with different tiles of distinct trees and the decay assumptions on the symbols to overcome
these difficulties.

We define the exceptional set

� :=

2⋃
j=1

{
x ∈ R2

:MM
(
χE j

|E j |

)
(x) > C

}
(5-3)

It is clear that |�| < 1
10 if C is a large enough constant, which we fix from now on. Then, we define

E ′3 := E3 \� and observe that |E ′3| ' 1.
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Now we estimate the trilinear form 3̃ε
EP
( f1, f2, f3) defined in (5-1) by two terms as follows:

|3̃ε
EP
( f1, f2, f3)|

.
∑
EP∈EP:

I EP∩�
c
6=∅

|C̃ε
Q EP
|

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3
EP3
〉| +

∑
EP∈EP:

I EP∩�
c
=∅

|C̃ε
Q EP
|

|I EP |
1
2

|〈 f1,8
1
EP1
〉||〈 f2,8

2
EP2
〉||〈 f3,8

3
EP3
〉|

=: 3̃ε
EP,I
( f1, f2, f3)+ 3̃

ε
EP,II
( f1, f2, f3). (5-4)

5A. Estimates for trilinear form 3̃ε
EP,I

( f1, f2, f3). We can decompose the collection P̃′ of tritiles into

P′ =
⋃
k′∈Z

P′k′, (5-5)

where

P′k′ := {P
′
∈ P′ : `(Q P ′)= 2k′

}. (5-6)

As a consequence, we can split the trilinear form 3̃ε
EP,I
( f1, f2, f3) into

3̃ε
EP,I
( f1, f2, f3)=

∑
k′∈Z

∑
EP∈P′k′×P′′:

I EP∩�
c
6=∅

|C̃ε
Q EP
|
|IP ′ |

|IP ′′ |
1
2

3∏
j=1

∣∣∣∣〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣. (5-7)

By Lemma 2.10, we can estimate the Fourier coefficients C̃ε
Q EP
:= C̃ε

Q EP ,E0,E0,E0
for each EP ∈P′k′×P′′ (k ′∈Z)

by

|C̃ε
Q EP
|. C̃ε

k′ := 〈k
′
〉
−(1+ε)

= (1+ |k ′|2)−(1+ε)/2. (5-8)

For each fixed P ′ ∈ P′, we define the subcollection P′′P ′ of P′′ by

P′′P ′ := {P
′′
∈ P′′ : I EP ∩�

c
6=∅}.

Therefore, by using Proposition 3.5, we derive the estimates

3̃ε
EP,I
( f1, f2, f3)

.
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

|IP ′ |

3∏
j=1

[(
energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

))θ j
]

(5-9)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
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To estimate the right-hand side of (5-9), note that I EP ∩�
c
6=∅ and supp f3 ⊆ E ′3, so we apply the size

estimates in Lemma 3.6 and get, for each P ′ ∈ P′k′ and j = 1, 2, 3,

size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

)
. sup

P ′′∈P′′P ′

1
|IP ′′ |

∫
R

∣∣∣∣〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . |E j |, (5-10)

where M > 0 is sufficiently large. By applying the energy estimates in Lemma 3.7, we have, for each
P ′ ∈ P′k′ and j = 1, 2, 3,

energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′

)
.

1

|IP ′ |
1
2

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1
2

. (5-11)

Now we insert the size and energy estimates (5-10) and (5-11) into (5-9) and get

3̃ε
EP,I
( f1, f2, f3). |E1|

θ1 |E2|
θ2
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2
. (5-12)

Observe that, for any different tritiles P ′ ∈ P′k′ and P
′
∈ P′k′ , one has IP ′ ∩ IP ′ = ∅, or otherwise one

has IP ′ = IP ′ but ωP ′j
∩ωP ′j

= ∅ for every j = 1, 2, 3. By taking advantage of such orthogonality in

L2 of the wave packets 8 j
P ′j

corresponding to the tiles P ′j ( j = 1, 2, 3), one has that, for any function
F ∈ L2(R) and k ′ ∈ Z,∥∥∥∥ ∑

P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j

∥∥∥∥2

L2
≤

∑
P ′, P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

|〈F,8 j
P ′j
〉||〈F,8 j

P ′j
〉||〈8

j
P ′j
,8

j
P ′j
〉|

. 2k′
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
∑

P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

|〈χ̃1000
IP ′

, χ̃1000
IP′
〉|

.
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
∑

P ′∈P′k′ :
ωP ′j
=ωP′j

IP ′∩IP′=∅

(
1+

dist(IP ′, IP ′)

|IP ′ |

)−100

.
∑

P ′∈P′k′

|〈F,8 j
P ′j
〉|

2, (5-13)

from which we deduce the Bessel-type inequality∑
P ′∈P′k′

|〈F,8 j
P ′j
〉|

2
=

∣∣∣∣〈 ∑
P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j
, F
〉∣∣∣∣≤ ∥∥∥∥ ∑

P ′∈P′k′

〈F,8 j
P ′j
〉8

j
P ′j

∥∥∥∥
L2
· ‖F‖L2 . ‖F‖2L2, (5-14)
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where the implicit constants in the bounds are independent of k ′ ∈ Z. Then, we can use the Bessel-type
inequality (5-14) and Hölder’s inequality to estimate the inner sum in the right-hand side of (5-12) by

∑
P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2
.

3∏
j=1

(∫
R

∑
P ′∈P′k′

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2

.
3∏

j=1

‖ f j‖
1−θ j

L2(R2)
. |E1|

(1−θ1)/2|E2|
(1−θ2)/2. (5-15)

Combining the estimates (5-8), (5-12) and (5-15), we arrive at

3̃ε
EP,I
( f1, f2, f3). |E1|

θ1 |E2|
θ2 |E1|

(1−θ1)/2|E2|
(1−θ2)/2

∑
k′∈Z

C̃ε
k′ .ε,θ1,θ2,θ3 |E1|

(1+θ1)/2|E2|
(1+θ2)/2 (5-16)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent

2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. We finally get the estimate

3̃ε
EP,I
( f1, f2, f3).ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-17)

for every ε > 0, and p, p1, p2 satisfy the hypothesis of Proposition 2.17.

5B. Estimates for the trilinear form 3̃ε
EP,II

( f1, f2, f3). For each fixed P ′ ∈ P′, we define the corre-
sponding subcollection of P′′ by

P′′P ′ := {P
′′
∈ P′′ : I EP ⊆�},

then we can decompose the collection P′′P ′ further, as follows:

P′′P ′ =
⋃
µ∈N

P′′P ′,µ, (5-18)

where
P′′P ′,µ := {P

′′
∈ P′′P ′ : Dil2µ(IP ′ × IP ′′)⊆�} (5-19)

and µ is maximal with this property. By Dil2µ(I EP) we mean the rectangle having the same center as the
original I EP but whose side lengths are 2µ times larger.

Now we apply both the decompositions of P̃′ and P′′P ′ defined in (5-5) and (5-18) at the same time,
and split the trilinear form 3̃ε

EP,II
( f1, f2, f3) into

3̃ε
EP,II
( f1, f2, f3)=

∑
k′∈Z

∑
P ′∈P′k′

|C̃ε
Q EP
||IP ′ |

∑
µ∈N

∑
P ′′∈P′′P ′,µ

1

|IP ′′ |
1
2

3∏
j=1

∣∣∣∣〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉∣∣∣∣ (5-20)

In the inner sum of (5-20), since Dil2µ(IP ′ × IP ′′)⊆� and supp f3 ⊆ E ′3 ⊆ R2
\�, we get that

| f3| ≤ χE ′3χ(Dil2µ (IP ′×IP ′′ ))
c = χE ′3{χ(2

µ IP ′ )
c +χ(2µ IP ′′ )

c −χ(2µ IP ′ )
cχ(2µ IP ′′ )

c}, (5-21)
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and hence we can assume hereafter in this subsection that

| f3| ≤ χE ′3χ(2
µ IP ′ )

c , (5-22)

and the other two terms can be handled similarly.
By using Proposition 3.5 and (5-8), we derive from (5-20) the estimates

3̃ε
EP,II
( f1, f2, f3)

.
∑
k′∈Z

C̃ε
k′
∑

P ′∈P′k′

|IP ′ |
∑
µ∈N

3∏
j=1

[(
energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

))1−θ j

×

(
size j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

))θ j
]

(5-23)

for any 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.
To estimate the inner sum in the right-hand side of (5-23), note that I EP ⊆ �, P ′′ ∈ P′′P ′,µ and f3

satisfies (5-22), so we apply the size estimates in Lemma 3.6 and get, for each P ′ ∈ P′k′ and µ ∈ N,

size1

((〈
〈 f1,8

1
P ′1
〉

|IP ′ |
1
2

,81
P ′′1

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f1,8
1
P ′1
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 22µ
|E1|, (5-24)

size2

((〈
〈 f2,8

2
P ′2
〉

|IP ′ |
1
2

,82
P ′′2

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f2,8
2
P ′2
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 22µ
|E2|, (5-25)

size3

((〈
〈 f3,8

3
P ′3
〉

|IP ′ |
1
2

,83
P ′′3

〉)
P ′′∈P′′P ′,µ

)
. sup

P ′′∈P′′P ′,µ

1
|IP ′′ |

∫
R

∣∣∣∣〈 f3,8
3
P ′3
〉

|IP ′ |
1
2

∣∣∣∣χ̃M
IP ′′

dx . 2−Nµ, (5-26)

where M > 0 and N > 0 are arbitrarily large. By applying the energy estimates in Lemma 3.7, we have,
for each P ′ ∈ P′k′ , µ ∈ N and j = 1, 2, 3,

energy j

((〈〈 f j ,8
j
P ′j
〉

|IP ′ |
1
2

,8
j
P ′′j

〉)
P ′′∈P′′P ′,µ

)
.

1

|IP ′ |
1
2

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1
2

. (5-27)

Now we insert the size and energy estimates (5-24)–(5-27) into (5-23); by using the estimates (5-8)
and (5-15), we derive that

3̃ε
EP,II
( f1, f2, f3). |E1|

θ1 |E2|
θ2
∑
k′∈Z

C̃ε
k′
∑
µ∈N

2−(Nθ3−2)µ
∑

P ′∈P′k′

3∏
j=1

(∫
R

|〈 f j ,8
j
P ′j
〉|

2 dx2

)1−θ j
2

.ε,θ1,θ2,θ3,N |E1|
(1+θ1)/2|E2|

(1+θ2)/2
∑
µ∈N

2−(Nθ3−2)µ. (5-28)

for every 0≤ θ1, θ2, θ3 < 1 with θ1+ θ2+ θ3 = 1.



L p ESTIMATES FOR BILINEAR AND MULTIPARAMETER HILBERT TRANSFORMS 711

By taking θ1 sufficiently close to 1 and θ2 sufficiently close to 0, one can make the exponent
2/(1 + θ1) = p1 strictly larger than 1 and close to 1, and 2/(1 + θ2) = p2 strictly smaller than 2
and close to 2. The series over µ∈N in (5-28) is summable if we choose N large enough (say, N ' 4θ−1

3 ).
We finally get the estimate

3̃ε
EP,II
( f1, f2, f3).ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-29)

for any ε > 0, and p, p1, p2 satisfy the hypothesis of Proposition 2.17.

5C. Conclusions. By inserting the estimates (5-17) and (5-29) into (5-4), we finally get

|3̃ε
EP
( f1, f2, f3)|.ε,p,p1,p2 |E1|

1/p1 |E2|
1/p2 (5-30)

for any ε > 0, which completes the proof of Proposition 2.17 for the model operators 5̃ε
EP
.

This concludes the proof of Theorem 1.5.
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LARGE BMO SPACES VS INTERPOLATION

JOSE M. CONDE-ALONSO, TAO MEI AND JAVIER PARCET

We introduce a class of BMO spaces which interpolate with L p and are sufficiently large to serve as
endpoints for new singular integral operators. More precisely, let (�,6,µ) be a σ -finite measure space.
Consider two filtrations of 6 by successive refinement of two atomic σ -algebras 6a and 6b having trivial
intersection. Construct the corresponding truncated martingale BMO spaces. Then, the intersection
seminorm only leaves out constants and we provide a quite flexible condition on (6a, 6b) so that the
resulting space interpolates with L p in the expected way. In the presence of a metric d , we obtain endpoint
estimates for Calderón–Zygmund operators on (�,µ, d) under additional conditions on (6a, 6b). These
are weak forms of the “isoperimetric” and the “locally doubling” properties of Carbonaro, Mauceri and
Meda which admit less concentration at the boundary. Examples of particular interest include densities
of the form e±|x |

α
for any α > 0 or (1+ |x |β)−1 for any β & n3/2. A (limited) comparison with Tolsa’s

RBMO is also possible. On the other hand, a more intrinsic formulation yields a Calderón–Zygmund
theory adapted to regular filtrations over (6a, 6b) without using a metric. This generalizes well-known
estimates for perfect dyadic and Haar shift operators. In contrast to previous approaches, ours extends
to matrix-valued functions (via recent results from noncommutative martingale theory) for which only
limited results are known and no satisfactory nondoubling theory exists so far.

Introduction

A BMO space is a set of functions that enjoy bounded mean oscillation in a certain sense. Both “mean”
and “oscillation” can be measured in many different ways. Most frequently, we find BMO spaces refer
to averages over balls in a metric measure space. In other notable scenarios, we may replace these
averages by conditional expectations with respect to a martingale filtration, or even by the action of a
nicely behaved semigroup of operators. These more abstract formulations are known to be very useful
given the lack of appropriate metrics. The relation between metric and martingale BMO spaces is well
understood for doubling spaces, that is, when the measure of a ball in the given metric is comparable
with the measure of its concentric dilations up to constants depending on the dilation factor but not on the
chosen ball. Indeed, in this case the metric BMO is equivalent to a finite intersection of martingale BMO
spaces constructed out of dyadic two-sided filtrations of atomic σ -algebras whose atoms look like balls;
see [Conde 2013; Garnett and Jones 1982; Hytönen and Kairema 2012; Mei 2003]. What is more relevant,
however, is that any of these martingale BMO spaces satisfies the following fundamental properties:

(i) Interpolation endpoint for the L p scale.

MSC2010: 42B20, 42B35, 46L52, 60G46.
Keywords: nondoubling measures, BMO spaces, interpolation, martingales, noncommutative harmonic analysis, classical

harmonic analysis, Calderón–Zygmund theory.
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(ii) John–Nirenberg inequalities and H1–BMO duality.

(iii) CZ extrapolation: L2-boundedness⇒ L∞→ BMO boundedness.

Hence, these spaces yield at least as many endpoint estimates as the metric BMO.
The main goal of this paper is to construct BMO spaces satisfying the properties stated above for a

larger class of measures, and to explore the implications of this construction to provide new endpoint
estimates. The first attempts in this direction [Mateu et al. 2000; Nazarov et al. 2002] culminated in the
work of Tolsa [2001] on so-called RBMO spaces. These spaces enjoy the above-mentioned properties
for measures of polynomial growth. There are, however, a couple of open questions concerning Tolsa’s
construction. In the first place, Calderón–Zygmund extrapolation holds under a Lipschitz kernel condition
instead of the more flexible Hörmander condition. Second, only interpolation of operators, has been
studied but it seems to be unknown whether these spaces interpolate with the L p scale. These two
problems were solved by Carbonaro, Mauceri and Meda [Carbonaro et al. 2009; 2010] for a different
class of measures, based on similar results for the Gaussian measure on Euclidean spaces [Mauceri and
Meda 2007]. The properties they imposed lead to locally doubling measures with certain concentration
behavior at the boundary. In both cases — up to equivalence in the norm and additional conditions — only
doubling balls are used to measure the mean oscillation of the function.

We present an alternative approach to these questions. Martingale BMO spaces always satisfy conditions
(i) and (ii) above, with independence of the existence of a metric in the underlying measure space. The
third property however requires additional structure on our BMO spaces. Indeed, assume for a moment that
we work with a two-sided filtration (6k)k∈Z of atomic σ -subalgebras of 6 with corresponding conditional
expectations E6k . If 5 denotes the union of atoms in our filtration, the corresponding martingale BMO
norm is given by

‖ f ‖BMO = sup
k∈Z

∥∥E6k | f −E6k−1 f |2
∥∥1/2
∞
,

which is larger than the function BMO norm

sup
A∈5

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Thus, if we admit from [Carbonaro et al. 2009; Tolsa 2001] that extrapolation for (nonlocal) Calderón–
Zygmund operators imposes that our atoms be doubling — i.e., contained in a doubling ball of comparable
measure or a union of at most C0 sets of this kind; see below — we immediately find obstructions to
constructing filtrations satisfying this assumption for nondoubling spaces. We propose to consider a sort
of intersection of two large BMO spaces as follows. Consider a σ -finite measure space (�,6,µ) and
two atomic σ -algebras 6a, 6b of measurable sets in 6 satisfying 6a ∩6b = {�,∅}. Write BMO j for
any martingale BMO space over a filtration (6 jk)k≥1 with 6 j1 =6 j ; then the seminorm

‖ f ‖BMO6ab (�)
=max{‖ f −E6a f ‖BMOa, ‖ f −E6b f ‖BMOb}
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vanishes on constant functions precisely when 6a ∩6b is trivial. Let

BMO6ab(�)= { f ∈ L1
loc(�) | ‖ f ‖BMO6ab (�)

<∞}/C.

This settles a model of “large BMO spaces” which easily satisfy property (ii) and leave some room for
property (iii). The problem reduces then to identify conditions on the pair (6a, 6b) so that BMO6ab(�)

interpolates with the L p scale. A standard argument shows that this is the case when

‖ f ‖L◦p(�) := inf
k∈C
‖ f − k‖p ∼max{‖ f −E6a f ‖p, ‖ f −E6b f ‖p} =: ‖ f ‖L p

6ab
(�)

for 2≤ p <∞, where

L◦p(�)= L p(�,6,µ)/C,

L p
6ab
(�)= { f ∈ L1

loc(�) | ‖ f ‖L p
6ab
(�) <∞}/C

= L p(�,6,µ)/6a ∧ L p(�,6,µ)/6b.

