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IMPROVEMENT OF THE ENERGY METHOD
FOR STRONGLY NONRESONANT DISPERSIVE EQUATIONS

AND APPLICATIONS

LUC MOLINET AND STÉPHANE VENTO

We propose a new approach to prove the local well-posedness of the Cauchy problem associated with
strongly nonresonant dispersive equations. As an example, we obtain unconditional well-posedness of
the Cauchy problem in the energy space for a large class of one-dimensional dispersive equations with
a dispersion that is greater than the one of the Benjamin–Ono equation. At the level of dispersion of
the Benjamin–Ono, we also prove the well-posedness in the energy space but without unconditional
uniqueness. Since we do not use a gauge transform, this enables us in all cases to prove strong convergence
results in the energy space for solutions of viscous versions of these equations towards the purely dispersive
solutions. Finally, it is worth noting that our method of proof works on the torus as well as on the real line.

1. Introduction

The Cauchy problem associated with dispersive equations with derivative nonlinearity has been extensively
studied since the eighties. The first results were obtained by using energy methods that did not make use
of the dispersive effects (see for instance [Kato 1983; Abdelouhab et al. 1989]). These methods were
restricted to regular initial data (s > d=2, where d � 1 is the spatial dimension) and only ensured the
continuity of the solution map. At the end of the eighties, Kenig, Ponce and Vega proved new dispersive
estimates that enable them to lower the regularity requirement on the initial data (see for instance [Kenig
et al. 1991; 1993; Ponce 1991]). They even obtained local well-posedness (LWP) for a large class of
dispersive equations by a fixed point argument in a suitable Banach space related to linear dispersive
estimates. Then, Bourgain [1993a; 1993b] introduced the now so-called Bourgain spaces, where one can
solve by a fixed point argument a wide class of dispersive equations with very rough initial data. It is
worth noting that, since the nonlinearity of these equations is in general algebraic, the fixed point argument
ensures the real analyticity of the solution map. Molinet, Saut and Tzvetkov [Molinet et al. 2001] noticed
that a large class of “weakly” dispersive equations, including in particular the Benjamin–Ono equation,
cannot be solved by a fixed point argument for initial data in any Sobolev spaces H s . This obstruction is
due to bad interactions between high frequencies and very low frequencies. Since then, roughly speaking,
two approaches have been developed to lower the regularity requirement for such equations. The first one
is the so-called gauge method. This consists in introducing a nonlinear gauge transform of the solution
that solved an equation with fewer bad interactions than the original one. This method proved to be very
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efficient for obtaining the lowest regularity index for solving canonical equations (see [Tao 2004; Ionescu
and Kenig 2007; Burq and Planchon 2008; Molinet and Pilod 2012] for the BO equation and [Herr et al.
2010] for the dispersive generalized BO equation) but has the disadvantage of behaving very badly with
respect to perturbation of the equation. The second one consists in improving the dispersive estimates
by localizing it in space-frequency-depending time intervals and then mixing it with classical energy
estimates. This type of method was first introduced by Koch and Tzvetkov [2003] (see also [Kenig and
Koenig 2003] for some improvements) in the framework of Strichartz’s spaces and then by Koch and
Tataru [2007] (see also [Ionescu et al. 2008]) in the framework of Bourgain’s spaces. It is less efficient for
getting the best regularity index but it is surely more flexible with respect to perturbation of the equation.

In this paper we propose a new approach to derive local and global well-posedness results for dispersive
equations that do not exhibit too-strong resonances. This approach combines classical energy estimates
with Bourgain-type estimates on a time interval that does not depend on the space frequency. Here, we
will apply this method to prove unconditional local well-posedness results on both R and TD R=2�Z

without the use of a gauge transform for a large class of one-dimensional quadratic dispersive equations
with a dispersion between those of the Benjamin–Ono equation and the KdV equation. This class contains,
in particular, the equations with pure power dispersion that read

ut C @xD
˛
xuCuux D 0 (1-1)

with ˛ 2 Œ1; 2�.
The principle of the method is particularly simple in the regular case s > 1

2
. We start with the classical

space-frequency-localized energy estimate

kPNuk
2
L1T H

s . kPNu0k2H s C sup
t2�0;T Œ

hN i2s
ˇ̌̌̌Z t

0

Z
R

@xPN .u
2/PNu

ˇ̌̌̌
; (1-2)

obtained by projecting the equation on frequencies of order N and taking the inner product with J sxu.
Note that the second term in the right-hand side of (1-2) is easily controlled (after summing in N ) by
kuk3L1T H

s for s > 3
2

. This is the main point in the standard energy method that leads to LWP inH s , s > 3
2

.
In order to take into account the dispersive effects of the equation, we will decompose the three factors in
the integral term into dyadic pieces for the modulation variables and use the Bourgain spaces Xs;b in a
nonconventional way. Actually, it is known that standard bilinear estimates in Xs;b-spaces with b D 1

2
C

fail for (1-1) for any s 2 R as soon as ˛ < 2. On the other hand, as noticed in [Zhou 1997], it is easy to
deduce from the equation that a solution u 2 L1.0; T IH s/ to (1-3) has to belong to the space Xs�1;1T .
This means that, if we accept the loss of a few spatial derivatives on the solution, then we may gain some
regularity in the modulation variable. This is particularly profitable when the equation enjoys a strong
nonresonance relation such as (2-6). Actually, this formally allows us to estimate the second term in (1-2)
at the desired level. However, this term involves a multiplication by 1�0;tŒ and it is well known that such
multiplication is not bounded in Xs�1;1. To overcome this difficulty we decompose this function into two
parts: a high-frequency part that will be very small in L1T and a low-frequency part that will have good
properties with respect to multiplication with high-modulation functions in Xs�1;1. This decomposition
will depend on the space-frequency-localization of the three functions that appear in the trilinear term.
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1A. Presentation of the results. In this paper we consider the dispersive equation

ut CL˛C1uC
1
2
@x.u

2/D 0 (1-3)

associated with the initial condition
u.0; � /D u0; (1-4)

where x 2 R or T, uD u.t; x/ and u0 D u0.x/ are real-valued functions, ˛ > 0 is a real number and the
linear operator L˛C1 satisfies the following hypothesis:

Hypothesis 1. L˛C1 is the Fourier multiplier operator by ip˛C1, where p˛C1 is a real-valued odd
function satisfying, for some �0 > 0,

(1) For any j�j � 1 and 0 < �� �0,

�˛C1jp˛C1.�
�1�/j. j�j˛C1: (1-5)

(2) For any .�1; �2/ 2 R2 with j�1j � 1 and any 0 < �� �0,

�˛C1j�.��1�1; �
�1�2/j � j�jminj�j

˛
max; (1-6)

where
�.�1; �2/ WD p˛C1.�1C �2/�p˛C1.�1/�p˛C1.�2/;

j�jmin WDmin.j�1j; j�2j; j�1C �2j/

and j�jmax WDmax.j�1j; j�2j; j�1C �2j/:

Remark 1.1. We will see in Lemma 2.1 below that, for ˛ > 0, a very simple criterion on p ensures (1-6).
With this criterion in hand, it is not too hard to check that the following linear operators satisfy Hypothesis 1:

(1) The purely dispersive operators L WD @xD˛x with ˛ > 0.

(2) The linear intermediate long wave operator L WD @xDx cothDx . Note that here ˛ D 1.

(3) Some perturbations of the Benjamin–Ono equation, such as the Smith operator [1972], L WD
@x.D

2
xC 1/

1=2. Here again ˛ D 1.

Before stating our main result, let us define what we mean by unconditional well-posedness.

Definition 1.2. Let KD R or T, T > 0 and s � 0. We will say that u 2 L1.0; T IH s.K// is a solution
to (1-3) associated with the initial datum u0 2H

s.K/ if u satisfies (1-3)–(1-4) in the distributional sense,
i.e., for any test function � 2 C1c .��T; T Œ�K/,Z 1

0

Z
K

�
.�t CL˛C1�/uC

1
2
�xu

2
�
dx dt C

Z
K

�.0; � /u0 dx D 0 (1-7)

Remark 1.3. For u2L1.0; T IH s.K//, with s�0, u2 is well defined and is inL1.0; T IH s�.1=2C/.K//.
Moreover, (1-5) forces

L˛C1u 2 L
1.0; T IH s�˛�1.K//:

Therefore, ut 2L1.0; T IH s�˛�1.K// and (1-7) ensures that (1-3) is satisfied in L1.0; T IH s�˛�1.K//.
In particular, u 2 C.Œ0; T �IH s�˛�1.K// and (1-7) forces the initial condition u.0/D u0. Note that this
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actually implies that u2C.Œ0; T �IH � .K// for any � < s. Finally, we note that this ensures that u satisfies
the Duhamel formula associated with (1-3).

Definition 1.4. Let KD R or T and s 2 R. We will say that the Cauchy problem associated with (1-3)
is unconditionally locally well-posed in H s.K/ if, for any initial data u0 2 H s.K/, there exists T D
T .ku0kH s / > 0 and a solution u 2 C.Œ0; T �IH s.K// to (1-3) emanating from u0. Moreover, u is the
unique solution to (1-3) associated with u0 that belongs to L1.�0; T ŒIH s.K//. Finally, for any R > 0,
the solution map u0 7! u is continuous from the ball of H s.K/ with radius R centered at the origin into
C.Œ0; T .R/�IH s.K//.

Theorem 1.5. Let K D R or T, L˛C1 satisfy Hypothesis 1 with 1 � ˛ � 2 and let s � 1 � ˛
2

with
.s; ˛/ ¤

�
1
2
; 1
�
. Then the Cauchy problem associated with (1-3) is unconditionally locally well-posed

in H s.K/ with a maximal time of existence T & .1Cku0kH1�˛=2/�2.˛C1/=.2˛�1/.

Remark 1.6. In the regular case
�
Cauchy problem in H s with s > 1

2

�
, we actually need (1-6) only for

j�1j ^ j�2j � 1.

Remark 1.7. Our method also works in the case ˛ > 2. In this case we get the unconditional well-
posedness in H s.K/ for s � 0.

Remark 1.8. For L˛C1 WD @3x , we recover the unconditional LWP results for the KdV equation in L2.R/
and L2.T/ obtained in [Zhou 1997; Babin et al. 2011], respectively.

For L˛C1 with ˛ 2 �1; 2Œ our results on unconditional uniqueness are, to our knowledge, new for both
the real line case and the periodic case.

In the limit case .s; ˛/ D
�
1
2
; 1
�

we do not succeed in proving the unconditional uniqueness result.
However, our method of proof enables us to prove the well-posedness without using a gauge transform.
We think that this result is also of interest since H 1=2 is the energy space when ˛D 1. It is worth noticing
that, as far as we know, the available results without gauge transformation on the local well-posedness of
the Benjamin–Ono equation in Sobolev spaces H s.R/ were restricted to s � 1 (see [Guo et al. 2011]).
Also, the well-posedness in the energy space H 1=2 seems to be new for the intermediate long waves
equation, at least in the periodic setting.

Theorem 1.9. Let K D R or T and assume L˛C1 satisfies Hypothesis 1 with ˛ D 1. Then the Cauchy
problem associated with (1-3) is locally well-posed in H 1=2.K/ with a maximal time of existence T &
.1Cku0kH1=2/�4.

Let us assume now that the symbol p˛C1 satisfies, moreover,

jp˛C1.�/j. j�j for j�j � 1 and jp˛C1.�/j � j�j
˛C1 for j�j � 1: (1-8)

Then it is not too hard to check that (1-3) enjoys the conservation laws

d

dt

Z
K

u2 dx D 0 and d

dt

Z
K

�
jƒ˛=2uj2C 1

3
u3
�
dx D 0;
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where ƒ˛=2 is the space Fourier multiplier defined by

1
ƒ˛=2v.�/D

ˇ̌̌̌
p˛C1.�/

�

ˇ̌̌̌ 1
2

Ov.�/:

Combined with the embedding H˛=2 ,! L3, we get an a priori bound of the H˛=2-norm of the solution.
We may then iterate Theorems 1.5 and 1.9 to obtain the following corollary:

Corollary 1.10. Let K D R or T and assume L˛C1 satisfies Hypothesis 1 and (1-8). Then the Cauchy
problem associated with (1-3) is unconditionally globally well-posed in H˛=2.K/ for 1 < ˛ � 2, and
globally well-posed in H 1=2.T/ for ˛ D 1.

Remark 1.11. The linear operators given in Remark 1.1 also satisfy assumption (1-8).

Remark 1.12. If one considers LWP and not unconditional LWP, then the best-known results for (1-1)
with 1 < ˛ < 2 have been obtained in [Herr et al. 2010], where the global well-posedness in L2.R/ is
proved by using a paradifferential gauge transformation. As far as we know, the best available results
without gauge transformation are obtained in [Guo 2012], where the LWP in H s.R/ with s > 2�˛ is
proven. This leads to a global well-posedness result only for ˛ > 4

3
. Therefore, even for (1-1), our results

improve the local and global available well-posedness results without the use of gauge transformation on
the real line. To the best of our knowledge, they are new on the one-dimensional torus, where we are not
aware of any global well-posedness result.

It is well known that, taking into account some damping or dissipative effects, dissipative versions
of (1-3) can be derived (see for instance [Ott and Sudan 1970; Edwin and Roberts 1986]). One quite direct
application of the fact that we do not need a gauge transform to solve (1-3) is that we can easily treat the
dissipative limit of dissipative versions of (1-3). Such a dissipative limit was, for example, studied for the
Benjamin–Ono equation on the real line in [Guo et al. 2011; Molinet 2013].

Let us introduce the following dissipative version of (1-3):

ut CL˛C1uC "AˇuCuux D 0; (1-9)

where " > 0 is a small parameter, ˇ � 0 and Aˇ is a linear operator satisfying the following hypothesis:

Hypothesis 2. We assume that Aˇ is the Fourier multiplier operator by qˇ , where qˇ is a real-valued,
even function, bounded on bounded intervals, satisfying: for all 0 < �� 1 and �� 1,

�ˇqˇ .�
�1�/� j�jˇ :

Remark 1.13. Both the homogeneous operators Dˇx and the nonhomogeneous operators J ˇx satisfy
Hypothesis 2.

