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YIFEI WU

As a continuation of our previous work, we consider the global well-posedness for the derivative nonlinear
Schrödinger equation. We prove that it is globally well posed in the energy space, provided that the initial
data u0 ∈ H 1(R) with ‖u0‖L2 < 2

√
π .

1. Introduction

We study the following Cauchy problem of the nonlinear Schrödinger equation with derivative (DNLS):{
i∂t u+ ∂2

x u = i∂x(|u|2u), t ∈ R, x ∈ R,

u(0, x)= u0(x) ∈ H 1(R).
(1-1)

It arises from studying the propagation of circularly polarized Alfvén waves in magnetized plasma with a
constant magnetic field; see [Mio et al. 1976; Mjolhus 1976; Sulem and Sulem 1999] and the references
therein. The equation in (1-1) is L2-critical and completely integrable. The H 1-solution of (1-1) obeys
the following mass, energy, and momentum conservation laws:

M(u(t)) :=
∫

R

|u(t, x)|2 dx = M(u0), (1-2)

ED(u(t)) :=
∫

R

(
|ux(t, x)|2+ 3

2 Im |u(t, x)|2u(t, x)ux(t, x)+ 1
2 |u(t, x)|6

)
dx = ED(u0), (1-3)

PD(u(t)) := Im
∫

R

u(t, x)ux(t, x) dx − 1
2

∫
R

|u(t, x)|4 dx = PD(u0). (1-4)

Local well-posedness for the Cauchy problem (1-1) is well understood. It was proved in the energy
space H 1(R) in [Hayashi 1993; Hayashi and Ozawa 1992; 1994], and earlier by Guo and Tan [1991] and
Tsutsumi and Fukuda [1980; 1981] in smooth spaces. See [Biagioni and Linares 2001; Takaoka 1999;
2001] for local well-posedness and ill-posedness results for rough data below the energy space.

The global well-posedness for (1-1) has also been widely studied. By using mass and energy conserva-
tion laws, and the gauge transformations, Hayashi and Ozawa [1994; Ozawa 1996] proved that (1-1) is
globally well-posed in the energy space H 1(R) under the condition

‖u0‖L2 <
√

2π. (1-5)
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Here 2π is the mass of the ground state Q, which is the unique (up to some symmetries) positive solution
of the elliptic equation

−Qxx + Q− 3
16 Q5

= 0. (1-6)

As shown in [Weinstein 1983], Q=2[cosh(2x)]−1/2. Since Q is an optimizer for the Gagliardo–Nirenberg
inequality (1-12), any function with mass strictly less than the mass of Q has positive energy.

Condition (1-5) was improved recently in [Wu 2013]. We proved that there exists a small constant
ε∗ > 0 such that (1-1) is still globally well-posed in the energy space when the initial data satisfies
‖u0‖L2 <

√
2π+ε∗. The result implies that, for (1-1), the ground state mass 2π is not the threshold of the

global well-posedness and blow-up. This is different from the L2-critical power-type Schrödinger equation
(the nonlinearity i∂x(|u|2u) in (1-1) is replaced by − 3

16 |u|
4u); see [Wu 2013] for further discussion.

For related results on the well-posedness and stability theory for the derivative nonlinear Schrödinger
equation (1-1), see [Colin and Ohta 2006; Colliander et al. 2001; 2002; Grünrock and Herr 2008; Guo
and Wu 1995; Herr 2006; Miao et al. 2011; Nahmod et al. 2012; Takaoka 2001; Thomann and Tzvetkov
2010; Win 2010].

In this paper, we continue to consider the L2-assumption on initial data and obtain the global well-
posedness as follows:

Theorem 1.1. For any u0 ∈ H 1(R) with ∫
R

|u0(x)|2 dx < 4π, (1-7)

the Cauchy problem (1-1) is globally well-posed in H 1(R) and the solution u satisfies

‖u‖L∞t H1
x
≤ C(‖u0‖H1).

As 2π = ‖Q‖2L2 , we notice that there is also a solitary wave solution whose mass is 4π , given by

u(t, x)= e3i/4
∫ x+t
−∞
|W (y)|2 dye−i t/4−i x/2W (x + t), (1-8)

where W is the ground state of the elliptic equation

−Wxx +
1
2 W 3
−

3
16 W 5

= 0. (1-9)

Up to some symmetries,

W (x)= 2(x2
+ 1)−1/2. (1-10)

Therefore, Theorem 1.1 indicates that the Cauchy problem (1-1) is globally well-posed in H 1(R) when
‖u0‖L2 < ‖W‖L2 .

