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PARTIAL COLLAPSING AND THE
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COLETTE ANNÉ AND JUNYA TAKAHASHI

Our goal is to calculate the limit spectrum of the Hodge–de Rham operator under the perturbation of
collapsing one part of a manifold obtained by gluing together two manifolds with the same boundary. It
appears to take place in the general problem of blowing up conical singularities as introduced by Mazzeo
and Rowlett.

1. Introduction

This work takes place in the context of the spectral studies of singular perturbations of the metrics, as
a means to know what are the topological or metrical meanings carried by the spectrum of geometric
operators. We can mention in this direction, without exhaustivity, studies on the adiabatic limits [Mazzeo
and Melrose 1990; Rumin 2000], on collapsing [Fukaya 1987; Lott 2002a; 2002b; 2004], on resolution
blowups of conical singularities [Mazzeo 2006; Rowlett 2006; 2008] and on shrinking handles [Anné and
Colbois 1995; Anné et al. 2009].

The present study can be considered as a generalization of the results of [Anné and Takahashi 2012],
where we studied the limit of the spectrum of the Hodge–de Rham (or the Hodge–Laplace) operator
under collapsing of one part of a connected sum.

In our previous work, we restricted the submanifold 6 used to glue the two parts to be a sphere. In
fact, this problem is quite related to resolution blowups of conical singularities: the point is to measure
the influence of the topology of the part which disappears and of the conical singularity created at the
limit of the “big part”. If we look at the situation from the “small part”, we understand the importance of
the quasiasymptotically conical space obtained from rescaling the small part and gluing an infinite cone;
see the definition below in (1).

When 6 is the sphere Sn , the conical singularity is quite simple. There are no half-bound states —
called extended solutions in the sequel — on the quasiasymptotically conical space. Our result presented
here takes care of these new possibilities and gives a general answer to the problem studied by Mazzeo
and Rowlett. Indeed, in [Mazzeo 2006; Rowlett 2006; 2008], it is supposed that the spectrum of the
operator on the quasiasymptotically conical space does not meet 0. Our study relaxes this hypothesis. It
is done only with the Hodge–de Rham operator, but can easily be generalized.

Let us fix some notations.
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Figure 1. Partial collapsing of Mε.

1.1. Set-up. Let M1 and M2 be two connected, oriented, compact manifolds with the same boundary 6,
a compact manifold of dimension n ≥ 2. We denote by m = n+ 1 the dimension of M1 and M2. We
endow 6 with a fixed metric h.

Let M1 be the manifold with conical singularity obtained from M1 by gluing M1 to a cone C=[0, 1)×6;
we write (r, y) for points on C, and there exists on M1 = M1 ∪C a metric ḡ1 which equals dr2

+ r2h on
the smooth part r > 0 of the cone.

We choose on M2 a metric g2 which is “trumpet-like”, i.e., M2 is isometric near the boundary to[
0, 1

2

)
×6 with the conical metric which equals ds2

+(1−s)2h if s is the coordinate defining the boundary
by s = 0.

For any ε with 0≤ ε < 1, we define

Cε,1 = {(r, y) ∈ C | r > ε} and M1(ε)= M1 ∪Cε,1.

The goal of the following calculus is to determine the limit spectrum of the Hodge–de Rham operator
acting on the differential forms of the Riemannian manifold

Mε = M1(ε)∪ε.6 ε.M2,

which is obtained by gluing together (M1(ε), g1) and (M2, ε
2g2). By construction, these two manifolds

have isometric boundary and the metric gε obtained on Mε is smooth.

Remark 1. The common boundary 6 of dimension n has some topological obstructions. In fact, since
6 is the boundary of the oriented, compact manifold M1, 6 is oriented cobordant to zero. So, by Thom’s
cobordism theory, all the Stiefel–Whitney and all the Pontrjagin numbers vanish (see C. T. C. Wall [1960]
or [Milnor and Stasheff 1974, §18, p. 217]). Furthermore, this condition is also sufficient; that is, the
inverse does hold.

In particular, it is impossible to take 64k as the complex projective spaces CP2k (k ≥ 1) because the
Pontrjagin number pk(CP2k) is nonzero.

1.2. Results. We can describe the limit spectrum as follows; it has two parts. One part comes from
the big part, namely M1, and is expressed by the spectrum of a good extension of the Hodge–de Rham
operator on this manifold with the conical singularity. This extension is self-adjoint and comes from an
extension of the Gauss–Bonnet operators. All these extensions are classified by subspaces W of the total
eigenspaces corresponding to the eigenvalues within

(
−

1
2 ,

1
2

)
of an operator A acting on the boundary 6.

This point is developed in Section 2.2. The other part comes from the collapsing part, namely M2, where
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the limit Gauss–Bonnet operator is taken with boundary conditions of Atiyah–Patodi–Singer-type. This
point is developed in Section 2.3. This operator, denoted D2 in the sequel, can also be seen on the
quasiasymptotically conical space M̃2 already mentioned, namely

M̃2 = M2 ∪ ([1,∞)×6) (1)

with the metric dr2
+r2h on the conical part. Only the zero eigenvalue is concerned with this part. In fact,

the manifold Mε has small eigenvalues, in contrast to [Anné and Takahashi 2012], and the multiplicity
of 0 at the limit corresponds to the total eigenspaces of these small and null eigenvalues. Thus, our main
theorem, which asserts the convergence of the spectrum, has two components.

Theorem A. The set of all positive limit values is just equal to that of all positive spectrum of the
Hodge–de Rham operator 11,W on M1, where

W ⊂
⊕
|γ |< 1

2

Ker(A− γ )

is the space of the elements that generate extended solutions on M̃2. A precise definition is given in (7).

Theorem B. The multiplicity of 0 in the limit spectrum is given by the sum

dim Ker(11,W )+ dim Ker(D2)+ i1/2,

where i1/2 denotes the dimension of the vector space I1/2 — see (8) — of extended solutions ω on M̃2

introduced by Carron [2001b], admitting on restriction to r = 1 a nontrivial component in Ker
(

A− 1
2

)
.

1.3. Comments.

1.3.1. This result is also valid in dimension 2. In order to understand it, look at the following example. Let
I = [0, 1] and M1 = M2 = S1

× I . We can shrink half of a torus: S1
×S1

= M1∪6 M1 for 6 = S1
tS1.

Then M1 is a 2-sphere with no harmonic 1-forms and M̃2 has no L2-harmonic 1-forms. But i1/2 = 2.
Indeed M̃2 is a cylinder with flat ends. With obvious coordinates (r, θ), dθ and ∗(dθ)∼ dr/r near∞
give a base for extended solutions.

1.3.2. We choose, in our study, a simple metric to make explicit computations. This fact is not a restriction,
as already explained in [Anné and Takahashi 2012], because of the result of Dodziuk [1982] which assures
uniform control of the eigenvalues of geometric operators with regard to variations of the metric.

1.3.3. More examples are given in the last section of the paper.

2. Gauss–Bonnet operator

On a Riemannian manifold, the Gauss–Bonnet operator is defined as the operator D = d + d∗ acting on
differential forms. It is symmetric and can have some closed extensions on manifolds with boundary or
with conical singularities. We review these extensions in the cases involved in our study.
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2.1. Gauss–Bonnet operator on Mε. We recall that, on Mε, a Gauss–Bonnet operator Dε, Sobolev
spaces and also a Hodge–de Rham operator 1ε can be defined as a general construction on any manifold
X = X1∪ X2, which is the union of two Riemannian manifolds with isometric boundaries (the details are
given in [Anné and Colbois 1995]): if D1 and D2 are the Gauss–Bonnet operators “d+ d∗” acting on the
differential forms of each part, the quadratic form

q(φ)=
∫

X1

|D1(φ�X1)|
2 dµX1 +

∫
X2

|D2(φ�X2)|
2 dµX2 (2)

is well-defined and closed on the domain

Dom(q)= {φ = (φ1, φ2) ∈ H 1(3T ∗X1)× H 1(3T ∗X2) | φ1�∂X1=L2 φ2�∂X2}.

On this space, the total Gauss–Bonnet operator D(φ)= (D1(φ1), D2(φ2)) is defined and self-adjoint. For
this definition, we have to, in particular, identify (3T ∗X1)�∂X1 and (3T ∗X2)�∂X2 . This can be done by
decomposing the forms into tangential and normal parts (with inner normal); the equality above means
then that the tangential parts are equal and the normal parts opposite. This definition generalizes the
definition in the smooth case.

The Hodge–de Rham operator (d+d∗)2 of X is then defined as the operator obtained by the polarization
of the quadratic form q . This gives compatibility conditions between φ1 and φ2 on the common boundary.
We do not give details on these facts, because our manifold is smooth. But we shall use this presentation
for the quadratic form.

