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IMPROVEMENT OF THE ENERGY METHOD
FOR STRONGLY NONRESONANT DISPERSIVE EQUATIONS
AND APPLICATIONS

Luc MOLINET AND STEPHANE VENTO

We propose a new approach to prove the local well-posedness of the Cauchy problem associated with
strongly nonresonant dispersive equations. As an example, we obtain unconditional well-posedness of
the Cauchy problem in the energy space for a large class of one-dimensional dispersive equations with
a dispersion that is greater than the one of the Benjamin—Ono equation. At the level of dispersion of
the Benjamin—Ono, we also prove the well-posedness in the energy space but without unconditional
uniqueness. Since we do not use a gauge transform, this enables us in all cases to prove strong convergence
results in the energy space for solutions of viscous versions of these equations towards the purely dispersive
solutions. Finally, it is worth noting that our method of proof works on the torus as well as on the real line.

1. Introduction

The Cauchy problem associated with dispersive equations with derivative nonlinearity has been extensively
studied since the eighties. The first results were obtained by using energy methods that did not make use
of the dispersive effects (see for instance [Kato 1983; Abdelouhab et al. 1989]). These methods were
restricted to regular initial data (s > d/2, where d > 1 is the spatial dimension) and only ensured the
continuity of the solution map. At the end of the eighties, Kenig, Ponce and Vega proved new dispersive
estimates that enable them to lower the regularity requirement on the initial data (see for instance [Kenig
et al. 1991; 1993; Ponce 1991]). They even obtained local well-posedness (LWP) for a large class of
dispersive equations by a fixed point argument in a suitable Banach space related to linear dispersive
estimates. Then, Bourgain [1993a; 1993b] introduced the now so-called Bourgain spaces, where one can
solve by a fixed point argument a wide class of dispersive equations with very rough initial data. It is
worth noting that, since the nonlinearity of these equations is in general algebraic, the fixed point argument
ensures the real analyticity of the solution map. Molinet, Saut and Tzvetkov [Molinet et al. 2001] noticed
that a large class of “weakly” dispersive equations, including in particular the Benjamin—Ono equation,
cannot be solved by a fixed point argument for initial data in any Sobolev spaces H*. This obstruction is
due to bad interactions between high frequencies and very low frequencies. Since then, roughly speaking,
two approaches have been developed to lower the regularity requirement for such equations. The first one
is the so-called gauge method. This consists in introducing a nonlinear gauge transform of the solution
that solved an equation with fewer bad interactions than the original one. This method proved to be very
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efficient for obtaining the lowest regularity index for solving canonical equations (see [Tao 2004; Ionescu
and Kenig 2007; Burq and Planchon 2008; Molinet and Pilod 2012] for the BO equation and [Herr et al.
2010] for the dispersive generalized BO equation) but has the disadvantage of behaving very badly with
respect to perturbation of the equation. The second one consists in improving the dispersive estimates
by localizing it in space-frequency-depending time intervals and then mixing it with classical energy
estimates. This type of method was first introduced by Koch and Tzvetkov [2003] (see also [Kenig and
Koenig 2003] for some improvements) in the framework of Strichartz’s spaces and then by Koch and
Tataru [2007] (see also [Ionescu et al. 2008]) in the framework of Bourgain’s spaces. It is less efficient for
getting the best regularity index but it is surely more flexible with respect to perturbation of the equation.

In this paper we propose a new approach to derive local and global well-posedness results for dispersive
equations that do not exhibit too-strong resonances. This approach combines classical energy estimates
with Bourgain-type estimates on a time interval that does not depend on the space frequency. Here, we
will apply this method to prove unconditional local well-posedness results on both R and T = R/277Z
without the use of a gauge transform for a large class of one-dimensional quadratic dispersive equations
with a dispersion between those of the Benjamin—Ono equation and the KdV equation. This class contains,
in particular, the equations with pure power dispersion that read

Ur 4+ 0xDSu+uuy =0 (1-1)
with o € [1, 2].
The principle of the method is particularly simple in the regular case s > % We start with the classical

t
//axPN(uz)PNu
0JR

obtained by projecting the equation on frequencies of order N and taking the inner product with Jju.

space-frequency-localized energy estimate

| PN Zeoprs S I PNUoliFys + sup (N)* : (1-2)

t€]0,T|

Note that the second term in the right-hand side of (1-2) is easily controlled (after summing in N) by
|lu ”ic%o g fors > % This is the main point in the standard energy method that leads to LWP in HS, s > %
In order to take into account the dispersive effects of the equation, we will decompose the three factors in
the integral term into dyadic pieces for the modulation variables and use the Bourgain spaces X* bina
nonconventional way. Actually, it is known that standard bilinear estimates in X* b -spaces with b = %+
fail for (1-1) for any s € R as soon as @ < 2. On the other hand, as noticed in [Zhou 1997], it is easy to
deduce from the equation that a solution u € L°°(0, T'; H®) to (1-3) has to belong to the space X ;_1’1.
This means that, if we accept the loss of a few spatial derivatives on the solution, then we may gain some
regularity in the modulation variable. This is particularly profitable when the equation enjoys a strong
nonresonance relation such as (2-6). Actually, this formally allows us to estimate the second term in (1-2)
at the desired level. However, this term involves a multiplication by 1ljo ;[ and it is well known that such
multiplication is not bounded in X*~1!. To overcome this difficulty we decompose this function into two
parts: a high-frequency part that will be very small in LlT and a low-frequency part that will have good
properties with respect to multiplication with high-modulation functions in X*~!-1. This decomposition
will depend on the space-frequency-localization of the three functions that appear in the trilinear term.
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1A. Presentation of the results. In this paper we consider the dispersive equation

g+ Loy1t + 30x(u?) =0 (1-3)

associated with the initial condition
u(0,-) = uyg, (1-4)
where x e Ror T, u = u(¢, x) and up = ug(x) are real-valued functions, & > 0 is a real number and the

linear operator Ly satisfies the following hypothesis:

Hypothesis 1. Ly 41 is the Fourier multiplier operator by ipy+1, where pg+1 is a real-valued odd
Sfunction satisfying, for some Lo > 0,

(1) Forany || > 1and 0 < A < Ao,

A pap1 A1) < [T (1-5)
(2) Forany (£1, &) € R? with |§1] > 1 and any 0 < A < Ao,
AFNQAT EL AT 8| ~ [ min 6 [Fiaxs (1-6)

where
Q(61.52) := pa+1(51 +&2) — pa+1(61) — pa+1(52),

|§ min := min(|&1], |§2]. 161 + &21)
and  |§|max := max(|§1]. €21, [€1 + &20).

Remark 1.1. We will see in Lemma 2.1 below that, for & > 0, a very simple criterion on p ensures (1-6).
With this criterion in hand, it is not too hard to check that the following linear operators satisfy Hypothesis 1:

(1) The purely dispersive operators L := d, D§ with « > 0.
(2) The linear intermediate long wave operator L := d, Dy coth D,. Note that here o = 1.
(3) Some perturbations of the Benjamin—Ono equation, such as the Smith operator [1972], L :=
dx (D2 + 1)1/2. Here again o = 1.
Before stating our main result, let us define what we mean by unconditional well-posedness.

Definition 1.2. Let K =Ror T, T > 0 and s > 0. We will say that u € L°°(0, T; H5(IK)) is a solution
to (1-3) associated with the initial datum ug € H* (K) if u satisfies (1-3)—(1-4) in the distributional sense,
i.e., for any test function ¢ € CX°(]-T, T x K),

/ /[(¢t+La+1¢)u+%¢xu2] dxdt—i—/ @0, )updx =0 1-7)
0 JK K

Remark 1.3. Foru e L®(0, T; H*(K)), with s > 0, u2 is well defined and is in L (0, T; HS~(1/21)(K)).
Moreover, (1-5) forces
Laq1u € L%(0,T: H**71(K)).

Therefore, u; € L (0, T; H*~*~1(IK)) and (1-7) ensures that (1-3) is satisfied in L>°(0, T; H*~*~1(K)).
In particular, u € C([0, T]; HS~%~1(IK)) and (1-7) forces the initial condition u(0) = u¢. Note that this
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actually implies that u € C([0, T']; H?(K)) for any 6 < s. Finally, we note that this ensures that u satisfies
the Duhamel formula associated with (1-3).

Definition 1.4. Let K =R or T and s € R. We will say that the Cauchy problem associated with (1-3)
is unconditionally locally well-posed in H* () if, for any initial data ug € H*(KK), there exists T =
T (Jluollgzs) > 0 and a solution u € C([0, T]; H(K)) to (1-3) emanating from uy. Moreover, u is the
unique solution to (1-3) associated with u¢ that belongs to L°°(]0, T'[; H*()). Finally, for any R > 0,
the solution map ug — u is continuous from the ball of H*(I) with radius R centered at the origin into
C([0.T(R)]: H*(K)).

Theorem 1.5. Let K = R or T, Ly+1 satisfy Hypothesis 1 with 1 <« <2 and let s > 1 — % with
(s,a) # (%, 1). Then the Cauchy problem associated with (1-3) is unconditionally locally well-posed

in H®(K) with a maximal time of existence T Z (1 + ||uo||H1_a/z)_2("+1)/(2°‘_1).

Remark 1.6. In the regular case (Cauchy problem in H* with s > ), we actually need (1-6) only for

|E1] A 1E2] > 1.

Remark 1.7. Our method also works in the case o > 2. In this case we get the unconditional well-
posedness in H* () for s > 0.

Remark 1.8. For Ly := 03, we recover the unconditional LWP results for the KdV equation in L?(R)
and L?(T) obtained in [Zhou 1997; Babin et al. 2011], respectively.

For Ly+1 with @ € ]1,2[ our results on unconditional uniqueness are, to our knowledge, new for both
the real line case and the periodic case.

In the limit case (s, «) = (%, 1) we do not succeed in proving the unconditional uniqueness result.
However, our method of proof enables us to prove the well-posedness without using a gauge transform.
We think that this result is also of interest since H /2 is the energy space when a = 1. It is worth noticing
that, as far as we know, the available results without gauge transformation on the local well-posedness of
the Benjamin—Ono equation in Sobolev spaces H*(R) were restricted to s > 1 (see [Guo et al. 2011]).
Also, the well-posedness in the energy space H 1/2 seems to be new for the intermediate long waves
equation, at least in the periodic setting.

Theorem 1.9. Let K = R or T and assume Ly 41 satisfies Hypothesis 1 with o = 1. Then the Cauchy
problem associated with (1-3) is locally well-posed in H 1/ 2(K) with a maximal time of existence T

(1+ lluoll gr1/2)™*

Let us assume now that the symbol py 41 satisfies, moreover,

pat1®) SIEl for [E[ <1 and  |pet1(®) ~[§*F for [§] = 1. (1-8)
Then it is not too hard to check that (1-3) enjoys the conservation laws

i 2 — i /2,2 1.3 _
7 Ku dx =0 and dt/K(lA u| +3u)dx—0,
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where A%/2 is the space Fourier multiplier defined by
1
— 2
ATu(e) = | PO )

Combined with the embedding H*/2 < L3, we get an a priori bound of the H®*/2-norm of the solution.
We may then iterate Theorems 1.5 and 1.9 to obtain the following corollary:

Corollary 1.10. Let K = R or T and assume Ly 41 satisfies Hypothesis 1 and (1-8). Then the Cauchy
problem associated with (1-3) is unconditionally globally well-posed in H o/ 2(K) for 1 <a <2, and
globally well-posed in HI/Z(T) foroa =1.

Remark 1.11. The linear operators given in Remark 1.1 also satisfy assumption (1-8).