Theorem 1.14. Let KD R or T, 1� ˛ � 2, 0� ˇ � 1C˛ and s � 1� ˛
2

.

(1) Then the Cauchy problem associated with (1-9) is locally well-posed in H s.K/.
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(2) For u0 2 H s.K/, let u be the solution to (1-3) emanating from u0 and let the maximal time of
existence of u in H s be T � & .1C ku0kH1�˛=2/�2.˛C1/=.2˛�1/ (note that T � may be infinite).
Then the maximal time of existence T" of the solution u" to (1-9) emanating from u0 satisfies
lim inf"!0 T" � T �. Moreover, for any 0 < T0 < T �, u"! u in C.Œ0; T0�IH s/ as "! 0.

Remark 1.15. The constraint ˇ� 1C˛ is clearly an artifact of the method we used. We think that it could
be dropped by replacing, in some estimates, the dispersive Bourgain spaces by dispersive–dissipative
Bourgain spaces that were first introduced in [Molinet and Ribaud 2002]. But, since the dissipative
operators involved in wave motions are commonly of order less or equal to 2, we do not pursue this issue.

The rest of the paper is organized as follows: In Section 2, we introduce the notations, define the
function spaces and state some preliminary lemmas. In Section 3, we develop our method in the simplest
case, s > 1

2
, while the nonregular case is treated in Section 4. Section 5 is devoted to the proof of

Theorem 1.14. We conclude the paper with an Appendix explaining how to deal with the special case
.s; ˛/D

�
1
2
; 1
�
.

2. Notations, function spaces and preliminary lemmas

2A. Notation. For any positive numbers a and b, the notation a . b means that there exists a positive
constant c such that a � cb. We also write a � b when a . b and b . a. Moreover, if ˛ 2 R, then ˛C
and ˛� will denote a number slightly greater and less than ˛, respectively.

For uD u.x; t/ 2S.R2/, FuD Ou will denote its space-time Fourier transform, whereas FxuD .u/
^x

and FtuD .u/
^t will denote its Fourier transform in space and in time, respectively. For s 2R, we define

the Bessel and Riesz potentials of order �s, J sx and Dsx , by

J sxuD F�1x ..1Cj�j2/
s
2Fxu/ and DsxuD F�1x .j�jsFxu/:

Throughout the paper, we fix a smooth cutoff function � such that

� 2 C10 .R/; 0� �� 1; �jŒ�1;1� D 1 and supp.�/� Œ�2; 2�:

We set �.�/ WD �.�/� �.2�/. For l 2 Z, we define

�2l .�/ WD �.2
�l�/;

and, for l 2 N�,

 2l .�; �/D �2l .� �p˛C1.�//;

where ip˛C1 is the Fourier symbol of L˛C1. By convention, we also denote

 1.�; �/ WD �
�
2.� �p˛C1.�//

�
:

Any summations over capitalized variables such as N , L, K or M are presumed to be dyadic. Unless
stated otherwise, we work with homogeneous dyadic decomposition for the space-frequency variables
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and nonhomogeneous decompositions for modulation variables, i.e., these variables range over numbers
of the form f2k W k 2 Zg and f2k W k 2 Ng, respectively. Then we have thatX
N>0

�N .�/D 1 for all � 2 R� and supp.�N /�
˚
1
2
N � j�j � 2N

	
for N 2 f2k W k 2 Zg;

and X
L�1

 L.�; �/D 1 for all .�; �/ 2 R2

Let us define the Littlewood–Paley multipliers by

PNuD F�1x .�NFxu/; QLuD F�1. LFu/;

P�N WD
P
K�N PK , P�N WD

P
K�N PK , Q�L WD

P
K�LQK and Q�L WD

P
K�LQK . For brevity

we also write uN D PNu, u�N D P�Nu, etc.
Let � be a (possibly complex-valued) bounded measurable function on R2 and define the pseudoproduct

operator …D…� on S.R/2 by

F.….f; g//.�/D

Z
R

Of .�1/ Og.� � �1/�.�; �1/ d�1:

Throughout the paper, we write…D…�, where � may be different at each occurrence of …. This bilinear
operator behaves like a product in the sense that it satisfies the following properties:

….f; g/D fg if �� 1;Z
R

…�.f; g/hD

Z
R

f …�1.g; h/D

Z
R

…�2.f; h/g (2-1)

with �1.�; �1/ D N�.�1; �/ and �2.�; �1/ D N�.� � �1; �/ for any real-valued functions f , g, h 2 S.R/.
Moreover, we easily check from the Bernstein inequality that, if fi 2 L2.R/ has a Fourier transform
localized in an annulus fj�j �Nig, i D 1, 2, 3, thenˇ̌̌̌Z

R

….f1; f2/f3

ˇ̌̌̌
.N

1
2

min

3Y
iD1

kfikL2 ; (2-2)

where the implicit constant only depends on k�kL1.R2/ and NminDminfN1; N2; N3g. With this notation
in hand, we will be able to systematically estimate terms of the formZ

R

PN .u
2/@xPNu

to put the derivative on the lowest frequency factor.

2B. Function spaces. For 1 � p �1, Lp.R/ is the usual Lebesgue space with the norm k � kLp and,
for s 2 R, H s.R/ is the usual Sobolev space with its usual norm,

k�kH s D kJ sx�kL2 :
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If B is one of the spaces defined above, 1� p �1, we will define the space-time spaces Lpt B and zLpt B
equipped with the norms

kf kLpt B
D

�Z
R

kf . � ; t /k
p
B dt

�1
p

;

with obvious modifications for p D1, and

kf kzLpt B
D

� X
N>0

kPNf k
2
L
p
t B

�1
2

:

For s, b 2 R, we introduce the Bourgain spaces Xs;b related to the linear part of (1-3) as the completion
of the Schwartz space S.R2/ under the norm

kvkXs;b WD

�Z
R2
h� �p˛C1.�/i

2b
h�i2sj Ov.�; �/j2 d� d�

�1
2

; (2-3)

where hxi WD 1Cjxj and ip˛C1 is the Fourier symbol of L˛C1. Recall that

kvkXs;b D kU˛.�t /vkH s;b
t;x
;

where U˛.t/D exp.tL˛C1/ is the generator of the free evolution associated with (1-3).
Finally, we will use restriction-in-time versions of these spaces. Let T > 0 be a positive time and

let Y be a normed space of space-time functions. The restriction space YT will be the space of functions
v W R� �0; T Œ! R satisfying

kvkYT WD inffk QvkY j Qv W R�R! R; QvjR��0;T Œ D vg<1:

2C. Preliminary lemmas.

Lemma 2.1. Let p W R! R be an odd function belonging to C 1.R/\C 2.R�/. Assume that there exist
˛ > 0 and �0 > 0 such that, for all � � �0,

jp0.�/j � j�j˛ and jp00.�/j � j�j˛�1: (2-4)

Then the Fourier multiplier L˛C1 by ip satisfies Hypothesis 1.

Proof. Let 0 < �� ��10 be a real number. First, by the mean value theorem, for � � 1,

jp.��1�/j. jp.�0/jC��.˛C1/�˛C1 . ��1.��0/ max
�2Œ0;�0�

jp0.�/jC �˛C1

and thus
�˛C1jp.��1�/j. �˛ max

�2Œ0;�0�
jp0.�/jC �˛C1 . �˛C1

as soon as ��
�
max�2Œ0;�0� jp

0.�/j
��1=˛. This proves (1-5) for

�0 Dmin
�
��10 ;

�
max
�2Œ0;�0�

jp0.�/j
�� 1

˛
�
: (2-5)
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Let us now prove (1-6). In the sequel, we take 0 < �� �0 with �0 defined by (2-5). By symmetry, we
can assume j�2j � j�1j. We separate different cases:

Case 1: j�2j � j�1j. Since, by hypothesis, j�1j � 1, it follows that ��1j�1j � �0 and thus there exists
� 2 Œ�1; �1C �2� such that

�˛C1
ˇ̌
p.��1.�1C �2//�p.�

�1�1/
ˇ̌
D �˛j�2jjp

0.��1�/j � �˛j�2jj�
�1� j˛ � j�2jj�1j

˛:

Now, if ��1j�2j � �0 then

�˛C1jp.��1�2/j � �
˛
j�2j max

�2Œ0;�0�
jp0.�/j � j�2jj�1j

˛:

On the other hand, if ��1j�2j � �0 then

�˛C1jp.��1�2/j D �
˛C1
jp.�0/Cp.�

�1�2/�p.�0/j

� �˛C1
�
j�0j max

�2Œ0;�0�
jp0.�/jC��1j�2jj�

�1�2j
˛
�

� j�2j
˛C1
C�˛j�2j max

�2Œ0;�0�
jp0.�/j � j�2jj�1j

˛:

Gathering these two estimates leads to

�˛C1j�.��1�1; �
�1�2/j � j�2jj�1j

˛:

Case 2: j�2j& j�1j. In this case we have ��1j�2j � �0. Since p is an odd function, by symmetry we can
assume that �1 > 0.

Case 2(a): �1�2 � 0. Then we have 0 < �0� ��1�2 � �
�1�1 < �

�1�1C �2. We notice that

�˛C1j�.��1�1; �
�1�2/j

D �˛C1
Z ��1�2

�0

.p0.��1�1C �/�p
0.�// d� C�˛C1.p.��1�1C �0/�p.�

�1�1//��
˛C1p.�0/

with
jp.��1�1C �0/�p.�

�1�1/j. �0��˛�˛1 � ��˛�1�2�
˛
1

and

p0.��1�1C �/�p
0.�/D

Z ��1�1

0

p00.� C�/ d�:

But, for � � �0, p00 does not change sign since jp00.�/j� j� j˛�1 and p00 is continuous outside 0. Therefore,
for � 2 Œ�0; ��1�2�, we getZ ��1�1

0

p00.� C�/ d��

Z ��1�1

0

.� C�/˛�1 d�� ..��1�1C �/
˛
� �˛/� ��˛�˛1 :

Gathering these estimates we obtain

�˛C1j�.��1�1; �
�1�2/j � �2�

˛
1 :
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Case 2(b): �1�2 < 0. For �1C �2���2, recalling that p is an odd function, we can argue exactly as
in Case 1, but with �1C �2, ��2 and �1 playing the role of �2, �1 and �1C �2, respectively. Finally, for
�1C �2 & ��2, we argue exactly as in Case 2(a) with the same exchange of roles as above. �

Lemma 2.2. Assume that p˛C1 satisfies (1-6) with �D 1. Let L1, L2, L3 � 1, 0 < N1 � N2 � N3 be
dyadic numbers and u, v, w 2 S0.R2/. ThenZ

R2
….QL1PN1u;QL2PN2v/QL3PN3w D 0

whenever the following relation is not satisfied:

Lmax �N1N
˛
2 or .Lmax�N1N

˛
2 and Lmax � Lmed/; (2-6)

where Lmax D max.L1; L2; L3/, Lmed D max.fL1; L2; L3g � fLmaxg/ and where the two first implicit
constants in (2-6) are related to the implicit constant in (1-6).

Proof. This is a direct consequence of the hypothesis (1-6) on the resonance function �.�1; �2/, since

�.�1; �2/D �.�1C �2; �1C �2/� �.�1; �1/� �.�2; �2/

with �.�; �/ WD � �p˛C1.�/. �

Lemma 2.3. Let L� 1, 1 � p � 1 and s 2 R. The operator Q�L is bounded in Lpt H
s uniformly

in L� 1.

Proof. Let R�L be the Fourier multiplier by �.�=L/, where � is as defined in Section 2A. The trick is to
notice that Q�LuD U˛.t/.R�LU˛.�t /u/. Therefore, using the unitarity of U˛. � / in H s.R/, we infer
that

kQ�LukLpt H s D kU˛.t/.R�LU˛.�t /u/kLpt H s D kR�LU˛.�t /ukLpt H s . kU˛.�t /ukLpt H s

D kukLpt H s : �

For any T > 0, we consider 1T , the characteristic function of Œ0; T �, and use the decomposition

1T D 1
low
T;RC 1

high
T;R;

b1low
T;R.�/D �

�
�

R

�c1T .�/ (2-7)

for some R > 0.
The properties of this decomposition we will need are listed in the following lemmas.

Lemma 2.4. For any R > 0 and T > 0,

k1
high
T;RkL1 . T ^R

�1 (2-8)

and

k1low
T;RkL1 . 1: (2-9)
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Proof. A direct computation provides

k1
high
T;RkL1 D

Z
R

ˇ̌̌̌Z
R

�
1T .t/� 1T

�
t �

s

R

��
F�1�.s/ ds

ˇ̌̌̌
dt

�

Z
R

Z
Œ0;T �nŒs=R;TCs=R�[Œs=R;TCs=R�nŒ0;T �

jF�1�.s/j dt ds

.
Z

R

�
T ^
jsj

R

�
jF�1�.s/j ds

. T ^R�1:

Finally, the proof of (2-9) follows directly from the definition of 1low
T;R and Young’s inequality. �

Lemma 2.5. Let u 2 L2.R2/. Then, for any T > 0, R > 0 and L�R,

kQL.1
low
T;Ru/kL2 . kQ�LukL2 :

Proof. By Plancherel we get

IL D kQL.1
low
T;Ru/kL2

D k'L.� �!.�//
b1low
T;R �� Ou.�; �/kL2

D

 X
L1�1

'L.� �!.�//

Z
R

'L1.�
0
�!.�// Ou.� 0; �/�

�
� � � 0

R

�
e�iT .���

0/� 1

� � � 0
d� 0


L2
:

In the region where L1�L or L1�L, we have j� � � 0j �L_L1�R, thus IL vanishes. On the other
hand, for L� L1, we get

IL .
X
L�L1

kQL.1
low
T;RQL1u/kL2 . kQ�LukL2 : �

3. Unconditional well-posedness in the regular case s > 1
2

In this section we develop our method in the regular case s > 1
2

. This will emphasize the simplicity of
this approach to prove unconditional well-posedness for (1-3) posed on R or T.

