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ON ESTIMATES FOR FULLY NONLINEAR PARABOLIC EQUATIONS
ON RIEMANNIAN MANIFOLDS

BO GUAN, SHUJUN SHI AND ZHENAN SUI

We present some new ideas to derive a priori second-order estimates for a wide class of fully nonlinear
parabolic equations. Our methods, which produce new existence results for the initial-boundary value
problems in Rn , are powerful enough to work in general Riemannian manifolds.

1. Introduction

Let Mn be a compact Riemannian manifold of dimension n ≥ 2 with smooth boundary ∂M , which may
be empty (then M is closed), and f a smooth symmetric function of n variables. We consider the fully
nonlinear parabolic equation

f (λ(∇2u+χ))= eut+ψ in M ×{t > 0}, (1-1)

where χ is a smooth (0, 2)-tensor on M = M ∪ ∂M , ∇2u denotes the spatial Hessian of u, ut = ∂u/∂t ,
and λ(A)= (λ1, . . . , λn) will be the eigenvalues of a (0, 2)-tensor A; throughout the paper we shall use ∇
to denote the Levi-Civita connection of (Mn, g) and assume ψ ∈ C∞(M ×{t ≥ 0}).

While most attention in previous work had been on the two canonical cases, χ = 0 and χ = g, both of
which occur, for instance, in the classical Darboux equations in isometric embedding, there are many
important quantities of the form ∇2u+χ in differential geometry and other areas. A well-known example
is the gradient Ricci soliton equation

∇
2u+Ric= λg,

which has been studied intensively, where Ric denotes the Ricci tensor of (Mn, g). In a different context,
∇

2u+Ric is known as the Bakry–Emery Ricci tensor of the Riemannian measure space (Mn, g, e−ud Volg),
on which there are interesting recent results; see, e.g., [Wei and Wylie 2009] and references therein.
When χ as well as ψ is allowed to depend on u and ∇u, there are even more equations of the form (1-1)
and their elliptic counterparts, which arise naturally in connection with important geometric problems,
such as the generalized Minkowski and Christoffel–Minkowski problems in classical geometry, fully
nonlinear versions of the Yamabe problem in conformal geometry, and in other applications including the
Monge–Kantorovich optimal mass transport problem. From both the theoretic point of view and that of
applications, it is important and highly desirable to establish a general existence and regularity theory
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for (1-1) with as few technical assumptions as possible, so that it covers a wide range of applications in
different areas.

In order to study (1-1) in the context of parabolic theory, we follow [Caffarelli et al. 1985] and
assume that f is defined in an open, symmetric, convex cone 0 ⊂ Rn with vertex at the origin, 0n :=

{λ ∈ Rn
: λi > 0 for all 1≤ i ≤ n} ⊆ 0, and satisfies

fi = fλi ≡
∂ f
∂λi

> 0 in 0, 1≤ i ≤ n, (1-2)

f is a concave function in 0, (1-3)

and

sup
∂0

f := sup
λ0∈∂0

lim
λ→λ0

f (λ)≤ 0. (1-4)

Equation (1-1) is parabolic for solutions u ∈C2,1(MT ) with λ[u] := λ(∇2u+χ) ∈ 0 for x ∈ M and t > 0
(see [Caffarelli et al. 1985]); we shall call such functions admissible.

The structure conditions (1-2)–(1-4) are fundamental to the classical solvability of fully nonlinear elliptic
and parabolic equations, and have been standard in the literature since the work of Caffarelli, Nirenberg
and Spruck [Caffarelli et al. 1985]. Condition (1-4) prevents (1-1) from being degenerate, which may occur
if λ[u] ∈ 0̄ = 0∪∂0. So both conditions (1-2) and (1-4) are natural for the nondegenerate parabolicity of
(1-1), without which the C2+α,1+α/2 estimates may fail. An important fact is that conditions (1-2) and (1-4)
ensure that (1-1) becomes uniformly parabolic once global a priori C2,1 estimates are established for
admissible solutions. Consequently, one may obtain C2+α,1+α/2 estimates by the Evans–Krylov theorem,
which depends on the concavity condition (1-3).

The short-time existence of admissible solutions is well known from the classical theory of parabolic
equations for given admissible initial data (and boundary data as well when ∂M 6= ∅) with suitable
smoothness assumptions. The global (long-time) existence and behavior of solutions depend on the
establishment of a priori estimates in C2,1(MT ). Our primary goal in this paper is to derive second-order
estimates for fully nonlinear parabolic equations on Riemannian manifolds.

For fixed T > 0, let MT = M × (0, T ], MT = M × (0, T ], and let ∂MT := ∂s MT ∪ ∂b MT be the
parabolic boundary of MT , where

∂s MT = ∂M ×[0, T ), ∂b MT = M ×{t = 0}.

Throughout the paper we assume ϕb
:= ϕ|t=0 ∈ C∞(M) with

λ[ϕb
] ∈ 0, f (λ[ϕb

]) > 0 in M, (1-5)

and ϕs
:= ϕ|∂M×{t≥0} ∈ C∞(∂M × {t ≥ 0}). Let u ∈ C4,2(MT )∩C2,1(MT ) be an admissible solution

of (1-1) satisfying the initial-boundary conditions

u|t=0 = ϕ
b in M, u = ϕs on ∂s MT . (1-6)

The main result of this paper is the following second-order estimates:
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Theorem 1.1. Suppose that there exists an admissible subsolution u ∈ C2,1(MT ) satisfying

f (λ[u])≥ eut+ψ in MT . (1-7)

Then, under conditions (1-2)–(1-4),

sup
MT

|∇
2u| ≤ C1

(
1+max

∂MT
|∇

2u|
)
. (1-8)

In particular, when M is closed,
|∇

2u| ≤ C1 in MT . (1-9)

Suppose in addition that

u ≤ ϕb on ∂b MT , u = ϕs on ∂s MT . (1-10)

Then
max
∂MT
|∇

2u| ≤ C2. (1-11)

Remark 1.2. In Theorem 1.1 and the rest of this paper, unless otherwise indicated, the constant C1 in
(1-8) will depend on

|u|C1(MT )
, |ψ |C2,1(MT )

, |u|C2,1(MT )
, inf

MT
dist(λ[u], ∂0), (1-12)

and
3 := sup

0

f − sup
MT

eut+ψ (1-13)

as well as geometric quantities of M , while C2 in (1-11) will depend in addition on |ϕb
|C2(M), |ϕ

s
|C4,1(∂s MT ),

infMT eut+ψ and geometric quantities of ∂M . If f satisfies

lim
|λ|→∞

|λ|2
∑

fi =∞, (1-14)

then C1 can be chosen independently of 3 and |ut |C0(MT )
; see Remark 2.4.