Compared to Q, W is polynomial decaying at infinity. Furthermore, W is an optimal function of the
sharp Gagliardo–Nirenberg inequality (see [Agueh 2006])

‖ f ‖L6 ≤ CGN‖ f ‖8/9L4 ‖ fx‖
1/9
L2 , (1-11)
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where we wrote CGN for the sharp constant CGN = 31/6(2π)−1/9. This inequality plays an important role
in the proof of our main theorem. There is also a comparison with another sharp Gagliardo–Nirenberg
inequality (see [Weinstein 1983]),

‖ f ‖6L6 ≤
4
π2 ‖ f ‖4L2‖ fx‖

2
L2, (1-12)

in which the equality is attained by Q, which was applied previously to prove the global well-posedness
when ‖u0‖L2 <

√
2π .

So there is an interesting problem of whether ‖W‖2L2 = 4π is the mass threshold of the global
well-posedness and blowup for (1-1). See Section 3 below for further discussion.

Now let us have a look at the strategy of the proof of Theorem 1.1. Developed by Hayashi and Ozawa,
the gauge transformation is an important tool to study the derivative nonlinear Schrödinger equation. Let

v(t, x) := e−3i/4
∫ x
−∞
|u(t,y)|2 dyu(t, x); (1-13)

then, from (1-1), v is the solution of

i∂tv+ ∂
2
x v =

1
2 i |v|2vx −

1
2 iv2v̄x −

3
16 |v|

4v (1-14)

with the initial data v0 = exp
(
−

3
4 i
∫ x
−∞
|u0(y)|2 dy

)
u0. Moreover, v obeys the same mass conservation

law as (1-2), the energy conservation law (1-3) becomes

E(v(t)) := ‖vx(t)‖2L2
x
−

1
16‖v(t)‖

6
L6

x
= E(v0), (1-15)

and the momentum conservation law (1-4) becomes

P(v(t)) := Im
∫

R

v(t, x)vx(t, x) dx + 1
4

∫
R

|v(t, x)|4 dx = P(v0). (1-16)

From the argument used in [Wu 2013] to prove the global well-posedness for the DNLS, an important
consideration is the usage of the momentum conservation law. We observe that the key point is to give a
small control of the following term from (1-16):

Im
∫

R

v(t, x)vx(t, x) dx . (1-17)

To be more precise, one may prove that

− Im
∫

R

v(t, x)vx(t, x) dx ≤ c‖vx(t)‖L2‖v(t)‖L2, (1-18)

where c is a positive constant. This is trivial for c = 1 by Hölder’s inequality. Suppose that one can
obtain the inequality with a suitable small constant c. Then the global well-posedness will follow. In [Wu
2013], by using the rigidity of the ground state Q, we proved that, if the mass is larger but close to 2π
and there is a time sequence {tn} such that ‖v(tn)‖H1 tends to infinity, then v(tn) is close to Q up to some
symmetries. Since Q is real-valued, (1-18) can be given for small c > 0.

In this paper, we present a different argument to prove the bound (1-18) under the suitable but explicit
assumption of L2-norm of the initial data. Our method here does not need to use the property of the ground
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state Q of (1-6). As was previously mentioned, it depends heavily on the sharp Gagliardo–Nirenberg
inequality (1-11). This is to be expected, since the norms involved in the inequality (1-11) are strongly
related to the energy and momentum conservation laws.

Let us expand our argument. If ‖v(t)‖H1 tends to infinity, then, by the momentum and energy
conservation laws, (1-18) is approximately

1
4‖v(t)‖

4
L4 ≈− Im

∫
R

v(t, x)vx(t, x) dx ≤ c‖vx(t)‖L2‖v(t)‖L2 ≈ c‖v0‖L2‖v(t)‖3L6 .

So, to obtain the small bound c, we turn to consider the quantity

f (t) :=
‖v(t)‖4L4

‖v(t)‖3L6

.

Indeed, we shall prove that f 2 obeys some cubic inequality. Thus, the condition for global well-posedness
is transformed to finding the solution to an elementary cubic equation.

This paper is organized as follows. In Section 2, we present the proof of Theorem 1.1. In Section 3,
we discuss some related problems.

2. The proof of Theorem 1.1

Let v be the function in (1-13), which is the solution of the equation (1-14). Note that

ux = e3i/4
∫ x
−∞
|v(t,y)|2 dy(3

4 i |v|2v+ vx
)
.