Let � > 0 and L�˛C1 be the Fourier multiplier by i�˛C1p˛C1.��1 � /. We notice that if u is a solution
to (1-3) on �0; T Œ then u�.t; x/ D �˛u.�˛C1t; �x/ is a solution to (1-3) on �0; ��.˛C1/T Œ with L˛C1
replaced by L�˛C1. Therefore, up to this change of unknown and equation, we can always assume that the
operator L˛C1 verifies (1-6) with 0 < �� 1.

3A. A priori estimates. For s 2R we define the function spaceM s asM s WDL1t H
s\Xs�1;1, endowed

with the natural norm
kukM s D kukL1t H s CkukXs�1;1 :

For u0 2 H s.R/, s > 1
2

, we will construct a solution to (1-3) in M s
T , whereas the difference of two

solutions emanating from initial data belonging to H s.R/ will take place in M s�1
T .
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Lemma 3.1. Let 0 < T < 2, s > 1
2

and let u 2 L1T H
s be a solution to (1-3) associated with an initial

datum u0 2H
s.R/. Then u 2M s

T and

kukM s
T
. kukL1T H s CkukL1T H skuk

L1T H
1
2
C
: (3-1)

Moreover, for any pair .u; v/ 2 .L1T H
s/2 of solutions to (1-3) associated with a pair of initial data

.u0; v0/ 2 .H
s.R//2 and any s� 1� r � s,

ku� vkM r
T
. ku� vkL1T H r CkuC vkL1T H sku� vkL1T H r : (3-2)

Proof. We have to extend the function u from .0; T / to R. For this we follow [Masmoudi and Nakanishi
2005] and introduce the extension operator �T defined by

�T u.t/ WD �.t/u
�
T�
�
t

T

��
; (3-3)

where � is the smooth cut-off function defined in Section 2A and �.t/D max.1� jt � 1j; 0/. This �T
is a bounded operator from X

�;b
T into X�;b and from Lp.0; T IX/ into Lp.RIX/ for any b 2 ��1; 1�,

s 2 R, p 2 Œ1;1� and any Banach space X . Moreover, these bounds are uniform for 0 < T < 1.
By using this extension operator, it is clear that we only have to estimate the Xs�1;1T -norm of u to

prove (3-1). As noticed in Remark 1.3, u satisfies the Duhamel formula of (1-3) and u 2 C.Œ0; T �IH � /

for any � < s. Hence, standard linear estimates in Bourgain’s spaces lead to

kuk
X
s�1;1
T

. ku0kH s�1 Ck@x.u
2/k

X
s�1;0
T

. ku0kH s�1 Cku2kL2TH s

. kukL1T H s�1 Ckuk
L1T H

1
2
C
kukL1T H s

by standard product estimates in Sobolev spaces (see [Adams 1975]).
In the same way, for s� 1� r � s we have

ku�vk
X
r�1;1
T

.ku0�v0kH r�1Ck.uCv/.u�v/kL2TH r .ku�vkL1T H r�1CkuCvkL1T H sku�vkL1T H r ;

since s > 1
2
C and r C s > 0. This proves (3-2). �

Lemma 3.2. Assume ui 2M 0, i D 1, 2, 3, are functions with spatial Fourier support in fj�j �Nig with
Ni > 0 dyadic satisfying N1 �N2 �N3. For any t > 0, we set

It .u1; u2; u3/D

Z t

0

Z
R

….u1; u2/u3:

If N1 . 1,

jIt .u1; u2; u3/j.N
1
2

1 ku1kL1t L
2
x
ku2kL2tx

ku3kL2tx
: (3-4)

In the case N1� 1,

jIt .u1; u2; u3/j.N
� 1
2

1 N 1�˛
3 ku1kL1t L

2
x
.ku2kL2tx

ku3kX�1;1 Cku2kX�1;1ku3kL2tx
/

CN
1
2

1 N
�˛
3 ku1kX�1;1ku2kL2tx

ku3kL1t L
2
x
CN�11 N

� 1
8

3 ku1kL1t L
2
x
ku2kL1t L

2
x
ku3kL1t L

2
x
:
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Proof. Estimate (3-4) easily follows from (2-2) together with Hölder’s inequality, thus it suffices to
estimate jIt j for N1� 1. Note that It vanishes unless N2 �N3. Setting RDN 3=2

1 N
1=8
3 , we split It as

It .u1; u2; u3/D I1.1
high
t;Ru1; u2; u3/C I1.1

low
t;Ru1; u2; u3/ WD I

high
t C I low

t ; (3-5)

where I1.u; v; w/D
R

R2
….u; v/w. The contribution of I high

t is estimated, thanks to Lemma 2.4 as well
as (2-2) and Hölder’s inequality, by

I
high
t .N

1
2

1 k1
high
t;R kL1ku1kL1t L

2
x
ku2kL1t L

2
x
ku3kL1t L

2
x
.N�11 N

� 1
8

3 ku1kL1t L
2
x
ku2kL1t L

2
x
ku3kL1t L

2
x
:

(3-6)
To evaluate the contribution I low

t we use that, according to Lemma 2.2, we have the decomposition

I1.1
low
t;Ru1; u2; u3/D I1.Q&N1N

˛
3
.1low
t;Ru1/; u2; u3/

C I1.Q�N1N˛2 .1
low
t;Ru1/;Q&N1N

˛
3
u2; u3/

C I1.Q�N1N˛2 .1
low
t;Ru1/;Q�N1N˛3 u2;Q�N1N

˛
3
u3/: (3-7)

It is worth noting that R�N1N
˛
3 because N1� 1. Therefore, the contribution I 1;low

t of the first term
of the above right-hand side to I low

t is easily estimated, thanks to Lemma 2.5, by

I
1;low
t .N

1
2

1 .N1N
˛
3 /
�1
ku1kX0;1ku2kL2tx

ku3kL1t L
2
x
.N

1
2

1 N
�˛
3 ku1kX�1;1ku2kL2tx

ku3kL1t L
2
x
: (3-8)

Thanks to Lemmas 2.3 and 2.5, the contribution I 2;low
t of the second term can be handled via

I
2;low
t .N

1
2

1 .N1N
˛
3 /
�1
ku1kL1t L

2
x
ku2kX0;1ku3kL2tx

.N�
1
2

1 N 1�˛
3 ku1kL1t L

2
x
ku2kX�1;1ku3kL2tx

: (3-9)

Finally, the contribution of the third term is estimated in the same way. �

Remark 3.3. From (2-1) we see that the estimates in Lemma 3.2 also hold for any other rearrangements
of N1, N2 and N3.

We are now in position to derive our “improved” energy estimate on smooth solutions to (1-3).

Proposition 3.4. Let 0 < T < 2 and let u 2 L1T H
s with s > 1

2
be a solution to (1-3) associated with an

initial datum u0 2H
s.R/. Then

kuk2L1T H s . ku0k2H s C .1Ckuk
2

L1T H
1
2
C
/kuk

L1T H
1
2
C
kuk2L1T H s : (3-10)

Proof. We apply the operator PN with N > 0 dyadic to (1-3). On account of Remark 1.3, it is clear
that PNu 2 C.Œ0; T �IH1/ with @tuN 2L1.0; T IH1/. Therefore, taking the L2x-scalar product of the
resulting equation with PNu, multiplying by hN i2s and integrating on �0; t Œ with 0 < t < T , we obtain

hN i2skPNu.t/k
2
L2
D hN i2skPNu0k

2
L2
ChN i2s

Z t

0

Z
R

@xPN .u
2/PNu:
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Integrating by parts and applying Bernstein inequalities, this leads to

kPNuk
2
L1T H

s . kPNu0k2H s C sup
t2�0;T Œ

hN i2s
ˇ̌̌̌Z t

0

Z
R

PN .u
2/@xPNu

ˇ̌̌̌
: (3-11)

Thus it remains to estimate

I WD
X
N>0

hN i2s sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

PN .u
2/@xPNu

ˇ̌̌̌
: (3-12)

According to (3-1), u belongs to M s
T . We take an extension Qu of u supported in time in ��2; 2Œ such that

k QukM s . kukM s
T

. To simplify the notation we drop the tilde in the sequel.
By localization considerations, we get

PN .u
2/D PN .u&Nu&N /C 2PN .u�Nu/: (3-13)

Moreover, using a Taylor expansion of �N , we easily get

PN .u�Nu/D u�NPNuCN
�1….@xu�N ; u/; (3-14)

where …D…� with �.�; �1/D�i
R 1
0 �
0.N�1.� � ��1// d� 2 L

1. Inserting (3-13)–(3-14) into (3-12)
and integrating by parts, we deduce

I .
X
N>0

X
0<N1�N

N1hN i
2s sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�1.uN1 ; uN /uN

ˇ̌̌̌

C

X
N>0

X
0<N1�N

N1hN i
2s sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�2.uN1 ; u�N /uN

ˇ̌̌̌

C

X
N>0

X
N1&N

N hN i2s sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�3.uN1 ; u�N1/uN

ˇ̌̌̌
;

where �i , 1� i � 3, are bounded uniformly in N and N1, and defined by

�1.�; �1/D
�1

N1
1supp�N1 .�1/; (3-15)

�2.�; �1/D �.�; �1/
�1

N1

�

N

1supp�N .�/1supp�N1 .�1/

��N .� � �1/
; (3-16)

�3.�; �1/D
�

N
�N .�/: (3-17)

Recalling now the definition of It (see Lemma 3.2), it follows from (2-1) that

I .
X
N>0

X
N1&N

N hN1i
2s sup
t2�0;T Œ

jIt .uN ; u�N1 ; uN1/j: (3-18)

The contribution of the sum over N . 1 is easily estimated, thanks to (3-4) and Cauchy–Schwarz, byX
N�29

X
N1&N

N hN1i
2s
kuN kL1t L

2
x
kuN1k

2
L2tL

2
x
. kukL1t L2xkuk

2
L1t H

s : (3-19)
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Finally, the contribution of the sum over N � 1 is controlled with the second part of Lemma 3.2 byX
N>29

X
N1&N

NN 2s
1

�
N�

1
2N 1�˛

1 kuN kL1t L
2
x
kuN1kL2tx

kuN1kX�1;1

CN
1
2N�˛1 kuN kX�1;1kuN1k

2
L1t L

2
x
CN�1N

� 1
8

1 kuN kL1t L
2
x
kuN1k

2
L1t L

2
x

�
. kuk

M
1
2
C

T

kukM s
T
kukL1T H s : (3-20)

Gathering all the above estimates leads to

kuk2L1T H s . ku0k2H s Ckuk
M
1
2
C

T

kukM s
T
kukL1T H s ; (3-21)

which, together with (3-1), completes the proof of the proposition. �

Let us now establish an a priori estimate at the regularity level s� 1 on the difference of two solutions.

Proposition 3.5. Let 0 < T < 2 and let u, v 2 L1T H
s with s > 1

2
be two solutions to (1-3) associated

with initial data u0, v0 2H s.R/, respectively. Then

ku� vk2
L1T H

s�1 . ku0� v0k2H s�1 CkuC vkM s
T
ku� vk2

M s�1
T

: (3-22)

Proof. The difference w D u� v satisfies

wt CD
˛wx D @x.zw/; (3-23)

where z D uC v. Proceeding as in the proof of Proposition 3.4, we infer that, for N > 0,

kPNwk
2
L1T H

s�1 . kPNw0k2H s�1 C sup
t2�0;T Œ

hN i2.s�1/
ˇ̌̌̌Z t

0

Z
R

PN .zw/@xPNw

ˇ̌̌̌
(3-24)

Again, according to (3-1), we can take extensions Qz and zw of z and w supported in time in ��2; 2Œ such
that kQzkM s . kzkM s

T
and k zwkM s�1 . kwkM s�1

T
. To simplify the notation we drop the tilde in the sequel.

