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ON THE BOUNDARY VALUE PROBLEM FOR THE SCHRODINGER EQUATION
COMPATIBILITY CONDITIONS AND GLOBAL EXISTENCE

CORENTIN AUDIARD

We consider linear and nonlinear Schrodinger equations on a domain €2 with nonzero Dirichlet boundary
conditions and initial data. We first study the linear boundary value problem with boundary data of optimal
regularity (in anisotropic Sobolev spaces) with respect to the initial data. We prove well-posedness under
natural compatibility conditions. This is essential for the second part, where we prove the existence and
uniqueness of maximal solutions for nonlinear Schrodinger equations. Despite the nonconservation of
energy, we also obtain global existence in several (defocusing) cases.

On étudie des équations de Schrodinger linéaires et non linéaires sur un domaine €2 avec donnée initiale et
condition au bord de Dirichlet non nulles. Dans une premiere partie on étudie le probleme linéaire pour des
données au bord dans des espaces de Sobolev anisotropes de régularité optimale par rapport aux données
de Cauchy. On démontre la nature bien posée du probleme avec les conditions de compatibilité naturelles
a tout ordre de régularité. Ces résultats sont essentiels pour établir des résultats de type Cauchy—Lipschitz
pour le probleme non linéaire, ceux ci font I’objet de la deuxieme partie. Malgré la non conservation de
I’énergie, on obtient des solutions globales en dimension 2.

Introduction

This article is a continuation of [Audiard 2013] on the initial boundary value problem for the (linear and
nonlinear) Schrodinger equation

ideu+Au=f, (x,1)eQ2x]0,T],
ulr=0 = uo, xeQ, (IBVP)
ulpexpo,r1 =8, (x,1) € 92 x[0,TT,

where  C R, d > 2, is a smooth open set. Our main purpose is to deal with boundary data of arguably
optimal regularity, and in particular too rough to be dealt with by lifting arguments. When f depends
on u we generically refer to the nonlinear Schrodinger equation as NLS. We will study nonlinearities that
are essentially similar to A|u|%u.

A classical tool to deal with the well-posedness of NLS is Strichartz estimates. It is well known that
itA

if © = RY, the semigroup e'’~ satisfies

i 2 . d _d
le* A uoll Lo, Laay) < lluollz  when » + 72
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for p, g > 2, g < oo for d =2 (see [Cazenave 2003] and [Keel and Tao 1998] for the endpoint), and
more generally the scale-invariant estimates
2 .d _d

1A
le" ®uoll Lo g, Laray) < luollgs  when > + ;-2 "

s are true on bounded time intervals and simple scaling considerations

Similar estimates with % +
— s is necessary. When 2 d_ % + s =r > 0, they are often called

show that the condition > + >+ 7
Strichartz estimates with loss of » derivatives. The derivation of such estimates (and the associated well-

posedness results) for NLS on a domain with the Dirichlet (or Neumann) laplacian has been intensively

d
2

studied over the last decade in various geometric settings. We will only cite results in the case where €2 is
the exterior of a nontrapping obstacle, since it is the one studied here. Roughly speaking, a nontrapping
obstacle is an obstacle such that any ray propagating according to the laws of geometric optic leaves
any compact set in finite time (for a mathematical definition of the rays, see [Melrose and Sjostrand
1978]). In seminal work, Burq, Gérard and Tzvetkov [Burq et al. 2004] proved a local smoothing property
similar to the one on R4 (see [Constantin and Saut 1988]) and deduced Strichartz estimates with loss
of % derivative. Since then numerous improvements were obtained [Anton 2008a; 2008b; Blair et al.
2008] and eventually led to scale-invariant Strichartz estimates: see Blair, Smith and Sogge [Blair et al.
2012] in the general nontrapping case (s > 0 and limited range of exponents), [Ivanovici 2010] for the
exterior of a convex obstacle (s = 0, all exponents except endpoints). The methods used relied heavily on
spectral localization and construction of parametrices. As such they are not very convenient for the study
of nonhomogeneous boundary value problems when the boundary data are not smooth enough to reduce
the problem to a homogeneous one.

On the other hand, Morawetz and virial identities have proved to be very robust tools to study linear
and nonlinear Schrodinger equations. One of their first applications goes back to [Glassey 1977], and
it has since been massively refined (as a tool of a much larger machinery) to the point where exhaustive
attribution is now impossible (we may cite, at least, [Kenig and Merle 2006; Planchon and Vega 2009;
Colliander et al. 2008]). Such tools only rely on differentiation and integration by parts; this makes
them flexible enough to be used even with nonzero boundary data and part of our results rely on this
approach.

As already mentioned, our aim is to treat Schrodinger equations on a domain with nonzero Dirichlet
conditions. The case of dimension one is by now relatively well understood: the local Cauchy theory
on intervals is essentially on par with the theory on R (see [Holmer 2005] for local existence in H*,
0 < s <1, subcritical and critical nonlinearities). For d > 2, there are many fewer results. We might
mention the classical linear results of [Lions and Magenes 1968b], which were based on lifting arguments
and thus prevented boundary data of very low regularity. Indeed, if one takes a lifting Lg of the boundary
data, then u — Lg satisfies

i0(u—Lg)+Au—Lg)=f—(id:+A)Lg,

(u—Lg)lae =0,
(u—Lg)|t=0 =uo—Lg|i=o0.
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so that u € Cr L? would require (id; + A)Lg € L. L2. For a general L this would require g € L' H3/2,
which is a loss of one derivative in space compared to our result (see below).

Bu and Strauss [2001] obtained the existence of global weak H! solutions for defocusing nonlinear
Schrédinger equations with smooth (C3) boundary data. In the important field of control theory, linear
well-posedness and controllability in H~! was obtained for Dirichlet data in L2 when € is a smooth
bounded domain. While optimal on bounded domains, this “loss” of one derivative on the boundary data
is not natural in general. On the half line, it is generally believed that, for initial data ug € HS(R™),
optimally g € H%/2t1/4(R*) (see [Holmer 2005] for a discussion on this). This pair of spaces is
considered to be optimal for at least two reasons: if one rescales solutions as u#(Ax, A%¢) both spaces scale
as A5~1/2 and the space also appears in the famous Kato smoothing property for the Cauchy problem,
le 1193y, ||LOOHY/2+1/4 < |luollgs (see [Kenig et al. 1991]), which can be read as a trace estimate.

The natural generahzatlon of H%/2+1/4(R*) in larger dimension is the anisotropic Sobolev space
HSTV22(9Q %[0, T]) = LEH*TY/2n H7s/2+1/4L2 of functions that, roughly speaking, have twice
more regularity in space than in time. We obtained in [Audiard 2012] well-posedness for the linear
Schrodinger equation on the half space with boundary conditions having this regularity (and satisfying
some Kreiss—Lopatinskii condition). However, the method relied quite heavily on the simple geometry
of Q2. When €2 is the exterior of a nontrapping obstacle, a simple duality argument was used to obtain the
following linear result:

Theorem 0. 1 [Audiard 2013]. For f € L3 HS~Y/2 compactly supported, g € H3 /%% x [0, T)),
ug € Hyj), —5 <s < 3 , the initial boundary value problem (IBVP) has a unique transposition solution. It
satisfies

luller ms < NS Wz mrsmire +llgl g2 + ol

—1/2 1/2)/

In the case s = —%, the result is true if H is replaced by (Hy

Thanks to a virial identity, we also obtained a local smoothing property similar to the one in [Burq
et al. 2004], which allowed us to derive Strichartz estimates with a loss of L derivative. Well-posedness
in H'/2 for the expected range of nonlinearities followed by the usual ﬁxed -point argument.

This work contained, however, a number of important limitations:

¢ The virial estimate was derived when €2 is the exterior of a strictly convex obstacle.

¢ Since the natural space for our virial estimate is H 172 the local well-posedness theorem was stated
foruge H 11)/ ? rather than the energy space H!.

¢ The linear well-posedness theorem was obtained for trivial compatibility conditions, ug € H [1,/ 2(Q)
and g € Hy > (32 x [0, T)).

¢ Since such conditions are certainly not preserved by the flow, continuation arguments were not
available, so the existence of a maximal solution (let alone global solution) was out of reach.

The main purpose of this article is to lift most of the previous restrictions to provide a good local and
global Cauchy theory in the energy space. Rather than the exterior of a convex compact obstacle, we
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will only assume that €2 is the exterior of a compact star-shaped obstacle. On the other hand, we do
not improve the loss in the Strichartz estimates, so that we obtain local well-posedness for a range of
nonlinearities essentially similar to |#|%u with the limitation o < 2 /(d —2) (the whole subcritical range is
a <4/(d —?2)). In the case where Q€ is strictly convex, however, we improve it to & < 3/(d —2). These
results are true for boundary data in the almost optimal space H 3/2+#2 3nd a discussion is included
on the possibility to replace it by the optimal space. If one takes slightly smoother boundary data in
H?*T82(9Q x [0, T]), we obtain global well-posedness for o < 2/(d —2) if Q€ is star-shaped, and for
the whole subcritical range o < 4/(d —2) if Q€ is strictly convex. The existence of global solutions
for g € H3/2%%2 is much more intricate, and is only obtained in dimension 2 with a quite technical
limitation on «.

The presence of ¢ in the trace spaces can most likely be avoided up to lengthier computations that we
chose to avoid for simplicity of the proofs (see Remarks 3.5, 3.8, 4.3).

Structure of the article.

¢ The functional spaces that we use are defined in Section 1, which also provide some useful trace and
interpolation results.

¢ In Section 2 we define the natural compatibility conditions and we prove well-posedness for the
linear IBVP when such conditions are met.