Here, L p(�,6,µ)/6i denotes the quotient space of L p(�,6,µ) by the subspace of 6i -measurable
functions. More precisely, we have an isomorphism L◦p(�) ' L p

6ab
(�). It should be mentioned that

this isomorphism fails in general, even for the Lebesgue measure in Rn and many “natural” choices of
pairs (6a, 6b). Recall that L◦p(�)= L p(�) for infinite measures. Note also that we use ∧ and not ∩ since
this space is not really an intersection; we shall also write BMO6ab(�)=BMOa(�)/6a ∧BMOb(�)/6b.
To formulate a sufficient condition on (6a, 6b) for L◦p(�)' L p

6ab
(�), let 5 j be the set of atoms in 6 j .

When µ(�) <∞ we shall consider two distinguished atoms (A0, B0) ∈5a×5b, while for µ not finite
we take A0 = B0 =∅ for notation consistency. Given (A, B) ∈5a×5b, set

RA = {B ′ ∈5b | µ(A∩ B ′) > 0} and RB = {A′ ∈5a | µ(A′ ∩ B) > 0}.

We will write |RA| and |RB | for the cardinality of these sets. The following is the main result of this
paper, where we establish a condition on (6a, 6b) which suffices to make intersections and quotients
commute in L p as described above. We will say that (6a, 6b) is an admissible covering of (�,6,µ)
when 6a ∩6b = {�,∅} and

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
< 1.

Theorem A. Let (�,6,µ) be a σ -finite measure space equipped with an admissible covering (6a, 6b).
Then, for each 2≤ p <∞, there exists a constant cp, depending only on p and the admissible covering,
such that

L◦p(�)'cp L p
6ab
(�).

Moreover, we have the desired complex interpolation result,

[BMO6ab(�), L◦1(�)]1/q 'cq L◦q(�) (1< q <∞),

with BMO6ab(�) defined as above for any two martingale BMO spaces over (6a, 6b).
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The first assertion fails for p = 1,∞. On the other hand, both the John–Nirenberg inequalities and
H1–BMO duality are easily formulated for these spaces. Therefore, we shall focus in what follows on
condition (iii). Calderón–Zygmund extrapolation means that under a certain mild smoothness condition on
the kernel, L2-boundedness yields L p-boundedness for 1< p <∞. As usual, we handle it by providing
an endpoint estimate for interpolation. Let d be a metric on � and denote by αB the α-dilation of a ball B.
We impose the standard Hörmander kernel condition

sup
Bd-ball

sup
z1,z2∈B

∫
�\αB
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

Define a CZO on (�,µ, d) as any linear map T satisfying the following properties:

• T is well-defined and bounded on L2(�).

• The kernel representation for any f ∈ Cc(�),

T f (x)=
∫
�

k(x, y) f (y) dµ(y) holds for x /∈ supp f

and some kernel k :�×� \1→ C satisfying the Hörmander condition.

Given C0 > 0, a 6-measurable set A will be called (C0, α, β)-doubling when it is the union of at most C0

sets which are contained in (α, β)-doubling balls — balls B such that µ(αB)≤ βµ(B)— of comparable
measure up to the constant C0. Recall that a filtration (6k)k≥1 is called regular if Ek f . Ek−1 f for
all k > 1 and all f ≥ 0.

Theorem B1. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume that (�,6,µ) admits
regular filtrations (6 jk)k≥1 by successive refinement of 6 j1 =6 j for j = a, b and that each atom in 6 jk

is (C0, α, β)-doubling for certain absolute constants C0, α, β > 0. Construct the spaces BMO6ab(�)

which are defined over these filtrations. Then, every Calderón–Zygmund operator extends to a bounded
map L∞(�)→ BMO6ab(�), and L p(�)→ L p(�) for 1< p <∞.

A few illustrations of Theorem B1 are the following:

• Doubling case: Theorem B1 recovers Calderón–Zygmund extrapolation on homogeneous spaces
(�,µ, d). We shall construct explicit pairs (6a, 6b) and martingale filtrations satisfying our assumptions.

• Polynomial growth: Given any (�,µ, d) with polynomial growth, it is not difficult to construct atomic
σ -algebras composed uniquely of doubling atoms, even giving admissible coverings. Under the existence
of filtrations based on (6a, 6b) and composed of doubling atoms — regular or not — we may prove that
Tolsa’s RBMO sits inside our BMO6ab(�). This condition seems, unfortunately, a restrictive limit in
Theorem B1. However, it can be checked in some concrete scenarios, like for

dµ(x)=
dx

1+ |x |β
with β & n3/2

in Rn equipped with the Euclidean metric. Note that µ is doubling for β < n. The key advantage over
Tolsa’s approach is that we only need to impose Hörmander kernel smoothness, instead of stronger
Lipschitz conditions. This was also achieved by [Carbonaro et al. 2009; 2010] for another family of
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measures (see below) but not for the measures considered above, since they are drastically less concentrated
at the boundary for any β.

• Concentration at the boundary: Carbonaro et al. [2009; 2010] proved that when (�,µ, d) is locally
doubling and the measure concentrates at the boundary of open sets in a certain sense — together with a
purely metric condition that does not play any role here — a BMO space satisfying (i), (ii) and (iii) is
possible. Their main examples in Rn with a weighted Euclidean metric were dµ(x)= e±|x |

α

dx and α > 1.
The exponentially decreasing ones behave in some sense like the Gaussian measure, which was studied
a few years before by Mauceri and Meda. It is of polynomial growth, so that the kernel smoothness
condition was the main advantage with respect to Tolsa’s approach. The exponentially increasing ones
are not of polynomial growth. In this paper we shall remove their condition α > 1.

In the literature, we find other families of operators — with no need of a metric in the underlying
space — which are close to CZOs in spirit. Martingale transforms are the simplest ones, but are local and
much easier to bound. Nonlocal models include the so-called perfect dyadic CZOs and, most notably,
Haar shift operators, which include prominent examples like the discrete Hilbert transform and dyadic
paraproducts. In these cases, the Hörmander kernel condition can be replaced by

sup
Q dyadic cube

sup
z1,z2∈Q

∫
�\Q̂
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞,

where Q̂ denotes the dyadic father of Q. Our BMO spaces allow us to further replace dyadic cubes
in dyadically doubling measure spaces — see [López-Sánchez et al. 2014] for recent progress on more
general measures in this direction — by more general atoms. Namely, assume (6a, 6b) gives an admissible
covering of (�,6,µ). Consider regular filtrations of atomic σ -algebras (6 jk)k≥1 with 6 j1 = 6 j

for j = a, b. Let us write5 jk for the family of atoms in the atomic σ -algebra6 jk and set 5 j =
⋃

k≥15 jk .
Then, consider the following Hörmander-type kernel condition, where the former role of the metric d is
replaced by the shape of our atoms in 5=5a ∪5b:

sup
A∈5

sup
z1,z2∈A

∫
�\ Â
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

Again, Â denotes the minimal atom in the filtration of A which contains A properly, unless there is no
such atom, in which case we pick Â = A. If we replace the Hörmander condition by this one, we obtain
another class of “atomic” CZOs, which will be denoted in what follows by ACZO.

Theorem B2. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume in addition that (�,6,µ)
admits regular filtrations (6 jk)k≥1 by successive refinement of 6 j1 = 6 j for j = a, b. Construct the
spaces BMO6ab(�) which are defined over these filtrations. Then, every ACZO extends to a bounded map
L∞(�)→ BMO6ab(�), and L p(�)→ L p(�) for 1< p <∞.

An advantage of Theorem B2 is that our kernel conditions are flexible, since we may carefully choose
(6a, 6b) and the regular filtrations according to the concrete singular integral operator. It is worth
mentioning that every σ -finite (atomless if µ is finite) measure space (�,6,µ) has nontrivial admissible



718 JOSE M. CONDE-ALONSO, TAO MEI AND JAVIER PARCET

coverings. Of course, the regularity of the filtration is a light form of “doublingness” needed to emulate
the classical argument in this setting. We will also provide weaker estimates for pseudolocal operators
when the filtrations are not regular.

In contrast to [Carbonaro et al. 2009; 2010; Mauceri and Meda 2007; Tolsa 2001], our approach extends
to matrix-valued functions, for which only limited results are known and no satisfactory nondoubling
theory exists so far. In fact, this was our original motivation and the necessity of alternative arguments
led to the results presented so far. We will postpone the discussion of the matrix-valued setting to the
last section of this paper, which will allow those readers not familiar with noncommutative L p theory to
isolate these results.

Our results above give some insight on the relation between nondoubling and martingale BMO theories;
see [Conde-Alonso and Parcet 2014; Junge et al. ≥ 2015] for other results along this line. In [Conde-
Alonso and Parcet 2014], we adapt Tolsa’s ideas to give an atomic block description of martingale H1.
Semigroup BMO spaces are used in [Junge et al. ≥ 2015] to construct a Calderón–Zygmund theory that
incorporates noncommutative measure spaces (von Neumann algebras) to the picture.

1. Admissible coverings and BMO spaces

In this section we recall some basic background around martingale BMO spaces and introduce our new
class of BMO spaces. We will study standard properties of this class, like the existence of admissible
coverings, John–Nirenberg inequalities and H1–BMO duality. The proof of Theorem A is more technical
and will be postponed to Section 2.

Martingale BMO spaces. Let (�,6,µ) be a σ -finite measure space and consider a filtration (6k)k≥1

of 6. In other words, we have 6k ⊂6k+1 and the union of the spaces L∞(�,6k, µ) is weak-∗ dense in
L∞(�,6,µ). Let E6k denote the conditional expectation onto6k-measurable functions. Then, define the
martingale BMO space associated to this filtration as the space of locally integrable functions f :�→ C

whose BMO norm,

‖ f ‖BMO = sup
k≥1

∥∥(E6k | f −E6k−1 f |2)1/2
∥∥
∞
,

is finite, where we use the convention E60 f = 0; see [Garsia 1973]. Another expression for the norm is

‖ f ‖BMO = sup
k≥1

∥∥∥∥|d fk |
2
+

∑
n>k

E6k |d fn|
2
∥∥∥∥ 1

2

∞

∼
[
sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E61 f ‖∞

]
+ sup

k>1
‖d fk‖∞,

where d fk =1k f = E6k f −E6k−1 f . According to [Janson and Jones 1982], [BMO, L1(�)]1/p ' L p(�)

for any filtration we pick. The bracketed term in the right-hand side above is called the martingale bmo
norm of f , and it is closer to the standard expressions to measure the mean oscillation of a function.
Namely, if the σ -algebras 6k are atomic and if5k denotes the atoms in 6k and 5=

⋃
k≥15k , we deduce
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that

‖ f ‖bmo = sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E61 f ‖∞

= sup
A∈5

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

+ sup
A∈51

∣∣∣∣ 1
µ(A)

∫
A

f dµ
∣∣∣∣.

Of course, using a selected family of atoms makes L p-interpolation fail in general for bmo. The extra
term in BMO corrects this. This should be compared with the extra condition in the definition of Tolsa’s
RBMO. On the other hand, bmo spaces have good interpolation properties with little Hardy spaces hp.
Namely, according to [Bekjan et al. 2010] we have [bmo, h1]1/p ' hp for any filtration, where hp is the
closure of the space of finite martingales in L p with respect to the norm

‖ f ‖hp =

∥∥∥∥(∑
k≥1

E6k−1 |d fk |
2
)1

2
∥∥∥∥

p
;

this time the convention is E60 |d f1|
2
=|E61 f |2. In contrast to other BMO spaces seminorms, paradoxically,

we will need to quotient out certain spaces. Note that, for 61-measurable functions, the norms above
coincide with the L∞ norm

‖E61 f ‖BMO = ‖E61 f ‖bmo = ‖E61 f ‖L∞(�).

If we define the seminorms
‖ f ‖◦bmo = ‖ f −E61 f ‖bmo,

‖ f ‖◦BMO = ‖ f −E61 f ‖BMO,

we obtain complemented subspaces BMO61 = J61(BMO) using the projection J61 = id−E61 . Indeed,
it is a simple exercise using Jensen’s conditional inequality |E61 f |2 ≤ E61 | f |

2; details are left to the
reader. Since J61 is also bounded on hp and L p, the previous interpolation results imply the following
isomorphisms for 1< p <∞: [

J61(bmo), J61(h1(�))
]

1/p ' J61(hp(�)),[
J61(BMO), J61(L1(�))

]
1/p ' J61(L p(�)).

Note that J61(L p(�))' L p(�,6,µ)/61 in the terminology of the introduction.

Remark 1.1. It is worth mentioning that the Janson–Jones interpolation theorem [1982] holds for arbitrary
filtrations. In particular, we could replace (6k)k≥1 by (6k)k≥N for some large N, and the latter BMO
comes equipped with the norm

sup
k≥N

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E6N f ‖∞+ sup

k>N
‖d fk‖∞.

When N is large enough, the middle term dominates the others and we get spaces which are closer
and closer to L∞(�). In contrast, when we quotient out the first σ -algebra by using the J -projections,
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it follows from the interpolation identities above that the starting σ -algebra significantly affects the
interpolated space. This justifies, in part, our need to intersect two such spaces in this paper.

BMO spaces for admissible coverings. Let (�,6,µ) be a σ -finite measure space and consider two
atomic σ -algebras 6a, 6b of measurable sets in 6. Let 5 j be the set of atoms in 6 j for j = a, b. When
µ(�) < ∞, we shall consider two distinguished atoms (A0, B0) ∈ 5a ×5b. If µ is not finite, take
A0 = B0 =∅. Given A ∈5a, set

RA = {B ′ ∈5b | µ(A∩ B ′) > 0}.

Define RB for B ∈5b similarly. The pair (6a, 6b) is called an admissible covering of (�,6,µ) when
6a ∩6b = {�,∅} and

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
< 1.

One can view the condition above as a weak version of the concentration of measure near the boundary that
appeared in [Carbonaro et al. 2009]. In particular, it is not a geometric notion, but only a measure-theoretic
one (see Remark 3.3 for more details). Now, consider any pair of filtrations (6 jk)k≥1 with 6 j1 = 6 j

for j = a, b, and construct the corresponding martingale BMO spaces BMOa and BMOb. As in the
previous subsection, we quotient out the 6 j -measurable functions and set, as we did in the introduction,

BMO6 j (�)= J6 j (BMO j ),

BMO6ab(�)= BMO6a(�)∧BMO6b(�)= { f ∈ L1
loc(�) | ‖ f ‖BMO6ab (�)

<∞}/C

In the following, we construct admissible coverings for σ -finite measure spaces. The procedure we
employ is quite general. In concrete scenarios, other admissible coverings can be constructed enjoying
additional properties as required in Theorems B1 and B2; these examples will be given later in this paper.

Remark 1.2. The classical BMO on Euclidean spaces can be decomposed as an intersection of finitely
many martingale BMO spaces, the number of which depends on the dimension [Conde 2013; Garnett
and Jones 1982; Mei 2003]. In contrast, we just consider “intersections” of two martingale BMOs.
Note this makes our spaces larger and still amenable for interpolation, which gives some extra room to
obtain endpoint estimates for singular integral operators. The main reason why this is possible is that our
approach just relies on measure-theoretic properties and does not rely on the geometry of the underlying
space, as will become clear in the sequel.

Lemma 1.3. Let (�,6,µ) be a σ -finite measure space. Then:

(i) If µ(�)=∞, it admits an admissible covering.

(ii) If µ(�) <∞ and µ is atomless, it admits an admissible covering.

Proof. If µ(�)=∞, pick A0 = Ã0 = B0 = B̃0 =∅,

A j = Ã j \ Ã j−1 and B j = B̃ j \ B̃ j−1,
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where ∅ 6= Ã1  B̃1  Ã2  B̃2  Ã3  · · · are 6-measurable sets chosen so that

min
{
µ(B̃ j \ B̃ j−1)

µ( Ã j )
,
µ( Ã j+1 \ Ã j )

µ(B̃ j )

}
> λ > 4 for all j ≥ 1.

It is at this point that we have used that µ(�) =∞. Let 6a be the atomic σ -algebra generated by the
atoms (A j ) j≥1. Similarly, define 6b = σ 〈B j : j ≥ 1〉. It is clear by construction that

6a ∩6b = {�,∅}.

On the other hand, |RB | = 2 for every atom B in 6b. Therefore, it remains to show that

sup
j≥1

[
µ(A j ∩ B j−1)

2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )

]
<

1
2
.

Note that the first summand above vanishes for j = 1. The rest of terms are smaller than 1/λ, according
to our conditions, so that λ > 4 suffices. When µ(�) < ∞ we may assume that µ(�) = 1, since
renormalization does not affect our definition of admissible covering. We use again a “corona-type
partition”

∅ 6= Ã0  B̃0  Ã1  B̃1  Ã2  · · ·

satisfying µ( Ã0)= 1− ζ , µ(B̃0 \ Ã0)= ζ(1− ζ ) and the relations

µ( Ã j+1 \ B̃ j )= ζµ(B̃ j \ Ã j ) and µ(B̃ j+1 \ Ã j+1)= ζµ( Ã j+1 \ B̃ j ) for j ≥ 0.

This is where we use the fact that µ has no atoms. Define A0 = Ã0, B0 = B̃0, A j = Ã j \ Ã j−1 and
B j = B̃ j \ B̃ j−1 for j ≥ 1. The σ -algebras 6a and 6b are the ones generated by (A j ) j≥0 and (B j ) j≥0,
respectively. In order to show that �=

⋃
j≥0 A j =

⋃
j≥0 B j , let us prove that we have∑

j≥0

µ(A j )=
∑
j≥0

µ(B j )= 1.