Remark 1.3. The assumption u ∈C4,2(MT )∩C2,1(MT ) does not restrict the applications of Theorem 1.1.
This can be seen as follows. By the short-time existence theorem, (1-1) admits a unique admissible
solution u ∈ C∞(M × (0, t0]) ∩ C0(M × [0, t0]) satisfying the initial-boundary condition (1-10) for
some t0 > 0. We can then consider a new initial time, say t = t0/2, in place of t = 0, and may therefore
assume the compatibility condition

f (λ[ϕb
])= eϕ

s
t +ψ on M and ϕs

= ϕb on ∂M ×{t = 0}. (1-15)

Theorem 1.1 is an important step towards solving the initial-boundary problem (1-1) and (1-6) under
optimal structure conditions. It can be applied in many interesting cases to prove new long-time existence
results. Let us give a few examples here.

First, for a bounded smooth domain (with boundary of arbitrary geometric shape) in Rn we have
the following result, which is essentially optimal, both in terms of the generality of f and that of the
underlying domain:
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Theorem 1.4. Let M be a bounded smooth domain in Rn , 0< T ≤∞, and f satisfy (1-2)–(1-5). There
exists a unique admissible solution u ∈ C∞(MT )∩C0(MT ) of (1-1) satisfying (1-6) provided that there
exists an admissible subsolution u ∈ C2,1(MT ) satisfying (1-7) and (1-10).

The first initial-boundary value problem for (1-1), or (1-20) below, in Rn was treated, among many
others, by Ivochkina and Ladyzhenskaya [1995], who used essentially the same assumptions as in the
elliptic case introduced in [Caffarelli et al. 1985]; see [Lieberman 1996] for further improvements and
references. Jiao and Sui [2015] studied (1-20) on Riemannian manifolds under additional assumptions.
To the best of our knowledge, Theorem 1.4 had not been proved before in the current generality.

We remark that since there are no geometric restrictions on ∂M , (1-1) and (1-6) may fail to admit a
long-term admissible solution without the subsolution assumption. This is well known and may be seen
from simple examples.

Theorem 1.5. When 0 = 0n , Theorem 1.4 holds for compact Riemannian manifolds.

Theorem 1.1 applies to a very general class of equations, including f = σ 1/k
k and f = (σk/σl)

1/(k−l),
1 ≤ l < k ≤ n, where σk is the k-th elementary symmetric function defined on the cone 0k :=

{λ∈Rn
: σ j (λ)> 0 for all 1≤ j ≤ k}. Another interesting example is f = log Pk , to which Theorem 1.10

applies, where
Pk(λ) :=

∏
i1<···<ik

(λi1 + · · ·+ λik ), 1≤ k ≤ n,

defined in the cone

Pk := {λ ∈ Rn
: λi1 + · · ·+ λik > 0 for all 1≤ i1 < · · ·< ik ≤ n}.

Theorem 1.6. Let f = (σk/σl)
1/(k−l) and 0 = 0k for 0 ≤ l < k ≤ n, with σ0 = 1, or f = log Pk

and 0 =Pk . The parabolic problem (1-1) and (1-6) with smooth data has a unique admissible solution
u ∈ C∞(MT )∩C0(MT ) provided that there exists an admissible subsolution u ∈ C2,1(MT ) satisfying
(1-7) and (1-10).

Theorem 1.6 is known for f = σ 1/k
k , but seems to be new for f = (σk/σl)

1/(k−l) or f = log Pk , even
when M is a bounded smooth domain in Rn; see also [Jiao and Sui 2015].

Remark 1.7. In Theorem 1.1, the constants C1 and C2 depend on T only implicitly. For instance, if
the quantities listed in (1-12) are all independent of T , then so is C1. The independence of T from the
estimates is important to understanding the asymptotic behaviors of solutions as t goes to infinity. If one
allows C1 to depend on T (explicitly), (1-8) can be derived under much weaker conditions, and more
easily.

Theorem 1.8. Under assumptions (1-2), (1-3) and (1-5),

|∇
2u(x, t)| ≤ CeBt(1+max

∂MT
|∇

2u|
)

for all (x, t) ∈ MT , (1-16)

where C and B depend on |∇u|C0(MT )
, |ϕb
|C2(M) and other known data. In particular, if M is closed then

|∇
2u(x, t)| ≤ CeBt .
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Note that, by (1-5), the function

u := ϕb
+ t min

M

{
log f (λ[ϕb

])−ψ
}

is admissible and satisfies (1-7).
An immediate consequence of Theorem 1.8 is the following characterization of finite-time blow-up

solutions on closed manifolds:

Corollary 1.9. Assume M is closed and f satisfies (1-2)–(1-4). Then (1-1) admits a unique admissible
solution u ∈C∞(M×R+) with initial value function ϕb satisfying (1-5) provided that the a priori gradient
estimate

sup
MT

|∇u| ≤ C for all T > 0 (1-17)

holds, where C may depend on T . In other words, if u has a finite-time blow-up at T <∞, then

lim
t→T−

max
x∈M
|∇u(x, t)| =∞.

So, the long-time existence of solutions in 0≤ t<∞ reduces to establishing the gradient estimate (1-17).
This is also true when ∂M 6=∅. Using Theorem 1.1, we can prove the following existence results:

Theorem 1.10. Assume that (1-2)–(1-5), (1-7), and (1-10) hold for T ∈ (0,∞]. There exists a unique
admissible solution u ∈C∞(MT )∩C0(MT ) of (1-1) satisfying (1-6) provided that any one of the following
conditions holds:

(i) 0 = 0n;

(ii) (M, g) has nonnegative sectional curvature;

(iii) there is δ0 > 0 such that, if λ j < 0,

f j ≥ δ0
∑

fi on ∂0σ for all σ > 0; (1-18)

(iv) ∇2w ≥ χ for some function w ∈ C2(M) and∑
fiλi ≥ 0 in 0. (1-19)

The assumptions (i)–(iv) are only needed in deriving the gradient estimates. It would be interesting to
remove these assumptions. When ∂M =∅, Theorem 1.10 holds without the subsolution assumption.