2.2. Gauss–Bonnet operator on M1. Let D1,min be the closure of the Gauss–Bonnet operator defined
on the smooth forms with compact support in the smooth part M1(0). For any such form φ1, following
[Brüning and Seeley 1988; Anné et al. 2009], on the cone C we write

φ1 = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1)=U (φ1). The operator has, on the cone C, the expression

U D1U∗ =
(

0 1
−1 0

)(
∂r +

1
r

A
)

with A =
(1

2 n− P −D0

−D0 P − 1
2 n

)
,

where P is the operator of degree, that is, Pω = p ·ω for a p-form ω, and D0 = d0+ d∗0 is the Gauss–
Bonnet operator on the manifold (6, h), while the Hodge–de Rham operator has, in these coordinates,
the expression

U11U∗ =−∂2
r +

1
r2 A(A+ 1). (3)

The closed extensions of the operator D1 = d + d∗ on the manifold with conical singularity M1 have
been studied in [Brüning and Seeley 1988; Lesch 1997]. They are classified by the spectrum of its Mellin
symbol, which is here the operator with parameter A+ z.
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Spectrum of A. The spectrum of A was calculated in [Brüning and Seeley 1988, p. 703]. By their result,
the spectrum of A is given by the values{

±
(

p− 1
2 n
)

with multiplicity dim H p(6),

(−1)p+1 1
2 ±

√
µ2+

( 1
2(n− 1)− p

)2
,

(4)

where p is any integer, 0 ≤ p ≤ n, and µ2 runs over the spectrum of the Hodge–de Rham operator on
(6, h) acting on the coexact p-forms.

Indeed, looking at the Gauss–Bonnet operator acting on even forms, they identify even forms on the
cone with the sections (φ0, . . . , φn) of the total bundle 3T ∗(6) by φ0+φ1 ∧ dr +φ2+φ3 ∧ dr + · · · .
These sections can also represent odd forms on the cone by φ0∧dr+φ1+φ2∧dr+φ3+· · · . With these
identifications, they have to study the spectrum of the following operator acting on sections of 3T ∗(6):

S0 =


c0 d∗0 0 · · · 0

d0 c1 d∗0
. . .

...

0 d0
. . .

. . . 0
...
. . .

. . . cn−1 d∗0
0 · · · 0 d0 cn


if cp = (−1)p+1

(
p− 1

2 n
)
. With the same identification, if we introduce the operator S̃0 having the same

formula but on the diagonal the terms c̃p = (−1)p
(

p− 1
2 n
)
=−cp, then the operator A can be written as

A =−(S0⊕ S̃0).

The expression of the spectrum of A is then a direct consequence of the computations of [Brüning and
Seeley 1988].

Closed extensions of D1. Let D1,max be the maximal closed extension of D1, with the domain

Dom(D1,max)= {φ ∈ L2(M1) | D1φ ∈ L2(M1)}.

If Spec(A)∩
(
−

1
2 ,

1
2

)
=∅, then D1,max = D1,min. In particular, D1 is essentially self-adjoint on the space

of smooth forms with compact support away from the conical singularity.
Otherwise, the quotient Dom(D1,max)/Dom(D1,min) is isomorphic to

B :=
⊕
|γ |< 1

2

Ker(A− γ ).

More precisely, by Lemma 3.2 of [Brüning and Seeley 1988], there exists a surjective linear map

L : Dom(D1,max)→ B

with Ker(L)= Dom(D1,min). Furthermore, we have the estimate

‖u(r)− r−AL(φ)‖2L2(6)
≤ C(φ)|r log r |

for φ ∈ Dom(D1,max) and u =U (φ).
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Now, for any subspace W ⊂ B, we can associate the operator D1,W with Dom(D1,W ) :=L−1(W ). As
a result of [Brüning and Seeley 1988], all closed extensions of D1,min are obtained by this way. Note that
each D1,W defines a self-adjoint extension 11,W = (D1,W )

∗
◦ D1,W of the Hodge–de Rham operator, and,

as a result, we have (D1,W )
∗
= D1,I(W⊥), where

I=

(
0 Id
− Id 0

)
, so I

(
β

α

)
=

(
α

−β

)
.

This extension is associated with the quadratic form φ 7→ ‖Dφ‖2L2 on the domain Dom(D1,W ).
Finally, we recall the results of [Lesch 1997]. The operators D1,W , and in particular D1,min and D1,max,

are elliptic and satisfy the singular estimate (SE) — see [Lesch 1997, p. 54] — so by Proposition 1.4.6 of
[Lesch 1997] and the compactness of M1, they satisfy the Rellich property: the inclusion of Dom(D1,W )

into L2(M1) is compact.

2.3. Gauss–Bonnet operator on M2. We know, by the works of Carron [2001a; 2001b], following
Atiyah, Patodi and Singer [Atiyah et al. 1975], that the operator D2 admits a closed extension D2 with
the domain defined by the global boundary condition

5≤1/2 ◦U = 0

if 5I is the spectral projection of A relative to the interval I , and ≤ 1
2 denotes the interval

(
−∞, 1

2

]
.

Moreover, this extension is elliptic in the sense that the H 1-norm of elements of the domain is controlled
by the norm of the graph. Indeed, this boundary condition is related to a problem on a complete unbounded
manifold as follows:

Let M̃2 denote the large manifold obtained from M2 by gluing a conical cylinder C1,∞ = [1,∞)×6
with metric dr2

+r2h and D̃2 its Gauss–Bonnet operator. A differential form on M2 admits an L2-harmonic
extension on M̃2 precisely when the restriction on the boundary satisfies 5≤1/2 ◦U = 0.

Indeed, from the harmonicity, these L2-forms must satisfy (∂r + (1/r)A)σ = 0, or, if we decompose
the form associated with the eigenspaces of A as σ =

∑
γ∈Spec(A) σγ , then the equation imposes that for

all γ ∈ Spec(A) there exists σ 0
γ ∈ Ker(A− γ ) such that σγ = r−γ σ 0

γ . This expression is in L2(C1,∞) if
and only if γ > 1

2 or σ 0
γ = 0.

It will be convenient to introduce the L2-harmonic extension operator

P2 :5>1/2(H 1/2(6))→ L2(3T ∗C1,∞)

σ =
∑

γ∈Spec(A)
γ> 1

2

σγ 7→ P2(σ )=U∗
( ∑
γ∈Spec(A)
γ> 1

2

r−γ σγ

)
.

This limit problem is of the category nonparabolic at infinity in the terminology of Carron — see particu-
larly Theorem 2.2 of [Carron 2001b] and Proposition 5.1 of [Carron 2001a] — then, as a consequence of
Theorem 0.4 of [Carron 2001b], we know that the kernel of D2 is of finite dimension and that the graph
norm of the operator controls the H 1-norm (Theorem 2.1 of [Carron 2001b]).
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Proposition 2. There exists a constant C > 0 such that, for each differential form φ ∈ H 1(3T ∗M2)

satisfying the boundary condition 5≤1/2 ◦U (φ)= 0,

‖φ‖2H1(M2)
≤ C{‖φ‖2L2(M2)

+‖D2φ‖
2
L2(M2)

}.

As a consequence, the kernel of D2, which is isomorphic to Ker(D̃2), is of finite dimension and can be
mapped into the total space

∑
p H p(M2) of the absolute cohomology.

A proof of this proposition can be obtained by the same way as Proposition 5 in [Anné and Takahashi
2012].

Extended solutions. Recall that for this type of operator, behind the L2-solutions of D̃2(φ)= 0 which
correspond to the solutions of the elliptic operator of Proposition 2, Carron defined extended solutions
which are included in the bigger space W, defined as the closure of the space of smooth p-forms with
compact support in M̃2 for the norm

‖φ‖2W := ‖φ‖
2
L2(M2)

+‖D2φ‖
2
L2(M̃2)

.

A Hardy-type inequality describes the growth at infinity of an extended solution:

Lemma 3. For a function v ∈ C∞0 (e,∞) and a real number λ, we have

(
λ+ 1

2

)2
∫
∞

e

v2

r2 dr ≤
∫
∞

e

1
r2λ |∂r (rλv)|2 dr if λ 6= − 1

2 ,

1
4

∫
∞

e

v2

r2|log r |2
dr ≤

∫
∞

e
r |∂r (r−1/2v)|2 dr if λ=− 1

2 .

We remark now that, for a p-form φ with support in the infinite cone Ce,∞, we can write

‖D2φ‖
2
L2(M̃2)

=

∑
λ∈Spec(A)

∫
∞

e

∥∥∥(∂r +
λ

r

)
σλ

∥∥∥2

L2(6)
dr

=

∑
λ∈Spec(A)

∫
∞

e

1
r2λ ‖∂r (rλσλ)‖2L2(6)

dr.

Thus, as an application of Lemma 3, we see that a kernel of D̃2, which must be σλ(r)= r−λσλ(1) on the
infinite cone, satisfies the condition of growth at infinity of Lemma 3. For λ >−1

2 there is no restriction,
since r−2λ−2 is integrable near ∞ as well as for λ = −1

2 : if v = r1/2v0 for large r then the integral∫
v2/|r log r |2 dr is convergent, so, if we require that (1/r)φ is in L2 then, for any λ <− 1

2 ,

σλ(1)= 0.