Indeed, if j ≥ 2 we have

µ(A j )= µ( Ã j \ Ã j−1)

= (1+ ζ )µ(B̃ j−1 \ Ã j−1)= ζ(1+ ζ )µ( Ã j−1 \ B̃ j−2)

= ζ(1+ ζ )
[
µ( Ã j−1 \ Ã j−2)−

1
ζ
µ( Ã j−1 \ B̃ j−2)

]
= ζ 2µ(A j−1).

Therefore, since µ(A0)= 1− ζ and µ(A1)= ζ(1− ζ 2), we deduce immediately that
∑

j≥0 µ(A j )= 1.
The sum

∑
j µ(B j ) also equals 1 since the two families are nested. The condition 6a ∩6b =∅ follows

again by construction. Finally, since |RB | = 2 for all atoms B = B j , it suffices one more time to prove
that

sup
j≥1

[
µ(A j ∩ B j−1)

2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )

]
<

1
2
.
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According to our construction, the left-hand side can be majorized by

µ(A j ∩ B j−1)
2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )
≤
µ(B̃ j−1 \ Ã j−1)

µ(B j−1)
+
µ( Ã j \ B̃ j−1)

µ(A j )
.

On the other hand, arguing as before, we may obtain the identities

µ(A j )= ζ
2( j−1)(ζ − ζ 3), µ( Ã j \ B̃ j−1)= ζ

2 j (1− ζ ),

µ(B j−1)= ζ
2( j−1)(1− ζ 2), µ(B̃ j−1 \ Ã j−1)= ζ

2( j−1)(ζ − ζ 2).

This gives a bound 2ζ/(1+ ζ ). It suffices for ζ < 1
3 . The proof is complete. �

Remark 1.4. All fully supported probability measures on Rn are nondoubling. In fact, this also holds
for probability measures supported on unbounded sets. In particular, we hope Lemma 1.3 together with
Theorems B1 and B2 might open a door to further insight into Calderón–Zygmund theory for these
measures.

John–Nirenberg inequalities, atomic H1 and duality. We now transfer some well-known properties of
martingale BMO spaces to our new class of spaces. The analogue of John–Nirenberg inequalities [1961]
for martingale BMO spaces can be stated as follows:

sup
k≥1

sup
A∈6k

1
µ(A)

µ
(

A∩ {| f −E6k−1 f |> λ}
)
. exp

(
−

cλ
‖ f ‖BMO

)
for all λ > 0,

where the martingale BMO is constructed over the filtration (6k)k≥1 and we use the convention E60 f = 0.
The proof can be found in [Garsia 1973]. An important consequence of this inequality is the p-invariance
of the BMO norm. To be more precise, the martingale BMO norm admits the equivalent expressions, for
any 0< p <∞,

‖ f ‖BMO ∼ sup
k≥1

∥∥(E6k | f −E6k−1 f |p)1/p
∥∥
∞
.

If we replace f by J61 f = f − E61 f in both inequalities, we immediately obtain the corresponding
analogues for the BMO spaces which quotient out61-measurable functions, introduced above. Namely, the
only difference is that we should read John–Nirenberg inequalities under the convention that E60 f =E61 f ,
and the BMO norm is given by ‖ · ‖◦BMO instead. If we intersect two of these BMO spaces, we get John–
Nirenberg-type inequalities for our spaces BMO6ab(�) associated to an admissible covering (6a, 6b) by
taking again E60 f = E61 f :

‖ f ‖BMO6ab (�)
∼ max

j=a,b
sup
k≥1

∥∥(E6 jk | f −E6 j (k−1) f |p)1/p
∥∥
∞
,

sup
j=a,b

sup
k≥1

A∈6 jk

1
µ(A)

µ
(

A∩ {| f −E6 j (k−1) f |> λ}
)
. exp

(
−

cλ
‖ f ‖BMO6ab (�)

)
.

Let us now consider H1–BMO duality in our context. In the literature we find several equivalent
descriptions of martingale H1 spaces, via Doob’s maximal function, martingale square function or
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conditional square function. Namely, H1 can be defined as the closure of the space of finite L1 martingales
with respect to any of the norms

∥∥sup
k≥1
|E6k f |

∥∥
1 ∼

∥∥∥∥(∑
k≥1

|d fk |
2
)1

2
∥∥∥∥

1
∼

∑
k≥1

‖d fk‖1+

∥∥∥∥(∑
k≥1

E6k−1 |d fk |
2
)1

2
∥∥∥∥

1
.

We refer to [Davis 1970] for the equivalences above and to [Garsia 1973] for the duality theorem, which
claims that H∗1 ' BMO, a martingale analogue of the Fefferman–Stein duality theorem. Let us now
consider atomic descriptions of these spaces. The term “atom” unfortunately appears here in several
settings — σ -algebras, measures and Hardy spaces — with different meanings, but it will be clear which
one is used from the context. Atomic descriptions are not possible for arbitrary H1 — see [Conde-Alonso
and Parcet 2014] for an “atomic block” description both in the commutative and noncommutative settings —
but there are such results for h1 (defined above). A 6-measurable function a ∈ L2(�) is called an atom
when there exists k ≥ 1 and A ∈6k with

supp(a)⊂ A, E6k (a)= 0, ‖a‖2 ≤ µ(A)−1/2.

The atomic h1 is defined as the space of functions of the form f =
∑

j λ j a j with the a j atoms. The norm
is the infimum of

∑
j |λ j | over all such possible expressions for the function f . This space is isomorphic

to h1; see [Garsia 1973]. In particular, it is also isomorphic to H1 when the filtration is regular. This will
be enough for our purposes, since we will only use H1–BMO duality for regular filtrations. Now, given
two filtrations (6 jk)k≥1 with 6 j1 =6 j for j = a, b, let H1 j be the corresponding H1 spaces. Define

H1
6ab
(�)=

{
f ∈ L1(�)

∣∣ ‖ f ‖H1 = inf
f= f1+ f2

E6a f1=E6b f2=0

‖ f1‖H1a +‖ f2‖H1b <∞
}
.

Then, all the results above apply. In particular, we have

H1
6ab
(�)∗ ' BMO6ab(�).

2. Interpolation: proof of Theorem A

Proof of Theorem A. The argument is a bit lengthy, so we have divided it into several steps. We will
assume that µ is a finite measure on �— normalized so that µ(�)= 1 — since this case is more technical.
The slight modifications needed for the nonfinite case will be explained in the last step of the proof.

Step 1: Intersection of quotients. Let us first show that the interpolation result follows from the first
assertion of Theorem A. Namely, given an admissible covering (6a, 6b) of (�,6,µ) and filtrations
(6 jk)k≥1 with 6 j1 =6 j for j = a, b, let BMO j be the corresponding martingale BMO spaces. It is clear
that

‖ f ‖L◦q (�) = ‖ f ‖[L◦∞(�),L◦1(�)]1/q & ‖ f ‖[BMO6ab (�),L
◦

1(�)]1/q

≥ max
j=a,b
‖ f −E6 j f ‖[J6 j (BMO j ),J6 j (L1(�))]1/q

' max
j=a,b
‖ f −E6 j f ‖Lq

6j
(�) = ‖ f ‖Lq

6ab
(�).
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For q ≥ 2, this implies
L◦q(�)⊂ [BMO6ab(�), L◦1(�)]1/q ⊂ Lq

6ab
(�).

Thus, the result follows from the isomorphism L◦q(�)' Lq
6ab
(�). The interpolation result for 1< q < 2

follows from this and the well-known reiteration theorem [Bergh and Löfström 1976].

Step 2: Reduction to strict contractions. The rest of the proof will be devoted to justify the first
assertion of Theorem A. We claim that such an isomorphism holds whenever we can find a constant
0< cp(6ab) < 1 such that, for every mean-zero function f ∈ L p(�),

min{‖E6aE6b f ‖p, ‖E6bE6a f ‖p} ≤ cp(6ab)‖ f ‖p. (2-1)

Indeed, if Eφ =
∫
�
φ dµ, we first observe that

‖φ‖L◦p(�) ∼ ‖φ−Eφ‖p ∼ inf
k∈C
‖φ− k‖p,

‖φ‖J6 j (L p(�)) ∼ ‖φ−E6 jφ‖p ∼ inf
ϕ 6 j -measurable

‖φ−ϕ‖p.

Therefore, our goal in what follows is to show that

‖φ−Eφ‖p ∼ ‖φ−E6aφ‖p +‖φ−E6bφ‖p for every φ ∈ L p(�).

The lower estimate is trivial. For the upper estimate, we shall use (2-1). Assume that the minimum above
is attained at the first term (say) and let f = φ−Eφ be a mean-zero function. We then find

‖E6aE6b f ‖p ≤ cp(6ab)‖ f ‖p ≤ cp(6ab)
[
‖ f −E6a f ‖p +‖E6a( f −E6b f )‖p +‖E6aE6b f ‖p

]
,

which implies

‖E6aE6b f ‖p ≤
cp(6ab)

1− cp(6ab)
[‖φ−E6aφ‖p +‖φ−E6bφ‖p].

This inequality is all we need, since the upper estimate follows from it:

‖φ−Eφ‖p ≤ ‖E6aφ−Eφ‖p +‖φ−E6aφ‖p ≤ ‖E6aE6b f ‖p +‖E6a(φ−E6bφ)‖p +‖φ−E6aφ‖p

≤
1

1− cp(6ab)
[‖φ−E6aφ‖p +‖φ−E6bφ‖p].

Step 3: The case p = 2. Recall that we are assuming for the moment that µ(�)= 1, and in that case
we may consider two distinguished atoms (A0, B0) ∈6a×6b. In accordance with the previous point, it
suffices to show that

min{‖E6aE6b f ‖2, ‖E6bE6a f ‖2} ≤ c2(6ab)‖ f ‖2

for some 0 < c2(6ab) < 1 and every mean-zero f ∈ L2(�). We claim that this estimate follows if the
same inequality holds for 6 j -measurable functions which vanish on the corresponding distinguished
atom. More precisely, it suffices to prove that one of the following conditions holds:

• ‖E6aφb‖2 ≤ c2(6ab)‖φb‖2 for φb 6b-measurable with φb(B0)= 0;

• ‖E6bφa‖2 ≤ c2(6ab)‖φa‖2 for φa 6a-measurable with φa(A0)= 0.
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Indeed, assume the first condition holds and let φb ∈ L2(�,6b, µ) be mean-zero. Then

‖φb‖
2
2 = ‖φb−φb(B0)‖

2
2− |φb(B0)|

2,

‖E6aφb‖
2
2 = ‖E6a(φb−φb(B0))‖

2
2− |φb(B0)|

2.

Subtracting and using the first condition, we get

‖φb‖
2
2−‖E6aφb‖

2
2 ≥ (1− c2(6ab))‖φb−φb(B0)‖

2
2 ≥ (1− c2(6ab))‖φb‖

2
2.

Here, φb(B0) denotes the constant value of φb on B0. Rearranging, we get ‖E6aφb‖2 ≤ c2(6ab)‖φb‖2.
Therefore, given any mean-zero f ∈ L2(�), we may define φb = E6b f and deduce that ‖E6aE6b f ‖2 ≤
c2(6ab)‖ f ‖2, as desired. Alternatively, if we use the second condition above, the roles of 6a and 6b are
switched and we obtain the other sufficient inequality which is implicit in the minimum above. Thus we
have reduced the proof to justify one of the two conditions above. It is at this point where our definition
of admissible pair comes into play. Namely, we know that

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
= c(6ab)

for some 0< c(6ab) < 1. Let us assume (say) that the minimum above is attained by the first term and
let φa be a 6a-measurable function in L2(�) that vanishes on A0. Then, if we write φa =

∑
A 6=A0

αAχA,
we have the estimate

‖E6bφa‖
2
2 =

∑
A,A′ 6=A0

αAαA′
∑

B∈RA∩RA′

µ(A∩ B)
µ(B)1/2

µ(A′ ∩ B)
µ(B)1/2

≤

∑
A,A′ 6=A0

1
2

∑
B∈RA∩RA′

(
|αA|

2µ(A∩ B)2

µ(B)
+ |αA′ |

2µ(A
′
∩ B)2

µ(B)

)

=

∑
A 6=A0

|αA|
2µ(A)

∑
A′ 6=A0

RA∩RA′ 6=∅

∑
B∈RA∩RA′

µ(A∩ B)2

µ(A)µ(B)

=

∑
A 6=A0

|αA|
2µ(A)

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
≤ c(6ab)

∑
A 6=A0

|αA|
2µ(A).

The right-hand side equals c(6ab)‖φa‖
2
2, so we obtain the second condition. The first one follows when

the minimum in our definition of admissible covering is attained by the second term. This proves that
the first assertion of Theorem A holds for finite measures and p = 2. The case p > 2 requires some
preliminaries.

Step 4: A mass absorption principle. Let us consider a particular ordering of the atoms in 6a and 6b.
According to our assumption 6a ∩6b = {�,∅}, we may order 5a so that 5a = {A1, A2, . . .} and, for
each m ≥ 0, there exists B ∈5b such that µ(Am+1 ∩ B) and µ

(⋃
s≤m As ∩ B

)
are both strictly positive.
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Similarly, we may order 5b satisfying the symmetric condition. Define the atomic σ -algebras

6a(m)= σ
〈 m⋃

s=0

As, {As}s≥m+1

〉
,

6b(m)= σ
〈 m⋃

s=0

Bs, {Bs}s≥m+1

〉
.

In this step we will prove that

‖ f ‖L p
6ab
(�) ' ‖ f −E6a(m) f ‖L p(�)+‖ f −E6b(m) f ‖L p(�) (2-2)

for any m ≥ 1 and 2< p <∞. The constants may depend on m, p and the covering (6a, 6b). Indeed,
since the result is trivial for m= 0, we will proceed by induction and assume that the result holds for m−1.
Moreover, the upper estimate is straightforward and by symmetry it suffices to show that

‖ f −E6a(m) f ‖p . ‖ f −E6a(m−1) f ‖p +‖ f −E6b f ‖p.

Taking A0(m) =
⋃

s≤m As , let f = f χA0(m) + f χ�\A0(m) = f1 + f2. Since it is clear that E6a(m) f2 =

E6a(m−1) f2, we may concentrate only on f1. The left-hand side for f1 can be written as

‖ f1−E6a(m) f1‖p = ‖χA0(m)( f −E6a(m) f )‖p = ‖ f ‖L◦p(A0(m)) ∼ sup
‖g‖L p′ (A0(m))≤1

g mean-zero

∣∣∣∣∫
A0(m)

f g dµ
∣∣∣∣.

Approximating the right-hand side up to ε > 0 by some mean-zero g0 in the unit ball of L p′(A0(m)),
let B be an atom in 6b satisfying that µ(A0(m− 1)∩ B) and µ(Am ∩ B) are strictly positive. Recall that
this can be done by the specific enumeration of atoms we picked. Then, define

g1 = χAm g0−
χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ,

g2 = χA0(m−1)g0−
χA0(m−1)∩B

µ(A0(m− 1)∩ B)

∫
A0(m−1)

g0 dµ,

g3 =
χA0(m−1)∩B

µ(A0(m− 1)∩ B)

∫
A0(m−1)

g0 dµ+
χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ.

Obviously, g0 = g1+ g2+ g3 and each g j is mean-zero. Moreover, we have

‖g1‖L p′ (A0(m)) ≤ ‖χAm g0‖L p′ (A0(m))+

∥∥∥∥ χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ
∥∥∥∥

L p′ (A0(m))

≤

(
1+

µ(Am)
1/p

µ(Am ∩ B)1/p

)
‖g0‖L p′ (A0(m)) . ‖g0‖L p′ (A0(m)) ≤ 1.
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Similar computations apply to g2 and g3. In summary, we obtain the estimate below, where we write fQ

to denote the average of f over a given measurable set Q:

‖ f1−E6a(m) f1‖p ∼

∣∣∣∣∫
A0(m)

f g0 dµ
∣∣∣∣

≤

∣∣∣∣∫
Am

( f − f Am )g1 dµ
∣∣∣∣+ ∣∣∣∣∫

A0(m−1)
( f − f A0(m−1))g2 dµ

∣∣∣∣+ ∣∣∣∣∫
B
( f − fB)g3 dµ

∣∣∣∣
. ‖χAm ( f − f Am )‖p +‖χA0(m−1)( f − f A0(m−1))‖p +‖χB( f − fB)‖p

. ‖ f −E6a(m−1) f ‖p +‖ f −E6b f ‖p.

This completes the proof of the norm equivalence (2-2).

Step 5: The case p > 2. We now complete the proof of Theorem A for probability measures. According
to (2-2), it suffices to show that there exists 0 < cp(6ab) < 1 and m = m(p) ≥ 1 such that, for any
mean-zero function f ∈ L p(�),

min{‖E6a(m)E6b(m) f ‖p, ‖E6b(m)E6a(m) f ‖p} ≤ cp(6ab)‖ f ‖p.

Pick m = m(p) as the smallest possible value of m satisfying

min
{
µ(A0(m)), µ(B0(m))

}
>max

{(
2 · 4−p

1− 2 · 4−p

) 1
p−1

, (1− 4−p)1/p
}

and ε = ε(p) > 0 small enough so that

(1− 2 · 4−p)1/2 ≤ (1− 4−p)1/(2p)(1− ε3)1/2− ε3/2.

Since L p(�)⊂ L2(�), we know from Step 3 that f always satisfies the above inequality for p=2. Assume
that the minimum for p = 2 is attained (say) at the first term, so that ‖E6a(m)E6b(m) f ‖2 ≤ c2(6ab)‖ f ‖2.
Recall that E f =

∫
�

f dµ. When

E(|E6b(m) f |p/2)2 < (1− ε3)‖E6b(m) f ‖p
p,

we proceed as follows:

‖E6a(m)E6b(m) f ‖p
p ≤ ‖E6a(m)|E6b(m) f |p/2‖22− (E|E6b(m) f |p/2)2+ (E|E6b(m) f |p/2)2

= ‖E6a(m)(|E6b(m) f |p/2−E|E6b(m) f |p/2)‖22+ (E|E6b(m) f |p/2)2

≤ c2
2(6ab)‖|E6b(m) f |p/2−E|E6b(m) f |p/2‖22+ (E|E6b(m) f |p/2)2

≤
[
c2

2(6ab)+ (1− c2
2(6ab))(1− ε3)

]
‖ f ‖p

p = cp
p(6ab)‖ f ‖p

p.

