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REFINED AND MICROLOCAL KAKEYA–NIKODYM BOUNDS
FOR EIGENFUNCTIONS IN TWO DIMENSIONS

MATTHEW D. BLAIR AND CHRISTOPHER D. SOGGE

We obtain some improved essentially sharp Kakeya–Nikodym estimates for eigenfunctions in two
dimensions. We obtain these by proving stronger related microlocal estimates involving a natural
decomposition of phase space that is adapted to the geodesic flow.

1. Introduction and main results

Suppose that (M, g) is a two-dimensional compact Riemannian manifold and {eλ} are the associated
eigenfunctions. That is, if 1g is the Laplace–Beltrami operator, we have

−1geλ(x)= λ2eλ(x),

and we assume throughout that the eigenfunctions are normalized to have L2-norm one, i.e.,∫
M
|eλ|2 dVg = 1,

where dVg is the volume element.
The purpose of this paper is to obtain essentially sharp estimates that link, in two dimensions, the size

of L p-norms of eigenfunctions with 2< p < 6 to their L2-concentration near geodesics. Specifically, we
have the following:

Theorem 1.1. For every 0< ε0 ≤
1
2 , we have

‖eλ‖L4(M) .ε0 λ
ε0/4‖eλ‖

1/2
L2(M)× |||eλ|||

1/2
KN (λ,ε0)

(1-1)

if

|||eλ|||KN (λ,ε0)
=

(
sup
γ∈Π

λ1/2−ε0

∫
T
λ−1/2+ε0 (γ )

|eλ|2 dV
)1/2

. (1-2)

Equivalently, if ε0 > 0, then there is a C = C(ε0,M) such that

‖eλ‖L4 ≤ Cλ1/8
‖eλ‖

1/2
L2(M)×

(
sup
γ∈Π

∫
T
λ−1/2+ε0 (γ )

|eλ|2 dV
)1/4

, (1-3)
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and therefore if
∫

M |eλ|
2 dV = 1, for any ε > 0 there is a C = C(ε,M) such that

‖eλ‖L4(M) ≤ Cλ1/8+ε sup
γ∈Π

‖eλ‖
1/2
L2(T

λ−1/2 (γ ))
≤ Cλ1/16+ε sup

γ∈Π

‖eλ‖
1/2
L4(T

λ
−1/2
jk

(γ ))
. (1-4)

Here Π denotes the space of unit-length geodesics in M and the last factor in (1-2) involves averages
of |eλ|2 over λ−1/2+ε0 tubes about γ ∈ Π . Also, for simplicity, we are only stating things here and
throughout for eigenfunctions, but the results easily extend to quasimodes using results from [Sogge and
Zelditch 2014].

Note that if ε0 =
1
2 , then (1-1) is equivalent to the eigenfunction estimates from [Sogge 1988]

‖eλ‖L4(M) . λ
1/8
‖eλ‖L2(M),

which are saturated by highest weight spherical harmonics on the standard two-sphere. We also remark that,
up to the factor λε0/4, the estimate (1-1) is saturated by both the highest weight spherical harmonics and
zonal functions on S2. This is because the highest weight spherical harmonics are given by the restriction
of the harmonic polynomials λ1/4(x1+ i x2)

k , λ=
√

k(k+ 1) to the unit sphere, while the L2-normalized
zonal functions centered about the north pole on S2 behave like

(
λ−1
+ dist(x,±(0, 0, 1))

)−1/2. See, for
instance, [Sogge 1986].

In [Bourgain 2009] (with a slight loss) and in [Sogge 2011], inequalities of the form (1-1) and (1-3)
were proved, where the first norm on the right is raised to the 3

4 power and the second to the 1
4 power. The

inequalities in [Sogge 2011] were not formulated in this way but easily lead to this result. The approach
in [Sogge 2011] made inefficient use of the Cauchy–Schwarz inequality to handle the “easy” term (not
the bilinear one), which led to the loss. The strategy for proving (1-1) will be to make an angular dyadic
decomposition of a bilinear expression and pay close attention to the dependence of the bilinear estimates
in terms of the angles, which we shall exploit using a multilayered microlocal decomposition of phase
space.

Before turning to the details of the proof, let us record a few simple corollaries of our main estimate.
If {aλ jk

}
∞

k=0 is a sequence depending on a subsequence {λ jk } of the eigenvalues of 1g, then we say that

aλ = o−(λσ )

if there are some ε > 0 and C <∞ such that

|aλ| ≤ C(1+ λ)σ−ε.

Then using Theorem 1.1, we get:

Corollary 1.2. The following are equivalent:

‖eλ jk
‖L4(M) = o−(λ

1/8
jk ), (1-5)

sup
γ∈Π

‖eλ jk
‖L4(T

λ
−1/2
jk

(γ )) = o−(λ
1/8
jk ), (1-6)

sup
γ∈Π

‖eλ jk
‖L2(T

λ
−1/2
jk

(γ )) = o−(1). (1-7)
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Also, if either

sup
γ∈Π

∫
γ

|eλ|2 ds = O(λεjk ), for all ε > 0 (1-8)

or
sup
γ∈Π

‖eλ jk
‖L2(T

λ
−1/2
jk

(γ )) = O(λ−1/4+ε
jk ), for all ε > 0, (1-9)

then
‖eλ jk
‖L4(M) = O(λεjk ), for all ε > 0. (1-10)

Here, ds denotes the arc length measure on γ .

Clearly (1-5) implies (1-6). Also, (1-7) follows from (1-6) and Hölder’s inequality. Since (1-1) shows
that (1-7) implies (1-5), the last part of the corollary is also an easy consequence of Theorem 1.1.

Note also that (1-4) says that if eλ jk
is a sequence of eigenfunctions with

‖eλ jk
‖L4(M) =�(λ

1/8
jk ),

then for any ε, there must be a sequence of shrinking geodesic tubes {T
λ
−1/2
jk
(γk)} for which, for some

c = cε > 0, we have
‖eλ jk
‖L4(T

λ
−1/2
jk

(γk)) ≥ c λ1/8−ε
jk .

In other words, up to a factor of λ−ε for any ε > 0, they fit the profile of the highest weight spherical
harmonics by having maximal L4-mass on a sequence of shrinking λ−1/2 tubes.

Like in Bourgain’s estimate, (1-1) involves a slight loss, but this is not so important in view of the
above application. In a later work we hope to show that (1-1) holds without this loss (in other words with
ε0 = 0), which should mainly involve refining the S1/2,1/2 microlocal arguments that are to follow. Note
that, because of the zonal functions on S2, this result would be sharp.