While the L2-solutions correspond to the condition σλ(1) = 0 for any λ ≤ 1
2 . As a consequence, the

extended solutions which are not in L2 correspond to boundary terms with components in the total
eigenspaces related to the eigenvalues of A in the interval

[
−

1
2 ,

1
2

]
. In the case studied in [Anné and

Takahashi 2012], there do not exist such eigenvalues and we had not to take care of extended solutions.
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More precisely, we must introduce the Dirac–Neumann operator (see [Carron 2001a, paragraphe 2.a])

T : H k+1/2(6)→ H k−1/2(6)

σ 7→U ◦ D2(E(σ ))�6,
(5)

where E(σ ) is the solution of the Poisson problem

(D2)
2(E(σ ))= 0 on M2 and U ◦E(σ )�6= σ on 6.

In the same way, one can define

TC : H k+1/2(6)→ H k−1/2(6)

σ 7→U ◦ D2(Ẽ(σ ))�6,
(6)

where Ẽ(σ ) is the solution of the Poisson problem

(D2)
2(Ẽ(σ ))= 0 on C1,∞ and U ◦ Ẽ(σ )�6= σ on 6.

Then Im(TC) = Im(5>1/2) is a subspace of Ker(TC) = Im(5≥−1/2). Carron [2001a] proved that this
operator is continuous for k≥0. The L2-solutions correspond to the boundary values in Im(T )∩Im(5>1/2),
while extended solutions correspond to the space Ker(T )∩ Im(5≥−1/2). Carron also proved that, in the
compact case, Ker(T )= Im(T ). We can now define the space W that appears in Theorem A:

W =
⊕
|γ |< 1

2

Wγ , where Wγ = {φ ∈ Ker(A− γ ) | ∃η ∈ Im(5>γ ) T (φ+ η)= 0}. (7)

Let us denote by

I1/2 := (Ker(T )∩ Im(5≥1/2))/(Ker(T )∩ Im(5>1/2)) (8)

the space of extended solutions with nontrivial component on Ker
(

A− 1
2

)
.

Proof of Lemma 3. Let v ∈ C∞0 (e,∞); by integration by parts and the Cauchy–Schwarz inequality, we
obtain, for λ 6= − 1

2 ,∫
∞

e

v2

r2 dr =
∫
∞

e

1
r2λ+2 |r

λv|2 dr =
∫
∞

e
∂r

{
−1

(2λ+ 1)r2λ+1

}
|rλv|2 dr

=

∫
∞

e

{
1

(2λ+ 1)r2λ+1

}
2(rλv)∂r (rλv) dr =

∫
∞

e

2
(2λ+ 1)

v

r
· r−λ∂r (rλv) dr

≤
2

|2λ+ 1|

√∫
∞

e

v2

r2 dr ·

√∫
∞

e
|r−λ∂r (rλv)|2 dr ,

which gives directly the first result of Lemma 3.
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The second one is obtained in the same way:∫
∞

e

v2

r2|log r |2
dr =

∫
∞

e

(
v
√

r

)2 1
r |log r |2

dr =
∫
∞

e

(
v
√

r

)2

∂r

(
−1

log r

)
dr

=

∫
∞

e

2v
√

r
∂r

(
v
√

r

)
·

1
log r

dr =
∫
∞

e

2v
r log r

·
√

r∂r

(
v
√

r

)
dr

≤ 2

√∫
∞

e

v2

r2|log r |2
dr ·

√∫
∞

e

∣∣∣∣√r∂r

(
v
√

r

)∣∣∣∣2 dr . �

3. Notations and tools

Let qε be the quadratic form defined on Mε by the formula (2); to write a form φε in Dom(qε), we use,
as in [Anné et al. 2009], the following change of scales:

φ1,ε := φε�M1(ε) and φ2,ε := ε
m/2−pφε�M2 .

We write, on the cone Cε,1,

φ1,ε = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1,ε = (β1,ε, α1,ε)=U (φ1,ε).
On the other part, it is more convenient to define r = 1 − s for s ∈

[
0, 1

2

]
and write φ2,ε =

dr ∧r−(n/2−p+1)β2,ε+r−(n/2−p)α2,ε near the boundary. Then we can define, for r ∈
[1

2 , 1
]

(the boundary
of M2 corresponds to r = 1),

σ2,ε(r)= (β2,ε(r), α2,ε(r))=U (φ2,ε)(r).

The L2-norm, for a p-form on M1 supported in the cone Cε,1, has the expression

‖φε‖
2
L2(Mε)

=

∫
M1(ε)

|σ1,ε|
2 dµg1 +

∫
M2

|φ2,ε|
2 dµg2

and the quadratic form in our study is

qε(φε)=
∫

Mε

|(d + d∗)φε|2gε dµgε =

∫
M1(ε)

|U D1U∗(σ1,ε)|
2 dµg1 +

1
ε2

∫
M2

|D2(φ2,ε)|
2 dµg2 . (9)

The compatibility condition for the quadratic form is ε1/2α1,ε(ε)= α2,ε(1) and ε1/2β1,ε(ε)= β2,ε(1), or

σ2,ε(1)= ε1/2σ1,ε(ε). (10)

The compatibility condition for the Hodge–de Rham operator, of the first order, is obtained by expressing
that Dφε ∼ (U D1U∗σ1,ε, ε

−1U D2U∗σ2,ε) belongs to the domain of D. In terms of σ , it gives

σ ′2,ε(1)= ε
3/2σ ′1,ε(ε). (11)

To understand the limit problem, we proceed to several estimates.
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3.1. Expression of the quadratic form. For any φ such that the component φ1 is supported in the cone
Cε,1, one has, with σ1 =U (φ1) and by the same calculus as in [Anné et al. 2009]:∫

Cε,1

|D1φ|
2 dµgε=

∫ 1

ε

∥∥∥∥(∂r+
1
r

A
)
σ1

∥∥∥∥2

L2(6)

dr=
∫ 1

ε

[
‖σ ′1‖

2
L2(6)
+

2
r
(σ ′1, Aσ1)L2(6)+

1
r2 ‖Aσ1‖

2
L2(6)

]
dr.

3.2. Limit problem. As a Hilbert space, we introduce

H∞ := L2(M1)⊕Ker(D̃2)⊕I1/2 (12)

with the space I1/2 as defined in (8), and the limit operator

11,W ⊕ 0⊕ 0

with W as defined in (7).
Finally, let us define:

• A cut-off function ξ1 on M1 around the conical singularity,

ξ1(r)=
{

1 if 0≤ r ≤ 1
2 ,

0 if 1≤ r.
(13)

• The prolongation operator

Pε : H 1/2(6)→ H 1(Cε,1)

σ =
∑

γ∈Spec(A)

σγ 7→ Pε(σ )=U∗
( ∑
γ∈Spec(A)

εγ−1/2r−γ σγ

)
.

(14)

We remark that, restricted to Im(5>1/2), Pε(σ ) is the transplant on M1(ε) of P2(σ ) (see Section 2.3);
then there exists a constant C > 0 such that, for all σ ∈ Im(5>1/2),

‖P2(σ )‖
2
L2(C1,1/ε)

= ‖Pε(σ )‖2L2(Cε,1)
≤ C

∑
γ> 1

2

‖σγ ‖
2
L2(6)
= C‖σ‖2L2(6)

, (15)

and also that, if ψ2 ∈ Dom(D2), then
(
ξ1 Pε(U (ψ2�6)), ψ2

)
defines an element of H 1(Mε).

4. Proof of the spectral convergence

We denote by λN (ε), N ≥ 1, the spectrum of the total Hodge–de Rham operator of Mε and by λN , N ≥ 1,
the spectrum of the limit operator defined in Section 3.2.

4.1. Upper bound: lim supε→0 λN(ε)≤ λN . With the min–max formula, which says that

λN (ε)= inf
E⊂Dom(Dε)

dim E=N

inf
{

sup
φ∈E
‖φ‖=1

∫
Mε

|Dεφ|
2
gε dµgε

}
,

we have to describe how to transplant eigenforms of the limit problem on Mε.
We describe this transplantation term by term. For the first term, we use the same ideas as in [Anné

et al. 2009].
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For an eigenform φ of 11,W corresponding to the eigenvalue λ, U (φ) can be decomposed on an
orthonormal base {σγ }γ of eigenforms of A and each component can be expressed by the Bessel functions.
For γ ∈

(
−

1
2 ,

1
2

)
, it has the form

{cγ rγ+1 Fγ (λr2)+ dγ r−γGγ (λr2)}σγ ,

where Fγ , Gγ are entire functions satisfying Fγ (0)= Gγ (0)= 1 and cγ , dγ are constants.
We remark that cγ rγ+1 Fγ (λr2)σγ ∈ Dom(D1,min) and dγ r−γ (Gγ (λr2)−Gγ (0))σγ ∈ Dom(D1,min).