If E(|E6b(m) f |p/2)2 ≥ (1− ε3)‖E6b(m) f ‖p
p, then one can easily show that∥∥|E6b(m) f |p/2−E|E6b(m) f |p/2

∥∥2
2 ≤ ε

3
‖E6b(m) f ‖p

p.
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Now, decomposing E6b(m) f = E6b(m) f (B0(m))χB0(m)+E6b(m) f χ�\B0(m), we get√
µ(B0(m))|E6b(m) f (B0(m))|p = ‖|E6b(m) f |p/2χB0(m)‖2

≥ ‖E|E6b(m) f |p/2χB0(m)‖2−‖|E6b(m) f |p/2−E|E6b(m) f |p/2‖2

≥ µ(B0(m))1/2E|E6b(m) f |p/2− ε3/2
‖E6b(m) f ‖p/2

p

≥ [(1− 4−p)1/(2p)(1− ε3)1/2− ε3/2
]‖E6b(m) f ‖p/2

p

≥ (1− 2 · 4−p)1/2‖E6b(m) f ‖p/2
p .

This also implies

‖E6b(m) f χ�\B0(m)‖
p
p ≤ 2 · 4−p

‖E6b(m) f ‖p
p.

On the other hand, since f is mean-zero we have

E6b(m) f (B0(m))µ(B0(m))+E(E6b(m) f χ�\B0(m))= 0.

Rearranging and raising to the power p then gives

µ(B0(m))p
|E6b(m) f (B0(m))|p ≤ ‖E6b(m) f χ�\B0(m)‖

p
p ≤ 2 · 4−p

‖E6b(m) f ‖p
p.

Finally, combining our two estimates so far for µ(B0(m)), we obtain

µ(B0(m))≤
(

2 · 4−p

1− 2 · 4−p

) 1
p−1

,

which contradicts our choice of m = m(p). This shows that E(|E6b(m) f |p/2)2 cannot be larger than
(1− ε3)‖E6b(m) f ‖p

p and completes the proof in the case the minimum for p = 2 is attained at the first
term. When the minimum is attained at the second term, a symmetric argument applies.

Step 6: The nonfinite case. When µ(�)=∞ the proof of Theorem A is a bit simpler. In the first place,
note that L◦p(�)= L p(�) in this case. In particular, the goal is to show that

Lq(�)' [BMO6ab(�), L1(�)]1/q ,

L p(�)' L p(�,6,µ)/6a ∧ L p(�,6,µ)/6b.

Since L∞(�) ⊂ BMO6ab(�), our argument in Step 1 can be easily adapted and interpolation follows
from the second isomorphism above. To prove it, we follow essentially the same argument as for finite
measures. Indeed, arguing as in Step 2, we see that it suffices to show that

min{‖E6aE6b f ‖p, ‖E6bE6a f ‖p} ≤ cp(6ab)‖ f ‖p

for some constant 0< cp(6ab) < 1 and every function f ∈ L p(�). The only difference is that here it must
hold for every f , not just mean-zero elements as in the finite case. The case p = 2 is proved following
Step 3. The fact that we do not assume f to be mean-zero — or ultimately to vanish at A0 or B0 — is
compensated by our definition of admissible coverings, which does not consider distinguished atoms
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for infinite measures. Finally, once we know the case p = 2 holds — for arbitrary functions, not only
mean-zero ones — we conclude that

‖E6aE6b f ‖p
p ≤ ‖E6aE6b | f |

p/2
‖

2
2 ≤ c2

2(6ab)‖| f |p/2‖22 ≤ cp
p(6ab)‖ f ‖p

p

or a similar estimate for E6bE6a f . The proof of Theorem A is now complete. �

3. Calderón–Zygmund operators, I

Let (�,6,µ) be a measure space and consider a metric d on �. Assume that µ is σ -finite with respect
to the metric topology. In this section we will be interested in Calderón–Zygmund operators on the metric
measure space (�,µ, d), as defined in the introduction. More precisely, we prove Theorem B1 below
and, after that, we shall illustrate this result with a few constructions of admissible coverings.

Proof of Theorem B1. Our definition of CZO includes a symmetric Hörmander kernel condition. This
implies that the class of Calderón–Zygmund operators is closed under taking adjoints. In particular, the
L p-boundedness for 1 < p < 2 can be deduced by duality from the case p > 2. On the other hand,
according to Theorem A, the latter follows by interpolation if we can prove that any CZO extends
to a bounded map L∞(�) → BMO6ab(�). Indeed, since T is L2-bounded, Theorem A yields that
T : L p(�)→ L◦p(�). This is enough when the measure µ is infinite, since in that case L p(�)= L◦p(�).
When µ is finite we use L2-boundedness once again together with Hölder’s inequality to deduce that

‖T f ‖p ≤ ‖T f −ET f ‖p +µ(�)
1/p
|ET f |. ‖ f ‖p +µ(�)

1/p−1/2
‖ f ‖2 . ‖ f ‖p.

This completes the proof of our claim. Let us then prove the L∞→BMO estimate. Consider an auxiliary
BMO space which arises by averaging over the family of doubling balls in (�,6,µ),

‖ f ‖DBMO = sup
Bd-ball
doubling

(
1

µ(B)

∫
B

∣∣∣∣ f (w)−
1

µ(B)

∫
B

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Following the standard argument, it is easily checked that

T : L∞(�)→ DBMO.

Indeed, in the first place we may observe as usual that we have the equivalence

‖ f ‖DBMO ∼ sup
Bd-ball
doubling

inf
kB∈C

(
1

µ(B)

∫
B
| f (w)− kB|

2 dµ(w)
)1

2

.

Second, we decompose f = f χαB+ f χ�\αB = φ1B+φ2B and pick the constant kB to be the average of
Tφ2B over B. Then, we may estimate the norm of T f in DBMO by using the L2-boundedness of T for
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Tφ1B and the Hörmander kernel condition for Tφ2B. More precisely, we get

‖T f ‖DBMO ≤ sup
Bd-ball
doubling

(
1

µ(B)

∫
B

∣∣∣∣T ( f χαB)(w)

∣∣∣∣2 dµ(w)
)1

2

+

(
1

µ(B)

∫
B

∣∣∣∣T ( f χ�\αB)(w)−
1

µ(B)

∫
B

T ( f χ�\αB) dµ
∣∣∣∣2 dµ(w)

)1
2

.

Since we just use (α, β)-doubling balls, the first term is dominated by(
µ(αB)
µ(B)

)1
2

‖T ‖2→2‖ f ‖∞ . ‖ f ‖∞.

On the other hand, using the kernel representation of T we may write

T ( f χ�\αB)(w)−
1

µ(B)

∫
B

T ( f χ�\αB) dµ=
1

µ(B)

∫
B

∫
�\αB

(k(w, ζ )− k(ξ, ζ )) f (ζ ) dµ(ζ ) dµ(ξ)

for w ∈ B. In particular, the last term above can be majorized by ‖ f ‖∞ using the Hörmander condition
for k. This proves the L∞(�)→ DBMO boundedness of our CZO. Therefore, it suffices to show that
DBMO⊂ BMO6ab(�). This follows from the chain of inclusions

DBMO⊂ bmo6a ∧ bmo6b ⊂ BMO6a ∧BMO6b = BMO6ab(�).

Let us recall in passing the terminology we are using, namely

bmo6 j = J6 j (bmo j ) and BMO6 j = J6 j (BMO j )

for j = a, b. Here, bmo j and BMO j are the martingale bmo and BMO spaces constructed over the
filtrations (6 jk)k≥1 described in the statement of Theorem B1. If 5 j denotes the atoms in such a filtration,
the norm in bmo6 j is given by

‖ f ‖bmo6 j
= sup

k≥1
‖E6 jk | f −E6 jk f |2‖1/2

∞
= sup

A∈5 j

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Now, since we assume that all atoms in 5=5a∪5b are doubling, the seminorm above is majorized (up
to absolute constants) by the seminorm in DBMO. As this holds for both j = a, b, we have proved the
first inclusion. Now, for the second inclusion, we recall the seminorm in BMO6 j ,

‖ f ‖BMO6 j
= sup

k≥1
‖E6 jk | f −E6 jk−1 f |2‖1/2

∞
,

where E6 j0 f = E6 j1 f since we quotient out 6 j1-measurable functions. Note also that we are requiring
the filtrations (6 jk)k≥1 to be regular. In other words, there exist absolute constants c j > 0 such that
E6 jk | f | ≤ c jE6 jk−1 | f | for j = a, b and k ≥ 1. This yields the inequality

‖ f ‖BMO6 j
≤ c j‖ f ‖bmo6 j

.

Thus, BMO6ab(�)' bmo6a ∧ bmo6b for regular filtrations, and we are done. �
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Remark 3.1. Under the same assumptions, every CZO extends to a bounded map

H1
6ab
(�)→ L1(�).

Indeed, this follows at once by duality and Theorem B1. Alternatively, since we need to work with
regular filtrations, we may use the atomic description of H1

6ab
(�) given in Section 1, from which an easy

argument arises; details are left to the reader.

In the following subsections we shall illustrate Theorem B1 with a few examples.

Doubling case. Admissible coverings fulfilling the assumptions in Theorem B1 can always be constructed
on every doubling space, so that Calderón–Zygmund extrapolation for homogeneous spaces appears as a
particular application of our approach. For clarity of the exposition, we shall just indicate how to construct
such admissible coverings in R2 with the Lebesgue measure m and the Euclidean metric, although a
similar construction works in the general case. Let us pick Q0 =

[
−

1
2 ,

1
2

]
×
[
−

1
2 ,

1
2

]
, the unit cube, and

set Qs = 3s Q0 for s ≥ 1. Consider the σ -algebras

6a = σ 〈As | s ≥ 1〉 and 6b = σ 〈Bs | s ≥ 1〉,

where (A1, B1)= (Q0, Q1) and (As, Bs)= (Q2s−2 \ Q2s−4, Q2s−1 \ Q2s−3) for s ≥ 2. Then it follows
from the proof of Lemma 1.3 that (6a, 6b) is an admissible covering of the Euclidean space (R2,m).

Next, we define the filtrations (6 jk)k≥1 with6 j1=6 j for j=a, b. Except for A1 and B1 — which are or-
dinary cubes — the atoms As and Bs (s≥2) are punctured cubes in which we remove a concentric cube with
side-length 1

9 times the side-length of the larger one. To define6 j2 for j = a, b, we break each As , Bs into a
disjoint union of 80 equal cubes of side-length 1

9 times the side-length of the original punctured cube — i.e.,
all except for the one in the center — unless s=1, in which case we also pick the center and get 81 subcubes
(see Figure 1). The next generations are simpler. Indeed, since all our atoms in 6 j2 are already cubes, we
perform dyadic partitions in each of them to provide the next generations of our filtration. This procedure
completely defines two filtrations respectively based on6a and6b. It remains to check that these filtrations
are regular and the atoms are doubling. The regularity constant is dominated uniformly by 81 when
(k−1, k)= (1, 2) and by 4 otherwise. On the other hand, our atoms for k = 1 are punctured cubes which
are comparable to the corresponding unpunctured ones, which in turn are doubling with constant 4. This
proves that all conditions in Theorem B1 are satisfied. In the general case, we just need to use Christ dyadic
cubes [1990] and adapt our choice according to the finiteness or nonfiniteness of µ as we did in Lemma 1.3.

Polynomial growth. Assume that we have (�,µ, d) of k-th degree polynomial growth with µ(�)=∞.
The associated RBMO norm can be defined as follows:

‖ f ‖RBMO =max
{
‖ f ‖DBMO, sup

B⊂B′
B,B′d-balls

doubling

∣∣∣∣ 1
µ(B)

∫
B

f dµ−
1

µ(B′)

∫
B′

f dµ
∣∣∣∣ / KB,B′

}
,

with 1≤ KB,B′=1+
∑

2 j B⊂B′ µ(2
j B)/r(2 j B)k . For such measures, we may easily construct an admissible

covering of (�,µ) composed of doubling atoms. Indeed, the construction above can easily be modified
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Bs

As

Figure 1. The admissible covering and the second generation of one of the filtrations.

using the existence of arbitrarily large doubling cubes centered at almost every point in the support of µ;
see [Tolsa 2001] for details. The main difficulty relies in the construction of filtrations (6 jk)k≥1 satisfying
the assumptions in Theorem B1. Note that, whenever that holds, we find

RBMO⊂ DBMO⊂ BMO6ab(�).

In particular, we deduce that [RBMO, L1(�)]1/q ' Lq(�) when this happens. As far as we know, such
interpolation identities are new since Tolsa [2001] studied interpolation of operators. Unfortunately,
the construction of such filtrations seems to be a difficult task in the general case. For instance, the
corona-type construction described above finds some obstructions when the measure µ is supported in
Cantor-like sets. Nevertheless, we may construct these filtrations in some other cases. Let us consider the
following family of measures on Rn equipped with the Euclidean distance

dµβ(x)=
dx

1+ |x |β
.

These measures are nondoubling only for β > n. We will construct an admissible covering for β & n3/2

satisfying the hypotheses of Theorem B1 when d is the Euclidean metric in Rn . We will work with the
equivalent measure

dνβ(x)=min{1, |x |−β} dx

for convenience. Note that this does not affect the conclusions in Theorem B1.
Pick Q0 = [−λ, λ]

n with λ > 1 to be fixed, and set Qs = 2s Q0. Consider the σ -algebras 6a = σ 〈As |

s ≥ 1〉 and 6b= σ 〈Bs | s ≥ 1〉, where (A0, B0)= (Q0, Q1) and (As, Bs)= (Q2s \Q2s−2, Q2s+1 \Q2s−1)

for any s ≥ 1. We clearly have 6a ∩6b = {R
n,∅} and max{|RA|, |RB |} ≤ 2 for (A, B) ∈5a×5b, by
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S1 R1

S2 S3

R2
= R3

As \ Bs

As ∩ Bs

Figure 2. There is a cube R j for each cube S j .

construction of (6a, 6b). Thus, it suffices to show that

sup
(A,B)∈5a×5b

A 6=A0

νβ(A∩ B)2

νβ(A)νβ(B)
<

1
2
.

We will prove, in fact, the apparently stronger inequalities

sup
s≥1

νβ(As ∩ Bs−1)

νβ(Bs−1)
<

1
2

and sup
s≥1

νβ(As ∩ Bs)

νβ(As)
<

1
2
.

By symmetry of the argument, we just prove the second inequality above. Denote by L the side length of
the smallest cube Q2s containing As . Then we have that A∩ B can be decomposed into Cn = 8n

− 4n

cubes S j , each of which satisfies that S j = R j +aS j for some cube R j = R j (S j )⊂ As \ Bs of side length
equal to L/8 and such that the angle between any point in R j and aS j is smaller than π/3. We can also
impose that |aS j | ≥ L/8; see Figure 2. This implies that, for each x in R j , we have

|x + aS j | ≥ |x | + |aS j | cos^(x, aS j )≥ |x | +
1
2 |aS j |.

Since As ⊂ Rn
\B1(0) for s ≥ 1, we have

νβ(As ∩ Bs)=

∫
As∩Bs

|x |−β dx =
Cn∑
j=1

∫
S j

|x |−β dx

=

Cn∑
j=1

∫
R j

|x + aS j |
−β dx ≤

Cn∑
j=1

∫
R j

(
|x | + 1

2 |aS j |
)−β dx .
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Using that |x | ≤
√

nL/2 for x ∈ As and |aS j | ≥ L/8,

1
νβ(R j )

∫
R j

(
|x | + 1

2 |aS j |
)−β dx ≤ sup

x∈R j

(
|x | + 1

2 |aS j |
)−β

|x |−β
≤

( √
n

√
n+ 1

8

)β
.

Therefore, we obtain

νβ(As ∩ Bs)

νβ(As)
≤ Cn

( √
n

√
n+ 1

8

)β
≤ 8n

( √
n

√
n+ 1

8

)β
<

1
2

for β & n3/2.

A similar argument shows that
νβ(As ∩ Bs−1)

νβ(Bs−1)
<

1
2

for β & n3/2 and s ≥ 2, whereas the same estimate holds for s = 1 as a consequence of the fact that B0

contains [−λ, λ]n for λ > 1 large enough. This completes the construction of an admissible covering. It
remains to construct filtrations (6 jk)k≥1 for j = a, b, that are regular and composed of doubling atoms.
Recall that we set 6 j1 =6 j and define 6 j2 by splitting each atom in 6 j into a disjoint union of cubes.
Namely, for j = a we keep A0 and divide As into the cubes R j , S j in Figure 2. We proceed similarly
for j = b. Once we have defined 6 j2, we construct 6 jk by dyadic splitting of the cubes in 6 j (k−1). Note
that the atoms in 6 j1 \ {A0, B0} split at most into 8n cubes K centered at cK which are away from the
origin. Thus

νβ(2K )=
∫

2K
|x |−β dx . |2K ||cK |

−β . |K ||cK |
−β .

∫
K
|x |−β dx = νβ(K ).

It easily follows from this that all the atoms in 6 jk are doubling up to absolute constants independent
of k ≥ 1 and that both filtrations are regular. This shows that Theorem B1 applies to (Rn, µβ) with the
Euclidean metric.

Remark 3.2. A few comments are in order:

(i) In the light of the example above, one could wonder what happens with the positive powers dµγ (x)=
|x |γ dx for γ > 0, but it is straightforward to show that these measures are doubling, so that we can handle
them following the construction of the previous section (see p. 731).