Remark 1.12. If one considers LWP and not unconditional LWP, then the best-known results for (1-1)
with 1 < o < 2 have been obtained in [Herr et al. 2010], where the global well-posedness in L?(R) is
proved by using a paradifferential gauge transformation. As far as we know, the best available results
without gauge transformation are obtained in [Guo 2012], where the LWP in H*(R) with s > 2 —« is
proven. This leads to a global well-posedness result only for o > %. Therefore, even for (1-1), our results
improve the local and global available well-posedness results without the use of gauge transformation on
the real line. To the best of our knowledge, they are new on the one-dimensional torus, where we are not
aware of any global well-posedness result.

It is well known that, taking into account some damping or dissipative effects, dissipative versions
of (1-3) can be derived (see for instance [Ott and Sudan 1970; Edwin and Roberts 1986]). One quite direct
application of the fact that we do not need a gauge transform to solve (1-3) is that we can easily treat the
dissipative limit of dissipative versions of (1-3). Such a dissipative limit was, for example, studied for the
Benjamin—Ono equation on the real line in [Guo et al. 2011; Molinet 2013].

Let us introduce the following dissipative version of (1-3):

ur + Lo+1u +eAgu +uuy =0, (1-9)
where & > 0 is a small parameter, 8 > 0 and Ag is a linear operator satisfying the following hypothesis:

Hypothesis 2. We assume that Ag is the Fourier multiplier operator by qg, where qg is a real-valued,
even function, bounded on bounded intervals, satisfying: for all 0 <A < 1 and £ > 1,

MagAe) ~ |58

Remark 1.13. Both the homogeneous operators Df and the nonhomogeneous operators Jxﬁ satisfy

Hypothesis 2.
Theorem 1.14. Let K =RorT,1 <a <2,0<B<1+aands>1-%.

(1) Then the Cauchy problem associated with (1-9) is locally well-posed in H* ().
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(2) For ug € H*(K), let u be the solution to (1-3) emanating from uqy and let the maximal time of
existence of u in HS be T* 2 (1 + ||u0||H1_a/z)_2(“+1)/(2°‘_1) (note that T* may be infinite).
Then the maximal time of existence Tg of the solution u, to (1-9) emanating from ug satisfies
liminfg,—o Tz = T™*. Moreover, for any 0 < Tog < T*, ug — u in C([0, Ty]; H®) as ¢ — 0.

Remark 1.15. The constraint 8 < 1+« is clearly an artifact of the method we used. We think that it could
be dropped by replacing, in some estimates, the dispersive Bourgain spaces by dispersive—dissipative
Bourgain spaces that were first introduced in [Molinet and Ribaud 2002]. But, since the dissipative
operators involved in wave motions are commonly of order less or equal to 2, we do not pursue this issue.

The rest of the paper is organized as follows: In Section 2, we introduce the notations, define the
function spaces and state some preliminary lemmas. In Section 3, we develop our method in the simplest
case, § > %, while the nonregular case is treated in Section 4. Section 5 is devoted to the proof of
Theorem 1.14. We conclude the paper with an Appendix explaining how to deal with the special case

(s,2) = (3. 1).
2. Notations, function spaces and preliminary lemmas

2A. Notation. For any positive numbers a and b, the notation a < b means that there exists a positive
constant ¢ such that @ < c¢b. We also write a ~ b when a < b and b < a. Moreover, if « € R, then o+
and «— will denote a number slightly greater and less than «, respectively.

For u = u(x,t) € $(R?), Fu = 1i will denote its space-time Fourier transform, whereas F,u = (1)~
and F,;u = (1) will denote its Fourier transform in space and in time, respectively. For s € R, we define
the Bessel and Riesz potentials of order —s, J; and D3, by

Ju=F11+E*2Fu) and Diu=F (& Fru).
Throughout the paper, we fix a smooth cutoff function 7 such that
neCe(R), 0=<n=<1, mn_ ,=1 and supp(n) C[-2,2]
We set ¢ (§) :=n(§) —n(2§). For [ € Z, we define

o1 (§) := 9 (276),
and, for / € N*,

Va1 (§.7) = ¢1 (T — pa+1(8)).
where i pg+1 is the Fourier symbol of L,41. By convention, we also denote
Y1(€.7) == n(2(r — pat1(5))).

Any summations over capitalized variables such as N, L, K or M are presumed to be dyadic. Unless
stated otherwise, we work with homogeneous dyadic decomposition for the space-frequency variables
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and nonhomogeneous decompositions for modulation variables, i.e., these variables range over numbers
of the form {2% : k € Z} and {2% : k € N}, respectively. Then we have that

Z on(E)=1 forall £ € R* and supp(¢pn) C {%N <|él < 2N} for N € {Zk 1k eZ},
N>0

and

Y v =1 foral (.1)eR?

L>1

Let us define the Littlewood—Paley multipliers by
Pyu=F . ($nFxu), QrLu=F"'(YyLFu).

P>y =) k>N Pk, P<n =Y k<n Pk, O>1 =) g>1 Ok and Q<1 =) g_; Ok. For brevity
we also write uy = Pyu, u<y = P<pyu, etc.

Let y be a (possibly complex-valued) bounded measurable function on R? and define the pseudoproduct
operator IT = I, on ¥(R)? by

9(H(ﬁg))($)=[Rf(él)é(é—él)x(é,él)dél.

Throughout the paper, we write IT = IT,, where y may be different at each occurrence of I1. This bilinear
operator behaves like a product in the sense that it satisfies the following properties:

N(f,g)= fg if y=1,
[ erom= [ £ = [ g 1)
R R R

with y1(6,61) = x(01,0) and y2(0,61) = x(6 — 61, 0) for any real-valued functions f, g, h € ¥(R).
Moreover, we easily check from the Bernstein inequality that, if f; € L?(R) has a Fourier transform
localized in an annulus {|&| ~ N;},i =1, 2, 3, then

3
1
SNZ T lze (2-2)

i=1

‘ /R (A f) f3

where the implicit constant only depends on || x || 7,00 (g2) and Nmin = min{ Ny, N2, N3}. With this notation
in hand, we will be able to systematically estimate terms of the form

/ Py (u?)dx Pyu
R
to put the derivative on the lowest frequency factor.

2B. Function spaces. For 1 < p < oo, LP(R) is the usual Lebesgue space with the norm || - ||z» and,
for s € R, H(R) is the usual Sobolev space with its usual norm,

Ipllas =173z
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If B is one of the spaces defined above, 1 < p < oo, we will define the space-time spaces Lf B and Zf B

1£eps = ( [ 1rcoigar)”

with obvious modifications for p = oo, and

equipped with the norms

=

|—

2

I/ lzr5 = ( > ||PNf||ifB) .

N>0

For s, b € R, we introduce the Bourgain spaces X b related to the linear part of (1-3) as the completion
of the Schwartz space ¥(R?) under the norm

1

2
Iolss = ([ tr= @ @106 0 de ) 03
where (x) := 1+ |x| and i pq+1 is the Fourier symbol of L4+1. Recall that
lvllxso = IUa(=0)v] s,

where Uy (1) = exp(tLy+1) is the generator of the free evolution associated with (1-3).

Finally, we will use restriction-in-time versions of these spaces. Let T > 0 be a positive time and
let Y be a normed space of space-time functions. The restriction space Y7 will be the space of functions
v:Rx]0, T[ — R satisfying

[vlly; :==inf{[|o]ly | :RxR — R, Ulrxjo,r[ = v} < 00.

2C. Preliminary lemmas.

Lemma 2.1. Let p : R — R be an odd function belonging to C'(R) N C%(R*). Assume that there exist
a > 0 and &y > 0 such that, for all £ > &,

P'©~ 1% and [p" ()]~ |§*7". (2-4)
Then the Fourier multiplier Lo+1 by i p satisfies Hypothesis 1.

Proof. Let 0 < A <&, ! be a real number. First, by the mean value theorem, for £ > 1,
IPATLE)] S [ p(Bo)| + A~ @TVET <A71(Agg) max |p/(§)] + &%

£€[0,&0]
and thus

A pATIHI A% max |p'§)|+E4T g0t
£ef0.50]

as soon as A < (maxge(o,g] |p’($)|)_1/a. This proves (1-5) for

Ao =min(§; ", (sg[lﬁ)s(o] 1P'(®)) ). (2-5)
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Let us now prove (1-6). In the sequel, we take 0 < A < Ao with A defined by (2-5). By symmetry, we
can assume |&| < |&1|. We separate different cases:

Case 1: |&;| < |£1|. Since, by hypothesis, |£1| 3> 1, it follows that A~!|£1| > £o and thus there exists
0 € [£1, &1 + &2] such that

AT p(ATE + 82)) — p(ATHED | = A%IE| [P’ (AT O)| ~ A¥[E2] [ATI01% ~ [E2] [£1]*.

Now, if A71|&;| < & then
AT 8)| < A%E| max p'(©)] < [E][&1]*.
£€[0,£0]

On the other hand, if A71|&,| > & then

AP ) = 2% p(Eo) + (AT E2) — p(&o)

< ot max |p/(€)] + 17! A lg, |
<3 ol max 5]+ A7 Eal 2 l)

<&+ A%%] max |p'(§)] < & [&]".
£€[0,80]
Gathering these two estimates leads to

AHNQATELATIE) | ~ |6l [E1]

Case 2: |E2| = |€1|. In this case we have A ~1|£;| > £p. Since p is an odd function, by symmetry we can
assume that £; > 0.

Case 2(a): £1€, > 0. Then we have 0 < £y < A71& < A71E < A71E] 4+ &5, We notice that

2THQ T e, AT g

A7
=ot! /s (P'A7'E1+0)—p'(0)dO + 2% T (p(A ™ €1 + E0) — p(A T E1) — AT p(&o)
with
|P(AT1E1L +E0) — p(ATHED| S E0ATHEY K ATYTIEEY
and

ATlE
PO+ 6)— p(6) = /0 (0 + ) dp.

But, for @ > £y, p”’ does not change sign since | p” ()| ~ |#|*~! and p” is continuous outside 0. Therefore,
for 6 € [£9, A71&5], we get

ATE AT1g
[ r e mdnn [ 00 i 7+ 00— 6% ~ A
0 0
Gathering these estimates we obtain

AHNQMAT e, AT )| ~ B8
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Case 2(b): £1&2 < 0. For & + & <K —§&,, recalling that p is an odd function, we can argue exactly as
in Case 1, but with &; + &>, —&» and £ playing the role of &, £ and &1 + &5, respectively. Finally, for
&1 4+ & = —&,, we argue exactly as in Case 2(a) with the same exchange of roles as above. O

Lemma 2.2. Assume that py+1 satisfies (1-6) with A = 1. Let Ly, Lo, L3 > 1,0 < N1 < Ny < N3 be
dyadic numbers and u, v, w € ¥'(R?). Then

/2 (Qr, Pnu. Or, PN,v) O, PN,w =0
R
whenever the following relation is not satisfied:
Lax ~ N1 Nza or (Lmax > Ny Ng and  Lyax ~ Lmed)a (2-6)

where L,y = max(Lq, Ly, L3), Limeq = max({L1, Lz, L3} —{Lmax}) and where the two first implicit
constants in (2-6) are related to the implicit constant in (1-6).

Proof. This is a direct consequence of the hypothesis (1-6) on the resonance function Q(&1, &), since
Q61.62) =0t + .51 +§) —o(r1.§1) —0(12. §2)

with 0 (7,§) := 7 — pa+1(§). O

Lemma 2.3. Let L>1,1 < p < oo and s € R. The operator Q< is bounded in LY H® uniformly
inL>1.

