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We prove the L2 boundedness of the directional Hilbert transform in the plane relative to measurable
vector fields which are constant on suitable Lipschitz curves. One novelty of our proof lies in the definition
of the adapted Littlewood–Paley projection (see Definition 3.3). The other novelty is that we will use
Jones’ beta numbers to control certain commutator in the critical Lipschitz regularity (see Lemma 5.5).

1. Introduction and statement of the main result

On R2, a direction is given by vector vu = (1, u), where u ∈ R. Below, we will suppress the dependence
of v upon u. Consider the directional Hilbert transform in the plane defined for a fixed direction v= (1, u)
as

Hv f (x, y) := p.v.
∫

R

f (x − t, y− ut)
dt
t

(1-1)

for any test function f . By the dilation symmetry, the length of the vector v is irrelevant for the value
of Hv, which explains our normalization of the first component. By an application of Fubini’s theorem
and the L p bounds for the classical Hilbert transform, one obtains a priori L p bounds for Hv. On the
other hand, the corresponding maximal operator supu |Hv f (x, y)| for varying directions is well known to
not satisfy any a priori L p bounds; see the work of Karagulyan [2007].

Bateman and Thiele [2013] proved that∥∥sup
u∈R

‖Hv f (x, y)‖L p(y)
∥∥

L p(x) ≤ C p‖ f ‖p (1-2)

for the range 3
2 < p <∞. Note that the supremum falls between the computation of the norm in y and in

x , compared to being completely inside or outside as in the first paragraph. The case p = 2 of (1-2) goes
back to Coifman and El Kohen (see page 1578 of [Bateman and Thiele 2013] for a detailed discussion),
who noticed that a Fourier transform in the y direction makes (1-2) for p = 2 equivalent to L2 bounds for
Carleson’s operator.

Estimate (1-2) highlights a biparameter structure of the directional Hilbert transform. The biparameter
structure arises since the kernel is a tensor product between a Hilbert kernel in direction v and a Dirac
delta distribution in the perpendicular direction.
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If one considers the linearized maximal operator

Hv f (x, y) := p.v.
∫

f (x − t, y− u(x, y)t)
dt
t

(1-3)

for some function u, then inequality (1-2) can be rephrased as a bound for the linearized maximal operator
under the assumption that u is constant on every vertical line x = x0 for all x0 ∈ R. Such vector fields v
of the form (1, u(x0)) for some measurable function u : R→ R are called one-variable vector fields in
[Bateman and Thiele 2013].

The purpose of the present paper is to relax this rigid assumption on u, and prove an analogue of (1-2)
for vector fields which are constant along suitable families of Lipschitz curves. To formulate such a result,
we perturb (1-2) by a bi-Lipschitz horizontal distortion, that is,

(x, y) 7→ (g(x, y), y) (1-4)

with
(x ′− x)/a0 ≤ g(x ′, y)− g(x, y)≤ a0(x ′− x) (1-5)

for every x < x ′ and every y, so that the transformation (1-4) maps vertical lines to near vertical Lipschitz
curves:

|g(x, y)− g(x, y′)| ≤ b0|y′− y| (1-6)

for all x , y, y′. These two conditions can be rephrased as

1/a0 ≤ ∂1g ≤ a0 and |∂2g| ≤ b0 a.e. (1-7)

Under these assumptions, L p norms are distorted boundedly under the transformation (1-4). Namely,
(1-5) implies for every y that

a−1
0 ‖ f (x, y)‖p

L p(x) ≤ ‖ f (g(x, y), y)‖p
L p(x) ≤ a0‖ f (x, y)‖p

L p(x) (1-8)

and we may integrate this in the y direction to obtain equivalence of L p norms in the plane. Hence the
change of measure is not the main point of the following theorem, but rather the effect of the transformation
on the linearizing function u, which is now constant along the family of Lipschitz curves which are the
images of the lines x = x0 under the map (1-4).

Theorem 1.1 (main theorem). Let g : R2
→ R satisfy assumption (1-5) for some a0 and assumption (1-6)

for some b0. Then, for any c0 ∈ (0, 1), we have∥∥ sup
|u|≤c0/b0

‖Hv f (g(x, y), y)‖L2(y)
∥∥

L2(x) ≤ C‖ f ‖2. (1-9)

Here C is a constant depending only on a0 and c0.

Remark 1.2. The constant C is independent of b0 due to the anisotropic scaling symmetry x 7→ x , y 7→λy.

In view of the implicit function theorem (see [Azzam and Schul 2012] for recent developments), our
result covers a large class of vector fields which are of the critical Lipschitz regularity. Indeed, it implies
the following:
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Corollary 1.3. For a measurable unit vector field v0 : R
2
→ S1, suppose that:

(i) there exists a bi-Lipschitz map g0 : R
2
→ R2 such that

v0(g0(x, y)) is constant in y; (1-10)

(ii) there exists d0 > 0 such that, for all x ∈ R,

6
(
∂2g0(x, y),±v0(g0(x, y))

)
≥ d0 y-a.e. in R. (1-11)

Then the associated Hilbert transform, which is defined as

Hv0 f (x, y) :=
∫

R

f ((x, y)− tv0(x, y))
dt
t
, (1-12)

is bounded in L2, with the operator norm depending only on d0 and the bi-Lipschitz norm of g0.

Remark 1.4. The structure theorem for Lipschitz functions by Azzam and Schul [2012] states exactly
that any Lipschitz function u :R2

→R (any Lipschitz unit vector field v0 in our case) can be precomposed
with a bi-Lipschitz function g0 : R

2
→ R2 so that u ◦ g0 is Lipschitz in the first coordinate and constant in

the second coordinate, when restricted to a “large” portion of the domain.

Remark 1.5. Without the assumption that d0 > 0, the operator Hv0 might be unbounded in L p for
any p > 1. The counterexample is based on the Besicovitch–Kakeya set construction, which will be
discussed at the end of the proof of the corollary.

To our knowledge, this is the first result in the context of the directional Hilbert transform with a
Lipschitz assumption in the hypothesis. Lipschitz regularity is critical for the directional Hilbert transform,
as we will elaborate shortly.

To use the assumption that v is constant along Lipschitz curves, we apply an adapted Littlewood–Paley
theory along the level lines of v. This is a refinement of the analysis of Coifman and El Kohen, who use
a Fourier transform in the y variable and the analysis of Bateman and Thiele [2013], who use a classical
Littlewood–Paley theory in the y variable. This adapted Littlewood–Paley theory is the main novelty of
the present paper. It is in the spirit of prior work on the Cauchy integral on Lipschitz curves, for example
[Coifman et al. 1989], but it differs from this classical theme in that it is more of biparameter type as it is
governed by a whole fibration into Lipschitz curves. We crucially use Jones’ beta numbers as a tool to
control the adapted Littlewood–Paley theory. To our knowledge this is also the first use of Jones’ beta
numbers in the context of the directional Hilbert transform.

In this paper we focus on the case L2, since our goal here is to highlight the use of the adapted
Littlewood–Paley theory and Jones’ beta numbers in the technically most simple case. We expect to
address the more general case L p with a range of p, as in the Bateman–Thiele theorem, in forthcoming
work.

While Coifman and El Kohen use the difficult bounds on Carleson’s operator as a black box, Bateman
and Thiele [2013] have to unravel this black box following the work of Lacey and Li [2006; 2010] and
use time-frequency analysis to prove bounds for a suitable generalization of Carleson’s operator. Luckily,
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in the present work we do not have to delve into time-frequency analysis as we can largely recycle the
work of Bateman and Thiele for this aspect of the argument.

An upper bound such as |u| ≤ c0/b0 is necessary in our theorem. By a limiting argument we may
recover the theorem of Bateman and Thiele, using the scaling to tighten the Lipschitz constant b0 at the
same time as relaxing the condition |u| ≤ c0/b0.

