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ON THE BOUNDARY VALUE PROBLEM FOR THE SCHRÖDINGER EQUATION
COMPATIBILITY CONDITIONS AND GLOBAL EXISTENCE

CORENTIN AUDIARD

We consider linear and nonlinear Schrödinger equations on a domain � with nonzero Dirichlet boundary
conditions and initial data. We first study the linear boundary value problem with boundary data of optimal
regularity (in anisotropic Sobolev spaces) with respect to the initial data. We prove well-posedness under
natural compatibility conditions. This is essential for the second part, where we prove the existence and
uniqueness of maximal solutions for nonlinear Schrödinger equations. Despite the nonconservation of
energy, we also obtain global existence in several (defocusing) cases.

On étudie des équations de Schrödinger linéaires et non linéaires sur un domaine� avec donnée initiale et
condition au bord de Dirichlet non nulles. Dans une première partie on étudie le problème linéaire pour des
données au bord dans des espaces de Sobolev anisotropes de régularité optimale par rapport aux données
de Cauchy. On démontre la nature bien posée du problème avec les conditions de compatibilité naturelles
à tout ordre de régularité. Ces résultats sont essentiels pour établir des résultats de type Cauchy–Lipschitz
pour le problème non linéaire, ceux ci font l’objet de la deuxième partie. Malgré la non conservation de
l’énergie, on obtient des solutions globales en dimension 2.

Introduction

This article is a continuation of [Audiard 2013] on the initial boundary value problem for the (linear and
nonlinear) Schrödinger equation8<:

i@tuC�uD f; .x; t/ 2�� Œ0;T Œ;

ujtD0 D u0; x 2�;

uj@��Œ0;T � D g; .x; t/ 2 @�� Œ0;T Œ;

(IBVP)

where �� Rd , d � 2, is a smooth open set. Our main purpose is to deal with boundary data of arguably
optimal regularity, and in particular too rough to be dealt with by lifting arguments. When f depends
on u we generically refer to the nonlinear Schrödinger equation as NLS. We will study nonlinearities that
are essentially similar to �juj˛u.

A classical tool to deal with the well-posedness of NLS is Strichartz estimates. It is well known that
if �D Rd , the semigroup eit� satisfies

keit�u0kLp.R;Lq.Rd // . ku0kL2 when 2

p
C

d

q
D

d

2
;
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for p, q � 2, q <1 for d D 2 (see [Cazenave 2003] and [Keel and Tao 1998] for the endpoint), and
more generally the scale-invariant estimates

keit�u0kLp.R;Lq.Rd // . ku0kH s when 2

p
C

d

q
D

d

2
� s:

Similar estimates with 2
p
C

d
q
�

d
2
�s are true on bounded time intervals and simple scaling considerations

show that the condition 2
p
C

d
q
�

d
2
� s is necessary. When 2

p
C

d
q
�

d
2
C s D r > 0, they are often called

Strichartz estimates with loss of r derivatives. The derivation of such estimates (and the associated well-
posedness results) for NLS on a domain with the Dirichlet (or Neumann) laplacian has been intensively
studied over the last decade in various geometric settings. We will only cite results in the case where � is
the exterior of a nontrapping obstacle, since it is the one studied here. Roughly speaking, a nontrapping
obstacle is an obstacle such that any ray propagating according to the laws of geometric optic leaves
any compact set in finite time (for a mathematical definition of the rays, see [Melrose and Sjöstrand
1978]). In seminal work, Burq, Gérard and Tzvetkov [Burq et al. 2004] proved a local smoothing property
similar to the one on Rd (see [Constantin and Saut 1988]) and deduced Strichartz estimates with loss
of 1

p
derivative. Since then numerous improvements were obtained [Anton 2008a; 2008b; Blair et al.

2008] and eventually led to scale-invariant Strichartz estimates: see Blair, Smith and Sogge [Blair et al.
2012] in the general nontrapping case (s > 0 and limited range of exponents), [Ivanovici 2010] for the
exterior of a convex obstacle (s D 0, all exponents except endpoints). The methods used relied heavily on
spectral localization and construction of parametrices. As such they are not very convenient for the study
of nonhomogeneous boundary value problems when the boundary data are not smooth enough to reduce
the problem to a homogeneous one.

On the other hand, Morawetz and virial identities have proved to be very robust tools to study linear
and nonlinear Schrödinger equations. One of their first applications goes back to [Glassey 1977], and
it has since been massively refined (as a tool of a much larger machinery) to the point where exhaustive
attribution is now impossible (we may cite, at least, [Kenig and Merle 2006; Planchon and Vega 2009;
Colliander et al. 2008]). Such tools only rely on differentiation and integration by parts; this makes
them flexible enough to be used even with nonzero boundary data and part of our results rely on this
approach.

As already mentioned, our aim is to treat Schrödinger equations on a domain with nonzero Dirichlet
conditions. The case of dimension one is by now relatively well understood: the local Cauchy theory
on intervals is essentially on par with the theory on R (see [Holmer 2005] for local existence in H s ,
0 � s � 1, subcritical and critical nonlinearities). For d � 2, there are many fewer results. We might
mention the classical linear results of [Lions and Magenes 1968b], which were based on lifting arguments
and thus prevented boundary data of very low regularity. Indeed, if one takes a lifting Lg of the boundary
data, then u�Lg satisfies8<:

i@t .u�Lg/C�.u�Lg/D f � .i@t C�/Lg;

.u�Lg/j@� D 0;

.u�Lg/jtD0 D u0�LgjtD0;
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so that u 2CT L2 would require .i@tC�/Lg 2L1
T

L2. For a general L this would require g 2L1H 3=2,
which is a loss of one derivative in space compared to our result (see below).

Bu and Strauss [2001] obtained the existence of global weak H 1 solutions for defocusing nonlinear
Schrödinger equations with smooth (C 3) boundary data. In the important field of control theory, linear
well-posedness and controllability in H�1 was obtained for Dirichlet data in L2 when � is a smooth
bounded domain. While optimal on bounded domains, this “loss” of one derivative on the boundary data
is not natural in general. On the half line, it is generally believed that, for initial data u0 2 H s.RC/,
optimally g 2 H s=2C1=4.RC/ (see [Holmer 2005] for a discussion on this). This pair of spaces is
considered to be optimal for at least two reasons: if one rescales solutions as u.�x; �2t/ both spaces scale
as �s�1=2, and the space also appears in the famous Kato smoothing property for the Cauchy problem,
keit@2

x u0kL1x H
s=2C1=4
t

. ku0kH s (see [Kenig et al. 1991]), which can be read as a trace estimate.
The natural generalization of H s=2C1=4.RC/ in larger dimension is the anisotropic Sobolev space

H sC1=2;2.@�� Œ0;T �/ D L2
T

H sC1=2 \H
s=2C1=4
T

L2 of functions that, roughly speaking, have twice
more regularity in space than in time. We obtained in [Audiard 2012] well-posedness for the linear
Schrödinger equation on the half space with boundary conditions having this regularity (and satisfying
some Kreiss–Lopatinskii condition). However, the method relied quite heavily on the simple geometry
of �. When � is the exterior of a nontrapping obstacle, a simple duality argument was used to obtain the
following linear result:

Theorem 0.1 [Audiard 2013]. For f 2 L2
T

H s�1=2 compactly supported, g 2 H
sC1=2;2
0

.@�� Œ0;T �/,
u0 2H s

D
, �1

2
< s � 3

2
, the initial boundary value problem (IBVP) has a unique transposition solution. It

satisfies
kukCT H s . kf kL2

T
H s�1=2 CkgkH sC1=2

0

Cku0kH s
0
:

In the case s D�1
2

, the result is true if H�1=2 is replaced by .H 1=2
D

/0.

Thanks to a virial identity, we also obtained a local smoothing property similar to the one in [Burq
et al. 2004], which allowed us to derive Strichartz estimates with a loss of 1

p
derivative. Well-posedness

in H 1=2 for the expected range of nonlinearities followed by the usual fixed-point argument.
This work contained, however, a number of important limitations:

� The virial estimate was derived when � is the exterior of a strictly convex obstacle.

� Since the natural space for our virial estimate is H 1=2, the local well-posedness theorem was stated
for u0 2H

1=2
D

rather than the energy space H 1.

� The linear well-posedness theorem was obtained for trivial compatibility conditions, u0 2H
1=2
D

.�/

and g 2H
1;2
0
.@�� Œ0;T �/.

� Since such conditions are certainly not preserved by the flow, continuation arguments were not
available, so the existence of a maximal solution (let alone global solution) was out of reach.

The main purpose of this article is to lift most of the previous restrictions to provide a good local and
global Cauchy theory in the energy space. Rather than the exterior of a convex compact obstacle, we
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will only assume that � is the exterior of a compact star-shaped obstacle. On the other hand, we do
not improve the loss in the Strichartz estimates, so that we obtain local well-posedness for a range of
nonlinearities essentially similar to juj˛u with the limitation ˛ < 2=.d �2/ (the whole subcritical range is
˛ < 4=.d �2/). In the case where �c is strictly convex, however, we improve it to ˛ < 3=.d �2/. These
results are true for boundary data in the almost optimal space H 3=2C";2 and a discussion is included
on the possibility to replace it by the optimal space. If one takes slightly smoother boundary data in
H 2C";2.@�� Œ0;T �/, we obtain global well-posedness for ˛ < 2=.d � 2/ if �c is star-shaped, and for
the whole subcritical range ˛ < 4=.d � 2/ if �c is strictly convex. The existence of global solutions
for g 2 H 3=2C";2 is much more intricate, and is only obtained in dimension 2 with a quite technical
limitation on ˛.

The presence of " in the trace spaces can most likely be avoided up to lengthier computations that we
chose to avoid for simplicity of the proofs (see Remarks 3.5, 3.8, 4.3).

Structure of the article.

� The functional spaces that we use are defined in Section 1, which also provide some useful trace and
interpolation results.

� In Section 2 we define the natural compatibility conditions and we prove well-posedness for the
linear IBVP when such conditions are met.

� In Section 3 we provide the basic modifications to the proof in [Audiard 2013] that give local
smoothing through a virial estimate when � is star-shaped. The boundary data is assumed to be in
the almost optimal space H 3=2C";2. We deduce Strichartz estimates at the H 1 level thanks to an
interpolation argument; this section also includes a smoothing property on @nu that is essential for
global existence issues.

� In Section 4 we prove the nonlinear well-posedness results stated above.

� The Appendix contains two elementary interpolation results.

1. Functional spaces and Strichartz estimates

Functional spaces. For p � 1 we denote by Lp.�/ the usual Lebesgue spaces. If there is no ambiguity,
when X is a Banach space we write

Lp.Œ0;T �;X /DL
p
T

X; Lp.RC;X /DL
p
t X:

For integer m we denote by W m;p.�/ the usual Sobolev spaces; W
m;p

0
is the closure of C1c .�/ for the

W m;p topology.
For s � 0, the space W s;p.�/ is defined by real interpolation; see [Tartar 2007, Sections 32 and 34].

When p D 2, the Sobolev spaces are denoted by H s , H s
0

. For s > 0, we set H�s.�/D .H s
0
.�//0.