So we can write φ = φ0+φ with

φ0 ∈ Dom(D1,min) and U (φ)(r)= ξ1(r)
∑

γ∈Spec(A)
|γ |< 1

2

dγ r−γ σγ .

By the definition of D1,min, φ0 can be approached, with the operator norm, by a sequence of smooth
forms φ0,ε with compact support in M1(ε).

By the definition of W , we know that
∑
|γ |<1/2 dγ σγ ∈ W . So there exists φ2,γ ∈ Ker(D2) such

that U (φ2,γ (1)) − dγ σγ ∈ Im(5>γ ). We remark finally that, by the definition (14), we can write
U (φ)(r)= ξ1(r)

∑
|γ |<1/2 ε

1/2−γ Pε(dγ σγ ).
Let φ2,ε =

∑
|γ |<1/2 ε

1/2−γφ2,γ and

φε =

(
φ0,ε + ξ1 Pε

( ∑
γ∈Spec(A)
|γ |< 1

2

ε1/2−γU (φ2,γ (1))
)
, φ2,ε

)
∈ H 1(Mε).

It is a good transplantation: ‖φ2,ε‖ → 0 as the term added on M1(ε) (indeed, a term of the sum
ξ1ε

1/2−γ Pε(Uφ2,γ (1)− dγ σγ ) corresponds to some γ ′ > γ ; if γ ′ > 1
2 it is O(ε1/2−γ ) by (15), if γ ′ < 1

2
it is O(εγ

′
−γ ), and if γ ′ = 1

2 it is O(ε1/2−γ
√
|log ε|)). Moreover, they are harmonic, up to ξ1.

For the two last ones, we shrink the infinite cone on M1 and cut with the function ξ1, already defined
in (13).

Finally, if Ker
(

A − 1
2

)
6= {0}, then, for each nonzero element [σ 1/2

] ∈ I1/2, there exists ψ2 with
D2(ψ2) = 0 on M2 that has the boundary value σ 1/2 modulo Im(5>1/2). Then, we can construct a
quasimode as follows:

ψε := |log ε|−1/2(ξ1.
{
r−1/2U∗(σ 1/2)+ Pε(U (ψ2)�6 −σ

1/2)
}
, ψ2

)
. (16)

The L2-norm of this element is uniformly bounded from above and below, and

lim
ε→0
‖ψε‖L2(Mε)

= ‖σ 1/2
‖L2(6).

Moreover, it satisfies q(ψε)= O(|log ε|−1), giving then a “small eigenvalue”, as well as the elements of
Ker(D2) and of Ker(11,W ).

Note, as an aside, that it is remarkable that the same construction, for an extended solution with
corresponding boundary value in Ker(A− γ ), γ ∈

(
−

1
2 ,

1
2

)
, does not give a quasimode: indeed, if ψ2 is
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such a solution, the transplanted element will be

ψε =
(
ξ1.
{
r−γU∗(σ γ )+ ε1/2−γ Pε(U (ψ2)�6 −σ

γ )
}
, ε1/2−γψ2

)
,

for which q(ψε) does not converge to 0 as ε→ 0.
To conclude the estimate of the upper bounds, we have only to verify that these transplanted forms

have a Rayleigh–Ritz quotient comparable to the initial one and that the orthogonality is almost conserved
by transplantation.

4.2. Lower bound: lim infε→0 λN(ε)≥ λN . We first proceed for one index. We know, by Section 4.1,
that for each N the family {λN (ε)}ε>0 is bounded; set

λ := lim inf
ε→0

λN (ε).

There exists a sequence {εi }i∈N such that limi→∞ λN (εi )=λ. For each i , let φi be a normalized eigenform
relative to λi = λN (εi ).

4.2.1. On the regular part of M1.

Lemma 4. For our given family φi , the family {(1− ξ1).φ1,i }i∈N is bounded in H 1
0 (M1(0), g1).

Then it remains to study ξ1.φ1,i , which can be expressed with the polar coordinates. We remark that
the quadratic form of these forms is uniformly bounded.

4.2.2. Estimates of the boundary term. The expression above can be decomposed with respect to the
eigenspaces of A; in the following calculus, we suppose that σ1(1)= 0:∫ 1

ε

[
‖σ ′1‖

2
L2(6)
+

2
r
(σ ′1, Aσ1)L2(6)+

1
r2 ‖Aσ1‖

2
L2(6)

]
dr

=

∫ 1

ε

[
‖σ ′1‖

2
L2(6)
+ ∂r

(
1
r
(σ1, Aσ1)L2(6)

)
+

1
r2

{
(σ1, Aσ1)L2(6)+‖Aσ1‖

2
L2(6)

}]
dr

=

∫ 1

ε

[
‖σ ′1‖

2
L2(6)
+

1
r2 (σ1, (A+ A2)σ1)L2(6)

]
dr −

1
ε
(σ1(ε), Aσ1(ε))L2(6).

This shows that the quadratic form controls the boundary term if the operator A is negative but (A+ A2)

is nonnegative. The latter condition is satisfied exactly on the orthogonal complement of the spectral
space corresponding to the interval (−1, 0). By applying ξ1.φ1,i to this fact, we obtain the following
lemma:

Lemma 5. Let 5≤−1 be the spectral projection of the operator A relative to the interval (−∞,−1].
There exists a constant C > 0 such that, for any i ∈ N,

‖5≤−1 ◦U (φ1,i (εi ))‖H1/2(6) ≤ C
√
εi .

In view of Proposition 2, we also want a control of the components of σ1 associated with the eigenvalues
of A in

(
−1, 1

2

]
. The number of these components is finite and we can work term by term. So we write,
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on Cε,1,

σ1(r)=
∑

γ∈Spec(A)

σ1
γ (r) with Aσ1

γ (r)= γ σ1
γ (r)

and we suppose again σ1(1) = 0. From the equation (∂r + A/r)σ γ1 = r−γ ∂r (rγ σ
γ

1 ) and the Cauchy–
Schwarz inequality, it follows that

‖εγ σ
γ

1 (ε)‖
2
L2(6)
=

∥∥∥∥∫ 1

ε

∂r (rγ σ
γ

1 ) dr
∥∥∥∥2

L2(6)

≤

{∫ 1

ε

∥∥∥∥rγ ·
(
∂r +

1
r

A
)
σ
γ

1 (r)
∥∥∥∥

L2(6)

dr
}2

≤

∫ 1

ε

r2γ dr ·
∫ 1

εi

∥∥∥∥∂r (σ
γ

1 )+
γ

r
(σ

γ

1 )

∥∥∥∥2

L2(6)

dr.

Thus, if the quadratic form is bounded, there exists a constant C > 0 such that

‖σ
γ

1 (ε)‖
2
L2(6)
≤

{
Cε−2γ (1− ε2γ+1)/(2γ + 1) if γ 6= − 1

2 ,

Cε|log ε| if γ =− 1
2 .

(17)

This gives:

Lemma 6. Let 5I be the spectral projection of the operator A relative to the interval I . There exist
constants α, C > 0 such that, for any i ∈ N,

‖5(−1,0) ◦U (φ1,i (εi ))‖H1/2(6) ≤ Cεαi .

Here, 0< α < 1
2 satisfies that −α is larger than any negative eigenvalue of A.

With the compatibility condition (10) and the ellipticity of A, the estimate above gives also:

Lemma 7. With the same notation, there exist constants β,C > 0 such that, for any i ∈ N

‖5[0,1/2) ◦U (φ2,i (1))‖H1/2(6) ≤ Cεβi .

Here, 1
2 − β is the largest nonnegative eigenvalue of A strictly smaller than 1

2 (if there is no such
eigenvalue, we put β = 1

2 ).
Finally, we study σ 1/2

1 for our family of forms (the parameter i is omitted in the notation). It satisfies,
for εi < r < 1

2 , the equation (
−∂2

r +
3

4r2

)
σ

1/2
1 = λiσ

1/2
1 .

The solutions of this equation can be expressed in terms of the Bessel and the Neumann functions: there
exist entire functions F , G with F(0)= G(0)= 1 and differential forms ci , di in Ker

(
A− 1

2

)
such that

σ
1/2
1 (r)= cir3/2 F(λir2)+ di

{
r−1/2G(λir2)+

2
π

log(r)r3/2 F(λir2)

}
(18)
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(see [Anné et al. 2009, Lemma 4]). The fact that the L2-norm is bounded gives that ‖ci‖
2
L2+|log εi |‖di‖

2
L2

is bounded. Finally, by substituting this estimate in the expression above, we have

‖σ
1/2
1 (εi )‖

2
L2(6)
= O

(
1

εi |log εi |

)
.

With the compatibility condition (10), we obtain:

Lemma 8. There exists a constant C > 0 such that, for any i ∈ N,

‖5{1/2} ◦U (φ2,i )(1)‖H1/2(6) ≤
C√
|log εi |

.