An interesting open question remains whether the same holds true for c0 = 1. We do not know of a soft
argument to achieve this relaxation. Our estimate of the norms become unbounded as c0 approaches 1.
This question suggests itself for further study.

Part of our motivation is a long history of studies of the linearized maximal operator (1-3) under various
assumptions on the linearizing function u. If one truncates (1-3) as

Hv,ε0 f (x, y) := p.v.
∫ ε0

−ε0

f (x − t, y− u(x, y)t)
dt
t
,

then it is reasonable to ask for pure regularity assumptions on u to obtain boundedness of Hv,ε0 . It is
known that Lipschitz regularity of u is critical, since a counterexample in [Lacey and Li 2010] based
on a construction of the Besicovitch–Kakeya set shows that no bounds are possible for Cα regularity
with α < 1. However, it remains open whether Lipschitz regularity suffices for bounds for Hv,ε0 . On the
regularity scale, the only known result is for real analytic vector fields v by Stein and Street [2012]. A
prior partial result in this direction appears in [Christ et al. 1999].

It is our hope that our result corners some of the difficulties of approaching Lipschitz regularity in
the classical problem. Further substantial progress (including the case c0 = 1) is likely to use Lipschitz
regularity not only of the level curves of u but also of u itself across the level curves. For example, one
possibility would be to cut the plane into different pieces by the theorem of Azzam and Schul stated in
Remark 1.4, and to analyze each piece separately using Theorem 1.1. We leave this for future study.

Related to the directional Hilbert transform, and thus additional motivation for the present work, is the
directional maximal operator

Mv,ε0 f (x) := sup
0<ε<ε0

1
2ε

∫ ε

−ε

| f (x − t, y− u(x, y)t)| dt, (1-13)

which arises for example in Lebesgue-type differentiation questions and has an even longer history of
interest than the directional Hilbert transform. Hilbert transforms and maximal operators share many
features; in particular, they have the same scaling and thus share the same potential L p bounds. The
maximal operator is in some ways easier as it is positive and does not have a singular kernel. For example,
bounds for the maximal operator under the assumption of real analytic vector fields were proved much
earlier by Bourgain [1989].

An instance of bounds satisfied by the maximal operator but not the Hilbert transform arises when one
restricts the range of the function u instead of the regularity. For certain sets of directions characterized
by Bateman [2009a] there are bounds for the maximal operator (for example for the set of lacunary
directions), while Karagulyan [2007] proves that no such bounds are possible for the Hilbert transform.
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On the other hand, the Hilbert transform is easier in some other aspects; most notably it is a linear
operator. For example, bounds for the bilinear Hilbert transform mapping into L1 were known [Lacey
and Thiele 1997; 1998] before the corresponding maximal operator bounds [Lacey 2000], due to the fact
that orthogonality between different tiles is preserved under the Hilbert transform but not the maximal
operator. In particular we do not know at the moment whether the analogue of our main theorem holds
for the directional maximal operator. This may be an interesting subject for further investigation.

Outline of paper. In Section 2 we will prove Corollary 1.3 by reducing it to the main theorem. The
reduction will also be used later in the proof of the main theorem.

In Section 3 we will state the strategy of the proof for the main theorem. As it appears that our result is
a Lipschitz perturbation of the one by Bateman and Thiele, this turns out also to be the case for the proof:
if we denote by Pk a Littlewood–Paley operator in the y-variable, the main observation in Bateman and
Thiele’s proof is that Hv commutes with Pk . In our case, this is no longer true. However, we can make
use of an adapted version of the Littlewood–Paley projection operator P̃k (see Definition 3.3) to partially
recover the orthogonality. We split the operator Hv into a main term and a commutator term∑

k∈Z

HvPk( f )=
∑
k∈Z

(HvPk( f )− P̃k HvPk( f )+ P̃k HvPk( f )). (1-14)

The boundedness of the main term
∑

k∈Z P̃k HvPk( f ) is essentially due to Lacey and Li [2010], with
conditionality on certain maximal operator estimate. In Section 4 we modify Bateman’s argument [2009b;
2013] to the case of vector fields constant on Lipschitz curves and remove the conditionality on that
maximal operator.

The main novelty is the boundedness of the commutator term∑
k∈Z

(HvPk( f )− P̃k HvPk( f )), (1-15)

which will be presented in Section 5. To achieve this, we will view Lipschitz curves as perturbations of
straight lines and use Jones’ beta number condition for Lipschitz curves and the Carleson embedding
theorem to control the commutator. Here we shall emphasize again that the commutator estimate is free
of time-frequency analysis.

Notations. Throughout this paper, we will write x � y to mean that x ≤ y/10, x . y to mean that there
exists a universal constant C such that x ≤ Cy, and x ∼ y to mean that x . y and y . x . Lastly, 1E will
always denote the characteristic function of the set E .

2. Proof of Corollary 1.3

In this section we prove Corollary 1.3, by reducing it to the main theorem. The reduction is based on
a cutting and pasting argument. Some parts of the reduction will also be used in the proof of the main
theorem in the rest of the paper.
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We first divide the unit circle S1 into N arcs of equal length, with the angle of each arc being 2π/N .
Choose

N > 6π/d0, (2-1)

so that 2π/N < d0/3. Denote these arcs as �1, �2, . . . , �N . For each �i , define

Hv0,�i f (x, y) :=
{

Hv0 f (x, y) if v0(x, y) ∈�i ,

0 else.

If we were able to prove that ‖Hv0,�i‖2→2 is bounded by a constant C which is independent of
i ∈ {1, 2, . . . , N }, then we could conclude that

‖Hv0‖2→2 ≤ C N (d0). (2-2)

Now fix one �i ; we want to show the boundedness of Hv0,�i . Choose a new coordinate so that the
x-axis passes through �i and bisects it. Then all the vectors in �i form an angle less than d0/6 with the
x-axis. As we assume that

6 (∂2g0,±v0(g0))≥ d0 > 0, (2-3)

we see that the vector ∂2g0 forms an angle less than (π − d0)/2 with the y-axis.
Renormalize the unit vector v0 so that the first component is 1, and write v0 = (1, u0); then, by the

fact that v0 forms an angle less than d0/6 with the x-axis, we obtain

|u0| ≤ tan(d0/6). (2-4)

Next we construct the Lipschitz function g in the main theorem from the bi-Lipschitz map g0, and
the coordinate we will use here is still the one associated to �i as above. Under this linear change of
variables, we know that g0 is still bi-Lipschitz. We renormalize the bi-Lipschitz map in such a way that

g0(x, 0)= (x, 0) for all x ∈ R. (2-5)

Fix x ∈R, the map g0, when restricted on the vertical line {(x, y) : y ∈R}, is still bi-Lipschitz. We denote
by 0x the image of this bi-Lipschitz map, i.e.,

0x := {g0(x, y) : y ∈ R}. (2-6)

Define the function g by the relation

(g(x, y), y)= g0(x, y′), (2-7)

for some y′. By the fact that g0 is bi-Lipschitz, we know that such y′ exists and is unique.