Setting

J WD
X
N>0

hN i2.s�1/ sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

PN .zw/@xPNw

ˇ̌̌̌
; (3-25)

it follows from (3-14) and classical dyadic decomposition that, for all N > 0,

PN .zw/D PN .z�Nw/CPN .z�Nw.N /C
X

N1�N

PN .zN1w�N1/

D z�NwN CN
�1…�.@xz�N ; w/CPN .z�Nw.N /C

X
N1�N

PN .zN1w�N1/: (3-26)
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Inserting this into (3-25) and integrating by parts, we infer

J .
X
N>0

X
N1�N

N1hN i
2.s�1/

�
sup

t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�1.zN1 ; wN /wN

ˇ̌̌̌
C sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�2.zN1 ; w�N /wN

ˇ̌̌̌�

C

X
N>0

X
N1.N

N hN i2.s�1/ sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�3.z�N ; wN1/wN

ˇ̌̌̌

C

X
N>0

X
N1�N

N hN i2.s�1/ sup
t2�0;T Œ

ˇ̌̌̌Z t

0

Z
R

…�3.zN1 ; w�N1/wN

ˇ̌̌̌
;

where �i , 1� i � 3, are as defined in (3-15)–(3-17). Therefore, it suffices to estimate

J .
X
N>0

X
N1&N

N hN1i
2.s�1/ sup

t2�0;T Œ

jIt .zN ; w�N1 ; wN1/j

C

X
N>0

X
N1&N

N1hN1i
2.s�1/ sup

t2�0;T Œ

jIt .z�N1 ; wN ; wN1/j

C

X
N>0

X
N1&N

N hN i2.s�1/ sup
t2�0;T Œ

jIt .zN1 ; wN1 ; wN /j

WD J1CJ2CJ3: (3-27)

The contribution of the sum over N . 1 in (3-27) is easily estimated, thanks to (3-4), byX
N.1

X
N1&N

N
1
2

�
N kzN kL1t L

2
x
kwN1k

2

L2tH
s�1 CN1hN1i

�1
kzN1kL2tH skwN kL1t L

2
x
kwN1kL2tH s�1

CN hN1i
1�2s
kzN1kL2tH skwN1kL2tH s�1kwN kL1t L

2
x

�
. kzkL1t L2xkwk

2
L1t H

s�1 Ckwk
L1t H

� 1
2

x

kzkL1t H skwkL1t H s�1 : (3-28)

For the contribution of the sum over N � 1, it is worth noting that, since s > 1
2

, the term J3 is controlled
by J2. The contribution of J1 is estimated, thanks to Lemma 3.2, byX
N�1

X
N1&N

NN
2.s�1/
1

�
N�

1
2N 1�˛

1 kzN kL1t L
2
x
kwN1kL2tx

kwN1kX�1;1

CN
1
2N�˛1 kzN kX�1;1kwN1k

2
L1t L

2
x
CN�1N

� 1
8

1 kzN kL1t L
2
x
kwN1k

2
L1t L

2
x

�
. kzk

M
1
2
C
kwkM s�1kwkL1t H s�1 : (3-29)

Finally, in the same way we bound J2 byX
N�1

X
N1&N

N 2s�1
1

�
N�

1
2N 1�˛

1 kwN kL1t L
2
x
.kzN1kL2tx

kwN1kX�1;1 CkzN1kX�1;1kwN1kL2tx
/

CN
1
2N�˛1 kwN kX�1;1kzN1kL1t L

2
x
kwN1kL1t L

2
x

CN�1N
� 1
8

1 kwN kL1t L
2
x
kzN1kL1t L

2
x
kwN1kL1t L

2
x

�
. kzkM skwk

M
� 1
2
C
kwkL1t H s�1 CkzkM skwkM s�1kwk

L1t H
� 1
2
C
: (3-30)
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Gathering the estimates (3-27)–(3-30), we obtain

J . .kzk
M
1
2
C

T

kwkM s�1 CkzkM s
T
kwk

M
� 1
2
C
/kwkL1T H s�1 CkzkM s

T
kwkM s�1kwk

L1T H
� 1
2
C
; (3-31)

which leads to (3-22) and completes the proof of the proposition. �

3B. Unconditional well-posedness. Fix s > 1
2

. First, it is worth noticing that we can always assume that
we deal with data that have small H s-norm. Indeed, if u 2 L1.0; T IH s/ is a solution to (1-3), then,
for 0 < �� 1, u� WD �˛u.�˛C1 � ; � � / 2 L1.0; �˛C1T IH s/ is a solution to (1-3) with L˛C1 replaced
by L�˛C1, that is, the Fourier multiplier by i�˛C1p˛C1.��1 � /. Recall that we assumed at the beginning
of this section that L�˛C1 satisfies (1-6) for any 0 < �� 1. For 0 < "� 1, let us denote by Bs."/ the ball
of H s.R/ centered at the origin with radius ". Since

ku�.0/kH s . �˛�
1
2 ku0kH s ;

we see that we can force u0;� to belong to Bs."/ by choosing �D Œ".1Cku0kH s /��1=.˛�1=2/. Therefore,
the unconditional well-posedness inH s.R/ of (1-3) for smallH s-initial data with a time of existence T �1
will ensure the unconditional well-posedness of (1-3) for arbitrary large H s-initial data with a maximal
time of existence

T & .1Cku0kH s /�
2.˛C1/
2˛�1 :

Existence and unconditional uniqueness. It is well known (see for instance [Abdelouhab et al. 1989]) that
(1-3) is locally well-posed in H s for s > 3

2
with a minimal time of existence T D T .ku0kH3=2C/ > 0.

So, let u 2 C.Œ0; T0�IH1.R/ be a smooth solution to (1-3) emanating from a smooth initial datum
u0 2H

1.R/ with ku0kH s � 1. According to (3-10),

kuk2L1T H s . ku.0/k2H s C .1Ckuk
2

L1T H
1
2
C
/kuk

L1T H
1
2
C
kuk2L1T H s (3-32)

for any 0 < T � min.1; T0/ and s > 1
2

. Let us denote by T � � T0 the maximal time of existence of u
inH1.R/. The well-posedness result in [Abdelouhab et al. 1989] ensures that limT%T � kukL1T H3DC1

whenever T � is finite. Since
ku.0/k

H
1
2
C
� ku.0/kH s � 1;

(3-32) together with the continuity of T 7! kukL1T H1=2C on �0; T �Œ ensure that

kuk
L1
T 0
H
1
2
C
. ku.0/k

H
1
2
C
� 1

with T 0 Dmin.1; T �/. But then (3-32) leads, for any s > 1
2

, to

kukL1
T 0
H s . ku.0/kH s :

This proves that T 0 < T � and thus T 0 D 1 and T � � 1.
Now, let u0 2H s.R/ with s > 1

2
. From the above estimates, we infer that we can pass to the limit

on a sequence of solutions fung emanating from smooth approximations of u0 to obtain the existence
of a solution u 2 L1T H

s of (1-3) with initial data u0. Note that one can easily pass to the limit on u2n
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by compactness arguments, since fung and f@tung are bounded in L1T H
s and L1T H

s�3, respectively.
Estimates (3-22) and (3-1)–(3-2) then ensure that this solution is the only one in this class. Now the
continuity of u with values in H s.R/ as well as the continuity of the flow map in H s.R/ will follow from
the Bona–Smith argument [1975]. For any ' 2H s.R/, dyadic integer N � 1 and r � 0, straightforward
calculations in Fourier space lead to

kP�N'kH sCr
x
.N r

k'kH s
x

and k' �P�N'kH s�r
x
.N�rkP>N'kH s

x
: (3-33)

Let u0 2H s with s > 1
2

be such that ku0kH s � 1. We denote by uN 2 L1.0; 1IH s/ the solution of
(1-3) emanating from uN0 D P�Nu0 and, for 1�N1 �N2, we set

w WD uN1 �uN2 :

Then, (3-22) and (3-2) lead to

kwkM s�1
1
. kw.0/kH s�1 .N�11 kP>N1u0kH s : (3-34)

Moreover, for any r � 0 and s > 1
2

, we have

kuNik
M
sCr
1

. kuNi0 kH sCr .N r
i ku0kH s : (3-35)

Next, we observe that w solves the equation

wt CL˛C1w D
1
2
@x.w

2/C @x.u
N1w/: (3-36)

Proposition 3.6. Let 0 < T < 2 and let w 2M s
T with s > 1

2
be a solution to (3-36). Then

kwk2L1T H s . kw.0/k2H s Ckwk
3
M s
T
CkuN1kM s

T
kwk2M s

T
CkuN1k

M
sC1
T

kwkM s
T
kwkM s�1

T
: (3-37)

Proof. Actually, this is a consequence of estimates derived in the proof of Propositions 3.4 and 3.5. We
separate the contributions of @x.w2/ and @x.uN1w/. Let t 2 �0; T Œ. First, (3-21) leads toX

N>0

N 2s

ˇ̌̌̌Z t

0

Z
R

PN @x.w
2/PNw

ˇ̌̌̌
. kwk3M s

T
:

Second, applying (3-31) at the level s with z replaced by uN1 , we obtainX
N>0

N 2s

ˇ̌̌̌Z t

0

Z
R

PN @x.u
N1w/PNw

ˇ̌̌̌
. kuN1kM s

T
kwk2M s

T
CkuN1k

M
sC1
T

kwkM s
T
kwk

M
� 1
2
C

T

;

which leads to (3-37) since s > 1
2

. �

Combining (3-2) with (3-37) and (3-35), we get

kwk2M s
1
. .1Cku0k2H s /

�
kw0k

2
H s Cku0kH skwk2M s

1
Cku0kH skwk2M s

1
CN1ku0kH skwkM s

1
kwkM s�1

1

�
:

Then, the smallness assumption on ku0kH s and (3-34) lead to

kwk2M s
1
. kw0k2H s CN

2
1 kwk

2

M s�1
1

. kP>N1u0k
2
H s .1CkP>N1u0k

2
H s /! 0 as N1! 0: (3-38)
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This shows that fuN g is a Cauchy sequence in C.Œ0; 1�IH s/ and thus fuN g converges in C.Œ0; 1�IH s/

to a solution of (1-3) emanating from u0. Then, the uniqueness result ensures that u 2 C.Œ0; 1�IH s/.

Continuity of the flow map. Now let fu0;ng � H s.R/ be such that u0;n! u0 in H s.R/. We want to
prove that the emanating solution un tends to u in C.Œ0; 1�IH s/. By the triangle inequality, for n large
enough,

ku�unkL11 H s � ku�uN kL11 H s CkuN �uNn kL11 H s CkuNn �unkL11 H s :

Using the estimate (3-38) on the solution to (3-36) we first infer that

ku�uN kM s
1
Ckun�u

N
n kM s

1
. kP>Nu0kH s CkP>Nu0;nkH s

and thus
lim
N!1

sup
n2N

.ku�uN kL11 H s Ckun�u
N
n kL11 H

s /D 0: (3-39)

Next, we notice that (3-22) and (3-2) ensure that

kuN �uNn kM s�1
1
. kuN0 �u

N
0;nkH s�1 ;

and thus (3-38) and (3-34) lead to

kuN �uNn k
2
M s
1
. kuN0 �u

N
0;nk

2
H s CN

2
kuN0 �u

N
0;nk

2
H s�1 . ku0�u0;nk2H s .1CN

2/: (3-40)

Combining (3-39) and (3-40), we obtain the continuity of the flow map. The proof of Theorem 1.5 is
thus completed in the case KD R and s > 1

2
.

3C. The periodic case. In this subsection we explain the necessary adaptations to treat the periodic case.
First, we define our function spaces in the periodic setting. Since the map u 7!u� maps L1.0; T IH s.T//

into L1.0; �˛C1T IH s.�T//, we will have to consider space of functions on the tori �T with �� 1. We
use the same notations as in [Colliander et al. 2004] to deal with Fourier transform of space-periodic
functions with a large period 2��. Then, .d�/� will be the renormalized counting measure on ��1Z:Z

a.�/ .d�/� D
1

�

X
�2��1Z

a.�/ :

As noticed in [Colliander et al. 2004], .d�/� is the counting measure on the integers when �D 1 and
converges weakly to the Lebesgue measure when �!1. In the definitions below, all the Lebesgue
norms in � will be with respect to the measure .d�/�. For a 2��-periodic function ', we define its space
Fourier transform on ��1Z by

O'.�/D

Z
�T

e�i�xf .x/ dx for all � 2 ��1Z:

The Lebesgue spaces Lq.�T/, 1� q �1, for 2��-periodic functions, will be defined as usual by

k'kLq D

�Z
�T

j'.x/jq dx

�1
q

with the obvious modification for q D1.
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The Sobolev spaces H s.�T/ for 2��-periodic functions are endowed with the norm

k'kH s D kh�is O'.�/kL2
�
D kJ sx'kL2 ;

where h � i D .1Cj � j2/1=2 and bJ sx'.�/D h�is O'.�/.
In the same way, for a function u.t; x/ on R��T, we define its space-time Fourier transform by

Ou.�; �/D Ft;x.u/.�; �/D

Z
R

Z
�T

e�i.� tC�x/u.t; x/ dx dt for all .�; �/ 2 R���1Z:

For any .s; b/2R2, we define the Bourgain space Xs;b of 2��-periodic (in x) functions as the completion
of S.�T�R/ for the norm

kukXs;b D kh� �p˛C1.�/i
b
h�is OukL2

�;�
:

Finally, we define the functions �N and  L and the Fourier multipliers PN and QL as in Section 2A.
Since we take a homogeneous decomposition in space frequencies, in the periodic setting

uD P0uC
X
N>0

PNu; (3-41)

where bP0u.�/D Ou.0/.
Now, with these definitions, we claim that Lemma 3.1 and Propositions 3.4, 3.5 and 3.6 also hold for

2��-periodic functions with an implicit constant that does not depend on �� 1. Indeed, all the tools (the
Sobolev and Hölder inequalities) we used in the proofs of these results work also in the periodic setting,
independently of the period. However, in view of (3-41), we have to care about the contribution of the
null-space frequencies, since we take an homogeneous decomposition. First, since the nonlinear term is a
pure derivative, it is clear that the contribution of the null frequency of the nonlinear term vanishes in all
the estimates. Now, it is also direct to check thatZ

�T

PN .uP0u/@xPNuD 0 (3-42)

and, in the same way, Z
�T

PN .wP0z/@xPNw D 0: (3-43)

We thus just have to control the contribution of the terms PN .zP0w/ in Proposition 3.5 and PN .uN1P0w/
in Proposition 3.6. But the contribution of the first term in Proposition 3.5 can be easily estimated by

N 2.s�1/

ˇ̌̌̌Z t

0

Z
�T

PN .zP0w/@xPNw

ˇ̌̌̌
. sup
t 02�0;T Œ

j Ow.t 0; 0/jN 2.s�1/N kPN zkL2TL2
kPNwkL2TL2

. ıN kzkL1T H skwk2
L1T H

s�1 ;

where k.ı2j /j2Zkl1.Z/.1. Finally, the contribution of the second term in Proposition 3.6 can be estimated
in exactly the same way by

N 2s

ˇ̌̌̌Z t

0

Z
�T

PN .u
N1P0w/@xPNw

ˇ̌̌̌
. ıN kuN1kL1T H sC1kwkL1T H skwkL1T H s�1 :
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This completes the proof of the regular case s > 1
2

in the periodic setting.

4. Estimates in the nonregular case

In this section, we provide the needed estimates at level s � 1� ˛
2

for 1 < ˛ � 2. We introduce the space

F s;b D F s;˛;b DXs�
˛C1
2
;bC 1

2 CXs�
1C˛
8
;bC 1

8 ; (4-1)

endowed with the usual norm, and we define

Y s D Y s;˛ D L1t H
s
\F s;˛;

1
2 D L1t H

s
\ .Xs�

˛C1
2
;1
CXs�

1C˛
8
; 5
8 /:

For u0 2H s.R/ we will construct a solution to (1-3) that belongs to Y sT for some T DT .ku0kH1�˛=2/>0.
As in the regular case, by a dilation argument, we may assume that L˛C1 satisfies (1-6) for 0 < �� 1.