Proof. Let R<|, be the Fourier multiplier by n(t/L), where 7 is as defined in Section 2A. The trick is to
notice that Q <y u = Uy (?)(R< Uy (—t)u). Therefore, using the unitarity of Uy (-) in H*(R), we infer
that

19<rullLr gs = Ua(®)(R<LUa (=)Wl L2 s = [R<LUa(=0)ullLr grs S |Ua(=0)utlL7 s

= lullr - O

For any T > 0, we consider 17, the characteristic function of [0, T'], and use the decomposition

high Tow T\
tr =12+ 1%, 12k =n(%)Tr(@ @-7)
for some R > 0.

The properties of this decomposition we will need are listed in the following lemmas.

Lemma 2.4. Forany R>0and T > 0,

17l ST AR (2-8)

and

~

1% L S 1. (2-9)
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Proof. A direct computation provides
AT [‘f tr() =17 (1 = %)) 'n(s) ds|d

<
o /R/[;,T]\[S/R,T—FS/R]U[S/R,T+S/R]\[O,T]

f(TAM)@ In(s)| ds
R
<TARI

|F 1 n(s)| dt ds

110

Finally, the proof of (2-9) follows directly from the definition of 17" and Young’s inequality. O

Lemma 2.5. Let u € L?(R?). Then, forany T >0, R > 0and L > R,
1QL (%W L2 S 1Q~rLull2.
Proof. By Plancherel we get
Ip = 0L(P%w) |2

= lleL(z - w(é))lk’w 0 10(T, §)ll 2

- = 0@ [ o - sm(

Li>1

dt’

7 e—iT(t—r’) —1
T—1

L2.

In the region where Ly < L or Ly > L, we have |t —1/| ~ LV L1 > R, thus I}, vanishes. On the other
hand, for L ~ L, we get

I ) I10L(RR 0L W2 S 1Q~ru 2. =

L~L,

3. Unconditional well-posedness in the regular case s > %

In this section we develop our method in the regular case s > 5. This will emphasize the simplicity of
this approach to prove unconditional well-posedness for (1-3) posed onRorT.

Let A > 0 and Lé 1 be the Fourier multiplier by i A% po 1 (A1), We notice that if u is a solution
to (1-3) on ]0, T[ then u, (¢, x) = A%u(A%*1s, Ax) is a solution to (1-3) on 0, A=@+DT[ with Ly
replaced by Lé 11~ Therefore, up to this change of unknown and equation, we can always assume that the
operator Ly 41 verifies (1-6) with 0 < A < 1.

3A. A priori estimates. For s € R we define the function space M* as M := L HSN X~ 11 endowed
with the natural norm

lllags = llullzge s + llulxs—11.

For ugp € H5(R), s > %, we will construct a solution to (1-3) in M5, whereas the difference of two
solutions emanating from initial data belonging to H*(R) will take place in M%‘l.
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Lemma3.1. Letr0<T <2,5 > % and let uw € L H® be a solution to (1-3) associated with an initial
datum ug € H*(R). Thenu € My and

lllaeg < Nullzge s + lullLge s IIuIIL%OH%+- (3-1)

Moreover, for any pair (u,v) € (LC%OHS)2 of solutions to (1-3) associated with a pair of initial data
(ug,v0) € (H*(R))?> and any s —1 <r <,
I —vlipz S llu—vllpgenr + llu+vllpsensllu—viLgnr. (3-2)

Proof. We have to extend the function u from (0, T') to R. For this we follow [Masmoudi and Nakanishi
2005] and introduce the extension operator p7 defined by

pru(t) == n(u(Tn(F))- (3-3)

where 7 is the smooth cut-off function defined in Section 2A and w(¢) = max(1 — |t — 1],0). This pr
is a bounded operator from X?Jb into X?® and from L?(0,T; X) into L?(R; X) for any b € |—o0, 1],
s € R, p €[1, o0] and any Banach space X. Moreover, these bounds are uniform for 0 < 7 < 1.

By using this extension operator, it is clear that we only have to estimate the X ;_l’l—norm of u to
prove (3-1). As noticed in Remark 1.3, u satisfies the Duhamel formula of (1-3) and u € C([0, T]; H?)

for any 6 < 5. Hence, standard linear estimates in Bourgain’s spaces lead to
2 2
ellys—1.0 < Mo llzrs=1 + 105 @) ys-r0 < luollgs—1 +llu”ll 2 g

S Wllzgemsmr + lull ey Il

by standard product estimates in Sobolev spaces (see [Adams 1975]).
In the same way, for s —1 <r < s we have

lu=vllyr—11 < lluo—vollgr—1 +Il+v)u=v)l 12 gr Slu—vlLge gr—1 +llutvlrsemslu—vllLsenr .

since s > %+ and r 4+ s > 0. This proves (3-2). O

Lemma 3.2. Assume u; € M°,i = 1,2, 3, are functions with spatial Fourier support in {|&| ~ N;} with
N; > 0 dyadic satisfying N1 < Ny < N3. Foranyt > 0, we set

t
Iz(ul,uz,m)://H(M1,M2)M3-
o Jr

If N1 <1,
1
[Leurzu3)| S NE oo g2 izl 2l (3-4)
In the case N1 > 1,
1
L
[£i(uy uz,u3)| S Ny 2 N3~ flunllpoo g2 (luzll 2 lluslx—10 + luzlx—1allusl 2 )

1 1
. -
+ N2 N5 -zl 2 sl ooz + Ny N5 oo 2 luall oo 2 sl oo 2.
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Proof. Estimate (3-4) easily follows from (2-2) together with Holder’s inequality, thus it suffices to
estimate |/;| for N1 > 1. Note that /; vanishes unless N ~ N3. Setting R = N13/2N31/8, we split I; as

It (uy,uz,u3) = Ioo(ll,lj%?uls u2.u3) + loo (1 R 1, Uz, u3) := I (3-5)

where Joo(u, v, w) = [ II(u, v)w. The contribution of 7 th ieh i estimated, thanks to Lemma 2.4 as well
as (2-2) and Holder’s inequality, by

high % 1 high Lok
Itlg < le Hlti%? ||L1 H”l||L‘;°L)2C||“2”L‘,>°L§||”3||L‘,>°L)2€ < N; N3 ® ||”1||L?°L§”“2”L‘,>°L§||”3||L}>°L§'
(3-6)

To evaluate the contribution /.°% we use that, according to Lemma 2.2, we have the decomposition
1 1
Ioo(l;jngula Us, u3) = IOO(QRN] Nél(lt(:%ul), Uo, u3)
1
+ Ioo(Q < Ny (1 RU1), Oz Ny Ng U2, U3)
1
+ Ioo(Q < ng (1 RU1), Qv N U2, Qi Neu3).  (3-T)
1,low

It is worth noting that R < N1 N§ because N1 > 1. Therefore, the contribution /, of the first term
of the above right-hand side to 7,° is easily estimated, thanks to Lemma 2.5, by

1 1
1,1 5 -1 > A7—
1P < NN NSY s lixon a2 sl ooz S NP N3 @l lix-1alluzll 2 sl ooz . (3-8)
Thanks to Lemmas 2.3 and 2.5, the contribution / ,2 1% of the second term can be handled via

1
2,1 2 -1
12 < NE (NN ™ e o 2wz ot sl 2.
—1
SN Nl oo p2 luzllx -1 lusll 2 - (3-9)
Finally, the contribution of the third term is estimated in the same way. O

Remark 3.3. From (2-1) we see that the estimates in Lemma 3.2 also hold for any other rearrangements
of N1, N> and N3.

We are now in position to derive our “improved” energy estimate on smooth solutions to (1-3).

Proposition 3.4. Let0 <T <2 andletu € L H® with s > % be a solution to (1-3) associated with an
initial datum uy € H*(R). Then

2 2 2 2
[ullZoe s < Nletollzrs + (1 + IIMIIL%OH%+)IIMIIL%OH%+ llllZo0 grs - (3-10)

Proof. We apply the operator Py with N > 0 dyadic to (1-3). On account of Remark 1.3, it is clear
that Pyu € C([0, T]; H®) with d;uy € L°°(0, T; H®). Therefore, taking the L2-scalar product of the
resulting equation with Pyu, multiplying by (N )2 and integrating on ]0, [ with 0 < ¢ < T, we obtain

t
NV Pru()]22 = (N)?* || Pyuo|2 + (N)?* /0 /R 3 Py (u?) Pyu.
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Integrating by parts and applying Bernstein inequalities, this leads to

t
IPNUIF oo s S | PNUoNGs + sup (N)?S Py (u?)dx Pyu). (3-11)
r t€]0,T[ R
Thus it remains to estimate
I:— 25 sup //PN(M )0x Pyul. (3-12)
N>0 t€]0,T|[

According to (3-1), u belongs to M4.. We take an extension u of u supported in time in ]—2, 2[ such that
i lars < Ilull ms.- To simplify the notation we drop the tilde in the sequel.
By localization considerations, we get

Py(?) = Py (uzNuzN) + 2PN (UanU). (3-13)

Moreover, using a Taylor expansion of ¢y, we easily get
Py(uanu) =uen Pyu+N"(@xuen . u), (3-14)
where IT = IT, with x(§,§1) = —i fol ¢'(N~H(E —0&)) dO e L. Inserting (3-13)—(3-14) into (3-12)

and integrating by parts, we deduce
/ / Iy, (uny, MN)UN‘

ISy Y N(M* sup

N>00<N; <N t€]o, T
+Y > NN sup //HXZ(MNU ~N)”N‘
N>00<N; <N t€]o,T[
t
+Z Z N(N>2S sup //HX3(“N1’M~N|)MN,
N>0 N1 =N t€]o,T[I/0 /R

where y;, 1 <i <3, are bounded uniformly in N and N, and defined by

& &) = fv—llsupml (£1), (3-15)
1
£ & SuPPq?f’N(E)lsupptﬁNl(‘SS:I)

x2(8,.61) = x(§, él)ﬁﬁ SnG—ED) , (3-16)
13(6.61) = N (E) 617
Recalling now the definition of I; (see Lemma 3.2), it follows from (2-1) that
1<) ) NNO® sup |1y ey, un)l. (3-18)
N>0N; =N t€]0,T[

The contribution of the sum over N < 1 is easily estimated, thanks to (3-4) and Cauchy—Schwarz, by

2 2 2
D 2 NN lunllpgea lum 172 2 S Nl ooz 1l ooy (3-19)
N<2% NN
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Finally, the contribution of the sum over N >> 1 is controlled with the second part of Lemma 3.2 by

1—
> Y NNEINTENIT N oo g lum, 2, e,y
N>29 N\=N

1 ar—a 2 158 2
+N2Nl ||uN||X_11||uN1”L§>OL%+N N] ||uN||L?oL)2C||uN1”L?OL)2€]

< X -
< ”“”Mé.;_”u”M}”u”L;’?HS- (3-20)

Gathering all the above estimates leads to

2 2
[l zee s < luollgs + IIMIIMT%+ el pgg el Lge s » (3-21)
which, together with (3-1), completes the proof of the proposition. O

Let us now establish an a priori estimate at the regularity level s — 1 on the difference of two solutions.