4.2.3. Convergence of φ2,i . Let us now define, in general, φ̃2,ε as the form obtained by the prolongation
of φ2,ε by

√
εξ1(εr)φ1,ε(εr) on the infinite cone C1,∞. A change of variables gives that

‖φ̃2,ε‖L2(C1,∞) = ‖ξ1φ1,ε‖L2(Cε,1),

while ∫
M̃2

|D̃2(φ̃2,ε)|
2 dµ= ε2

∫
Cε,1

|D1(ξ1φ1,ε)|
2 dµg1 +

∫
M2

|D2(φ2,ε)|
2 dµg2 .

Thus, by the definition of φi , the family {φ̃2,i }i∈N is bounded in W and
∫

C1,∞
|D̃2(φ̃2,i )|

2 dµ = O(ε2
i ).

The work of Carron [2001b] gives us that ‖φ̃2,i (1)‖H1/2(6) is bounded and the following:

Proposition 9. There exists a subfamily of the family {φ̃2,i }i∈N which converges in L2(M2, g2). Its limit φ̃2

defines an extended solution on M̃2, i.e., D̃2(φ̃2)= 0 and φ̃2�6∈ Ker(T )∩ Im(5≥−1/2).

We still denote by φ̃2,i the subfamily obtained.

4.2.4. Convergence near the singularity. Now we use the fact that eigenforms satisfy an equation which
imposes a local form. We concentrate on γ ∈

[
−

1
2 ,

1
2

]
. If we write

φ
[−1/2,1/2]
1,i =

∑
γ∈[−1/2,1/2]

U∗σ γ1 (r),

the terms σ γ1 satisfy the equations (
−∂2

r +
γ (1+ γ )

r2

)
σ
γ

1 = λiσ
γ

1 .

The solutions of this equation can be expressed in term of the Bessel functions: there exist entire functions
F , G with F(0)= G(0)= 1 and differential forms cγ,i , dγ,i in Ker(A− γ ) such that

σ
γ

1 (r)=


cγ,irγ+1 Fγ (λir2)+ dγ,i (r−γGγ (λir2)), |γ |< 1

2 ,

c1/2,ir3/2 F1/2(λir2)+ d1/2,i (r−1/2G1/2(λir2)+
2
π

log(r)r3/2 F1/2(λir2)), γ = 1
2 ,

c−1/2,ir1/2 F−1/2(λir2)+ d−1/2,i (r1/2 log(r)G−1/2(λir2)), γ =− 1
2 .

(19)

The lemmas of the previous subsections give us the result that the families cγ,i and dγ,i are bounded and,
by extraction, we can suppose that they converge. In the case of γ = 1

2 , we have more: ‖d1/2,i‖L2(6) =

O(|log εi |
−1/2).
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But, turning back to the family of the last proposition, we also know that the family
√
εiξ1(εir)φ1,i (εir)

converges to 0 on any sector 1≤ r ≤ R, according to the explicit form of σ γ1 (r). As a consequence, the
form φ̃2 has no component for γ ∈

[
−

1
2 ,

1
2

]
and is indeed an L2-solution. We have proved:

Proposition 10. The form φ̃2 in Proposition 9 has no component for γ ∈
[
−

1
2 ,

1
2

]
. If we set φ2 := φ̃2�M2 ,

there exists a subfamily of {φ2,i }i which converges to φ2 as i→∞, and it satisfies

φ2 ∈ Dom(D2), ‖φ2‖L2(M2,g2) ≤ 1 and D2(φ2)= 0.

Moreover, the harmonic prolongation of
√
εiξ1(εir)φ1,i (εir),

φ2,i = E(
√
εiξ1(εir)φ1,i (εir)),

minimizes the norm of D2(φ2). As a consequence, ‖D2(φ2,i )‖L2(M2) = O(εi ) implies

‖T (
√
εiφ1,i (εi ))‖H−1/2(6) = O(εi )

with the Dirac–Neumann operator T defined in (5).
But, by Lemmas 5 and 6, we know that ‖5<−1/2(φ1,i (ε))‖H1/2(6) = O(

√
ε). The continuity of T

thus gives ‖T ◦5≥−1/2(φ1,i (εi ))‖H−1/2(6) = O(
√
εi ). To obtain consequences of this result for the term

5[−1/2,1/2](φ1,i (εi )), we must make sense of the possibility of working modulo Im(T ). In the following,
for simplicity of notation, we identify the spectral projection 5I of A for the interval I with U∗5I U .

Proposition 11. The space T (Im(5>1/2)∩ H 1/2(6)) is closed in H−1/2(6), as a consequence of the
work of Carron. Let us define B(φ) for φ ∈ Im(5[−1/2,1/2]) as the orthogonal projection of T (φ) onto the
orthogonal complement of this space. Then B is linear and satisfies:

• ‖Bφ‖H−1/2(6) ≤ ‖Tφ‖H−1/2(6).

• If B(φ)= 0, there exists an η ∈ Im(5>1/2) such that T (φ+ η)= 0.

Proof. To prove that T (Im(5>1/2)∩ H 1/2(6)) is closed, we must recall some facts contained in [Carron
2001a]. Let us denote here TC the operator constructed as T , but for the infinite part C1,∞. Then
Im(TC) = Im(5>1/2) is a subspace of Ker(TC) = Im(5≥−1/2). We know that T + TC is an elliptic
operator of order 1 on 6 which is compact. As a consequence, Ker(T + TC) is finite-dimensional,
(T + TC)(H 1/2(6)) is a closed subspace of H−1/2(6) and T + TC admits a continuous parametrix
Q : H−1/2(6)→ H 1/2(6) such that

Q ◦ (T + TC)= Id−5Ker(T+TC),

where 5Ker(T+TC) denotes the orthogonal projection onto Ker(T + TC) for the inner product of H 1/2(6).
We can now prove that T (Im5>1/2 ∩ H 1/2(6)) is closed.

Let {σi }i be a sequence of elements in Im(5>1/2) ∩ H 1/2(6) such that T (σi ) converges, and let
ψ = limi→∞ T (σi ). We can suppose that

σi ∈ (Ker(T )∩ Im(5>1/2)∩ H 1/2(6))⊥.
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We have Im(5>1/2)∩H 1/2(6)⊂Ker(TC). Then (T +TC)σi = T (σi ) converges and τi = Q ◦ (T +TC)σi

converges; let τ = limi→∞ τi . Thus,

σi = τi + ei with τi ∈ Ker(T + TC)
⊥, ei ∈ Ker(T + TC).

The sequence {ei }i must be bounded, unless we can extract a subsequence ‖ei‖→∞, so it is true also
for ‖σi‖ and, by extraction, we can suppose that the bounded sequence ei/‖σi‖ converges, since it lives in
a finite-dimensional space. Let e′ be this limit; then e′ = lim ei/‖σi‖ also and e′ ∈ Im(5>1/2)∩ H 1/2(6).

Finally, e′ satisfies ‖e′‖ = 1, and

e′ ∈ Ker(T + TC) and e′ ∈ Ker(TC),

as well as ei and σi , which implies T (e′)= 0. Thus, e′ = lim σi/‖σi‖ ∈ Im(5>1/2)∩ H 1/2(6)∩Ker(T ).
But, by the assumption on σi , e′ must be orthogonal to this space, which is a contradiction.

So, ei is a bounded sequence in a finite-dimensional space; by extraction, we can suppose that it
converges. Then σi admits a convergent subsequence, and let σ denote its limit; then

σ ∈ Im(5>1/2)∩ H 1/2(6) and ψ = T (σ ). �

As an application of Proposition 11, we have

‖B ◦5[−1/2,1/2](φ1,i (εi ))‖H−1/2(6) = O(
√
εi ).

This is the sum of few terms. We remark that the term with cγ,i is in fact always O(
√
εi ). For the same

reason, we can freeze the function G at 0, where its value is 1. So we can say∥∥∥∥ε1/2
i log(εi )B ◦U∗(d−1/2,i )+

∑
|γ |< 1

2

ε
−γ

i B ◦U∗(dγ,i )+ ε
−1/2
i B ◦U∗(d1/2,i )

∥∥∥∥
H−1/2(6)

= O(
√
εi ), (20)

while all the other terms, which behave like r δ with δ > 1
2 , occur in an expression belonging to

Dom(D1,min).
In fact, we have the following result:

Proposition 12. One can write 5(−1/2,1/2] ◦U (ξ1φ1,i )= σ 1,i +σ0,i with the bounded sequence U∗(σ0,i )

in Dom(D1,min) and σ 1,i = σ
<1/2
1,i + σ

1/2
1,i satisfies that there exists a subfamily of σ<1/2

1,i which converges
to
∑

γ∈(−1/2,1/2) r−γ σγ as i→∞ with
∑

γ∈(−1/2,1/2) σγ ∈W , while

σ
1/2
1,i ∼

1√
|log εi |

r−1/2σ 1/2 for some σ 1/2 ∈ Ker
(

A− 1
2

)
.