¢ In Section 3 we provide the basic modifications to the proof in [Audiard 2013] that give local
smoothing through a virial estimate when 2 is star-shaped. The boundary data is assumed to be in
the almost optimal space H 3/2+22 We deduce Strichartz estimates at the H! level thanks to an
interpolation argument; this section also includes a smoothing property on d,u that is essential for
global existence issues.

e In Section 4 we prove the nonlinear well-posedness results stated above.

¢ The Appendix contains two elementary interpolation results.

1. Functional spaces and Strichartz estimates

Functional spaces. For p > 1 we denote by L?(2) the usual Lebesgue spaces. If there is no ambiguity,
when X is a Banach space we write

LP(0,T).X)=LYXx, LPR" X)=L7X.

For integer m we denote by W2 (Q2) the usual Sobolev spaces; Wom’p is the closure of C>°(2) for the
WP topology.

For s > 0, the space W*7(Q2) is defined by real interpolation; see [Tartar 2007, Sections 32 and 34].
When p = 2, the Sobolev spaces are denoted by H*, Hy. For s > 0, we set H*(Q) = (HJ(R2))".

For s > 0 and Ap the Dirichlet laplacian on €2, the space Hj, is the domain of (1 — Ap)*’2. When
% <s <1, Hls) = Hg, and when 0 < s < %, Hf, = H*. The space Hll)/2 does not coincide with

HO1 /2= g2 (it is the Lions—Magenes space Hol({ 2 but we will use the notation H Ll)/ 2)
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The Besov spaces By ,(£2) are the restrictions to €2 of functions in By , (R9) [Tartar 2007, Sections 32
and 34]. For s > 0, s £ N, we have Bls,,p = WP (see [Bergh and Lofstrom 1976; Tartar 2007]). The
spaces B;’q’o are defined as the closure of C2°(2) in B}, ,

The anisotropic Sobolev spaces on [0, 7] x 2 are defined as

H*? = LX([0. T}, H* () 0 H*2([0. T]. L*()).
Anisotropic Besov spaces can be defined in a similar way (see [Amann 2009]):

2 2
B;,q,o - LIT)B;J,q,O n B;,/q ([0’ T]’ LP(Q))-

Finally, we use the same definitions for functions defined on d$2 or 02 x [0, 7] using local maps.

We recall in the following proposition the classical rules on embeddings and traces of functional spaces:

Proposition 1.1 (Sobolev embeddings and traces [Lions and Magenes 1968b; Triebel 1983]).

e If0<sp<d, t>0,wehave BI’):ZS(Q) <~ By, . when ﬁ = %—%.

o Ifsp>d, WSP < CO%Q) and, if sp < d, then WSP < L4(Q) when é =

1_s
p d

o Ifsp > 1, the trace operator C*®(2) — C*®(dQ) extends continuously to
WP (Q) —» W1/ PP Q).

* For 0 <s' < 3, the anisotropic spaces H%2(Q x [0, T)) are embedded in HYSJ HS™2,
e Fors > %, the trace operator H2(Q2 x [0, T]) — H*~1/2:2(3Q x [0, T)) is continuous.

e Fors > 1,0 = Q or a2, there is a time-trace operator from the embedding
H*2([0, T1x 0) = C([0.T], H*~' (0)).
For s¢, s1 > 0, we have the interpolation identity (see [Triebel 1983])

) S1 _ pbOso+(1-0)s;
[Bp,qo’ By, lo.g = Bpyg :

Similar interpolation results are true for anisotropic Sobolev spaces. In [Lions and Magenes 1968b] it is
proved that for s > 0,0 =Q or 92,0 <60 <l and ¢t = s, H2([0, T]| x 0) = [L?, H*?].

In addition to their nice interpolation properties, composition rules in Besov spaces are relatively
simple: if F(0) =0and |[VF(z)| < |z|% thenfor0<s < 1,1 <¢g<o00,1 < p=<r <00, %—F%:%,
we have

IF @)y, < NulFuo llullps,: -1

this is Proposition 4.9.4 in [Cazenave 2003] when Q = R4, and it follows from the existence of a
(universal) extension operator when €2 is an exterior domain; see [Amann 2009, Sections 4.1, 4.4].

Since anisotropic Besov spaces are more intricate and scarcely used in the article, we will cite their
properties we need when relevant, pointing to the reference [Amann 2009].

Finally, we recall some Strichartz estimates known for the boundary value problem with homogeneous
boundary condition.
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Theorem 1.2 [Burq et al. 2004; Ivanovici 2010]. If 2 is the exterior of a nontrapping obstacle, then for
any T >0,

||e”ADu0||Lqu <|luollp 2 when %-ﬁ- g = %, p=2. (1-2)
If Q is the exterior of a strictly convex obstacle then
. 2 .d _d
||e”ADu0||L1;Lq < luoll 2 when > + 72 p>2. (1-3)

2. Linear well-posedness

In this section, we assume that Q2 is the exterior of a compact nontrapping obstacle. We recall what we
meant by “transposition solution” in Theorem 0.1:

Definition 2.1. Let x € Ccoo(Rd), f e LZTH_1 (2). We say that u is a transposition solution of the

problem
idju+Au=yfe L%H‘l,

uli=o = ug € (HY*(Q)), (2-1)
ulgaxpo. ] = & € L2([0, T] x 9Q)

when u € CT(HII)/Z)/ and, for any f] € L}Hjl)/z, if v is the solution of

idv+ Av = f1,
V|j=7 =0, (2-2)
v[a@x(0,7]1 = 0,

then we have the identity

T
/0 (”’f1>(H5/2)/,Hll)/2 dt=/0

where (-,-)x, x’ is the duality bracket.

T T
(]pv XU)H*I,HOI dt + /(; (ga anU)LZ(aQ) dt +i(l/l0, v(0)>(H[l)/2)’,H$/2’
(2-3)

In [Audiard 2013] we obtained by derivation/interpolation arguments well-posedness for (¢, g) in

Hj x HSH/Z’Z; the aim of this section is to extend it to (uq, f,g) € H® x HS™1/2:2 x gs+1/2.2 for

any s > —+, under natural compatibility conditions that we derive now.

Compatibility conditions. We consider the linear initial boundary value problem (IBVP)

idu+Au=f, (x,1)eQ2x]0,T],
ulr=0 = uo, xeQ, (2-4)
ulpaxpo,r) =g, (x,1) €9Qx[0, T[.

Local compatibility. If ug € HS, g € HST1/22 g > %, then u( has a trace on d2 and g has a trace
at ¢t = 0; the identity u|;=o|gq = u|yq|s=0 imposes the zeroth-order compatibility condition

uolye = gli=o- (CCO)
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The next compatibility conditions are defined inductively: set @9 = ug, ¢p+1 = %(87 fli=0— Awy); the
k-th order compatibility condition is

0 glim0 = vklsq (CCk)
which must be satisfied if ug € H*(Q), g € HSTV/22(0Q %[0, T]), f € HV/22(Qx[0, T]), s > 2k + 1.

Global compatibility. If s = %, there is a more subtle compatibility condition, the so-called “global
compatibility condition™: thanks to local maps, we can assume that ¢, g are defined by a collection of
(u(]), flg) i< j<J defined on RI-1 x RT (R corresponds to the -variable for g/ and normal space
variable for uf f7); we say that (ug, g) satisfy the zeroth-order global compatibility condition when

Vi<j<J / / (¥ 1) — g7 (x . )2 dx’dh < 00; (CCGO)

similarly, we define the global compatibility conditions of order k for s = % + 2k as

Vi<j<J /f o (') — 0 g (¢ 2)|2dx/62h < o0, (CCGk)

It is standard [Lions and Magenes 1968a] that (CCk) is stronger than (CCGk).

In what follows, we say that (ug, f,g) € H® x HS~1/22 x [st1/2:2 «gatisfy the compatibility
conditions” when all conditions that make sense are satisfied, namely (CCk) holds for k < % — %, and
also (CCGk) if s = % + 2k.

Theorem 2.2. For —5 <s <3 5. let (ug, f.g) € H? ><L2 H~ Y25 H54HY2.2 po such that | is compactly
supported and (ug, f, g) satisfy the compatibility condmons, then the solution of IBVP) is in Cy H.

Fors > % and (ug, f,g) € HSx H =Y/ 225 HST1/2:2 satisfying the compatibility conditions, u € Cy H®.

The spirit of the proof is relatively similar to the classical argument of [Rauch and Massey 1974] for
hyperbolic boundary value problems. Let us describe it and where the difficulty lies: the natural idea
is to consider Au, which is formally a solution of a similar boundary value problem; the low regularity
theorem implies Au € Cr (H, 1/2 )/, and we conclude, by an elliptic regularity argument, that u € Cp H 3/2,
However, due to the weak setting it is not clear that Au is actually a solution of the expected boundary
value problem. For “trivial” compatibility conditions it is sufficient to approximate the initial data by
(Uo,n> &ns fn) € C(Q)x CX (AN x]0, T]) x CX(2 x]0, T) that automatically satisfy the compatibility
conditions at any order. In general, the existence of smooth data that satisfy the compatibility conditions

at a sufficient order will be done in Lemma 2.4.

Lemma 2.3. If (ug. [, g) € H3/? x L%H1 x H?? with f compactly supported and (CCO) satisfied, the
unique transposition solution of (IBVP) belongs to Ct H 3/2,

Fork >2,if (ug, f,g) € H*=1/2x [2k=1.25 j2k:2 " £ compactly supported and (CCj), 0 < j <k—1
satisfied, the unique transposition solution of IBVP) belongs to Ct H 2k—=1/2

The proof is postponed until after the following approximation lemma:
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Lemma 2.4. For (ug, f,g) € H32(Q)x L2([0, T], H1 () x H*2([0, T] x 3S2) satisfying (CCO), there
exists a sequence (g k. fr. k) € H? x H?2 x H3/%2 satisfying (CCO) such that

[ (uo. f.8)— (Uo,k» Sk gk)||H3/zxL2TH1xH2,2 — 0.