For s � 0 and �D the Dirichlet laplacian on �, the space H s
D

is the domain of .1��D/
s=2. When

1
2
< s � 1, H s

D
D H s

0
, and when 0 � s < 1

2
, H s

D
D H s . The space H

1=2
D

does not coincide with
H

1=2
0
DH 1=2 (it is the Lions–Magenes space H 1=2

00
but we will use the notation H

1=2
D

).
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The Besov spaces Bs
p;q.�/ are the restrictions to � of functions in Bs

p;q.R
d / [Tartar 2007, Sections 32

and 34]. For s � 0, s … N, we have Bs
p;p DW s;p (see [Bergh and Löfström 1976; Tartar 2007]). The

spaces Bs
p;q;0

are defined as the closure of C1c .�/ in Bs
p;q .

The anisotropic Sobolev spaces on Œ0;T ��� are defined as

H s;2
DL2.Œ0;T �;H s.�//\H s=2.Œ0;T �;L2.�//:

Anisotropic Besov spaces can be defined in a similar way (see [Amann 2009]):

B
s;2
p;q;0

DL
p
T

Bs
p;q;0\Bs=2

p;q .Œ0;T �;L
p.�//:

Finally, we use the same definitions for functions defined on @� or @�� Œ0;T � using local maps.

We recall in the following proposition the classical rules on embeddings and traces of functional spaces:

Proposition 1.1 (Sobolev embeddings and traces [Lions and Magenes 1968b; Triebel 1983]).

� If 0� sp < d; t � 0, we have BtCs
p;q .�/ ,! Bs

p1;q
when 1

p1
D

1
p
�

s
d

.

� If sp > d , W s;p ,! C 0.�/ and, if sp < d , then W s;p ,!Lq.�/ when 1
q
D

1
p
�

s
d

.

� If sp > 1, the trace operator C1.�/! C1.@�/ extends continuously to

W s;p.�/!W s�1=p;p.@�/:

� For 0� s0 � s
2

, the anisotropic spaces H s;2.�� Œ0;T �/ are embedded in H s0

T
H s�2s0 .

� For s > 1
2

, the trace operator H s;2.�� Œ0;T �/!H s�1=2;2.@�� Œ0;T �/ is continuous.

� For s > 1, OD� or @�, there is a time-trace operator from the embedding

H s;2.Œ0;T ��O/ ,! C.Œ0;T �;H s�1.O//:

For s0, s1 � 0, we have the interpolation identity (see [Triebel 1983])

ŒBs0
p;q0

;Bs1
p;q1

��;q D B�s0C.1��/s1
p;q :

Similar interpolation results are true for anisotropic Sobolev spaces. In [Lions and Magenes 1968b] it is
proved that for s > 0, OD� or @�, 0� � � 1 and t D �s, H t;2.Œ0;T ��O/D ŒL2;H s;2�� .

In addition to their nice interpolation properties, composition rules in Besov spaces are relatively
simple: if F.0/D 0 and jrF.z/j . jzj˛, then for 0 < s < 1, 1 � q �1, 1 � p � r �1, 1

�
C

1
r
D

1
p

,
we have

kF.u/kBs
p;q
. kuk˛L˛�kukBs

r;q
I (1-1)

this is Proposition 4.9.4 in [Cazenave 2003] when � D Rd , and it follows from the existence of a
(universal) extension operator when � is an exterior domain; see [Amann 2009, Sections 4.1, 4.4].

Since anisotropic Besov spaces are more intricate and scarcely used in the article, we will cite their
properties we need when relevant, pointing to the reference [Amann 2009].

Finally, we recall some Strichartz estimates known for the boundary value problem with homogeneous
boundary condition.
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Theorem 1.2 [Burq et al. 2004; Ivanovici 2010]. If � is the exterior of a nontrapping obstacle, then for
any T > 0,

keit�D u0kLp
t L

q . ku0kL2 when 1

p
C

d

q
D

d

2
; p � 2: (1-2)

If � is the exterior of a strictly convex obstacle then

keit�D u0kLp

T
L

q . ku0kL2 when 2

p
C

d

q
D

d

2
; p > 2: (1-3)

2. Linear well-posedness

In this section, we assume that � is the exterior of a compact nontrapping obstacle. We recall what we
meant by “transposition solution” in Theorem 0.1:

Definition 2.1. Let � 2 C1c .Rd /, f 2 L2
T

H�1.�/. We say that u is a transposition solution of the
problem 8<:

i@tuC�uD �f 2L2
T

H�1;

ujtD0 D u0 2 .H
1=2
D

.�//0;

uj@��Œ0;T � D g 2L2.Œ0;T �� @�/

(2-1)

when u 2 CT .H
1=2
D

/0 and, for any f1 2L1
T

H
1=2
D

, if v is the solution of8<:
i@tvC�v D f1;

vjtDT D 0;

vj@��Œ0;T � D 0;

(2-2)

then we have the identityZ T

0

hu; f1i.H 1=2

D
/0;H

1=2

D

dt D

Z T

0

hf; �viH�1;H 1
0

dt C

Z T

0

.g; @nv/L2.@�/ dt C ihu0; v.0/i.H 1=2

D
/0;H

1=2

D

;

(2-3)
where h � ; � iX ;X 0 is the duality bracket.

In [Audiard 2013] we obtained by derivation/interpolation arguments well-posedness for .u0;g/ in
H s

D
�H

sC1=2;2
0

; the aim of this section is to extend it to .u0; f;g/ 2 H s �H s�1=2;2 �H sC1=2;2 for
any s � �1

2
, under natural compatibility conditions that we derive now.

Compatibility conditions. We consider the linear initial boundary value problem (IBVP)8<:
i@tuC�uD f; .x; t/ 2�� Œ0;T Œ;

ujtD0 D u0; x 2�;

uj@��Œ0;T � D g; .x; t/ 2 @�� Œ0;T Œ:

(2-4)

Local compatibility. If u0 2 H s , g 2 H sC1=2;2, s > 1
2

, then u0 has a trace on @� and g has a trace
at t D 0; the identity ujtD0j@� D uj@�jtD0 imposes the zeroth-order compatibility condition

u0j@� D gjtD0: (CC0)
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The next compatibility conditions are defined inductively: set '0 D u0, 'nC1 D
1
i
.@n

t f jtD0��'n/; the
k-th order compatibility condition is

@k
t gjtD0 D 'k j@�; (CCk)

which must be satisfied if u0 2H s.�/, g 2H sC1=2;2.@��Œ0;T �/, f 2H s�1=2;2.��Œ0;T �/, s> 2kC 1
2

.

Global compatibility. If s D 1
2

, there is a more subtle compatibility condition, the so-called “global
compatibility condition”: thanks to local maps, we can assume that u0, g are defined by a collection of
.u

j
0
; f j gj /1�j�J defined on Rd�1 �RC (RC corresponds to the t-variable for gj and normal space

variable for uj
0

, f j ); we say that .u0;g/ satisfy the zeroth-order global compatibility condition when

81� j � J

Z 1
0

Z
Rd�1

ju
j
0
.x0; h/�gj .x0; h2/j2 dx0

dh

h
<1I (CCG0)

similarly, we define the global compatibility conditions of order k for s D 1
2
C 2k as

81� j � J

Z 1
0

Z
Rd�1

j'
j

k
.x0; h/� @k

t gj .x0; h2/j2 dx0
dh

h
<1; (CCGk)

It is standard [Lions and Magenes 1968a] that (CCk) is stronger than (CCGk).
In what follows, we say that .u0; f;g/ 2 H s � H s�1=2;2 � H sC1=2;2 “satisfy the compatibility

conditions” when all conditions that make sense are satisfied, namely (CCk) holds for k < s
2
�

1
4

, and
also (CCGk) if s D 1

2
C 2k.

Theorem 2.2. For �1
2
< s� 3

2
, let .u0; f;g/2H s�L2

T
H s�1=2�H sC1=2;2 be such that f is compactly

supported and .u0; f;g/ satisfy the compatibility conditions; then the solution of (IBVP) is in CT H s .
For s> 3

2
and .u0; f;g/2H s�H s�1=2;2�H sC1=2;2 satisfying the compatibility conditions, u2CT H s .

The spirit of the proof is relatively similar to the classical argument of [Rauch and Massey 1974] for
hyperbolic boundary value problems. Let us describe it and where the difficulty lies: the natural idea
is to consider �u, which is formally a solution of a similar boundary value problem; the low regularity
theorem implies �u2CT .H

1=2
D

/0, and we conclude, by an elliptic regularity argument, that u2CT H 3=2.
However, due to the weak setting it is not clear that �u is actually a solution of the expected boundary
value problem. For “trivial” compatibility conditions it is sufficient to approximate the initial data by
.u0;n;gn; fn/2C1c .�/�C1c .@�� �0;T �/�C1c .�� �0;T �/ that automatically satisfy the compatibility
conditions at any order. In general, the existence of smooth data that satisfy the compatibility conditions
at a sufficient order will be done in Lemma 2.4.

Lemma 2.3. If .u0; f;g/ 2H 3=2 �L2
T

H 1 �H 2;2 with f compactly supported and (CC0) satisfied, the
unique transposition solution of (IBVP) belongs to CT H 3=2.

For k�2, if .u0; f;g/2H 2k�1=2�H 2k�1;2�H 2k;2, f compactly supported and (CCj), 0� j �k�1

satisfied, the unique transposition solution of (IBVP) belongs to CT H 2k�1=2.

The proof is postponed until after the following approximation lemma:
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Lemma 2.4. For .u0; f;g/2H 3=2.�/�L2.Œ0;T �;H 1.�//�H 2;2.Œ0;T ��@�/ satisfying (CC0), there
exists a sequence .u0;k ; fk ;gk/ 2H 2 �H 2;2 �H 5=2;2 satisfying (CC0) such that

k.u0; f;g/� .u0;k ; fk ;gk/kH 3=2�L2
T

H 1�H 2;2 !k 0:

Proof. By density of smooth functions in Sobolev spaces, there exists .vk ; fk ;gk/ smooth such that
.vk ; fk ;gk/!k .u0; f;g/ .H

3=2 �L2
T

H 1 �H 2;2/; however, the sequence a priori does not satisfy
(CC0). Let us modify u0;k D vkC'k ; it is sufficient to construct 'k 2H 2.�/ such that k'kkH 3=2!k 0

and

'k j@� D gk jtD0� vk j@�: (2-5)

This is an underdetermined system on .@j
n'k/0�j�1 that we close by imposing @k'k D 0: we define

'k 2H 2 as the lifting of .gk jtD0� vk j@�; 0/. From standard trace theory, there exists a lifting operator

L W H 3=2.@�/!H 2.�/

b 7! v such that vj@� D b; @nv D 0;

that extends continuously as a lifting operator H 1 ! H 3=2 (on the half space in Fourier variables
� D .� 0; �d / one may take cLb D Ob.� 0/h.�d=

p
1Cj� 0j2/=

p
1Cj� 0j2 with h smooth and compactly

supported,
R

h d�1 D 1,
R
�1h d�1 D 0; see [Lions and Magenes 1968a] for more details). In particular,

we have kgk jtD0� vk j@�kH 1 !kgjtD0�u0j@�kH 1 D 0, which implies k'kkH 3=2 ! 0. �

Proof of Lemma 2.3. We first detail the case s D 3
2

and will deal with s D�1
2
C 2k, k 2 N by induction.

