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A POINTWISE INEQUALITY FOR
THE FOURTH-ORDER LANE–EMDEN EQUATION

MOSTAFA FAZLY, JUN-CHENG WEI AND XINGWANG XU

We prove the pointwise inequality

−1u ≥
(

2
(p+ 1)− cn

)1
2
|x |a/2u(p+1)/2

+
2

n− 4
|∇u|2

u
in Rn,

where cn := 8/(n(n− 4)), for positive bounded solutions of the fourth-order Hénon equation, that is,

12u = |x |au p in Rn

for some a ≥ 0 and p > 1. Motivated by Moser’s proof of Harnack’s inequality as well as Moser
iteration-type arguments in the regularity theory, we develop an iteration argument to prove the above
pointwise inequality. As far as we know this is the first time that such an argument is applied towards
constructing pointwise inequalities for partial differential equations. An interesting point is that the
coefficient 2/(n − 4) also appears in the fourth-order Q-curvature and the Paneitz operator. This, in
particular, implies that the scalar curvature of the conformal metric with conformal factor u4/(n−4) is
positive.

1. Introduction

We are interested in proving an a priori pointwise estimate for positive solutions of the fourth-order Hénon
equation

12u = |x |au p in Rn, (1-1)

where p > 1 and a ≥ 0. Let us first mention that, for the case a = 0, it is known that (1-1) only admits
u = 0 as a nonnegative solution when p is a subcritical exponent, that is, 1 < p < (n + 4)/(n − 4)
when n ≥ 5, and 1< p when n ≤ 4. Moreover, for the critical case p= (n+4)/(n−4), all entire positive
solutions are classified. See [Lin 1998; Wei and Xu 1999]. This is a counterpart of the standard Liouville
theorem of Gidas and Spruck [1981a; 1981b] for the second-order Lane–Emden equation

−1u = u p in Rn, (1-2)

stating that u = 0 is the only nonnegative solution for (1-2) when p is a subcritical exponent, that is,
1< p< (n+2)/(n−2) when n ≥ 3. Note also that, for the fourth-order Hénon equation, it is conjectured
that u = 0 is the only nonnegative solution of (1-1) when p is a subcritical exponent, that is, when

Fazly and Wei are supported by NSERC grants.
MSC2010: 35B45, 35B50, 35J30, 53C21, 35B08.
Keywords: semilinear elliptic equations, a priori pointwise estimate, Moser iteration-type arguments, elliptic regularity.
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1< p < (n+ 4+ 2a)/(n− 4) and n ≥ 5; see [Fazly and Ghoussoub 2014]. Therefore, throughout this
note, when we are dealing with (1-1) we assume that p > (n+ 4+ 2a)/(n− 4) and n ≥ 5. For more
information, see [Fazly and Ghoussoub 2014; Souplet 2009] and references therein.

Pointwise estimates have had tremendous impact on the theory of elliptic partial differential equations.
In what follows, we list some of the celebrated pointwise inequalities for certain semilinear elliptic
equations and systems. These inequalities have been used to tackle well-known conjectures and open
problems. The following inequality has been one of the main techniques to solve De Giorgi’s conjecture
(1978) for the Allen–Cahn equation and to analyze various semilinear equations and problems.

Theorem 1.1 [Modica 1985]. Let F ∈ C2(R) be a nonnegative function and u be a bounded entire
solution of

1u = F ′(u) in Rn. (1-3)

Then
|∇u|2 ≤ 2F(u) in Rn. (1-4)

For the specific case F(u)= 1
4(1− u2)2, equation (1-3) is known as the Allen–Cahn equation. Note

also that [Caffarelli et al. 1994] extended this inequality to quasilinear equations. We refer interested
readers to [Farina and Valdinoci 2010; 2011; 2013; 2014; Castellaneta et al. 2012; Farina et al. 2008]
regarding pointwise gradient estimates and certain improvements of (1-4). For the fourth-order counterpart
of (1-3) with an arbitrary nonlinearity, a general inequality of the form (1-4) is not known. However, for
a particular nonlinearity known as the fourth-order Lane–Emden equation, i.e.,

12u = u p in Rn (1-5)

it was shown by Wei and Xu [1999, Theorem 3.1] that the negative Laplacian of the positive solutions is
nonnegative, that is, −1u ≥ 0 in Rn . Set v =−1u and, from the fact that −1u ≥ 0, we can consider
(1-5) as a special case (when q = 1) of the Lane–Emden system{

−1u = vq in Rn,

−1v = u p in Rn,
(1-6)

where p ≥ q ≥ 1. Note that there is a significance difference between system (1-6) and equation (1-5), in
the sense that this system has Hamiltonian structure while the equation has gradient structure. This system
has been of great interest, at least in the past two decades. In particular, the Lane–Emden conjecture, stating
that u = v = 0 is the only nonnegative solution for this system when 1/(p+ 1)+ 1/(q + 1) > (n− 2)/n
has been studied extensively and various methods and techniques have been developed to tackle this
conjecture. Among these methods, Souplet [2009] proved the following pointwise inequality for solutions
of (1-6) and then used it to prove the Lane–Emden conjecture in four dimensions. Note that the particular
case 1< p < 2 was done by Phan [2012].

Theorem 1.2 [Souplet 2009]. Let u and v be nonnegative solutions of (1-6). Then

u p+1

p+ 1
≤
vq+1

q + 1
in Rn. (1-7)
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Applying this theorem, the following pointwise inequality holds for nonnegative solutions of (1-5):

−1u ≥
√

2
p+1

u(p+1)/2 in Rn. (1-8)

Note also that Phan [2012], with similar methods to those [Souplet 2009], extended the pointwise
inequality (1-7) to nonnegative solutions of the Hénon–Lane–Emden system{

−1u = |x |bvq in Rn,

−1v = |x |au p in Rn,
(1-9)

where p ≥ q ≥ 1. Suppose that 0≤ a− b ≤ (n− 2)(p− q); then

|x |a
u p+1

p+ 1
≤ |x |b

vq+1

q + 1
in Rn. (1-10)

The standard method to prove a pointwise inequality, as is used to prove (1-7) and (1-4), is to derive
an appropriate equation — call it an auxiliary equation — for the function that is the difference between
the right-hand and left-hand sides of the inequality. Then, whenever we have enough decay estimates
on solutions of the auxiliary equation, maximum principles can be applied to prove that the difference
function has a fixed sign. So, the key point here is to manipulate a suitable auxiliary equation.

In a more technical framework, to construct an auxiliary equation to prove (1-7) and (1-8), a few
positive terms, including a gradient term of the form |∇u|2ut−2 for some number t , are not considered
in [Souplet 2009]. To be more explicit, in order to prove (1-8), which is a particular case of (1-7), the
difference function w(x) :=1u+

√
2/(p+ 1)u(p+1)/2 is considered. Straightforward calculations show

that the following auxiliary equation holds:(√
2

p+1
u(1−p)/2

)
1w =1u+

√
2

p+1
u(p+1)/2

+
p−1

2
|∇u|2

u
. (1-11)

In order to show that 1w is nonnegative when w is nonnegative, via maximum principles for the above
equation, the gradient term |∇u|2/u is not considered in [Souplet 2009]. Note that (1-11) implies, in
spirit, that the gradient term |∇u|2/u should have an impact on the inequality, just like the Laplacian
operator and the power term u(p+1)/2. This is our motivation to attempt to include the gradient term in the
inequality (1-8) that gives a lower bound on the Laplacian operator. Let us briefly mention that Modica, in
his proof of (1-4), took advantage of similar gradient terms to construct an auxiliary equation. Following
ideas provided by Modica [1985] and Souplet [2009], as we shall see in the proof of Proposition 3.1, we
manage to keep most of the positive terms when looking for an auxiliary equation.

In this paper, we develop a Moser iteration-type argument to prove a lower bound for the negative
Laplacian of positive bounded solutions of (1-1) that involves powers of u and the new term |∇u|2/u
with 2/(n− 4) as the coefficient. The remarkable point is that the coefficient 2/(n− 4) is exactly what
we need in the estimate of the scalar curvature for the conformal metric g = u2/(n−4)g0.

Here is our main result:
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Theorem 1.3. Let u be a bounded positive solution of (1-1). Then the following pointwise inequality
holds:

−1u ≥
√

2
(p+1)−cn

|x |a/2u(p+1)/2
+

2
n−4
|∇u|2

u
in Rn, (1-12)

where cn := 8/(n(n− 4)) and 0≤ a ≤ infk≥0 Ak (Ak is defined in (4-28)).

Remark 1.4. A natural question here is: what are the best constants in the inequality (1-12)?

Let us now put the inequality (1-12) in a more geometric text. By the conformal change g= u4/(n−4)g0,
where g0 is the usual Euclidean metric, the new scalar curvature becomes

Sg =−
4(n− 1)

n− 2
u−(n+2)/(n−4)1(u(n−2)/(n−4)).

An immediate consequence of (1-12) is that the conformal scalar curvature is positive. Note that this
cannot be deduced from the inequality (1-8).

The idea of proving a lower bound for the negative of the Laplacian operator is also used in the context
of nonlinear eigenvalue problems to prove certain regularity results; see, e.g., [Cowan et al. 2010]. Similar
pointwise inequalities are used to prove Liouville theorems in the notion of stability in [Wei et al. 2013;
Wei and Ye 2013] and references therein as well. We would like to mention that Gui [2008] proved a very
interesting Hamiltonian identity for elliptic systems that may be regarded as a generalization of Modica’s
inequality. He used this identity to rigorously analyze the structure of level curves of saddle solutions of
the Allen–Cahn equation as well as Young’s law for the contact angles in triple junction formation. Note
also that, as is shown by Farina [2004] for the Ginzburg–Landau system, the analog of Modica’s estimate
is false for systems in general. We refer interested readers to [Alikakos 2013] for a review of this topic
and to [Fazly and Ghoussoub 2013] for De Giorgi-type results for systems.

Here is the organization of the paper. In Section 2, we provide certain standard elliptic estimates that
are consequences of Sobolev embeddings and the regularity theory. Then, in Section 3 we develop a
Moser iteration-type argument, following ideas provided by Modica [1985] and Souplet [2009]. Finally,
in Section 4, we first give a certain maximum principle argument for a quasilinear equation that arises in
the Moser iteration process. Then we apply the estimates and methods developed in the earlier sections.
We suggest the reader ignores the weight function |x |a in (1-1) when reading the paper for the first time.

2. Technical elliptic estimates

In this section, we provide some elliptic decay estimates that we use frequently later in the proofs.
Deriving the right decay estimates for solutions of (1-1) plays a fundamental role in our proofs. Similar
estimates have been also used in the literature to construct Liouville theorems and regularity results. We
refer interested readers to [Fazly 2014; Fazly and Ghoussoub 2014; Phan 2012; Souplet 2009; Phan and
Souplet 2012]. We start with the following standard estimate:
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Lemma 2.1 (L p-estimate on BR). Suppose that u is a nonnegative solution of (1-1); then, for any R > 1
we have ∫

BR

|x |au p
≤ C Rn−(4p+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Proof. Consider the following test function φR ∈ C4
c (R

n) with 0≤ φR ≤ 1:

φR(x)=
{

1 if |x |< R,
0 if |x |> 2R,

where ‖DiφR‖∞ ≤ C/Ri for 1≤ i ≤ 4. For fixed m ≥ 2, we have

|12φm
R (x)| ≤

{
0 if |x |< R or |x |> 2R,
C R−4φm−4

R if R < |x |< 2R,

where C > 0 is independent of R. For m ≥ 2, multiply the equation by φm
R and integrate to get∫

B2R

|x |au pφm
R =

∫
B2R

12uφm
R =

∫
B2R

u12φm
R ≤ C R−4

∫
B2R\BR

uφm−4
R .

Applying Hölder’s inequality, we get∫
B2R

|x |au pφm
R ≤ C R−4

(∫
B2R\BR

|x |(−a/p)p′
) 1

p′
(∫

B2R\BR

|x |au pφ
(m−4)p
R

)1
p

≤ C R(n−(a/p)p′)/p′−4
(∫

B2R\BR

|x |au pφ
(m−4)p
R

)1
p
,

where p′ = p/(p− 1). Set m = (m− 4)p, so that m = 4p/(p− 1), to get∫
B2R

|x |au pφm
R ≤ C R(n−(a/p)p′)/p′−4

(∫
B2R

|x |au pφm
R

)1
p
.

Therefore, ∫
B2R

|x |au pφm
R ≤ C R(n−(a/p)p′)−4p′ .

This finishes the proof. �

From Hölder’s inequality we get the following:

Corollary 2.2. Under the same assumptions as Lemma 2.1,∫
BR\BR/2

u ≤ C Rn−(a+4)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

We now show that the operator −1u has a sign. Then, we apply this to provide various elliptic
estimates for derivatives of u. In addition, later on this helps us to start an iteration argument.

Proposition 2.3. Let u be a positive solution of (1-1). Then, −1u ≥ 0 in Rn .
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Proof. Let v =−1u. Ideas and methods applied in this proof are strongly motivated by the ones given
in [Wei and Xu 1999]. Suppose that there is x0 ∈ Rn such that v(x0) < 0. Without loss of generality
we take x0 = 0, i.e., if x0 6= 0 set ω(x)= v(x + x0) and apply the same argument. We use the notation
f̄ (r)= (1/|∂Br |)

∫
∂Br

f d S for the average of a function f (x) on the boundary of Br . We refer interested
readers to [Ni 1982] regarding the average function. Applying Hölder’s inequality,{

−1r ū(r)= v̄(r) in R,

−1r v̄(r)≥ ra(ū)p in R,
(2-1)

where 1r is the Laplacian operator in polar coordinates, i.e.,

1r f̄ (r)= r1−n(rn−1 f̄ ′(r))′.

It is straightforward to see that

v̄′(r)=
1
|∂Br |

∫
Br

1v =−
1
|∂Br |

∫
Br

|x |au p
≤ 0.

Therefore, v̄(r)≤ v̄(0) < 0 for r > 0. Similarly, for ū′(r) we have

ū′(r)=−
1
|∂Br |

∫
Br

v =−r1−n
∫ r

0
sn−1v̄(s) ds ≥−v̄(0)r1−n

∫ r

0
sn−1 ds =−

v̄(0)
n

r.

From this, for any r ≥ r0 we get

ū(r)≥ αr2, (2-2)

where α =−v̄(0)/(2n) > 0. We now have a lower bound on ū(r). Suppose instead that the following
more general lower bound holds on ū(r):

ū(r)≥
α pk

βsk
r tk for r ≥ rk, (2-3)

where s0 := 0, t0 := 2, α := −v̄(0)/(2n) > 0 and β := 2p+a+n+4> 0. Note that (2-1) gives a relation
between the two functions ū(r) and v̄(r). Therefore, the lower bound on ū(r) forces an upper bound
on v̄(r) and vice versa. In the light of this fact, we can construct an iteration argument to improve the
bound (2-3). Integrating the second equation of (2-1) over [rk, r ] when r ≥ rk , we get

rn−1v̄′(r)≤ rn−1
k v̄′(rk)−

α pk+1

β psk

∫ r

rk

sn−1+a+ptk ds

≤−
α pk+1

β psk (ptk + n+ a)
(r ptk+n+a

− r ptk+n+a
k ) since v̄′ < 0.

Therefore, v̄′(r)≤−
(
α pk+1

/(β psk (ptk + n+ a))
)
(r ptk+a+1

− r ptk+a+1
k ) for all r ≥ rk , that is,

v̄′(r)≤−
α pk+1

2β psk (ptk + n+ a)
r ptk+a+1 for all r ≥ 21/(ptk+a+1)rk .
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Integrating the last inequality over [21/(ptk+a+1)rk, r ] when r ≥ 21/(ptk+a+1)rk = r̃k , we obtain

v̄(r)≤ v̄(r̃k)−
α pk+1

2β psk Tk,n,a,p
(r ptk+a+2

− r̃ ptk+a+2
k ),

where Tk,n,a,p := (ptk + n+ a)(ptk + 2+ a). By similar discussions and by taking r large enough, that
is, r ≥ 21/(ptk+a+1)21/(ptk+a+2)rk = ˜̃r k , we end up with

v̄(r)≤−
α pk+1

4β psk Tk,n,a,p
r ptk+a+2. (2-4)

Applying (2-4) and integrating (2-1) again over [˜̃r k, r ] when r ≥ ˜̃r k , we have

rn−1ū′(r)= r̃n−1
k ū′(r̃k)−

∫ r

r̃k

sn−1v̄(s) ds ≥
α pk+1

4β psk Tk,n,a,p

∫ r

r̃k

s ptk+a+n+1 ds.

Therefore, the following new lower bound on ū(r) holds:

ū(r)≥
α pk+1

24β psk T̃k,n,a,p
r ptk+a+n+4,

where
r ≥ 21/(ptk+a+3)21/(ptk+a+4) ˜̃r k = 2

∑4
i=1 1/(ptk+a+i)rk

and
T̃k,n,a,p = (ptk + n+ a+ 2)(ptk + 4+ a)Tk,n,a,p

= (ptk + n+ a)(ptk + 2+ a)(ptk + n+ a+ 2)(ptk + 4+ a)

≤ (ptk + n+ a+ 4)4.

We now modify this estimate to make the coefficients similar to (2-3). After simplifying, we get

ū(r)≥
α pk+1

β psk Mk
r ptk+a+4 for r ≥ 24/(ptk+a+1)rk, (2-5)

where Mk := 24(ptk + n+ a+ 4)4. In what follows, we put an upper bound on Mk that is expressed as a
power of β. Note that

1
2

4
√

Mk+1= ptk+1+n+a+4= p(ptk+n+a+4)++n+a+4≤ (ptk+n+a+4)(p+1)= 1
2(p+1) 4

√
Mk .

From this we have Mk+1≤ (p+1)4 Mk and therefore Mk ≤ (p+1)4k M0, where M0= 24(2p+n+a+4)4

because t0 = 2. Since the constant β is defined as β = 2p+ n+ a+ 4, we get the bound

Mk ≤ β
4k+4. (2-6)

From this, (2-3) and (2-5), and to complete the iteration process, we set

tk+1 := ptk + a+ 4 for t0 = 2, (2-7)

sk+1 := psk + 4k+ 4 for s0 = 0, (2-8)
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and, therefore,

ū(r)≥
α pk+1

βsk+1
r tk+1 for r ≥ rk+1, (2-9)

where rk+1 := 24/(ptk+a+1)rk ≥ 2
∑4

i=1 1/(ptk+a+i)rk . By direct calculations on these recursive sequences,
we get the explicit sequences

tk =
2pk+1

+ (a+ 2)pk
− (a+ 4)

p− 1
,

sk =
4pk+1

− 4p(k+ 1)+ 4k
(p− 1)2

,

rk = 2
∑k−1

i=0 4/(pti+a+1)r0 ≤ 2
∑
∞

i=0 4/(pti+a+1)r0 =: r∗ <∞.

Set R := β2/(p−1)M , where M = max{α−1,m} when m > 1 is large enough to ensure mβ2/(p−1)
≥ r∗.

Therefore, R ≥ r∗ ≥ rk for any k and we have

ū(R)≥ M tk−pk
β2tk/(p−1)−sk .

If we take k large enough, e.g., k ≥ (ln(a+4)− ln(a+2))/ ln p, then tk > pk . The fact that M > 1 gives
us

ū(R)≥ β2tk/(p−1)−sk = β(2(a+2)pk
+4k(p−1)+4p−2(a+4))/(p−1)2 .

Since we have assumed that a+2> 0 and β > 1, we get ū(R)→∞ as k→∞. Note that 0< R <∞ is
independent of k. This finishes the proof. �

We now apply Proposition 2.3 to conclude that −1u ≥ 0 and therefore we can consider (1-1) as a
special case of the Hénon–Lane–Emden equation.

Lemma 2.4 (L1-estimates on BR). Suppose that u is a nonnegative solution of (1-1); then, for any R > 1
we have ∫

BR

|1u| ≤ C Rn−(2p+2+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Proof. Set v =−1u. From Proposition 2.3 we know that v ≥ 0. Therefore, the pair (u, v) satisfies the
system {

−1u = v in Rn,

−1v = |x |au pin Rn,
(2-10)

which is a particular case of the Hénon–Lane–Emden system. From the estimates provided in [Fazly and
Ghoussoub 2014, Lemma 2.1], we get the desired result. �

Lemma 2.5 (an interpolation inequality on BR). Let R > 1 and z ∈W 2,1(B2R). Then∫
BR\BR/2

|Dz| ≤ C R
∫

B2R\BR/4

|1z| +C R−1
∫

B2R\BR/4

|z|,

where C = C(n) > 0 is independent of R.
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Corollary 2.6. Under the same assumptions as Lemma 2.1. The following estimate holds:∫
BR\BR/2

|Du| ≤ C Rn−(p+3+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Lemma 2.7 (Lτ -estimate on BR). Let 1< τ <∞ and z ∈W 2,τ (B2R). Then∫
BR\BR/2

|D2z|τ ≤ C
∫

B2R\BR/4

|1z|τ +C R−2τ
∫

B2R\BR/4

|z|τ ,

where C = C(n, τ ) > 0 does not depend on R.

Lemma 2.8 (L2-estimates on BR). Suppose that u is a bounded nonnegative solution of (1-1); then, for
any R > 1 we have∫

BR

|1u|2 ≤ C
∫

B2R

|x |au p+1
+C R−2

∫
B2R

|1u| +C R−4
∫

B2R\BR

u, (2-11)

where C = C(n, p, a) > 0 does not depend on R.

Proof. We proceed in two steps.

Step 1: Multiply both sides of (1-1) by uφ2, where φ ∈C∞c (R
n)∩[0, 1] is a test function. Then, integrating

by parts, we get∫
Rn
|1u|2φ2

=

∫
Rn
|x |au p+1φ2

− 4
∫

Rn
1u∇u · ∇φφ−

∫
Rn

u1u(2|∇φ|2+ 2φ1φ)

≤

∫
Rn
|x |au p+1φ2

+ δ

∫
Rn
|1u|2φ2

+C(δ)
∫

Rn
|∇u|2|∇φ|2+C

∫
Rn
|1u|(|∇φ|2+ |1φ|)

for some constant C > 0. Here, we have used Cauchy’s inequality for 0< δ < 1. Therefore, if we set φ to
be the standard test function, that is, φ = 1 in BR and φ = 0 in Rn

\ B2R with ‖Di
xφ‖L∞(B2R\BR) ≤ C R−i

for i = 1, 2, then we get∫
BR

|1u|2 ≤
∫

B2R

|x |au p+1
+C R−2

∫
B2R\BR

|∇u|2+C R−2
∫

B2R\BR

|1u|, (2-12)

where C = C(n, p, a) > 0 does not depend on R.

Step 2: Multiply both sides of−1u= v by uφ2, where φ is the same test function as in Step 1. Integrating
by parts again, we get∫

Rn
|∇u|2φ2

=

∫
Rn

uvφ2
− 2

∫
Rn

u∇u · ∇φφ ≤
∫

Rn
uvφ2

+ δ

∫
Rn
|∇u|2φ2

+C(δ)
∫

Rn
|∇φ|2u2,

where we have also used Cauchy’s inequality for 0< δ < 1. So,∫
BR

|∇u|2 ≤ C
∫

B2R

|1u| +C R−2
∫

B2R\BR

u, (2-13)
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where we have used the boundedness of u. From (2-12) and (2-13) we get∫
BR

|1u|2 ≤
∫

B2R

|x |au p+1
+C R−2

∫
B2R

|1u| +C R−4
∫

B2R\BR

u. (2-14)

This completes the proof. �

We now apply Lemma 2.1, Lemma 2.8 and Corollary 2.2 to get the following:

Corollary 2.9. Suppose that the assumptions of Lemma 2.1 hold. Moreover, let u be bounded; then∫
BR

|1u|2 ≤ C Rn−(4p+a)/(p−1), (2-15)

where C = C(n, p, a) > 0 is independent of R.

Lemma 2.10 (Sobolev inequalities on the sphere Sn−1). Fix n≥ 2, a positive integer i and 1< t <τ ≤∞.
For z ∈W i,t(Sn−1),

‖z‖Lτ (Sn−1) ≤ C‖Di
θ z‖L t (Sn−1)+C‖z‖L1(Sn−1),

where {1
τ
=

1
t
−

i
n−1

if i t + 1< n,

τ =∞ if i t + 1> n,
and C = C(i, t, n, τ ) > 0.

3. Developing the iteration argument

In this section, we develop a counterpart of the Moser iteration argument [1961] for solutions of (1-1).
We define a sequence of functions (wk)k=−1 of the form

wk :=1u+αk |∇u|2(u+ ε)−1
+βk |x |a/2u(p+1)/2,

where αk and βk are certain nondecreasing sequences of nonnegative numbers with α−1 = β−1 = 0.
Assuming that wk ≤ 0, that is, essentially, a lower bound on the negative Laplacian operator holds,

we construct a differential inequality for wk+1 with αk+1 ≥ αk and βk+1 ≥ βk . Then, applying certain
maximum principle arguments, we show that wk+1 ≤ 0. Note that wk+1 ≤ 0 is stronger than wk ≤ 0,
because it forces a stronger lower bound on the negative of the Laplacian operator.

We start by proving that w−1, which is the Laplacian operator of u, is nonpositive; see Proposition 2.3.
Then, using this fact and applying (1-9) and (1-10) when q = 1 and b= 0, we get the following inequality
for nonnegative solutions of the fourth-order Hénon equation (1-1):

−1u ≥
√

2
p+1
|x |a/2u(p+1)/2 in Rn, (3-1)

where 0≤ a ≤ (n− 2)(p− 1). Inequality (3-1) is the first step of the iteration argument, meaning that
w0 ≤ 0 for α0 = 0 and β0 =

√
2/(p+ 1).

We now perform the iteration argument:
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Proposition 3.1. Let u be a positive classical solution of (1-1). Suppose that (αk)k=0 and (βk)k=0 are
sequences of numbers. Define the sequence of functions

wk :=1u+αk |∇u|2(u+ ε)−1
+βk |x |a/2u(p+1)/2, (3-2)

where ε = ε(k) is a positive constant. Suppose that wk ≤ 0; then wk+1 satisfies the differential inequality

1wk+1−2αk+1(u+ε)−1
∇u·∇wk+1+αk+1wk+1(u+ε)−2

|∇u|2− 1
2βk+1(p+1)u(p−1)/2

|x |a/2wk+1

≥ I (1)ε,βk
|x |au p

+αk+1 I (2)αk
|∇u|4(u+ ε)−3

+ I (4)a,αk ,βk
|x |a−2u(p+1)/2

+ I (3)ε,αk ,βk
|x |au(p+1)/2

∣∣∣∣∇u
u
+

aβk+1
( 1

2(p+ 1)−αk+1u/(u+ ε)
)

2I (3)ε,αk ,βk

x
|x |2

∣∣∣∣2, (3-3)

where

I (1)ε,αk ,βk
: = 1− p+1

2
β2

k+1+
2
n
αk+1β

2
k

u
u+ε

,

I (2)αk
: =

2
n
(αk+1+αk + 1)2− 2αk+1(αk+1+ 1)+αk+1,

I (3)ε,αk ,βk
: =

4
n
αk+1βk(αk+1+αk + 1)

u2

(u+ ε)2
+βk+1αk+1

u2

(u+ ε)2

− (p+ 1)βk+1αk+1
u

u+ε
+

p+ 1
2

( p−1
2
−αk+1

u
u+ε

)
βk+1,

I (4)a,ε,αk ,βk
: =

a
2
βk+1

(
n+ a

2
− 2

)
−

a2β2
k+1

( 1
2(p+ 1)−αk+1u/(u+ ε)

)2

4I (3)ε,αk ,βk

.

Proof. For the sake of simplicity in calculations, set b := 1
2a and q := 1

2(p + 1). From (3-2), the
function wk+1 is defined as

wk+1 :=1u+αk+1|∇u|2(u+ ε)−1
+βk+1|x |buq .

Taking Laplacian of wk+1 and using (1-1), we get

1wk+1 =1
2u+αk+11(|∇u|2(u+ ε)−1)+βk+11(|x |buq)= |x |au p

+ I + J, (3-4)

where I := αk+11(|∇u|2(u+ ε)−1) and J := βk+11(|x |buq). In what follows, we simplify I and J as
well as finding lower bounds for these terms. We start with J :

J
βk+1

=1(|x |buq)=1|x |buq
+1uq

|x |b+ 2∇|x |b · ∇uq

= b(n+ b− 2)|x |b−2uq
+ q(q − 1)|x |buq−2

|∇u|2+ q|x |buq−11u+ 2bq|x |b−2uq−1
∇u · x .

From the definition of wk+1, we have

1u = wk+1−αk+1|∇u|2(u+ ε)−1
−βk+1|x |buq . (3-5)
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Substitute this into the previous equation to simplify J as

J
βk+1

= quq−1
|x |bwk+1− qβk+1u2q−1

|x |2b
+

(
q(q − 1)− qαk+1

u
u+ε

)
|x |buq−2

|∇u|2

+ b(n+ b− 2)|x |b−2uq
+ 2bq|x |b−2uq−1

∇u · x . (3-6)

We now simplify I :

I
αk+1

=1(|∇u|2(u+ ε)−1)=
∑
i, j

∂ j j (u2
i (u+ ε)

−1)

= 2(u+ ε)−1
∑
i, j

(∂i j u)2+ 2(u+ ε)−1
∇u · ∇1u− 4(u+ ε)−2

∑
i, j

∂i u∂ j u∂i j u

− |∇u|2(u+ ε)−21u+ 2|∇u|4(u+ ε)−3.

Again substituting (3-5) into the term 2(u+ ε)−1
∇u · ∇1u that appears above, we get

I
αk+1

= 2(u+ ε)−1
∑
i, j

(∂i j u)2− 4(u+ ε)−2
∑
i, j

∂i u∂ j u∂i j u+ 2|∇u|4(u+ ε)−3
− |∇u|2(u+ ε)−31u

+ 2(u+ ε)−1
∇u · ∇wk+1− 2αk+1(u+ ε)−1

∇u · (|∇u|2(u+ ε)−1)

− 2βk+1(u+ ε)−1
∇u · ∇(|x |buq).

Then, collecting similar terms, we obtain

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1

= 2(u+ ε)−1
∑
i, j

(∂i j u)2− 4(αk+1+ 1)(u+ ε)−2
∑
i, j

∂i u∂ j u∂i j u+ 2(αk+1+ 1)|∇u|4(u+ ε)−3

− |∇u|2(u+ ε)−21u− 2βk+1b|x |b−2(u+ ε)−1uq
∇u · x − 2βk+1q|x |buq−1(u+ ε)−1

|∇u|2.

Completing the square, we get

I
αk+1
−2(u+ε)−1

∇u ·∇wk+1

= 2(u+ε)−1
∑
i, j

(∂i j u−(αk+1+1)(u+ε)−1∂i u∂ j u)2−2αk+1(αk+1+1)|∇u|4(u+ε)−3

−|∇u|2(u+ε)−21u−2βk+1b|x |b−2(u+ε)−1uq
∇u ·x−2βk+1q|x |buq−1(u+ε)−1

|∇u|2. (3-7)

Note that, for any n×n matrix A= (ai, j ), the Hilbert–Schmidt norm is defined by ‖A‖2=
√∑

i, j |ai, j |
2=

√
trace(AA∗), where A∗ denotes the conjugate transpose of A. From the Cauchy–Schwarz inequality, the

following inequality holds:

|trace A|2 = |(A, I )|2 ≤ ‖A‖22‖I‖
2
2 = n

∑
i, j

|ai, j |
2. (3-8)
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Set ai, j := ∂i j u− (αk+1+ 1)(u+ ε)−1∂i u∂ j u in (3-8) to get

n∑
i, j

(∂i j u− (αk+1+ 1)(u+ ε)−1∂i u∂ j u)2 ≥
1
n
(1u− (αk+1+ 1)(u+ ε)−1

|∇u|2)2.

From this lower bound for the Hessian and (3-7), we get

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1 ≥
2
n
(u+ ε)−1(1u− (αk+1+ 1)(u+ ε)−1

|∇u|2)2

−2αk+1(αk+1+ 1)|∇u|4(u+ ε)−3
− |∇u|2(u+ ε)−21u+ Tk, (3-9)

where

Tk := −2βk+1b|x |b−2(u+ ε)−1uq
∇u · x − 2βk+1q|x |buq−1(u+ ε)−1

|∇u|2.

Note also that, from the assumption wk ≤ 0, we have the upper bound on the Laplacian operator
1u ≤−αk |∇u|2(u+ ε)−1

−βk |x |buq . Elementary calculations show that, if t ≤ t∗ ≤ 0 and s ≥ 0, then
(t − s)2 ≥ t2

∗
− 2t∗s + s2. Set the parameters as t = 1u, t∗ = −αk |∇u|2(u + ε)−1

− βk |x |buq and
s = (αk+1+ 1)(u+ ε)−1

|∇u|2 to get the following lower bound on the square term that appears in (3-9):

(1u− (αk+1+ 1)(u+ ε)−1
|∇u|2)2

≥ (αk |∇u|2(u+ε)−1
+βk |x |buq)2+2(αk |∇u|2(u+ε)−1

+βk |x |buq)(αk+1+1)(u+ε)−1
|∇u|2

+ (αk+1+ 1)2(u+ ε)−2
|∇u|4. (3-10)

Substitute (3-5) into the term−|∇u|2(u+ε)−21u that appears in (3-9) to eliminate the Laplacian operator.
Then, apply inequality (3-10) to simplify (3-9) as

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1

≥
2
n
(u+ε)−1((αk+1+αk+1)2|∇u|4(u+ε)−2

+β2
k |x |

2bu2q
+2βk(αk+1+αk+1)|x |buq(u+ε)−1

|∇u|2
)

−wk+1(u+ ε)−2
|∇u|2−αk+1(2αk+1+ 1)|∇u|4(u+ ε)−3

+βk+1|x |buq(u+ ε)−2
|∇u|2+ Tk .

Collecting similar terms and using the value of Tk , we end up with

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1+wk+1(u+ ε)−2
|∇u|2

≥
2
n
β2

k |x |
2bu2q(u+ε)−1

+I (2)αk
|∇u|4(u+ε)−3

+Sε,αk ,βk |∇u|2uq−2
|x |b−2βk+1b|x |b−2(u+ε)−1uq

∇u·x,

where

I (2)αk
:=

2
n
(αk+1+αk + 1)2− 2αk+1(αk+1+ 1)+αk+1,

Sε,αk ,βk :=
4
n
βk(αk+1+αk + 1)

u2

(u+ ε)2
+βk+1

u2

(u+ ε)2
− 2βk+1q

u
u+ ε

.



1554 MOSTAFA FAZLY, JUN-CHENG WEI AND XINGWANG XU

Therefore, the following lower bound for I holds:

I ≥ 2αk+1(u+ ε)−1
∇u · ∇wk+1−αk+1wk+1(u+ ε)−2

|∇u|2+ 2
n
αk+1β

2
k |x |

2bu2q(u+ ε)−1

+ Iαk |∇u|4(u+ ε)−3
+ Sε,αk ,βk |∇u|2uq−2

|x |b− 2βk+1b|x |b−2(u+ ε)−1uq
∇u · x . (3-11)

Finally, applying this lower bound for I and the lower bound given for J in (3-6), from (3-3) we get

1wk+1− 2αk+1(u+ ε)−1
∇u · ∇wk+1+αk+1(u+ ε)−2

|∇u|2wk+1−βk+1quq−1
|x |bwk+1

≥ |x |au p
(

1− qβ2
k+1+

2
n
αk+1β

2
k

u
u+ ε

)
+αk+1 I (2)αk

|∇u|4(u+ ε)−3

+

(
αk+1Sε,αk ,βk +

(
q(q − 1)−αk+1q u

u+ε

)
βk+1

)
|∇u|2uq−2

|x |b

+ 2bβk+1

(
q −αk+1

u
u+ε

)
|x |b−2uq−1

∇u · x + bβk+1(n+ b− 2)|x |b−2uq .

Completing the square finishes the proof. �

4. Proof of Theorem 1.3 via iteration arguments

To apply the iteration argument, we need to develop a maximum principle argument for the equation

1w−2α(u+ε)−1
∇u ·∇w+αw(u+ε)−2

|∇u|2− 1
2β(p+1)|x |a/2u(p−1)/2w= f (x)≥ 0 in Rn (4-1)

that appears in Proposition 3.1, where α and β are positive constants, u is a solution of (1-1) and
w, f ∈ C∞(Rn).

Lemma 4.1. Suppose that w is a solution of the differential inequality (4-1), where u is a solution of (1-1)
and

w =1u+α(u+ ε)−1
|∇u|2+β|x |a/2u(p+1)/2 (4-2)

for positive constants ε, α and β. Then, assuming that p+ 1> 2α,

1w̃ ≥ 0 on {w ≥ 0} ⊂ Rn, (4-3)

where w̃ = (u+ ε)tw for t =−α.

Proof. Straightforward calculations show that

1w̃ = (u+ ε)t1w+ 2t (u+ ε)t−1
∇u · ∇w+ t (u+ ε)t−1w1u+ t (t − 1)w(u+ ε)t−2

|∇u|2.

We now add and subtract two terms, 1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw and tw(u+ ε)t−2

|∇u|2, to the
above identity and collect similar terms to get

1w̃ = (u+ ε)t
(
1w+ 2t (u+ ε)−1

∇u · ∇w− tw(u+ ε)−2
|∇u|2− 1

2β(p+ 1)|x |a/2u(p−1)/2w
)

+
1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw+ tw(u+ ε)t−2

|∇u|2+ t (u+ ε)t−1w1u

+ t (t − 1)w(u+ ε)t−2
|∇u|2.
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From the fact that t =−α and w satisfies (4-1), we get

1w̃ ≥ 1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw+ t (u+ ε)t−1w1u+ t2w(u+ ε)t−1 |∇u|2

u+ ε
.

Note that we can eliminate the gradient term using (4-2), that is,

α(u+ ε)−1
|∇u|2 = w−1u−β|x |a/2u(p+1)/2.

Therefore, after collecting similar terms we get

1w̃ ≥
t2

α
w2(u+ ε)t−1

+ (u+ ε)t−1wt
(

1− t
α

)
1u

+β(u+ ε)t−1
|x |a/2u(p−1)/2w

(
(p+1)ε

2
+ u

( p+1
2
−

t2

α

))
=: R1+ R2+ R3.

We claim that the above three terms, R1, R2 and R3, are nonnegative when w≥ 0. From the fact that α > 0
one can see that R1 is nonnegative. From the definition of t =−α < 0, we have t (1− t/α)=−2α < 0.
This together with Proposition 2.3, that is, 1u ≤ 0, confirms that R2 is nonnegative. Positivity of R3 is an
immediate consequence of the assumptions: β is positive and 1

2(p+ 1)− t2/α = 1
2(p+ 1)− α is also

positive. This finishes the proof. �

We now apply Lemma 4.1 to show that any solution w of (4-1) is negative.

Lemma 4.2. Suppose that w̃ and w as in Lemma 4.1. Let u be a bounded solution of (1-1); then w ≤ 0.

Proof. The methods and ideas that we apply in the proof are motivated by Souplet [2009]. Multiply (4-3)
by w̃s

+
, where s > 0 is a parameter that will be determined later. Then, integration by parts over BR gives

us

0≤
∫

BR

1w̃w̃s
+
=−s

∫
BR

|∇w̃+|
2w̃s−1
+
+ Rn−1

∫
Sn−1

w̃r w̃
s
+
. (4-4)

Therefore, ∫
BR

|∇w̃+|
2w̃s−1
+
≤

1
s(s+ 1)

Rn−1
∫

Sn−1
(w̃s+1
+
)r = C(s)Rn−1 I ′(R), (4-5)

where

I (R) :=
∫

Sn−1
w̃s+1
+
=

∫
Sn−1

(u+ ε)−(s+1)αws+1
+

and C(s) is a constant independent of R. Note thatw, given asw=1u+α|∇u|2(u+ε)−1
+β|x |a/2u(p+1)/2,

satisfies w ≥ 0 if and only if −1u ≤ α|∇u|2(u+ ε)−1
+β|x |a/2u(p+1)/2. Therefore,

ws+1
+
≤ C |∇u|2(s+1)(u+ ε)−(s+1)

+C |x |(s+1)a/2u(s+1)(p+1)/2, (4-6)
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where C = C(α, β, s). Applying this upper bound for w+, we can get an upper bound for I (R):

I (R)≤ C
∫

Sn−1
(u+ ε)−(s+1)(α+1)

|∇u|2(s+1)
+C R(s+1)a/2

∫
Sn−1

(u+ ε)−α(s+1)u(s+1)(p+1)/2

≤ C(ε)
∫

Sn−1
|∇u|2(s+1)

+C(ε)R(s+1)a/2
∫

Sn−1
u(s+1)(p+1)/2

=: C(ε)(I1(R)+ I2(R)). (4-7)

In what follows, we show that there is a sequence R such that the two terms I1(R) and I2(R) decay to
zero for a fixed ε. We start with I2(R), which includes an integral of a positive power of u over the sphere.
Due to the boundedness assumption on u, it is straightforward to relate this term to L p estimates of u
over the sphere. As a matter of fact, if (s+ 1)(p+ 1) > 2p then, from the boundedness of u, we have∫

Sn−1
u(s+1)(p+1)/2

≤ C(n)‖u‖p
L p(Sn−1)

(4-8)

and for the case (s+ 1)(p+ 1)≤ 2p we can use Hölder’s inequality to get∫
Sn−1

u(s+1)(p+1)/2
≤ C(n, p)‖u‖(p+1)(s+1)/2

L p(Sn−1)
. (4-9)

So, to prove a decay estimate for I2(R) we need to construct a decay estimate for ‖u‖L p(Sn−1). On the
other hand, we apply Lemma 2.10 to get an upper bound for the first term in (4-7), I1(R). In fact, from
Lemma 2.10 with i = 1, τ = 2(s+ 1) and t = 2, we have

‖Dx u‖L2(s+1)(Sn−1) ≤ C‖Dθ Dx u‖L2(Sn−1)+C‖Dx u‖L1(Sn−1)

≤ C R‖D2
x u‖L2(Sn−1)+C‖Dx u‖L1(Sn−1) (4-10)

for s = 2/(n− 3). In order to get a decay estimate for I1(R), we need decay estimates for the two terms
in the right-hand side of (4-10), ‖D2

x u‖L2(Sn−1) and ‖Dx u‖L1(Sn−1).
We now apply the elliptic estimates given in Section 2 to provide decay estimates for ‖u‖L p(Sn−1),
‖Dx u‖L1(Sn−1) and ‖D2

x u‖L2(Sn−1). To do so we first find appropriate upper bounds for these terms on the
ball of radius R. Then we use certain measure-comparison arguments to construct decay estimates over
the sphere. So, from Lemma 2.7 with τ = 2, we get∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr ≤ C

∫
B2R\BR/4

|1u|2+C R−4
∫

B2R\BR/4

u2. (4-11)

We now apply Corollary 2.9 and Corollary 2.2 to get a decay estimate for the right-hand side of (4-11),
namely,

R−4
∫

B2R\BR/4

u2
≤ C R−4

∫
B2R\BR/4

u ≤ C R−4 Rn−(a+4)/(p−1)
= C Rn−(a+4p)/(p−1),∫

B2R\BR/4

|1u|2 ≤ C Rn−(a+4p)/(p−1),
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where C is independent from R. From this and (4-11), we obtain the desired decay estimate on the
Hessian operator of u, ∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr ≤ C Rn−(4p+a)/(p−1). (4-12)

Similarly, from Corollary 2.6 and Lemma 2.1, we have∫ R

R/2
‖Dx u‖L1(Sn−1)r

n−1 dr ≤ C Rn−(p+3+a)/(p−1), (4-13)∫ R

R/2
‖u‖p

L p(Sn−1)
rn−1 dr ≤ C Rn−(a+4)p/(p−1). (4-14)

Now let’s define the following sets. These sets are meant to facilitate our arguments towards construction
of decay estimates for ‖u‖L p(Sn−1), ‖Dx u‖L1(Sn−1) and ‖D2

x u‖L2(Sn−1). For a large number M , which will
be determined later, define

01(R) := {r ∈ (R/2, R) : ‖u‖p
L p(Sn−1)

> M R−(a+4)p/(p−1)
},

02(R) := {r ∈ (R/2, R) : ‖Dx u‖L1(Sn−1) > M R−(p+3+a)/(p−1)
},

03(R) := {r ∈ (R/2, R) : ‖D2
x u‖2L2(Sn−1)

> M R−(a+4p)/(p−1)
}.

We claim that |0i (R)| ≤ R/4 for 1≤ i ≤ 3: Using (4-12), we get

C ≥ R−n+(a+4p)/(p−1)
∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr

≥ N R−n+(a+4p)/(p−1)Rn−1
∫ R

R/2
‖D2

x u‖2L2(Sn−1)
dr

≥ N M R−n+(a+4p)/(p−1)Rn−1
∫
|03(R)|

R−(a+4p)/(p−1) dr

≥ N M R−n+(a+4p)/(p−1)Rn−1
|03(R)|R−(a+4p)/(p−1)

= N M |03(R)|R−1,

where N =
( 1

2

)n−1. Therefore, |03(R)| ≤ C R/N M . Now, choosing M to be large enough, that is,
M>4C/N , we get |03(R)|≤ R/4. Similarly, applying (4-13) and (4-14), one can show that |0i (R)|≤ R/4
for i = 1, 2. Hence, |0i (R)| ≤ R/4 for 1≤ i ≤ 3 while 0i (R)⊂ (R/2, R). So, we can find a sequence of
R̃ such that

R̃ ∈ (R/2, R) \
i=3⋃
i=1

0i (R) 6=∅. (4-15)

Therefore, for the sequence R̃, we obtain

‖u‖p
L p(Sn−1)

≤ M R−(a+4)p/(p−1), (4-16)

‖Dx u‖L1(Sn−1) ≤ M R−(p+3+a)/(p−1), (4-17)

‖D2
x u‖2L2(Sn−1)

≤ M R−(a+4p)/(p−1). (4-18)
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Substituting (4-16) into (4-8) and (4-9), we get the decay estimate on I2(R)

I2(R)≤ Cχ{(s+ 1)(p+ 1) > 2p}R(s+1)/2a−(a+4)p/(p−1)

+Cχ{(s+ 1)(p+ 1)≤ 2p}R(s+1)a/2−(a+4)(p+1)(s+1)/(2(p−1))

= Cχ{(s+ 1)(p+ 1) > 2p}R−η1 +Cχ{(s+ 1)(p+ 1) > 2p}R−η2, (4-19)

where χ is the characteristic function, η1 := a
(

p/(p − 1)− 1
2(s + 1)

)
+ 4p/(p − 1) > 0 and η2 :=

(s + 1)(ap+ 2(p+ 1))/(p+ 1) > 0. Note that we have used the fact that p/(p− 1)− 1
2(s + 1) > 0

because 0< s = 2/(n− 3)≤ 1 when n ≥ 5. On the other hand, substituting (4-17) and (4-18) into the
Sobolev embedding (4-10), we get

‖Dx u‖L2(s+1)(Sn−1) ≤ C R1−(a+4p)/(p−1)
+C R−(p+3+a)/(p−1)

= 2C R−(p+3+a)/(p−1). (4-20)

From this and the definition of I1(R), we end up with the decay estimate on I1(R)

I1(R)=
∫

Sn−1
|∇u|2(s+1)

≤ C R−2(p+3+a)(s+1)/(p−1)
= C R−η3, (4-21)

where η3 := 2(p+ 3+ a)(s+ 1)/(p− 1) > 0. Finally, from (4-21) and (4-19), we observe that

I (R)≤ C R−η for all R > 1,

where η :=min{η1, η2, η3}> 0. So, I (R)→ 0 as R→∞. Note that R̃→∞ as R→∞. Since I (R) is
a positive function and converges to zero, there is a sequence such that the functional I ′(R) is nonpositive.
Therefore, (4-5) yields ∫

BR

|∇w̃+|
2w̃s−1
+
≤ 0. (4-22)

Hence, w̃+ has to be a constant. From the continuity of w̃, we have w̃ ≡ C . Note that the constant C
cannot be strictly positive. So, w̃+ = 0 and therefore w+ = 0. This finishes the proof. �

Note that Lemma 4.1 and Lemma 4.2 imply an iteration argument for the sequence of functions,
for k ≥−1,

wk =1u+αk(u+ ε)−1
|∇u|2+βk |x |a/2u(p+1)/2 (4-23)

as long as the right-hand side of (3-3) stays nonnegative. For the rest of this section, we construct
sequences {αk}k=−1 and {βk}k=−1 such that the right-hand side of (3-3) is nonnegative.

Constructing sequences αk and βk. In this part, we define sequences αk and βk needed for the iteration
argument.

Lemma 4.3. Suppose α0 = 0 and define

αk+1 :=
4(αk + 1)− n+

√

n(16α2
k + 24αk + n+ 8)

4(n− 1)
. (4-24)

Then (αk)k is a positive, bounded and increasing sequence that converges to α := 2/(n−4) provided n> 4
and p > 1. Moreover, for this choice of (αk)k , the sequence I (2)αk of coefficients defined in Proposition 3.1
equals zero.



A POINTWISE INEQUALITY FOR THE FOURTH-ORDER LANE–EMDEN EQUATION 1559

Proof. It is straightforward to show that αk > 0 for any k ≥ 0. Also, direct calculations show that
αk→ α := 2/(n−4) provided αk is convergent. Note that α1 = (4−n+

√
n2+ 8n)/(4n−4) < 2/(n−4)

and, by induction, one can see that αk ≤ α for all k ≥ 0. Lastly, we show that αk is an increasing sequence:
For any k,

αk+1−αk =

√

n(16α2
k + 24αk + n+ 8)− ((n− 4)+ 4ak(n− 2))

4(n− 1)

=
8(n− 1)(n− 4)(2αk + 1)

Sn,k

(
2

n− 4
−αk

)
,

where Sn,k =
√

n(16α2
k + 24αk + n+ 8) + (n − 4) + 4ak(n − 2) > 0. Therefore, from the fact that

αk ≤ α = 2/(n− 4), we get the desired result. �

Similarly, we provide an explicit formula for the sequence βk :

Lemma 4.4. Suppose β0 =
√

2/(p+ 1) and define

βk+1 :=

√
2

p+1
+

4
(p+1)n

αkβ
2
k , (4-25)

where (αk)k is as in Lemma 4.3. Then (βk)k is a positive, bounded and increasing sequence that converges
to β :=

√
2/((p+ 1)− cn), where cn = 8/(n(n− 4)) provided that n > 4 and p > 1. Moreover, for this

choice of (αk)k and (βk)k , the sequence I (1)0,αk ,βk
of coefficients defined in Proposition 3.1 is strictly positive.

Proof. The sequence (βk)k for all k ≥ 0 is positive. Note that boundedness of the sequence (αk)k forces
the boundedness of the (βk)k , meaning that βk+1 ≤

√

2/(p+ 1)+ (4α/((p+ 1)n))β2
k for any k. By

straightforward calculations we get

β2
k+1 ≤

2
p+ 1

k+1∑
i=0

(
4α

n(p+ 1)

)i

.

Note that 4α/(n(p+ 1)) = 8/(n(n − 4)(p + 1)) < 1 provided that n > 4 and p > 1. Therefore,∑
∞

i=0
(
4α/(n(p+ 1))

)i
<∞. This proves the boundedness of (βk)k .

Since (αk)k=0 is an increasing sequence, the sequence (βk)k=0 will be nondecreasing by induction.
Note that

β1 = β0 and β2 =

√
2

p+1
+

8
(p+1)2n

4−n+
√

n2+8n
4n−4

> β1 =

√
2

p+1
.

Suppose that βk−1≤ βk for a certain index k ≥ 2; then we apply the fact that αk ≥ αk−1 to show βk ≤ βk+1.
This can be found as a consequence of

βk+1−βk =
β2

k+1−β
2
k

βk+1+βk
=

4
(p+ 1)n(βk+1+βk)

(β2
kαk −β

2
k−1αk−1)≥

4αk−1(βk +βk−1)

(p+ 1)n(βk+1+βk)
(βk −βk−1).

So, (βk)k is convergent and converges to β :=
√

2n(n−4)/((p+1)(n−4)n−8). Since (p+1)n(n−4)>8
for p > 1 and n > 4, β is well-defined. �
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Note that, based on the definition of the sequences {αk}k=−1 and {βk}k=−1, we concluded that I (1)0,αk ,βk
>0

and I (2)αk = 0. In the next two lemmata we investigate the positivity of I (3)ε,αk ,βk
and I (4)a,ε,αk ,βk

, the sequences
that appeared in (3-3) in Proposition 3.1.

Lemma 4.5. Set ε = 0 in I (3)ε,αk ,βk
, which is defined in Proposition 3.1. Then

I (3)0,αk ,βk
→ I (3)0,α,β :=

4
n
αβ(2α+ 1)+αβ +βq(q − 3α− 1) (4-26)

as k→∞. The constant I (3)0,α,β is positive provided p > (n+ 4)/(n− 4) and n > 4.

Proof. Note that when p > (n+ 4)/(n− 4) and n > 4, we have 1
2(p+ 1) > n/(n− 4). As k→∞, from

Lemma 4.3 and Lemma 4.4, the sequences αk → α := 2/(n − 4) and βk → β :=
√

2/((p+ 1)− cn).
Therefore,

I (3)0,α,β

β
=

4
n

( 2
n−4

)( 4
n−4

+ 1
)
+

2
n−4

+
p+1

2

( p−1
2
−

6
n−4

)
=

( p+1
2

)2
−

( p+1
2

)(n+2
n−4

)
+

2n
(n− 4)2

=

( p+1
2
−

n
n−4

)( p+1
2
−

2
n−4

)
> 0. �

Note that I (4)a,ε,αk ,βk
appears in (3-3) mainly because of the weight function |x |a . In other words, we

have I (4)0,ε,αk ,βk
= 0 in the case of a = 0.

Lemma 4.6. For any k ≥ 0,

I (3)0,αk ,βk
< βk+1

( 1
2(p+ 1)−αk+1

)2 (4-27)

provided p > (n+ 4)/(n− 4) and n > 4. Therefore, for any a ≥ 0 that satisfies the upper bound

a ≤ Ak :=
2(n− 2)I (3)0,αk ,βk

βk+1
( 1

2(p+ 1)−αk+1
)2
− I (3)0,αk ,βk

, (4-28)

the sequence I (4)a,0,αk ,βk
is positive for any k.

Proof. Basic calculations show that

βk+1

( p+1
2
−αk+1

)2
− I (3)0,αk ,βk

= βk+1

( p+1
2
−αk+1

)2
−

4
n
αk+1βk(αk+1+αk + 1)−αk+1βk+1−βk+1

p+1
2

( p+1
2
− 3αk+1− 1

)
≥ βk+1

(( p+1
2
−αk+1

)2
−

4
n
αk+1(αk+1+αk + 1)−αk+1−

p+1
2

( p+1
2
− 3αk+1− 1

))
= βk+1

(n−4
n
α2

k+1−
4
n
α2

k+1−
4
n
αk+1+

p−1
2
αk+1+

p+1
2

)
,
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where we have used the fact that βk and αk are increasing sequences in the first and the second inequality,
respectively. Therefore,

βk+1

( p+1
2
−αk+1

)2
− I (3)0,αk ,βk

≥ βk+1

(n−4
n
α2

k+1+αk+1

( p−1
2
−

4
n
αk+1

)
+

p+1
2
−

4
n
αk+1

)
≥ βk+1

(n−4
n
α2

k+1+ (αk+1+ 1)
( p−1

2
−

4
n
α
))

> 0.

Note that in the last inequality we have used the fact that

p− 1
2
−

4
n
α =

p−1
2
−

4
n

2
n−4

>
4

(n−4)n
(n− 2) > 0,

since p > (n+ 4)/(n− 4) and n > 4. �

Remark 4.7. It would be interesting if a counterpart of (1-12) could be proved for bounded solutions of
the fourth-order semilinear equation 12u = f (u) under certain assumptions on the arbitrary nonlinearity
f ∈ C1(R). We expect that such an inequality could be established for some convex nonlinearity f .

Appendix

We would like to mention that given the estimates in Lemma 2.1 and Lemma 2.4, one can provide a
somewhat simpler proof of Proposition 2.3, as follows.

Second proof of Proposition 2.3. From Lemma 2.1, we have
∫

Rn |x |2−n+au p dx <∞. Hence, we define
the function

w(x)=
1

n(n− 2)ωn

∫
Rn

|y|au p(y)
|x − y|n−2 dy.

It is clear that w(x) ≥ 0 and 1w = −|x |au p. This implies that, for a solution u of (1-1), the function
h(x) := w(x)+1u(x) is a well-defined harmonic function on Rn . Thus, for any x0 ∈ Rn and any R > 0,
by the mean value theorem for harmonic functions we will have

h(x0) :=

∫
∂BR(x0)

h dσ =
∫
∂BR(x0)

(w+1u) dσ ≤
∫
∂BR(x0)

w dσ +
∫
∂BR(x0)

|1u| dσ. (A-1)

Since w(x0) <∞, through Tonelli’s theorem, we can change the order of the integrations to see that
the first integral on the right-hand side of (A-1) tends to zero as R→∞ for all R. To be more precise,
notice that, up to a constant multiple, the first integral can be written as∫

Rn

∫
∂BR(x0)

dσx

|x − y|n−2 |y|
au p(y) dy.

Then we use the fact that
∫
∂BR(x0)

1/|x − y|n−2 dσx = |y − x0|
2−n if |y − x0| > R and equals R2−n

if |y− x0|< R. Thus the integral will split into two parts. The outside part tends to zero as R→∞ due
to the fact that w(x0) <∞, while the inside part tends to zero due to the fact that, by Lemma 2.1,

R2−n
∫

BR(x0)

|y|au p(y) dy ≤ R2−n
∫

BR+|x0|(0)
|y|au p dy ≤ C R2−n(R+ |x0|)

n−(4p+a)/(p−1)
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tends to zero as R→∞. The second integral will tend to zero for some sequence of R by Lemma 2.4
again. Apply the above inequality to this sequence to see that h(x0) ≤ 0. Since x0 is arbitrary, we
have −1u ≥ 0. �
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For a family of second-order elliptic systems in divergence form with rapidly oscillating, almost-periodic
coefficients, we obtain estimates for approximate correctors in terms of a function that quantifies the
almost periodicity of the coefficients. The results are used to investigate the problem of convergence rates.
We also establish uniform Hölder estimates for the Dirichlet problem in a bounded C1,α domain.
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1. Introduction and statement of main results

In this paper we consider a family of second-order elliptic operators in divergence form with rapidly
oscillating, almost-periodic coefficients,

Lε =− div(A(x/ε)∇)=− ∂

∂xi

(
aαβi j (x/ε)

∂

∂x j

)
, ε > 0. (1-1)

We will assume that A(y)= (aαβi j (y)) with 1≤ i, j ≤ d and 1≤ α, β ≤m is real and satisfies the ellipticity
condition

µ|ξ |2 ≤ aαβi j (y)ξ
α
i ξ

β

j ≤
1
µ
|ξ |2 for y ∈ Rd and ξ = (ξαi ) ∈ Rd×m, (1-2)

where µ> 0 (the summation convention is used throughout the paper). We further assume that A= A(y)
is uniformly almost-periodic in Rd ; i.e., A is the uniform limit of a sequence of trigonometric polynomials
in Rd .
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Let � be a bounded Lipschitz domain in Rd . Let uε ∈ H 1(�;Rm) be the weak solution of the Dirichlet
problem

Lε(uε)= F in � and uε = g on ∂�, (1-3)

where F ∈ H−1(�;Rm) and g ∈ H 1/2(∂�;Rm). Under the ellipticity condition (1-2) and the almost
periodicity condition on A, it is known that uε→u0 weakly in H 1(�;Rm) and thus strongly in L2(�;Rm)

as ε→ 0. Furthermore, the function u0 is the solution of

L0(u0)= F in � and u0 = g on ∂�, (1-4)

where L0 =− div( Â∇) is a second-order elliptic operator with constant coefficients, uniquely determined
by A(y). As in the periodic case (see, e.g., [Bensoussan et al. 1978]), the constant matrix Â = (âαβi j ) is
called the homogenized matrix for A and L0 the homogenized operator for Lε. In this paper we shall be
interested in quantitative homogenization results as well as uniform estimates for solutions of (1-3).

Homogenization of elliptic equations with rapidly oscillating, almost-periodic or random coefficients
was studied first by S. M. Kozlov [1978; 1979] and by G. C. Papanicolaou and S. R. S. Varadhan [1981].
In particular, the o(1) convergence rate of uε − u0 in Cσ (�) for some σ > 0 was obtained in [Kozlov
1978] for a scalar second-order elliptic equation in divergence form with almost-periodic coefficients.
Under some additional conditions on the frequencies in the spectrum of A(y), the sharp O(ε) rate in C(�)
was proved in [Kozlov 1978] for operators with sufficiently smooth quasiperiodic coefficients. It is known
that, without additional structure conditions on A(y), the O(ε) rate cannot be expected in general (see
[Bondarenko et al. 2005] for some interesting results in the 1-dimensional case).

In contrast to the periodic case, the equation for the exact correctors χ(y),

− div(A(y)∇χ(y))= div(A(y)∇P(y)) in Rd , (1-5)

may not be solvable in the almost-periodic (or random) setting for linear functions P(y). In [Kozlov
1978], solutions χ(y) of (1-5) with sublinear growth and almost-periodic gradient were constructed and,
as a result, homogenization was obtained for operators with trigonometric polynomial coefficients, by a
lifting method. The homogenization result for the general case follows by an approximation argument. A
different approach, which also gives the homogenization of the second-order elliptic equations with random
coefficients, is to formulate and solve an abstract auxiliary equation in a Hilbert space for ψ(y)=∇χ(y).
We outline this approach in Section 2 and refer the reader to [Jikov et al. 1994] for a detailed presentation
and references.

Another approach to homogenization involves the use of the so-called approximate correctors [Pa-
panicolaou and Varadhan 1981; Kozlov 1979]. Under certain mixing conditions, the approach has
been employed successfully to establish quantitative homogenization results for second-order linear
elliptic equations and systems in divergence form with random coefficients [Yurinskiı̆ 1986; Pozhidaev
and Yurinskiı̆ 1989; Bourgeat and Piatnitski 2004]. For nonlinear second-order elliptic equations and
Hamilton–Jacobi equations, we refer the reader to [Caffarelli and Souganidis 2010; Armstrong et al.
2014; Armstrong and Smart 2014] for recent advances and references on quantitative homogenization
results. We point out that the almost-periodic case, which does not satisfy the mixing conditions generally
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imposed in the random case, is studied in [Caffarelli and Souganidis 2010; Armstrong et al. 2014]. We
also mention that sharp quantitative results were obtained recently in [Gloria and Otto 2011; 2012; Gloria
et al. 2014] for stochastic homogenization of discrete linear elliptic equations in divergence form.

In this paper we carry out a quantitative study of the approximate correctors χT = (χ
β

T, j ) for Lε in (1-1),

where, for 1≤ j ≤ d and 1≤ β ≤ m, u = χβT, j is defined by

− div(A(y)∇u)+ T−2u = div(A(y)∇Pβj (y)) in Rd (1-6)

and Pβj (y) = y j (0, . . . , 0, 1, 0, . . . , 0) with 1 in the β-th position. Among other things, we will prove
that, for T ≥ 1 and σ ∈ (0, 1),

T−1
‖χT ‖L∞(Rd ) ≤ Cσ2σ (T ), (1-7)

|χT (x)−χT (y)| ≤ CσT 1−σ
|x − y|σ for any x, y ∈ Rd , (1-8)

and, for 0< r ≤ T ,

sup
x∈Rd

(
−

∫
B(x,r)

|∇χT |
2
)1

2

≤ Cσ
(T

r

)σ
, (1-9)

where Cσ depends only on d, m, σ and A. The continuous function 2σ (T ), which is decreasing and
converges to zero as T →∞, is defined by

2σ (T )= inf
0<R≤T

(
ρ(R)+

( R
T

)σ)
, (1-10)

where
ρ(R)= sup

y∈Rd
inf

z∈Rd

|z|≤R

‖A( · + y)− A( · + z)‖L∞(Rd ) (1-11)

is a decreasing and continuous function that quantifies the almost periodicity of A. Indeed, a bounded
continuous function A in Rd is uniformly almost-periodic if and only if ρ(R)→ 0 as R→∞.

With the estimates (1-7), (1-8) and (1-9) at our disposal, we obtain the following theorems on the
convergence rates. Our results in Theorems 1.2 and 1.4 are new even in the scalar case m = 1.

Theorem 1.1. Suppose that A(y) = (aαβi j (y)) satisfies the ellipticity condition (1-2) and is uniformly
almost-periodic in Rd . Let p> d , σ ∈ (0, 1), and� be a bounded C1,α domain in Rd for some α> 0. Then
there exists a modulus η : (0, 1] → [0,∞), which depends only on A and σ , such that limt→0 η(t) = 0
and

‖uε − u0‖Cσ (�) ≤ Cη(ε)‖u0‖W 2,p(�) (1-12)

for ε ∈ (0, 1) whenever uε ∈ H 1(�) is the weak solution of (1-3) and u0 ∈W 2,p(�) is the solution of (1-4).
Furthermore, we have

‖uε − u0− εχT (x/ε)∇u0‖H1(�) ≤ Cη(ε)‖u0‖W 2,p(�), (1-13)

where T = ε−1 and χT (y) denotes the approximate corrector defined by (1-6). The constants C in (1-12)
and (1-13) depend only on �, p, σ and A.



1568 ZHONGWEI SHEN

The next theorem gives more precise rates of convergence, provided ρ(R) decays fast enough that∫
∞

1 (ρ(r)/r) dr <∞.

Theorem 1.2. Under the same assumptions as in Theorem 1.2,

‖uε − u0‖L2(�) ≤ C‖u0‖W 2,p(�)

(∫
∞

1/(2ε)

2σ (r)
r

dr + [21(ε
−1)]σ

)
(1-14)

and

‖uε − u0− εχT (x/ε)∇u0‖H1(�) ≤ C‖u0‖W 2,p(�)

(∫
∞

1/(2ε)

2σ (r)
r

dr + [21(ε
−1)]σ/2

)
(1-15)

for any σ ∈ (0, 1), where T = ε−1 and C depends only on �, A, p and σ .

Remark 1.3. By taking R =
√

T in (1-10), we obtain 2σ (T ) ≤ ρ(
√

T )+ T−σ/2 for T ≥ 1. It follows
that ∫

∞

1

ρ(r)
r

dr <∞ =⇒
∫
∞

1

2σ (r)
r

dr <∞ (1-16)

for any σ ∈ (0, 1]. It is not clear whether estimates (1-14) and (1-15) are sharp. However, let us suppose
that there exist τ > 0 and C > 0 such that

ρ(R)≤ C R−τ for all R ≥ 1. (1-17)

Then, for T ≥ 1,
2σ (T )≤ CT−στ/(σ+τ).

It follows from (1-14) that

‖uε − u0‖L2(�) ≤ Cεστ/(σ+τ)‖u0‖W 2,p(�).

Since σ ∈ (0, 1) is arbitrary, this gives

‖uε − u0‖L2(�) ≤ Cγ εγ ‖u0‖W 2,p(�) for any 0< γ < τ

τ+1
. (1-18)

Similarly, one may deduce from (1-15) that

‖uε − u0− εχT (x/ε)∇u0‖H1(�) ≤ Cγ εγ ‖u0‖W 2,p(�) (1-19)

for any 0 < γ < τ/(2(τ + 1)). It is interesting to note that if A is periodic then ρ(R) = 0 for R large
and thus the condition (1-17) holds for any τ > 1. Consequently, estimates (1-18) and (1-19) yield
convergence rates O(ε1−δ) and O(ε1/2−δ) for any δ > 0 in L2(�) and H 1(�), respectively, which are
near optimal. Also note that, under the condition (1-17), our estimate (1-7) gives

‖χT ‖L∞ ≤ CδT 1/(τ+1)+δ (1-20)

for any δ > 0, while one has ‖χT ‖L∞ ≤ C if A is periodic. Section 8 contains some examples of
quasiperiodic functions for which condition (1-17) is satisfied.

In this paper we also establish the uniform Hölder estimates for the Dirichlet problem (1-3).
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Theorem 1.4. Suppose that A(y) = (aαβi j (y)) satisfies the ellipticity condition (1-2) and is uniformly
almost-periodic in Rd . Let � be a bounded C1,α domain in Rd for some α > 0. Let uε be a weak solution
of

Lε(uε)= F + div( f ) in � and uε = g on ∂�. (1-21)

Then, for any σ ∈ (0, 1),

‖uε‖Cσ (�) ≤ C
(
‖g‖Cσ (∂�)+ sup

x∈�
0<r<r0

r2−σ
−

∫
B(x,r)∩�

|F | + sup
x∈�

0<r<r0

r1−σ
(
−

∫
B(x,r)∩�

| f |2
)1

2
)
, (1-22)

where r0 = diam(�) and C depends only on σ , A and �.

We now describe the outline of this paper as well as some of key ideas used in the proof of its main
results. In Section 2 we give a brief review of the homogenization of second-order elliptic systems
with almost-periodic coefficients, based on an auxiliary equation in B2(Rd), the Besicovich space of
almost-periodic functions. We also prove a homogenization theorem (Theorem 2.2) for a sequence of
operators {− div(B`(x/ε`)∇)}, where ε`→ 0 and {B`(y)} are obtained from A(y) through rotations and
translations. With this theorem, a compactness argument is used in Sections 3 and 4 to establish the
uniform interior and boundary Hölder estimates for local solutions of Lε(uε)= F+div( f ). The proof of
Theorem 1.4 is given in Section 4. We mention that the compactness argument, which originated from
the regularity theory in the calculus of variations and minimal surfaces, was introduced to the study of
homogenization problems by M. Avellaneda and F. Lin [1987; 1989]. It was used recently in [Kenig et al.
2013] to establish the Lipschitz estimates for the Neumann problem in periodic homogenization. Also
see related work in [Shen 2008; Geng et al. 2012; Shen and Geng 2015]. In the almost-periodic setting,
the compactness argument was used in [Dungey et al. 2001] to obtain the interior Hölder estimate for
operators with complex coefficients. However, we point out that some version of Theorem 2.2 seems to
be necessary to ensure that the constants are independent of the centers of balls.

The approximate correctors χT are constructed in Section 5, while estimates (1-7), (1-8) and (1-9) are
established in Section 6. The proof of (1-8) and (1-9) relies on the uniform Hölder estimates for Lε. We
will also show that

|χT (x)−χT (y)| ≤ CT ‖A( · + x)− A( · + y)‖L∞ for any x, y ∈ Rd . (1-23)

The estimate (1-7) follows from (1-23) and (1-8) in a manner somewhat similar to the case of Hamilton–
Jacobi equations in the almost-periodic setting [Ishii 2000; Lions and Souganidis 2005; Armstrong et al.
2014].

Theorems 1.1 and 1.2 are proved in Section 7. Here we follow an approach for the periodic case by
considering

wε = uε(x)− u0(x)− εχT (x/ε)∇u0(x)+ vε(x),
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where T = ε−1 and vε is the weak solution of the problem Lε(vε)= 0 in � and vε = εχT (x/ε)∇u0(x)
on ∂�. We are able to show that

‖wε‖H1(�) ≤ Cσ
(
2σ (T )+〈|ψ −∇χT |〉

)
‖u0‖W 2,2(�) (1-24)

for any σ ∈ (0, 1), where ψ is the limit of ∇χT in B2(Rd) as T →∞. In the periodic case, one of the
key steps is to write Â− A(y)− A(y)∇χ(y) as a divergence of some bounded periodic function. In the
almost-periodic setting, this will be replaced by solving the equation

−1u+ T−2u = BT −〈BT 〉 in Rd , (1-25)

where BT (y) = Â− A(y)− A(y)∇χT (y). The same ideas for proving (1-7)–(1-9) are used to obtain
the desired estimates for ‖u‖L∞ and ‖∇u‖L∞ in terms of the function 2σ (T ). Finally, in Section 8 we
consider the case of quasiperiodic coefficients and provide some sufficient conditions on the frequencies
of A(y) for the estimate (1-17) on ρ(R).

Throughout this paper, unless indicated otherwise, we always assume that A = (aαβi j ) satisfies the
ellipticity condition (1-2) and is uniformly almost-periodic in Rd . We will use −

∫
E f = (1/|E |)

∫
E f to

denote the L1 average of f over E , and C to denote constants that depend on A(y), � and other relevant
parameters, but never on ε or T .

2. Homogenization and compactness

This section contains a brief review of homogenization theory of elliptic systems with almost-periodic
coefficients. We refer the reader to [Jikov et al. 1994, pp. 238–242] for a detailed presentation. We also
prove a homogenization theorem for a sequence of operators obtained from Lε through translations and
rotations.

Let Trig(Rd) denote the set of (real) trigonometric polynomials in Rd . A bounded continuous function
f in Rd is said to be uniformly almost-periodic (or almost-periodic in the sense of Bohr) if f is a limit of
a sequence of functions in Trig(Rd) with respect to the norm ‖ f ‖L∞ . A function f in L2

loc(R
d) is said to

belong to B2(Rd) if f is a limit of a sequence of functions in Trig(Rd) with respect to the seminorm

‖ f ‖B2 = lim sup
R→∞

(
−

∫
B(0,R)

| f |2
)1

2

. (2-1)

Functions in B2(Rd) are said to be almost-periodic in the sense of Besicovich. It is not hard to see that, if
f ∈ B2(Rd) and g is uniformly almost-periodic, then f g ∈ B2(Rd).

Let f ∈ L1
loc(R

d). A number 〈 f 〉 is called the mean value of f if

lim
ε→0+

∫
Rd

f (x/ε)ϕ(x) dx = 〈 f 〉
∫

Rd
ϕ (2-2)

for any ϕ ∈C∞0 (R
d). If f ∈ L2

loc(R
d) and ‖ f ‖B2 <∞, the existence of 〈 f 〉 is equivalent to the condition

that, as ε → 0, f (x/ε) ⇀ 〈 f 〉 weakly in L2
loc(R

d), i.e., f (x/ε) ⇀ 〈 f 〉 weakly in L2(B(0, R)) for
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any R > 1. In this case, one has

〈 f 〉 = lim
L→∞

−

∫
B(0,L)

f.

It is known that if f , g ∈ B2(Rd) then f g has the mean value. Furthermore, under the equivalent relation
that f ∼ g if ‖ f − g‖B2 = 0, the set B2(Rd)/∼ is a Hilbert space with the inner product defined by
( f, g)= 〈 f g〉.

A function f = ( f αi ) in Trig(Rd
;Rd×m) is called potential if there exists g = (gα) ∈ Trig(Rd

;Rm)

such that f αi = ∂gα/∂xi . A function f = ( f αi ) in Trig(Rd
;Rd×m) is called solenoidal if ∂ f αi /∂xi = 0

for 1 ≤ α ≤ m. Let V 2
pot (resp. V 2

sol) denote the closure of potential (resp. solenoidal) trigonometric
polynomials with mean value zero in B2(Rd

;Rd×m). Then

B2(Rd
;Rd×m)= V 2

pot⊕ V 2
sol⊕Rd×m . (2-3)

By the Lax–Milgram theorem and the ellipticity condition (1-2), for any 1≤ j ≤ d and 1≤ β ≤ m there
exists a unique ψβj = (ψ

αβ

i j ) ∈ V 2
pot such that

〈aαγik ψ
γβ

k j φ
α
i 〉 = −〈a

αβ

i j φ
α
i 〉 for any φ = (φαi ) ∈ V 2

pot. (2-4)

Let

âαβi j = 〈a
αβ

i j 〉+ 〈a
αγ

ik ψ
γβ

k j 〉 (2-5)

and Â = (âαβi j ). Then

µ|ξ |2 ≤ âαβi j ξ
α
i ξ

β

j ≤ µ1|ξ |
2 (2-6)

for any ξ = (ξαi ) ∈ Rd×m , where µ1 depends only on d, m and µ. It is also known that Â∗ = ( Â)∗,
where A∗ denotes the adjoint of A, i.e., A∗ = (bαβi j ) with bαβi j = aβαj i .

As the following theorem shows, the homogenized operator for Lε is given by L0 =− div( Â∇).

Theorem 2.1. Let� be a bounded Lipschitz domain in Rd and F ∈ H−1(�;Rm). Let uε ∈ H 1(�;Rm) be
a weak solution of Lε(uε)= F in�. Suppose uε⇀ u0 weakly in H 1(�;Rm). Then A(x/ε)∇uε⇀ Â∇u0

weakly in L2(�;Rdm). Consequently, if f ∈ H 1/2(∂�;Rm) and uε is the unique weak solution in
H 1(�;Rm) of the Dirichlet problem Lε(uε) = F in � and uε = f on ∂�, then, as ε→ 0, uε → u0

weakly in H 1(�;Rm) and strongly in L2(�;Rm), where u0 is the unique weak solution in H 1(�;Rm) of
the Dirichlet problem L0(u0)= F in � and u0 = f on ∂�.

Proof. See [Jikov et al. 1994] for the single equation case (m = 1). The proof for the case m > 1 is
exactly the same. �

In Sections 3 and 4 we will use a compactness argument to establish the uniform Hölder estimates
for local solutions of Lε(uε)= div( f )+ F . This requires us to work with a class of operators that are
obtained from LA

= − div(A(x)∇) through translations and rotations of coordinates in Rd . Observe
that, if LA(u) = F and x = Oy + z for some rotation O = (Oi j ) and z ∈ Rd , then LB(v) = G, where
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v(y)= u(Oy+ z), B = (bαβi j (y)) with bαβi j (y)= aαβ`k (Oy+ z)O`i Ok j , and G(y)= F(Oy+ z). Thus, for
each A = (aαβi j ) fixed, we shall consider the set of matrices

A=
{

B = (bαβi j (y)) : b
αβ

i j (y)= aαβ`k (Oy+ z)O`i Ok j for some rotation O = (Oi j ) and z ∈ Rd}. (2-7)

Note that, if B(y)= O t A(Oy+ z)O ∈A, where O t denotes the transpose of O , then the homogenized
matrix B̂ equals O t ÂO .

The proof of Theorems 3.1 and 4.1 relies on the following extension of Theorem 2.1:

Theorem 2.2. Let � be a bounded Lipschitz domain in Rd and F ∈ H−1(�;Rm). Let u` ∈ H 1(�;Rm)

be a weak solution of − div(A`(x/ε`)∇u`)= F in �, where ε`→ 0 and A` ∈A. Suppose that u`⇀ u
weakly in H 1(�;Rm). Then u is a weak solution of − div( Ã∇u)= F in �, where Ã = O t ÂO for some
rotation O in Rd .

Proof. Suppose that A`(y) = O t
`A(O`y + z`)O` for some rotations O` and z` ∈ Rd . By passing to

a subsequence we may assume that O` → O as `→ ∞. Since A(y) is uniformly almost-periodic,
{A(y + z`)}∞`=1 is precompact in Cb(R

d), the set of bounded continuous functions in Rd . Thus, by
passing to a subsequence, we may also assume that A(y+ z`) converges uniformly in Rd to an almost-
periodic matrix B(y). Consequently, we obtain A`(y)→ B̃(y)= O t B(Oy)O uniformly in Rd . Note that̂̃B = O t B̂O = O t ÂO .