Remark 4.1. Except in the case .s; ˛/D .0; 2/, we could simply take Y s;˛ WD L1t H
s \Xs�.˛C1/=2;1,

since u 2 L1.0; T IH s/ forces @x.u2/ 2 L1.0; T IH s�.˛C1/=2/. To this point of view, .s; ˛/D .0; 2/
is a limit case since u 2L1.0; T IL2/ only implies @x.u2/ 2L1.0; T IH�3=2�/. As in [Zhou 1997], to
overcome this difficulty we have to evaluate our solution in Bourgain’s spaces with different conormal
regularities.

Lemma 4.2. Let 0 < T < 2, 1 < ˛ � 2, s � 1� ˛
2

and let u 2 L1T H
s be a solution to (1-3) associated

with an initial datum u0 2H
s.R/. Then u belongs to Y s;˛T . Moreover, if .s; ˛/¤ .0; 2/,

kukY s;˛T
. kukL1T H s .1Ckuk

L1T H
1�˛

2
/ (4-2)

and, if .s; ˛/D .0; 2/,
kuk

Y
0;2
T

. kukL1T L2x .1Ckuk
2
L1T L

2
x
/: (4-3)

Proof. As in Lemma 3.1 we will work with the extension Qu D �T u of u (see (3-3)). Recall that
supp Qu� Œ�2; 2��R and that

k QukL1t H s . kukL1T H s and k QukX�;b . kukX�;bT

for any .�; b/ 2 R� ��1; 1�. It thus remains to control the F
s;˛; 1

2

T -norm of u. In the case .s; ˛/¤ .0; 2/,
we actually simply control the Xs�.˛C1/=2;1T -norm of u. Using the integral formulation (see Remark 1.3),
standard linear estimates in Bourgain’s spaces, and standard product estimates in Sobolev spaces, we
infer that

kuk
X
s�
1C˛
2
;1

T

. ku0k
H
s�
1C˛
2
Ck@x.u

2/k
X
s�
1C˛
2
;0

T

. ku0k
H
s�
1C˛
2
Cku2k

L2TH
sC 1�˛

2

. kukL1T H s Ckuk
L1T H

1�˛
2
kukL1T H s ;

since, for 1<˛� 2 and s� 1� ˛
2

with .s; ˛/¤ .0; 2/, we have sC1� ˛
2
>0 and sC1� ˛

2
�.sC 1�˛

2
/D 1

2
.

Let us now tackle the case .s; ˛/D .0; 2/. First we notice that, since L1.R/ ,!H�1=2�.R/, we have

kuk
X
� 7
4
;1

T

. ku0k
H
� 7
4
Cku2k

L2tH
� 3
4
. kukL1T L2x .1CkukL1T L2x /: (4-4)
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To bound the F 0;2;1=2-norm of u, we first notice that linear estimates in Bourgain’s spaces lead to

kuk
F
0;2; 1

2
T

. ku0k
H
� 3
2
Cku2k

F
0;2;� 1

2
T

and then decompose u2 as

u2 D P.1u
2
C

X
N�1

�
PN .P�Nuu�N /C

X
N 01�N1&N

PN .uN1uN 01
/

�
: (4-5)

The contribution of the first term in the right-hand side is easily controlled by kuk2
L1T L

2
x

. The contribution

of the second term is easily estimated by X
N�1

@xPN .P�Nuu�N /


F
0;2;� 1

2
T

.
 X
N�1

PN @x.P�Nuu�N /


X
� 3
2
;0

T

.
� X
N�1

kPN .P�Nuu�N /k
2
L2TL

1
x

� 1
2

.
� X
N�1

kuN k
2
L2TL

2
x
kP�Nuk

2
L1T L

2
x

� 1
2

. kukL1T L2kukL1T L2x : (4-6)

To estimate the third term, we take advantage of the X�3=8;�3=8-part of F 0;2;�1=2. For N � 1, we haveX
N 01�N1&N

k@xPN .PN1uPN 01
u/k

F
0;2;� 1

2
T

.
X

N 01�N1&N

N

 X
.L;L1;L2/

satisfying (2-6)

@xPNQL.QL1 QuN1QL2 QuN 01
/


X
� 3
8
;� 3
8

: (4-7)

For the contribution of the sum over L&NN 2
1 in (4-7), we obtainX

N1�N
0
1&N

k@xPNQ&NN 21
. QuN1 QuN 01

/k
X
� 3
8
;� 3
8
.

X
N1�N

0
1&N

N
5
8N

1
2 .NN 2

1 /
� 3
8 k QuN1kL2tx

k QuN 01
kL1t L

2
x

. k QukL1t L2x
X
N1&N

�
N

N1

�3
4

k QuN1kL2tx

. N k Quk2L1t L2x (4-8)

with k.2j /kl2.N/ � 1. The contribution of the region where L� NN 2
1 and L1 & NN 2

1 in (4-7) is
controlled byX
N1�N

0
1&N

k@xPNQ�NN 21
.Q

&NN 21
QuN1 QuN 01

/k
X
� 3
8
;� 3
8

.
X

N1�N
0
1&N

N
5
8N

1
2 .NN 2

1 /
�1N

7
4

1 k QuN1kX�
7
4
;1
k QuN 01

kL1t L
2
x
.N�

1
8 k QukL1t L

2
x
k Quk

X
� 7
4
;1
: (4-9)



IMPROVEMENT OF THE ENERGY METHOD FOR STRONGLY NONRESONANT DISPERSIVE EQUATIONS 1477

Finally, the contribution of the last region, where L;L1�NN 2
1 and L2 �NN 2

1 , in (4-7) is controlled in
the same way. Gathering (4-4) and (4-7)–(4-9), we obtain the desired result for the case .s; ˛/D .0; 2/. �

In the sequel we will need the following straightforward estimates.

Lemma 4.3. Let ˛ � 0 and w 2 F 0;1=2. For 1� B .N ˛C1, we have

kQ&BwN kL2 . B�1N
1C˛
2 kQ&BwN k

F
0; 1
2

(4-10)

and, for B & hN i˛C1, we have

kQ&BwN kL2 . B�
5
8 hN i

1C˛
8 kQ&BwN k

F
0; 1
2
: (4-11)

Proof. Noticing that F 0;1=2 D F 0;˛;1=2 DX�.1C˛/=2;1CX�.1C˛/=8;5=8, it is easy to check that

kQ&BwN kL2 .max.B�1hN i
1C˛
2 ; B�

5
8 hN i

1C˛
8 /kQ&BwN k

F
0; 1
2

. B�
5
8 hN i

1C˛
8 max

��
hN i1C˛

B

�3
8
; 1
�
kQ&BwN k

F
0; 1
2
;

which leads to the desired result. �

Now we rewrite Lemma 3.2 in the context of the F s;b spaces.

Lemma 4.4. Assume ui 2 Y 0, i D 1, 2, 3, are functions with spatial Fourier support in fj�j �Nig with
Ni > 0 dyadic satisfying N1 �N2 �N3.

If N3� 1 and N1 &N 2.1�˛/=3
3 , for .p; q/ 2 f.2;1/; .1; 2/g,

jIt .u1; u2; u3/j.
X
L>1

L�1N
� 1
2

1 N
1�˛
2

3 ku1kLpt L
2
x
kQ�LN1N˛3 u2kF 0;

1
2
ku3kLqt L

2
x

CN
� 1
2

1 N
1�˛
2

3 ku1kLpt L
2
x
ku2kLqt L

2
x
kQ�N1N˛3 u3kF 0;

1
2

CN
� 1
8

1 hN1i
1C˛
8 N

�5˛
8

3 ku1k
F
0; 1
2
ku2kL2tx

ku3kL1t L
2
x

CN
� 1
4

1 N
1
8
�˛
2

3 ku1kL1t L
2
x
ku2kL1t L

2
x
ku3kL1t L

2
x
:

Proof. For RDN 3=4
1 N

˛=2�1=8
3 , we decompose It as in (3-5) and obtain from (3-6) that

jI
high
t j.N

� 1
4

1 N
1
8
�˛
2

3

3Y
iD1

kuikL1t L
2
x
:

To evaluate I low
t we use the decomposition (3-7) and notice that

RDN
3
4

1 N
˛
2
� 1
8

3 �N1N
2˛
3
� 7
24

3 �N1N
˛
3 and N1N

˛
3 &N

2C˛
3

3 � 1:

Therefore, the contribution I 1;low
t of the first term of the right-hand side of (3-7) to I low

t is easily estimated,
thanks to Lemmas 2.5 and 4.3, by

jI
1;low
t j.N

1
2

1 .N1N
˛
3 /
� 5
8 hN1i

˛C1
8 ku1k

F
0; 1
2
ku2kL2tx

ku3kL1t L
2
x
;



1478 LUC MOLINET AND STÉPHANE VENTO

which is acceptable. Thanks to Lemmas 2.3, 2.5 and 4.3, the contribution I 2;low
t of the second term can

be handled in the following way:

jI
2;low
t j.

X
L>1

N
1
2

1 .LN1N
˛
3 /
�1N

˛C1
2

3 ku1kLpt L
2
x
kQ�LN1N˛3 u2kF 0;

1
2
ku3kLqt L

2
x

.
X
L>1

L�1N
� 1
2

1 N
1�˛
2

3 ku1kLpt L
2
x
kQ�LN1N˛3 u2kF 0;

1
2
ku3kLqt L

2
x
: (4-12)

In the same way, we get that the contribution I 3;low
t of the third term in I low

t is bounded by

jI
3;low
t j.N

1
2

1 .N1N
˛
3 /
�1N

˛C1
2

3 ku1kLpt L
2
x
ku2kLqt L

2
x
kQ�N1N˛3 u3kF 0;

1
2

.N�
1
2

1 N
1�˛
2

3 ku1kLpt L
2
x
ku2kLqt L

2
x
kQ�N1N˛3 u3kF 0;

1
2
: (4-13)

Gathering all these estimates, we obtain the desired bound. �

Proposition 4.5. Let 0< T < 2, 1< ˛� 2, s � 1� ˛
2

and let u2L1T H
s be a solution to (1-3) associated

with an initial datum u0 2H
s.R/. Then u belongs to zL1T H

s and

kuk2
zL1T H

s
. ku0k2H s CkukL1T H s .kuk

L1T H
1�˛

2
kukY sT CkukL

1
T H

skuk
Y
1�˛

2
T

/: (4-14)

Proof. First, we notice that Lemma 4.2 ensures that u 2 Y sT . Applying the operator PN with N > 0

dyadic to (1-3), arguing as in (3-11), we obtain

kPNuk
2
L1T H

s . kPNu0k2H s C sup
t2�0;T Œ

hN i2s
ˇ̌̌̌Z t

0

Z
R

PN .u
2/@xPNu

ˇ̌̌̌
: (4-15)

We take an extension Qu of u supported in time in ��4; 4Œ such that k QukY s . kukY sT . To simplify the
notation we drop the tilde in the sequel. We infer from (3-18) that it suffices to estimate

I D
X
N>0

X
N1&N

N hN1i
2s sup
t2�0;T Œ

jIt .uN ; u�N1 ; uN1/j:

The low frequencies part, N . 1, is estimated exactly as in (3-19) by

kukL1t L
2
x
kuk2L1t H s :

On the other hand, the contribution of the sum over N � 1 is controlled, thanks to Lemma 4.4, byX
N�1

X
N1&N

h�
N

N1

�˛�1
2
kuN kL2tH

1�˛
2
kuN1kL1t H skuN1kF s;

1
2

C

�
N

N1

�5˛
8
kuN k

F
1�˛

2
; 1
2
kuN1kL2tH skuN1kL1t H s

CN
˛
2
� 1
4N

1
8
�˛
2

1 kuN kL1t H
1�˛

2
kuN1k

2
L1t H

s

i
. kuk

Y
1�˛

2
kuk2L1t H s Ckuk

L1t H
1�˛

2
kukL1t H skukY s ; (4-16)
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where we use the discrete Young’s inequality in N1 and then Cauchy–Schwarz in N to bound the first
two terms.

Gathering the above estimates we eventually obtain

I . kuk
Y
1�˛

2
T

kuk2L1T H s Ckuk
L1T H

1�˛
2
kukL1T H skukY sT ; (4-17)

which completes the proof of the proposition. �

4A. Estimates on the difference of two solutions. First we introduce the function spaces where we will
estimate the difference of two solutions of (1-3). Contrary to the regular case, we will have to work in
a function space that puts a weight on the very low frequencies. This kind of weighted space for the
difference of two solutions was, for instance, used in [Ionescu et al. 2008] in the context of short-time
Bourgain spaces.

For � 2 R we define the Banach space

H � .R/D f' 2H � .R/ j k'kH� <1g

with

k'kH� WD khj�j
� 1
2 ih�i� O'kL2 ;

equipped with the norm k � kH� . Then we define the space zL1t H
� by

kwkzL1t H� WD

� X
N>0

kwN k
2

L1t H
�

�1
2

: (4-18)

Finally, we define the function spaces zY � and Z� , � 2 R, by

zY � D zL1t H
�
\F �;

1
2 and Z� D zL1t H

�
\F �;

1
2 ;

with F �;b as defined in (4-1).
If u, v 2 L1T H

s are two solutions of (1-3) with s � 1� ˛
2

, then, by Lemma 4.2 and Proposition 4.5,
we know that u and v belong to Y sT \ zL

1
T H

s . Moreover, again using the extension operator �T , it is
easy to check that

Y sT \
zL1T H

s ,! zY sT (4-19)

with an embedding constant that does not depend on 0 < T � 2. Hence, u and v belong to zY sT . Assuming
that u0 � v0 2H s , we claim that the difference u� v belongs to ZsT . Indeed, according to the above
definitions of zY s andZs , it suffices to check that P1.u�v/ belongs to zL1T H

s . But this is straightforward,
since, by the Duhamel formula, for any dyadic integer 0 < N < 1 we have

kPN .u� v/kL1T H s . ku0� v0kH s CN
1
2 .kuk2

L1T L
2
x
Ckvk2

L1T L
2
x
/:

We are thus allowed to estimate the difference w D u� v in the space Zs�3=2C˛=2T .