The rest of the article is divided into three sections. In Sections 2 and 3, we derive (1-8) and (1-11),
respectively, completing the proofs of Theorems 1.1 and 1.8. Instead of (1-1), we shall deal with the
equation

f (λ(∇2u+χ))= ut +ψ (1-20)

under essentially the same assumptions on f , with the exception that (1-4) is replaced by

inf
∂s MT

(ϕt +ψ)− sup
∂0

f > 0, (1-21)
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which is needed in the proof of (1-11) . Accordingly, the functions ϕb and u ∈ C2,1(MT ) are assumed to
satisfy λ[ϕb

] ∈ 0 in M and, respectively,

f (λ[u])≥ ut +ψ in MT (1-22)

in place of (1-7). Note that if f > 0 in 0 and f satisfies (1-2), (1-3), and (1-19), then the function log f
still satisfies theses assumptions. So (1-1) is covered by (1-20) in most cases, and we shall derive the
estimates for (1-20). In Section 4 we briefly discuss the proof of the existence results and the preliminary
estimates needed in the proof.

At the end of this introduction we recall the following commonly used notations:

|u|Ck,l (MT )
=

k∑
j=0

|∇
j u|C0(MT )

+

l∑
j=1

∣∣∣∣∂ j u
∂t j

∣∣∣∣
C0(MT )

,

|u|Ck+α,l+β (MT )
= |u|Ck,l (MT )

+ |∇
ku|Cα(MT )

+

∣∣∣∣∂ lu
∂t l

∣∣∣∣
Cβ (MT )

,

where 0< α, β < 1 and k, l = 1, 2, . . . , for a function u sufficiently smooth on MT . We shall also write
|u|Ck(MT )

= |u|Ck,k(MT )
.

2. Global estimates for second derivatives

A substantial difficulty in deriving the global estimate (1-8), which is our primary goal in this section, is
caused by curvature of M ; another is the lack of (globally defined) functions or geometric quantities with
desirable properties. In our proof, the use of the admissible subsolution u is critical. We shall consider
(1-20) in place of (1-1).

Let u ∈ C4,2(MT )∩C2,1(MT ) be an admissible solution of (1-20) and u ∈ C2,1(MT ) an admissible
function. We assume that u admits an a priori C1 bound

|u|C1(MT )
≤ C. (2-1)

Let φ(s)=− log(1− bs2) and

η = φ(1+ |∇(u− u)|2)+ a(u− u− δt), (2-2)

where a, b, δ > 0 are constants and u ∈ C2,1(MT ) is an admissible function; we shall choose δ = 1 or 0,
a sufficiently large, and b small enough, namely

b ≤
1

8b2
1
, b1 = 1+ sup

MT

|∇(u− u)|2. (2-3)

Consider the quantity

W = sup
(x,t)∈MT

max
ξ∈Tx Mn,|ξ |=1

(∇ξξu+χ(ξ, ξ))eη.

Suppose W is achieved at an interior point (x0, t0) ∈ MT for a unit vector ξ ∈ Tx0 Mn . Let e1, . . . , en

be smooth orthonormal local frames about x0 such that e1 = ξ , ∇i e j = 0 and the Ui j := ∇i j u+χi j are
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diagonal at (x0, t0). So W =U11(x0, t0)eη(x0,t0). We wish to derive a bound

U11(x0, t0)≤ C. (2-4)

Write (1-20) in the form
ut = F(U )−ψ, U = {Ui j }, (2-5)

where F is defined by
F(A)≡ f (λ[A])

for an n× n symmetric matrices A = {Ai j } with eigenvalues λ[A] ∈ 0. Differentiating (2-5) gives

ut t = F i jUi j t −ψt ,

∇kut = F i j
∇kUi j −∇kψ for all k,

∇11ut = F i j
∇11Ui j + F i j,kl

∇1Ui j∇1Ukl −∇11ψ.

(2-6)

Throughout the paper we denote

F i j
=

∂F
∂Ai j

(U ), F i j,kl
=

∂2 F
∂Ai j∂Akl

(U ).

The matrix {F i j
} has eigenvalues f1, . . . , fn , and therefore is positive-definite when f satisfies (1-2),

while (1-3) implies that F is a concave function; see [Caffarelli et al. 1985]. Moreover, the following
identities hold:

F i jUi j =
∑

fiλi , F i jUikUk j =
∑

fiλ
2
i .

We also note that the F i j are diagonal at (x0, t0).

Proposition 2.1. For any a, C1 > 0, there exists a constant b > 0 satisfying (2-3) such that, at (x0, t0), if
U11 ≥ C1a/

√
b then

b
2

F i iU 2
i i + aF i i

∇i i (u− u)− a(ut − ut)+ aδ ≤ C
∑

F i i
+C. (2-7)

Proof. We shall assume U11(x0, t0)≥ 1. At (x0, t0), where the function log U11+ η has its maximum,

(∇11u)t
U11

+ ηt ≥ 0,
∇iU11

U11
+∇iη = 0, 1≤ i ≤ n, (2-8)

and
1

U11
F i i
∇i iU11−

1
U 2

11
F i i (∇iU11)

2
+ F i i

∇i iη ≤ 0. (2-9)

We recall the identities, on a Riemannian manifold,

∇i jkv−∇ j ikv = Rl
ki j∇lv, (2-10)

∇i jklv−∇kli jv = Rm
l jk∇imv+∇i Rm

l jk∇mv+ Rm
lik∇ jmv + Rm

jik∇lmv+ Rm
jil∇kmv+∇k Rm

jil∇mv. (2-11)

It follows that
F i i
∇i iU11 ≥ F i i

∇11Ui i −CU11
∑

F i i , (2-12)
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where C depends on |∇u|C0(MT )
and geometric quantities of M . By (2-8), (2-9), (2-12), and (2-6), we

obtain

F i i
∇i iη− ηt ≤

1
U11

F i j,kl
∇1Ui j∇1Ukl +

1
U 2

11
F i i (∇iU11)

2
−
∇11ψ

U11
+C

∑
F i i . (2-13)

Let
J = {i : 3Ui i ≤−U11}, K = {i > 1 : 3Ui i >−U11}.