(ii) Our proof of Theorem B1 relies crucially on the embedding of the space DBMO in BMO6ab(�)

under suitable conditions. When the metric measure space (�,µ, d) is of polynomial growth, we know
from [Tolsa 2001] that CZOs are L∞→RBMO bounded. Since RBMO⊂DBMO, it is natural to wonder
if we have

RBMO⊂ BMO6ab(�)

under weaker assumptions than in Theorem B1. It turns out that this is the case when there exists filtrations
composed of doubling atoms, no matter whether they are regular or not. Indeed, noticing that RBMO can be
described as a subspace of DBMO with an additional condition, it is this crucial extra condition introduced
by Tolsa that allows an embedding into BMO6ab(�) and not into bmo6ab(�) for nonregular filtrations.
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Concentration at the boundary. Let

dµ±α(x)= e±|x |
α

dx

on Rn equipped with the Euclidean metric. Carbonaro et al. [2009; 2010] proved that these measures
satisfy their concentration condition when α > 1. In this subsection we shall prove that our hypotheses in
Theorem B1 hold for any α > 0, hence extending their results for measures with less concentration at the
boundary. Let us start with the probability measure µ−α . Pick K = K (n, α) > 0, a large constant of the
form 2k for some k ≥ 1 to be fixed below. Denote by D(Rn) the standard filtration of dyadic cubes in Rn .
We consider the distinguished atom A0 = [−K , K ]n . The other atoms As ∈5a for s ≥ 1 are chosen to be
the cubes in D(Rn

\ A0) which are maximal under the following constraint on the side-length `(As) in
terms of the modulus of its center cAs :

5a = {A0} ∪
{

As maximal in D(Rn
\ A0) | `(As)≤ K |cAs |

1−α, s ≥ 1
}
.

Before defining5b, we also need another dyadic filtration D′(Rn) satisfying some specific properties which
we now detail. Given cubes (A, B) ∈ D(Rn)× D′(Rn) of comparable size — 2−k0 ≤ `(A)/`(B) ≤ 2k0

for some absolute constant k0 — with nonempty intersection, there exists a parallelepiped R ⊂ A4B such
that:

(1) R is “substantially closer” than A∩ B to the origin;

(2) there exists a = a(R) ∈ Rn such that A∩ B ⊂
⋃N

j=1 R+ ja;

(3) |a| ≥ 1
N max{`(A), `(B)} and |x + ja| ≥ |x | + 1

2 |a| for every x ∈ R.

Let A1 be the cube in 5a \ {A0} whose center is the closest to the origin. Let L = `(A1) and pick
B0 = A0 +

1
3 Led with ed = (1, 1, . . . , 1). Then, the dyadic filtration D′(Rn) is defined as one of the

shifted dyadic filtrations in [Conde 2013] with the initial cube being B0. The fact that the properties
above hold follows ultimately from the “good separation” between D(Rn) and D′(Rn). Here we pick K
large enough so that the estimate µ−α

( 1
2 A0

)
> (1− ε)µ−α(Rn) holds. In particular, we get

µ−α(A0 ∩ B0)

µ−α(Rn)
> 1− ε

for some small ε > 0 to be fixed. The family 5b is defined similarly by

5b = {B0} ∪
{

Bs maximal in D′(Rn
\ B0) | `(Bs)≤ K |cBs |

1−α, s ≥ 1
}
.

Set 6 j = σ(5 j ) for j = a, b and observe that 6a ∩6b = {R
n,∅} by construction. Therefore, to prove

that (6a, 6b) yields an admissible covering we only need to check that we have

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
< 1.

According to our definition of As , it is a simple exercise to check that we have `(As)≥
1
3 K |cAs |

1−α for
all s ≥ 1 but for a finite number (independent of K ) of cubes close to the origin. The same argument
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-·x a

A

B

R R+ a R+ 2a

Figure 3. A∩ B is covered by at most N a-translates of R; R is “substantially closer” to
the origin than A∩ B; a is parallel to a coordinate axis for cubes A, B in a sector around
that axis. In particular, x and a are “close” to being parallel, so that |x+ ja| ≥ |x |+ 1

2 |a|.

holds for atoms in 5b. In particular, we have |RA|, |RB | ≤ Cn for all (A, B) ∈5a×5b. Therefore, when
B = B0 we obtain

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
≤ Cn

µ−α(A∩ B)
µ−α(B)

< Cn
ε

1− ε
<

1
2

for ε < 1
3 C−1

n . Otherwise, when B 6= B0, we obtain

µ−α(A∩ B)
µ−α(R)

=
1

µ−α(R)

∫
A∩B

e−|x |
α

dx

≤

N∑
j=1

1
µ−α(R)

∫
R

e−|x+ ja|α dx

≤
N

µ−α(R)

∫
R

e−(|x |+|a|/2)
α

dx ≤ N sup
x∈R

e−(|x |+|a|/2)
α
+|x |α .

If α = 1, we get an estimate Ne−|a|/2 ≥ Ne−C′n K . For other values of α > 0, a straightforward application
of the mean value theorem gives(

|x | + 1
2 |a|

)α
− |x |α ≥

α

18
K |cA|

1−α
|x |α−1

≥ C′n K

since |x | ∼ |cA|. Hence we get, for A 6= A0,∑
B∈RA

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
<

1
2
+C2

n sup
B 6=B0

µ−α(A∩ B)2

µ−α(A)µ−α(B)
≤

1
2
+C2

nNe−C′n K < 1,



LARGE BMO SPACES VS INTERPOLATION 737

picking K = K (n, α) large enough. This shows that we have an admissible covering. Note that our choice
of cubes for α > 1 is a family which becomes smaller and smaller when we get away from the origin.
This is in the spirit of the Mauceri–Meda [2007] construction for the Gaussian measure. In contrast,
when α < 1 we pick larger and larger cubes as we get away from the origin. This construction seems not
to be useful in [Carbonaro et al. 2009; 2010], since we may not use the locally doubling property for
arbitrarily large cubes. Let us complete the proof by showing that the other hypotheses in Theorem B1
hold. Our choice of filtrations (6 jk)k≥1 for j = a, b is by dyadic splitting of the cubes in 5a and 5b,
respectively. The regularity of such filtrations will follow from the fact that every atom in (6 jk)k≥1 is
(3, β)-doubling for some absolute constant β, and this suffices to complete the proof. If Q is any subcube
of A0 ∪ B0, there are dimensional constants kn and Kn such that

kn|Q| ≤
∫

Q
e−|x |

α

dx ≤ Kn|Q|,

and hence Q is trivially (3, β)-doubling. Otherwise, we compute

µ−α(3Q)
µ−α(Q)

≤
|3Q|
|Q|

sup
x∈3Q

e−|x |
α

sup
x∈Q

e|x |
α

≤ 3n exp
((
|xQ | +

1
2

√
n`(Q)

)α
−
(
|xQ | −

3
2

√
n`(Q)

)α)
≤ β

for some absolute constant β > 0, using the mean value theorem one more time.

Remark 3.3. A few comments are in order:

(i) Given α > 0 and by minor modifications in the above arguments, we may also produce an admissible
covering for (Rn, e|x |

α

dx) which satisfies the hypotheses of Theorem B1 with respect to the Euclidean
metric.

(ii) In this paper we ∧-intersect two truncated martingale BMO spaces, but our results also hold for
finite ∧-intersections; details are simple and not very relevant. The Mauceri–Meda BMO space for the
Gaussian measure [2007] can be described as such a finite intersection of BMO spaces using a construction
similar to the one above for µ−2 but intersecting n + 1 BMO spaces instead of 2. Namely, one uses
as many filtrations as needed to cover all cubes in Rn with dyadic cubes of comparable size; see, for
instance, [Conde 2013] for the optimal choice. This establishes an inclusion of their BMO space into
our 2-intersection BMO6ab associated to µ−2, which still interpolates and is strictly larger. The latter
assertion can be proved following the argument which shows that classical BMO is strictly contained in
dyadic BMO.

(iii) A geometric interpretation of our definition of admissible covering could be that we still impose
certain concentration at the boundary, but much less than [Carbonaro et al. 2009; 2010]. In support of
this, let us consider an admissible covering (6a, 6b). Let A be a finite family in 5a \ {A0} and let RA be
the union

⋃
A∈A RA. If we consider the set RA as a measurable set and interpret RA \A as the region

“close to the boundary”, then we can prove that

µ(RA)≤
1

1− c(6ab)
µ(RA \A)
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or, equivalently, µ(A)≤ c(6ab)µ(RA). Indeed, we have

µ(A)=
∑
A∈A

∑
B∈RA

µ(A∩ B)

≤ c(6ab)
1/2
∑
A∈A

µ(A)1/2
( ∑

B∈RA

µ(B)
|RB |

)1
2

≤ c(6ab)
1/2µ(A)1/2

(∑
A∈A

∑
B∈RA

µ(B)
|RB |

)1
2

≤ (c(6ab)µ(A)µ(RA))
1/2.

(iv) In the case of the Gaussian measure on Rn , Mauceri, Meda and Sjögren [Mauceri et al. 2012] proved
that Ri , Si , the Riesz transforms associated with the Ornstein–Uhlenbeck semigroups, are bounded from
L∞ to Mauceri–Meda BMO spaces, but their adjoint operators R∗i , S∗i are not when n ≥ 2. As explained
in (ii), our BMO spaces are strictly larger than Mauceri and Meda’s if the σ -algebras 6a , 6b are picked
as in the beginning of this subsection. Therefore, the Riesz transforms Ri , Si studied in [Mauceri et al.
2012] are bounded from L∞ to our BMO spaces as well. Pierre Portal [2014] introduced a different
type of Hardy spaces using truncated maximal functions and square functions. He proved that the Riesz
transforms Ri , Si and their adjoint operators R∗i , S∗i are all bounded from his H1 space to L1 [Portal 2014,
Theorem 6.1]. It is interesting to determine whether R∗i , S∗i are L∞-BMO bounded for our BMO spaces
with carefully picked 6a , 6b.

4. Calderón–Zygmund operators, II

In this section we will study the class of atomic Calderón–Zygmund operators (ACZO) defined in the
introduction over a given measure space (�,6,µ). More precisely, we shall prove Theorem B2 and
illustrate it with a few constructions of dyadic operators satisfying its hypotheses.

Proof of Theorem B2. Following the same argument as in the proof of Theorem B1, we can use
duality and our interpolation result in Theorem A to reduce the L p-boundedness in the assertion to the
L∞(�)→ BMO6ab(�) boundedness of our ACZO. This is however standard. Indeed, since the filtration
is regular we know that BMO6ab(�)' bmo6ab(�). Up to absolute constants, the norm in the latter space
is given by

‖T f ‖bmo6ab (�)
= sup

Q∈5
inf

kQ∈C

(
1

µ(Q)

∫
Q
| f (w)− kQ |

2 dµ(ω)
)1

2

,

where 5=5a ∪5b is the set of atoms in any of the two filtrations. Decompose

f = f χQ̂ + f χ
�\Q̂ = f1+ f2.

As usual, we pick kQ = (T f2)Q . Then, we control the term for T f1 using the L2-boundedness of T and
the regularity of the filtrations. The term T f2 − kQ is dominated by means of the Hörmander kernel
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condition given in the definition of ACZO. Namely,(
1

µ(Q)

∫
Q
|T f1(ω)|

2 dµ(ω)
)1

2

≤ ‖T ‖2→2

√
µ(Q̂)
µ(Q)

‖ f ‖∞ . ‖ f ‖∞

by regularity of the filtrations. On the other hand(
1

µ(Q)

∫
Q
|T f2(ω)− (T f2)Q |

2 dµ(ω)
)1

2

≤

(
1

µ(Q)2

∫
Q

∫
Q

[ ∫
�\Q̂
|K (z1, x)− K (z2, x)| dµ(x)

]2

dµ(z1) dµ(z2)

)1
2

‖ f ‖∞,

which is dominated by ‖ f ‖∞ according to the Hörmander condition for ACZOs. �

Remark 4.1. As mentioned in the introduction, standard prototypes of atomic Calderón–Zygmund
operators include martingale transforms, perfect dyadic CZOs and Haar shift operators. These are usually
defined on the Euclidean space Rn equipped with a dyadic filtration. Nevertheless, the exact same
arguments apply on any dyadically doubling measure space or even for any measure space equipped with
a two-sided regular filtration. López-Sánchez et al. [2014] have studied those nondoubling measure spaces
for which Haar shift operators satisfy weak type-(1, 1) estimates. Theorem B2 provides a tool to produce
nondoubling measure spaces over which Haar shifts, or more general atomic CZOs, are L∞→ BMO
bounded. In the case of martingale transforms, Haar shift operators and perfect dyadic CZOs in (Rn, µ),
all of them satisfy the Hörmander-like condition

sup
Q∈D(Rn)

sup
z1,z2∈Q

∫
Rn\Q̂
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

This means that these operators are ACZOs satisfying Theorem B2 as long as we can find an admissible
covering (6a, 6b) and regular filtrations over it such that all the atoms are cubes in D(Rn) or suitable
unions of those. If we review our examples in Section 3, this is not the case for our construction for
dµ±α(x)= e±|x |

α

dx . It is however quite simple to adapt our construction for

dµβ(x)=
dx

1+ |x |β

so that it satisfies the hypotheses of Theorem B2. In particular, the Haar shift operators defined on (Rn, µβ)

are L∞(Rn)→ BMO6ab(R
n) bounded. It remains open to decide whether an admissible covering exists

on the exponential measure spaces (Rn, µ±α) using only atoms associated to one and not two dyadic
systems.

5. Matrix-valued forms of our results

In this section, we extend our main results to the context of operator-valued functions. Noncommutative
forms of Calderón–Zygmund theory have been recently studied in [Junge et al. ≥ 2015; Mei and Parcet
2009; Parcet 2009; Mei 2007]. There are however no specific results in the context of nondoubling metric
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measure spaces. Unfortunately, it seems difficult to extend the approach of [Tolsa 2001] or [Mauceri
and Meda 2007] to the operator-valued or even the noncommutative setting, since their interpolation
results rest on good-λ inequalities which do not have a noncommutative analogue so far. On the other
hand, the semicommutative approach in [Parcet 2009] is valid for doubling spaces, but again presents
serious obstacles to be extended to the nondoubling setting. The crucial aspect of our approach is that it
ultimately rests on martingale inequalities that have been successfully transferred to the noncommutative
setting. Namely, after Pixier and Xu’s [1997] seminal contribution on Burkholder–Gundy inequalities
for noncommutative martingales, we find analogues of Doob’s maximal inequalities, Gundy, Davis and
atomic decompositions, Burkholder conditional square functions, John–Nirenberg inequalities, L p/BMO
interpolation results; see [Hong and Mei 2012; Junge 2002; Junge and Mei 2010; Junge and Musat 2007;
Junge and Perrin 2014; Junge and Xu 2003; Mei 2007; Musat 2003; Parcet and Randrianantoanina 2006;
Perrin 2009] and the references therein.

Let us briefly introduce the framework for our results in this section; we refer to [Parcet 2009, Section 1]
for a rather complete review of the necessary background adapted to our necessities. We also refer the
reader to Pisier and Xu’s survey [2003] for more on noncommutative L p theory. Let (�,6,µ) be a
σ -finite measure space and consider any pair (M, τ ) given by a von Neumann algebra M equipped with
a normal, semifinite, faithful trace τ . This is sometimes called a noncommutative measure space. We will
write (R, ϕ) to denote the von Neumann algebra generated by essentially bounded functions f :�→M
equipped with the trace

ϕ( f )=
∫
�

τ( f (ω)) dµ(ω).

R is the von Neumann algebra tensor product R= L∞(�)⊗M and we may consider the corresponding
noncommutative spaces L p(R, ϕ). This semicommutative model is the context where we intend to
generalize our main results. Apart from its own interest as an operator-valued model, it constitutes a first
step towards further results for more general von Neumann algebras. In particular, as [Junge et al. 2014]
demonstrates, certain fully noncommutative questions can be reduced to the semicommutative setting.
Readers not familiar with von Neumann algebra theory are encouraged to read this section restricting their
attention to matrix-valued functions. In other words, replace M by the algebra Mm of m×m matrices
and τ by the standard trace tr. The difficulties are similar in this case to in the general setting, as long
as we provide results with constants independent of m. We also refer to [Parcet 2009] for a comparison
between this model and the vector-valued setting, which differs substantially in the endpoint estimates.

The BMO spaces. First we review the definitions and results in Section 1 for the semicommutative setting
described above. Given a filtration (6k)k≥1 of (�,6,µ), we consider the conditional expectations

f 7→ E6k ⊗ idM( f ) ∈R for f ∈R,

still denoted by E6k . The martingale bmo and BMO norms are

‖ f ‖bmo =max{‖ f ‖bmoc, ‖ f ∗‖bmoc},

‖ f ‖BMO =max{‖ f ‖BMOc, ‖ f ∗‖BMOc},
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where the column norms are defined as in the commutative case, taking into account that we use |x |2= x∗x
for any operator x on a Hilbert space. The interpolation result [BMO, L1(R)]1/p ' L p(R) was proved
by Musat [2003] for any semifinite von Neumann algebra R. This is the noncommutative analogue of the
Janson–Jones interpolation theorem. If we set ‖ f ‖hr

p
= ‖ f ∗‖hc

p
, where the norm in hc

p is defined as in the
commutative case, then the noncommutative Hardy spaces have the form

hp =

{
hr

p + hc
p if 1≤ p ≤ 2,

hr
p ∩ hc

p if 2≤ p ≤∞.