Now, let v` ∈ H 1(�;Rm) be the weak solution of the Dirichlet problem

− div(B̃(x/ε`)∇v`)= F in � and v` = u` on ∂�.

Using − div
(

A`(x/ε`)∇(u`− v`)
)
= div

(
(A`(x/ε`)− B̃(x/ε`))∇v`

)
in � and u`− v` = 0 on ∂�, we

may use the energy estimates to deduce that

‖u`− v`‖H1(�) ≤ C‖A`− B̃‖L∞‖∇v`‖L2(�) ≤ C‖A`− B̃‖L∞{‖u`‖H1(�)+‖F‖H−1(�)}.

It follows that u`− v`→ 0 in H 1(�;Rm) as `→∞.
Finally, since v` = v` − u` + u` ⇀ u weakly in H 1(�;Rm), it follows from Theorem 2.1 that

B̃(x/ε`)∇v` ⇀ Ã∇u weakly in H 1(�;Rd×m), where Ã = ̂̃B = O t ÂO . As a result, we obtain
− div( Ã∇u)= F in �. This completes the proof. �

3. Uniform interior Hölder estimates

The goal of this and the next section is to establish uniform interior and boundary Hölder estimates
for solutions of Lε(uε)= f + div(g). We will first use a compactness method to deal with the special
case Lε(uε)= 0. The results are then used to establish size and Hölder estimates for fundamental solutions
and Green functions for Lε. The general case follows from the estimates for fundamental solutions and
Green functions.
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Theorem 3.1. Let uε ∈ H 1(B(x0, 2r);Rm) be a weak solution of div(A(x/ε)∇uε)= 0 in B(x0, 2r) for
some x0 ∈ Rd and r > 0. Let σ ∈ (0, 1). Then

|uε(x)− uε(y)| ≤ Cσ

(
|x − y|

r

)σ(
−

∫
B(x0,2r)

|uε|2
)1

2

(3-1)

for any x , y ∈ B(x0, r), where Cσ depends only on d, m, σ and A (not on ε, x0 or r ).

Theorem 3.1 follows from Theorem 2.2 by a three-step compactness argument, similar to the periodic
case in [Avellaneda and Lin 1987].

Lemma 3.2. Let 0<σ < 1. Then there exist constants ε0 > 0 and θ ∈
(
0, 1

4

)
, depending only on σ and A,

such that

−

∫
B(y,θ)

∣∣∣∣uε − −∫
B(y,θ)

uε

∣∣∣∣2 ≤ θ2σ for any 0< ε < ε0 (3-2)

whenever uε ∈ H 1(B(y, 1);Rm) is a weak solution of div(A(x/ε)∇uε)= 0 in B(y, 1) for some y ∈ Rd

and
−

∫
B(y,1)
|uε|2 ≤ 1.

Proof. If div(A(x/ε)∇uε) = 0 in B(y, 1) and v(x) = uε(x + y), then div(B(x/ε)∇v) = 0 in B(0, 1),
where B(x) = A(x + ε−1 y) ∈ A. As a result, it suffices to establish estimate (3-2) for y = 0 and for
solutions uε of div(B(x/ε)∇u) = 0 in B(0, 1), where B ∈A.

To this end, we first note that, if w is a solution of a second-order elliptic system in B
(
0, 1

2

)
with

constant coefficients satisfying the ellipticity condition (2-6), then

−

∫
B(0,θ)

∣∣∣∣w− −∫
B(0,θ)

w

∣∣∣∣2 ≤ C0θ
2
−

∫
B(0,1/2)

|w|2 for any 0< θ < 1
4 , (3-3)

where C0 depends only on d , m and µ. We now choose θ ∈
(
0, 1

4

)
so small that

2dC0θ
2 < θ2σ . (3-4)

We claim that the estimate (3-2) with y = 0 holds for this θ and for some ε0 > 0, which depends only
on A, whenever uε is a weak solution of div(B(x/ε)∇uε)= 0 in B(0, 1) for some B ∈A.

Suppose this is not the case. Then there exist {ε`} ⊂ R+, {B`} ⊂A and {u`} ⊂ H 1(B(0, 1);Rm) such
that ε`→ 0, div(B`(x/ε`)∇u`)= 0 in B(0, 1),

−

∫
B(0,1)

|u`|2 ≤ 1,
(3-5)

and

−

∫
B(0,θ)

∣∣∣∣u`− −∫
B(0,θ)

u`

∣∣∣∣2 > θ2σ . (3-6)

Since {u`} is bounded in L2(B(0, 1);Rm), by Cacciopoli’s inequality, {u`} is bounded in H 1
(
B
(
0, 1

2

)
;Rm

)
.

By passing to a subsequence, we may assume u`⇀ u weakly in H 1
(
B
(
0, 1

2

)
;Rm

)
and in L2(B(0, 1);Rm).
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It follows from Theorem 2.2 that u is a solution of div( Ãu)= 0 in B
(
0, 1

2

)
, where Ã = O t ÂO for some

rotation O in Rd . Since the matrix O t ÂO satisfies the ellipticity condition (2-6), estimate (3-3) holds
for w = u. However, since u`→ u strongly in L2

(
B
(
0, 1

2

)
;Rm

)
, we may deduce from (3-6) that

θ2σ
≤ −

∫
B(0,θ)

∣∣∣∣u− −∫
B(0,θ)

u
∣∣∣∣2 ≤ C0θ

2
−

∫
B(0,1/2)

|u|2 ≤ 2dC0θ
2
−

∫
B(0,1)

|u|2, (3-7)

where we have used (3-3) for the second inequality.
Finally, we note that the weak convergence of u` in L2(B(0, 1);Rm) and the inequality in (3-5) give

−

∫
B(0,1)

|u|2 ≤ 1.

In view of (3-7), we obtain θ2σ
≤ 2dC0θ

2, which contradicts (3-4). This completes the proof. �

Lemma 3.3. Fix 0<σ < 1. Let ε0 and θ be the constants given by Lemma 3.2. Let uε ∈ H 1(B(y, 1);Rm)

be a weak solution of div(A(x/ε)∇uε) = 0 in B(y, 1) for some y ∈ Rd . Then, if 0 < ε < ε0θ
k−1 for

some k ≥ 1,

−

∫
B(y,θ k)

∣∣∣∣uε − −∫
B(y,θ k)

uε

∣∣∣∣2 ≤ θ2kσ
−

∫
B(y,1)

|uε|2. (3-8)

Proof. The lemma is proved by an induction argument on k, using Lemma 3.2 and the rescaling property
that, if Lε(uε)= 0 in B(y, 1) and v(x)= uε(θ k x), then

Lε/θ k (v)= 0 in B(θ−k y, θ−k).

See [Avellaneda and Lin 1987] for the periodic case. �

Proof of Theorem 3.1. By rescaling we may assume that r = 1. Suppose that uε ∈ H 1(B(y, 2);Rm) and
div(A(x/ε)∇uε)= 0 in B(y, 2) for some y ∈ Rd . We show that

−

∫
B(z,t)

∣∣∣∣uε − −∫
B(z,t)

uε

∣∣∣∣2 ≤ Ct2σ
−

∫
B(z,1)
|uε|2 (3-9)

for any 0< t < θ and z ∈ B(y, 1), where θ ∈
(
0, 1

4

)
is given by Lemma 3.2. The estimate (3-1) follows

from (3-9) by Campanato’s characterization of Hölder spaces.
With Lemma 3.3 at our disposal, the proof of (3-9) follows the same line of argument as in the periodic

case. We refer the reader to [Avellaneda and Lin 1987] for details. We point out that the classical local
Hölder estimates for solutions of elliptic systems in divergence form with continuous coefficients are
needed to handle the case ε ≥ θε0 and 0< t < θ , as well as the case 0< ε < θε0 and 0< t < ε/ε0. �

It follows from (3-1) and Cacciopoli’s inequality that

−

∫
B(y,t)
|∇uε|2 ≤ Cσ

( t
r

)σ
−

∫
B(y,r)

|∇uε|2 for any 0< t < r (3-10)

if div(A(x/ε)∇uε)= 0 in B(y, r). Since A∗ satisfies the same ellipticity and almost periodicity conditions
as A, estimate (3-16) also holds for solutions of div(A∗(x/ε)∇uε)= 0 in B(y, r). As a result, one may
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construct an m×m matrix of fundamental solutions 0ε(x, y)= (0αβε (x, y)) such that, for each y ∈ Rd ,
∇x0ε(x, y) is locally integrable and

φγ (y)=
∫

Rd
aαβi j (x/ε)

∂

∂x j
(0βγε (x, y))∂φ

α

∂xi
dx (3-11)

for any φ = (φα) ∈ C1
0(R

d ,Rm) (see, e.g., [Hofmann and Kim 2007]). Moreover, if d ≥ 3, the matrix
0ε(x, y) satisfies

|0ε(x, y)| ≤ C |x − y|2−d (3-12)

for any x , y ∈ Rd with x 6= y, and

|0ε(x + h, y)−0ε(x, y)| ≤
Cσ |h|σ

|x − y|d−2+σ ,

|0ε(x, y+ h)−0ε(x, y)| ≤
Cσ |h|σ

|x − y|d−2+σ ,

(3-13)

where x , y, h ∈ Rd and 0 < |h| ≤ 1
2 |x − y|. Since L∗ε(0ε(x, · )) = 0 in Rd

\ {x}, using Cacciopoli’s
inequality and (3-12)–(3-13) we obtain(

−

∫
R≤|y−x |≤2R

|∇y0ε(x, y)|2 dy
)1

2

≤
C

Rd−1 (3-14)

and (
−

∫
R≤|y−x0|≤2R

|∇y{0ε(x, y)−0ε(z, y)}|2 dy
)1

2

≤
C |x − z|σ

Rd−1+σ , (3-15)

where x , z ∈ B(x0, r) and R ≥ 2r .

Theorem 3.4. Let uε ∈ H 1(B(x0, 2r);Rm) be a weak solution of

− div(A(x/ε)∇uε)= f + div(g) in 2B = B(x0, 2r).

Let 0< σ < 1. Then, for any x , z ∈ B = B(x0, r),

|uε(x)−uε(z)|≤C |x−z|σ
(

r−σ
(
−

∫
2B
|uε|2

)1
2

+ sup
y∈B

0<t<r

t2−σ
(
−

∫
B(y,t)
| f |2

)1
2

+ sup
y∈B

0<t<r

t1−σ
(
−

∫
B(y,t)
|g|2

)1
2
)
,

(3-16)
where C depends only on p, σ and A. In particular,

‖uε‖L∞(B) ≤ C
(
−

∫
2B
|uε|2

)1
2

+Crσ sup
y∈B

0<t<r

t2−σ
(
−

∫
B(y,t)
| f |2

)1
2

+Crσ sup
y∈B

0<t<r

t1−σ
(
−

∫
B(y,t)
|g|2

)1
2

,

(3-17)
where C depends only on p, σ and A.

Proof. We first note that the L∞ estimate (3-17) follows easily from (3-16). To see (3-16), we assume d≥3;
the case d = 2 follows from the case d = 3 by adding a dummy variable (the method of ascending). We
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choose a cut-off function ϕ ∈C∞0
(
B
(
x0,

7
4r
))

such that 0≤ ϕ ≤ 1, ϕ = 1 in B
(
x0,

3
2r
)
, and |∇ϕ| ≤Cr−1.

Since
Lε(uε)= f ϕ+ div(gϕ)− g∇ϕ− A(x/ε)∇uε · ∇ϕ−∇{A(x/ε)uε · ∇ϕ},

we obtain that, for x ∈ B(x0, r),

uε(x)=
∫

Rd
0ε(x, y) f (y)ϕ(y) dy−

∫
Rd
∇y0ε(x, y)g(y)ϕ(y) dy

−

∫
Rd
0ε(x, y)g(y)∇ϕ(y) dy−

∫
Rd
0ε(x, y)A(y/ε)∇uε(y) · ∇ϕ(y) dy

+

∫
Rd
∇y0ε(x, y)A(y/ε)uε(y)∇ϕ(y) dy. (3-18)

It follows that, for any x , z ∈ B(x0, r),

|uε(x)− uε(z)| ≤ C
∫

2B
|0ε(x, y)−0ε(z, y)|| f (y)| dy

+C
∫

2B
|∇y{0ε(x, y)−0ε(z, y)}||g(y)| dy

+C
∫

2B
|0ε(x, y)−0ε(z, y)||g(y)||∇ϕ(y)| dy

+C
∫

2B
|0ε(x, y)−0ε(z, y)||∇uε(y)||∇ϕ(y)| dy

+C
∫

2B
|∇y0ε(x, y)−∇y0ε(z, y)||uε(y)||∇ϕ(y)| dy, (3-19)

where 2B = B(x0, 2r). Since |∇ϕ| = 0 in B
(
x0,

3
2r
)

and x, z ∈ B(x0, r), the last three terms in the
right-hand side of (3-19) may be handled easily, using estimate (3-13), Cacciopoli’s inequality and (3-15).
They are bounded by

Cσ

(
|y− z|

r

)σ((
−

∫
2B
|uε|2

)1
2

+ r2
(
−

∫
2B
| f |2

)1
2

+ r
(
−

∫
2B
|g|2

)1
2
)

for any σ ∈ (0, 1).
Next, we use (3-12) and (3-13) to bound the first term in the right-hand side of (3-19) by

C
∫

B(x,4s)

| f (y)| dy
|x − y|d−2 +C

∫
B(z,5s)

| f (y)| dy
|z− y|d−2 +Csσ1

∫
2B\B(x,4s)

| f (y)| dy
|x − y|d−2+σ1

, (3-20)

where s = |x − z| and σ1 ∈ (σ, 1). By decomposing B(x, 4s) as a union of sets {y : |y− x | ∼ 2 j s}, it is
not hard to verify that the first term in (3-20) is bounded by

Csσ sup
y∈B

0<t<r

t2−σ
(
−

∫
B(y,t)
| f |2

)1
2

.

The other two terms in (3-20) may be handled in a similar manner.
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Finally, the second term in the right-hand side of (3-19) is bounded by∫
B(x,4s)

|∇y0ε(x, y)||g(y)| dy+
∫

B(z,5s)
|∇y0ε(z, y)||g(y)| dy

+

∫
2B\B(x,4s)

|∇y{0ε(x, y)−0ε(z, y)}||g(y)| dy. (3-21)

By decomposing 2B \ B(x, 4s) as a union of sets {y : |y − x | ∼ 2 j s} and using Hölder’s inequality
and (3-15) (with σ replaced by some σ1 ∈ (σ, 1)), we may bound the third term in (3-21) by

Csσ sup
y∈B

0<t<r

t1−σ
(
−

∫
B(y,t)
|g|2

)1
2

.

The other two terms in (3-21) may be handled in a similar manner. This completes the proof. �

Remark 3.5. Suppose that − div(A(x/ε)∇uε)= f in 2B and f ∈ L p(2B;Rm) for some p ≥ 2, where
2B = B(x0, 2r). Assume d ≥ 3. Using (3-18) and Cacciopoli’s inequality, we may obtain that

|uε(x)| ≤ C
∫

2B

| f (y)|
|x − y|d−2 dy+C

(
−

∫
2B
|uε|2

)1
2

+Cr2
(
−

∫
2B
| f |2

)1
2

(3-22)

for any x ∈ B = B(x0, r). By the fractional integral estimates, this gives(
−

∫
B
|uε|q

)1
q
≤ C

(
−

∫
2B
|uε|2

)1
2
+Cr2

(
−

∫
2B
| f |p

)1
p
, (3-23)

where 0< 1/p− 1/q ≤ 2/d.

4. Uniform boundary Hölder estimates and proof of Theorem 1.4

For x0 ∈ ∂� and 0< r < r0 = diam(�), define

�r (x0)= B(x0, r)∩� and 1r (x0)= B(x0, r)∩ ∂�. (4-1)

Theorem 4.1. Let � be a bounded C1,η domain in Rd for some η > 0. Let uε ∈ H 1(�r (x0);R
m) be a

weak solution of Lε(uε)= 0 in �r (x0) and uε = 0 on 1r (x0) for some x0 ∈ ∂� and 0< r < r0. Then, for
any 0< σ < 1 and x , y ∈�r/2(x0),

|uε(x)− uε(y)| ≤ C
(
|x − y|

r

)σ(
−

∫
�r (x0)

|uε|2
)1

2

, (4-2)

where C depends only on σ , A and �.

Let φ : Rd−1
→ R be a C1,η function such that

φ(0)= 0, ∇φ(0)= 0 and ‖∇φ‖C0,η(Rd−1) ≤ M0. (4-3)
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Let

D(r)= D(r, φ)=
{
(x ′, xd) ∈ Rd

: |x ′|< r and φ(x ′) < xd < φ(x ′)+ 10(M0+ 1)r
}
,

I (r)= I (r, φ)=
{
(x ′, φ(x ′)) ∈ Rd

: |x ′|< r
}
.

(4-4)

By translation and rotation, Theorem 4.1 may be reduced to the following:

Theorem 4.2. Let uε ∈ H 1(D(r);Rm) be a weak solution of div(B(x/ε)∇uε) = 0 in D(r) and uε = 0
on I (r) for some r > 0 and B ∈A. Then, for any 0< σ < 1 and x , y ∈ D(r/2),

|uε(x)− uε(y)| ≤ C
(
|x − y|

r

)σ(
−

∫
Dr

|uε|2
)1

2

, (4-5)

where C depends only on σ , A and (η,M0) in (4-3).

To prove Theorem 4.2, we need a homogenization result for a sequence of matrices in the class A on a
sequence of domains.

Lemma 4.3. Let {B`} be a sequence of matrices in A. Let {φ`} be a sequence of C1,η functions satisfy-
ing (4-3). Suppose that div(B`(x/ε`)∇u`)= 0 in D(r, φ`) and u` = 0 on I (r, φ`) for some r > 0, where
ε`→ 0 and ‖u`‖H1(D(r,φ`)) ≤ C. Then there exist subsequences of {φ`} and {u`}, which we still denote
by {φ`} and {u`}, respectively, a function φ satisfying (4-3) with u ∈ H 1(D(r, φ);Rm), and a constant
matrix B̃, such that{

φ`→ φ in C1(|x ′|< r),
u`(x ′, xd −φ`(x ′)) ⇀ u(x ′, xd −φ(x ′)) weakly in H 1(D(r, 0);Rm),

(4-6)

and

div(B̃∇u)= 0 in D(r, φ) and u = 0 on I (r, φ). (4-7)

Moreover, the matrix B̃, which is given by O t ÂO for some rotation O in Rd , satisfies the ellipticity
condition (2-6).

Proof. Since ‖∇φ`‖C0,η(Rd−1) ≤ M0 and ‖u`‖H1(D(r,φ`)) ≤ C , (4-6) follows by passing to subsequences.
Suppose that B`(y) = O t

`A(O`y + z`)O` for some rotation O` and z` ∈ Rd . By passing to a subse-
quence, we may assume that O`→ O . Since u`→ u weakly in H 1(�;Rm) for any � b D(r, φ), it
follows from Theorem 2.2 that div(B̃u)= 0 in D(r, φ), where B̃ = O t ÂO . Finally, since v`(x ′, xd)=

u`(x ′, xd +φ`(x ′)) ⇀ v(x ′, xd +φ(x ′)) weakly in H 1(D(r, 0)) and v` = 0 on I (r, 0), we may conclude
that v = 0 on I (r, 0). Hence, u = 0 on I (r, φ). �

Proof of Theorem 4.2. With Lemma 4.3 at our disposal, Theorem 4.2 follows by the three-step compactness
argument, as in the periodic case. We refer the reader to [Avellaneda and Lin 1987] for details. �

With interior and boundary Hölder estimates in Theorems 3.1 and 4.1, one may construct an m×m matrix
Gε(x, y)= (Gαβ

ε (x, y)) of Green functions for Lε for a bounded C1,η domain �. Moreover, if d ≥ 3,

|Gε(x, y)| ≤ C |x − y|2−d (4-8)
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for any x , y ∈� and

|Gε(x, y)−Gε(z, y)| ≤
Cσ |x − z|σ

|x − y|d−2+σ (4-9)

for any x , y, z ∈ � with |x − z| < 1
2 |x − y| and any 0 < σ < 1. Since Gε( ·, y) = 0 and Gε(y, · ) = 0

on ∂�, one also has

|Gε(x, y)| ≤
C(δ(x))σ1(δ(y))σ2

|x − y|d−2+σ1+σ2
(4-10)

for any x , y ∈ � and any 0 ≤ σ1, σ2 < 1, where δ(x) = dist(x, ∂�) and C depends only on A, �, σ1

and σ2.

Theorem 4.4. Let � be a bounded C1,η domain in Rd for some η > 0. Suppose that Lε(uε) = F in �
and uε = 0 on ∂�. Then

‖uε‖Cα(�) ≤ Cα sup
x∈�

0<r<r0

r2−α
−

∫
�(x,r)

|F | (4-11)

for any 0< α < 1, where r0 = diam(�) and Cα depends only on A, � and α.

Proof. Since

uε(x)=
∫
�

Gε(x, y)F(y) dy,

it follows that, for any x , z ∈�,

|uε(x)− uε(z)| ≤
∫
�

|Gε(x, y)−Gε(z, y)||F(y)| dy.

Let t = |x − z| and write � = [� \ B(x, 4t)] ∪ �(x, 4t). We use (4-8) to estimate the integral of
|Gε(x, y)−Gε(z, y)||F(y)| over �(x, 4t). This gives∫

�(x,4t)
|Gε(x, y)−Gε(z, y)||F(y)| dy ≤ C

∫
�(x,4t)

|F(y)| dy
|x − y|d−2 +C

∫
�(z,5t)

|F(y)| dy
|z− y|d−2

≤ Ctα sup
x∈�

0<r<r0

r2−α
−

∫
�(x,r)

|F |.

For the integral over � \ B(x, 4t), we choose β ∈ (α, 1) and use (4-9) to obtain∫
�\B(x,4t)

|Gε(x, y)−Gε(z, y)||F(y)| dy ≤ Ctβ
∫
�\B(x,4t)

|F(y)| dy
|x − y|d−2+β ≤ Ctα sup

x∈�
0<r<r0

r2−α
−

∫
�(x,r)

|F |.

Thus we have proved that |u(x) − u(z)|/|x − z|α is bounded by the right-hand side of (4-11). The
remaining estimate for ‖uε‖L∞(�) is similar. �

Theorem 4.5. Let � be a bounded C1,η domain in Rd for some η > 0. Suppose that Lε(uε) = div( f )
in � and uε = 0 on ∂�. Then

‖uε‖Cα(�) ≤ Cα sup
x∈�

0<r<r0

r1−α
(
−

∫
�(x,r)

| f |2
)1

2

(4-12)
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for any 0< α < 1, where r0 = diam(�) and Cα depends only on A, � and α.

Proof. The proof is similar to that of Theorem 4.4, using

|uε(x)− uε(z)| ≤
∫
�

∣∣∇y(Gε(x, y)−Gε(z, y))
∣∣| f (y)| dy.

The lack of pointwise estimates for ∇yGε(x, y) is overcome by using the following estimates:∫
r≤|y−x |≤2r

|∇yGε(x, y)|2 dy ≤
C
r2

∫
r/2≤|y−x |≤3r

|Gε(x, y)|2 dy,∫
R≤|y−x |≤2R

|∇y(Gε(x, y)−Gε(z, y))|2 dy ≤
C
R2

∫
R/2≤|y−x |≤3R

|Gε(x, y)−Gε(z, y)|2 dy,
(4-13)

where |x − z|< 1
4 |x − y|. Estimate (4-13) follows from Cacciopoli’s inequality. We omit the rest of the

proof. �

Theorem 4.6. Let � be a bounded C1,η domain in Rd for some η > 0. Suppose that Lε(uε)= 0 in � and
uε = g on ∂�. Then

‖uε‖Cα(�) ≤ Cα‖g‖Cα(∂�) (4-14)

for any 0< α < 1, where Cα depends only on A, � and α.

Proof. Without loss of generality we may assume that ‖g‖Cα(∂�)= 1. Let v be the harmonic function in �
such that v ∈ C(�) and v = g on ∂�. It is well known that ‖v‖Cα(�) ≤ Cα‖g‖Cα(∂�) = Cα, where Cα
depends only on α and �. By interior estimates for harmonic functions, one also has

|∇v(x)| ≤ Cα(δ(x))α−1 (4-15)

for any x ∈�. Since Lε(uε − v)=−Lε(v) in � and uε − v = 0 on ∂�, it follows that

uε(x)− v(x)=−
∫
�

∇yGε(x, y)A(y/ε)∇v(y) dy.

This, together with (4-15), gives

|uε(x)− v(x)| ≤ Cα

∫
�

|∇yGε(x, y)|(δ(y))α−1 dy. (4-16)

We will show that ∫
�

|∇yGε(x, y)|(δ(y))α−1 dy ≤ Cα(δ(x))α for any x ∈�. (4-17)

Assume (4-17) for a moment. Then

|uε(x)− v(x)| ≤ Cα(δ(x))α for any x ∈�. (4-18)

It follows that ‖uε‖L∞(�) ≤ ‖v‖L∞(�)+C ≤ C . Let x , y ∈�. To show |uε(x)− uε(y)| ≤ C |x − y|α , we
consider three cases: (1) |x − y|< 1

4δ(x); (2) |x − y|< 1
4δ(y); (3) |x − y| ≥max

( 1
4δ(x),

1
4δ(y)

)
. In the

first case, since Lε(uε)= 0 in �, we may use the interior Hölder estimates in Theorem 3.1 to obtain

|uε(x)− uε(y)| ≤ Cα|x − y|α‖uε‖L∞(B(x,δ(x)/2)) ≤ Cα|x − y|α.
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The second case is handled in the same manner. For the third case we use (4-18) and Hölder estimates
for v to see that

|uε(x)− uε(y)| ≤ |uε(x)− v(x)| + |v(x)− v(y)| + |v(y)− uε(y)|

≤ C(δ(x))α +C |x − y|α +C(δ(y))α

≤ Cα|x − y|α.

It remains to prove (4-17). To this end we fix x ∈� and let r = δ(x)/2. We first note that∫
B(x,r)

|∇yGε(x, y)|(δ(y))α−1 dy ≤ Crα−1
∫

B(x,r)
|∇yGε(x, y)| dy ≤ Crα, (4-19)

where the last inequality follows from the first estimate in (4-13) by decomposing B(x, r) \ {0} as⋃
∞

j=0{B(x, 2− jr) \ B(x, 2− j−1r)}. To estimate the integral on � \ B(x, r), we observe that, if Q is a
cube in Rd with the property that 3Q ⊂� \ {x} and `(Q)∼ dist(Q, ∂�), then∫

Q
|∇yGε(x, y)|(δ(y))α−1 dy ≤ C(`(Q))α−1

|Q|
(
−

∫
Q
|∇yGε(x, y)|2 dy

)1
2

≤ C(`(Q))α−2
|Q|

(
−

∫
2Q
|Gε(x, y)|2 dy

)1
2

≤ Crα1(`(Q))α+α2−2
|Q|

(
−

∫
2Q

dy
|x − y|2(d−2+α1+α2)

)1
2

, (4-20)

where α1, α2 ∈ (0, 1). We remark that Cacciopoli’s inequality was used for the second inequality above,
while the estimate (4-10) was used for the third. Since 3Q ⊂� \ {x}, we see that |x − y| ∼ |x − z| for
any y, z ∈ 2Q. As a result, it follows from (4-20) that∫

Q
|∇yGε(x, y)|(δ(y))α−1 dy ≤ Crα1

∫
Q

(δ(y))α+α2−2

|x − y|d−2+α1+α2
dy. (4-21)

By decomposing�\B(x, r) as a nonoverlapping union of cubes Q with the said property (a Whitney-type
decomposition of �), we obtain∫

�\B(x,r)
|∇yGε(x, y)|(δ(y))α−1 dy ≤ Crα1

∫
�

(δ(y))α+α2−2

(|x − y| + r)d−2+α1+α2
dy

≤ Crα1

∫
Rd
+

yα+α2−2
d dy

(|r − yd | + r + |y′|)d−2+α1+α2
. (4-22)

Finally, a direct computation shows that the integral on the right-hand side of (4-22) is bounded by Crα−α1

provided that α1 > α and α2 > 1−α. This completes the proof. �

Proof of Theorem 1.4. This follows from Theorems 4.4, 4.5 and 4.6 by writing uε = u(1)ε + u(2)ε + u(3)ε ,
where u(1)ε , u(2)ε and u(3)ε satisfy the conditions in Theorems 4.4, 4.5 and 4.6, respectively. �
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5. Construction of approximate correctors

In this section we construct the approximate correctors χT = (χ
β

T, j )= (χ
αβ

T, j ) and obtain some preliminary
estimates.

Proposition 5.1. Let f ∈ L2
loc(R

d
;Rm) and g = (g1, . . . , gd) ∈ L2

loc(R
d
;Rd×m). Assume that

sup
x∈Rd

∫
B(x,1)

(| f |2+ |g|2) <∞.

Then, for T > 0, there exists a unique u ∈ H 1
loc(R

d
;Rm) such that

− div(A(x)∇u)+ T−2u = f + div(g) in Rd (5-1)

and

sup
x∈Rd

∫
B(x,1)

(|∇u|2+ |u|2) <∞. (5-2)

Moreover, the solution u satisfies the estimate

sup
x∈Rd
−

∫
B(x,T )

(|∇u|2+ T−2
|u|2)≤ C sup

x∈Rd
−

∫
B(x,T )

(|g|2+ T 2
| f |2), (5-3)

where C depends only on d, m and µ.

Proof. By rescaling we may assume that T = 1. The proof of the existence and estimate (5-3)
may be found in [Pozhidaev and Yurinskiı̆ 1989]. It uses the fact that, for f ∈ L2(Rd

;Rm) and
g = (g1, . . . , gd) ∈ L2(Rd

;Rd×m) with compact support, there exists a constant λ > 0, depending
only on d, m and µ, such that the solution of (5-1) in H 1(Rd

;Rm) satisfies∫
Rd

eλ|x |(|∇u|2+ |u|2) dx ≤ C
∫

Rd
eλ|x |(| f |2+ |g|2) dx .

For the uniqueness, assume that u ∈ H 1
loc(R

d
;Rm) satisfies (5-2) and − div(A(x)∇u)+ u = 0 in Rd .

By Cacciopoli’s inequality, ∫
B(0,R)

|∇u|2+
∫

B(0,R)
|u|2 ≤

C
R2

∫
B(0,2R)

|u|2

for any R ≥ 1. It follows that ∫
B(0,R)

|u|2 ≤
C

R2d

∫
B(0,2d R)

|u|2

for any R ≥ 1. However, the condition (5-2) implies that
∫

B(0,2d R) |u|
2
≤ Cu Rd . Consequently, we obtain∫

B(0,R) |u|
2
≤ Cu R−d for any R ≥ 1 and thus u ≡ 0 in Rd . �
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Remark 5.2. The solution u of (5-1), given by Proposition 5.1, in fact satisfies

sup
x∈Rd

(
−

∫
B(x,T )

|∇u|p
)1

p
≤ C sup

x∈Rd

(
−

∫
B(x,T )

|g|p
)1

p
+C sup

x∈Rd

(
−

∫
B(x,T )

T 2
| f |2

)1
2
, (5-4)

sup
x∈Rd

(
−

∫
B(x,T )

T−q
|u|q

)1
q
≤ C sup

x∈Rd

(
−

∫
B(x,T )

|g|p
)1

p
+C sup

x∈Rd

(
−

∫
B(x,T )

T 2
| f |2

)1
2

(5-5)

for some p> 2, depending only on d , m and µ, where 1/q = 1/p−1/d for d ≥ 3. If d = 2, the left-hand
side of (5-5) should be replaced by T−1

‖u‖L∞ .
To see (5-4), one uses the weak reverse Hölder estimate: if u is a weak solution of − div(A(x)u)=

f + div(g) in Br = B(x0, r), then(
−

∫
Br/2

|∇u|p
)1

p
≤

C
r

(
−

∫
Br

|u|2
)1

2
+C

(
−

∫
Br

|g|p
)1

p
+Cr

(
−

∫
Br

| f |2
)1

2

for some p > 2, depending only on d, m and µ (see, e.g., [Giaquinta 1983]). Estimate (5-5) follows
from (5-4) by Sobolev imbedding.

Let Pβj (x) = x j eβ , where 1 ≤ j ≤ d, 1 ≤ β ≤ m, and eβ = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the
β-th position. For T > 0, the approximate corrector is defined as χT = (χ

αβ

T, j ), where, for each 1≤ j ≤ d
and 1≤ β ≤ m, u = χβT, j = (χ

1β
T, j , . . . , χ

mβ
T, j ) is the weak solution of

− div(A(x)∇u)+ T−2u = div(A(x)∇Pβj ) in Rd , (5-6)

given by Proposition 5.1. It follows from (5-3) that

sup
x∈Rd
−

∫
B(x,T )

(|∇χT |
2
+ T−2

|χT |
2)≤ C, (5-7)

where C depends only on d, m and µ. Clearly, this gives

sup
x∈Rd

L≥T

−

∫
B(x,L)

(|∇χT |
2
+ T−2

|χT |
2)≤ C, (5-8)

where C depends only on d, m and µ.

Lemma 5.3. Let x , y, z ∈ Rd . Then(
−

∫
B(x,T )

|∇χT (t + y)−∇χT (t + z)|2 dt
)1

2

≤ C‖A( · + y)− A( · + z)‖L∞(Rd ),

T−1
(
−

∫
B(x,T )

|χT (t + y)−χT (t + z)|2 dt
)1

2

≤ C‖A( · + y)− A( · + z)‖L∞(Rd ),

(5-9)

where C depends only on d, m and µ.
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Proof. Fix y, z ∈ Rd and 1 ≤ j ≤ d, 1 ≤ β ≤ m. Let u(t) = χβT, j (t + y) and v(t) = χβT, j (t + z). Then
w = u− v is a solution of

− div(A(t + y)∇w)+ T−2w = div
(
[A(t + y)− A(t + z)]∇Pβj

)
+ div

(
[A(t + y)− A(t + z)]∇v

)
.

In view of Proposition 5.1, we obtain

−

∫
B(x,T )

(|∇w|2+ T−2
|w|2)

≤ C sup
x∈Rd

−

∫
B(x,T )

|A(t + y)− A(t + z)|2 dt +C sup
x∈Rd

−

∫
B(x,T )

|A(t + y)− A(t + z)|2|∇v|2 dt

≤ C‖A( · + y)− A( · + z)‖2L∞ +C‖A( · + y)− A( · + z)‖2L∞ sup
x∈Rd

−

∫
B(x,T )

|∇v|2

≤ C‖A( · + y)− A( · + z)‖2L∞,

where we have used (5-7) in the last inequality. This completes the proof. �

Remark 5.4. For f ∈ L2
loc(R

d), define

‖ f ‖W 2 = lim sup
L→∞

sup
x∈Rd

(
−

∫
B(x,L)

| f |2
)1

2

. (5-10)

Note that, by (5-7),
‖∇χT ‖W 2 + T−1

‖χT ‖W 2 ≤ C, (5-11)

where C depends only on d, m and µ. Moreover, by Lemma 5.3, for any τ ∈ Rd ,

‖∇χT ( · + τ)−∇χT ( · )‖W 2 + T−1
‖χT ( · + τ)−χT ( · )‖W 2 ≤ C‖A( · + τ)− A( · )‖L∞ . (5-12)

Since A is uniformly almost-periodic, for any ε > 0, the set

{τ ∈ Rd
: ‖A( · + τ)− A( · )‖L∞(Rd ) < ε}

is relatively dense in Rd . It follows that, for any ε > 0, the set of τ for which the left-hand side of (5-12) is
less than ε is also relatively dense in Rd . By [Besicovitch and Bohr 1931], this implies that ∇χT and χT

are limits of sequences of trigonometric polynomials with respect to the seminorm ‖ · ‖W 2 in (5-10). In
particular, ∇χT , χT ∈ B2(Rd) for any T > 0.

Lemma 5.5. Let uT = χ
β

T, j for some T > 0, 1≤ j ≤ d and 1≤ β ≤ m. Then〈
aαγik

∂uγT
∂xk

∂vα

∂xi

〉
+ T−2

〈uT · v〉 = −

〈
aαβi j

∂vα

∂xi

〉
, (5-13)

where v = (vα) ∈ H 1
loc(R

d
;Rm) and vα, ∇vα ∈ B2(Rd).

Proof. For any φ = (φα) ∈ H 1(Rd
;Rm) with compact support, we have∫

Rd
aαγik

∂uγT
∂xk
·
∂φα

∂xi
+

1
T 2

∫
Rd

uT ·φ =−

∫
Rd

aαβi j
∂φα

∂xi
. (5-14)
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Let v = (vα) ∈ H 1
loc(R

d
;Rm). Suppose that vα ∈ B2(Rd) and ∇vα ∈ B2(Rd). Choose φ(x)= ϕ(εx)v(x)

in (5-14), where ϕ ∈ C∞0 (R
d). The desired result follows by a simple change of variables x 7→ x/ε

in (5-14), multiplying both sides of the equation by εd , and finally letting ε→ 0. �

Letting v be a constant in (5-13), we see that

〈χ
β

T, j 〉 = 0. (5-15)

By taking v = χβT, j , we obtain

〈A∇χβT, j · ∇χ
β

T, j 〉+ T−2
〈|χ

β

T, j |
2
〉 = −〈A∗∇χβj,T 〉, (5-16)

where A∗ denotes the adjoint of A. This, in particular, implies that

〈|∇χT |
2
〉+ T−2

〈|χT |
2
〉 ≤ C,

where C depends only on d , m and µ.

Lemma 5.6. Let ψ = (ψαβi j ) be defined by (2-4). Then, as T →∞,

∂

∂xi
(χ

αβ

T, j ) ⇀ ψ
αβ

i j weakly in B2(Rd). (5-17)

Proof. Fix 1 ≤ j ≤ d and 1 ≤ β ≤ m. Let ψ̃βj = (ψ̃
αβ

i j ) ∈ B2(Rd
;Rdm) be the weak limit in B2(Rd)

of a subsequence ∇χβT`, j , where T` → ∞. Since ∇χβT, j ∈ V 2
pot, we see that ψ̃βj ∈ V 2

pot. Moreover,
since T−2

〈|χT |
2
〉 ≤ C , it follows by letting T →∞ in (5-13) that〈

aαγik ψ̃
γβ

k j
∂vα

∂xi

〉
=−

〈
aαβi j

∂vα

∂xi

〉
for any v = (vα) ∈ Trig(Rd

;Rm). This implies that ψ̃βj is a solution of (2-4). By the uniqueness of the
solution, we obtain ψ̃βj = ψ

β

j and hence (5-17). �

Theorem 5.7. As T →∞, T−2
〈|χT |

2
〉 → 0.

Proof. Note that

µ〈|ψ −∇χT |
2
〉 ≤

〈
aαγik

(
ψ
γβ

k j −
∂

∂xk
(χ

γβ

T, j )
)(
ψ
αβ

i j −
∂

∂xi
(χ

αβ

T, j )
)〉

= 〈aαβik ψ
γβ

k j ψ
αβ

i j 〉−

〈
aαγik

∂

∂xk
(χ

γβ

T, j )ψ
αβ

i j

〉
− T−2

〈|χT |
2
〉,

where we have used equations (2-4) and (5-13). In view of Lemma 5.6, this implies that, as T →∞,
T−2
〈|χT |

2
〉 → 0 and

‖ψ −∇χT ‖B2 → 0. (5-18)

This concludes the proof. �

Remark 5.8. For T > 0, let

âαβT,i j = 〈a
αβ

i j 〉+

〈
aαγik

∂

∂xk
(χ

γβ

T, j )
〉

(5-19)
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be the approximate homogenized coefficients. Then

|âαβi j − âαβT,i j | =

∣∣∣〈aαγik

(
ψ
γβ

k j −
∂

∂xk
(χ

γβ

T, j )
)〉∣∣∣≤ C‖ψ −∇χT ‖B2 . (5-20)

6. Estimates of approximate correctors

In this section we will establish sharp estimates for approximate correctors χT . The proof relies on the
uniform L∞ and Hölder estimates obtained in Section 3 for solutions of Lε(uε)= f + div(g).

Lemma 6.1. For T ≥ 1,

‖χT ‖L∞(Rd ) ≤ CT, (6-1)

where C is independent of T . Moreover, for any 0< σ < 1 and |x − y| ≤ T ,

|χT (x)−χT (y)| ≤ CσT 1−σ
|x − y|σ , (6-2)

where Cσ depends only on σ and A.

Proof. We consider the case d ≥ 3. The 2-dimensional case follows by the method of ascending.
Let 1≤ j ≤ d and 1≤ β ≤ m. Fix z ∈ Rd and consider the function

u(x)= χβT, j (x)+ Pβj (x − z). (6-3)

It follows from (5-7) that (
−

∫
B(z,4T )

|u|2
)1

2

≤ CT . (6-4)

Since

div(A(x)∇u)= T−2χ
β

T, j in Rd , (6-5)

we may apply the estimate (3-23) repeatedly to show that(
−

∫
B(z,2T )

|u|p
)1

p
≤ C pT (6-6)

for any 2< p <∞, where C p depends only on p and A. This, together with (3-17), gives

‖u‖L∞(B(z,T )) ≤ CT .

Hence, |χβT, j (z)|≤CT for any z ∈Rd . Finally, (6-2) follows from (6-1) and the Hölder estimate (3-16). �

Lemma 6.2. Let σ1, σ2 ∈ (0, 1) and 2< p <∞. Then, for any 1≤ r ≤ T ,

sup
x∈Rd

(
−

∫
B(x,r)

|∇χT |
p
)1

p
≤ CT σ1

(T
r

)σ2
, (6-7)

where C depends only on p, σ1, σ2 and A.
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Proof. Let u be the same as in the proof of Lemma 6.1. By Cacciopoli’s inequality,

−

∫
B(z,r)
|∇u|2 ≤ Cr−2

−

∫
B(z,2r)

|u− u(z)|2+Cr2
‖T−2χT ‖

2
L∞,

where 0< r ≤ T . In view of (6-1) and (6-2), this gives

sup
z∈Rd

(
−

∫
B(z,r)
|∇χT |

2
)1

2

≤ Cσ
(T

r

)σ
(6-8)

for any σ ∈ (0, 1) and 0< r ≤ T . Since A is uniformly continuous in Rd , by the local W 1,p estimates for
elliptic systems in divergence form, it follows from (6-5) that(

−

∫
B(z,1)
|∇u|p

)1
p
≤ C p

(
−

∫
B(z,2)
|∇u|2

)1
2
+CT−2

‖χT ‖L∞

for any z ∈ Rd and 2< p <∞, where C p depends only on p and A. This, together with (6-8), yields

sup
z∈Rd

(
−

∫
B(z,1)
|∇χT |

p
)1

p
≤ C p,σT σ

for any σ ∈ (0, 1) and p ∈ (2,∞). Consequently, for any 1≤ r ≤ T and σ ∈ (0, 1),

sup
z∈Rd

(
−

∫
B(z,r)
|∇χT |

p
)1

p
≤ C p,σT σ . (6-9)

The desired estimate (6-7) now follows from (6-8) and (6-9) by a simple interpolation of L p norms. �

Theorem 6.3. Let T ≥ 1. The approximate corrector χT is uniformly almost-periodic in Rd . Moreover,
for any y, z ∈ Rd ,

‖χT ( · + y)−χT ( · + z)‖L∞(Rd ) ≤ CT ‖A( · + y)− A( · + z)‖L∞(Rd ), (6-10)

where C is independent of T , y and z.

Proof. We assume d ≥ 3. The case d = 2 follows from the case d = 3 by the method of ascending. Fix
y, z ∈ Rd and 1≤ j ≤ d , 1≤ β ≤ m. Let

u(x)= χβT, j (x + y)−χβT, j (x + z).

Note that

− div(A(x+y)∇u)=−T−2u+div
(
(A(x+y)−A(x+z))∇Pβj

)
+div

(
(A(x+y)−A(x+z))∇v

)
, (6-11)

where v(x) = χβT, j (x + z). Let B = B(x0, T ). As in the proof of Theorem 3.4, we choose a cut-off
function ϕ ∈ C∞0

(
B
(
x0,

7
4 T
))

such that ϕ = 1 in B
(
x0,

3
2 T
)

and |∇ϕ| ≤ CT−1. Using the representation
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formula by fundamental solutions and (6-11), we obtain, for any x ∈ B,

|u(x)| ≤ CT−2
∫

2B
|0y(x, t)||u(t)| dt +C‖A( · + y)− A( · + z)‖L∞

∫
2B
|∇t(0

y(x, t)ϕ(t))| dt

+C‖A( · + y)− A( · + z)‖L∞

∫
2B
|∇v(t)||∇t(0

y(x, t)ϕ(t))| dt

+CT
(
−

∫
2B
|∇u|2

)1
2

+C
(
−

∫
2B
|u|2

)1
2

, (6-12)

where we have used 0y(x, t) = 0(x + y, t + y) to denote the matrix of fundamental solutions for the
operator − div(A( · + y)∇) in Rd . By Lemma 5.3, the last two terms in the right-hand side of (6-12) are
bounded by the right-hand side of (6-10). Using the size estimate (3-12) and Cacciopoli’s inequality, it is
also not hard to see that the second term in the right-hand side of (6-12) is bounded by the right-hand
side of (6-10).

To treat the third term in the right-hand side of (6-12), we note that∫
2B
|∇v(t)||∇t(0

y(x, t)ϕ(t))| dt

≤ C
∞∑
`=0

(
−

∫
|t−x |∼2−`T

|∇v(t)|2 dt
)1

2
(
−

∫
|t−x |∼2−`T

|∇t(0
y(x, t)ϕ)|2 dt

)1
2

(2−`T )d

≤ C
∞∑
`=0

(2`)σ · (2−`T )1−d
· (2−`T )d

≤ CT,

where σ ∈ (0, 1) and we have used (6-8) to estimate the integral involving |∇v(t)|2 for the second
inequality. As a result, we have proved that, for any x ∈ B,

|u(x)| ≤ CT−2
∫

2B

|u(t)|
|x − t |d−2 dt +CT ‖A( · + y)− A( · + z)‖L∞ . (6-13)

By the fractional integral estimates, this implies that(
−

∫
B
|u|q

)1
q
≤ C

(
−

∫
2B
|u|p

)1
p
+CT ‖A( · + y)− A( · + z)‖L∞,

where 1< p < q ≤∞ and 1/p− 1/q < 2/d . Since(
−

∫
2B
|u|2

)1
2
≤ CT ‖A( · + y)− A( · + z)‖L∞

by Lemma 5.3, a simple iteration argument shows that

‖u‖L∞(B) ≤ CT ‖A( · + y)− A( · + z)‖L∞ .

This completes the proof. �
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Remark 6.4. Let u(x)= χT (x + y)−χT (x + z), as in the proof of Theorem 6.3. Then

|u(t)− u(s)| ≤ Cσ

(
|t − s|

T

)σ
T ‖A( · + y)− A( · + z)‖L∞ (6-14)

for any σ ∈ (0, 1) and t , s ∈ Rd , where Cσ depends only on σ and A. This follows from (6-11), (6-10)
and (3-16). By Cacciopoli’s inequality and (6-14), we may deduce that

sup
x∈Rd

(
−

∫
B(x,r)

|∇u|2
)1

2

≤ Cσ
(T

r

)σ
‖A( · + y)− A( · + z)‖L∞ (6-15)

for any σ ∈ (0, 1).

Theorem 6.5. Let T ≥ 1. Then

T−1
‖χT ‖L∞(Rd ) ≤ Cσ

(
ρ(R)+

( R
T

)σ)
(6-16)

for any R > 0 and σ ∈ (0, 1), where Cσ depends only on σ and A. In particular, T−1
‖χT ‖L∞(Rd )→ 0

as T →∞.

Proof. Let y, z ∈ Rd . Suppose |z| ≤ R. Then

|χT (y)−χT (0)| ≤ |χT (y)−χT (z)|+ |χT (z)−χT (0)| ≤CT ‖A( ·+ y)− A( ·+ z)‖L∞(Rd )+CσT 1−σ Rσ ,

where we have used Theorem 6.3 and Lemma 6.1. It follows that

sup
y∈Rd

T−1
|χT (y)−χT (0)| ≤ Cρ(R)+Cσ

( R
T

)σ
(6-17)

for any R > 0.
Finally, we observe that

|χT (0)| ≤
∣∣∣∣−∫

B(0,L)
(χT (y)−χT (0)) dy

∣∣∣∣+∣∣∣∣−∫
B(0,L)

χT (y) dy
∣∣∣∣≤ sup

y∈Rd
|χT (y)−χT (0)|+

∣∣∣∣−∫
B(0,L)

χT (y) dy
∣∣∣∣.

Since 〈χT 〉 = 0, we may let L→∞ in the estimate above to obtain

|χT (0)| ≤ sup
y∈Rd
|χT (y)−χT (0)|.

This, together with (6-17), yields the estimate (6-16). �

For T ≥ 1 and σ > 0, define

2σ (T )= inf
0<R≤T

(
ρ(R)+

( R
T

)σ)
. (6-18)

Note that 2σ (T ) is a decreasing and continuous function of T and 2σ (T )→ 0 as T →∞. It follows
from Theorem 6.5 that

T−1
‖χT ‖L∞(Rd ) ≤ Cσ2σ (T ) for any T ≥ 1, (6-19)
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where σ ∈ (0, 1). By taking R = T α for some α ∈ (0, 1) in (6-18), we see that

2σ (T )≤ ρ(T α)+ T−σ(1−α). (6-20)

This, in particular, implies that∫
∞

1

ρ(r)
r

dr <∞ =⇒
∫
∞

1

2σ (r)
r

dr <∞.

Theorem 6.6. Let T ≥ 1. Then

〈|ψ −∇χT |
2
〉

1/2
≤ Cσ

∫
∞

T/2

2σ (r)
r

dr (6-21)

for σ ∈ (0, 1), where Cσ depends only on σ and A.

Proof. Fix 1≤ j ≤ d and 1≤ β ≤m. Let u = χβT, j , v = χ
β

2T, j and w= u−v. It follows from Lemma 5.5
that

〈A∇w · ∇ϕ〉 =
1

4T 2 〈v ·ϕ〉−
1

T 2 〈u ·ϕ〉

for any ϕ ∈ H 1
loc(R

d ,Rm) with ϕ, ∇ϕ ∈ B2(Rd). By taking ϕ = w, we obtain

〈|∇w|2〉 ≤ CT−2(
〈|u|2〉+ 〈|v|2〉

)
≤ Cσ (2σ (T )+2σ (2T ))2, (6-22)

where we have used (6-19) for the second inequality. Hence, we have proved that

〈|∇χT −∇χ2T |
2
〉

1/2
≤ Cσ

∫ T

T/2

2σ (r)
r

dr,

where we have used the fact that 2σ (r) is decreasing. Consequently,
∞∑
`=0

〈|∇χ2`T −∇χ2`+1T |
2
〉

1/2
≤ Cσ

∫
∞

T/2

2σ (r)
r

dr. (6-23)

Recall that, by (5-18), 〈|ψ −∇χT |
2
〉 → 0 as T →∞. The estimate (6-21) now follows from (6-23). �

Remark 6.7. Suppose that there exist C > 0 and τ > 0 such that

ρ(R)≤
C
Rτ

for R ≥ 1. (6-24)

By taking R = T σ/(τ+σ) in (6-16), we obtain

T−1
‖χT ‖L∞ ≤ C2σ (T )≤ CT−τσ/(τ+σ).

Since σ ∈ (0, 1) is arbitrary, this shows that

T−1
‖χT ‖L∞ ≤ CδT−τ/(τ+1)+δ (6-25)

for any δ ∈ (0, 1), where Cδ depends only on δ and A. Under the condition (6-24), by Theorem 6.6, we
also obtain

〈|ψ −∇χT |
2
〉

1/2
≤ CδT−τ/(τ+1)+δ for any δ ∈ (0, 1). (6-26)
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7. Convergence rates

In this section we give the proof of Theorems 1.1 and 1.2.

Lemma 7.1. Let h ∈ L2
loc(R

d) and T > 0. Suppose that there exists σ ∈ (0, 1) such that

sup
x∈Rd

(
−

∫
B(x,r)

|h|2
)1

2

≤

(T
r

)1−σ
for any 0< r ≤ T . (7-1)

Let u ∈ H 1
loc(R

d) be the solution of

−1u+ T−2u = h in Rd (7-2)

given by Proposition 5.1. Then

‖u‖L∞ ≤ CT 2, ‖∇u‖L∞ ≤ CT, (7-3)

and
|∇u(x)−∇u(y)| ≤ CT 1−σ

|x − y|σ for any x, y ∈ Rd , (7-4)

where C depends only on d and σ . Furthermore, u ∈ H 2
loc(R

d) and

sup
x∈Rd

(
−

∫
B(x,T )

|∇
2u|2

)1
2

≤ C. (7-5)

Proof. By rescaling we may assume T = 1. It follows from Proposition 5.1 and (7-1) that

sup
x∈Rd

(
−

∫
B(x,1)

|u|2
)1

2

≤ C and sup
x∈Rd

(
−

∫
B(x,1)

|∇u|2
)1

2

≤ C, (7-6)

where C depends only on d . Fix x0 ∈ Rd and let φ ∈ C∞0 (B(x0, 2)) be a cut-off function such that φ = 1
in B(x0, 1). By representing uφ as an integral and using the fundamental solution for −1, the desired
estimates follow from (7-1) by a standard procedure. We leave the details to the reader. �

Under additional almost periodicity conditions on h, the next lemma gives much sharper estimates for
the solution u of (7-2).

Lemma 7.2. Let h ∈ L2
loc(R

d) and T > 0. Suppose that there exists σ ∈ (0, 1) such that

sup
x∈Rd

(
−

∫
B(x,r)

|h|2
)1

2

≤ C0

(T
r

)1−σ
,

sup
x∈Rd

(
−

∫
B(x,r)

|h(t + y)− h(t + z)|2 dt
)1

2

≤ C0

(T
r

)1−σ
‖A( · + y)− A( · + z)‖L∞

(7-7)

for any 0< r ≤ T and y, z ∈Rd . Let u ∈ H 1
loc(R

d) be the solution of (7-2), given by Proposition 5.1. Then

T−2
‖u‖L∞ ≤ C21(T )+ |〈h〉|,

T−1
‖∇u‖L∞ ≤ C2σ (T ),

(7-8)

where 2σ (T ) is defined by (6-18) and C depends at most on d, σ and C0.
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Proof. By applying Lemma 7.1 to the function

u(x + y)− u(x + z)
C0‖A( · + y)− A( · + z)‖L∞

with y and z fixed, we obtain

‖u( · + y)− u( · + z)‖L∞ ≤ CT 2
‖A( · + y)− A( · + z)‖L∞,

‖∇u( · + y)−∇u( · + z)‖L∞ ≤ CT ‖A( · + y)− A( · + z)‖L∞,
(7-9)

where C depends only on d, C0 and σ . This shows that u and ∇u are uniformly almost periodic. In
particular, u and ∇u have mean values and 〈∇u〉 = 0. Also, note that condition (7-7) implies that
h ∈ B2(Rd) and hence has the mean value 〈h〉. It is easy to deduce from (7-2) that 〈u〉 = T 2

〈h〉.
Note that, for any y ∈ Rd and z ∈ Rd with |z| ≤ R ≤ T ,

T−2
|u(y)− u(0)| ≤ T−2

|u(y)− u(z)| + T−2
|u(z)− u(0)| ≤ C‖A( · + y)− A( · + z)‖L∞ +CT−1 R,

where we have used (7-9) and ‖∇u‖L∞ ≤ CT for the second inequality. It follows from the definition
of ρ(R) that

sup
y∈Rd

T−2
|u(y)− u(0)| ≤ C(ρ(R)+ T−1 R) for any 0< R ≤ T .

By the definition of 21, this gives

sup
y∈Rd

T−2
|u(y)− u(0)| ≤ C21(T ). (7-10)

Using
|T−2u(0)| ≤ T−2

∣∣∣∣−∫
B(0,L)

(u(y)− u(0)) dy
∣∣∣∣+ ∣∣∣∣−∫

B(0,L)
u(x)

∣∣∣∣
for any L > 0 and (7-10), we see that, by letting L→∞,

|T−2u(0)| ≤ C21(T )+ T−2
|〈u〉| = C21(T )+ |〈h〉|. (7-11)

The first inequality in (7-8) now follows from (7-10) and (7-11).
Finally, we point out that the second inequality in (7-8) follows in the same manner, using (7-9)

and (7-4) as well as the fact that the mean value of ∇u is zero. �

We are now ready to estimate the rates of convergence of uε to u0.

Theorem 7.3. Let uε (ε ≥ 0) be the weak solution of Lε(uε)= F in � and uε = g on ∂�. Suppose that
u0 ∈W 2,2(�). Let

wε(x)= uε(x)− u0(x)− εχT, j (x/ε)
∂u0

∂x j
+ vε, (7-12)

where T = ε−1 and vε ∈ H 1(�;Rm) is the weak solution of the Dirichlet problem

Lε(vε)= 0 in � and vε = εχT, j (x/ε)
∂u0

∂x j
on ∂�. (7-13)

Then
‖wε‖H1(�) ≤ Cσ

(
2σ (T )+〈|ψ −∇χT |〉

)
‖u0‖W 2,2(�) (7-14)
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for any σ ∈ (0, 1), where Cσ depends only on σ , A and �.

Proof. With loss of generality we may assume that

‖u0‖W 2,2(�) = 1. (7-15)

A direct computation shows that

Lε(wε)=− div(BT (x/ε)∇u0)+ ε div(A(x/ε)χT (x/ε)∇2u0), (7-16)

where BT (y)= (b
αβ

T,i j (y)) is given by

bαβT,i j (y)= âαβi j − aαβi j (y)− aαγik (y)
∂

∂yk
(χ

γβ

T, j (y)). (7-17)

Since wε ∈ H 1
0 (�;R

m), it follows from (7-16) that

c
∫
�

|∇wε|
2 dx ≤

∣∣∣∣∫
�

div(BT (x/ε)∇u0) ·wε dx
∣∣∣∣+ ∫

�

|εχT (x/ε)||∇2u0||∇wε| dx = I1+ I2. (7-18)

It suffices to show that

I1+ I2 ≤ Cσ
(
2σ (T )+〈|ψ −∇χT |〉

)
‖wε‖H1(�) (7-19)

for any σ ∈ (0, 1).
First, it is easy to see that

I2 ≤ Cε‖χT ‖L∞‖∇wε‖L2(�) ≤ C2σ (T )‖∇wε‖L2(�) (7-20)

for any σ ∈ (0, 1), where we have used (7-15) and (6-19).
Next, to estimate I1, we let h(y)= hT (y)= BT (y)−〈BT 〉 and solve (7-2). More precisely, let h= (hαβi j )

and f = ( f αβi j ), where f αβi j ∈ H 2
loc(R

d) solves

−1 f αβi j + T−2 f αβi j = hαβi j in Rd . (7-21)

By (6-8) and (6-15), the function h satisfies the condition (7-7) for any σ ∈ (0, 1). Since 〈h〉 = 0, it
follows from Lemma 7.2 that

T−2
‖ f ‖L∞ ≤ C21(T ),

T−1
‖∇ f ‖L∞ ≤ C2σ (T )

(7-22)

for any σ ∈ (0, 1). Using (7-21) and integration by parts, we may bound I1 in (7-18) by∣∣∣∣∫
�

div(1 f (x/ε)∇u0) ·wε dx
∣∣∣∣+ T−2

∫
�

| f (x/ε)||∇u0||∇wε| dx +C〈|ψ −∇χT |〉‖wε‖L2(�), (7-23)

where we have used the fact that |〈BT 〉| ≤ C〈|ψ −∇χT |〉. Note that, by (7-22), the second term in (7-23)
is bounded by C21(T )‖∇wε‖L2(�).
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It remains to estimate the first term in (7-23), which we denote by I11. To this end we write

div(1 f (x/ε)∇u0)·wε =
∂

∂xi

(
1 f αβi j (x/ε)

∂uβ0
∂x j

)
·wαε

=
∂

∂xi

(
∂

∂xk

(
∂ f αβi j

∂xk
−
∂ f αβk j

∂xi

)
(x/ε)

∂uβ0
∂x j

)
·wαε +

∂

∂xi

(
∂2 f αβk j

∂xk∂xi
(x/ε)

∂uβ0
∂x j

)
·wαε

=−
∂

∂xi

(
ε

(
∂ f αβi j

∂xk
−
∂ f αβk j

∂xi

)
(x/ε)

∂2uβ0
∂xk∂x j

)
·wαε +

∂

∂xi

(
∂2 f αβk j

∂xk∂xi
(x/ε)

∂uβ0
∂x j

)
·wαε ,

where we have used the product rule and the fact that

∂2

∂xi∂xk

((
∂ f αβi j

∂xk
−
∂ f αβk j

∂xi

)
(x/ε)

∂uβ0
∂x j

)
= 0.

It then follows from an integration by parts that

I11≤Cε
∫
�

|∇ f (x/ε)||∇2u0||∇wε| dx+C
∑
j,α,β

∫
�

∣∣∣∣∇ ∂ f αβk j

∂xk
(x/ε)

∣∣∣∣|∇u0||∇wε| dx = I (1)11 + I (2)11 . (7-24)

In view of (7-22), we have

I (1)11 ≤ Cε‖∇ f ‖L∞‖∇wε‖L2(�) ≤ C2σ (T )‖∇wε‖L2(�) (7-25)

for any σ ∈ (0, 1).
Finally, to estimate I (2)11 , we note that, by the definition of χT ,

∂hαβi j

∂yi
=

∂

∂yi
(bαβT,i j )=−

1
T 2χ

αβ

T, j .

It follows that

−1
∂ f αβi j

∂yi
+

1
T 2

∂ f αβi j

∂yi
=−

1
T 2χ

αβ

T, j .

Observe that the function T−1χT satisfies the assumption on h in Lemma 7.2 with σ = 1. As a result, we
obtain ∥∥∥∥∇ ∂ f αβi j

∂xi

∥∥∥∥
L∞
≤ Cσ2σ (T )

for any σ ∈ (0, 1). This allows us to bound I (2)11 by Cσ2σ (T )‖∇wε‖L2(�) and completes the proof. �

The next lemma gives an estimate for the norm of vε in H 1(�).

Lemma 7.4. Let vε be the weak solution of (7-13) with T = ε−1. Then

‖vε‖H1(�) ≤ Cσ (T−1
‖χT ‖L∞)

1/2−σ (‖∇u0‖L∞(�)+‖∇
2u0‖L2(�)) (7-26)

for any σ ∈
(
0, 1

2

)
, where Cσ depends only on A, � and σ .
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Proof. We may assume that ‖∇u0‖L∞(�)+‖∇
2u0‖L2(�)=1. We may also assume that δ=T−1

‖χT ‖L∞>0
is small, since δ→ 0 as T →∞. Choose a cut-off function ηδ ∈ C∞0 (R

d) so that 0≤ ηδ ≤ 1, ηδ(x)= 1
if dist(x, ∂�) < δ, ηδ(x)= 0 if dist(x, ∂�)≥ 2δ, and |∇ηδ| ≤ Cδ−1. Note that

‖vε‖H1(�) ≤ Cε‖χT (x/ε)∇u0‖H1/2(∂�)

≤ Cε‖ηδχT (x/ε)∇u0‖H1(�)

≤ C
(
‖χT ‖L∞δ

−1/2ε+

(∫
�δ

|∇χT (x/ε)|2 dx
)1

2
)
, (7-27)

where�δ ={x ∈� : dist(x, ∂�)≤ 2δ}. Since ‖χT ‖L∞δ
−1/2ε= δ1/2, we only need to estimate the integral

of |∇χT (x/ε)|2 over �δ.
To this end, we cover �δ with cubes Q j of side length δ such that

∑
j |Q j | ≤ Cδ. It follows that∫

�δ

|∇χT (x/ε)|2 dx ≤
∑

j

∫
Q j

|∇χT (x/ε)|2 dx ≤
∑

j

|Q j | −

∫
(1/ε)Q j

|∇χT |
2

≤ Cδ sup
`(Q)=δT

−

∫
Q
|∇χT |

2
≤ Cσ δ1−σ (7-28)

for any σ ∈ (0, 1), where we have used the estimate (6-8) in the last inequality. This, together with (7-27),
gives (7-26). �

We are now in a position to give the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. It follows from Theorem 7.3 and Lemma 7.4 that, for any σ ∈ (0, 1) and δ ∈
(
0, 1

2

)
,

‖uε − u0− εχT (x/ε)∇u0‖H1(�)

≤ C
(
2σ (T )+〈|ψ −∇χT |〉

)
‖u0‖W 2,2(�)+C(2σ (T ))1/2−δ(‖∇u0‖L∞(�)+‖∇

2u0‖L2(�))

≤ C
(
〈|ψ −∇χT |〉 + (2σ (T ))1/2−δ

)
‖u0‖W 2,p(�)

≤ C
(
〈|ψ −∇χT |〉 + (21(T ))σ(1/2−δ)

)
‖u0‖W 2,p(�), (7-29)

where T = ε−1 and we have used the Sobolev imbedding ‖∇u0‖L∞(�) ≤ C‖u0‖W 2,p(�) for p > d. This
implies that

‖uε − u0‖L2(�) ≤ ‖εχT (x/ε)∇u0‖L2(�)+C
(
〈|ψ −∇χT |〉 + (21(T ))1/4

)
‖u0‖W 2,p(�)

≤ C
(
〈|ψ −∇χT |〉 + (21(T ))1/4

)
‖u0‖W 2,p(�),

where C depends only on A and �. Since 〈|ψ −∇χT |〉 + (21(T ))1/4→ 0 as T →∞, one may find a
modulus η on (0, 1], depending only on A, such that η(0+)= 0 and

〈|ψ −∇χT |〉 + (21(T ))1/4 ≤ η(T−1)

for T ≥ 1. As a result, we obtain

‖uε − u0− εχT (x/ε)∇u0‖H1(�) ≤ Cη(ε)‖u0‖W 2,p(�),

‖uε − u0‖L2(�) ≤ Cη(ε)‖u0‖W 2,p(�).
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Finally, we observe that, by Theorem 1.4, for any σ ∈ (0, 1),

‖uε‖Cσ (�) ≤ C(‖g‖Cσ (∂�)+‖F‖Ld (�))≤ C(‖u0‖Cσ (�)+‖∇
2u0‖Ld (�))≤ C‖u0‖W 2,d (�).

It follows by interpolation that, for any σ ∈ (0, 1),

‖uε − u0‖Cσ (�) ≤ C η̃(ε)‖u0‖W 2,p(�),

where η̃ is a modulus function depending only on A and σ , and η̃(0+)= 0. This completes the proof. �

Proof of Theorem 1.2. Estimate (1-15) follows directly from (7-29) and Theorem 6.6. To see (1-14), we
use

‖uε − u0‖L2(�) ≤ ‖uε − u0− εχT (x/ε)∇u0+ vε‖L2(�)+‖vε‖L2(�)

≤ Cσ
(
2σ (T )+〈|ψ −∇ψT |〉

)
‖u0‖W 2,2(�)+‖vε‖L2(�), (7-30)

where vε is as defined in Theorem 7.3. By Theorem 1.4 we obtain

‖vε‖L2(�) ≤ C‖vε‖L∞(�)

≤ C‖εχT (x/ε)∇u0‖Cσ1 (∂�)

≤ C(ε1−σ1‖χT ‖C0,σ1 +2σ (T ))‖∇u0‖Cσ1 (∂�)

≤ C(T σ1−1
‖χT ‖C0,σ1 +2σ (T ))‖u0‖W 2,p(�),

where p > d , σ ∈ (0, 1) and 0< σ1 < 1− d/p. Since T−1
‖χT ‖L∞ ≤ Cσ2σ (T ) and |χT (x)−χT (y)| ≤

CαT 1−α
|x − y|α for any α ∈ (0, 1), it follows by interpolation that

T σ1−1
‖χT ‖C0,σ1 ≤ C(2σ (T ))1−σ2

for any σ2 > σ1. Hence,

‖vε‖L2(�) ≤ C(2σ (T ))1−δ‖u0‖W 2,p(�) ≤ C(21(T ))σ(1−δ)‖u0‖W 2,p(�)

for any δ, σ ∈ (0, 1) and p > d, where C depends only on δ, p, σ , A and �. This, together with (7-30)
and Theorem 6.6, gives

‖uε − u0‖L2(�) ≤ C
(
〈|ψ −∇χT |〉 + (21(T ))σ

)
‖u0‖W 2,p(�)

≤ C
(∫

∞

1/(2ε)

2σ (r)
r

dr + (21(ε
−1))σ

)
‖u0‖W 2,p(�)

for any σ ∈ (0, 1), and completes the proof. �

8. Quasiperiodic coefficients

In this section we consider the case where A(x) is quasiperiodic and continuous. More precisely, without
loss of generality, we will assume that{

A(x)= B( jλ(x)),
B is 1-periodic and continuous in RM ,

(8-1)
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where M = m1+m2+ · · ·+md and, for x = (x1, x2, . . . , xd) ∈ Rd ,

jλ(x)= (λ1
1x1, λ

2
1x1, . . . , λ

m1
1 x1, λ

1
2x2, . . . , λ

m2
2 x2, . . . , λ

1
d xd , . . . , λ

md
d xd) ∈ RM .

Also, for each i = 1, 2, . . . , d , the set {λ1
i , . . . , λ

mi
i } is assumed to be linearly independent over Z. Under

these conditions, it is known that A(x) is uniformly almost periodic. We shall be interested in conditions
on λ= (λ j

i ) that imply the power decay of ρ(R) as R→∞. For convenience we consider

ρ1(R)= sup
y∈Rd

inf
z∈Rd

‖z‖∞≤R

‖A( · + y)− A( · + z)‖L∞, (8-2)

where ‖z‖∞ =max(|z1|, . . . , |zd |) for z = (z1, . . . , zd). It is easy to see that ρ1(
√

d R)≤ ρ(R)≤ ρ1(R).
Let

ω(δ)= sup{|B(x)− B(y)| : ‖x − y‖∞ ≤ δ}, δ > 0,

denote the modulus of continuity of B(x). For x ∈ R, write x = [x] + <x>, where [x] ∈ Z and
<x>∈

[
−

1
2 ,

1
2

)
. If x = (x1, . . . , xM)∈RM , define [x]= ([x1], . . . , [xN ]) and <x>= (<x1>, . . . , <xM>).

It is easy to see that ‖<x>‖∞ gives the distance from x to ZM with respect to the norm ‖ · ‖∞.

Lemma 8.1. Let ρ1(R) be defined by (8-2). Then, for any R > 0, ρ1(R)≤ ω(θλ(R)), where

θλ(R)= sup
x∈[−1/2,1/2]M

inf
z∈Rd

‖z‖∞≤R

‖x −< jλ(z)>‖∞. (8-3)

Proof. Note that, since B is 1-periodic,

|B(x)− B(y)| = |B(y+ [x − y] +<x − y>)− B(y)| = |B(y+<x − y>)− B(y)| ≤ ω(‖<x − y>‖∞)

for any x , y ∈ RM . It follows that

|A(x + y)− A(x + z)| ≤ ω(‖< jλ(y)− jλ(z)>‖∞)

for any x , y, z ∈ Rd . This implies that

ρ1(R)≤ sup
y∈Rd

inf
z∈Rd

‖z‖∞≤R

ω(‖< jλ(y)− jλ(z)>‖∞).

Using
‖< jλ(y)− jλ(z)>‖∞ = ‖<< jλ(y)>−< jλ(z)>>‖∞ ≤ ‖< jλ(y)>−< jλ(z)>‖∞,

we obtain
ρ1(R)≤ sup

y∈Rd
inf

z∈Rd

‖z‖∞≤R

ω(‖< jλ(y)>−< jλ(z)>‖∞)≤ ω(θλ(R)),

where we have used the continuity of ω(δ) for the second inequality. �

Let λi = (λ
1
i , λ

2
i , . . . , λ

mi
i ) ∈ Rmi for each 1≤ i ≤ d and

jλi (t)= (λ
1
i t, λ2

i t, . . . , λmi
i t) ∈ Rmi for t ∈ R.
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Thus, for z = (z1, z2, . . . , zd) ∈ Rd ,

jλ(z)= ( jλ1(z1), jλ2(z2), . . . , jλd (zd)).

It follows that

‖x −< jλ(z)>‖∞ = max
1≤i≤d

‖xi −< jλi (zi )>‖∞,

where x = (x1, x2, . . . , xd) ∈ RM and xi ∈ Rmi . This implies that

θλ(R)= max
1≤i≤d

θλi (R), (8-4)

where

θλi (R)= sup
x∈[−1/2,1/2]mi

inf
t∈R
|t |≤R

‖x −< jλi (t)>‖∞. (8-5)

Note that if mi = 1 then θλi (R)= 0 for R large. We will use the Erdős–Turán–Koksma inequality in
the discrepancy theory to estimate the function θλi (R), defined by (8-5), for mi ≥ 2.

Let P = PN = {x1, x2, . . . , xN } be a finite subset of
[
−

1
2 ,

1
2

]m . The discrepancy of P is defined as

DN (P)= sup
B

∣∣∣∣ A(B; P)
N

− |B|
∣∣∣∣,

where the supremum is taken over all rectangular boxes B = [a1, b1]× · · · × [am, bm] ⊂
[
−

1
2 ,

1
2

]m and
A(B; P) denotes the number of elements of P in B. It follows from the Erdős–Turán–Koksma inequality
that

DN (P)≤ C
{

1
H
+

∑
n∈Zm

0<‖n‖∞≤H

1
(1+ |n1|) · · · (1+ |nm |)

∣∣∣∣ 1
N

∑
x∈P

e2π i(n·x)
∣∣∣∣} (8-6)

for any H ≥ 1, where C depends only on m (see, e.g., [Drmota and Tichy 1997, p. 15]). It is not hard to
see that

max
y∈[−1/2,1/2]m

min
z∈PN
‖y− z‖∞ ≤ 1

2 [DN (PN )]
1/m . (8-7)

Lemma 8.2. Let R ≥ 2 and ` ≥ 2 be two positive integers. We divide the interval [−R, R] into 2R`
subintervals of length 1/`. Let N = 2R` and

PN =

{
x = < jλ(t)> ∈

[
−

1
2 ,

1
2

]m
: t = j + k

`
, −R ≤ j ≤ R− 1 and 0≤ k ≤ `− 1

}
,

where λ= (λ1, . . . , λm) ∈ Rm and m ≥ 2. Suppose that there exist c0 > 0 and τ > 0 such that

|n · λ| ≥ c0|n|−τ for any n ∈ Zm
\ {0}. (8-8)

Then

DN (PN )≤ C(R−1/(τ+1)(log R)m−1
+ N−1 R1+1/(τ+1)(log R)m−1), (8-9)

where C depends only on m, c0, |λ| and τ .
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Proof. Let f (t)= e2π i(n·λ)t and

In =
1
N

∑
x∈PN

e2π i(n·x)
=

1
N

∑
j,k

f (t jk), (8-10)

where n ∈ Zm
\ {0}, j =−R, . . . , R− 1, k = 0, . . . , `− 1 and t jk = j + k/`. Using∣∣∣∣ 1

2R

∫ R

−R
f (t) dt − 1

N

∑
j,k

f (t jk)

∣∣∣∣≤ C`−1
‖ f ′‖∞,

we obtain

|In| ≤ C`−1
‖ f ′‖∞+

∣∣∣∣ 1
2R

∫ R

−R
f (t) dt

∣∣∣∣≤ C`−1
|n · λ| +

C
R|n · λ|

≤ C(`−1
|n| + R−1

|n|τ ),

where we have used the assumption (8-8). In view of (8-6), we obtain

DN (PN )≤ C
(

1
H
+

∑
n∈Zm

0<‖z‖∞≤H

`−1
|n| + R−1

|n|τ

(1+ |n1|) · · · (1+ |nm |)

)

≤ C
(

1
H
+

∫
|x |≤C H

`−1
|x | + R−1

|x |τ

(1+ |x1|) · · · (1+ |xm |)
dx
)

≤ C
( 1

H
+ RN−1 H(log H)m−1

+ R−1 H τ (log H)m−1
)

for any H ≥ 2. By taking H = R1/(τ+1), we obtain the estimate (8-9). �

Theorem 8.3. Let λ= (λ1, . . . , λd) with λi = (λ
1
i , . . . , λ

mi
i ) ∈Rmi for 1≤ i ≤ d. Suppose that there exist

c0 > 0 and τ > 0 such that, for each 1≤ i ≤ d with mi ≥ 2,

|n · λi | ≥ c0|n|−τ for any n ∈ Zmi \ {0}. (8-11)

Then, for any R ≥ 2,
θλ(R)≤ C R−1/(m̃(τ+1))(log R)1−1/m̃, (8-12)

where m̃ =max{m1, . . . ,md} and C depends only on d, m̃, c0 and τ .

Proof. Suppose mi ≥ 2. Let P = PN be same as in Lemma 8.2. It follows from (8-7) and Lemma 8.2 that

θλi (R)≤ C
(
R−1/(τ+1)(log R)mi−1

+ N−1 R1+1/(τ+1)(log R)mi−1)1/mi
≤ C R−1/(mi (τ+1))(log R)1−1/mi ,

where we have taken N = C R1+2/(τ+1). This, together with (8-4), gives (8-12). �

Remark 8.4. Suppose that A(x) = B( jλ(x)) and B(y) is 1-periodic. Also assume that λ satisfies the
condition (8-11) and B(y) is Hölder continuous of order α for some α ∈ (0, 1]. It follows from Lemma 8.1
and Theorem 8.3 that

ρ(R)≤ C R−α/(m̃(τ+1))(log R)α(1−1/m̃) (8-13)

for R ≥ 1. In view of Remark 1.3, this leads to

‖uε − u0‖L2(�) ≤ Cγ εγ ‖u0‖W 2,p(�)
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for any 0< γ < α/(α+ m̃(τ + 1)). We point out that, for A(y) that satisfies the condition (8-11) and is
sufficiently smooth, the sharp estimate ‖uε − u0‖L2(�) = O(ε) was obtained in [Kozlov 1978].