This paper is organized as follows. In Section 2 we shall introduce a microlocal Kakeya–Nikodym norm
and an inequality involving it, (2-14), which implies (1-1). This norm is associated to a decomposition of
phase space which is naturally associated to the geodesic flow on the cosphere bundle. In particular, each
term in the decomposition will involve bump functions which are supported in tubular neighborhoods of
unit geodesics in S∗M . This decomposition and the resulting square function arguments are similar to the
earlier ones in the joint paper of Mockenhaupt, Seeger and the second author [Mockenhaupt et al. 1993],
but there are some differences and new technical issues that must be overcome. We do this and prove our
microlocal Kakeya–Nikodym estimate in Section 3. There, after some pseudodifferential arguments, we
reduce matters to an oscillatory integral estimate which is a technical variation on the classical one in
Hörmander [1973], which was the main step in his proof of the Carleson–Sjölin theorem [1972]. The
result which we need does not directly follow from the results in [Hörmander 1973]; however, we can
prove it by adapting Hörmander’s argument and using Gauss’s lemma. After doing this, in Section 4
we shall see how our results are in some sense related to Zygmund’s theorem [1974] saying that in two
dimensions, eigenfunctions on the standard torus have bounded L4-norms. Specifically, we shall see there
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that if we could obtain the endpoint version of (1-1), we would be able to recover Zygmund’s theorem
with no loss if we also knew a conjectured result that arcs on λS1 of length λ1/2 contain a uniformly
bounded number of lattice points.

In a later paper with S. Zelditch, we hope to strengthen our results and also extend them to higher
dimensions, as well as to present applications in the spirit of [Sogge and Zelditch 2012] of the microlocal
bounds which we obtain. The current authors would like to thank S. Zelditch for a number of stimulating
discussions.

2. Microlocal Kakeya–Nikodym norms

As in [Sogge 2011; Sogge 1993, §5.1], we use the fact that we can use a reproducing operator to write
eλ= χλ f = ρ(λ−

√
1g)eλ, for ρ ∈S satisfying ρ(0)= 1, where, if supp ρ̂ ⊂ (1, 2), we also have modulo

O(λ−N ) errors (see [Sogge 1993, Lemma 5.1.3])

χλ f (x)=
1

2π

∫
ρ̂(t)eiλt(e−i t

√
1g f )(x) dt = λ1/2

∫
eiλψ(x,y)aλ(x, y) f (y) dV (y), (2-1)

where
ψ(x, y)= dg(x, y) (2-2)

is the Riemannian distance function, and if, as we may, we assume that the injectivity radius is 10 or
more, aλ belongs to a bounded subset of C∞ and satisfies

aλ(x, y)= 0, if dg(x, y) /∈ (1, 2). (2-3)

Thus, in order to prove (1-1), it suffices to work in a local coordinate patch and show that if a is smooth
and satisfies the support assumptions in (2-3), if 0< δ < 1

10 is small but fixed, and if

x0 = (0, y0),
1
2 < y0 < 4

is also fixed, then∥∥∥λ1/2
∫

eiλψ(x,y)a(x, y) f (y) dy
∥∥∥2

L4(B(0,δ))
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||KN (λ,ε0)
, if supp f ⊂ B(x0, δ).

(2-4)
Here B(x, δ) denotes the δ-ball about x in our coordinates. We may assume that in our local coordinate
system the line segment (0, y), |y|< 4 is a geodesic.

In order to prove (2-4) we also need to define a microlocal version of the above Kakeya–Nikodym
norm. We first choose 0≤ β ∈ C∞0 (R

2) satisfying∑
ν∈Z2

β(z+ ν)= 1 and suppβ ⊂ {x ∈ R2
: |x | ≤ 2}. (2-5)

To use this bump function, let8t(x, ξ)= (x(t), ξ(t)) denote the geodesic flow on the cotangent bundle.
Then if (x, ξ) is a unit cotangent vector with x ∈ B(x0, δ) and |ξ1|< δ, with δ small enough, it follows
that there is a unique 0 < t < 10 such that x(t) = (s, 0) for some s(x, ξ). If ξ(t) = (ξ1(t), ξ2(t)) for
this t , it follows that ξ2(t) is bounded from below. Let us then set ϕ(x, ξ)= (s(x, ξ), ξ1(t)/|ξ(t)|). Note
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that ϕ then is a smooth map from such unit cotangent vectors to R2. Also, ϕ is constant on the orbit
of 8. Therefore, |ϕ(x, ξ)− ϕ(y, η)| can be thought of as measuring the distance from the geodesic in
our coordinate patch through (x, ξ) to that of the one through (y, η).

Let α(x) be a nonnegative C∞0 function which is one in B
(
x0,

3
2δ
)

and zero outside of B(x0, 2δ). Given
θ = 2−k with λ−1/2

≤ θ ≤ 1 and ν ∈ Z2, let ϒ ∈ C∞(R) satisfy

ϒ(s)= 1, s ∈ [c, c−1
], ϒ(s)= 0, s /∈

[
c
2
, 2c−1

]
, (2-6)

for some c > 0 to be specified later. We then put

Qν
θ (x, ξ)= α(x)β

(
θ−1ϕ(x, ξ)+ ν

)
ϒ(|ξ |/λ). (2-7)

This is a function of unit cotangent vectors, and we also denote its homogeneous of degree zero extension to
the cotangent bundle with the zero section removed by Qν

θ (x, ξ), ξ 6=0, and the resulting pseudodifferential
operator by Qν

θ (x, D). Then if f is as in (2-4), we define its microlocal Kakeya–Nikodym norm
corresponding to frequency λ and angle θ0 = λ

−1/2+ε0 to be

||| f |||MKN (λ,ε0)
= sup
θ0≤θ≤1

(
sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2)

)
+‖ f ‖L2(R2), θ0 = λ

−1/2+ε0 . (2-8)

Note that
sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2)

measures the maximal microlocal concentration of f about all unit geodesics in the scale of θ . This is
because if we consider the restriction of Qν

θ to unit cotangent vectors and if Qν
θ (x, ξ) 6= 0, then supp Qν

θ

is contained in an O(θ) tube in the space of unit cotangent vectors about the orbit t→8t(x, ξ).
Let us collect a few facts about these pseudodifferential operators. First, the Qν

θ belong to a bounded
subset of S0

1/2+ε0,1/2−ε0
(pseudodifferential operators of order zero and type ( 1

2+ε0,
1
2−ε0)), if λ−1/2+ε0 ≤

θ ≤ 1, with ε0 > 0 fixed. Therefore, there is a uniform constant Cε0 such that

‖Qν
θ (x, D)g‖L2 ≤ Cε0‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1. (2-9)

Similarly, if Pνθ = (Qν
θ )
∗
◦ Qν

θ for such θ , then by (2-5),
∑

ν Pνθ belongs to a bounded subset of
S0

1/2+ε0,1/2−ε0
, and so we also have the uniform bounds∥∥∥∥∑

ν∈Z2

Pνθ (x, D)g
∥∥∥∥

L2
≤ Cε0‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1. (2-10)