Proposition 3.5. Let 0 < T <2 and letu,v € L7 H® with s > % be two solutions to (1-3) associated
with initial data ug, vo € H*(R), respectively. Then

e =012 o s S ato = vol ey + -+ vllagg e = ]2, (3-22)
Proof. The difference w = u — v satisfies
w; + D%wy = 0y (zw), (3-23)
where z = u + v. Proceeding as in the proof of Proposition 3.4, we infer that, for N > 0,

”PNw”LOOHJ 1 = ||PNu)0||HS L+ sup )2(s—1)
t€lo, T[

t
//PN(Zw)axPNw' (3-24)
0 JR

Again, according to (3-1), we can take extensions Z and w of z and w supported in time in |—2, 2[ such
that || Z]|ars < ||z||M; and || 0| pps—1 < ||w||M%_1. To simplify the notation we drop the tilde in the sequel.
Setting

J = Z(N 26=D gup
N>0 t€]0,T[

Py (zw)dx Pyw (3-25)
I |

it follows from (3-14) and classical dyadic decomposition that, for all N > 0,
Py(zw) = PN(zanw) + PN (Zonwsn) + Y Pn(znw~n,)
Ni>N

=zeNwy + N T (0xzan. w) + Py(Zonwsn) + Y Py(znw~n,).  (3-26)
Ni>N
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Inserting this into (3-25) and integrating by parts, we infer

ISy ) N1<N>2‘S‘”( sup

N>0 N, <N tE]O,T[

t
//HXz(ZNl,w~N)wND
0Jr

¢
//Hxl(le,wN)wN‘—l— sup
0JR

t€lo,T[

t
+Z Z N(N)Z(s—l) sup //H)B(ZNN,U)NI)U)N‘
N>0N; SN t€lo,T[I/0 JR
t
+ 303 NW)ETD s //Hm(le,wle)wN,
N>0N;>»N t€lo,T[1/0 JR

where y;, 1 <i <3, are as defined in (3-15)—(3-17). Therefore, it suffices to estimate

J < Z Z (N7) 2(s D sup |l (zn, w~pn,, WN,)|

N>0 N 2N t€]0,T[
+ Z Z NUND2E™D sup |1 (zew, . wn, way)]
N>0N;=N t€]0,T[
+ 30 D0 NPT sup [Li(zny wny s w))
N>0N =N t€]0,T[
=J1+ 2+ J;5. (3-27)

The contribution of the sum over N < 1 in (3-27) is easily estimated, thanks to (3-4), by

1 2 -1
Z Z NZ(N”ZN”L?OL)Z( ||wN1 ||L%Hs—l + N1(N1) ||ZN1 ”L%Hs”wN“L?OLg”le ”L%Hsﬂ
N1 N =N

1-2
+ N(Ny1) S”ZNI ||L%Hs||wN1 ”L%HS—I ”wN”L;’OL%)
2
S lzlipee 2wz oo grs—1 + ”w”L?on—% Izl e s lwll Loo prs—1. (3-28)
For the contribution of the sum over N >> 1, it is worth noting that, since s > 5, the term J3 is controlled
by J>. The contribution of Jj is estimated, thanks to Lemma 3.2, by

2(s—1 S
> Y NNETOINTINS 2yl e 2 N, D2 llww, -1
N>1NZN . ) L1 .
- -
+N2NT 2wl lwm oo o + N TN E 2wl go 2 0w 17 oo 2]

Szl s lwllags—rlwllpee =1 (3-29)
Finally, in the same way we bound J; by

25—1[ A7—4 A71—
Yoo NETNTEN T ww g2 (2w 2w -1 + 1z, -1 way ll2.)
N>1 N ZN Lo,
+N2N1 ||wN||X—1s1||ZN1||L;><>L)2€”WN1||L§>OL)2{

1
_1 - Q
+N N, 8||7JUN||LZO<>L)2(||ZN1 ”L‘;"L%”le ”L‘tx’L}%]

S ellars Dol -yl psms + 2 lars Dwlags-a ol - 3-30)
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Gathering the estimates (3-27)—(3-30), we obtain

S (IIZIIMT%JrIIwIIMs—l Tzl lwlly 3 Ollwllzge s + 1z lazg 1wl s IIwIIL%OH_%Jr, (3-31)
which leads to (3-22) and completes the proof of the proposition. O

3B. Unconditional well-posedness. Fix s > % First, it is worth noticing that we can always assume that
we deal with data that have small H*-norm. Indeed, if u € L°°(0, T; H®) is a solution to (1-3), then,
for0 <A <1,uy =A% AT 1) e L®(0,A*T1T; H®) is a solution to (1-3) with Ly replaced
by Lé - that is, the Fourier multiplier by i A% po 1 (A1), Recall that we assumed at the beginning
of this section that Lé 41 satisfies (1-6) for any 0 < A < 1. For 0 < & < 1, let us denote by %B*(¢) the ball
of H®(R) centered at the origin with radius . Since

1
luaO)llas < A% 2 uollas

we see that we can force u ) to belong to B°(e) by choosing A = [¢(1 + |[uo || )]~/ @=1/2) Therefore,
the unconditional well-posedness in H*(R) of (1-3) for small H*-initial data with a time of existence T > 1
will ensure the unconditional well-posedness of (1-3) for arbitrary large H®-initial data with a maximal
time of existence

_2(a+D
T2 (1+ [luollms)™ 2T .

Existence and unconditional uniqueness. It is well known (see for instance [Abdelouhab et al. 1989]) that
3
2

So, let u € C([0, Tp]; H*°(R) be a smooth solution to (1-3) emanating from a smooth initial datum
ug € H*®(R) with |Jug|lzs < 1. According to (3-10),

(1-3) is locally well-posed in H® for s > 5 with a minimal time of existence T = T (||u¢|| g3/2+) > 0.

17 o0 grs < (O 1Fs + (1 + IIMIIiOOH%Jr)IIuIILOOH%JFIIMII%c;oHs (3-32)
T T

for any 0 < 7 < min(1, Tp) and s > % Let us denote by T* > T, the maximal time of existence of u
in H*°(R). The well-posedness resultin [Abdelouhab et al. 1989] ensures that limg 7« [lu ||L‘;° H3 =100
whenever T* is finite. Since

O, 1+ = () las <1,
(3-32) together with the continuity of 7" ”””L;’9H1/2+ on 10, T*[ ensure that

Ju [, 10 <1

L <
LSSH2T ™
with 7/ = min(1, T*). But then (3-32) leads, for any s > %, to

lullzss ms < lu(0)]as-

This proves that 7/ < T* and thus 7/ = 1 and T* > 1.
Now, let ug € H5(R) with s > % From the above estimates, we infer that we can pass to the limit

on a sequence of solutions {u,} emanating from smooth approximations of u#¢ to obtain the existence

2

of a solution u € L H*® of (1-3) with initial data uo. Note that one can easily pass to the limit on u;,
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by compactness arguments, since {u, } and {d;u,} are bounded in L H* and L7 H* =3, respectively.
Estimates (3-22) and (3-1)—(3-2) then ensure that this solution is the only one in this class. Now the
continuity of u with values in H*(R) as well as the continuity of the flow map in H*(R) will follow from
the Bona—Smith argument [1975]. For any ¢ € H*®(R), dyadic integer N > 1 and r > 0, straightforward
calculations in Fourier space lead to

IP<nollgs+r S N"ll@llas and |lo—P<nellas— S N"IIP>nollns- (3-33)

Let ug € H® with s > % be such that ||ug||zzs < 1. We denote by u™ € L°°(0, 1; H®) the solution of
(1-3) emanating from uON = P-nyugp and, for 1 < N; < N, we set

w = ult —y M2,
Then, (3-22) and (3-2) lead to
lwllpr—1 < 1w O)llgs—1 S NI Pswv ol s (3-34)
Moreover, for any r > 0 and s > 3, we have
eV pgpr < M rstr < N7 ol s (3-35)
Next, we observe that w solves the equation
wr + Lo41w = 295 (w?) + dx @™ w). (3-36)

Proposition 3.6. Let 0 < T <2 and let w € My with s > % be a solution to (3-36). Then
2 2 3 N 2 N
lwiizee s < WO s + Twliazs + I lagg [wlizs + 1wy lwllazg [wliagg—. - G-37)

Proof. Actually, this is a consequence of estimates derived in the proof of Propositions 3.4 and 3.5. We
separate the contributions of ., (w?) and 3, (u™¥'w). Let t €0, T[. First, (3-21) leads to

t
> N f / Py dx(w?) Pyw
N=>0 0JR
Second, applying (3-31) at the level s with z replaced by u™V1, we obtain
t
Z N2S / / Pnox ™M w)Pyw
0 JR

N=>0
which leads to (3-37) since s > 1. O

3
< lwllys

< I lagg lw gy + I s lwlagg lwll g
T T T M2
T

Combining (3-2) with (3-37) and (3-35), we get
IIWIIﬁlIs S (A lluollFr) [lwoll s + ||uo||Hs||w||§4; + ||U0||HS||U)||12V11S + N ||U0||HS||w||Mf||w||MIS—1]-

Then, the smallness assumption on ||ug| s and (3-34) lead to

||w||12uf < lwollZps + N12||w||i41s—1 S PnyuollFrs (14 | PoyvyuolFrs) >0 as Ni— 0. (3-38)
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This shows that {u”V} is a Cauchy sequence in C([0, 1]; H*) and thus {u® } converges in C([0, 1]; H)
to a solution of (1-3) emanating from u¢. Then, the uniqueness result ensures that u € C([0, 1]; H®).

Continuity of the flow map. Now let {u¢ ,} C H®(R) be such that ug , — 1o in H*(R). We want to
prove that the emanating solution u, tends to u in C([0, 1]; H®). By the triangle inequality, for n large
enough,

e —unllzooms < lu—uMllpeo s + [u™ —up Lo s + ey —unllzoops .

Using the estimate (3-38) on the solution to (3-36) we first infer that

=N llagg + letm —ul¥ lagy <1 P> nollszs + [ Poyitonllrs
and thus

fim sup(|lu— ™ |0 s + llun — 1y llLge 1) = 0. (3-39)
N—o0 neN

Next, we notice that (3-22) and (3-2) ensure that
e = lpga—t < g =y st
and thus (3-38) and (3-34) lead to
1™ = 3y S Nl =25 + N2l —ugly | Fpemr S o —wonllzs (14 N?).  (3-40)

Combining (3-39) and (3-40), we obtain the continuity of the flow map. The proof of Theorem 1.5 is

thus completed in the case K = R and s > %

3C. The periodic case. In this subsection we explain the necessary adaptations to treat the periodic case.
First, we define our function spaces in the periodic setting. Since the map u + u ) maps L°(0, T; H*(T))
into L°°(0, A**T1T; H5(AT)), we will have to consider space of functions on the tori AT with A > 1. We
use the same notations as in [Colliander et al. 2004] to deal with Fourier transform of space-periodic
functions with a large period 27 A. Then, (d£); will be the renormalized counting measure on A~!Z:

[a@wsi=1 ¥ @
ger—1z

As noticed in [Colliander et al. 2004], (d£), is the counting measure on the integers when A = 1 and
converges weakly to the Lebesgue measure when A — oco. In the definitions below, all the Lebesgue
norms in § will be with respect to the measure (d§),. For a 2w A-periodic function ¢, we define its space
Fourier transform on A~1Z by

o) = //W e f(x)dx forall £ € A7'Z.