From the above construction and the fact that ∂2g0 forms an angle less than (π−d0)/2 with the y-axis,
we see easily that

|g(x, y1)− g(x, y2)| ≤ cot(d0/2)|y1− y2| for all x, y1, y2 ∈ R. (2-8)

Hence, it remains to show that condition (1-5) is also satisfied with a constant a0 depending only on d0

and the bi-Lipschitz constant of g0. One side of the equivalence, (x1− x2)/a0 ≤ g(x1, y)− g(x2, y), is
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0x2 0x1

(0, y) (g(x2, y), y) (g(x1, y), y)

(x2, 0) (x1, 0) (x2, 0) (x1, 0)

g0 P

Q

(x2, y′2)

(x1, y′1)

Figure 1. Illustration of the bi-Lipschitz map g0.

quite clear from Figure 1: the bi-Lipschitz map g0 sends the points P , Q to (g(x1, y), y), (g(x2, y), y)
separately, then, by definition of a bi-Lipschitz map, there exists constant a0 such that

g(x1, y)− g(x2, y)≥
1
a0
|P − Q| ≥

1
a0
(x1− x2). (2-9)

For the other side, we argue by contradiction. If, for any M ∈N large, there exists x1, x2, y ∈ R such
that

g(x1, y)− g(x2, y)≥ M(x1− x2), (2-10)

then, together with (2-8), this implies that

dist(K , 0x1)≥ M sin(d0/2)(x1− x2). (2-11)

But this is not allowed as, by the definition of the bi-Lipschitz map g0 and the Lipschitz function g,
dist(K , 0x1) must be comparable to |x1− x2|.

So far, we have verified all the conditions in the main theorem with

b0 = cot(d0/2) and c0 =
tan(d0/6)
cot(d0/2)

< 1. (2-12)

Hence we can apply the main theorem to obtain the boundedness of Hv0,�i .

In the end, as claimed in the corollary, we still need to show that the operator norm in L p (for all p> 1)
blows up without the assumption that d0 > 0. For the range p ≤ 2, the counterexample is simply a Knapp
example: let B1(0) denote the ball of radius one centered at origin, take the function f (x)= 1B1(0)(x),
let 0 be the upper cone which forms an angle less than π/4 with the vertical axis. First define the vector
field v(x)= x/|x | for x ∈ 0 \ B1(0), then extend the definition to the whole plane properly such that v
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0x0P(x,y)

(x, y)
(0, y) (g(x, y), y)

(P(x, y), 0) (x, 0)

Figure 2. The projection P(x, y).

satisfies the condition (1-10). It is then easy to see that

|Hv f (x)| ∼
1
|x |

for all x ∈ 0 \ B1(0), (2-13)

which does not belong to L p(R2) for p ≤ 2. For the range p > 2, the counterexample is given by the
standard Besicovitch–Kakeya set construction, which can be found in [Bateman 2013, page 1022] and
[Lacey and Li 2010, page 7].

3. Strategy of the proof of the main theorem

If we linearize the maximal operator in the main theorem, what we need to prove turns to be the following∥∥∥∥∫
R

f (g(x, y)− t, y− tu(x))
dt
t

∥∥∥∥
2
. ‖ f ‖2, (3-1)

where u : R→ R is a measurable function such that ‖u‖∞ ≤ c0/b0. The change of coordinates

(x, y) 7→ (g(x, y), y) (3-2)

in (1-4) also changes the measure on the plane. However, we still want to use the original Lebesgue
measure for the Littlewood–Paley decomposition. Hence we invert (1-4) and denote the inversion by

(x, y) 7→ (P(x, y), y), (3-3)

where “P” stands for “projection”. Figure 2 illustrates why we call the map (3-3) a projection.
The change of coordinates in (3-3) turns the estimate (3-1) into the equivalent form∥∥∥∥∫

R

f (x − t, y− tu(P(x, y)))
dt
t

∥∥∥∥
2
. ‖ f ‖2. (3-4)

Moreover, we will denote

Hv f (x, y) :=
∫

R

f (x − t, y− tu(P(x, y)))
dt
t
. (3-5)
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In the rest of the paper, we want to make the convention that whenever Hv appears it denotes the Hilbert
transform along the vector field v(x, y)= (1, u(P(x, y))), that is, the above (3-5), to distinguish it from
the various Hv that have appeared in the introduction.

To prove the above estimate, we first make several reductions: by the anisotropic scaling

x 7→ x, y 7→ λy, (3-6)

we can without loss of generality assume that b0 = 10−2. By a similar cutting and pasting argument to
that in the proof of Corollary 1.3, we can assume that c0� 10−2, that is, the vector field v is of the form
(1, u) with |u| � 1.

Now we start the proof. It was already observed in [Bateman 2013, page 1024] that, under the
assumption |u| � 1, we can without loss of generality assume that supp f̂ lies in a two-ended cone which
forms an angle less than π/4 with the vertical axis, as, for functions f with frequency supported on the
cone near the horizontal axis, we have that

Hv f (x, y)= H(1,0) f (x, y), (3-7)

which is the Hilbert transform along the constant vector field (1, 0). But H(1,0) is bounded by Fubini’s
theorem and the L2 boundedness of the Hilbert transform.

For the frequencies outside the cone near the horizontal axis, the proof consists of two steps. In the
first step we will prove the boundedness of Hv when acting on functions with frequency supported in a
single annulus. To be precise, let 0 be the cone which forms an angle less than π/4 with the vertical axis
and 50 be the projection operator on 0, i.e.,

50 f := F−110F f, (3-8)

where F stands for the Fourier transform and F−1 the inverse transform. Let Pk be the k-th Littlewood–
Paley projection operator in the vertical direction; as we are always concerned with the frequency in 0,
later for simplicity we will just write Pk instead of Pk50 for short. Then what we will prove first is:

Proposition 3.1. Under the same assumptions as in the main theorem, we have for p ∈ (1,∞) that

‖HvPk( f )‖p . ‖Pk( f )‖p, (3-9)

with the constant being independent of k ∈ Z.

In order to prove the boundedness of Hv , we need to put all the frequency pieces together. In the case
of C1+α vector fields for any α > 0, Lacey and Li’s idea [2010] is to prove the almost orthogonality
between different frequency annuli. In the case where the vector field is constant along vertical lines, an
important observation in [Bateman and Thiele 2013] is that Hv and Pk commute, which then makes it
possible to apply a Littlewood–Paley square function estimate.

In our case, Bateman and Thiele’s observation is no longer true. We need to take into account that the
vector field is constant along Lipschitz curves, which gives rise to an adapted Littlewood–Paley projection
operator (Definition 3.3).
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θ
(x̃, 0)

(x ′, 0)

(0, y′)

(0, ỹ)

y 0x̃

(g(x̃, ỹ), ỹ)

(1, u(x̃, 0))

x

Figure 3. The setting of Lemma 3.2.

Before defining this operator, we first need to make some preparation. Fix one x̃ ∈ R, take the curve
0x̃ which passes through (x̃, 0); recall that 0x̃ is given by the set {(g(x̃, ỹ), ỹ) : ỹ ∈ R}, where g is the
Lipschitz function in the main theorem. By the definition of the operator Hv we know that the vector
field v is equal to the constant vector (1, u(x̃)) along 0x̃ . Change the coordinate so that the horizontal
x ′-axis is parallel to (1, u(x̃)). The following lemma says that, in the new coordinate, the curve 0x̃ can
still be realized as the graph of a Lipschitz function.

Lemma 3.2. For any fixed x̃ ∈ R, there exists a Lipschitz function x ′ = gx̃(y′) such that 0x̃ can be
reparametrized as {(gx̃(y′), y′) : y′ ∈ R}. Moreover, we have that ‖gx̃‖Lip ≤ (1+ b0)/(1− b0), where b0

is the constant in the main theorem.