As in [Guan 2014b], which uses an idea of Urbas [2002], one derives

F i i
∇i iη− ηt ≤

∑
i∈J

F i i (∇iη)
2
+C F11

∑
i /∈J

(∇iη)
2
−
∇11ψ

U11
+C

∑
F i i . (2-14)

For convenience, we write w = u− u, s = 1+ |∇w|2, and calculate

∇iη = 2φ′∇kw∇ikw+ a∇iw,

ηt = 2φ′∇kw(∇kw)t + awt − aδ,

∇i iη = 2φ′(∇ikw∇ikw+∇kw∇i ikw)+ 4φ′′(∇kw∇ikw)
2
+ a∇i iw,

while

φ′(s)=
2bs

1− bs2 , φ′′(s)=
2b+ 2b2s2

(1− bs2)2
> 4(φ′)2.

Hence, ∑
i∈J

F i i (∇iη)
2
≤ 8(φ′)2

∑
i∈J

F i i (∇kw∇ikw)
2
+ 2|∇w|2a2

∑
i∈J

F i i (2-15)

and ∑
i /∈J

(∇iη)
2
≤ Ca2

+C(φ′)2U 2
11. (2-16)

By (2-6) and (2-10), we obtain

F i i
∇i iη− ηt ≥ φ

′F i iU 2
i i + 2φ′′F i i (∇kw∇ikw)

2
+ aF i i

∇i iw− awt + aδ−Cφ′
(

1+
∑

F i i
)
. (2-17)

It follows from (2-14)–(2-17) that

φ′F i iU 2
i i+aF i i

∇i iw−awt+aδ≤Ca2
∑
i∈J

F i i
+C(a2

+(φ′)2U 2
11)F

11
−
∇11ψ

U11
+C

(
φ′+

∑
F i i
)
. (2-18)

Note that

F i iU 2
i i ≥ F11U 2

11+
∑
i∈J

F i iU 2
i i ≥ F11U 2

11+
U 2

11

9

∑
i∈J

F i i . (2-19)

We may fix b small to derive (2-7) when U11 ≥ Ca/
√

b. �

To proceed, we need the following lemma, which is key to the proof of Theorem 1.1, both for (1-8) in this
section and (1-11) in the next section; compare with Lemma 2.1 in [Guan 2014a]. Let νλ=D f (λ)/|D f (λ)|
denote the unit normal vector to the level surface of f through λ.
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Lemma 2.2. Let K be a compact subset of 0 and β > 0. There is a constant ε > 0 such that, for any
µ ∈ K and λ ∈ 0 with |νµ− νλ| ≥ β,∑

fi (λ)(µi − λi )≥ f (µ)− f (λ)+ ε
(

1+
∑

fi (λ)
)
. (2-20)

Proof. Since νµ is smooth in µ ∈ 0 and K is compact, there is ε0 > 0 such that, for any 0≤ ε ≤ ε0,

K ε
:= {µε := µ− ε1 : µ ∈ K }

is still a compact subset of 0 and

|νµ− νµε | ≤
β

2
for all µ ∈ K .

Consequently, if µ ∈ K and λ ∈ 0 satisfy |νµ− νλ| ≥ β then |νµε − νλ| ≥ β/2.
By the smoothness of the level surfaces of f , there exists δ > 0 (which depends on β but is uniform

in ε ∈ [0, ε0]) such that
min
µ∈K

min
0≤ε≤ε0

dist(∂Bβ/2δ (µε), ∂0 f (µε)) > 0,

where ∂Bβ/2δ (µε) denotes the spherical cap

∂Bβ/2δ (µε)=

{
ζ ∈ ∂Bδ(µε) : νµε ·

ζ −µε

δ
≥
β

2

√
1− β

2

16

}
.

Therefore,
θ ≡ min

µ∈K
min

0≤ε≤ε0
min

ζ∈∂Bβ/2δ (µε)

{ f (ζ )− f (µε)}> 0. (2-21)

Let P be the two-plane through µε spanned by νµε and νλ (translated to µε), and L the line on P
through µε and perpendicular to νλ. Since 0< νµε · νλ ≤ 1−β2/8, L intersects ∂Bβ/2δ (µε) at a unique
point ζ . By the concavity of f , we see that∑

fi (λ)(µ
ε
i − λi )=

∑
fi (λ)(ζi − λi )

≥ f (ζ )− f (λ)

≥ θ + f (µε)− f (λ) for all 0≤ ε ≤ ε0. (2-22)

Next, by the continuity of f we may choose 0< ε1 ≤ ε0 with | f (µε1)− f (µ)| ≤ 1
2θ . Hence∑

fi (λ)(µi − ε1− λi )≥ f (µ)− f (λ)+ 1
2θ. (2-23)

This proves (2-20) with ε =min{θ/2, ε1}. �

Remark 2.3. Alternatively, one can first prove∑
fi (λ)(µi − λi )≥ θ + f (µ)− f (λ).

Then choose ε > 0 small such that 0≤ f (µ)− f (µε)≤ θ/2. By the concavity of f ,∑
fi (λ)(µ

ε
i − λi )≥ f (µε)− f (λ)≥ f (µ)− f (λ)− θ

2
. (2-24)
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Now add these two inequalities to obtain (2-20).

We now continue to prove (2-4). Assume first that u is a subsolution, i.e., u satisfies (1-22). Since
λ[u] falls in a compact subset of 0,

β := 1
2 min

MT

dist(νλ[u], ∂0n) > 0. (2-25)

Let λ= λ[u](x0, t0) and µ= λ[u](x0, t0). If |νµ− νλ| ≥ β then, by Lemma 2.2,

F i i
∇i iw−wt ≥

∑
fi (λ)(µi − λi )− f (µ)+ f (λ)≥ ε

(
1+

∑
F i i
)
. (2-26)

The first inequality follows from Lemma 6.2 in [Caffarelli et al. 1985]; see [Guan 2014b]. We may fix a
sufficiently large to derive a bound U11(x0, t0)≤ C by (2-7).

Suppose now that |νµ− νλ|< β and therefore νλ−β1 ∈ 0n . It follows that

F i i
≥

β
√

n

∑
Fkk for all 1≤ i ≤ n. (2-27)

Since u is a subsolution, F i i
∇i iw−wt ≥ 0 by the concavity of f . By (2-7) and (2-27), we obtain

bβ
2
√

n
U 2

11

∑
F i i
+ aδ ≤ C

∑
F i i
+C. (2-28)

If we allow δ = 1, a bound U11(x0, t0)≤C would follow when a is sufficiently large. This gives (1-16)
in Theorem 1.8.