References

[Armstrong and Smart 2014] S. N. Armstrong and C. K. Smart, “Quantitative stochastic homogenization of elliptic equations in
nondivergence form”, Arch. Ration. Mech. Anal. 214:3 (2014), 867–911. MR 3269637 Zbl 1304.35714

[Armstrong et al. 2014] S. N. Armstrong, P. Cardaliaguet, and P. E. Souganidis, “Error estimates and convergence rates for
the stochastic homogenization of Hamilton–Jacobi equations”, J. Amer. Math. Soc. 27:2 (2014), 479–540. MR 3164987
Zbl 1286.35023

[Avellaneda and Lin 1987] M. Avellaneda and F.-H. Lin, “Compactness methods in the theory of homogenization”, Comm. Pure
Appl. Math. 40:6 (1987), 803–847. MR 88i:35019 Zbl 0632.35018

[Avellaneda and Lin 1989] M. Avellaneda and F.-H. Lin, “Compactness methods in the theory of homogenization, II: Equations
in nondivergence form”, Comm. Pure Appl. Math. 42:2 (1989), 139–172. MR 90c:35035 Zbl 0645.35019

[Bensoussan et al. 1978] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Studies
in Mathematics and its Applications 5, North-Holland, Amsterdam, 1978. MR 82h:35001 Zbl 0404.35001

[Besicovitch and Bohr 1931] A. S. Besicovitch and H. Bohr, “Almost periodicity and general trigonometric series”, Acta Math.
57:1 (1931), 203–292. MR 1555335 Zbl 0003.15703

[Bondarenko et al. 2005] A. Bondarenko, G. Bouchitté, L. Mascarenhas, and R. Mahadevan, “Rate of convergence for correctors
in almost periodic homogenization”, Discrete Contin. Dyn. Syst. 13:2 (2005), 503–514. MR 2006b:35015 Zbl 1077.35013

[Bourgeat and Piatnitski 2004] A. Bourgeat and A. Piatnitski, “Approximations of effective coefficients in stochastic homoge-
nization”, Ann. Inst. H. Poincaré Probab. Statist. 40:2 (2004), 153–165. MR 2005f:35020 Zbl 1058.35023

[Caffarelli and Souganidis 2010] L. A. Caffarelli and P. E. Souganidis, “Rates of convergence for the homogenization of fully
nonlinear uniformly elliptic pde in random media”, Invent. Math. 180:2 (2010), 301–360. MR 2011c:35041 Zbl 1192.35048

[Drmota and Tichy 1997] M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics
1651, Springer, Berlin, 1997. MR 98j:11057 Zbl 0877.11043

[Dungey et al. 2001] N. Dungey, A. F. M. ter Elst, and D. W. Robinson, “On second-order almost-periodic elliptic operators”, J.
London Math. Soc. (2) 63:3 (2001), 735–753. MR 2002b:35078 Zbl 1018.35041

[Geng et al. 2012] J. Geng, Z. Shen, and L. Song, “Uniform W 1,p estimates for systems of linear elasticity in a periodic
medium”, J. Funct. Anal. 262:4 (2012), 1742–1758. MR 2012j:74027 Zbl 1236.35035

[Giaquinta 1983] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of
Mathematics Studies 105, Princeton University Press, Princeton, NJ, 1983. MR 86b:49003 Zbl 0516.49003

[Gloria and Otto 2011] A. Gloria and F. Otto, “An optimal variance estimate in stochastic homogenization of discrete elliptic
equations”, Ann. Probab. 39:3 (2011), 779–856. MR 2012j:35018 Zbl 1215.35025

[Gloria and Otto 2012] A. Gloria and F. Otto, “An optimal error estimate in stochastic homogenization of discrete elliptic
equations”, Ann. Appl. Probab. 22:1 (2012), 1–28. MR 2932541 Zbl 06026087

[Gloria et al. 2014] A. Gloria, S. Neukamm, and F. Otto, “An optimal quantitative two-scale expansion in stochastic homogeniza-
tion of discrete elliptic equations”, ESAIM Math. Model. Numer. Anal. 48:2 (2014), 325–346. MR 3177848 Zbl 1307.35029

[Hofmann and Kim 2007] S. Hofmann and S. Kim, “The Green function estimates for strongly elliptic systems of second order”,
Manuscripta Math. 124:2 (2007), 139–172. MR 2008k:35110 Zbl 1130.35042

[Ishii 2000] H. Ishii, “Almost periodic homogenization of Hamilton–Jacobi equations”, pp. 600–605 in International Conference
on Differential Equations (Berlin, 1999), vol. 1–2, edited by B. Fiedler et al., World Sci., River Edge, NJ, 2000. MR 1870203
Zbl 0969.35018

[Jikov et al. 1994] V. V. Jikov, S. M. Kozlov, and O. A. Oleı̆nik, Homogenization of differential operators and integral functionals,
Springer, Berlin, 1994. MR 96h:35003b

[Kenig et al. 2013] C. E. Kenig, F. Lin, and Z. Shen, “Homogenization of elliptic systems with Neumann boundary conditions”,
J. Amer. Math. Soc. 26:4 (2013), 901–937. MR 3073881 Zbl 1277.35166

http://dx.doi.org/10.1007/s00205-014-0765-6
http://dx.doi.org/10.1007/s00205-014-0765-6
http://msp.org/idx/mr/3269637
http://msp.org/idx/zbl/1304.35714
http://dx.doi.org/10.1090/S0894-0347-2014-00783-9
http://dx.doi.org/10.1090/S0894-0347-2014-00783-9
http://msp.org/idx/mr/3164987
http://msp.org/idx/zbl/1286.35023
http://dx.doi.org/10.1002/cpa.3160400607
http://msp.org/idx/mr/88i:35019
http://msp.org/idx/zbl/0632.35018
http://dx.doi.org/10.1002/cpa.3160420203
http://dx.doi.org/10.1002/cpa.3160420203
http://msp.org/idx/mr/90c:35035
http://msp.org/idx/zbl/0645.35019
http://msp.org/idx/mr/82h:35001
http://msp.org/idx/zbl/0404.35001
http://dx.doi.org/10.1007/BF02403047
http://msp.org/idx/mr/1555335
http://msp.org/idx/zbl/0003.15703
http://dx.doi.org/10.3934/dcds.2005.13.503
http://dx.doi.org/10.3934/dcds.2005.13.503
http://msp.org/idx/mr/2006b:35015
http://msp.org/idx/zbl/1077.35013
http://dx.doi.org/10.1016/S0246-0203(03)00065-7
http://dx.doi.org/10.1016/S0246-0203(03)00065-7
http://msp.org/idx/mr/2005f:35020
http://msp.org/idx/zbl/1058.35023
http://dx.doi.org/10.1007/s00222-009-0230-6
http://dx.doi.org/10.1007/s00222-009-0230-6
http://msp.org/idx/mr/2011c:35041
http://msp.org/idx/zbl/1192.35048
http://msp.org/idx/mr/98j:11057
http://msp.org/idx/zbl/0877.11043
http://dx.doi.org/10.1017/S0024610701002149
http://msp.org/idx/mr/2002b:35078
http://msp.org/idx/zbl/1018.35041
http://dx.doi.org/10.1016/j.jfa.2011.11.023
http://dx.doi.org/10.1016/j.jfa.2011.11.023
http://msp.org/idx/mr/2012j:74027
http://msp.org/idx/zbl/1236.35035
http://msp.org/idx/mr/86b:49003
http://msp.org/idx/zbl/0516.49003
http://dx.doi.org/10.1214/10-AOP571
http://dx.doi.org/10.1214/10-AOP571
http://msp.org/idx/mr/2012j:35018
http://msp.org/idx/zbl/1215.35025
http://dx.doi.org/10.1214/10-AAP745
http://dx.doi.org/10.1214/10-AAP745
http://msp.org/idx/mr/2932541
http://msp.org/idx/zbl/06026087
http://dx.doi.org/10.1051/m2an/2013110
http://dx.doi.org/10.1051/m2an/2013110
http://msp.org/idx/mr/3177848
http://msp.org/idx/zbl/1307.35029
http://dx.doi.org/10.1007/s00229-007-0107-1
http://msp.org/idx/mr/2008k:35110
http://msp.org/idx/zbl/1130.35042
http://msp.org/idx/mr/1870203
http://msp.org/idx/zbl/0969.35018
http://dx.doi.org/10.1007/978-3-642-84659-5
http://msp.org/idx/mr/96h:35003b
http://dx.doi.org/10.1090/S0894-0347-2013-00769-9
http://msp.org/idx/mr/3073881
http://msp.org/idx/zbl/1277.35166


CONVERGENCE RATES AND HÖLDER ESTIMATES IN ALMOST-PERIODIC HOMOGENIZATION 1601

[Kozlov 1978] S. M. Kozlov, “Averaging of differential operators with almost periodic rapidly oscillating coefficients”, Mat.
Sb. (N.S.) 149:2 (1978), 199–217, 317. In Russian; translated in Math. USSR Sb. 35:4 (1979), 481–498. MR 81m:35017
Zbl 0422.35003

[Kozlov 1979] S. M. Kozlov, “The averaging of random operators”, Mat. Sb. (N.S.) 109(151):2 (1979), 188–202, 327. In
Russian; translated in Math. USSR Sb. 37:2 (1980) 167–180. MR 81m:35142 Zbl 0444.60047

[Lions and Souganidis 2005] P.-L. Lions and P. E. Souganidis, “Homogenization of degenerate second-order PDE in periodic
and almost periodic environments and applications”, Ann. Inst. H. Poincaré Anal. Non Linéaire 22:5 (2005), 667–677.
MR 2006d:35019 Zbl 1135.35092

[Papanicolaou and Varadhan 1981] G. C. Papanicolaou and S. R. S. Varadhan, “Boundary value problems with rapidly oscillating
random coefficients”, pp. 835–873 in Random fields (Esztergom, 1979), vol. 1–2, edited by J. Fritz et al., Colloq. Math. Soc.
János Bolyai 27, North-Holland, Amsterdam, 1981. MR 84k:58233 Zbl 0499.60059

[Pozhidaev and Yurinskiı̆ 1989] A. V. Pozhidaev and V. V. Yurinskiı̆, “On the error of averaging of symmetric elliptic systems”,
Izv. Akad. Nauk SSSR Ser. Mat. 53:4 (1989), 851–867, 912. In Russian; translated in Math. USSR Izv. 35:1 (1990), 183–201.
MR 91f:35280 Zbl 0702.35254

[Shen 2008] Z. Shen, “W 1,p estimates for elliptic homogenization problems in nonsmooth domains”, Indiana Univ. Math. J.
57:5 (2008), 2283–2298. MR 2010a:35009 Zbl 1166.35013

[Shen and Geng 2015] Z. Shen and J. Geng, “Uniform regularity estimates in parabolic homogenization”, Indiana Univ. Math. J.
64 (2015), 697–733.

[Yurinskiı̆ 1986] V. V. Yurinskiı̆, “Averaging of symmetric diffusion in a random medium”, Sibirsk. Mat. Zh. 27:4 (1986),
167–180, 215. In Russian; translated in Sib. Math. J. 27:4 (1986), 603–613. MR 88e:35190 Zbl 0614.60051

Received 24 Apr 2014. Accepted 24 Jun 2015.

ZHONGWEI SHEN: zshen2@uky.edu
Department of Mathematics, University of Kentucky, Lexington, KY 40506, United States

mathematical sciences publishers msp

http://mi.mathnet.ru/msb2636
http://dx.doi.org/10.1070/SM1979v035n04ABEH001561
http://msp.org/idx/mr/81m:35017
http://msp.org/idx/zbl/0422.35003
http://mi.mathnet.ru/msb2365
http://dx.doi.org/10.1070/SM1980v037n02ABEH001948
http://msp.org/idx/mr/81m:35142
http://msp.org/idx/zbl/0444.60047
http://dx.doi.org/10.1016/j.anihpc.2004.10.009
http://dx.doi.org/10.1016/j.anihpc.2004.10.009
http://msp.org/idx/mr/2006d:35019
http://msp.org/idx/zbl/1135.35092
http://msp.org/idx/mr/84k:58233
http://msp.org/idx/zbl/0499.60059
http://mi.mathnet.ru/izv1277
http://dx.doi.org/10.1070/IM1990v035n01ABEH000695
http://msp.org/idx/mr/91f:35280
http://msp.org/idx/zbl/0702.35254
http://dx.doi.org/10.1512/iumj.2008.57.3344
http://msp.org/idx/mr/2010a:35009
http://msp.org/idx/zbl/1166.35013
http://dx.doi.org/10.1512/iumj.2015.64.5503
http://dx.doi.org/10.1007/BF00969174
http://msp.org/idx/mr/88e:35190
http://msp.org/idx/zbl/0614.60051
mailto:zshen2@uky.edu
http://msp.org




ANALYSIS AND PDE
Vol. 8, No. 7, 2015

dx.doi.org/10.2140/apde.2015.8.1603 msp

QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS
TO THE EINSTEIN-SCALAR FIELD SYSTEM IN SPHERICAL SYMMETRY

JONATHAN LUK AND SUNG-JIN OH

We study the future causally geodesically complete solutions of the spherically symmetric Einstein-scalar
field system. Under the a priori assumption that the scalar field φ scatters locally in the scale-invariant
bounded-variation (BV) norm, we prove that φ and its derivatives decay polynomially. Moreover, we
show that the decay rates are sharp. In particular, we obtain sharp quantitative decay for the class of
global solutions with small BV norms constructed by Christodoulou. As a consequence of our results, for
every future causally geodesically complete solution with sufficiently regular initial data, we show the
dichotomy that either the sharp power law tail holds or that the spacetime blows up at infinity in the sense
that some scale invariant spacetime norms blow up.
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1. Introduction

In this paper, we study the quantitative long time dynamics for the spherically symmetric dispersive
spacetimes satisfying the Einstein-scalar field equations. More precisely, these are spherically symmetric
solutions (M, g, φ) to the Einstein-scalar field system, where g is a Lorentzian metric and φ is a real-
valued function on a 3+1-dimensional manifold M, such that (M, g) is future causally geodesically
complete and φ scatters locally in the scale-invariant bounded-variation (BV) norm. For these spacetimes,
we establish a Price-law-type decay for the scalar field φ, the Christoffel symbols associated to g and all
of their derivatives. To obtain the decay results, we do not need to assume any smallness of the initial
data. Moreover, we show that the decay rates in this paper are sharp.
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Figure 1. The dispersive case.
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Figure 2. The black hole case.

The spherically symmetric Einstein-scalar field system, being one of the simplest models of self-
gravitating matter in this symmetry class, has been studied extensively both numerically and mathemat-
ically. In a seminal series of papers by Christodoulou [1987; 1991; 1993; 1994; 1999], he achieved
a complete understanding of the singularity structure of spherically symmetric spacetime solutions to
this system. The culmination of the results shows that generic1 spherically symmetric initial data with
one asymptotically flat end give rise to a spacetime whose global geometry is either dispersive (with
a Penrose diagram represented by Figure 1) or contains a black hole region BH which terminates in a
spacelike curvature singularity S (with a Penrose diagram represented by Figure 2). In particular, in
either of these generic scenarios, the spacetime possesses a complete null infinity I+ and thus obeys
the weak cosmic censorship conjecture. Moreover, in either case, the maximal Cauchy development
of the data is inextendible with a C2 Lorentzian metric and therefore also verifies the strong cosmic
censorship conjecture. We refer the readers to [Kommemi 2013] for a comprehensive discussion of
general singularity structures for spherically symmetric spacetimes.

The remarkable resolution of the cosmic censorship conjectures, however, gives very little information
on the long time dynamics for these spacetimes except for the small data2 case [Christodoulou 1993]. In
particular, not much is known about the asymptotic decay of the scalar field as measured by a far-away

1In the BV class, i.e., the initial data for ∂v(rφ) has bounded variation. More precisely, Christodoulou showed that the
nongeneric set of initial data has codimension at least two in the BV topology.

2That is, when the initial data is close to that of Minkowski space.
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observer at null infinity. In the dispersive case, Christodoulou showed that the Bondi mass decays to zero
along null infinity without an explicit decay rate. In the black hole case, he showed that the Bondi mass
approaches the mass of the black hole, from which one can infer the nonquantitative decay for the scalar
field along null infinity [Christodoulou 1993].

The long time dynamics in the case where the spacetime settles to a black hole was subsequently
studied3 in the seminal work of Dafermos and Rodnianski [2005]. They proved a quantitative decay rate
for the scalar field (and its derivatives) in the spacetime including along null infinity I+ and the event
horizon H+. The proof is based on the local conservation of energy, which is subcritical, together with
techniques exploiting the conformal geometry of the spacetime and the celebrated red-shift effect along
the event horizon. The result in particular justified, in a nonlinear setting, the heuristics of [Price 1972]. It
turns out that the quantitative decay rates, when combined with the results of [Dafermos 2005], also have
interesting consequences for the strong cosmic censorship conjecture in the context of the spherically
symmetric Einstein–Maxwell-scalar field system.

In this paper, we study the other generic scenario, spherically symmetric dispersive spacetime solutions
to the Einstein-scalar field system. Unlike in the black hole case, the monotonic Hawking mass is
supercritical and provides no control over the dynamics of the solution. We thus do not expect to be able
to obtain quantitative decay rates for large solutions without imposing extra assumptions. Instead, we
assume a priori the nonquantitative decay of a critical quantity — the BV norm4 — but only locally in
a region where the area of the orbit of the symmetry group SO(3) remains uniformly bounded. Under
this assumption of local BV scattering, we show that the scalar field and all its derivatives decay with a
quantitative rate, reminiscent of the Price law decay rates in the black hole case. (We refer the readers
to the statement of the main theorems in Section 3 for the precise rates that we obtain.) We prove, in
particular, a quantitative decay rate for the scalar field along null infinity.

Our results apply in particular to the class of solutions arising from initial data with small BV norm.
Christodoulou [1993] showed that these spacetimes are future causally geodesically complete. One can
easily deduce from [Christodoulou 1993] that in fact these spacetimes satisfy the BV scattering assumption
and therefore the solutions obey the quantitative decay estimates of our main theorem (see Theorem 3.15).
On the other hand, our results do not require any smallness assumptions on the initial data. We conjecture
that indeed our class of spacetimes contains those arising from large data:

Conjecture 1. There exists initial data of arbitrarily large BV norm whose maximal global development
scatters locally in the BV norm.

In addition to the upper bounds that we obtain in our main theorem, we also construct examples where
we prove lower bounds for the solutions with the same rates as the upper bounds. In particular, there
exists a class of initial data with compactly supported scalar field whose future development saturates the
decay estimates in the main theorem. This shows that the decay rates are sharp. We note that the decay
rate is also consistent with the numerical study of Bizón, Chmaj and Rostworowski [Bizoń et al. 2009].

3In fact, they considered the more general Einstein–Maxwell-scalar field equations.
4Solutions of bounded variation were first studied by Christodoulou [1993] and play an important role in the proof of the

cosmic censorship conjectures [Christodoulou 1999].
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As a corollary of the main result on decay, we show the following dichotomy: either the quantitative
decay rates are satisfied or the solution blows up at infinity. The latter are solutions such that some
scale-invariant spacetime norms become infinite (see the precise definition in Definition 3.12).

The decay result in this paper easily implies that the locally BV scattering solutions that we consider are
stable against small, regular, spherically symmetric perturbations. More ambitiously, one may conjecture:

Conjecture 2. Spherically symmetric, locally BV scattering dispersive solutions to the Einstein-scalar
field equations are stable against nonspherically symmetric perturbations.

Conjecture 2, if true, will generalize the monumental theorem on the nonlinear stability of Minkowski
spacetime of [Christodoulou and Klainerman 1993] (see also a simpler proof in [Lindblad and Rodnianski
2010]). For nonlinear wave equations satisfying the null condition, it is known [Alinhac 2009; Yang 2015]
that large solutions decaying sufficiently fast are globally stable against small perturbations. On the other
hand, our main theorem shows a quantitative decay rate for spherically symmetric, locally BV scattering
dispersive spacetimes. Conjecture 2 can therefore be viewed as an attempt to generalize the results in
[Alinhac 2009; Yang 2015] to the Einstein-scalar field system. We will address both Conjectures 1 and 2
in future works.

1A. Outline of the paper. In Section 2, we discuss the set-up of the problem and in particular define the
class of solutions considered in the main theorem, i.e., the locally BV scattering solutions. In Section 3,
we state the main theorems in the paper (Theorems 3.1 and 3.2), their consequences and additional
theorems on the optimality of the decay rates. In the same section, we outline the main ideas of the proof.
In Sections 4 and 5, we explain the main analytic features of the equations and the geometry of the class
of spacetimes that we consider.

Sections 6 and 7 consist of the main content of this paper. In Section 6, we prove the decay estimates
for φ, ∂v(rφ) and ∂u(rφ), that is, the first main theorem (Theorem 3.1). In Section 7, using in particular
the results in Section 6, we derive the decay bounds for the second derivatives for rφ and the metric
components, that is, the second main theorem (Theorem 3.2).

In the remaining sections of the paper, we turn to other theorems stated in Section 3. In Section 8, we
give a proof of the dichotomy alluded to above, that either the quantitative decay holds or the spacetime
blows up at infinity. In Section 9, we sketch a proof of a refinement of the conclusions of the main
theorems in the small data case. Finally, in Section 10, we prove optimality of the decay rates asserted by
the main theorems.

2. Set-up

In this section, we define the set-up, formulate the equations in a double null coordinate system and explain
the characteristic initial value problem. This will allow us to state the main theorem in the next section.

2A. Spherically symmetric Einstein-scalar-field system (SSESF). We begin with a brief discussion on
the derivation of the spherically symmetric Einstein-scalar-field system (SSESF) from the 3+1-dimensional
Einstein-scalar-field system.
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Solutions to the Einstein-scalar field equations can be represented by a triplet (M, gµν, φ), where
(M, gµν) is a 3+1-dimensional Lorentzian manifold and φ a real-valued function on M. The spacetime
metric gµν and the scalar field φ satisfy the Einstein-scalar-field system{

Rµν − 1
2 gµνR = 2Tµν,

∇
µ∂µφ = 0,

(2-1)

where Rµν is the Ricci curvature of gµν , R is the scalar curvature and ∇µ is the covariant derivative
given by the Levi-Civita connection on (M, g). The energy–momentum tensor Tµν is given by the scalar
field φ:

Tµν = ∂µφ ∂νφ− 1
2 gµν ∂λφ ∂λφ. (2-2)

Assume that the solution (M, gµν, φ) is spherically symmetric, that is, the group SO(3) of three-
dimensional rotations acts smoothly and isometrically on (M, g), where each orbit is either a point or is
isometric to S2 with a round metric. The scalar field φ is required to be constant on each of the orbits.
These assumptions are propagated by (2-1); hence, if (M, gµν, φ) is a Cauchy development, then it
suffices to assume spherical symmetry only on the initial data.

The quotient M/SO(3) gives rise to a 1+1-dimensional Lorentzian manifold with boundary, which
we denote by (Q, gab). The boundary 0 consists of fixed points of the group action. We define the area
radius function r on Q to be

r :=

√
Area of symmetry sphere

4π

and r = 0 at 0. Note that each component of 0 is a timelike geodesic.
We assume that 0 is nonempty and connected, and moreover that there exist global double null

coordinates (u, v), i.e., a coordinate system (u, v) covering Q in which the metric takes the form

gab dxa
· dxb
=−�2 du · dv (2-3)

for some �> 0. We remark that both assumptions are easily justified if (M, g) is a Cauchy development
of a spacelike hypersurface homeomorphic to R3.

The metric gµν of M is characterized by � and r and takes the form

gµν dxµ · dxν =−�2 du · dv+ r2 ds2
S2, (2-4)

where ds2
S2 is the standard line element on the unit sphere S2. Therefore, we may reformulate the

spherically symmetric Einstein-scalar field system (SSESF) in terms of the triplet (φ, r, �) as

r ∂u∂vr =−∂ur ∂vr − 1
4�

2,

r2 ∂u∂v log�= ∂ur ∂vr + 1
4�

2
− r2 ∂uφ ∂vφ,

r ∂u∂vφ =−∂ur ∂vφ− ∂vr ∂uφ,

2�−1 ∂ur ∂u�= ∂
2
ur + r(∂uφ)

2,

2�−1 ∂vr ∂v�= ∂2
vr + r(∂vφ)2,

(SSESF)

with the boundary condition r = 0 along 0.
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2B. Basic assumptions, notations and conventions. In this subsection, we introduce the basic assump-
tions on the base manifold Q, as well as some notations and conventions that will be used in the rest of
the paper.

Definition of Q and M. Denote by R1+1 the 1+1-dimensional Minkowski space, with the standard
double null coordinates (u, v). Let Q be a 1+1-dimensional Lorentzian manifold which is conformally
embedded into R1+1 with ds2

Q = −�
2 du · dv. Given a nonnegative function r on Q, we define the

set 0 := {(u, v) ∈ Q : r(u, v) = 0}, called the axis of symmetry. We also define (M, gµν) to be the
1+3-dimensional Lorentzian manifold with M=Q×S2 and gµν given by (2-3); this is to be thought of
as the full spacetime before the symmetry reduction. (We refer to Section 2A for the full interpretation.)

Assumptions on the conformal geometry of Q. We assume that 0 ⊂ Q is a connected set which is the
image of a future-directed timelike curve emanating from the point (1, 1). We also assume that C1 ⊂Q,
where

C1 = {(u, v) ∈ R1+1
: u = 1, 1≤ v <∞}.

Furthermore, Q is assumed to be the domain of dependence of 0 and C1 to the future, in the sense that
every causal curve in Q has its past endpoint on either 0 or C1.

Notations for the conformal geometry of Q. Denote by Cu (resp. Cv) the constant-u (resp. constant-v)
curve in Q. Note that these are null curves in Q.

Given (u0, v0) ∈Q, we define the domain of dependence of the line segment Cu0 ∩ {v ≤ v0}, denoted
by D(u0, v0), to be the set of all points p ∈Q such that all past-directed causal curves passing p intersect
0 ∪ (Cu0 ∩ {v ≤ v0}) plus the line segment (Cu0 ∩ {v ≤ v0}) itself.

Also, we define the future null infinity I+ to be the set of ideal points (u,+∞) such that supCu
r =∞.

Integration over null curves. Whenever we integrate over a subset of Cu or Cv , we will use the standard
line element dv or du for the integrals, i.e.,∫

Cv∩{u1≤u≤u2}

f =
∫ u2

u1

f (u′, v) du′,∫
Cu∩{v1≤v≤v2}

f =
∫ v2

v1

f (u, v′) dv′.

Functions of bounded variation. Unless otherwise specified, functions of bounded variation (BV) consid-
ered in this paper will be assumed to be right-continuous. By convention,

∂v f dv or ∂v f

will refer to the distributional derivative of f , which is a finite signed measure, and

|∂v f | dv or |∂v f |
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will denote the total variation measure. Unless otherwise specified, these measures will be evaluated on
intervals of the form (v1, v2]. Thus, according to our conventions,∫ v2

v1

∂v f (v) dv = f (v2)− f (v1),∫ v2

v1

|∂v f (v)| dv = TV(v1,v2][ f ].

New variables. We introduce the following notation for the directional derivatives of r :

λ :=
∂r
∂v
, ν :=

∂r
∂u
,

The Hawking mass m(u, v) is defined by the relation

1− 2m
r
= ∂ar∂ar =−4�−2∂ur ∂vr. (2-5)

For a solution to (SSESF), the quantity m possesses useful monotonicity properties (see Lemma 4.3),
which will be one of the key ingredients of our analysis. We define the mass ratio to be

µ :=
2m
r
.

We also define the Bondi mass on Cu by M(u) := limv→∞m(u, v), provided the limit exists. The
Bondi mass Mi := M(1)= limv→∞m(1, v) on the initial curve C1 is called the initial Bondi mass.

2C. Reformulation in terms of the Hawking mass. The Hawking mass as defined in (2-5) turns out to
obey useful monotonicity (see Section 4B). We therefore reformulate (SSESF) in terms of m and eliminate
�. Notice that, by (2-4) and (2-5), the metric is determined by r and m.

We say that (φ, r,m) on Q is a solution to (SSESF) if the following equations hold:

∂uλ=
µ

(1−µ)r
λν, and ∂vν =

µ

(1−µ)r
λν, (2-6)

2ν ∂um = (1−µ)r2(∂uφ)
2 and 2λ ∂vm = (1−µ)r2(∂vφ)

2, (2-7)

∂u∂v(rφ)=
µλν

(1−µ)r
φ, (2-8)

and, moreover, the following boundary conditions hold:

r = 0 and m = 0 along 0.

We remark that, using (2-6), the wave equation (2-8) for φ may be rewritten in either of the following
two equivalent forms:

∂u(∂v(rφ))= (∂uλ)φ, (2-8′)

∂v(∂u(rφ))= (∂vν)φ. (2-8′′)
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2D. Choice of coordinates. Note that Q is ruled by the family of null curves Cu . Since a null curve Cu

with u 6= 1 cannot intersect C1, its past endpoint must be on 0. Therefore, our assumptions so far impose
the following conditions on the double null coordinates (u, v) on Q: u is constant on each future-directed
null curve emanating from 0 and v is constant on each conjugate null curve. However, these conditions
are insufficient to give a unique choice of a coordinate system, as the system (SSESF) and assumptions
so far are invariant under the change of coordinates

u 7→U (u), v 7→ V (v), U (1)= V (1)= 1

for any strictly increasing functions U and V . To remove this ambiguity, we fix the choice of the coordinate
system, once and for all, as follows.

We first fix v on C1, relating it to the function r . Specifically, we will require that v = 2r + 1 on C1,
which in particular implies that

λ(1, v)= 1
2 . (2-9)

Next, in order to fix u, we prescribe u such that 0 = {(u, v) : u = v}. To do so, for every outgoing null
curve C in Q, follow the incoming null curve to the past starting from C ∩0 until the point p∗ where it
intersects the initial curve C1. We then define the u-coordinate value for C to be the v-coordinate value
for p∗.

Under this coordinate choice, D(u0, v0) may be expressed as

D(u0, v0)= {(u, v) ∈Q : u ∈ [u0, v0], v ∈ [u, v0]}.

Moreover, if r and φ are sufficiently regular functions on Q, then our coordinate choice leads to

lim
v→u+

(λ+ ν)(u, v)= lim
u→v−

(λ+ ν)(u, v)= 0,

lim
v→u+

(∂v + ∂u)(rφ)(u, v)= lim
u→v−

(∂v + ∂u)(rφ)(u, v)= 0.

These conditions will be incorporated into precise formulations of solutions to (SSESF) with limited
regularity in the following subsection.

2E. Characteristic initial value problem. We will study the characteristic initial value problem for
(SSESF) with data prescribed on C1 under quite general assumptions on the regularity. In this subsection,
we give precise formulations of initial data and solutions to (SSESF) to be considered.

We begin with a discussion on the constraint imposed by (SSESF) (more precisely, (2-6)–(2-8)) on
initial data for (φ, r,m). In fact, the constraint is very simple, thanks to the fact that they are prescribed on
a characteristic (i.e., null) curve C1. Once we prescribe φ on C1, the coordinate condition (2-9) dictates
the initial values of r , and the initial values of m are then determined by the constraint (2-7) along the
v-direction as well as the boundary condition m(1, 1) = 0. In other words, initial data for (φ, r,m)
possess only one degree of freedom, namely the prescription of a single real-valued function φ(1, v) or,
equivalently, ∂v(rφ)(1, v).



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1611

Following [Christodoulou 1993], we say that an initial data set for (φ, r,m) is of bounded variation
(BV) if ∂v(rφ)(1, · ) is a (right-continuous) BV function on [1,∞) with finite total variation on (1,∞).
We also define the notion of solution of bounded variation to (SSESF) as follows:

Definition 2.1. A solution (φ, r,m) to (SSESF) is called a solution of bounded variation on Q if, on
every compact domain of dependence D(u0, v0), the following conditions hold:

(1) supD(u0,v0)
(−ν) <∞ and supD(u0,v0)

λ−1 <∞.

(2) λ is BV on each Cu ∩D(u0, v0) uniformly in u, and ν is BV on each Cv ∩D(u0, v0) uniformly in v.

(3) For each a with (a, a) ∈ 0,

lim
ε→0+

(ν+ λ)(a, a+ ε)= 0.

(4) φ is an absolutely continuous function on each Cu∩D(u0, v0) with total variation bounded uniformly
in u, and also an absolutely continuous function on each Cv ∩D(u0, v0) with total variation bounded
uniformly in v.

(5) For each a with (a, a) ∈ 0,

lim
ε→0

sup
0<δ≤ε

TV{a−δ}×(a−δ,a)[φ] = 0, lim
ε→0

sup
0<δ≤ε

TV(a−ε,a−δ)×{a−δ}[φ] = 0,

lim
ε→0

sup
0<δ≤ε

TV(a,a+δ)×{a+δ}[φ] = 0, lim
ε→0

sup
0<δ≤ε

TV{a+δ}×(a+δ,a+ε)[φ] = 0.

(6) ∂v(rφ) is BV on each Cu ∩D(u0, v0) uniformly in u, and ∂u(rφ) is BV on each Cv ∩D(u0, v0)

uniformly in v.

(7) For each a with (a, a) ∈ 0,

lim
ε→0+

(∂v(rφ)+ ∂u(rφ))(a, a+ ε)= 0.

We also consider more regular data and solutions, as follows. We say that an initial data set for (φ, r,m)
is C1 if ∂v(rφ)(1, · ) is C1 on [1,∞) with supC1

|∂2
v (rφ)|<∞. In the following definition, we define the

corresponding notion of a C1 solution to (SSESF).

Definition 2.2. A solution (φ, r,m) to (SSESF) is called a C1 solution on Q if the following conditions
hold on every compact domain of dependence D(u0, v0):

(1) supD(u0,v0)
(−ν) <∞ and supD(u0,v0)

λ−1 <∞.

(2) λ and ν are C1 on D(u0, v0).

(3) For each a with (a, a) ∈ 0,

lim
ε→0+

(ν+ λ)(a, a+ ε)= lim
ε→0+

(ν+ λ)(a− ε, a)= 0.

(4) ∂v(rφ) and ∂u(rφ) are C1 on D(u0, v0).
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(5) For each a with (a, a) ∈ 0,

lim
ε→0+

(∂v(rφ)+ ∂u(rφ))(a, a+ ε)= lim
ε→0+

(∂v(rφ)+ ∂v(rφ))(a− ε, a)= 0.

Remark 2.3. By [Christodoulou 1993, Theorem 6.3], a BV initial data set leads to a unique BV solution
to (SSESF) on {(u, v) : 1 ≤ u ≤ 1+ δ, v ≥ u} for some δ > 0. If the initial data set is furthermore C1,
then it is not difficult to see that the corresponding solution is also C1 (persistence of regularity). In fact,
this statement follows from the arguments in Section 7; see, in particular, the proof of Lemma 7.7.

2F. Local scattering in BV and asymptotic flatness. We are now ready to formulate the precise notion of
locally BV scattering solutions to (SSESF), which is the class of solutions that we consider. In particular,
for this class of solutions, we make a priori assumptions on its global geometry.

Definition 2.4. We say that a BV solution (φ, r,m) to (SSESF) is locally scattering in the bounded
variation norm (BV), or a locally BV scattering solution, if the following conditions hold:

(1) Future completeness of radial null geodesics: Every incoming null geodesic in Q has its future
endpoint on 0, and every outgoing null geodesic in Q is infinite towards the future in the affine
parameter. Moreover, there exists a global system of null coordinates (u, v) and Q is given by

Q= {(u, v) : u ∈ [1,∞), v ∈ [u,∞)}. (2-10)

(2) Vanishing final Bondi mass:

M f := lim
u→∞

M(u)= 0. (2-11)

(3) Scattering in BV in a compact r-region: There exists R > 0 such that, for the region Qcpt :=

{(u, v) ∈Q : r(u, v)≤ R}, we have∫
Cu∩Qcpt

|∂2
v (rφ)| → 0 and

∫
Cu∩Qcpt

|∂v log λ| → 0 (2-12)

as u→∞.

Several remarks concerning Definition 2.4 are in order.

Remark 2.5. In fact, the condition (2-10) is a consequence of future completeness of radial null geodesics
and the preceding assumptions. To see this, first recall our assumption that C1={(u, v) :u=1, v∈[1,∞)}.
Hence from our choice of the coordinate u and future completeness of incoming radial null geodesics, it
follows that the range of u must be [1,∞). Furthermore, for each u ∈ [1,∞), the range of v on Cu is
[u,∞) by the future completeness of outgoing radial null geodesics and Definition 2.1. More precisely,
future completeness of Cu implies that it can be continued past {u}× [u, v0] as long as

∫ v0
u �2 dv <∞,

and Definition 2.1 implies5 that �2
=−4λν/(1−µ) indeed remains bounded on {u}× [u, v0] for every

finite v0.

5We refer to the proof of Proposition 5.3 below for details of estimating −ν/(1−µ) in terms of assumptions on φ, ∂v(rφ)
and λ.
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Remark 2.6. For more regular (e.g., C1) asymptotically flat solutions, (1) and (2) in Definition 2.4 may
be replaced by a single equivalent condition, namely requiring the full spacetime (M, g) to be future
casually geodesically complete as a 1+3-dimensional Lorentzian manifold. In particular, (2) follows
from the deep work [Christodoulou 1987], in which it was proved that if M f > 0 then the space-time
necessarily contains a black hole and thus is not future causally geodesically complete.

Remark 2.7. As we will see in the proof, there exists a universal ε̃0 such that (3) in Definition 2.4 can be
replaced by the weaker requirement that there exists R > 0 and U > 0 such that∫

Cu∩Qcpt

|∂2
v (rφ)| ≤ ε̃0 and

∫
Cu∩Qcpt

|∂v log λ| ≤ ε̃0

for u ≥U . To simplify the exposition, we will omit the proof of this improvement.

Remark 2.8. For a sufficiently regular, asymptotically flat solution to (SSESF), Definition 2.4(1) is
equivalent to requiring that the conformal compactification of Q is depicted by a Penrose diagram as in
Figure 1 (in the introduction). For more discussion on Penrose diagrams, we refer the reader to [Dafermos
and Rodnianski 2005, Appendix C; Kommemi 2013]. In fact, this equivalence follows easily from the
classification of all possible Penrose diagrams for the system (SSESF) given in the latter reference.

We also define the precise notion of asymptotic flatness for initial data with BV or C1 regularity. As
we shall see soon, in the main theorems, the rate of decay for the initial data, measured in r , is directly
related to the rate of decay of the corresponding solution in both u and r .

Definition 2.9 (asymptotic flatness of order ω′ in BV or C1). For ω′> 1, we make the following definition:

(1) We say that an initial data set is asymptotically flat of order ω′ in BV if ∂v(rφ)(1, · ) ∈ BV[1,∞)
and there exists I1 > 0 such that

sup
C1

(1+ r)ω
′

|∂v(rφ)| ≤ I1 <∞. (2-13)

(2) We say that an initial data set is asymptotically flat of order ω′ in C1 if ∂v(rφ)(1, · ) ∈ C1
[1,∞) and

there exists I2 > 0 such that

sup
C1

(1+ r)ω
′

|∂v(rφ)| + sup
C1

(1+ r)ω
′
+1
|∂2
v (rφ)| ≤ I2 <∞. (2-14)

Remark 2.10. The initial Bondi mass Mi := limv→∞m(1, v) can be easily bounded by CI2
1 ; see

Lemma 4.5.

Remark 2.11. Observe that both conditions imply that (rφ)(1, v) tends to a finite limit as v →∞;
in particular, limv→∞ φ(1, v) = 0. This serves to fix the gauge freedom (φ, r,m) 7→ (φ + c, r,m) for
solutions to (SSESF).
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3. Main results

3A. Main theorems. With the definitions of locally BV scattering solutions and asymptotically flat initial
data, we now have the necessary means to state the main theorems of this paper. Roughly speaking, these
theorems say that locally BV scattering solutions with asymptotically flat initial data exhibit quantitative
decay rates, which can be read off from the rate ω′ in Definition 2.9. The first theorem is for initial data
and solutions in BV.

Theorem 3.1 (main theorem in BV). Let (φ, r,m) be a locally BV scattering solution to (SSESF) with
asymptotically flat initial data of order ω′ in BV. Then, for ω :=min{ω′, 3}, there exists a constant A1 > 0
such that

|φ| ≤ A1 min{u−ω, r−1u−(ω−1)
}, (3-1)

|∂v(rφ)| ≤ A1 min{u−ω, r−ω}, (3-2)

|∂u(rφ)| ≤ A1u−ω. (3-3)

The second theorem is for initial data and solutions in C1.

Theorem 3.2 (main theorem in C1). Let (φ, r,m) be a locally BV scattering solution to (SSESF) with
asymptotically flat initial data of order ω′ in C1. Then, in addition to the bounds (3-1)–(3-3), there exists
a constant A2 > 0 such that, for ω :=min{ω′, 3},

|∂2
v (rφ)| ≤ A2 min{u−(ω+1), r−(ω+1)

}, (3-4)

|∂2
u (rφ)| ≤ A2u−(ω+1), (3-5)

|∂vλ| ≤ A2 min{u−3, r−3
}, (3-6)

|∂uν| ≤ A2u−3. (3-7)

Some remarks regarding the main theorems are in order.

Remark 3.3. Notice that in Theorem 3.2 the decay rates for ∂vλ and ∂uν are independent of the order ω′

of asymptotic flatness of the initial data. This is because the scalar field terms enter the equations for
∂u∂v log λ and ∂v∂u log ν quadratically (see equations (4-6) and (4-7)) and thus, as long as ω′ > 1, their
contributions to the decay rates of ∂vλ and ∂uν are of lower order than the term involving the Hawking
mass.

Remark 3.4. By Remark 2.3, a C1 initial data set gives rise to a C1 solution. Hence Remark 2.6 applies,
and conditions (1)–(2) of Definition 2.4 may be replaced by a single equivalent condition of future causal
geodesic completeness of (M, g) in the case of Theorem 3.2.

Remark 3.5. In general, the constants A1 and A2 depend not only on the size of the initial data (e.g., I1

and I2), but rather on the full profile of the solution. Nevertheless, for the special case of small initial
total variation of ∂v(rφ), A1 and A2 do depend only on the size of the initial data; see Section 3C.

Remark 3.6. If the initial data also verify higher-derivative estimates, then the techniques in proving
Theorems 3.1 and 3.2 also allow us to derive decay bounds for higher-order derivatives. The proof of the
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higher-derivative decay estimates is in fact easier than the proofs of the first- and second-derivative decay
bounds, since we have already obtained sufficiently strong control of the scalar field and the geometry of
the spacetime. We will omit the details.

Remark 3.7. The decay rates that we obtain in these variables imply, as immediate corollaries, decay
rates for ∂vφ, ∂uφ, etc. See Corollaries 6.9 and 7.13.

Remark 3.8. The decay rates in the main theorems are measured with respect to the double null coordi-
nates (u, v) normalized at the initial curve and the axis 0 as in Section 2D. To measure the decay rate
along null infinity, one can alternatively normalize the u-coordinate6 by requiring ∂ur =−1

2 at future null
infinity. As we will show in Section 5C, for the class of spacetimes considered in this paper, the decay
rates with respect to this new system of null coordinates are the same up to a constant multiplicative
factor.

Remark 3.9. In view of Remark 2.7, the assumption of local BV scattering can be replaced by the
boundedness of the subcritical quantities:∫

Cu∩Qcpt

|∂2
v (rφ)|

p
≤ C and

∫
Cu∩Qcpt

|∂v log λ|p ≤ C for p > 1.

This is because, for fixed ε̃0, one can choose R to be sufficiently small (depending on C) and apply
Hölder’s inequality to ensure that∫

Cu∩Qcpt

|∂2
v (rφ)| ≤ ε̃0 and

∫
Cu∩Qcpt

|∂v log λ| ≤ ε̃0.

Remark 3.10. We also notice that the proof of our main theorem can be carried out in an identical manner
for locally BV scattering solutions arising from asymptotically flat Cauchy data. More precisely, we can
consider initial data given on a Cauchy hypersurface,

v = f (u) with C−1
≤− f ′(u)≤ C,

and satisfying the constraint equation together with the following bounds on the initial data:

(1+ r)|φ| + (1+ r)ω
′(
|∂v(rφ)| + |∂u(rφ)| +

∣∣λ− 1
2

∣∣+ ∣∣ν+ 1
2

∣∣)≤ Ĩ1

and
(1+ r)ω

′
+1(|∂2

v (rφ)| + |∂
2
u (rφ)| + |∂v log λ| + |∂u log ν|)≤ Ĩ2.

Then, if we assume in addition that the spacetime is locally BV scattering to the future, the conclusions
of Theorems 3.1 and 3.2 hold.

Remark 3.11. Our main theorems can also be viewed as results on upgrading qualitative decay to
quantitative decay estimates. Such problems have been widely studied in the linear setting (without the
assumption on spherical symmetry) on nontrapping asymptotically flat Lorentzian manifolds [Dafermos
and Rodnianski 2010; Tataru 2013; Metcalfe et al. 2012], as well as for the obstacle problem on Minkowski

6In particular, this normalization is used in [Dafermos and Rodnianski 2005] for the black hole case. By changing the null
coordinates, we can thus more easily compare the decay rates in our setting with those in [Dafermos and Rodnianski 2005].
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space [Morawetz 1975; Strauss 1975]. In the nonlinear setting, we mention the work of Christodoulou
and Tahvildar-Zadeh [1993], who studied the energy critical, 2-dimensional, spherically symmetric wave
map system and proved asymptotic decay for the solution and its derivatives.

3B. BV scattering and the blow-up at infinity scenario. The condition of local BV scattering in the
main theorems follows if one rules out, a priori, a blow-up at infinity scenario. More precisely, we say
that a solution blows up at infinity if some scale-invariant spacetime norms are infinite, as follows:

Definition 3.12. Let (φ, r,m) be a BV solution to (SSESF) such that condition (1) of Definition 2.4
holds. We say that the solution blows up at infinity if at least one of the following holds:

(1) sup λ−1
0 =∞, where λ0(u) := limv→u+ λ(u, v).

(2)
∫
∞

1

∫
∞

u |∂vλ ∂uφ− ∂uλ ∂vφ| dv du =∞.

(3)
∫
∞

1

∫
∞

u |∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))| dv du =∞.

Remark 3.13. We do not prove in the paper the existence or nonexistence of solutions that blow up at
infinity. This is analogous to the blow-up at infinity scenarios which have recently been constructed in
some simpler semilinear, critical wave equations [Donninger and Krieger 2013].

It follows from our main theorem that, if a solution does not blow up at infinity, it obeys quantitative
decay estimates. More precisely, we have:

Theorem 3.14 (dichotomy between blow-up at infinity and BV scattering). Let (φ, r,m) be a BV solution
to (SSESF) such that condition (1) of Definition 2.4 holds. Assume furthermore that the initial data for
(φ, r,m) obey the condition7 limv→∞ φ(1, v)= 0 and∫

C1

|∂2
v (rφ)| dv+ sup

C1

|∂v(rφ)|<∞. (3-8)

Then, either:

(1) the solution blows up at infinity; or

(2) the solution is globally BV scattering, in the sense that conditions (2) and (3) of Definition 2.4 hold
with R =∞.

This theorem is established in Section 8. It then follows from our main theorems (Theorems 3.1
and 3.2) that, if a BV solution does not blow up at infinity and possesses asymptotically flat initial data,
then it obeys quantitative decay estimates.

3C. Refinement in the small data in BV case. By a theorem of Christodoulou [1993], the maximal
development of data with small BV norms does not blow up at infinity. The previous theorem applies,
and thus the corresponding solution is globally BV scattering, in the sense described in Theorem 3.14.
Moreover, a closer inspection of the proof of the main theorems reveals that the following stronger
conclusion holds in this case:

7By Remark 2.11, this is the only condition on limv→∞ φ(1, v) which is consistent with asymptotic flatness.
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Theorem 3.15 (sharp decay for data with small BV norm). There exists a universal ε0 > 0 such that, for
0< ε ≤ ε0, the following statements hold:

(1) If the initial data set is asymptotically flat of order ω′ in BV and∫
C1

|∂2
v (rφ)|< ε,

then the maximal development (φ, r,m) is globally BV scattering, in the sense that Definition 2.4
holds with arbitrarily large R > 0. Moreover, it satisfies estimates (3-1)–(3-3) with A1 ≤CI1(I1+ε).

Here (and similarly in (2)), we use the convention that CI1 depends on I1 in a nondecreasing
fashion.8

(2) If , in addition, the initial data set is asymptotically flat of order ω′ in C1, then the maximal develop-
ment also satisfies (3-4)–(3-7) with A2 ≤ CI2(I2+ ε).

The point of this theorem is that we only need the initial total variation to be small in order to conclude
pointwise decay rates; in particular, I1 and I2 can be arbitrarily large. In this sense, Theorem 3.15
generalizes both the small BV global well-posedness theorem [Christodoulou 1993, Theorem 6.2] and
the earlier small data scattering theorem [Christodoulou 1986] for data that are small in a weighted C1

norm. A proof of this theorem will be sketched in Section 9.

3D. Optimality of the decay rates. Our main theorems show upper bounds for the decay rates of the
scalar field φ and its derivatives both towards null infinity (i.e., in r) and along null infinity (in u).
For ω′ = ω < 3, if the decay rate of the initial data towards null infinity also satisfies a lower bound, then
we can show that both the r and u decay rates in Theorem 3.1 are saturated. More precisely:

Theorem 3.16 (sharpness of t−ω tail for 1 < ω < 3). Let 1 < ω < 3. Suppose, in addition to the
assumptions of Theorem 3.1, that there exists V ≥ 1 such that the initial data set satisfies the lower bound

rω ∂v(rφ)(1, v)≥ L > 0

for v ≥ V . Then there exists a constant Lω > 0 such that

∂v(rφ)(u, v)≥ Lω min{r−ω, u−ω},

−∂u(rφ)(u, v)≥ Lωu−ω,
for u sufficiently large.

Remark 3.17. One can also infer the sharpness of the decay of φ from that of its derivatives. We will
omit the details.

This theorem will be proved in Section 10A. In fact, the proof of this theorem is similar to the proof
of the upper bounds in the first main theorem (Theorem 3.1). We will show that after restricting to
u sufficiently large, the initial lower bound propagates and the nonlinear terms only give lower-order
contributions. Notice also that the analogous statement is false for ω′ ≥ 3, since the nonlinear terms may
dominate the contribution of the initial data.

8In particular, for I1 sufficiently small, we have the estimate A1 ≤ C(I1+ ε) for some absolute constant C .
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For ω′ ≥ 3, we can show that the decay rates in Theorem 3.1 are sharp, in the following sense:

Theorem 3.18 (sharpness of t−3 tail). For arbitrarily small ε > 0, there exists a locally BV scattering
solution (φ, r,m) to (SSESF) which satisfies the following properties:

(1) ∂v(rφ)(1, v) is smooth, compactly supported in the v-variable and has total variation less than ε:∫
C1

|∂2
v (rφ)|< ε.

(2) There exists a constant L3 > 0 such that

∂v(rφ)(u, v)≥ L3 min{r−3, u−3
},

−∂u(rφ)(u, v)≥ L3u−3,

for u sufficiently large.

To prove Theorem 3.18, we will first establish a sufficient condition for the desired lower bounds
in terms of (nonvanishing of) a single real number L, which is computed from information at the null
infinity. This result (Lemma 10.1) is proved using the decay rates proved in the main theorems, and we
believe it might be of independent interest. In Section 10C, we will complete the proof of Theorem 3.18,
by constructing an initial data set for which L can be bounded away from zero. This can be achieved by
showing that the solution is close to that of a corresponding linear problem, controlling the error terms
after taking ε > 0 to be sufficiently small and using Theorem 3.15.

3E. Strategy of the proof of the main theorems. Roughly speaking, the proof of decay of φ and its
derivatives can be split into three steps. In the first two steps, we control the incoming part9 of the
derivatives of the scalar field and metric components, that is, ∂v(rφ), ∂2

v (rφ) and ∂vλ. To this end,
we split the spacetime into the exterior region Qext := {(u, v) ∈ Q : v ≥ 3u} and the interior region
Qint := {(u, v) ∈Q : v ≤ 3u}. In the first step, we control the incoming part of the solution in the exterior
region. In this region, we have r & v, u, thus the negative r-weights in the equations give the required
decay of φ and its derivatives. We then prove bounds in the interior region in the second step. Here,
we exploit certain (nonquantitative) smallness in the spacetimes quantities as u →∞, given by the
assumption of local BV scattering, to propagate the decay estimates from the exterior region to the interior
region all the way up to the axis. Finally, in the third step, we control the outgoing part of the solution,
that is, ∂u(rφ), ∂2

u (rφ) and ∂uν, by showing that the decay bounds that we have proved along the axis
can be propagated in the outgoing direction.

We remind the readers that the above sketch is only a heuristic argument and is not true if taken
literally. In particular, in order to carry out this procedure we need to first show that the local BV
scattering assumption provides some control over the spacetime geometry. As we will show below,
the estimates are derived in slightly different fashions for the first and second derivatives of rφ. We
note in particular that carrying out this general scheme relies heavily on the analytic structure of the
Einstein-scalar field equations, including the monotonicity properties as well as the null structure of the
(renormalized) equations.

9We call these variables “incoming” because they obey a transport equation in the ∂u -direction.
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3E1. Estimates for first derivatives of rφ. To obtain decay bounds for the first derivatives of rφ, we will
rely on the wave equation

∂u∂v(rφ)=
2mλν

(1−µ)r2φ.

Notice that, when we solve for the incoming radiation ∂v(rφ) using this as a transport equation in u, the
right-hand side does not depend explicitly on the outgoing radiation ∂u(rφ). Instead, the right-hand side
consists of terms that are either lower order (in terms of derivatives) or satisfy a certain monotonicity
property.

In particular, this equation shows that, as long as φ can be controlled, we can estimate ∂v(rφ) by
integrating along the incoming u direction. On the other hand, we can also control φ once a bound on
∂v(rφ) is known, by integrating along the outgoing v-direction.

To achieve the desired decay rates for φ, ∂v(rφ) and ∂u(rφ), we follow the three steps outlined above:

(1) Bounds10 for ∂v(rφ) and φ in v≥ 3u: In the exterior region, we have r & u, v; it is therefore sufficient
to prove the decay in r . First, we prove that supCu

(1+ r)φ is bounded. This is achieved in a compact
region by continuity of the solution11 and in the region of large r by integrating ∂v(rφ) in the outgoing
direction from the compact region. Since ∂v(rφ) can in turn be controlled by φ, we get the desired bound.
To improve over this bound we define

B1(U ) := sup
u∈[1,U ]

sup
Cu

(uω|φ| + ruω−1
|φ|)

and show via the wave equation that

rω|∂v(rφ)| ≤ C(u1)+ ε(u1)B1(U ),

where ε→ 0 as u1→∞. This gives the optimal decay rate for ∂v(rφ) in the exterior region, up to an
arbitrarily small loss, which can be estimated once B1(U ) can be controlled.

(2) Bounds for ∂v(rφ) and φ in v ≤ 3u: For the decay of the first derivatives, the interior region {v ≤ 3u}
is further divided into the intermediate region {r ≥ R} and the compact region {r ≤ R}. In these two
regions, the r -weight in the equation is not sufficient to give the sharp decay rate. Instead, we start from
the decay rate ∂v(rφ) obtained in the first step in the exterior region and propagate this decay estimate
inwards. To achieve this, we need to show that

∫
2mλν/((1−µ)r2) is small when u is sufficiently large.

(2a) r ≥ R and v ≤ 3u: In the intermediate region, where we still have a lower bound on r , the required
smallness is given by the qualitative information that the Hawking mass approaches 0. Thus, from
some large time onwards,

∫
2mλν/((1−µ)r2) becomes sufficiently small and we can integrate the wave

equation directly to obtain the desired decay bounds.

10The estimates in this region are similar to the corresponding bounds for the black hole case in [Dafermos and Rodnianski
2005]. There, it was observed that the quantity ∂v(rφ), which Dafermos and Rodnianski called an almost Riemann invariant,
verifies an equation such that the right-hand side has useful weights in r and give the desired decay rates.

11In particular, since we are simply using compactness, the constants in Theorem 3.1 depend not only on the size of the initial
data.
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(2b) r ≤ R and v ≤ 3u: In this region, we use the local BV scattering assumption to show that∫
{r≤R} 2mλν/((1−µ)r2)→ 0 as u→∞. This smallness allows us to propagate the decay estimates

from the curve r = R to the region r < R. At this point, we can also recover the control for B1(U ) and
close the estimates in step (1). This allows us to derive all the optimal decay rates for φ and ∂v(rφ).

(3) Bounds for ∂u(rφ): To achieve the bounds for ∂u(rφ), first note that along the axis we have
∂u(rφ)=−∂v(rφ). Thus, by the previous derived control for ∂v(rφ), we also have the decay of ∂u(rφ)
along the axis. We then consider the wave equation as a transport equation in the outgoing direction for
∂u(rφ) to obtain the sharp decay for ∂u(rφ) in the whole spacetime.

3E2. Estimates for the second derivatives of rφ. As for the first derivatives, we control the second
derivatives by first integrating the equation in the exterior region up to a curve v = 3u. We then propagate
the decay bounds from the exterior region to the interior region using the estimates already derived for the
first derivative of φ, as well as the local BV scattering assumption. However, at this level of derivatives,
some new difficulties arise, as we now describe.

Renormalization and the null structure. The assumption of local BV scattering implies that∫
Cu∩{r≤R}

(|∂vφ| + |∂
2
v (rφ)|)→ 0 (3-9)

as u→∞. When combined with Christodoulou’s BV theory, this also implies that, as v→∞, we have∫
Cv∩{r≤R}

(|∂uφ| + |∂
2
u (rφ)|)→ 0. (3-10)

Notice that on Cu (resp. Cv), we only control the integral of ∂2
v (rφ) and ∂vφ (resp. ∂2

u (rφ) and ∂uφ).
Suppose, when integrating along the incoming direction to control ∂2

v (rφ) and ∂vλ, we need to estimate
terms of the form ∫

Cv∩{r≤R}
|∂uφ ∂vφ|.

We can apply the BV theory to show that, for v sufficiently large,∫
Cv∩{r≤R}

|∂uφ| ≤ ε.

On the other hand, one can show that

sup
Cv∩{r≤R}

|∂vφ| ≤ C sup
J−(Cv∩Qcpt)

|∂2
v (rφ)|,

which can be controlled by the quantity that we are estimating.
However, in (4-2) for ∂2

v (rφ), derived by differentiating (2-8), there are terms of the form

∂vφ ∂vφ

such that neither of the factors can be controlled a priori in L1 by the local BV scattering assumption. In
other words, the equation does not obey any null condition.
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To deal with this problem, we follow [Christodoulou 1993] and introduce the renormalized variables

∂2
v (rφ)− (∂vλ)φ, ∂v log λ−

λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

∂2
u (rφ)− (∂uν)φ, ∂u log(−ν)−

ν

1−µ
µ

r
+ ∂uφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

which have the property that the nonlinear terms arising in the equations for these variables in fact have a
null structure. In particular, we can apply the above heuristic procedure to obtain decay estimates in the
compact region r ≤ R.

Nonrenormalized variables and decay towards null infinity. While the renormalization allows us to apply
the BV theory in the interior region, it does not give the optimal r decay rates in the exterior region. For
example, the renormalized quantity

∂v log λ−
µ

1−µ
λ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ))

decays only as r−2 towards null infinity due to the contribution of (µ/(1−µ))λ/r , which is weaker than
the desired r−3 decay for ∂v log λ. Therefore, in order to obtain the optimal estimates everywhere in the
spacetime, we need to use the variables ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν together with their renormalized

versions.

Coupling of the incoming and outgoing parts. Finally, an additional challenge is that, unlike the estimates
for the first derivatives of the scalar field, the bounds for the incoming part of the solution, ∂2

v (rφ) and ∂vλ
are coupled to that for the outgoing part, ∂2

u (rφ) and ∂uν. Likewise, to control ∂2
u (rφ), we need estimates for

∂2
v (rφ) and ∂vλ. For example, in the equation for ∂v log λ−(µ/(1−µ))λ/r+∂vφ(λ−1∂v(rφ)−ν−1∂u(rφ)),

there is a term involving ∂2
u (rφ) on the right-hand side. In particular, in order to obtain the desired decay

for ∂vλ, we need to at the same time prove the decay for ∂2
u (rφ).

Strategy for obtaining the decay estimates. With the above difficulties in mind, we can now give a very
rough sketch of the strategy of the proof:

(1) Bounds for ∂2
v (rφ) and ∂vλ for large r : As in the case for the first derivatives, we first prove the

optimal r decay for ∂2
v (rφ) and ∂vλ in the exterior region. To this end, we integrate the equations satisfied

by the nonrenormalized variables. We note that the error terms can all be bounded using the local BV
scattering assumption and the decay estimates already proved for the first derivatives.

(2) Bounds for all second derivatives: Steps (2) and (3) for the decay bounds for the first derivatives are
now coupled. Define

B2(U ) := sup
u∈[1,U ]

sup
Cu

(
uω|∂2

v (rφ)| + uω|∂2
u (rφ)| + uω|∂vλ| + uω|∂uν|

)
.

We then show that B2(U ) can control the error terms arising from integrating the renormalized equations
in the sense that we can obtain an inequality of the form

|weighted renormalized variables| ≤ C(u2)+ ε(u2)B2(U ),
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where ε(u2)→ 0 as u2 →∞. We then prove that the renormalized variables in fact control all the
weighted second derivatives in B2. After choosing u2 to be sufficiently large, we show that B2(U ) is
bounded independently of U and thus all the second derivatives have u−ω decay.

(3) Optimal bounds in terms of u decay: While we have obtained u−ω decay for the second derivatives,
the decay rates are not the sharp rates claimed in the main theorem. To finally obtain the desired bounds,
we integrate the equations of the nonrenormalized variables and use the preliminary estimates obtained in
(1) and (2) above. Here, we make use of the fact that the estimates obtained in step (2) are sufficiently
strong (both in terms of regularity and decay) to control the error terms in the nonrenormalized equations.

4. Analytic properties of (SSESF)

In this section, we discuss the analytic properties of (SSESF). These include scaling, monotonicity and
the null structure of the system. All these features will play crucial roles in the analysis.

4A. Scaling. For a > 0, (SSESF) is invariant under the scaling of the coordinate system

u 7→ au, v 7→ av

together with the scaling of the functions

r 7→ ar, m 7→ am, � 7→�, φ 7→ φ.

This in particular implies that the BV norms∫
∞

u
|∂2
v (rφ)(u, v

′)| dv′ and
∫
∞

u
|∂vλ(u, v′)| dv′

are scale invariant. Thus the a priori assumptions (2-12) are taken with respect to localized versions of
scale-invariant norms.

4B. Monotonicity properties. We first begin with basic monotonicity properties of r .

Lemma 4.1 (monotonicity of r ). Let (φ, r,m) be a BV solution to (SSESF). Then we have

ν < 0 in Q
and 

λ > 0 when 1−µ > 0,
λ= 0 when 1−µ= 0,
λ < 0 when 1−µ < 0.

Proof. This was proved in [Christodoulou 1993, Propositions 1.1 and 1.2]; we reproduce the proof for the
reader’s convenience. Note the equation

∂u∂v(r2)=− 1
2�

2,

which easily follows from (SSESF). As ∂ur2
= 2r∂ur = 0 on 0 and r > 0 on Q, we easily see that ν < 0.

Then, from the definition of 1−µ, the second conclusion also follows. �
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According to the sign of λ, a general Penrose diagram Q is divided into three subregions:

T := {(u, v) ∈Q : λ < 0}, A := {(u, v) ∈Q : λ= 0} and R := {(u, v) ∈Q : λ > 0}.

These are called the trapped region, apparent horizon and regular region, respectively. The next lemma,
which we borrow from [Christodoulou 1993], shows that the solutions to (SSESF) considered in this paper
consist only of the regular region R. Therefore, extensive discussion of T and A will be suppressed.

Lemma 4.2 [Christodoulou 1993, Proposition 1.4]. Let (φ, r,m) be a BV solution to (SSESF). Then
the causal past of 0 in Q is contained in R. In particular, Q =R if (φ, r,m) satisfies condition (1) in
Definition 2.4.

Next, we turn to monotonicity properties of the Hawking mass m, which will play an important role in
our paper. The following lemma is an obvious consequence of (2-7):

Lemma 4.3 (monotonicity of m). For a BV solution (φ, r,m) to (SSESF), we have

∂vm ≥ 0 and ∂um ≤ 0 in R.

By the monotonicity ∂vm ≥ 0, the limit M(u) := limv→∞m(u, v) exists (possibly +∞ at this point)
for each u. This is called the Bondi mass at retarded time u. The following statement is an easy corollary
of the preceding lemma:

Corollary 4.4 (monotonicity of the Bondi mass). Let (φ, r,m) be a BV solution to (SSESF) and suppose
that Cu ⊂R for u ∈ [u1, u2]. Then the Bondi mass M(u) is a nonincreasing function on [u1, u2].

The following lemma shows that Mi <∞ for initial data sets considered in this paper:

Lemma 4.5. Suppose that ∂v(rφ)(1, · ) is asymptotically flat of order ω′ > 1 in the sense of Definition 2.9.
Then we have

Mi := lim
v→∞

m(1, v)≤ CI2
1 . (4-1)

This is an easy consequence of (2-7) and Lemma 4.1; we omit its proof. By the preceding corollary, it
follows that M(u) <∞ for each u.

We conclude this subsection with additional monotonicity properties of solutions to (SSESF), useful
for controlling the geometry of locally BV scattering solutions to (SSESF).

Lemma 4.6. Let (φ, r,m) be a BV solution to (SSESF). For (u, v) ∈R, we have

λ

1−µ
(u, v)≤

λ

1−µ
(1, v) and ∂uλ= ∂vν ≤ 0.

Proof. The lemma follows from the formula

∂u log
∣∣∣∣ λ

1−µ

∣∣∣∣=−(−ν)−1r(∂uφ)
2

and (2-6). �
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4C. Null structure of the evolution equations. In this subsection, we follow [Christodoulou 1993] and
demonstrate that the evolution equations verify a form of null structure. In particular, the null structure
occurs in the equations for the second derivatives of the scalar field and the metric. However, it is
not apparent if we simply take the derivatives of the equations (2-6) and (2-8). Instead, we rewrite
the equations in renormalized variables for which the null structure is manifest. We will perform this
renormalization separately for the wave equations for φ and for the equations for λ and ν.

The wave equation for φ. Taking ∂v of (2-8), we obtain

∂u(∂
2
v (rφ))= ∂v(∂uλφ)= ∂uλ ∂vφ+ (∂v∂uλ)φ,

or equivalently, after substituting in the first equation in (2-6),

∂u(∂
2
v (rφ))=

2mλν
(1−µ)r2 ∂vφ+

ν

1−µ
(∂vφ)

2φ+
2mν

(1−µ)r2 (∂vλ)φ−
4m

(1−µ)r3λ
2νφ. (4-2)

Some terms on the right-hand side, such as (1−µ)−1ν(∂vφ)
2φ, do not exhibit null structure and are

dangerous near 0. To tackle this, we rewrite

(∂v∂uλ)φ = ∂u[(∂vλ)φ] − ∂vλ ∂uφ.

Thus, from the first equation, we derive

∂u[∂
2
v (rφ)− (∂vλ)φ] = ∂uλ ∂vφ− ∂vλ ∂uφ. (4-3)

By switching u and v, we obtain the following analogous equations in the conjugate direction:

∂v(∂
2
u (rφ))=

2mλν
(1−µ)r2 ∂uφ+

λ

1−µ
(∂uφ)

2φ+
2mλ

(1−µ)r2 (∂uν)φ−
4m

(1−µ)r3λν
2φ, (4-4)

∂v[∂
2
u (rφ)− (∂uν)φ] = ∂vν ∂uφ− ∂uν ∂vφ. (4-5)

The equations for λ and ν. From (2-6), we have

∂u log λ=
µ

(1−µ)r
ν, ∂v log(−ν)=

µ

(1−µ)r
λ.

Take ∂v and ∂u of the first and second equations, respectively. Using (2-6), it is not difficult to verify
that

∂u∂v log λ=
1

1−µ
λ−1ν(∂vφ)

2
−

4m
(1−µ)r3λν, (4-6)

∂v∂u log(−ν)=
1

1−µ
ν−1λ(∂uφ)

2
−

4m
(1−µ)r3λν. (4-7)

To reveal the null structure, we must carry out the renormalization as we have done for (4-3) and (4-5).
Following [Christodoulou 1993], it is easy to check that the above two equations are equivalent to

∂u

[
∂v log λ−

µ

1−µ
λ

r
+∂vφ(λ

−1∂v(rφ)−ν−1∂u(rφ))
]
=∂uφ ∂v(ν

−1∂u(rφ))−∂vφ ∂u(ν
−1∂u(rφ)) (4-8)
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and the conjugate equation

∂v

[
∂u log(−ν)−

µ

1−µ
ν

r
+∂uφ(λ

−1∂v(rφ)−ν−1∂u(rφ))
]
=−∂uφ ∂v(λ

−1∂v(rφ))+∂vφ ∂u(λ
−1∂v(rφ)).

(4-9)

5. Basic estimates for locally BV scattering solutions

In this section, we gather some basic estimates concerning locally BV scattering solutions. These estimates
will apply, in particular, to solutions satisfying the hypotheses of Theorem 3.1.

5A. Integration lemmas for φ. We first derive some basic inequalities for φ, λ−1∂v(rφ) and ∂vφ. We
remark that these are functional inequalities which hold under very general assumptions and in particular
do not rely on the locally BV scattering assumption.

Lemma 5.1. Let φ(u, · ) and r(u, · ) be Lipschitz functions on [u, v] with λ > 0 and r(u, u) = 0. Then
the following inequality holds:

|φ(u, v)| ≤ sup
v′∈[u,v]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. (5-1)

More generally, for u ≤ v1 ≤ v2, we have

|rφ(u, v1)− rφ(u, v2)| ≤ (r(u, v2)− r(u, v1)) sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. (5-2)

Proof. We shall prove (5-2), since (5-1) then follows as a special case. Integrating ∂v(rφ)(u, v′) over
v′ ∈ [v1, v2], we get

|rφ(u, v1)− rφ(u, v2)| ≤

∫ v2

v1

|∂v(rφ)(u, v′)| dv′

≤ sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣× ∫ v2

v1

λ(u, v′) dv′

= (r(u, v2)− r(u, v1)) sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. �

Lemma 5.2. Let φ(u, · ) and r(u, · ) be functions on [u, v] such that ∂vφ is integrable, r is Lipschitz
with λ> 0 and r(u, u)= 0. Suppose furthermore that λ−1∂v(rφ)(u, · ) is BV on [u, v]. Then the following
statements hold:

(1) We have ∫ v

u
|∂vφ(u, v′)| dv′ ≤

∫ v

u
|∂v(λ

−1∂v(rφ))(u, v′)| dv′. (5-3)

(2) Suppose, in addition, that λ−1∂v(rφ)(u, · ) is Lipschitz on [u, v]. Then we have

|∂vφ(u, v)| ≤
1
2

supv′∈[u,v] λ(u, v
′)

infv′∈[u,v] λ(u, v′)
sup

v′∈[u,v]
|∂v(λ

−1∂v(rφ))(u, v′)|. (5-4)
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Proof. We proceed formally to compute

∂vφ(u, v)=
λ

r
(λ−1∂v(rφ)−φ)(u, v)

=
λ

r2 (u, v)
∫ v

u

(∫ v

v′
∂v(λ

−1∂v(rφ))(u, v′′) dv′′
)
λ(u, v′) dv′

=
λ

r2 (u, v)
∫ v

u
r(u, v′′)∂v(λ−1∂v(rφ))(u, v′′) dv′′.

The above computation is justified thanks to the hypotheses, where we interpret

∂v(λ
−1∂v(rφ))(u, v′′) dv′′

to be the weak derivative of λ−1∂v(rφ), which is a finite signed measure. For a fixed (u, v), observe that

sup
v′′∈[u,v]

r(u, v′′)
∫ v

v′′

λ(u, v′)
r2(u, v′)

dv′ ≤ 1.

This proves (5-3). For (5-4), note that the function λ−1∂v(rφ) is absolutely continuous on [u, v], so
∂v(λ

−1∂v(rφ)(u, · )) exists almost everywhere on [u, v]; moreover, it belongs to L∞ by the Lipschitz
assumption. Noting that

sup
v′∈[u,v]

λ(u, v′)
r2(u, v′)

∫ v′

u
r(u, v′′) dv′′ ≤ 1

2
supv′∈[u,v] λ(u, v

′)

infv′∈[u,v] λ(u, v′)
,

we obtain (5-4). �

5B. Geometry of locally BV scattering solutions. The goal of this subsection is to prove the following
proposition:

Proposition 5.3. Let (φ, r,m) be a locally BV scattering solution to (SSESF) as in Definition 2.4. Assume
furthermore that, on the initial slice C1, we have λ(1, · )= 1

2 and

sup
C1

|∂v(rφ)| +Mi <∞.

Then there exist finite constants K , 3> 0 such that the following bounds hold for all (u, v) ∈Q:

3−1
≤ λ(u, v)≤ 1

2 , (5-5)

3−1
≤−ν(u, v)≤ K , (5-6)

1≤ (1−µ(u, v))−1
≤ K3, (5-7)

0<
−ν

1−µ(u, v)
≤ K . (5-8)

Moreover, there exists a finite constant 9 > 0 such that, for all (u, v) ∈Q, we have

|∂v(rφ)(u, v)| ≤9, (5-9)

|φ(u, v)| ≤39. (5-10)



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1627

Once we have this proposition, we will denote by 3, K and 9 the best constants such that (5-5)–(5-10)
hold.

By Lemma 4.2, we already know that λ > 0, −ν > 0 and (1−µ)−1 <∞. The first three bounds,
namely (5-5)–(5-7), ensure that these bounds concerning the geometry of the spacetime do not degenerate
anywhere, in particular along the axis 0. They will be very useful in the analysis that follows.

The proof of Proposition 5.3 will consist of several steps. We begin with elementary bounds for λ
and ν.

Lemma 5.4. Let (φ, r,m) be a BV solution to (SSESF) with Q=R. Then, for every (u, v) ∈Q, we have

λ(u, v)≤ λ(1, v), (5-11)

λ−1(u, v)≤ lim
u′→v−

λ−1(u′, v), (5-12)

ν(u, v)≤− lim
v′→u+

λ(u, v′). (5-13)

Proof. By (2-6), we have

λ(u, v)= λ(1, v) exp
(∫ u

1

(
2m

(1−µ)r2 ν

)
(u′, v) du′

)
,

λ−1(u, v)= lim
u′→v−

λ(u′, v)−1 exp
(∫ v

u

(
2m

(1−µ)r2 ν

)
(u′, v) du′

)
,

ν(u, v)= lim
v′→u+

ν(u, v′) exp
(∫ v

u

(
2m

(1−µ)r2λ

)
(u, v′) dv′

)
.

Since −ν, (1−µ) > 0 everywhere, (5-11) and (5-12) follow. Moreover, since

lim
v′→u+

ν(u, v′)=− lim
v′→u+

λ(u, v′),

and λ > 0 on Q, (5-13) follows as well. �

By Lemma 4.2, Q=R holds for a solution (SSESF) satisfying the hypotheses of Proposition 5.3. As
an immediate corollary, we have the following easy upper bound for λ:

Corollary 5.5. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
by the coordinate condition λ(1, v)= 1

2 and (5-11), we have

sup
Q
λ≤ 1

2 .

Next, we proceed to prove the lower bounds of (5-5) and (5-6). We begin with a technical lemma
concerning a large-r region, which will also be useful in our proof of (5-9) and (5-10).

Lemma 5.6. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
for arbitrarily small ε > 0, there exists r0 > 1 such that

sup
(u,v)∈{r≥r0}

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε. (5-14)
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Proof. For (u, v) ∈ {r ≥ r0}, we begin by simply estimating as follows:∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣≤ 2Mi

(1− 2Mi/r0)

(−ν)

r2

The above inequality holds as long as12 we choose r0 >max{2Mi , R}. Note that if (u, v) ∈ {r ≥ r0},
then the null curve {(u′, v) : u′ ∈ [1, u]} from the initial slice C1 to (u, v) lies entirely in {r ≥ r0}.
Integrating along this curve, we obtain for (u, v) ∈ {r ≥ r0}∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ <
2Mi

(1− 2Mi/r0)

1
r0

Taking r0 sufficiently large, (5-14) follows. �

Next, we prove an analogous result in a large-u region. Key to its proof will be the identity (5-16)
below, which will also be used to relate (5-14) and (5-15) to the desired lower bounds of λ and −ν.

Lemma 5.7. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
for arbitrarily small ε > 0, there exists U > 1 such that

sup
v≥U

∫ v

U

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε. (5-15)

Proof. Let ε > 0 be an arbitrary positive number. Using (2-6) and the fact that 1−µ > 0 and −ν > 0
on Q, we have, for any 1≤ u1 ≤ u2 < v,∫ u2

u1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ = log λ(u1, v)− log λ(u2, v). (5-16)

In order to prove (5-15), it therefore suffices to exhibit U > 1 such that

sup
(u,v),(u′,v′)∈{u≥U }

|log λ(u, v)− log λ(u′, v′)|< ε. (5-17)

In order to proceed, we divide Q into three regions: Qcpt := {r ≤ R}, Q[R,r0] := {R ≤ r ≤ r0} and
Q[r0,∞) := {r ≥ r0}, where r0 >max{2Mi , R} is chosen via Lemma 5.6 so that

sup
(u,v)∈Q[r0,∞)

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε

8
.

Using (5-16) and the fact that log λ(1, v)= 1
2 , the preceding inequality is equivalent to

sup
(u,v)∈Q[r0,∞)

∣∣log λ(u, v)− 1
2

∣∣< ε

8
. (5-18)

Next, we turn to the region Q[R,r0]; here we exploit the vanishing of the final Bondi mass. Indeed,
taking U1 large enough so that 2M(U1) < R, we may estimate∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣≤ 2M(U1)

(1− 2M(U1)/R)R2 (−ν) for u ≥U1.

12Indeed, it suffices to choose r0 > 2Mi here. The condition r0 > R will be used in the proof of Lemma 5.7.
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Consider now the timelike curve given by γ0 := {(u′, v′) : r(u′, v′) = r0}. On γ0 ∩ {(u, v) : u ≥ U1},
note that (5-18) holds. Integrating the preceding inequality along incoming null curves emanating from
γ0 ∩ {(u, v) : u ≥U1}, we obtain, for (u, v) ∈Q[R,r0] ∩ {(u, v) : u ≥U2},∣∣log λ(u, v)− 1

2

∣∣< ε

8
+

2M(U1)(r0− R)
(1− 2M(U1)/R)R2 ,

where U2 =U2(U1, r0) is the future endpoint of the incoming null curve in Q[R,r0] from the past endpoint
of γ0∩{(u, v) : u≥U1}; more precisely, U2= sup{u : r(u, V1)≥ R}, where V1 is defined by r(U1, V1)= r0.
Choosing U1 sufficiently large, we then obtain

sup
(u,v)∈Q[R,r0]∩{u≥U2}

∣∣log λ(u, v)− 1
2

∣∣< ε

4
. (5-19)

Finally, in Qcpt, we use the local BV scattering condition (2-12) to choose U ≥U2 large enough so
that we have

sup
(u,v),(u,v′)∈Qcpt∩{u≥U }

|log λ(u, v)− log λ(u, v′)|< ε

4
. (5-20)

To compare log λ(u, v) and log λ(u′, v′) with u 6= u′, we use (5-19), (5-20) and the triangle inequality.
Thus, the desired conclusion (5-17) follows. �

As a corollary of the preceding lemmas and (5-16) (or, more directly, (5-17) and (5-18)), we immediately
see that λ and −ν are uniformly bounded away from zero.