Let u be the solution of (IBVP). If (CC0) is satisfied, then there exists .u0;k ;gk ; fk/ as in Lemma 2.4,
and we call the associated solutions uk . Since kuk � ukCT .H

1=2

D
/0 !k 0, it is sufficient to prove the

convergence of uk in CT H 3=2. We first check that uk 2 CT H 2. Let Qgk 2H 3;2.�� Œ0;T �/ be a lifting
(for its existence, see [Lions and Magenes 1968b, chapitre 4, section 2]) such that�

Qgk j@��Œ0;T � D gk ;

� Qgk j@��Œ0;T � D fk j@��Œ0;T �� i@tgk :

We define

wk D eit�D .u0;k � Qgk jtD0/C

Z t

0

ei.t�s/�D .fk � i@t Qgk �� Qgk/ ds;

the solution of the homogeneous IBVP with initial data u0;k� Qgk jtD0 and forcing term fk�i@t Qgk�� Qgk ,
so that uk D wk C Qgk . The embedding H 3;2 ,! CT H 2 and (CC0) then imply u0;k � Qgk jtD0 2H 2

D
and

fk� i@t Qgk�� Qgk 2L1
T

H 2
D

, thus wk 2CT H 2
D

and uk DwkC Qgk 2CT H 2. In particular, �uk 2CT L2

and we can now check that it is the transposition solution of the IBVP8<:
i@tvk C�vk D�fk ; .x; t/ 2�� Œ0;T Œ;

vk jtD0 D�u0;k ; x 2�;

vk j@��Œ0;T � D�i@tgk Cfk j@��Œ0;T �I

(2-6)

that is to say (2-3) is satisfied with data .�u0;k ; �fk ;�i@tgk Cfk j@��Œ0;T �/.



ON THE BOUNDARY VALUE PROBLEM FOR THE SCHRÖDINGER EQUATION 1121

Let ' 2 C1.Œ0;T �;C1c .�//; we set w D
R t

T ei.t�s/�D�' ds the solution of the dual boundary value
problem with data �'. By definition of uk ,“

��Œ0;T �

�uk' dx dt D

“
��Œ0;T �

uk�' dx dt

D

“
��Œ0;T �

fkw dx dt C i

Z
�

u0;kw.0/ dxC

“
@��Œ0;T �

gk@nw dS dt:

Now, since w D�
R t

T ei.t�s/�D' ds WD�v, where v 2 C 1H 2
D

, we can write“
��Œ0;T �

�uk' dx dt

D

“
Œ0;T ���

fk�v dx dt C i

Z
�

u0;n�v.0/dxC

“
@��Œ0;T �

gk@n�v dS dt

D

“
��Œ0;T �

�fkv dx dt C i

Z
�

�u0;kv.0/ dxC i

Z
@�

u0;k@nv.0/ dx

C

“
@��Œ0;T �

gk@n.�i@tvC'/Cfk@nv dS dt

D

“
��Œ0;T �

�fkv dx dt C

“
@��Œ0;T �

.fk � i@tgk/@nv dS dt C i

Z
�

�u0;kv.0/ dx

C i

Z
@�

u0;k@nv.0/ dS C i Œ

Z
@�

gk@nv dS �T0

D

“
��Œ0;T �

�fkv dx dt C

“
@��Œ0;T �

.fk � i@tgk/@nv dS dt C i

Z
�

�u0;kv.0/ dx;

where in the last equality we used (CC0) and the cancellation of vjtDT . Since the equality is true
for arbitrary ', by density of C1.Œ0;T �;C1c .�// in L1

T
H

1=2
D

we obtain that �uk is the transposition
solution of (2-6), and �uk converges in CT .H

1=2
D

/0 since �u0;k , �fk , i@tgk �fk j@��Œ0;T � converge in
.H 1=2/0

D
�L2

T
H�1�L2. Arguing as in the end of proof of [Audiard 2013, Proposition 6], we obtain the

convergence of uk in CT H 3=2 and its limit is u by uniqueness of the limit. This settles the case s D 3
2

.
For s D�1

2
C 2k, k � 2, we argue by induction. Let us introduce the boundary value problems8<:

i@tvC�v D�
mf; .x; t/ 2�� Œ0;T Œ;

vjtD0 D�
mu0; x 2�;

vj@��Œ0;T � D  mj@��Œ0;T �;

(IBVPm)

where  m is defined inductively by  0 D g,  jC1 D�
jf j@��Œ0;T �� i@t j . We assume that .u0; f;g/

in H�1=2C2k �H�1C2k;2 �H 2k;2 satisfy (CCj ), 0� j � k � 1, and �j u is a solution of (IBVPj ) for
0� j � k � 1. In particular, �k�1u is a solution of (IBVPk � 1) and the previous argument implies that
�k�1u 2 CT H 3=2 if .�k�1u0; �

k�1f; k�1/ belong to H 3=2�L2
T

H 1�H 2;2 and satisfy the compat-
ibility condition  k�1jtD0 D�

k�1u0j@�. The first condition is clear, since1  j 2H 2k�j .@�� Œ0;T �/,

1Actually, the careful reader may note that the regularity of the boundary data only requires f 2H 2m�3=2C";2, " > 0, rather
than H 2m�1;2. This is not important as the dispersive estimates in next section require the full regularity f 2H 2m�1;2.
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and for the compatibility condition we may note that

8j � 1

 j D .�i@t /
j gC

j�1X
pD0

.�i@t /
p�j�1�p f

i

ˇ̌̌̌
@��Œ0;T �

;

'j D .i�/
j u0C

j�1X
pD0

@
j�1�p
t .i�/pf jtD0;

so that  k�1jtD0 D�
k�1u0 is equivalent to (CCk � 1). Thus

�k�1u 2 CT H 3=2 and �j uj@� D  j 2H 2.k�j/ ,! CT H 2.k�j/�1; 0� j � k � 2;

so that, by elliptic regularity, u 2 CT H 2k�1=2. �
We can now conclude this section:

Proof of Theorem 2.2. We have obtained well-posedness for s D�1
2

, 3
2

. The case �1
2
� s � 3

2
follows by

interpolation if we check that H s�H sC1=2;2�L2
T

H s�1=2 with compatibility condition is the interpolated
space between .H 1=2

D
/0 �L2 �L2

T
H�1=2 and H 3=2 �H 2;2 �L2

T
H 1 with compatibility condition; this

is proved in Lemma A.2 in the Appendix.
For s � 3

2
, let m 2N be such that �1

2
C2m� s <�1

2
C2.mC1/. The case of equality is Lemma 2.3;

in the case of strict inequality we recall that �mu is a solution of (IBVPm), where it is easily seen that if
.f;g/2H s�1=2;2.��Œ0;T �/�H sC1=2.@��Œ0;T �/ then m 2H sC1=2�2m. Since�1

2
� s�2m� 3

2
, we

have from the previous case that �mu 2 CT H s�2m; the regularity of u follows by elliptic regularity. �

3. Dispersive estimates

From now on we assume that �c is star-shaped; up to translation we can also assume that it is star-shaped
with respect to 0.

Local smoothing. Let us first recall the key virial identity:

Proposition 3.1 [Audiard 2013]. If u is a smooth solution of (IBVP), h 2 C k.�/, rkh bounded for
1� k � 4, and I.u/D 2 Im

R
� rh � ruu dx, then, setting r� Dr � n@n,

d

dt
I.u.t//D 4 Re

Z
�

Hess.h/.ru;ru/� 1
4
juj2�2hCrh � ruf C 1

2
u�hf dx

CRe
Z
@�

2@nhjr�uj
2
� 2@nhj@nuj2� 2i@nh@tuu dS CRe

Z
@�

�2u�h@nuCjuj2@n�h dS:

For the choice h.x/ D
p

1Cjxj2, we have Hess.h/ � 1=.1 C jxj2/3=2, @nh � 0 (because � is
star-shaped); this leads to the following result:

Proposition 3.2. For any " > 0, .u0; f;g/ 2 H 1=2.�/�L2.�� Œ0;T �/�H 1C";.1C"/=2.@�� Œ0;T �/

that satisfy (CCG0), f compactly supported, we have ru

.1Cjxj2/3=4


L2.Œ0;T �;L2.�//

Ck@nukL2.@��Œ0;T �/ . .ku0kH 1=2 Ckf kL2 CkgkH 1C";2/:
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Remark 3.3. The constant in . depends on ", T and the size of supp.f /, and blows up if "! 0, T !1

or supp.f /!�. We chose not to emphasize this as it will not matter in the rest of the article.

Proof. The proof was essentially done in [Audiard 2013] for a strictly convex obstacle; we write it out
since it must be slightly modified for the case of a star-shaped obstacle. We use that f is compactly
supported to absorb the term

R
rhruf dx in

R
Hess.h/.ruru/ dx, and �c is star-shaped thus @nh� 0

(n is the outer normal of �), so integration in time gives ru

.1Cjxj2/3=4

2

L2.��Œ0;T �/

. kuk2
L2.��Œ0;T �/

Ckf k2
L2.��Œ0;T �/

Ckgk2
H 1C";2.@��Œ0;T �/

CjI.u.T //jC jIu0j:

To estimate jI.u.T //jCjI.u.0//j the main issue is that ru2 .H
1=2
D

/0, which is slightly larger than H�1=2.
Following the notations of Lemma A.2, we first remark that the assumptions of the lemma imply
.u0;g/ 2 X 1=2 and we use the lifting operator H s;s=2 ! H sC1=2;s=2C1=4.� � Œ0;T �/, g 7! R1g. If
.u0;g/ 2 X 3=4, then .u0 �R1gjtD0;u.T / �R1gjtDT / 2 .H

1
0
.�//2, while, if .u0;g/ 2 X 1=3, then

.u0�R1gjtD0;u.T /�R1gjtDT / 2 .H
1=6.�//2, thus by interpolation

.u0;g/ 2X 1=2
D) .u0� QgjtD0;u.T /� QgjtDT / 2 .H

1=2
D

.�//2:

This implies for t 2 Œ0;T �ˇ̌̌̌Z
�

u.t/�R1g.t/ru � rh dx

ˇ̌̌̌
. kukC.Œ0;T �;H 1=2/kgkH 1;2

On the other hand, an integration by parts formally givesˇ̌̌̌Z
�

R1g.t/ru � rh dx

ˇ̌̌̌
�

ˇ̌̌̌Z
�

u div.R1g.t/rh/ dx

ˇ̌̌̌
C

ˇ̌̌̌Z
@�

gR1g.t/@nh dx

ˇ̌̌̌
� C".ku.t/kH 1=2�"kR1g.t/kH 1=2C" Ckg.t/k2L2/

� C".kukCT H 1=2kgkH 1C";2 Ckgk2H 1C";2/;

so that by a density argument we obtain ru

.1Cjxj2/3=4


L2.��Œ0;T �/

� C";T .kukCT H 1=2 CkgkH 1C";2 Ckf kL2/

� C";T .ku0kH 1=2 Ckf kL2 CkgkH 1C";2/: (3-1)

The estimate on k@nukL2 cannot in general be obtained directly from the virial identity with hD
p