We now consider the case δ = 0. First, by the concavity of f ,

|λ|
∑

fi ≥ f (|λ|1)− f (λ)+
∑

fiλi ≥ f (|λ|1)− f (λ)−
1

4|λ|

∑
fiλ

2
i − |λ|

∑
fi . (2-29)

Hence,

U 2
11

∑
F i i
≥

U11

2n
( f (U111)− ut −ψ)−

1
8

∑
F i iU 2

i i ≥
3U11

4n
−

U 2
11

8

∑
F i i (2-30)

when U11 is sufficiently large. A bound U11(x0, t0)≤ C therefore follows from (2-28). The proof of (1-8)
in Theorem 1.1 is complete.

Remark 2.4. If (1-14) holds, a bound U11(x0, t0)≤ C follows from (2-28) directly and is independent
of |ut |C0(MT )

.

Remark 2.5. If u is an admissible strict subsolution, i.e.,

f (λ[u])≥ ut +ψ + δ in MT (2-31)

for some δ > 0, then we can choose ε > 0 such that λε[u] := λ[u] − ε1 ∈ 0 and

f (λε[u])≥ ut +ψ +
δ

2
in MT . (2-32)

By the concavity of f , we see that∑
fi (λ[u])(λεi [u] − λi [u])≥ f (λε[u])− f (λ[u])≥ ut − ut +

δ

2
.
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Therefore, one can derive (2-4) directly from Proposition 2.1. This can be used to prove Theorem 1.8 as
u = ϕb

+ At is a strict subsolution of (1-20) for any constant A < infM f (λ[ϕb
])− supMT

ψ .

3. Second-order boundary estimates

Let u ∈ C3,1(MT ) be an admissible solution of (1-20) and (1-6), and u ∈ C2,1(MT ) an admissible
subsolution satisfying (1-22) and (1-10). In this section, we derive (1-11) under conditions (1-2), (1-3)
and (1-21) on f . Clearly we only need to focus on ∂s MT .

For a point x0 ∈ ∂M we shall choose smooth orthonormal local frames e1, . . . , en around x0 such
that en , when restricted to ∂M , is the interior unit normal to ∂M . By the boundary condition u = ϕs

on ∂s MT , we obtain

|∇αβu(x0, t)| ≤ C for all 1≤ α, β < n, 0≤ t ≤ T . (3-1)

Let ρ(x) and d(x) denote the distances from x ∈ M to x0 and ∂M , respectively. Let Mδ
T =

{(x, t) ∈ MT : ρ(x) < δ}, and ∂Mδ
T be the parabolic boundary of Mδ

T ,

∂Mδ
T = Mδ

T \Mδ
T .

We fix δ0 > 0 sufficiently small that both ρ and d are smooth in Mδ0
T . Let L denote the linear parabolic

operator

Lw = F i j
∇i jw−wt .

We construct a barrier function of the form

Ψ = A1v+ A2ρ
2
− A3

∑
l<n

|∇l(u−ϕ)|2, (3-2)

where

v = u− u+ sd −
Nd2

2
. (3-3)

Lemma 3.1. Assume that (1-2), (1-3) and (1-21) hold. For constant K > 0, there exist uniform positive
constants s, δ sufficiently small, and A1, A2, A3, N sufficiently large, such that Ψ ≥ K (d + ρ2) in Mδ

T
and

LΨ ≤−K
(

1+
∑

fi |λi | +
∑

fi

)
in Mδ

T . (3-4)

Proof. This is a parabolic version of Lemma 3.1 in [Guan 2014a]. Since there are some substantial
differences in several places, for completeness we include a detailed proof.

First we note that, since u is a subsolution, L(u− u)≤ 0 by the concavity of f , and, by (2-6),

|L∇k(u−ϕ)| ≤ C
(

1+
∑

fi |λi | +
∑

fi

)
for all 1≤ k ≤ n. (3-5)

It follows that ∑
l<n

L|∇l(u−ϕ)|2 ≥ 2
∑
l<n

F i jUilU jl −C
(

1+
∑

fi |λi | +
∑

fi

)
. (3-6)
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By Proposition 2.19 in [Guan 2014b], there exists an index r such that∑
l<n

F i jUilU jl ≥
1
2

∑
i 6=r

fiλ
2
i . (3-7)

At a fixed point (x, t), denote µ= λ(∇2u+χ) and λ= λ(∇2u+χ). As in Section 2 we consider two
cases separately: (a) |νµ− νλ|< β, and (b) |νµ− νλ| ≥ β, where β is as given in (2-25).

Case (a): |νµ− νλ|< β. We have, by (2-27),

fi ≥
β
√

n

∑
fk for all 1≤ i ≤ n. (3-8)

We next show that this implies the following inequality for any index r :∑
i 6=r

fiλ
2
i ≥ c0

∑
fiλ

2
i −C0

∑
fi (3-9)

for some c0, C0 > 0.
Since

∑
λi ≥ 0, we see that ∑

λi<0

λ2
i ≤

(
−

∑
λi<0

λi

)2

≤ n
∑
λi>0

λ2
i . (3-10)

Therefore, by (3-8) and (3-10), we obtain, if λr < 0,

frλ
2
r ≤ n fr

∑
λi>0

λ2
i ≤

n
√

n
β

∑
λi>0

fiλ
2
i .

On the other hand, by the concavity of f ,∑
fi (b− λi )≥ f (b1)− f (λ)= f (b1)− ut −ψ ≥

3

2
(3-11)

for b > 0 sufficiently large. It follows that, if λr > 0,

frλr ≤ b
∑

fi −
∑
λi<0

fiλi .

By (3-8) and the Schwarz inequality,

β frλ
2
r

√
n

∑
fk ≤ f 2

r λ
2
r ≤ 2b2

(∑
fi

)2
+ 2

∑
λk<0

fk

∑
λi<0

fiλ
2
i ≤ 2

(∑
λi<0

fiλ
2
i + b2

∑
fi

)∑
fk .