Proof. By density of smooth functions in Sobolev spaces, there exists (vg, fi, gx) smooth such that
k. [ k) =k (uo, f.g) (H3? x L%H1 x H?>?); however, the sequence a priori does not satisfy
(CCO). Let us modify ug x = vk + ¢; it is sufficient to construct ¢ € H?($2) such that || || g3/2 =% 0
and

Pkloe = gklr=0 — vk laq- (2-5)

This is an underdetermined system on (af;gok)os j<1 that we close by imposing dx¢; = 0: we define
@ € H? as the lifting of (gx|;=0 — vk |9q. 0). From standard trace theory, there exists a lifting operator

L: HY?0Q) > H*(Q)
b+ v suchthatv|yg =b, d,v =0,

that extends continuously as a lifting operator H! — H 3/2 (on the half space in Fourier variables
£ = (£,&;) one may take Lb = h(EVh(Es/ /1 + E]2)//1+ |E'|Z with h smooth and compactly
supported, [hd& =1, [&1hd& = 0; see [Lions and Magenes 1968a] for more details). In particular,
we have |gli=0 — viloqllzr — lIgli=0 —uolaqll g1 = 0, which implies [|¢ || g3/2 — 0. .

Proof of Lemma 2.3. We first detail the case s = % and will deal with s = —% + 2k, k € N by induction.
Let u be the solution of (IBVP). If (CCO) is satisfied, then there exists (u¢ k, gk, fx) as in Lemma 2.4,
and we call the associated solutions uy. Since ||ux —ullcy(m)/? —k 0, it is sufficient to prove the
convergence of uy in Cr H3/2. We first check that uy, € Cp H?. Let g5, € H*2(Q x [0, T]) be a lifting
(for its existence, see [Lions and Magenes 1968b, chapitre 4, section 2]) such that

{éklaszx[o,T] = gk,
Agrlaxio,71 = Jxlaexo,71—10:&k-
‘We define

t
Wi = 6P (g 1 — Fxlim0) + / AP (a5 Agy) ds,
0

the solution of the homogeneous IBVP with initial data u¢ x — gk |;=o and forcing term fj —id,8x — Ag,
so that g = wy + gx. The embedding H3*? < Cy H? and (CCO) then imply Uok —8kli=0 € Hé and
Jre—1i0:8 —Agp € L;Hé, thus wy, € CTHg and uyp = wy + gy € CrH?* In particular, Auy, € CrlL?
and we can now check that it is the transposition solution of the IBVP

i0rvr + Avg = A Sy, (x,1) e 2 x]0,T],
Vk|r=0 = Augk, x €, (2-6)
Vi lagx(o,7] = —10:&k + fklaex[o,T]:

that is to say (2-3) is satisfied with data (Aug g, A fi, —10: gk + fi|laqx[o,7])-
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Let o € C®°([0,T], CX(R2)); we set w = f} e!t=)AD Ag s the solution of the dual boundary value
problem with data A¢. By definition of uy,

// Aukgﬁdxdt=// ur Ao dx dt
Qx[0,T] Qx[0,T]

:// ﬁcwdxdt—i-i/ uo,kWo)der// gk daw dS dt.
Qx[0,T] Q 0Q2x[0,T]

Now, since w = A f} e!t=98py g5 := Av, where v e C1 H2, we can write

// Aup@ dx dt
Qx[0,T]

=// ka_vdxdz+i/ uo,nAv(O)dx+// LT AvdS di
[0,T1x2 Q 002 x[0,T]

=// Afkﬁdxdt—lrif Auo,leO)deri/ U x 9nv(0) dx
Qx[0,T] Q Q

+// Sk 0n(—id:v + @) + frouvdS dt
02x[0,T]

:// Afkﬁdxdz+// (fk—ia,gk)anﬁdet+i/ Aug xv(0) dx
Qx[0,T] 02x[0,T] Q

ti [ woxdv@ds +il [ adwdsh
Q2 0Q

:// Afkﬁdxdz+// (fk—ia,gk)anﬁdet+i/ Aug xv(0) dx,
Qx[0,T] 02x[0,T] Q

where in the last equality we used (CCO) and the cancellation of v|,=7. Since the equality is true
for arbitrary ¢, by density of C*([0, 7], C°(R)) in L1 H 11)/ % we obtain that Auy is the transposition
solution of (2-6), and Auy converges in Cp (Hé/z)/ since Aug i, Afr, 10:gk — frlaqx[o,T] converge in
(H" 2)’D X LZTH ~1x L2, Arguing as in the end of proof of [Audiard 2013, Proposition 6], we obtain the

convergence of uy in Ct H 3/2 and its limit is u by uniqueness of the limit. This settles the case s = 3

E.
For s = —% + 2k, k > 2, we argue by induction. Let us introduce the boundary value problems
idjv+ Av=A"f, (x,t) e 2 x][0,T],
V=0 = A™uy, x e Q, (IBVPm)

vlax(o,71 = Vmlagx[o0,71-
where v, is defined inductively by Yo = g, ¥j4+1 = AJ Sflagx[o,71—19:¥j. We assume that (uo, f, g)
in H—1/2+2k o f=1+2k.2 5 [p2k.2 gatisfy (CCj), 0 < j <k —1, and A’ u is a solution of (IBVP ) for
0 < j <k —1. In particular, A*=14 is a solution of (IBVPk — 1) and the previous argument implies that
A=Yy e Cr H32 if (A*Yug, A= £y ) belong to H3/2 x L%WH1 x H?*? and satisfy the compat-
ibility condition ¥ _1|;=0 = AK~'ug|3q. The first condition is clear, since! v¥; € H*/(3Q x [0, T)),

1 Actually, the careful reader may note that the regularity of the boundary data only requires f € H 2m=3/24€.2 ¢ (), rather
than H27~1-2_ This is not important as the dispersive estimates in next section require the full regularity f € H2"~1:2,
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and for the compatibility condition we may note that

j—1
W= idy g+ Y iagral et
=0 L 1a@x[0,T]
Vi1
j=1
0 =8 ug+ Y 07 P8 fli=o.
p=0

so that Yg_1|;=0 = A1y is equivalent to (CCk — 1). Thus

Ay ecrHY?  and  ANulyg=vyj € H** D s cr P E=DT 0 0<j <k —2,

so that, by elliptic regularity, u € Cgx H**~1/2. O
We can now conclude this section:
Proof of Theorem 2.2. We have obtained well-posedness for s = —%, % The case —% <s=< % follows by

interpolation if we check that HS x H5*! /2:2 L2T H~1/2 with compatibility condition is the interpolated
space between (Hll)/z)/ x L% x L%H‘l/2 and H3/2 x H*? x L%H1 with compatibility condition; this
is proved in Lemma A.2 in the Appendix.

For s > %, let m € N be such that —% +2m<s< —% + 2(m +1). The case of equality is Lemma 2.3;
in the case of strict inequality we recall that A™u is a solution of (IBVPmz), where it is easily seen that if

(f.g) e HSV22(Qx[0, T))x HST1/2 (32 %[0, T]) then ¥, € HST1/272M Since —1 <s—2m <3, we

have from the previous case that A u € Cy H*~2™; the regularity of u follows by elliptic regularity. [

3. Dispersive estimates

From now on we assume that Q€ is star-shaped; up to translation we can also assume that it is star-shaped
with respect to 0.

Local smoothing. Let us first recall the key virial identity:

Proposition 3.1 [Audiard 2013]. If u is a smooth solution of ABVP), h € C*(Q), VEh bounded for
1 <k <4,and I(u) =21m [ Vh-Vuii dx, then, setting Vo =V —ndy,

d _ _
El(u(t)) = 4Re/ Hess(h)(Vu, Vu) — $|ul*A*h + Vh-Vu f + SuAhf dx
Q

+ Re/ 20,h|Veu|? —20,h|0,u|* —2i3,hd;uit dS + Re/ —2uAhdu + |u|?0,AhdS.
02 02
For the choice /i(x) = /1 + |x|2, we have Hess(h) > 1/(1 + |x|?)3/2, 8,h < 0 (because  is
star-shaped); this leads to the following result:
Proposition 3.2. For any ¢ > 0, (ug, f.g) € HY/2(Q) x L(Q x [0, T]) x H'1&1+8/2(3Q % [0, T))
that satisfy (CCGO), f compactly supported, we have
‘ Vu

W +10nullr200x0,77) < uoll gz + 11/ L2 + gl fri+e.2)-

L2([0,T],L*())
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Remark 3.3. The constant in < depends on ¢, T and the size of supp( /), and blows up if e = 0, T'— 0o
or supp(f) — . We chose not to emphasize this as it will not matter in the rest of the article.

Proof. The proof was essentially done in [Audiard 2013] for a strictly convex obstacle; we write it out
since it must be slightly modified for the case of a star-shaped obstacle. We use that f is compactly
supported to absorb the term [ VhVu f dx in / Hess(h)(VuVu) dx, and Q€ is star-shaped thus 9,/ <0
(n is the outer normal of €2), so integration in time gives

Vu 2

(R

L2(Qx[0,T])
< ”u”i2(9x[0,T]) + ||f||iZ(QX[O’T]) + ”g”lqu-&-e.Z(aQX[o’T]) + [ (T)| + [Tuol.