We can relate the microlocal Kakeya–Nikodym norm to the Kakeya–Nikodym norm if we realize that
if the δ > 0 above is small enough, then there is a unit length geodesic γν such that Qν

θ (x, ξ) = 0 for
x /∈ TCθν (γ ), with C a uniform constant. As a result, since Qν

θ (x, ξ)= 0 if |ξ | is not comparable to λ,
we can improve (2-9) and deduce that for every N = 1, 2, . . . , there is a uniform constant C ′ such that

‖Qν
θ (x, D)g‖L2 ≤ Cε0

(∫
TC ′θ (γν)

|g|2 dy
)1/2

+CNλ
−N
‖g‖L2, λ−1/2+ε0 ≤ θ ≤ 1, (2-11)
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≈ θ

γµ

Figure 1. TC ′θ(γν).

since the kernel K ν
θ (x, y) of Qν

θ (x, D) is O(λ−N ) for any N if y is not in TC ′θ (γν), with C ′ sufficiently
large but fixed. (See Figure 1.) Since

θ−1/2
(∫

TC ′θ (γν)

|g|2 dy
)1/2

. sup
γ∈Π

(
θ−1

0

∫
Tθ0 (γ )

|g|2 dy
)1/2

, λ−1/2+ε0 = θ0 ≤ θ ≤ 1,

we have

sup
ν∈Z2

θ−1/2
‖Qν

θ (x, D) f ‖L2(R2) ≤ Cε0 |||g|||KN (λ,ε0)
, λ−1/2+ε0 ≤ θ ≤ 1, (2-12)

meaning that we can dominate the microlocal Kakeya–Nikodym norm by the Kakeya–Nikodym norm.
From this, we conclude that we would have (2-4) if we could show∥∥∥∥∫ λ1/2eiλψ(x,y)a(x, y) f (y) dy

∥∥∥∥2

L4(B(0,δ))
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||MKN (λ,ε0)
, if supp f ⊂ B(x0, δ).

(2-13)
We note also that since χλeλ = eλ, this inequality of course yields the following microlocal strengthening
of Theorem 1.1:

Theorem 2.1. For every 0< ε0 ≤
1
2 , we have

‖eλ‖L4(M) .ε0 λ
ε0/4‖eλ‖

1/2
L2(M)× |||eλ|||

1/2
MKN (λ,ε0)

, (2-14)

if |||eλ|||MKN (λ,ε0)
is as in (2-8).

3. Proof of the refined two-dimensional microlocal Kakeya–Nikodym estimates

Let us now prove the estimates in (2-13). We shall follow arguments from §6 of [Mockenhaupt et al.
1993].
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We first note that if supp f ⊂ B(x0, δ) as in (2-4), and if

θ0 = λ
−1/2+ε0 (3-1)

with ε0 > 0 fixed,

χλ f =
∑
ν∈Z2

χλ
(
Qν
θ0
(x, D) f

)
+ Rλ f,

where, if c > 0 in (2-6) is small enough, and N = 1, 2, 3, . . . ,

‖Rλ f ‖L∞ . λ
−N
‖ f ‖L2 .

Therefore, in order to prove (2-4), it suffices to show that∥∥∥∥ ∑
ν,ν′∈Z2

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥

L2
.ε0 λ

ε0/2‖ f ‖L2 × ||| f |||MKN (λ,ε0)
. (3-2)

We split the sum on the left based on the size of |ν−ν ′|. Indeed, the left side of (3-2) is dominated by∥∥∥∥∑
ν

(χλQν
θ0

f )2
∥∥∥∥

L2
+

∞∑
`=1

∥∥∥∥ ∑
|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥

L2
. (3-3)

The square of the first term in (3-3) is∑
ν,ν′

∫
(χλQν

θ0
f )2(χλQν′

θ0
f )2 dx .

Next we need an orthogonality result, similar to Lemma 6.7 in [Mockenhaupt et al. 1993], which says
that if A is large enough we have∑

|ν−ν′|≥A

∣∣∣∣∫ (χλQν
θ0

f )2(χλQν′

θ0
f )2 dx

∣∣∣∣.ε0,N λ
−N
‖ f ‖4L2 . (3-4)

We shall postpone the proof of this result until the end of the section, when we will have recorded the
information about the kernels of χλQν

θ that will be needed for the proof.
Since by [Sogge 1988],

‖χλ‖L2→L4 = O(λ1/8),

if we use (3-4) we conclude that the first term in (3-3) is majorized by (2-10) and (2-12):

λ1/2
∑
ν

‖Qν
θ0

f ‖2L2‖Qν
θ0

f ‖2L2 + λ
−N
‖ f ‖4L2 . λ

1/2
‖ f ‖2L2 × sup

ν∈Z2
‖Qν

θ0
f ‖2L2 + λ

−N
‖ f ‖4L2

= λε0‖ f ‖2L2 × λ
1/2−ε0 sup

ν∈Z2
‖Qν

θ0
f ‖2L2 + λ

−N
‖ f ‖4L2 . (3-5)

Therefore, the first term in (3-3) satisfies the desired bounds.
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Using (2-12) again, the proof of (2-13) and hence (2-4) would be complete if we could estimate the
other terms in (3-3) and show that∥∥∥∥ ∑

|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f
∥∥∥∥2

L2
.ε0 ‖ f ‖2L2 × (2`θ0)

−1 sup
ν∈Z2
‖Qν

2`θ0
f ‖2L2 + λ

−N
‖ f ‖4L2 . (3-6)

Note that if 2`θ0� 1, the left side of (3-6) vanishes and thus, as in (2-12), we are just considering ` ∈N

satisfying 1≤ 2` ≤ λ1/2−ε0 . In proving this, we may assume that ` is larger than a fixed constant, since
the bound for small ` (with an extra factor of λε0 on the right) follows from what we just did. We can
handle the sum over ` in (3-3) due to the fact that the right side of (3-6) does not include a factor λε0 .

We now turn to estimating the nondiagonal terms in (3-3). We first note that by (2-5),

χλQν
θ0

f =
∑
µ∈Z2

χλQµ
θ Qν

θ0
f + ON (λ

−N
‖ f ‖2), if supp f ⊂ B(x0, δ).