This combination of row and column square functions is known to be the right one for L p inequalities, as
was discovered for the first time with the noncommutative Khintchine inequalities [Lust-Piquard 1986;
Lust-Piquard and Pisier 1991]. The interpolation result [bmo, h1]1/p ' hp was proved in [Bekjan et al.
2010] for noncommutative martingales. As in the commutative case, the projections J61 = id−E61 are
bounded on bmo, BMO, L p and hp, so that we will be working with these complemented subspaces
which enjoy the same interpolation and duality properties as the original spaces. Note that the identity

‖ f ‖J61 (bmoc) = sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
M

= sup
A∈5

∥∥∥∥( 1
µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2
∥∥∥∥
M

still holds and we have J61(bmo)' J61(BMO) for regular filtrations. Consider an admissible covering
(6a, 6b) of (�,6,µ) and any pair of filtrations (6 jk)k≥1 with 6 j1 =6 j for j = a, b. Denote by BMOa

and BMOb the BMO spaces associated to these filtrations in the semicommutative algebra R and set

BMO6 j (R)= J6 j (BMO j ) and BMO6ab(R)= BMO6a(R)∧BMO6b(R).

The John–Nirenberg inequalities, atomic descriptions of H1 and duality results have also been transferred
to the context of noncommutative martingales [Bekjan et al. 2010; Hong and Mei 2012; Junge and Musat
2007; Pisier and Xu 1997] and we will not review these results here, since they will not play a crucial role.

The interpolation theorem. Let us now state the analogue of Theorem A in the operator-valued setting. As
usual, we will write L◦p(R) for the subspace of mean-zero elements with respect to µ. In the terminology
we use for admissible coverings,

L◦p(R)' J6a∩6b(L p(R)).

Theorem 5.1. Let (6a, 6b) be an admissible covering in (�,6,µ) and consider the semicommutative
space R= L∞(�)⊗M. Then, for each 2≤ p <∞, there exists a constant cp ≥ 1 such that

L◦p(R)'cp J6a(L p(R))∧ J6b(L p(R)).

In particular, we have by complex interpolation that

[BMO6ab(R), L◦1(R)]1/q 'cq L◦q(R) (1< q <∞),

with BMO6ab(R) constructed with any two filtrations over (6a, 6b).
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Sketch of the proof. Thanks to the close connection with martingales, the proof is entirely parallel to the
one given in the classical case. Indeed, combining standard facts from noncommutative L p theory with
the martingale results reviewed in the previous subsection, it is a simple exercise to adapt our proof of
Theorem A to the present case. The only subtle point is the inequality

‖E6aE6b f ‖p
p ≤ ‖E6a |E6a f |p/2‖22,

which is used in the last two steps of our argument. Namely, in the classical case this is due to
the conditional Jensen’s inequality φ(E6k f ) ≤ E6kφ( f ) for convex functions φ. In contrast, its non-
commutative form does not hold for all p ≥ 2, since we need the operator-convexity of the function
φ(x)= |x |β for β = p/2 and x not necessarily positive. This is the case for β ≥ 2, or equivalently p ≥ 4,
but it fails for 2 ≤ p < 4. Note however that the ultimate goal in Steps 5 and 6 is to show that
‖E6aE6b f ‖p ≤ cp(6ab)‖ f ‖p for some 0< cp(6ab) < 1. To prove it, we observe that

E6a(g
∗

1 g2)= ξk(g1)
∗ξk(g2),

E6aE6b( f ∗1 f2)= ωk( f1)
∗ωk( f2)

for certain right Rk-module maps ξk , ωk : Lq(R)→ Cq(Lq(R)) with Rk = E6k (R). This follows from
standard factorization properties of completely positive unital maps in terms of Hilbert modules; see, for
instance, [Junge 2002]. Let us consider the polar decompositions f = u| f | and g = v|g| of g = E6b f .
Then we can factorize E6aE6b f in two ways:

E6a g = E6a(v|g|
1/2
|g|1/2)= ξk(|g|1/2v∗)∗ξk(|g|1/2),

E6aE6b f = E6aE6b(u| f |
1/2
| f |1/2)= ωk(| f |1/2u∗)∗ωk(| f |1/2).

This yields the estimates

‖E6aE6b f ‖p ≤ ‖ξk(|g|1/2v∗)‖2p‖ξk(|g|1/2)‖2p

≤ ‖ξk(|g|1/2v∗)∗ξk(|g|1/2v∗)‖1/2p ‖ξk(|g|1/2)∗ξk(|g|1/2)‖1/2p

= ‖E6a(v|g|v
∗)‖1/2p ‖E6a(|g|)‖

1/2
p ≤ ‖ f ‖1/2p ‖E6a |E6b f |p/2‖1/p

2 ,

and
‖E6aE6b f ‖p ≤ ‖ωk(| f |1/2u∗)‖2p‖ωk(| f |1/2)‖2p

≤ ‖ωk(| f |1/2u∗)∗ωk(| f |1/2u∗)‖1/2p ‖ωk(| f |1/2)∗ωk(| f |1/2)‖1/2p

= ‖E6aE6b(u| f |u
∗)‖1/2p ‖E6aE6b(| f |)‖

1/2
p ≤ ‖ f ‖1/2p ‖E6aE6b | f |

p/2
‖

1/p
2 .

The last inequality in both estimates follows from the Kadison–Schwarz inequality for operator-convex
functions, since φ(x)= xβ is operator-convex on R+ for β ≥ 1. The first estimate is the right one to use
in Step 5 and the second one in Step 6. �

The Calderón–Zygmund operators. We now consider Calderón–Zygmund operators in semicommutative
algebras associated to operator-valued kernels. Our construction is standard; we refer to [Duoandikoetxea
2001; Junge et al. 2014; Rubio de Francia et al. 1986] for further details. Let us write L0(M) for the
∗-algebra of τ -measurable operators affiliated with M and consider kernels k : (�×�)\1→L(L0(M))
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defined away from the diagonal 1 of �×� and which take values in linear maps on τ -measurable
operators. If d is a metric in �, the standard Hörmander kernel condition takes the same form in this
setting when we replace the absolute value by the norm in the algebra B(M) of bounded linear operators
acting on M:

sup
Bd-ball
z1,z2∈B

∫
�\αB
‖k(z1, x)− k(z2, x)‖B(M)+‖k(x, z1)− k(x, z2)‖B(M) dµ(x) <∞.

Define a CZO in (R, ϕ, d) as any linear map T satisfying the following properties:

• T is bounded on L∞(M; Lr
2(�)),∥∥∥∥(∫

�

T f (x)T f (x)∗ dµ(x)
)1

2
∥∥∥∥
M
.

∥∥∥∥(∫
�

f (x) f (x)∗ dµ(x)
)1

2
∥∥∥∥
M
.

• T is bounded on L∞(M; Lc
2(�)),∥∥∥∥(∫

�

T f (x)∗T f (x) dµ(x)
)1

2
∥∥∥∥
M
.

∥∥∥∥(∫
�

f (x)∗ f (x) dµ(x)
)1

2
∥∥∥∥
M
.

• The kernel representation

T f (x)=
∫
�

k(x, y)( f (y)) dµ(y) holds for x /∈ supp
�

f

and some kernel k : (�×�) \1→ C satisfying the Hörmander condition.

The first two conditions replace the usual L2-boundedness; see [Junge et al. 2014] for explanations.

Theorem 5.2. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume that 6 admits regular
filtrations (6 jk)k≥1 by successive refinement of 6 j1 = 6 j for j = a, b and that each atom in 6 jk

is a (C0, α, β)-doubling set for certain absolute constants C0, α, β > 0. Let BMO6ab(R) denote the
∧-intersection of the BMO spaces defined over these filtrations. Then, every CZO extends to a bounded
map:

(i) H1
6ab
(R)→ L1(R);

(ii) L∞(R)→ BMO6ab(R);

(iii) L◦p(R)→ L◦p(R) for 1< p <∞.

Moreover, if T is L2(R)-bounded then T : L p(R)→ L p(R) for all 1< p <∞.

Proof. According to Theorem 5.1 (interpolation) and the semicommutative form of Remark 3.1 (duality), it
turns out that L∞(R)→BMO6ab(R) boundedness automatically implies H1

6ab
(R)→ L1(R) boundedness,

as well as L◦p(R)→ L◦p(R) boundedness. Moreover, if T is also L2-bounded we may reproduce the
argument given in the proof of Theorem B1 to obtain L p-boundedness for all 1< p <∞. Let us then
focus on the L∞→ BMO boundedness. Define

DBMO= DBMOr ∩DBMOc
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with ‖ f ‖DBMOr = ‖ f ∗‖DBMOc and

‖ f ‖DBMOc = sup
B ball

d-doubling

∥∥∥∥( 1
µ(B)

∫
B

∣∣∣∣ f (w)−
1

µ(B)

∫
B

f dµ
∣∣∣∣2 dµ(w)

)1
2
∥∥∥∥
M
.

As usual, we write |x |2 for x∗x . The assertion follows from

L∞(R)
T
−→DBMO id

−→ bmo6ab(R)' BMO6ab(R).

The boundedness of the chain above can be justified as in the proof of Theorem B1. Indeed, the analogies in
the argument lead us to apply the new conditions which appear in our definition of semicommutative CZO;
see [Junge et al. 2014]. �

Remark 5.3. Theorem B2 also admits a straightforward generalization to the semicommutative setting.
Again, our use of martingale techniques makes the proof entirely analogous, so that we think it would be
too repetitive to include it here.
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REFINED AND MICROLOCAL KAKEYA–NIKODYM BOUNDS
FOR EIGENFUNCTIONS IN TWO DIMENSIONS

MATTHEW D. BLAIR AND CHRISTOPHER D. SOGGE

We obtain some improved essentially sharp Kakeya–Nikodym estimates for eigenfunctions in two
dimensions. We obtain these by proving stronger related microlocal estimates involving a natural
decomposition of phase space that is adapted to the geodesic flow.

1. Introduction and main results

Suppose that (M, g) is a two-dimensional compact Riemannian manifold and {eλ} are the associated
eigenfunctions. That is, if 1g is the Laplace–Beltrami operator, we have

−1geλ(x)= λ2eλ(x),

and we assume throughout that the eigenfunctions are normalized to have L2-norm one, i.e.,∫
M
|eλ|2 dVg = 1,

where dVg is the volume element.
The purpose of this paper is to obtain essentially sharp estimates that link, in two dimensions, the size

of L p-norms of eigenfunctions with 2< p < 6 to their L2-concentration near geodesics. Specifically, we
have the following:

Theorem 1.1. For every 0< ε0 ≤
1
2 , we have

‖eλ‖L4(M) .ε0 λ
ε0/4‖eλ‖

1/2
L2(M)× |||eλ|||

1/2
KN (λ,ε0)

(1-1)

if

|||eλ|||KN (λ,ε0)
=

(
sup
γ∈Π

λ1/2−ε0

∫
T
λ−1/2+ε0 (γ )

|eλ|2 dV
)1/2

. (1-2)

Equivalently, if ε0 > 0, then there is a C = C(ε0,M) such that

‖eλ‖L4 ≤ Cλ1/8
‖eλ‖

1/2
L2(M)×

(
sup
γ∈Π

∫
T
λ−1/2+ε0 (γ )

|eλ|2 dV
)1/4

, (1-3)
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and therefore if
∫

M |eλ|
2 dV = 1, for any ε > 0 there is a C = C(ε,M) such that

‖eλ‖L4(M) ≤ Cλ1/8+ε sup
γ∈Π

‖eλ‖
1/2
L2(T

λ−1/2 (γ ))
≤ Cλ1/16+ε sup

γ∈Π

‖eλ‖
1/2
L4(T

λ
−1/2
jk

(γ ))
. (1-4)

Here Π denotes the space of unit-length geodesics in M and the last factor in (1-2) involves averages
of |eλ|2 over λ−1/2+ε0 tubes about γ ∈ Π . Also, for simplicity, we are only stating things here and
throughout for eigenfunctions, but the results easily extend to quasimodes using results from [Sogge and
Zelditch 2014].

Note that if ε0 =
1
2 , then (1-1) is equivalent to the eigenfunction estimates from [Sogge 1988]

‖eλ‖L4(M) . λ
1/8
‖eλ‖L2(M),

which are saturated by highest weight spherical harmonics on the standard two-sphere. We also remark that,
up to the factor λε0/4, the estimate (1-1) is saturated by both the highest weight spherical harmonics and
zonal functions on S2. This is because the highest weight spherical harmonics are given by the restriction
of the harmonic polynomials λ1/4(x1+ i x2)

k , λ=
√

k(k+ 1) to the unit sphere, while the L2-normalized
zonal functions centered about the north pole on S2 behave like

(
λ−1
+ dist(x,±(0, 0, 1))

)−1/2. See, for
instance, [Sogge 1986].

In [Bourgain 2009] (with a slight loss) and in [Sogge 2011], inequalities of the form (1-1) and (1-3)
were proved, where the first norm on the right is raised to the 3

4 power and the second to the 1
4 power. The

inequalities in [Sogge 2011] were not formulated in this way but easily lead to this result. The approach
in [Sogge 2011] made inefficient use of the Cauchy–Schwarz inequality to handle the “easy” term (not
the bilinear one), which led to the loss. The strategy for proving (1-1) will be to make an angular dyadic
decomposition of a bilinear expression and pay close attention to the dependence of the bilinear estimates
in terms of the angles, which we shall exploit using a multilayered microlocal decomposition of phase
space.

Before turning to the details of the proof, let us record a few simple corollaries of our main estimate.
If {aλ jk

}
∞

k=0 is a sequence depending on a subsequence {λ jk } of the eigenvalues of 1g, then we say that

aλ = o−(λσ )

if there are some ε > 0 and C <∞ such that

|aλ| ≤ C(1+ λ)σ−ε.

Then using Theorem 1.1, we get:

Corollary 1.2. The following are equivalent:

‖eλ jk
‖L4(M) = o−(λ

1/8
jk ), (1-5)

sup
γ∈Π

‖eλ jk
‖L4(T

λ
−1/2
jk

(γ )) = o−(λ
1/8
jk ), (1-6)

sup
γ∈Π

‖eλ jk
‖L2(T

λ
−1/2
jk

(γ )) = o−(1). (1-7)
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Also, if either

sup
γ∈Π

∫
γ

|eλ|2 ds = O(λεjk ), for all ε > 0 (1-8)

or
sup
γ∈Π

‖eλ jk
‖L2(T

λ
−1/2
jk

(γ )) = O(λ−1/4+ε
jk ), for all ε > 0, (1-9)

then
‖eλ jk
‖L4(M) = O(λεjk ), for all ε > 0. (1-10)

Here, ds denotes the arc length measure on γ .

Clearly (1-5) implies (1-6). Also, (1-7) follows from (1-6) and Hölder’s inequality. Since (1-1) shows
that (1-7) implies (1-5), the last part of the corollary is also an easy consequence of Theorem 1.1.

Note also that (1-4) says that if eλ jk
is a sequence of eigenfunctions with

‖eλ jk
‖L4(M) =�(λ

1/8
jk ),

then for any ε, there must be a sequence of shrinking geodesic tubes {T
λ
−1/2
jk
(γk)} for which, for some

c = cε > 0, we have
‖eλ jk
‖L4(T

λ
−1/2
jk

(γk)) ≥ c λ1/8−ε
jk .

In other words, up to a factor of λ−ε for any ε > 0, they fit the profile of the highest weight spherical
harmonics by having maximal L4-mass on a sequence of shrinking λ−1/2 tubes.

Like in Bourgain’s estimate, (1-1) involves a slight loss, but this is not so important in view of the
above application. In a later work we hope to show that (1-1) holds without this loss (in other words with
ε0 = 0), which should mainly involve refining the S1/2,1/2 microlocal arguments that are to follow. Note
that, because of the zonal functions on S2, this result would be sharp.

This paper is organized as follows. In Section 2 we shall introduce a microlocal Kakeya–Nikodym norm
and an inequality involving it, (2-14), which implies (1-1). This norm is associated to a decomposition of
phase space which is naturally associated to the geodesic flow on the cosphere bundle. In particular, each
term in the decomposition will involve bump functions which are supported in tubular neighborhoods of
unit geodesics in S∗M . This decomposition and the resulting square function arguments are similar to the
earlier ones in the joint paper of Mockenhaupt, Seeger and the second author [Mockenhaupt et al. 1993],
but there are some differences and new technical issues that must be overcome. We do this and prove our
microlocal Kakeya–Nikodym estimate in Section 3. There, after some pseudodifferential arguments, we
reduce matters to an oscillatory integral estimate which is a technical variation on the classical one in
Hörmander [1973], which was the main step in his proof of the Carleson–Sjölin theorem [1972]. The
result which we need does not directly follow from the results in [Hörmander 1973]; however, we can
prove it by adapting Hörmander’s argument and using Gauss’s lemma. After doing this, in Section 4
we shall see how our results are in some sense related to Zygmund’s theorem [1974] saying that in two
dimensions, eigenfunctions on the standard torus have bounded L4-norms. Specifically, we shall see there
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that if we could obtain the endpoint version of (1-1), we would be able to recover Zygmund’s theorem
with no loss if we also knew a conjectured result that arcs on λS1 of length λ1/2 contain a uniformly
bounded number of lattice points.

In a later paper with S. Zelditch, we hope to strengthen our results and also extend them to higher
dimensions, as well as to present applications in the spirit of [Sogge and Zelditch 2012] of the microlocal
bounds which we obtain. The current authors would like to thank S. Zelditch for a number of stimulating
discussions.

2. Microlocal Kakeya–Nikodym norms

As in [Sogge 2011; Sogge 1993, §5.1], we use the fact that we can use a reproducing operator to write
eλ= χλ f = ρ(λ−

√
1g)eλ, for ρ ∈S satisfying ρ(0)= 1, where, if supp ρ̂ ⊂ (1, 2), we also have modulo

O(λ−N ) errors (see [Sogge 1993, Lemma 5.1.3])

χλ f (x)=
1

2π

∫
ρ̂(t)eiλt(e−i t

√
1g f )(x) dt = λ1/2

∫
eiλψ(x,y)aλ(x, y) f (y) dV (y), (2-1)

where
ψ(x, y)= dg(x, y) (2-2)

is the Riemannian distance function, and if, as we may, we assume that the injectivity radius is 10 or
more, aλ belongs to a bounded subset of C∞ and satisfies

aλ(x, y)= 0, if dg(x, y) /∈ (1, 2). (2-3)

Thus, in order to prove (1-1), it suffices to work in a local coordinate patch and show that if a is smooth
and satisfies the support assumptions in (2-3), if 0< δ < 1

10 is small but fixed, and if

x0 = (0, y0),
1
2 < y0 < 4

is also fixed, then∥∥∥λ1/2
∫

eiλψ(x,y)a(x, y) f (y) dy
∥∥∥2

L4(B(0,δ))
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||KN (λ,ε0)
, if supp f ⊂ B(x0, δ).