To estimate | I (u(T))|+|1(x(0))| the main issue is that Vu (HII)/Z)/, which is slightly larger than H~1/2.
Following the notations of Lemma A.2, we first remark that the assumptions of the lemma imply
(ug, g) € X'/% and we use the lifting operator H*/2 — Hs+t1/2:5/241/4(Q % [0, T)), g — Ryg. If
(1o, g) € X3/%, then (ug — R1gli=0.u(T) — Rigli=r) € (HL(R))?, while, if (1o, g) € X'/3, then
(o — R1g|i=0, u(T) — Rigli=1) € (HY®(K2))2, thus by interpolation

(o, 8) € X2 = (uo — &li=0, u(T) — &li=7) € (H} *(@)).

This implies for ¢ € [0, T']

‘/ u(t)— R1g(®)Vu-Vhdx
Q

< lulleqo,ry 172y 1€l Er1 2
On the other hand, an integration by parts formally gives

=

‘/ Rig(®)Vu-Vhdx
Q

/ udiv(R,g()Vh) dx
Q

+ ‘/ gR1g(t)d,h dx
Q2

< Ce(lu@ll 172 R1gO | grir2ve + g ()7 2)
= Celllulley g2 llgllgives + 1815 14e2).

so that by a density argument we obtain

‘ Vu

A1) = Cerlullc, gz +lIglmgi+ez + 1/ 1L2)

L2(2x[0,T])
= Cer(luollgirz + 1 fllL2 + gl gi+e2). (-1

The estimate on [|d,u| 7 2 cannot in general be obtained directly from the virial identity with A = /1 4 |x|?
since we may have, for some x € 92, d,h = x-n/+/1+ |x|? = 0. However, once local smoothing has
been obtained it is quite simple to derive an estimate on d,u. The argument that we give now is essentially
the same as the one from [Planchon and Vega 2009] for the homogeneous case. Using the identity from
Proposition 3.1 with some / smooth and compactly supported such that d,4 < 0, we obtain

T
1Ontel22 < 11@(TD] + | To)| + 22 + 1125 + gl grises + /0 /Q Hess(h)(Vu, V) dox di.
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The integral of Hess(%)(Vu, Vu) dx is no longer positive; however, since / is compactly supported, it is
controlled thanks to (3-1). O

We can now state the local smoothing property for more general regularity:

Corollary 3.4. Lete>0,1 <5<2, (uo, f,g) € H(Q)x H*~1/22(Qx[0, T)) x H*T1/2+82(3Q x[0, T])
satisfying the compatibility conditions, f compactly supported, € > 0; then the solution u € Cr H® of

(IBVP) has the local smoothing property

- + (19 2el S luollms + gl + I/
——5 u —-1/2.2 J ||Uo||HS +e+1/2.2 —-1/2,2.
(1 + |x|?)3/4 L2 Hs12 nUllgs gllHs+e Hs
Proof. The case s = % is Proposition 3.2. For s = %, we have already seen that Au is a solution of the

IBVP with forcing term A f, initial conditions Auq and boundary data —id;g + f|sax[o,7], thus the
local smoothing implies

Au

\Y
H (1 + |x|2)3/4 < ||M0||H5/2 + “f”L%HZ + ||g||H3+s.2 + ||f||H1+a,z(3QX[0’T])

L2(@x[0,T])
S luollgsiz + 1/ 2 g2 + gl gstez + 11/ | as/2te2@xio,m

S luollgsrz + 1 flla22@xqo,17) + 1€l 3 +e.G+er/2.

Elliptic regularity then implies the estimate on [|u/(1 + |x|2)3/#| 3. The control of ||8,u|| 2.2 requires
a bit more care, since we cannot directly use the estimate on d, Au: for xo € d€2, we use local coordinates
(¥1,...,yq) such that, on a neighbourhood U of xy, 0Q NU ={y; =0} and QNU C {y; > 0}, and
we define the differential operators Dy = @(y1,...,Yi—1)¥(¥q)0y,, 1 =k <d —1, with ¢, ¥ such
that supp(¢y) C U and ¥ = 1 on a neighbourhood of 0. Setting D; = 0 outside U, the Dj define
second-order differential operators on 2 and, by restriction, on dQ2. For 1 <k, p <d — 1, it can be
checked as for Au that uy, = Dy Dpu is the transposition solution of

i0;w+ Aw = Dy Dy f +[A, Dy Dplu,
w|l=0 :DkDPMOs
wlapq = Dk Dpg,

where the commutator [A, Dy D,] is a third-order differential operator. The virial identity gives

dI(ugp)
dt

= 4Re/ Hess(h)(Vugp, Vitgy) — §lugp|* A*h + Vh-Vug, (D Dp f +[A, Dy Dplu) dx
Q
+2Re/ urp Ah(Dg Dy f +[A, Dy Dplu) dx
Q
+Re[ 200h| Vet p|* = 20nh|0ntigp|* — 2i 0, suy pitg, dS
Q2

+Re/ iy Ay + lugp|*0n AR dS,
Q2
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Choosing & compactly supported such that 0,4 < 0 on supp Dy, as in the proof of Proposition 3.2 gives
an estimate on |[d,ukpll123Qx[0,7])> Provided the new terms induced by [A, Dy Dplu are controlled;
this last point is a consequence of the local smoothing

T
'4/0 /QVh.Vukp[A,DkDp]u—l—%ﬁkpAh[A,DkDp]udx dt S Nupll 2 el 2,1

2 2 2
S lluollgs/z + 1/ g2z + 181 gs4e.2-

This gives ||0nugplip2 < lluollgsz + 1l f | g2.2 + gl g3+e2. Since ¥ =1 on a neighbourhood of 0 and
Opn = 0y, on U, we have 0, Dy D, = Dy D0y, so that

I D Dpdntll L29@x10,71) < 1ol sz + 1S |22 + llgl ma+e.

Finally, since ||0,u(?)||g1 < ||u(t)| gs/2 and using a partition of unity, we get

19null L2 g2 < ol gsrz + L/ 122 + gl 3+e2

The time regularity of d,u can be obtained in a similar way by considering the IBVP satisfied by d,u;
the application of Proposition 3.2 requires d; / € L2(Q x [0, T]) and 8;u|;—¢ = i Aug—i f | ;=0 € H'/2,
both of which are ensured by f € H?*2. Since 9,3, = 0,,0;, the local smoothing property gives directly

10:0nullL20@x0, 1) < lolls2 + 11/ 22 + gl g3z

The result for % < s < 2 then follows by a (nontrivial) interpolation argument similar to Lemma A.2 that
we sketch now: Setting

Y% ={(ug, f,g) € H* x H* /22 x H*T1/2:.2 that satisfy the compatibility conditions},

it is sufficient to prove [Y'1/2,Y3/2]g 5 ¥20+1/2 for § < %. To get rid of the link between uq, f and g,

let us define Hgy (2 x[0, 7)) = {f € H*?: [|saxioy = 0}. Clearly

Y325 {(uo. f.8) € H¥* x H}3? < H*? with (CC0), (CCG)}:= Y.

The key point of Y(SO;Z is that f|,—o € HJ, so that the (f7/);< j<J introduced in the description of

global compatibility conditions automatically satisfy fooo Jra—11 fI(x’, h)|? dx’ dh/h < co. Therefore
the conditions (CC0), (CCG1) only involve u( and g, and

Y)? =1(uo.g) € H*/? x H*? with (CCO0). (CCG1)} x Hy; .
For 6 < 2, we have, from Proposition A.4, [L2, H(zo’)2 Yo = H?%2(Q x[0, T]). As a consequence, setting
X3/2 = {(ug, g) € H3/* x H*2 with (CC0), (CCG1)} (as in Lemma A.2), we are reduced to checking
that [X1/2, X3/2)y = X1/2+9 which can be done as in Lemma A.2. O

Remark 3.5. The loss of regularity on the boundary data can be avoided up to an arbitrary loss on
the local smoothing. Indeed for (ug, f,g) € HY?*te x H®2 x H'*&2 the virial estimate implies
u e L2TH 1 and from an argument similar to Corollary 3.4 we find that, for % + & <s <2, we have
(uo, f.g) € H x HS™V/22 x Hs+1/22 thenu € L2 HST1/27¢,



1126 CORENTIN AUDIARD

We choose to focus on the case where we lose some regularity on the boundary data because it avoids
the use of peculiar numerology for the Strichartz estimates and well-posedness theorems in the rest of the
article; however, we will continue to discuss this alternative approach in Remarks 3.8 and 4.3.