This finishes the proof of (3-9).
Letting b = n|λ| in (3-11), we see that

(n+ 1)|λ|
∑

fi ≥
∑

fi (n|λ| − λi )≥ f (n|λ|1)− f (λ)≥
3

2
, (3-12)

and consequently, by (3-8), ∑
fiλ

2
i ≥

β|λ|2
√

n

∑
fi ≥

β|λ|

(n+ 1)
√

n
3

2
(3-13)
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provided that |λ| ≥ R for R sufficiently large.
It now follows from (3-6), (3-7), (3-9), (3-13) and the Schwarz inequality that, when |λ| ≥ R,∑

l<n

L|∇l(u−ϕ)|2 ≥ c1
∑

fiλ
2
i + 2c1|λ| −C −C1

∑
fi (3-14)

for some c1, C1 > 0. We now fix R ≥ C/c1.
Turning to the function v, we note that, by (3-8),

Lv ≤ L(u− u)+C(s+ Nd)
∑

F i i
− N F i j

∇i d∇ j d ≤
(

C(s+ Nd)−
βN
√

n

)∑
F i i , (3-15)

since L(u− u)≤ 0 and |∇d| ≡ 1. For N sufficiently large, we have

Lv ≤−
∑

fi in Mδ
T , (3-16)

and therefore, in view of (3-14) and (3-16),

LΨ ≤−A3c1

(
|λ| +

∑
fiλ

2
i

)
+ (−A1+C A2+C1 A3)

∑
fi (3-17)

when |λ| ≥ R for any s ∈ (0, 1] as long as δ is sufficiently small. From now on A3 is fixed such that
A3c1 R ≥ K , so A3 ≥ C K/c2

1.
Suppose now that |λ| ≤ R. By (1-2) and (1-3), we have

2R
∑

fi ≥
∑

fiλi + f (2R1)− f (λ)≥−R
∑

fi + f (2R1)− f (R1). (3-18)

Therefore, ∑
fi ≥

f (2R1)− f (R1)
3R

≡ CR > 0.

It follows from (2-27) that there is a uniform lower bound

fi ≥
β
√

n

∑
fk ≥

βCR
√

n
for all 1≤ i ≤ n. (3-19)

Consequently, since |∇d| = 1,

F i j
∇i d∇ j d ≥

β

2
√

n

(
CR +

∑
fi

)
.

From (3-15) we see that, when δ is sufficiently small and N sufficiently large,

Lv ≤−
(

1+
∑

fi

)
in Mδ

T . (3-20)

Combining (3-6), (3-7), (3-9), and (3-20) yields

LΨ ≤−A3c1
∑

fiλ
2
i + (−A1+C A2+C A3)

∑
fi − A1+C A3 (3-21)

We now fix N such that (3-16) holds when |λ|> R, while (3-20) holds when |λ| ≤ R, for any s and δ
sufficiently small.
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Case (b): |νµ− νλ| ≥ β. It follows from Lemma 2.2 that, for some ε > 0,

L(u− u)≥
∑

fi (µi − λi )− (u− u)t ≥ ε
(

1+
∑

fi

)
.

By (3-15), we may fix s and δ sufficiently small such that v ≥ 0 on Mδ
T and

Lv ≤−
ε

2

(
1+

∑
fi

)
in Mδ

T . (3-22)

Finally, we choose A2 large such that

(A2− K )ρ2
≥ A3

∑
l<n

|∇l(u−ϕ)|2 on ∂Mδ
T ,

and then fix A1 sufficiently large so that (3-4) holds. In case (a) this follows from (3-17) when |λ|> R,
and from (3-21) when |λ| ≤ R. In case (b) we note that, from (3-6) and (3-7),

LΨ ≤ A1Lv+ A2Lρ2
− A3

∑
i 6=r

fiλ
2
i +C A3

(
1+

∑
fi |λi | +

∑
fi

)
≤ A1Lv− A3

∑
i 6=r

fiλ
2
i +C A3

(
1+

∑
fi |λi |

)
+C(A2+ A3)

∑
fi .

Suppose now that λr < 0. Then,∑
fi |λi | = 2

∑
λi>0

fiλi −
∑

fiλi ≤ ε
∑
λi>0

fiλ
2
i −Lv+C

∑
fi +C.

Similarly, if λr > 0,∑
fi |λi | =

∑
fiλi − 2

∑
λi<0

fiλi ≤ ε
∑
λi<0

fiλ
2
i +Lv+C

∑
fi +C.

By (3-22) we obtain (3-4) when A1 is chosen sufficiently large. �

Applying Lemma 3.1, by (3-5) we immediately derive a bound for the mixed tangential–normal
derivatives at any point (x0, t0) ∈ ∂MT ,

|∇nαu(x0, t0)| ≤ C for all α < n. (3-23)

It remains to establish the double normal derivative estimate

|∇nnu(x0, t0)| ≤ C. (3-24)

As in [Guan 2014a; 2014b], we use an idea originally due to Trudinger [1995].
For (x, t) ∈ ∂s MT , let Ũ (x, t) be the restriction to Tx∂M of U (x, t), viewed as a bilinear map on

the tangent space of M at x , and let λ′(Ũ ) denote the eigenvalues of Ũ with respect to the induced
metric on ∂M . We next show that there are uniform positive constants c0, R0 such that, for all R > R0,(
λ′(Ũ (x, t)), R

)
∈ 0 and

f
(
λ′(Ũ (x, t)), R

)
≥ f

(
λ(U (x, t))

)
+ c0, for all 0≤ t ≤ T, x ∈ ∂M. (3-25)
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It is known that (3-25) implies (3-24); see, e.g., [Guan 2014b].
For R > 0 sufficiently large, let

m R := min
∂s MT
[ f (λ′(Ũ ), R)− f (λ(U ))],

cR := min
∂s MT
[ f (λ′(Ũ ), R)− f (λ(U ))].

Note that
(
λ′(Ũ (x, t)), R

)
∈ 0 and

(
λ′(Ũ (x, t)), R

)
∈ 0 for all (x, t) ∈ ∂s MT and all R large, and it is

clear that both m R and cR are increasing in R. We wish to show that, for some uniform c0 > 0,

m̃ := lim
R→∞

m R ≥ c0.