1Cjxj2

since we may have, for some x 2 @�, @nhD x � n=
p

1Cjxj2 D 0. However, once local smoothing has
been obtained it is quite simple to derive an estimate on @nu. The argument that we give now is essentially
the same as the one from [Planchon and Vega 2009] for the homogeneous case. Using the identity from
Proposition 3.1 with some h smooth and compactly supported such that @nh< 0, we obtain

k@nuk2
L2 . jI.u.T //jC jI.u0/jC kuk

2
L2 Ckf k

2
L2 CkgkH 1C";2 C

Z T

0

Z
�

Hess.h/.ru;ru/ dx dt:
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The integral of Hess.h/.ru;ru/ dx is no longer positive; however, since h is compactly supported, it is
controlled thanks to (3-1). �

We can now state the local smoothing property for more general regularity:

Corollary 3.4. Let ">0, 1
2
�s<2, .u0; f;g/2H s.�/�H s�1=2;2.��Œ0;T �/�H sC1=2C";2.@��Œ0;T �/

satisfying the compatibility conditions, f compactly supported, " > 0; then the solution u 2 CT H s of
(IBVP) has the local smoothing property u

.1Cjxj2/3=4


L2

T
H sC1=2

Ck@nukH s�1=2;2 . ku0kH s CkgkH sC"C1=2;2 Ckf kH s�1=2;2 :

Proof. The case s D 1
2

is Proposition 3.2. For s D 5
2

, we have already seen that �u is a solution of the
IBVP with forcing term �f , initial conditions �u0 and boundary data �i@tgC f j@��Œ0;T �, thus the
local smoothing implies r�u

.1Cjxj2/3=4


L2.��Œ0;T �/

. ku0kH 5=2 Ckf kL2
T

H 2 CkgkH 3C";2 Ckf kH 1C";2.@��Œ0;T �/

. ku0kH 5=2 Ckf kL2
T

H 2 CkgkH 3C";2 Ckf kH 3=2C";2.��Œ0;T �/

. ku0kH 5=2 Ckf kH 2;2.��Œ0;T �/CkgkH 3C";.3C"/=2 :

Elliptic regularity then implies the estimate on ku=.1Cjxj2/3=4kH 3 . The control of k@nukH 2;2 requires
a bit more care, since we cannot directly use the estimate on @n�u: for x0 2 @�, we use local coordinates
.y1; : : : ;yd / such that, on a neighbourhood U of x0, @�\U D fyd D 0g and �\U � fyd > 0g, and
we define the differential operators Dk D '.y1; : : : ;yd�1/ .yd /@yk

, 1 � k � d � 1, with ',  such
that supp.' / � U and  D 1 on a neighbourhood of 0. Setting Dk D 0 outside U , the Dk define
second-order differential operators on � and, by restriction, on @�. For 1 � k, p � d � 1, it can be
checked as for �u that ukp DDkDpu is the transposition solution of8<:

i@twC�w DDkDpf C Œ�;DkDp �u;

wjtD0 DDkDpu0;

wj@� DDkDpg;

where the commutator Œ�; DkDp � is a third-order differential operator. The virial identity gives

dI.ukp/

dt
D 4 Re

Z
�

Hess.h/.rukp;rukp/�
1
4
jukpj

2�2hCrh � rukp.DkDpf C Œ�;DkDp �u/ dx

C 2 Re
Z
�

ukp�h.DkDpf C Œ�;DkDp �u/ dx

CRe
Z
@�

2@nhjr�ukpj
2
� 2@nhj@nukpj

2
� 2i@nh@tukpukp dS

CRe
Z
@�

�2ukp�h@nukpCjukpj
2@n�h dS;
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Choosing h compactly supported such that @nh< 0 on supp Dk as in the proof of Proposition 3.2 gives
an estimate on k@nukpkL2.@��Œ0;T �/, provided the new terms induced by Œ�; DkDp �u are controlled;
this last point is a consequence of the local smoothingˇ̌̌̌
4

Z T

0

Z
�

rh � rukp Œ�;DkDp �uC
1
2
ukp�hŒ�;DkDp �u dx

ˇ̌̌̌
dt . kukpkL2

T
H 1kukL2

T
H 3

. ku0k
2
H 5=2 Ckf k

2
H 2;2 Ckgk

2
H 3C";2 :

This gives k@nukpkL2 . ku0kH 5=2 Ckf kH 2;2 CkgkH 3C";2 . Since  D 1 on a neighbourhood of 0 and
@n D @yd

on U , we have @nDkDp DDkDp@n, so that

kDkDp@nukL2.@��Œ0;T �/ . ku0kH 5=2 Ckf kH 2;2 CkgkH 3C";2 :

Finally, since k@nu.t/kH 1 . ku.t/kH 5=2 and using a partition of unity, we get

k@nukL2
T

H 2 . ku0kH 5=2 Ckf kH 2;2 CkgkH 3C";2 :

The time regularity of @nu can be obtained in a similar way by considering the IBVP satisfied by @tu;
the application of Proposition 3.2 requires @tf 2L2.�� Œ0;T �/ and @tujtD0 D i�u0� if jtD0 2H 1=2,
both of which are ensured by f 2H 2;2. Since @t@n D @n@t , the local smoothing property gives directly

k@t@nukL2.@��Œ0;T �/ . ku0kH 5=2 Ckf kH 2;2 CkgkH 3;2 :

The result for 1
2
� s < 2 then follows by a (nontrivial) interpolation argument similar to Lemma A.2 that

we sketch now: Setting

Y ˛ D f.u0; f;g/ 2H˛
�H˛�1=2;2

�H˛C1=2;2 that satisfy the compatibility conditionsg;

it is sufficient to prove ŒY 1=2;Y 5=2�� � Y 2�C1=2 for � < 3
4

. To get rid of the link between u0, f and g,
let us define H

2;2
.0/
.�� Œ0;T �/D ff 2H 2;2 W f j@��f0g D 0g. Clearly

Y 5=2
� f.u0; f;g/ 2H 5=2

�H
2;2
.0/
�H 3;2 with (CC0); .CCG1/g WD Y

5=2

.0/
:

The key point of Y
5=2

.0/
is that f jtD0 2 H 1

0
, so that the .f j /1�j�J introduced in the description of

global compatibility conditions automatically satisfy
R1

0

R
Rd�1 jf

j .x0; h/j2 dx0 dh=h<1. Therefore
the conditions (CC0), (CCG1) only involve u0 and g, and

Y
5=2

.0/
D f.u0;g/ 2H 5=2

�H 3;2 with (CC0); .CCG1/g �H
2;2
.0/
:

For � < 3
4

, we have, from Proposition A.4, ŒL2;H
2;2
.0/
g�� DH 2�;2.�� Œ0;T �/. As a consequence, setting

X 3=2 D f.u0;g/ 2H 5=2 �H 3;2 with (CC0); .CCG1/g (as in Lemma A.2), we are reduced to checking
that ŒX 1=2;X 3=2�� DX 1=2C� , which can be done as in Lemma A.2. �

Remark 3.5. The loss of regularity on the boundary data can be avoided up to an arbitrary loss on
the local smoothing. Indeed for .u0; f;g/ 2 H 1=2C" � H ";2 � H 1C";2, the virial estimate implies
u 2 L2

T
H 1, and from an argument similar to Corollary 3.4 we find that, for 1

2
C " � s < 2, we have

.u0; f;g/ 2H s �H s�1=2;2 �H sC1=2;2, then u 2L2
T

H sC1=2�".
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We choose to focus on the case where we lose some regularity on the boundary data because it avoids
the use of peculiar numerology for the Strichartz estimates and well-posedness theorems in the rest of the
article; however, we will continue to discuss this alternative approach in Remarks 3.8 and 4.3.

The estimate is restricted to functions f compactly supported near @�. For the well-posedness results
of next section we will also need smoothing of the normal derivative when f is supported “away from @�”:

Proposition 3.6. Let w be the solution of the homogeneous boundary value problem8<:
i@twC�Dw D f;

wjtD0 D 0;

wj@� D 0I

then w satisfies the estimate

k@nwkH 1=2;2.@��Œ0;T �/ . kf kB1;2

3=2;2;0

:

Proof. From the Strichartz estimate in [Burq et al. 2004], we have

kwk
CT H

1=2

D
\L3W

1=2;3

0

. kf k
L

3=2

T
W

1=2;3=2

0

:

The virial identity gives

k@nwk
2
L2.@��Œ0;T �/

. kuk
CT H

1=2

D

Ckuk
L3

T
W

1=2;3

0

kf k
L3=2W

1=2;3=2

0

. kf k2
L3=2W

1=2;3=2

0

;

and similarly, using the same differentiation arguments as in Corollary 3.4, we get2

k@nwkH 2;2.@��Œ0;T �/ . kf kL3=2

T
W

5=2;3=2;2

0
\W

5=4;3=2

T
L3=2 :

Let us recall that, for s � 0, s … N, B
s;2
3=2;3=2;0

.�� Œ0;T �/DW
s=2;3=2

T
L3=2 \L

3=2
T

W
s;3=2

0
. Using real

interpolation with parameter � D 1
4

and q D 2 gives the expected result, as a consequence of

ŒL3=2W
1=2;3=2

0
;L

3=2
T

W
5=2;3=2

0
\W

5=4;3=2
T

L3=2�1=4;2 � ŒB
1=2;2

3=2;3=2;0
;B

5=2;2

3=2;3=2;0
�1=4;2 D B

1;2
3=2;2;0

:

The first inclusion is clear, and the equality follows from the interpolation of anisotropic Sobolev spaces;
see the book of H. Amann [2009], Section 3.3 for the interpolation of anisotropic spaces on Rd and
Section 4:4 for domains with corner. �

Strichartz estimates. We deduce in this section Strichartz estimates (with loss of derivatives) from the
local smoothing. Following the terminology of admissible pair

�
those .p; q/ such that 2

p
C

d
q
D

d
2

�
, we

say that .p; q/ is a weakly admissible pair if

1

p
C

d

q
D

d

2
: (3-2)

2When differentiating in time, we obtain @t ujtD0 D �if jtD0 2W
7=6;3=2

0
,! H 1

0
,! H

1=2
D

, thus the initial data for the
problem satisfied by @t u is smooth enough to use the virial identity.
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Theorem 3.7. Let � � Rd ; d � 2, such that �c is star-shaped with respect to 0. For " > 0, T <1,
1
2
�s<2, .u0; f;g/2H s�H s�1=2;1=4�H sC1=2C";2 satisfying the compatibility conditions, f compactly

supported, and any weakly admissible .p; q/ with p, q > 2, the solution u 2 CT H 1 satisfies

kukLp.Œ0;T �;W s;q.�// . ku0kH s CkgkH sC1=2C" Ckf kH s�1=2;1=4 :

Proof. The argument from [Burq et al. 2004, Proposition 2.14] can be used with no meaningful modification
(see also [Audiard 2013, Corollary 1]). Let us sketch it briefly: we decompose uD �uC .1��u/, � com-
pactly supported, �D1 near @�[supp.f /. From the local smoothing property, �u2L2

T
H sC1=2\L1

T
H s ,

we have by (complex) interpolation that u 2 L
p
T

H sC1=p. The Sobolev embedding H sC1=p ,!W s;q

with 1
q
D

1
2
�

1
dp

and the local smoothing property from Corollary 3.4 imply �u 2L
p
T

W s;q .