Therefore, by the sharp Gagliardo–Nirenberg inequality (1-12) and mass conservation law, for any t ∈ R,

‖ux(t)‖L2 ≤ ‖vx(t)‖L2 +
3
4
‖v(t)‖3L6 ≤ ‖vx(t)‖L2 +

3
2π
‖v(t)‖2L2‖vx(t)‖L2

≤

(
1+ 3

2π
‖u0‖

2
L2

)
‖vx(t)‖L2 .

That is, the boundedness of v in H 1-norm implies the boundedness of u in H 1-norm. Therefore, to prove
the theorem, we may consider the function v in (1-13) instead. To simplify the notations, we set

E0 = E(v0), P0 = P(v0), m0 = M(v0).

Furthermore, we assume m0 > 2π . Otherwise, the global well-posedness has been proved in [Hayashi
and Ozawa 1994; Wu 2013].

Let (−T−(v0), T+(v0)) be the maximal lifespan of the solution v of (1-14). To prove Theorem 1.1, it
is sufficient to obtain the (indeed uniformly) a priori estimate of the solutions in H 1-norm. That is,

sup
t∈(−T−(v0),T+(v0))

‖vx(t)‖L2 <+∞.

As in [Wu 2013], we argue by contradiction. Suppose that there exists a sequence {tn}∞n=1 with limit
−T−(v0) or T+(v0) such that

‖vx(tn)‖L2 →+∞ as n→∞. (2-1)
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Then, from the energy conservation law, we also have

‖v(tn)‖L6 →+∞ as n→∞.

Let us define the sequence { fn}
∞

n=1 by

fn =
‖v(tn)‖4L4

‖v(tn)‖3L6

;

then we have both the lower and upper bounds of fn as follows:

Lemma 2.1. There exists a sequence εn , with εn→ 0 as n→∞, such that

2C−9/2
GN + εn ≤ fn ≤

√
m0. (2-2)

Proof of Lemma 2.1. From Hölder’s inequality, we have

‖v(tn)‖4L4 ≤ ‖v(tn)‖L2‖v(tn)‖3L6 =
√

m0‖v(tn)‖3L6,

and thus
fn ≤
√

m0.

On the other hand, from the sharp Gagliardo–Nirenberg inequality (1-11) and the energy conservation
law (1-15), we have

fn ≥

(
C−6

GN‖v(tn)‖
6
L6‖vx(tn)‖

−2/3
L2

)3/4

‖v(tn)‖3L6

= C−9/2
GN

‖v(tn)‖
3/2
L6

‖vx(tn)‖
1/2
L2

= 2C−9/2
GN

‖v(tn)‖
3/2
L6(

‖v(tn)‖6L6 + 16E0
)1/4

= 2C−9/2
GN + εn,

where

εn := 2C−9/2
GN

‖v(tn)‖
3/2
L6 −

(
‖v(tn)‖6L6 + 16E0

)1/4(
‖v(tn)‖6L6 + 16E0

)1/4 .

By the mean value theorem, we have

εn = O
(
‖v(tn)‖−6

L6

)
→ 0.

This proves the lemma. �

By Lemma 2.1, and ‖v(tn)‖4L4 = fn‖v(tn)‖3L6 , we have

‖v(tn)‖L4 →+∞ as n→∞.

In the spirit of [Banica 2004], we define

φ(t, x)= eiαxv(t, x),
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where the parameter α depends on t and is given below. Then φx(t, x)= eiαx(iαv(t, x)+ vx(t, x)), and
thus

‖φx‖
2
L2 = ‖vx‖

2
L2 + 2α Im

∫
v̄vx dx +α2

‖v‖2L2 .

Subtracting 1
16‖φ‖

6
L6 =

1
16‖v‖

6
L6 from both sides yields

E(φ)= E(v)+ 2α Im
∫
v̄vx dx +α2

‖v‖2L2 .

By the mass and energy conservation laws (1-2) and (1-15), this gives

−2α Im
∫
v(t, x)vx(t, x) dx =−E(φ(t))+α2m0+ E0. (2-3)

On the other hand, using (1-11), we have

E(φ(tn))= ‖φx(tn)‖2L2 −
1

16‖φ(tn)‖
6
L6

≥ C−18
GN ‖φ(tn)‖

18
L6‖φ(tn)‖−16

L4 −
1

16‖φ(tn)‖
6
L6

=
(
C−18

GN ‖v(tn)‖
12
L6‖v(tn)‖−16

L4 −
1
16

)
‖φ(tn)‖6L6

=
(
C−18

GN f −4
n −

1
16

)
‖v(tn)‖6L6 .