(2-4)
Here B(x, δ) denotes the δ-ball about x in our coordinates. We may assume that in our local coordinate
system the line segment (0, y), |y|< 4 is a geodesic.

In order to prove (2-4) we also need to define a microlocal version of the above Kakeya–Nikodym
norm. We first choose 0≤ β ∈ C∞0 (R

2) satisfying∑
ν∈Z2

β(z+ ν)= 1 and suppβ ⊂ {x ∈ R2
: |x | ≤ 2}. (2-5)

To use this bump function, let8t(x, ξ)= (x(t), ξ(t)) denote the geodesic flow on the cotangent bundle.
Then if (x, ξ) is a unit cotangent vector with x ∈ B(x0, δ) and |ξ1|< δ, with δ small enough, it follows
that there is a unique 0 < t < 10 such that x(t) = (s, 0) for some s(x, ξ). If ξ(t) = (ξ1(t), ξ2(t)) for
this t , it follows that ξ2(t) is bounded from below. Let us then set ϕ(x, ξ)= (s(x, ξ), ξ1(t)/|ξ(t)|). Note
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that ϕ then is a smooth map from such unit cotangent vectors to R2. Also, ϕ is constant on the orbit
of 8. Therefore, |ϕ(x, ξ)− ϕ(y, η)| can be thought of as measuring the distance from the geodesic in
our coordinate patch through (x, ξ) to that of the one through (y, η).

Let α(x) be a nonnegative C∞0 function which is one in B
(
x0,

3
2δ
)

and zero outside of B(x0, 2δ). Given
θ = 2−k with λ−1/2

≤ θ ≤ 1 and ν ∈ Z2, let ϒ ∈ C∞(R) satisfy

ϒ(s)= 1, s ∈ [c, c−1
], ϒ(s)= 0, s /∈

[
c
2
, 2c−1

]
, (2-6)

for some c > 0 to be specified later. We then put

Qν
θ (x, ξ)= α(x)β

(
θ−1ϕ(x, ξ)+ ν

)
ϒ(|ξ |/λ). (2-7)

This is a function of unit cotangent vectors, and we also denote its homogeneous of degree zero extension to
the cotangent bundle with the zero section removed by Qν

θ (x, ξ), ξ 6=0, and the resulting pseudodifferential
operator by Qν

θ (x, D). Then if f is as in (2-4), we define its microlocal Kakeya–Nikodym norm
corresponding to frequency λ and angle θ0 = λ

−1/2+ε0 to be

||| f |||MKN (λ,ε0)
= sup
θ0≤θ≤1

(
sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2)

)
+‖ f ‖L2(R2), θ0 = λ

−1/2+ε0 . (2-8)

Note that
sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2)

measures the maximal microlocal concentration of f about all unit geodesics in the scale of θ . This is
because if we consider the restriction of Qν

θ to unit cotangent vectors and if Qν
θ (x, ξ) 6= 0, then supp Qν

θ

is contained in an O(θ) tube in the space of unit cotangent vectors about the orbit t→8t(x, ξ).
Let us collect a few facts about these pseudodifferential operators. First, the Qν

θ belong to a bounded
subset of S0

1/2+ε0,1/2−ε0
(pseudodifferential operators of order zero and type ( 1

2+ε0,
1
2−ε0)), if λ−1/2+ε0 ≤

θ ≤ 1, with ε0 > 0 fixed. Therefore, there is a uniform constant Cε0 such that

‖Qν
θ (x, D)g‖L2 ≤ Cε0‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1. (2-9)

Similarly, if Pνθ = (Qν
θ )
∗
◦ Qν

θ for such θ , then by (2-5),
∑

ν Pνθ belongs to a bounded subset of
S0

1/2+ε0,1/2−ε0
, and so we also have the uniform bounds∥∥∥∥∑

ν∈Z2

Pνθ (x, D)g
∥∥∥∥

L2
≤ Cε0‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1. (2-10)

We can relate the microlocal Kakeya–Nikodym norm to the Kakeya–Nikodym norm if we realize that
if the δ > 0 above is small enough, then there is a unit length geodesic γν such that Qν

θ (x, ξ) = 0 for
x /∈ TCθν (γ ), with C a uniform constant. As a result, since Qν

θ (x, ξ)= 0 if |ξ | is not comparable to λ,
we can improve (2-9) and deduce that for every N = 1, 2, . . . , there is a uniform constant C ′ such that

‖Qν
θ (x, D)g‖L2 ≤ Cε0

(∫
TC ′θ (γν)

|g|2 dy
)1/2

+CNλ
−N
‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1, (2-11)
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≈ θ

γµ

Figure 1. TC ′θ(γν).

since the kernel K ν
θ (x, y) of Qν

θ (x, D) is O(λ−N ) for any N if y is not in TC ′θ (γν), with C ′ sufficiently
large but fixed. (See Figure 1.) Since

θ−1/2
(∫

TC ′θ (γν)

|g|2 dy
)1/2

. sup
γ∈Π

(
θ−1

0

∫
Tθ0 (γ )

|g|2 dy
)1/2

, λ−1/2+ε0 = θ0 ≤ θ ≤ 1,

we have

sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2) ≤ Cε0 |||g|||KN (λ,ε0)
, λ−1/2+ε0 ≤ θ ≤ 1, (2-12)

meaning that we can dominate the microlocal Kakeya–Nikodym norm by the Kakeya–Nikodym norm.
From this, we conclude that we would have (2-4) if we could show∥∥∥∥∫ λ1/2eiλψ(x,y)a(x, y) f (y) dy

∥∥∥∥2

L4(B(0,δ))
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||MKN (λ,ε0)
, if supp f ⊂ B(x0, δ).

(2-13)
We note also that since χλeλ = eλ, this inequality of course yields the following microlocal strengthening
of Theorem 1.1:

Theorem 2.1. For every 0< ε0 ≤
1
2 , we have

‖eλ‖L4(M) .ε0 λ
ε0/4‖eλ‖

1/2
L2(M)× |||eλ|||

1/2
MKN (λ,ε0)

, (2-14)

if |||eλ|||MKN (λ,ε0)
is as in (2-8).

3. Proof of the refined two-dimensional microlocal Kakeya–Nikodym estimates

Let us now prove the estimates in (2-13). We shall follow arguments from §6 of [Mockenhaupt et al.
1993].
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We first note that if supp f ⊂ B(x0, δ) as in (2-4), and if

θ0 = λ
−1/2+ε0 (3-1)

with ε0 > 0 fixed,

χλ f =
∑
ν∈Z2

χλ
(
Qν
θ0
(x, D) f

)
+ Rλ f,

where, if c > 0 in (2-6) is small enough, and N = 1, 2, 3, . . . ,

‖Rλ f ‖L∞ . λ
−N
‖ f ‖L2 .

Therefore, in order to prove (2-4), it suffices to show that∥∥∥∥ ∑
ν,ν′∈Z2

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥

L2
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||MKN (λ,ε0)
. (3-2)

We split the sum on the left based on the size of |ν−ν ′|. Indeed, the left side of (3-2) is dominated by∥∥∥∥∑
ν

(χλQν
θ0

f )2
∥∥∥∥

L2
+

∞∑
`=1

∥∥∥∥ ∑
|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥

L2
. (3-3)

The square of the first term in (3-3) is∑
ν,ν′

∫
(χλQν

θ0
f )2(χλQν′

θ0
f )2 dx .

Next we need an orthogonality result, similar to Lemma 6.7 in [Mockenhaupt et al. 1993], which says
that if A is large enough we have∑

|ν−ν′|≥A

∣∣∣∣∫ (χλQν
θ0

f )2(χλQν′

θ0
f )2 dx

∣∣∣∣.ε0,N λ
−N
‖ f ‖4L2 . (3-4)

We shall postpone the proof of this result until the end of the section, when we will have recorded the
information about the kernels of χλQν

θ that will be needed for the proof.
Since by [Sogge 1988],

‖χλ‖L2→L4 = O(λ1/8),

if we use (3-4) we conclude that the first term in (3-3) is majorized by (2-10) and (2-12):

λ1/2
∑
ν

‖Qν
θ0

f ‖2L2‖Qν
θ0

f ‖2L2 + λ
−N
‖ f ‖4L2 . λ

1/2
‖ f ‖2L2 × sup

ν∈Z2
‖Qν

θ0
f ‖2L2 + λ

−N
‖ f ‖4L2

= λε0‖ f ‖2L2 × λ
1/2−ε0 sup

ν∈Z2
‖Qν

θ0
f ‖2L2 + λ

−N
‖ f ‖4L2 . (3-5)

Therefore, the first term in (3-3) satisfies the desired bounds.
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Using (2-12) again, the proof of (2-13) and hence (2-4) would be complete if we could estimate the
other terms in (3-3) and show that∥∥∥∥ ∑

|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥2

L2
.ε0 ‖ f ‖2L2 × (2`θ0)

−1 sup
ν∈Z2
‖Qν

2`θ0
f ‖2L2 + λ

−N
‖ f ‖4L2 . (3-6)

Note that if 2`θ0� 1, the left side of (3-6) vanishes and thus, as in (2-12), we are just considering ` ∈N

satisfying 1≤ 2` ≤ λ1/2−ε0 . In proving this, we may assume that ` is larger than a fixed constant, since
the bound for small ` (with an extra factor of λε0 on the right) follows from what we just did. We can
handle the sum over ` in (3-3) due to the fact that the right side of (3-6) does not include a factor λε0 .

We now turn to estimating the nondiagonal terms in (3-3). We first note that by (2-5),

χλQν
θ0

f =
∑
µ∈Z2

χλQµ
θ Qν

θ0
f + ON (λ

−N
‖ f ‖2), if supp f ⊂ B(x0, δ).

Furthermore, if, as we may, we assume that ` ∈N is sufficiently large, then given N0 ∈N, there are
fixed constants c0 > 0 and N1 <∞ (with c0 depending only on N0 and the cutoff β in the definition of
these pseudodifferential operators) such that if

θ` = θ02`,

then∑
|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f

=

∑
{µ,µ′∈Z2:N0≤|µ−µ′|≤N1}

∑
|ν−ν′|∈[2`,2`+1)

χλQµ
c0θ`

Qν
θ0

f χλQµ′

c0θ`
Qν′

θ0
f + ON (λ

−N
‖ f ‖2L2), (3-7)

for each N ∈ N. Also, given µ ∈ Z2, there is a ν0(µ) ∈ Z2 such that

‖Qµ
c0θ`

Qν
θ0

f ‖L2 ≤ CNλ
−N
‖ f ‖L2, if |ν− ν0(µ)| ≥ C2`,

for some uniform constant C . If |µ−µ′| ≤ N1, then |ν0(µ)−ν0(µ
′)| ≤C2` for some uniform constant C .

Since ‖(Qν′

θ )
∗
◦ Qν

θ‖L2→L2 = O(λ−N ) for every N if |ν − ν ′| is larger than a fixed constant, it follows
that∫∫ ∣∣∣∣ ∑

|ν0(µ)−ν|,|ν0(µ′)−ν′|≤C2`

∑
|ν−ν′|∈[2`,2`+1)

Qν
θ0

f (x)Qν′

θ0
f (y)

∣∣∣∣2dx dy

.
∑

|ν−ν0(µ)|,|ν′−ν0(µ)|≤C ′2`
‖Qν

θ0
f ‖2L2‖Qν′

θ0
f ‖2L2 + ON (λ

−N
‖ f ‖2L2), if |µ−µ′| ≤ C0, (3-8)

for every N if C ′ is a sufficiently large but fixed constant. Also, using (2-10), we deduce that∑
µ∈Z2

∑
|ν0(µ)−ν|≤C ′2`

‖Qν
θ0

f ‖2L2 . ‖ f ‖2L2 .
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We clearly also have ∑
|ν(µ)−ν′|≤C ′2`

‖Qν′

θ0
f ‖2L2 . sup

µ∈Z2
‖Qµ

2`θ f ‖2L2 .

Using these two inequalities and (3-8), we deduce that∑
|µ−µ′|≤N1

∥∥∥∥ ∑
|ν0(µ)−ν|,|ν0(µ′)−ν′|<C2`

∑
|ν−ν′|∈[2`,2`+1)

Qν
θ0

f (x)Qν′

θ0
f (y)

∥∥∥∥
L2(dx dy)

. ‖ f ‖L2 × sup
µ∈Z2
‖Qµ

2`θ f ‖L2 + ON (λ
−N
‖ f ‖2L2). (3-9)

In addition to (3-4), we shall need another orthogonality result whose proof we postpone until the end
of the section, which says that whenever θ is larger than a fixed positive multiple of θ0 in (3-1) and N1 is
fixed,∣∣∣∣∫ (χλQµ

θ g1χλQµ′

θ g2
)(
χλQµ̃

θ g3χλQµ̃′

θ g4
)

dx
∣∣∣∣.N λ

−N
4∏

j=1

‖g j‖L2,

if |µ− µ̃| + |µ′− µ̃′| ≥ C and |µ−µ′|, |µ̃− µ̃′| ≤ N1, (3-10)

for every N = 1, 2, . . . , with C being a sufficiently large uniform constant (depending on N1 of course).
Using (3-9) and (3-10), we conclude that we would have (3-6) (and consequently (2-4)) if we could

prove the following:

Proposition 3.1. Let

(T µ,µ′

λ,θ F)(x)=
∫∫

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)F(y, y′) dy dy′, (3-11)

where

(χλQµ
θ )(x, y)

denotes the kernel of χλQµ
θ . Then if δ > 0 is sufficiently small and if θ is larger than a fixed positive

constant times θ0 in (3-1) and if N0 ∈ N is sufficiently large and if N1 > N0 is fixed, we have

‖T µ,µ′

λ,θ F‖L2(B(0,δ)) .ε0 θ
−1/2
‖F‖L2, if N0 ≤ |µ−µ

′
| ≤ N1,

F(y, y′)= 0, if (y, y′) /∈ B(x0, 2δ)× B(x0, 2δ). (3-12)

To prove this we shall need some information about the kernel of χλQµ
θ . By (2-7), the kernel is highly

concentrated near the geodesic in M

γµ =
{

xµ(t) : −2≤ t ≤ 2, 8t(xµ, ξµ)= (xµ(t), ξµ(t)), θ−1ϕ(xµ, ξµ)+µ= 0
}
, (3-13)

which corresponds to Qµ
θ . We also will exploit the oscillatory behavior of the kernel near γµ.

Specifically, we require the following:
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Lemma 3.2. Let θ ∈
[
C0λ

−1/2+ε0, 1
2

]
, where C0 is a sufficiently large fixed constant, and, as above,

ε0 > 0. Then there is a uniform constant C such that for each N = 1, 2, 3, . . . , we have

|(χλQµ
θ )(x, y)| ≤ CNλ

−N , if x /∈ TCθ (γµ) or y /∈ TCθ (γµ). (3-14)

Furthermore,
(χλQµ

θ )(x, y)= λ1/2eiλdg(x,y)aµ,θ (x, y)+ ON (λ
−N ), (3-15)

where one has the uniform bounds

|∇
α
y aµ,θ (x, y)| ≤ Cαθ−|α|, (3-16)

|∂
j

t aµ,θ (x, xµ(t))| ≤ C j , x ∈ γµ, (3-17)

if , as in (3-13), {xµ(t)} = γµ.

Proof. To prove the lemma it is convenient to choose Fermi normal coordinates so that the geodesic
becomes the segment {(0, s) : |s| ≤ 2}. Let us also write θ as

θ = λ−1/2+δ,

where, because of our assumptions, c1 ≤ δ ≤
1
2 for an appropriate c1 > 0. Then in these coordinates,

Qµ
θ (x, D) has symbol satisfying

qµθ (x, ξ)= 0, if
∣∣ξ1/|ξ |

∣∣≥ Cλ−1/2+δ, |x1| ≥ Cλ−1/2+δ, or |ξ |/λ /∈ [C−1,C], (3-18)

for some uniform constant C , and, additionally,∣∣∂ j
x1
∂k

x2
∂ l
ξ1
∂m
ξ2

qµθ (x, ξ)
∣∣≤ C j,k,l,m(1+ |ξ |) j (1/2−δ)−l(1/2+δ)−m . (3-19)

Next we recall that χλ = ρ(λ−
√
−1g), where ρ ∈ S(R) satisfies ρ̂ ⊂ (1, 2), and that the injectivity

radius of (M, g) is ten or more. Therefore, we can use Fourier integral parametrices for the wave equation
to see that the kernel of χλ is of the form

χλ(x, y)=
∫∫

ei S(t,x,ξ)−iy·ξ+i tλρ̂(t)α(t, x, y, ξ) dξ dt,

where α ∈ S1
1,0, and S is homogeneous of degree one in ξ and is a generating function for the canonical

relation for the half wave group e−i t
√
−1g . Thus,

∂t S(t, x, ξ)=−p(x,∇x S(t, x, ξ)), S(0, x, ξ)= x · ξ. (3-20)

Let 8̃t(x, ξ) denote the Hamiltonian flow generated by p(x, ξ), which is homogeneous of degree one
in ξ and agrees with the geodesic flow 8t(x, ξ) when restricted to unit cotangent vectors. The phase
S(t, x, ξ) also satisfies

8̃t(x,∇x S)= (∇ξ S, ξ). (3-21)

Furthermore,

det
∂S
∂x∂ξ

6= 0. (3-22)
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By (3-18), (3-19), and the proof of the Kohn–Nirenberg theorem, we have that

(χλQµ
θ )(x, y)=

∫∫
ei S(t,x,ξ)−iy·ξ+iλt ρ̂(t)q(t, x, y, ξ) dξ dt + O(λ−N ),

= λ2
∫∫

eiλ(S(t,x,ξ)−y·ξ+t)ρ̂(t)q(t, x, y, λξ) dξ dt + O(λ−N ), (3-23)

where for all t in the support of ρ̂,

q(t, x, y, ξ)= 0 if
∣∣ξ1/|ξ |

∣∣≥ Cλ−1/2+δ, |x1| ≥ Cλ−1/2+δ, or |ξ |/λ /∈ [C−1,C], (3-24)

with C as in (3-19), and also∣∣∂ j
x1
∂k

x2
∂ l
ξ1
∂m
ξ2

q(t, x, y, ξ)
∣∣≤ C j,k,l,m(1+ |ξ |) j (1/2−δ)−l(1/2+δ)−m . (3-25)

Let us now prove (3-14). We have the assertion if y /∈TCλ−1/2+δ (γµ) by (3-24). To prove that remaining
part of (3-24) which says that this is also the case when x is not in such a tube, we note that by (3-21), if
dg(x0, y0)= t0 and x0, y0 ∈ γµ, then

∇ξ (S(t0, x0, ξ)− y0 · ξ)= 0, if ξ1 = 0.