Furthermore, if, as we may, we assume that ` ∈N is sufficiently large, then given N0 ∈N, there are
fixed constants c0 > 0 and N1 <∞ (with c0 depending only on N0 and the cutoff β in the definition of
these pseudodifferential operators) such that if

θ` = θ02`,

then∑
|ν−ν′|∈[2`,2`+1)

χλQν
θ0

f χλQν′

θ0
f

=

∑
{µ,µ′∈Z2:N0≤|µ−µ′|≤N1}

∑
|ν−ν′|∈[2`,2`+1)

χλQµ
c0θ`

Qν
θ0

f χλQµ′

c0θ`
Qν′

θ0
f + ON (λ

−N
‖ f ‖2L2), (3-7)

for each N ∈ N. Also, given µ ∈ Z2, there is a ν0(µ) ∈ Z2 such that

‖Qµ
c0θ`

Qν
θ0

f ‖L2 ≤ CNλ
−N
‖ f ‖L2, if |ν− ν0(µ)| ≥ C2`,

for some uniform constant C . If |µ−µ′| ≤ N1, then |ν0(µ)−ν0(µ
′)| ≤C2` for some uniform constant C .

Since ‖(Qν′

θ )
∗
◦ Qν

θ‖L2→L2 = O(λ−N ) for every N if |ν − ν ′| is larger than a fixed constant, it follows
that∫∫ ∣∣∣∣ ∑

|ν0(µ)−ν|,|ν0(µ′)−ν′|≤C2`

∑
|ν−ν′|∈[2`,2`+1)

Qν
θ0

f (x)Qν′

θ0
f (y)

∣∣∣∣2dx dy

.
∑

|ν−ν0(µ)|,|ν′−ν0(µ)|≤C ′2`
‖Qν

θ0
f ‖2L2‖Qν′

θ0
f ‖2L2 + ON (λ

−N
‖ f ‖2L2), if |µ−µ′| ≤ C0, (3-8)

for every N if C ′ is a sufficiently large but fixed constant. Also, using (2-10), we deduce that∑
µ∈Z2

∑
|ν0(µ)−ν|≤C ′2`

‖Qν
θ0

f ‖2L2 . ‖ f ‖2L2 .
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We clearly also have ∑
|ν(µ)−ν′|≤C ′2`

‖Qν′

θ0
f ‖2L2 . sup

µ∈Z2
‖Qµ

2`θ f ‖2L2 .

Using these two inequalities and (3-8), we deduce that∑
|µ−µ′|≤N1

∥∥∥∥ ∑
|ν0(µ)−ν|,|ν0(µ′)−ν′|<C2`

∑
|ν−ν′|∈[2`,2`+1)

Qν
θ0

f (x)Qν′

θ0
f (y)

∥∥∥∥
L2(dx dy)

. ‖ f ‖L2 × sup
µ∈Z2
‖Qµ

2`θ f ‖L2 + ON (λ
−N
‖ f ‖2L2). (3-9)

In addition to (3-4), we shall need another orthogonality result whose proof we postpone until the end
of the section, which says that whenever θ is larger than a fixed positive multiple of θ0 in (3-1) and N1 is
fixed,∣∣∣∣∫ (χλQµ

θ g1χλQµ′

θ g2
)(
χλQµ̃

θ g3χλQµ̃′

θ g4
)

dx
∣∣∣∣.N λ

−N
4∏

j=1

‖g j‖L2,

if |µ− µ̃| + |µ′− µ̃′| ≥ C and |µ−µ′|, |µ̃− µ̃′| ≤ N1, (3-10)

for every N = 1, 2, . . . , with C being a sufficiently large uniform constant (depending on N1 of course).
Using (3-9) and (3-10), we conclude that we would have (3-6) (and consequently (2-4)) if we could

prove the following:

Proposition 3.1. Let

(T µ,µ′

λ,θ F)(x)=
∫∫

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)F(y, y′) dy dy′, (3-11)

where

(χλQµ
θ )(x, y)

denotes the kernel of χλQµ
θ . Then if δ > 0 is sufficiently small and if θ is larger than a fixed positive

constant times θ0 in (3-1) and if N0 ∈ N is sufficiently large and if N1 > N0 is fixed, we have

‖T µ,µ′

λ,θ F‖L2(B(0,δ)) .ε0 θ
−1/2
‖F‖L2, if N0 ≤ |µ−µ

′
| ≤ N1,

F(y, y′)= 0, if (y, y′) /∈ B(x0, 2δ)× B(x0, 2δ). (3-12)

To prove this we shall need some information about the kernel of χλQµ
θ . By (2-7), the kernel is highly

concentrated near the geodesic in M

γµ =
{

xµ(t) : −2≤ t ≤ 2, 8t(xµ, ξµ)= (xµ(t), ξµ(t)), θ−1ϕ(xµ, ξµ)+µ= 0
}
, (3-13)

which corresponds to Qµ
θ . We also will exploit the oscillatory behavior of the kernel near γµ.

Specifically, we require the following:
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Lemma 3.2. Let θ ∈
[
C0λ

−1/2+ε0, 1
2

]
, where C0 is a sufficiently large fixed constant, and, as above,

ε0 > 0. Then there is a uniform constant C such that for each N = 1, 2, 3, . . . , we have

|(χλQµ
θ )(x, y)| ≤ CNλ

−N , if x /∈ TCθ (γµ) or y /∈ TCθ (γµ). (3-14)

Furthermore,
(χλQµ

θ )(x, y)= λ1/2eiλdg(x,y)aµ,θ (x, y)+ ON (λ
−N ), (3-15)

where one has the uniform bounds

|∇
α
y aµ,θ (x, y)| ≤ Cαθ−|α|, (3-16)

|∂
j

t aµ,θ (x, xµ(t))| ≤ C j , x ∈ γµ, (3-17)

if , as in (3-13), {xµ(t)} = γµ.

Proof. To prove the lemma it is convenient to choose Fermi normal coordinates so that the geodesic
becomes the segment {(0, s) : |s| ≤ 2}. Let us also write θ as

θ = λ−1/2+δ,

where, because of our assumptions, c1 ≤ δ ≤
1
2 for an appropriate c1 > 0. Then in these coordinates,

Qµ
θ (x, D) has symbol satisfying

qµθ (x, ξ)= 0, if
∣∣ξ1/|ξ |

∣∣≥ Cλ−1/2+δ, |x1| ≥ Cλ−1/2+δ, or |ξ |/λ /∈ [C−1,C], (3-18)

for some uniform constant C , and, additionally,∣∣∂ j
x1
∂k

x2
∂ l
ξ1
∂m
ξ2

qµθ (x, ξ)
∣∣≤ C j,k,l,m(1+ |ξ |) j (1/2−δ)−l(1/2+δ)−m . (3-19)

Next we recall that χλ = ρ(λ−
√
−1g), where ρ ∈ S(R) satisfies ρ̂ ⊂ (1, 2), and that the injectivity

radius of (M, g) is ten or more. Therefore, we can use Fourier integral parametrices for the wave equation
to see that the kernel of χλ is of the form