Assume m̃ < ∞ (otherwise we are done) and fix R > 0 such that cR > 0 and m R ≥ m̃/2. Let
(x0, t0) ∈ ∂s MT be such that m R = f

(
λ′(Ũ (x0, t0)), R

)
. Choose local orthonormal frames e1, . . . , en

around x0 as before such that en is the interior normal to ∂M along the boundary and Uαβ(x0, t0)
(1≤ α, β ≤ n− 1) is diagonal. Since u− u = 0 on ∂s MT , we have

Uαβ −Uαβ =−∇n(u− u)σαβ on ∂s MT , (3-26)

where σαβ = 〈∇αeβ, en〉. Similarly,

Uαβ −∇αβϕ−χαβϕ =−∇n(u−ϕ)σαβ on ∂s MT . (3-27)

For an (n− 1)× (n− 1) symmetric matrix {rα,β} with
(
λ′({rα,β}), R

)
∈ 0, define

F̃[rαβ] := f
(
λ′({rα,β}), R

)
and

F̃αβ0 =
∂ F̃
∂rαβ
[Uαβ(x0, t0)].

We see that F̃ is concave since f is, and therefore, by (3-26),

∇n(u− u)(x0, t0)F̃
αβ

0 σαβ(x0)≥ F̃[Uαβ(x0, t0)] − F̃[Uαβ(x0, t0)] ≥ cR −m R.

Suppose that

∇n(u− u)(x0, t0)F̃
αβ

0 σαβ(x0)≤
cR

2
;

then m R ≥ cR/2 and we are done. So we shall assume

∇n(u− u)(x0, t0)F̃
αβ

0 σαβ(x0) >
cR

2
.

Consequently,

F̃αβ0 σαβ(x0)≥
cR

2∇n(u− u)(x0, t0)
≥ 2ε1cR (3-28)
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for some constant ε1> 0 depending on max∂s MT |∇u|. By continuity, we may assume η := F̃αβ0 σαβ ≥ ε1cR

on Mδ
T by requiring δ to be small (which may depend on the fixed R). Define, in Mδ

T ,

Φ =−∇n(u−ϕ)+
Q
η
, (3-29)

where

Q = F̃αβ0 (∇αβϕ+χαβ −Uαβ(x0, t0))− ut −ψ + ut(x0, t0)+ψ(x0, t0)

is smooth in Mδ
T . By (3-5), we have

LΦ ≤−L∇nu+C
(

1+
∑

F i i
)
≤ C

(
1+

∑
fi |λi | +

∑
fi

)
. (3-30)

From (3-27), we see that Φ(x0, t0)= 0 and

Φ ≥ 0 on Mδ
T ∩ ∂s MT , (3-31)

since, for (x, t) ∈ ∂s MT , by the concavity of F̃ ,

F̃αβ0 (Uαβ(x, t)−Uαβ(x0, t0))≥ F̃(Ũ (x, t))− F̃(Ũ (x0, t0))

= F̃(Ũ (x, t))−m R − ut(x0, t0)−ψ(x0, t0)

≥ ψ(x, t)+ ut(x, t)− ut(x0, t0)−ψ(x0, t0).

On the other hand, on ∂b Mδ
T we have ∇n(u−ϕ)= 0 and therefore, by (3-31),

Φ(x, 0)≥Φ(x̂, 0)−Cd(x)≥−Cd(x), (3-32)

where C depends on C1 bounds of ∇2ϕ( · , 0), ut( · , 0), and ψ( · , 0) on M , and x̂ ∈ ∂M satisfies
d(x)= dist(x, x̂) for x ∈ M ; when d(x) is sufficiently small, x̂ is unique.

Finally, note that |Φ| ≤ C in Mδ
T . So we may apply Lemma 3.1 to derive Ψ +Φ ≥ 0 on ∂Mδ

T and

L(Ψ +Φ)≤ 0 in Mδ
T (3-33)

for A1, A2, and A3 sufficiently large. By the maximum principle, Ψ + Φ ≥ 0 in Mδ
T . This gives

∇nΦ(x0, t0)≥−∇nΨ (x0, t0)≥−C , since Φ +Ψ = 0 at (x0, t0), and, therefore, ∇nnu(x0, t0)≤ C .
Consequently, we have obtained a priori bounds for all second derivatives of u at (x0, t0). It follows that

λ(U (x0, t0)) is contained in a compact subset of 0 (independent of u) by assumption (1-4). Therefore,

c0 ≡
f
(
λ(U (x0, t0))+ Ren

)
− f

(
λ(U (x0, t0))

)
2

> 0,

where en = (0, . . . , 0, 1) ∈ Rn . By Lemma 1.2 in [Caffarelli et al. 1985], we have

m̃ ≥ m R′ ≥ f
(
λ(U (x0, t0))+ R′en

)
− c0− f

(
λ(U (x0, t0))

)
≥ c0

for R′ ≥ R sufficiently large. The proof of (1-11) in Theorem 1.1 is complete.
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Remark 3.2. When M is a bounded smooth domain in Rn , one can make use of an identity in [Caffarelli
et al. 1985], and modify the operator L, to derive the boundary estimates without using assumption (1-19).
We omit the proof here since it is similar to the elliptic case in [Guan 2014a], which we refer the reader
to for details.

4. Existence and C1 estimates

In order to prove Theorem 1.10, it remains to derive the C1 estimate

|u|C0(MT )
+ max

M×[t0,T ]
(|∇u| + |ut |)≤ C (4-1)

for any t0 ∈ (0, T ), where C may depend on t0. Indeed, by assumption (1-4) we see that (1-1) becomes
uniformly parabolic once the C2,1 estimate

|u|C2,1(M×[t0,T ]) ≤ C

is established, which yields |u|C2+α,1+α/2(M×[t0,T ])≤C by the Evans–Krylov theorem (see, e.g., [Lieberman
1996]). Higher-order estimates now follow from the classical Schauder theory of linear parabolic equations,
and one obtains a smooth admissible solution in 0≤ t ≤ T by the short-time existence and continuation.
We refer the reader to [Lieberman 1996] for details.

Let h ∈ C2(MT ) be the solution of 1h + trχ = 0 in MT with h = ϕ on ∂MT . By the maximum
principle we have u ≤ u ≤ h, which gives a bound

|u|C0(MT )
+max

∂MT
|∇u| ≤ C. (4-2)

For the bound of ut , we have the following maximum principle:

Lemma 4.1. We have

|ut(x, t)| ≤max
∂MT
|ut | + t sup

MT

|ψt | for all (x, t) ∈ MT . (4-3)

Suppose moreover that there is a strictly convex function h ∈ C2(M) with ∇2h ≥ c0g for some c0 > 0.
Then

sup
MT

|ut | ≤max
∂MT
|ut | + 2 sup

MT

|ψ | +
2|h|C0(M)

c0
sup
MT

|∇
2ψ |. (4-4)

Proof. We have the identities Lut = ψt and

|L(ut +ψ)| = |F i j
∇i jψ | ≤ |∇

2ψ |
∑

F i i .