The function .1� �/u extended by 0 outside supp.1� �/ satisfies a Schrödinger equation on Rd ,
and the usual Strichartz estimates on Rd imply (by a standard but nontrivial argument that originates in
[Staffilani and Tataru 2002])

k.1��/ukL2p.Œ0;T �;W s;q/ . ku0kH s CkgkH sC1=2C";2 Ckf kH s�1=2;1=4 :

From L2p.Œ0;T �/�Lp.Œ0;T �/ we obtain the expected estimate. �

Remark 3.8. Following the observations of Remark 3.5, we could also prove an alternate Strichartz
estimate with optimal boundary data in H sC1=2;2 but 1

p
C

d
q
D

d
2
C

2"
p

, simply by using the embedding
H sC1=2�" ,!W s;q1 , 1=q1 D

1
2
�
�

1
2
� "
�ı

d .

4. Nonlinear well-posedness

We consider here nonlinear IBVPs of the form8<:
i@tuC�uD F.u/; .x; t/ 2�� Œ0;T Œ;

ujtD0 D u0; x 2�;

uj@��Œ0;T � D g; .x; t/ 2 @�� Œ0;T Œ;

(NLS)

with the following assumptions on F 2 C 1.C/: there exists ˛ > 0 such that

jF.z/j. jzj.1Cjzj˛/; (4-1)

jrF.z/j. .1Cjzj/˛: (4-2)

For the smoothness of the flow we will assume F 2 C 2.C/ and

jr
2F.z/j. .1Cjzj/max.˛�1;0/ (4-3)

Local well-posedness. Since our first result is local in time, we define

H
3=2C";2
loc .RC � @�/D fg W �.t/g 2H 3=2C";2.RCt � @�/ for all � 2 C1c .RC/g:

We say that u 2 CT H 1 is a local solution to (NLS) if it satisfies i@tuC�u D F.u/ in the sense of
distributions (for u 2 CT H 1 all quantities in the equality make sense), uj@��Œ0;T � D g in the usual sense
of traces and ujtD0 D u0.
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Theorem 4.1. If F satisfies (4-1)–(4-2), then for any .u0;g/ 2H 1.�/�H
3=2C";2
loc .RC ��/ satisfying

(CC0) and ˛ < 2=.d � 2/, there exists a unique maximal solution u 2 CT �H
1 of (NLS).

The solution is causal in the sense that u.t/ only depends of u0 and gjs�t , and, if T � <1, then
limt!T � ku.t/kH 1 DC1.

If F satisfies (4-3) and d � 3, then for any T < T � the solution map is Lipschitz from bounded sets of
H 1.�/�H 3=2C";2.RC ��/ to C.Œ0;T �;H 1/.

It will be convenient to introduce Qu, the solution of8<:
i@t QuC� QuD F. Qg/; .x; t/ 2�� Œ0;T Œ;

QujtD0 D u0; x 2�;

Quj@��Œ0;T � D g; .x; t/ 2 @�� Œ0;T Œ;

(4-4)

where Qg 2H 2;2.�� Œ0;T �/ is a compactly supported lifting of g. Thus u must satisfy

uD QuC

Z t

0

ei.t�s/�D .F.u/�F. Qg//.s/ ds for all t 2 Œ0;T �:

Choose q0 such that .2; q0/ is weakly admissible. According to Theorems 2.2 and 3.7, we have
Qu 2 CT H 1\L2

T
W 1;q0 if F. Qg/ 2H 1=2;2. Actually F. Qg/ is smoother than needed:

Lemma 4.2. For ' 2H 2;2.�� Œ0;T �/ and F satisfying (4-1)–(4-2), F.'/ 2H 1;2.

Proof. It is clear that F.'/ 2L2
T

L2; indeed

kF.'/kL2
T

L2 . k'kL2
T

L2 Ck'k
1C˛
L2.1C˛/ . k'kL2

T
H 1.1Ck'k

˛

L2
T

H 1
/:

Since ˛ < 2=.d � 2/, there exist p, q satisfying

1

p
C

1

q
D

1

2
; min

�
˛

2
;

1

d

�
�

1

p
>
˛.d�2/

2d
;

1

q
>

d�2

2d
;

and Hölder’s inequality gives, for any t 2 Œ0;T �,

krF.'/.t/kL2.�/ . k.1Cj'j˛/r'kL2

. k'kH 1 Ck'k˛L˛pkr'kLq

. k'kH 1 Ck'k˛H 1k'kH 2 ;

where we used the Sobolev embedding H 1 ,!Lq; 2� q � 2d=.d � 2/ (or q <1 if d D 2). From the
embedding H 2;2 ,! CT H 1 we deduce, by taking the L2

T
norm,

krF.'/kL2
T

H 1 . k'kL2
T

H 1 Ck'k
˛
L1

T
H 1k'kL2

T
H 2 . k'kH 2;2.1Ck'k˛H 2;2/:

For the time regularity we have, using Hölder’s inequalities again,

kF.'.t//�F.'.s//kL2.�/ . k'.t/�'.s/kL2 C
j'.t/jC j'.s/j˛

L˛pk'.t/�'.s/kLq

. k'.t/�'.s/kL2 C
j'.t/jC j'.s/j˛

H 1k'.t/�'.s/kH 1 ;
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thus the embedding H 2;2 ,!H 1=2.Œ0;T �;H 1.�// gives

kF.'/k2
PH

1=2

T
L2
D

“
Œ0;T �2

kF.'.t//�F.'.s//k2
L2

jt � sj2
ds dt

. k'k2
H 1=2L2 Ck'k

2˛
L1

T
H 1k'k

2
PH

1=2

T
H 1

. k'k2
H 2;2.1Ck'k

2˛
H 2;2/: �

Proof of Theorem 4.1. Uniqueness: The uniqueness can be done as in the case of homogeneous Dirichlet
boundary conditions from [Burq et al. 2004]. If u1 and u2 are two solutions in CT �H

1, then wD u1�u2

is a solution of 8<:
i@twC�w D F.u1/�F.u2/; .x; t/ 2�� Œ0;T Œ;

wjtD0 D 0; x 2�;

Qwj@��Œ0;T � D 0; .x; t/ 2 @�� Œ0;T Œ:

This is a homogeneous boundary value problem for which the Strichartz estimates (1-2) give, for .p; q/
weakly admissible as in (3-2), .r 0; s0/ weakly admissible and T < T �,

kwkL1
T

L2\L
p

T
L

q . kwkL1
T

L2 C
.ju1jC ju2j/

˛w


Lr
T

Ls � T kwkL1
T

L2 CC
.ju1jC ju2j/

˛w


Lr
T

Ls :

If we can choose .r; s;p1; q1;p; q/ satisfying8̂̂̂̂
<̂̂
ˆ̂̂̂:

1

p
C

d

q
D

d

2
;

1

r
C

d

s
D 1C

d

2
;

1

p1
C

1

2
D

1

r
;

1

q1
C

1

q
D

1

s
;

˛.d�2/

2d
<

1

q1
<
˛

2
;

1

p
<

1

2
; 0<

1

p1
< ˛;

(4-5)

we get from the Sobolev embedding and Hölder estimate in time that.ju1jC ju2j/
˛w


Lr
T

Ls .
ju1jC ju2j

˛
L˛p1 L˛q1

kwkL2Lq

. T 1=2�1=p.ku1kL1
T

H 1 Cku2kL1
T

H 1/˛kwkLpLq ;

and thus w D 0 for 0� t � T , T small enough only depending on ku1kL1H 1 Cku2kL1H 1 . Iterating
the argument implies uD v on Œ0;T �Œ. The system (4-5) implies

1C
d

2
D

1

r
C

d

s
D

1

p1
C

1

2
C

d

q1
C

d

q
>

1

p1
C

d

2
C
˛.d�2/

2
C

�
1

2
�

1

p

�
; (4-6)

which can be solved since 1
2
˛.d�2/<1: we first choose p>2 close enough to 2 that 1

2
˛.d�2/C1

2
�

1
p
<1,

then it is possible to choose p1 that satisfies (4-6) and 0 < 1
p1
< ˛; up to increasing p we can assume

1
p1
< 1

2
. The choice of p determines the value of q> 2, the choice of p1 determines the value of 1< r < 2,

and then of 1< s < 2. The only equation left is 1
q1
D

1
s
�

1
q

; its solution 1
q1

belongs to �0; 1Œ, and thus is
an acceptable Hölder index.

Causality: This can be proved as for uniqueness, since if g1, g2 coincide on Œ0; t �, the uniqueness
argument can be applied on Œ0; t � and implies the associated solutions satisfy u1jŒ0;t � D u2jŒ0;t �.



1130 CORENTIN AUDIARD

Local existence: We recall that .2; q0/ is assumed to be weakly admissible. According to Lemma 4.2
and Theorems 2.2 and 3.7, Qu 2 CT H 1 \L2

T
W 1;q0 , since F. Qg/ 2H 1;2 �H 1=2;2. Setting w D u� Qu,

the local existence will be a consequence of the existence of a local solution to8<:
i@twC�w D F. QuCw/�F. Qg/;

wjtD0 D 0;

wj@��Œ0;T � D 0:

This is a nonlinear homogeneous boundary value problem; the existence of a solution is essentially a
consequence of (the proof of) Theorem 1 in [Burq et al. 2004]. As it does not strictly cover the case of
our nonlinearity, we briefly sketch the argument. Let us define the map L as

L WXT D CT H 1
0 \L

p
T

W 1;q
! CT H 1

0 \L
p
T

W 1;q;

w 7!L.w/D

Z t

0

ei.t�s/�D .F. QuCw/�F. Qg// dsI

we will check that it has a fixed point for T small enough. Burq et al. [2004] prove that, for a convenient
choice of weakly admissible pairs .p; q/, .p1; q1/ (depending on ˛ < 2=.d � 2/ and d), the map
QL.w/D

R t
0 ei.t�s/�D F.w/ ds satisfies

k QLwkXT
. T � .kwkXT

Ckwk1C˛
XT

/;

k QLw1�
QLw2kXT

. T � 0
kw1�w2kXT

.1Ckw1k
˛
XT
Ckw2k

˛
XT
/ if d < 4;

k QLw1�
QLw2kCT L2\Lp1 Lq1 . T � 00

kw1�w2kCT L2\Lp1 Lq1 .1Ckw1k
˛
XT
Ckw2k

˛
XT
/ if d � 4;

where � , � 0, � 00 are positive, and the second inequality (d < 4) also requires the assumption (4-3) on F

(this is Propositions 3.1, 3.3, 3.4 and equations (3.9)–(3.10) from [Burq et al. 2004]).
Since F. QuCw/� F. Qg/ has trace 0 on @�� Œ0;T �, we can use these estimates. We recall Qg is in

H 2;2 ,! L1
T

H 1 \L2
T

W 1;q0 ; therefore, setting M.w/D kwkXT
CkQukXT

CkgkH 3=2;2 the estimates
give, directly in our case,

kLwkXT
. T � .M C .M /1C˛/; (4-7)

kLw1�Lw2kXT
. T � 0

kw1�w2kXT

�
1C .M.w1/CM.w2//

˛
�

if d < 4; (4-8)

k QLw1�
QLw2kCT L2\Lp1 Lq1

. T � 00
kw1�w2kCT L2\Lp1 Lq1

�
1C .M.w1/CM.w2//

˛
�

if d � 4: (4-9)

If d < 4, from (4-7)–(4-8) we can apply the Picard–Banach fixed-point theorem in CT H 1 \L
p
T