χλ(x, y)=
∫∫

ei S(t,x,ξ)−iy·ξ+i tλρ̂(t)α(t, x, y, ξ) dξ dt,

where α ∈ S1
1,0, and S is homogeneous of degree one in ξ and is a generating function for the canonical

relation for the half wave group e−i t
√
−1g . Thus,

∂t S(t, x, ξ)=−p(x,∇x S(t, x, ξ)), S(0, x, ξ)= x · ξ. (3-20)

Let 8̃t(x, ξ) denote the Hamiltonian flow generated by p(x, ξ), which is homogeneous of degree one
in ξ and agrees with the geodesic flow 8t(x, ξ) when restricted to unit cotangent vectors. The phase
S(t, x, ξ) also satisfies

8̃t(x,∇x S)= (∇ξ S, ξ). (3-21)

Furthermore,

det
∂S
∂x∂ξ

6= 0. (3-22)
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By (3-18), (3-19), and the proof of the Kohn–Nirenberg theorem, we have that

(χλQµ
θ )(x, y)=

∫∫
ei S(t,x,ξ)−iy·ξ+iλt ρ̂(t)q(t, x, y, ξ) dξ dt + O(λ−N ),

= λ2
∫∫

eiλ(S(t,x,ξ)−y·ξ+t)ρ̂(t)q(t, x, y, λξ) dξ dt + O(λ−N ), (3-23)

where for all t in the support of ρ̂,

q(t, x, y, ξ)= 0 if
∣∣ξ1/|ξ |

∣∣≥ Cλ−1/2+δ, |x1| ≥ Cλ−1/2+δ, or |ξ |/λ /∈ [C−1,C], (3-24)

with C as in (3-19), and also∣∣∂ j
x1
∂k

x2
∂ l
ξ1
∂m
ξ2

q(t, x, y, ξ)
∣∣≤ C j,k,l,m(1+ |ξ |) j (1/2−δ)−l(1/2+δ)−m . (3-25)

Let us now prove (3-14). We have the assertion if y /∈TCλ−1/2+δ (γµ) by (3-24). To prove that remaining
part of (3-24) which says that this is also the case when x is not in such a tube, we note that by (3-21), if
dg(x0, y0)= t0 and x0, y0 ∈ γµ, then

∇ξ (S(t0, x0, ξ)− y0 · ξ)= 0, if ξ1 = 0.

By (3-22), we then have ∣∣∇ξ (S(t0, x, ξ)− y0 · ξ)
∣∣≈ dg(x, x0), if ξ1 = 0.

We deduce from this that if |ξ1|/|ξ | ≤ Cλ−1/2+δ, |y1| ≤ Cλ−1/2+δ, and |ξ | ∈ [C−1,C], then there are a
c0 > 0 and a C0 <∞ such that∣∣∇ξ (S(t0, x, ξ)− y · ξ)

∣∣≥ c0λ
−1/2+δ, if x /∈ TC0λ−1/2+δ (γµ).

From this we obtain the remaining part of (3-14) via a simple integration by parts argument if we use the
support properties (3-24) and size estimates (3-25) of q(t, x, y, ξ). We note that every time we integrate
by parts in ξ we gain by λ−2δ, which implies (3-14) since q vanishes unless |ξ | ≈ λ and δ is bounded
below by a fixed positive constant.

To finish the proof of the lemma and obtain (3-15)–(3-17), we note that if we let

9(t, x, y, ξ)= S(t, x, ξ)− y · ξ + t

denote the phase function of the second oscillatory integral in (3-23), then at a stationary point where

∇ξ,t9 = 0,

we must have 9 = dg(x, y), due to the fact that S(t, x, ξ)− y · ξ = 0 and t = dg(x, y) at points where the
ξ -gradient vanishes. Additionally, it is not difficult to check that the mixed Hessian of the phase satisfies

det
(

∂29

∂(ξ, t)∂(ξ, t)

)
6= 0
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on the support of the integrand. This follows from the proof of Lemma 5.1.3 of [Sogge 1993]. Moreover,
since modulo O(λ−N ) error terms (χλQµ

θ )(x, y) equals

λ2
∫∫

eiλ9 ρ̂(t)q(t, x, y, λξ) dξ dt, (3-26)

we obtain (3-15)–(3-16) by the proof of this result if we use the stationary phase and (3-24)–(3-25).
Indeed, by (3-21), (3-26) has a stationary phase expansion (see [Hörmander 2003, Theorem 7.7.5]), where
the leading term is a fixed constant times

λ1/2eiλtq(t, x, y, λξ), if t = dg(x, y) and 8̃−t(y, ξ)= (x,∇x S(t, x, ξ)). (3-27)

From this, we see that the leading term in the asymptotic expansion must satisfy (3-16), and subsequent
terms in the expansion will satisfy better estimates, where the right-hand side involves increasing negative
powers of λ2δ (by [Hörmander 2003, (7.7.1)] and (3-25)), from which we deduce that (3-16) must be
valid. Since ξ1= 0 and p(y, ξ)= 1 (by (3-21)) in (3-27) when x, y ∈ γµ, we similarly deduce from (3-25)
that the leading term in the stationary phase expansion must satisfy (3-17), and since the other terms
satisfy better bounds involving increasing powers of λ−2δ, we similarly obtain (3-17), which completes
the proof of the lemma. �

Let us now collect some simple consequences of Lemma 3.2. First, in addition to (3-14), the kernel
(χλQµ

θ )(x, y) is also O(λ−N ) unless the distance between x and y is comparable to one by (2-3). From
this we deduce that if N0 ∈ N is sufficiently large,

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= O(λ−N ),

unless Angle(x; y, y′) ∈ [θ,C2θ ] and x, y, y′ ∈ TC2θ (γµ), if |µ−µ′| ∈ [N0, N1], (3-28)

if Angle(x, y, y′) denotes the angle at x of the geodesic connecting x and y and the one connecting x
and y′, and where C2 = C2(N1).

This is because in this case, if x ∈ TCθ (γµ)∩TCθ (γµ′), then the tubes must be disjoint at a distance
bounded below by a fixed positive multiple of θ if N0 is large enough, and in this region their separation
is bounded by a fixed constant times θ if N1 is fixed; see Figure 2.

To exploit this key fact, as above, let us choose Fermi normal coordinates (see [Gray 2004, Chapter 2])
about γµ so that the geodesic becomes the segment {(0, s) : |s| ≤ 2}. Then, as in (2-2), let

ψ(x; y)= dg
(
(x1, x2), (y1, y2)

)
be the Riemannian distance function written in these coordinates. Then if x, y, y′ are close to this segment
and if the distances between x and y and x and y′ are both comparable to 1 and if, as well, y is close
to y′, it follows from Gauss’s lemma that

Angle
(
x; (y1, y2), (y′1, y′2)

)
≈

∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣. (3-29)



REFINED AND MICROLOCAL KAKEYA–NIKODYM BOUNDS FOR EIGENFUNCTIONS IN TWO DIMENSIONS 759

x

y
y′

γµ

γµ′

Angle≈ θ

Figure 2. θ -tubes intersecting at angle ≥ N0θ .