By (3-22), we then have ∣∣∇ξ (S(t0, x, ξ)− y0 · ξ)
∣∣≈ dg(x, x0), if ξ1 = 0.

We deduce from this that if |ξ1|/|ξ | ≤ Cλ−1/2+δ, |y1| ≤ Cλ−1/2+δ, and |ξ | ∈ [C−1,C], then there are a
c0 > 0 and a C0 <∞ such that∣∣∇ξ (S(t0, x, ξ)− y · ξ)

∣∣≥ c0λ
−1/2+δ, if x /∈ TC0λ−1/2+δ (γµ).

From this we obtain the remaining part of (3-14) via a simple integration by parts argument if we use the
support properties (3-24) and size estimates (3-25) of q(t, x, y, ξ). We note that every time we integrate
by parts in ξ we gain by λ−2δ, which implies (3-14) since q vanishes unless |ξ | ≈ λ and δ is bounded
below by a fixed positive constant.

To finish the proof of the lemma and obtain (3-15)–(3-17), we note that if we let

9(t, x, y, ξ)= S(t, x, ξ)− y · ξ + t

denote the phase function of the second oscillatory integral in (3-23), then at a stationary point where

∇ξ,t9 = 0,

we must have 9 = dg(x, y), due to the fact that S(t, x, ξ)− y · ξ = 0 and t = dg(x, y) at points where the
ξ -gradient vanishes. Additionally, it is not difficult to check that the mixed Hessian of the phase satisfies

det
(

∂29

∂(ξ, t)∂(ξ, t)

)
6= 0
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on the support of the integrand. This follows from the proof of Lemma 5.1.3 of [Sogge 1993]. Moreover,
since modulo O(λ−N ) error terms (χλQµ

θ )(x, y) equals

λ2
∫∫

eiλ9 ρ̂(t)q(t, x, y, λξ) dξ dt, (3-26)

we obtain (3-15)–(3-16) by the proof of this result if we use the stationary phase and (3-24)–(3-25).
Indeed, by (3-21), (3-26) has a stationary phase expansion (see [Hörmander 2003, Theorem 7.7.5]), where
the leading term is a fixed constant times

λ1/2eiλtq(t, x, y, λξ), if t = dg(x, y) and 8̃−t(y, ξ)= (x,∇x S(t, x, ξ)). (3-27)

From this, we see that the leading term in the asymptotic expansion must satisfy (3-16), and subsequent
terms in the expansion will satisfy better estimates, where the right-hand side involves increasing negative
powers of λ2δ (by [Hörmander 2003, (7.7.1)] and (3-25)), from which we deduce that (3-16) must be
valid. Since ξ1= 0 and p(y, ξ)= 1 (by (3-21)) in (3-27) when x, y ∈ γµ, we similarly deduce from (3-25)
that the leading term in the stationary phase expansion must satisfy (3-17), and since the other terms
satisfy better bounds involving increasing powers of λ−2δ, we similarly obtain (3-17), which completes
the proof of the lemma. �

Let us now collect some simple consequences of Lemma 3.2. First, in addition to (3-14), the kernel
(χλQµ

θ )(x, y) is also O(λ−N ) unless the distance between x and y is comparable to one by (2-3). From
this we deduce that if N0 ∈ N is sufficiently large,

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= O(λ−N ),

unless Angle(x; y, y′) ∈ [θ,C2θ ] and x, y, y′ ∈ TC2θ (γµ), if |µ−µ′| ∈ [N0, N1], (3-28)

if Angle(x, y, y′) denotes the angle at x of the geodesic connecting x and y and the one connecting x
and y′, and where C2 = C2(N1).

This is because in this case, if x ∈ TCθ (γµ)∩TCθ (γµ′), then the tubes must be disjoint at a distance
bounded below by a fixed positive multiple of θ if N0 is large enough, and in this region their separation
is bounded by a fixed constant times θ if N1 is fixed; see Figure 2.

To exploit this key fact, as above, let us choose Fermi normal coordinates (see [Gray 2004, Chapter 2])
about γµ so that the geodesic becomes the segment {(0, s) : |s| ≤ 2}. Then, as in (2-2), let

ψ(x; y)= dg
(
(x1, x2), (y1, y2)

)
be the Riemannian distance function written in these coordinates. Then if x, y, y′ are close to this segment
and if the distances between x and y and x and y′ are both comparable to 1 and if, as well, y is close
to y′, it follows from Gauss’s lemma that

Angle
(
x; (y1, y2), (y′1, y′2)

)
≈

∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣. (3-29)
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x

y
y′

γµ

γµ′

Angle≈ θ

Figure 2. θ -tubes intersecting at angle ≥ N0θ .

As a result, by (3-28), there must be a constant c0 > 0 such that

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= O(λ−N ),

if
∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣≤ c0θ and |µ−µ′| ∈ [N0, N1], (3-30)

with, as above, N0 ∈ N sufficiently large and N1 fixed. Another consequence of Gauss’s lemma is that if
x and y as in (3-29) are close to this segment and at a distance from each other which is comparable to
one, then

∂

∂x1

∂

∂y1
ψ(x, y) 6= 0. (3-31)

We shall also need to make use of the fact that, in these Fermi normal coordinates, we have

∂

∂x2

∂

∂y1
ψ
(
(0, x2), (0, y2)

)
=

∂

∂x1
ψ
(
(0, x2), (0, y2)

)
= 0, if dg

(
(0, x2), (0, y2)

)
≈ 1. (3-32)

Next, by (3-15)–(3-17), modulo terms which are O(λ−N ) we can write

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= λeiλ(ψ(x,y)+ψ(x,y′))bµ(x; y, y′),

where, by (3-28) and (3-30),

bµ(x; y, y′)= 0, if dg(x, y) or dg(x, y′) /∈ [1, 2],

or |x1| + |y1| + |y′1| ≥ c−1
0 θ, or

∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣≤ c0θ, (3-33)

and, since we are working in Fermi normal coordinates,∣∣∣∣ ∂ j

∂x j
1

∂k

∂xk
2

bµ(x, y, y′)
∣∣∣∣≤ C0θ

− j , 0≤ j, k ≤ 3. (3-34)
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The constants C0 and c0 can be chosen to be independent of µ ∈ Z2 and θ ≥ λ−1/2+ε0 if ε0 > 0. But then,
by (3-33) and (3-34) if y2 and y′2 are fixed and close to one another, and if we set

9(x; s, t)= ψ(x, (s+ t, y2))+ψ(x, (s− t, y′2)) and b(x; s, t)= bµ(x; s+ t, y2, s− t, y′2),

there is a fixed constant C such that

b(x; s, t)= 0 if |x1| + |s| + |t | ≥ Cθ,

and
∣∣∣∣ ∂ j

∂x j
1

∂k

∂xk
2

b(x; s, t)
∣∣∣∣≤ Cθ− j , 0≤ j, k ≤ 3,

(3-35)

while, by (3-31) and (3-32),

∂

∂x2

∂

∂s
9(0, x2; 0, 0)=

∂

∂x2

∂

∂t
9(0, x2; 0, 0)=

∂

∂x1
9(0, x2; 0, 0)= 0,

but
∂

∂x1

∂

∂s
9(0, x2; 0, 0) 6= 0 if b(0, x2; 0, 0) 6= 0, (3-36)

and, moreover, by (3-33), ∣∣∣∣ ∂∂x2

∂

∂t
9(x; s, t)

∣∣∣∣≥ cθ, if b(x; s, t) 6= 0. (3-37)

Also, if we assume that |y2− y′2| ≤ δ, as we may because of the support assumption in (3-12), then∣∣∣∣ ∂∂x1

∂

∂t
9(x; s, 0)

∣∣∣∣≤ Cδ, if b(x; s, t) 6= 0, (3-38)

since the quantity on the left vanishes identically when y2 = y′2.
Another consequence of Gauss’s lemma is that if y, y′, x are close to the second coordinate axis and

if the distances between x and each of y and y′ are comparable to 1, then if θ above is bounded below,
the 2× 2 mixed Hessian of the function (x; y1, y′1)→ ψ(x, y)+ψ(x, y′) has nonvanishing determinant.
Thus, in this case (3-12) just follows from Hörmander’s nondegenerate L2-oscillatory integral lemma
[1973] (see [Sogge 1993, Theorem 2.1.1]). Therefore, it suffices to prove (3-12) when θ is bounded
above by a fixed positive constant, and so Proposition 3.1, and hence Theorem 1.1, is a consequence of
the following:

Lemma 3.3. Suppose that b ∈ C∞0 (R
2
×R2) vanishes when |(s, t)| ≥ δ. Then if 9 ∈ C∞(R2

×R2) is
real and (3-35)–(3-38) are valid, there is a uniform constant C such that if δ > 0 and θ > 0 are smaller
than a fixed positive constant and

TλF(x)=
∫∫

eiλ9(x;s,t)b(x; s, t)F(s, t) ds dt,

then we have

‖TλF‖L2(R2) ≤ Cλ−1θ−1/2
‖F‖L2(R2). (3-39)
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We shall include the proof of this result for the sake of completeness even though it is a standard result.
It is a slight variant of the main lemma in Hörmander’s proof [1973] of the Carleson–Sjölin theorem (see
[Sogge 1993, pp. 61–62]). Hörmander’s proof gives this result in the special case where y2 = y′2, and, as
above, 9 is defined by two copies of the Riemannian distance function. The case where y2 and y′2 are not
equal to each other introduces some technicalities that, as we shall see, are straightforward to overcome.

Proof. Inequality (3-39) is equivalent to the statement that ‖T ∗λ Tλ‖L2→L2 ≤ Cλ−2θ−1. The kernel of
T ∗λ Tλ is

K (s, t; s ′, t ′)=
∫∫

eiλ(9(x;s,t)−9(x;s′,t ′))a(x; s, t, s ′, t ′) dx1 dx2,

if a(x; s, t, s ′, t ′)= b(x, s, t)b(x; s ′, t ′).

Therefore, we would have this estimate if we could show that

|K (s, t; s ′, t ′)| ≤ Cθ1−N (1+ λ|(s− s ′, t − t ′)|
)−N
+Cθ

(
1+ λθ |(s− s ′, t − t ′)|

)−N
,

N = 0, 1, 2, 3, (3-40)

for then by using the N = 0 bounds for the regions where |(s− s ′, t− t ′)| ≤ (λθ)−1 and the N = 3 bounds
in the complement, we see that

sup
s,t

∫∫
|K | ds ′ dt ′, sup

s′,t ′

∫∫
|K | ds dt ≤ Cλ−2θ−1,

which means that by Young’s inequality, ‖T ∗λ Tλ‖L2→L2 ≤ Cλ−2θ−1, as desired.
The bound for N = 0 follows from the first part of (3-35). To prove the bounds for N = 1, 2, 3, we

need to integrate by parts.
Let us first handle the case where

|s− s ′| ≥ A−1
|t − t ′|, (3-41)

where A ≥ 1 is a possibly fairly large constant which we shall specify in the next step. By the second
part of (3-36) and by (3-38), we conclude that if δ > 0 is sufficiently small (depending on A), we have∣∣∣∣ ∂∂x1

(
9(x; s, t)−9(x; s ′, t ′)

)∣∣∣∣≥ c|s− s ′|, |s− s ′| ≥ A−1
|t − t ′|, (3-42)

for some uniform constant c > 0.
Since |K | is trivially bounded by the second term on the right side of (3-40) when |s− s ′| ≤ (λθ)−1

and (3-41) is valid, we shall assume that |s− s ′| ≥ (λθ)−1.
If we then write

eiλ(9(x;s,t)−9(x;s′,t ′))
= Leiλ(9(x;s,t)−9(x;s′,t ′)),

where L(x, D)=
1

iλ
(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

) ∂

∂x1
, (3-43)
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then we obtain

|K | ≤
∫∫ ∣∣(L∗(x, D))N a(x; s, t, s ′, t ′)

∣∣ dx .

Note that∣∣λ(9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
)∣∣N |(L∗)N a|

≤ CN

∑
0≤ j+k≤N

∣∣∣∣ ∂ j

∂x j
1

a
∣∣∣∣× ∑

α1+···+αk≤N

∏k
m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣∣∣9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
∣∣k . (3-44)

Clearly,
k∏

m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣≤ Ck |(s− s ′, t − t ′)|k, (3-45)

and consequently, by (3-41) and (3-42),∏k
m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣∣∣9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
∣∣k ≤ CA,k . (3-46)

Since by (3-35), we have that |∂ j
x1a| ≤ Cθ− j , j = 0, 1, 2, 3, and (3-35) also says that a vanishes when

|x1| is larger than a fixed multiple of θ , we conclude from (3-42)–(3-46) that if (3-41) holds, then |K | is
dominated by the first term on the right side of (3-40).

We now turn to the remaining case, which is

|t − t ′| ≥ A|s− s ′|, (3-47)

and where the parameter A ≥ 1 will be specified. By the first part of (3-36) and by (3-37) and the fact
that |s|, |s ′|, |t |, |t ′| are bounded by a fixed multiple of θ in the support of a, it follows that we can fix A
(independent of θ small) so that if (3-47) is valid, then∣∣∣∣ ∂∂x2

(
9(x; s, t)−9(x; s ′, t ′)

)∣∣∣∣≥ cθ |t − t ′|, on supp a,

for some uniform constant c > 0. Then since (3-32) implies that

k∏
m=1

∣∣∣∣ ∂αm

∂xαm
2

(
9 ′x2

(x; s, t)−9 ′x2
(x; s ′, t ′)

)∣∣∣∣≤ Ckθ
k
|(s− s ′, t − t ′)|k, on supp a,

and since, by (3-35),
|∂ j

x2
a| ≤ CN , 1≤ j ≤ N ,

we conclude that if we repeat the argument just given but now integrate by parts with respect to x2 instead
of x1, then |K | is bounded by the second term on the right side of (3-40), which completes the proof of
Lemma 3.3. �
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To conclude matters, we also need to prove the orthogonality estimates (3-4) and (3-10). Since (3-4) is
a special case of (3-10), we just need to establish the latter.

To see this, we note that by Lemma 3.2, if (χλQµ
θ )(x, y) denotes the kernel of χλQµ

θ , then

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)(χλQµ̃
θ )(x, ỹ)(χλQµ̃′

θ )(x, ỹ′)= ON (λ
−N ),

if x /∈ TCθ (γµ)∩TCθ (γµ′)∩TCθ (γµ̃)∩TCθ (γµ̃′),

with C sufficiently large and the geodesics defined by (3-13). On the other hand, if x is in the above
intersection of tubes, then the condition on (µ,µ′, µ̃, µ̃′) in (3-10) ensures that if the constant C there is
large enough, we have∣∣∇x

(
dg(x, y)+ dg(x, y′)− dg(x, ỹ)− dg(x, ỹ′)

)∣∣≥ c0θ,

if y ∈ TCθ (γµ), y′ ∈ TCθ (γµ′), ỹ ∈ TCθ (γµ̃), and ỹ′ ∈ TCθ (γµ̃′),

for some uniform c0> 0. Thus, (3-10) follows from Lemma 3.2 and a simple integration by parts argument
since we are assuming that θ ≥ θ0 = λ

−1/2+ε0 with ε0 > 0.

4. Relationships with Zygmund’s L4-toral eigenfunction bounds

Recall that for T2, Zygmund [1974] showed that if eλ is an eigenfunction on T2, i.e.,

eλ(x)=
∑

{ε∈Z2: |`|=λ}

a`ei x ·`, (4-1)

then
‖eλ‖L4(T2) ≤ C,

for some uniform constant C .
As observed in [Burq et al. 2007], using well-known pointwise estimates in two dimensions, one has

sup
γ∈Π

∫
γ

|eλ|2 ds = Oε(λ
ε)

for all ε > 0. This of course implies that one also has

sup
γ∈Π

∫
T
λ−1/2 (γ )

|eλ|2 dx = Oε(λ
−1/2+ε)

for any ε > 0.
Sarnak (unpublished) made an interesting observation that having O(1) geodesic restriction bounds

for T2 is equivalent to the statement that there is a uniformly bounded number of lattice points on arcs of
λS1 of aperture λ−1/2. (Cilleruelo and Córdoba [1992] showed that this is the case for arcs of aperture
λ−1/2−δ for any δ > 0.)

Using (1-1) we can essentially recover Zygmund’s bound and obtain ‖eλ‖L4(T2) = Oε(λ
ε) for every

ε > 0. (Of course this just follows from the pointwise estimate, but it shows how the method is natural
too.)
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If we could push the earlier results to include ε0= 0 and if we knew that there were uniformly bounded
restriction bounds, then we would recover Zygmund’s estimate.
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