The Lebesgue spaces LY(AT), 1 < g < oo, for 2w A-periodic functions, will be defined as usual by

lellze = ( A i |<p(x)|qu)q

with the obvious modification for ¢ = oco.
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The Sobolev spaces H*(AT) for 2 A-periodic functions are endowed with the norm
lollers = 1660 E)L2 = IxellL2,

where () = (1 4|-[*)!/? and J3o(€) = (§)°@(6).
In the same way, for a function u(z, x) on R x AT, we define its space-time Fourier transform by

a(z,g)=9«*,,x(u)(z,g)=/f e 1Ty (1 x)ydx dr forall (r,6) e RxA'Z.
RJAT

For any (s, b) € R?, we define the Bourgain space X* b of 27 A-periodic (in x) functions as the completion
of (AT x R) for the norm

lullxs.o = {7 = Pa+1 (S))b(é)sﬁlng“S :

Finally, we define the functions ¢ and ¥y and the Fourier multipliers Py and Q as in Section 2A.
Since we take a homogeneous decomposition in space frequencies, in the periodic setting

u = Pou + Z Pyu, (3-41)
N>0
where 150\14@) = 1(0).

Now, with these definitions, we claim that Lemma 3.1 and Propositions 3.4, 3.5 and 3.6 also hold for
25 A-periodic functions with an implicit constant that does not depend on A > 1. Indeed, all the tools (the
Sobolev and Holder inequalities) we used in the proofs of these results work also in the periodic setting,
independently of the period. However, in view of (3-41), we have to care about the contribution of the
null-space frequencies, since we take an homogeneous decomposition. First, since the nonlinear term is a
pure derivative, it is clear that the contribution of the null frequency of the nonlinear term vanishes in all
the estimates. Now, it is also direct to check that

/ Pn(uPou)dx Pyu =0 (3-42)
AT
and, in the same way,

/ Py (wPyz)dx Pyw = 0. (3-43)
AT

We thus just have to control the contribution of the terms Py (z Pow) in Proposition 3.5 and Py (u Nipow)
in Proposition 3.6. But the contribution of the first term in Proposition 3.5 can be easily estimated by

t
NZ(H)// Py (zPow)dx Py w
0JAT

< sup |, 0NN Pyz|l2 2 Phwl2 2
€]0,T[ r r

2
< 5N”Z”L‘;"H-Y ”w”L%OHs—l )

where [|(8,/)jezl11(z) < 1. Finally, the contribution of the second term in Proposition 3.6 can be estimated
in exactly the same way by

t
NZS//)L Py ™' Pow)dx Pyw
0 T

N
SONlu™ Lo ms+rllwlizsemsllwlpge gs—1 -




IMPROVEMENT OF THE ENERGY METHOD FOR STRONGLY NONRESONANT DISPERSIVE EQUATIONS 1475

This completes the proof of the regular case s > % in the periodic setting.

4. Estimates in the nonregular case

In this section, we provide the needed estimates at level s > 1 — 5 for 1 < a < 2. We introduce the space

Fs,b _ Fs,a,b _ Xs—“T'H,b+% +XS—H'T°‘,b+§’ (4-1)

endowed with the usual norm, and we define
a+1 14+«
Y =Y = LOH A FSs = LPHS O (X5 2 4 X5 w08,

For ug € H*(R) we will construct a solution to (1-3) that belongs to Y7 for some T'= T (||uo || g1-as2) > 0.
As in the regular case, by a dilation argument, we may assume that Ly satisfies (1-6) for 0 <A < 1.

Remark 4.1. Except in the case (s,a) = (0,2), we could simply take ¥ 5% := L H* 0 xs~(@+D/2.1,
since u € L®(0, T; H®) forces dx(u?) € L>®°(0, T; HS~@+1/2) To this point of view, (s, ) = (0, 2)
is a limit case since u € L°°(0, T'; L?) only implies 8, (u2) € L>(0, T; H~3/27). As in [Zhou 1997], to
overcome this difficulty we have to evaluate our solution in Bourgain’s spaces with different conormal
regularities.

Lemmad4.2. [et0<T <2, 1l<a<2,s>1— % and let u € L%OHS be a solution to (1-3) associated
with an initial datum uy € H*(R). Then u belongs to Y;’a. Moreover, if (s,a) # (0, 2),

lllyger < Nl prs (14 ol e 1) 4-2)
and, if (s,a) = (0, 2),
2
Il ypo < Nl so 2 (14 e 2): (4-3)

Proof. As in Lemma 3.1 we will work with the extension # = pru of u (see (3-3)). Recall that
supp i C [—2,2] x R and that

litllLgorrs < llullzgeps  and lilxer < llullyos

1

for any (6, b) € R x ]—o0, 1]. It thus remains to control the F;’a’z-norm of u. In the case (s, ) # (0, 2),
we actually simply control the X ;_(aﬂ)/ 21 _norm of u. Using the integral formulation (see Remark 1.3),
standard linear estimates in Bourgain’s spaces, and standard product estimates in Sobolev spaces, we
infer that

1—x

s+
L2HT 2

2 2
Il vy % Tol e + 102Gt % ol g + 7]

Slllizgers + 1l oo g lllLgons

since, for | <a <2and s > 1—5 with (s, &) # (0,2), we have s +1—5 >Oands+1—%—(s+1_7“)= %
Let us now tackle the case (s, ) = (0, 2). First we notice that, since L1 (R) < H~1/27(R), we have

2
IIMIIX;%,I < luoll -7 + llu IIL%H,% S lullpeepa (W4 llullpor2)- (4-4)
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To bound the F©2:1/2_norm of u, we first notice that linear estimates in Bourgain’s spaces lead to

Il o3 < leoll 3 + e £02-
T T
and then decompose u? as
=P<iu®+ ) (PN(P<<NW~N)+ > PN(“N1“N1/))- (4-5)
N>1 N{~NiZN

The contribution of the first term in the right-hand side is easily controlled by ||u||? The contribution

LPL:
of the second term is easily estimated by

H Z 0x PN (P«nuu

Fo2m 5‘ > Pyox(Penution)

-3.0
N>1 N>1 T
o\
(X Ien e )
N>1

1
2
E : 2 2
S ( ||MN||L%—~L%||P<<NM||LE;~OL)2C)

N>1

S lullpgeralulipsera- (4-6)
To estimate the third term, we take advantage of the X ~3/8:=3/8_part of F*-2:=1/2 For N >> 1, we have

S 10 Py (P uPy)] sy
FT

N{~NiZN
< E N‘
N{~NZN

Y 0Py OL(QLiiN, QL,T

(L aLl 3L2)
satisfying (2-6)

(4-7)

_3_3"
g

For the contribution of the sum over L =2 NN 12 in (4-7), we obtain

~ ~ S 1 2N—3 |~ ~
Yo 0Py Qeyn2min)l, 33 < Y NSNZWND) S aw Iz liw;llpers

3
8

Ni~N{zN Ni~N{zN
3
N \4
i NV
Shilerz X (3 Tim oz
Ni=ZN
< 7112 ;

with [[(¥2/)ll;2ny < 1. The contribution of the region where L < NNZand Ly 2 NNZ in (4-7) is
controlled by

Y 1PN Qw2 @anwziiminl 3.3
Ni~N{zN

5.1 =1 s a1~ - e ~
< D). NSNZWNYTINFliaw g iy lpeerz S NSl e 2 il (4-9)

_7-
x4
Ni~N|zN



IMPROVEMENT OF THE ENERGY METHOD FOR STRONGLY NONRESONANT DISPERSIVE EQUATIONS 1477

Finally, the contribution of the last region, where L, L1 <K NN 12 and Ly ~ NN?2,in (4-7) is controlled in
the same way. Gathering (4-4) and (4-7)—(4-9), we obtain the desired result for the case (s, o) = (0,2). O

In the sequel we will need the following straightforward estimates.

Lemma4.3. Lera > 0and w € F@V/2, For 1 < B < N**1, we have
105Nl S BTN 0z pwnl oy (4+-10)
and, for B = (N)Y*T1, we have
102 pwn 2 S BH(N) ¥ Qzpunl oy (4-11)
Proof. Noticing that F01/2 = FO.a.1/2 — x—(1+e)/2.1 4 x—(1+a)/8,5/8 it i5 easy to check that

— o Ita
10z pwN 22 S max(B~(N) 2. B78(N) 5)| Oz pwn |l o

o 14a\ 32
< B max (L) ) 102 pwwl oy
which leads to the desired result. O

Now we rewrite Lemma 3.2 in the context of the F*- spaces.

Lemma 4.4. Assume u; € Y°,i =1, 2, 3, are functions with spatial Fourier support in {|&| ~ N;} with
N; > 0 dyadic satisfying Ny < Np < Ns.
If N3 > Land Ny 2 N3, for (p. q) € {(2, 00), (00, 2)},

1 11—«
—1 -5 -
[Tt (1 uz,u3)| S > L7'N{ 2N, 2 luillipr 21 Q~rningtiall oy sl L2
L>1
17

_1 o
+ N N2 ez luellpe 2 1Qow g usll Lo

B AC e
+ NN TSN ] oy llu2llpz lusllpeers

1l_«

1
+ Nl_ZN38 > [lu1 ”L?"L% ||u2||L;>oL§C ||u3||L§>°L§ .
Proof. For R = N13/4N§/2_1/8, we decompose I; as in (3-5) and obtain from (3-6) that
. 1 l_«o 3
1 S Ny NS T il oo 2
i=1
To evaluate 7 }OW we use the decomposition (3-7) and notice that

24

200 7 2ta
§N1N33 24 <<N1N§1 and N1Na2N33 > 1.

00—

13-
R=N}N;
1,low

Therefore, the contribution 7, ™" of the first term of the right-hand side of (3-7) to I}°¥ is easily estimated,
thanks to Lemmas 2.5 and 4.3, by

1
1,1 5 _5 a+1
LM S NENNS TSN oy ez 2 sl oo 2
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2, low

which is acceptable. Thanks to Lemmas 2.3, 2.5 and 4.3, the contribution /; of the second term can

be handled in the following way:

21 1
1; °W|<ZN (LNINOTIN, 2 ||u1||LpLz||Q~LN1N ctta]| oy llusllpegz
L>1
1Ty
< Y L7'N|?N, luillipr 21 Q~rningu2ll oy lusliLepz - (4-12)
L>1

3,low

In the same way, we get that the contribution /;”"" of the third term in /; oW is bounded by

73 1
117" S Ny (N1N§‘) N ||u1 Lz luallps L2 1Q~n ngusll o
2N ||M1||L1’L2 lu2llzg 2 1O~y ngusll Lo (4-13)
Gathering all these estimates, we obtain the desired bound. O

Proposition 4.5. Let0<T <2, 1 <a <2,5s>1 —% and let u € L;’? H be a solution to (1-3) associated
with an initial datum ug € H®(R). Then u belongs to Z%o H* and

g) (4-14)

IIMIILOOHT < lluollzs + lellzge rrs (el oo g el + lullizgems ull -4

1—
T
Proof. First, we notice that Lemma 4.2 ensures that u € Y;;. Applying the operator Py with N > 0
dyadic to (1-3), arguing as in (3-11), we obtain

IPNUlZ o s < I PNutolFys + sup (4-15)

t
Pnu?)dx Pyul.
t€]o, T[ R

We take an extension u of u supported in time in |—4, 4[ such that ||it|ys < [luyy. To simplify the
notation we drop the tilde in the sequel. We infer from (3-18) that it suffices to estimate

I=Y" > NND)* sup [L(uy.u~n, un)l-

N>0N; =N 1€]0,T[

The low frequencies part, N < 1, is estimated exactly as in (3-19) by
lullpeor2 ||u||§§>oHs .
On the other hand, the contribution of the sum over N >> 1 is controlled, thanks to Lemma 4.4, by

> Y& ) ||uN||L2H1 g lunllogors luny g

N>1NZN

NA\E
+(§7) Il gy T s e, e

o1 1_g )
+N2TiNS 2 ||uN||L$°H'—%”“N1 ||L°°HS:|

2
S lullyi-g lulizge grs + lluell oo i—g lellgomrs ullys . (4-16)
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where we use the discrete Young’s inequality in N; and then Cauchy—Schwarz in N to bound the first
two terms.
Gathering the above estimates we eventually obtain

2
I3 IIuIIY;—% Il Zoe s A el oo g1 ltllge s el - (4-17)
which completes the proof of the proposition. O

4A. Estimates on the difference of two solutions. First we introduce the function spaces where we will
estimate the difference of two solutions of (1-3). Contrary to the regular case, we will have to work in
a function space that puts a weight on the very low frequencies. This kind of weighted space for the
difference of two solutions was, for instance, used in [Ionescu et al. 2008] in the context of short-time
Bourgain spaces.