The estimate is restricted to functions f compactly supported near d€2. For the well-posedness results
of next section we will also need smoothing of the normal derivative when f is supported “away from 92"

Proposition 3.6. Let w be the solution of the homogeneous boundary value problem

id;w+ Apw = f,
w|t=0 = O’
wlyg = 0;

then w satisfies the estimate

10wl g1/229x[0,7) < ||f||B§./22’2,0-

Proof. From the Strichartz estimate in [Burq et al. 2004], we have

||w||CTH11)/2{']L3W01/2’3 < ||f||L;~/2W01/2’3/2'

The virial identity gives
19001 20210, S Wllcp a2 + Wl 21 s S U1
and similarly, using the same differentiation arguments as in Corollary 3.4, we get?
Onwliz22pexp0.r) S N 32p523220p50832 132

Let us recall that, for s > 0, s € N, B;/ZZ 3/2 o(@x[0,T]) = W]s~/2’3/2L3/2 N L;/ZWOSJ/Z. Using real

interpolation with parameter 6 = % and g = 2 gives the expected result, as a consequence of

3/2v,1/2,3/2 73/211,5/2,3/2 5/4,3/213/2 1/2,2 5/2,2 _ pl2
[L Wo ’LT Wo nWT L ]1/4,23[B3/2,3/2,0’B3/2,3/2,o]1/4,2—33/2,2,0'

The first inclusion is clear, and the equality follows from the interpolation of anisotropic Sobolev spaces;
see the book of H. Amann [2009], Section 3.3 for the interpolation of anisotropic spaces on R? and
Section 4.4 for domains with corner. O

Strichartz estimates. We deduce in this section Strichartz estimates (with loss of derivatives) from the

local smoothing. Following the terminology of admissible pair (those (p, q) such that % + % = %), we
say that (p, g) is a weakly admissible pair if
1 ,d_d
-+ —==. (3-2)
P q 2
2When differentiating in time, we obtain d;u|;—¢ = —if|;=¢ € W07/6’3/2 — HO1 — Hll)/z, thus the initial data for the

problem satisfied by d;u is smooth enough to use the virial identity.
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Theorem 3.7. Let 2 C [Rid, d > 2, such that QF is star-shaped with respect to 0. Fore >0, T < 00,

% <s<2, (ug, [, g)€ HSx HS~V 2145 s +1/2+482 sutishying the compatibility conditions, f compactly

supported, and any weakly admissible (p, q) with p, q > 2, the solution u € Cy H' satisfies

lulleqo,rwsac@) < luollas + gl gs+ir2+e + S Il grs—172.1/4.

Proof. The argument from [Burq et al. 2004, Proposition 2.14] can be used with no meaningful modification
(see also [Audiard 2013, Corollary 1]). Let us sketch it briefly: we decompose u = yu + (1 — yu), x com-
pactly supported, x = 1 near 9QUsupp( /). From the local smoothing property, xu € L2 H**1/2nL¥ HS,

we have by (complex) interpolation that u € LY. H**1/?. The Sobolev embedding H*+1/7 « W4

with é = % - % and the local smoothing property from Corollary 3.4 imply yu € LgWs 4,

The function (1 — x)u extended by 0 outside supp(1 — x) satisfies a Schrodinger equation on R¥,
and the usual Strichartz estimates on R? imply (by a standard but nontrivial argument that originates in
[Staffilani and Tataru 2002])

1= x)ullL2p qo,71,ws.a) < luwolles + &l grs+1/24e2 + [ f | grs—1/2.1/4.

From L2 ([0, T]) € L?([0, T]) we obtain the expected estimate. O

Remark 3.8. Following the observations of Remark 3.5, we could also prove an alternate Strichartz
estimate with optimal boundary data in H5+1/2:2 but % + % = % + %, simply by using the embedding
Hs+1/2=¢ . Wsan 1/q; = %_ (% —g)/d.

4. Nonlinear well-posedness

We consider here nonlinear IBVPs of the form
idiu+ Au= F(u), (x,1)eQx][0,T],
ult=o = o, xeQ, (NLS)
ulpexfo,r] = & (x,1) € 02 x [0, T7,

with the following assumptions on F € C!(C): there exists & > 0 such that
|[F(2)] < |2[(1+[=[%), (4-1)
IVF(2)| < (1+z])%. (4-2)
For the smoothness of the flow we will assume F € C2(C) and
IV2F()] S (1+ |z @ 10 43)
Local well-posedness. Since our first result is local in time, we define

HPPE2RY x0Q) = {g : x(0)g € HY/*To2(RF x 9Q) forall x € CP(RH)}.

loc

We say that u € C H! is a local solution to (NLS) if it satisfies id;,u + Au = F(u) in the sense of
distributions (for u € C7 H' all quantities in the equality make sense), u la@x[0,7] = & in the usual sense
of traces and u|;—¢ = uy.
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Theorem 4.1. If F satisfies (4-1)~(4-2), then for any (ug. g) € H'(Q) x H2/* o2 (RT x Q) satisfying
(CCO) and o < 2/(d —2), there exists a unique maximal solution u € Cy+ H' of (NLS).
The solution is causal in the sense that u(t) only depends of ug and g|s<¢, and, if T* < 0o, then
limy 7+ [lu(0)l g1 = +o0.
If F satisfies (4-3) and d < 3, then for any T < T* the solution map is Lipschitz from bounded sets of
H'(Q) x H32Te2(RY x Q) 1o C([0, T], HY).
It will be convenient to introduce i, the solution of
i0i + Au = F(g), (x,1) e 2 x][0,T],
U|t=0 = uo, x e, (4-4)
ulaxpo,r =& (x,1) € 92 %[0, T,

where g € H?2(Q x [0, T]) is a compactly supported lifting of g. Thus u must satisfy
t
u=i+ f ' C=IAD (F(u)— F(8))(s)ds forall 1 €[0,T].
0
Choose ¢go such that (2, ¢qg) is weakly admissible. According to Theorems 2.2 and 3.7, we have
ii e CrH' N L2W 90 if F(§) € H'/%2. Actually F(g) is smoother than needed:
Lemma 4.2. For ¢ € H>?(Q x [0, T]) and F satisfying (4-1)—(4-2), F(¢) € H'>2.

Proof. 1t is clear that F(¢) € LZTLZ; indeed

”F((p)”LZTLZ S ”‘P”LZTLZ + ||‘P||};(01!+a) < ”‘P”LZTHI(I + ||‘/’||%2TH1)-

Since o < 2/(d — 2), there exist p, ¢ satisfying
r q 2
and Holder’s inequality gives, for any ¢ € [0, T,
IVE(@) Oz S 11+ 1e1*) Vel 2
Slelar +llelzen Vel La
Slelar + el el gz

where we used the Sobolev embedding H' < L4, 2 <q <2d/(d —2) (or ¢ < oc if d = 2). From the
embedding H?? < Cr H' we deduce, by taking the L% norm,

IVE@ 2 1 T N0lLz gy + 191700 gillellz g2 S lela22 (4 @l g2.0)-
For the time regularity we have, using Holder’s inequalities again,

IF (@) = Fle(s) I 2@ < o) = @) L2 + [le@)] + 19| Lap l90) = 9(5) | s
< lle® =@l + [l + o) g1l @) = @) 1
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thus the embedding H22 < H/2([0, T], H'(R)) gives

F(p(t))—F 2,
O

|t —s]?

2 2
< ||‘P||H1/2L2 + ||‘P||Locl>oH1 ||‘P||H1/2H1

S el (1 + lella.n)- O

Proof of Theorem 4.1. Uniqueness: The uniqueness can be done as in the case of homogeneous Dirichlet
boundary conditions from [Burq et al. 2004]. If 1, and u, are two solutions in Cz+ H!, then w = u; —u,

is a solution of
idpw—+ Aw = F(uy)— F(up), (x,t) e Qx][0,T],

w|l=0 = 09 X € Q,

Wlaaxo,77 = 0. (x,1) € 0Q2 x [0, TT.
This is a homogeneous boundary value problem for which the Strichartz estimates (1-2) give, for (p, q)
weakly admissible as in (3-2), (r/, s”) weakly admissible and 7" < T*,
lwlizser2nrrra S Iwllpy g2 + [ (uil + |u2|)aw”LrTLs < Tlwlpee 2 ++| (Jut] + |u2|)“w||L,‘TLs.

If we can choose (r, s, p1,91, P, q) satisfying

1 d_d d_ g

1 1 1 1 1 1
_+_=_ __i—_:_, 4_5
pr 2 r q q s 45
ad=2) _1 _a Lol o<k

2d q1<2’ > O<p1<a,

we get from the Sobolev embedding and Holder estimate in time that

[ (ler |+ Jua)*w|

o
L{}Ls 5 H |u1| + |Ll2| HLolplLqul ”w”Lqu
1/2—1
<r" /p(llullngoHI + luzllpse g)*llwlizrra.

and thus w = 0 for 0 <¢ < T', T small enough only depending on ||u1||zco g1 + ||t42]||fc0 1. Iterating
the argument implies # = v on [0, T*[. The system (4-5) implies

d
1+—=1+4=i+1+i+é Lyd ad=2) 2)+( —l), (4-6)
res o opi 2 ¢ g pro 2 2 2. p
which can be solved since oc(d 2)<1: Weﬁrstchoosep>2closeenought02that sa(d— 2)+———<l

then it is possible to choose p; that satisfies (4-6) and 0 < E < o; up to increasing p we can aslsume
ﬁ < % The choice of p determines the value of ¢ > 2, the choice of p; determines the value of 1 <r <2,
and then of 1 < s < 2. The only equation left is qli = % — - its solution - belongs to ]0, 1], and thus is
an acceptable Holder index.

Causality: This can be proved as for uniqueness, since if gy, g, coincide on [0, 7], the uniqueness
argument can be applied on [0, 7] and implies the associated solutions satisfy u1[o,;] = #21[0,s]-
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Local existence: We recall that (2, gg) is assumed to be weakly admissible. According to Lemma 4.2
and Theorems 2.2 and 3.7, i1 € C7 H' N L2TW1"10, since F(g) € H"2 c H'/2:2, Setting w = u — i,
the local existence will be a consequence of the existence of a local solution to

id;w+ Aw = F(u +w)— F(2),
w|r=0 =0,
w|y@x0,r] = 0.
This is a nonlinear homogeneous boundary value problem; the existence of a solution is essentially a

consequence of (the proof of) Theorem 1 in [Burq et al. 2004]. As it does not strictly cover the case of
our nonlinearity, we briefly sketch the argument. Let us define the map L as

L:Xr=CrHyNnLEW" — CrH] nLEW™,
t
w L(w) = [ DD (F(i + w) — F(§)) ds:
0

we will check that it has a fixed point for 7" small enough. Burq et al. [2004] prove that, for a convenient
choice of weakly admissible pairs (p,q), (p1,¢1) (depending on o < 2/(d — 2) and d), the map
L(w) = fé e!t=9)AD F(y) ds satisfies

= 9 1
ILwlx, S T (wlxy + lwlx®),
~ ~ 0/ .
[ Lwy — Lwallxy ST |wi —wallxr (1 + [[wily, + lwallk,) if d <4,
~ ~ 0// .
ILwi — Lwallcpp2apeipa S TY lwi —w2llepr2npe g U+ [willy, + llw2ly,) if =4,

where 6, 6, 6" are positive, and the second inequality (d < 4) also requires the assumption (4-3) on F
(this is Propositions 3.1, 3.3, 3.4 and equations (3.9)—(3.10) from [Burq et al. 2004]).