Corollary 5.8. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists 0<3<∞ such that, for all (u, v) ∈Q, we have

3−1
≤ λ(u, v) and 3−1

≤−ν(u, v).

Together with Corollary 5.5, this concludes the proof of (5-5). Next, using Lemmas 5.1, 5.6 and 5.7
and the wave equation (2-8) for φ, we prove (5-9) and (5-10) in the following lemma:

Lemma 5.9. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists a constant 0<9 <∞ such that

sup
Q
|∂v(rφ)| ≤9 and sup

Q
|φ| ≤39, (5-21)

where 3 is the best constant such that Corollary 5.8 holds.

Proof. Note that the second inequality of (5-21) is an immediate consequence of the first inequality,
Lemma 5.1 and Corollary 5.8. The proof of the first inequality will proceed in two steps: First, we shall
show that ∂v(rφ) is uniformly bounded on the large-r region, essentially via Lemma 5.6. By compactness,
it immediately follows that ∂v(rφ) is uniformly bounded on the finite-u region. Then in the second step,
we shall show that ∂v(rφ) is uniformly bounded on a large-u region as well using Lemma 5.7.

By Lemma 5.6, choose r0 > 0 so that

sup
(u,v)∈{r≥r0}

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < 1
103

. (5-22)
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We also borrow the notation Q[r0,∞) :={(u, v) :r(u, v)≥r0} from the proof of Lemma 5.7. Given U ≥1,
define 9[r0,∞)(U ) to be

9[r0,∞)(U ) := sup
(u,v)∈Q[r0,∞)∩{1≤u≤U }

|∂v(rφ)(u, v)|.

Let (u, v) ∈Q[r0,∞). Using (2-8), we then write

∂u∂v(rφ)=
µ

1−µ
ν

r

(
λ

r
(rφ− r0φr0)+

λ

r
r0φr0

)
.

Here, φr0(u, v) :=φ(u, v
?
0(u)), where v?0(u) is the unique v-value for which r(u, v?0(u))= r0. Note that

the outgoing null curve from (u, v?0(u)) to (u, v) ∈Q[r0,∞) lies entirely in Q[r0,∞). Thus, by Lemma 5.1
and (5-5), we see that, for (u, v) ∈Q[r0,∞) with 1≤ u ≤U ,

|∂u∂v(rφ)| ≤
∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣(r − r0

2r
39[r0,∞)(U )+

r0

2r
|φr0 |

)
≤

∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣(39[r0,∞)(U )+ |φr0 |).

Integrating this over the incoming null curve from (1, v) to (u, v) (which lies in Q[r0,∞) ∩ {1≤ u ≤U })
and using Lemma 5.6, we then obtain

9[r0,∞)(U )≤ sup
C1∩Q[r0,∞)

|∂v(rφ)| +
1

10
9[r0,∞)(U )+

1
103

sup
γ0∩{1≤u≤U }

|φ|,

where γ0 is the timelike curve {(u, v) : r(u, v)= r0}. Note that the first term on the right-hand side is finite
by the assumptions on the initial data, whereas the last term is finite for every 1≤U <∞ by compactness
of γ0 ∩ {(u, v) : 1≤ u ≤U } and continuity of φ. Then, by a simple continuity argument, it follows that
9[r0,∞)(U ) <∞ for every 1≤U <∞. Moreover, by compactness of {(u, v) : r(u, v)≤ r0, 1≤ u ≤U },
as well as the uniform BV assumption on ∂v(rφ), we also have

9[0,∞)(U ) := sup
(u,v)∈{1≤u≤U }

|∂v(rφ)(u, v)|<∞.

We now proceed to deal with the large-u region, namely {(u, v) : u ≥ U }. Using Lemma 5.7, we
choose U0 ≥ 1 sufficiently large that

sup
v≥U0

∫ v

U0

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < 1
103

. (5-23)

Proceeding, as before, via Lemma 5.1, we estimate, for (u, v) ∈ {(u, v) : u ≥U0},

|∂u∂v(rφ)(u, v)| ≤
∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣3 sup
v′∈[u,v]

|∂v(rφ)(u, v′)|.

Integrating along incoming null curves from CU0 , we see that

9[0,∞)(U )≤9[0,∞)(U0)+
1

109[0,∞)(U )

for any U ≥U0. Absorbing the second term on the right-hand side into the left-hand side and taking U→∞,
we obtain (5-21) with 9 ≤ 10

9 9[0,∞)(U0) <∞. �
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We are finally ready to conclude the proof of Proposition 5.3, by proving (5-8). Indeed, the upper
bounds in (5-6) and (5-7) would then follow immediately. Moreover, the lower bound in (5-7) is trivial,
as µ= 2m/r ≥ 0.

Lemma 5.10. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists a finite constant K > 0 such that, for all (u, v) ∈Q,

−ν

1−µ
(u, v)≤ K . (5-24)

Proof. To prove (5-24), we shall rely on the equation

∂v log
(
−ν

1−µ

)
= λ−1r(∂vφ)2, (5-25)

which may be easily derived from (2-6) and (2-7).
For (u, v) ∈Q, we begin by integrating (5-25) on the outgoing null curve from (u, u) ∈ 0 to (u, v),

which gives (
−ν

1−µ

)
(u, v)≤

(
lim
v′→u+

(
−ν

1−µ

)
(u, v′)

)
exp

(∫ v

u
λ−1r(∂vφ)2(u, v′) dv′

)
.

We claim that limv′→u+(−ν)(u, v′) = limv′→u+ λ(u, v′) ≤ 1
2 and limv′→u+ µ(u, v′) = 0. The first

assertion is obvious. To prove the second one, we first use (2-7) to write

m(u, v)≤ 1
2

(
sup

v′∈[u,v]
|r2∂vφ|(u, v′)

) ∫ v

u
|∂vφ(u, v′)| dv′.

Now observe that supv′∈[u,v]|r
2∂vφ|(u, v′)≤ Cr(u, v) supv′∈[u,v]|∂v(rφ)| and the remaining integral goes

to 0 as v→ u+, since φ is assumed to be absolutely continuous on Cu near the axis by Definition 2.1.
By the above claim, we have(

−ν

1−µ

)
(u, v)≤ 1

2 exp
(∫ v

u
λ−1r(∂vφ)2(u, v′) dv′

)
.

The lemma would therefore follow if we could prove

sup
(u,v)∈Q

∫ v

u
λ−1r(∂vφ)2(u, v′) dv′ <∞.

To achieve this, we shall divide the integral into two parts, one in Qcpt and the other in its com-
plement Qc

cpt. Indeed, defining v?(u) to be the unique v-value such that r(u, v?(u)) = R, we split the
integral into

∫ v?(u)
u and

∫ v
v?(u). If v < v?(u), the latter integral will be taken to be zero.

For the first integral, let us begin by pulling out λ−1r∂vφ from the integral. Using the identity
λ−1r∂vφ = λ−1∂v(rφ)−φ, we have∫ v?(u)

u
λ−1r(∂vφ)2(u, v′) dv′ ≤ sup

v′∈[u,v?(u)]

(
λ−1
|∂v(rφ)|(u, v′)+ |φ|(u, v′)

) ∫ v?(u)

u
|∂vφ(u, v′)| dv′.
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Then, by Lemmas 5.2 and 5.9 and the local BV scattering assumption, the right-hand side is uniformly
bounded in u from above, as desired. For the second integral, note that, by Lemma 4.6 and Corollary 5.8,
we have

(1−µ)−1(u, v)≤3
λ

1−µ
(u, v)≤ 1

23 sup
C1

(1−µ)−1.

Notice that the quantity supC1
(1−µ)−1 for the initial data is finite, since 1−µ > 0 everywhere and

1−µ(1, v)→ 1 as v→∞. Moreover, for v ≥ v?(u), we have r(u, v)≥ R. Therefore, in view of (2-7),
we may estimate∫ v

v?(u)
λ−1r(∂vφ)2 dv′ ≤

3

R
sup
C1

(1−µ)−1
∫ v

v?(u)

1
2λ
−1(1−µ)r2(∂vφ)

2(u, v′) dv′

≤
3

R
sup
C1

(1−µ)−1(m(u, v)−m(u, v?(u))
)

≤ C3,R,Mi ,supC1
(1−µ)−1 <∞,

from which the lemma follows. �

We conclude this subsection with a pair of identities which are useful for estimating
∫
|∂uλ| du and∫

|∂vν| dv in terms of information on φ.

Lemma 5.11. From (SSESF), the following identities hold:∫ v

u

µ

1−µ
λ

r
(u, v′) dv′ = log(1−µ)(u, v)+

∫ v

u
λ−1r(∂vφ)2(u, v′) dv′, (5-26)∫ v

u

µ

1−µ
(−ν)

r
(u′, v) du′ = log(1−µ)(u, v)+

∫ v

u
(−ν)−1r(∂uφ)

2(u′, v) du′. (5-27)

Proof. We shall prove (5-26), leaving the similar proof of (5-27) to the reader. From the proof of
Lemma 5.4, we have ∫ v

u

µ

1−µ
λ

r
(u, v′)= log

ν(u, v)
limv′→u+ ν(u, v′)

.

Comparing with the integral of (5-25), along with the fact that limv′→u+(1−µ)(u, v′)= 1, we arrive
at (5-26). �

5C. Normalization of the coordinate system. In Section 2D, the coordinates are normalized so that λ is
constant on the initial hypersurface {u = 1}. Alternatively, one can introduce a new coordinate system
(u∞, v∞) which is normalized at future null infinity by requiring that ν∞→−1

2 along each outgoing
null curve towards null infinity and require, as before, that 0 = {(u, v) : u = v}. We will show that the
coordinate functions u and u∞ are comparable and thus the main theorem on the decay rates can also be
stated in this alternatively normalized coordinate system.

We can explicitly compute the coordinate change, which is given by

du∞
du

(u)=−2 lim
v→∞

ν(u, v), u∞(1)= 1 and v∞(v)= u∞(v).
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Notice that the limit limv→∞ ν(u, v) is well-defined due to the monotonicity of ν, and

u∞(u)=−2
∫ u

1

(
lim
v→∞

ν(u′, v)
)

du′+ 1.

By Proposition 5.3, the following estimate holds:

2(3)−1(u− 1)≤ u∞− 1≤ 2K (u− 1).

5D. Consequence of local BV scattering. In this subsection, we give some estimates for ∂2
u (rφ), ∂uφ

and ∂uν that follow from the local BV scattering assumption. To this end, we will need the analysis for
solutions to (SSESF) with small bounded variation norm in [Christodoulou 1993], in particular:

Theorem 5.12 [Christodoulou 1993, Theorem 6.2]. There exist universal constants ε0 and C0 such that,
for ε < ε0, if λ(1, · )= 1

2 and ∂v(rφ)(1, · ) is of bounded variation with∫
C1

|∂2
v (rφ)|< ε, (5-28)

then its maximal development (φ, r,m) satisfies condition (1) in Definition 2.4 and obeys

1
3 ≤ λ≤

1
2 ,

1
3 ≤−ν ≤

2
3 ,

2
3 ≤ 1−µ≤ 1, (5-29)

sup
u≥1

∫
Cu

(
|∂v(λ

−1∂v(rφ))| + |∂vφ| + |∂v log λ|
)
< C0ε, (5-30)

sup
v≥1

∫
Cv

(
|∂u(ν

−1∂u(rφ))| + |∂uφ| + |∂u log ν|
)
< C0ε. (5-31)

Remark 5.13. In [Christodoulou 1993], it is implicitly assumed13 that φ(1, 1)= 0. Note, however, that
the bounds in the above theorem are stated in such a way that they are invariant under the transform
(φ, r,m) 7→ (φ+c, r,m), under which (SSESF) is also invariant. Any solution may then be transformed to
satisfy φ(1, 1)= 0. As a consequence, we do not need to check φ(1, 1)= 0 in order to apply the theorem.

Using Theorem 5.12, we prove the following bound for locally BV scattering solutions to (SSESF):

Theorem 5.14. Let (φ, r,m) be a locally BV scattering solution to (SSESF). For every ε > 0, there exists
u0 > 1 such that the following estimate holds:

sup
v∈[u0,∞)

(∫
Cv∩{u≥u0}∩Qcpt

|∂2
u (rφ)| +

∫
Cv∩{u≥u0}∩Qcpt

|∂uφ| +

∫
Cv∩{u≥u0}∩Qcpt

|∂u log ν|
)
< ε.

Moreover, we have

sup
Q
|∂u(rφ)| ≤ CK ,39. (5-32)

13In [Christodoulou 1993], the intersection between 0 and the initial outgoing null curve is called (0, 0), as opposed to our
convention (1, 1).
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Proof. We first show that, for a locally BV scattering solution to (SSESF),∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| → 0 as u→∞.

Expanding this expression, we have∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| ≤

∫
Cu∩Qcpt

λ−1(
|∂2
v (rφ)| + |(∂v log λ)∂v(rφ)|

)
.

By (5-5) and (5-9), we have∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| ≤ C3,9

∫
Cu∩Qcpt

|∂2
v (rφ)| + |∂v log λ|,

which, by (2-12) in Definition 2.4, tends to 0 as u→∞. Notice that the quantity
∫

Cu∩Qcpt
|∂v(λ

−1∂v(rφ))|
which we have controlled is invariant under any rescaling of the coordinate v and also under the transform
(φ, r,m) 7→ (φ+ c, r,m).

We now proceed to the proof of the theorem. Let v0 be sufficiently large and u?(v0) be the unique
r(u?(v0), v0)= R. By the finite speed of propagation of the equations, the solution on Cv0 ∩Qcpt depends
only on the data on Cu?(v0) ∩Qcpt.

In order to apply Theorem 5.12, we change coordinates (u, v) 7→ (U (u), V (v)) in the region bounded
by Cu?(v0) and Cv0 to a new double null coordinate (U, V ) such that, for U ?

= U (u?(v0)), we have
λ(U ?, V )= 1

2 . To this end, define V (v) by

dV
dv
= 2λ(u?(v0), v), V (v0)= v0.

Notice that this is acceptable since λ > 0. In order for the condition U = V to hold on 0, we require
U (u)= V (u). Then, with respect to the coordinate V ,

∂V r(U ?, V )= 1
2
.

By (5-5), we have

3−1
≤

dV
dv
,

dU
du
≤

1
2
.

Moreover, ∫ v0

u?(v0)

∣∣∣∣d2V
dv2 (v

′)

∣∣∣∣ dv′ ≤ 2
∫ v0

u?(v0)

|∂vλ(u?(v0), v
′)| dv′,

which tends to 0 as v0→∞ by the assumption of local BV scattering. For v0 sufficiently large, in the
(U, V ) coordinate system,

∫
Cu?(v0)∩Qcpt

|∂V ((∂V r)−1∂V (rφ))| dV is small and ∂V r = 1
2 . The data satisfy
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the assumptions of Theorem 5.12 and therefore14∫
Cv0∩Qcpt

(
|∂U ((∂Ur)−1∂U (rφ))| + |∂Uφ| + |∂U log ∂Ur |

)
dU → 0

as v0→∞. Returning to the original coordinate system (u, v), the first statement easily follows.
Finally, for the L∞ estimate for ∂u(rφ), notice that |∂u(rφ)| ≤ 9 at the axis by (5-9) and (7) of

Definition 2.1. Using (2-8′′), (2-6) (in particular, the fact that ∂vν ≤ 0), (5-10) and (5-6), we have

|∂u(rφ)(u, v)| ≤9 +39
∫ v

u
(−∂vν) dv′ ≤ CK ,39. �

6. Decay of φ and its first derivatives

In this section, we prove the first main theorem (Theorem 3.1). Throughout this section, we assume that
(φ, r,m) is a locally BV scattering solution to (SSESF) with asymptotically flat initial data of order ω′

in BV, as in Definitions 2.4 and 2.9. Let ω =min{ω′, 3}.

6A. Preparatory lemmas. The following lemma will play a key role in the proof of both Theorems 3.1
and 3.2. It is a consequence of the scattering assumption (2-12) and vanishing of the final Bondi mass.

Lemma 6.1. Let ε > 0 be an arbitrary positive number. For u1 > 1 sufficiently large, we have

sup
v∈[u1,∞)

∫
Cv∩{u≥u1}

∣∣∣∣ 2mν
(1−µ)r2

∣∣∣∣< ε, (6-1)

sup
u∈[u1,∞)

∫
Cu

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣< ε. (6-2)

Proof. The first statement, (6-1), was proved in Lemma 5.7; thus it only remains to prove (6-2).
Divide Q into Qcpt =Q∩ {r ≤ R} and Qc

cpt :=Q \Qcpt. First, note that by (2-12) we have

sup
u∈[u1,∞)

∫
Cu∩Qcpt

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣< ε

2

for u1 sufficiently large. Next, we consider Qc
cpt. Define v?(u) := sup{v ∈ [u,∞) : r(u, v) ≥ R}; note

that r(u, v?(u))= R by continuity. We now compute∫
Cu∩Qc

cpt

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣= ∫ ∞
v?(u)

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′ ≤ 2K3M(u1)

∫
∞

v?(u)

λ

r2 (u, v
′) dv′ ≤ 2R−1K3M(u1)

uniformly in u ≥ u1. As limu1→∞ M(u1) = 0 by (2-11), the last line can be made arbitrarily small by
taking u1 sufficiently large. This proves (6-2). �

The following lemma allows us to estimate φ in terms of |∂v(rφ)|.

14More precisely, we apply Theorem 5.12 to the truncated initial data

∂V (r φ̃)(U
?, V )=

{
∂V (rφ)(U?, V ) for V < v0,

∂V (rφ)(U?, v0) for V ≥ v0.
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Lemma 6.2. The following estimates hold:

|φ|(u, v)≤3 sup
Cu

|∂v(rφ)| and ruω−1
|φ|(u, v)≤ C3

(
sup
Cu

uω|∂v(rφ)| + sup
Cu

rω|∂v(rφ)|
)
.

Proof. The first estimate follows from Lemma 5.1 and Proposition 5.3. The second estimate is a
consequence of the first when r(u, v)≤ u, so it suffices to assume r(u, v)≥ u. Introducing a parameter
v1 ∈ [u, v], we estimate

ruω−1
|φ|(u, v)≤ uω−1

∫ v

u
|∂v(rφ)(u, v′)| dv′

≤3uω−1(sup
Cu

|∂v(rφ)|
) ∫ v1

u
λ(u, v′) dv′+3uω−1(sup

Cu

rω|∂v(rφ)|
) ∫ v

v1

λ

rω
(u, v′) dv′

≤3

(
r(u, v1)

u

)
sup
Cu

uω|∂v(rφ)| +
3

ω− 1
uω−1

r(u, v1)ω−1 sup
Cu

rω|∂v(rφ)|.

Choosing v1 so that r(u, v1)= u (which is possible since r(u, v)≥ u), the desired estimate follows. �

6B. Preliminary r-decay for φ. In this subsection, we derive bounds for φ which are sharp in terms of
r -weights. As a consequence, they give sharp decay rates towards null infinity.

Lemma 6.3. There exists a constant 0< H1 <∞ such that

sup
Q
(1+ r)|φ| ≤ H1. (6-3)

Proof. Let r1 > 0 be a large number, to be chosen below. Different arguments will be used in {r ≥ r1}

and {r ≤ r1}. For each u ≥ 1, let v?1(u) be the unique v-value for which r(u, v?1(u)) = r1. By the
fundamental theorem of calculus, we have

rφ = r1φ(u, v?1(u))+
∫ v

v?1(u)
∂v(rφ)(u, v′) dv′. (6-4)

Integrate (2-8) along the incoming direction from (1, v) to (u, v). By Corollary 4.4 and Proposition 5.3,
we have

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλν
(1−µ)r3 (rφ)(u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K3Mi

2
1

r2(u, v)
sup

u′∈[1,u]
|rφ(u′, v)|.

Substituting the preceding bound into (6-4), we obtain

sup
Cu∩{r≥r1}

|rφ| ≤ |r1φ(u, v?1(u))| +
∫ v

v?1(u)
|∂v(rφ)(1, v′)| dv′+

K32 Mi

2r1
sup

u′∈[1,u]
supCu′∩{r≥r1}|rφ|. (6-5)

The first term on the right-hand side is bounded by r139, by (5-10), whereas the second term depends
only on the initial data and can be estimated in terms of I1 as follows:∫ v

v?1(u)
|∂v(rφ)(1, v′)| dv′ ≤3I1

∫
∞

1
(1+ r(1, v′))−ω

′

λ(1, v′) dv′ ≤
3

ω′− 1
I1.
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Moreover, choosing r1 to be large enough that

K32 Mi

2r1
≤

1
2
,

the last term of (6-5) can be absorbed in to the left-hand side and we conclude

sup
{r≥r1}

|rφ| ≤ 2r139 +
2

ω′− 1
3I1.

On the other hand, in {r ≤ r1} we have

sup
{r≤r1}

|rφ| ≤ r139

by (5-10). Combining the bounds in {r ≥ r1} and {r ≤ r1}, the lemma follows. �

Remark 6.4. The preceding argument shows that Lemma 6.3 holds with15

H1 ≤ CI1,K ,3 (I1+9). (6-6)

6C. Propagation of u-decay for ∂u(rφ). Here, we show that u-decay estimates proved for ∂v(rφ) and φ
may be “transferred” to ∂u(rφ); this reduces the proof of Theorem 3.1 to showing only (3-1) and (3-2).
To this end, we integrate ∂v∂u(rφ) from the axis 0, along which ∂u(rφ)=−∂v(rφ).

Lemma 6.5. Suppose that there exists a finite positive constant A such that

sup
Q
|φ| ≤ Au−ω and sup

Q
|∂v(rφ)| ≤ Au−ω.

Then
sup
Q
|∂u(rφ)| ≤ (1+ K )Au−ω.

Proof. Fix u ≥ 1 and v ≥ u. Integrate (2-8′′) along the outgoing direction from (u, u) to (u, v) and take
the absolute value. Using (7) of Definition 2.1, (2-6) (in particular, ∂vν ≤ 0), (5-6) and the hypotheses,
we have

|∂u(rφ)(u, v)| ≤ lim
v′→u+

|∂v(rφ)(u, v′)| + sup
u≤v′≤v

|φ(u, v′)|
∫ v

u
(−∂vν) dv′ ≤ Au−ω+ K Au−ω. �

6D. Full decay for φ and ∂v(rφ). In this subsection, we finish the proof of Theorem 3.1. By Lemma 6.5,
it suffices to establish the full decay of φ and ∂v(rφ), i.e., (3-1) and (3-2). For the convenience of the
reader, we recall these estimates:

|φ| ≤ A min{u−ω, r−1u−(ω−1)
} and |∂v(rφ)| ≤ A min{u−ω, r−ω}.

For U > 1, let
B1(U ) := sup

u∈[1,U ]
sup
Cu

(uω|φ| + ruω−1
|φ|).

15Notice that, while the constant CI1,K ,3 depends on I1, the preceding argument moreover allows us to choose CI1,K ,3 to
be nondecreasing in I1. In particular, for I1 sufficiently small, we have H1 ≤ CK ,3 (I1+9). It is for this reason that we prefer
to write the expression CI1,K ,3 (I1+9) instead of the more general CI1,K ,3,9 .
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Notice that this is finite for every fixed U , by Lemma 6.3. To establish the decay estimate (3-1), it
suffices to prove that B1(U ) is bounded by a finite constant which is independent of U . We will show
that this also implies (3-2). Divide Q into Qext ∪Qint, defined by

Qext := {(u, v) ∈Q : v ≥ 3u}, Qint := {(u, v) ∈Q : v ≤ 3u}.

We first establish a bound for ∂v(rφ) with the sharp r-weight, which thus gives the sharp decay rate
in Qext.

Lemma 6.6. Let u1 > 1. Then, for u1 ≤ u ≤U ,

sup
Cu

rω|∂v(rφ)| ≤ I1+CK ,Mi u1 H1+Cu−1
1 K Mi B1(U ). (6-7)

Proof. We separate the proof into cases ω ≥ 2 and 1< ω ≤ 2.

Case 1: ω ≥ 2. First, notice that

|φ| ≤ B1(U )(r−1u−(ω−1))ω−2(u−ω)1−(ω−2)
≤ B1(U )r−(ω−2)u−2.

Applying Lemma 6.3, we also have
|φ| ≤ (1+ r)−1 H1.

By Corollary 4.4 and Proposition 5.3, we have the following pointwise bounds:

sup
u′∈[1,u1]

∣∣∣∣ mλν
1−µ

∣∣∣∣≤ K Mi

2
, sup

u′∈[u1,∞)

∣∣∣∣ mλν
1−µ

∣∣∣∣≤ K M(u1)

2
.

Therefore, integrating (2-8) along the incoming direction from (1, v) to (u, v), we have

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλνφ
(1−µ)r2 (u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K Mi

r2(u, v)(1+ r(u, v))
H1

∫ u1

1
du′+

K M(u1)

rω(u, v)
B1(U )

∫ u

u1

(u′)−2 du′

≤ |∂v(rφ)(1, v)| +
u1K Mi

r2(u, v)(1+ r(u, v))
H1+

K M(u1)

u1rω(u, v)
B1(U ).

Multiplying both sides by rω(u, v) and using the fact that r(u, v)≤ r(1, v), we conclude

rω|∂v(rφ)|(u, v)≤ rω|∂v(rφ)|(1, v)+ u1
rω−2

1+ r
K Mi H1+ u−1

1 K M(u1)B1(U )

≤ I1+Cu1,K ,Mi H1+ u−1
1 K Mi B1(U ).

Case 2: 1< ω ≤ 2. We will use the following bounds for φ. First,

|φ| ≤ B1(U )(r−1u−(ω−1))ω−1(u−ω)(2−ω) ≤ B1(U )r−(ω−1)u−1.

Also, Lemma 6.3 implies
|φ| ≤ (1+ r)−1 H1.
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As in Case 1 we integrate (2-8) along the incoming direction from (1, v) to (u, v):

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλνφ
(1−µ)r2 (u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K3Mi H1

1+ r

∫ u1

1

−ν

r2 du′+
K3M(u1)

u1
B1(U )

∫ u

u1

−ν

rω+1 du′

≤ |∂v(rφ)(1, v)| +
ωK3Mi

r(u, v)(1+ r(u, v))
H1+

ωK3M(u1)

u1rω(u, v)
B1(U ).

Multiply both sides by rω to arrive at the conclusion, as in Case 1. In this case, note that the second
term is a bit better than what is claimed, as there is no dependence on u1 ≥ 1. �

Remark 6.7. The proof of this lemma requires ω ≤ 3. More precisely, this limitation comes from the
contribution of the right-hand side of (2-8)

We are now ready to prove the bounds (3-1) and (3-2). The idea is to “propagate” the exterior decay
estimate (6-7) into Qint to obtain decay in u, using the smallness coming from Lemma 6.1 in the region
where u is sufficiently large. On the other hand, the preliminary r -decay estimates proved in Section 6B
will give the desired r -decay rates in rest of the space-time.

Proof of (3-1) and (3-2). Let 1 ≤ u1 ≤ U . For (u, v) ∈ Q with u ∈ [3u1,U ], integrate (2-8) along the
incoming direction from (u/3, v) to (u, v). Then

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(u/3, v)| + 1
2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′. (6-8)

Multiply both sides by uω and estimate each term on the right-hand side. For the first term, the key
observation is the following: for v ≥ u, the point

( 1
3 u, v

)
lies in Qext, where (6-7) is effective. Indeed,

note that (2
33
)
u ≤3−1(v− ( 1

3 u
))
≤ r

( 1
3 u, v

)
.

Thus, by (6-7),

uω
∣∣∂v(rφ)( 1

3 u, v
)∣∣≤ ( 3

23
)ω(rω( 1

3 u, v
)∣∣∂v(rφ)(1

3 u, v
)∣∣)

≤
( 3

23
)ω(I1+Cu1,K ,Mi H1+Cu−1

1 K MiB1(U )
)

≤ Cu1,K ,3,Mi (I1+ H1)+CK ,3Mi u−1
1 B1(U ).

For the second term on the right-hand side of (6-8), we have

uω

2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′ ≤
3ω

2

(∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ).

Combining these estimates, we deduce

sup
Cu

uω|∂v(rφ)(u, v)|

≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ). (6-9)
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Recalling the bounds of φ in terms of ∂v(rφ) in Lemma 6.2, we have

B1(U )≤ (1+ 23) sup
u∈[1,U ]

sup
Cu

(
uω|∂v(rφ)| + rω|∂v(rφ)|

)
.

The right-hand side can be controlled by (6-9) and (6-7), from which we conclude

B1(U )≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ). (6-10)

As a consequence of Lemma 6.1, the entire coefficient in front of B1(U ) can made to be smaller than
(say) 1

2 by taking u1 sufficiently large. Since B1(U ) <∞, we can then absorb this term into the left-hand
side. Observing that this bound is independent of U > 1, we have thus obtained (3-1).

To prove (3-2), simply apply (6-9) and (6-7), which shows that

sup
u∈[1,U ]

sup
Cu

(
uω|∂v(rφ)| + rω|∂v(rφ)|

)
≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ).

This boundedness of B1(U ) that we just proved thus implies (3-2). �

Remark 6.8. According to the proof that we have just given, the constant A1 > 0 depends on our
choice of u1 > 1, which in turn depends on how fast the coefficient in front of B1(U ) in (6-10) vanishes
as u1→∞. This explains why A1 > 0 does not depend only on the size of the initial data, as remarked
in Section 3. Controlling the size of u1 > 1 under an additional small data assumption will be key to
proving (1) of Theorem 3.15 in Section 9.

6E. Additional decay estimates. We end this section with the following decay estimates for ∂vφ, ∂uφ

and m.

Corollary 6.9. Let (φ, r,m) be a locally BV scattering solution to (SSESF) with asymptotically flat initial
data of order ω′ in BV , and define ω = min{ω′, 3}. Let A1 be the constant in Theorem 3.1. Then the
following decay estimates hold:

|∂vφ| ≤ C A1 min{r−1u−ω, r−2u−(ω−1)
}, (6-11)

|∂uφ| ≤ CK A1 r−1u−ω, (6-12)

m ≤ C3A2
1 min{ru−2ω, u−(2ω−1)

}. (6-13)

Proof. Let u ≥ 1 and v ≥ u. Since

r∂vφ = ∂v(rφ)− λφ, r∂uφ = ∂u(rφ)− νφ,

the estimates (6-11) and (6-12) follow from (3-1)–(3-3) and the fact that supQ|λ| ≤
1
2 , supQ|ν| ≤ K .

On the other hand, by (2-7), we have

m(u, v)= 1
2

∫ v

u
λ−1(1−µ)r2(∂vφ)

2(u, v′) dv′. (6-14)
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Using |∂vφ(u, v)| ≤ C A1r−1u−ω (which has just been established), we obtain

m(u, v)≤ C3A2
1 ru−2ω,

which proves a “half” of (6-13). To prove the other “half”, let us introduce a parameter r1 > 0 (to be
determined later) and define v?1(u) to be the unique v-value such that r(u, v?1(u)) = r1. For v ≥ v?1(u),
split the v′-integral in (6-14) into

∫ v?1(u)
u +

∫ v
v?1(u)

and use |∂vφ(u, v)| ≤ C A1 r−1u−ω for the former and
|∂vφ(u, v)| ≤ C A1 r−2u−(ω−1) for the latter. As m(u, v) is nondecreasing in v, we then arrive at the
estimate

sup
Cu

m ≤ C3A2
1 r1u−2ω

+C3A2
1 r−1

1 u−2(ω−1).

Choosing r1 = u, we obtain (6-13). �

7. Decay of second derivatives

In this section, we establish our second main theorem (Theorem 3.2). Throughout the section, we assume
that (φ, r,m) is a locally BV scattering solution to (SSESF) with asymptotically flat initial data of
order ω′ in C1, as in Definitions 2.4 and 2.9. As discussed in Remark 2.3, (φ, r,m) is then a C1 solution
to (SSESF). As before, let ω =min{ω′, 3}.

7A. Preparatory lemmas. The following lemma, along with Lemma 6.1, provides the crucial smallness
for our proof of Theorem 3.2.

Lemma 7.1. For every ε > 0, there exists u2 > 1 such that

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

|∂uφ|< ε, (7-1)

sup
u∈[u2,∞)

∫
Cu

|∂vφ|< ε. (7-2)

Proof. We will only prove (7-1), leaving the similar proof of (7-2) to the reader. As in the proof of
Lemma 6.1, we divide Q into Qcpt :=Q∩ {r ≤ R} and Qc

cpt :=Q \Qcpt, and argue separately. First, by
Theorem 5.14, we have

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}∩Qcpt

|∂uφ|<
ε

2

for u2 sufficiently large. Next, to derive (7-1) in Qc
cpt, we define u?(v) := sup{u ∈ [u2, v] : r(u, v)≥ R},

where we use the convention u?(v)= u2 when the set is empty. Then, using Proposition 5.3 and Schwarz,
we compute∫

Cv∩{u≥u2}∩Qc
cpt

|∂uφ| =

∫ u?(v)

u2

|∂uφ(u′, v)| du′ ≤

√
2K3

R

√∫ u?(v)

u2

1
2(−ν)

−1(1−µ)r2(∂uφ)2(u′, v) du′

≤

√
2K3

R
m(u2, v)≤

√
2K3

R
M(u2).
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By (2-11), limu2→∞ M(u2)= 0, and (7-1) thus follows. �

The next lemma allows us to estimate the first derivative of φ at (u, v) in terms of information on
Cu ∩ {(u, v′) : u ≤ v′ ≤ v}.

Lemma 7.2. For every (u, v) ∈Q, the following inequalities hold:

|∂vφ(u, v)| ≤ 1
43

2 sup
u≤v′≤v

|∂2
v (rφ)(u, v

′)| + 1
43

3 sup
u≤v′≤v

|∂v(rφ)(u, v′)| sup
u≤v′≤v

|∂vλ(u, v′)|,

|∂uφ(u, v)| ≤3 sup
u≤v′≤v

(−ν)(u, v′)|∂vφ(u, v′)|.

Proof. The first is an easy consequence of (5-4) in Section 5A. To prove the second inequality, we start
from the equation

∂v(r∂uφ)=−ν∂vφ,

which follows from (2-6) and (2-8). Therefore, we have

|∂uφ(u, v)| ≤
1

r(u, v)

∫ v

u
(−ν)|∂vφ|(u, v′) dv′,

from which the second inequality easily follows. �

In the next lemma, we show that improved estimates for m near 0 hold if we assume an L∞ control
of ∂vφ.

Lemma 7.3. For every (u, v) ∈Q, the following inequalities hold:

µ

r
(u, v)≤32 sup

u≤v′≤v
|∂v(rφ)(u, v′)| sup

u≤v′≤v
|∂vφ(u, v′)|, (7-3)

µ

r2 (u, v)≤
1
33

2 sup
u≤v′≤v

|∂vφ(u, v′)|2. (7-4)

Proof. Recall µ= 2m/r . By (2-7), we have

2m(u, v)=
∫ v

u
(1−µ)λ−1r2(∂vφ)

2(u, v′) dv′.

Pulling everything except r2λ outside the integral and using
∫ v

u r2λ(u, v′) dv′ = 1
3r3(u, v), we ob-

tain (7-4). On the other hand, using λ−1r∂vφ = λ−1∂v(rφ)− φ and
∫ v

u rλ(u, v′) dv′ = 1
2r2(u, v), we

easily deduce
µ

r
(u, v)≤ 1

2 sup
u≤v′≤v

(
32
|∂v(rφ)(u, v′)| +3|φ(u, v′)|

)
|∂vφ(u, v′)|.

From the fact that |φ(u, v)| ≤3 supu≤v′≤v|∂v(rφ)(u, v
′)|, (7-3) easily follows. �



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1643

7B. Preliminary r-decay for ∂2
v (rφ) and ∂vλ. In this subsection, we establish decay estimates for ∂2

v (rφ)
and ∂vλ which are sharp in terms of r -weights in the region Qext. We remind the reader the decomposition
Q=Qext ∪Qint, where

Qext = {(u, v) ∈Q : v ≥ 3u}, Qint = {(u, v) ∈Q : v ≤ 3u}.

In particular, note that r ≥ 23−1u > 0 in Qext.

Lemma 7.4. The following estimates hold:

sup
Qext

r3
|∂vλ| ≤ CK ,3A2

1, (7-5)

sup
Qext

rω+1
|∂2
v (rφ)| ≤ CI2+CK ,3,Mi A3

1. (7-6)

Proof. We begin by proving (7-5). Recall (4-6):

∂u∂v log λ=
1

1−µ
λ−1ν(∂vφ)

2
−

4m
(1−µ)r3λν.

Note that ∂v log λ= 0 on C1 by our choice of coordinates. Therefore, integrating the preceding equation
along the incoming direction from (1, v) to (u, v), we have

|∂v log λ(u, v)| ≤
∫ u

1

∣∣∣∣ 1
1−µ

λ−1ν(∂vφ)
2(u′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ 4m
(1−µ)r3λν(u

′, v)

∣∣∣∣ du′.

Then (7-5) follows using Proposition 5.3, (6-11) and (6-13). We remark that the power of r is dictated
by the second integral.

The proof of (7-6) is very similar. We start by recalling (4-2):

∂u(∂
2
v (rφ))=

2mλν
(1−µ)r2 ∂vφ+

ν

1−µ
(∂vφ)

2φ+
2mν

(1−µ)r2 (∂vλ)φ−
4m

(1−µ)r3λ
2νφ.

For u ≥ 1, we have r(u, v) ≤ r(1, v); moreover, by hypothesis, we have the estimate for the initial
data term

(1+ r(1, v))ω
′
+1
|∂2
v (rφ)(1, v)| ≤ I2.

Therefore, by the fundamental theorem of calculus, it suffices to bound∫ u

1

∣∣∣∣ 2mλν
(1−µ)r2 ∂vφ(u

′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ ν

1−µ
(∂vφ)

2φ(u′, v)
∣∣∣∣ du′

+

∫ u

1

∣∣∣∣ 2mν
(1−µ)r2 (∂vλ)φ(u

′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ 4m
(1−µ)r3λ

2νφ(u′, v)
∣∣∣∣ du′

by CK ,3,Mi A3
1r−(ω+1). This is an easy consequence of Proposition 5.3, (3-1), (6-11), (6-13) and also (7-5),

which has just been established. Note that the last term is what limits ω ≤ 3. �
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7C. Propagation of u-decay for ∂2
u(rφ) and ∂uν. Here, we show that certain u-decay for ∂2

u (rφ) and ∂uν

proved in Qint can be propagated to Q. The technique employed is very similar to that in the previous
subsection.

Lemma 7.5. For U ≥ 1, suppose that there exist finite positive constants A, k1 and k2 such that

0≤ k1 ≤ 2ω+ 1, 0≤ k2 ≤ 3ω+ 1

and, for u ∈ [1,U ], we have

sup
Cu∩Qint

uk1 |∂uν| ≤ A and sup
Cu∩Qint

uk2 |∂2
u (rφ)| ≤ A.

Then for u ∈ [1,U ], the following estimates hold:

sup
Cu

uk1 |∂uν| ≤ CK ,3A+CK ,3A2
1, (7-7)

sup
Cu

uk2 |∂2
u (rφ)| ≤ A+CK ,3A3

1+CK ,3A3
1 sup

Cu

u|∂uν|. (7-8)

Furthermore, the following alternative to (7-8) also holds:

sup
Cu

uk2 |∂2
u (rφ)| ≤ A+CK ,3A3

1+CK ,39

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′ · sup
Cu

uk2 |∂uν|. (7-9)

Proof. Let us begin with (7-7). Recall (4-7):

∂v∂u log ν =
1

1−µ
λν−1(∂uφ)

2
−

4m
(1−µ)r3λν.

Given (u, v) ∈Qext (with u ∈ [1,U ]), let us integrate this equation along the outgoing direction from
(u, 3u) to (u, v), take the absolute value and multiply by uk1 . Using the hypothesis

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uk1 |∂uν| ≤ A,

(7-7) is reduced to showing

uk1

∫
∞

3u

∣∣∣∣ 1
1−µ

λν−1(∂uφ)
2(u, v)

∣∣∣∣ dv ≤ CK ,3A2
1, (7-10)

uk1

∫
∞

3u

∣∣∣∣ 4m
(1−µ)r3λν(u, v)

∣∣∣∣ dv ≤ CK ,3A2
1, (7-11)

for u ∈ [1,U ].
Using Proposition 5.3 and (6-12), the left-hand side of (7-10) is bounded by

CK ,3A2
1 uk1−2ω

∫
∞

3u

1
r2λ dv ≤ CK ,3A2

1 uk1−2ωr−1(u, 3u).

As u ≥ 1 and r(u, 3u) ≥ 23−1u, (7-10) follows. Similarly, by (5-7) and (6-13), the left-hand side
of (7-11) is also bounded by‘CK ,3A2

1 uk1−2ωr−1(u, 3u), from which (7-11) immediately follows.
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Next, we turn to (7-8) and (7-9); as they are proved similarly to before, we will only outline the main
points. Recall (4-4):

∂v(∂
2
u (rφ))=

2mλν
(1−µ)r2 ∂uφ+

λ

1−µ
(∂uφ)

2φ+
2mλ

(1−µ)r2 (∂uν)φ−
4m

(1−µ)r3λν
2φ.

Fix (u, v)∈Qext with u ∈ [1,U ]. We then integrate the preceding equation along the outgoing direction
from (u, 3u) to (u, v), take the absolute value and multiply by uk2 . In order to prove (7-8), in view of the
hypothesis

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uk2 |∂2
u (rφ)| ≤ A,

it suffices to establish the following estimates for u ∈ [1,U ]:

uk2

∫
∞

3u

∣∣∣∣ 2mλν
(1−µ)r2 ∂uφ(u, v)

∣∣∣∣ dv ≤ CK ,3A3
1,

uk2

∫
∞

3u

∣∣∣∣ λ

1−µ
(∂uφ)

2φ(u, v)
∣∣∣∣ dv ≤ CK ,3A3

1,

uk2

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2 (∂uν)φ(u, v)

∣∣∣∣ dv ≤ CK ,3A3
1 sup

Q
u|∂uν|,

uk2

∫
∞

3u

∣∣∣∣ 4m
(1−µ)r3λν

2φ(u, v)
∣∣∣∣ dv ≤ CK ,3A3

1.

The proof of these estimates is similar to that of (7-10) and (7-11); we omit the details. To prove (7-9),
we replace the third estimate by

uk2

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2 (∂uν)φ(u, v)

∣∣∣∣ dv ≤ CK ,39

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′ · sup
Cu

uk2 |∂uν|,

which is an easy consequence of Proposition 5.3. �

7D. Full decay for ∂2
v (rφ), ∂2

u(rφ), ∂vλ and ∂uν. With all the preparations so far, we are finally ready
to prove Theorem 3.2. Our proof consists of two steps. The first step is to use the local BV scattering
assumption to prove a preliminary decay rate of u−ω for ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν. In this step, it is

crucial to pass to the renormalized variables and exploit the null structure of (SSESF), in order to utilize
the a priori bounds in the local BV scattering assumption. The second step to upgrade these decay rates
to those that are claimed in Theorem 3.2. Thanks to the preliminary u−ω decay from the first step, the
null structure is not necessary at this point.

We now begin with the first step. The null structure of (SSESF), as demonstrated in Section 4C, is
used in an essential way.

Proposition 7.6. There exists a finite constant A′2 > 0 such that

|∂2
v (rφ)| ≤ A′2u−ω, |∂2

u (rφ)| ≤ A′2u−ω,

|∂vλ| ≤ A′2u−ω, |∂uν| ≤ A′2u−ω.
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Proof. For U > 1, we define

B2(U ) := sup
u∈[1,U ]

sup
Cu

(
uω|∂2

v (rφ)| + uω|∂2
u (rφ)| + uω|∂vλ| + uω|∂uν|

)
. (7-12)

Notice that the above is finite for every fixed U due to Lemmas 7.4 and 7.5. As indicated earlier, we
need to use the null structure of the system (SSESF) as in Section 4C. For convenience, we define the
shorthands

F1 := ∂
2
v (rφ)− (∂vλ)φ,

G1 := ∂
2
u (rφ)− (∂uν)φ,

and

F2 := ∂v log λ−
λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

G2 := ∂u log(−ν)−
ν

1−µ
µ

r
+ ∂uφ(λ

−1∂v(rφ)− ν−1∂u(rφ)).

Then (4-3), (4-5), (4-8) and (4-9) may be rewritten in the following fashion:

∂u F1 = ∂uλ ∂vφ− ∂vλ ∂uφ, (7-13)

∂u F2 = ∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ)), (7-14)

∂vG1 = ∂vν ∂uφ− ∂uν ∂vφ, (7-15)

∂vG2 =−∂uφ ∂v(λ
−1∂v(rφ))+ ∂vφ ∂u(λ

−1∂v(rφ)). (7-16)

The following lemma is the key technical component of the proof:

Lemma 7.7. There exists a finite positive constant C = CA1,I2,K ,3 and positive function ε(u) satisfying

ε(u)→ 0 as u→∞

such that the following inequalities holds for 1≤ u2 ≤U :

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

(uω|F1| + uω|G1|)≤ C3I2+CK ,3,Mi A3
1+ ε(u2)B2(U ), (7-17)

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

(uω|F2| + uω|G2|)≤ CK ,3A2
1+ ε(u2)B2(U ). (7-18)

We defer the proof of this lemma. Instead, we first finish the proof of Proposition 7.6, assuming
Lemma 7.7.

First, we claim that (7-17) and (7-18) imply

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ H2+ (ε+ ε

′)(u2)B2(U ) (7-19)

for some constant 0< H2 <∞ and some positive function ε′(u2) which tends to zero as u2→∞.
The point is that F1, F2, G1 and G2 control ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν, respectively, up to higher-order

terms, which may be absorbed into the second term on the right-hand side. Indeed, consider u ∈ [3u2,U ].
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For F1 and G1, we estimate

uω|∂2
v (rφ)(u, v)| = uω|F1+ (∂vλ)φ|(u, v)≤ uω|F1(u, v)| + sup

Cu

|φ| ·B2(U ),

uω|∂2
u (rφ)(u, v)| = uω|G1+ (∂uν)φ|(u, v)≤ uω|G1(u, v)| + sup

Cu

|φ| ·B2(U ),

which are acceptable, because supCu
|φ| → 0 as u ≥ 3u2 → ∞, by Theorem 3.1. For F2, we use

Proposition 5.3 to estimate

uω|∂vλ| = uωλ
∣∣∣∣F2+

λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ))
∣∣∣∣

≤
1
2 uω|F2| +

1
4 K3uω

∣∣∣∣µr
∣∣∣∣+ 1

23uω|∂vφ|
(
|∂v(rφ)| + |∂u(rφ)|

)
.

Applying (7-3) (from Lemma 7.3) to the second term on the last line, and then using Lemma 7.2 to
control uω|∂vφ|, we arrive at

uω|∂vλ(u, v)| ≤ 1
2 uω|F2(u, v)| +CK ,39 sup

Cu

(
|∂v(rφ)| + |∂u(rφ)|

)
·B2(U ),

which is acceptable in view of Theorem 3.1. Proceeding similarly, but also using the second inequality of
Lemma 7.2 to control |∂uφ|, we obtain

uω|∂uν(u, v)| ≤ K uω|G2(u, v)| +CK ,39 sup
Cu

(
|∂v(rφ)| + |∂u(rφ)|

)
·B2(U ).

Combining these estimates with (7-17) and (7-18), we conclude (7-19) with

H2 = C3I2+CK ,3,Mi A3
1+CK ,3A2

1, (7-20)

ε′(u2)= C sup
u≥3u2

|φ| +CK ,39 sup
u≥3u2

(
|∂v(rφ)| + |∂u(rφ)|

)
. (7-21)

Next, note that the (nondecreasing) function

H ′2(u2) := sup
Qint∩{(u,v)∈Q:u∈[1,3u2]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≥ 0 (7-22)

is always finite for any fixed u2 ≥ 1, as the region Qint ∩ {(u, v) ∈Q : u ∈ [1, 3u2]} is compact and each
of these terms is a continuous function, since (φ, r,m) is a C1 solution (see Definition 2.2). Combining
with (7-19), we obtain

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ H2+ H ′2(u2)+ (ε+ ε

′)(u2)B2(U )

for every u2 ∈ [1,U ].
Now apply (7-7) and (7-9) in Lemma 7.5 to ∂2

u (rφ), ∂uν. Also apply Lemma 7.4 (along with the fact
that r(u, v)≥ 23−1u in Qext and ω≤ 3) to ∂2

v (rφ), ∂vλ in Qext. Then we see that there exist a nonnegative
and nondecreasing function H ′′2 (u2) and a positive function ε′′(u2) such that

B2(U )≤ H ′′2 (u2)+ ε
′′(u2)B2(U )
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and ε′′(u2)→ 0 as u2→∞. Taking u2 sufficiently large, the second term on the right-hand side can
be absorbed into the left-hand side; then we conclude that B2(U ) ≤ CA1,K ,3H ′′2 (u2). As this bound is
independent of U , Proposition 7.6 then follows. �

Remark 7.8. Using (7-7) and (7-9) in Lemma 7.5 and (7-5)–(7-6) in Lemma 7.4, the functions H ′′2 (u2)

and ε′′(u2) can be explicitly bounded from above as follows:

H ′′2 (u2)≤ CK ,3

(
1+9

∫
∞

3

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′
)
· (H2+ H ′(u2)+ A2

1+ A3
1)

+CI2+CK ,3A2
1+CK ,3,Mi A3

1, (7-23)

ε′′(u2)≤ CK ,3

(
1+9

∫
∞

3

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′
)
· (ε+ ε′)(u2). (7-24)

These bounds will be useful in our proof of Theorem 3.15 in Section 9.

At this point, in order to complete the proof of Proposition 7.6, we are only left to prove Lemma 7.7.

Proof of Lemma 7.7. Let (u, v) ∈Qint (i.e., v ∈ [u, 3u]) with u ∈ [3u2,U ]. In this proof, we will use the
notation ε(u2) to refer to a positive quantity which may be made arbitrarily small by choosing u2 large
enough, which may vary from line to line.

We first estimate F1 and F2. Integrating (7-13) and (7-14) along the incoming direction from
(1

3 u, v
)

to (u, v), we obtain

|F1(u, v)| ≤
∣∣F1
( 1

3 u, v
)∣∣+ ∫ u

u/3
|∂uλ ∂vφ(u′, v)| + |∂vλ ∂uφ(u′, v)| du′,

|F2(u, v)| ≤
∣∣F2
( 1

3 u, v
)∣∣+ ∫ u

u/3
|∂uφ ∂v(ν

−1∂u(rφ))(u′, v)| + |∂vφ ∂u(ν
−1∂u(rφ))(u′, v)| du′.

Multiply both sides of these inequalities by uω. For v ∈ [u, 3u], note that
( 1

3 u, v
)
∈ Qext and

u ≤ 3
23r

( 1
3 u, v

)
. Therefore, using Theorem 3.1 for φ and ∂v(rφ), Corollary 6.9 for ∂vφ, Lemma 7.3

for µ/r , and Lemma 7.4 for ∂2
v (rφ) and ∂vλ, we have

uω
∣∣F1
( 1

3 u, v
)∣∣≤ C3rω

(
|∂2
v (rφ)| + |(∂vλ)φ|

)(1
3 u, v

)
≤ C3I2+CK ,3,Mi A3

1,

uω
∣∣F2
( 1

3 u, v
)∣∣≤ C3rω

(
|λ−1∂vλ| +

µ

1−µ
λ

r
+
∣∣∂vφ(λ−1∂v(rφ)− ν−1∂u(rφ))

∣∣)( 1
3 u, v

)
≤ CK ,3A2

1.

Therefore, we only need to deal with the u′-integrals. For u ∈ [3u2,U ], we claim that

uω
∫ u

u/3
|∂uλ(u′, v)||∂vφ(u′, v)| du′ ≤ ε(u2)B2(U ), (7-25)

uω
∫ u

u/3
|∂vλ(u′, v)||∂uφ(u′, v)| du′ ≤ ε(u2)B2(U ), (7-26)
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uω
∫ u

u/3
|∂uφ(u′, v)||∂v(ν−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ), (7-27)

uω
∫ u

u/3
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ). (7-28)

Proof of (7-25). We proceed similarly as in the proof of Theorem 3.1. By (2-6), (5-9) and Lemma 7.2,
we estimate

uω
∫ u

u/3
|∂uλ(u′, v)||∂vφ(u′, v)| du′

≤ C3

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω
(
|∂2
v (rφ)| +9|∂vλ|

)
≤ C3,9

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B2(U ).

Thus (7-25) follows by Lemma 6.1.

Proof of (7-26). We have

uω
∫ u

u/3
|∂vλ(u′, v)||∂uφ(u′, v)| du′ ≤ C

(∫ v

u2

|∂uφ(u′, v)| du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω|∂vλ|

≤ C
(∫ v

u2

|∂uφ(u′, v)| du′
)
B2(U ).

Thus (7-26) follows by Lemma 7.1.

Proof of (7-27). We start with the identity

∂v(ν
−1∂u(rφ))=−

2m
(1−µ)r2λ(ν

−1∂u(rφ)−φ),

which is readily verifiable using (2-6) and (2-8). By (5-10) and (5-32), we estimate

uω
∫ u

u/3
|∂uφ(u′, v)||∂v(ν−1∂u(rφ))(u′, v)| du′

≤ CK ,39

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω|∂uφ|.

The u′-integral vanishes as u2 → ∞ by Lemma 6.1. On the other hand, by Lemma 7.2 and
Proposition 5.3, we have

sup
Cu′

(u′)ω|∂uφ| ≤ CK ,3 sup
Cu′

(u′)ω|∂vφ| ≤ CK ,3,9B2(U ) (7-29)

for any u′ ∈ [1,U ]. Therefore, (7-27) follows.
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Proof of (7-28). Here we divide the integral into two, one in Qcpt and the other outside. Recall the
notation u?(v) = sup{u ∈ [1, v] : r(u, v) ≥ R}. Below, we will consider the case u?(v) ∈

[ 1
3 u, u

]
, i.e.,

when the line segment
{
(u′, v) ∈Q : u′ ∈

[ 1
3 u, u

]}
crosses {r = R}; the other case is easier and can be

handled with a minor modification.
We first deal with the integral over the portion in Qcpt. We claim that

uω
∫ u

u?(v)
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ).

This is an easy consequence of the bound for |∂vφ| in Lemma 7.2, the fact that u and u′ are comparable
over the domain of integration, and

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}∩Qcpt

|∂u(ν
−1∂u(rφ))| → 0 as u2→∞,

which follows from (3-3), (5-6) and Theorem 5.14.
We now consider the remaining contribution to the integral. We begin as follows:

uω
∫ u?(v)

u/3
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′

≤ CK ,3

(∫ u?(v)

u/3
|∂vφ(u′, v)| du′

)
sup

u′∈[u/3,u?(v)]
sup
Cu′

(u′)ω
(
|∂2

u (rφ)| +9|∂uν|
)

≤ CK ,3,9

(∫ u?(v)

u/3
|∂vφ(u′, v)| du′

)
B2(U ).

For u′ ∈
[1

3 u, u?(v)
]
, we have r(u′, v)≥ R. Thus, by (6-11), we have∫ u?(v)

u/3
|∂vφ(u′, v)| du′ ≤

CK A1

R

∫
∞

u2

(u′)−ω du′ ≤
CK A1

R
u−(ω−1)

2 ,

which vanishes as u2→∞. Therefore, in the case under consideration, (7-28) follows.

We have therefore obtained the desired bounds for F1 and F2. Next, we estimate G1 and G2. Let us
integrate (7-15) and (7-16) along the outgoing direction from (u, u) on the axis to (u, v). Then we obtain

|G1(u, v)| ≤ lim
v′→u+

|G1(u, v′)| +
∫ v

u
|∂vν ∂uφ(u, v′)| + |∂uν ∂vφ(u, v′)| dv′,

|G2(u, v)| ≤ lim
v′→u+

|G2(u, v′)| +
∫ v

u
|∂vφ ∂u(λ

−1∂v(rφ))(u, v′)| + |∂uφ ∂v(λ
−1∂v(rφ))(u, v′)| dv′.

Note that

lim
v→u+

µ

r
(u, v)= 0 and lim

v→u+
(λ−1∂v(rφ)(u, v)− ν−1∂u(rφ)(u, v))= 0,

since (φ, r,m) is a C1 solution. It follows that limv→u+ ∂u∂v(rφ)(u, v)= 0 and limv→u+ ∂u∂vr(u, v)= 0.
Moreover, we have

lim
v→u+

∂2
v (rφ)(u, v)=− lim

v→u+
∂2

u (rφ)(u, v) and lim
v→u+

∂vλ(u, v)=− lim
v→u+

∂uν(u, v).
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As a consequence,

lim
v′→u+

G1(u, v′)=− lim
v′→u+

F1(u, v′) and lim
v′→u+

G2(u, v′)= lim
v′→u+

F2(u, v′).

Therefore, by the previous estimates for F1 and F2, we have

uω lim
v′→u+

|G1(u, v′)| ≤ C3I2+CK ,3,Mi A3
1+ ε(u2)B2(U ),

uω lim
v′→u+

|G2(u, v′)| ≤ CK ,3A2
1+ ε(u2)B2(U ),

which are acceptable. Recalling that we are considering (u, v) ∈Qint, hence v ∈ [u, 3u], we are now left
to establish the following estimates:

uω
∫ 3u

u
|∂vν(u, v′)||∂uφ(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-30)

uω
∫ 3u

u
|∂uν(u, v′)||∂vφ(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-31)

uω
∫ 3u

u
|∂vφ(u, v′)||∂u(λ

−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-32)

uω
∫ 3u

u
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ). (7-33)

Proof of (7-30). Substituting ∂vν by (2-6) and using (7-29), we have

uω
∫ 3u

u
|∂vν(u, v′)||∂uφ(u, v′)| dv′ ≤ K

(∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)

sup
v′∈[u,3u]

uω|∂uφ(u, v′)|

≤ CK ,3,9

(
sup

u≥3u2

∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)
B2(U ).

Thus (7-30) follows by Lemma 6.1.

Proof of (7-31). We have

uω
∫ 3u

u
|∂uν(u, v′)||∂vφ(u, v′)| dv′ ≤

∫
∞

u
|∂vφ(u, v′)| dv′ sup

v′∈[u,3u]
uω|∂uν(u, v′)|

≤

(
sup

u≥3u2

∫
∞

u
|∂vφ(u, v′)| dv′

)
B2(U ).

Thus (7-31) follows by Lemma 7.1.

Proof of (7-32). By (2-6) and (2-8), we have the identity

∂u(λ
−1∂v(rφ))=−

2m
(1−µ)r2 ν(λ

−1∂v(rφ)−φ).
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Then, by Proposition 5.3, we have

uω
∫ 3u

u
|∂vφ(u, v′)||∂u(λ

−1∂v(rφ))(u, v′)| dv′

≤ CK ,39

(∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)

sup
v′∈[u,3u]

uω|∂vφ(u, v′)|.

Now (7-32) follows by Lemmas 6.1 and 7.2 and (5-9).

Proof of (7-33). As in the proof of (7-28), we will divide the integral into two pieces. More precisely,
let us define v?(u) to be the unique v-value such that r(u, v?(u)) = R. Assuming v?(u) ∈ [u, 3u], the
integral

∫ 3u
u will be divided into

∫ v?(u)
u and

∫ 3u
v?(u). The remaining case v?(u) > 3u can be dealt with by

adapting the argument for the first integral.
For the first integral, we claim that

uω
∫ v?(u)

u
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ).

From the locally BV scattering assumption (2-12), we have

sup
u∈[3u2,∞)

∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| → 0 as u2→∞.

Combined with (7-29), the claim follows.
Next, we turn to the second integral. By (5-5) and (5-9), we estimate

uω
∫ 3u

v?(u)
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′

≤ sup
v′∈[v?(u),3u]

uω
∣∣∂v(λ−1∂v(rφ))(u, v′)

∣∣ ∫ 3u

v?(u)
|∂uφ(u, v′)| dv′

≤ C3,9B2(U )
∫ 3u

v?(u)
|∂uφ(u, v′)| dv′.

For v′ ∈ [v?(u), 3u], we have r(u, v)≥ R. Thus, by (6-12), we have∫ 3u

v?(u)
|∂uφ(u, v′)| dv′ ≤

CK A1

R

∫ 3u

u
u−ω dv′ ≤

CK A1

R
u−(ω−1)

2 ,

which vanishes as u2→∞, and therefore finishes the proof of (7-33). We remark that the fact that we
are in Qint is used crucially here, as otherwise the integral would not be convergent. �

Remark 7.9. In the case where we have global BV scattering (i.e., conditions (2) and (3) of Definition 2.4
are satisfied with R =∞), we can take R =∞ in the preceding argument to obtain the following explicit
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upper bound on ε(u2):

ε(u2)≤ CK ,3,9 sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

∣∣∣∣ 2mν
(1−µ)r2

∣∣∣∣+C sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

|∂uφ|

+CK ,3,9 sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

∣∣∂u(ν
−1∂u(rφ))

∣∣
+CK ,3,9 sup

u≥3u2

∫
Cu

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣+C sup
u≥3u2

∫
Cu

|∂vφ|

+CK ,3,9 sup
u∈[3u2,∞)

∫
Cu

∣∣∂v(λ−1∂v(rφ))
∣∣. (7-34)

This will be useful in our proof of the sharp decay rate in the case of small BV norm (Theorem 3.15)
in Section 9.

In the second step of our proof of Theorem 3.2, we use the preliminary u−ω decay proved in
Proposition 7.6 to obtain the optimal the u-decay. Key to this step is the following proposition, which
claims optimal u-decay in Qint:

Proposition 7.10. There exists a constant 0< A′′2 <∞ such that

sup
Qint

uω+1
|∂2
v (rφ)| ≤ A′′2, (7-35)

sup
Qint

uω+1
|∂2

u (rφ)| ≤ A′′2, (7-36)

sup
Qint

u3
|∂vλ| ≤ A′′2, (7-37)

sup
Qint

u3
|∂uν| ≤ A′′2. (7-38)

Once we establish Proposition 7.10, the desired decay for ∂2
v (rφ) and ∂vλ follow from Lemma 7.4

and the fact that r ≥ 23−1u in Qext. Furthermore, the desired decay for ∂2
u (rφ) and ∂uν follow from

Lemma 7.5.

Proof. Thanks to the fact that we have pointwise bounds for sufficient number of derivatives (albeit with
suboptimal decay) near 0 at this point, it suffices to work with the “nonrenormalized” equations (4-2),
(4-4), (4-6) and (4-7). In particular, we need not utilize the null structure of (SSESF).

Let (u, v) ∈ Qint (i.e., v ∈ [u, 3u]) with u ≥ 3. We begin with (7-35). Integrating ∂u∂
2
v (rφ) in the

u-direction from 1
3 u to u, multiplying by uω+1 and using r

( 1
3 u, v

)
≥

2
33
−1u, we obtain

uω+1
|∂2
v (rφ)|(u, v)≤ C3rω+1

|∂2
v (rφ)|

( 1
3 u, v

)
+ uω+1

∫ u

u/3
|∂u∂

2
v (rφ)|(u

′, v) du′. (7-39)

Since
( 1

3 u, v
)
∈Qext, the first term on the right-hand side is bounded by C3I2+CK ,3,Mi A3

1, thanks to
Lemma 7.4. To estimate the u′-integral, we substitute ∂u∂

2
v (rφ) by (4-2). Then, applying Proposition 5.3,
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Lemma 7.2, Lemma 7.3, Theorem 3.1 and Proposition 7.6, we obtain

|∂u∂
2
v (rφ)|(u

′, v)≤ CA1,K ,3(u
′)−3ωA1(A′2)

2.

Thus we have

uω+1
|∂2
v (rφ)|(u, v)≤ C3I2+CK ,3,Mi A3

1+CA1,K ,3A1(A′2)
2, (7-40)

where we have used the fact that ω > 1, and thus 3ω− 1> ω+ 1, to throw away the u-weight in the last
term. This proves (7-35).

Next, we prove (7-36). Integrating ∂v∂2
u (rφ) in the v-direction from u+ to v and multiplying by uω+1,

we have

uω+1
|∂2

u (rφ)|(u, v)≤ lim
v′→u+

uω+1
|∂2

u (rφ)|(u, v
′)+ uω+1

∫ 3u

u
|∂v∂

2
u (rφ)|(u, v

′) dv′. (7-41)

Recall that limv′→u+ ∂
2
u (rφ)(u, v

′)= limv′→u+ ∂
2
v (rφ)(u, v

′), as (φ, r,m) is a C1 solution. Thus the
first term on the right-hand side can be estimated via (7-40). Substitute ∂v∂2

u (rφ) by (4-4) and apply, as
before, Proposition 5.3, Lemma 7.2, Lemma 7.3, Theorem 3.1 and Proposition 7.6. Then we have

|∂v∂
2
u (rφ)|(u, v

′)≤ CA1,K ,3u−3ωA1(A′2)
2.

It now follows that

uω+1
|∂2

u (rφ)|(u, v)≤ C3I2+CK ,3,Mi A3
1+CA1,K ,3A1(A′2)

2, (7-42)

which proves (7-36).
At this point, combining Lemma 7.2, Theorem 3.1, Lemma 7.4 and (7-40), note that we have the

following improved u-decay for ∂vφ:

sup
Q

uω+1
|∂vφ| ≤ C3 sup

Q

(
uω+1
|∂2
v (rφ)| + u A1|∂vλ|

)
≤ B, (7-43)

where
B := C3I2+CK ,3,Mi A3

1+CA1,K ,3A1(A′2)
2
+C3A1 A′2. (7-44)

We now turn to (7-37). Integrating ∂u∂v log λ in the u-direction from 1
3 u to u, multiplying by u3 and

using r
( 1

3 u, v
)
≥

2
33
−1u, we obtain

u3
|∂v log λ|(u, v)≤ Cr3

|∂v log λ|
( 1

3 u, v
)
+ u3

∫ u

u/3
|∂u∂v log λ|(u′, v) du′. (7-45)

Since
( 1

3 u, v
)
∈Qext, the first term on the right-hand side is bounded by CK ,3A2

1, by Lemma 7.4 and
the fact that λ−1

≤ 3. Next, substituting ∂u log λ by (4-6), applying Proposition 5.3, Lemma 7.3 and
Lemma 7.2 and using the improved bound (7-43), we have

|∂u∂v log λ|(u′, v)≤ CK ,3B2(u′)−2(ω+1).

Therefore
u3
|∂vλ|(u, v)≤ CK ,3A2

1+CK ,3B2, (7-46)
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where we used 2(ω+ 1)− 1> 3 to throw away the u-weight in the last term. This proves (7-37).
Finally, we prove (7-38). Integrating ∂v∂u log ν in the v-direction from u+ to v and multiplying by u3,

we have

u3
|∂u log ν|(u, v)≤ lim

v′→u+
u3
|∂u log ν|(u, v′)+ u3

∫ 3u

u
|∂v∂u log ν|(u, v′) dv′. (7-47)

Since limv′→u+ ∂uν(u, v′)=− limv′→u+ ∂vλ(u, v′), the first term is bounded by (7-46). Furthermore,
substituting ∂v∂u log ν by (4-7) and applying Proposition 5.3, Lemma 7.3 and Lemma 7.2 and using the
improved bound (7-43), we have

|∂v∂u log ν|(u, v′)≤ CK ,3B2u−2(ω+1).

As before, it follows that
u3
|∂uν|(u, v)≤ CK ,3A2

1+CK ,3B2, (7-48)

which proves (7-38). �

Remark 7.11. Combining (7-40), (7-42), (7-46) and (7-48), we see that Proposition 7.10 holds with

A′′2 ≤ C3I2+CK ,3,Mi A3
1+CA1,K ,3A1(A′2)

2
+CK ,3A2

1+CK ,3B2, (7-49)

where B is as in (7-44).

Remark 7.12. According to the argument of this subsection, note that the size of A′2 in Proposition 7.6
depends on the choice of u2 through the term H ′2(u2), where the size of u2 depends on the rate of
convergence of ε′′(u2)→ 0 as u2→∞. This explains why A2 does not depend only on the size of the
initial data, as remarked in Section 3. On the other hand, as stated in Theorem 3.15(2), we shall show
that, in the case of small BV initial data, A2 depends only on the size of the initial data. To achieve this,
we show in Section 9 that we may take u2 = 1 under this small data assumption.

7E. Additional decay estimates. As in the previous section, we conclude this section by providing
additional decay rates concerning second derivatives of φ and r and improved decay for m near 0.

Corollary 7.13. Let (φ, r,m) be a locally BV scattering solution to (SSESF) with asymptotically flat C1

initial data of order ω′. Let A1 and A2 be the constants in Theorems 3.1 and 3.2, respectively. Then the
following bounds hold:

|∂vφ| ≤ C3(A1+ A2+ A1 A2)min{u−(ω+1), r−2u−(ω−1)
} (7-50)

|∂uφ| ≤ CK ,3(A1+ A2+ A1 A2)min{u−(ω+1), r−1u−ω} (7-51)

|∂2
vφ| ≤ C3(A1+ A2+ A1 A2)min{r−1u−(ω+1), r−3u−(ω−1)

}, (7-52)

|∂u∂vφ| ≤ CK ,3(A1+ A2+ A1 A2)min{r−1u−(ω+1), r−2u−ω}, (7-53)

|∂2
uφ| ≤ CK ,3(A1+ A2+ A1 A2)r−1u−(ω+1), (7-54)

|∂u∂vr | ≤ CK ,3(A1+ A2+ A1 A2)
2 min{ru−(2ω+2), r−2u−(2ω−1)

}, (7-55)

m ≤ CK ,3(A1+ A2+ A1 A2)
2 min{r3u−(2ω+2), u−(2ω−1)

}. (7-56)
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This corollary follows immediately from the estimates derived in Theorem 3.2. We sketch the proof:

Proof. First, note that (7-50) and (7-51) follows from Corollary 6.9, Theorem 3.2 and Lemma 7.2. Next,
(7-52) and (7-54) are easy consequences of the preceding estimates, Theorems 3.1 and 3.2, and the
identities

r ∂2
vφ = ∂

2
v (rφ)− (∂vλ)φ− 2λ ∂vφ, r ∂2

uφ = ∂
2
u (rφ)− (∂uν)φ− 2ν ∂uφ.

On the other hand, for (7-53), we use the identity

r∂u∂vφ =−λ ∂uφ− ν ∂vφ,

which may be verified from (2-6) and (2-8).
Next, (7-56) follows from Corollary 6.9, Lemma 7.3 and (7-50). Finally, using Corollary 5.5,

Lemma 5.10, (7-56) and (2-6), we conclude (7-55). �

8. Decay and blow-up at infinity

In this section, we prove Theorem 3.14, that is, unless the solution blows up at infinity, a “future causally
geodesically complete” solution scatters in BV.

Take a BV solution to (SSESF) satisfying the hypotheses of Theorem 3.14 which does not blow up
at infinity. Note, in particular, that Q = R by (1) of Definition 2.4 and Lemma 4.2. In order to prove
Theorem 3.14, our goal is to show that such a spacetime is in fact BV scattering, i.e., (1), (2) and (3) in
Definition 2.4 hold and, moreover, (3) holds with R =∞.

The main step will be to show that there exists a constant C3 such that, for every ε > 0, there exists U
such that, for every u ≥U , we have ∫

Cu

|∂2
v (rφ)| +

∫
Cu

|∂vλ| ≤ C3ε. (8-1)

This will be achieved in a sequence of lemmas and propositions below.
Before we proceed, we first prove a preliminary bound on λ:

Proposition 8.1. There exists 0<3<∞ such that

3−1
≤ λ(u, v)≤ 1

2 . (8-2)

Proof. By (1) in Definition 3.12, there exists 0<3<∞ such that sup λ−1
0 ≤3. As limu→v− λ0(u)=

limu→v− λ(u′, v) (see [Christodoulou 1993, Section 7]), it follows from Lemma 5.4 that, for every
(u, v) ∈Q, we have the estimate (8-2). �

We now proceed to show (8-1). The first step is to show that, for u sufficiently large, the integrals
along Cu of |F1| and |F2| are small. Here, we recall the notation in the proof of Proposition 7.6,

F1 := ∂
2
v (rφ)− (∂vλ)φ,

F2 := ∂v log λ−
λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)).
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Once we obtain the desired bounds for F1 and F2, we then derive (8-1) from these bounds. This will be
the most technical part (see discussions in Remark 8.3).

First, we bound the integrals of F1 and F2:

Proposition 8.2. For every ε > 0, there exists V sufficiently large such that the following bound holds
for u ≥ V : ∫

Cu

(|F1| + |F2|)(u, v)≤ 3ε. (8-3)

Proof. By (2) and (3) in Definition 3.12, we have∫
∞

1

∫
∞

u
|∂vλ ∂uφ− ∂uλ ∂vφ| dv du <∞

and ∫
∞

1

∫
∞

u

∣∣∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))
∣∣ dv du <∞.

Thus, by choosing V sufficiently large, we have∫
∞

V

∫
∞

u
|∂vλ ∂uφ− ∂vλ ∂vφ| dv du < ε (8-4)

and ∫
∞

V

∫
∞

u

∣∣∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))
∣∣ dv du < ε. (8-5)

From the initial conditions, we easily see that F1(1, · ) and F2(1, · ) obey
∫

C1
|F1| + |F2|<∞. Thus,

by choosing V larger if necessary, we have∫
∞

V
(|F1| + |F2|)(1, v) dv ≤ ε. (8-6)

Notice that, by equations (7-13) and (7-14), the estimates (8-4) and (8-5) control
∫∫
|∂u F1| du dv and∫∫

|∂u F2| du dv. Thus, we have ∫
∞

max{u,V }
(|F1| + |F2|)(u, v) dv ≤ 3ε

for every u ≥ 1. In particular, for u ≥ V , we have∫
Cu

(|F1| + |F2|)(u, v)≤ 3ε,

as desired. �

The inequality (8-3) is the starting point for our proof of (8-1). More precisely, our basic strategy is
to use a continuous induction on v, beginning from the axis, to remove the quadratic and higher terms
from (8-3) and infer (8-1).

Remark 8.3. Before beginning the proof in earnest, we would like to point out two technical nuisances
that we confront: First, in order to estimate the scalar field φ itself from F1 and F2, we need to integrate
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essentially from null infinity,16 which is opposite to the direction of our method of continuity. Second, as
∂v(rφ) is only assumed to be BV, the left-hand side of (8-1) is not continuous in v in general. To overcome
the first, we make use of the invariance of (SSESF) and of F1 and F2 under the change φ 7→ φ+ c. To
take care of the second, we carefully keep track of the evolution of discontinuities of ∂v(rφ).

Notice that, in order to obtain (8-1) from (8-3), we only need to integrate on a fixed hypersurface Cu .
We now fix u0 ≥ V and define a new function φu0 by

φu0(u, v) := φ(u, v)− lim
v′→u0+

φ(u0, v
′). (8-7)

As remarked before, note that (SSESF) is invariant under the change (φ, r,m) 7→ (φu0, r,m), that is,
(φu0, r,m) is still a solution to (SSESF). Moreover, it is easy to check that F1 and F2 are also invariant
under this change, i.e.,

F1 = ∂
2
v (rφu0)− (∂vλ)φu0,

F2 = ∂v log λ−
λ

1−µ
µ

r
+ ∂vφu0(λ

−1∂v(rφu0)− ν
−1∂u(rφu0)).

(8-8)

The new scalar field has been chosen so that φu0(u0, · ) and ∂v(rφu0)(u0, · ) vanish at the axis, that is,

lim
v→u0+

φu0(u0, v)= lim
v→u0+

∂v(rφu0)(u0, v)= lim
v→u0+

∂u(rφu0)(u0, v)= 0. (8-9)

We claim that the original scalar field φ(u, v) obeys the condition

lim
v→∞

φ(u0, v)= 0 (8-10)

for every u0 ≥ 1. Therefore, by the definition given in (8-7), we see that φ and φu0 are also related by

φ(u, v)= φu0(u, v)− lim
v′→∞

φu0(u, v
′). (8-11)

To establish the claim (8-10), we proceed as in the proof of Lemma 6.3, but work with φ rather
than rφ. Fix u0 > 1 and let r1 > 0 be a large number, to be determined. For each u ≥ 1, let v?1(u) be the
unique v-value such that r(u, v?1(u))= r1. Consider (u, v) ∈ {1≤ u ≤ u0} ∩ {r ≥ r1}. Using the uniform
bound of m and λ/(1−µ) in terms of the data at u = 1 (which holds thanks to monotonicity), we may
integrate (2-8) along the incoming direction to estimate

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
C0

r(u, v)
sup

u′∈[1,u]
|φ(u′, v)|,

16More precisely, φ is determined from ∂v(rφ), which in turn can be determined from
∫
|∂2
v (rφ)| by integrating

from v =∞. Another conceptual reason why information near v =∞ is relevant for estimating φ is that the initial condition
limv→∞ φ(1, v)= 0 implies that limv→∞ φ(u, v)= 0 for every u ≥ 1. See the discussion before (8-11).
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where C0 depends only on the data at u = 1. Integrating both sides in the outgoing direction from v?1(u)
to v (using (8-2) for the right-hand side) and dividing by r = r(u, v), we obtain

|φ(u, v)|

≤
r1

r
|φ(u,v?1(u))|+

r(1,v?1(u))
r

|φ(1,v?1(u))|+
r(1,v)

r
|φ(1,v)|+

C03

r
log r

r1
sup

1≤u′≤u,v≥v∗1 (u)
|φ|. (8-12)

Now the idea is to use (8-12) to first show that φ is bounded on the region {1 ≤ u ≤ u0} and then
use (8-12) again with the additional boundedness of φ to conclude that (8-10) holds. To begin with,
observe that φ is bounded on each set compact subset of Q, since it is a BV solution in the sense of
Definition 2.1. Combined with the hypothesis that φ(1, v)→ 0 as v→∞, we see that the first three
terms are bounded by a constant that depends on r1. On the other hand, by taking r1 sufficiently large, the
coefficient (C03/r) log(r/r1) of the last term can be made arbitrarily small for r ≥ r1. This smallness
allows us to absorb the last term to the left-hand side, and conclude the desired boundedness of φ on the
region {1≤ u ≤ u0}. Then, plugging in u = u0 and the uniform bound for φ into (8-12), the claim (8-10)
follows from the hypothesis limv→∞ φ(1, v)= 0.

Let

I1(u, v) :=
∫ v

u
|∂2
v (rφu0)|(u, v

′) dv′ and I2(u, v) :=
∫ v

u
|∂vλ|(u, v′) dv′.

In the following two lemmas, we will show that

I1(u0, v)≤ 3ε+C3 I1(u0, v)I2(u0, v), (8-13)

I2(u0, v)≤ 3ε+C3 I1(u0, v)
2(1+ I1(u0, v))

2(1+ I2(u0, v))
2eC3 I1(u0,v)

2(1+I2(u0,v)), (8-14)

for every V ≤ u0 ≤ v, with C3 independent of u0 and v.