Combining this with (2-3) gives

−2α Im
∫
v(tn, x)vx(tn, x) dx ≤

( 1
16 −C−18

GN f −4
n
)
‖v(tn)‖6L6 +α

2m0+ E0,

which implies, for α > 0,

− Im
∫
v(tn, x)vx(tn, x) dx ≤ 1

2α
( 1

16 −C−18
GN f −4

n
)
‖v(tn)‖6L6 +

1
2
αm0+

1
2α

E0. (2-4)

For convenience, we define βn as

βn := m−1
0

( 1
16 −C−18

GN f −4
n
)
‖v(tn)‖6L6 .

We split this into two cases:

Case 1: βn < 1 for infinitely many n. This implies that, for such n,( 1
16 −C−18

GN f −4
n
)
‖v(tn)‖6L6 < m0.

Therefore, from (2-4), we have

− Im
∫
v(tn, x)vx(tn, x) dx ≤ 1

2α
m0+

1
2
αm0+

1
2α

E0. (2-5)

In particular, choosing α = 1, we obtain

− Im
∫
v(tn, x)vx(tn, x) dx ≤ m0+

1
2 E0. (2-6)
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By the momentum conservation law (1-16), we have

1
4‖v(tn)‖

4
L4 =− Im

∫
v(tn, x)vx(tn, x) dx + P0. (2-7)

Hence, combining this with (2-6) and (2-7), we obtain

‖v(tn)‖4L4 ≤ 2(2m0+ E0+ 2P0).

This contradicts ‖v(tn)‖L4 →+∞, and thus we can rule out this case.

Case 2: βn ≥ 1 for all sufficiently large n. In this case, we set α = α(tn)=
√
βn . Then (2-4) becomes

− Im
∫
v(tn, x)vx(tn, x) dx ≤ 1

4

√
m0(1− 16C−18

GN f −4
n )‖v(tn)‖3L6 +

1
2β
−1/2
n E0. (2-8)

By (2-7) and (2-8),

‖v(tn)‖4L4 ≤

√
m0(1− 16C−18

GN f −4
n )‖v(tn)‖3L6 + 2β−1/2

n E0+ 4P0,

which implies that

fn ≤

√
m0(1− 16C−18

GN f −4
n )+ (2β−1/2

n E0+ 4P0)‖v(tn)‖−3
L6 .

This provides the inequality

f 6
n ≤ m0 f 4

n − 16m0C−18
GN + f 4

n Rn, (2-9)

where

Rn = 2
√

m0(1− 16C−18
GN f −4

n )(2β−1/2
n E0+ 4P0)‖v(tn)‖−3

L6 + (2β
−1/2
n E0+ 4P0)

2
‖v(tn)‖−6

L6 .

Since βn ≥ 1 and 0≤ 1− 16C−18
GN f −4

n ≤ 1, we have

Rn ≤ 2
√

m0(2E0+ 4P0)‖v(tn)‖−3
L6 + (2E0+ 4P0)

2
‖v(tn)‖−6

L6 = O
(
‖v(tn)‖−3

L6

)
.

From Lemma 2.1, we have

f 4
n Rn = O

(
‖v(tn)‖−3

L6

)
→ 0 as n→∞.

Thus, for any small fixed ε > 0, by choosing n large enough we have f 4
n Rn ≤ ε. Hence (2-9) becomes

f 6
n ≤ m0 f 4

n − 16m0C−18
GN + ε. (2-10)

Let X = f 2
n ; then (2-10) becomes the inequality

X3
−m0 X2

+ b ≤ 0, (2-11)

where b = 16m0C−18
GN − ε > 0. Let

F(X)= X3
−m0 X2

+ b;
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then F(X) attains its minimum value at 2
3 m0 in the region [0,∞). Therefore, there are two positive

solutions X1 and X2 of the equation

X3
−m0 X2

+ b = 0 (2-12)

if and only if F
( 2

3 m0
)
< 0. In other words, the inequality (2-11) has no solution in the region [0,+∞) if

and only if

F
( 2

3 m0
)
> 0. (2-13)

Hence, this leads to a contradiction under the condition (2-13).
Condition (2-13) is equivalent to

8
27 m3

0−
4
9 m3

0+ b > 0.