Proof. Denote by θ the angle between the vector (1, u(x̃)) and the x-axis as in Figure 3.
The new coordinate of the point (g(x̃, ỹ), ỹ) will be given by

(x ′, y′)=
(

ỹ sin θ + g(x̃, ỹ)
1+ sin2 θ

cos θ
, ỹ cos θ − g(x̃, ỹ) sin θ

)
. (3-10)

Looking at the identity for the second component,

y′ = ỹ cos θ − g(x̃, ỹ) sin θ, (3-11)

we want to solve ỹ in terms of y′ by using the implicit function theorem. As

dy′

d ỹ
= cos θ −

∂g
∂ ỹ

sin θ, (3-12)

by the fact that |u| � 1 and |∂g/∂ ỹ| ≤ b0 ≤ 10−2 we obtain that

1− b0
√

2
≤

dy′

d ỹ
≤

1+ b0
√

2
, (3-13)

from which it is clear that the implicit function theorem is applicable.
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After solving ỹ in terms of y′, we just need to substitute ỹ into the identity for the first component
in (3-10), which is

x ′ = ỹ sin θ + g(x̃, ỹ)
1+ sin2 θ

cos θ
, (3-14)

to get an implicit expression of x ′ in terms of y′, which we will denote as x ′ = gx̃(y′).
To estimate the Lipschitz norm of the function gx̃ , we just need to observe that, when doing the above

change of variables, we have rotated the axis by an angle θ which satisfies |θ | ≤ π/4. Together with the
fact that |∂g/∂ ỹ| ≤ b0, we can then derive that∣∣∣∣∂gx̃

∂y′

∣∣∣∣≤ 1+ b0

1− b0
, (3-15)

which finishes the proof of Lemma 3.2. �

Definition 3.3 (adapted Littlewood–Paley projection). Select a Schwartz function ψ0 with support on[1
2 ,

5
2

]
∪
[
−

5
2 ,−

1
2

]
such that ∑

k∈Z

ψ0(2−k t)= 1 for all t 6= 0. (3-16)

For f : R2
→ R and for every fixed x̃ ∈ R, define the adapted (one-dimensional) Littlewood–Paley

projection on 0x̃ by

P̃k( f )(x ′, y′) :=
∫

R

f (gx̃(z), z)ψ̌k(y′− z) dz = Pk( f̃ )(y′), (3-17)

where (x ′, y′)= (gx̃(y′), y′) denotes one point in 0x̃ , ψk( · ) := ψ0(2−k
·) and we use f̃ ( · ) to denote the

function f (gx̃( · ), · ), and Pk the one-dimensional Littlewood–Paley projection operator.

Now it is instructive to regard the Lipschitz curves as perturbations of the straight lines, or, equivalently,
to think that HvPk f still has frequency supported near the k-th frequency band, which has already been
used by Lacey and Li [2010] in their almost orthogonality estimate for C1+α vector fields. We then
subtract the term P̃k HvPk( f ) from HvPk( f ), and estimate the commutator.

To be precise, we first write∑
k

HvPk( f )=
∑

k

(HvPk( f )− P̃k HvPk( f )+ P̃k HvPk( f )), (3-18)

then, by the triangle inequality, we have∥∥∥∥∑
k

HvPk( f )
∥∥∥∥

2
.

∥∥∥∥∑
k

(HvPk( f )− P̃k HvPk( f ))
∥∥∥∥

2
+

∥∥∥∥∑
k

P̃k HvPk( f )
∥∥∥∥

2
. (3-19)

We call the second term the main term, and the first term the commutator term. The L2 boundedness
of the main term will follow from an orthogonality argument, which is an adapted Littlewood–Paley
theorem:
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Lemma 3.4. For p ∈ (1,+∞), we have the following variants of the Littlewood–Paley estimates:∥∥∥∥(∑
k∈Z

|P̃k( f )|2
)1

2
∥∥∥∥

p
∼ ‖ f ‖p, (3-20)

∥∥∥∥(∑
k∈Z

|P̃∗k ( f )|2
)1

2
∥∥∥∥

p
∼ ‖ f ‖p, (3-21)

with constants depending only on a0.

Proof. In (1-8) from the introduction, we have already explained the coarea formula∫
R2
| f (x, y)| dx dy ∼

∫
R

[∫
0x̃

| f | dsx̃

]
dx̃ . (3-22)

We apply this formula to the left-hand side of (3-20) to obtain∥∥∥∥(∑
k∈Z

|P̃k( f )|2
)1

2
∥∥∥∥p

p
∼

∫
R

∫
0x̃

(∑
k∈Z

|P̃k( f )|2
)p

2
dsx̃ dx̃ . (3-23)

For every fixed x̃ , by Definition 3.3, the right-hand side of (3-23) becomes∫
R

[∫
R

(∑
k

|Pk( f̃ x̃)(y′)|2
)p

2
dy′
]

dx̃, (3-24)

where f̃ x̃(y′)= f (gx̃(y′), y′). Then the classical Littlewood–Paley theory applies and we can bound the
last expression by ∫

R

‖ f ‖p
L p(0x̃ )

dx̃ . ‖ f ‖p
L p . (3-25)

For the boundedness of the adjoint operator, it suffices to prove that

∑
k∈Z

〈P̃∗k ( f ), fk〉. ‖ f ‖L p

∥∥∥∥(∑
k∈Z

| fk |
2
)1

2
∥∥∥∥

L p′
. (3-26)

First, by linearity and Hölder’s inequality, we derive∑
k∈Z

〈P̃∗k ( f ), fk〉 =

〈
f,
∑
k∈Z

P̃k( fk)

〉
. ‖ f ‖L p

∥∥∥∥∑
k∈Z

P̃k( fk)

∥∥∥∥
L p′
. (3-27)

Applying the coarea formula (3-22), we obtain∥∥∥∥∑
k∈Z

P̃k( fk)

∥∥∥∥
L p′
∼

(∫
R

(∫
0x̃

∣∣∣∣∑
k∈Z

P̃k( fk)

∣∣∣∣p′

dsx̃

)
dx̃
) 1

p′
. (3-28)

By Definition 3.3, for every fixed x̃ ∈ R, the inner integration in the last expression becomes∫
R

∣∣∣∣∑
k∈Z

Pk( f̃k,x̃)(y′)
∣∣∣∣p′

dy′, (3-29)
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where f̃k,x̃(y′) := fk(gx̃(y′), y′). Now the classical Littlewood–Paley theory applies and we bound the
term in (3-29) by∫

R

(∑
k∈Z

| f̃k,x̃(y′)|2
)p′

2
dy′ .

∫
0x̃

(∑
k∈Z

| fk |
2
)p′

2
dsx̃ .

∥∥∥∥(∑
k∈Z

| fk |
2
)1

2
∥∥∥∥p′

L p′ (0x̃ )

. (3-30)

Then, to prove (3-26), we just need to integrate dx̃ in (3-30) and apply the coarea formula (3-22) to derive∥∥∥∥∑
k∈Z

P̃k( fk)

∥∥∥∥
L p′
.

(∫
R

∥∥∥∥(∑
k∈Z

| fk |
2
)1

2
∥∥∥∥p′

L p′ (0x̃ )

dx̃
) 1

p′
.

∥∥∥∥(∑
k∈Z

| fk |
2
)1

2
∥∥∥∥

L p′
.

Thus we have finished the proof of Lemma 3.4. �

Now we will show how to prove the L2 boundedness of the main term using Lemma 3.4 and
Proposition 3.1: first by duality, we have∥∥∥∥∑

k

P̃k HvPk( f )
∥∥∥∥

2
= sup
‖g‖2=1

∣∣∣∣〈∑
k

P̃k HvPk( f ), g
〉∣∣∣∣= sup

‖g‖2=1

∣∣∣∣〈∑
k

HvPk( f ), P̃∗k (g)
〉∣∣∣∣.

Applying the Cauchy–Schwartz inequality and Hölder’s inequality, we can bound the last term by

sup
‖g‖2=1

∥∥∥∥(∑
k

|HvPk( f )|2
)1

2
∥∥∥∥

2

∥∥∥∥(∑
k

|P̃∗k (g)|
2
)1

2
∥∥∥∥

2
. (3-31)

For the former term, Proposition 3.1 implies that∥∥∥∥(∑
k

|HvPk( f )|2
)1

2
∥∥∥∥

2
≤

(∑
k∈Z

‖HvPk( f )‖22

)1
2

.