1480 LUC MOLINET AND STÉPHANE VENTO

Remark 4.6. For ˛ > 1, we have s � 3
2
C
˛
2
> s � 1 and thus, contrary to the preceding section, the

derivative of a solution does not belong to the space where we estimate the difference w D u� v of two
solutions. This fact is crucial in the preceding section to recover the derivative in terms as J2 in (3-27)
that contains small space frequencies of w. In this section, we will instead combine the weight on the low
space frequencies of w with the resonance relation to control such contributions.

Proposition 4.7. Let 0 < T < 2, 1 < ˛ � 2, s � 1� ˛
2

and u; v 2 L1T H
s be two solutions to (1-3) on

�0; T Œ associated with initial data u0; v0 2H s such that u0 � v0 2H s . Then u� v 2 Zs�3=2C˛=2T and
we have

ku�vk
Z
s� 3
2
C˛
2

T

.ku�vk
L1T H

s� 3
2
C˛
2
CkuCvk zY sT

ku�vk
Z
� 1
2

T

CkuCvk
zY
1�˛

2
ku�vk

Z
s� 3
2
C˛
2

T

: (4-20)

Proof. The fact that u� v 2Zs�3=2C˛=2T follows from the discussion above. Now, recall that w D u� v
satisfies (3-23) with zD uCv. We extend w from .0; T / to R by using the extension operator �T defined
in (3-3). On account of the uniform bounds on �T (see the paragraph just after (3-3)), it remains to
estimate the F s�3=2C˛=2;˛;1=2T -norm of w. From classical linear estimates in the framework of Bourgain’s
spaces, the Duhamel formulation associated with (3-23) leads to

kwk
F
s� 3
2
C˛
2
; 1
2

T

. kw0k
H
s� 3
2
C˛
2
Ck@x.zw/k

F
s� 3
2
C˛
2
;� 1
2

T

: (4-21)

Let Qz and zw be time extensions of z andw satisfying kQzk zY s .kzk zY sT and k zwkZs�3=2C˛=2.kwkZs�3=2C˛=2T

.
To simplify the notation we drop the tilde in the sequel. From (4-21) we see that it suffices to estimate

k@x.zw/k
F
s� 3
2
C˛
2
;� 1
2
.
� X
N>0

kPN @x.zw/k
2

F
s� 3
2
C˛
2
;� 1
2

�1
2

:

We first estimate the low-high contribution PN .P.N zP�Nw/:

k@xPN .P.N zP�Nw/k
F
s� 3
2
C˛
2
;� 1
2
.

X
N1.N

N kPN .PN1zP�Nw/kXs�2;0

.
X
N1.N

N
1
2

1 N hN i
s�2
kPN1zkL1t L

2
x
kP�NwkL2tL

2
x

. kP�Nwk
L2tH

s� 3
2
C˛
2

X
N1.N

�
N1

hN i

�˛�1
2
kPN1zkL1t H

1�˛
2

. kzk
L1t H

1�˛
2
kP�Nwk

L1t H
s� 3
2
C˛
2
:

Similarly, the high-low interactions are estimated as follows:

k@xPN .P�N zP.Nw/k
F
s� 3
2
C˛
2
;� 1
2
.N kPN .P�N zP.Nw/kXs�2;0

. kP�N zkL2tH s

X
N1.N

�
N1

hN i

�1
2

kPN1wkL1t H
� 1
2

. kP�N zkL2tH skwk
L1t H

� 1
2
:
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Now we deal with the high-high interactions term:

k@xPN .P�N zP�Nw/k
F
s� 3
2
C˛
2
;� 1
2
.

X
N1�N

N

 X
.L;L1;L2/

satisfying (2-6)

@xPNQL.QL1zN1QL2wN1/


F
s� 3
2
C˛
2
;� 1
2

:

We may assume that N1� 1 since, otherwise, N �N1 . 1 and we have

kP.1@x.P.1zP.1w/k
F
s� 3
2
C˛
2
;� 1
2
. kP.1zkL1t L2kP.1wk

L1t H
� 1
2
:

For N1 � 1, we will take advantage of the fact that Xs�13=8C3˛=8;�3=8 ,! F s�3=2C˛=2;�1=2. The
contribution of the sum over L&NN ˛

1 can be thus controlled byX
N1�N

k@xPNQ&NN˛1
.zN1wN1/kF s�

3
2
C˛
2
;� 1
2

.
X

N1�N

N kPNQ&NN˛1
.zN1wN1/kXs�

13
8
C 3˛
8
;� 3
8

.
X

N1�N

X
L&NN˛1

N hN is�
13
8
C 3˛
8 L�

3
8 kPNQL.zN1wN1/kL2

.
X

N1�N

N
3
2 hN is�

13
8
C 3˛
8 .NN ˛

1 /
� 3
8N

1
2
�s

1 kzN1kL2tH skwN1kL1t H
� 1
2

.
X

N1�N

�
N

N1

�1
2�

˛
8
�
hN i

hN1i

�s�1C˛2
kzN1kL2tH skwN1kL1t H

� 1
2

. ıN kzkL2tH skwk
L1t H

� 1
2
;

where k.ı2j /j kl2.Z/ . 1. The contribution of the region where L�NN ˛
1 and L1 &NN ˛

1 is estimated,
thanks to (4-10), byX
N1�N

k@xPNQ�NN˛1 .Q&NN˛1
zN1wN1/kXs�

13
8
C 3˛
8
;� 3
8

.
X

N1�N

N hN is�
13
8
C 3˛
8 kPN .Q&NN˛1

zN1wN1/kL2

.
X

N1�N

N
3
2 hN is�

13
8
C 3˛
8 .NN ˛

1 /
�1N

1�sC˛
2

1 kQ&NN˛1
zN1kF s;

1
2
kwN1kL1t H

� 1
2

.
X

N1�N

�
N

hN i

� 1
2

hN i�
1C˛
8

�
hN i

hN1i

�s�1C˛2
kQ&NN˛1

zN1kF s;
1
2
kwN1kL1t H

� 1
2

. ıN kzkY skwkzL1t H�
1
2
;
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where k.ı2j /j kl2.Z/ . 1. Finally the contribution of the last region can be bounded, thanks to (4-10), byX
N1�N

k@xPNQ�NN˛1 .Q�NN
˛
1
zN1Q�NN˛1 wN1/kXs�

13
8
C 3˛
8
;� 3
8

.
X

N1�N

N hN is�
13
8
C 3˛
8 kPNQ�NN˛1 .Q�NN

˛
1
zN1Q�NN˛1 wN1/kL2

.
X

N1�N

N
3
2 hN is�

13
8
C 3˛
8 N�s1 .NN ˛

1 /
�1N

1C˛
2

1 kQ�NN˛1 zN1kL
1
t H

skQ�NN˛1 wN1kF�
1
2
; 1
2

.
X

N1�N

�
N

hN i

�1
2

hN i�
1C˛
8

�
hN i

hN1i

�s�1C˛2
kzN1kL1t H skwN1kF�

1
2
; 1
2

. ıN kzkzL1t H skwk
Z
� 1
2
;

which is acceptable. This concludes the proof of Proposition 4.7. �

Proposition 4.8. Let 1� ˛ � 2, 0 < T < 2 and let u, v 2L1T H
s with s � 1� ˛

2
be two solutions to (1-3)

associated with initial data u0, v0 2H s such that u0� v0 2H s . Then1

ku� vk2
zL1T H

s� 3
2
C˛
2

. ku0� v0k2
H
s� 3
2
C˛
2

CkuC vkY sT ku� vkzL1T H
s� 3
2
C˛
2
ku� vk

Z
s� 3
2
C˛
2

T

: (4-22)

Proof. Recall that the difference w D u� v satisfies (3-23) with z D uC v. Applying the operator PN
with N > 0 dyadic to (3-23), taking the L2 scalar product with PNw and integrating on �0; t Œ, we obtain

kwN k
2

L1T H
s� 3
2
C˛
2

. kPNw0k
H
s� 3
2
C˛
2
ChN�1ihN i2.s�

3
2
C˛
2
/ sup
t2Œ0;T �

ˇ̌̌̌Z t

0

Z
R

PN .zw/@xwN

ˇ̌̌̌
:

Therefore, we have to estimate

J WD
X
N>0

hN�1ihN i2.s�
3�˛
2
/ sup
t2Œ0;T �

ˇ̌̌̌Z t

0

Z
R

PN .zw/@xwN

ˇ̌̌̌
:

We take extensions Qz and zw of z and w supported in time in ��4; 4Œ such that kQzkY s . kukY sT and
k zwkZs . kwkZsT . To simplify the notation we drop the tilde in the sequel.

Proceeding as in (3-27), we get

J .
X
N>0

X
N1&N

N hN�11 ihN1i
2.s� 3�˛

2
/ sup
t2�0;T Œ

jIt .zN ; w�N1 ; wN1/j

C

X
N>0

X
N1&N

N1hN
�1
1 ihN1i

2.s� 3�˛
2
/ sup
t2�0;T Œ

jIt .z�N1 ; wN ; wN1/j

C

X
N>0

X
N1&N

N hN�1ihN i2.s�
3�˛
2
/ sup
t2�0;T Œ

jIt .zN1 ; wN1 ; wN /j

WD J1CJ2CJ3: (4-23)

1We include the case ˛ D 1 here since it does not lead to additional difficulties and will be useful in the Appendix to prove
LWP for .˛; s/D

�
1; 12

�
.
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Estimates for J1. The contribution of the sum over N . 1 in J1 is estimated, thanks to (3-4), byX
N.1

X
N1&N

N
3
2 kzN kL1t L

2
x
kwN1k

2

L1t H
s� 3�˛

2

. kzkL1t L2xkwk
2

zL1T H
s� 3�˛

2

:

The contribution N � 1 in J1 can be controlled with Lemma 4.4 byX
N�1

X
N1&N

�X
L>1

L�1
�
N

N1

�˛�1
2
kzN kL2tH

1�˛
2
kQ�LNN˛1 wN1kF s�

3�˛
2
; 1
2
kwN1kL1t H

s� 3�˛
2

C

�
N

N1

�5˛
8
kzN k

F
1�˛

2
; 1
2
kwN1kL2tH

s� 3�˛
2
kwN1kL1t H

s� 3�˛
2

CN
˛
2
� 1
4N

1
8
�˛
2

1 kzN kL1t H
1�˛

2
kwN1k

2

L1t H
s� 3�˛

2

�
. kzk

Y
1�˛

2
kwk

zL1t H
s� 3�˛

2
kwk

Z
s� 3�˛

2
;

where for the first term we used Cauchy–Schwarz in .N;N1/ and then summed in L. Note that for
˛ > 1 we could replace the zL1t H

s�3=2C˛=2-norm by a standard L1t H
s�3=2C˛=2-norm by invoking the

discrete Young inequality.

Estimates for J2. We separate different contributions. First, the contribution of the sum over N1 . 1
is directly estimated by kzkL1T L2kwk

2
L1T H

�1=2 . The contribution of the sum over N �N 2.1�˛/=3
1 and

N1� 1 is then easily estimated byX
N1�1

X
N�N

2
3
.1�˛/

1

NN
˛�1
2

1 kzN1kL2TH skwN k
L1T H

� 1
2
kwN1kL2TH

s� 3
2
C˛
2

.
X
N1�1

N
1�˛
6

1 kzN1kL2TH skwk
L1T H

� 1
2
kwN1kL2TH

s� 3
2
C˛
2

. kzkL1T H skwk
L1T H

� 1
2
kwk

L1T H
s� 3
2
C˛
2
: (4-24)

Finally the contribution of the sum overN1� 1 andN�N
2.1�˛/=3
1 is bounded, thanks to Lemma 4.4, byX

N1�1

X
N�N

2
3
.1�˛/

1

�X
L>1

kwN k
L1t H

� 1
2
kQ�LNN˛1 wN1kF s�

3�˛
2
; 1
2
kzN1kL2tH s

CkwN k
L1t H

� 1
2
kwN1kL2tH

s� 3�˛
2
kQ�NN˛1 zN1kF s;

1
2

CN�
1
8 hN i

5C˛
8 N

�˛
8
� 1
2

1 kwN k
F
� 1
2
; 1
2
kwN1kL1t H

s� 3�˛
2
kzN1kL2tH s

CN
1
4N
� 3
8

1 kwN kL1t H
� 1
2
kwN1kL1t H

s� 3�˛
2
kzN1kL1t H s

�
. kzkY s .kwkzL1t H�

1
2
kwk

Z
s� 3�˛

2
Ckwk

Z
� 1
2
kwk

zL1t H
� 1
2
/;

where again we used Cauchy–Schwarz in .N;N1/ and then summed over L.
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Estimates for J3. We first notice that for N .N1 and N1� 1, since 1C 2
�
s� 3�˛

2

�
� 0,

N hN�1ihN i2.s�
3�˛
2
/ .N1hN�11 ihN1i

2.s� 3�˛
2
/:

Therefore, the contribution of this region to J3 is controlled by J2. Finally the contribution of N .N1. 1
is easily bounded by kzkL1t L2xkwk

2

L1t H
�1=2

.
Gathering all the estimates, we eventually obtain

J . kzkY skwk
L1T H

� 1
2
kwk

Z
s� 3
2
C˛
2

T

Ckzk
Y
1�˛

2
T

kwk
zL1T H

s� 3
2
C˛
2
kwk

Z
s� 3
2
C˛
2

T

; (4-25)

which completes the proof of (4-22). �

4B. Unconditional well-posedness. Let us fix s � 1� ˛
2

. We notice that 1� ˛
2
� 0 > sc D

1
2
�˛, which

is the critical Sobolev exponent associated with (1-3) for dilation symmetry. Therefore, as in Section 3B,
the unconditional well-posedness in H s.R/ of (1-3) for small H s-initial data with a maximal time of
existence T � 1 will ensure the unconditional well-posedness of (1-3) for arbitrary large H s-initial data
with a maximal time of existence

T � .1Cku0kH s /�
2.˛C1/
2˛�1 :

Moreover, as in Section 3B, estimates (4-2), (4-3), (4-14), and a continuity argument ensure that a smooth
solution with small H s-initial datum has got a time of existence T in H1.R/ that is greater than 1.
Now, to prove the existence of a solution with initial data u0 2H 1�˛=2, we cannot argue exactly as in
Section 3B since, for s D 0, we miss compactness to pass to the limit on the nonlinear term. Instead, we
construct below a sequence of smooth solutions to (1-3) that converges strongly to a solution of (1-3)
emanating from u0. This will be done by using the Bona–Smith argument.