Since ε is arbitrarily small, this reduces to

8
27 m3

0−
4
9 m3

0+ 16m0C−18
GN > 0,

which yields

m0 < 6
√

3C−9
GN = 6

√
3

1
33/2(2π)−1 = 4π.

Therefore, (1-14) is globally well-posed when m0 < 4π . This proves the theorem.
One may expect to get some profit from the restriction X ∈ (4C−9

GN,m0) (rather than [0,+∞)) given
by Lemma 2.1. However, we cannot get any more from it. To see this, we note that, in the case m0 ≥ 4π ,
(2-11) is solved in the region [0,+∞) by

X1 < X < X2,

and we claim that

4C−9
GN < X1 < X2 < m0. (2-14)

Indeed, when m0 ≥ 4π ,
2
3 m0 ≥

8
3π > 4C−9

GN =
8

3
√

3
π,

and, for small ε, we have

F(4C−9
GN)= 64C−27

GN − ε > 0,

which together imply that 4C−9
GN < X1. Similarly, since

2
3 m0 < m0 and F(m0)= b > 0,

we have X2 < m0. In conclusion, we have (2-14). Therefore, the inequality (2-11) is always solvable in
the region of (4C−9

GN,m0) when m0 ≥ 4π , and so we can not obtain the contradiction from the restriction
of (4C−9

GN,m0). We show this case graphically in Figure 1.
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F(X)= X3
−m0 X2

+ b

b

|| | ||

2
3 m0

m0

X1 X2

4C−9
GN

X

Figure 1. Graph of F(X).

3. Further discussion

In this section, we would like to make a few remarks and indicate some related problems which remain
open.1

First of all, whether or not the mass M(W ) = 4π is the mass threshold for global well-posedness
of (1-1) is not resolved in this paper. To understand the problem, we make some remarks on W and the
equation (1-9) in the following.

As shown in [Colin and Ohta 2006; Guo and Wu 1995], (1-14) has a two-parameter family of solitary
wave solutions,

vω,c = φω,c(x + ct)eiωt−(ic/2)(x+ct), (3-1)

where (ω, c) ∈ R2 and φω,c is a positive solution of the elliptic equation

−∂xxφ+
(
ω− 1

4 c2)φ+ 1
2 cφ3
−

3
16φ

5
= 0. (3-2)

When c2 < 4ω, φω,c can be written as

φω,c(x)=
{ √

ω

4ω− c2

[
cosh(

√
4ω− c2x)−

c
2
√
ω

]}− 1
2

.

Guo and Wu [1995] proved that the solitary wave solutions (3-1) are orbitally stable when c<0 and c2<4ω.
This was extended by Colin and Ohta [2006], who proved the orbital stability for any c2 < 4ω.

Now we consider the other cases. From Pohožaev’s identity, there is no solution for (3-2) when 4ω≤ c2

and c ≤ 0, and, from [Berestycki and Lions 1983] (see Section 6, Theorem 5), when c2 > 4ω (3-2) has
no positive solution which vanishes at infinity. Hence, the only remaining case is the “zero mass” case,

1Part of the contents in this section are from discussions with Soonsik Kwon.
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c2
= 4ω and c > 0. Thus, the “zero mass” case can be regarded as the endpoint case in the family of the

solitary wave solutions (3-1).
For the endpoint case c2

= 4ω and c > 0,

−∂xxφ+
1
2 cφ3
−

3
16φ

5
= 0

is exactly solved by
Wc(x)= c1/2W (cx),

where W is as defined in (1-10). Moreover,

‖Wc‖
2
L2 = ‖W‖2L2 = 4π.

So it is an interesting problem whether the solitary wave solution (1-8) is orbitally stable or unstable,
which is not covered in [Colin and Ohta 2006; Guo and Wu 1995]. See [Ohta 2014] for related studies.

The existence of the finite-time blow-up solution is also an open problem for (1-1). There are some
related results on the generalized derivative nonlinear Schrödinger equation,

i∂t u+ ∂2
x u = i |u|2σ ∂x u, σ > 1. (3-3)

This is a mass supercritical equation. See [Ambrose and Simpson 2014; Hao 2007; Liu et al. 2013b] for
local and stability theories. Numerical simulations by Liu, Simpson and Sulem [Liu et al. 2013a] suggest
the existence of finite-time blow-up solutions for (3-3). However, a rigorous proof remains to be found.
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