(∑
k∈Z

‖Pk( f )‖22

)1
2

. ‖ f ‖2.

For the latter term, Lemma 3.4 implies that∥∥∥∥(∑
k

|P̃∗k (g)|
2
)1

2
∥∥∥∥

2
. ‖g‖2. (3-32)

Thus we have proved the L2 boundedness the main term, modulo Proposition 3.1.

As the second step, we will prove the L2 boundedness of the commutator, which is∥∥∥∥∑
k

(HvPk( f )− P̃k HvPk( f ))
∥∥∥∥

2
. ‖ f ‖2. (3-33)

To do this, we first split the operator Hv into a dyadic sum: Select a Schwartz function ψ0 such that ψ0 is
supported on

[1
2 ,

5
2

]
, let

ψl(t) := ψ0(2−l t); (3-34)

by choosing ψ0 properly, we can construct a partition of unity for R+, i.e.,

1(0,∞) =
∑
l∈Z

ψl . (3-35)
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Let

Hlh(x, y) :=
∫
ψ̌l(t)h(x − t, y− tu(P(x, y))) dt; (3-36)

then the operator Hv can be decomposed into the sum

Hv =−1+ 2
∑
l∈Z

Hl . (3-37)

Hence, to bound the commutator, it is equivalent to bound

∑
k∈Z

∑
l∈Z

(Hl Pk f − P̃k Hl Pk f ). (3-38)

Notice that, by definition, Hl Pk f vanishes for l > k, which simplifies the last expression to∑
l≥0

∑
k∈Z

(Hk−l Pk f − P̃k Hk−l Pk f ). (3-39)

By the triangle inequality, it suffices to prove:

Proposition 3.5. Under the same assumption as in the main theorem, there exists γ > 0 such that∥∥∥∥∑
k∈Z

(Hk−l Pk f − P̃k Hk−l Pk f )
∥∥∥∥

2
. 2−γ l

‖ f ‖2, (3-40)

with the constant independent of l ∈ N.

So far, we have reduced the proof of the main theorem to that of Proposition 3.1 and Proposition 3.5,
which we will present separately in the following sections.

4. Boundedness of the Lipschitz–Kakeya maximal function and proof of Proposition 3.1

In their prominent work, Lacey and Li [2010] have reduced the L2 boundedness of the operator Hv,ε0 to
the boundedness of an operator they introduced, the so called Lipschitz–Kakeya maximal operator. As
soon as this operator is bounded, we can then repeat the argument in Chapter 4 of [Lacey and Li 2010] to
obtain Proposition 3.1 as a corollary.

Here we follow [Bateman 2013], where a slightly different version of the Lipschitz–Kakeya maximal
operator is used; see Lemma 4.3. The only place in [Bateman 2013] where the one-variable vector field
plays a special role is Lemma 6.2 on page 1037. Hence, to prove Proposition 3.1, we just need to replace
this lemma by Lemma 4.3, and leave the rest of the argument unchanged.

In this section, we make an observation that both the boundedness of the Lipschitz–Kakeya maximal
operator (Corollary 4.4) and its variant (Lemma 4.3) can be proved by adapting Bateman’s argument
[2009b] to our case, where the vector fields are constant only on Lipschitz curves.

Before defining the Lipschitz–Kakeya maximal operator, we first need to introduce several definitions.
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Definition 4.1 (popularity). For a rectangle R ⊂ R2, with l(R) its length and w(R) its width, we define
its uncertainty interval E X (R) ⊂ R to be the interval of width w(R)/ l(R) and centered at slope(R).
Then the popularity of the rectangle R is defined to be

popR :=
∣∣{(x, y) ∈ R2

: u(P(x, y)) ∈ E X (R)
}∣∣ / |R|. (4-1)

Definition 4.2. Given two rectangles R1 and R2 in R2, we write R1 ≤ R2 whenever R1 ⊂ C R2 and
E X (R2)⊂ E X (R1), where C is some properly chosen large constant and C R2 is the rectangle with the
same center as R2 but dilated by the factor C .

Denote Rδ,ω := {R ∈R : slope(R) ∈ [−1, 1], popR ≥ δ,w(R)= ω}, where R is the collection of all
the rectangles in R2. Then the Lipschitz–Kakeya maximal function is defined as

MRδ,ω
( f )(x) := sup

x∈R∈Rδ,ω

1
|R|

∫
R
| f |. (4-2)

Lemma 4.3. Let u and P be the functions given in the definition of the operator Hv in (3-5). Suppose
R0 is a collection of pairwise incomparable (under “≤”) rectangles of uniform width such that, for each
R ∈R0, we have

|(u ◦ P)−1(E X (R))∩ R|
R

≥ δ (4-3)

(i.e., popR ≥ δ) and
1
|R|

∫
R

1F ≥ λ. (4-4)

Then, for each p > 1, ∑
R∈R0

|R|.
|F |
δλp . (4-5)

The same covering lemma argument as in Lemma 3.1 of [Bateman 2009b] shows the boundedness of
Lacey and Li’s Lipschitz–Kakeya maximal operator as a corollary of Lemma 4.3.

Corollary 4.4. For all p ∈ (1,∞) we have the bound

‖MRδ,ω
‖L p→L P ≤ C(p, a0)

1
δ
. (4-6)

Proof of Lemma 4.3. The proof is essentially due to Bateman [2009b], with just one minor modification
in order to adapt to the family of Lipschitz curves on with the vector field is constant.

Definition 4.5 (rectangles adapted to the vector field). For a rectangle R ∈Rδ,ω, with its two long sides
lying on the parallel lines y = kx + b1 and y = kx + b2 for some k ∈ [−1, 1] and b1, b2 ∈ R, define R̃ to
be the adapted version of R, which is given by the set

{(x, y) : P(x, y) ∈ P(R)} ∩ {(x, kx + b) : x ∈ R, b ∈ [b1, b2]}, (4-7)

where P is the projection operator in (3-3).
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What we need to do is just to replace the rectangles R in [Bateman 2009b] by R̃, and observe that
the two key quantities — length and popularity of rectangles — are both preserved under the projection
operator P up to a constant depending on the constant a0 in the main theorem. Hence, we leave out the
details. �

5. Proof of Proposition 3.5

This section consists of two subsections. In Section 5A we will introduce some notations, most of which
we adopt from Bateman [2013] with minor changes for our purpose. In Section 5B we will use Jones’
beta numbers and the Carleson embedding theorem to prove Proposition 3.5.

5A. Discretization. The content of this subsection is basically taken from Bateman [2013], with minor
changes as we are now dealing with all frequencies instead of a single frequency annulus.

Discretizing the functions. Fix l ≥ 0; we write Dl as the collection of the dyadic intervals of length 2−l

contained in [−2, 2]. Fix a smooth positive function β : R→ R such that

β(x)= 1 for all |x | ≤ 1 and β(x)= 0 for all |x | ≥ 2. (5-1)

Also choose β so that
√
β is a smooth function. Then fix an integer c (whose exact value is unimportant),

and, for each ω ∈ Dl , define
βω(x)= β(2l+c(x − cω1)), (5-2)

where ω1 is the right half of ω and cω1 is its center.
Define

βl(x)=
∑
ω∈Dl

βω(x); (5-3)

note that
βl(x + 2−l)= βl(x) for all x ∈ [−2, 2− 2−l

]. (5-4)

Define
γl =

1
2

∫ 1

−1
βl(x + t) dt; (5-5)

because of the above periodicity, we know that γl is constant for x ∈ [−1, 1], independent of l. Say
γl(x)= δ > 0; hence,

1
δ
γl(x)1[−1,1](x)= 1[−1,1](x). (5-6)

Define another multiplier β̃ : R→ R with support in
[ 1

2 ,
5
2

]
and β̃(x)= 1 for x ∈ [1, 2]. We define the

corresponding multiplier on R2,

m̂k,ω(ξ, η)= β̃(2−kη)βω

(
ξ

η

)
m̂k,l,t(ξ, η)= β̃(2−kη)βl

(
t +

ξ

η

)
m̂k,l(ξ, η)= β̃(2−kη)γl

(
ξ

η

)
.