As a result, by (3-28), there must be a constant c0 > 0 such that

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= O(λ−N ),

if
∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣≤ c0θ and |µ−µ′| ∈ [N0, N1], (3-30)

with, as above, N0 ∈ N sufficiently large and N1 fixed. Another consequence of Gauss’s lemma is that if
x and y as in (3-29) are close to this segment and at a distance from each other which is comparable to
one, then

∂

∂x1

∂

∂y1
ψ(x, y) 6= 0. (3-31)

We shall also need to make use of the fact that, in these Fermi normal coordinates, we have

∂

∂x2

∂

∂y1
ψ
(
(0, x2), (0, y2)

)
=

∂

∂x1
ψ
(
(0, x2), (0, y2)

)
= 0, if dg

(
(0, x2), (0, y2)

)
≈ 1. (3-32)

Next, by (3-15)–(3-17), modulo terms which are O(λ−N ) we can write

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)= λeiλ(ψ(x,y)+ψ(x,y′))bµ(x; y, y′),

where, by (3-28) and (3-30),

bµ(x; y, y′)= 0, if dg(x, y) or dg(x, y′) /∈ [1, 2],

or |x1| + |y1| + |y′1| ≥ c−1
0 θ, or

∣∣∣∣ ∂∂y1

∂

∂x2
ψ(x, y)−

∂

∂y1

∂

∂x2
ψ(x, y′)

∣∣∣∣≤ c0θ, (3-33)

and, since we are working in Fermi normal coordinates,∣∣∣∣ ∂ j

∂x j
1

∂k

∂xk
2

bµ(x, y, y′)
∣∣∣∣≤ C0θ

− j , 0≤ j, k ≤ 3. (3-34)
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The constants C0 and c0 can be chosen to be independent of µ ∈ Z2 and θ ≥ λ−1/2+ε0 if ε0 > 0. But then,
by (3-33) and (3-34) if y2 and y′2 are fixed and close to one another, and if we set

9(x; s, t)= ψ(x, (s+ t, y2))+ψ(x, (s− t, y′2)) and b(x; s, t)= bµ(x; s+ t, y2, s− t, y′2),

there is a fixed constant C such that

b(x; s, t)= 0 if |x1| + |s| + |t | ≥ Cθ,

and
∣∣∣∣ ∂ j

∂x j
1

∂k

∂xk
2

b(x; s, t)
∣∣∣∣≤ Cθ− j , 0≤ j, k ≤ 3,

(3-35)

while, by (3-31) and (3-32),

∂

∂x2

∂

∂s
9(0, x2; 0, 0)=

∂

∂x2

∂

∂t
9(0, x2; 0, 0)=

∂

∂x1
9(0, x2; 0, 0)= 0,

but
∂

∂x1

∂

∂s
9(0, x2; 0, 0) 6= 0 if b(0, x2; 0, 0) 6= 0, (3-36)

and, moreover, by (3-33), ∣∣∣∣ ∂∂x2

∂

∂t
9(x; s, t)

∣∣∣∣≥ cθ, if b(x; s, t) 6= 0. (3-37)

Also, if we assume that |y2− y′2| ≤ δ, as we may because of the support assumption in (3-12), then∣∣∣∣ ∂∂x1

∂

∂t
9(x; s, 0)

∣∣∣∣≤ Cδ, if b(x; s, t) 6= 0, (3-38)

since the quantity on the left vanishes identically when y2 = y′2.
Another consequence of Gauss’s lemma is that if y, y′, x are close to the second coordinate axis and

if the distances between x and each of y and y′ are comparable to 1, then if θ above is bounded below,
the 2× 2 mixed Hessian of the function (x; y1, y′1)→ ψ(x, y)+ψ(x, y′) has nonvanishing determinant.
Thus, in this case (3-12) just follows from Hörmander’s nondegenerate L2-oscillatory integral lemma
[1973] (see [Sogge 1993, Theorem 2.1.1]). Therefore, it suffices to prove (3-12) when θ is bounded
above by a fixed positive constant, and so Proposition 3.1, and hence Theorem 1.1, is a consequence of
the following:

Lemma 3.3. Suppose that b ∈ C∞0 (R
2
×R2) vanishes when |(s, t)| ≥ δ. Then if 9 ∈ C∞(R2

×R2) is
real and (3-35)–(3-38) are valid, there is a uniform constant C such that if δ > 0 and θ > 0 are smaller
than a fixed positive constant and

TλF(x)=
∫∫

eiλ9(x;s,t)b(x; s, t)F(s, t) ds dt,

then we have

‖TλF‖L2(R2) ≤ Cλ−1θ−1/2
‖F‖L2(R2). (3-39)
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We shall include the proof of this result for the sake of completeness even though it is a standard result.
It is a slight variant of the main lemma in Hörmander’s proof [1973] of the Carleson–Sjölin theorem (see
[Sogge 1993, pp. 61–62]). Hörmander’s proof gives this result in the special case where y2 = y′2, and, as
above, 9 is defined by two copies of the Riemannian distance function. The case where y2 and y′2 are not
equal to each other introduces some technicalities that, as we shall see, are straightforward to overcome.

Proof. Inequality (3-39) is equivalent to the statement that ‖T ∗λ Tλ‖L2→L2 ≤ Cλ−2θ−1. The kernel of
T ∗λ Tλ is

K (s, t; s ′, t ′)=
∫∫

eiλ(9(x;s,t)−9(x;s′,t ′))a(x; s, t, s ′, t ′) dx1 dx2,

if a(x; s, t, s ′, t ′)= b(x, s, t)b(x; s ′, t ′).