For 6 € R we define the Banach space

H'®R) ={p e H'R) | [lpllgo < oo}
with
ol o := [(E[72)(E)0 D2,

equipped with the norm || - || z¢. Then we define the space Z?Oﬁ 9 by

lolzg = (2 ||wN||LooHe) . (@-18)

N>0

Finally, we define the function spaces Y%and 29,0 e R, by
7O =I®HNF% and z%=L®HNF%2,

with F?? as defined in 4-1).

Ifu,ve L‘%o HS are two solutions of (1-3) with s > 1 — %, then, by Lemma 4.2 and Proposition 4.5,
we know that u and v belong to Y7 N L H*. Moreover, again using the extension operator pr, it is
easy to check that

YANLPHS — Y3 (4-19)

with an embedding constant that does not depend on 0 < 7" < 2. Hence, u and v belong to )7;. Assuming
that ug — vo € H®, we claim that the difference u — v belongs to Z - Indeed, according to the above
definitions of ¥* and Z*, it suffices to check that P; (u—v) belongs to Z‘;?ﬁ §. But this is straightforward,
since, by the Duhamel formula, for any dyadic integer 0 < N < 1 we have

1 2 2
| o= o)l gse e S to = voll g + N2 (el oo 2 + 1017 o0 2):

We are thus allowed to estimate the difference w = v — v in the space Z7 s=3/2+a/2
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Remark 4.6. For « > 1, we have s — 5 + 5 > s — 1 and thus, contrary to the preceding section, the
derivative of a solution does not belong to the space where we estimate the difference w = u — v of two
solutions. This fact is crucial in the preceding section to recover the derivative in terms as J; in (3-27)
that contains small space frequencies of w. In this section, we will instead combine the weight on the low
space frequencies of w with the resonance relation to control such contributions.

Proposition 4.7. Let 0 < T <2, 1l <a <2,s>1—-% andu v € LT H? be two solutions to (1-3) on
10, T'[ associated with initial data ug, vo € H® such that Ug — Vg € HS Thenu—v € ZS 32+e/2 g
we have

vl gog SIevl g g Hletvlgg luvl g +letvlgig luvl o 3yq. (4-20)

T T T

Proof. The fact that u —v € Z3 >/>+¢/2

satisfies (3-23) with z = u 4+ v. We extend w from (0, 7') to R by using the extension operator pr defined

in (3-3). On account of the uniform bounds on p7 (see the paragraph just after (3-3)), it remains to
s—3/24a/2,a,1/2

follows from the discussion above. Now, recall that w = u — v

estimate the F- -norm of w. From classical linear estimates in the framework of Bourgain’s

spaces, the Duhamel formulation associated with (3-23) leads to

(4-21)

3 .« 1.
s—5+5.—5
217272

T FT

1l gg.g S Iwol,yogeg + [9:(w)]

Let Z and i be time extensions of z and w satisfying || Z[| g, < ||z [ 55 and |B ]| zs—3/2+a/2 S |w| ys—3/2+a/2.
. . . . . T . T .
To simplify the notation we drop the tilde in the sequel. From (4-21) we see that it suffices to estimate

[NERTITES O SU LN

2 2 2 2
N>0

We first estimate the low-high contribution Py (P<yzP-yw):

|05 Py (PsnzPoyw)ll < Y. NIPN(PyzPoyw)|xs—20

4o 1
2 2

Ni1SN
1
< D NENINY 2P 2l peep2 I Panwlip2 2
Ni1SN
N —1
1
S1Pevulyses X (G ) TN
~ 272 L°H
L?H*™2 2N<N (N) ¢ 2
Szl oo p-g IP~NwI 3
L°H! L®H* 5+%

Similarly, the high-low interactions are estimated as follows:

105 PN (PanzPsnw)ll -3+ -3 S NIPN(P~nzPsNW)|lxs—20

2
1
N1 \2
§||P~Nz||L?HS Z (m) ”Ple”LooH—%
NisN !

SIPnzlp2ps ”w”ngH—% .
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Now we deal with the high-high interactions term:

_1 5 Z NH Z dx PN OL(QL,ZN, OL, WN,) p3

Ni>N (L,Ly,L3)
satisfying (2-6)

[0 PN(P>>NZP>>NUJ)|| 34

We may assume that N1 > 1 since, otherwise, N < Nj < 1 and we have

—

_1
22

IP<10x(PsizPsiw)l 3441 S Ps1zllLge 2] Piwll

L®H 2

For N; > 1, we will take advantage of the fact that X$~13/8+3¢/8,-3/8 «, ps—3/2+a/2,=1/2 Tpe
contribution of the sum over L = N N can be thus controlled by

D 110x PN Qznne (nywy)
Ni>N

4+ 1

FY_i 272

< > NP Qznng (v wn ) 13130 -
T NN

13,30 _3
Z Z N(NY~S+¥ L3Py OL(zv, wn )12

N] >N LZNNY

3 _13, 3¢ [ T
S ONENPTEER N TNz s lwows |

3
8

L®H™?
Ni>N
1 «o
N\278 ((N)\* T2
<y (—) (—) lzw gz gellomll
~ LsHS 1 L°H™2
Ni>N Nl (N1> 4 t

’

<
= 8N||Z”L%HS”w”L}’°H 1
where [|(85/); l12(z) < 1. The contribution of the region where L < NN and L1 2 NN is estimated,

thanks to (4-10), by

D 19PN Qanng (Qznngzmwn)ll o ip 3¢
Ni>N

3
8

_ 13, 3«
S ) N(N)~s LR PN (QznnezN WAyl L2

Ni>N
3 _13 3a 1A 1—5+%
< D NENPTEESWND)TING T 1 Qzngz ey low -y
Ni>N !
1 o
N 5 Ita (N) S—1+7
<y (—) Ny (— T R e B
~ ~VANT TR s Ypeoeng=2
vy V) (M) ‘

Sonlzllysllwllzo -1 -
t
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where [[(8,/); ll;2(z) < 1. Finally the contribution of the last region can be bounded, thanks to (4-10), by

> 119« PN OQ«nNp (QanNgZN1QNNeWN 513430 3
Ni>N
_13, 3a
S Y N(NYTETE | Py Qanne (Qennezn, Qonnewny) 12
Ni>»N
3 s—ﬁ+ s ay—1 115
N2(N SNCINND) TN P lQannyzm e ms 1 Q~nngwn -1 1
Ni>N
< > ( )%uv)-”"‘(“v ) )S_Hgn luge s o |
S YENIY A ey ZN Lo Hs IWAN I 1 1
F 22
Ny V) (N1)
< -
SOMEI TS
which is acceptable. This concludes the proof of Proposition 4.7. O

Proposition 4.8. Letr 1 <a <2,0<T <2andletu,v € L%OHS withs > 1— % be two solutions to (1-3)
associated with initial data ug, vo € H® such that ug —vo € H®. Then!
2
=01 s % o =00l g+t vl =0l g g el (422
Proof. Recall that the difference w = u — v satisfies (3-23) with z = u 4+ v. Applying the operator Py
with N > 0 dyadic to (3-23), taking the L? scalar product with Py w and integrating on 0, ¢[, we obtain
S I1Pywoll iy rg + (NTHNPEEFD sup

t
//PN(Zw)awa‘.
tel0,T]1/0 JR

[ / PN(zw)awa‘

We take extensions Z and @ of z and w supported in time in ]—4, 4[ such that ||Z]lys < [u[lys and

2
w
[

Therefore, we have to estimate

Ji=) (NTI)N)? (=23 gup

N>0 t€l0,T]

0]l zs < ||Jw]| z3.- To simplify the notation we drop the tilde in the sequel.
Proceeding as in (3-27), we get

TS0 Y NINTHIND2OTEY sup (LG ww)|
N>0 N1 =N t€]o,T[
+3° 3 MNP sup [Tz, wn way)l
N>0Ni=N 1€]0, 71
+3° Y NVTINETEY) sup Lz, wy . wp))|
N>0 N =N 1€]0,T[
=J1+ 2+ J3. (4-23)

I'We include the case o = 1 here since it does not lead to additional difficulties and will be useful in the Appendix to prove
LWP for («, s) = (1, %)
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Estimates for J1. The contribution of the sum over N < 1 in Jj is estimated, thanks to (3-4), by

2 2
Yo Nznz;anszanln Y 1 P 1] (e
N=<1NizZN T

The contribution N >> 1 in J; can be controlled with Lemma 4.4 by

E N L ] ~ NN Nl FA— 2D Nl lc><>}1~S 2
I >

N>1NiZN

NAE
v lzn il i—g. g lw N1||L2HS_33a ||wN1||L?oHs—33f¥
¢ 1yus% 2
+N2TEN, IIZNIIL?OHI—%IIwNI | Loo B35
SIIZIIYl—%IIWIIZ?oﬁP sellwlls—35a

where for the first term we used Cauchy—Schwarz in (N, N1) and then summed in L. Note that for
a > 1 we could replace the L8 HS~3/2+/2_norm by a standard L9 H~3/2+%/2_norm by invoking the

discrete Young inequality.

Estimates for J,. We separate different contributions. First, the contribution of the sum over N; <1
is directly estimated by ||z||LooL2 ||w||LooH 1/2- The contribution of the sum over N < Nz(1 ~9/3 and
N1 > 1 is then easily estlmated by

Y Y NN lzml el L P e
Ni>1 %(1_‘1)
N<N;

< YN Jem R L s L) e
Ni>1
S PP ||w||L%OHS_%+% . (4-24)
Finally the contribution of the sum over N1 > 1 and N > N; 2(1-2)/3 is bounded, thanks to Lemma 4.4, by
)OND DI DY T Yy RSy EY
Ni>1 %(1_a) L>1
N>N,
gy o, ||L2Hs_35a [T
1 5+o —o_
—q - 8
+ N78(N) ® N, IIwNII %,%”wN1||L?oHs—3EU‘ lzni N2 prs
13
FNIN Sl w200 e
<
Izl s (ol e - 0l oo ol y 7).

where again we used Cauchy—Schwarz in (N, N1) and then summed over L.
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Estimates for J3. We first notice that for N < Ny and Ny > 1, since 1 + 2(s — 3_—“) >0,
NN N3 < Ny N (N) 267529,

Therefore, the contribution of this region to J3 is controlled by J5. Finally the contribution of N < N; <1

is easily bounded by ”Z”LooLZ ”w”L°°H Y

Gathering all the estimates, we eventually obtain

Y L N PR MY PR S vy (4-25)
which completes the proof of (4-22). O
4B. Unconditional well-posedness. Let us fix s > 1 — %. We notice that 1 — 5 >0>5, = ; — o, which

is the critical Sobolev exponent associated with (1-3) for dilation symmetry. Therefore, as in Section 3B,
the unconditional well-posedness in H*(R) of (1-3) for small H*-initial data with a maximal time of
existence T > 1 will ensure the unconditional well-posedness of (1-3) for arbitrary large H ®-initial data
with a maximal time of existence

_2(a+D
T =1+ [luollms)” 2T

Moreover, as in Section 3B, estimates (4-2), (4-3), (4-14), and a continuity argument ensure that a smooth
solution with small H*-initial datum has got a time of existence 7" in H°°(R) that is greater than 1.
Now, to prove the existence of a solution with initial data ug € H 1-a/2 e cannot argue exactly as in
Section 3B since, for s = 0, we miss compactness to pass to the limit on the nonlinear term. Instead, we
construct below a sequence of smooth solutions to (1-3) that converges strongly to a solution of (1-3)
emanating from u¢. This will be done by using the Bona—Smith argument.