Lemma 8.4. There exists a constant C3 > 0 such that, for every V ≤ u0 ≤ v,

I1(u0, v)≤ 3ε+C3 I1(u0, v)I2(u0, v).

Proof. In this proof, we fix u0 ≥ V and use the abbreviations

φ := φu0, ∂v(rφ) := ∂v(rφu0) and ∂2
v (rφ) := ∂

2
v (rφu0). (8-15)

By Lemma 5.1, we have

|φ(u0, v)| ≤
1
r

∫ v

u0

∂v(rφ)(u0, v
′) dv′ ≤3 sup

u0≤v′≤v

|∂v(rφ)(u0, v
′)|. (8-16)

By the fundamental theorem of calculus and (8-9), note that

sup
u0≤v′≤v

|∂v(rφ)(u0, v
′)| ≤ I1(u0, v). (8-17)
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Thus, recalling the definition of F1 in (8-8), we have

I1(u0, v)≤

∫ v

u0

|F1(u0, v
′)| dv′+

∫ v

u0

|∂vλ||φ|(u0, v
′) dv′

≤

∫ v

u0

|F1(u0, v
′)| dv′+3 I1(u0, v)I2(u0, v)

≤ 3ε+C3 I1(u0, v)I2(u0, v). �

We now move on to estimate I2(u0, v).

Lemma 8.5. There exists a constant C3 > 0 such that, for every V ≤ u0 ≤ v,

I2(u0, v)≤ 3ε+C3 I1(u0, v)
2(1+ I1(u0, v))

2(1+ I2(u0, v))
2eC3 I1(u0,v)

2(1+I2(u0,v)).

Proof. Again, we fix u0 ≥ V and use the abbreviation (8-15), as well as

∂u(rφ)(u, v) := ∂u(rφu0)(u, v). (8-18)

Recalling the equation for F2 in (8-8), in order to control I2(u0, v) from F2, we need to estimate∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ and
∫ v

u0

∂vφ(λ
−1∂v(rφ)− ν−1∂u(rφ))(u0, v

′) dv′.

By Lemma 5.11,∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ = log(1−µ(u0, v))+

∫ v

u0

r(∂vφ)2

λ
(u0, v

′) dv′.

Since Q=R, the integrand on the left-hand side is nonnegative. Notice furthermore that, since µ≥ 0,
log(1−µ(u0, v)) < 0. Thus,∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ ≤
∣∣∣∣∫ v

u0

r(∂vφ)2

λ
(u0, v

′) dv′
∣∣∣∣

≤

∫ v

u0

|∂vφ(u0, v
′)|

∣∣∣∣(∂v(rφ)λ
−φ

)
(u0, v

′)

∣∣∣∣ dv′

≤ 23I1(u0, v)

∫ v

u0

|∂vφ(u0, v
′)| dv′,

where we have used (8-16) and (8-17) on the last line. Using Lemma 5.2, we estimate the integral on the
last line by ∫ v

u0

|∂vφ(u0, v
′)| dv′ ≤

∫ v

u0

|∂v(λ
−1∂v(rφ))(u0, v

′)| dv′, (8-19)

and the right-hand side can in turn be estimated, using (8-17), by∫ v

u0

|∂v(λ
−1∂v(rφ))(u0, v

′)| dv′ ≤
∫ v

u0

λ−1
|∂2
v (rφ)(u0, v

′)| dv′+
∫ v

u0

λ−2
|∂vλ ∂v(rφ)(u0, v

′)| dv′

≤3I1(u0, v)+3
2 I1(u0, v)I2(u0, v).



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1661

Therefore, we have ∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ ≤ C3 I1(u0, v)
2(1+ I2(u0, v)). (8-20)

We now move on to bound
∫ v

u0
∂vφ λ

−1∂v(rφ)(u0, v
′) dv′. Using (8-17) and (8-19), we easily estimate∫ v

u0

|∂vφ λ
−1∂v(rφ)(u0, v

′)|dv′ ≤3
∫ v

u0

|∂vφ|(u0, v
′) dv′ sup

u0≤v′≤v

|∂v(rφ)(u0, v
′)|

≤ C3 I1(u0, v)
2(1+ I2(u0, v)). (8-21)

Finally, we are only left to bound −
∫ v

u0
∂vφ ν

−1∂u(rφ)(u0, v
′)dv′. As before, we begin by estimating∫ v

u0

|∂vφ ν
−1∂u(rφ)(u0, v

′)| dv′ ≤
∫ v

u0

|∂vφ|(u0, v
′) dv′ sup

u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)|

≤ C3 I1(u0, v)(1+ I2(u0, v)) sup
u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)|. (8-22)

In this case, we do not wish to pull out ν as we have not assumed any bound on it. Instead, we consider
ν−1∂u(rφ) as a whole and note that

∂v(ν
−1∂u(rφ))=−

(
λ

1−µ
µ

r

)
ν−1∂u(rφ)+

(
λ

1−µ
µ

r

)
φ. (8-23)

Then (8-23) holds since, by (2-6) and (2-8), we have

∂v(ν
−1∂u(rφ))=−

(
λ

1−µ
µ

r

)
ν−1∂u(rφ)+

(
λ

1−µ
µ

r

)
φ

and, moreover, both the left-hand side and the right-hand side of the equation are invariant under the
transformation φ 7→ φ+ c.

Therefore, by the variation of constants formula and (8-9), we have

ν−1∂u(rφ)(u0, v)= e−J (u0,v)

∫ v

u0

eJ (u0,v
′) λ

1−µ
µ

r
φ(u0, v

′) dv′,

where

J (u0, v) :=

∫ v

u0

λ

1−µ
µ

r
(u0, v

′) dv′.

By (8-17) and (8-20), we have

sup
u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)| ≤ C3 I1(u0, v)

3(1+ I2(u0, v))eC3 I1(u0,v)
2(1+I2(u0,v)).

Then, by (8-22), we conclude that∫ v

u0

|∂vφ ν
−1∂u(rφ)(u0, v

′)| dv′ ≤ C3 I1(u0, v)
4(1+ I2(u0, v))

2eC3 I1(u0,v)
2(1+I2(u0,v)). (8-24)

Combining (8-20), (8-21) and (8-24), we conclude that (8-14) holds. �

Next, we apply (8-13) and (8-14) to show:
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Proposition 8.6. For u0 sufficiently large and v ≥ u0, we have

I1(u0, v)+ I2(u0, v)≤ C3ε.

Remark 8.7. If it is the case that
∫ v

u0

(
|∂2
v (rφ)| + |∂vλ|

)
(u0, v

′) dv′ is continuous in v for each fixed u0,
then the desired conclusion follows from (8-13) and (8-14) via a simple continuity argument in v. In
particular, the conclusion follows in the case where the initial data of ∂v(rφ) are in W 1,1 or C1. The only
remaining difficulty is, therefore, to control the size of the delta function singularities in ∂2

v (rφ) in the
general case where we only have a BV solution.

Proof. We begin by studying the propagation of discontinuities for a BV solution to (SSESF). In the
general case where ∂v(rφ)(1, · ) is only in BV and contains jump discontinuities (at which ∂v(rφ)(1, · )
is assumed to be right-continuous), notice that the jump discontinuities for a BV function are discrete,
i.e., they occur only at a (possibly infinite) sequence of points V < v1 < v2 < v3 < · · · . On the other
hand, note that, by the initial condition r = 2v on C1, we have λ(1, v)= 1

2 ; in particular, λ is continuous
initially.

Thanks to the initial condition, it follows that λ does not possess any discontinuities outside 0. Indeed,
from the definition of a BV solution, m and r are continuous. Then, by (2-6), we see that ν is Lipschitz in
the v-direction outside of 0, with bounded Lipschitz constant on each compact interval of u. Looking back
at (2-6) and recalling that λ(1, v)= 1

2 , we then see that λ does not possess any discontinuities outside 0,
as desired. Since λ is a priori in BV, it follows that

∫ v
u0
|∂vλ(u0, v

′)| dv′ is continuous in v ∈ (u0,∞) with∫ v
u0
|∂vλ(u0, v

′)| dv′→ 0 as v→ u0+.
By the above regularity statements and (2-8), as well as the fact that φ is continuous outside 0 by the

definition of a BV solution, it now follows that the jump discontinuities of ∂v(rφ) are propagated along
constant-vi curves. Therefore, for u0 ≥ V , we see that ∂v(rφ)(u0, v) is a right-continuous BV function
on (u0,∞) with jump discontinuities at u0 < v1 < v2 < v3 < · · · with the same sizes as ∂v(rφ)(1, v).
From (8-7), notice that, using the abbreviations in (8-15) and (8-18),∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ =
∫ v

u0

|(∂2
v (rφ)− c∂vλ)(u0, v

′)| dv′

for the constant c = limv→u0+ φ(u0, v), which is independent of v. Thanks to the continuity property
of λ(u0, · ), we see that the integral of |∂2

v (rφ)(u0, · )| has the same jump discontinuities as |∂2
v (rφ)(u0, · )|.

In particular, by (8-6), each jump of I1(u0, v) is at most of size ε.
Fix C3 > 1 to be larger than the maximum of the constants from (8-13) and (8-14). First, a standard

continuity argument using (8-13) and (8-14) implies that, if

lim
v→vi+

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 5C3ε and lim
v→vi+

∫ v

u0

|∂vλ(u0, v
′)| dv′ ≤ 5ε

(with the convention v0 := u0), then∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 4C3ε and
∫ v

u0

|∂vλ(u0, v
′)| dv′ ≤ 4ε

for vi < v < vi+1.
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Assume, for the sake of contradiction, that the conclusion of the proposition is not satisfied. Recall
that the integral of |∂vλ| is continuous. Thus, we have that, for some vi with i > 0,

lim
v→vi−

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 4C3ε

holds, but at the same time

lim
v→vi+

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ > 5C3ε.

However, we have seen that the size of the jump in I1(u0, v) is bounded by ε, which is smaller than C3ε
if C3 > 1. This leads to a contradiction and thus the conclusion of the proposition holds. �

We are now ready to conclude the proof of Theorem 3.14.

Proof of Theorem 3.14. We first establish (8-1). In what follows, we use the abbreviations in (8-15) and
(8-18), such as φ=φu0 . The idea is to transform back, (φ, r,m) 7→ (φ, r,m), using (8-11). Note that |∂vλ|
remains the same under this change, so it suffices to estimate |∂2

v (rφ)|. By (8-19) and Proposition 8.6, for
sufficiently large u0 the limit φ(u0,∞) := limv→∞ φ(u0, v) exists and satisfies

|φ(u0,∞)| ≤ C3ε,

where we note that C3 is independent of u0.
By (8-11), we have φ(u, v)= φ(u, v)−φ(u,∞) for all u. Thus, using Proposition 8.6, we estimate∫

∞

u0

|∂2
v (rφ)(u0, v)| dv =

∫
∞

u0

∣∣∂2
v (rφ(u0, v)− rφ(u0,∞))

∣∣ dv

≤

∫
∞

u0

|∂2
v (rφ)(u0, v)| dv+ |φ(u0,∞)|

∫
∞

u0

|∂vλ(u0, v)| dv

≤ C3(ε+ ε2).

Since u0 ≥ V is arbitrary, this proves (8-1).
Finally, we prove that conditions (2) and (3) of Definition 2.4 hold. Indeed, since ∂v log λ= λ−1∂vλ,

(3) in Definition 2.4 follows from (8-1) and (8-2); in fact, it holds with arbitrarily large R > 0. Next,
by (2-7), nonnegativity of 1−µ and µ (by Lemma 4.1) and the fact that m is invariant under φ 7→ φ,

m(u0, v)≤
1
2 sup

u0≤v′≤v

|(λ−1∂v(rφ)−φ)(u0, v
′)|

∫ v

u0

|∂vφ(u0, v
′)| dv′,

where the right-hand side is bounded by Cε,3ε (with Cε,3 nondecreasing in ε) by the estimates proved so
far. Therefore, (2) of Definition 2.4 follows. This concludes the proof of Theorem 3.14. �

9. Refinement in the small data case

In this section, we sketch a proof of Theorem 3.15. The idea is to revisit the proofs of the main theorems
(Theorems 3.1 and 3.2), and notice that all the required smallness can be obtained by taking initial total
variation of ∂v(rφ) small. Key to this idea is the following lemma:
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Lemma 9.1. There exist universal constants ε0 and C0 such that, for ε < ε0, the following holds: Suppose
that λ(1, · )= 1

2 and ∂v(rφ)(1, · ) is of bounded variation with∫
C1

|∂2
v (rφ)|< ε. (9-1)

Suppose furthermore that limv→∞ φ(1, v)=0. Then the maximal development (φ, r,m) satisfies condition
(1) of Definition 2.4 and obeys

sup
v∈[1,∞)

∫
Cv

∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣+ sup
u∈[1,∞)

∫
Cu

∣∣∣∣ µ

1−µ
λ

r

∣∣∣∣≤ C0ε
2, (9-2)

sup
v∈[1,∞)

∫
Cv

|∂uφ| + sup
u∈[1,∞)

∫
Cu

|∂vφ| ≤ C0ε, (9-3)

sup
v∈[1,∞)

∫
Cv

(|∂2
u (rφ)| + ∂u log ν)+ sup

u∈[1,∞)

∫
Cu

(|∂2
v (rφ)| + ∂v log λ)≤ C0ε. (9-4)

Moreover, the bounds in Proposition 5.3 hold with

K +3≤ C0, 9 ≤ C0ε. (9-5)

Proof. This lemma is an easy consequence of Theorem 5.12 and Lemma 5.11 once we show

sup
Q
|∂v(rφ)| ≤ C0ε,

using the additional condition limv→∞ φ(1, v)= 0. By Lemma 5.2, note that
∫

C1
|∂vφ| ≤ Cε; therefore,

integrating from v =∞, we have limv→1+|φ(1, v)| ≤ Cε. Then, using (9-1) to integrate from v = 1,
where we note that limv→1+ φ(1, v)= limv→1+ ∂v(rφ)(1, v), we obtain

sup
C1

|∂v(rφ)| ≤ Cε.

Using (2-8′), ∂uλ≤ 0, Lemma 5.1 (to control |φ| from |∂v(rφ)|) and 1
3 ≤ λ≤

1
2 (by Theorem 5.12), it

follows that

sup
D(1,v)
|∂v(rφ)| ≤ sup

1≤v′≤v
|∂v(rφ)(1, v′)| + sup

(u,v)∈D(1,v)
sup

1≤u′≤u
|φ(u′, v)|

∫ u

1
(−∂uλ)(u′, v) du′

≤ Cε+ 1
2 sup
D(1,v)
|∂v(rφ)|,

which proves supQ|∂v(rφ)| ≤ C0ε, as desired. �

Equipped with Lemma 9.1, we now proceed to outline the proof of Theorem 3.15.

Proof of (1) in Theorem 3.15. That (φ, r,m) is globally BV scattering follows from Theorem 3.14
and the fact that initial data with small total variation cannot lead to a development which blows up at
infinity; the latter fact follows from Theorem 6.2 in [Christodoulou 1993], as well as estimates proved in
[Christodoulou 1993, Section 4].
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It remains to prove that (3-1)–(3-3) hold with A1 ≤ CI1(I1+ ε) if ε > 0 is sufficiently small. By (6-6),
it follows that Lemma 6.3 holds with H1 ≤ CI1(I1+ ε), and (6-7) in Lemma 6.6 becomes

sup
Cu

rω|∂v(rφ)| ≤ CI1u1(I1+ ε)+C Mi u−1
1 B1(U ). ((6-7)′)

Note that Mi ≤ CI2
1 . Then, repeating the arguments in Section 6D, we see that (6-10) becomes

B1(U )≤ CI1u1(I1+ ε)+C(I2
1 u−1

1 + ε
2)B1(U ). ((6-10)′)

It is important to note that the constant C in the last term does not depend on I1. Take u1=1000C(1+I15)
2.

Then, for ε > 0 sufficiently small (independent of I1), we derive

B1(U )≤ CI1(I1+ ε).

It then follows that (3-1) and (3-2) hold with A1 ≤ CI1(I1+ ε). Applying Lemma 6.5, we conclude
that (3-3) holds with A1 ≤ CI1(I1+ ε) as well. �

Proof of (2) in Theorem 3.15. We need to prove that (3-4)–(3-7) hold with A2 ≤ CI2(I2+ ε). The key is
to show that Proposition 7.6 holds with

A′2 ≤ CI2(I2+ ε). (9-6)

Indeed, by the explicit bounds on the constants (in particular, (7-5), (7-6), (7-7), (7-8), (7-44) and
(7-49)), the desired conclusion easily follows once (9-6) is established.

Note that I1 ≤ I2 by definition, and thus A1 ≤ CI2(I2+ ε) by the preceding proof. We furthermore
claim that the following statements hold:

• Lemma 7.7 holds with
ε(u2)≤ Cε, (9-7)

for every u2 ≥ 1.
• We have

H ′2(1)≤ CI2(I2+ ε), (9-8)

where we remind the reader that

H ′2(1)= sup
{(u,v):u∈[1,3],v∈[u,3u]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
,

according to (7-22).

The first claim follows easily from Lemma 9.1 and (7-34). For the second claim, since 1≤ u ≤ 3, it
suffices to prove17

sup
D(1,9)

(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ C(I2+ ε),

which follows from a persistence-of-regularity argument, similar to our proof of Lemma 7.7.

17Recall that D(1, 9)= {(u, v) : u ∈ [1, 3], v ∈ [u, 3u]} is the domain of dependence of C1 ∩ {1≤ v ≤ 9}.
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To conclude the proof, recall that we had

B2(U )≤ H ′′2 (u2)+ ε
′′(u2)B2(U ),

where B2(U ) was defined in (7-12), and H ′′2 (u2) and ε′′(u2) obey the bounds in (7-23) and (7-24),
respectively. Thanks to (9-7), it follows that we may take u2 = 1 and ε′′(1) ≤ Cε, where C does not
depend on I2. Next, since u2 = 1, we see that H ′′2 (1) ≤ CI2(I2 + ε), by (9-8). Therefore, for ε > 0
sufficiently small (independent of I2), we conclude that

B2(U )≤ CI2(I2+ ε),

which proves that Proposition 7.6 holds with (9-6), as desired. �

10. Optimality of the decay rates

In this section, we show the optimality of the decay rates obtained above, i.e., we prove Theorems 3.16
and 3.18.

10A. Optimality of the decay rates in the case 1< ω′ < 3. In this subsection, we prove Theorem 3.16.
More precisely, we will demonstrate that the proof of the upper bounds for φ and its derivatives can in
fact be sharpened to give also lower bounds for ∂v(rφ) and ∂u(rφ) if the initial data satisfy appropriate
lower bounds for ω < 3.

Proof of Theorem 3.16. We first prove the lower bound for ∂v(rφ). We split the spacetime into the exterior
region Qext and interior region Qint, as before. Notice that, in the exterior region, u . r and it suffices to
prove a lower bound for rω∂v(rφ). Similarly, in the interior region, r . u and it suffices to prove a lower
bound for uω∂v(rφ).

Revisiting the proof of Lemma 6.6, we note that, instead of controlling ∂v(rφ) by the initial data
and error terms, we can bound the difference between ∂v(rφ)(u, v) and the corresponding initial value
of ∂v(rφ)(1, v). More precisely, from the proof of Lemma 6.6, we have

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
u1K Mi

r2(u, v)(1+ r(u, v))
H1+

K M(u1)

u1rω(u, v)
B1(U )

in the case 2< ω < 3 and

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
ωK Mi

r(u, v)(1+ r(u, v))
H1+

ωK M(u1)

u1rω(u, v)
B1(U )

in the case 1< ω ≤ 2. By the decay results proved in Section 6D, we have

sup
u
(H1+B1(u))≤ A

for some constant A. Therefore, by choosing u1 sufficiently large, we have, in the region 3u ≤ v,

rω|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤ 1
4 L ,
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as long as u≥ u1. We now apply the assumption on the lower bound for the initial data rω∂v(rφ)(1, v)≥ L
for v ≥ V . Choosing u larger if necessary, we can assume that u ≥ V . Then, we derive that, in 3u ≤ v,

rω∂v(rφ)(u, v)≥ 1
2 L .

We now move to the interior region, where 3u ≥ v. To this end, we improve the bounds in (6-8). First,
notice that the lower bound in the exterior region implies that there exists L ′ such that

uω∂v(rφ)(u, v)≥ L ′ (10-1)

for 3u ≤ v. Then, integrating (2-8) along the incoming direction from
( 1

3 u, v
)

to (u, v), we get

|∂v(rφ)(u, v)− ∂v(rφ)
( 1

3 u, v
)
| ≤

1
2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′.

By Theorem 3.1, we have

sup
Cu

|φ| ≤ A1u−ω

for some A1 > 0. Lemma 6.1 implies that∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′→ 0

as u→∞. Thus the right-hand side can be bounded by 1
2 L ′uω after choosing u to be sufficiently large.

Combining this with the lower bound (10-1), we have

uω∂v(rφ)(u, v)≥ 1
2 L ′

for 3u ≤ v and u sufficiently large.
We now proceed to obtain the lower bound for ∂u(rφ) by revisiting the proof of Lemma 6.5. Integrating

(2-8) along the outgoing direction from (u, u) to (u, v), we have∣∣∂u(rφ)(u, v)− lim
v′→u+

∂u(rφ)(u, v′)
∣∣≤ ∫

Cu

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣. (10-2)

As before, we use Theorem 3.1, i.e.,

sup
Cu

|φ| ≤ A1u−ω

for some A1 > 0. By Lemma 6.1 and the upper bound (5-6) for |ν|, we have∫
Cu

∣∣∣∣ µλν

(1−µ)r

∣∣∣∣→ 0 as u→∞.

Therefore, we can choose u sufficiently large such that

uω
∫

Cu

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣≤ 1
4 L ′.



1668 JONATHAN LUK AND SUNG-JIN OH

Returning to (10-2) and recalling that, for u large,

− lim
v′→u+

∂u(rφ)(u, v′)= lim
v′→u+

∂v(rφ)(u, v′)≥ 1
2 L ′u−ω,

we have

−∂u(rφ)(u, v)≥ 1
4 L ′u−ω

for u sufficiently large, as desired. �

10B. Key lower bound lemma. The goal of the remainder of this section is to prove Theorem 3.18. In
this subsection we establish a sufficient condition for the desired lower bounds on the decay of φ in
terms of a number (called L) computed on I+. This will be an important ingredient for our proof of
Theorem 3.18 in the next subsection.

Lemma 10.1 (key lower bound lemma). Let (φ, r,m) be a C1 solution to (SSESF) which is locally BV
scattering and asymptotically flat initial data of order ω = 3 in C1. Suppose, furthermore, that

L := lim
v→∞

r3∂v(rφ)(1, v)+
∫
∞

1
(Mν∞8)(u) du 6= 0,

where M(u) := limv→∞m(u, v), ν∞(u) := limv→∞ ν(u, v) and 8(u) := limv→∞ rφ(u, v). Then there
exist constants U , L3 > 0 such that the following lower bounds for the decay of ∂v(rφ), ∂u(rφ) hold on
{(u, v) : u ≥U }:

|∂v(rφ)(u, v)| ≥ L3 min{r(u, v)−3, u−3
}, (10-3)

|∂u(rφ)(u, v)| ≥ L3u−3. (10-4)

Remark 10.2. By (10-3) and (10-4), ∂v(rφ) and ∂u(rφ) have definite signs. In fact, the proof below
shows that the signs of ∂v(rφ) and −∂u(rφ) agree with that of L.

Proof. Without loss of generality, assume that L> 0. For 0< η ≤ 1, define the η-exterior region by

Qη
ext := {(u, v) ∈Q : u ≤ ηv}.

Step 1. In the first step, we make precise the relation between r and v in Qη
ext for small η. We claim that

r ∼ 1
2v in this region; more precisely,∣∣∣∣r(u, v)v

−
1
2

∣∣∣∣≤ ηCA1,A2,K ,3. (10-5)

Integrating by parts, we have

r(u, v)=
∫ v

u
λ(u, v′) dv′ =−

∫ v

u
∂vλ(u, v′)v′ dv′+ vλ(u, v)− uλ(u, u).

To make the leading term vλ(u, v) and small number u/v explicit, we rewrite the last expression as
follows:

r(u, v)= v
[
λ(u, v)−

u
v

(
λ(u, u)+

∫ v

u
∂vλ(u, v′)

v′

u
dv′
)]
.
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Recall that λ is uniformly bounded from above and below on Q, namely, 3−1
≤ λ≤ 1

2 . Moreover, by
the decay estimates for ∂vλ proved in Theorem 3.2, we have

sup
(u,v)∈Q

∫ v

u
|∂vλ(u, v′)|

v′

u
dv′ ≤ CA2 .

As a consequence, ∣∣∣∣r(u, v)v
− λ(u, v)

∣∣∣∣≤ ηCA2,3.

Thus (10-5) will follow once we establish∣∣λ(u, v)− 1
2

∣∣≤ η2CA1,A2,K ,3. (10-6)

This inequality is proved by integrating the decay estimate (7-55) for ∂uλ= ∂u∂vr along the incoming
direction, starting from the normalization λ(1, v)= 1

2 . Here, we use the easy geometric fact that, if (u, v)
lies in Qη

ext, then so does the incoming null curve from (1, v) to (u, v).

Step 2. We claim that, for U1 ≥ 1 sufficiently large and 0< η ≤ 1 suitably small, we have

∂v(rφ)(u, v)≥ 1
2L
( 1

2v
)−3 (10-7)

for (u, v) ∈Qη
ext ∩ {u ≥U1}.

We begin with(1
2v
)3
∂v(rφ)(u, v)=

( 1
2v
)3
∂v(rφ)(1, v)+

( 1
2v
)3
∫ u

1

2mλν
(1−µ)r3 rφ(u′, v) du′, (10-8)

obtained by integrating the ∂u∂v(rφ) equation and multiplying by
( 1

2v
)3. To prove (10-7), it suffices to

show that the right-hand side of (10-8) is bounded from below by 1
2L for (u, v) ∈Qη

ext ∩ {u ≥U1} with
sufficiently large U1 ≥ 1 and small 0< η ≤ 1.

Note that r = 1
2(v − 1) on C1, and v ≥ η−1 if (u, v) ∈ Qη

ext. Thus, for (u, v) ∈ Qη
ext and 0 < η ≤ 1

sufficiently small, we have ∣∣( 1
2v
)3
∂v(rφ)(1, v)− lim

v→∞
r3∂v(rφ)(1, v)

∣∣< 1
8L.

In order to proceed, it is useful to keep in mind the following technical point: for U1 ≥ 1, by the decay
estimates (3-1) and (6-13), we have

sup
v≥U1

∫ v

U1

∣∣∣∣2mλν
1−µ

rφ(u′, v)
∣∣∣∣ du′ ≤U−6

1 CA1,3. (10-9)

In what follows, let (u, v) ∈Qη
ext ∩ {u ≥U1}. Using (10-5), (10-9) and the fact that the null segment

from (1, v) to (u, v) lies in Qη
ext, we get∣∣∣∣( 1

2v
)3
∫ u

1

2mλν
(1−µ)r3 rφ(u′, v) du′−

∫ u

1

2mλν
1−µ

rφ(u′, v) du′
∣∣∣∣≤ ηCA1,A2,K ,3.
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Taking U1 ≥ 1 large enough and using (10-9), we may arrange

sup
v≥U1

∫ v

U1

∣∣∣∣2mλν
1−µ

rφ(u′, v)
∣∣∣∣ du′+

∫
∞

U1

|Mν∞8(u′)| du′ < 1
8L.

On the other hand, note that 2mλν(1−µ)−1rφ(u, v)→Mν∞8(u) for each u≥1 as v→∞. Therefore,
by the dominated convergence theorem, for 0< η ≤ 1 sufficiently small (so that v is large), we have∣∣∣∣∫ U1

1

2mλν
1−µ

rφ(u′, v) du′−
∫ U1

1
Mν∞8(u′) du′

∣∣∣∣< 1
8L.

Putting these together and taking 0< η ≤ 1 sufficiently small, we conclude (10-7).

Step 3. Next, we claim that there exists U2 = U2(U1, A2,3, K , η) ≥ 1 such that U2 ≥ U1 and, for
(u, v) ∈ (Q \Qη

ext)∩ {u ≥U2}, we have

∂v(rφ)(u, v)≥ 2η3L u−3. (10-10)

Combined with (10-7) (keeping in mind that r ∼ 1
2v in Qη

ext by (10-5)), this would establish (10-3).
Take U2 ≥ η

−1U1, and consider (u, v) ∈ (Q \Qη
ext)∩ {u ≥U2}. Integrating (2-8), we have

∂v(rφ)(u, v)= ∂v(rφ)(ηu, v)+
∫ u

ηu

2mλν
r2 φ(u′, v) du′.

Note that (ηu, v) ∈Qη
ext∩{u ≥U1} since v ≥ u and ηu ≥ ηU2 ≥U1. Therefore, by (10-7) and the fact

that η−1u > v (as (u, v) ∈Q \Qη
ext), the first term on the right-hand side obeys the lower bound

∂v(rφ)(ηu, v)≥ 1
2L
( 1

2v
)−3

> 4η3L u−3.

On the other hand, using (3-1) and (7-56), we have∣∣∣∣∫ u

ηu

2mλν
r2 φ(u′, v) du′

∣∣∣∣≤ CA1,A2,3,K

∫ u

ηu

1
(u′)10 du′ ≤ CA1,A2,3,K ,η u−9.

Taking U2 large enough, we conclude that (10-10) holds.

Step 4. Finally, we claim that there exists U =U (U2, A2,3, K , η)≥ 1 such that U ≥U2 ≥U1 and, for
(u, v) ∈ {u ≥U }, we have

−∂u(rφ)(u, v)≥ η3L u−3. (10-11)

This would prove (10-4), thereby completing the proof of Lemma 10.1.
Our argument will be very similar to the previous step. Take U ≥U2 and consider (u, v) ∈ {u ≥U }.

Integrating (2-8) along the outgoing direction, we have

−∂u(rφ)(u, v)=−∂u(rφ)(u, u)−
∫ v

u

2mλν
r2 φ(u, v′) dv′.

Recall that limv→u+ ∂u(rφ)(u, v)=− limv→u+ ∂v(rφ)(u, v). By (10-10) and the fact that u ≥U ≥U2,
we see that the first term on the right-hand side obeys the lower bound

−∂u(rφ)(u, u)≥ 2η3L u−3.
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On the other hand, using (3-1) and (7-56), we have∣∣∣∣∫ v

u

2mλν
r2 φ(u, v′) dv′

∣∣∣∣≤ CA1,A2,K

∫ v

u
min{u−10, r−2u−8

} λ dv′ ≤ CA1,A2,K u−9.

Taking U sufficiently large, we conclude that (10-11) holds. �

10C. Optimality of the decay rates, in the case ω′ ≥ 3. In this subsection, we prove Theorem 3.18 by
studying the solution to (SSESF) arising from the initial value

∂v(rφ)(1, v)= εχ̃
(
v− v0

N

)
,

where χ̃ : (−∞,∞)→ [0,∞) is a smooth function such that

supp χ̃ ⊂
(
−

1
2 ,

1
2

)
,

∫
R

χ̃ = 1.

We also require that v0 ≥ 2 and N ≤ v0. With such data, the initial total variation is of size at most Cε:∫
∞

1
|∂2
v (rφ)(1, v)| dv ≤ ε

∫
∞

−∞

∣∣∣∣χ̃ ′(v− v0

N

)∣∣∣∣ dv
N
≤ Cε.

We also see that I1 ≤ Cεv3
0 and I2 ≤ Cεv4

0/N with ω′ = 3, as

sup
v∈[1,∞)

(1+ r)3|∂v(rφ)|(1, v)≤ Cεv3
0 and sup

v∈[1,∞)
(1+ r)4|∂2

v (rφ)|(1, v)≤ Cε
v4

0

N
.

We are now ready to give a proof of Theorem 3.18. The idea is to compute L to the leading order
(which turns out to be −cε3 for some c > 0) and then control the lower order terms by taking ε > 0
sufficiently small and applying Theorem 3.15.

Proof of Theorem 3.18. For this proof, we fix v0 = 4 and N = 1. We use the shorthand

χ(v) := χ̃(v− 4).

By the preceding discussion on the size of initial data, we see that Theorem 3.15 applies when ε > 0 is
sufficiently small. Therefore, there exists a constant C > 0 independent of ε > 0 such that Theorems 3.1
and 3.2 and Proposition 5.3 hold with

A1, A2 ≤ Cε, K ,3≤ C. (10-12)

We begin by showing

∂v(rφ)(u, v)= εχ(v)+Err1(u, v), (10-13)

where

|Err1(u, v)| ≤ Cε3 min{u−3, r(u, v)−3
}. (10-14)



1672 JONATHAN LUK AND SUNG-JIN OH

The argument is similar to the proof of Theorem 3.16, but this time we rely on Theorem 3.15 to make
the dependence of Err1 on ε explicit. Indeed, by (2-8), we have

|Err1(u, v)| ≤
∫ u

1

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣(u′, v) du′.

Then, estimating the right-hand side using Theorem 3.1, Proposition 5.3 and Corollary 7.13, and using
(10-12) to make the ε-dependence explicit, (10-14) follows.

Integrating (10-13), we also have

rφ(u, v)=
∫ v

u
∂v(rφ)(u, v′) dv′

= ε

∫ v

u
χ(v′) dv′+

∫ v

u
Err1(u, v′) dv′

= εX (u, v)+Err2(u, v),

where X (u, v) :=
∫ v

u χ(v
′) dv′ and Err2(u, v) :=

∫ v
u Err1(u, v′) dv′. Integrating (10-14) and using the

bound C−1
≤ λ≤ 1

2 , we easily obtain

|Err2(u, v)| ≤ Cε3 min{ru−3, u−2
}. (10-15)

In particular, taking v→∞, we see that

|8(u)− εX (u,∞)| ≤ Cε3u−2. (10-16)

We now proceed to estimate M(u). We begin with the easy observation

M(u)≤ Cε2u−5, (10-17)

which follows from Corollary 7.13 and (10-12). On the other hand, recalling the definition of M(u)
from (2-7) and using the elementary inequality (a+ b)2 ≥ 1

2a2
− b2,

M(u)= 1
2

∫
∞

u

1−µ
λ

[
∂v(rφ)−

λ

r
(rφ)

]2

(u, v) dv

≥
ε2

4

∫
∞

u

1−µ
λ

(u, v)
[
χ(v)−

λ

r
X (u, v)

]2

dv− 1
2

∫
∞

u

1−µ
λ

[
Err1−

λ

r
Err2

]2

(u, v) dv.

By (10-12), (10-14) and (10-15), we have∣∣∣∣12
∫
∞

u

1−µ
λ

[
Err1−

λ

r
Err2

]2

(u, v) dv
∣∣∣∣≤ Cε6.

Furthermore, note that (1− µ) ≥ (K3)−1
≥ C−1 > 0, by Proposition 5.3 and (10-12). Also, for

(u, v) ∈ [1, 2]× [8,∞), note that χ(v)= 0 and X (u, v)= 1. Therefore, for 1≤ u ≤ 2, there exists c > 0
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(independent of ε > 0) such that

1
4

∫
∞

u

1−µ
λ

(u, v)
[
χ −

λ

r
X
]2

(u, v) dv ≥ (4C)−1
∫
∞

u

[
χ −

λ

r
X
]2

(u, v) λ−1(u, v) dv

≥ (4C)−1
∫
∞

8

λ

r2 (u, v) dv

≥ c.
Therefore, we conclude that

M(u)≥ cε2
−Cε6 for 1≤ u ≤ 2. (10-18)

We are now ready to compute L and complete the proof. We begin by observing that

lim
v→∞

r3
|∂v(rφ)(1, v)| = 0

by our choice of data. Therefore,

−L=

∫
∞

1
M(−ν∞)8(u) du = ε

∫
∞

1
M(u)(−ν∞)(u)X (u,∞) du+

∫
∞

1
M(u)(−ν∞)(u)Err2(u,∞) du.

By Proposition 5.3, (10-12), (10-15) and (10-17), we have∣∣∣∣∫ ∞
1

M(u)(−ν∞)(u)Err2(u,∞) du
∣∣∣∣≤ Cε5.

On the other hand, by Proposition 5.3, (10-12) and (10-18), we have (taking c> 0 smaller if necessary)

ε

∫
∞

1
M(u)(−ν∞)(u)X (u,∞) du ≥ ε

∫ 2

1
M(u)(−ν∞)(u)X (u,∞) du

≥3−1ε

∫ 2

1
M(u) du ≥ cε3

−Cε7.

Therefore, taking ε > 0 sufficiently small, we see that −L> 1
2 cε3 > 0. �
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A MODEL FOR STUDYING DOUBLE EXPONENTIAL GROWTH
IN THE TWO-DIMENSIONAL EULER EQUATIONS

NETS KATZ AND ANDREW TAPAY

We introduce a model for the two-dimensional Euler equations which is designed to study whether or not
double exponential growth can be achieved for a short time at an interior point of the flow.

1. Background

The two-dimensional Euler equations for incompressible fluid flow are given by

@u

@t
Cu � ruD�rp;

together with

r �uD 0:

Here, u W R2 � Œ0;1/ ! R2 is a time-varying vector field on R2 representing the velocity and
p W R2 � Œ0;1/! R is a scalar representing the pressure.

The equation is solved with a given initial divergence-free velocity field u0:

u.x; 0/D u0.x/:

When u0 is chosen to be, for instance, smooth with compact support, a smooth solution to the Euler
equation exists for all time. Moreover, a result of Beale, Kato, and Majda [Beale et al. 1984] shows that
Sobolev norms grow at most double-exponentially in time.

Considerable work has been done recently to establish that such growth actually occurs. Denisov [2015]
demonstrates growth similar to double exponential in an example that consists of a slightly smoothed,
singular steady state solution together with a bump. For some time, the singular solution stretches the
bump at a double exponential rate. Kiselev and Šverák [2014] do Denisov one better by creating a
sustained double exponential growth near a boundary. This is a very similar idea to Denisov’s. We may
imagine that something quite similar to Denisov’s singular steady state lives right at the boundary and is
drawing bumps towards it. Another recent result on rapid growth in the Euler equations is [Zlatoš 2015].

Both authors were partially supported by NSF grant DMS 1266104.
MSC2010: 35Q31.
Keywords: fluid mechanics, Euler equations, two-dimensional Euler equations.
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2. New results

Summary. The purpose of this paper is to create a tool for studying the question of whether double
exponential growth can begin spontaneously at an interior point. We borrow from Pavlović’s [2002] thesis
the idea that the allowed fast growth in Euler is coming from low frequency to high frequency interactions.
We model the impact of each scale on the vicinity of a given particle as a linear area-preserving map.

In a double exponential growth, energy has to cascade from low frequencies to high frequencies. We
try to model this phenomenon. We start at a point in time where, heuristically, N dyadic scales are
active. More precisely, we use the parameter N as a bound for short time on the sum of the L1 norms of
Littlewood–Paley projections of ru, the gradient of the velocity field. When double exponential growth
is taking place, this Besov norm should be growing exponentially, so its size stays stable (to within a
constant) for time O.1/. This is assumption (1).

As each scale evolves, it alters the effects of the smaller scales. We can model this as a system of
differential equations with one SL.2/-valued unknown for each scale. The main result in the paper is
Theorem 3, below. It says that, during a time period of order .log N /=N , this autonomous system of
differential equations closely approximates the actual behavior of the Euler equation. This is a time
period during which growth by a factor of a power of N can occur in the Sobolev norms of the velocity
and during which our hypothesis stays stable. Indeed, such growth must occur during some such time
period if double exponential growth is to take place. Thus, our simplified model can be used to study
the possibility and likelihood of growth occurring spontaneously at an interior point. This is especially
noteworthy because the previous examples of rapid growth in the two-dimensional Euler equations (such
as [Denisov 2015; Kiselev and Šverák 2014]) do not occur spontaneously from energy cascading from
low to high frequencies. Thus, we believe this phenomenon is definitely worthy of more study.

We comment briefly on some of the properties of the model. Clearly, the system is simpler than
studying the Euler equations. This is because many of the parameters of the Euler equations lie in the
initial condition !0 of the SL.2/ system. Indeed, once a point in R2 is chosen (to study the accumulation
of vorticity at that point as it moves through the flow) and the parameter N (the number of active scales)
is fixed, the system has only 3N parameters. If the initial condition !0 can be designed so that the SL.2/
system grows exponentially with rate N , this would indicate double exponential growth in the Euler
equations. However, it is critical that such growth be sustained for a time period of order .log N /=N , as
the proof below makes it reasonably obvious that it is possible to do so for a time period of order 1=N

(see Lemma 5). Currently, we do not have a strategy for designing such initial data. The purpose of this
work is to establish a rigorous connection between the Euler equations and the model.

Admittedly, our model works for only a very short period of time. We cannot use the model to follow
the equation for a longer period of time, because nonlinearities are breaking down its connection to the
equation. The fact that it runs long enough to give some insight into the double exponential growth
question is a consequence of the criticality of the equation for this problem. In supercritical problems like
blow-up for surface quasigeostrophic equations or blow-up for the three-dimensional Euler equations, the
same kind of model cannot work.
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Notation and Prerequisites. By a. b we mean that a� kb for some constant k that does not depend
on anything important. The notation a� b means a. b and b . a simultaneously. The norm j � j is the
usual Euclidean norm when applied to vectors in R2 and can be thought of as the maximum norm when
applied to a matrix.

Let  W R2! R be a smooth function such that

 .�/D

�
1 for 0< j�j< 1;

0 for j�j> 2;

and define the operator P0 to be the Fourier multiplier with symbol  . Let  1.�/D  
�

1
2
�
�
� .�/ and,

for j > 1, define Pj to be the Fourier multiplier with symbol  j .�/ WD  1.2
1�j�/. For convenience of

notation, define Pj D 0 for j < 0. Thus, Pj acts like a projection onto the frequency annulus f� W j�j � 2j g

for j > 1, and
P

j Pj is the identity because the sum telescopes. These Pj are commonly known as the
Littlewood–Paley operators. Further, let zPj D

P2
˛D�2 PjC˛ and Ej D

P
k<j Pk . Note that

Ejf .x/D f � .2
2k y .2k

� //.x/D

Z
f .xC 2�j s/ y .s/ ds

and y is a radial Schwartz function such that
R
y D  .0/D 1. Hence, Ej acts like, and will be referred

to as, an averaging operator on scale � 2�j . All Littlewood–Paley operators in this work take their
arguments in the spatial variable x 2 R2 (and not in time).

Let u W R2 � Œ0;1/! R2 be the velocity field of a two-dimensional, inviscid, incompressible fluid
flow and ! D @u2=@x1� @u1=@x2 the associated vorticity. We make some assumptions about u over the
time period we will be considering, which is of order .log N /=N . We will assume that

1X
jD0

kPjrukL1 .N (1)

and kPjrukL1 . 1 for all j � 0: (2)

Note that (2) is automatic in the case that !0 2L1. Above, and throughout this work, Lp DLp.R2/,
that is, all Lp norms are taken in the spatial variable x 2 R2. Also as above, explicit mention of the
dependence on time (t ) will often be omitted for brevity. We define the flow maps �.x; t/ to be solutions
of the differential equations

@

@t
�.x; t/D u.�.x; t/; t/;

�.x; 0/D x;

(3)

so the point �.x; t/ is the image of the point x under the flow with velocity field u at time t . Thus, the
Jacobian matrix of �, which we denote by D�, satisfies the differential equation

@

@t
D�.x; t/D ..ru/ ı�/.x; t/ �D�.x; t/;

D�.x; 0/D I;

(4)
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for each x 2 R2. By both D and r we mean the Jacobian derivative in the spatial variable x and not
in the coordinates of the particle trajectories �.x; t/. Indeed, it should be noted that the equations (3)
and (4) invite a change of coordinates via the map x 7! �.x; t/. This change of coordinates is especially
convenient because incompressibility, rx � u D 0, gives det.Dx�.x; t// � 1. This will make it useful
for our purposes to use the Lagrangian reference frame; that is, spatial variables will be evaluated along
the particle trajectories �.x; t/. A thorough discussion of particle trajectory maps and the Lagrangian
reference frame can be found in [Majda and Bertozzi 2002]. Other recent results use the Lagrangian
reference frame; see [Bourgain and Li 2015a; 2015b].

Proceeding formally, if we define Ri WD�
� 1

2 @=@xi , we have the so-called Biot–Savart law,

ruD

�
�R1R2! �R2

2
!

R2
1
! R1R2!

�
:

Using the Green’s function for the Laplace operator, we can calculate the nonlocal parts of the composed
Riesz operators by giving the nonsingular part of their kernels. (The local part, of course, lives in the
singular part of the kernel located on the diagonal.) These are

R1R2! DK12 �!. � ; t/; R2
1! DK11 �!. � ; t/; and R2

2 D�K11 �!. � ; t/;

where

K12.x1;x2/D
x1x2

�.x2
1
Cx2

2
/2

and K11.x1;x2/D
x2

2
�x2

1

2�.x2
1
Cx2

2
/2
:

The main result. The following definition is the one of the main fixtures of this paper. We will define
an approximation of ru.�.0; t/; t/ so that, for a short time of order .log N /=N , the flow is given by a
linear area-preserving map at each physical scale around the point �.0; t/. That is, the contribution to
ru.�.0; t/; t/ from the part of the vorticity which at time 0 was at an annulus at scale 2�j around 0 is
calculated as though the flow on the annulus were linear and given by some hj 2 SL.2/. This is inspired
by the following version of the Biot–Savart law:

ru.�.0; t/; t/D

Z
!.s; t/K.s��.0; t// ds

D

Z
!.�.s; t/; t/K.�.s; t/��.0; t// ds

D

X
j2Z

Z
Aj

!0.s/K.�.s; t/��.0; t// ds; (5)

where Aj Dfx W 2
�j � jxj< 21�j g and by dropping the index of K we mean a generic entry in the matrix

ru.�.x; t/; t/. We have used the aforementioned change of coordinates s 7! �.s; t/. This change of
coordinates is especially convenient because, in two space dimensions, the vorticity is purely transported
by the flow map. That is,

@!

@t
Cu � r! D 0 and so !0.s/D !.�.s; t/; t/
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for all t � 0. In (5), we are focusing on �.0; t/, which we think of as a generic interior point of a fluid
flow, in order to study whether double exponential growth is in the making at that point as it moves along
the flow.

Definition 1. Let h.t/ be an element of SL.2/. We define

.ru/j ;h.t/D

�
�.ru/j ;h;2 .ru/j ;h;1
.ru/j ;h;1 .ru/j ;h;2

�
;

where

.ru/j ;h;i.t/D

Z
Aj

!0;j .s/K1i.h.t/ � s/ ds;

!j D �Aj
.EjClog N �Ej�log N /!;

and !0;j .x/D !j .x; 0/:

(6)

Remark 2. Two things regarding the above definition are worth emphasizing. First, a heuristic note: the
object

P
j .ru/j ;hj

.t/ should be thought of as an approximation of ru.�.0; t/; t/. This is, of course, in
the event that each matrix hj .t/ is a linear approximation of the movement of the fluid particles roughly
distance 2�j from �.0; t/. Indeed, if in (6) we replaced !0;j with !0 and h.t/ � s with �.x; t/��.0; t/,
we would have

P
j .ru/j ;hj

.t/Dru.�.0; t/; t/ (at least formally).
Second, despite the notation, .ru/j ;h;i.t/ does not explicitly depend on the velocity field u at time t .

We now state the main result: for a short time, we can approximate the average of the Jacobian of
the flow map at the scale 2�j by a linear map for each j and these linear maps satisfy an autonomous
system of differential equations not depending on the solution to the Euler equations. The behavior of
this system can be a test for whether double exponential growth can occur and what it should look like.

Theorem 3. Assume that
1X

jD0

kPjrukL1 .N

and kPjrukL1 . 1;

and let hj 2 SL.2/ be defined as the solution to the ODE

dhj

dt
D

�X
k<j

.ru/k;hk

�
hj ;

hj .0/D I:

Then there is a (small) universal constant C > 0 such that, for all times 0� t � C.log N /=N , we have

jhj .t/�Ej D�.0; t/j DO.N�
7

10 /

for all j > 0.
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Remark 4. The purpose of using !0;j instead of just !0 is a technical advantage: !0;j is a projection onto
the frequencies of ! that make a significant contribution to ru.�.0; t/; t/ coming from the annulus Aj .
Indeed, if, in light of (5), we define

zru.�.0; t/; t/ WD
X
j2Z

Z
Aj

!j .�.s; t/; t/K.�.s; t/��.0; t// ds;

whereas (at least formally)

ru.�.0; t/; t/D
X
j2Z

Z
Aj

!.�.s; t/; t/K.�.s; t/��.0; t// ds;

the difference isX
j

X
jk�j j>log N

Z
Aj

Pk.!.�.s; t/; t//K.�.s; t/��.0; t// ds

D

X
f.j ;k/Wjk�j j>log N g

Z
Aj

�Z
!.y; t/ L k.y ��.s; t// dy

�
K.�.s; t/��.0; t// ds

D

X
f.j ;k/Wjk�j j>log N g

Z
Aj

�Z
!.y; t/

�Z
e2�i.y��.s;t//�� k.�/ d�

�
dy

�
K.�.s; t/��.0; t// ds: (7)

Note that, by (3), the fundamental theorem of calculus, and (1), over a time period of order .log N /=N

we have
jsj

log N
. j�.s; t/j. jsj log N: (8)

In the right-hand side of (7), we integrate by parts in
R

e2�i.y��.s;t//�� k.�/ d� , moving a derivative
r� from the exponential onto  k for terms in which k > j C log N , and the opposite way for terms where
k < j C log N . Since jsj � 2�j in each Aj , this gives us a factor of .log N /2˙j from the exponential
term (because of (8)) and 2�k from the dilation of  1, and this gives the estimate

(7). log N
X

f.j ;k/Wjk�j j>log N g

2�jk�j j
kPk!kL1

Z
Aj

K.�.s; t/��.0; t// ds:

Since, by definition, jK.x/j � jxj�2, we have
R
Aj

K.�.s; t/��.0; t// ds . .log N /2 for all j . Hence,
we now have the bound

(7). .log N /3
X

f.j ;k/Wjk�j j>log N g

kPk!kL12�jk�j j

. .log N /3

N

X
k

kPk!kL1

. .log N /3: (9)

We also used (1) and the fact that kPk!kL1 � kPkrukL1 .
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The technical advantage of using !0;j is that we have, similarly to (1),

1X
jD0

k!jkL1 .
1X

jD0

X
f.k;j/Wjk�j j<log N

kPk!kL1 .N log N: (10)

The reader might ask why we chose to have the error estimate in (9) come to .log N /3. It is entirely
arbitrary. By replacing the range of log N scales by a range of C log N scales, which would only cost us
a constant in the estimate (10), we could reduce the estimate to an arbitrary negative power of N , but the
point is that, because of the brevity of our time period, any estimate for the error which has a power of N

lower than 1 will work. The error is smaller than the worst case we have for krukL1 . The important
part of these estimates is that we lose (at most) a factor of a power of log N in (10), which is enough for
our purposes, mainly because of the assumption (1).

3. Methods of the proof

Here is a brief outline of the proof. The proofs of the lemmas and the main theorem will follow in the
next section.

Many of the estimates will be based on the following Gronwall-type lemma, which says that solutions
to similar ODEs remain similar for a short time.

Lemma 5. Suppose that F , G1, G2, w and v are real-valued functions of time with domain Œ0;1/ such
that F.t/DO.N /, and that

dw

dt
.t/D F.t/w.t/CG1.t/;

dv

dt
.t/D F.t/v.t/CG2.t/;

w.0/D v.0/:

Assume further that, for some constant E,

jG1.t/�G2.t/j.
�

E for 0< t . 1=N;

jF.t/.w.t/� v.t//j for t & 1=N:

Then, there is a (small) universal constant C , independent of N , such that j.w� v/.t/j .EN�
9

10
� 1

100

for all times t � C.log N /=N .

The idea behind Lemma 5 is that, since the difference starts out at 0, the “error” term G1�G2 dominates
for times t . 1=N . At that time, the main term, F.t/.w.t/� v.t//, becomes the dominant term but
j.w� v/.t/j remains relatively small for an additional time . log N . Most of the time, we will not need
the extra factor of N�

1
100 . It will be used to eliminate factors of log N that show up in the error term E.

We will often use the following estimate, which says the individual Littlewood–Paley pieces of D�

stay small:

Lemma 6. Under assumptions (1)–(2), supj>0kPj D�.t/kL1 .N�
9

10
� 1

100 for times t � C.log N /=N .
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In order to prove Theorem 3, we will show that, for the time period we are considering, the flow maps
are essentially linear on a given dyadic annulus. That is, we will estimate the difference between the
linear map .Ej D�.0; t// �x and the difference �.x; t/��.0; t/ for jxj � 2�j . To do so, we first show
that the averages of the Jacobians of the flow maps are close to the averages of the differences in the flow
maps, that is,

jEj D�.0; t/ �x� .Ej�.x; t/�Ej�.0; t//j. 2�j N�
9

10 ;

a sort of approximate mean value theorem. We do this by using (3) to examine the time derivative of
the difference of the flow maps and (4) to examine the average of D� at the appropriate scale. With the
fundamental theorem of calculus, and on frequency support grounds, we have that the time derivative of
the difference is essentially�Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Ej�.x; t/�Ej�.0; t//:

If we throw away log N many frequencies from the integrand, it is almost constant on its domain. The
error from doing so is acceptable, so we have now, essentially,

Ej ..ru/ ı�/.0; t/ � .Ej�.x; t/�Ej�.0; t//CO.2�j log N /

and we apply Lemma 5. We will still have to show that the difference of averages is close to the actual
difference for x at the appropriate scale. Since

P
Pk D 1, this is entirely a matter of controlling the

frequency bands bigger than 2j . We do this by first using a trivial bound for the high (at least j C log N )
frequencies, which comes from the fundamental theorem of calculus. For j � k � j C log N , we can
again exploit the fact that averages at scale 2�j are essentially constant at scale 2�j�log N .

Putting all of this together, we have:

Lemma 7. For times t � C.log N /=N and jxj � 2�j , we haveˇ̌
.Ej D�.0; t// �x� .�.x; t/��.0; t//

ˇ̌
DO.2�j N�

9
10 /:

Finally, we will prove Theorem 3 by using Lemma 7 to substitute the linear map .Ej D�.0; t// �x for
the difference �.x; t/��.0; t/ in each piece of the convolution used to calculate ru by the Biot–Savart
law.

4. The proof

Note that the constant C may change from line to line. It will only change finitely many times and, in the
end, it will be a universal constant which is independent of N .

Proof of Lemma 5. Observe that

d.w� v/

dt
.t/D F.t/.w� v/.t/� .G1.t/�G2.t//;

.w� v/.0/D 0;
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and suppose that T is the first time that j.w� v/.T /j D E=N . Then, for times t � minf1=N;T g, we
have, by assumption,

F.t/.w� v/.t/DO.E/ D)

ˇ̌̌̌
d.w� v/

dt
.t/

ˇ̌̌̌
.E:

Therefore, since the growth of the difference is at most linear of rate E, it follows that T DO.1=N /.
For T � t � C.log N /=N , we haveˇ̌̌̌

d.w� v/

dt
.t/

ˇ̌̌̌
. jF.t/.w� v/.t/j DO.N /j.w� v/.t/j

and so, by Gronwall’s lemma, we have

j.w� v/.t/j. E

N
eN t .EN�

9
10
� 1

100 ;

where we get the last inequality by choosing C such that t . C.log N /=N � .log.N
1

10
� 1

100 //=N . �

Proof of Lemma 6. Taking Pj of both sides of (4), we have, on frequency support grounds

@

@t
Pj D� D Pj .EjC3..ru/ ı�/ � zPj D�/CPj . zPj ..ru/ ı�/ �Ej�2D�/

CPj

� 1X
kDj

zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

�
: (11)

(Notice that explicit dependence on x and t has been omitted for convenience of notation. This
will continue throughout this work.) We will make frequent use of the following versions of the cheap
Littlewood–Paley inequality:

sup
j

kPjf kL1 . kf kL1 (12)

and sup
j

kEjf kL1 . kf kL1 : (13)

To prove (13), observe that, for any x,

jEjf .x/j D

ˇ̌̌̌Z
f .xC 2�j s/ y .s/ ds

ˇ̌̌̌
� kf kL1

ˇ̌̌̌Z
y .s/ ds

ˇ̌̌̌
D  .0/ � kf kL1 D kf kL1 ;

by the definition of  . The estimate (12) is proven analogously.
Let S.t/D supj>0kPj D�.t/kL1 . For the first term of (11) we then have

ˇ̌
Pj

�
EjC3..ru/ ı�/ � zPj D�

�ˇ̌
.kEjC3..ru/ ı�/kL1k zPj D�kL1.

1X
jD0

kPjrukL1S.t/.O.N /S.t/:

The first inequality follows from (12), the second follows from the triangle inequality and from adding
nonnegative terms, and the definitions of zPj and S.t/, and the last follows from assumption (1). Along
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similar lines, for the second term of (11) we haveˇ̌
Pj

�
zPj ..ru/ ı�/ �Ej�2D�

�ˇ̌
. k zPj ..ru/ ı�/kL1kEj�2D�kL1

. sup
j

kPjrukL1kD�kL1

.O.kD�kL1/;

which follows from (12), the definition of zPj and (13), and assumption (2). Finally, for the last term
in (11),ˇ̌̌̌
Pj

� 1X
kDj

zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

�ˇ̌̌̌
.
1X

kDj

k zPkC1rukL1kPkC3D�kL1 CkPkC3rukL1k zPkD�kL1

. S.t/

1X
kDj

kPkrukL1

.O.N /S.t/;

which we justify with (12), the definitions of zPk and S.t/, and assumption (1). Putting together these
three estimates, we have

d

dt
S.t/DO.N /S.t/CO.kD�kL1/:

Further, using (4), (1) and Gronwall’s lemma, we see that

kD�kL1 . eN t (14)

and so
d

dt
S.t/DO.N /S.t/CO.eN t /:

From here, we can apply a traditional, inhomogeneous version of Gronwall’s lemma to achieve the
desired bound. �

The proof of Lemma 7 is achieved in two parts. First, we show that the average of the Jacobian of
a flow map is closely approximated by the average difference of a flow map at a fixed scale. That is,
for jxj � 2�j , we haveˇ̌

.Ej D�.0; t// �x� .Ej�.x; t/�Ej�.0; t//
ˇ̌
DO.2�j N�

9
10 /:

We do this by comparing the time derivatives of each expression and using Lemma 5. Then we show that
the differences of the flow maps themselves at scale � 2�j are closely approximated by their averages at
the same scale, that is,ˇ̌

Ej�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//
ˇ̌
. 2�j N�

9
10 ;

hence proving Lemma 7 by the triangle inequality.
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Proof of Lemma 7. First, we claim that, for jxj � 2�j ,

ˇ̌
.Ej D�.0; t// �x� .Ej�.x; t/�Ej�.0; t//

ˇ̌
DO.2�j N�

9
10 /: (15)

We examine @
�
.Ej D�.0; t// � x

�ı
@t using (4). The goal is to use Lemma 5. In this case, we want

to show that @
�
.Ej D�.0; t// �x

�ı
@t DEj ..ru/ ı�/.0; t/ �

�
.Ej D�.0; t// �x

�
plus an error term which

obeys acceptable bounds. Taking Ej and then the product with x of both sides of (4), we have, purely on
frequency support grounds,

@

@t

�
.Ej D�.0; t// �x

�
DEj

�
EjC3..ru/ ı�/.0; t/ �EjC3D�.0; t/

�
�x

CEj

� 1X
kDj

�
zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

��
�x: (16)

(Note that, in the second line, we have again omitted the arguments of .ru/ı� and D� for brevity.) The
second term is entirely an error term. Observe that, by (2), Lemma 6, and frequency support, the second
term of (16) is

O
�
sup

j

kPjrukL1
�
Ej

� 1X
kDj

PkD�.0; t/

�
�x DO.2�j /; (17)

which will prove to be a tolerable error. For the first term of (16), since Ej is not actually a projection,
we have to separate some of the frequencies. We use the fact that Ej Ej�2 DEj�2, giving

Ej

�
EjC3..ru/ ı�/.0; t/ �EjC3D�.0; t/

�
�x DEj�2..ru/ ı�/.0; t/ �

�
.Ej�2D�.0; t// �x

�
CEj

� jC2X
k;lDj�2

Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x:

We now add and subtract
�PjC2

k;lDj�2
Pk..ru/ ı �/.0; t/ �PlD�.0; t/

�
� x. This gives us, from (16)

and (17),

@

@t
..Ej D�.0; t// �x/

DEj ..ru/ ı�/.0; t/ � ..Ej D�.0; t// �x/CO.2�j /

C

jC2X
k;lDj

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x

C

jC2X
k;lDj�2

Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x�Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x; (18)
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where the last two lines are error terms which we denote by ‰. Notice that, for a typical term in the last
sum, we haveˇ̌
Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x�Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x

ˇ̌
�
ˇ̌
Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x
ˇ̌
C
ˇ̌
Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x

ˇ̌
. 2�j

kPk..ru/ ı�/ �PlD�kL1

. 2�j
kPkrukL1kPlD�kL1

DO.2�j /; (19)

where we have used the triangle inequality, (13), the hypothesis that jxj � 2�j , (2) and Lemma 6. A
similar (simpler) argument can be used to achieve the same estimate for a typical term in the first sum
and, since both sums have only O.1/ many terms, we now have the estimate

j‰j DO.2�j /:

We have now achieved the goal,

@

@t

�
.Ej D�.0; t// �x

�
DEj ..ru/ ı�/.0; t/ �

�
.Ej D�.0; t// �x

�
CO.2�j /: (20)

To use Lemma 5, we need an analogous statement for @.Ej�.x; t/�Ej�.0; t//=@t . We begin by
using (3). Since @=@t commutes with Ej , and by (3) and the fundamental theorem of calculus, we have

@

@t
.Ej�.x; t/�Ej�.0; t//DEj

@

@t
.�.x; t/��.0; t//

DEj

�
u.�.x; t/; t/�u.�.0; t/; t/

�
DEj

��Z 1

0

ru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .�.x; t/��.0; t//

�
:

We now take Ej of the product, move Ej inside the integral, and the above expression gives

Ej

��Z 1

0

EjC3ru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .EjC3�.x; t/�EjC3�.0; t//

�
CEj

� 1X
kDj

zPkC1..ru/ı�/ �PkC3.�.x; t/��.0; t//CPkC3..ru/ı�/ � zPk.�.x; t/��.0; t//

�
; (21)

which we justify on frequency support grounds. We use the same technique on the first term as we used
to achieve (20). That is, we add and subtract

jC2X
k;lDj�2

�Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//
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to exploit the fact that Ej Ej�2 DEj�2. This gives us that (21) equals�Z 1

0

Ejru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Ej�.x; t/�Ej�.0; t//

C

jC2X
k;lDj�2

Ej

��Z 1

0

Pkru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Pl�.x; t/�Pl�.0; t//

�

�

jC2X
k;lDj�2

�Z 1

0

Pkru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Pl�.x; t/�Pl�.0; t//

CEj

� 1X
kDj

zPkC1..ru/ı�/�PkC3.�.x; t/��.0; t//CPkC3..ru/ı�/� zPk.�.x; t/��.0; t//

�
: (22)

The term in the first line is good and the remaining terms are error terms. Denote the difference of the
middle two sums by ˆ; the indices in these sums match and we can use (13) on each term in the first sum
and the fact that there are only O.1/ many terms in the sum to estimate

jˆj DO

��Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//


L1

�
: (23)

We use assumption (2) to estimate the integral, giving�Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//


L1

DO
�
kPl�.x; t/�Pl�.0; t/kL1

�
: (24)

Using (12), (8) and the hypothesis that jxj � 2�j , we now have the estimate

jˆj DO.2�j log N /:

We now estimate the last error term of (21), which we denote by „. Using assumption (2), we have

j„j. sup
k

kPkrukL1

ˇ̌̌̌
Ej

� 1X
kDj

PkC3.�.x; t/��.0; t//C zPk.�.x; t/��.0; t//

�ˇ̌̌̌

.
ˇ̌̌̌
Ej

� 1X
kDj

PkC3.�.x; t/��.0; t//C zPk.�.x; t/��.0; t//

�ˇ̌̌̌
: (25)

Because of the operator Ej , by frequency support, there are only O.1/ many terms left in the sum.
Therefore, it suffices to estimate a typical term in the sum, such as

Pk.�.x; t/��.0; t//;

where k � j . Using (12), (8), and the fact that jxj � 2�j , we have

jPk.�.x; t/��.0; t//j. 2�j log N
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and hence
j„j DO.2�j log N /:

Using these estimates on jˆj and j„j, we now have that (21) equals�Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Ej�.x; t/�Ej�.0; t//CO.2�j log N /: (26)

At this point, we reiterate that the goal is to show that the above expression is equal to

Ej ..ru/ ı�/.0; t/.Ej�.x; t/�Ej�.0; t//

plus an acceptable error term, and that the error so far, O.2�j log N /, is acceptable. For convenience, we
adopt the following notation for the integral term in (26):

I.t/ WD

Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

D

Z 1

0

�
Ekru.s�.x; t/C .1� s/�.0; t/; t/C

j�1X
lDk

Plru.s�.x; t/C .1� s/�.0; t/; t/

�
ds;

where we chose k D j � log N so that the first part of the integral is essentially constant. Indeed, if
kf kL1 .N and jx�yj � 2�j log N , with this choice of k we have

Ekf .x/�Ekf .y/D

Z
R2

f .s/22k
�
y .2k.xC s//� y .2k.yC s//

�
ds

. 22k
kf kL1kr y kL12k

jx�yjjB2�j .0/j

. kf kL12k�j log N

.N 2� log N log N

. log N;

wherein we can move from the first line to the second line by the definition of  . Since the first part of
the integrand is essentially constant, we can choose any point in the domain we want for its argument (we
choose �.0; t/). We then add and subtract the extra frequencies (that is, those between k and j ) and we have

I.t/DEjru.�.0; t/; t/C

Z 1

0

� jX
lDk

Plru.s�.x; t/C .1�s/�.0; t/; t/�Plru.�.0; t/; t/

�
dsC log N:

The integral of the sum is clearly . log N because of (2) and the choice of k. Substituting this into
(26) and using (8), we have (finally)

@

@t
.Ej�.x; t/�Ej�.0; t//DEjru.�.0; t/; t/ � .Ej�.x; t/�Ej�.0; t//CO.2�j .log N /2/:

Using this, together with (20), we can apply Lemma 5 with

w D .Ej D�.0; t// �x; v DEj�.x; t/�Ej�.0; t/; and E D 2�j .log N /2;
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which proves the claim that

jEj D�.0; t/ �x� .Ej�.x; t/�Ej�.0; t//j DO.2�j N�
9

10 /

for jxj � 2�j .
Now, to prove the lemma, it suffices to show that

jEj�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//j. 2�j N�
9

10 :

By the definition of the Littlewood–Paley operators, we have

Ej�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//D
X
k�j

Pk�.x; t/�Pk�.0; t/;

which we now estimate in two parts. First, for the large frequencies, we have (for arbitrary y)

1X
kDjClog N

Pk�.y; t/D

1X
kDjClog N

EkC1�.y; t/�Ek�.y; t/

D

1X
kDjClog N

Z
R2

�
�.yC 2�.kC1/s; t/��.yC 2�ks; t/

�
y .s/ ds

. kD�kL1
1X

kDjClog N

2�k

.N
1

10 2�j�log N

. 2�j N�
9

10 ; (27)

where we have used the definition of Ek , (14) and our choice of C (as in the proof of Lemma 5). For
the smaller frequencies, we have left

lX
kDj

.Pk�.x; t/�Pk�.0; t//; (28)

where l D j C log N � 1. We will estimate an arbitrary frequency band Pk�.x; t/�Pk�.0; t/ in this
range. Take xi to be points on the line segment from 0 to x such that jxiC1�xi j � 2�l ; thus we
have � 2l�j � N points xi . For convenience of notation, take x0 D 0 and xN D x. By adding and
subtracting Pk�.xi ; t/ for each i , we have

jPk�.x; t/�Pk�.0; t/j. 2l�j max
i
jPk�.xiC1; t/�Pk�.xi ; t/j: (29)

For each i , we have from Lemma 6 that

Pk.�.xiC1; t/��.xi ; t//. 2�l
kPkD�kL1 . 2�lN�

9
10
� 1

100 :
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Plugging this into (29) and, in turn, plugging the result into (28), we can use the factor of N�
1

100 and
the fact that there are only � log N terms in the sum to obtain

lX
kDj

Pk�.x; t/�Pk�.0; t/. 2�j N�
9

10 :

This, together with (27), proves the claim that

jEj�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//j. 2�j N�
9

10

and we have already shown that

jEj D�.0; t/ �x� .�.x; t/��.0; t//j DO.2�j N�
9

10 /I

applying the triangle inequality, we complete the proof of Lemma 7. �

It only remains to prove the main theorem.

Proof of Theorem 3. Our goal is to show that

d.Ej D� � hj /

dt
D

�X
k<j

.ru/k;EkD�;i

�
Ej D� �

�X
k<j

.ru/k;hk ;i

�
hj CO.N

1
5 /Ej D� (30)

and apply a version of Lemma 5. (We remove explicit dependence on 0 and t in order to simplify notation.)
We use the definition of hj and (20) (from which we may omit the product with x) and, with some adding
and subtracting, we have

d.Ej D� � hj /

dt
D
�
Ej ..ru/ ı�/�Ej ..zru/ ı�/

�
�Ej D�CO.1/

C

�
Ej ..zru ı�//�

�X
k<j

.ru/k;EkD�

��
�Ej D�

C

�X
k<j

.ru/k;EkD�

�
Ej D� �

�X
k<j

.ru/k;hk

�
hj : (31)

(We are also omitting the explicit dependence on i , meaning that we are referring to a generic entry in the
matrix.) We want the last line of (31) to achieve (30). The other terms are error terms, which we require
to be controlled by O.N

1
5 /Ej D�. We can easily estimate the coefficient of Ej D� in the first line using

(13) and (9): ˇ̌�
Ej ..ru/ ı�/�Ej ..zru/ ı�/

�ˇ̌
. k.ru/ ı� � .zru/ ı�kL1 . .log N /3; (32)

which gives that the first term in (31) is

O.N
1
5 /Ej D� (33)
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and so, in order to have (30), we only have to control the coefficient of Ej D� in the middle term. By
definition and using the Biot–Savart law, this is equal to

Ej

�X
k2Z

Z
Ak

!0;k.s/K.�.s; t/��.0; t// ds

�
�

X
k<j

Z
Ak

!0;k.s/K.EkD�.0; t/ � s/ ds: (34)

We split the sum on the left into two parts, k � j and k < j . For k � j , the sum is equal to

Ej

�X
k�j

Z
Ak

!0;k.s/K.�.s; t/��.0; t// ds

�
.
X
k�j

kKkL1.�.Ak ;t//

Z
Ak

Ej!0;k.s/ ds

. .log N /2
X
k�j

kEj!0;kkL1 : (35)

Above, we get a factor of 22k.log N /2 from integrating K and using (8), and a factor of 2�2k comes
from integrating Ej!0;k on Aj . For each k, kPk!kL1 . 1 and, by frequency support (after using the
triangle inequality), there are fewer than .log N /2 many terms in the sum. Hence the error contributed
by (35) is only O..log N /4/.N

1
5 .

The rest of the error term, (34), where the first sum is over k < j , isX
k<j

Z
Ak

!0;k.s/
�
K.�.s; t/��.0; t//�K.EkD�.0; t/ � s/

�
ds: (36)

By Lemma 7, we have j�.s; t/��.0; t/�EkD�.0; t/ � sj. 2�kN�
9

10 when jsj � 2�k . Further, by
(14) and (8), we may choose C so that, if x D �.s; t/��.0; t/, y DEkD�.0; t/ � s and � D 1

50
�

1
500

,
we have

2�kN�� . jxj; jyj. 2�kN �

for times 0� t � C.log N /=N . Then we have the bound

K12.x/�K12.y/. 24kN 4�.x1x2�y1y2/

D 24kN 4�.x1.x2�y2/Cy2.x1�y1//

.N 5�23k max
i
fjxi �yi jg

. 22kN 5�� 9
10

. 22kN�
4
5
� 1

100

and similarly for K11. We can then estimate the sum (36) by

N�
4
5
� 1

100

X
k<j

k!0;kkL1ds .N
1
5
� 1

100 log N .N
1
5

and with this we have the estimate that the middle term in (31) is O.N
1
5 /Ej D� and, therefore, we

have (30).
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We will now apply a version of Lemma 5 using (30). Assume for contradiction that the estimate
jhk.t/�EkD�.0; t/j DO.N�

7
10 / fails for the first time at time t0 < C.log N /=N and at scale j . So,

for k < j and times t < t0, the estimate holds. Therefore, we have, for t < t0,

d.Ej D� � hj /

dt

D

�X
k<j

.ru/k;EkD�

�
EkD� �

�X
k<j

.ru/k;hk

�
hj CO.N

1
5 /Ej D�

D

�X
k<j

.ru/k;hk

�
.EkD� � hj /C

�X
k<j

.ru/k;EkD� � .ru/k;hk

�
Ej D�CO.N

1
5 /Ej D�

.
�X

k<j

.ru/k;hk

�
.Ej D� � hj /CO.N

1
5 /Ej D�;

where, for the last line, we used our assumption that the estimate holds on scales k < j and the estimates
on the Biot–Savart kernels K1i . Note that, at time t D 0, the difference Ej D� � hj equals 0. Suppose
that T is the first time such that Ej D� � hj DN�

4
5 . If t �minf1=N;T g, we have

d.Ej D� � hj /

dt
.N

1
5 since N

1
5 .Ej D� � hj /DO.1/

and it follows that T DO.1=N /. For times t such that T � t � t0<C.log N /=N , the first term dominates
and

Ej D� � hj DO
�
N�

4
5 exp.tO.N //

�
DO.N�

7
10 /;

where the last equality comes from our choice of C , since t0 < C.log N /=N � .log N
1

10 /=N . Thus, the
assumption that the estimate breaks down at scale j and at time t0 < C.log N /=N was false, and hence
it holds for all j and t � C.log N /=N , proving the theorem. �
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ASYMPTOTICS OF HADAMARD TYPE FOR EIGENVALUES OF
THE NEUMANN PROBLEM ON C1-DOMAINS FOR ELLIPTIC OPERATORS

JOHAN THIM

This article investigates how the eigenvalues of the Neumann problem for an elliptic operator depend
on the domain in the case when the domains involved are of class C1. We consider the Laplacian and
use results developed previously for the corresponding Lipschitz case. In contrast with the Lipschitz
case, however, in the C1-case we derive an asymptotic formula for the eigenvalues when the domains are
of class C1. Moreover, as an application we consider the case of a C1-perturbation when the reference
domain is of class C1,α .

1. Introduction

The results presented in this article are based on an abstract framework for eigenvalues of the Neumann
problem previously developed by Kozlov and Thim [2014], where we considered applications to Lipschitz-
and C1,α-domains. However, the corresponding result for C1-domains was omitted. In this study we
present an asymptotic formula of Hadamard type for perturbations in the case when the domains are of
class C1. We also apply this theorem to the case when the reference domain is C1,α , which simplifies the
expressions involved.

Partial differential equations are typically not easily solvable when the domain is merely C1. Indeed,
the existence result for Laplace’s equation on a general C1-domain with L p-data on the boundary was
only finally resolved by [Fabes et al. 1978]. This problem was difficult due to the fact that proving that
the layer potentials define compact operators (so Fredholm theory is applicable, similar to the C1,α-case)
was rather technical. The results are based on estimates for the Cauchy integral on Lipschitz curves and
we only obtain L p-estimates for the gradient. As a consequence, the problem of eigenvalue dependence
on a C1-domain becomes difficult.

Hadamard [1908] — see also [Maz′ya and Shaposhnikova 1998] — studied a special type of perturba-
tions of domains with smooth boundary in the early twentieth century, where the perturbed domain �ε
is represented by xν = h(x ′) with x ′ ∈ ∂�0, xν the signed distance to the boundary (xν < 0 for x ∈�0),
and h a smooth function bounded by a small parameter ε. Hadamard considered the Dirichlet problem,
but a formula of Hadamard type for the first nonzero eigenvalue of the Neumann Laplacian is given by

3(�ε)=3(�0)+

∫
∂�0

h(|∇ϕ|2−3(�0)ϕ
2) d S+ o(ε),

MSC2010: 35P05, 47A55, 47A75, 49R05.
Keywords: Hadamard formula, domain variation, asymptotics of eigenvalues, Neumann problem, C1-domains.
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where d S is the surface measure on ∂�0 and ϕ is an eigenfunction corresponding to 3(�0) such
that ‖ϕ‖L2(�0) = 1; compare with [Grinfeld 2010]. In more general terms, eigenvalue dependence on
domain perturbations is a classical and important problem going far back. Moreover, these problems
are closely related to shape optimization; see, e.g., [Henrot 2006; Sokołowski and Zolésio 1992], and
references found therein.

Specifically, let �1 and �2 be domains in Rn , n ≥ 2, and consider the spectral problems{
−1u =3(�1)u in �1,

∂νu = 0 on ∂�1
(1-1)

and {
−1v =3(�2)v in �2,

∂νv = 0 on ∂�2,
(1-2)

where ∂ν is the normal derivative with respect to the outward normal. In the case of nonsmooth boundary,
we consider the corresponding weak formulations. The analogous Dirichlet problems have previously
been considered [Kozlov 2006; 2013; Kozlov and Nazarov 2010; 2012], however the Neumann problem
requires a different approach as regards what one can use as a proximity quantity between the two domains
and the operators involved.

We will require that the domains are close, in the sense that the Hausdorff distance between the sets �1

and �2, namely
d =max

{
sup
x∈�1

inf
y∈�2
|x − y|, sup

y∈�2

inf
x∈�1
|x − y|

}
, (1-3)

is small. For example, if the problem in (1-1) has a discrete spectrum and the two domains �1 and �2 are
close, then the problem in (1-2) has precisely Jm eigenvalues 3k(�2) close to 3m(�1); see, for instance,
Lemma 3.1 in [Kozlov and Thim 2014]. Here, Jm is the dimension of the eigenspace Xm corresponding
to 3m(�1). The aim is to characterize the difference 3k(�2)−3m(�1) for k = 1, 2, . . . , Jm .