Therefore, we would have this estimate if we could show that

|K (s, t; s ′, t ′)| ≤ Cθ1−N (1+ λ|(s− s ′, t − t ′)|
)−N
+Cθ

(
1+ λθ |(s− s ′, t − t ′)|

)−N
,

N = 0, 1, 2, 3, (3-40)

for then by using the N = 0 bounds for the regions where |(s− s ′, t− t ′)| ≤ (λθ)−1 and the N = 3 bounds
in the complement, we see that

sup
s,t

∫∫
|K | ds ′ dt ′, sup

s′,t ′

∫∫
|K | ds dt ≤ Cλ−2θ−1,

which means that by Young’s inequality, ‖T ∗λ Tλ‖L2→L2 ≤ Cλ−2θ−1, as desired.
The bound for N = 0 follows from the first part of (3-35). To prove the bounds for N = 1, 2, 3, we

need to integrate by parts.
Let us first handle the case where

|s− s ′| ≥ A−1
|t − t ′|, (3-41)

where A ≥ 1 is a possibly fairly large constant which we shall specify in the next step. By the second
part of (3-36) and by (3-38), we conclude that if δ > 0 is sufficiently small (depending on A), we have∣∣∣∣ ∂∂x1

(
9(x; s, t)−9(x; s ′, t ′)

)∣∣∣∣≥ c|s− s ′|, |s− s ′| ≥ A−1
|t − t ′|, (3-42)

for some uniform constant c > 0.
Since |K | is trivially bounded by the second term on the right side of (3-40) when |s− s ′| ≤ (λθ)−1

and (3-41) is valid, we shall assume that |s− s ′| ≥ (λθ)−1.
If we then write

eiλ(9(x;s,t)−9(x;s′,t ′))
= Leiλ(9(x;s,t)−9(x;s′,t ′)),

where L(x, D)=
1

iλ
(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

) ∂

∂x1
, (3-43)
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then we obtain

|K | ≤
∫∫ ∣∣(L∗(x, D))N a(x; s, t, s ′, t ′)

∣∣ dx .

Note that∣∣λ(9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
)∣∣N |(L∗)N a|

≤ CN

∑
0≤ j+k≤N

∣∣∣∣ ∂ j

∂x j
1

a
∣∣∣∣× ∑

α1+···+αk≤N

∏k
m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣∣∣9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
∣∣k . (3-44)

Clearly,
k∏

m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣≤ Ck |(s− s ′, t − t ′)|k, (3-45)

and consequently, by (3-41) and (3-42),∏k
m=1

∣∣∣∣ ∂αm

∂xαm
1

(
9 ′x1

(x; s, t)−9 ′x1
(x; s ′, t ′)

)∣∣∣∣∣∣9 ′x1
(x; s, t)−9 ′x1

(x; s ′, t ′)
∣∣k ≤ CA,k . (3-46)

Since by (3-35), we have that |∂ j
x1a| ≤ Cθ− j , j = 0, 1, 2, 3, and (3-35) also says that a vanishes when

|x1| is larger than a fixed multiple of θ , we conclude from (3-42)–(3-46) that if (3-41) holds, then |K | is
dominated by the first term on the right side of (3-40).

We now turn to the remaining case, which is

|t − t ′| ≥ A|s− s ′|, (3-47)

and where the parameter A ≥ 1 will be specified. By the first part of (3-36) and by (3-37) and the fact
that |s|, |s ′|, |t |, |t ′| are bounded by a fixed multiple of θ in the support of a, it follows that we can fix A
(independent of θ small) so that if (3-47) is valid, then∣∣∣∣ ∂∂x2

(
9(x; s, t)−9(x; s ′, t ′)

)∣∣∣∣≥ cθ |t − t ′|, on supp a,

for some uniform constant c > 0. Then since (3-32) implies that

k∏
m=1

∣∣∣∣ ∂αm

∂xαm
2

(
9 ′x2

(x; s, t)−9 ′x2
(x; s ′, t ′)

)∣∣∣∣≤ Ckθ
k
|(s− s ′, t − t ′)|k, on supp a,

and since, by (3-35),
|∂ j

x2
a| ≤ CN , 1≤ j ≤ N ,

we conclude that if we repeat the argument just given but now integrate by parts with respect to x2 instead
of x1, then |K | is bounded by the second term on the right side of (3-40), which completes the proof of
Lemma 3.3. �
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To conclude matters, we also need to prove the orthogonality estimates (3-4) and (3-10). Since (3-4) is
a special case of (3-10), we just need to establish the latter.

To see this, we note that by Lemma 3.2, if (χλQµ
θ )(x, y) denotes the kernel of χλQµ

θ , then

(χλQµ
θ )(x, y)(χλQµ′

θ )(x, y′)(χλQµ̃
θ )(x, ỹ)(χλQµ̃′

θ )(x, ỹ′)= ON (λ
−N ),

if x /∈ TCθ (γµ)∩TCθ (γµ′)∩TCθ (γµ̃)∩TCθ (γµ̃′),

with C sufficiently large and the geodesics defined by (3-13). On the other hand, if x is in the above
intersection of tubes, then the condition on (µ,µ′, µ̃, µ̃′) in (3-10) ensures that if the constant C there is
large enough, we have∣∣∇x

(
dg(x, y)+ dg(x, y′)− dg(x, ỹ)− dg(x, ỹ′)

)∣∣≥ c0θ,

if y ∈ TCθ (γµ), y′ ∈ TCθ (γµ′), ỹ ∈ TCθ (γµ̃), and ỹ′ ∈ TCθ (γµ̃′),

for some uniform c0> 0. Thus, (3-10) follows from Lemma 3.2 and a simple integration by parts argument
since we are assuming that θ ≥ θ0 = λ

−1/2+ε0 with ε0 > 0.

4. Relationships with Zygmund’s L4-toral eigenfunction bounds

Recall that for T2, Zygmund [1974] showed that if eλ is an eigenfunction on T2, i.e.,

eλ(x)=
∑

{ε∈Z2: |`|=λ}

a`ei x ·`, (4-1)

then
‖eλ‖L4(T2) ≤ C,

for some uniform constant C .
As observed in [Burq et al. 2007], using well-known pointwise estimates in two dimensions, one has

sup
γ∈Π

∫
γ

|eλ|2 ds = Oε(λ
ε)

for all ε > 0. This of course implies that one also has

sup
γ∈Π

∫
T
λ−1/2 (γ )

|eλ|2 dx = Oε(λ
−1/2+ε)

for any ε > 0.
Sarnak (unpublished) made an interesting observation that having O(1) geodesic restriction bounds

for T2 is equivalent to the statement that there is a uniformly bounded number of lattice points on arcs of
λS1 of aperture λ−1/2. (Cilleruelo and Córdoba [1992] showed that this is the case for arcs of aperture
λ−1/2−δ for any δ > 0.)

Using (1-1) we can essentially recover Zygmund’s bound and obtain ‖eλ‖L4(T2) = Oε(λ
ε) for every

ε > 0. (Of course this just follows from the pointwise estimate, but it shows how the method is natural
too.)
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If we could push the earlier results to include ε0= 0 and if we knew that there were uniformly bounded
restriction bounds, then we would recover Zygmund’s estimate.