Let u0 2 H s with s � 1� ˛
2

and ku0kH s � 1. We denote by uN the solution of (1-3) emanating
from P�Nu0. From the discussion above, uN 2 C.Œ0; 1�IH1.R// and, for 1�N1 �N2, we set

w WD uN1 �uN2 :

Let us note that P�1w0 D P�1.uN1 �uN2/D 0 and thus w0 2H s.R/ with kw0kH s � kw0kH s . It then
follows from (4-20)–(4-22) that

kwk
Z
s� 3
2
C˛
2

1

. kw.0/k
H
s� 3
2
C˛
2
.N

˛�3
2

1 kP>N1u0kH s : (4-26)

Moreover, on account of Lemma 4.2, Proposition 4.5 and (4-19), for any r � 0 we have

kuNik
Y
sCr
T

. kuNik zY sCrT

. kuNi0 kH sCr .N r
i ku0kH s : (4-27)

Next, since w satisfies (3-36), the Duhamel formula leads, for any 0 < N < 1, to

kPNwkL11 H s . kPNw0kH s CN
1
2 .kuN1k2

L11 L
2
x
Ckwk2

L11 L
2
x
/

and thus
kP�1wkzL11 H s . kw0kH s C .kuN1k2

L11 L
2
x
Ckwk2

L11 L
2
x
/: (4-28)
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This proves that w 2ZsT . We will also need the following estimates on w:

Proposition 4.9. Let 1 < ˛ � 2, 0 < T < 2 and w 2ZsT with s � 1� ˛
2

be a solution to (3-36). Then

kwkY sT . kwkL1T H s .1CkuN1k2L1T H s Ckwk
2
L1T H

s / (4-29)

and

kwk2
zL1T H

s
. kw0k2H s Ckwk

3
Y sT
CkuN1kY sT kwk

2
ZsT
CkuN1k

Y
sC 3

2
�˛
2

T

kwk
Z
s� 3
2
C˛
2

T

kwkZsT : (4-30)

Proof. First, (4-29) can be derived exactly as (4-2)–(4-3) of Lemma 4.2. Now, to prove (4-30), we separate
the contribution of @x.w2/ and @x.uN1w/. First, (4-17) leads toX

N>0

N 2s

ˇ̌̌̌Z t

0

Z
R

PN @x.w
2/PNw

ˇ̌̌̌
. kwk3Y sT :

Second, applying (4-25) at the level s with z replaced by uN1 , we obtainX
N>0

N 2s

ˇ̌̌̌Z t

0

Z
R

PN @x.u
N1w/PNw

ˇ̌̌̌
. kuN1k

Y
sC 3

2
�˛
2

T

kwk
Z
� 1
2

T

kwkZsT Cku
N1k

Y
1�˛

2
T

kwk2ZsT
;

which leads to (4-30) since s� 3
2
C
˛
2
� �

1
2

for s � 1� ˛
2

and ZsT ,! Y sT . �

Combining (4-28), (4-29), (4-30) and (4-19), we infer that

kwk2Zs1

. .1Cku0k2H s /
2
�
kw0k

2
H s Cku0kH skwk2Y s1

Cku0kH skwk2Zs1
CN

3�˛
2

1 ku0kH skwk
Z
s� 3
2
C˛
2

1

kwkZs1

�
:

Then, the smallness assumption on ku0kH s , (4-26) and the continuous injection ZsT ,! Y sT , lead to

kwk2Zs1
. kw0k2H s CN

3�˛
1 kwk2

Z
s� 3
2
C˛
2

1

. kP>N1u0k
2
H s .1CkP>N1u0k

2
H s /! 0 as N1! 0:

(4-31)

This shows that fuN g is a Cauchy sequence in C.Œ0; 1�IH s/ and thus fuN g converges in C.Œ0; 1�IH s/ to
a solution of (1-3) emanating from u0. Note that there is no problem passing to the limit on the nonlinear
term here, since we have strong convergence.

Now, Lemma 4.2, Proposition 4.5 and (4-19) ensure that any L11 H
s-solution to (1-3) on �0; 1Œ belongs

to zY sT . Therefore, according to Propositions 4.7 and 4.8, u is the only solution to (1-3) associated with
the initial datum u0 that belongs to L1locH

s .
To prove the continuity of the solution map inH s.R/, we proceed as in Section 3B. Let fu0;ng�H s.R/

be such that u0;n! u0 in H s.R/ and let fung �C.Œ0; 1�IH s.R// be the associated sequence of solutions
to (1-3). Taking the same notations as above, we observe that, by construction,

P�1.u0�u
N
0 /D P�1.u0;n�u

N
0;n/D 0 for all N � 1:
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This ensures that u�uN and un�uNn belong to ZsT . Estimate (4-31) on solutions to (3-36) then leads to

ku�uN kZs1 Ckun�u
N
n kZs1

. kP>Nu0kH s CkP>Nu0;nkH s ;

which yields

lim
N!1

sup
n2N

.ku�uN kL11 H s Ckun�u
N
n kL11 H

s /D 0: (4-32)

It remains to estimate kuNn � u
N kH s . Note that we cannot use Propositions 4.8 and 4.9 here, since

uN0;n�u
N
0 does not belong a priori to H s.R/. However, since uN0 and uN0;n belong to H1.R/, we know,

from the beginning of this section, that uN and uNn belong to C.Œ0; 1�IH1.R//. We now fix N � 1.
Setting s0 Dmax.1; s/, we have

kuN0 �u
N
0;nkH s0 ! 0 as n!1:

Therefore, on account of Section 3B,

kuN �uNn kL1T H s0 ! 0 as n!1 with T � .1CkuN0 kH s0 /
�
2.˛C1/
2˛�1 :

Since uN 2 C.Œ0; 1�IH1.R// we can iterate this argument a finite number of times to obtain that the
convergence of uNn to uN holds actually in C.Œ0; 1�IH s0.R//. The continuity of the flow map in H s.R/

follows by combining this last result with (4-32).

4C. The periodic case. We use the notations of Section 3C. Let H s
0 .�T/ be the closed subspace of

zero-mean functions of H s
0 .�T/. We define the Banach space H s.�T/ as the space H s

0 .�T/ endowed
with the norm

kukH s D khj�j
� 1
2 ih�is O'kL2

�
:

Let .u; v/ 2 .L1.0; T IH s.�T///2 be a pair of solutions to (1-3) associated with initial data .u0; v0/ in
.H s.�T//2 such that u0� v0 2H s.�T/. As noticed in Remark 1.3, .u; v/ 2 C.Œ0; T �IH s�˛�1.�T//2

and it is not too hard to check that the mean value is a constant of the motion for such solutions. Therefore,
u.t/� v.t/ has mean value zero for all t 2 Œ0; T �.

As explained in Section 3C, to extend our result on the torus �T, uniformly for �� 1, we only have to
care about the contributions of the null frequencies each time we used the homogeneous decomposition
in space frequencies. First we notice that in the proof of Lemma 4.2 we do not use any homogeneous
decomposition in space frequencies and thus this lemma still holds in the periodic setting. Note that this
is also true for (4-29), since the proof of this estimate is exactly the same. Moreover, on account of (3-42),
the contributions of the null frequencies vanish in the proof of Lemma 4.2. Now, for Propositions 4.7, 4.8
and 4.9, we only have to care about the contributions of @xPN .wP0z/, since, according to the discussion
above, P0w D P0.u � v/ D 0 on Œ0; T �. On account of (3-43), these contributions vanish in (4-22)
and (4-30). Finally, these contributions can be estimated in Proposition 4.7 by

k@xPN .PNwP0z/k
F
s� 3
2
C˛
2
;� 1
2
.N kPN .PNwP0z/kXs�2;0 . ıN kzkL1t L2xkwkL2tH s�1

x
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with k.ı2j /kl1.Z/. 1. This is acceptable, since 1� ˛
2
� 0 and s� 3

2
C
˛
2
� s�1. The proof of Theorem 1.5

is now complete.

5. Dissipative limits

First, we notice that, if u is a solution to (1-9), then u� defined by u�.t; x/ D �˛u.�1C˛t; �x/ is a
solution to

@tu�CL
�
˛C1u�C "�

˛C1�ˇA�ˇu�C
1
2
@x.u�/

2
D 0 (5-1)

with
2
L�˛C1v.�/D i�

˛C1p˛C1.�
�1�/ Ov.�/

and
b
A�ˇv.�/D �

ˇqˇ .�
�1�/ Ov.�/ for all � 2 R:

Therefore, as in the preceding section, up to this change of unknown, of parameter " and of operators, we
may assume that u satisfies (1-9) with L˛C1 and Aˇ that verify Hypotheses 1 and 2 for all 0 < �� 1.

Second, we notice that Hypothesis 2 now ensures that, for 0 < �� 1 and N � 1 dyadic,

.A�ˇPN v; PN v/L2 &N
ˇ
2 kPN vk

2
L2

(5-2)

and
kA�ˇPN vkL2 .N

ˇ
kPN vkL2 : (5-3)

The main point is now to prove that the Cauchy problem (1-9) is locally well-posed in H s uniformly
in " > 0.

Proposition 5.1. Let 1 � ˛ � 2, 0 � ˇ � 1 C ˛ and s � 1 � ˛
2

. For any ' 2 H s.R/ there exists
T � .1Cku0kH1�˛=2/�2.˛C1/=.2˛�1/ and a solution u" 2 C.Œ0; T �IH s/ to (1-9) that is unique in some
function space2 embedded in L1T .0; T IH

s/. Moreover, there exists C > 0 such that, for any " 2 �0; 1Œ,

sup
t2Œ0;T �

ku".t/kH s � Ck'kH s : (5-4)

Finally, for any R > 0, the family of solution maps S" W ' 7! u", " 2 �0; 1Œ, from B.0;R/H s into
C.Œ0; T .R/�IH s.R// is equicontinuous, i.e., for any sequence f'ng � B.0;R/H s converging to ' in
H s.R/,

lim
n!C1

sup
"2�0;1Œ

kS"' �S"'nkL1.0;T .R/IH s.R// D 0: (5-5)

Proof. We treat the cases .˛; s/ ¤
�
1; 1
2

�
. This last case can be treated in the same way by using the

estimates derived in the Appendix. First we notice that, for (1-9), in view of (5-2), the energy estimate
(4-14) becomes

kukzL1T H s C
p
"kuk

L2TH
sC

ˇ
2
. ku0kH s Ckuk

L1T H
1�˛

2
kukY sT CkukL

1
T H

skuk
Y
1�˛

2
T

: (5-6)

2For .˛; s/¤
�
1; 12

�
, this space is simply the space L1

T
H s \L2

T
H sCˇ=2.
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On the other hand, viewing "Aˇu as a forcing term, (4-2)–(4-3) together with (5-3) lead to

kukY sT . kukL1T H s .1Ckuk2
L1T H

1�˛
2
/C "kuk

L2TH
s�
1C˛
2
Cˇ
: (5-7)

To derive an a priori bound from the above estimates, as in the previous section, we have to use the
dilation argument that is described in the beginning of this section. So the dilation function u� defined by
u�.t; x/D �

˛u.�1C˛t; �x/ satisfies (5-1) and we set

kvkN s WD kvkL1T H s C

p
"�˛C1�ˇkvk

L2TH
sC

ˇ
2
:

Since ˇ � ˛C 1, this ensures that, for �. .1Ck'kH s /�2.˛C1/=.2˛�1/ and 0 < T � 2,

ku�kN sT . k'�kH s C .1Cku�k
2

N
1�˛

2
T

/ku�k
N
1�˛

2
T

ku�kN sT

with k'�kH s . �˛�1=2k'kH s � 1. This leads to the uniform bound (5-4) for smooth solutions to (1-9)
by a classical continuity argument.

Now, proceeding in the same way for the difference of two solutions, it is not too hard to check that
(4-20) becomes

ku� vk
Z
s� 3
2
C˛
2

T

. ku�vk
zL1T H

s� 3
2
C˛
2
Cku�vk

L2TH
s� 3
2
C˛
2
Cˇ
CkuCvk zY sT

ku�vk
Z
� 1
2

T

CkuCvk
zY
1�˛

2
ku�vk

Z
s� 3
2
C˛
2

T

;

whereas (4-22) becomes

ku� vk
zL1T H

s� 3
2
C˛
2
C
p
"ku� vk

L2TH
s� 3
2
C˛
2
C
ˇ
2
. ku0� v0k

H
s� 3
2
C˛
2
CkuC vk zY sT

ku� vk
Z
s� 3
2
C˛
2

T

:

By the same dilation arguments as above, this leads to

ku� vk
Z
s� 3
2
C˛
2

T

C
p
"ku� vk

L2TH
s� 3
2
C˛
2
C
ˇ
2
. ku0� v0k

H
s� 3
2
C˛
2
: (5-8)

Combining the above estimates and the Bona–Smith argument, we can proceed as in Section 4B and
construct a sequence of smooth solutions that converges strongly in C.Œ0; T �IH s/ towards a solution u"
to (1-9). We thus obtain the existence of a solution u" 2 C.Œ0; T �IH s/ \ L2TH

sCˇ=2 to (1-9) with
T & .1Cku0kH1�˛=2/�2.˛C1/=.2˛�1/ and ' 2H s as initial data. Moreover, (5-8) ensures that this is the
only solution emanating from ' in the class L1locH

s\L2locH
sCˇ=2. Obviously, this solution satisfies (5-4).