Then what we need to bound can be written as∥∥∥∥∑
k∈Z

∑
l∈Z

Hl Pk( f )
∥∥∥∥

p
=

∥∥∥∥∫ 1

−1

∑
k∈Z

∑
l≥0

Hk−l

(
1
δ

mk,l ∗ f
)

dt
∥∥∥∥

p
≤

∫ 1

−1

∥∥∥∥∑
k∈Z

∑
l≥0

Hk−l

(
1
δ

mk,l,t ∗ f
)∥∥∥∥

p
dt,
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where the terms Hl Pk for l > k in the sum vanish as explained before.
So it suffices to prove a uniform bound on t ∈ [−1, 1]; without loss of generality we will just consider

the case t = 0, which is∑
k∈Z

∑
l≥0

Hk−l(mk,l,0 ∗ f )=
∑
k∈Z

∑
l≥0

Hk−l

([
β̃(2−kη)βl

(
ξ

η

)]
∗ f

)
. (5-7)

Constructing the tiles. For each k ∈ Z and ω ∈ Dl with l ≥ 0, let Uk,ω be a partition of R2 by rectangles
of width 2−k and length 2−k+l whose long sides have slope θ , where tan θ =−c(ω), which is the center
of the interval ω. If s ∈Uk,ω, we will write ωs := ω, and ωs,1 to be the right half of ω and ωs,2 the left
half.

An element of Uk,ω for some ω ∈ Dl is called a “tile”. Choose ϕk,ω such that

|ϕ̂k,ω|
2
= m̂k,ω; (5-8)

then ϕk,ω is smooth by our assumption on β mentioned above.
For a tile s ∈Uk,ω, define

ϕs(p) :=
√
|s|ϕk,ω(p− c(s)), (5-9)

where c(s) is the center of s. Notice that

‖ϕs‖
2
2 =

∫
R2
|s|ϕ2

k,ω = |s|
∫

R2
m̂k,ω = 1, (5-10)

i.e., ϕs is L2 normalized.
The purpose of constructing of the tiles above, by the uncertainty principle, is to localize the function

further in space, which is realized through:

Lemma 5.1 [Bateman 2013, page 1030]. Under the above notations, for the frequency-localized function
f ∗mk,ω, we have the representation

f ∗mk,ω(x)= lim
N→∞

1
4N 2

∫
[−N ,N ]2

∑
s∈Uk,ω

〈 f, ϕs(p+ · )〉ϕs(p+ x) dp (5-11)

The above lemma allows us to pass to the model sum∑
k∈Z

∑
l≥0

Hk−l( f ∗mk,l,0)=
∑
k∈Z

∑
l≥0

∑
ω∈Dl

∑
s∈Uk,ω

〈 f, ϕs〉Hk−l(ϕs),

define
ψs = ψ− log(length(s)), (5-12)

and

φs(x, y) :=
∫
ψ̌s(t)ϕs(x − t, y− tu(P(x, y))) dt; (5-13)

then the model sum becomes ∑
k∈Z

∑
l≥0

∑
ω∈Dl

∑
s∈Uk,ω

〈 f, ϕs〉φs . (5-14)
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Lemma 5.2. We have that φs(x, y)= 0 unless −u(P(x, y)) ∈ ωs,2.

The proof of Lemma 5.2 is by the Plancherel theorem; we just need to observe that the frequency
support of ψs and ϕ̂s will be disjoint at the point (x, y) unless −u(P(x, y)) ∈ ωs,2.

5B. Boundedness of the commutator and proof of Proposition 3.5. This subsection is devoted to the
proof of Proposition 3.5, which is largely motivated by the proof of the T (b) theorem and the boundedness
of the paraproduct; see [Auscher et al. 2002; Coifman et al. 1989], for example.

In our case, unlike Bateman and Thiele’s proof for the one-variable vector fields, it’s no longer true
that HvPk f still has frequency in the k-th annulus. In order to get enough orthogonality for the term
HvPk f to apply the Littlewood–Paley theory, we need to subtract the term HvPk f − P̃k HvPk f , which
should be viewed as a family of paraproducts.

We proceed with the details of the proof. If we expand the summation on the left-hand side of
Proposition 3.5 with (5-14), what we need to bound can be rewritten as∥∥∥∥∑

k

∑
ω∈Dl

∑
s∈Uk,ω

〈 f, ϕs〉(φs − P̃kφs)

∥∥∥∥
2
. 2−γ l

‖ f ‖2. (5-15)

In order to use the orthogonality of different wave packets, we will prove the L2 bound for the dual
operator, which is ∑

k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉ϕs . (5-16)

Notice that, for s1 ∈Uk1,ω1 and s2 ∈Uk2,ω2 with (k1, ω1) 6= (k1, ω2), we have

〈ϕs1, ϕs2〉 = 0 (5-17)

by the definition of the wavelet function ϕs in (5-9). Also, if we know that s1 and s2 are in the same Uk,ω

for some k and ω, then we can find m0, n0 ∈ Z such that

c(s2)= c(s1)+ (m0 · l(s1), n0 ·w(s1)), (5-18)

where c(s) is the center of the tile s, l(s) its length and w(s) its width. Then, by the nonstationary phase
method, for any N ∈ N, there exists a constant CN depending only on N such that

|〈ϕs1, ϕs2〉| ≤
CN

(|m0| + |n0| + 1)N . (5-19)

Here we want to make a remark that the exact value of N is not important, it just denotes some large
number which might vary from line to line if we use the same notation later.

Applying the above two estimates, (5-17) and (5-19), we obtain∥∥∥∥∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉ϕs

∥∥∥∥2

2
=

∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

∑
s2∈Uk,ω

〈h, φs1 − P̃kφs1〉〈ϕs1, ϕs2〉〈h, φs2 − P̃kφs2〉.

For any s1, s2 ∈Uk,ω there exist m0, n0 ∈ Z such that

c(s2)= c(s1)+ (m0 · l(s1), n0 ·w(s1)), (5-20)
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so the above sum can be rewritten as∑
m0,n0∈Z

∑
k∈Z

∑
ω∈Dl

∑
s1∈Uk,ω

〈h, φs1 − P̃kφs1〉〈ϕs1, ϕs2〉〈h, φs2 − P̃kφs2〉 (5-21)

with s1, s2 satisfying the relation (5-20).