Let ug € H® with s > 1 — 5 and |Juo[gs < 1. We denote by u™ the solution of (1-3) emanating
from P<pyuo. From the discussion above, uy € C([0, 1]; H*°(R)) and, for 1 < N1 < N3, we set

Ny N>

wi=u —Uu

Let us note that P<jwo = P<; (u™¥' —u™N2) = 0 and thus wo € H*(R) with lwoll s ~ lwollgs. It then
follows from (4-20)—(4-22) that

a—3
||w|| ~3+3 SwOIl, 319 SN * [P>nuollms. (4-26)
1

2 2
Moreover, on account of Lemma 4.2, Proposition 4.5 and (4-19), for any r > 0 we have
p y
. . N;
1N lysr < NNl gar < N lprs+r < N uollars - (4-27)
Next, since w satisfies (3-36), the Duhamel formula leads, for any 0 < N < 1, to
L, N1 2 2
| Pl S IPwwoll s + N2 2o + 02, 2)
and thus
2 2
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This proves that w € Z7.. We will also need the following estimates on w:

Proposition 4.9. Ler 1 <o <2,0<T <2and w € Z% withs > 1— % be a solution to (3-36). Then

N2 2
lwllys < lwllzge s (LA [ut I Zoo grs A w700 g7+ (4-29)
and
2 2 3 N 2 N
IIwIIZ%oHS < llwollggs + lwllys + ™ lys lwlizs + llu 1IIY;+%_%|IwIIZ;_%+% lwlizs.. (4-30)

Proof. First, (4-29) can be derived exactly as (4-2)—(4-3) of Lemma 4.2. Now, to prove (4-30), we separate
the contribution of 9, (w?) and 9, (u™N'w). First, (4-17) leads to

Z N2s

N>0

t
[ [ Posyyu| < i,
0 JR r

Second, applying (4-25) at the level s with z replaced by ™1, we obtain

t
ZNZS/ /PNax(uN‘w)PNw
0o Jr

N>0
. . 3 1
which leads to (4-30) since s — 5 + 5 > —5 fors > 1 — % and Z} — Y}}. O

2 2 2
T

< Ny N 2
< u ||Y;+3_@ ||w||Z_L lwllzs. + llu ||Y;—% lwllzs -

Combining (4-28), (4-29), (4-30) and (4-19), we infer that
lwl,

3—«a
2 2 2 2 2
< (U ol ) * [Iwollzs + luollas [wllys + luollas [wllZy + Ny 2 ||uo||Hs||1UI|ZS7%+%IIWIlz;]-
1

Then, the smallness assumption on ||ug || gs, (4-26) and the continuous injection Z7, < Y7, lead to

lwlZz; = lwolls + N~ wll®,_s (4-31)

04
242
1

S 1 PonyuollFrs (14 | P>y uolzrs) =0 as Ny — 0.

This shows that {u”} is a Cauchy sequence in C([0, 1]; H*) and thus {u™} converges in C([0, 1]; H*) to
a solution of (1-3) emanating from u. Note that there is no problem passing to the limit on the nonlinear
term here, since we have strong convergence.

Now, Lemma 4.2, Proposition 4.5 and (4-19) ensure that any L{° H *-solution to (1-3) on ]0, 1 belongs
to 177{ Therefore, according to Propositions 4.7 and 4.8, u is the only solution to (1-3) associated with
the initial datum ug that belongs to L H*.

To prove the continuity of the solution map in H*(R), we proceed as in Section 3B. Let {1, } C H*(R)
be such that ug , — 1o in H*(R) and let {u, } C C([0, 1]; H*(R)) be the associated sequence of solutions

to (1-3). Taking the same notations as above, we observe that, by construction,

P<i(uo—ud) = P<i(uop —uf,) =0 forall N > 1.
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This ensures that u — u® and Uy — u belong to Z S.. Estimate (4-31) on solutions to (3-36) then leads to

=™l zs + llun —up) |z S I P>nuollas + | P>Nitonllas .
which yields

tim _sup(lu—u™ | oo grs + ln —ul 5o ) = 0. (4-32)
>0 peN

It remains to estimate |uY —u® ||gs. Note that we cannot use Propositions 4.8 and 4.9 here, since
ué\{ n= u(j)v does not belong a priori to H* ([RR) However since ”0 and ”o ,, belong to H*°(R), we know,
from the beginning of this section, that u”V and u belong to C([0, 1]; H°°(R)). We now fix N > 1.

Setting s” = max(1, s), we have
||uév _u(])\{n”HS/ —0 as n— oo.

Therefore, on account of Section 3B,

2@+1)
Ju®Y —u, ||LooH5/—)O as n — oo with T~(1+||u0 ||H;/)_231.

Since u™ € C([0, 1]; H*®(R)) we can iterate this argument a finite number of times to obtain that the
convergence of ulY to uV holds actually in C([0, 1]; H s'(R)). The continuity of the flow map in H*(R)
follows by combining this last result with (4-32).

4C. The periodic case. We use the notations of Section 3C. Let Hy(AT) be the closed subspace of
zero-mean functions of Hj(AT). We define the Banach space H*(AT) as the space H{(AT) endowed
with the norm

ol s = I4IE12) (€)@l

Let (u,v) € (L*®(0, T; H5(AT)))? be a pair of solutions to (1-3) associated with initial data (1, vg) in
(H*(AT))? such that ug —vo € H*(AT). As noticed in Remark 1.3, (u,v) € C([0, T]; HS~*~1(AT))?
and it is not too hard to check that the mean value is a constant of the motion for such solutions. Therefore,
u(t) — v(t) has mean value zero for all ¢ € [0, T].

As explained in Section 3C, to extend our result on the torus AT, uniformly for A > 1, we only have to
care about the contributions of the null frequencies each time we used the homogeneous decomposition
in space frequencies. First we notice that in the proof of Lemma 4.2 we do not use any homogeneous
decomposition in space frequencies and thus this lemma still holds in the periodic setting. Note that this
is also true for (4-29), since the proof of this estimate is exactly the same. Moreover, on account of (3-42),
the contributions of the null frequencies vanish in the proof of Lemma 4.2. Now, for Propositions 4.7, 4.8
and 4.9, we only have to care about the contributions of d, Py (wPyz), since, according to the discussion
above, Pow = Pyo(u —v) = 0 on [0, T]. On account of (3-43), these contributions vanish in (4-22)
and (4-30). Finally, these contributions can be estimated in Proposition 4.7 by

19x Py (PNwPo2) 53491 S NIPN(PNwPoZ)llxs—20 SNzl o2 lwl 2751
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with [[(85,)l71(z) < 1. This is acceptable, since 1 —5 >0 and s — % + % > s—1. The proof of Theorem 1.5
is now complete.

5. Dissipative limits

First, we notice that, if u is a solution to (1-9), then u; defined by u; (¢, x) = A%u(A1 %, Ax) is a
solution to

Oqup + Ly qup + AT P Afuy + 30, (uz)* =0 (5-1)
with

LA 0(E) =ix*  p 1 ATLED(E)
and -
Apv(E) =2APqp(A1E)0(%) forall £ R,

Therefore, as in the preceding section, up to this change of unknown, of parameter ¢ and of operators, we
may assume that u satisfies (1-9) with Ly 41 and Ag that verify Hypotheses 1 and 2 forall 0 <A < 1.
Second, we notice that Hypothesis 2 now ensures that, for 0 <A <1 and N > 1 dyadic,

B
(A Pnv. Pyv)2 2 N2 || Pyvl3, (5-2)
and
|45 Py vlie < NPIIPyvlg2. (5-3)

The main point is now to prove that the Cauchy problem (1-9) is locally well-posed in H* uniformly
in g > 0.

Proposition 5.1. Let | <a <2, 0<pB <14 aands >1—5. Forany ¢ € H*(R) there exists
T ~ (1 + |Jugll g1—as2) 2@+ D/Qe=1) 4 4 solution u, € C([0, T); H) to (1-9) that is unique in some
function space® embedded in LF(0,T; H®). Moreover, there exists C > 0 such that, for any ¢ € ]0, 1],
sup |lue@)las = Cllolas. (5-4)
t€l0,T]
Finally, for any R > 0, the family of solution maps Sy : ¢ — ug, ¢ € 10, 1], from B(0, R)gs into
C([0, T(R)]; H(R)) is equicontinuous, i.e., for any sequence {¢n,} C B(0, R)gs converging to ¢ in
H*(R),
lim sup ||[Sgp—S oo HS =0. 5-5

,Jim_ 86]01?1[ 1Se¢ — Se@nllLoo (0,7 (R); s (R)) (5-5)
Proof. We treat the cases (o, s) # (l, %) This last case can be treated in the same way by using the
estimates derived in the Appendix. First we notice that, for (1-9), in view of (5-2), the energy estimate
(4-14) becomes

el zoo prs + «/5||M||L2THS+g S lwollzs + 1l oo pyi-g lullyy + lullge s IIMIIYTF% . (56

2For (a, 5) # (1, %), this space is simply the space LF H* N L%H“"s/z.
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On the other hand, viewing e Agu as a forcing term, (4-2)—(4-3) together with (5-3) lead to

< s(1 2 . -
lullys < lullpgeps(1+ IIMIIL%OHP%) +8”””L2THS—‘5°‘+ﬁ (5-7)

To derive an a priori bound from the above estimates, as in the previous section, we have to use the
dilation argument that is described in the beginning of this section. So the dilation function u ) defined by
u; (¢, x) = A%u(A1 19, Ax) satisfies (5-1) and we set

— +1-—
[ollvs == lvliLge s + Ver ﬂllvlleTHﬁg

Since B < & + 1, this ensures that, for A < (1 4 ||| gs) 2@ +TD/Ce=D) and 0 < T < 2,

s < s 2 o @ S
lualing < lloallms + 1+ IIMIIN;_T)IIMIIN;—7 [l Vs
with [z |gs < A% 12|¢||gs < 1. This leads to the uniform bound (5-4) for smooth solutions to (1-9)
by a classical continuity argument.
Now, proceeding in the same way for the difference of two solutions, it is not too hard to check that
(4-20) becomes

vl , 3.5

T
< lu— vIIZOOHS_7+a+||u v|| o-3+g+s Tl vlgsllu—v] T%+Ilu+vllylﬁllu vIIZT E
whereas (4-22) becomes
It =0l g o + Vo=l g g o=l gg + it ollgghu—vl] g
By the same dilation arguments as above, this leads to
vl o geq + Vel gign S o —voll gy 3ig (5-8)
T T

Combining the above estimates and the Bona—Smith argument, we can proceed as in Section 4B and
construct a sequence of smooth solutions that converges strongly in C([0, T']; H®) towards a solution
to (1-9). We thus obtain the existence of a solution u, € C([0, T]; H¥) N L%H““Hs/2 to (1-9) with
T = (1+ |Jug|| g1—as2)2@+D/@e=1) and ¢ € H* as initial data. Moreover, (5-8) ensures that this is the
only solution emanating from g in the class L H¥NL2 HS +B/2 Obviously, this solution satisfies (5-4).