W 1;q

for some T .ku0kH 1 CkgkH 3=2C";2.@��Œ0;T �// and it also implies that the flow is Lipschitz. If d � 4,
(4-7) implies that L sends some ball of XT to itself, and from (4-9) it is contractive in the weaker
space CT L2 \L

p1

T
Lq1 . By a standard argument, the metric space fu W kukXT

� M g with distance
d.u; v/D ku� vkL1

T
L2\L

p

T
Lq is complete (e.g., [Cazenave 2003, Theorem 1.2.5]), so that the existence

of a solution is again a consequence of the Picard–Banach fixed point theorem.
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Blow-up alternative: This is a direct consequence of the fact that the time of local existence only
depends on ku0kH 1 C kgkH 3=2C" . Let u be a solution on Œ0;T �Œ such that limku.t/kH 1 D C <1

and let ı be such that T .2C CkgkH 3=2C";2.ŒT ��1;T �C1���//� 2ı. Up to decreasing ı, we can assume
ku.T �� ı/kH 1 � 2C . Since u 2 CT H 1 and uj@� D g the pair u.T �� ı/, gjŒT ��ı;C1Œ satisfies (CC0)
on @�� fT �� ıg, thus (NLS) has a local solution on the time interval ŒT �� ı;T �C ı�. Thanks to the
uniqueness on ŒT �� ı;T �Œ, this allows us to extend the solution on Œ0;T �C ı�. �
Remark 4.3. If one chooses to use instead the Strichartz estimate from Remark 3.8, namely

kukLp

T
W 1;q . ku0kH 1 CkgkH 3=2 Ckf kH 1=2;1=4 when 1

p
C

d

q
D

d

2
C

2"

p
;

the restriction on ˛ becomes (supposedly) ˛ < .2� 4"/=.d � 2/. Consequently, well-posedness for the
whole range ˛ < 2=.d � 2/ and boundary data in the optimal space H 3=2;2 can most likely be obtained,
up to more involved estimates with some " in all indices.

Since our Strichartz estimates for the IBVP only give a gain of half a derivative, the natural limitation
on the nonlinearity is ˛ < 2=.d � 2/ (as in [Burq et al. 2004]). However better (scale-invariant) estimates
are available for the homogeneous boundary value problem, and they can be combined with our estimates
to improve the range of ˛. The following theorem illustrates this idea.

Theorem 4.4. If � is the exterior of a smooth strictly convex obstacle, then Theorem 4.1 is true for
˛ < 3=.d � 2/.

Proof. From [Ivanovici 2010], the usual Strichartz estimates with .p; q/ such that 2
p
C

d
q
D

d
2

, p > 2,
are true for the semigroup eit�D . The uniqueness in L1

T
H 1 follows from standard arguments; see, e.g.,

[Cazenave 2003, Section 4.2]. The existence part is again an application of the Picard–Banach fixed point
theorem: let .p; q/ be weakly admissible, p > 2, such that

˛ <
2

d�2

�
1C

1

p

�
: (4-10)

We set XT D CT H 1\L
p
T

W 1;q and, as in Theorem 4.1,

L W w 7!L.w/D

Z t

0

ei.t�s/�D .F. QuCw/�F. Qg// ds:

From the Sobolev embedding, Qg 2H 2;2 ,! L2H 2 \CT H 1 ,! XT . Let q1 be such that 2
p
C

d
q1
D

d
2

.
From the scale-invariant Strichartz estimates we have

kLwkXT
. kLwkL1

T
H 1\L

p

T
W 1;q1 . kF. QuCw/�F. Qg/k

L
p0

T
W

1;q0
1CL1

T
H 1
;

and we will prove that there exists � > 0 such that

kF.v/k
L

p0

T
W

1;q0
1CL1

T
H 1
. T � .1Ckvk

1C3=.d�2/
XT

/: (4-11)

Let  2 C1.RC/ with  � 1 for x � 1 and  � 0 for x � 1
2

. Since supp.1� .jvj2//� fjvj � 1g, we
have 1� .jvj2/F.v/


L1

T
H 1 . kvkL1

T
H 1 � T kvkXT

:
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On the other hand, for any ˇ � ˛,ˇ̌
 .jvj2/F.v/

ˇ̌
. jvj1Cˇ;

ˇ̌
r. .jvj2/F.v//

ˇ̌
. jvjˇjrvj:

Since

.1C˛/q01 �
�
1C

2

d�2

�
1C

1

p

���
1

2
C

2

dp

��1
D

2d

d�2

dpC2

dpC4
<

2d

d�2
;

there exists ˇ � ˛ such that 2� .1Cˇ/q0
1
� 2d=.d � 2/, and this choice leads tojvj1Cˇ

Lp0L
q0

1
. kvk1Cˇ

L.1Cˇ/p
0
L
.1Cˇ/q0

1

. T 1=p0
kvk

1Cˇ

L1H 1 :

To estimater. .jvj2/F.v//, we use Hölder’s inequality on jvjˇrv combined with the Sobolev embedding
W 1;r ,!Ls , 1

s
D

1
r
�

1
d

: jvjˇrv
Lp0L

q0
1
. kvkˇ

L
Op

T
W 1; Oq
krvkLpLq ; (4-12)

where

1

Op
D

1

ˇ

�
1

p0
�

1

p

�
D

1

ˇ

�
1�

2

p

�
(Hölder in time);

1

Oq
D

1

ˇ

�
1

q0
1

�
1

q

�
C

1

d
D

1

d

�
1C

3

ˇp

�
(Hölder in space and Sobolev embedding):

Note that q, Op, Oq are defined by p and ˇ. If we can choose p > 2 and ˇ � ˛ such that

1

Op
C

d

Oq
>

d

2
;

1

Op
<

1

2
;

1

q
�

1

Oq
�

1

2
; (4-13)

this gives (4-11); indeed, for such p, ˇ, if 1=p1C d= Oq D d=2 we have L
p1

T
W 1; Oq � XT , 1=p1 < 1= Op,

and (4-12) gives

kvk
ˇ

L
Op

T
W 1; Oq
krvkLpLq . T ˇ.1= Op�1=p1/kvk

ˇ

Lp1 W 1; Oq
krvkLpLq . T ˇ.1= Op�1=p1/kvk

1Cˇ
XT

: (4-14)

Let us now check that there exists a choice of ˇ and p for which (4-13) holds. The first two conditions
become

1

ˇ

�
1�

2

p

�
C

�
1C

3

ˇp

�
>

d

2
()

1

p
> ˇ

�
d

2
� 1

�
� 1;

1

ˇ

�
1�

2

p

�
<

1

2
()

1

p
>

1

2
�
ˇ

4
:

Or, more compactly,
1

2
>

1

p
>max

�
1

2
�
ˇ

4
; ˇ
�

d

2
� 1

�
� 1

�
The condition 1

2
�
ˇ
4
< 1

2
is automatically satisfied. To ensure 1=q � 1= Oq � 1

2
, we must have

1

ˇ
�

p.d�2/

6
and 1

ˇ
�

p.d�2/

6
�

1

3
;
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so that the condition is finally equivalent to

ˇ
�

d

2
� 1

�
� 1<

1

p
�
ˇ.d�2/

6
;

and there exist solutions p > 2, ˇ � ˛ if and only if ˇ < 3=.d � 2/, which is always compatible with
ˇ � ˛ and the initial assumption (4-10).

From (4-11), we infer

kLwkXT
. T �

�
1C .k QukXT

CkwkXT
Ck QgkXT

/3=.d�2/
�
;

so that for T small enough, L maps the ball of radius one in XT to itself. It is not clear if L is contractive
in XT even for smaller T , however contractivity for the weaker topology induced by L1

T
L2\LpLq is

an easy consequence of the previous estimates and the assumptions on F :

jF. QuCw1/�F. QuCw2/j. jw1�w2jC .jw1jC jw2jC j Quj/
ˇ
jw1�w2j;

and (4-14) gives

kLw1�Lw2kXT

. kw1�w2kL1
T

L2 C
jw1�w2jC .jw1jC jw2jC j Quj/

ˇ
jw1�w2j


L

p0

T
L

q0
1

.T ˇ.1= Op�1=p1/.k QukXT
Ckw1kXT

Ckw2kXT
/ˇkw1�w2kLp

T
LqCT kw1�w2kL1

T
L2 : (4-15)

As for Theorem 4.1, the contractivity of L for the L
p
T

Lq \L1
T

L2 topology and the mapping of a ball
of XT to itself gives the existence of a solution as a fixed point. �

Remark 4.5. The only thing limiting us to ˛ < 3=.d � 2/ is that Qu only belongs to CT H 1\L2W 1;q0

with 1
2
C

d
q0
D

d
2

. If this limitation was lifted the fixed point argument on w could be performed in the
usual scale-invariant spaces.

Remark 4.6. Theorem 4.4 is only an example of how one may mix optimal and nonoptimal Strichartz
estimates. If � is only assumed to be the exterior of a nontrapping obstacle, [Blair et al. 2012] proved
scale-invariant Strichartz estimates with loss of derivatives, namely

keit�D u0kLpLq . ku0kH � with 2

p
C

d

q
D

d

2
� �;

1

p
C

1

q
�

1

2
:

Such estimates could probably be used to improve the range of ˛ if �c is only star-shaped. Since the
method seems similar and with numerous specific cases, we chose not to develop this issue.

Global well-posedness. In order to obtain global well-posedness for the defocusing nonlinear Schrödinger
equation 8<:

i@tuC�uD juj˛u; .x; t/ 2�� Œ0;T Œ;

ujtD0 D u0; x 2�;

uj@��Œ0;T � D g; .x; t/ 2 @�� Œ0;T Œ;

(NLSD)
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the argument based on local well-posedness and conservation of energy cannot be trivially applied. Indeed
we only have the formal identities

d

dt

Z
�

1

2
juj2 dx D� Im

Z
@�

@nug dS; (4-16)

d

dt

Z
�

1

2
jruj2C

1

˛C2
juj˛C2 dx D Re

Z
@�

@nu@tg dS (4-17)

If g 2 H s;2, the control of kukCT H 1 requires us to control k@nukH 2�s;2 . In particular, for the almost
optimal regularity s D 3

2
C ", we must have some control on @nu 2H 1=2�";2.@�� Œ0;T �/, which is its

(almost) optimal space of regularity.
We will first deal with the simpler case g 2H 2;2; in this case we only need to control k@nukL2 . This

can be done thanks to a nonlinear variation of the virial identity from Proposition 3.1.

Theorem 4.7. (1) For any 0< ˛ < 2=.d �2/, if .u0;g/ 2H 1.�/�H
2;2
loc .R

C�@�/ satisfy (CC0), then
(NLSD) has a unique global solution u 2 C.RC;H 1/.

(2) If �c is strictly convex and there exists " > 0 such that g 2 H 2C";2, then the theorem is true for
˛ < 4=.d � 2/.