In a previous study [Kozlov and Thim 2014], we considered the cases when the domains are Lipschitz
or C1,α , with 0< α < 1, as applications of an abstract framework. The main result is an asymptotic result
for C1,α-domains, where �1 is a C1,α-domain and �2 is a Lipschitz perturbation of �1, in the sense
that the perturbed domain �2 can be characterized by a function h defined on the boundary ∂�1 such
that every point (x ′, xν) ∈ ∂�2 is represented by xν = h(x ′), where (x ′, 0) ∈ ∂�1 and xν is the signed
distance to ∂�1 as defined above. Moreover, the function h is assumed to be Lipschitz continuous and
satisfy |∇h| ≤ Cdα . We proved that, if the problem in (1-1) has a discrete spectrum and m is fixed, then
there exists a constant d0 > 0 such that, if d ≤ d0, then

3k(�2)−3m(�1)= κk + O(d1+α) (1-4)

for every k = 1, 2, . . . , Jm . Here, κ = κk is an eigenvalue of the problem

κ(ϕ, ψ)=

∫
∂�1

h(x ′)(∇ϕ · ∇ψ −3m(�1)ϕψ) d S(x ′) for all ψ ∈ Xm, (1-5)

where ϕ ∈ Xm . Moreover, κ1, κ2, . . . , κJm in (1-4) run through all eigenvalues of (1-5), counting their
multiplicities; see Theorem 1.1 in [Kozlov and Thim 2014].
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In the case when the domains are merely Lipschitz, we only obtain that there exists a constant C ,
independent of d , such that |3k(�2)−3m(�1)| ≤ Cd for every k = 1, 2, . . . , Jm ; see Corollary 6.11 in
[Kozlov and Thim 2014]. Furthermore, in Section 6.7 there, we provide an example which shows that we
can not get an asymptotic result of the type above for the Lipschitz case.

1A. New results. The main result of this article is proved in Section 4B, where an asymptotic formula
for 3m(�2)−3k(�1) in the case of C1-domains is derived. The main term consists of extensions of
eigenfunctions to (1-1) and the remainder is of order o(d); see Theorem 4.4. We suppose that �2 is a
Lipschitz perturbation of a C1-domain �1 such that the Hausdorff distance d between �1 and �2 is small
and the outward normals n1 and n2 — taken at the corresponding points of �1 and �2, respectively — are
comparable in the sense that n1− n2 = o(1) as d→ 0 (uniformly). If we also require that �2 ⊂�1 to
avoid the need for extension theorems, we obtain the following result:

Theorem 1.1. Suppose that �1 is a C1-domain, that �2 is as described above, and that �2 ⊂ �1. In
addition, assume that the problem in (1-1) has a discrete spectrum and that m is fixed. Then there exists a
constant d0 > 0 such that, if d ≤ d0, then

3k(�2)−3m(�1)= τk + o(d) for k = 1, 2, . . . , Jm . (1-6)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)=

∫
�1\�2

(∇ϕ · ∇ψ −3m(�1)ϕψ) dx for all ψ ∈ Xm, (1-7)

where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (1-6) run through all eigenvalues of (1-7), counting their
multiplicities.

Note that the main term is of order d and that the remainder is strictly smaller as d→ 0.
As an application, in Section 5 we consider the case when the perturbation is of Hadamard type and

we assume that the reference domain �1 is a C1,α-domain. Indeed, if �2 is a perturbation of �1 in
the sense that the perturbed domain �2 can be characterized by a Lipschitz function h defined on the
boundary ∂�1 such that (x ′, xν)∈ ∂�2 is represented by xν = h(x ′), where (x ′, 0)∈ ∂�1, xν is the signed
distance to ∂�1 as defined above, and ∇h = o(1) as d→ 0 (uniformly), we obtain the following result;
see Theorem 5.1.

Theorem 1.2. Suppose that �1 is a C1,α-domain, that �2 is a perturbation as described above, that the
problem in (1-1) has a discrete spectrum, and that m is fixed. Then there exists a constant d0 > 0 such
that, if d ≤ d0, then

3k(�2)−3m(�1)= κk + o(d) (1-8)

for every k = 1, 2, . . . , Jm . Here, κ = κk is an eigenvalue of the problem

κ(ϕ, ψ)=

∫
∂�1

h(x ′)(∇ϕ · ∇ψ −3m(�1)ϕψ) d S(x ′) for all ψ ∈ Xm, (1-9)

where ϕ ∈ Xm . Moreover, κ1, κ2, . . . , κJm in (1-8) run through all eigenvalues of (1-9) counting their
multiplicities.
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We also note here that Theorem 1.2 is sharp. Indeed, the main term in (1-9) is of order d and the
example given in Section 6.7 in [Kozlov and Thim 2014] shows that this cannot be improved.

2. Notation and definitions

We will use the same abstract setting and notation that was used in [Kozlov and Thim 2014]. Let us
summarize the notation. We consider the operator 1−1; a number λ is an eigenvalue of the operator 1−1
if and only if λ − 1 is an eigenvalue of −1. The reason for considering 1−1 is to avoid technical
difficulties due to the eigenvalue zero. Enumerate the eigenvalues 3k(�1) = λk − 1 for k = 1, 2, . . .
of (1-1) according to 0< λ1 < λ2 < · · · . Similarly, we let 3k(�2)= µ− 1 be the eigenvalues of (1-2).
Suppose that H1 and H2 are infinite-dimensional subspaces of a Hilbert space H . We denote the inner
product on H by ( · , · ). Let the operators K j : H j → H j be positive definite and self-adjoint for j = 1, 2.
Furthermore, let K1 be compact. We consider the spectral problems

K1ϕ = λ
−1ϕ, ϕ ∈ H1, (2-1)

and

K2U = µ−1U, U ∈ H2, (2-2)

and denote by λ−1
k for k = 1, 2, . . . the eigenvalues of K1. Let Xk ⊂ H1 be the eigenspace corresponding

to the eigenvalue λ−1
k . Moreover, we denote the dimension of Xk by Jk and define Xm = X1+X2+· · · Xm ,

where m ≥ 1 is any integer. In this article we study eigenvalues of (2-2) located in a neighborhood of λ−1
m ,

where m is fixed. Note that it is known that there are precisely Jm eigenvalues of (1-2) near λ−1
m ; see,

e.g., Lemma 3.1 in [Kozlov and Thim 2014]. We wish to describe how close they are in the case of
C1-domains.

Let S1 : H→ H1 and S2 : H→ H2 be orthogonal projectors and define S as the restriction of S2 to H1.
To compare K1 and K2, we define the operator B : H1→ H2 as B = K2S− SK1. For ϕ ∈ Xm , Bϕ is
typically small in applications. Furthermore, we use the convention that C is a generic constant that can
change from line to line, but always depend only on the parameters. We also use the notation κ for a
generic function κ : [0,∞) 7→ [0,∞) such that κ(δ)= o(1) as δ→ 0.

2A. Domains in Rn. Let �1 be the reference domain, which will be fixed throughout. We will assume
that �1 and �2 are at least Lipschitz domains. Then there exists a positive constant M such that the
boundary ∂�1 can be covered by a finite number of balls Bk , k= 1, 2, . . . , N , where there exist orthogonal
coordinate systems in which

�1 ∩ Bk = {y = (y′, yn) : yn > h(1)k (y′)} ∩ Bk,

where the center of Bk is at the origin and h(1)k are Lipschitz functions, i.e.,

|h(1)k (y′)− h(1)k (x ′)| ≤ M |y′− x ′|,
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such that h(1)k (0)= 0. We assume that �2 belongs to the class of domains where �2 is close to �1 in the
sense that �2 can be described by

�2 ∩ Bk = {y = (y′, yn) : yn > h(2)k (y′)} ∩ Bk,

where h(2)k are also Lipschitz continuous with Lipschitz constant M .
The case when�1 is a C1- or C1,α-domain is defined analogously, with the addition that h(1)k ∈C1(Rn−1)

(or C1,α(Rn−1)) such that

h(1)k (0)= ∂xi h
(1)
k (0)= 0, i = 1, 2, . . . , n− 1.

Note that when �1 is a C1-domain we obtain that, for P , Q ∈ ∂�1, the outward normal n1 of �1 satisfies

n1(P)− n1(Q)= o(1) as |P − Q| → 0

uniformly.

2B. Perturbations of C1-domains. The situation we consider is the case when the reference domain �1

is a C1-domain and the perturbed domain �2 is close in the sense of Section 2A. We require that �2 is a
Lipschitz domain such that

|∇(h(1)k − h(2)k )| = o(1) as d→ 0 (2-3)

uniformly. This condition can be compared to the one we used in [Kozlov and Thim 2014] for perturbations
of C1,α-domains:

|∇(h(1)k − h(2)k )| ≤ Cdα. (2-4)

Note that h(2)k are only assumed to be Lipschitz continuous and satisfy (2-3) and (2-4), respectively.

3. Definition of the operators K j

Let �1 and �2 be two domains in Rn (�1∩�2 6=∅) and put H = L2(Rn) and H j = L2(� j ) for j = 1, 2,
where functions in H j are extended to Rn by zero outside of � j if necessary. For f ∈ L2(� j ), the weak
solution to the Neumann problem (1−1)W j = f in � j and ∂νW j = 0 on ∂� j for j = 1, 2 satisfies∫

� j

(∇W j · ∇v+W jv) dx =
∫
� j

f v dx for every v ∈ H 1(� j ),

and the Cauchy–Schwarz inequality implies that

‖∇W j‖L2(� j )+‖W j‖L2(� j ) ≤ ‖ f ‖L2(� j ) for all f ∈ L2(� j ).

We define the operators K j on L2(� j ), j =1, 2, as the solution operators corresponding to the domains� j ,
i.e., K j f = W j . The operators K j are self-adjoint and positive definite and, if � j are, e.g., Lipschitz,
also compact.
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3A. Results for Lipschitz domains. We will work with results for Lipschitz domains and then refine
estimates using the additional smoothness of the C1-case. Let � be a Lipschitz domain. The truncated
cones 0(x ′) at x ′ ∈ ∂� are given by, e.g.,

0(x ′)= {x ∈� : |x − x ′|< 2 dist(x, ∂�)}

and the nontangential maximal function is defined on the boundary ∂� by

N (u)(x ′)= max
k=1,2,...,N

sup{|u(x)| : x ∈ 0(x ′)∩ Bk}.

For the case when �1 and �2 are Lipschitz, one can show that

‖N (K j u)‖L2(∂� j )+‖N (∇K j u)‖L2(∂� j ) ≤ C‖u‖L2(� j ), j = 1, 2, (3-1)

where the constant C depends only on the Lipschitz constant M and B1, B2, . . . , BN . We interpret
∂νK j u = 0 on ∂� j in the sense that n · ∇K j u→ 0 nontangentially (with limits taken inside cones 0(x ′))
at almost every point on ∂�, where n is the outward normal. These results are discussed further in
Section 6.2 of [Kozlov and Thim 2014]. Let us summarize that reference’s Lemmas 6.2 and 6.3 for
convenience.

Lemma 3.1. Let � be a Lipschitz domain. Then:

(i) If g∈ L2(∂�), then there exists a unique (up to constants) function u in H 1(�) such that (1−1)u= 0
in � and ∂νu = g a.e. on ∂� in the nontangential sense and, moreover,

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C‖g‖L2(∂�).

(ii) If f ∈ L2(�), then there exists a unique function u in H 1(�) such that (1−1)u= f in� and ∂νu= 0
on ∂� in the nontangential sense, and

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C‖ f ‖L2(�).

Here, the constant C depends only on M and B1, B2, . . . , BN .

The corresponding lemma for the Dirichlet case is also known and one can prove it using an argument
similar to the one used to prove Lemmas 6.2 and 6.3 in [Kozlov and Thim 2014].

Lemma 3.2. Let � be a Lipschitz domain. Then:

(i) If g∈ L2(∂�), then there exists a unique function u∈H 1(�) such that (1−1)u=0 in�, u= g on ∂�
in the nontangential sense, and

‖N (u)‖L2(∂�) ≤ C‖g‖L2(∂�).

(ii) If f ∈ L2(�), then there exists a unique function u ∈ H 1(�) such that (1−1)u= f in�, u=0 on ∂�
in the nontangential sense, and

‖N (u)‖L2(∂�) ≤ C‖ f ‖L2(�).

Here, the constant C depends only on M and B1, B2, . . . , BN .
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We conclude with an extension result for Lipschitz domains; see, e.g., [Kozlov and Thim 2014,
Lemma 6.4(i)] for a proof.

Lemma 3.3. Suppose that f ∈ H 1(∂�) and g ∈ L2(∂�), where � is a Lipschitz domain. Then there
exists a function u ∈ H 1(�c) such that u→ f and n · ∇u→ g nontangentially at almost every point
on ∂�, where n is the outward normal of �, and there exists a constant C such that

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C(‖ f ‖H1(∂�)+‖g‖L2(∂�)),

where C depends only on M and B1, B2, . . . , BN .

4. Main results

Let us proceed to prove the main results. In Section 4A, we prove a key lemma concerning an estimate
for ∂νK j S jϕ on ∂(�1 ∩�2). Using this estimate, we can refine results for Lipschitz domains that were
previously developed in [Kozlov and Thim 2014] and, as a result, obtain an asymptotic formula describing
the difference between λ−1

m and µ−1
m in terms of eigenfunctions of K1.

4A. Boundary estimates for C1-domains. Since ∂νϕ= 0 on ∂�1, we would expect that ∂νϕ is small also
on �2 if the domains are close. However, since in the C1-case we only obtain solutions with derivatives
in L p, this problem becomes more difficult than the corresponding issue in the C1,α-case (which was
solved in [Kozlov and Thim 2014]). To this end, we will exploit that, locally on the boundaries ∂� j ,
the normal vectors can be approximated by constant unit vectors en (with respect to the local coordinate
system). That is, we approximate the surface by its tangent plane at a specific point. We obtain the
following result:

Lemma 4.1. Let P ∈ ∂(�1 ∩�2) and δ > 0 such that B(P, 2δ)⊂ Bk for some k, where Bk are the balls
covering �1 ∩�2 given in Section 2A. Then there exists a function κ(δ) such that∫

∂(�1∩�2)∩B(P,δ)
|∂νK j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx, j = 1, 2, (4-1)

for every ϕ ∈ Xm , where κ(δ)= o(1) as δ→ 0.

Proof. Let B = B(P, 2δ). We wish to consider ∂νK j S jϕ on ∂(�1 ∩�2). However, since ∇K j S jϕ only
exist in the sense of L2, it is nontrivial to exploit the fact that ∂νK j S jϕ is zero on ∂� j . Therefore, let
us instead consider ∂xn K j S jϕ (with respect to the coordinate system in Bk). The outward normal of � j

is comparable to en in Bk and ∂νK j S jϕ = 0 on ∂� j , so we expect ∂xn K j S jϕ to be small on ∂� j ∩ Bk .
Indeed, since ∇K j S jϕ · n j → 0 nontangentially on ∂� j and n j = en + o(1) as δ→ 0, we obtain that∫

∂� j∩B
|∂xn K j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . (4-2)

However, we cannot expect ∂xn K j S jϕ to be small on all of � j . The idea is to use the fact that
∂xn commutes with (1− λm −1). Indeed, we see that if 8= ∂xn K1S1ϕ, then (1− λm −1)8= 0 in �1

and 8= ∂xn K1S1ϕ on ∂�1. The case when j = 2 will be treated similarly but requires some additional
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steps. Let us consider the equation (1− λm −1)8= 0 in �1 and 8= ∂xn K1S1ϕ on ∂�1. We split this
equation in two separate parts.

Part 1. Let8p be the solution to (1−λm−1)8p= 0 in�1,8p= ∂xn K1S1ϕ on ∂�1∩B and, on ∂�1∩Bc,
we let 8p = 0. Lemma 3.2 implies that 8p satisfies∫

∂�1

|N (8p)|
2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2 dx . (4-3)

Then it follows that ∫
�1∩∂�2∩B

|8p|
2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2. (4-4)

Part 2. Let 8h be the solution to (1− λm −1)8h = 0 in �1, 8h = 0 on ∂�1 ∩ B, and 8h = ∂xn K1S1ϕ

on ∂�1 ∩ Bc. To prove an estimate for 8h on ∂�1 ∩ B similar to the one given for 8p in (4-4), we use
a local estimate for solutions to the Dirichlet problem, where we exploit that the boundary data is zero
on �1 ∩ B. Indeed, let 1

2 B be the ball with the same center as B but half the radius. Then Theorem 5.24
in [Kenig and Pipher 1993] (for example) implies that∫

∂�1∩
1
2 B
|N (∇8h)|

2 d S(x ′)≤ C
∫
�1∩B
|∇8h|

2 dx (4-5)

since the tangential gradient of 8h is zero on the boundary. This, in turn, implies that the left-hand side
in (4-5) is finite and, furthermore, since also 8h = 0 on �1 ∩ B, it follows that∫

�1∩∂�2∩
1
2 B
|8h|

2 d S(x ′)≤ Cd
∫
�1

|ϕ|2 dx, (4-6)

where d is the Hausdorff distance between �1 and �2.
Equations (4-4) and (4-6) are sufficient to obtain that∫

∂(�1∩�2)∩
1
2 B
|N (∂xn K1S1ϕ)|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx

since 8=8p +8h .
Turning our attention to when j =2, we see that (1−1)K2S2ϕ= S2ϕ and that this equation is not homo-

geneous. Moreover, the right-hand side is not necessarily small. However, since Sϕ = λm K2Sϕ− λm Bϕ
and Bϕ is small, we can consider

(1− λm −1)K2S2ϕ =−λm Bϕ. (4-7)

Let 9 be the weak solution to (1− λm −1)9 =−λm Bϕ in �2 and 9 = 0 on ∂�2. Then

‖9‖H1(�2) ≤ C‖Bϕ‖L2(�2)

and the trace of 9 is defined on ∂�. Moreover, from Lemma 3.2 we obtain that

‖N (9)‖L2(∂�2) ≤ C‖Bϕ‖L2(�2). (4-8)
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Now, put 8=9+W . Then (1−λm−1)W = 0 and W = ∂xn K2S2ϕ on ∂�2. It is now possible to carry
out steps 1 and 2 for W in �2 analogously to 8 in �1, exchanging the roles of �1 and �2. Thus, using
the same notation, we obtain that∫

∂(�1∩�2)∩
1
2 B
|N (W )|2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2 dx . (4-9)

Finally, Lemma 6.6 in [Kozlov and Thim 2014] states that ‖Bϕ‖2L2(�2)
≤ Cd‖ϕ‖2L2(�1)

, so this fact and
equations (4-8) and (4-9) prove that∫

∂(�1∩�2)∩
1
2 B
|N (∂xn K2S2ϕ)|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . (4-10)

We can now conclude the proof by observing that the outward normal on ∂(�1 ∩�2) is given by n1

or n2 at almost every point, and n j = en + r j with r j = κ(δ), j = 1, 2, so we obtain that∫
∂(�1∩�2)∩

1
2 B
|∂νK j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . �

The previous lemma is local in nature, but due to compactness we can prove the following corollary:

Corollary 4.2. There exists a constant d0 > 0 such that, if d ≤ d0, then∫
∂(�1∩�2)

|∂νK j S jϕ|
2 d S(x ′)≤ κ(d)

∫
�1

|ϕ|2 dx, j = 1, 2, (4-11)

for every ϕ ∈ Xm , where κ(d)= o(1) as d→ 0.

Proof. By compactness, if d is small we can cover ∂(�1 ∩�2) by a finite number of balls B(P, d) such
that B(P, 2d)⊂ Bk for some k, where Bk are the covering balls from Section 2A. By choosing d0 small
enough and letting δ = d in the previous lemma, the result in the corollary now follows. �

4B. Proof of Theorem 1.1. The following proposition is a reformulation of Proposition 6.10 in [Kozlov
and Thim 2014], where the proof can also be found. The expressions with tildes are the extensions of
the corresponding functions provided by Lemma 3.3. We will use this result and Corollary 4.2 to prove
Theorem 1.1.

Proposition 4.3. Suppose that �1 and �2 are Lipschitz domains in the sense of Section 2A. Then

λ−1
m −µ

−1
k = τk + O(d3/2) for k = 1, 2, . . . , Jm . (4-12)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−1
m

∫
�1\�2

((1− λm)K̃2Sϕψ +∇ K̃2Sϕ · ∇ψ) dx

− λ−1
m

∫
�2\�1

((1− λm)(K2Sϕ)ψ̃ +∇K2Sϕ · ∇ψ̃) dx (4-13)

for all ψ ∈ Xm , where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (4-12) run through all eigenvalues of (4-13),
counting their multiplicities.



1704 JOHAN THIM

Let us now prove a version of this proposition that holds specifically for C1-domains. We will show
the following result:

Theorem 4.4. Suppose that �1 is a C1-domain and that �2 is a perturbation in the sense of Section 2B
satisfying (2-3). Then

λ−1
m −µ

−1
k = τk + o(d) for k = 1, 2, . . . , Jm . (4-14)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−1
m

∫
�1\�2

((1− λm)ϕψ +∇ϕ · ∇ψ) dx − λ−1
m

∫
�2\�1

((1− λm)ϕ̃ψ̃ +∇ϕ̃ · ∇ψ̃) dx (4-15)

for all ψ ∈ Xm , where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (4-14) run through all eigenvalues of (4-15),
counting their multiplicities.

Proof. We need to prove that (4-13) can be expressed as (4-15) up to a term of order o(d). Since
K2Sϕ = Bϕ+ λ−1

m Sϕ, we let

K̃2Sϕ = B̃ϕ+ λ−1
m ϕ̃,

where B̃ϕ is the extension of Bϕ from �1 ∩�2 and ϕ̃ is the extension of ϕ from �1, both provided by
Lemma 3.3. We show that B̃ϕ is small and that λ−1

m ϕ̃ gives the main term. To this end, let V = Bϕ
in�1∩�2. Then (1−1)V = 0 in�1∩�2, ∂νV = ∂νK2Sϕ on ∂�1∩�2, and ∂νV =−∂νK1ϕ on�1∩∂�2.
Using Corollary 4.2 and Lemma 3.1, we then obtain that

‖N (V )‖L2(∂(�1∩�2))+‖N (∇V )‖L2(∂(�1∩�2)) ≤ κ(d)‖ϕ‖L2(�1),

where κ(d)= o(1) as d→ 0, and thus

‖N (B̃ϕ)‖L2(∂(�1∩�2))+‖N (∇ B̃ϕ)‖L2(∂(�1∩�2)) ≤ κ(d)‖ϕ‖
2
L2(�1)

.

Now, the Cauchy–Schwarz inequality implies that∫
�1\�2

|∇ B̃ϕ · ∇ψ | dx ≤
(∫

�1\�2

|∇ B̃ϕ|2 dx
)1

2
(∫

�1\�2

|∇ψ |2 dx
)1

2

≤ Cd
(∫

∂(�1∩�2)

N (∇ B̃ϕ)2 d S(x ′)
)1

2
(∫

�1\�2

|∇ψ |2 dx
)1

2

= o(d)

and, similarly,∫
�1\�2

|B̃ϕψ | dx ≤ Cd
(∫

∂(�1∩�2)

N (B̃ϕ)2 d S(x ′)
)1

2
(∫

�1\�2

|ψ |2 dx
)1

2

= o(d).

Analogously, one can show that the corresponding expressions involving Bϕ on �2 \�1 are also of
order o(d). �
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To pass from λ−1
m −µ

−1
m to 3k(�2)−3m(�1), observe that

λ−1
m −µ

−1
k = λ

−2
m

(
λm

µk
(µk − λm)

)
= λ−2

m

(
µk − λm −

(µk − λm)
2

µk

)
,

where (µk − λm)
2
= O(d2) since �1 and �2 are at least Lipschitz; see Corollary 6.11 in [Kozlov and

Thim 2014]. Note also that, if it is the case that �2 ⊂ �1, we can simplify the previous theorem by
removing the second integral in (4-15) and avoid the use of extensions of eigenfunctions; compare with
the statement of Theorem 1.1 in the introduction.

5. C1-perturbations of C1,α-domains

Suppose that �1 is a C1,α-domain and that it is possible to characterize the perturbed domain �2 by a
Lipschitz function h defined on the boundary ∂�1 such that (x ′, xν) ∈ ∂�2 is represented by xν = h(x ′),
where (x ′, 0) ∈ ∂�1 and xν is the signed distance to the boundary ∂�1 (with xν < 0 when x ∈�1). We
assume that ∇h = o(1) as d → 0 (uniformly). In this case, we can simplify the expression given in
Theorem 4.4 and avoid the use of extensions by stating the formula (4-14) as a boundary integral.

Theorem 5.1. Suppose that �1 is a C1,α-domain and that �2 is as described above. Then

λ−1
m −µ

−1
k = τk + o(d) (5-1)

for k = 1, 2, . . . , Jm . Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−2
m

∫
∂�1

h(x ′)((1− λm)ϕψ +∇ϕ · ∇ψ) d S(x ′) for all ψ ∈ Xm, (5-2)

where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (5-1) run through all eigenvalues of (5-2), counting their
multiplicities.

Proof. Since �1 is a C1,α-domain, we can use results from the proof of Corollary 6.17 in [Kozlov
and Thim 2014]. In that proof, we showed that ϕ ∈ C1,α(�1) and also that ϕ can be extended to a
function ϕ̃ ∈ C1,α(Rn) such that∫

�1\�2

(
|ϕ(x)−ϕ(x ′, 0)|2+ |∇ϕ(x)−∇ϕ(x ′, 0)|2

)
dx ≤ Cd1+α

‖ϕ‖2L2(�1)
,

with the corresponding estimate holding for ϕ̃ on �2 \�1. Hence, Theorem 4.4 implies that λ−1
m −µ

−1
k is

given by

λ−2
m

(∫
∂�1∩�

c
2

∫ h(x ′)

0

(
(1− λm)ϕ(x ′, 0)ψ(x ′, 0)+∇ϕ(x ′, 0) · ∇ψ(x ′, 0)

)
dxν d S(x ′)

−

∫
∂�1∩�2

∫
−h(x ′)

0

(
(1− λm)ϕ̃(x ′, 0)ψ̃(x ′, 0)+∇ϕ̃(x ′, 0) · ∇ψ̃(x ′, 0)

)
dxν d S(x ′)

)
+ o(d).

The desired conclusion follows from this statement. �
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SCALING LIMIT FOR THE KERNEL OF THE SPECTRAL PROJECTOR
AND REMAINDER ESTIMATES IN THE POINTWISE WEYL LAW

YAIZA CANZANI AND BORIS HANIN

Let .M;g/ be a compact, smooth, Riemannian manifold. We obtain new off-diagonal estimates as �!1
for the remainder in the pointwise Weyl law for the kernel of the spectral projector of the Laplacian onto
functions with frequency at most �. A corollary is that, when rescaled around a non-self-focal point,
the kernel of the spectral projector onto the frequency interval .�; �C 1� has a universal scaling limit
as �!1 (depending only on the dimension of M ). Our results also imply that, if M has no conjugate
points, then immersions of M into Euclidean space by an orthonormal basis of eigenfunctions with
frequencies in .�; �C 1� are embeddings for all � sufficiently large.

1. Introduction

Suppose that .M;g/ is a smooth, compact, Riemannian manifold without boundary of dimension n� 2.
Let �g be the nonnegative Laplacian acting on L2.M;g;R/ and let f'j gj be an orthonormal basis of
eigenfunctions:

�g'j D �
2
j 'j ; (1)

with 0D �2
0
< �2

1
� �2

2
� � � � . This article concerns the �!1 asymptotics of the Schwartz kernel

E�.x;y/D
X
�j��

'j .x/'j .y/ (2)

of the spectral projection
E� WL

2.M;g/!
M

�2.0;��

ker.�g ��
2/

onto functions with frequency at most �. We are primarily concerned with the behavior of E�.x;y/

at points x, y 2 M for which the Riemannian distance distg.x;y/ is less than the injectivity radius
inj.M;g/, so that the inverse of the exponential map exp�1

y .x/ is well defined. We write

E�.x;y/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
CR.x;y; �/; (3)

where the remainder R.x;y; �/ is a smooth function of x and y. The integral in (3) is over the cotangent
fiber T �y M and it is coordinate-independent because the integration measure d�=

p
jgy j is the quotient

Canzani was partially supported by an NSERC Postdoctoral Fellowship and by NSF grant DMS-1128155. Hanin was partially
supported by NSF grant DMS-1400822.
MSC2010: primary 35P20; secondary 58J40, 35L05.
Keywords: spectral projector, pointwise Weyl law, off-diagonal estimates, non-self-focal points .
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of the natural symplectic form d� dy on T �M by the Riemannian volume form
p
jgy j dy. The integral

is also symmetric in x and y, which can be seen by changing variables from T �y M to T �xM using the
parallel transport operator (see (28)).

Our main result, Theorem 2, fits into a long history of estimates on R.x;y; �/ as �! C1 (see
Section 1.2 for some background). To state it, we need a definition from [Safarov 1988; Sogge and
Zelditch 2013]:

Definition 1. A point x 2M is said to be non-self-focal if the set of unit covectors

Lx D f� 2 S�x M j expx.t�/D x for some t > 0g (4)

has zero measure with respect to the surface measure induced by g on S�x M .

Theorem 2. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Suppose x0 2M is a non-self-focal point and let r� be a nonnegative function with lim�!1 r�D 0. Then

sup
x;y2B.x0;r�/

jR.x;y; �/j D o.�n�1/ (5)

as � ! 1. Here, B.x0; r�/ denotes the geodesic ball of radius r� centered at x0 and the rate of
convergence depends on x0 and r�.

The little-o estimate (5) is not new for x D y (i.e., r� D 0). Both Safarov [1988] and Sogge and
Zelditch [2002] show that R.x;x; �/D o.�n�1/ when x belongs to a compact subset of the diagonal
in M �M consisting only of non-self-focal points (see also [Safarov and Vassiliev 1997]). Safarov
[1988] also obtained o.�n�1/ estimates on R.x;y; �/ for .x;y/ in a compact subset of M �M that does
not intersect the diagonal (under the assumptions of Theorem 6). Theorem 2 simultaneously allows x¤ y

and distg.x;y/! 0 as �!1, closing the gap between the two already-known regimes. We refer the
reader to Section 1.2 for further discussion and motivation for Theorem 2 and to Section 2 for an outline
of the proof.

An elementary corollary of Theorem 2 is Theorem 3, which gives scaling asymptotics for the Schwartz
kernel

E.�;�C1�.x;y/ WD
X

�<�j��C1

'j .x/'j .y/ (6)

of the orthogonal projection

E.�;�C1� DE�C1�E� WL
2.M;g/!

M
�2.�;�C1�

ker.�g ��
2/:

Passing to polar coordinates in (3) and using thatZ
Sn�1

eihv;!i d! D .2�/n=2
J.n�2/=2.jvj/

jvj.n�2/=2
; (7)

it is straightforward to obtain the following result:
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Theorem 3. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Let x0 2M be a non-self-focal point. Consider any nonnegative function r� satisfying r�! 0 as �!1.
Then

sup
x;y2B.x0;r�/

ˇ̌̌̌
E.�;�C1�.x;y/�

�n�1

.2�/n=2

J.n�2/=2.� distg.x;y//
.� distg.x;y//.n�2/=2

ˇ̌̌̌
D o.�n�1/; (8)

where J� is the Bessel function of the first kind with index �, B.x0; r�/ denotes the geodesic ball of
radius r� centered at x0, and distg is the Riemannian distance.

Remark 4. Under the assumptions of Theorem 3, relation (8) holds for E.�;�Cı� with any ı > 0. The
difference is that the Bessel function term is multiplied by ı and that the rate of convergence depends
on ı. Our proof of Theorem 3 is insensitive to the choice of ı.

In normal coordinates at x0, (8) therefore implies

sup
juj;jvj<r0

ˇ̌̌̌
E.�;�C1�

�
x0C

u

�
;x0C

v

�

�
�
�n�1

.2�/n

Z
Sn�1

eihu�v;wi d!

ˇ̌̌̌
D o.�n�1/ (9)

as �!1. The measure d! is the Euclidean surface measure on the unit sphere Sn�1 and the rate of
convergence of the error term depends on r0 and the point x0. The integral over Sn�1 in (9) is the kernel
of the spectral projector onto the generalized eigenspace of eigenvalue 1 for the flat Laplacian on Rn (see
[Helgason 1981; Zelditch 2008, §2.1]).

We believe (5) holds for any number of covariant derivatives rj
xr

k
y of the remainder R.x;y; �/ with

o.�n�1/ replaced by o.�n�1CjCk/. This would immediately imply that the C 0 convergence in (8) can be
upgraded to C k convergence for all k. Proving this is work in progress by the authors. Since E.�;�C1� is
the covariance kernel for asymptotically fixed frequency random waves on M (see [Sarnak and Wigman
2014; Sodin 2012; Zelditch 2009]), this C1 convergence would show that the integral statistics of
monochromatic random waves near a non-self-focal point depend only on the dimension of M . We refer
the reader to Section 1.3 for further discussion and motivation for Theorem 3.

1.1. Applications. Combining Theorem 2 with prior results of Safarov [1988], we obtain little-o estimates
on R.x;y; �/ without requiring x or y to be in a shrinking neighborhood of a single nonfocal point. We
recall the following definition from [Safarov 1988; Sogge and Zelditch 2013]:

Definition 5. Let .M;g/ be a Riemannian manifold. We say that x, y 2M are mutually nonfocal if the
set of unit covectors

L.x;y/D f� 2 S�x M j expx.t�/D y for some t > 0g (10)

has zero measure with respect to the Euclidean surface measure induced by g on S�x M .

Theorem 6. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Consider any compact set K �M �M such that, if .x;y/ 2K, then x and y are mutually nonfocal and
either x or y is a non-self-focal point. Then, as �!1, we have

sup
.x;y/2K

jR.x;y; �/j D o.�n�1/: (11)
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Remark 7. Theorem 6 applies with K DM �M if .M;g/ has no conjugate points.

Theorem 6 — proved in Section 7 — can be applied to studying immersions of .M;g/ into Euclidean
space by arrays of high-frequency eigenfunctions. Let f'j1

; : : : ; 'jm�
g be an orthonormal basis forL

�<���C1 ker.�g ��
2/ and consider the maps

‰.�;�C1� WM ! Rm� ; ‰.�;�C1�.x/D

r
.2�/n

2�n�1
.'j1

.x/; : : : ; 'jm�
.x//: (12)

The ��.n�1/=2 normalization is chosen so that the diameter of ‰.�;�C1�.M / in Rm� is bounded above
and below as �!1. Maps related to ‰� are studied in [Bérard et al. 1994; Jones et al. 2008; Potash
2014; Zelditch 2009]. In particular, Zelditch [2009, Proposition 2.3] showed that the maps ‰.�;�C1� are
almost-isometric immersions for large �, in the sense that a certain rescaling of the pullback ‰�

�
.geuc/ of

the Euclidean metric on Rm� converges pointwise to g. A consequence of Theorem 6 is that these maps
are actually embeddings for � sufficiently large:

Theorem 8. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
If every point x2M is non-self-focal and all pairs x, y2M are mutually nonfocal, then there exists �0>0

such that the maps ‰.�;�C1� WM ! Rm� are embeddings for all �� �0.

We prove Theorem 8 in Section 7. Note that this result does not hold on the round spheres Sn �RnC1,
since even spherical harmonics take on equal values at antipodal points. Since ‰.�;�C1� are embeddings
for � large, it is natural to study ‰.�;�C1�.M / as a metric space equipped with the distance, dist�, induced
by the embedding:

dist2�.x;y/ WD k‰.�;�C1�.x/�‰.�;�C1�.y/k
2
l2.Rm� /

D
.2�/n

2�n�1
.E.�;�C1�.x;x/CE.�;�C1�.y;y/� 2E.�;�C1�.x;y//: (13)

Theorem 9, also proved in Section 7, gives precise asymptotics for dist�.x;y/ in terms of distg.x;y/:

Theorem 9. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Suppose further that every x 2M is non-self-focal and all pairs x, y 2M are mutually nonfocal. As
�!1, we have

sup
x;y2M

ˇ̌̌̌
1

�2 dist2g.x;y/

�
dist2�.x;y/�

�
vol.Sn�1/� .2�/n=2

J.n�2/=2.� distg.x;y//
.� distg.x;y//.n�2/=2

��ˇ̌̌̌
D o.1/: (14)

1.2. Discussion of Theorem 2. Theorem 2 is an extension of Hörmander’s pointwise Weyl law [1968,
Theorem 4.4]. Hörmander proved that there exists " > 0 such that, if the Riemannian distance distg.x;y/
between x and y is less than ", then

E�.x;y/D
�n

.2�/n

Z
j�jgy<1

ei� .x;y;�/ d�p
jgy j
CO.�n�1/; (15)

where, in Hörmander’s terminology, the phase function  is adapted to the principal symbol j�jgy
of
p
�g.

After his Theorem 4.4, Hörmander [1968] remarks that the choice of  is not unique. However, every
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adapted phase function satisfies

 .x;y; �/D hx�y; �iCO.jx�yj2j�j/:

In particular, since hexp�1
y .x/; �igy

D hx � y; �i CO.jx�yj2j�j/, Taylor-expanding (15) yields, for
any r0 > 0,

sup
distg.x;y/<r0=�

ˇ̌̌̌
E�.x;y/�

�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
DO.�n�1/:

Changing from one adapted phase to another produces, a priori, an error of O.�n�1/ in (15). With
the additional assumption that x and y are near a non-self-focal point, Theorem 2 therefore extends
Hörmander’s result in two ways. First, our careful choice of phase function hexp�1

y .x/; �igy
allows us to

obtain a o.�n�1/ estimate on R while keeping the amplitude equal to 1. Second, we allow distg.x;y/ to
shrink arbitrarily slowly with �.

Hörmander’s phase functions  .x;y; �/ are difficult to analyze directly when x ¤ y, since they
are the solutions to certain Hamilton–Jacobi equations (see [Hörmander 1968, Definition 3.1; 1985b,
(29.1.7)]) which we cannot describe explicitly. Instead, in proving Theorem 2, we use a parametrix for the
half-wave operator U.t/D e�it

p
�g with the geometric phase function � W R�M �T �M W! R given

by �.t;x;y; �/ D hexp�1
y .x/; �i � t j�jgy

. Such a parametrix was previously used by Zelditch [2009],
where a construction for the amplitude was omitted. Our construction, given in Section 3, makes clear
the off-diagonal behavior of E�.x;y/ and uses the results of Laptev, Safarov and Vassiliev [Laptev et al.
1994], who treat Fourier integral operators (FIOs) with global phase functions.

Using the phase function � simplifies our computations considerably, since the half-density factorp
det�x;�.t;x;y; �/, which comes up in the usual parametrix construction for U.t/ acting on half-

densities, is independent of t and � . This makes it easy to obtain the amplitude in a parametrix for U.t/

acting on functions from that of U.t/ acting on half-densities. For more details, see the outline of the
proof of Theorem 2 given in Section 2, as well as Section 3, especially (37).

The error estimate in (15) is sharp on Zoll manifolds (see [Zelditch 1997]), such as the round sphere.
The majority of the prior estimates on R.x;y; �/ actually treat the case x D y. Notably, Bérard [1977]
showed that on all compact manifolds of dimension n� 3 with nonpositive sectional curvatures and on all
Riemannian surfaces without conjugate points we have R.x;x; �/DO.�n= log�/. The O.�n�1/ error
in the Weyl asymptotics for the spectral counting function

#fj W �j 2 Œ0; ��g D

Z
M

E�.x;x/ dvg.x/D
�
�

2�

�n
volg.M / � volRn.B1/C

Z
M

R.x;x; �/ dvg.x/

has also been improved under various assumptions on the structure of closed geodesics on .M;g/ (see
[Bérard 1977; Colin de Verdière 1980; Duistermaat and Guillemin 1975; Ivriı̆ 1984; Nicolaescu 2012;
Petridis and Toth 2002; Randol 1981; Safarov and Vassiliev 1997]). For instance, [Duistermaat and
Guillemin 1975; Ivriı̆ 1984] prove that

R
M R.x;x; �/ dvg.x/D o.�n�1/ if .M;g/ is aperiodic (i.e., the

set of all closed geodesics has measure zero in S�M ).
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Also related to this article are lower bounds for R.x;y; �/ obtained by Jakobson and Polterovich
[2007] as well as estimates on averages of R.x;y; �/ with respect to either y 2M or � 2 R>0 studied
by Lapointe, Polterovich and Safarov [Lapointe et al. 2009].

1.3. Discussion of Theorem 3. The scaling asymptotics (9) were first stated — without proof and without
any assumptions on Lx0

— by Zelditch [2001, Theorem 2.1]. When .M;g/D .S2;ground/ is the standard
2-sphere, the square roots of the Laplace eigenvalues are �kDk �

p
1C 1=k for k 2ZC, and Lx0

DS�x0
M ,

since the geodesic flow is 2�-periodic. There is therefore no x0 2 S2 satisfying the assumptions of
Theorem 3. Nonetheless, (8) holds with E� replaced by the kernel of the spectral projection onto the
�2

k
eigenspace and is known as Mehler–Heine asymptotics (see §8.1 in [Szegő 1975]). More generally,

on any Zoll manifold, the square roots of Laplace eigenvalues come in clusters that concentrate along
an arithmetic progression. The width of the k-th cluster is on the order of k�1 and we conjecture that
the scaling asymptotics (8) hold for the spectral projectors onto these clusters (see [Zelditch 1997] for
background on the spectrum of Zoll manifolds).

If one perturbs the standard metric on S2 or on a Zoll surface, one can create smooth metrics
possessing self-focal points x0 where only a fraction of the measure of initial directions at x0 give
geodesics that return to x0. These points complicate the remainder estimate for the general case.
Indeed, it was pointed out to the authors by Safarov that even on the diagonal there is a two-term
asymptotic formula with the second term of the form Q.x; �/�n�1, where Q is a bounded function.
The function Q is identically zero if x0 is non-self-focal or if a full measure of geodesics emanating
from x0 return to x0 at the same time. In general, however, Q will contribute an extra term on the
order of �n�1 to the asymptotics in (8). We refer the interested reader to §1.8 in [Safarov and Vassiliev
1997].

1.4. Notation. Given a Riemannian manifold .M;g/, let volg.M / be its volume, distg WM �M ! R

be the induced distance function, and inj.M;g/ be its injectivity radius. For x 2M we write S�x M for
the unit sphere in the cotangent fiber T �xM . We denote by h � ; � igx

W T �xM �T �xM ! R the Riemannian
inner product on T �xM and by j � jgx

the corresponding norm. When M D Rn we simply write h � ; � i
and j � j. In addition, for .x; �/ 2 T �M , we will sometimes write g

1=2
x .�/ for the square root of the matrix

gx applied to the covector � and we write jgxj for the determinant of gx .
We denote by Sk the space of classical symbols of degree k, and we will write Sk

hom � Sk for those
symbols that are homogeneous of degree k. We also denote by ‰k.M / the class of pseudodifferential
operators of order k on M .

2. Outline for the proof of Theorem 2

Fix .M;g/ and a non-self-focal point x0 2M . Theorem 2 follows from the existence of a constant c > 0

such that, for all " > 0, there exist Q�" > 0, an open neighborhood U" of x0 and a positive constant c"

such that

sup
x;y2U"

jR.x;y; �/j � c"�n�1
C c"�

n�2 (16)
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for all � � Q�". Indeed, if r� is a positive function with lim�!1 r� D 0, then it suffices to choose
�" WDmaxfQ�"; inff� W B.x0; r�/�U"gg to get

sup
x;y2B.x0;r�/

jR.x;y; �/j � c"�n�1
C c"�

n�2 for all �� �":

By the definition of R in (3) and the definition of E�, (2), we seek to find a constant c > 0 such that,
for all " > 0, there exist Q�" > 0, an open neighborhood U" of x0 and a positive constant c" satisfying

sup
x;y2U"

ˇ̌̌̌
E�.x;y/�

�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
� c"�n�1

C c"�
n�2 (17)

for all �� Q�". We prove (17) using the so-called wave kernel method. That is, we use that the derivative
of the spectral function is the inverse Fourier transform of the fundamental solution of the half-wave
equation on .M;g/:

E�.x;y/D

Z �

0

X
j

ı.���j /'j .x/'j .y/ d�D

Z �

0

F�1
t!�.U.t;x;y//.�/ d�; (18)

where F�1 denotes the inverse Fourier transform and U.t;x;y/ is the Schwartz kernel of e�it
p
�g . The

singularities of U.t;x;y/ control the �!1 behavior of E�. We first study the contribution of the
singularity of U.t;x;y/ coming at t D distg.x;y/ by taking a Schwartz function � 2 S.R/ that satisfies
supp. O�/� .� inj.M;g/; inj.M;g// and

O�.t/D 1 for all jt j< 1
2

inj.M;g/: (19)

We prove in Section 5 the following proposition, which shows that (17) holds with E� replaced by ��E�.

Proposition 10 (smoothed projector). Let .M;g/ be a compact, smooth, Riemannian manifold of dimen-
sion n� 2 with no boundary. Then there exist constants c, C > 0 such thatˇ̌̌̌

� �E�.x;y/�
1

.2�/n

Z
j�jgy<�

eihexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
� c distg.x;y/�n�1

CC�n�2 (20)

for all x, y 2M with distg.x;y/� 1
2

inj.M;g/ and all � > 0.

Note that Proposition 10 does not assume that x and y are near a non-self-focal point. The reason is
that convolving E� with � multiplies the half-wave kernel U.t;x;y/ in (18) by the Fourier transform
O�.t/, which cuts out all but the singularity at t D distg.x;y/. The proof of (20) relies on the construction
in Section 3 of a short-time parametrix for U.t/, which differs from the celebrated Hörmander parametrix
because it uses the coordinate-independent phase function

�.t;x;y; �/ WD hexp�1
y .x/; �igy

� t j�jgy
; .t;x;y; �/ 2 R�M �T �M: (21)

It remains to estimate the difference jE�.x;y/� � �E�.x;y/j, which is the content of the following
result:
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Proposition 11 (smooth vs. rough projector). Let .M;g/ be a compact, smooth, Riemannian manifold of
dimension n� 2 with no boundary. Let x0 2M be a non-self-focal point. Then there exists c > 0 such
that, for all " > 0, there exist an open neighborhood U" of x0 and a positive constant c" with

sup
x;y2U"

jE�.x;y/� � �E�.x;y/j � c"�n�1
C c"�

n�2 (22)

for all �� 1.

The assumption that x and y are near a non-self-focal point x0 guarantees that the dominant contribution
to E�.x;y/ comes from the singularity of U.t;x;y/ at t D distg.x;y/. Following the technique in [Sogge
and Zelditch 2002], we prove Proposition 11 in Section 6 by microlocalizing U.t/ near x0 (see Section 4)
and applying two Tauberian-type theorems (presented in Section 6.1). Relation (17), and consequently
Theorem 2, are a direct consequence of combining Proposition 10 with Proposition 11.

3. Parametrix for the half-wave group

The half-wave group is the one-parameter family of unitary operators U.t/De�it
p
�g acting on L2.M;g/.

It solves the initial value problem�
1

i
@t C

p
�g

�
U.t/D 0; U.0/D Id;

and its Schwartz kernel U.t;x;y/ is related to the kernel of the spectral projector E�.x;y/ via (18).
It is well known (see [Duistermaat and Guillemin 1975; Hörmander 1985b]) that U is a FIO in
I�1=4.R�M;M I�/ associated to the canonical relation

� D
˚
.t; �;x; �;y; �/ 2 T �.R�M �M / j � D�j�jgy

;Gt .y; �/D .x; �/
	
; (23)

where Gt denotes geodesic flow.
Our goal in this section is to construct a short-time parametrix for U.t/ that is similar to Hörmander’s

parametrix [1968; 1985b, §29] but uses the coordinate-independent phase function � WR�M �T �M !R

defined in (21). Such a parametrix was used by Zelditch [2009], where a detailed construction was
omitted. To construct the amplitude we follow [Laptev et al. 1994], who give a detailed treatment of FIOs
that are built using global phase functions such as �. Denote by � 2 C1.Œ0;C1/; Œ0; 1�/ a compactly
supported, smooth cut-off function with

supp�� Œ0; inj.M;g// and �.s/D 1 for s 2
�
0; 1

2
inj.M;g/

�
:

Further, following [Bérard et al. 1994; Berger et al. 1971, Proposition C.III.2], define

‚.x;y/ WD jdetg Dexp�1
x .y/ expxj: (24)

The subscript g means that we use the inner products on Texp�1
x .y/.TxM / and T �y M induced from g and,

as explained in [Berger et al. 1971], ‚.x;y/D
p
jgxj in normal coordinates at y. The main result of this

section is the following:
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Proposition 12. For jt j< inj.M;g/ we have

U.t;x;y/D
�.distg.x;y//
.2�/n‚.x;y/1=2

Z
T �y M

ei�.t;x;y;�/A.t;y; �/
d�p
jgy j

; (25)

where the equality is modulo smoothing kernels. The amplitude A, which is an order-0 polyhomogeneous
symbol, is uniquely determined by � modulo S�1 and satisfies:

� For all y 2M and � 2 T �y M ,
A.0;y; �/D 1: (26)

� For jt j< inj.M;g/ and all .y; �/ 2 T �y M , we have

A.t;y; �/� 1 2 S�1: (27)

There are many choices of amplitude functions in (25) that depend on t , x, y and �. When we
write that A is uniquely determined modulo S�1, we mean that it is unique among amplitudes that are
independent of x. The proof of Proposition 12 is divided into two steps. First, we prove in Section 3.1
that � parametrizes � . Then, in Section 3.2, we construct the amplitude A.

3.1. Properties of the phase function. Throughout this section, we will denote by Ty!x WT
�

y M!T �xM

the parallel transport operator (along the unique shortest geodesic from x to y) for all x and y sufficiently
close. We will use that

Ty!x exp�1
y .x/D� exp�1

x .y/ and Ty!x D T�x!y : (28)

Lemma 13. The phase function �.t;x;y; �/ parametrizes the canonical relation � for jt j < inj.M;g/

and distg.x;y/ < 1
2

inj.M;g/, in the sense that

� D i�.C�/ (29)

is the image of the critical set

C� D

�
.t;x;y; �/ 2 R�M �T �M

ˇ̌̌̌
x D expy

�
t�

j�jgy

��
under the immersion i�.t;x;y; �/D .t; dt�;x; dx�;y;�dy�/.

Proof. When jt j< inj.M;g/, we have that .t;x;y; �/ 2 C� if and only if t D 0 and x D y, or

t D distg.x;y/¤ 0 and
�

j�jgy

D
exp�1

y .x/

distg.x;y/
:

To prove (29) when t D 0, we must show that

i�.0;x;x; �/D f.0;�j�jgx
;x; �;x; �/ j � 2 T �xM g D �jtD0: (30)

Since dxjxDy exp�1
y .x/ is the identity on T �y M ,

dxjxDy�.0;x;y; �/D �:
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Next, using (28), we have

�.0;x;y; �/D h� exp�1
x .y/;Ty!x�igx

:

Therefore,

dy jyDx�.0;x;y; �/D��;

which proves (30). To establish (29) when t ¤ 0, we write

@xk
�.t;x;y; �/D

X
i;j

gij .y/@xk
Œexp�1

y .x/�i�j ; k D 1; : : : ; n: (31)

Since dx distg.x;y/D� exp�1
x .y/= distg.x;y/, evaluating (31) at

� D j�jgy

exp�1
y .x/

distg.x;y/
;

we obtain

dx�.t;x;y; �/D
j�jgy

2 distg.x;y/
dx Œdistg.x;y/2�D j�jgy

dx distg.x;y/D�j�jgy

exp�1
x .y/

distg.x;y/
: (32)

Since Gt .y; exp�1
y .x//D .x;� exp�1

x .y//, it remains to check that

�dy�.t;x;y; �/D j�jgy

exp�1
y .x/

distg.x;y/
;

which we verify in normal coordinates at y. We have that

dzjzDy j�jz D 0 and @zk
jzDy.exp�1

z .x//j D�ıkj :

Thus,

@zk
jzDy�.t;x; z; �/D��k :

Evaluating at � D j�j �x=jxj, we find that

�dy�.t;x;y; �/D j�j �
x

jxj
D j�jgy

exp�1
y .x/

distg.x;y/
;

as desired. �

We need one more lemma before constructing the amplitude A in Proposition 12.

Lemma 14. Let ˇ WM �M !R be any smooth function such that ˇ.x;x/D 1. The kernel of the identity
operator acting on functions relative to the Riemannian volume form

p
jgy j dy admits the following

representation as an oscillatory integral:

ı.x;y/D
�.distg.x;y//

.2�/n
ˇ.x;y/

Z
T �x M

e�ihexp�1
x .y/;�igx

d�p
jgxj

D
�.distg.x;y//

.2�/n
ˇ.x;y/

Z
T �y M

eihexp�1
y .x/;�igy

d�p
jgy j

: (33)
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Proof. Fix x 2M and let f 2 C1.M /. Without loss of generality, assume that f is supported in an
open set U � B.x; inj.M;g// that contains the point x. Set V D exp�1

x .U /� Rn and consider normal
coordinates at x:

h W V ! U; h.z/D expx.z/: (34)

The pairing of the right-hand side of (33) with f is then

1

.2�/n

Z
Rn

Z
Rn

e�ihz;�i�.jzj/f .h.z//ˇ.0; z/
q
jgh.z/j dz d�D �.j0j/f .h.0//

q
jgh.0/jˇ.0; 0/D f .x/:

This proves (33). To explain why the two oscillatory integrals in the statement of the present lemma
define the same distribution, we will use the parallel transport operator (see (28)). We write (33) as

�.distg.x;y//
.2�/n

ˇ.x;y/

Z
T �x M

eihexp�1
y .x/;Ty!x�igy

d�p
jgxj

: (35)

Let .y1; : : : ;yn/ be any local coordinates near x. We note that, for every y, the collection of covectors
fg

1=2
y dyj jyg

n
jD1

is an orthonormal basis for T �y M . Hence, the Lebesgue measure on T �y M in our
coordinates is jgy j

1=2 dy1jy ^ � � � ^ dynjy and, since Ty!x is an isometry,

� D Ty!x� D) d� D
jgy j

1=2

jgxj
1=2

d�:

This allows us to change variables in (35) to obtain the integral over T �y M in the statement of the
lemma. �

3.2. Construction of the amplitude. To construct the amplitude A in Proposition 12, let us write zU .t/
for the wave operator acting on sections of the half-density bundle �1=2.M /. Lemma 13 combined with
Theorem 3.4 in [Laptev et al. 1994] (or Proposition 25.1.5 in [Hörmander 1985b]) shows that there exists
a polyhomogeneous symbol A of order 0 that is supported in a neighborhood of C� for which

zU .t;x;y/D
�.distg.x;y//

.2�/n

Z
T �y M

ei�.t;x;y;�/A.t;y; �/ d�.t;x;y; �/ d� .mod C1/; (36)

where

d� D
q
j det dx;��j 2�

1=2
x .M /˝��1=2

y .M /

is a 1
2

-density in x and a
�
�

1
2

�
-density in y. Since d� behaves like a 1-density in y, zU .t;x;y/ is in

�
1=2
x .M /˝�

1=2
y .M /. The square root of the Riemannian volume form,

g1=4
y D jgy j

1=4
jdyj1=2 2�1=2

y .M /;

identifies L2 global sections �.�1=2.M // with L2.M / via

L2.M /! �.�1=2.M //; f .y/ 7! f .y/ �g1=4
y :
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Then, computing in normal coordinates at y, we have

d�.t;x;y; �/g
1=4
y g�1=4

x D
1

jgxj
1=4
D

1

‚.x;y/1=2
: (37)

In addition, since U.t;x;y/D zU .t;x;y/g
�1=4
x g

�1=4
y , relation (37) gives

U.t;x;y/D
�.distg.x;y//
.2�/n‚.x;y/1=2

Z
T �y M

ei�.t;x;y;�/A.t;y; �/
d�p
jgy j

.mod C1/: (38)

Write A�
P

j�0 A�j for the polyhomogeneous expansion of A. Note that

A0.t;y; �/D 1 for all t;

because the principal symbol zU .t/ is independent of t and equals 1 at t D 0 [Laptev et al. 1994,
Theorem 4.1]. Next, since

zU .0;x;y/D
�.distg.x;y//

.2�/n

Z
T �y M

ei�.t;x;y;�/A.0;y; �/ d�.t;x;y; �/
d�p
jgy j

is a kernel for the identity modulo C1 and A.0;y; �/ is uniquely determined by � mod S�1 (Theorem 3.4
in [Laptev et al. 1994]), it follows from Lemma 14 and (37), with ˇ.x;y/D‚.x;y/�1=2, that

A�j .0;y; �/D 0 for all j � 1;

as desired.

4. Microlocalizing the identity operator at non-self-focal points

In this section we microlocalize the identity operator near a non-self-focal point x0. For every " > 0

we make a microlocal decomposition of the identity, IdD B"CC" near x0, where the operator B" is
supported on the set of “bad” loopset directions and is built so that its support has measure smaller than ".
This construction follows closely that of Sogge and Zelditch [2002].

Lemma 15. There exists a constant  > 0 such that, for every " > 0, there is a neighborhood O" of x0,
a function  " 2 C1c .M / and real-valued operators B", C" 2 ‰

0.M / supported in O" satisfying the
following properties:

(1) For every ", supp. "/� O" and  " D 1 on a neighborhood of x0.

(2) For every ",
B"CC" D  

2
" : (39)

(3) U.t/C �" is a smoothing operator for 1
2

inj.M;g/ < jt j< 1
"

.

(4) Denote by b0 and c0 the principal symbols of B" and C" respectively. Then, for all x 2M , we have

1

"

Z
j�jgx�1

jb0.x; �/j
2 d�C

Z
j�jgx�1

jc0.x; �/j
2 d� �  (40)

and both b0 and c0 are constant in an open neighborhood of x0.
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Proof. For every x, y 2M and � 2 S�x M , define the loopset function

L�.x;y; �/D infft > 0 j expx.t�/D yg

with L�.x;y; �/DC1 if the infimum is taken over the empty set. Unlike the loopset function studied
in [Sogge and Zelditch 2002], we are interested in x ¤ y (but with distg.x;y/ < 1

2
inj.M;g//.

Fix a coordinate chart .�x0
;Vx0

/ containing x0 with �x0
W Vx0

� Rn !M . We first note that the
function f W Vx0

�Vx0
�Sn�1! R defined as f .x;y; �/D 1=L�.x;y; �/ is upper semicontinuous and

so, by the proof of [Sogge and Zelditch 2002, Lemma 3.1], there exist a neighborhood N" �Vx0
of x0

and an open set �" � Sn�1 for which

L�.x;y; �/ > 1
"

in N" �N" ��
c
"; (41)

j�"j � ": (42)

In addition, there exists a function %" 2 C1.Sn�1; Œ0; 1�/ satisfying that %" � 1 on �", %".�/D %.��/
for all � 2 Sn�1 and j supp.%"/j< 2". In particular,

L�.x;y; �/ >
1

"
on N" �N" � supp.1� %"/:

As in [Sogge and Zelditch 2002], we choose a real-valued function Q " 2C1c .Rn/ with supp. Q "/�N"
that is equal to 1 in a neighborhood of ��1

x0
.x0/. Define symbols on R3n by

Qb".x;y; �/D Q ".x/ Q ".y/%"

�
�

j�j

�
and Qc".x;y; �/D Q ".x/ Q ".y/

�
1� %"

�
�

j�j

��
;

and consider their respective quantizations Op. Qb"/, Op. Qc"/ 2‰0.Rn/. Properties (1) and (2) follow from
setting

B" WD .�
�1
x0
/�Op. Qb"/; C" WD .�

�1
x0
/�Op. Qc"/

and

O" D �x0
.N"/;  " WD .�

�1
x0
/� Q ":

Note that if, for some time, 1
2

inj.M;g/ < t < 1
"
, we have expx.t�=j�j/ D y for some x, y 2 M

and � 2 T �xM , then L�.x;y; �=j�j/� 1
"

, and the latter implies Qc".x;y; �/D 0. Therefore, we see that, if
we write c" for the symbol of C", then

c".x;y; �/D 0 if .t;x;yI �; �; �/ 2 � with 1
2

inj.M;g/ < t < 1
"
;

where � is the canonical relation underlying U.t/ (see (23)). Thus, the kernel of U.t/C �" is a smooth
function for 1

2
inj.M;g/ < t < 1

"
and for .x;y/ in O" � O", which is precisely statement (3). For all

x 2 N", we have that the principal symbols b0 and c0 satisfy the inequality (40), since jsupp %"j < 2".
Also, since b" and c" are real valued and invariant under � 7! �� , we have that B" and C" are real valued
as well. �
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Remark 16. By construction, the subprincipal symbols of B" and C" (acting on half-densities) are zero in
a neighborhood of x0. Indeed, the principal symbols are constant as functions of x in a neighborhood of x0

and, in the coordinates �x0
used in Lemma 15, the total symbols of B" and C" are homogeneous functions

of order zero. Thus, in any coordinates, the parts of order �1 of the polyhomogeneous expansions of the
total symbols of B" and C" vanish in a neighborhood of x0.

Remark 17. We record precise asymptotics for the on-diagonal behavior of QEQ�.x;x; �/ for all
x 2 O" and Q2 fId;B";C"g. Write q0 for the principal symbol of Q. Using that the subprincipal symbols
of both Q and QQ� (acting on half-densities) vanish identically in a neighborhood zO" of x0, Lemmas 3.2
and 3.3 in [Sogge and Zelditch 2002] show that there exist constants c, c" > 0 such that, for all x 2 zO",

QEQ�.x;x; �/D
1

.2�/n

Z
j�jgx<�

jq0.x; �/j
2 d�CRQ.x;x; �/

with

jRQ.x;x; �/j � c"�n�1
C c"�

n�2 (43)

for all �� 1. We note that a similar result is obtained in [Safarov and Vassiliev 1997, Theorem 1.8.7],
with the difference that the latter is proved for points x that are nonfocal.

5. Smoothed projector: proof of Proposition 10

Proposition 18 below is our main technical estimate on E�.x;y/. We use it to prove Propositions 10
and 11 in Sections 5 and 6, respectively.

Proposition 18. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n � 2 with no
boundary. Let " > 0 and Q 2 fId;B";C"g for B" and C", as introduced in Lemma 15. Let q0 be the
principal symbol of Q. Then, for all x, y 2 O" with distg.x;y/� 1

2
inj.M;g/ and all �� 1, we have

@�.� �EQ�/.x;y; �/

D
�n�1

.2�/n‚.x;y/1=2

� Z
S�y M

eihexp�1
y .x/;!igy q0.y; !/

d!p
jgy j

C

Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.y; !/

d!p
jgy j

�
CW .x;y; �/: (44)

Here, d! is the Euclidean surface measure on S�y M and the function‚ is as defined in (24). The function
D

Q
�1

belongs to S�1 and there exists C > 0 such that, for every " > 0,

D
B"
�1
.y; �/CD

C"
�1
.y; �/D 0 for all y 2 O"; (45)

sup
x;y2O"

ˇ̌̌̌Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.y; !/

d!p
jgy j

ˇ̌̌̌
� C ": (46)

In addition, W is a smooth function in .x;y/ for which there exists C > 0 such that, for all � > 0,

sup
distg.x;y/� 1

2
inj.M;g/

jW .x;y; �/j � C.�n�2 distg.x;y/C .1C�/n�3/: (47)
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Proof. Let x, y 2M with distg.x;y/� 1
2

inj.M;g/. Note that

@�.� �EQ�/.x;y; �/D
1

2�

Z C1
�1

eit�
O�.t/U.t/Q�.x;y/ dt: (48)

We start by rewriting U.t/Q�.x;y/ using the parametrix (25) for U.t/. We have

U.t/Q�.x;y/D
�.dg.x;y//

.2�/n‚.x;y/1=2

Z
T �y M

eihexp�1
y .x/;�igy�t j�jgy DQ.t;y; �/

d�p
jgy j

(49)

for some DQ 2 S0 with polyhomogeneous expansion DQ �
P

j�0 D
Q
�j . We claim that

D
Q
0
.0;y; �/D q0.y; �/ (50)

and that, for all " > 0,

DB"

�1.0;y; �/CDC "

�1.0;y; �/D 0; (51)

sup
x;y2O"

ˇ̌̌̌Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.0;y; �/

d!p
jgy j

ˇ̌̌̌
� C "; (52)

where C is a constant independent of ". Indeed, let zU .t/ zQ� denote the operator U.t/Q� when regarded
as acting on half-densities and note that, by the same computations that deduce (38) from (36), we have

zU .t/ zQ�.x;y/D
�.dg.x;y//

.2�/n

Z
T �y M

eihexp�1
y .x/;�igy�t j�jgy DQ.t;y; �/ d�.t;x;y; �/ d�:

Since the principal symbols of both zU and zQ are independent of t , and zU .0/D Id, we know

D
Q
0
.t;y; �/D q0.y; �/:

Moreover, note that DId
�1
.0;y; �/D 0 by Proposition 12 and that DId is uniquely determined modulo S�1

by the phase function � (see [Laptev et al. 1994]). This proves (51), since on O" we have IdD B"CC".
Finally, by the construction of B", we see that the size of the support of D

B"
�1
.0;y; �/ is smaller than a

constant times ". This proves (52) for QD B" and hence for QD C", since DB"
�1
D�D

C"
�1

.
Combining (48) and (49) and changing coordinates � 7! �r!, where .r; !/ 2 Œ0;C1/�S�y M , we

obtain up to an O.��1/ error that

‚.x;y/1=2 � @�.� �EQ�/.x;y; �/

D
�n

.2�/nC1

Z
R

Z 1
0

O�.t/ei�t.1�r/�.r/rn�1

�Z
S�y M

ei�rhexp�1
y .x/;!igy DQ.t;y; r�!/ d!

�
dr dt; (53)

where �2C1c .R/ is a cut-off function that is identically 1 near r D 1 and vanishes for r 62
�

1
2
; 3

2

�
. Indeed,

on the support of 1��, the operator LD .1= i�.1� r// @t is well defined, preserves ei�t.1�r/, and its
adjoint L� satisfies that, for all k 2 ZC,ˇ̌̌̌

.L�/k
�

rn�1.1��.r// O�.t/

Z
S�y M

ei�rhexp�1
y .x/;!igy DQ.t;y; r�!/ d!

�ˇ̌̌̌
� .1C�/�k

� ck
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for some ck > 0. Define

SQ.t;y; �/ WD q0.y; �/CD
Q
�1
.t;y; �/

to be the two leading terms of DQ. Since DQ�SQ 2 S�2, up to a O.�n�3/ error we have

‚.x;y/1=2 � @�.� �EQ�/.x;y; �/

D
�n

.2�/nC1

Z
R

Z 1
0

O�.t/ei�t.1�r/�.r/rn�1

�Z
S�y M

ei�rhexp�1
y .x/;!igy SQ.t;y; r�!/d!

�
dr dt: (54)

According to [Sogge 1993, Theorem 1.2.1], there exist smooth functions a˙, b˙ 2 C1.M �Rn/ such
that, for all .y; �/ 2M �T �y M ,Z

S�y M

eih�;!igy SQ.t;y; �r!/
d!p
jgy j
D

X
˙

e˙ij�jgy .a˙.y; �/C r�1��1
� b˙.t;y; �// (55)

and

j@˛�a˙.y; �/j � C˛.1Cj�jgy
/�.n�1/=2�j˛j; (56)

j@
ˇ
t @
˛
�b˙.t;y; �/j � C˛;ˇ.1Cj�jgy

/�.n�1/=2�j˛j�1; (57)

for all multi-indices ˛ � 0 and ˇ � 0 and for some C˛, C˛;ˇ > 0 independent of t , y and �. Hence,
(54) equals

�n

.2�/nC1

X
˙

Z
R

Z 1
0

ei� ˙.t;r;x;y/g˙.t; r;x;y; �/ dr dt; (58)

where  ˙.t; r;x;y/D t.1� r/˙ r distg.x;y/ and

g˙.t; r;x;y; �/D
1

.2�/n
rn�1�.r/ O�.t/

�
a˙.y; r� exp�1

y .x//C r�1��1b˙.t;y; r� exp�1
y .x//

�
: (59)

Note that the critical points of  ˙ are .t˙c ; r
˙
c /D .˙ distg.x;y/; 1/ and that

det.Hess ˙.t˙c ; r
˙
c ;x;y//D 1:

Hence, we apply the method of stationary phase to get that (58) is

�n�1e˙i� distg.x;y/
X
˙

.g˙.t
˙
c ; r

˙
c ;x;y; �/� i��1@r@tg˙.t

˙
c ; r

˙
c ;x;y; �//

CO
�
�n�3 sup

.t;r/2supp.g˙/
sup

˛Cˇ�7

j@˛t @
ˇ
r g˙.t; r;x;y; �/j

�
: (60)

We take 7 derivatives in the last term, since, in stationary phase with a quadratic phase over Rk , the
remainder after the first N terms is bounded by k C 1C 2N derivatives of the amplitude. Note that
@t O�.t/D 0 for t D˙ distg.x;y/. Hence, since a˙ are independent of t , we have

i��1@r@tg˙.t
˙
c ; r

˙
c ;x;y; �/DO.��2/: (61)
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Moreover, by (56) and (57), the derivatives of g in t and r are uniformly bounded. Hence,

�n�1

.2�/n

Z
S�y M

eihexp�1
y .x/;!igy .q0.y; !/C�

�1D
Q
�1
.distg.x;y/;y; !//

d!p
jgy j
CO.�n�3/: (62)

Taylor-expanding D
Q
�1
.distg.x;y/;y; !/DD

Q
�1
.0;y; !/CO.distg.x;y// and recalling (51) and (52)

completes the proof. �

Proof of Proposition 10. Proposition 10 follows by integrating (44) with respect to � from 0 to � applied
to QD Id. We have

��E.x;y; �/D

Z �

0

�n�1

.2�/n‚.x;y/1=2

�Z
S�y M

ei�hexp�1
y .x/;!igy

d!p
jgy j

�
d�C

Z �

0

W .x;y; �/ d�: (63)

Changing coordinates to � D �!, we find

� �E.x;y; �/D
�n

.2�/n‚.x;y/1=2

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�: (64)

Note that
‚.x;y/�1=2

D 1CO.distg.x;y/2/

and
exp�1

y .x/

i� distg.x;y/2
r�e

i�hexp�1
y .x/;�igy D ei�hexp�1

y .x/;�igy :

Therefore, we may integrate by parts once in (64) to obtain

� �E.x;y; �/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�

CO

�
distg.x;y/�n�1

Z
j�jgyD1

ei�hexp�1
y .x/;!igy d!

�
:

Since

sup
distg.x;y/<inj.M;g/

ˇ̌̌̌
distg.x;y/

Z
j�jgyD1

ei�hexp�1
y .x/;!igy d!

ˇ̌̌̌
D o.1/

as �!1, we find that

� �E.x;y; �/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�C o.�n�1/:

By (47), we have

sup
x;y2B.x0;inj.M;g/=2/

ˇ̌̌̌Z �

0

W .x;y; �/ d�

ˇ̌̌̌
� c distg.x;y/�n�1

CC�n�2

for some c, C > 0 as claimed. �
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6. Smooth vs. rough projector: proof of Proposition 11

Let x0 2M be a non-self-focal point and fix " > 0. The proof of Proposition 11 amounts to showing
that there exists c > 0 such that, for all " > 0, there is an open neighborhood U" of x0 and a positive
constant c" with

sup
x;y2U"

jE�.x;y/� � �E�.x;y/j � c"�n�1
C c"�

n�2 (65)

for all � � 1. It is at this point that the assumption that x0 is a non-self-focal point is needed. In
Section 4 we construct a partition of the identity operator localized to x0. We use this partition to
split jE�.x;y/� � �E�.x;y/j into different pieces, each of which we shall control using two types
of Tauberian theorems, described in Section 6.1. We conclude this section by presenting the proof of
Proposition 11 in Section 6.2.

To ease the notation, we will write

E.x;y; �/ WDE�.x;y/:

To prove (65), we use the operators B" and C" and the function  " constructed in Lemma 15. We set

˛".x;y; �/ WDEC �" .x;y; �/C
1
2
.E.x;x; �/CC"EC �" .y;y; �//; (66)

ˇ".x;y; �/ WD � �EC �" .x;y; �/C
1
2
.E.x;x; �/CC"EC �" .y;y; �//; (67)

where x and y are any two points in M . Note that

j˛".x;y; �/�ˇ".x;y; �/j D jEC �" .x;y; �/� � �EC �" .x;y; �/j:

In addition, observe that
˛".x;y; �/ WD

1
2

X
�j��

Œ'j .x/C .C"'j /.y/�
2

and so ˛".x;y; �/ is an increasing function of � for any fixed x and y. We also set

g".x;y; �/ WDEB�" .x;y; �/� � �EB�" .x;y; �/: (68)

Since B"CC" D  
2
" and  " D 1 in a neighborhood of x0, relation (65) would hold if we proved that

there exist positive constants c and c" with c independent of ", and a neighborhood U" of x0, such that,
for all �� 1,

sup
x;y2U"

j˛".x;y; �/�ˇ".x;y; �/j � c"�n�1
C c"�

n�2; (69)

sup
x;y2U"

jg".x;y; �/j � c"�n�1
C c"�

n�2: (70)

6.1. Tauberian theorems. To control j˛".x;y; �/�ˇ".x;y; �/j and jg".x;y; �/j we use two different
Tauberian-type theorems. To state the first one, fix a positive function � 2S.R/ such that supp O�� .�1; 1/

and O�.0/D 1. We have written Of for the Fourier transform of f . Define, for each a> 0,

�a.�/ WD
1

a
�
�
�

a

�
; (71)
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so that O�a.t/D O�.at/.

Lemma 19 (Tauberian theorem for monotone functions). Let ˛ be an increasing temperate function with
˛.0/D 0 and let ˇ be a function of locally bounded variation with ˇ.0/D 0. Suppose further that there
exist M0 > 0, a> 0 and a constant ca such that:

(a) There exists m 2 N such thatZ �Ca

��a

jdˇj � aM0.1Cj�j/
m�1
C caj�j

m�2 for all �� 0:

(b) There exist � 2 Z n f�1g with � �m� 1, and Ma > 0, such that

j.d˛� dˇ/��a.�/j �Ma.1Cj�j/
� for all �� 0:

Then there exists c > 0 depending only on � such that

j˛.�/�ˇ.�/j � c
�
aM0j�j

m�1
C caj�j

m�2
CMa.1Cj�j/

�C1
�

(72)

for all �� 0.

Proof. The proof is identical to argument for Lemma 17.5.6 in [Hörmander 1985a]. �

We will also need the following result:

Lemma 20 (Tauberian theorem for nonmonotone functions [Hörmander 1968]). Let g be a piecewise
continuous function such that there exists a > 0 with Og.t/� 0 for jt j � a. Suppose further that, for all
� 2 R, there exist constants m 2 N and c1, c2 > 0 such that

jg.�C s/�g.�/j � c1.1Cj�j/
m
C c2.1Cj�j/

m�1 for all s 2 Œ0; 1�: (73)

Then there exists a positive constant cm;a, depending only on m and a, such that, for all �,

jg.�/j � cm;a

�
c1.1Cj�j/

m
C c2.1Cj�j/

m�1
�
:

6.2. Proof of Proposition 11. As explained above, the proof of Proposition 11 reduces to establishing
relations (69) and (70).

Proof of (69). We seek to apply Lemma 19 to ˛" and ˇ". Let aD ", mD n and � D�2. We first verify
condition (a). From Remark 17, it follows that there exist an open neighborhood U" of x0 and constants
c1, c" > 0 such that, for all x, y 2U" and all �� 1,Z �C"

��"

�
j@�E.x;x; �/jC j@�.C"EC �" /.y;y; �/j

�
d� D

X
j�j��j�"

.'j .x//
2
C .C"'j .y//

2

� c1"�
n�1
C c"�

n�2: (74)

Combining (74) with the estimate in Proposition 18 applied to QD C", we see that there exist positive
constants M0 and c" for which

sup
x;y2U"

Z �C"

��"

j@�ˇ".x;y; �/j d� �M0"�
n�1
C c"�

n�2
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for all �� 1. It remains to verify condition (b). Note that

@�.˛".x;y; � /�ˇ".x;y; � //��".�/D F�1
t!�

�
.1� O�.t// O�".t/.U.t/C

�
" /.x;y/

�
.�/;

where F is the Fourier transform and �" is defined in (71). According to Lemma 15, U.t/C �" is a
smoothing operator for 1

2
inj.M;g/ < jt j< 1

"
. Hence, since

supp O�" �
˚
t W jt j< 1

"

	
and supp.1� O�/�

˚
t W jt j> 1

2
inj.M;g/

	
;

we find that, for each N , there are constants cN;" depending on N and " that satisfy

sup
x;y2M

ˇ̌
@�.˛".x;y; � /�ˇ".x;y; � //��".�/

ˇ̌
� cN;".1Cj�j/

�N

for all � > 0. �

Proof of (70). We seek to apply Lemma 20 to g". First, note that, since

g".x;y; �/DEB�" .x;y; �/� � �EB�" .x;y; �/;

the function g".x;y; � / is piecewise continuous in the � variable. Next, we check that Og".t/ � 0 in a
neighborhood of t D 0. We have

@�g".x;y; �/D F�1
t!�

�
.1� O�.t//.U.t/B�" /.x;y/

�
.�/:

Since O�� 1 on
�
�

1
2

inj.M;g/; 1
2

inj.M;g/
�
, we have F�!t .@�g".x;y; � //.t/D 0 for jt j � 1

2
inj.M;g/.

Equivalently,

t �F�!t .g".x;y; � //.t/D 0; jt j � 1
2

inj.M;g/:

In addition, we must have F�!t .g".x;y; � //.0/D 0, for otherwise g".x;y; � / would include a sum of
derivatives of delta functions but this is not possible, since g".x;y; � / is piecewise continuous. It follows
that

F�!t .g".x;y; � //.t/D 0; jt j � 1
2

inj.M;g/;

as desired. It therefore remains to check that g" satisfies (73). Let s 2 Œ0; 1�, � 2 R and write

g".x;y; �C s/�g".x;y; �/

DEB�" .x;y; �C s/�EB�" .x;y; �/C � �EB�" .x;y; �C s/� � �EB�" .x;y; �/: (75)

To estimate EB�" .x;y; �C s/�EB�" .x;y; �/ we apply the Cauchy–Schwarz inequality:

EB�" .x;y; �C s/�EB�" .x;y; �/D
X

���j��Cs

'j .x/B"'j .y/

�

� X
���j��Cs

.'j .x//
2

�1
2
� X
���j��Cs

.B"'j .y//
2

�1
2

:
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Applying Remark 17 to QD Id and QDB", there exist an open neighborhood U" of x0 and constants
c, c" > 0 such that

jEB�" .x;y; �C s/�EB�" .x;y; �/j � c"�n�1
C c"�

n�2 (76)

for all �� 1, s 2 Œ0; 1� and x, y 2U". The " factor is due to the fact that kb0k1 < ".
To estimate ��EB�" .x;y; �C s/���EB�" .x;y; �/ we apply Proposition 18 to the operator QDB".