Now fix m0, n0 ∈ Z; by the estimate in (5-19), we know that∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

|〈h, φs1 − P̃kφs1〉〈ϕs1, ϕs2〉〈h, φs2 − P̃kφs2〉|

.
1

(|m0| + |n0| + 1)N

∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

|〈h, φs1 − P̃kφs1〉〈h, φs2 − P̃kφs2〉|,

and, by the Cauchy–Schwarz inequality, the last term is bounded by

1
(|m0| + |n0| + 1)N

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|
2, (5-22)

so it suffices to prove that ∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉
2 . 2−γ l

‖h‖22. (5-23)

First we estimate every single term 〈h, φs − P̃kφs〉 for a fixed tile s: let sm,n be the shift of s by (m, n)
units, that is,

sm,n := {(x, y) ∈ R2
: (x −m · l(s), y− n ·w(s)) ∈ s}; (5-24)

then, by the triangle inequality, we know that

|〈h, φs − P̃kφs〉| ≤
∑

m,n∈Z

∣∣∣∣∫
sm,n

h · (φs − P̃kφs) dy dx
∣∣∣∣. (5-25)

Recall that in Definition 4.5 we use R̃ to denote the adapted version of the rectangle R to the family of
Lipschitz curves; then clearly s̃m,n ⊃ sm,n . Thus

|〈h, φs − P̃kφs〉| ≤
∑

m,n∈Z

∣∣∣∣∫
s̃m,n

h · (φs − P̃kφs) dy dx
∣∣∣∣. (5-26)

By the coarea formula (3-22), we obtain

|〈h, φs − P̃kφs〉| ≤
∑

m,n∈Z

|

∫
s̃m,n

h · (φs − P̃kφs) dy dx |

.
∑

m,n∈Z

∫
P(sm,n)

∫
0x∩s̃m,n

|h · (φs − P̃kφs)| dsx dx,

where dsx stands for the arc-length measure of the Lipschitz curve 0x .
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Now, for the inner integration along the curve 0x , we do the same change of coordinates and the same
parametrization of 0x as in Definition 3.3, i.e., we choose coordinates such that the horizontal axis is
parallel to (1, u(x)), and represent the curve 0x by the Lipschitz function gx( · ). If we let J (x, sm,n)

denote the projection of 0x ∩ s̃m,n on the new vertical axis, the last expression becomes∑
m,n∈Z

∫
P(sm,n)

∫
J (x,sm,n)

∣∣h(gx(y), y)
(
φs(gx(y), y)− Pk[φs(gx(y), y)]

)∣∣ dy dx . (5-27)

To bound the above term, Jones’ beta number will play a crucial role.

Definition 5.3 [Jones 1989]. For a Lipschitz function A :R→R, we first take the Calderón decomposition
of a(x)= A′(x), which yields the representation

a(x)=
∑

I dyadic

aIψI (x), (5-28)

where ψI is some mean-zero function supported on 3I with |ψ ′I (x)| ≤ |I |
−1. For each dyadic interval I ,

let
αI =

∑
|J |≥|I |

aIψJ (cI ) (5-29)

denote the “average slope” of the Lipschitz curve near I , where cI stands for the center of I , and define
the beta number

β0(I ) := sup
x∈3I

|A(x)− A(cI )−αI (x − cI )|

|I |
, (5-30)

and the j0-th beta number

β j0(I ) := sup
x∈3 j0 I

|A(x)− A(cI )−αI (x − cI )|

|I |
. (5-31)

For beta numbers, we have the following Carleson condition:

Lemma 5.4 [Jones 1989]. For any Lipschitz function A, we have

sup
J

1
|J |

∑
I⊂J

β2
0 (I )|I |. ‖A‖2Lip, (5-32)

and also, for any j0 ∈ N,

sup
J

1
|J |

∑
I⊂J

β2
j0(I )|I |. j3

0 ‖A‖2Lip. (5-33)

After introducing Jones’ beta number, we are ready to state:

Lemma 5.5. for x ∈ P(sm,n), we have the estimate∫
J (x,sm,n)

∣∣h(gx(y), y)
(
φs(gx(y), y)− Pk[φs(gx(y), y)]

)∣∣ dy

.
∑
j0∈N

2−3l/2

(| j0| + |m| + |n| + 1)N β j0(x, sm,n)[h]x,sm,n 1{−u(x)∈ωs,2}(x),
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where β j0(x, sm,n) is the j0-th beta number for the Lipschitz curve gx( · ) on the interval J (x, sm,n) and
[h]x,sm,n is the average of the function h on the interval J (x, sm,n),

[h]x,sm,n :=
1

w(s)

∫
J (x,sm,n)

|h(gx(y), y)| dy. (5-34)

The proof of Lemma 5.5 will be postponed to the end. Substitute the estimate in Lemma 5.5 into the
estimate for the term 〈h, φs − P̃kφs〉; we then have that

|〈h, φs − P̃kφs〉|.
∑
m,n

∫
P(sm,n)

∫
J (x,sm,n)

∣∣h(gx(y), y)
(
φs(gx(y), y)− Pk[φs(gx(y), y)]

)∣∣ dy dx

.
∑
m,n

∫
P(sm,n)

∑
j0∈N

2−3l/2

(| j0| + |m| + |n| + 1)N β j0(x, sm,n)[h]x,sm,n 1{−u(x)∈ωs,2}(x) dx,

hence∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|
2

.
∑

k

∑
ω∈Dl

∑
s∈Uk,ω

∑
m,n, j0

2−3l

(| j0| + |m| + |n| + 1)N

∣∣∣∣∫
P(sm,n)

β j0(x, sm,n)[h]x,sm,n 1{−u(x)∈ωs,2}(x) dx
∣∣∣∣2

.
∑

m,n, j0

2−2l

(| j0| + |m| + |n| + 1)N

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

w(s)
∫

P(sm,n)

β2
j0(x, sm,n)[h]2x,sm,n

1{−u(x)∈ωs,2}(x) dx .

Lemma 5.6. For any fixed x , m, n, j0,∑
k

∑
ω∈Dl

∑
s∈Uk,ω

w(s)1P(sm,n)(x)β
2
j0(x, sm,n)[h]2x,sm,n

1{−u(x)∈ωs,2}(x). j3
0 ‖h‖

2
L2(0x )

. (5-35)

Proof. This lemma is akin to the Carleson embedding theorem, as we have the Carleson-type condition

sup
sm,n

1
|J (x, sm,n)|

∑
s′m,n :J (x,s′m,n)⊂J (x,sm,n)

β2
j0(J (x, s ′m,n))w(s

′

m,n). j3
0 Lip2(0x), (5-36)

where the term 1{−u(x)∈ωs,2} has the following purpose: originally there are 2l groups of dyadic rectangles⋃
k

⋃
ω∈Dl

⋃
s∈Uk,ω

{sm,n} (5-37)

in the summation
∑

k
∑

ω∈Dl

∑
s∈Uk,ω

, which means that there are also 2l groups of dyadic intervals⋃
k

⋃
ω∈Dl

⋃
s∈Uk,ω

{J (x, sm,n)} (5-38)

which are the projections of the intersection of the dyadic rectangles with 0x on the vertical axis; the
term 1{−u(x)∈ωs,2} just guarantees that there is just one such collection that contributes, i.e., which has the
right orientation in the sense of Lemma 5.2.
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Then the desired estimate will just follow from the Carleson embedding theorem, for which we refer
to Lemma 5.1 in [Auscher et al. 2002]. �

Continuing the calculation before the above lemma,∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|
2 .

∑
m,n, j0

2−2l j3
0

(| j0| + |m| + |n| + 1)N

∫
R

‖h‖2L2(0x )
dx . 2−2l

‖h‖22.

This finishes the proof for (5-23) and then Proposition 3.5, modulo Lemma 5.5, which we will present
now.

Proof of Lemma 5.5. We assume that −u(x) ∈ ωs,2, which means the vector (1, u(x)) is roughly parallel
to the long side of sm,n , otherwise the left-hand side in Lemma 5.5 will also vanish due to Lemma 5.2.
After the change of variables in (5-27), the vector (1, u(x)) becomes (1, 0).

Proof by ignoring the tails. In order to explain how Jones’ beta number appears, we first sketch the proof
by ignoring the tails of the wavelet functions and the tail of the kernel of the Littlewood–Paley projection
operator Pk .

By the above simplification, we only need to consider the case m = n = 0. What we need to “prove”
becomes∫

J (x,s)

∣∣h(gx(y), y)
(
φs(gx(y), y)− Pk[φs(gx(y), y)]

)∣∣ dy . 2−3l/2β0(J (x, s))[h]x,s . (5-39)

For fixed x , we denote by τx,s y+ b the line of “average slope” we picked in the definition of the beta
number for the Lipschitz curve gx( · ) on the interval J (x, s); for the sake of simplicity we assume b = 0.
Moreover, as both x and s are fixed, we will also just write τ instead of τx,s . Then we make the crucial
observation that

Pk[φ
x
s (τ y, y)] = φx

s (τ y, y), (5-40)

where
φx

s (τ y, y) :=
∫

R

ψ̌s(t)ϕs(τ y− t, y) dt, (5-41)

due to the fact that, for any function ϕs with frequency supported on the k-th annulus, if we restrict the
function to a straight line, it will still have frequency supported on the k-th annulus (with one dimension
less).