Since F(u + w) — F(g) has trace 0 on 02 x [0, T'], we can use these estimates. We recall g is in
H*? — LPH' N LZW40; therefore, setting M (w) = ||wl|x, + litllx; + gl f3/2.> the estimates
give, directly in our case,

ILwlx, S TO(M + (M)'H), 4-7)

ILwy — Lwalx, S T lwi —wallx, (1+ (M (wr) + M(w,))*) if d <4, (4-8)
ILwy — Lwallcp2nre Lo

ST \wi —walepr2npe g (14 (M(wi) + M(wy)®)  if d =4, (4-9)

If d < 4, from (4-7)—(4-8) we can apply the Picard—Banach fixed-point theorem in C7 H I'n L;Wl’q
for some T'(|luoll g1 + 1€l gr3/2+e23qx(0,77)) and it also implies that the flow is Lipschitz. If d > 4,
(4-7) implies that L sends some ball of X7 to itself, and from (4-9) it is contractive in the weaker
space Cr L% N L’;‘ L9'. By a standard argument, the metric space {u : ||u||x, < M} with distance
du,v)=|u— v||Lc%oLsz1;Lq is complete (e.g., [Cazenave 2003, Theorem 1.2.5]), so that the existence
of a solution is again a consequence of the Picard—Banach fixed point theorem.
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Blow-up alternative: This is a direct consequence of the fact that the time of local existence only
depends on |lugll g1 + |gllg3/2+-. Let u be a solution on [0, 7*[ such that lim||u(?)||g1 = C < o0
and let 8 be such that 7'(2C + [|g| g3/2+e.2((7*—1,7*+1]xe)) = 2. Up to decreasing §, we can assume
lu(T* —8)| g1 <2C. Since u € Cr H' and u|yq = g the pair u(T* —§), gl[T*—8,+o00f satisfies (CCO)
on Q2 x {T* —§}, thus (NLS) has a local solution on the time interval [T* — 8, T* 4 §]. Thanks to the
uniqueness on [T* —§, T*[, this allows us to extend the solution on [0, 7* + §]. O

Remark 4.3. If one chooses to use instead the Strichartz estimate from Remark 3.8, namely

1, d_d | 2

ul|lrp <l 1+ 3/2 + s2.1/4 When — 4 — = — + —,

lullLowra < lluollg + gl a IS /2 s T2T,
the restriction on & becomes (supposedly) o < (2 —4¢)/(d — 2). Consequently, well-posedness for the
whole range o < 2/(d —2) and boundary data in the optimal space H3/2-2 can most likely be obtained,

up to more involved estimates with some ¢ in all indices.

Since our Strichartz estimates for the IBVP only give a gain of half a derivative, the natural limitation
on the nonlinearity is o« < 2/(d — 2) (as in [Burq et al. 2004]). However better (scale-invariant) estimates
are available for the homogeneous boundary value problem, and they can be combined with our estimates
to improve the range of «. The following theorem illustrates this idea.

Theorem 4.4. If Q2 is the exterior of a smooth strictly convex obstacle, then Theorem 4.1 is true for
a<3/(d-2).
Proof. From [Ivanovici 2010], the usual Strichartz estimates with (p, ¢) such that 2 —|— c=3,p>2,
are true for the semigroup e’22 . The uniqueness in LT H ! follows from standard arguments see, e.g.,
[Cazenave 2003, Section 4.2]. The existence part is again an application of the Picard—Banach fixed point
theorem: let (p, ¢) be weakly admissible, p > 2, such that
2 1
1+-). 4-1
<753 ( + » (4-10)

Weset Xr =CrH' N L;Wl’q and, as in Theorem 4.1,

L:we L(w) = / t e U=AD (F (i1 +w) — F(g)) ds.
0

From the Sobolev embedding, § € H*2 < L2H>NCrH' — Xr. Let ¢; be such that 2 + -~ = %.
From the scale-invariant Strichartz estimates we have
||Lw||XT < ”Lw”L‘%OHlmL;Wlsql SIF@+w)— F(§)||L177~/Wl'q/1+L%~H1’
and we will prove that there exists 8 > 0 such that
IF)| STO(+ o) h/472). (@-11)

LP/ 1ql—‘,—Ll HL ™

Let v € C®(R1) with = 1 for x > 1 and ¥ = 0 for x < % Since supp(1 — ¥ (Jv|?)) C {|v| < 1}, we
have
Hl—W(IUIZ)F(U)HLl m S vlpr g = Tl
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On the other hand, for any 8 > «,

[y (v F)| < '™, [V (v Fw)| < [v]f|Vul.

Since

oz (14 25 D) ) - < 2

there exists 8 > a such that 2 < (1 + 8)q} < 2d/(d —2), and this choice leads to

1+8 1+8 1/p ||, 1+

To estimate V(1 (|v]?) F(v)), we use Holder’s inequality on |v|# Vv combined with the Sobolev embedding
whres s, 1=1_1
> s r .

[PV, 0 Sl ||LI,W1,,||Vv||Lm, (4-12)

where

1 1(1 1) 1(1 2) (Holder in time)

—=—(—=-=)==(1-Z= older in time),

p B\p p) B p

1 o1/1 1\ 1 1 3 o ,

~=—|—5—=)+5=-|1+—-5=] (Holder in space and Sobolev embedding).

q B\d4y ¢/ d d Bp
Note that ¢, p, g are defined by p and 8. If we can choose p > 2 and 8 > « such that

1 d d 1 1 1

1
~ = < =, = (4-13)
p ¢ 2 p 2 q 4

<1
_27

this gives (4-11); indeed, for such p, B,if 1/p; +d/q = d/2 we have L?Wl’é C Xr, 1/p1 <1/p,
and (4-12) gives

v 7B/ p— 1/p1)||v||

- 1+
ppralVolrze < B ralVollLopa S TAABUPD 8 (4u14)

Let us now check that there exists a choice of 8 and p for which (4-13) holds. The first two conditions

become 1 2 3 d 1 d
s(1-3)+(1+5,)>5 = 5 =8(5-1)-1
Hi-d)<h e 1o4ot

Or, more compactly,

The condition 1 — 8 < é is automatically satisfied. To ensure 1/¢ < 1/§ < 2, we must have

2714
> pd=2)

and -
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so that the condition is finally equivalent to

d 1 _ B(d-2)
i — — I N S S —
p (2 1) L=< p—- 6
and there exist solutions p > 2, § > « if and only if 8 < 3/(d — 2), which is always compatible with
B > o and the initial assumption (4-10).

From (4-11), we infer
IZwlxy < T°(1+ (il + Il +181x,)* @),

so that for 7" small enough, L maps the ball of radius one in X7 to itself. It is not clear if L is contractive
in X7 even for smaller 7, however contractivity for the weaker topology induced by L‘}"L2 NLPLYis
an easy consequence of the previous estimates and the assumptions on F":

|F(ii +wy) — F(i +w2)| < [wy —wa| + (lwy | + [wa] + @) wy —wal,
and (4-14) gives
|Lwy — Lws||x,
S lwy=wallpy 2+ [lwr = wal + (il + fwal + @) lwr = wal | o

S TP (it sy 4w ey + 0 ey )Py =w2ll g o+ Ty —wa 2. (4-15)

As for Theorem 4.1, the contractivity of L for the L;Lq N L‘Y’?L2 topology and the mapping of a ball
of X7 to itself gives the existence of a solution as a fixed point. O

Remark 4.5. The only thing limiting us to o < 3/(d — 2) is that i only belongs to Cz H' N L2W 1:90
with % + % = %. If this limitation was lifted the fixed point argument on w could be performed in the
usual scale-invariant spaces.

Remark 4.6. Theorem 4.4 is only an example of how one may mix optimal and nonoptimal Strichartz
estimates. If 2 is only assumed to be the exterior of a nontrapping obstacle, [Blair et al. 2012] proved
scale-invariant Strichartz estimates with loss of derivatives, namely

; . 2 1 1
18D uglpora < lluollge with 2+%=9 4 Lyl
p q 2 P q

| —

Such estimates could probably be used to improve the range of « if Q€ is only star-shaped. Since the
method seems similar and with numerous specific cases, we chose not to develop this issue.

Global well-posedness. In order to obtain global well-posedness for the defocusing nonlinear Schrodinger
equation
P0;u 4+ Au = |ul*u, (x,t) e Qx][0,T],
u|,=0 =1Uy, X e, (NLSD)
uly@x[o,7] = & (x,1) € 9Q x[0, T,
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the argument based on local well-posedness and conservation of energy cannot be trivially applied. Indeed
we only have the formal identities

& Swpar=-mm [ sugas @16)
Q Q2
i/ llvulz_}_Llurx%—de:Re/ 0 uatgdS (4_17)
dt Jq 2 o+2 90 n

If g € H%?2, the control of lullc; g1 Tequires us to control ||dpul| gr2—s.2. In particular, for the almost
optimal regularity s = % + ¢, we must have some control on d,u € H'/2782(3Q x [0, T]), which is its
(almost) optimal space of regularity.