Since there exists Qc > 0 with

j@�� �EB�" .x;y; �/j � Qc.kb0k1�
n�1
C�n�2/ for all �� 1

and kb0k1 � ", we get (after possibly enlarging c and c") that

j� �EB�" .x;y; �C s/� � �EB�" .x;y; �/j � c"�n�1
C c"�

n�2 for all �� 1: (77)

Combining (76) and (77) into (75), we conclude the existence of positive constants c and c" such that

jg".x;y; �C s/�g".x;y; �/j � c"�n�1
C c"�

n�2 for all �� 1

and s 2 Œ0; 1�, as desired. Applying Lemma 20 with mD n and aD 1
2

inj.M;g/ proves (70). �

7. Proof of Theorems 6–9

Proof of Theorem 6. Suppose that .M;g/ is a smooth, compact, Riemannian manifold with no boundary.
Let K �M �M be a compact set satisfying that any pair of points in it are mutually nonfocal. We aim
to show that there exists c > 0 such that, for every " > 0, there are constants �" > 0 and c" > 0 such that

sup
.x;y/2K

jR.x;y; �/j � c"�n�1
C c"�

n�2

for all � > �". Fix " > 0 and write ��M �M for the diagonal. Define

zK DK\�:

By (16), there exists �" > 0, a finite collection fxj W j D 1; : : : ;N"g and open neighborhoods U
xj
" of xj

such that
zK �

[
j

U
xj
" �U

xj
"

and
sup

x;y2U
xj
"

jR.x;y; �/j � c"�n�1
C c"�

n�2 (78)

for all � > �". Define
K" WDK n

[
j

U
xj
" �U

xj
" :

Safarov [1988, Theorem 3.3] proved under the mutually nonfocal assumption that

sup
.x;y/2K"

jR.x;y; �/j D o".�
n�1/: (79)
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Combining (78) and (79) completes the proof. �

Proof of Theorem 8. The injectivity of the maps ‰.�;�C1� WM ! Rm� for � large enough is implied by
the existence of positive constants c1, c2, r0 and �r0

such that, if � > �r0
, then

inf
x;yW� distg.x;y/�r0

dist2�.x;y/ > c1 (80)

and

inf
x;yW� distg.x;y/<r0

dist2�.x;y/
�2 distg.x;y/2

> c2: (81)

We first prove (80). By Theorem 6, for all x, y 2M ,

dist2�.x;y/D f .� distg.x;y//C zR.x;y; �/; (82)

where supx;y2M j
zR.x;y; �/j D o.1/ and f W Œ0;C1/! R is the function

f .r/ WD

Z
Sn�1

.1� eir!1/ d!:

Observe that f .r/� 0, with f .r/D 0 only if r D 0. Moreover,

f .r/D �nCO.r�.n�1/=2/ as r !1 and f .r/D r2
� Qf .r/ (83)

for some smooth and positive function Qf , where �n is the volume of Sn�1. According to the first relation
in (83), we may choose r0 > 0 so that

� distg.x;y/� r0 D) jf .� distg.x;y//� �nj �
1
4
�n: (84)

Moreover, by Theorem 6 we may choose �r0
so that, if � > �r0

, then

sup
x;y2M

j zR.x;y; �/j � 1
4
�n: (85)

Combining (82) , (84) and (85), we find that, for all � > �r0
and all x, y 2M with � distg.x;y/� r0,

dist2�.x;y/�
1
2
�n;

as desired. To verify (81), write, as above,

dist2�.x;y/D
.2�/n

2�n�1
.E.�;�C1�.x;x/CE.�;�C1�.y;y/� 2E.�;�C1�.x;y//

and note that the first derivatives of dist2�.x;y/ in x and y all vanish when xD y. Moreover, by [Zelditch
2009, Proposition 2.3], we have that the Hessian of E.�;�C1� may be written as

dx˝ dy

ˇ̌
xDy

E.�;�C1�.x;y/D Cn�
nC1gxC o.�nC1/;

where gx is the metric g on TxM , and Equation (1.2) in [Potash 2014] shows that

Cn D
�n

n.2�/n
:
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Therefore, applying Taylor’s theorem, there exists C0 > 0 for whichˇ̌̌̌
dist2�.x;y/

�2 dist2g.x;y/
�
�n

2n

ˇ̌̌̌
� C0 �� distg.x;y/: (86)

The extra factor of � on the right-hand side of (86) comes from the fact that

sup
j˛jD3

ˇ̌
@˛xjxDyE.�;�C1�.x;y/

ˇ̌
DO.m��

3/;

which is proved, for example, in [Xu 2006, Equation (2.7)]. Equation (86) shows that

inf
� distg.x;y/<�n=.4nC0/

dist2�.x;y/
�2d2

g.x;y/
�
�n

2n
> 0:

If r0 � �n=.4nC0/, then the claim (81) follows. Otherwise, it remains to show that there exists c2 > 0

with

inf
�n=.4nC0/�� distg.x;y/<r0

dist2�.x;y/
�2d2

g.x;y/
> c2 (87)

for all � sufficiently large. Theorem 6 shows that, after possibly enlarging �r0
, we have

sup
x;y2M

j zR.x;y; �/j �

�
�n

4nC0

�2

inf
r<r0

Qf .r/

for all � > �r0
. Then the second relation in (83) combined with (82) yields that, for all � > �r0

,

inf
�n=.4nC0/�� distg.x;y/<r0

dist2�.x;y/�
�
�n

4nC0

�2

inf
r<r0

Qf .r/ > 0:

This completes the proof of (81). �

Proof of Theorem 9. By (13) and Theorem 6 we have that

sup
x;y2M

ˇ̌̌̌
dist2�.x;y/�

Z
Sn�1

.1� ei� distg.x;y/!1/ d!

ˇ̌̌̌
D o.1/

as �!1. Combining this with

1

�2 distg.x;y/2

Z
Sn�1

.1� ei� distg.x;y/!1/ d! D
�n

2n
CO.�2 dist2g.x;y//

and (86) completes the proof. �
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ON THE CONTINUOUS RESONANT EQUATION FOR NLS
II: STATISTICAL STUDY

PIERRE GERMAIN, ZAHER HANI AND LAURENT THOMANN

We consider the continuous resonant (CR) system of the 2-dimensional cubic nonlinear Schrödinger
(NLS) equation. This system arises in numerous instances as an effective equation for the long-time
dynamics of NLS in confined regimes (e.g., on a compact domain or with a trapping potential). The
system was derived and studied from a deterministic viewpoint in several earlier works, which uncovered
many of its striking properties. This manuscript is devoted to a probabilistic study of this system. Most
notably, we construct global solutions in negative Sobolev spaces, which leave Gibbs and white noise
measures invariant. Invariance of white noise measure seems particularly interesting in view of the
absence of similar results for NLS.

1. Introduction

Presentation of the equation. The purpose of this manuscript is to construct some invariant measures
for the so-called continuous resonant (CR) system of the cubic nonlinear Schrödinger equation. This
system can be written as �

i@tuD T.u;u;u/; .t;x/ 2 R�R2;

u.0;x/D f .x/;
(CR)

where the operator T defining the nonlinearity has several equivalent formulations corresponding to
different interpretations/origins of this system. In its original formulation [Faou et al. 2013] as the large-
box limit1 of the resonant cubic NLS,2 T can be written as follows: for z 2 R2 and x D .x1;x2/ 2 R2,
letting x? D .�x2;x1/, we have

T.f1; f2; f3/.z/ WD

Z
R

Z
R2

f1.xC z/f2.�x?C z/f3.xC�x?C z/ dx d�:

This integral can be understood as an integral over all rectangles having z as a vertex. It has the equivalent
formulation [Germain et al. 2015]

T.f1; f2; f3/D 2�

Z
R

e�i��Œ.ei��f1/.ei��f2/.ei��f3/� d�:

Germain is partially supported by NSF grant DMS-1101269, a start-up grant from the Courant Institute, and a Sloan fellowship.
Thomann is partially supported by the grant “ANAÉ” ANR-13-BS01-0010-03. Hani is partially supported by NSF Grant
DMS-1301647 and a start-up fund from the Georgia Institute of Technology.
MSC2010: 35Q55, 37K05, 37L50.
Keywords: nonlinear Schrödinger equation, random data, Gibbs measure, white noise measure, weak solutions, global solutions.

1Starting with the equation on a torus of size L and letting L!1.
2This is NLS with only the resonant interactions retained (also known as the first Birkhoff normal form). It gives an

approximation of NLS for sufficiently small initial data.
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It was shown in [Faou et al. 2013] that the dynamics of (CR) approximate that of the cubic NLS equation
on a torus of size L (with L large enough) over time scales �L2="2 (up to logarithmic loss in L), where
" denotes the size of the initial data.

Another formulation of (CR) comes from the fact that it is also the resonant system for the cubic
nonlinear Schrödinger equation with harmonic potential given by

i@tu��uCjxj2uD �juj2u; � 2 R constant: (1-1)

In this picture, T can be written as follows: denoting by H WD ��Cjxj2 D�@2
x1
� @2

x2
Cx2

1
Cx2

2
the

harmonic oscillator on R2,

T.f1; f2; f3/D 2�

Z �
4

��
4

ei�H Œ.e�i�Hf1/.e�i�Hf2/.e�i�Hf3/� d�:

As a result, the dynamics of (CR) approximate the dynamics of (1-1) over long nonlinear time scales for
small enough initial data.

The equation (CR) is Hamiltonian. Indeed, introducing the functional

E.u1;u2;u3;u4/ WD hT.u1;u2;u3/ ; u4iL2

D 2�

Z �
4

��
4

Z
R2

.e�itH u1/.e�itH u2/.e�itH u3/.e�itH u4/ dx dt

and setting
E.u/ WD E.u;u;u;u/;

(CR) derives from the Hamiltonian E given the symplectic form !.f;g/D�4Imhf;giL2.R2/ on L2.R2/,
so that (CR) is equivalent to

i@tf D
1

2

@E.f /

@ Nf
:

In addition to the two instances mentioned above in which (CR) appears to describe the long-time
dynamics of the cubic NLS equation — with or without potential — we mention the following:

� The equation (CR) appears as a modified scattering limit of the cubic NLS on R3 with harmonic tapping
in two directions. Here, (CR) appears as an asymptotic system and any information on the asymptotic
dynamics of (CR) directly gives the corresponding behavior for NLS with partial harmonic trapping. We
refer to [Hani and Thomann 2015] for more details.

� When restricted to the Bargmann–Fock space (see below), the equation (CR) turns out to be the
lowest-Landau-level equation, which describes fast-rotating Bose–Einstein condensates (see [Aftalion
et al. 2006; Nier 2007; Gérard et al. � 2015]).

� The equation (CR) can also be interpreted as describing the effective dynamics of high-frequency
envelopes for NLS on the unit torus T2. This means that, if the initial data '.0/ for NLS has its Fourier
transform given by3 f O'.0; k/� g0.k=N /gk2Z2 and if g.t/ evolves according to (CR) with initial data g0

3Up to a normalizing factor in H s , s > 1.
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and '.t/ evolves according to NLS with initial data '.0/, then g.t; k=N / approximates the dynamics
of O'.t; k/ in the limit of large N (see [Faou et al. 2013, Theorem 2.6]).

Some properties and invariant spaces. We review some of the properties of the (CR) equation that will
be useful in this paper. For a more detailed study of the equation we refer to [Faou et al. 2013; Germain
et al. 2015].

First, (CR) is globally well-posed in L2.R2/. Amongst its conserved quantities, we noteZ
R2

juj2 dx and
Z

R2

.jxj2juj2Cjruj2/ dx D

Z
R2

NuHu dx;

(recall that H denotes the harmonic oscillator H D��Cjxj2). This equation also enjoys many invariant
spaces, in particular:

� The eigenspaces .EN /N�0 of the harmonic oscillator are stable (see [Faou et al. 2013; Germain et al.
2015]). This is a manifestation of the fact that (CR) is the resonant equation associated to (1-1). Recall
that H admits a complete basis of eigenvectors for L2.R2/; each eigenspace EN (N D 0; 1; 2; : : : ) has
dimension N C 1.

� The set of radial functions is stable, as follows from the invariance of H under rotations (see [Germain
et al. 2015]). Global dynamics on L2

rad.R
2/, the radial functions of L2.R2/, can be defined. A basis of

normalized eigenfunctions of H for L2
rad.R

2/ is given by

'rad
n .x/D

1
p
�

L.0/n .jxj2/e�jxj
2=2 with L.0/n .x/D ex 1

n!

�
d

dx

�n

.e�xxn/ for n 2 N:

We record that H'rad
n D .4nC 2/'rad

n .

� If O.C/ stands for the set of entire functions on C (with the identification zD x1C ix2), the Bargmann–
Fock space L2

hol.R
2/DL2.R2/\ .O.C/e�jzj

2=2/ is invariant under the flow of (CR). Global dynamics
on L2

hol.R
2/ can be defined. A basis of normalized eigenfunctions of H for L2

hol.R
2/ is given by the

“holomorphic” Hermite functions, also known as the “special Hermite functions”, namely

'hol
n .x/D

1
p
�n!

.x1C ix2/
ne�jxj

2=2 for n 2 N:

Notice that H'hol
n D 2.nC 1/'hol

n . It is proved in [Germain et al. 2015] that

T.'hol
n1
; 'hol

n2
; 'hol

n3
/D ˛n1;n2;n3;n4

'hol
n4
; n4 D n1C n2� n3; (1-2)

with

˛n1;n2;n3;n4
DH.'hol

n1
; 'hol

n2
; 'hol

n3
; 'hol

n4
/D

�

8

.n1C n2/!

2n1Cn2
p

n1!n2!n3!n4!
1n1Cn2Dn3Cn4

:

As a result, the (CR) system reduces to the following infinite-dimensional system of ODEs when
restricted to Spanf'ngn2N:

i@tcn.t/D
X

n1;n2;n32N
n1Cn2�n3Dn

˛n1;n2;n3;ncn1
.t/cn2

.t/ Ncn3
.t/:
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Statistical solutions. In this paper we construct global probabilistic solutions on each of the above-
mentioned spaces which leave invariant either Gibbs or white noise measures. More precisely, our main
results can be summarized as follows:

� We construct global strong flows on

X 0
rad.R

2/D
\
�>0

H��rad .R
2/

and on

X 0
hol.R

2/ WD

� \
�>0

H�� .R2/

�
\ .O.C/e�jzj

2=2/;

which leave the Gibbs measures invariant (see Theorem 2.5).

� We construct global weak probabilistic solutions on

X�1
hol .R

2/ WD

� \
�>1

H�� .R2/

�
\ .O.C/e�jzj

2=2/;

and this dynamics leaves the white noise measure invariant (see Theorem 2.6).

Since the ’90s, there have been many works devoted to the construction of Gibbs measures for dispersive
equations and, more recently, much attention has been paid to the well-posedness of these equations with
random initial conditions. We refer to the introduction of [Poiret et al. 2014] for references on the subject.
In particular, concerning the construction of strong solutions for the nonlinear harmonic oscillator (which
is related to (CR)), we refer to [Thomann 2009; Burq et al. 2013; Deng 2012; Poiret 2012a; 2012b; Poiret
et al. 2014].

Let us define what we mean by white noise measure in our context. Denote by .en/n�0 a Hilbert
basis of L2.0; 1/ and consider independent standard Gaussians .gn/n�0 on a probability space .�;F;p/.
Then it is well known (see, e.g., [Hida 1980, Chapter 2]) that the random series

Bt D

C1X
nD0

gn

Z t

0

en.s/ ds

converges in L2.�;F;p/ and defines a Brownian motion. The white noise measure is then defined by
the map

! 7!W .t; !/D
dBt

dt
.!/D

C1X
nD0

gn.!/en.t/: (1-3)

Now consider a Hilbert space K which is a space of functions on a manifold M and consider a Hilbert
basis .en/n�0 of K. We define the mean-zero Gaussian white noise (measure) on K as �D p ıW �1,
where

W .x; !/D

C1X
nD0

gn.!/en.x/:
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Notice that this measure is independent of the choice of the Hilbert basis of K. It is clear that, for
all x 2M , EpŒW .x; � /�D 0. Moreover, for all x, y 2M we have

EpŒW .x; � /W .y; � /�D

C1X
nD0

en.x/en.y/D ı.x�y/;

since the sum in the previous line is the kernel of the identity projector on K. For more details on Gaussian
measures on Hilbert spaces, we refer to [Janson 1997].

Construction of flows invariant under white noise measures is much trickier due to the low regularity
of the support of such measures, and there seem to be no results of this sort for NLS equations. We
construct weak solutions on the support of the white noise measure on X�1

hol .R
2/ using a method based on

a compactness argument in the space of measures (the Prokhorov theorem) combined with a representation
theorem of random variables (the Skorohod theorem). This approach has been first applied to the Navier–
Stokes and Euler equations in [Albeverio and Cruzeiro 1990; Da Prato and Debussche 2002] and extended
to dispersive equations by Burq, Thomann and Tzvetkov [Burq et al. 2014], who give a self-contained
presentation of the method.

Notations. Define the harmonic Sobolev spaces for s 2 R and p � 1 by

Ws;p
DWs;p.R2/D fu 2Lp.R2/ WH s=2u 2Lp.R2/g; Hs

DWs;2:

They are endowed with the natural norms kukWs;p . Up to equivalence of norms we have, for s � 0

and 1< p <C1 (see [Yajima and Zhang 2004, Lemma 2.4]),

kukWs;p D kH s=2ukLp � k.��/s=2ukLp CkhxisukLp : (1-4)

Consider a probability space .�;F;p/. Throughout the paper, fgn Wn�0g and fgn;k Wn�0; 0�k�ng

are independent standard complex Gaussians NC.0; 1/ (their probability density function is .1=�/e�jzj
2

dz,
dz being Lebesgue measure on C). If X is a random variable, we denote by L .X / its law (or distribution).

We will sometimes use the notation L
p
T
DLp.�T;T / for T > 0. If E is a Banach space and � is a

measure on E, we write L
p
�DLp.d�/ and kukLp

�E D
kukEL

p
�

. We define X � .R2/D
T
�<� H� .R2/

and, if I � R is an interval, with an abuse of notation we write C.I IX � .R2//D
T
�<� C.I IH� .R2//.

Finally, N denotes the set of natural integers including 0; c, C > 0 denote constants, the value of which
may change from line to line. These constants will always be universal or uniformly bounded with respect
to the other parameters. For two quantities A and B, we write A. B if A� CB and A� B if A. B

and A& B.

2. Statement of the results

As mentioned above, we will construct strong solutions on the support of Gibbs measures and prove the
invariance of such measures. For white noise measures, solutions are weak and belong to the space CT X�1.
We start by discussing the former case.
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Global strong solutions invariant under Gibbs measure.

Measures and dynamics on the space EN . The operator H is self-adjoint on L2.R2/ and has the
discrete spectrum f2N C 2 W N 2 Ng. For N � 0, denote by EN the eigenspace associated to the
eigenvalue 2N C 2. This space has dimension N C 1. Consider any orthonormal basis .'N;k/0�k�N

of EN . Define N 2L2.�IEN / by

N .!;x/D
1

p
N C 1

NX
kD0

gN;k.!/'N;k.x/:

The distribution of the random variable N does not depend on the choice of the basis, and observe that
the law of large numbers gives

kN k
2
L2.R2/

D
1

N C 1

NX
kD0

jgN;k.!/j
2
! 1 a.s. when N !C1:

Then we define the probability measure �N D #p WD p ı �1
N

on EN .

The Lp properties of the measures �N have been studied in [Poiret et al. 2015] with an improvement
in [Robert and Thomann 2015]. We mention in particular the following result:

Theorem 2.1 [Poiret et al. 2015; Robert and Thomann 2015]. There exist c, C1, C2 > 0 such that, for
all N �N0,

�N

�
u2EN WC1N�1=2.log N /1=2kukL2.R2/�kukL1.R2/�C2N�1=2.log N /1=2kukL2.R2/

�
�1�N�c :

This proposition is a direct application of [Robert and Thomann 2015, Theorem 3.8] with hDN�1

and d D 2. Notice that, for all u 2EN , we have kukHs D .2N C 2/s=2kukL2 . The best (deterministic)
L1 bound for an eigenfunction u 2EN is given by [Koch and Tataru 2005]:

kukL1.R2/ � CkukL2.R2/; (2-1)

and this estimate is optimal, since it is saturated by the radial Hermite functions. Therefore, the result
of Theorem 2.1 shows that there is almost a gain of one derivative compared to the deterministic
estimate (2-1).

It turns out that the measures �N are invariant under the flow of (CR), and we have the following:

Theorem 2.2. For all N � 1, the measure �N is invariant under the flow ˆ of (CR) restricted to EN .
Therefore, by the Poincaré theorem, �N -almost all u 2 EN are recurrent in the following sense: for
�N -almost all u0 2EN there exists a sequence of times tn!C1 such that

lim
n!C1

kˆ.tn/u0�u0kL2.R2/ D 0:

In the previous result, one only uses the invariance of the probability measure �N under the flow and
no additional property of the equation (CR).
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Gibbs measure on the space X 0
? .R

2/ and a well-posedness result. In the sequel we either consider
the family .'rad

n /n�0 of the radial Hermite functions which are eigenfunctions of H associated to the
eigenvalue �rad

n D 4nC 2, or the family .'hol
n /n�0 of the holomorphic Hermite functions which are

eigenvalues of H associated to the eigenvalue �hol
n D 2nC 2. Set

X 0
rad.R

2/D
\
�>0

H��rad .R
2/;

X 0
hol.R

2/ WD

� \
�>0

H�� .R2/

�
\ .O.C/e�jzj

2=2/:

In the following, we write X 0
? .R

2/ for X 0
rad.R

2/ or X 0
hol.R

2/, '?n for 'rad
n or 'hol

n , etc.
Now define ? 2L2.�IX 0

? .R
2// by

?.!;x/D

C1X
nD0

gn.!/p
�?n

'?n .x/

and consider the Gaussian probability measure �? D .?/#p WD p ı �1
? .

Lemma 2.3. In each of the previous cases, the measure �? is a probability measure on X 0
? .R

2/.

Notice that, since (CR) conserves the H1 norm, �? is formally invariant under its flow. More generally,
we can define a family .�?;ˇ/ˇ�0 of probability measures on X 0

? .R
2/ which are formally invariant

under (CR) in the following way: define, for ˇ � 0, the measure �? D �?;ˇ by

d�?.u/D Cˇe�ˇE.u/ d�?.u/; (2-2)

where Cˇ > 0 is a normalizing constant. In Lemma 3.2, we will show that E.u/ <C1 �?-a.s., which
enables us to define this probability measure.

For all ˇ � 0, �?.X 0
? .R

2//D 1 and �?.L2
?.R

2//D 0.

Remark 2.4. We could also give sense to a generalized version of (2-2) when ˇ<0 using the renormalizing
method of Lebowitz, Rose and Speer. We do not give the details and refer to [Burq et al. 2013] for such a
construction.

We are now able to state the following global existence result:

Theorem 2.5. Let ˇ � 0. There exists a set †�X 0
? .R

2/ of full �? measure such that, for every f 2†,
the equation (CR) with initial condition u.0/D f has a unique global solution u.t/Dˆ.t/f such that,
for any 0< s < 1

2
,

u.t/�f 2 C.RIHs.R2//:

Moreover, for all � > 0 and t 2 R,

ku.t/kH�� .R2/ � C.ƒ.f; �/C ln1=2.1Cjt j//

and the constant ƒ.f; �/ satisfies the bound �?.f Wƒ.f; �/ > �/� C e�c�2

:
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Furthermore, the measure �? is invariant under ˆ: for any �?-measurable set A�† and any t 2 R,
�?.A/D �?.ˆ.t/.A//.

White noise measure on the space X�1
hol .R

2/ and weak solutions. Our aim is now to construct weak
solutions on the support of the white noise measure. Consider the Gaussian random variable

 .!;x/D

C1X
nD0

gn.!/'
hol
n .x/D

1
p
�

�C1X
nD0

.x1C ix2/
ngn.!/

p
n!

�
e�jxj

2=2 (2-3)

and the measure �Dpı�1. As in Lemma 2.3, we can show that the measure � is a probability measure
on

X�1
hol .R

2/ WD

� \
�>1

H�� .R2/

�
\ .O.C/e�jzj

2=2/:

Since kukL2.R2/ is preserved by (CR), � is formally invariant under (CR). We are not able to define
a flow at this level of regularity; however, using compactness arguments combined with probabilistic
methods, we will construct weak solutions.

Theorem 2.6. There exists a set†�X�1
hol .R

2/ of full � measure such that, for every f 2†, the equation
(CR) with initial condition u.0/D f has a solution

u 2
\
�>1

C.RIH�� .R2//:

The distribution of the random variable u.t/ is equal to � (and thus independent of t 2 R):

LX�1.R2/.u.t//DLX�1.R2/.u.0//D � for all t 2 R:

Remark 2.7. One can also define the Gaussian measure �D p ı �1 on X�1.R2/D
T
�>1 H�� .R2/

by

 .!;x/D

C1X
nD0

1
p
�n

nX
kD�n

gn;k.!/'n;k.x/; �n D 2nC 2;

(where the 'n;k are an orthonormal basis of eigenfunctions of the harmonic oscillator and the angular
momentum operator). Since kukH1.R2/ is preserved by (CR), � is formally invariant under (CR), but we
are not able to obtain an analogous result in this case.

The same comment holds for the white noise measure �D p ı �1 on X�1
rad .R

2/D
T
�>1 H��rad .R

2/

with

 .!;x/D

C1X
nD0

gn.!/'
rad
n .x/;

which is also formally invariant under (CR).

Plan of the paper. The rest of the paper is organized as follows. In Section 3 we prove the results
concerning the strong solutions and in Section 4 we construct the weak solutions.
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3. Strong solutions

Proof of Theorem 2.2. The proof of Theorem 2.2 is an application of the Liouville theorem. Indeed,
write uN D

PN
kD0 cN;k'N;k 2EN ; then

d�N D
.N C 1/NC1

�NC1
exp

�
�.N C 1/

NX
kD0

jcN;k j
2

� NY
kD0

daN;k dbN;k ;

where cN;k D aN;k C ibN;k .
The Lebesgue measure

QN
kD0 daN;k dbN;k is preserved since (CR) is Hamiltonian and

PN
kD0 jcN;k j

2D

kuN k
2
L2 is a constant of motion.

Proof of Theorem 2.5. We start with the proof of Lemma 2.3.

Proof of Lemma 2.3. We only consider the case X 0
? .R

2/ D X 0
hol.R

2/. It is enough to show that
hol 2X 0

hol.R
2/ p-a.s. First, for all � > 0, we haveZ

�

kholk
2
H�� .R2/

dp.!/D

Z
�

C1X
nD0

jgnj
2

.�hol
n /�C1

dp.!/D C

C1X
nD0

1

.nC 1/�C1
<C1; (3-1)

therefore hol 2
T
�>0 L2.�IH�� .R2//. Next, by [Colliander and Oh 2012, Lemma 3.4], for all A� 1

there exists a set �A �� such that p.�c
A
/� exp .�Aı/ and, for all ! 2�A, " > 0 and n� 0,

jgn.!/j � CA.nC 1/":

Then, for ! 2
S

A�1�A, we have
PC1

nD0 zngn.!/=
p
�hol

n n! 2 O.C/. �

We first define a smooth version of the usual spectral projector. Choose �2C1
0
.�1; 1/ so that 0���1

with �D 1 on
�
�

1
2
; 1

2

�
. We define the operators SN D �.H=�N / as

SN

� 1X
nD0

cn'
?
n

�
D

1X
nD0

�

�
�?n
�?

N

�
cn'

?
n :

Then, for all 1< p <C1, the operator SN is bounded in Lp.R2/ (see [Deng 2012, Proposition 2.1] for
a proof).

Local existence. It will be useful to work with an approximation of (CR). We consider the dynamical
system given by the Hamiltonian HN .u/ WDH.SN u/. This system reads�

i@tuN D TN .uN /; .t;x/ 2 R�R2;

uN .0;x/D f;
(3-2)

with TN .uN / WD SN T.SN u;SN u;SN u/. Observe that (3-2) is a finite-dimensional dynamical system
on
LN

kD0 Ek and that the projection of uN .t/ on its complement is constant. For ˇ � 0 and N � 0, we
define the measures �N

? by
d�N
? .u/D C N

ˇ e�ˇHN .u/ d�?.u/;
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where C N
ˇ
> 0 is a normalizing constant. We have the following result:

Lemma 3.1. The system (3-2) is globally well-posed in L2.R2/. Moreover, the measures �N
? are invariant

under its flow, denoted by ˆN .

Proof. The global existence follows from the conservation of kuN kL2.R2/. The invariance of the measures
is a consequence of the Liouville theorem and the conservation of

P1
kD0 �k jck j

2 by the flow of (CR)
(see [Faou et al. 2013]). We refer to [Burq et al. 2013, Lemma 8.1 and Proposition 8.2] for the details. �

We now state a result concerning dispersive bounds of Hermite functions.

Lemma 3.2. For all 2� p �C1,

k'hol
n kLp.Rd / � C n

1
2p
� 1

4 ; (3-3)

k'rad
n kL4.Rd / � C n�

1
4 .ln n/

1
4 : (3-4)

Proof. By Stirling, we easily get that k'hol
n kL1.Rd / � C n�1=4, which is (3-3) for p D1; the estimate

for 2 � p � 1 follows by interpolation. For the proof of (3-4), we refer to [Imekraz et al. 2015,
Proposition 2.4]. �

Lemma 3.3. (i) We have

9C > 0 9c > 0 8�� 1 8N � 1

�?
�
u 2X 0

? .R
2/ W ke�itH SN ukL4.Œ��=4;�=4��R2/ > �

�
� Ce�c�2

: (3-5)

(ii) There exists ˇ > 0 such that

9C > 0 9c > 0 8�� 1 8N �N0 � 1

�?
�
u 2X 0

? .R
2/ W ke�itH .SN �SN0

/ukL4.Œ��=4;�=4��R2/ > �
�
� Ce�cN

ˇ

0
�2

: (3-6)

(iii) In the holomorphic case, for all 2� p <C1 and s < 1
2
�

1
p

,

9C > 0 9c > 0 8�� 1 8N � 1

�hol
�
u 2X 0

hol.R
2/ W ke�itH ukLp.Œ��=4;�=4�/Ws;p.R2/ > �

�
� Ce�c�2

;

�hol
�
u 2X 0

hol.R
2/ W ke�itH ukL8=3.Œ��=4;�=4��R2/ > �

�
� Ce�c�2

:
(3-7)

(iv) In the radial case, for all s < 1
2

,

9C > 0 9c > 0 8�� 1 8N � 1

�rad
�
u 2X 0

rad.R
2/ W ke�itH ukL4.Œ��=4;�=4�/Ws;4.R2/ > �

�
� Ce�c�2

: (3-8)

Proof. We have that

�?
�
u 2X 0

? .R
2/ W ke�itH SN ukL4.Œ��=4;�=4��R2/ > �

�
D p

� 1X
nD0

e�it�n�

�
�n

�N

�
gn.!/
p
�n

'?n .x/


L4.Œ��=4;�=4��R2/

> �

�
:
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Set

F.!; t;x/�

1X
nD0

e�it�?n�

�
�?n
�?

N

�
gn.!/p
�?n

'?n .x/:

Let q � p � 2 and s � 0. Recall here the Khintchine inequality (see, e.g., [Burq and Tzvetkov 2008,
Lemma 3.1] for a proof): there exists C > 0 such that, for all real k � 2 and .an/ 2 `

2.N/,X
n�0

gn.!/ an


Lk

p

� C
p

k

�X
n�0

janj
2

�1
2

(3-9)

if the gn are i.i.d. normalized Gaussians. Applying it to (3-9) we get

kH s=2F.!; t;x/kLq
!
� C
p

q

� 1X
nD0

�2

�
�?n
�?

N

�
j'?n .x/j

2

�?1�s
n

�1
2

� C
p

q

� 1X
nD0

j'?n .x/j
2

hni1�s

�1
2

and using the Minkowski inequality for q � p twice gives

kH s=2F.!; t;x/kLq
!L

p
t;x
� kH s=2F.!; t;x/kLp

t;xL
q
!
� C
p

q

� 1X
nD0

k'?n .x/k
2
Lp.R2/

hni1�s

�1
2

: (3-10)

We are now ready to prove (3-5). Set pD 4 and sD 0. By Lemma 3.2 we have k'?nkL4.R2/ �C n�1=8,
so we get, from (3-10),

kF.!; t;x/kLq
!L4

t;x
� C
p

q:

The Bienaymé–Chebyshev inequality then gives

p
�
kF.!; t;x/kL4

t;x
> �

�
� .��1

kF.!; t;x/kLq
!L4

t;x
/q � .C��1pq/q:

Thus, by choosing q D ı�2 � 4, for ı small enough we get the bound

p
�
kF.!; t;x/kL4

t;x
> �

�
� Ce�c�2

;

which is (3-5).
For the proof of (3-6), we analyze the function

G.!; t;x/�

1X
nD0

e�it�?n

�
�

�
�?n
�?

N

�
��

�
�?n
�?

N0

��
gn.!/p
�?n

'?n .x/

and we use that a negative power of N0 can be gained in the estimate. Namely, there is  > 0 such that

kG.!; t;x/kLq
!L4

t;x
� C
p

qN
�
0
;

which implies (3-6).
To prove (3-7)–(3-8), we come back to (3-10) and argue similarly. This completes the proof of

Lemma 3.3. �
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Lemma 3.4. Let ˇ � 0. Let p 2 Œ1;1Œ; then, when N !C1,

C N
ˇ e�ˇHN .u/! Cˇe�ˇH.u/ in Lp.d�?.u//:

In particular, for all measurable sets A�X 0
? .R

2/,

�N
? .A/! �?.A/:

Proof. Let GN
ˇ
.u/ D e�ˇHN .u/ and Gˇ.u/ D e�ˇH.u/. By (3-6), we deduce that HN .u/! H.u/ in

measure with respect to �?. In other words, for " > 0 and N � 1, we let

AN;" D fu 2X 0
? .R

2/ W jGN
ˇ .u/�Gˇ.u/j � "g;

then �?.Ac
N;"
/! 0 when N !C1. Since 0�G, GN � 1,

kGˇ �GN
ˇ kL

p
�?
� k.Gˇ �GN

ˇ /1AN;"
kLp

�?
Ck.Gˇ �GN

ˇ /1Ac
N;"
kLp

�?

� ".�?.AN;"//
1=p
C 2.�?.A

c
N;"//

1=p

� C "

for N large enough. Finally, we have, when N !C1,

C N
ˇ D

�Z
e�ˇHN .u/ d�?.u/

��1

!

�Z
e�ˇH.u/ d�?.u/

��1

D Cˇ;

and this ends the proof. �

We look for a solution to (CR) of the form uD f C v; thus v has to satisfy�
i@tv D T.f C v/; .t;x/ 2 R�R2;

v.0;x/D 0;
(3-11)

with T.u/D T.u;u;u/. Similarly, we introduce�
i@tvN D TN .f C vN /; .t;x/ 2 R�R2;

v.0;x/D 0:
(3-12)

Recall that X 0
? .R

2/ equals X 0
hol.R

2/ or X 0
rad.R

2/. Define the sets, for s < 1
2

,

As
rad.D/D ff 2X 0

rad.R
2/ W ke�itHf kL4.Œ��=4;�=4�/Ws;4.R2/ �DgI

choosing p.s/D 4=.1� 2s/, so that s < 1
2
�

1
p

,

As
hol.D/

D ff 2X 0
hol.R

2/ W ke�itHf kL8=3.Œ��=4;�=4�/L8=3.R2/Cke
�itHf kLp.s/.Œ��=4;�=4�/Ws;p.s/.R2/ �Dg:

In the sequel, we write As
?.D/ for As

hol.D/ or As
rad.D/. Then we have the following result:

Lemma 3.5. Let ˇ � 0. There exist c, C > 0 such that, for all N � 0,

�N
? .A

s
?.D/

c/� C e�cD2

; �?.A
s
?.D/

c/� C e�cD2

and �?.A
s
?.D/

c/� C e�cD2

:



ON THE CONTINUOUS RESONANT EQUATION FOR NLS, II 1745

Proof. Since ˇ � 0, we have �N
? .A

s
?.D/

c/; �?.A
s
?.D/

c/� C�?.A
s
?.D/

c/. The result is therefore given
by (3-7) and (3-8). �

Proposition 3.6. Let s < 1
2

. There exists c > 0 such that, for any D � 0, setting �.D/D cD�2, for any
f 2As

?.D/ there exists a unique solution v 2L1.Œ��; � �IL2.R2// to the equation (3-11) and a unique
solution vN 2L1.Œ��; � �IL2.R2// to the equation (3-12), which furthermore satisfy

kvkL1.Œ��;��IHs.R2//; kvN kL1.Œ��;��IHs.R2// �D:

The key ingredient in the proof of this result is the following trilinear estimate:

Lemma 3.7. Assume that, for 1� j � 3 and 1� k � 4, .pjk ; qjk/ 2 Œ2;C1Œ
2 are Strichartz admissible

pairs, that is, they satisfy
1

qjk

C
1

pjk

D
1

2
;

and they are such that, for 1� j � 4,

1

pj1

C
1

pj2

C
1

pj3

C
1

pj4

D
1

qj1

C
1

qj2

C
1

qj3

C
1

qj4

D 1:

Then, for all s � 0, there exists C > 0 such that

kT.u1;u2;u3/kHs.R2/ � Cke�itH u1kLp11 Ws;q11ke�itH u2kLp12 Lq12ke�itH u3kLp13 Lq13

CCke�itH u1kLp21 Lq21ke�itH u2kLp22 Ws;q22ke�itH u3kLp23 Lq23

CCke�itH u1kLp31 Lq31ke�itH u2kLp32 Lq32ke�itH u3kLp33 Ws;q33 ;

with the notation LpWs;q DLp.Œ��=4; �=4�IWs;q.R2//.

Proof. By duality,

kT.u1;u2;u3/kHs.R2/

D sup
kuk

L2.R2/
D1

hH s=2T.u1;u2;u3/;uiL2.R2/

D 2� sup
kuk

L2.R2/
D1

Z �
4

��
4

Z
R2

H s=2
�
.e�itH u1/.e�itH u2/.e�itH u3/

�
.e�itH u/ dx dt:

Then, by Strichartz, for all u of unit norm in L2 and for any admissible pair .p4; q4/,

kT.u1;u2;u3/kHs.R2/ � Ck.e�itH u1/.e�itH u2/.e�itH u3/k
L

p0
4 W

s;q0
4
ke�itH ukLp4 Lq4

� Ck.e�itH u1/.e�itH u2/.e�itH u3/k
L

p0
4 W

s;q0
4
:

We then conclude using (1-4) and applying the following lemma twice. �

We have the following product rule:
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Lemma 3.8. Let s � 0, then

ku vkWs;q � CkukLq1kvk
W

s;q0
1
CCkvkLq2kuk

W
s;q0

2

for 1< q <1, 1< q1, q2 <1 and 1� q0
1
, q0

2
<1 such that

1

q
D

1

q1

C
1

q0
1

D
1

q2

C
1

q0
2

:

For the proof with the usual Sobolev spaces, we refer to [Taylor 2000, Proposition 1.1, p. 105]. The
result in our context follows by using (1-4).

Proof of Proposition 3.6. We only consider (3-11), the other case being similar by the boundedness of SN

on Lp.R2/. For s < 1
2

, we define the space

Zs.�/D
˚
v 2 C.Œ��; � �IHs.R2// W v.0/D 0 and kvkZs.�/ �D

	
;

with kvkZs.�/ D kvkL1
Œ��;��

Hs.R2/ and, for f 2As
?.D/, we define the operator

K.v/D�i

Z t

0

T.f C v/ ds:

We will show that K has a unique fixed point v 2Zs.�/.

The case of radial Hermite functions: By Lemma 3.7 with .pjk ; qjk/D .4; 4/, we have, for all v 2Zs.�/,

kK.v/kZs.�/ � �kT.f C v/kZs.�/

� C�
ke�isH .f C v/.t/k3

L4.s2Œ��=4;�=4�/Ws;4.R2/


L1

t2Œ��;��

: (3-13)

Next, by Strichartz and since v 2Zs.�/,

ke�isH .f C v/.t/kL4.s2Œ��=4;�=4�/Ws;4.R2/

� ke�isHf kL4.s2Œ��=4;�=4�/Ws;4.R2/Cke
�isH v.t/kL4.s2Œ��=4;�=4�/Ws;4.R2/

� C.DCkv.t/kHs.R2//

� 2CD:

Therefore, from (3-13) we deduce

kK.v/kZs.�/ � C�D3;

which implies that K maps Zs.�/ into itself when � � cD�2 for c > 0 small enough.
Similarly, for v1, v2 2Zs.�/, we have the bound

kK.v2/�K.v1/kZs.�/ � C�D2
kv2� v1kZs.�/; (3-14)

which shows that if � � cD�2 then K is a contraction of Zs.�/. The Picard fixed point theorem gives
the desired result.
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The case of holomorphic Hermite functions: For s < 1
2

, recall that we set p D p.s/ D 4=.1� 2s/, so
that s < 1

2
�

1
p

. We have

kK.v/kZs.�/ � �kT.f C v/kZs.�/

� C�
�
kT.f; f; f /kZs CkT.f; f; v/kZs CkT.f; v; v/kZs CkT.v; v; v/kZs

�
:

We estimate each term, thanks to Lemma 3.7 and Strichartz. The conjugation plays no role, so we forget
it.

For the trilinear term in v,

kT.v; v; v/kHs � Cke�it 0H vk3
L4

t02Œ��=4;�=4�
Ws;4.R2/

� Ckvk3
Hs.R2/

:

For the quadratic term in v, for ı > 0 such that 2
ı�

8
3
C ı

�
C

1
p
C

1
4
D 1,

kT.v; v; f /kHs � Cke�it 0H vk2
L8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

Cke�it 0H vkL4.t 02Œ��=4;�=4�/Ws;4.R2/ke
�it 0H vkL4.t 02Œ��=4;�=4�/L4.R2/

�ke�it 0Hf kL4.t 02Œ��=4;�=4�/L4.R2/

� CDkvk2
Hs.R2/

:

For the linear term in v, with the same ı as above,

kT.v;f;f /kHs �Cke�it 0HvkL8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/ke
�it 0Hf kL8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

�ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

Cke�it 0H vkL4.t 02Œ��=4;�=4�/Ws;4.R2/ke
�it 0Hf k2

L4.t 02Œ��=4;�=4�/L4.R2/

� CD2
kvkHs.R2/:

For the constant term in v,

kT.f;f;f /kHs � Cke�it 0Hf k2
L8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

� CD3:

With these estimates at hand, the result follows by the Picard fixed point theorem. �

Approximation and invariance of the measure.

Lemma 3.9. Fix D � 0 and s < 1
2

. Then, for all " > 0, there exists N0 � 0 such that, for all f 2As
?.D/

and N �N0,
kˆ.t/f �ˆN .t/f kL1.Œ��1;�1�IHs.R2// � ";

where �1 D cD�2 for some c > 0.

Proof. Denoting for simplicity T.f /D T.f; f; f /,

v� vN D�i

Z t

0

�
SN .T.f C v/�T.f C vN //C .1�SN /T.f C v/

�
ds:
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As in (3-14), we get

kv� vN kZs.�/ � C�D2
kv� vN kZs.�/C

Z �

��

k.1�SN /T.f C v/kHs.R2/ ds;

which in turn implies, when C�D2 �
1
2

,

kv� vN kZs.�/ � 2

Z �

��

k.1�SN /T.f C v/kHs.R2/ ds:

Choose �> 0 so that sC�< 1
2

. Then, by the proof of Proposition 3.6, kT.f Cv/kL1
Œ��;��

HsC�.R2/�CD3

if � � c0D�2 and, therefore, there exists N0 DN0.";D/ which satisfies the claim. �

In the next result, we summarize the results obtained by de Suzzoni [2011, Sections 3.3 and 4]. Since
the proofs are very similar in our context, we skip them.

Let Di;j D .i C j 1=2/1=2, with i , j 2 N, and set Ti;j D
Pj

`D1
�1.Di;`/. Let

†N;i WD ff WˆN .˙Ti;j /f 2As
?.Di;jC1/ for all j 2 Ng

and

†i WD lim sup
N!C1

†N;i ; † WD
[
i2N

†i :

Proposition 3.10. Let ˇ � 0; then:

(i) The set † is of full �? measure.

(ii) For all f 2†, there exists a unique global solution uD f C v to (CR). This define a global flow ˆ
on †

(iii) For all measurable set A�† and all t 2 R,

�?.A/D �?.ˆ.t/.A//:

4. Weak solutions: proof of Theorem 2.6

Definition of T.u;u;u/ on the support of �. For N � 0, denote by …N the orthogonal projector on
the space

LN
kD0 Ek (in this section, we do not need the smooth cut-offs SN ). In the sequel, we write

T.u/D T.u;u;u/ and TN .u/D…N T.…N u;…N u;…N u/.

Proposition 4.1. For all p � 2 and all � > 1, the sequence .TN .u//N�1 is a Cauchy sequence in
Lp.X�1.R2/;B; d�IH�� .R2//. Namely, for all p � 2, there exist ı > 0 and C > 0 such that, for
all 1�M <N , Z

X�1.R2/

kTN .u/�TM .u/k
p

H�� .R2/
d�.u/� CM�ı:

We denote by T.u/D T.u;u;u/ the limit of this sequence and we have, for all p � 2,

kT.u/kLp
�H�� .R2/ � Cp: (4-1)
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Before we turn to the proof of Proposition 4.1, let us state two elementary results which will be needed
in the sequel.

Lemma 4.2. For all n 2 N,
C1X
kDn

1

2k

�
k

n

�
D

C1X
kDn

k!

2kn!.k � n/!
D 2:

Proof. For jzj< 1 we have 1=.1� z/D
PC1

kD0 zk . If we differentiate this formula n times we get

n!

.1� z/nC1
D

C1X
kDn

k!

.k � n/!
zk�n;

which implies the result, taking z D 1
2

. �

Lemma 4.3. Choose 0< " < 1 and p, L� 1 so that p �L". Then

L!

2L.L�p/!
� C 2�L=2:

Proof. The proof is straightforward. By the assumption p �L",

L!

.L�p/!
�Lp

� C 2L=2;

which was the claim. �

Proof of Proposition 4.1. By the result [Thomann and Tzvetkov 2010, Proposition 2.4] on the Wiener
chaos, we only have to prove the statement for p D 2.

Firstly, by definition of the measure �,Z
X�1.R2/

kTN .u/�TM .u/k2
H�� .R2/

d�.u/D

Z
�

kTN . .!//�TM . .!//k2
H�� .R2/

dp.!/:

Therefore, it is enough to prove that .TN . //N�1 is a Cauchy sequence in L2.�IH�� .R2//. Let
1�M <N and fix ˛ > 1

2
. By (1-2), we get

H�˛TN . /D
1

2˛

X
AN

gn1
gn2
Ngn3

.n1C n2� n3C 1/˛
T.'hol

n1
; 'hol

n2
; 'hol

n3
/

D
�

8 � 2˛

X
AN

.n1C n2/!

2n1Cn2

p
n1!n2!n3!.n1C n2� n3/!

gn1
gn2
Ngn3

.n1C n2� n3C 1/˛
'hol

n1Cn2�n3

D
�

8 � 2˛

NX
pD0

1

.pC 1/˛

�X
A
.p/

N

.n1C n2/!

2n1Cn2

p
n1!n2!n3!p!

gn1
gn2
Ngn3

�
'hol

p

with
AN D fn 2 N3

W 0� nj �N; 0� n1C n2� n3 �N g;

A
.p/
N
D fn 2 N3

W 0� nj �N; n1C n2� n3 D pg if 0� p �N:
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Therefore,

kTN . /�TM . /k2
H�˛.R2/

D
�2

64 � 22˛

NX
pD0

1

.pC 1/2˛

X
.n;m/2A

.p/

M;N
�A

.p/

M;N

.n1C n2/!.m1Cm2/!gn1
gn2
Ngn3
Ngm1

gm2
gm3

2n1Cn22m1Cm2p!
p

n1!n2!n3!
p

m1!m2!m3!
;

where A
.p/
M;N

is the set defined by

A
.p/
M;N

D
˚
n 2 N3

W 0� nj �N; n1C n2� n3 D p 2 f0; : : : ;N g and maxfn1; n2; n3;pg>M
	
:

Now we take the integral over �. Since .gn/n�0 are independent and centered Gaussians, we deduce that
each term in the right-hand side vanishes unless one of two cases holds:

Case 1: .n1; n2; n3/D .m1;m2;m3/ or .n1; n2; n3/D .m2;m1;m3/.

Case 2: We have one of

.n1; n2;m1/D .n3;m2;m3/; .n1; n2;m2/D .n3;m1;m3/;

.n1; n2;m3/D .m1; n3;m2/; .n1; n2;m3/D .m2; n3;m1/:

We write Z
�

kTN . /�TM . /k2
H�2˛.R2/

dp D J1CJ2;

where J1 and J2 correspond to the contribution in the sum of each of cases 1 and 2, respectively.

Contribution in case 1: By symmetry, we can assume that .n1; n2; n3/D .m1;m2;m3/. Define

B
.p/
M;N

D
˚
n 2 N2

W 0� nj �N and maxfn1; n2; n1C n2�p;pg>M
	
:

Then

J1 � C
X
p�0

1

.1Cp/2˛

X
B
.p/

M;N

..n1C n2/!/
2

22.n1Cn2/p!n1!n2!.n1C n2�p/!
:

In the previous sum, we make the change of variables LD n1C n2 and we observe that on B
.p/
M;N

we
have L�M ; then

J1 � C
X
p�0

1

.1Cp/2˛

X
L�pCM

LX
n1D0

.L!/2

22Lp!n1!.L� n1/!.L�p/!

D C
X
p�0

1

.1Cp/2˛

X
L�pCM

L!

2Lp!.L�p/!
;
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where we used the fact that
PL

n1D0

�
L
n1

�
D 2L. Let " > 0 and split the previous sum into two pieces:

J1 � C

M "X
pD0

1

.1Cp/2˛

C1X
LDM

L!

2Lp!.L�p/!
CC

C1X
pDM "C1

1

.1Cp/2˛

C1X
LDp

L!

2Lp!.L�p/!

� C

M "X
pD0

1

.1Cp/2˛

C1X
LDM

L!

2Lp!.L�p/!
C 2C

C1X
pDM "C1

1

.1Cp/2˛
DW J11CJ12;

by Lemma 4.2. For the first sum, we can use Lemma 4.3, since p �M " �L"; thus

J11 � C

M "X
pD0

1

.1Cp/2˛p!

C1X
LDM

1

2L=2
� C

C1X
LDM

1

2L=2
� CM�ı:

Next, clearly, J12 � CM�ı because ˛ > 1
2

, and this gives J1 � CM�ı.

Contribution in case 2: We can assume that .n1; n2;m1/D .n3;m2;m3/. Then, for n, m 2 A
.p/
M;N

, we
have n2 Dm2 D p. Moreover, by symmetry, we can assume that n1 >M or p >M . Thus,

J2 � C
X
p�0

1

.1Cp/2˛

C1X
n1DMC1

C1X
m1D0

.n1Cp/!.m1Cp/!

2n1Cp2m1Cpn1!m1!.p!/2

CC
X

p�MC1

1

.1Cp/2˛

C1X
n1D0

C1X
m1D0

.n1Cp/!.m1Cp/!

2n1Cp2m1Cpn1!m1!.p!/2
DW J21CJ22:

To begin with, by Lemma 4.2, we have

J22 D C
X

p�MC1

1

.1Cp/2˛

� C1X
n1D0

.n1Cp/!

2n1Cpn1!p!

�� C1X
m1D0

.m1Cp/!

2m1Cpm1!p!

�

D 4C
X

p�MC1

1

.1Cp/2˛
� cM�ı:

Then, by Lemma 4.2 again,

J21 D C
X
p�0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�� C1X
m1D0

.m1Cp/!

2m1Cpm1!p!

�

D 2C
X
p�0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�

D 2C

M "X
pD0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�
C 2C

C1X
pDM "C1

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�
DWK1CK2:
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On the one hand, by Lemma 4.3,

K1 � C

� M "X
pD0

1

.1Cp/2˛p!

�� C1X
n1DMC1

2�n1=2

�
� CM�ı

and, on the other hand, by Lemma 4.2, since ˛ > 1
2

,

K2 � C

C1X
pDM "C1

1

.1Cp/2˛
� CM�ı:

Putting all the estimates together, we get J2 � CM�ı, which concludes the proof. �

Study of the measure �N . Let N � 1. We then consider the following approximation of (CR):�
i@tuD TN .u/; .t;x/ 2 R�R2;

u.0;x/D f .x/ 2X�1.R2/:
(4-2)

The equation (4-2) is an ODE in the frequencies less than N and .1�…N /u.t/D .1�…N /f for
all t 2 R.

The main reason to introduce this system is the following proposition, whose proof we omit.

Proposition 4.4. The equation (4-2) has a global flow ˆN . Moreover, the measure � is invariant
under ˆN : for any Borel set A�X�1.R2/ and for all t 2 R, �.ˆN .t/.A//D �.A/.

In particular, if LX�1.v/D � then, for all t 2 R, LX�1.ˆN .t/v/D �.
We denote by �N the measure on C.Œ�T;T �IX�1.R2//, defined as the image measure of � under the

map
X�1.R2/! C.Œ�T;T �IX�1.R2//;

v 7!ˆN .t/.v/:

Lemma 4.5. Let � > 1 and p � 2. Then there exists C > 0 such that, for all N � 1,kuk
W

1;p

T
H��x


L

p
�N

� C:

Proof. Firstly, we have that, for � > 1, p � 2 and N � 1,kukLp

T
H��x


L

p
�N

� C:

Indeed, by the definition of �N and the invariance of � under ˆN , we have

kukLp
�N

L
p

T
H��x
D .2T /1=pkvkLp

�H��x
D .2T /1=pkkLp

p H��x
:

Then, by the Khintchine inequality (3-9) and (3-1), for all p � 2,

kkLp
p H��x

� C
p

pkkL2
p H��x

� C:

We refer to [Burq et al. 2014, Proposition 3.1] for the details.
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Next, we show that
k@tukLp

T
H��x


L

p
�N

� C: By definition of �N ,

k@tuk
p

L
p
�N

L
p

T
H��x
D

Z
C.Œ�T;T �IX�1.R2//

k@tuk
p

L
p

T
H��x

d�N .u/D

Z
X�1.R2/

k@tˆN .t/.v/k
p

L
p

T
H��x

d�.v/:

Now, since ˆN .t/.v/ satisfies (4-2) and by the invariance of �, we have

k@tuk
p

L
p
�N

L
p

T
H��x
D

Z
X�1.R2/

kTN .ˆN .t/.v//k
p

L
p

T
H��x

d�.v/D 2T

Z
X�1.R2/

kTN .v/k
p

H��x
d�.v/

and we conclude with (4-1) and Proposition 4.1. �

The convergence argument. The importance of Lemma 4.5 above comes from the fact that it allows us to
establish the following tightness result for the measures �N . We refer to [Burq et al. 2014, Proposition 4.11]
for the proof.

Proposition 4.6. Let T > 0 and � > 1. Then the family of measures

.�N /N�1 with �N DLCT H�� .uN .t/I t 2 Œ�T;T �/

is tight in C.Œ�T;T �IH�� .R2//.

The result of Proposition 4.6 enables us to use the Prokhorov theorem: for each T > 0 there exists
a subsequence �Nk

and a measure � on the space C.Œ�T;T �IX�1.R2// such that, for all � > 1 and all
bounded continuous functions F W C.Œ�T;T �IH�� .R2//! R,Z

C.Œ�T;T �IH�� .R2//

F.u/ d�Nk
.u/!

Z
C.Œ�T;T �IH�� .R2//

F.u/ d�.u/:

By the Skorohod theorem, there exists a probability space .e�;eF; Qp/, a sequence of random variables . QuNk
/

and a random variable Qu with values in C.Œ�T;T �IX�1.R2// such that

L . QuNk
I t 2 Œ�T;T �/DL .uNk

I t 2 Œ�T;T �/D �Nk
; L . QuI t 2 Œ�T;T �/D �; (4-3)

and, for all � > 1,
QuNk
! Qu Qp-a.s. in C.Œ�T;T �IH�� .R2//: (4-4)

We now claim that LX�1.uNk
.t//DLX�1. QuNk

.t//D � for all t 2 Œ�T;T � and k � 1. Indeed, for
all t 2 Œ�T;T �, the evaluation map

Rt W C.Œ�T;T �IX�1.R2//!X�1.R2/;

u 7! u.t; � /;

is well-defined and continuous.
Thus, for all t 2 Œ�T;T �, uNk

.t/ and QuNk
.t/ have same distribution .Rt /#�Nk

. By Proposition 4.4,
we obtain that this distribution is �.

Thus, from (4-4) we deduce that

LX�1. Qu.t//D � for all t 2 Œ�T;T �: (4-5)
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Let k � 1 and t 2 R and consider the random variable Xk given by

Xk D uNk
.t/�R0.uNk

.t//C i

Z t

0

TNk
.uNk

/ ds:

Define eX k similarly to Xk , with uNk
replaced by QuNk

. Then, by (4-3),

LCT X�1.eX Nk
/DLCT X�1.XNk

/D ı0:

In other words, eX k D 0 Qp-a.s. and QuNk
satisfies the following equation Qp-a.s.:

QuNk
.t/DR0. QuNk

.t//� i

Z t

0

TNk
. QuNk

/ ds: (4-6)

We now show that we can pass to the limit k!C1 in (4-6) in order to show that Qu is Qp-a.s. a solution
to (CR), written in integral form as

Qu.t/DR0. Qu.t//� i

Z t

0

T. Qu/ ds: (4-7)

Firstly, from (4-4) we deduce the convergence of the linear terms in (4-6) to those in (4-7). The
following lemma gives the convergence of the nonlinear term:

Lemma 4.7. Up to a subsequence,

TNk
. QuNk

/! T. Qu/ Qp-a.s. in L2.Œ�T;T �IH�� .R2//:

Proof. In order to simplify the notations, in this proof we drop the tildes and write Nk D k. Let M � 1

and write

Tk.uk/�T.u/D .Tk.uk/�T.uk//C .T.uk/�TM .uk//C .TM .uk/�TM .u//C .TM .u/�T.u//:

To begin with, by continuity of the product in finite dimensions, when k!C1,

TM .uk/! TM .u/ Qp-a.s. in L2.Œ�T;T �IH�� .R2//:

We now deal with the other terms. It is sufficient to show the convergence in the space X WD

L2.�� Œ�T;T �IH�� .R2//, since the almost sure convergence follows after extraction of a subsequence.
By definition and the invariance of �, we obtain

kTM .uk/�T.uk/k
2
X D

Z
C.Œ�T;T �IX�1/

kTM .v/�T.v/k2
L2

T
H��x

d�k.v/

D

Z
X�1.R2/

TM .ˆk.t/.f //�T.ˆk.t/.f //
2

L2
T

H��x
d�.f /

D

Z
X�1.R2/

kTM .f /�T.f /k2
L2

T
H��x

d�.f /

D 2T

Z
X�1.R2/

kTM .f /�T.f /k2H��x
d�.f /;

which tends to 0 uniformly in k � 1 when M !C1, according to Proposition 4.1.
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The term kTM .u/�T.u/kX is treated similarly. Finally, with the same argument, we show

kTk.uk/�T.uk/kX � CkTk.f /�T.f /kL2
�H��x

;

which tends to 0 when k!C1. This completes the proof. �

Conclusion of the proof of Theorem 2.6. Define Qf D Qu.0/ WDR0. Qu/. Then, by (4-5), LX�1. Qf /D �

and, by the previous arguments, there exists e�0 � e� such that Qp.e�0/ D 1 and, for each !0 2 e�0, the
random variable Qu satisfies the equation

QuD Qf � i

Z t

0

T. Qu/ dt; .t;x/ 2 R�R2: (4-8)

Set †D Qf .�0/; then �.†/D Qp.e�0/D 1. It remains to check that we can construct a global dynamics.
Take a sequence TN !C1 and perform the previous argument for T D TN . For all N � 1, let †N be
the corresponding set of initial conditions and set †D

T
N2N†N . Then �.†/D 1 and, for all Qf 2†,

there exists
Qu 2 C.RIX�1.R2//

which solves (4-8). This completes the proof of Theorem 2.6.
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BLOW-UP ANALYSIS OF A NONLOCAL LIOUVILLE-TYPE EQUATION

FRANCESCA DA LIO, LUCA MARTINAZZI AND TRISTAN RIVIÈRE

We establish an equivalence between the Nirenberg problem on the circle and the boundary of holomorphic
immersions of the disk into the plane. More precisely we study the nonlocal Liouville-type equation

(−1)
1
2 u = κeu

− 1 in S1, (1)

where (−1)
1
2 stands for the fractional Laplacian and κ is a bounded function. The equation (1) can

actually be interpreted as the prescribed curvature equation for a curve in conformal parametrization.
Thanks to this geometric interpretation we perform a subtle blow-up and quantization analysis of (1). We
also show a relation between (1) and the analogous equation in R,

(−1)
1
2 u = K eu in R (2)

with K bounded on R.
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Appendix B. Useful results from complex analysis 1804
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1. Introduction

A famous problem posed by Louis Nirenberg is the question of for which positive functions K on the
standard sphere (Sn, gSn ) there exists a function u on Sn such that the scalar curvature (Gauss curvature
in dimension n = 2) of the conformal metric g = e2ugSn is equal to K . This problem, prescribing the
scalar curvature within a conformal class of manifolds, has stimulated a lot of works in geometry and
analysis. In dimension n = 2 it consists in solving the so-called Liouville equation. More precisely, if
(6, g0) is a smooth, closed Riemann surface with Gauss curvature Kg0 , an easy computation shows that a
function K (x) is the Gauss curvature for some metric g = e2ug0 conformally equivalent to the metric g0

with u :6→ R if and only if there exists a solution u = u(x) of

−1g0u = K e2u
− Kg0 on 6, (3)

Martinazzi is supported by the Swiss National Foundation, project no. PP00P2-144669.
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of solutions, conformal variational problems, quasiconformal mappings in the plane.
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where 1g0 is the Laplace–Beltrami operator on (6, g0) (see, e.g., [Chang 2005] for more details).
In particular, when 6 = R2 or 6 = S2, (3) reads, respectively,

−1u = K e2u on R2 (4)

and
−1S2u = K e2u

− 1 on S2. (5)

Singular Liouville equations of the form

−1g0u = K e2u
− Kg0 − 2π

m∑
i=1

αiδpi on 6 (6)

have a role in fluid dynamics — see [Tur and Yanovsky 2004] — as well as in the study of electroweak
theory or abelian Chern–Simons vortices; see, e.g., [Tarantello 2008]. For the latter cases, singular points
represent zeroes of the scalar wave function involved in the model.

Equations (4), (5) and also (6) have been largely studied in the literature. Here we would like to recall
the famous blow-up result of Brezis and Merle [1991] concerning (4):

Theorem 1.1 [Brezis and Merle 1991, Theorem 3]. Assume that (uk) ⊂ L1(�), � an open subset
of R2, is a sequence of solutions to (4) satisfying Kk ≥ 0, ‖Kk‖L p ≤ C1, and ‖euk‖L p′ ≤ C2 for
some 1 < p ≤ ∞. Then, up to subsequences, one of the following alternatives holds: either (uk) is
bounded in L∞loc(�), or uk(x)→−∞ uniformly on compact subsets of �, or there is a finite nonempty
(blow-up) set B = {a1, . . . , aN } ⊂� such that uk(x)→−∞ on compact subsets of � \ B. In addition, in
this last case, Kke2uk converges in the sense of measure on � to

∑N
i=1 αiδai , with αi ≥ 2π/p′.

The purpose of this work is to investigate an analogous prescribed curvature problem in dimension 1.
Even if this is a classical problem, it has never been studied so far (to our knowledge) from the point of
view of conformal geometry. In the case, for instance, of a planar Jordan curve (namely, a continuous
closed and simple curve) there is the possibility to parametrize it through the trace of the Riemann
mapping between the disk D2 and the simply connected domain enclosed by the curve. The equation
corresponding to such a parametrization is

(−1)
1
2λ= κeλ− 1 in S1, (7)

where eλdθ and κeλdθ are the length form and the curvature density, respectively, of the curve in this
parametrization. The definition and relevant properties of the operator (−1)

1
2 will be given in Appendix A.

One of the main results of this paper is the one-to-one correspondence between the solutions to the
Nirenberg problem (7) in S1 and the space of holomorphic immersions of the disk D2 (see Theorem 1.4
below). This correspondence can be seen as a sort of generalized Riemann mapping theorem.

This permits us to perform a complete blow-up analysis of (7) in the spirit of Theorem 1.1, even if we
do not get exactly the same dichotomy. More precisely, our first main result is the following theorem:

Theorem 1.2. Let (λk)⊂ L1(S1,R) be a sequence with

Lk := ‖eλk‖L1(S1) ≤ L (8)
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satisfying
(−1)

1
2λk = κkeλk − 1 in S1, (9)

where κk ∈ L∞(S1,R) satisfies
‖κk‖L∞(S1) ≤ κ̄ . (10)

Then up to subsequence we have κkeλk ⇀ µ weakly in W 1,p
loc (S

1
\ B) for every p <∞, where µ is a

Radon measure, B := {a1, . . . , aN } is a (possibly empty) subset of S1 and κk
∗⇀ κ∞ in L∞(S1). Set

λ̄k := (1/2π)
∫

S1 λk dθ . Then one of the following alternatives holds:

(i) λ̄k→−∞ as k→∞, N = 1 and µ= 2πδa1 . In this case,

vk := λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ {a1}) for every p <∞,

where v∞(eiθ )=− log
(
2(1− cos(θ − θ1))

)
for a1 = eiθ1 , solving

(−1)
1
2 v∞ =−1+ 2πδa1 in S1. (11)

(ii) λ̄k→−∞ as k→∞, N = 2 and µ= π(δa1 + δa2). In this case,

vk := λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ {a1, a2}) for every p <∞,

where

v∞(eiθ )=− 1
2 log

(
2(1− cos(θ − θ1))

)
−

1
2 log

(
2(1− cos(θ − θ2))

)
, a1 = eiθ1, a2 = eiθ2,

solves
(−1)

1
2 v∞ =−1+πδa1 +πδa2 in S1. (12)

(iii) |λ̄k | ≤ C and µ= κ∞eλ∞ +π(δa1 +· · ·+ δaN ) for some λ∞ ∈W 1,p
loc (S

1
\ B), with λ∞, eλ∞ ∈ L1(S1)

and

(−1)
1
2λ∞ = κ∞eλ∞ − 1+

N∑
i=1

πδai in S1. (13)

We would like to stress that we obtain a quantization-type result, namely the curvature concentrating at
each blow-up point is precisely π , without any assumption on the sign of the curvature (this hypothesis is
crucial in [Brezis and Merle 1991]) and on the convergence of the κk . Actually, several works on equations
(4) and (5) have extended the result of Brezis and Merle, showing that, under the crucial assumption
that the prescribed curvatures Kk converge in C0, the amount of curvature concentrating at each point is
a multiple of 4π , i.e., a multiple of the total Gaussian curvature of S2; see, e.g., [Li and Shafrir 1994].
(Also, higher-dimensional extensions were studied under the same strong assumptions of convergence
of Kk in C0 or even C1; see, e.g., [Druet and Robert 2006; Malchiodi 2006; Martinazzi 2009b].) In
[Brezis and Merle 1991] the functions Kk can belong to L p(R), with 1< p ≤+∞. We believe that in
the case of the nonlocal Liouville equation (7) the quantization result by π does not hold once we replace
κ ∈ L∞ by κ ∈ L p with 1< p <+∞.

The fact that we are able to get a quantization result only under the minimal (and geometrically mean-
ingful) bounds (8) and (10) is better understood through the above-mentioned one-to-one correspondence
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between the solutions to (7) and the space of holomorphic immersions of the disk D2. Precisely, given a
solution λ to (7) with κ ∈ L∞(S1), the function eλ provides a “conformal” parametrization of a closed
curve γ : S1

→ C in normal parametrization whose curvature at the point γ (z) is exactly κ(z).

Definition 1.3. A function 8 ∈ C1(D2,C) is called a holomorphic immersion if 8 is holomorphic in D2

and 8′(z) := ∂z8(z) 6= 0 for every z ∈ D2.
A curve γ ∈ C1(S1,C) is said to be in normal parametrization if |γ̇ | is constant, and is in conformal

parametrization if there exists a holomorphic immersion 8 ∈ C1(D2,C) with 8|S1 = γ .

Then we have the following characterization:

Theorem 1.4. A function λ ∈ L1(S1,C) with L := ‖eλ‖L1(S1) <∞ satisfies

(−1)
1
2λ= κeλ− 1 in S1 (14)

for some function κ : S1
→ R, κ ∈ L∞(S1), if and only if there exists a closed curve γ ∈ W 2,∞(S1,C)

with |γ̇ | ≡ L/(2π), a holomorphic immersion 8 : D2
→ C and a diffeomorphism σ : S1

→ S1 such that,
for all z ∈ S1, we have 8 ◦ σ(z)= γ (z),

|8′(z)| = eλ(z) (15)

and the curvature of 8(S1) is κ . While 8 uniquely determines λ via (15), λ determines 8 up to a rotation
and a translation. Moreover,

|8′(z)| = eλ̃(z), z ∈ D2, (16)

where λ̃ : D2
→ R is the harmonic extension of λ.

Figures 1, 2 and 5 provide some examples of curves satisfying the assumptions of Theorem 1.4.
Theorem 1.4 allows us to interpret and reformulate Theorem 1.2 from the point of view of the behavior

γk
normal

Jordan curve

S1

σk

diffeomorphism
D2

8k

conformal

Figure 1. A domain bounded by a Jordan curve γk and biholomorphic to the unit disk D2

via a map 8k : D2
→ C.
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γk
normal parametrization

S1

σk

diffeomorphism
D2

8k

conformal

Figure 2. The curve γk can have self-intersections. In this case, 8k : D2
→ C is a

holomorphic immersion but it is not injective.

γ∞
normal parametrization

S1

D2

8∞
conformal

Figure 3. As k→∞ the curves γk can generate a pinching phenomenon. In this case,
8k can converge to a constant or, as in this figure, to a holomorphic immersion 8∞
(singular at finitely many points of ∂D2) whose image “selects” one of the “components”
bounded by γ∞.

of the sequences of the curves γk (in normal parametrization) and of the immersions 8k corresponding to
a sequence of solutions to (9); see Figures 3 and 4.

Theorem 1.5. Let a sequence (λk) ⊂ L1(S1,R) satisfy (8)–(10), let 8k : D2
→ C be a holomorphic

immersion satisfying (15), and let σk and γk with γk = 8k ◦ σk be as given by Theorem 1.4. Then,
up to extracting a subsequence, there exists an at most countable family J such that for every j ∈ J
there exist a sequence of Möbius transformations f j

k : D
2
→ D2 and a finite set of finitely many points
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γ∞
normal parametrization

S1

D2

8̃∞ = limk→+∞8k ◦ f j
k

conformal

Figure 4. Composing 8k as in Figure 3 with suitable Möbius transformations, one can
have 8∞ cover a different “component” bounded by γ∞. In this figure one can choose
among 4 different components, or choose 8∞ to be constant.

B j = {a
j
1 , . . . a

j
N j
} ⊂ S1 such that

γk ⇀γ∞ in W 2,p(S1) and 8̃
j
k :=8k ◦ f j

k ⇀ 8̃ j
∞

in W 2,p
loc (D

2
\ B j ),

where p <∞, the 8̃ j
∞ : D2

\ B j → C are holomorphic immersions satisfying

(γ∞)∗[S1
] =

∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ], (17)

where, for any φ : S1
→ C and differential form ω on C,

〈φ∗[S1
], ω〉 :=

∫
S1
φ∗ω.

If λ j
k := log

∣∣(8̃ j
k )
′
|S1

∣∣ then, up to a subsequence, λ j
k ⇀λ

j
∞ in W 1,p

loc (S
1
\ B j ), where

(−1)
1
2λ j
∞
= κ j
∞

eλ
j
∞ − 1−

N j∑
i=1

πδa j
i

(18)

and κk ◦ f j
k
∗⇀κ

j
∞ in L∞(S1,R) as k→+∞.

Theorem 1.5 says that it is always possible, up to the action of sequences of Möbius transformations,
to recover all the connected components enclosed by the limiting curve γ∞ (see in particular (17)). We
will also see that these components are separated by what we call pinched points (see Definition 3.7),
namely (roughly speaking) a pair of points p 6= p′ ∈ S1 such that γ∞(p)= γ∞(p′). The angle between the
tangent vectors in these pairs of points is shown to necessarily be π . This also explains the coefficient π
in front of each δai in (18).
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It would be interesting to compare Theorems 1.2 and 1.5 to the blow-up analysis obtained recently by
Mondino and Rivière [2014] in the case of sequences of weak conformal immersions from S2 into Rm ;
they study the possible limit of the Liouville equation

−1g0u = K e2u
− 1 on S2 (19)

satisfied by the conformal factor of the immersion 8 (g8 = e2ug0) under the assumption that the
second fundamental form is bounded in L2. Also in their case, a sort of bubbling phenomenon occurs
and the choice of different sequences of Möbius transformations of S2 permits them to detect all the
limiting enclosed currents. However, the 2-dimensional blow-up analysis differs substantially from the
1-dimensional case: in the 2-dimensional case the area is quantized, namely there is no production of
area in the neck region between the different bubbles, whereas in the 1-dimensional case the quantization
of the length does not hold. Precisely, Mondino and Rivière [2014] show that∑

“bubbles”

∫
S2

e2u∞ dv = lim inf
k→+∞

∫
S2

e2uk dv,

whereas in the present situation one can produce examples such that∑
“bubbles”

∫
S1

eλ∞ dθ < lim inf
k→+∞

∫
S1

eλk dθ.

We insist on the fact that “conformal” parametrizations of planar curves are relevant in different
applications. For instance, they should be one of the main tools of the Willmore plateau problem, of
the analysis of the renormalizing area of surfaces in the hyperbolic space H2 and of the free boundaries
problem. In particular, for the latter, Da Lio [2015] has observed that there is a one-to-one correspondence
between free boundaries and 1

2 -harmonic maps and here we show that the holomorphic immersion φ for
which eλ(z) = |∂φ/∂θ(z)|, z ∈ S1, is a 1

2 -harmonic map into φ(S1).
In forthcoming work, we are going to investigate the topological and differential structure of the

subspace of C1,α(S1)×C0,α(S1) made of solutions (u, κ) of the Nirenberg problem in S1 (the Nirenberg
moduli space). The present work should be interpreted as an attempt to describe the “boundary of the
Nirenberg moduli space”. We mention that a nonlocal version of the Nirenberg problem in dimension n≥2
has recently been studied in [Jin et al. 2014; 2015a].

We finally prove a link between (7) and the analogous nonlocal equation in R. Precisely, if u ∈ L 1
2
(R)

(see (130)), eu
∈ L1(R) and u satisfies

(−1)
1
2 u = K eu in R (20)

for some K ∈ L∞(R), then λ(z) := u(5(z))− log(1+sin z) (where5 : S1
\{−i}→R is the stereographic

projection) satisfies

(−1)
1
2λ= K ◦5eλ− 1+ (2π −‖(−1)

1
2 u‖L1)δ−i in S1. (21)

Owing to this correspondence from Theorem 1.2, we can deduce the following compactness result in R:
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Theorem 1.6. Let uk ∈ L 1
2
(R) be a sequence of solutions to

(−1)
1
2 uk = Kkeuk in R

with ‖Kk‖L∞ ≤C and ‖euk‖L1 ≤C. Then, up to subsequence, we have Kkeuk ⇀µ weakly in W 1,p
loc (R\B)

for every p <∞, where µ is a finite Radon measure in R, B := {a1, . . . , aN } is a (possibly empty) subset
of R and Kk

∗⇀ K∞ in L∞(R). Moreover, one of the following alternatives holds:

(i) µ|R\B = K∞eu∞ for some u∞ ∈W 1,p
loc (R \ B) satisfying

(−1)
1
2 u∞ = K∞eu∞ +

N∑
i=1

πδai in R. (22)

(ii) µ|R\B ≡ 0, N ≤ 2 and uk→−∞ locally uniformly in R \ B.

In particular, we can deduce the following:

Corollary 1.7. Under the hypotheses of Theorem 1.6, if Kk ≥ 0 and∫
R

Kkeuk dx ≤ 2π,

then either N = 1 and uk → −∞ locally uniformly R \ {a1}, or N = 0 and uk ⇀ u∞ in W 1,p(R)

as k→+∞, where u∞ solves
(−1)

1
2 u∞ = K∞eu∞ . (23)

We will give the proof of Theorem 1.6 and Corollary 1.7 in a forthcoming paper.
An interesting consequence of Theorem 1.4 is a proof of the classification of the solutions to the

nonlocal equation
(−1)

1
2 u = eu in R (24)

under the integrability condition

L :=
∫

R

eu dx <∞. (25)

Equation (24) is a special case of the problem

(−1)n/2u = (n− 1)!enu in Rn, V :=
∫

Rn
enu dx <∞, (26)

which has been studied by several authors in the last decades (see, e.g., [Chen and Li 1991; Chang and
Yang 1997; Lin 1998; Jin et al. 2015b; Martinazzi 2009a]). Geometrically, if u solves (26) and n ≥ 2,
then the metric e2u

|dx |2 on Rn has constant Q-curvature (n− 1)! and volume V ; see, e.g., [Chang 2004].
All the above-mentioned works rely on the application of a moving-plane technique, in order to show that
under certain growth conditions at infinity (needed only when n ≥ 3) the solutions to (26) have the form

uµ,x0(x) := log
2µ

1+µ2|x − x0|2
, x ∈ Rn, (27)
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for some µ > 0 and x0 ∈ Rn . For the case n = 1, instead of using the moving-plane technique, we will
use stereographic projection to transform (24) into (14), and use the geometric interpretation of the latter
(Theorem 1.4) to compute all its solutions (Corollary 2.3 below). This will yield:

Theorem 1.8. Every function u ∈ L 1
2
(R) solving (24)–(25) is of the form (27) for some µ> 0 and x0 ∈ R.

We also remark that, by changing the sign of the nonlinearity in (24), the problem has no solutions.
More precisely:

Proposition 1.9. Given a function K ∈ L∞(R) with K ≤ 0, the equation

(−1)
1
2 u = K eu in R

has no solution satisfying (25).

The proof of Proposition 1.9 is a simple application of the maximum principle for the operator (−1)
1
2 ,

but it is worth remarking that, for n ≥ 4, even solutions to (26) with (n− 1)! replaced by −(n− 1)! (or
any negative constant) do exist, as shown in [Martinazzi 2008].

The paper is organized as follows. In Section 2 we introduce the nonlocal Liouville equation (7) in S1

and we explain its geometric interpretation. In Section 3 we perform the blow-up and quantization analysis
of (7) and in particular we prove Theorems 1.2 and 1.5. Section 4 is devoted to the description of the
relation between equations (7) and (20). Finally, in Section 5 we prove Theorem 1.8 and Proposition 1.9.

Notations. We denote by 〈x, y〉 the scalar product of x , y ∈Rn . Let h :�⊂C→R and let γ : S1
→C be

a curve. We denote by
∫
γ

h(z) |dz| or
∫
γ

h(z) dθ the line integral of h along γ . Given z ∈ C, we denote
by <(z) and =(z) its real and imaginary part, respectively.