Thus, σ 1/2
1,i concentrates on the singularity.

Proof. The term σ 1,i comes from the expression obtained in (20), while σ0,i is the sum of all the other
terms.

We then concentrate on (20). First, we gather the terms concerning the same eigenvalue and still denote
by dγ,i the sum of all the terms with the same eigenvalue. Let − 1

2 ≤ γp < · · ·< γ0 ≤
1
2 be the eigenvalues

of A in
[
−

1
2 ,

1
2

]
.
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We then define the limit dγ as

dγ :=
{

limi→∞ dγ,i , γ 6= 1
2 ,

limi→∞
√
|log εi |d1/2,i , γ = 1

2 ,

and put Eγ = Ker(A− γ ).
Indeed, we can, step by step, decompose dγ,i into a part in Ker(B ◦U∗) and a part which exhibits a

smaller behavior in εi .

• First step: in E1/2. Multiplying (20) by
√
εi , we obtain that ‖B ◦U∗(d1/2,i )‖H−1/2(6) = O(ε1/2−γ1

i ). We
decompose d1/2,i = (1/

√
|log εi | )d

(0)
1/2,i + d⊥1/2,i along Ker(B ◦U∗�E1/2) and its orthogonal complement

in E1/2. Then, ‖B ◦U∗(d1/2,i )‖H−1/2(6) = O(ε1/2−γ1
i ) implies ‖d⊥1/2,i‖H1/2(6) = O(ε1/2−γ1

i ). So,

d1/2 = lim
i→∞

√
|log εi |d1/2,i = lim

i→∞
d(0)1/2,i ∈ Ker(B ◦U∗)

and, if we write d⊥1/2,i = ε
1/2−γ1
i d(1)i and reintroduce this in (20), then it has the new expression∥∥∥∥ε1/2

i log(εi )B ◦U∗(d−1/2,i )+

p∑
j=2

ε
−γ j
i B ◦U∗(dγ j ,i )+ ε

−γ1
i B ◦U∗(d(1)i + dγ1,i )

∥∥∥∥
H−1/2(6)

= O(
√
εi ).

• Second step: in E1/2⊕ Eγ1 . Multiplying by εγ1
i in the above, we obtain that

‖B ◦U∗(d(1)i + dγ1,i )‖H−1/2(6) = O(εγ1−γ2
i ). (21)

We decompose d(1)i + dγ1,i = d(0)γ1,i + d⊥γ1,i along Ker(B ◦U∗�E1/2⊕Eγ1
) and its orthogonal complement in

E1/2⊕ Eγ1 .
Now, (21) says that ‖d⊥γ1,i‖H1/2(6) = O(εγ1−γ2

i ), so dγ1 = limi→∞ dγ1,i = limi→∞5{γ1}(d
(0)
γ1,i ) and, as

d(0)γ1,i ∈ Ker(B ◦U∗�E1/2⊕Eγ1
), extracting from 5{1/2}(d

(0)
γ1,i ) a convergent subsequence, we can say that

there exists an e1/2 ∈ E1/2 such that

dγ1 + e1/2 ∈ Ker(B ◦U∗).

On the other hand, if we can write

d⊥γ1,i = ε
γ1−γ2
i d(2)i ,

then the new expression of (20) is∥∥∥∥ε1/2
i log(εi )B ◦U∗(d−1/2,i )+

p∑
j=3

ε
−γ j
i B ◦U∗(dγ j ,i )+ ε

−γ2
i B ◦U∗(d(2)i + dγ2,i )

∥∥∥∥
H−1/2(6)

= O(
√
εi ).

We can continue in this way until the term concerning γp. It constructs terms

d(0)γk ,i ∈ (E1/2⊕ · · ·⊕ Eγk )∩Ker(B ◦U∗),

d(k+1)
i ∈ E1/2⊕ · · ·⊕ Eγk
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with 0≤ k ≤ p. If we decompose d(0)γk ,i =
∑k

j=0 dγk(0)
γ j ,i and d(k+1)

i =
∑k

j=0 d(k+1)
γ j ,i , then

d1/2,i =
1√
|log εi |

d(0)1/2,i + ε
1/2−γ1
i dγ1(0)

1/2,i + ε
1/2−γ2
i dγ2(0)

1/2,i + · · ·+ εi log(εi )d
(p+1)
1/2,i ,

dγ1,i =5{γ1}(d
(0)
γ1,i )+ ε

γ1−γ2
i dγ2(0)

γ1,i + ε
γ1−γ3
i dγ3(0)

γ1,i + · · · .

Now, because all the families involved here (finite in number) are bounded in a finite-dimensional
space, we can suppose, by successive extractions, that they converge. We have

dγ = lim
εi→0

5{γ }
(
d(0)γ,i

)
.

This means that there exist elements σ γ =dγ ∈Ker(A−γ ), |γ |≤ 1
2 , such that there exists an ηγ ∈ Im(5>γ )

with

(T ◦U∗)(σ γ + ηγ )= 0,

and, if we denote

5(γ,1/2](ηγ )=
∑
µ>γ

ηµγ ,

then we obtain

5(−1/2,1/2]◦U (φ1,i (r))∼
∑

−
1
2≤µ<γ<

1
2

r−γ (σ γ+ε
γ−µ

i ηγµ)+r−1/2
{
|log εi |

−1/2σ 1/2+
∑

−
1
2≤µ<

1
2

ε
1/2−µ
i η1/2

µ

}
.

Here, the term ε
−µ
i has to be replaced by ε1/2

i log εi in the case of µ=− 1
2 . �

4.2.5. Conclusions on the side of M1. We now decompose φ1,i = φ1,εi near the singularity as follows:
Let

ξ1φ1,εi = ξ1
{
φ
≤−1/2
1,i +φ

(−1/2,1/2]
1,i +φ

>1/2
1,i

}
according to the decomposition, on the cone, of σ1 along the eigenvalues of A respectively less than − 1

2 ,
in
(
−

1
2 ,

1
2

]
and greater than 1

2 .
We first remark that the expression and the convergence of φ(−1/2,1/2]

1,i are given by the preceding
Proposition 12.

Now φ>1/2
1,i and ψ̃1,i = ξ1 Pεi

(
5>1/2◦U (φ2,i (1))

)
have the same boundary value. But, by Propositions 9

and 10, we have

lim
i→∞

U (φ2,i (1))=U (φ2(1)) ∈ Im(5>1/2) for the norm of H 1/2(6).

So, ξ1φ
>1/2
1,i − ψ̃1,i can be considered in H 1(M1(0)) by a prolongation by 0 and:

Proposition 13. By uniform continuity of Pεi , and the convergence property just recalled,

lim
i→∞
‖ψ̃1,i − ξ1 Pεi (U (φ2�6))‖L2(M1(εi )) = 0.
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On the other hand, ξ1 Pεi (U (φ2�6)) converges weakly to 0 on the open manifold M1(0); more precisely,
for any fixed η with 0< η < 1,

lim
i→∞
‖ξ1 Pεi (U (φ2�6))‖L2(M1(η)) = 0.

We remark finally that the boundary value of φ≤−1/2
1,i is small. For this term we introduce the cut-off

function taken in [Anné et al. 2009],

ξεi (r)=


1 if 2

√
εi ≤ r,

(1/ log
√
εi ) log(2εi/r) if 2εi ≤ r ≤ 2

√
εi ,

0 if r ≤ 2εi .

Proposition 14. lim
i→∞
‖(1− ξεi )ξ1φ

≤−1/2
1,i ‖L2(M1(εi )) = 0.

This is a consequence of the estimates of Lemmas 5 and 6; we remark that, by the same argument, we
obtain also ‖ξ1φ

≤−1/2
1,i (r)‖L2(6) ≤ C

√
r , so

‖(1− ξεi )ξ1φ
≤−1/2
1,i ‖L2(M1(εi )) = O(ε1/4

i ).

Proposition 15. The forms

ψ1,i = (1− ξ1)φ1,i + (ξ1φ
>1/2
1,i − ψ̃1,i )+ ξεi ξ1φ

≤−1/2
1,i + ξ1U∗(σ 1/2

0,i )

belong to Dom(D1,min) and define a bounded family.

Proof. We will show that each term is bounded. For the last one, it is a consequence of Proposition 12.
For the first one, it is already done in Lemma 4. For the second one, we note that

fi :=

(
∂r +

A
r

)
U (ξ1φ

>1/2
1,i − ψ̃1,i )

= ξ1

(
∂r +

A
r

)
(Uφ>1/2

1,i )+ ∂r (ξ1)U
(
φ
>1/2
1,i − Pεi (5>1/2φ2,i (1))

)
(22)

is uniformly bounded in L2(M1), because of (15). This estimate (15) shows also that the L2-norm of
ξ1φ

>1/2
1,i − ψ̃1,i is bounded.