We will first deal with the simpler case g € H?2; in this case we only need to control ||d,u|| 2. This
can be done thanks to a nonlinear variation of the virial identity from Proposition 3.1.

Theorem 4.7. (1) Forany 0 <a <2/(d —2), if (ug, g) € H(Q) x Hliéz(lR{+ x 0€2) satisfy (CCO), then
(NLSD) has a unique global solution u € C(R*, H').

(2) If Q€ is strictly convex and there exists € > 0 such that g € H*>T82 then the theorem is true for
a<4/(d-2).

Proof. The case (1) is a simple consequence of the virial identity and the blow-up alternative, indeed the
(nonlinear) virial identity writes

d
0)
:4Re/ Hess(h)(Vu,W)—%|u|2A2h+Vh-Vu|u|“ﬁ+%L?Ah|u|“udx
Q
+Re/ 2anh|v,g|2—2anh|anu|2—2ianha,ggdS+Re/ 28 Ahdpu+|g|*0,AhdS
Q o
_ Sy 11,12 A2 a+2 11
_4Re/QHess(h)(Vu,Vu) Llu2 A2 + [ul Ah(2 —a+2)dx
—|—Re/ 20,1\ Veg|* —20,h|0pu|* —2i0,hd,gii dS
I

|g|a+2

oa—+2

+Re/ 28 Ahdpu + |g|*dnAh + dnh dS.
o

As for Proposition 3.2, we choose 4 = /1 + |x|? so that Hess(/), Ah > 0, 0,4 < 0 and integrate in time.
From the embedding H22(3Q x [0, T]) < HZ/ T gQd=2/@+1) , 12@+D/(d=3) 30 x [0, T))
(or L*® ifd =2, L? for any 2 < p < oo if d = 3) we have

T
+2 a+2
/0 /3 gl dS dr 5 15 oy

If K is a compact neighbourhood of 02, we deduce

/ |Vu|? + u]*+? dxdt—/ |8pue>x -ndS dt < M(T)(1+ ||ullg, g0+ 1€11%55)-
K x[0,T] 02x[0,T]
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If x-n <0 on 0€, this gives directly a control of ||0,u||;2; if not then we can argue as in Proposition 3.2
by using some function /s compactly supported in K such that d,/4 < 0. For this choice, A/ and Hess(%)
|Ot+

are no longer signed, but using the estimate ||u||La+2([0 TIxK) S <1+ ||u|| T lgl|%5% we get

241
lonull L2 < M(T)(A + llullcp g + g5 30).

Plugging this in the “conservation” laws (4-16)—(4-17) implies

2 2 2 a/2+1
Il g1 = luollzry + 19null2llgl g2 S 1+ luollgy: + (lullcrmr + 1215533 gl 2.2

and thus

1 2 2 2+2
a2, g S 1+ luoly + 121523 G axto. -

As a consequence, # remains locally bounded in A! and the solution must be global.

The case (2) is a bit more intricate, indeed even the local existence of a solution for 3/(d —2) <« <
4/(d — 2) has not been covered yet. The main argument is that we can modify # from problem (4-4)
so that it belongs to C7 H'! N LZTWI"IO, 14+d/qo =d/2: since g € H>*52, we have from (CCO) that
uolag = gli—o € H' 752, Let vy € H3/2T4(Q) be a lifting of u¢|yq; we define ¥ as the solution of the
linear IBVP ~ - ~

i0;0+ Av = F(g),
U]s=0 = Vo,
Vla@x(0,11 = &

Since F(g) € H"? (see Lemma 4.2), g € H21&2 vy € H3/2, the Strichartz estimates imply v is in
LZTW3/2"1 s L%Wl’q‘), where 1 + d/qo = d/2. We are now left to solve the homogeneous boundary
value problem

0w+ Aw = F(0+w)— F(2),

wl=0 =g —vo € Hy ,

w|yqx[o0,71 = 0,

or equivalently obtain a fixed point to the map
t
Lw = "D (uy —vg) + / e U=IAD (F(§ 4 w) — F(%)) ds.
0

Since v, g€ L H I'n L%Wl’q", the fixed point argument can be done as in the R case, e.g., [Cazenave
2003, Section 4.4], leading to local existence. We can still use the virial identity as in case (1) since
a+2<(d+2)/(d—-2)<2(d+1)/(d—3), and the energy argument is ended in the same way. [

If we only assume g € H 32482 global existence becomes a much more delicate issue since we need
to control ||d,u|| g1/2.2. Let us sketch the main issue: the linear smoothing gives a control ||0,u|| g1/2.2 <
luollgt + llglls/2462 + I /Il g1/2.2, where f = |u|*u has scaling 1+ o. In order to estimate the time
regularity of f we need to again use the equation, which adds another power « to the scaling Using
various chain rules, the conservation laws (4-16)—(4-17) should give at best ||u||2 CrH! S <TTlul X where

> aj =1+ 2« and, for all j, X; < Cr H'. Eventually, ||u||2 for some B dependmg

rH1~ ”u”C HI
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on «, and this allows us to close the estimate if 8 < 2. It is clear that such an approach will be limited to
small values of «. Nevertheless, this is the method used in the following theorem, where the restriction
on « is of course purely technical.

Theorem 4.8. For d = 2, % <a< %, and (ug, g) € H' x H32%82 satisfying the compatibility

conditions, the problem (NLSD) has a unique global solution in C(RT, H').

Proof. The existence of a maximal solution is Theorem 4.1; it remains to prove that u is locally bounded
in H'!. In this proof, < means that the inequality is true up to a multiplicative constant that may depend
on T, g and an additive constant that may depend on 7', g and uy. We use § as a placeholder for some
positive quantity that can be chosen arbitrarily small.

As in Theorem 4.7, we can use the nonlinear virial identity provided g € L**t2(9Q x [0, T]), which
is ensured by H3/22 < H%/ZHI/Z(E)Q) — LP(0Q x [0, T]) for any 2 < p < co. From the nonlinear
virial identity we obtain

1/2 1/2 1+a/2 1/2 1/2
l0ntell 2 12+ 1Vull 2 2 S Nl il 2+ gl i S Tl g2 g2 s 4-18)

plugging this in (4-16) gives

2 1/2 1/2
lullg, 2 S 19null 2 r2llgl e ro S (el Nl gl? 2 + gl grsase)ligl 2 g2,
thus
1/3
lulle 22 S Nl g (4-19)
1/2+1/6 2/3

and lull 2 g1 S ul = Jul (4-20)

CrH! CrH!

For later use, let us note that Holder’s inequality and the Sobolev embedding H' < L” for 2 <r < oo
imply

lullzo < ull /T2l 35970 forall ¢ >2, 0 <8 <2/q. (4-21)
On the other hand, (4-16)—(4-17) give

2 2 2
lullg., o + Nl Fa2s < luollzys + gl garzven|9null grsaa. (4-22)

To estimate d,u, we fix x € C° (Q) such that x = 1 on a neighbourhood of 9L, and split u = u; + us,
where ©; and u, are solutions of

i0;uq + Auy = xlu|%u, [0y + Auy = (1 — ) |u|%u,
uilr=0 = uo, and Uzlr=0 =0,
uilyexpo,r] = & uzlyexo,r] = 0.

Corollary 3.4 gives

10nurllgrivzz S luoll gy + gl msrzres + I xlul®ull g2
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We estimate the nonlinear term using H les B, / [Triebel 1983, Section 3.3] and (4-19)—(4-20):

1/2+6 1/2—6
Ixlulullz grove < [0l | Lo g el 2 guvza < Nl il /22 Nl

1)
S lullE it (4-23)

For the time regularity, we use the composition rules and interpolation of anisotropic Sobolev spaces
[Lions and Magenes 1968b, chapitre 4, paragraphe 2.1]. For ¥ such that ¥ = 1 on supp g,

lxlel*ullggivsge < |1l oo pallel gaa pa S MUl oo paa I Xl gr1rs a2

1/2

S Nl o pau IRuly s N2

Since id; xu + Axu = X|ul|*u + [A, X]u, we have
19eXull L2 g1 S WXullp2 g+ IXul®ull 2 g1 + el g2,

and since H~! D L9 for 1 < g <2 we get

~ 2/3 ~ 2/3 1+a)/3
19l 2 - < Nl 750 g+ 0Kl Ul 2 g2 S Tl 758 0 + Nl o550

1/2 1/2

Next we use [[Full 1722 5 1Tl gy g I %l s0 that
~ 2/3 1+a)/3\1/2)~ 11/2 2/3 3t+a)/6
Py (1 s ] e R b 1 ey S P st

This implies, using (4-19)—(4-21),

1/3 34 12 1/3
Il ull sz < Nl o paa (el + Tl 50 ) el 2
13a/12+1/4+5

< 1/3+a+8

L‘%OHI + ” ”

Combining the estimate above with (4-23) gives the following estimate on d,1:

1/34a+6 13a/12+1/4+3

||8nu1||H1/2;2 5 ”u”CTHl + || ”C H!