Finally, the equicontinuity of the solution map in C (0, T, H?) follows from Bona—Smith arguments as in
Section 3B. O

It is clear that the above proposition implies part (1) of Theorem 1.14. Now, part (2) will follow from
general arguments (see for instance [Guo and Wang 2009]). Let us denote by S, and S the nonlinear group
associated with, respectively, (1-9) and (1-3). Let ¢ € H*(R), s > 1 =S and let T = T (¢l g1-as2) > 0
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be as given by Proposition 5.1. For any N > 0 we can rewrite S¢(¢) — S(¢) as

Se(@) — S(@) = (Se(@) — Se(P<n@)) + (Se(P<n@) — S(P<n@)) + (S(P<np) — S(9))
=Ign+JeN + KN.

By continuity with respect to initial data in H*(R) of the solution map associated with (1-3), we have
imp o0 | KN |Loo(0,7; H5) = 0. Moreover, (5-5) ensures that

lim sup ||/gNllLooo,T;H5) = 0.
N—00 ¢e]0,1]

It thus remains to check that, for any fixed N >0, limg— || Je, N || oo 0,7;75) = 0. Since P<y ¢ € H*®(R),
it is worth noticing that Sg(P<ny¢) and S(P<n¢) belong to C*°(R; H*°(R)). Moreover, according to
Theorem 1.14 and Proposition 5.1, for all § € R and ¢ € ]0, 1],

1Se(P<n @)l oo o + IS(P=n @) o o < C(N.6. llpll ).
Now, setting ve := Sg(P<ny¢) and v := S(P<ny @), we observe that w, := v, — v satisfies
0twe + Lot1we = _%ax(ws(v +ve)) — 8Aﬂvs

with initial data w.(0) = 0. For s > 0, taking the H®-scalar product of this last equation with w, and
integrating by parts, we get

d
g lwellms < A+ 195 (v + ve)llLso) [wellzzs + 11750, (v + ve)lwell .2 lwell s + e[| DE e[
Applying the mean value theorem to the Fourier transform of the commutator term, it is not too hard to
check that

I3 0x. f1gll 2 < I fxllzs+1 gl ey - (5-9)

which leads to
- 2. < C(N 2 w 2 2C N 2
di lwe@) s S CN, s+ v”‘P”L}C)” 8(1)”1-1;“’5 (N.s+ B, ||‘/’||L)2€) .

Integrating this differential inequality on [0, 7], this ensures that limg—¢ ||we | 700 (0,7;75) = 0 and proves
that

u,—u in C([0,T]; H®) (5-10)

with T ~ (1 + ||u0||H1—a/z)_2(°‘+1)/(2"‘_1). Now fix ¢ € H® and let T* > 0 be the maximal time of exis-
tence of S(¢). It remains to prove that the time of existence T, of Sg(¢) in H® satisfies liminf,_¢ Tg > T*.
Actually, this follows by a classical contradiction argument. Indeed, assuming that this is not true, there
exist &, \, 0 such that lim 7, = T1 < T*. We set

_2(a+1)
ST = (14 SO oo 7,189 1
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which is well defined since 77 < T*. Applying (5-10) about 77 /(T ) times, we eventually obtain that,
for n large enough,

H Sé‘n (@)(Tl - ﬁg(’]ﬂl)) ”Hl—% = 2||S(¢)||LOO(O,T1,H1_%) .

But then the uniform bound from below on the existence time ensures that Ty, > T7 + %8 (T1), which
contradicts lim 7, = 7T and proves the desired result. This ensures that, fixing 0 < Tp < T*, we have
T, > Ty for & > 0 small enough. Finally, applying (5-10) about T /5(Tp) times, we get (5-10) with T = Ty.
This completes the proof of Theorem 1.14.

Appendix: The casex =1and s = %

This case is important since H 1/2 is the energy space for the Benjamin—Ono equation and also the
intermediate long waves equation. Unfortunately, we are not able to prove the unconditional well-
posedness in this case. However, we are able to prove the well-posedness without using a gauge transform.
This is useful for treating perturbations of these equations, as we explained in the preceding section. In
this section, we indicate the modifications of the proofs in this case. In the sequel we set

D=

M?:=L®H:nX"2!,

LemmaA.l. Leta =1,0<T <2,andletu € ]\271/2 be a solution to (1-3). Then
< 2 ;
IIMIIMT% < IIMIIZ%OH% + IIMIIM? (A-1)
Proof. Working with the extension 4 = pru (see (3-3)), still denoted u, if suffices to estimate the
X~Y/2:1_norm of u. First we notice that the low frequency part can be easily controlled by

< 2
P2l g % Tl
Now, for N > 1, we have

+ N2

D, umny

Nj~N>2zN

Y PN(u~nun,)

1<N> <N
+ Iy +1HN+I .

<
IIMNIIX;%,I S IPyuol -

1
2 2712
L2132

+ N2 N3
L3.L%

Y Pn(u~nun,)

N2<1

L3212

= [ Pnuoll -y
Clearly,
1

INSNE Y sz g

1
L®H?
Nj~N22N

Z_/\
h:

8
T

(S
N
—~
b

=

Il
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with [[(8,/)[l;2(n+) < 1. Moreover, we easily get from Bernstein estimates that

1
< 2 < <
Iy <N NE 1||M~N||Lgx luwn,llLee < ||M~N||L%H% ”u”L;wH% < 5NIIMIIL?OH% ”””L;OH%
<<

with [[(8,/)[[;2¢n+) < 1. On the other hand,

Y QunN, PN(unun,)
1<N> <N

Hy<NZ SHN+I1%.
2

x

> 0NN, PN(uyun,)
1<N> <N

+N3
2

tx

By almost orthogonality, we have

1

2 )2
2
th

1
Iy 5 N2( > H O~NN, PN(u~NUN,)
1=N><KN
1

1 2 2 :
V(X ey ol )
L*H

N2<N r Hx

<
Sl a1l zeo 3

<

SON Ul oo g 14l oo 4
with [|(85,) [l;2(y+) < 1. It remains to control H%V. Since the Fourier projectors ensure (t— p>(§)) ~ NN,
the resonance relation (1-6) leads to |11 — p2(§1)| VvV |t — 11 — p2(§ — &1)|) = N N, for II%\,. We separate
the contributions of O>nn,u~n and Q>N N, U N,. For the first contribution, we have

1 1 1
Iy SN2 Y (NN AN Qznmstn|l 1 1 lun, |

L®H?
1<N><KN

11
X4°4

Slu~nlly g allull, o1
t

1 3
<Snllull? ull u |
R A

with [[(85/)[l;2(n+) < 1 and where we used interpolation at the last step. For the second contribution, we

write
1
Iy SN2 Z ”Q<<NN2u~N”L?°L§||Q2NN2MN2||L%L§
1<N><KN
1 1
< a —_—
<N:2 Z N 4||Q<<NN2M~N”L$°H%||QZNN2uN2”L?H%
1<N> KN
1 1 1
< N3 -1 _1
<N:2 Z N~%(NN>) 4Hu~N”L‘,’°H%”uN2”X%%
1<N><KN
1
<§ _ 4 iy
< N“u”L?C’H%”u”X—%s‘”u”L?oH%

with [[(8,/)l;2(n+) < 1. Gathering the above estimates, (5-2) follows. O
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LemmaA.2. Leta =1,0<T <2andletu € ]\271/2 be a solution to (1-3). Then

2
[l

2 2
oy S ol + ||u||
L®H?

(A-2)

Proof. We follow the proof of Proposition 4.5. Note that MY2 s y1/2, According to (4-15), it suffices
to control

I—Z Z Ni) sup |Ii(un.u~n, uN,)|-

N>0 N =N 1€]0,T[

It is easy to check that the only term of the left-hand side of (4-16) that causes trouble in the case o = 1 is
the first one. This term corresponds to the contribution of Q. NOUN, and Q. y Nt~y Fora =1,
we control these contributions by applying Cauchy—Schwarz in (N, N1). For instance, the contribution of
O LN NEUN, is estimated, thanks to Lemma 4.4, by

—1aAa—4
Do 2 NWNO Y LTINT2 uw gz | Omrnngum, | oy Nty oo 2

N>1NZN L>1

1
! 1
-1 2 2
DIV (D DI NV P IS I (N D vV Ay
L>1 NiZN>1 d NiZN>1
<
Sl el Tl - =
Lemma A.3. Let 0 < T <2 andletu,v € 1\27{/2 be two solutions to (1-3) on |0, T[. Then we have
_ <y — — -
[ vllzf% < u ”LOOH‘”*“ + ||u+v|| 3l vllzf% (A-3)
T M7 T
and
—vl? < —voll? — — -
e =l g} o —voll 2y +||u+v||~L||M V700 oo F- 3l vllz;%- (A-4)
S1/2 1/2

Proof. First we notice that (A-4) is already proven in Proposition 4.8, since M AR Y m =Y It
remains to prove (A-3). We follow the proof of Proposition 4.5. It is not too hard to check that the only
contribution that causes troubles in the right-hand side of (4-21), in the case « = 1, is the contribution
of the low-high interaction term, Py (P<yzwpy ). We proceed as in Lemma A.1 . We take extensions Z
and w, supported in |—4, 4, of z and w such that ||Z|| ;71,2 < ||Z||M}/2 and | W] z—1/2 < ”w”2;”2' For

simplicity we drop the tilde. We first notice that the contribution of P<;z is easily estimated by

|0x PN (P<1zw~p) ||

’

(S

_1
porioy SRy (Paizoem gz, S 12l g lwenl ),
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which is acceptable. Now we decompose the remaining contribution as

195 Pn (Po1Psnzw~n)ll —1.1-4
SN| Y. Pw(Pwnzw-n) e
1KN SN X
1 1
SN2 X Qewm Py(Przwan) | H(N)T2 | D Quny PN (P, 2wn)|
1<KN| SN Ix 1KN; <N Lix
=Jin+J2N.

By almost-orthogonality,

1
_1 2
Jiw < (N) ( ) ||Q~NN1PN<PN1zw~N)||§%)
1<N <N ¥

1
< N\—3 2 2
s i, el )

1KN1 SN

Slwnll, oo -1 llzll 5 1
L®H 2" "L?HZ2

’

which is acceptable. To treat J5, we notice that, since the Fourier projectors ensure that {(t— p,(§)) ~ N Ny,
the resonance relation (1-6) leads to |11 — p2(§1)| V |t — 11 — p2(§ —&1)| 2 NN, for J, . We separate
the contributions of O>nn,zn, and Q>N N, w~n . For the first contribution, we write

1 1
LN SINYTZ Y NZIQzww Phizlipe lwan o2
IKNISN

—1 4
Y. (NNDTENQznw Paizll,
IKNISN

D=

S(N)” %,%||W~N||L<;OL)2C

’

1 3
< 4 4
Sl —y s ||Z”L;>°H% .

which is acceptable. For the second contribution, according to (4-10), we have

1
BSN)TE Y zw |
1KN| SN
1 3
< -3 —1x3
SN2 ) (NNOTINZ 2w gy o
1KNi SN

Lo 192NN w~N L2,

_11
2°2

<

Sllw~nll 1.4

which is acceptable. Gathering the above estimates we obtain (A-3). O

Gathering Lemmas A.1-A.3 and proceeding as in Section 4B we obtain the local well-posedness
in H/2 of (1-3) for & = 1. Note that the uniqueness holds in the space ]\71%/ 2,
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