For the third one, we use the estimate due to the expression of the quadratic form. The estimate that∫
Cr,1
|D1(ξ1φ

≤−1/2)|2 dµ≤3 gives that

‖σ
≤−1/2
1 (r)‖2L2(6)

≤3r |log r | (23)

by the same argument as in Lemmas 5 and 6. Now

‖D1(ξεi ξ1φ
≤−1/2
1,i )‖L2(M1)

≤ ‖ξεi D1(ξ1φ
≤−1/2
1,i )‖L2(M1)

+‖|dξεi | · ξ1φ
≤−1/2
1,i ‖L2(M1)

≤ ‖D1(ξ1φ
≤−1/2
1,i )‖L2(Cεi ,1)

+‖|dξεi | · ξ1φ
≤−1/2
1,i ‖L2(Cεi ,

√
εi )
.
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The first term is bounded and, with |A| ≥ 1
2 for this term, and the estimate (23), we have

‖|dξεi |ξ1φ
≤−1/2
1,i ‖

2
L2(Cεi ,

√
εi )
≤

43
|log εi |

2

∫ √εi

εi

log r
r

dr ≤ 3
23.

This completes the proof. �

In fact, the decomposition used here is almost orthogonal:

Lemma 16. There exists β > 0 such that

(φ
>1/2
1,i − ψ̃1,i , ψ̃1,i )L2(M1(εi )) = O(εβi ).

Proof. If we decompose the terms into the eigenspaces of A, we see that only the eigenvalues in
( 1

2 ,∞
)

are involved. With fi =
∑

γ> 1
2

f γ and U (φ>1/2
1,i − ψ̃1,i ) =

∑
γ> 1

2
φ
γ

0 , equation (22) and the fact that
(φ
>1/2
1,i − ψ̃1,i )(εi )= 0 imply

φ
γ

0 (r)= r−γ
∫ r

εi

ργ f γ (ρ) dρ.

Then, for each eigenvalue γ > 1
2 of A,

(φ
γ

0 , ψ̃
γ

1,i )L2(Cεi ,1)
= ε

γ−1/2
i

∫ 1

εi

r−2γ
∫ r

εi

ργ (σγ , f γ (ρ))L2(6) dρ dr

= ε
γ−1/2
i

∫ 1

εi

r−2γ+1

2γ − 1
· rγ · (σγ , f γ (r))L2(6) dr +

ε
γ−1/2
i

2γ − 1

∫ 1

εi

ργ (σγ , f γ (ρ))L2(6) dρ.

Thus, if γ > 3
2 , we have the upper bound

|(φ
γ

0 , ψ̃
γ

1,i )L2(Cεi ,1)
|

≤ ε
γ−1/2
i

∫ 1

εi

r−γ+1

2γ − 1
|(σγ , f γ (r))L2(6)| dr +

ε
γ−1/2
i

(2γ − 1)
√

2γ + 1
‖σγ ‖L2(6) · ‖ f γ ‖L2(Cεi ,1)

≤ Cε
γ− 1

2
i ‖σγ ‖L2(6)

ε
(−2γ+3)/2
i

(2γ − 1)
√

2γ − 3
‖ f γ ‖L2(Cεi ,1)

+
ε
γ−1/2
i

(2γ − 1)
√

2γ + 1
‖σγ ‖L2(6) · ‖ f γ ‖L2(Cεi ,1)

,

while, for γ = 3
2 , the first term is O(εi

√
|log εi |) and, for 1

2 < γ <
3
2 , it is O(εγ−1/2

i ). In short, we have

|(φ
γ

0 , ψ̃
γ

1,i )L2(Cεi ,1)
| ≤ Cεβi ‖σγ ‖L2(6) · ‖ f γ ‖L2(Cεi ,1)

if β > 0 satisfies γ ≥ β + 1
2 for all eigenvalues γ of A in

(1
2 ,∞

)
. This estimate gives Lemma 16. �

Corollary 17. There exists in {ψ1,i + φ
(−1/2,1/2)
1,i }i a subfamily which converges in L2 to a form φ1 in

Dom(D1,W ) that satisfies on the open manifold M1(0) the equation 1φ1 = λφ1. Moreover,

‖φ1‖
2
L2(M1(0))

+‖φ̃2‖
2
L2(M̃2)

+‖σ 1/2‖
2
L2(6)
= 1, (24)

where φ̃2 is the prolongation of φ2 by P2(φ2�6) on M̃2, and σ 1/2 is given by Proposition 12.
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Proof. Indeed, the family {ψ1,i+φ
(−1/2,1/2)
1,i }i is bounded in Dom(D1,max); one can then extract a subfamily

which converges in L2(M1, ḡ1). But we know that ψ̃1,i converges to 0 in any M1(η); the conclusion
follows. We obtain also, with the help of Lemma 16, that

1−{‖φ1‖
2
L2(M1(0))

+‖φ2‖
2
L2(M2)

} = lim
i→∞

{
‖ψ̃1,i‖

2
L2(M1(εi ))

+

∥∥∥∥ξ1U∗
(

1√
|log εi |

r−1/2σ 1/2

)∥∥∥∥2

L2(M1(εi ))

}
.

We remark that, by Proposition 13, φ2 = 0 implies limi→∞ ‖ψ̃1,i‖L2(M1(εi )) = 0. In fact, one has, by (15),

lim
i→∞
‖ψ̃1,i‖L2(M1(εi )) = ‖P2(Uφ2�6)‖L2(M̃2)

. (25)

Finally, one has

lim
i→∞

∥∥∥∥ξ1U∗
(

1√
|log εi |

r−1/2σ 1/2

)∥∥∥∥
L2(M1(εi ))

= ‖σ 1/2‖L2(6). �

4.3. Lower bound, the end. Now let {φ1(ε), . . . , φN (ε)} be an orthonormal family of eigenforms of
the Hodge–de Rham operator associated with the eigenvalues λ1(ε), . . . , λN (ε). We can use the same
procedure of extraction for all the families. This gives, in the limit domain, a family {(φ j

1 , φ
j
2 , σ

j
1/2)}1≤ j≤N .

We already know, by Corollary 17, that each element has norm 1. If we show that they are orthogonal,
then we are done, by applying the min–max formula to the limit problem (12).

Lemma 18. The limit family is orthonormal in H∞.

Proof. If we follow the procedure for one index, up to terms converging to zero, we have decomposed the
eigenforms φ j (ε) on Mε into three terms:

8 j
ε = ψ1,i +φ

(−1/2,1/2)
1,i , 8̃ j

ε = ψ̃1,i , and 8 j
ε =U∗

(
1√
|log ε|

r−1/2σ
j
1/2

)
. (26)

Let a 6= b be two indices. If we apply Lemma 16 to any linear combination of φa(ε) and φb(ε), we obtain
that

lim
i→∞
{(8a

εi
, 8̃b

εi
)L2(M1(εi ))+ (8

b
εi
, 8̃a

εi
)L2(M1(εi ))} = 0.

If we apply (25), we obtain

lim
i→∞
{(8̃a

εi
, 8̃b

εi
)L2(M1(εi ))+ (φ

a
2,ε, φ

b
2,ε)L2(M2)} = (φ̃

a
2 , φ̃

b
2)L2(M̃2)

.

Then finally, from (φa(ε), φb(ε))L2(Mε)
= 0, we conclude that

(φa
1 , φ

b
1)L2(M1)

+ (φa
2 , φ

b
2)L2(M̃2)

+ (σ a
1/2, σ

b
1/2)L2(6) = 0. �

Proposition 19. The multiplicity of 0 in the limit spectrum is given by the sum

dim Ker(11,W )+ dim Ker(D2)+ i1/2,

where i1/2 denotes the dimension of the vector space I1/2 — see (8) — of extended solutions ω on M̃2

introduced by Carron [2001b], corresponding to a boundary term on restriction to r = 1 with nontrivial
component in Ker

(
A− 1

2

)
.
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If the limit value λ is nonzero, then it belongs to the positive spectrum of the Hodge–de Rham operator
11,W on M1, with the space W as defined in (7).

Proof. The last process, with, in particular, (25) and (16), in fact constructs an element in the limit Hilbert
space

H∞ := L2(M1)⊕Ker(D̃2)⊕I1/2.

This process is clearly isometric in the sense that, if we have an orthonormal family {φ j (εi )} j (1≤ j ≤ N ),
we obtain at the limit an orthonormal family, where H∞ is defined as an orthogonal sum of the Hilbert
spaces. And, if we begin with eigenforms of 1εi , we obtain at the limit eigenforms of 11,W ⊕{0}⊕ {0}.
The last calculus implies that lim infi→∞ λN (εi )≥ λN . �

Remark 20. In order to understand this result, it is important to remember when the eigenvalue 1
2 occurs

in the spectrum of A. By the expression (4), we find that it occurs exactly:

• For n even, if 3
4 is an eigenvalue of the Hodge–de Rham operator 16 acting on coexact forms of

degree 1
2 n or 1

2 n− 1 of the submanifold 6.