Finally, the equicontinuity of the solution map in C.0; T IH s/ follows from Bona–Smith arguments as in
Section 3B. �

It is clear that the above proposition implies part .1/ of Theorem 1.14. Now, part .2/ will follow from
general arguments (see for instance [Guo and Wang 2009]). Let us denote by S" and S the nonlinear group
associated with, respectively, (1-9) and (1-3). Let ' 2H s.R/, s � 1� ˛

2
and let T D T .k'kH1�˛=2/ > 0
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be as given by Proposition 5.1. For any N > 0 we can rewrite S".'/�S.'/ as

S".'/�S.'/D .S".'/�S".P�N'//C .S".P�N'/�S.P�N'//C .S.P�N'/�S.'//

D I";N CJ";N CKN :

By continuity with respect to initial data in H s.R/ of the solution map associated with (1-3), we have
limN!1 kKN kL1.0;T IH s/ D 0. Moreover, (5-5) ensures that

lim
N!1

sup
"2�0;1Œ

kI";N kL1.0;T IH s/ D 0:

It thus remains to check that, for any fixedN >0, lim"!0 kJ";N kL1.0;T IH s
x/D0. SinceP�N' 2H1.R/,

it is worth noticing that S".P�N'/ and S.P�N'/ belong to C1.RIH1.R//. Moreover, according to
Theorem 1.14 and Proposition 5.1, for all � 2 R and " 2 �0; 1Œ,

kS".P�N'/kL1T H
�
x
CkS.P�N'/kL1T H

�
x
� C.N; �; k'kL2x /:

Now, setting v" WD S".P�N'/ and v WD S.P�N'/, we observe that w" WD v"� v satisfies

@tw"CL˛C1w" D�
1
2
@x.w".vC v"//� "Aˇv"

with initial data w".0/D 0. For s � 0, taking the H s-scalar product of this last equation with w" and
integrating by parts, we get

d

dt
kw"kH s . .1Ck@x.vC v"/kL1x /kw"k

2
H s CkŒJ

s@x; .vC v"/�w"kL2xkw"kH
s C "2kDˇx v"k

2
H s :

Applying the mean value theorem to the Fourier transform of the commutator term, it is not too hard to
check that

kŒJ sx@x; f �gkL2x . kfxkH sC1kgkH s
x
; (5-9)

which leads to

d

dt
kw".t/k

2
H s . C.N; sC 2; k'kL2x /kw".t/k

2
H s
x
C "2C.N; sCˇ; k'kL2x /

2:

Integrating this differential inequality on Œ0; T �, this ensures that lim"!0 kw"kL1.0;T IH s/D 0 and proves
that

u"! u in C.Œ0; T �IH s/ (5-10)

with T � .1Cku0kH1�˛=2/�2.˛C1/=.2˛�1/. Now fix ' 2H s and let T � > 0 be the maximal time of exis-
tence of S.'/. It remains to prove that the time of existence T" of S".'/ inH s satisfies lim inf"!0 T"�T �.
Actually, this follows by a classical contradiction argument. Indeed, assuming that this is not true, there
exist "n& 0 such that limT"n D T1 < T

�. We set

ı.T1/D .1CkS.'/k
L1.0;T1IH

1�˛
2 /
/�

2.˛C1/
2˛�1 ;
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which is well defined since T1 < T �. Applying (5-10) about T1=ı.T1/ times, we eventually obtain that,
for n large enough, S"n.'/�T1� 1

100
ı.T1/

�
H
1�˛

2
� 2kS.'/k

L1.0;T1IH
1�˛

2 /
:

But then the uniform bound from below on the existence time ensures that T"n � T1C
1
2
ı.T1/, which

contradicts limT"n D T1 and proves the desired result. This ensures that, fixing 0 < T0 < T �, we have
T"�T0 for ">0 small enough. Finally, applying (5-10) about T0=ı.T0/ times, we get (5-10) with T DT0.
This completes the proof of Theorem 1.14.

Appendix: The case ˛D 1 and sD
1
2

This case is important since H 1=2 is the energy space for the Benjamin–Ono equation and also the
intermediate long waves equation. Unfortunately, we are not able to prove the unconditional well-
posedness in this case. However, we are able to prove the well-posedness without using a gauge transform.
This is useful for treating perturbations of these equations, as we explained in the preceding section. In
this section, we indicate the modifications of the proofs in this case. In the sequel we set

zM
1
2 WD zL1t H

1
2 \X�

1
2
;1:

Lemma A.1. Let ˛ D 1, 0 < T < 2, and let u 2 zM 1=2
T be a solution to (1-3). Then

kuk
zM
1
2
T

. kuk
zL1T H

1
2
Ckuk2

zM
1
2
T

: (A-1)

Proof. Working with the extension Qu D �T u (see (3-3)), still denoted u, if suffices to estimate the
X�1=2;1-norm of u. First we notice that the low frequency part can be easily controlled by

kP.1uk
X
� 1
2
;1

T

. kuk2
L1T L

2
x
:

Now, for N � 1, we have

kuN k
X
� 1
2
;1

T

. kPNu0k
H
� 1
2
CN

1
2

 X
N 02�N2&N

uN2uN 02


L2TL

2
x

CN
1
2

 X
1�N2�N

PN .u�NuN2/


L2TL

2
x

CN
1
2

 X
N2<1

PN .u�NuN2/


L2TL

2
x

D kPNu0k
H
� 1
2
C IN C IINCIIIN :

Clearly,
IN .N

1
2

X
N 02�N2&N

kuN2kL2tx
kuN 02

k
L1t H

1
2

. kuk
L1t H

1
2

X
N2&N

�
N

N2

�1
2
kuN2kL2tH

1
2

. ıN kuk2
L1t H

1
2
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with k.ı2j /kl2.N�/ . 1. Moreover, we easily get from Bernstein estimates that

IIIN .N
1
2

X
N2<1

ku�N kL2tx
kuN2kL1tx . ku�N kL2tH

1
2
kuk

L1t H
1
2
. ıN kuk

L1t H
1
2
kuk

L1t H
1
2

with k.ı2j /kl2.N�/ . 1. On the other hand,

IIN .N
1
2

 X
1�N2�N

Q�NN2PN .u�NuN2/


L2tx

CN
1
2

 X
1�N2�N

QœNN2PN .u�NuN2/


L2tx

. II1NCII2N :

By almost orthogonality, we have

II1N .N
1
2

� X
1�N2�N

Q�NN2PN .u�NuN2/2
L2tx

�1
2

.N
1
2

� X
N2�N

ku�N k
2
L2tx
kuN2k

2

L1t H
1
2
x

�1
2

. ku�N k
L2tH

1
2
kuk

zL1t H
1
2

. ıN kuk
L1t H

1
2
kuk

zL1t H
1
2

with k.ı2j /kl2.N�/. 1. It remains to control II2N . Since the Fourier projectors ensure h��p2.�/iœ NN2,
the resonance relation (1-6) leads to j�1�p2.�1/j _ j� � �1�p2.� � �1/j/&NN2 for II2N . We separate
the contributions of Q&NN2u�N and Q&NN2uN2 . For the first contribution, we have

II2N .N
1
2

X
1�N2�N

.NN2/
� 1
4N

1
4 kQ&NN2u�N kX

1
4
; 1
4
kuN2kL1t H

1
2

. ku�N k
X
1
4
; 1
4
kuk

L1t H
1
2

. ıN kuk
1
4

X
� 1
2
;1
kuk

3
4

L1t H
1
2

kuk
L1t H

1
2

with k.ı2j /kl2.N�/ . 1 and where we used interpolation at the last step. For the second contribution, we
write

II2N .N
1
2

X
1�N2�N

kQ�NN2u�N kL1t L
4
x
kQ&NN2uN2kL2tL

4
x

.N
1
2

X
1�N2�N

N�
1
4 kQ�NN2u�N kL1t H

1
2
kQ&NN2uN2kL2tH

1
4

.N
1
2

X
1�N2�N

N�
1
4 .NN2/

� 1
4 ku�N k

L1t H
1
2
kuN2kX

1
4
; 1
4

. ıN kukzL1t H
1
2
kuk

1
4

X
� 1
2
;1
kuk

3
4

L1t H
1
2

with k.ı2j /kl2.N�/ . 1. Gathering the above estimates, (5-2) follows. �
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Lemma A.2. Let ˛ D 1, 0 < T < 2 and let u 2 zM 1=2
T be a solution to (1-3). Then

kuk2
zL1T H

1
2

. ku0k2
H
1
2

Ckuk2
zL1t H

1
2

kuk
zM
1
2
T

: (A-2)

Proof. We follow the proof of Proposition 4.5. Note that zM 1=2 ,! zY 1=2. According to (4-15), it suffices
to control

I D
X
N>0

X
N1&N

N hN1i sup
t2�0;T Œ

jIt .uN ; u�N1 ; uN1/j:

It is easy to check that the only term of the left-hand side of (4-16) that causes trouble in the case ˛D 1 is
the first one. This term corresponds to the contribution of Q�LNN˛1 uN1 and Q�NN˛1 u�N1 . For ˛ D 1,
we control these contributions by applying Cauchy–Schwarz in .N;N1/. For instance, the contribution of
Q�LNN˛1 uN1 is estimated, thanks to Lemma 4.4, by

X
N�1

X
N1&N

N hN1i
X
L>1

L�1N�
1
2 kuN kL2tx

kQ�LNN˛1 uN1kF 0;
1
2
ku�N1kL1t L

2
x

.
X
L>1

L�1
� X
N1&N�1

kuN k
2

L2tH
1
2

ku�N1k
2

L1t H
1
2

�1
2
� X
N1&N�1

kQ�LNN˛1 uN1k
2

F
1
2
; 1
2

�1
2

. kuk
L2tH

1
2
kuk

zL1t H
1
2
kuk

X
� 1
2
;1
: �

Lemma A.3. Let 0 < T < 2 and let u, v 2 zM 1=2
T be two solutions to (1-3) on �0; T Œ. Then we have

ku� vk
Z
� 1
2

T

. ku� vk
L1T H

s� 3
2
C˛
2
CkuC vk

zM
1
2
T

ku� vk
Z
� 1
2

T

(A-3)

and

ku� vk2
zL1T H

� 1
2

. ku0� v0k2
H
� 1
2

CkuC vk
zM
1
2
T

ku� vk
zL1T H

� 1
2
ku� vk

Z
� 1
2

T

: (A-4)

Proof. First we notice that (A-4) is already proven in Proposition 4.8, since zM 1=2
T ,! zY

1=2
T ,! Y

1=2
T . It

remains to prove (A-3). We follow the proof of Proposition 4.5. It is not too hard to check that the only
contribution that causes troubles in the right-hand side of (4-21), in the case ˛ D 1, is the contribution
of the low-high interaction term, PN .P.N zwN /. We proceed as in Lemma A.1 . We take extensions Qz
and zw, supported in ��4; 4Œ, of z and w such that kQzk zM1=2 . kzk zM1=2

T

and k zwkZ�1=2 . kwkZ�1=2T

. For
simplicity we drop the tilde. We first notice that the contribution of P.1z is easily estimated by

k@xPN .P.1zw�N /k
F
� 1
2
;1;� 1

2
. hN i�

1
2 kPN .P.1zw�N /kL2tx

. kzkL1t L2xkw�N kL2tH�
1
2
;
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which is acceptable. Now we decompose the remaining contribution as

k@xPN .P�1P.N zw�N /k
F
� 1
2
;1;� 1

2

.N
 X
1�N1.N

PN .PN1zw�N /


X
� 3
2
;0

. hN i�
1
2

 X
1�N1.N

Q�NN1PN .PN1zw�N /


L2tx

ChN i�
1
2

 X
1�N1.N

QœNN1PN .PN1zw�N /


L2tx

D J1;N CJ2;N :

By almost-orthogonality,

J1;N . hN i�
1
2

� X
1�N1.N

kQ�NN1PN .PN1zw�N /k
2
L2tx

�1
2

. hN i�
1
2

� X
1�N1.N

kPN1zk
2

L2tH
1
2

kw�N k
2
L1tx

�1
2

. kw�N k
L1t H

� 1
2
kzk

L2tH
1
2
;

which is acceptable. To treat J2, we notice that, since the Fourier projectors ensure that h��p2.�/iœNN1,
the resonance relation (1-6) leads to j�1�p2.�1/j _ j� � �1�p2.� � �1/j&NN1 for J2;N . We separate
the contributions of Q&NN1zN1 and Q&NN1w�N . For the first contribution, we write

J2;N . hN i�
1
2

X
1�N1.N

N
1
2

1 kQ&NN1PN1zkL2tx
kw�N kL1t L

2
x

. hN i�
1
2

X
1�N1.N

.NN1/
� 1
4N

1
4

1 kQ&NN1PN1zkX
1
4
; 1
4
kw�N kL1t L

2
x

. kzk
1
4

X
� 1
2
;1
kzk

3
4

L1t H
1
2

kw�N k
L1t H

� 1
2
;

which is acceptable. For the second contribution, according to (4-10), we have

J2 . hN i�
1
2

X
1�N1.N

kzN1kL1t H
1
2
kQ&NN1w�N kL2tx

. hN i�
1
2

X
1�N1.N

.NN1/
�1N

3
2 kzN1kL1t H

1
2
kw�N k

F
� 1
2
; 1
2

. kw�N k
F
� 1
2
; 1
2
kzk

L1t H
1
2
;

which is acceptable. Gathering the above estimates we obtain (A-3). �

Gathering Lemmas A.1–A.3 and proceeding as in Section 4B we obtain the local well-posedness
in H 1=2 of (1-3) for ˛ D 1. Note that the uniqueness holds in the space zM 1=2

T .
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