In comparison with the definition of φs in (5-13), φx
s (τ y, y) is defined as the Hilbert transform along

the vector (1, u(x)) (which is (1, 0) after the change of the variables we made in Lemma 3.2 and in the
expression (5-27)) instead of the direction of the vector field v at the point (τ y, y).

Hence, from the identity in (5-40), we obtain

φs(gx(y), y)− Pk[φs(gx(y), y)] = φs(gx(y), y)− Pk[φs(gx(y), y)−φx
s (τ y, y)+φx

s (τ y, y)]

= φs(gx(y), y)−φx
s (τ y, y)− Pk[φs(gx(y), y)−φx

s (τ y, y)]. (5-42)

As we have also ignored the tails of the kernel of Pk , it is easy to see that the former and the latter terms
in the last expression can essentially be handled in the same way. Hence in the following we will only



HILBERT TRANSFORM ALONG MEASURABLE VECTOR FIELDS CONSTANT ON LIPSCHITZ CURVES 1285

consider the former term, which corresponds to the term∫
J (x,s)

∣∣h(gx(y), y)
(
φs(gx(y), y)−φx

s (τ y, y)
)∣∣ dy. (5-43)

By the definitions of φs and φx
s , we have

|φs(gx(y), y)−φx
s (τ y, y)| =

∣∣∣∣∫
R

ψ̌k−l(t)ϕs(gx(y)− t, y) dt −
∫

R

ψ̌k−l(t)ϕs(τ y− t, y) dt
∣∣∣∣

= 2k−l
∣∣∣∣∫

R

ψ̌0(2k−l t)ϕs(gx(y)− t, z) dt −
∫

R

ψ̌0(2k−l t)ϕs(τ y− t, y) dt
∣∣∣∣

= 2k−l
∣∣∣∣∫

R

[
ψ̌0(2k−l(t + gx(y)− τ y))− ψ̌0(2k−l t)

]
ϕs(τ y− t, z) dt

∣∣∣∣. (5-44)

By the definition of the beta numbers, we have that

|gx(y)− τ y|. β0(x, s)2−k, (5-45)

which implies that
|ψ̌0(2k−l(t + gx(y)− τ y))− ψ̌0(2k−l t)|. 2−lβ0(x, s) (5-46)

by the fundamental theorem. In the end, by substituting the above estimate into (5-44) and (5-43), we
obtain the desired estimate (5-39).

The full proof. The main idea is still the same, and the difference is that we need to be more careful with
the tails of the wavelet functions and the kernel of Pk .

For fixed x , m and n, denote by τ(x, sm,n)y+ b the line of “average slope” for the Lipschitz curve
gx( · ) on the interval J (x, sm,n); for the sake of simplicity we assume b= 0. Then the crucial observation
(5-40) becomes

Pk[φ
x
s (τ (x, sm,n)y, y)] = φx

s (τ (x, sm,n)y, y). (5-47)

Hence, similar to (5-42), we obtain from (5-47) that

φs(gx(y), y)− Pk[φs(gx(y), y)]

= φs(gx(y), y)−φx
s (τ (x, sm,n)y, y)− Pk[φs(gx(y), y)−φx

s (τ (x, sm,n)y, y)].

Denote

Ism,n =

∣∣∣∣∫
J (x,sm,n)

h(gx(y), y) ·
(
φs(gx(y), y)−φx

s (τ (x, sm,n)y, y)
)

dy
∣∣∣∣ (5-48)

and also

IIsm,n =

∣∣∣∣∫
J (x,sm,n)

h(gx(y), y) · Pk
[
φs(gx(y), y)−φx

s (τ (x, sm,n)y, y)
]

dy
∣∣∣∣. (5-49)

Lemma 5.7. Under the above notations, for z ∈ J (x, sm,n)+ j02−k with j0 ∈ Z, we have the pointwise
estimate

|φs(gx(z), z)−φx
s (τ (x, sm,n)z, z)|.

β| j0|(x, sm,n)2k2−3l/2

(min{|m| + |n|, |m| + |n| − | j0|} + 1)N . (5-50)
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Let us first complete the proof of Lemma 5.5: For the first term Ism,n , we take j0 in Lemma 5.7 to be
zero, then

|φs(gx(z), z)−φx
s (τ (x, sm,n)z, z)|.

β0(x, sm,n)2k2−3l/2

(|m| + |n| + 1)N , (5-51)

which implies that

Ism,n .
2−3l/2

(|m| + |n| + 1)N β0(x, sm,n)[h]x,sm,n . (5-52)

For the second term IIsm,n , by the definition of Pk ,∣∣Pk[φs(gx(y), y)−φx
s (τ (x, sm,n)y, y)]

∣∣
=

∣∣∣∣∫
R

(
φs(gx(z), z)−φx

s (τ (x, sm,n)z, z)
)
2kψ̌0(2k(y− z)) dz

∣∣∣∣
≤

∣∣∣∣∑
j0∈Z

∫
J (x,sm,n)+ j02−k

(
φs(gx(z), z)−φx

s (τ (x, sm,n)z, z)
)
2kψ̌0(2k(y− z)) dz

∣∣∣∣.
For y ∈ J (x, sm,n) and z ∈ J (x, sm,n)+ j02−k , by the nonstationary phase method we have that

|ψ̌0(2k(y− z))|.
1

( j0+ 1)N . (5-53)

Together with the estimate in Lemma 5.7, we arrive at∣∣Pk[φs(gx(y), y)−φx
s (τ (x, sm,n)y, y)]

∣∣.∑
j0∈Z

β| j0|(x, sm,n)2k2−3l/2

(min{|m| + |n|, |m| + |n| − | j0|} + 1)N

1
( j0+ 1)N

.
∑
j0∈Z

β| j0|(x, sm,n)2k2−3l/2

(|m| + |n| + | j0| + 1)N .

Substituting the last expression into the estimate for IIsm,n , we get the desired estimate.
So far we have finished the proof of Lemma 5.5 except for Lemma 5.7, which we will do now.

Proof of Lemma 5.7. As x and sm,n are fixed now, for simplicity we will just write τ instead of τx,sm,n .
Notice that in the new coordinate we chose for 0x , the vector field along 0x points in the direction
of (1, 0). Then, by the definition of φs and φx

s , we have

|φs(gx(z), z)−φx
s (τ z, z)| = 2k−l

∣∣∣∣∫
R

[
ψ̌0(2k−l(t + gx(z)− τ z))− ψ̌0(2k−l t)

]
ϕs(τ z− t, z) dt

∣∣∣∣.
By the definition of the beta numbers, we have that

|gx(z)− τ z|. β| j0|(x, sm,n)2−k, (5-54)

which implies that

|ψ̌0(2k−l(t + gx(z)− τ z))− ψ̌0(2k−l t)|. 2−lβ| j0|(x, sm,n) (5-55)
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by the fundamental theorem of calculus. The nonstationary phase method leads to the final estimate:

2k−l
∣∣∣∣∫

R

[
ψ̌0(2k−l(t+gx(z)−τ z))−ψ̌0(2k−l t)

]
ϕs(τ z−t, z) dt

∣∣∣∣. 2−lβ| j0|(x, sm,n)2k/22(k−l)/2

(min{|m| + |n|, |m| + |n| − | j0|} + 1)N .

Thus we have finished the proof of Lemma 5.7, and hence Lemma 5.5. �
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