Proof. The case (1) is a simple consequence of the virial identity and the blow-up alternative, indeed the
(nonlinear) virial identity writes

d

dt
I.u.t//

D 4 Re
Z
�

Hess.h/.ru;ru/� 1
4
juj2�2hCrh � rujuj˛uC 1

2
u�hjuj˛u dx

CRe
Z
@�

2@nhjr�gj
2
�2@nhj@nuj2�2i@nh@tgg dSCRe

Z
@�

�2g�h@nuCjgj2@n�h dS

D 4 Re
Z
�

Hess.h/.ru;ru/� 1
4
juj2�2hCjuj˛C2�h

�
1

2
�

1

˛C2

�
dx

CRe
Z
@�

2@nhjr�gj
2
� 2@nhj@nuj2� 2i@nh@tgu dS

CRe
Z
@�

�2g�h@nuCjgj2@n�hC
jgj˛C2

˛C 2
@nh dS:

As for Proposition 3.2, we choose hD
p

1Cjxj2 so that Hess.h/, �h> 0, @nh� 0 and integrate in time.
From the embedding H 2;2.@�� Œ0;T �/ ,! H

2=.dC1/
T

H .2d�2/=.dC1/ ,! L2.dC1/=.d�3/.@�� Œ0;T �/

(or L1 if d D 2, Lp for any 2� p <1 if d D 3) we haveZ T

0

Z
@�

jgj˛C2 dS dt . kgk˛C2
H 2;2.@��Œ0;T �/

:

If K is a compact neighbourhood of @�, we deduceZ
K�Œ0;T �

jruj2Cjuj˛C2 dx dt �

Z
@��Œ0;T �

j@nuj2x � n dS dt �M.T /.1Ckuk2
CT H 1 Ckgk

˛C2
H 2;2/:
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If x �n< 0 on @�, this gives directly a control of k@nukL2 ; if not then we can argue as in Proposition 3.2
by using some function h compactly supported in K such that @nh< 0. For this choice, �h and Hess.h/
are no longer signed, but using the estimate kuk˛C2

L˛C2.Œ0;T ��K /
. 1Ckuk2

CT H 1 Ckgk
˛C2
H 2;2 we get

k@nukL2 �M.T /.1CkukCT H 1 Ckgk
˛=2C1

H 2;2 /:

Plugging this in the “conservation” laws (4-16)–(4-17) implies

kuk2
CT H 1 � ku0k

2
H 1 Ck@nukL2kgkH 2;2 . 1Cku0k

2
H 1 C .kukCT H 1 Ckgk

˛=2C1

H 2;2 /kgkH 2;2

and thus
1
2
kuk2

CT H 1 . 1Cku0k
2
H 1 Ckgk

˛=2C2

H 2;2.@��Œ0;T �/
:

As a consequence, u remains locally bounded in H 1 and the solution must be global.

The case (2) is a bit more intricate, indeed even the local existence of a solution for 3=.d � 2/� ˛ <

4=.d � 2/ has not been covered yet. The main argument is that we can modify Qu from problem (4-4)
so that it belongs to CT H 1\L2

T
W 1;q0 , 1C d=q0 D d=2: since g 2H 2C";2, we have from (CC0) that

u0j@� D gjtD0 2H 1C";2. Let v0 2H 3=2C".�/ be a lifting of u0j@�; we define Qv as the solution of the
linear IBVP 8<:

i@t QvC� Qv D F. Qg/;

QvjtD0 D v0;

Qvj@��Œ0;T � D g:

Since F. Qg/ 2 H 1;2 (see Lemma 4.2), g 2 H 2C";2, v0 2 H 3=2, the Strichartz estimates imply Qv is in
L2

T
W 3=2;q ,!L2

T
W 1;q0 , where 1C d=q0 D d=2. We are now left to solve the homogeneous boundary

value problem 8<:
i@twC�w D F. QvCw/�F. Qg/;

wjtD0 D u0� v0 2H 1
0
;

wj@��Œ0;T � D 0;

or equivalently obtain a fixed point to the map

Lw D eit�D .u0� v0/C

Z t

0

ei.t�s/�D .F. QvCw/�F. Qg// ds:

Since Qv, Qg 2L1
T

H 1\L2
T

W 1;q0 , the fixed point argument can be done as in the Rd case, e.g., [Cazenave
2003, Section 4.4], leading to local existence. We can still use the virial identity as in case (1) since
˛C 2< .d C 2/=.d � 2/ < 2.d C 1/=.d � 3/, and the energy argument is ended in the same way. �

If we only assume Qg 2H 3=2C";2, global existence becomes a much more delicate issue since we need
to control k@nukH 1=2;2 . Let us sketch the main issue: the linear smoothing gives a control k@nukH 1=2;2 .
ku0kH 1 Ckgk3=2C";2Ckf kH 1=2;2 , where f D juj˛u has scaling 1C˛. In order to estimate the time
regularity of f we need to again use the equation, which adds another power ˛ to the scaling. Using
various chain rules, the conservation laws (4-16)–(4-17) should give at best kuk2

CT H 1 .
Q
kuk j̨

Xj
, whereP

j̨ D 1C 2˛ and, for all j , Xj ,! CT H 1. Eventually, kuk2
CT H 1 . kukˇCT H 1 for some ˇ depending
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on ˛, and this allows us to close the estimate if ˇ < 2. It is clear that such an approach will be limited to
small values of ˛. Nevertheless, this is the method used in the following theorem, where the restriction
on ˛ is of course purely technical.

Theorem 4.8. For d D 2, 1
2
� ˛ < 11

9
, and .u0;g/ 2 H 1 � H 3=2C";2 satisfying the compatibility

conditions, the problem (NLSD) has a unique global solution in C.RC;H 1/.

Proof. The existence of a maximal solution is Theorem 4.1; it remains to prove that u is locally bounded
in H 1. In this proof, . means that the inequality is true up to a multiplicative constant that may depend
on T , g and an additive constant that may depend on T , g and u0. We use ı as a placeholder for some
positive quantity that can be chosen arbitrarily small.

As in Theorem 4.7, we can use the nonlinear virial identity provided g 2L˛C2.@�� Œ0;T �/, which
is ensured by H 3=2;2 ,!H

1=2
T

H 1=2.@�/ ,!Lp.@�� Œ0;T �/ for any 2� p <1. From the nonlinear
virial identity we obtain

k@nukL2
T

L2 CkrukL2
T

L2 . kuk1=2CT H 1kuk
1=2

CT L2 Ckgk
1C˛=2

H 3=2C";2 . kuk
1=2

CT H 1kuk
1=2

CT L2 I (4-18)

plugging this in (4-16) gives

kuk2
CT L2 . k@nukL2

T
L2kgkL2

T
L2 . .kuk1=2CT H 1kuk

1=2

CT L2 CkgkH 3=2C";2/kgkL2
T

L2 ;

thus

kukCT L2 . kuk1=3
CT H 1 ; (4-19)

and kukL2
T

H 1
loc
. kuk1=2C1=6

CT H 1 D kuk
2=3

CT H 1 : (4-20)

For later use, let us note that Hölder’s inequality and the Sobolev embedding H 1 ,!Lr for 2� r <1

imply

kukLq . kuk1�2=qCı

H 1 kuk
2=q�ı

L2 for all q > 2; 0< ı < 2=q: (4-21)

On the other hand, (4-16)–(4-17) give

kuk2
CT H 1 Ckuk

˛C2
L˛C2 . ku0k

2
H 1 CkgkH 3=2C";2k@nukH 1=2;2 : (4-22)

To estimate @nu, we fix � 2 C1c .�/ such that �� 1 on a neighbourhood of @�, and split uD u1Cu2,
where u1 and u2 are solutions of8<:

i@tu1C�u1 D �juj
˛u;

u1jtD0 D u0;

u1j@��Œ0;T � D g;

and

8<:
i@tu2C�u2 D .1��/juj

˛u;

u2jtD0 D 0;

u2j@��Œ0;T � D 0:

Corollary 3.4 gives

k@nu1kH 1=2;2 . ku0kH 1 CkgkH 3=2C";2 Ck�juj˛ukH 1=2;2 :
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We estimate the nonlinear term using H 1 ,! B
1=2
4;2

[Triebel 1983, Section 3.3] and (4-19)–(4-20):

k�juj˛ukL2
T

H 1=2 .
juj˛

L1
T

L4
loc
kuk

L2
T

B
1=2;4

2;loc
. kuk˛�1=2Cı

L1H 1 kuk
1=2�ı

L1
T

L2kukL2
T

H 1
loc

. kuk˛C1=3Cı

CT H 1 : (4-23)

For the time regularity, we use the composition rules and interpolation of anisotropic Sobolev spaces
[Lions and Magenes 1968b, chapitre 4, paragraphe 2.1]. For z� such that z�D 1 on supp�,

k�juj˛ukH 1=4L2 .
juj˛

L1
T

L4kukH 1=4

T
L4

loc
. kuk˛

L1
T

L4˛kz�uk
H

1=4

T
H 1=2

. kuk˛
L1

T
L4˛kz�uk

1=2

H
1=2

T
L2
kz�uk

1=2

L2
T

H 1
:

Since i@t z�uC�z�uD z�juj˛uC Œ�; z��u, we have

k@t z�ukL2
T

H�1 . kz�ukL2
T

H 1 Ckz�juj
˛ukL2

T
H�1 CkukL1

T
L2 ;

and since H�1 �Lq for 1< q � 2 we get

k@t z�ukL2
T

H�1 . kuk2=3L1
T

H 1 Ckz�juj
˛ukL2

T
L2=.1C˛/ . kuk2=3L1

T
H 1 Ckuk

.1C˛/=3

L1
T

H 1 :

Next we use kz�uk
H

1=2

T
L2 . kz�uk

1=2

H 1
T

H�1
kz�uk

1=2

L2
T

H 1
, so that

kz�uk
H

1=2

T
L2 .

�
kuk

2=3

L1
T

H 1 Ckuk
.1C˛/=3

L1
T

LH 1

�1=2
kz�uk

1=2

L2
T

H 1
. kuk2=3

L1
T

H 1 Ckuk
.3C˛/=6

L1
T

H 1 :

This implies, using (4-19)–(4-21),

k�juj˛ukH 1=4L2 . kuk˛L1
T

L4˛

�
kuk

1=3

L1
T

H 1 Ckuk
.3C˛/=12

L1
T

H 1

�
kuk

1=3

L1
T

H 1

. kuk1=3C˛Cı
L1

T
H 1 Ckuk

13˛=12C1=4Cı

L1
T

H 1 :

Combining the estimate above with (4-23) gives the following estimate on @nu1:

k@nu1kH 1=2;2 . kuk1=3C˛Cı
CT H 1 Ckuk

13˛=12C1=4Cı

CT H 1 : (4-24)

We now treat @nu2. The situation is less favourable since we can not use the smoothing property
k�ukL2

T
H 1 . kuk2=3L1

T
H 1 . In particular we only have

k.1��/uk
H

1=2

T
L2 . kukL1

T
H 1 Ckuk

.4C˛/=6

L1
T

H 1 : (4-25)

Using Proposition 3.6, we have

k@nu2kH 1=2;2.@��Œ0;T �/ . k.1��/juj˛uk
L3=2B1

3=2;2
\B

1=2

3=2;2
L3=2 :
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For the first norm we write

k.1��/juj˛ukL3=2B1
3=2;2
. k.1��/juj˛ukL1

T
W 1;3=2

. kuk˛
L1

T
L6˛kukL1

T
H 1

. kuk1=3
L1

T
L2kuk

˛�1=3Cı

L1
T

H 1 kukL1
T

H 1

. kuk˛C7=9Cı

CT H 1 :

For the other norm, the composition rules and (4-25) give similarly

k.1��/juj˛uk
B

1=2

3=2;2
L3=2 . kuk˛L6˛

T
L6˛
kuk

H
1=2

T
L2

. kuk˛�2=9Cı

CT H 1 .kukCT H 1 Ckuk
.4C˛/=6

CT H 1 /

D kuk
˛C7=9Cı

CT H 1 Ckuk
7˛=6C4=9Cı

CT H 1 ;

so that

k@nu2kH 1=2;2 . kuk˛C7=9Cı

L1
T

H 1 Ckuk
7˛=6C4=9

L1
T

H 1 :

Combining this estimate with (4-24) in (4-22), we finally obtain (as previously, . still means “up to
multiplicative and additive quantities only depending on T and the data”)

kuk2
CT H 1 . kukˇCT H 1 ;

with ˇ D max
�

1
3
C ˛; 13˛=12C 1

4
; ˛C 7

9
; 7˛=6C 4

9

�
C ı. If ˇ < 2 then ku.t/kH 1 is locally bounded,

and hence the solution is global. The condition ˇ < 2 is equivalent to ˛ < 11
9

. �

Appendix: Two interpolation lemmas

In this section we give two results on the interpolation of Sobolev spaces. They do not seem standard as
they involve compatibility conditions in some way. We do not claim that these results are new, however
we did not find them in the literature, thus we decided to include reasonably self-contained proofs.