References

[Bourgain 2009] J. Bourgain, “Geodesic restrictions and L p-estimates for eigenfunctions of Riemannian surfaces”, pp. 27–35 in
Linear and complex analysis, edited by A. Alexandrov et al., Amer. Math. Soc. Transl. Ser. 2 226, Amer. Math. Soc., Providence,
RI, 2009. MR 2011b:58066 Zbl 1189.58015

[Burq et al. 2007] N. Burq, P. Gérard, and N. Tzvetkov, “Restrictions of the Laplace–Beltrami eigenfunctions to submanifolds”,
Duke Math. J. 138:3 (2007), 445–486. MR 2008f:58029 Zbl 1131.35053

[Carleson and Sjölin 1972] L. Carleson and P. Sjölin, “Oscillatory integrals and a multiplier problem for the disc”, Studia Math.
44 (1972), 287–299. (errata insert). MR 50 #14052 Zbl 0215.18303

[Cilleruelo and Córdoba 1992] J. Cilleruelo and A. Córdoba, “Trigonometric polynomials and lattice points”, Proc. Amer. Math.
Soc. 115:4 (1992), 899–905. MR 92j:11116 Zbl 0777.11035

[Gray 2004] A. Gray, Tubes, 2nd ed., Progress in Mathematics 221, Birkhäuser, Basel, 2004. MR 2004j:53001 Zbl 1048.53040

[Hörmander 1973] L. Hörmander, “Oscillatory integrals and multipliers on F L p”, Ark. Mat. 11 (1973), 1–11. MR 49 #5674
Zbl 0254.42010

[Hörmander 2003] L. Hörmander, The analysis of linear partial differential operators, I, Springer, Berlin, 2003. MR 1996773
Zbl 1028.35001

[Mockenhaupt et al. 1993] G. Mockenhaupt, A. Seeger, and C. D. Sogge, “Local smoothing of Fourier integral operators and
Carleson–Sjölin estimates”, J. Amer. Math. Soc. 6:1 (1993), 65–130. MR 93h:58150 Zbl 0776.58037

[Sogge 1986] C. D. Sogge, “Oscillatory integrals and spherical harmonics”, Duke Math. J. 53:1 (1986), 43–65. MR 87g:42026
Zbl 0636.42018

[Sogge 1988] C. D. Sogge, “Concerning the L p norm of spectral clusters for second-order elliptic operators on compact
manifolds”, J. Funct. Anal. 77:1 (1988), 123–138. MR 89d:35131 Zbl 0641.46011

[Sogge 1993] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics 105, Cambridge University
Press, 1993. MR 94c:35178 Zbl 0783.35001

[Sogge 2011] C. D. Sogge, “Kakeya–Nikodym averages and L p-norms of eigenfunctions”, Tohoku Math. J. (2) 63:4 (2011),
519–538. MR 2872954 Zbl 1234.35156

[Sogge and Zelditch 2012] C. D. Sogge and S. Zelditch, “Concerning the L4 norms of typical eigenfunctions on compact
surfaces”, pp. 407–423 in Recent developments in geometry and analysis, edited by Y. Dong et al., Adv. Lect. Math. (ALM) 23,
Int. Press, Somerville, MA, 2012. MR 3077213

[Sogge and Zelditch 2014] C. D. Sogge and S. Zelditch, “A note on L p-norms of quasi-modes”, preprint, 2014.

[Zygmund 1974] A. Zygmund, “On Fourier coefficients and transforms of functions of two variables”, Studia Math. 50 (1974),
189–201. MR 52 #8788 Zbl 0278.42005

Received 12 Sep 2014. Revised 31 Dec 2014. Accepted 9 Feb 2015.

MATTHEW D. BLAIR: blair@math.unm.edu
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, United States

CHRISTOPHER D. SOGGE: sogge@jhu.edu
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2689, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/2011b:58066
http://msp.org/idx/zbl/1189.58015
http://dx.doi.org/10.1215/S0012-7094-07-13834-1
http://msp.org/idx/mr/2008f:58029
http://msp.org/idx/zbl/1131.35053
http://msp.org/idx/mr/50:14052
http://msp.org/idx/zbl/0215.18303
http://dx.doi.org/10.2307/2159332
http://msp.org/idx/mr/92j:11116
http://msp.org/idx/zbl/0777.11035
http://dx.doi.org/10.1007/978-3-0348-7966-8
http://msp.org/idx/mr/2004j:53001
http://msp.org/idx/zbl/1048.53040
http://dx.doi.org/10.1007/BF02388505
http://msp.org/idx/mr/49:5674
http://msp.org/idx/zbl/0254.42010
http://msp.org/idx/mr/1996773
http://msp.org/idx/zbl/1028.35001
http://dx.doi.org/10.2307/2152795
http://dx.doi.org/10.2307/2152795
http://msp.org/idx/mr/93h:58150
http://msp.org/idx/zbl/0776.58037
http://dx.doi.org/10.1215/S0012-7094-86-05303-2
http://msp.org/idx/mr/87g:42026
http://msp.org/idx/zbl/0636.42018
http://dx.doi.org/10.1016/0022-1236(88)90081-X
http://dx.doi.org/10.1016/0022-1236(88)90081-X
http://msp.org/idx/mr/89d:35131
http://msp.org/idx/zbl/0641.46011
http://dx.doi.org/10.1017/CBO9780511530029
http://msp.org/idx/mr/94c:35178
http://msp.org/idx/zbl/0783.35001
http://dx.doi.org/10.2748/tmj/1325886279
http://msp.org/idx/mr/2872954
http://msp.org/idx/zbl/1234.35156
http://msp.org/idx/mr/3077213
http://msp.org/idx/mr/52:8788
http://msp.org/idx/zbl/0278.42005
mailto:blair@math.unm.edu
mailto:sogge@jhu.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

László Lempert Purdue University, USA
lempert@math.purdue.edu

Richard B. Melrose Massachussets Institute of Technology, USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Yuval Peres University of California, Berkeley, USA
peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2015 is US $205/year for the electronic version, and $390/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/apde
mailto:zworski@math.berkeley.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 8 No. 3 2015

513Inverse scattering with partial data on asymptotically hyperbolic manifolds
RAPHAEL HORA and ANTÔNIO SÁ BARRETO

561Low temperature asymptotics for quasistationary distributions in a bounded domain
TONY LELIÈVRE and FRANCIS NIER

629Dynamics of complex-valued modified KdV solitons with applications to the stability of
breathers

MIGUEL A. ALEJO and CLAUDIO MUÑOZ

675L p estimates for bilinear and multiparameter Hilbert transforms
WEI DAI and GUOZHEN LU

713Large BMO spaces vs interpolation
JOSE M. CONDE-ALONSO, TAO MEI and JAVIER PARCET

747Refined and microlocal Kakeya–Nikodym bounds for eigenfunctions in two dimensions
MATTHEW D. BLAIR and CHRISTOPHER D. SOGGE

A
N

A
LY

SIS
&

PD
E

Vol.8,
N

o.3
2015


	1. Introduction and main results
	2. Microlocal Kakeya–Nikodym norms
	3. Proof of the refined two-dimensional microlocal Kakeya–Nikodym estimates
	4. Relationships with Zygmund's L4-toral eigenfunction bounds
	References
	
	