Therefore,
L(±ut − Bt)=±ψt + B ≥ 0

for B ≥ supMT
|ψt |. This gives (4-3), by the maximum principle. Similarly, (4-4) follows from

L(±(ut +ψ)+ Bh)≥ (c0 B− |∇2ψ |)
∑

F i i
≥ 0
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for B ≥ c−1
0 supMT

|∇
2ψ | and the maximum principle. �

It remains to derive the gradient estimate

sup
MT

|∇u|2 ≤ C
(
|u|C0(MT )

+ sup
∂MT

|∇u|2
)

(4-5)

in each of the cases (i)–(iv) in Theorem 1.10. We shall omit case (i), which is trivial, and consider
cases (ii)–(iv), following ideas from [Li 1990; Urbas 2002; Guan 2014b] in the elliptic case.

Let φ be a function to be chosen and assume that |∇u|eφ achieves a maximum at an interior point
(x0, t0) ∈ MT . As before, we choose local orthonormal frames at x0 such that both Ui j and F i j are
diagonal at (x0, t0), where

∇ku∇kut

|∇u|2
+φt ≥ 0,

∇ku∇iku
|∇u|2

+∇iφ = 0 for all i = 1, . . . , n, (4-6)

F i i ∇ku∇i iku+∇iku∇iku
|∇u|2

− 2F i i (∇ku∇iku)2

|∇u|4
+ F i i

∇i iφ ≤ 0. (4-7)

We have, for any 0< ε < 1,∑
k

(∇iku)2 =
∑

k

(Uik −χik)
2
≥ (1− ε)U 2

i i −
C
ε

(4-8)

and (∑
k

∇ku∇iku
)2

≤ (1+ ε)|∇i u|2U 2
i i +

C
ε
|∇u|2. (4-9)

Let ε = 1
3 and J = {i : 2(n+ 2)|∇i u|2 > |∇u|2}; note that J 6=∅ and, by (4-8) and (4-9),∑

i /∈J

F i i (|∇u|2∇iku∇iku− 2(∇ku∇iku)2)≥
∑
i /∈J

F i i (|∇u|2(1− ε)− 2(1+ ε)|∇i u|2)U 2
i i )−

C
ε
|∇u|2

≥−
C
ε
|∇u|2. (4-10)

We derive, from (2-10), (4-6), (4-7) and (4-10),

1
3 F i iU 2

i i − 2|∇u|2
∑
i∈J

F i i
|∇iφ|

2
+ |∇u|2(F i i

∇i iφ−φt)≤ C(1− K0|∇u|2)
∑

F i i
+C |∇u|, (4-11)

where K0 = infk,l Rklkl .
Let

φ =− log(1− bv2)+ A(u+w− Bt),

where v is a positive function, and A, B and b are constant, all to be determined; b will be chosen
sufficiently small such that 14bv2

≤ 1 in MT , while A = 0 in cases (ii) and (iii). By straightforward
calculations,

∇iφ =
2bv∇iv

1− bv2 + A∇i (u+w), φt =
2bvvt

1− bv2 + A(ut − B)
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and

∇i iφ =
2bv∇i iv+ 2b|∇iv|

2

1− bv2 +
4b2v2

|∇iv|
2

(1− bv2)2
+ A∇i i (u+w)

=
2bv∇i iv

1− bv2 +
2b(1+ bv2)|∇iv|

2

(1− bv2)2
+ A∇i i (u+w).

Plugging these into (4-11), we obtain

1
3 F i iU 2

i i + |∇u|2
∑
i∈J

F i i
(

b(1− 7bv2)|∇iv|
2

(n+ 2)(1− bv2)2
−C A2

)

+
2bv|∇u|2

1− bv2 (F
i i
∇i iv− vt)+ A|∇u|2(F i i

∇i i (u+w)− ut + B)

≤ C(1− K0|∇u|2)
∑

F i i
+C |∇u|. (4-12)

In both cases (ii) and (iv), we take

v = u− u+ sup
MT

(u− u)+ 1≥ 1.

Let µ = λ(∇2u(x0, t0)+ χ(x0)), λ = λ(∇2u(x0, t0)+ χ(x0)), and β as in (2-25). Suppose first that
|νµ− νλ| ≥ β. By Lemma 2.2 and the assumptions that

∑
fiλi ≥ 0 and ∇2w ≥ χ , we see that

F i i
∇i i (u+w)− ut + B ≥ F i i

∇i iv− vt + (B− ut)≥ ε
∑

F i i
+ ε+ (B− ut)

for some ε>0. Let A= A1K−0 /ε, K−0 =max{−K0, 0}, and fix A1, B sufficiently large. A bound |∇u|≤C
follows from (4-12) in both cases (ii) and (iv).

We now consider the case |νµ−νλ|<β. By (2-27) and (4-12), we see that, if |∇u| is sufficiently large,

β
√

n
(|λ|2+ c1|∇u|4)

∑
F i i
≤ F i iU 2

i i + 2c1|∇u|4
∑
i∈J

F i i
≤ C(1− K0|∇u|2)

∑
F i i
+C |∇u|, (4-13)

where c1 > 0.
Suppose |λ| ≥ R for R sufficiently large. Then

β
√

n
(|λ|2+ c1|∇u|4)

∑
F i i
≥

2β|λ|
√

c1
√

n
|∇u|2

∑
F i i
≥ c2|∇u|2 (4-14)

for some uniform c2 > 0. We obtain from (4-13) and (4-14) a bound for |∇u(x0, t0)|.
Suppose now that |λ| ≤ R. Then

∑
F i i has a positive lower bound, by (3-18) and (3-19). Therefore, a

bound |∇u(x0, t0)| follows from (4-13) again. This completes the proof of (4-5) in cases (ii) and (iv).
For case (iii) we choose A = 0 and φ = (u− inf

MT
u+ 1)2. By (4-12)

|∇u|4
∑
i∈J

F i i
≤ C(1− K0|∇u|2)

∑
F i i
+C |∇u|. (4-15)

By (4-6) we see that Ui i ≤ 0 for each i ∈ J if |∇u| is sufficiently large, and a bound for |∇u(x0, t0)|
therefore follows from (4-15) and assumption (1-18).
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