Definition A.1 (real interpolation). If X0, X1 are two functional spaces embedded in D0.�/, we define,
for u 2X0CX1,

K.t;u/D inf
uDu0Cu12X0CX1

ku0kX0
C tku1kX1

:

For 0< � < 1, the interpolated space ŒX0;X1��;q is the set of functions such thatZ 1
0

jK.t;u/qj
dt

t1C�q
<1:

Lemma A.2. Let

X �
D
˚
.u0;g/ 2H�1=2C2�

�H 2�;� .@�� Œ0;T �/ that satisfy the compatibility conditions
	
;
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where for � D 0 we take .H 1=2
D

/0 instead of H�1=2. Then, for 0� � � 1,

ŒX 0;X 1�� DX � :

Remark A.3. While it is a bit tedious, the case � D 1
2

really needs to be treated, as it corresponds to the
natural space for the virial estimates.

Proof. We clearly have

H
3=2
0

.�/�H
2;2
0
.@�� Œ0;T �/�X 1

�H 3=2.�/�H 2;2.@�� Œ0;T �/:

The interpolation of Sobolev spaces [Lions and Magenes 1968a; Lions and Magenes 1968b, chapitres 1, 4],
gives, for � < 1

2
,

Œ.H
1=2
D

/0.�/;H
3=2
0

�� DH 2��1=2; ŒH 0;0.@�� Œ0;T �/;H
2;2
0
�� DH 2�;2;

Œ.H
1=2
D

/0.�/;H 3=2�� DH 2��1=2; ŒH 0;0.@�� Œ0;T �/;H 2;2�� DH 2�;2
I

the two left-hand identities are not explicitly written in [Lions and Magenes 1968a], however .H 1=2
D

/0 does
not cause any new difficulty since it can be bypassed using .H 1=2

D
/0 D ŒH�1;H 2�1=6 D ŒH

�1;H 2
D
�1=6

[Lions and Magenes 1968a, paragraphes 12.3, 12.4], and the reiteration theorem ŒŒX;Y ��0
; ŒX;Y ��1

�� D

ŒX;Y �.1��/�0C��1
. We deduce that, for 0< � < 1

2
,

X �
DH 2��1=2

�H 2�;�
� ŒX 0;X 1�� �X � :

For � � 1=2 we first apply the Lions–Peetre reiteration theorem

ŒX 0;X 1�� D ŒŒX
0;X 1�3=8; ŒX

0;X 1�1�8�=5�3=5 D ŒX
3=8;X 1�8�=5�3=5;

so that we are reduced to proving ŒX 3=8;X 1�� D X .5�C3/=8 for 1
5
< � < 1. To this end, we use the

existence of a lifting operator independent of 1
4
< s � 1,3

R WX s
!H 2sC1=2;sC1=4.�� Œ0;T �/;

.u0;g/ 7! u such that uj��Œ0;T � D g; ujtD0 D u0;

Such an operator can be constructed as follows: for any .g;u0/ 2X s , there exists a map

R1 WH
2s;s.@�� Œ0;T �/!H 2sC1=2;sC1=4.�� Œ0;T �/;

g 7!R1gI

on the half space, Fx0;tR1b D Og.�; �/'.
p

1Cj� 0j2Cj� j2xd / with '.0/D 1, ' smooth enough, works.
There is also a map

R2 WH
2s�1=2
D

.�/!H
2sC1=2;sC1=4
D

.��R/;

u0 7!R2u0I

3R is usually called a coretraction of the trace operator u 7! .ujtD0;uj@��Œ0;T �/.
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in this case, one might take R2.u0/D '..1��D/t/u0 (this is a very special case of [Lions and Magenes
1968a, chapitre 1, théorème 4.2]; see also [Lions and Magenes 1968b, chapitre 4, théorème 2.3]). With
these two operators, we can now define

R.u0;g/DR2.u0�R1.g/jtD0/CR1.g/I

R is a continuous map X s!H 2sC 1
2
;2 for s > 1

4
, since u0 �R1gjtD0 2H 2s�1=2

D . For s > 1
2

this is a
consequence of H s

D
DH s

0
and (CC0), while for s D 1

2
this comes from H

1=2
D
DH

1=2
00

and (CCG0). We
can conclude by introducing

T WH 2sC1=2;2.�� Œ0;T �/!H 2s�1=2.�/�H 2s;2.@�� Œ0;T �/;

u 7! .ujtD0;uj@��Œ0;T �/:

By construction, T ıRD Id on X 3=8 and X 1, so that ŒX 3=8;X 1�� D T .ŒH 5=4;5=8;H 5=2;5=4�� /. From
basic results on anisotropic Sobolev spaces [Lions and Magenes 1968b, chapitre 4, proposition 2.1,
théorème 2.3] we obtain, as expected,

T .ŒH 5=4;2.�� Œ0;T �/;H 5=2;2�� /D T .H .5�C5/=4;2/DX .5�C3/=8: �

Let H
2;2
.0/
.��Rt /D fu 2H 2;2.�� Œ0;T �/ W uj@��f0g D 0g.

Proposition A.4. For � < 3
4

, ŒL2;H
2;2
.0/
��;2 DH 2�;2.

The result is to be expected, since the trace on t D 0 sends H 2�;2.@�� Œ0;T �/ to H 2��1.�/, for
which there is a trace on @� if and only if 2� � 1> 1

2
, or equivalently � > 3

4
.

Proof. The inclusion � is obvious; we focus on the reverse inclusion.
Let R be the restriction operator H 2�;2.Rd � Œ0;T �/! H 2�;2.� � Œ0;T �/; since R is continuous

for 0 � � � 1 and surjective with value to H 2�;2, we only need to check that for H
2;2
.0/;@�

.Rd �Rt /D

fu 2H 2;2 W uj@��f0g D 0g we have

ŒL2;H
2;2
.0/;@�

�� DH 2�;2.Rd
�Rt / for all � < 3

4
(A-1)

Using a partition of the unity, we can reduce the problem to the case @�DRd�1�f0g and for conciseness
we write H

2;2
.0/;@�

.Rd �Rt /DH
2;2
.0/

. Let u 2H 2�;2.Rd �Rt /; then, since L2 �H 2;2, it is easily seen
from Definition A.1 that u 2 ŒL2;H

2;2
.0/
��;2 if

1X
jD0

24�j K.2�2j ;u/2 <1; where K.t;u/D inf
uDu0Cu12L2CH

2;2

.0/

ku0kL2 C tku1kH 2;2

.0/

: (A-2)

We define an anisotropic Littlewood–Paley decomposition as follows: the dual variables of x and t

are .�; �/ D .� 0; �d ; �/, and we set u D
P

j�0�j u.x; t/, where, for j � 1, b�j u.�; �/ is supported in
.j�j2Cj� j/1=2 � 2j , b�0u is supported in j�j2Cj� j � 1, and we set Sj uD

Pj

kD0
�ku, Rj uD u�Sj u.

From the Plancherel theorem and
R

Rd �j u�luD 0 for jj � l j large enough (“almost orthogonality”), we
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have
k�j ukH 2;2 � k�j ukL222j

D) kuk2
H 2;2 �

X
j�0

24j
k�j uk2

L2 : (A-3)

Let us write

uD .Rj uCSj u.x0; 0; 0/ j .xd ; t//C .Sj u�Sj u.x0; 0; 0/ j .xd ; t//D u0Cu1;

where b j D cj 2�3j 1.j�d j
2Cj� j/1=2�2j with c such that  j .0/D 1. Since vol..j�d j2Cj� j/1=2� 2j /� 23j ,

cj is uniformly bounded in j . For this choice it is clear that .u0; u1/ 2L2 �H
2;2
.0/

. The decomposition
uD Sj uCRj u would correspond to the standard interpolation ŒL2;H 2;2�� , thus we will only focus on
how to estimate in (A-2)

kSj u.x0; 0; 0/ j .xd ; t/kL2 C 2�2j
kSj u.x0; 0; 0/ j .xd ; t/kH 2;2 :

We first note that

F.Sj u.x0; 0; 0/ j .xd ; t//D b j .�d ; �/

Z
R2

bSj u.� 0; �; ı/ d� dı;

so that F.Sj u.x0; 0; 0/ j .xd ; t// is supported in .j�j2Cj� j/1=2 . 2j . We deduce

2�2j
kSj u.x0; 0; 0/ j .xd ; t/kH 2;2CkSj u.x0; 0; 0/ j .xd ; t/kL2 . kSj u.x0; 0; 0/ j .xd ; t/kL2

. k jkL2

Z
R2

kbSj u.� 0; �; ı/kL2
�0

d�dı:

Again using vol..j�d j2 C j� j/1=2 � 2j / � 23j , we have k jkL2 � 2�3j 23j=2 D 2�3j=2. Moreover,
�ku.� 0; �; ı/ is supported in .j�j2Cjıj/1=2.2k independently of � 0, thus the Cauchy–Schwartz inequality
impliesZ

R2

kbSj u.� 0; �; ı/kL2
�0

d� dı �

Z
R2

jX
kD0

k�ku.� 0; �; ı/kL2
�0

d� dı .
jX

kD0

k�kukL223k=2:

Plugging this in (A-2) (and omitting the estimate on Sj u;Rj u),

1X
jD0

24�j K.2�2j ;u/2 .
1X

jD0

2.4��3/j

� jX
kD0

k�kukL222�k 2.3=2�2�/k

�2

.
1X

jD0

� jX
kD0

k�kukL222�k 2.3=2�2�/.k�j/

�2

D ka� bk2
l2 ;

where .ak/k�0 D .k�kukL222�k/k�0 2 l2 and .bk/k�0 D .2
.2��3=2/k/k�0 2 l1, we can conclude by

Young’s inequality and (A-3) that
1X
0

24�j K.2�2j ;u/2 . .kakl2kbkl1/2 . kuk2
H 2�;2 ;
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thus H 2�;2 � ŒL2;H
2;2
.0/
�� . �

Remark A.5. Using a similar argument, it is not difficult to check that ŒL2;H
2;2
.0/
��;2 DH

2�;2
.0/

for � > 3
4

.
Of course the identification in the case � D 3

4
is less clear.
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