• For n odd, if 0 is an eigenvalue of 16 on forms of degree 1
2(n− 1) or 1

2(n+ 1), but also if 1 is an
eigenvalue on coexact forms of degree 1

2(n− 1) on 6.

A dilation of the metric on 6 allows us to avoid positive eigenvalues, but harmonic forms of degree
1
2(n− 1) or 1

2(n+ 1) on 6 can not be avoided.
Moreover, Carron [2001a, Theorem 0.6] has proved that the extended index depends only on geometry

at infinity: these harmonic forms on 6 will indeed create half-bound states, and then small eigenvalues
will always appear.

5. Harmonic forms and small eigenvalues

It would be interesting to know how many small (but nonzero) eigenvalues appear. For this purpose, we
can use the topological meaning of harmonic forms.

5.1. Cohomology groups. The topology of Mε is independent of ε 6= 0 and can be understood by the
Mayer–Vietoris exact sequence:

· · · −→ H p(Mε)
res
−−−→ H p(M1(ε))⊕ H p(M2)

dif
−−−→ H p(6)

ext
−−−→ H p+1(Mε)−→ · · · .

As already mentioned, the space Ker(D2)⊕I1/2 can be mapped into H∗(M2). More precisely, Hausel,
Hunsicker and Mazzeo [Hausel et al. 2004, Theorem 1.A, p. 490] have proved that the space of the
L2-harmonic forms Hk

L2(M̃2) on M̃2 is given by

Hk
L2(M̃2)∼=


H k(M2, 6) if k < 1

2(n+ 1),
Im(H (n+1)/2(M2, 6)→ H (n+1)/2(M2)) if k = 1

2(n+ 1),
H k(M2) if k > 1

2(n+ 1).
(27)

We note that the space of L2-harmonic forms is equal to that of L2-harmonic fields, or the Hodge
cohomology group, since M̃2 is complete.
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For M1, we can use the results of Cheeger [1980; 1983]. Following his work, we know that the
intersection cohomology groups IH∗(M1) of M1 coincide with Ker(D1,max ◦D1,min) if H n/2(6)= 0. We
also know that

IH p(M1)∼=

{
H p(M1(ε)) if p ≤ 1

2 n,
H p

c (M1(ε)) if p ≥ 1
2 n+ 1.

(28)

These results can be used for our study only if D1,max and D1,min coincide. This occurs if and only if A
has no eigenvalues in the interval

(
−

1
2 ,

1
2

)
. As a consequence of the expression of the eigenvalues of A,

recalled in (4), this is the case if and only if:

• for n odd, the operator 16 has no eigenvalues in (0, 1) on coexact forms of degree 1
2(n− 1);

• for n even, the operator 16 has no eigenvalues in
(
0, 3

4

)
on coexact forms of degree 1

2 n or 1
2 n− 1,

and H n/2(6)= 0.

Thus, if D1,max = D1,min, which implies H n/2(6)= 0 in the case where n is even, then the map

H n/2(Mε)
res
−−−→ H n/2(M1(ε))⊕ H n/2(M2)

is surjective, and then any small eigenvalue in this degree must come from an element of Ker(D2)⊕I1/2

sent to 0 in H n/2(M2). In this case also, the map

H n/2+1(Mε)
res
−−−→ H n/2+1(M1(ε))⊕ H n/2+1(M2)

is injective, so there may exist small eigenvalues in this degree.

5.2. Some examples. We exhibit a general procedure to construct new examples as follows: Let Wi ,
i = 1, 2, be two compact Riemannian manifolds with boundary 6i and dimension ni + 1 such that
n1+ n2 = n ≥ 2. We can apply our result to M1 :=W1×62 and M2 :=61×W2. The manifold Mε is
always diffeomorphic to M = M1 ∪M2.

For instance, let v2 be the volume form of (62, h2). It defines a harmonic form on M1, and this form
will appear in the limit spectrum if, transplanted onto M1, it defines an element in the domain of the
operator 11,W .

In the notation introduced in Section 2.2, this element corresponds to β = 0 and α = rn/2−n2v2, and
the expression of A gives that

A(β, α)=
(
n2−

1
2 n
)
(β, α).

If 1
2 n− n2 > 0, then (β, α) is in the domain of D1,max ◦ D1,min, and, if n2 =

1
2 n, it is in the domain of

11,W for the eigenvalue 0 of A.
So, if we know that H n2(M)= 0 or, more generally, dim H n2(M) < dim H n2(62) in the case where

62 is not connected, then this element will create a small eigenvalue on Mε. If Dk denotes the unit ball
in Rk , this is the case for

W1 = Dn1+1 and W2 = Dn2+1 for n2 ≤ n1.

Then, M = Sn1+n2+1 and we obtain:
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Corollary 21. For any degree k and any ε > 0, there exists a metric on Sm such that the Hodge–de Rham
operator acting on k-forms admits an eigenvalue smaller than ε. We can see that, for k < 1

2 m, it is in the
spectrum of coexact forms, and, by duality, for k ≥ 1

2 m it is in the spectrum of exact k-forms.

Indeed, the case k < 1
2 m is a direct application, as explained above. We see that our quasimode is

coclosed. Thus, in the case where m is even, if ω is an eigenform of degree 1
2 m−1 with small eigenvalue,

then dω is a closed eigenform with the same eigenvalue and degree 1
2 m. Finally, the case k > 1

2 m is
obtained by Hodge duality. We remark that in the case k = 0 we recover Cheeger’s dumbbell, and also
that this result has been proved by Guerini [2004] with another deformation, although he did not give the
convergence of the spectrum.

By the surgery of the previous case, we obtain, for

W1 := Sn1 ×[0, 1] and W2 := Dn2+1 for 0≤ n2 < n1 and n = n1+ n2 ≥ 2,

that 61 = Sn1 tSn1 , 62 = Sn2 and M = Sn1 ×Sn2+1. The volume form v2 ∈ H n2(62) again defines a
harmonic form on M1 and, since H n2(Sn1 ×Sn2+1)= 0, if n2 < n1, then v2 defines a small eigenvalue
on n2-forms of Mε.

Thus, by the duality, we obtain:

Corollary 22. For any k, l ≥ 0 with 0≤ k−1< l and any ε > 0, there exists a metric on Sl
×Sk such that

the Hodge–de Rham operator acting on (k−1)-forms and on (l+1)-forms admits an eigenvalue smaller
than ε.

This corollary is also a consequence of the previous one: we know that there exists a metric on Sk whose
Hodge–de Rham operator admits a small eigenvalue on (k−1)-forms, and this property is maintained
on Sl

×Sk+1.
With the same construction, we can exchange the roles of M1 and M2: the two volume forms of

Sn1 tSn1 create one n1-form with small but nonzero eigenvalue on Sn1 ×Sn2+1 if n1 ≤ n2+ 1. By the
duality, we obtain an (n2+1)-form with small eigenvalue. So, with new notations, we have obtained:

Corollary 23. For any k < l with k+ l ≥ 3 and any ε > 0, there exists a metric on Sl
×Sk such that the

Hodge–de Rham operator acting on l-forms and on k-forms admits a positive eigenvalue smaller than ε.

More generally, by repeating the (k−1)-dimensional surgery L times, we obtain the following:

Proposition 24 [Sha and Yang 1991]. The connected sum of L copies of the product spheres, ]L
i=1(S

k
×Sl),

can be decomposed as follows:

L
]

i=1
(Sk
×Sl)∼=

(
Sk−1

×

(
Sl+1
\

L∐
i=0

Dl+1
i

))
∪∂

(
Dk
×

L∐
i=0

Sl
i

)
.

Remark 25. J.-P. Sha and D. Yang [1991] constructed a Riemannian metric of positive Ricci curvature
on this manifold. More generally, see also [Wraith 2007].

In a similar way, using Proposition 24, we can obtain the small positive eigenvalues on the connected
sum of L copies of the product spheres ]L

i=1(S
k
×Sl).
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All these examples use the spectrum of M1. We can obtain also examples using the reduced L2-
cohomology group of M̃2, which is given by (27) [Hausel et al. 2004].

Suppose now that n = dim6 is odd. Then, we have the long exact sequence

· · · → H k(M2, 6)→ H k(M2)→ H k(6)→ H k+1(M2, 6)→ · · · .

For k = 1
2(n− 1), the space H k(M2, 6) is isomorphic to the reduced L2-cohomology group of M̃2. If

H (n−1)/2(6) is nontrivial, then any nontrivial harmonic k-form on 6 will create an extended solution,
corresponding to an eigenvector of A with eigenvalue 1

2 .
For example, take 6 = Sk

×Sk+1 for k = 1
2(n− 1); then H k(6) is nontrivial. Any nontrivial form

ω ∈ H k(6) sent to 0 ∈ H k+1(M2, 6) comes from an element ω̃ ∈ H k(M2) which is not in the reduced
L2-cohomology group of M̃2, by (27).
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