(4-24)

We now treat d,u,. The situation is less favourable since we can not use the smoothing property

||X”||L2TH1 < ”””i{;Hl' In particular we only have

4+4a)/6
10 = 0ull 1722 = lull o + Tl 31° (4-25)

Using Proposition 3.6, we have

0nu2 || gri/223@xj0,r7) < (1 — X)|”|au||L3/zBl L3/2

2”33/2 2
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For the first norm we write
I =0l ull gy L S 10 = 01l ullgoprve

S %o o Il 50 1

1/3 —1/3468

< Nl 52 o Nl o i el e
+7/9+8

S ”u”(éTHl .

el

For the other norm, the composition rules and (4-25) give similarly

o o
1000l g2 pva S 1% 0] 272,

a—2/9+6 4+a)/6
Sl Pl ey + el &)
a+7/9+6 Ta/6+4/94+8
= Nullgr 2 o | 45,
so that
a+7/9+8 To/6+4/9

||3nu2||H1/2,25 ||u||LC7>-°H1 +”””L%°H1
Combining this estimate with (4-24) in (4-22), we finally obtain (as previously, < still means “up to
multiplicative and additive quantities only depending on 7" and the data”)
lull, o S Nl s

with § = max(% + o, 13a/12 4+ %,a + %, T /6 + g) + 6. If B <2 then ||u(?)| g1 is locally bounded,

and hence the solution is global. The condition § < 2 is equivalent to « < %. O

Appendix: Two interpolation lemmas

In this section we give two results on the interpolation of Sobolev spaces. They do not seem standard as
they involve compatibility conditions in some way. We do not claim that these results are new, however
we did not find them in the literature, thus we decided to include reasonably self-contained proofs.

Definition A.1 (real interpolation). If Xy, X are two functional spaces embedded in %'(2), we define,
foru € Xy + X4,

K(t,u) = inf u +t||u .
(= _ it ol + e,

For 0 < 6 < 1, the interpolated space [Xp, X1]g 4 is the set of functions such that

o0 dt
q
/0 | K(t, u)?| 16 < Q0.

Lemma A.2. Let

X0 = {(uo, g) € H™1/2+20 Hz‘)’é’(asz x [0, T)) that satisfy the compatibility conditions},
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where for 0 = 0 we take (Hll)/z)’ instead of H='/2. Then, for 0 <6 < 1,

(X0 X'y = Xx°.
Remark A.3. While it is a bit tedious, the case 8 = % really needs to be treated, as it corresponds to the
natural space for the virial estimates.

Proof. We clearly have
H'?(Q) x H2 (32 %[0, T]) € X' € H32(Q) x H>2(3Q x [0, T)).
The interpolation of Sobolev spaces [Lions and Magenes 1968a; Lions and Magenes 1968b, chapitres 1, 4],
gives, for 0 < %
[(Hy?Y (). Hy?lg = H?7V2, [H** G2 x [0, T, Hy *lg = H?*?,
(Y Q). B g = HP7V2 [HO 02 x [0, T), H>?]g = H?*?;

the two left-hand identities are not explicitly written in [Lions and Magenes 1968a], however (H 11)/ 2)/ does
not cause any new difficulty since it can be bypassed using (Hll)/z)’ =[H !, H2]1/6 =[H!, Hé]1/6
[Lions and Magenes 1968a, paragraphes 12.3, 12.4], and the reiteration theorem [[X, Y]g,.[X, Y]g,]o =
[X.Y](1-6)6,+66,- We deduce that, for 0 < 6 < %,

X0 = B2 g0 - X0 ¥,  X°.
For 6 > 1/2 we first apply the Lions—Peetre reiteration theorem
(X0, X o =X X35 [X°, X N1]80/5-3/5 = (X33, X'so/5-3/5.

so that we are reduced to proving [X3/8, X1], = XG0+3)/8 for % < 0 < 1. To this end, we use the
existence of a lifting operator independent of % <s<1,}?

R:X°— H2s+1/2,s+1/4(Q x [0’ T]),
(1o, g) = u such that u|gxpo, 71 =g. Ulr=0 = o,
Such an operator can be constructed as follows: for any (g, ug) € X*, there exists a map
Ry : H¥5Q x[0, T]) - H¥TV2sT1/4Q %[0, T)),
g Rig:

on the half space, Fx; R1b = g(&, 1)p(v/1 + |&'|? + |t]?x4) with ¢(0) = 1, ¢ smooth enough, works.
There is also a map
R, : Hés—l/Z(Q) N Hés+1/2,s+1/4(9 <R).

ug = Rouyg;

3 R is usually called a coretraction of the trace operator u — (u|;—g, u la@x[0,77)-
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in this case, one might take R (u¢) = ¢((1 — Ap)t)ug (this is a very special case of [Lions and Magenes
1968a, chapitre 1, théoreme 4.2]; see also [Lions and Magenes 1968b, chapitre 4, théoreme 2.3]). With
these two operators, we can now define

R(ug, g) = Ra(ug— R1(g)]r=0) + R1(g):

R is a continuous map X° — H2%322 for s > 4, smce uop— Rgli=0 € HF ™ 12 For s > 3 ! this is a
consequence of H} = Hg and (CCO), while for s = 5 this comes from H 1/2 = H,, 1/ 2 and (CCGO). We
can conclude by introducing

T: H¥TU22(Qx [0, T]) —» H¥* V2(Q) x H*2(0Q x [0, T)).
u > (u|;=0. ulpaxo,17)-

By construction, T o R = Id on X3/% and X!, so that [X3/8, X1 = T([(H3/43/8, H3/2:5/4]y). From
basic results on anisotropic Sobolev spaces [Lions and Magenes 1968b, chapitre 4, proposition 2.1,
théoréme 2.3] we obtain, as expected,

T([H5/4’2(Q x [O, T]), H5/2’2]9) — T(H(59+5)/4,2) — X(50+3)/8. O

Let H*

o 2(QxR,) = {ue H>*(Qx[0,T)) : ulyaxgoy = 0}

Proposition A.4. For 6 < 3 3 [L?, 0) ]9 , = H?92,

The result is to be expected, since the trace on ¢ = 0 sends H2%2(3Q x [0, T]) to H*~1(Q), for
which there is a trace on 0€2 if and only if 260 — 1 > %, or equivalently 6 > %.

Proof. The inclusion C is obvious; we focus on the reverse inclusion.

Let R be the restriction operator H2%2(R% x [0, T]) — H?%2(Q x [0, T]); since R is continuous
for 0 < 6 <1 and surjective with value to H 20,2 e only need to check that for H(ZO’)Z, 99 (R? xR;) =
{ue H>?: ulpaxqoy = 0} we have

[L2, Higyyqlo = H**?(RY xR,) forall 6 < 3 (A-1)

Using a partition of the unity, we can reduce the problem to the case Q2 = R9~! x {0} and for conciseness
we write H(o) 3Q(|Rd xR;) = (0) Let u € H?92(R? x R;); then, since L2 C H*?2, it is easily seen
from Definition A.1 that u € [L2, H, (0) ]9 5 if

o0
> 2% K@Y u)? <o, where K(t,u)= inf luollzz + tllurll g2z, (A-2)
j=0 u=ug+u L2+ (20) ©
We define an anisotropic Littlewood—Paley decomposition as follows: the dual variables of x and ¢
are (§,7) = (¢,&,, r) and we set u = ) ;> Aju(x, 1), where, for j = 1, _A/j\u(&‘, 1) is supported in
(&2 + |2 ~ 27, Aou is supported in |£|2 + |7| < 1, and we set Sju = Zl]c=0 Agu, Rju =u—Sju.
From the Plancherel theorem and f[Rd Ajulju = 0 for | j — ] large enough (“almost orthogonality”), we
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have
IAjull g2z ~ |Ajull 22 = ullF0 ~ 224’ 1Ajul7 2 (A-3)
j=0
Let us write

u=(Rju+ Sju(x’,0,0)y;(xq,1)) + (Sju— Sju(x’',0,0)y;(xg,1)) = ug + u,

where @j = ¢ 273 1 (je, 12 412])1/22i With ¢ such that ¥;(0) = 1. Since vol((|£4|? + |7])1/% ~27) ~ 23/,
¢j is uniformly bounded in j. For this choice it is clear that (u¢, u;) € L% x H(zo,z. The decomposition
u = Sju + Rju would correspond to the standard interpolation [L?, H?*?]y, thus we will only focus on
how to estimate in (A-2)

1Su(x", 0,009 (xa, Oll 2 + 2727 | Sju(x’, 0,009 (xq, )| gr2.2.
We first note that
TS 0,000 (5. 0) = 5 ) [ Syuce'n.0)dnds,
so that F(S;u(x’,0,0)¥;(xy4,1)) is supported in (|&]? + |z)1/2 < 27. We deduce
27 NISju(x’, 0,009 (xa, Ol grz2+11Sju(x’, 0,009 (g, D)l L2 S I1Sju(x’, 0,009 (xa, 1) .2
S 1 lee [ IS8’ n. D)z, dnds.

Again using vol((|&4|2 + |7])V/2 ~ 27) ~ 237 we have I¥illp2 ~ 2737237/2 = 273i/2 Moreover,
Axu(g', n,8) is supported in (7|2 +|8])'/? < 2% independently of &', thus the Cauchy—Schwartz inequality
implies

J J
[ VSuE 0 g dnds < [ ST N n. 8z, dndS 5 3 gl 22,
k=0 k=0

Plugging this in (A-2) (and omitting the estimate on Sju, R;u),

o o j 2
Z 240j KQ ¥ u)? < Z 7(46-3)j ( Z ||Aku||L2229k 2(3/2_29)k)
j=0 = 2

o0 J | X
= Z( Z | Agul| 227 2(3/2—20)(k—,))
j=0 “k=0
= ”a * b||122’

where (ax) x>0 = (| Axullp22%%) >0 € 17 and (b)gso = (22073/Dk), - €1, we can conclude by
Young’s inequality and (A-3) that

o0

> 2% K27 < (flall 216 13)* < Nullpae.2.
0
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thus H2%2 C[L2, Hg}lo. O

Remark A.5. Using a similar argument, it is not difficult to check that [L?, H (20’)2]9’2 = H(ZO(;’Z for 0 > %.

Of course the identification in the case 8 = % is less clear.
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