2. Nonlocal Liouville equation in S1

In this section we study the nonlocal Liouville-type equation

(−1)
1
2 u = κeu

− 1 in S1,

where u ∈ L1(S1), (−1)
1
2 u stands for the fractional Laplacian and κ : S1

→ R is a bounded function. In
Appendix A we recall the definition and some properties of the fractional Laplacian in S1.

Geometric interpretation of the Liouville equation in S1. The first key step in our analysis is the geo-
metric interpretation of (7). Roughly speaking, such an equation prescribes the curvature of a closed
curve in conformal parametrization.

It is easy to verify that for φ ∈ L1(S1) we have

(−1)
1
2φ(θ)=

∑
n∈Z

|n|φ̂(n)einθ
=H

(
∂φ

∂θ

)
=
∂H(φ)

∂θ
, (28)

where H is the Hilbert transform on S1 defined by

H( f )(θ) :=
∑
n∈Z

−i sign(n) f̂ (n)einθ , f ∈ D′(S1).
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We recall that the Hilbert transform has the following property, a proof of which can be found, e.g., in
[Katznelson 2004, Chapter III].

Lemma 2.1. The Hilbert transform H is bounded from L p(S1) into itself for 1 < p < +∞ and it is of
weak type (1, 1). A function f := u+ iv with u, v ∈ L1(S1,R) can be extended to a holomorphic function
in D2 if and only if v =H(u)+ a for some a ∈ C.

Proof of Theorem 1.4. (1) Let 8 ∈ C1(D2,C) be a holomorphic immersion. Set λ := (log |8′|)|S1 . Since
8′ : D2

→ C \ {0} is holomorphic, 8′|S1 = eλ+iρ+iθ0 for some θ0 ∈ [0, 2π), where ρ := H(λ) is the
Hilbert transform of λ. Indeed, by Lemma 2.1, the function f := λ+ iρ has a holomorphic extension
f̃ to D2; hence, e f̃ is holomorphic in D2 and e f̃

|S1 = e f
= eλ+iρ . But |e f

| = eλ = (|8′|)|S1 , so that by
Lemma B.1 we have 8′/e f̃

= eiθ0 for some constant θ0. Up to a rotation of 8 we can assume that θ0 = 0.
Up to such a rotation and a translation, 8 is determined by λ, and we have

∂8(z)
∂θ

(z)= ieλ(z)+iρ(z)+iθ . (29)

Now let

s(θ) :=
∫ θ

0

∣∣∣∣∂8(eiθ ′)

∂θ ′

∣∣∣∣ dθ ′.

We have s : [0, 2π ] → [0, L], where L = ‖∂8/∂θ‖L1(S1) is the length of the curve 8(S1), and up to a
scaling we will assume that L = 2π . Let θ := s−1

: [0, 2π ] → [0, 2π ]. One can also easily see that
θ ∈ C1([0, 2π ], [0, 2π ]). Then, using (29) and that

ṡ(θ)= |8′(eiθ )| = eλ(e
iθ ) > 0, θ̇ (s)= e−λ(e

iθ(s)),

we compute

τ(s) := d
ds
8(eiθ(s))=8′(eiθ(s))ieiθ(s)θ̇ (s)=

∂8

∂θ
(eiθ(s))e−λ(e

iθ(s)).

Notice that |τ | ≡ 1, i.e., the curve γ : eis
7→ 8(eiθ(s)) is parametrized by arc-length and τ is its unit

tangent vector. Using (28), (29) and identifying s with eis , the curvature of γ is given by

κ(s)= 〈iτ(s), τ̇ (s)〉 =
〈
iτ(s), d

ds
(ieiρ(eiθ(s))+iθ(s))

〉
=

(
dρ(eiθ(s))

dθ
+ 1

)
θ̇ (s)

= ((−1)
1
2λ(eiθ(s))+ 1)e−λ(e

iθ(s)).

(30)

From (30) it follows that λ satisfies (14) with κ(eis(θ)) :=
〈
iτ(s(θ)), τ̇ (s(θ))

〉
. Since |κ(eis)| = |γ̈ (eis)| is

in L∞(S1), we also have γ ∈W 2,∞(S1,C).

(2) Conversely, let us assume that λ∈ L1(S1) with eλ ∈ L1(S1) weakly satisfies (14) for some κ ∈ L∞(S1).
By regularity theory, λ ∈ W 1,p(S1) for any p <∞. We set ρ := H(λ). Let φ ∈ W 1,p(D2,C) be the
holomorphic extension of the function eλ+iρ

∈W 1,p(S1) and set

8(z) :=
∫
60,z

φ(w) dw, z ∈ D2, (31)
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Figure 5. Plot of the curve ecos θ (cos(2π sin θ)+ i sin(2π sin θ)), θ ∈ [0, 2π ]. It has the
same kind of self-intersections as the curve 8(eiθ ) = e2πeiθ

, whose plot is difficult to
inspect, since |8(z)| oscillates between e2π and e−2π .

where 60,z is any path in D2 connecting 0 and z. Then 8 ∈W 2,p(D2,C) satisfies (29). From part (1) we
see that κ is the curvature of the curve 8(S1) in normal parametrization.

Let 8̂ : D2
→ C be another holomorphic immersion such that |8̂′(z)| = eλ(z), z ∈ S1. We claim that

8= eiθ08̂+ a in D2 for some θ0 ∈ R, a ∈ C. (32)

Indeed, the function h :=8′/8̂′ never vanishes in D2 and satisfies

|h(z)| =
|8′(z)|

|8̂′(z)|
=

eλ(z)

eλ(z)
= 1, z ∈ S1.

It follows from Lemma B.1 that h is a constant of modulus 1, say h ≡ eiθ0 , and (32) follows at once. �

Remark 2.2. In Theorem 1.4, we cannot expect that 8 is a biholomorphism from D2 onto 8(D2).
For instance, the function 8(z) := eaz for any a > 0 is an immersion and 8(S1) has self-intersections
whenever a ≥ π , as is easily seen by writing (see Figure 5)

8(eiθ )= ea cos θ (cos(a sin θ)+ i sin(a sin θ)).

Corollary 2.3. All functions λ ∈ L1(S1) with eλ ∈ L1(S1) that are solutions to

(−1)
1
2λ= C0eλ− 1 on S1, (33)

where C0 is an arbitrary positive constant, are given by

λ(θ)= log
∣∣∣∣ ∂∂θ z− a1

1− ā1z

∣∣∣∣− log C0 (34)

for some a1 in D2.
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Proof. Up to the translation λ̃ = λ+ log C0 we can assume C0 = 1. By Theorem 1.4, the function λ
determines a holomorphic immersion 8 ∈ C1(D2,C) such that 8(S1) is a curve of curvature 1; hence,
up to a translation, 8(S1)⊆ S1, and therefore it is a Möbius transformation of the disk. From (15) we
infer that λ= log

∣∣8′|S1

∣∣, and we conclude. �

The following corollary is an easy consequence of Theorem 1.4 and Corollary 2.3:

Corollary 2.4. Let 8, λ and κ be as in Theorem 1.4 and let f : D2
→ D2 be a Möbius diffeomorphism.

Set 8̃ :=8 ◦ f , λ̃ := log
∣∣8̃′|S1

∣∣ and κ̃ := κ ◦ f |S1 . Then

λ̃= λ ◦ f |S1 + log
∣∣ f ′|S1

∣∣ and (−1)
1
2 λ̃= κ̃eλ̃− 1.

Remark 2.5. One can also give an analogous geometric characterization for an equation of the type

(−1)
1
2λ= κeλ− n in S1 (35)

with n> 1. In this case there is a correspondence between the solutions of (35) and holomorphic functions
8 : D2

→ C of the form 8′(z)=9(z)h(z), where 9 is the Blaschke product

9(z) :=
n−1∏
k=1

z− ak

1− ākz
, a1, . . . , an−1 ∈ D2,

and h(z) 6= 0 for every z ∈ D2. In this case, n− 1= i9 · ∂9/∂θ = deg9.

Next, we show that the existence of a holomorphic immersion of the disk D2 is equivalent to the
existence of a positive diffeomorphism of the disc D2. Such a result can be seen as a sort of generalized
Riemann mapping theorem in the case of closed curves which are not necessarily injective. We start with
the following lemma, giving better regularity up to the boundary of a holomorphic immersion u : D2

→C

under the assumption that the curve u|S1 has a W 2,∞-constant-speed parametrization.

Lemma 2.6. Let u ∈ C0(D2,C) be holomorphic in D2 with ∂zu 6= 0 in D2 and suppose there is
γ ∈ W 2,∞(S1,C) with |γ̇ | constant and a homeomorphism σ : S1

→ S1 such that γ = u ◦ σ . Then
u ∈W 2,p(D2,C) for every p <+∞ and ∂zu(z) 6= 0 for all z ∈ S1.

Proof. Let z0 ∈ S1. Since γ̇ (z0) 6= 0, we can find some ρ > 0 such that γ (S1
∩ B(z0, ρ)) coincides up to

a rotation with a piece of the graph of a function ϕ ∈ C1,α(R) that satisfies ϕ′(u1(x0))= 0. We may also
assume that u = u1+ iu2 takes values in the set {(ξ, η) ∈ R2

| η ≥ ϕ(ξ)}. Define

û = û1+ i û2 with û1 := u1, û2 := u2−ϕ(u1).

Claim. The function û2 satisfies{
∂xi (ai j∂x j û2)= 0 in B(x0, ρ)∩ D2,

û2 = 0 in B(x0, ρ)∩ S1,
(36)

where the matrix

(ai j )=

1− 1
1+ (ϕ′)2(u1)

ϕ′(u1)

1+ (ϕ′)2(u1)

−
ϕ′(u1)

1+ (ϕ′)2(u1)
1− 1

1+ (ϕ′)2(u1)

 (37)
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is in L∞(D2) and uniformly elliptic.

Proof. We can write u = û + iϕ(u1). Since, by hypothesis, ∂z̄u(z) = 0 for all z ∈ D2, the following
estimates hold:

∂z̄u1 =−i∂z̄u2,

∂z̄ û(z)=−iϕ′(u1)∂z̄u1 =−ϕ
′(u1)∂z̄u2,

∂z̄u1+ i∂z̄ û2(z)=−iϕ′(u1)∂z̄u1,

∂z̄u1 =−
i

1+ iϕ′(u1)
∂z̄ û2(z),

∂z̄ û =−
ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z).

Therefore,

1û2 = 4=(∂z∂z̄ û)=−4=
[
∂z

[
ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z)

]]
. (38)

Writing

ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z)=

ϕ′(u1)

1+ (ϕ′)2(u1)

∂x1 û2+ϕ
′(u1)∂x2 û2+ i(∂x2 û2−ϕ

′(u1)∂x1 û2)

2
,

we compute the right-hand side of (38) and get

1û2 =−=

[
(∂x1 − i∂x2)

ϕ′(u1)

1+ (ϕ′)2(u1)
[(∂x1 û2+ϕ

′(u1)∂x2 û2)+ i(∂x2 û2−ϕ
′(u1)∂x1 û2)]

]
.

Therefore û2 satisfies (36)–(37) and the claim is proven. �

Elliptic estimates imply that û2 ∈ W 2,p(B(z0, r/4) ∩ D2) for every p < +∞; in particular, it is in
C1,α(B(z0, r/4)∩ D2) for every α ∈ (0, 1). Now, since û2 ≥ 0 in D2 and û2(z0) = 0, Hopf’s lemma
yields that ∂r û2(z0) 6= 0. Since u = û+ iϕ(u1), it follows that

∂r u(z0)= ∂r û1(z0)+ i∂r û2(z0)+ i ϕ′(u1(z0))︸ ︷︷ ︸
=0

∂r û1(z0) 6= 0

and, since z0 ∈ S1 was arbitrary, we conclude that ∂r u 6= 0 everywhere on S1. Then, since u is conformal
up to the boundary, we also have ∂zu 6= 0 on S1. �

We introduce the set

T :=
{
γ : S1

→C
∣∣γ ∈W 2,∞, |γ̇ | constant, and there is 9 ∈ C1(D2,C) with det Jac(9(z)) > 0, z ∈ D2,

and (9 ◦ σ)(z)= γ (z), z ∈ S1, for some diffeomorphism σ : S1
→ S1}.

Theorem 2.7 (generalized Riemann mapping theorem ). A curve γ is in T if and only if there exists a
holomorphic immersion 8 : D2

→ C and a diffeomorphism σ : S1
→ S1 such that 8 ◦ σ = γ .

Proof. (1) Suppose that there exists a holomorphic immersion 8 : D2
→ C and a diffeomorphism

σ : S1
→ S1 such that 8 ◦ σ = γ . Then one can take 9 =8. Therefore, γ ∈ T.

(2) Conversely, let 9 ∈ C1(D2,C) with 9|S1 = γ and det Jac(9) > 0 in D2.
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(2i) Consider the pull-back of the Euclidean metric g on R2 by 9,

hi j := 〈∂xi9, ∂x j9〉.

Since det Jac(ψ) > 0, we have
c−1δi j ≤ (hi j )≤ cδi j .

We can write
h = h11 dx2

+ 2h12 dx dy+ h22 dy2. (39)

Setting z = x + iy, one can write h in the form

h = ν |dz+µ dz̄|2,

where ν is a positive continuous function on U and µ is a complex-valued continuous function with
‖µ‖L∞(D2) < 1 on U . Actually, ν and µ are given by

ν = 1
4(h11+ h22+ 2

√
h11h22− h2

12),

µ=
h11− h22+ 2ih12

h11+ h22+ 2
√

h11h22− h2
12

.

Moreover, 9 solves the equation

∂w̄9(w)

∂w9(w)
= µ(w) in D2. (40)

The function µ is the so-called Beltrami coefficient associated to the metric h. Now we extend µ by 0
outside D2 (we still denote this extension by µ). Then there exists a unique homeomorphism ξ : C→ C

(here C= C∪ {∞} ' S2) which satisfies, in a distributional sense,

∂z̄ξ = µ(z) ∂zξ in C

and the normalization conditions

ξ(0)= 0, ξ(1)= 1, ξ(∞)=∞.

Moreover, ξ ∈W 1,p
loc (C) for some p > 2 and ∂zξ 6= 0 a.e. in C. The function ξ is called a quasiconformal

map with dilation coefficient µ (see, e.g., Theorem 4.30 in [Imayoshi and Taniguchi 1992]).
Since ξ is a homeomorphism, ξ(S1) is a Jordan curve.

(2ii) Consider now 9̃ :=9 ◦ ξ−1
: ξ(D2)→ C. From [Imayoshi and Taniguchi 1992, Proposition 4.13]

it follows that the complex dilatation of 9̃ is 0 in ξ(D2); therefore, ∂z̄9̃ = 0 and 9̃ is holomorphic
in ξ(D2); see [Imayoshi and Taniguchi 1992, Lemma 4.6].

(2iii) Now we apply the Riemann mapping theorem: there exists a biholomorphic map u from D2

onto ξ(D2). In particular, ∂zu 6= 0 in D2. Take 8 :=9 ◦ ξ−1
◦u. We observe that det Jac(9) > 0 implies

∂z9 6= 0 in D2. Therefore,

∂z8= ∂w(9 ◦ ξ
−1)∂zu+ ∂w̄(9 ◦ ξ−1)∂z ū = ∂w(9 ◦ ξ−1)∂zu+ ∂w̄(9 ◦ ξ−1)∂z̄u = ∂w(9 ◦ ξ−1)∂zu.
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We observe that 8 is holomorphic in D2 because it is the composition of two holomorphic maps
and ∂z8 6= 0 in D2. From Lemma 2.6, it follows that ∂z8 6= 0 in D2 and we conclude the proof of
Theorem 2.7. �

From the next lemma we can deduce that if γ ∈T then the winding number (or equivalently the degree)
of γ is 1.

Lemma 2.8. Let 8 ∈W 2,p(D2,C) for some 1< p ≤+∞ be a holomorphic function such that ∂z8 6= 0
in D2. Then

deg8= 1
2π

∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ = 1+ 1

2π i

∫
S1

f ′(z)
f (z)

dz = 1, (41)

where f (z)=8′(z).

We note that Lemma 2.8 is a direct corollary of Theorem 1.4. Indeed, deg8|S1 = (1/2π)
∫

S1 κ|8
′
| dθ =

(1/2π)
∫

S1 κeλ dθ but, since (−1)
1
2λ= κeλ− 1, integrating gives

∫
S1 κeλ dθ = 2π .

Anyway, we provide a direct proof for the reader’s convenience:

Proof. We recall that

8′(z)= 1
2

e−iθ
(
∂8

∂r
−

i
r
∂8

∂θ

)
=: f (z).

Since 8 is holomorphic, we have
∂8

∂r
=−

i
r
∂8

∂θ
. (42)

Hence,∫
S1

f ′(z)
f (z)

dz =
∫

S1

e−iθ

2
(
∂
∂r −

i
r
∂
∂θ

) e−iθ

2
(
∂8
∂r −

i
r
∂8
∂θ

)
e−iθ

2
(
∂8
∂r −

i
r
∂8
∂θ

) dz

=

∫
S1

(
∂
∂r −

i
r
∂
∂θ

)(
−

i
r e−iθ ∂8

∂θ

)
∂8
∂r −

i
r
∂8
∂θ

dz (by (42))

=

∫
S1

e−iθ
2i
r2
∂8
∂θ
−

i
r
∂28
∂r∂θ −

1
r2
∂28
∂2θ

−2i
r
∂8
∂θ

dz

=−

∫
S1

e−iθ dz+
∫

S1
e−iθ

∂28
∂r∂θ

−2i ∂8
∂θ

dz
∫

S1
e−iθ

∂28
∂2θ

−2i ∂8
∂θ

dz (since r = 1 on S1)

=−2π i − i
2

∫ 2π

0

∂28
∂r∂θ
∂8
∂θ

dθ − 1
2

∫ 2π

0

∂28
∂θ∂θ
∂8
∂θ

dθ

=−2π i −
∫ 2π

0

∂28
∂θ∂θ
∂8
∂θ

dθ (by (42)). (43)
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On the other hand, we have∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ = 1

2

∫ 2π

0

−i∂θ8∂2
θ28

∂θ8∂θ8
dθ + 1

2

∫ 2π

0

i∂θ8∂2
θ28

∂θ8∂θ8
dθ. (44)

We observe that

1
2

∫ 2π

0

i∂θ8∂2
θ28

∂θ8∂θ8
dθ =− i

2

∫ 2π

0
∂θ8

∂2
θ28

|∂θ8|2
dθ − i

2

∫ 2π

0
|∂θ8|

2∂θ (|∂θ8|
−2) dθ

=−
i
2

∫ 2π

0

∂2
θ28

∂θ8
dθ. (45)

It follows that ∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ =−i

∫ 2π

0

∂2
θ28

∂θ8
dθ. (46)

By combining the estimates (43)–(46), we get∫
S1

1
2π i

f ′(z)
f (z)

dz =−1− 1
2π i

∫ 2π

0

∂2
θ28

∂θ8
dθ =−1+ 1

2π

∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ. �

Connection with half-harmonic maps. In this subsection we show an interesting connection between
the solutions of (7) and the half-harmonic maps into a given curve 0.

Let φ̃ =8 ∈ C1(D2,C) be the map given by Theorem 2.7 and set φ :=8|S1 . Then 8 is conformal up
to the boundary, i.e., ∂φ/∂θ · ∂φ̃/∂r = 0 on S1. Since ∂φ̃/∂r

∣∣
r=1 = (−1)

1
2φ, we deduce

(−1)
1
2φ ⊥ Tφ0, i.e.,

∂φ

∂θ
· (−1)

1
2φ = 0 on D′(S1). (47)

Equation (47) says that φ is a 1
2 -harmonic map into 0 (see [Da Lio and Rivière 2011]).

We would like to recall a characterization of 1
2 -harmonic maps of S1 into submanifolds of Rn , which

has been already observed in [Da Lio 2015] and then in [Millot and Sire 2015].

Theorem 2.9 [Da Lio et al. ≥ 2015]. Let u ∈ H
1
2 (S1,N), where N is a k-dimensional smooth submanifold

of Rm without boundary. Then u is a weak 1
2 -harmonic map, i.e., (−1)

1
2 u ⊥ TuN, if and only if its

harmonic extension ũ ∈W 1,2(D2,Rm) is conformal, in which case

∂r ũ ⊥ TuN in D′(S1). (48)

Proof. Let u ∈ H
1
2 (S1,N) be a weak 1

2 -harmonic map and let ũ ∈W 1,2(D,Rm) be the harmonic extension
of u. Then

E(u) :=
∫

S1
|(−1)

1
4 u|2 |dz| =

∫
D2
|∇ũ|2 |dz|.

Claim. For every X̃ ∈ C∞(D2,R2) such that X̃(z) · z = 0 for z ∈ S1,(
d
dt

∫
D2

∣∣∇ũ(z+ t X̃(z))
∣∣2 |dz|

)∣∣∣∣
t=0
= 0. (49)
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Proof of the claim. It has been proved in [Da Lio and Rivière 2011] that, if u is 1
2 -harmonic, then

u ∈ C∞(S1); in particular, u satisfies(
d
dt

∫
S1

∣∣(−1) 1
4 u(z+ t X (z))

∣∣2 |dz|
)∣∣∣∣

t=0
= 0 (50)

for every X ∈ C∞(S1).
Let X̃ ∈C∞(D2,R2) be such that X̃(z) · z= 0 for z ∈ S1. We observe that, for all z ∈ S1, Y := dũ · X̃ =

du · X̃ ∈ TuN and(
d
dt

∫
D2
|∇ũ(z+ t X̃(z))|2 |dz|

)∣∣∣∣
t=0
=

∫
D2
∇ũ ·∇Y |dz| =

∫
S1
∂r ũ ·Y |dz| = −

∫
S1
(−1)

1
2 u ·Y |dz| = 0,

where the last equality follows from (50). �

From Proposition 2.10 below and the regularity of ũ up to the boundary, it follows that ũ is also
conformal in D2, i.e.,

|∂x1 ũ| = |∂x2 ũ|, ∂x1 ũ · ∂x2 ũ = 0.

Conversely, suppose the harmonic extension ũ of u is conformal and satisfies (48). Since ∂r ũ=−(−1)
1
2 u,

we deduce that u is 1
2 -harmonic. �

Proposition 2.10 [Rivière 2012, Proposition II.2]. Let ũ be a map in W 1,2(D2,Rm) satisfying(
d
dt

∫
D2
|∇ũt |

2
|dz|

)∣∣∣∣
t=0
= 0, ut(x) := u(x + t X (x)),

for every X ∈ C∞(D2,R2) such that 〈X (x), x〉 = 0 for x ∈ S1. Then ũ is conformal in D2.

In the case of 1
2 -harmonic maps u : S1

→ S1, we deduce from Theorem 2.9 the following:

Corollary 2.11. Let u ∈ H
1
2 (S1, S1) with deg u = 1. Then u is a weak 1

2 -harmonic map if and only if its
harmonic extension ũ : D2

→ D2 is a Möbius map, namely it has the form

ũ(z)= eiθ0
z− a

1− āz
for some |a|< 1 and θ0 ∈ [0, 2π).

3. Compactness of the Liouville equation in S1

In this section we analyze the asymptotics of solutions to (7).

The ε-regularity lemma and first compactness result. A key point in the proof of Theorem 1.2 is an
ε-regularity lemma, asserting, roughly speaking, that if the L1 norm in conformal parametrization of the
curvature (κkeλk ) is small (less than π ) in a neighborhood of a point, then λk −Ck is uniformly bounded
in the same neighborhood for some constant Ck . This result (Lemma 3.3) depends on Theorem 3.2 below.

Lemma 3.1 (fundamental solution of (−1)
1
2 on S1). The function

G(θ) := − 1
2π

log(2(1− cos θ))
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belongs to BMO(S1), can be decomposed as

G(θ)= 1
π

log π

|θ |
+ H(θ), θ ∈ [−π, π] ∼ S1, with H ∈ C0(S1), (51)

and satisfies

(−1)
1
2 G = δ1−

1
2π

in S1,

∫
S1

G(θ) dθ = 0, (52)

and, for every function u ∈ L1(S1) with (−1)
1
2 u ∈ L1(S1), one has

u− ū = G ∗ (−1)
1
2 u :=

∫
S1

G( · − θ)(−1)
1
2 u(θ) dθ for almost every t ∈ S1. (53)

Proof. The identity (52) follows at once from Lemma 4.3. That G ∈BMO(S1) follows from parametrizing
S1
= [−π, π]/{π ∼−π}, writing 1− cos θ = 1

2θ
2
+ O(θ4) as θ→ 0 and therefore

G(θ)=− 1
2π
(
log
( 1

2θ
2)
+ log(1+ O(θ2))

)
as θ→ 0. Similarly, (51) follows from the explicit expression of G, since

H(θ) := G(θ)− 1
π

log π

|θ |
= C + log(1+ O(θ)2)→ C as θ→ 0

and H(θ)→−(log 2)/(2π) as |θ | → π , so that H ∈ C0(S1).
To prove (53) for u ∈ C∞, we write

u(0)− ū =
〈
δ1−

1
2π
, u
〉
= 〈(−1)

1
2 G, u〉 :=

∫
S1

G(θ)(−1)
1
2 u(θ) dθ

and, translating, one gets (53) also for t 6= 0. For a general function u ∈ H 1,1
1 (S1), take a sequence

(uk)⊂ C∞(S1) with

uk→ u, (−1)
1
2 uk→ (−1)

1
2 u in L1(S1),

which can be easily obtained by convolution. Then

u L1(S1)
←−−− uk =

∫
S1

G( · − θ)(−1)suk(θ) dy L1(S1)
−−−→

∫
S1

G( · − θ)(−1)s(θ) dθ,

the convergence on the right following from (51) and Fubini’s theorem:∫
S1

∣∣∣∣∫
S1

G(t − θ)[(−1)suk(θ)− (−1)
su(θ)] dθ

∣∣∣∣ dt ≤ ‖G‖L1(S1)‖(−1)
suk − (−1)

su‖L1(S1)→ 0

as k→∞. Since the convergence in L1 implies a.e. convergence (up to a subsequence), (53) follows.
The last claim follows at once from the explicit expression of G. �

The following theorem, which is a generalization of Theorem I in [Brezis and Merle 1991], is a sort of
Moser–Trudinger inequality and it is crucial for proving Lemma 3.3.
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Theorem 3.2. There exist constants C1, C2 > 0 such that, for any ε ∈ (0, π), one has

C1 ≤ sup
u=G∗ f
‖ f ‖L1(S1)≤1

ε

∫
S1

e(π−ε)|u| dθ ≤ C2 (54)

and, in particular,

C1 ≤ sup
u∈L1(S1):

‖(−1)
1
2 u−α‖L1(S1)≤1

for some α∈R

ε

∫
S1

e(π−ε)|u−ū| dθ ≤ C2. (55)

Proof. Clearly the second inequality in (55) follows from the second inequality in (54) and (52). Let us
now prove (54). Given f with ‖ f ‖L1(S1) ≤ 1 and setting u = G ∗ f , we get

|u(t)| =
∣∣∣∣ 1
π

∫ t+π

t−π
log
(

π

|θ − t |

)
f (θ) dθ +

∫ t+π

t−π
H(θ − t) f (θ) dθ

∣∣∣∣
≤

1
π

∫ t+π

t−π
log
(

π

|θ − t |

)
| f (θ)| dθ +C.

With Jensen’s inequality and Fubini’s theorem, and using that ‖ f ‖L1(S1) ≤ 1, it follows that∫ π

−π

e(π−ε)|u(t)−ū| dt ≤ C
∫ π

−π

exp
(
π−ε

π

∫ t+π

t−π
log
(

π

|θ − t |

)
| f (θ)| dθ

)
dt

≤ C
∫ π

−π

∫ t+π

t−π
exp

(
π−ε

π
log

π

|θ − t |

)
| f (θ)| dθ dt

= C
∫ t+π

t−π
| f (θ)|

∫ π

−π

(
π

|θ − t |

)1− επ
dt dθ ≤

C2

ε
. (56)

This proves the second inequality in (54).
To prove the first inequalities in (54) and in (55), fix ε ∈ (0, π), choose ( fk)⊂ C∞(S1) nonnegative

such that fk→ δ0 weakly in the sense of measures with ‖ fk‖L1(S1) = 1, and let uk solve

(−1)
1
2 uk = fk −

1
2π

in S1, ūk = 0.

Such uk can easily be constructed using the Fourier formula for (−1)
1
2 ; see (123). Then, by Lemma 3.1,

|uk(t)| ≥
∫

S1
G(t − θ) fk(θ) dθ ≥ 1

π

∫ t+π

t−π
log
(

π

|θ − t |

)
fk(θ) dθ −C.

Multiplying by π − ε, exponentiating, integrating on S1 and taking the limit as k→∞, one gets

lim
k→∞

∫
S1

e(π−ε)|uk(t)| dt ≥ lim
k→∞

1
C

∫ π

−π

exp
(
π−ε

π

∫ t+π

t−π
log
(

π

|θ − t |

)
fk(θ) dθ

)
dt

=
1
C

∫ π

−π

exp
(
π−ε

π
log

π

|t |

)
dt = 1

C

∫ π

−π

(
π

|t |

)1− επ
dt =

C1

ε
,

which proves (54) and also (55), since ūk = 0. �
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Lemma 3.3 (ε-regularity lemma). Let u ∈ L1(S1) be a solution of

(−1)
1
2 u = κeu

− 1 (57)

with κ ∈ L∞(S1), eu
∈ L1(S1) and 3 := ‖κeu

‖L1 . Assume that, for some arc A ⊂ S1,∫
A
|κ|eu dθ ≤ π − ε (58)

for some ε > 0. Then, for every arc A′ b A with dist(Ac, A′)= δ,

‖u− ū‖L∞(A′) ≤ C(δ, ε,3). (59)

Proof. Set f := (−1)
1
2 u. We split f = f1+ f2, where

f1 = κeuχA, f2 = κeuχAc .

Let us now define

ui (t) := G ∗ fi (t)=
∫

S1
G(t − θ) fi (θ) dθ, i = 1, 2,

where G is as in Lemma 3.1. From (52) and (53) it follows that

u− ū = G ∗ (κeu
− 1)= G ∗ (κeu)= u1+ u2.

Choose an arc A′′ with A′ b A′′ b A and dist(A′′, Ac) = dist(A′, (A′′)c) = 1
2δ. With (51) we easily

bound

‖u2‖L∞(A′′) ≤ C1 = C1(3, δ). (60)

It follows from (58) and Theorem 3.2 that ‖e|u1|‖L p(S1) ≤ C p,ε for some p > 1 and, consequently,
also eū

≤ C . Then, for t ∈ A′ we have

u1(t)≤
∫

A
G(t − θ)(|κ|eu1(θ)eu2(θ)+ū

− 1) dθ

≤ ‖κ‖L∞

(
eC1+ū

∫
A′′

G(t − θ)eu1(θ) dθ︸ ︷︷ ︸
(1)

+

∫
A\A′′

G(t − θ)eu(θ) dθ︸ ︷︷ ︸
(2)

+C
)

≤ C,

where in (1) we use that G ∈ Lq(S1) for q ∈ [1,∞) and in (2) we use that G ∈ L∞(A′× (A \ A′′)). �

Lemma 3.4. Let λ : S1
→ S1 satisfy (−1)

1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of λ to D2.

Then

‖∇λ̃‖L(2,∞)(D2) ≤ C‖(−1)
1
2λ‖L1(S1) (61)

and, for any ball Br (x0),

1
r

∫
Br (x0)∩D2

|∇λ̃| dx ≤ C‖∇λ̃‖L(2,∞)(Br (x0)∩D2). (62)
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Proof. Let λ : S1
→ S1 satisfy (−1)

1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of λ to D2. Then

we can write

λ̃(x)=
∫

S1
G(x, y)

∂λ̃

∂ν
(y) dy =

∫
S1

G(x, y)(−1)
1
2λ(y) dy, (63)

where G is the Green function associated to the Neumann problem. It is known that ∇x(G(x, y)) is in
L(2,∞)(S1) (see, e.g., [Kenig 1994]). Therefore, ∇λ̃(x) ∈ L(2,∞)(D2) as well and (61) holds.

The proof of (62) follows from O’Neil’s inequality [1963]∫
A
|∇λ̃| dx ≤ ‖χA‖L(2,1)(A)‖∇λ̃‖L(2,∞)(A) =

√
|A|‖∇λ̃‖L(2,∞)(A)

for any A ⊂ D2. �

Theorem 3.5. Let (λk) be a sequence as in Theorem 1.2 and let (8k) ⊂ C1(D2,C) be holomorphic
immersions with λk(z) = log |8′k(z)| for z ∈ S1 and 8k(1) = 0 (compare to Theorem 1.4) Then, up to
extracting a subsequence, the set

B :=
{

a ∈ S1
∣∣∣∣ lim

r→0+
lim sup

k→∞

∫
B(a,r)∩S1

|κk |eλk dθ ≥ π
}
= {a1, . . . , aN } (64)

is finite and, for functions v∞ ∈ L1(S1,R) and 8∞ ∈W 1,2(D2,C) we have, for 1≤ p <∞,

λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ B), λ̄k :=

1
2π

∫
S1
λk dθ, (65)

and
8k ⇀8∞ in W 2,p

loc (D
2
\ B,C) and in W 1,2(D2,C). (66)

Moreover, one of the following alternatives holds:

(1) The sequence (λk) ⊂ R is bounded and 8∞ is a holomorphic immersion of D2
\ B (i.e., it is

holomorphic in D2 and ∂z8∞ 6= 0 for z ∈ D2
\ B).

(2) λk→−∞ locally uniformly as k→+∞ and 8∞ ≡ Q for some constant Q ∈ C.

Proof. The sequence of measures |κk |eλk dθ on S1 is bounded (for the total variation norm); hence,
up to extracting a subsequence, we have |κk |eλk dx ∗⇀µ weakly in the sense of measures for a Radon
measure µ ∈M(S1). Let B := {a ∈ S1

| µ({a})≥ π}. Then B is clearly finite, say B = {a1, . . . , aN }, and
is characterized by the first identity in (64). Indeed, if µ({a})≥ π , then for every r > 0 and ϕ ∈ C0(S1)

supported in B(a, r)∩ S1 such that 0≤ ϕ ≤ 1= ϕ(a) one has

lim sup
k→∞

∫
B(a,r)∩S1

|κk |eλk dθ ≥ lim sup
k→∞

∫
S1
|κk |eλkϕ dθ =

∫
S1
ϕ dµ≥ πϕ(a)= π,

and, conversely, if µ({a}) < π , then µ(B(a, r0)∩ S1) < π for some r0 > 0; hence, taking ϕ ∈ C0(S1)

supported in B(a, r0)∩ S1 with 0≤ ϕ ≤ 1 and ϕ ≡ 1 on B(a, r0/2)∩ S1, one gets

lim sup
k→∞

∫
B(a,r0/2)∩S1

|κk |eλk dθ ≤ lim sup
k→∞

∫
S1
|κk |eλkϕ dθ =

∫
S1
ϕ dµ≤ µ(B(a, r0)) < π.
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We now show that for every compact K ⊂ S1
\ B there exists a constant cK depending on L and κ̄ in

(8)–(10) such that

‖eλk‖L∞(K ) ≤ cK (67)

and

‖λk − λ̄k‖L∞(K ) ≤ cK . (68)

Indeed, cover K with finitely many arcs Ai ∩ S1 such that∫
Ai∩S1
|κk |eλk dθ < π.

From Lemma 3.3 it follows that λk − λ̄k is bounded in each Ai , and (68) follows. Moreover, considering
that ‖eλk‖L1(S1)= Lk ≤ L , it follows that λ̄k and λk are bounded above, and this proves (67). Now, writing
λk − λ̄k = G ∗ (κkeλk − 1) as in (53) of Lemma 3.1, we can bootstrap regularity and obtain that λk − λ̄k is
bounded in W 1,p(K ) for every p <∞, and (65) follows from weak compactness.

Let λ̃k be the harmonic extension of λk . From (68), (61) and (62) we get

‖λ̃k − λ̄k‖L∞(∂(D2\∪N
i=1 B(ai ,δ)))

≤ Cδ for every δ > 0;

hence,

(λ̃k − λ̄k) is bounded in W 1,p
loc (D

2
\ B). (69)

Since 8k is harmonic and conformal, ∫
D2
|∇8k(z)|2 ≤ 1

2 L2
k . (70)

Since 8k(1) = 0, it follows that the sequence (8k) is bounded in W 1,2(D2) and, up to a subsequence,
8k ⇀8∞ weakly in W 1,2(D2), where 8∞ is holomorphic.

From (16) it follows that |∇8k | is bounded in W 1,p
loc (S

1
\ B), so 8k is bounded in W 2,p

loc (S
1
\ B) and

up to a subsequence one gets 8k ⇀8∞ in W 2,p
loc (D

1
\ B), as desired.

Further, if λ̄k→−∞ then (69) yields ∇8k→ 0 uniformly locally in D2
\ B; hence, 8∞ is constant.

Similarly, if λk ≥ −C then |∇8k | is locally uniformly lower bounded on D2
\ B; hence, ∇8∞ 6= 0

in D2
\ B. �

Blow-up analysis. In this section we associate to a sequence (λk) satisfying (8)–(10) a sequence of curves
(γk) ⊂ W 2,∞(S1,C) with bounded lengths Lk ≤ L , curvatures bounded by κ̄ , and |γ̇k | ≡ Lk/(2π); a
sequence (8k) ⊂ C1(D2,C) of holomorphic immersions such that |(8′k)|S1 | = eλk ; and a sequence of
diffeomorphisms σk : S1

→ S1 such that 8k ◦ σk = γk . Up to a translation we can assume that 8k(1)= 0
and, by the Arzelà–Ascoli theorem, γk→ γ∞ in C1(S1,C) for a curve γ∞ ∈W 2,∞(S1,C).

Notice that (8k) and (λk) satisfy the hypothesis of Theorem 3.5 and, up to a subsequence, we
can assume that (65) and (66) hold for a finite set B = {a1, . . . , aN } and functions v∞ ∈ L1(S1,R)

and 8∞ ∈W 1,2(D2,C). Moreover, either (1) or (2) in Theorem 3.5 holds.
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We introduce the following distance function Dk : S1
× S1
→ R+:

Dk(q, q ′)

= inf
{(∫ 1

0
|8′k(1k(t))|2|1′k(t)|

2 dt
)1

2
∣∣∣∣1k ∈W 1,2([0, 1], D2), 1k(0)=σk(q), 1k(1)=σk(q ′)

}
, (71)

It is well known that the infimum in (71) is attained by a path1k such that |8′k(1k(t))||1′k(t)| is constant.
For such a path we then have(∫ 1

0
|8′k(1k(t))|2|1′(t)|2 dt

)1
2

=

∫ 1

0
|8′k(1k(t))||1′k(t)| dt =:

∫
1k

|8′k(z)| |dz|.

In the sequel we sometimes identify the parametrization of a curve 1 with its image.

Proposition 3.6. (1) The function Dk is Lipschitz continuous with ‖∇Dk‖L∞ ≤ 1 and it converges
uniformly.

(2) The infimum in (71) is attained by a curve 1k in normal parametrization such that the curvature of
8k ◦1k is bounded by ‖κk‖L∞ .

Proof. (1) Let q , q ′, q̃ , q̃ ′ ∈ S1. The following estimate holds:

Dk(q, q ′)≤ Dk(q̃, q̃ ′)+ |arc (γk(q), γk(q̃))| + |arc (γk(q ′), γk(q̃ ′))| ≤ Dk(q̃, q̃ ′)+ |q − q̃| + |q ′− q̃ ′|,

where arc( · , · ) is the shortest arc between two points. By exchanging (q, q ′) and (q̃, q̃ ′), we get that

|Dk(q, q ′)− Dk(q̃, q̃ ′)| ≤ |q − q̃| + |q ′− q̃ ′|,

and we conclude.

(2) For a geodesic 1 with respect to Dk , the curve 8k ◦1 is a geodesic in C under the constraint
that 8k ◦1⊂8k(D2). This must be a union of segments (contained in 8k(D2)) and arcs of the curve γk ,
where the segments touch the curve γk tangentially. Hence the curvature of 8k ◦1 is bounded by ‖κk‖L∞ .

This completes the proof of Proposition 3.6. �

We give next the definition of a pinched point for the curve γ∞.

Definition 3.7. A point p∈ S1 is called a pinched point for the sequence (γk) if there exists p′∈ S1, p 6= p′,
such that limk→+∞ Dk(p, p′)= 0. We call p′ the “dual” of p and we will show in Lemma 3.12 below
that this dual is unique. We denote by P the set of the pinched points of γ∞.

Remark 3.8. The definition of pinched point is independent of8k and σk in the sense that if 8̃k =8k ◦ fk ,
where fk : D2

→ D2 is a Möbius transformation, and if σ̃k = f −1
k ◦ σk , then

lim
k→+∞

∫ 1

0
|8′k(1(t))||1

′(t)| dt = 0 ⇐⇒ lim
k→+∞

∫ 1

0
|8̃′k(1̃(t))||1̃

′(t)| dt = 0.

Proposition 3.9. Assume that we are in case (2) of Theorem 3.5, i.e.,8k→ Q in C1,α
loc (D

2
\{a1, . . . , aN })

for a constant Q ∈ C. Then N ∈ {1, 2}. If N = 2, let C+ and C− be the connected components
of S1

\ {a1, a2}. Then σ−1
k → p± locally uniformly on C±, where p+, p− ∈ P are dual. Moreover,
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Q = γ∞(p+)= γ∞(p−) and γ̇∞(p+)=−γ̇∞(p−), and κkeλk ∗⇀π(δa1 + δa2) and vk := λk − λ̄k ⇀ v∞

in W 1,p
loc (S

1
\ {a1, a2}), where v∞ solves (12). If N = 1 then vk→ v∞ that solves (11).

Proof. By Theorem 3.5 we have λ̄k→−∞ and λk→−∞ uniformly locally in S1
\ B = {a1, . . . , aN }.

In particular, since the signed Radon measures κkeλk dx are uniformly bounded, we have µk
∗⇀µ for a

Radon measure supported in B, which we can then write as µ=
∑N

i=1 αiδai . Moreover, since∫
S1

κkeλk dθ = 2π,

we infer that
∑N

i=1 αi = 2π .
Let us assume that N ≥ 2. We want to prove that αi = π for every i , so necessarily N = 2. In order to

prove that αi = π , up to a rotation we can reduce to proving that α1 = π and assume that a1 = i . We
can also assume that N = 2 and a2 =−i . If this is not the case, it suffices to compose 8k with Möbius
diffeomorphisms fk(z)= (z− i tk)/(1+ i tkz) with tk ↑ 1 slowly enough that 8̃k :=8k ◦ fk is still as in
case (2) of Theorem 3.5, with B = {a1 = i, a2 =−i}.

Then let 8k be as above, with 8k ⇀ Q in W 2,p
loc (D

2
\ {i,−i}). Set

Vk(z)= e−λ̄k (8k(z)−8k(0)), vk = log |V ′k |S1 | = λk − λ̄k .

By Theorem 3.5 we have

vk ⇀v∞ in W 1,p
loc (S

1
\ {i,−i}) and in D′(S1),

where v∞ solves
(−1)

1
2 v∞ = αδi + (2π −α)δ−i − 1 (72)

for some α ∈ R. Similarly, Vk ⇀ V∞ in W 2,p
loc (D

2
\ {i,−i}). Solutions to (72) can be computed explicitly

using Lemma 3.1, so that

v∞(eiθ )=−
α

2π
log(2(1− sin θ))− 2π−α

2π
log(2(1+ sin θ)).

Notice that, writing z = x + iy, for z = eiθ
∈ S1 we have

2(1− sin θ)= x2
+ y2
− 2y+ 1= |z− i |2

and, similarly, 2(1+ sin θ)= |z+ i |2. In particular, v∞ can be extended to a holomorphic function

ṽ∞(z) := −
α

2π
log(|z− i |2)− 2π−α

2π
log(|z+ i |2), z ∈ D2

\ {i,−i}. (73)

The estimate (69) together with (16) implies that

c−1
δ ≤ |V

′

k | ≤ cδ on D2
\ (B(i, δ)∪ B(−i, δ)) for every δ > 0.

Therefore, Vk⇀V∞ as k→+∞ in W 2,p
loc (D

2
\{i,−i}), where V∞ is a conformal immersion of D2

\{i,−i}.
Moreover, still using (16), from (73) we obtain

|V ′
∞
(z)| =

1
|z− i |α/π |z+ i |2−α/π

.
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Since V ′
∞

is holomorphic in D2, up to a rotation (i.e., multiplication by a constant eiθ0) we obtain

V ′
∞
(z)=

1
(z− i)α/π (z+ i)2−α/π

, V∞(z)=
∫ z

0

dz
(z− i)α/π (z+ i)2−α/π

.

Up to possibly switching i with −i , we may assume that α ≤ π . The function V∞ is also known as
the Schwarz–Christoffel mapping1 and sends the two arcs C+, C− ⊂ S1 joining i and −i (chosen so
that ±1 ∈ C±) into two parallel straight lines if α = π and into two half-lines meeting at V∞(i), forming
an angle of π −α there if α < π .

Claim 1. As k→+∞ we have σ−1
k → p± in L∞loc(C±), where p+, p− ∈ S1 with p+ 6= p−.

Proof. Notice that 8k ⇀ Q in W 2,p
loc (D

2
\ {i,−i}) implies that

∂σ−1
k

∂θ
→ 0 uniformly locally in S1

\ {i,−i} as k→+∞.

This proves the first part of the claim. Assume for contradiction that p+ = p−. Set p±k = σ
−1
k (±1)→ p±.

By assumption, |arc(p+k , p−k )| → 0 (here arc(p+k , p−k ) denotes the shortest arc connecting p+k to p−k ).
Since σk is a diffeomorphism, σk(arc(p+k , p−k )) contains either S1

∩B(i, δ) or S1
∩B(−i, δ) for small δ >0.

Suppose it contains S1
∩ B(i, δ). Then∫

S1∩B(i,δ)
eλk dθ =

∫
S1∩B(i,δ)

|8′k(e
iθ )| dθ ≤

∫
arc(p+k ,p

−

k )

|γ̇k | dθ =
Lk

2π
|arc(p+k , p−k )| → 0 (74)

as k→∞. This contradicts that i ∈ B and concludes the proof of Claim 1. �

Claim 2. p+ is a pinched point and p− is dual to it.

Proof. Let p±k = σ
−1
k (±1) be as above. Consider the path

1k = arc(σk(p+), 1)∪ arc(σk(p−),−1)∪ [−1, 1],

where [−1, 1] is the segment in D2 joining −1 to 1. Since, as k→∞, we have∫
arc(σk(p±),±1)

|8′k(e
iθ )| dθ =

∫
arc(p±k ,p

±)

|γ̇k | dθ =
Lk |arc(p±k , p±)|

2π
→ 0 (75)

and ∫
[−1,1]

|8′k | |dz| ≤ 2 sup
[−1,1]
|8′k | |dz| → 0,

we immediately infer that ∫
1k

|8′k | |dz| → 0;

hence, p+ is dual to p−. This proves Claim 2. �

1Up to composition with a conformal transformation, since Schwarz–Christoffel maps are usually defined on the half-plane
{z ∈ C : <z > 0} instead of the unit disk.
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σk

p−k
p−

p−k e−iδ−k

p+

p+k

p+k eiδ+k

γk

γk(p+k )

γk(p−k )

8k

1k

π −α

V∞

8k(1k)

γk(p−k e−iδ−k )= γk(p+k eiδ+k )

σk(p−k e−iδ−k ) σk(p+k eiδ+k )

σk(p−k )=−1 1= σk(p+k )

Figure 6. Case 1 in the proof of Proposition 3.9.

Now,

2π
Lk
γ̇k(p±k )=

∂8k(±1)
∂θ∣∣∂8k(±1)
∂θ

∣∣ =
∂8k(±1)
∂θ

eλ̄k eλk(±1)−λ̄k
=
∂V∞(±1)

∂θ
eλ̄k−λk(±1)

+ o(1) as k→∞. (76)

In particular, denoting by (v,w)∧ the angle between two vectors, we have

(γ̇k(p+k ), γ̇k(p−k ))
∧
→

(
∂V∞(1)
∂θ

,
∂V∞(−1)

∂θ

)∧
= α. (77)

We consider different cases:

Case 1: 0< α < π . Since p±k → p± and p+ is pinched to p−, and since

|γk(p+k )−γk(p−k )|≤Dk(p+k , p−k )≤Dk(p+, p−)+
Lk

2π

(
|arc(p+, p+k )|+|arc(p−, p−k )|

)
→0 as k→∞,

taking (77) and the bound κ̄ on the curvature of γk into account we see that for positive numbers δ±k → 0
(as k→∞) we have

γk(p+k eiδ+k )= γk(p−k e−iδ−k ), (78)

i.e., the two curves t 7→ γk(p±k e±i t) cross in short time (see Figure 6).
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Because δ±k → 0, we have

Dk(p+k eiδ+k , p−k e−iδ−k )≤ Dk(p+k , p−k )+
Lk(δ

+

k + δ
−

k )

2π
→ 0 as k→∞. (79)

Now let 1k : [0, 1] → D2 be a geodesic realizing the distance on the left-hand side of (79). Then (78)
implies that 8k ◦1k is a closed curve (nonconstant, since p+k eiδ+k 6= p−k e−iδ−k for k large), so that the
integral of its curvature is at least π (see Lemma 3.10 below). On the other hand, Proposition 3.6 implies
that the curvature of 8k ◦1k is bounded by κ̄ and, since the length of this geodesic is going to 0 according
to (79), we get a contradiction.

Case 2: α = 0. Similarly to case 1, if the curves γk(p±k e±i t) cross for small times δ±k → 0, we conclude
as before. If not, we can at least say that, up to a rotation of the axis,

V∞(D2)= {x + iy : y < 0} (80)

and that, for small times δ±k → 0,

<(γk(p+k eiδ+k ))=<(γk(p−k e−iδ−k )) (81)

and, without loss of generality,

=(γk(p+k eiδ+k )) > =(γk(p−k e−iδ−k )), (82)

where, for x , y ∈ R, we use the notation <(x + iy)= x , =(x + iy)= y (see Figure 7). Moreover, since
the curvature of γk is uniformly bounded and δ±k → 0, using (76) and (80) we infer2

γ̇k(p±k e±iδ±k )

|γ̇k(p±k e±iδ±k )|
=
γ̇k(p±k )
|γ̇k(p±k )|

+ o(1)=−1+ o(1), (83)

i.e., the curves t 7→ γk(p±k e±i t) at the time t = δ±k are almost horizontal and pointing into opposite
directions (notice the change of orientation between the curves t 7→γk(ei t) and t 7→γk(p−k e−i t)). As before,
(79) holds, so let 1k : [0, 1] → D2 be a geodesic realizing the distance in (79), with 1k(0)= γk(p+k eiδ+k )

and 1k(1)= γk(p−k e−iδ−k ). Up to a reparametrization we can assume that 1̃k :=8k ◦1k : [0, L] → C

satisfies | ˙̃1k(t)| ≡ 1. Since the map 8k preserves the orientation, from (83) we infer

=( ˙̃1k(0))≤ 0+ o(1), =( ˙̃1k(1))≥ 0+ o(1),

i.e., up to o(1)→ 0 as k→∞ we have that ˙̃1k(0) points downwards, while ˙̃1k(1) points upwards. Now
using (81) we see that the curve 1̃k has total curvature at least 1

2π −o(1) (see Lemma 3.11 below), again
contradicting Proposition 3.6 and (79).

Case 3: α < 0. Let 1 be the straight segment in D2 (seen as a smooth path) joining −1 to 1. Since
1 ⊂ D2

\ {i,−i} we have that Vk ◦1→ V∞ ◦1 and, by the explicit form of V∞, we deduce that the
unit tangent vector of the curve V∞ ◦1 describes an arc in S1 of length at least |α| +π (we are using

2The symbol γ̇k(p
±

k e±iδ±k ) denotes the derivative of the curve t 7→ γk(ei t ) evaluated for ei t
= p±k e±iδ±k and not the derivative

of the curve t 7→ γk(p
±

k e±i t ) evaluated for t = δ±k .
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Figure 7. Case 2 in the proof of Proposition 3.9.

that 1 touches S1 perpendicularly and V∞ is conformal). This implies that, for k large enough, any
C1 curve of the form 8k ◦ 1̃ for a curve 1̃ ∈ C1([0, 1], D2) with 1̃(0) = −1 and 1̃(1) = 1 has a unit
tangent vector describing an arc of length no less than |α|−o(1). If such a curve minimizes Dk , since, by
Proposition 3.6, its curvature is bounded by κ̄ , its length cannot go to zero as k→∞. But this contradicts
that p+ and p− are pinched points, since, if 1k is a geodesic minimizing Dk(σk(p+), σk(p−)) (with
length going to 0 since p+ and p− are pinched), then joining 1k with the two arcs arc(σk(p±),±1) and
using (75) one would obtain paths joining −1 to 1 of Dk-length going to 0.

The only case left is α = π , which completes the proof of Proposition 3.9. �

In the proof of Proposition 3.9 we have used the following:

Lemma 3.10. Let 1 ∈ W 2,∞([0, L],C) be a curve satisfying |1̇(t)| = 1 for every t ∈ [0, L] and
1(0)=1(L). Then ∫ L

0
|κ(t)| dt > π,

where κ is the curvature of 1.
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Proof. Let θ : [0, L] → R be a continuous function such that 1̇(t)= eiθ(t) for t ∈ [0, L]. Then it is easy
to see that θ̇ = κ . We have θ([0, L])= [θ−, θ+] ⊂ R for some θ−, θ+ ∈ R. Assume now that

θ+− θ− ≤ π (84)

and set

θ̄ := 1
2(θ+− θ−), v := ei θ̄ .

Then, since |θ(t)− θ̄ | ≤ 1
2π for every t ∈ [0, L], we have

d
dt
〈1(t), v〉 = 〈1̇(t), v〉 = 〈eiθ(t), ei θ̄

〉 ≥ 0,

with equality possible only for a proper subset of [0, L], where |θ(t)− θ̄ | = 1
2π . But this contradicts that

1(0)=1(L). In particular, (84) cannot hold, and we get∫ L

0
|κ(t)| dt =

∫ L

0
|θ̇ (t)| dt ≥ osc θ = θ+− θ− > π. �

Lemma 3.11. Let1 ∈W 2,∞([0, L],C) be a curve satisfying |1̇(t)= 1| for every t ∈ [0, L]. Assume that

<(1(0))=<(1(L)), =(1(0)) < =(1(L)), (85)

and that for some (small) ε > 0 one has

=(1̇(0)) < ε and =(1̇(L)) >−ε. (86)

Then ∫ L

0
|κ(t)| dt > π

2
−Cε,

where κ is the curvature of 1 and C is a universal constant.

Proof. Let θ ∈ W 1,∞([0, L],R) be as in the proof of Lemma 3.10. Then (85) implies that for some
t1, t2 ∈ [0, L] one has <(eiθ(t1)) ≤ 0 and <(eiθ(t2)) ≥ 0 (otherwise 1̇ would always be pointing right,
or always left). Condition (86) implies that =(eiθ(0)) ≤ ε and =(eiθ(L)) > −ε. Then we immediately
infer that the oscillation of θ is at least 1

2π −Cε and we conclude as in the proof of Lemma 3.10, using
that κ = θ̇ . �

Next we prove some properties concerning the set P:

Lemma 3.12. Let p+ and p− be dual pinched points and assume that σk(p±) = ±1. Then 8k is as in
case (2) of Theorem 3.5, B = {a1, a2} and ±1 6∈ B. Moreover, every pinched point p has only one dual p′

and |arc(p, p′)| ≥ C/κ̄ .

Proof. Let us start with the first claim. If 8k is as in case (1) of Theorem 3.5, then∫
1k

|8′k(z)| |dz| ≥ C for every 1k with 1k(0)=−1, 1k(1)= 1, (87)
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in contrast with the fact that p+ and p− are pinched. Thus we are in case (2) of Theorem 3.5 and,
by Proposition 3.9, we have N ∈ {1, 2}. Assume now that a1 = 1 = σk(p+) (the reasoning is similar
if a1 =−1). Then we compose 8k with the Möbius diffeomorphism fk(z)= (z− tk)/(1− tkz), where
tk ↑ 1 is chosen so that for a fixed small δ > 0 we have, for k large enough,∫

S1∩Bδ(1)
|(8k ◦ fk)

′(z)| |dz| =
π

2κ̄
. (88)

In other words, the effect of fk is to stretch the disk to remove the concentration at the point a1 = 1,
concentrating the disk towards −1. Then 8̃k := 8k ◦ fk is necessarily as in case (1) of Theorem 3.5.
Moreover, the corresponding σ̃k := f −1

k ◦ σk still satisfies σ̃k(p±)=±1, since fk leaves ±1 fixed. This,
together with (88), contradicts that p+ and p− are pinched, since, by conformality and convergence of 8̃k ,
in a neighborhood Bδ/2(1) we have |8̃′k | ≥ C ; hence, (87) holds with 8̃k instead of 8k . Therefore, going
back to the original maps 8k , we have proven that ±1 6∈ B.

To rule out the case N = 1 it suffices to observe that in this case σk(p+) and σk(p−) would belong to
the same connected component of S1

\ B; hence, since 8k is as in case (2) of Theorem 3.5, we would get
|arc(σ−1

k (1), σ−1
k (1))| → 0, which is absurd, since σ−1

k (±1)= p± and p+ 6= p−.

Claim 1. Every pinched point p has a unique dual p′.

Proof. It suffices to prove that, given any pinched points p+ and p− dual to each other, γ̇∞(p+)=−γ̇∞(p−)
(since then a third point p̃ dual to p+ would be also dual to p−, whence γ̇∞( p̃) would have to coincide
both with γ̇∞(p+) and its opposite, which is impossible). Let us therefore consider two pinched points
p+ and p−, dual to each other. By considering 8̃k := 8k ◦ fk and σ̃k = f −1

k ◦ σk for suitable Möbius
transformations fk , we can assume that σ̃k(p±)=±1. Then, by the previous part of the lemma, 8̃k blows
up at two points a1 and a2 different from ±1. To such a 8̃k we can then apply Proposition 3.9 with C±
being the connected component of S1

\{a1, a2} containing±1. We then infer that γ̇∞(p+)=−γ̇∞(p−). �

Claim 2. We have |arc(p, p′)| ≥ C/κ̄ .

Proof. This follows from the fact that both arcs A1 and A1 joining σ̃k(p±)=±1 contain a blow-up point,
a1 or a2, so that ∫

Ai

|κ̃k |eλ̃k |dz| =
∫

fk(Ai )

|κk |eλk |dz| ≥ π − o(1). �

This concludes the proof of Lemma 3.12. �

Lemma 3.13. The set P is closed.

Proof. Let {pn} and {p′n} be a sequence of pinched points and their duals, respectively, with pn→ p∞
and p′n→ p′

∞
as k→+∞.

We first observe that |pn − p′n| ≥ C > 0 for all n ≥ 0, so p∞ 6= p′
∞

.
For each pn there exists a curve 1n,k ⊆ D2 with ∂1n,k = {σk(pn), σ (p′n)} and

lim
k→+∞

∫
1n,k

|8′k(z)| |dz| = 0.
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Since γk→ γ∞ in C1(S1) as k→+∞, we have

lim
k→+∞

lim
n→+∞

∫
arc(pn,p∞)

|γ̇k(t)| dt = 0,

lim
k→+∞

lim
n→+∞

∫
arc(p′n,p′∞)

|γ̇k(t)| dt = 0.
(89)

We set
1̃n,k :=1n,k ∪ arc(σk(pn), σk(p∞))∪ arc(σk(pn), σk(p∞)).

For all k, we have 1̃n,k→ 1̃∞,k as n→+∞ with ∂1̃k,∞ = {σk(p∞), σk(p′∞)} and, since 8k ◦ σk = γk

on S1 from (89), we have

lim
k→+∞

∫
1̃k,∞

|8′k(z)| |dz| = lim
k→+∞

lim
n→+∞

∫
1̃n,k

|8′k(z)| |dz| = 0.

Hence p∞ is by definition a pinched point and p′
∞

is its dual. �

We now introduce the following equivalence relation on the set S1
\ {P}:

Definition 3.14. Given p, q ∈ S1
\ {P}, we say that p ∼ q if and only if there exists a sequence of paths

1k : [0, 1] → D2 with 1k(0)= σk(p) and 1k(1)= σk(q) such that

lim inf
k→+∞

dk(1k, σk(P)) > 0, (90)

where dk : D2
× D2

→ R+ is the distance defined as

dk(z, w)= inf
{(∫ 1

0
|8′k(1(t))|

2
|1̇(t)|2 dt

)1
2
∣∣∣∣1 ∈W 1,2([0, 1], D2), 1(0)= z, 1(1)= w

}
.

Proposition 3.15. Let q ∈ S1
\ {P}, and let Aq and Bq be the equivalence class and the connected

component containing q, respectively. Then Bq ⊆Aq .

Proof. Let q ∈ S1
\ {P}. We show that Aq ∩Bq is open and closed in Bq .

(1) Aq ∩Bq is open in Bq : Choose δ > 0 small enough so that ei tq ∈ S1
\ {P} for t ∈ [−2δ, 2δ] and∫

σk(arc(e−2δi q,e2δi q))
|8′k(z)| |dz|<

π

2κ̄
. (91)

Now set q0 = e−iδq, q1 = q and q2 = eiδq. Let fk be the sequence of Möbius transformations of D2

such that σ̃k(q0)= 1, σ̃k(q1)= e2π i/3 and σ̃k(q2)= e4π i/3. We apply Theorem 3.5 to 8̃k :=8k ◦ fk and
notice that if we are in case (2) of Theorem 3.5, then there are one or two blow-up points. In the latter
case, away from the blow-up points {a1, a2}, we have that σ−1

k locally converges to two pinched points,
which implies that one of the qi lies in P, a contradiction. In the former case, for one pair of points, say
q1 and q2, one has ∫

arc(q1,q2)

|γ̇ (t)| dt =
∫

arc(σ̃k(q1),σ̃k(q2))

|8̃′k(z)| |dz| → 0,

contradicting that |γ̇k | is bounded away from 0 and |arc(q1, q2)| = δ.
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Therefore we are in case (1) of Theorem 3.5 and 8̃k ⇀8̃∞ in W 1,2(D2) and in W 2,p
loc (D

2
\ B), where

8̃∞ is a holomorphic immersion in D2
\ B, B = {a1, . . . , aN } and e2 jπ i/3

6∈ B for j = 0, 1, 2. Since
|8̃′
∞
|>Cδ > 0 in D2

\
⋃N

i=1 Bδ(ai ), for every p ∈ arc(q0, q2), choosing as 1k the segment joining σk(p)
to σk(q) that satisfies (90) shows that Bδ(q)∩ S1

⊂Aq .

(2) Aq ∩Bq is closed in Bq : Let qn ∈Aq ∩Bq be such that qn→ q∞ ∈Bq . For every n there exists 1k
n

with 1k
n(0)= σk(qn) and 1k

n(1)= σk(q), and

lim inf
k→+∞

dk(1
k
n, σk(P)) > 0. (92)

Consider now the path 6k
n = arc(σk(q∞), σk(qn))∪1

k
n joining σk(q∞) to σk(q). We claim that

lim inf
k→+∞

dk(6
k
n, σk(P)) > 0.

Indeed, considering (92), it suffices to prove that, for n sufficiently large,

lim inf
k→+∞

dk(arc(σk(q∞), σk(qn)), σk(P)) > 0. (93)

Assume for contradiction that the lim inf in (93) is zero.
For every k and n, let qk

n ∈ arc(q∞, qn) and pk
n ∈ P be such that

lim inf
k→+∞

Dk(qk
n , pk

n)= 0.

Up to a subsequence, qk
n → q∞ and pk

n→ p∞ ∈ P as n, k→∞, and

lim
k→+∞

lim
n→+∞

Dk(qk
n , pk

n)= lim
k→+∞

Dk(q∞, p∞)= 0,

but this contradicts that q∞ /∈P. This contradiction proves that q∞ ∈Aq ∩Bq ; hence, Aq ∩Bq is closed
in Bq . �

Proposition 3.16. Let A be an equivalence class in S1
\ {P}. Then there exists a sequence fk : D2

→ D2

of Möbius transformations such that 8̃k :=8k ◦ fk ⇀ 8̃∞ in W 2,p
loc (D

2
\ B), B = {a1, . . . , aN }, and, as

usual letting σ̃k be such that γk = 8̃k ◦ σ̃k , one has σ̃−1
k ⇀ψ∞ in W 2,p

loc (S
1
\ B),

ψ∞(S1
\ B)=A (94)

and γ∞(A)= 8̃∞(S1
\ B). In fact, (γ∞)∗[A] = (8̃∞)∗[S1

\ B].

Proof. Given q ∈A, take fk as in the proof of Proposition 3.15 and set 8̃k :=8k ◦ fk . We have shown
that 8̃k ⇀ 8̃∞ in W 1,2(D2) and in W 2,p

loc (D
2
\ B) for a finite set B = {a1, . . . , aN }, where 8̃∞ is a

holomorphic immersion (Theorem 3.5, case (1)). In particular, this implies that ψk := σ̃
−1
k is bounded in

W 2,p
loc (S

1
\ B) and, up to a subsequence, ψk ⇀ψ∞ in W 2,p

loc (S
1
\ B). Clearly,

ψ∞(S1
\ B)⊂A.

Conversely, given p 6∈ ψ∞(S1
\ B), we want to show that p 6∈A. Given such a p we have σ̃k(p)→ ai

for some ai ∈ B, since otherwise we would have p = ψk ◦ σ̃k(p)→ ψ∞(p∗) for p∗ ∈ S1
\ B. Since
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∇8̃∞ ∈ L2(D2), from Fubini’s theorem we can find a sequence δi
n→ 0 such that

lim
n→+∞

∫
∂B(ai ,δi

n)∩D2
|∇8̃∞(z)|2 |dz| = 0. (95)

For every ai , set {pi,−
k,n , pi,+

k,n } = σ̃
−1
k (∂B(ai , δ

i
n)∩ S1). We have |pi,−

k,n − pi,+
k,n |> C0 for any n and k large

enough, since by definition of the blow-up points one has, for k large enough,∫
arc(pi,−

k,n ,p
i,+
k,n )

|γ̇k(t)| dt =
∫

B(ai ,δi
n)∩S1

eλk(z) |dz|> π

2
.

Therefore, up to a subsequence, pi,−
k,n → pi,−

∞
and pi,+

k,n → pi,+
∞

with pi,+
∞
6= pi,−

∞
and

lim
k→∞

Dk(σ̃k(pi,−
∞
), σ̃k(pi,+

∞
))= 0

In particular, pi,−
∞

and pi,+
∞

are pinched. Then condition (95) implies that any path 1k joining σ̃k(q)
and σ̃k(p) for k large enough is close to σ̃k(pi,−

∞
) ∈ σ̃k(P), so p ∈ S1

\A.
Finally,

(γ∞)∗[A] = lim
δ→0

(γ∞)∗

[
ψ∞

(
S1
\

⋃
ai∈B

B(ai , δ)

)]
,

= lim
δ→0

lim
k→∞

(γk)∗

[
σ̃−1

k

(
S1
\

⋃
ai∈B

B(ai , δ)

)]
,

= lim
δ→0

lim
k→∞

(8̃k)∗

[
S1
\

⋃
ai∈B

B(ai , δ)

]
,

= lim
δ→0

(8̃∞)∗

[
S1
\

⋃
ai∈B

B(ai , δ)

]
,

= (8̃∞)∗[S1
\ B]. �

Quantization result: proof of Theorems 1.2 and 1.5. In this section we prove Theorems 1.2 and 1.5. In
Theorem 1.2 we will show that, under the hypothesis of Theorem 3.5, κkeλk ⇀µ weakly in the sense of
Radon measures, where µ is a Radon measure which is the sum of a locally bounded (possibly vanishing)
function and a (possibly empty) sum of Dirac masses. We also give precise estimates on the coefficients
of the Dirac masses. In Theorem 1.5, we show that up to a suitable choice of Möbius transformations we
can “detect” all the connected components arising in the limit.

Proof of Theorem 1.2. From Theorem 3.5 there is a (possibly empty) set B = {a1, . . . , aN } ⊂ S1 such that
(65) holds. Moreover, from (8) and (10) it follows that ‖(−1)

1
2λk‖L1(S1) ≤ C . Therefore, (53) implies

‖λk − λ̄k‖Lq (S1) ≤ C for every q <+∞.

Up to extracting a further subsequence, we have vk := λk − λ̄k ⇀v∞ in Lq(S1) and

κkeλk ∗⇀µ and (−1)
1
2 vk

∗⇀(−1)
1
2 v∞ = µ− 1 in M(S1), (96)



1790 FRANCESCA DA LIO, LUCA MARTINAZZI AND TRISTAN RIVIÈRE

where M(S1) denotes the space of finite signed measures on S1. Up to a subsequence we also have
κk
∗

⇀κ∞ in L∞(S1). We now distinguish three cases.
Case 1: Suppose that we are in case (2) of Theorem 3.5 and N = 1, i.e., λk →−∞ locally uniformly
in S1

\ {a1}. Then µ= c1δa1 and, since ∫
S1
κkeλk dθ = 2π,

it follows at once that c1 = 2π . The explicit form of v∞ follows from Lemma 3.1.
Case 2: Suppose that we are in case (2) of Theorem 3.5 and N > 1. Then we conclude by applying
Proposition 3.9, which in particular implies that N = 2 and µ= πδa1 +πδa2 . Again, the explicit form
of v∞ follows from Lemma 3.1.
Case 3: Suppose that we are in case (1) of Theorem 3.5, i.e., λk ≥ −C . Then λk ⇀ λ∞ weakly in
W 1,p

loc (S
1
\ B) and for every ϕ ∈ C∞c (S

1
\ B) we have

0= lim
k→∞

∫
S1
(λk(−1)

1
2ϕ− (κkeλk − 1)ϕ) dθ = lim

k→∞

∫
S1
(λ∞(−1)

1
2ϕ− (µ− 1)ϕ) dθ.

In particular, the distribution

T∞ := (−1)
1
2λ∞−µ+ 1

is supported in B and, since, by (96), T∞ ∈M(S1), the order of T∞ (as a distribution) is 0; hence,

T∞ =
N∑

j=1

c jδa j .

In order to compute the coefficients c j , let χδ : S1
→ R be 1 on S1

∩
⋃n

j=1 B(a j , δ) and 0 otherwise. We
rewrite (9) as follows:

(−1)
1
2λk = (1−χδ)κkeλk +χδκkeλk − 1. (97)

Since

lim
k→∞

(1−χδ)κkeλk = (1−χδ)κ∞eλ∞ in D′(S1),

testing (97) with ϕ ∈ C∞(S1) and letting k→∞ we get∫
S1
(λ∞(−1)

1
2ϕ− (1−χδ)κ∞eλ∞ϕ+ϕ) dθ = lim

k→∞

∫
S1
χδκkeλkϕ dθ

and, letting δ→ 0, we infer

〈T∞, ϕ〉 = lim
δ→0

lim
k→∞

∫
S1
χδκkeλkϕ dθ.

By choosing ϕ = 1 in a neighborhood of a j for a fixed j and ϕ = 0 in a neighborhood of B \ {a j }, we get

c j = lim
δ→0

lim
k→∞

∫
S1∩B(a j ,δ)

κkeλk dθ.
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We now want to compute c j for a fixed j ∈ {1, . . . , N }. Consider the Möbius transformation fk(z) =
(z− tka j )/(1− tk ā j z), and 8̃k :=8k ◦ fk , for a sequence tk ↑ 1 to be chosen. By Corollary 2.4 we have

λ̃k := log |8̃′k | = λk ◦ fk + log | f ′k |, κ̃k := κk ◦ fk,

and

(−1)
1
2 λ̃k = κ̃keλ̃k − 1.

Since log | f ′k | → −∞ locally uniformly in D2
\ {a j } and log | f ′k(a j )| → ∞, it is not difficult to see

that, if tk ↑ 1 slowly enough, then λ̃k → −∞ uniformly locally in D2
\ {a j ,−a j } and we can apply

Proposition 3.9 to 8̃k and obtain that

κ̃keλ̃k ∗⇀π(δa j + δ−a j ).

With a change of variable we then get

π = lim
δ→0

lim
k→∞

∫
S1∩B(a j ,δ)

κ̃keλ̃k dθ = lim
δ→0

lim
k→∞

∫
fk(S1∩B(a j ,δ))

κkeλk dθ = c j ,

where the last identity holds up to having tk ↑ 1 slowly enough. �

Proof of Theorem 1.5. From Proposition 3.15 it follows that S1
\ {P} =

⋃
j∈J Ai , where J is an at

most countable set and A j is an equivalence class generated by the relation in Definition 3.14. From
Proposition 3.16 it follows that for every class A j there is a sequence of Möbius transformations f j

k (z)
such that

8̃
j
k :=8k ◦ f j

k ⇀ 8̃ j
∞

in W 2,p
loc (D

2
\ B j ), B j = {b

j
1, . . . b

j
N j
},

where 8̃ j
∞ : D2

\ B j → R2 is a conformal immersion and γ∞(A j )= 8̃
j
∞(S1

\ B j ). Moreover, we have

(γ∞)∗[S1
\P] =

∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ].

We have ∑
j∈J

(γ∞)∗[A j ] =
∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ]

and it remains to prove that

(γ∞)∗[P] = 0.

In order to do that, let τ : P→ P be the bijection which, to a pinched point p, associates its dual. For a
differential form φ : C→ L(C,C), we have

(γ∞)∗[P](φ)=

∫
P
φ(γ∞(t))γ̇∞(t) dt. (98)

Now recall that

γ∞(t)= γ∞(τ (t)), γ̇∞(t)=−γ̇∞(τ (t)). (99)
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For a sequence tn ∈ P with tn→ t ∈ P as n→∞, we have

γ∞(tn)= γ∞(t)+ γ̇∞(t)(tn − t)+ o(tn − t),

γ∞(τ (tn))= γ∞(τ (t))+ γ̇∞(τ (t))(τ (tn)− τ(t))+ o(τ (tn)− τ(t)),
(100)

where for simplicity of notation we identified S1 with the interval [0, 2π ], with zero corresponding to a
point in S1

\P. Using (99) and (100) we infer that

lim
n→∞

τ(tn)− τ(t)
tn − t

=−1.

Then, at a density point of P, we have dτ/dt =−1 in the sense of approximate differentials (if the density
of P is everywhere 0 then |P| = 0 and we are done). Therefore,∫

P
φ(γ∞(t))γ̇∞(t) dt =−

∫
P
φ
(
γ∞(τ (t))

)
γ̇∞(τ (t)) dt =−

∫
τ(P)=P

φ(γ∞(t))γ̇∞(t) dt,

where in the first identity we used (99) and in the second identity we made a change of variable. This
proves that the integral in (98) vanishes for every differential form φ; hence, (γ∞)∗[P] = 0.

Since, for every j ∈ J , the sequence (8̃ j
k ) is as in case (1) of Theorem 3.5, i.e., setting λ j

k := log
∣∣(8̃ j

k )
′
|S1

∣∣
we have |λ̄ j

k | ≤C , we can apply Theorem 1.2(iii) and it follows at once that the blow-up set of λ j
k is B j . �

4. Relation between the Liouville equations in R and S1

Consider the conformal map G : D2
→ R2 given by

G(z)=
i z+ 1
z+ i

=
z+ z̄+ i(|z|2− 1)
1+ |z|2+ i(z̄− z)

.

We will use on the domain D2 the coordinate z = ξ + iη and on the target R2 the coordinates (x, y)
or x + iy. Writing G in components,

G1(z)=<G(z)=
2ξ

(1+ η)2+ ξ 2 , G2(z)= =G(z)=
ξ 2
+ η2
− 1

(1+ η)2+ ξ 2 ,

and using the polar coordinates (r, θ) on D2 one easily verifies

∂G1

∂r

∣∣∣∣
r=1
= 0,

∂G2

∂r

∣∣∣∣
r=1
=

1
1+ η

,
∂G1

∂θ

∣∣∣∣
r=1
=−

1
1+ η

,
∂G2

∂θ

∣∣∣∣
r=1
= 0.

Notice that G|S1(ξ + iη) = ξ/(1+ η), i.e., 5 := G1
|S1 is the classical stereographic projection from

S1
\ {−i} onto R. Its inverse is

5−1(x)=
2x

1+ x2 + i
(
−1+

2
1+ x2

)
. (101)

If we write 5−1(x)= eiθ(x), we get the useful relation

1+ sin(θ(x))=
2

1+ x2 ,
2

1+5(θ)2
= 1+ sin θ, (102)
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which follows easily from sin(θ(x))= =(5−1(x))= (1− x2)/(1+ x2).

Proposition 4.1. Given u : R→ R, set v := u ◦5 : S1
→ R, where 5 := G1

|S1 . Then u ∈ L 1
2
(R) if and

only if v ∈ L1(S1). In this case,

(−1)
1
2 v(eiθ )=

((−1)
1
2 u)(5(eiθ ))

1+ sin θ
in D′(S1

\ {−i}), (103)

that is,
〈(−1)

1
2 v, ϕ〉 = 〈(−1)

1
2 u, ϕ ◦5−1

〉 for every ϕ ∈ C∞0 (S
1
\ {−i}).

Further, if (−1)
1
2 u ∈ L1(R) or, equivalently, (−1)

1
2 v|S1\{−i} ∈ L1(S1), then

(−1)
1
2 v(eiθ )=

((−1)
1
2 u)(5(eiθ ))

1+ sin θ
− γ δ−i in D′(S1), γ =

∫
R

(−1)
1
2 u dx . (104)

Proof. Since ∫
S1
|v| dθ =

∫
R

2|v(5−1(x))|
1+ x2 dx,

it is clear that v ∈ L1(S1) if and only if u ∈ L 1
2
(R).

Given now ϕ ∈C∞c (S
1
\{−1}), set ψ :=ϕ◦5−1

∈C∞c (R) and let ϕ̃ ∈C∞(D2) and ψ̃ ∈C∞∩L∞(R2
+
)

be the harmonic extensions of ϕ and ψ given by the Poisson formulas (125) and (132), respectively. It is
not difficult to see that, setting G = (G1,−G2), ψ̃ ◦G|D2 is continuous, harmonic in D2 and it coincides
with ϕ̃ on S1. Then, by the maximum principle, ϕ̃ = ψ̃ ◦G in D2

\ {−i}.
Using polar coordinates we compute

∂ϕ̃

∂r

∣∣∣∣
r=1
◦5−1

=
∂(ϕ̃ ◦G−1)

∂x
∂G1

∂r

∣∣∣∣
r=1
+
∂(ϕ̃ ◦G−1)

∂y
∂G2

∂r

∣∣∣∣
r=1
=−

∂ψ̃

∂y

∣∣∣∣
y=0

1+ x2

2
.

Then, using Propositions A.1 and A.3, we get

〈(−1)
1
2 v, ϕ〉 =

∫
S1
v
∂ϕ̃

∂r

∣∣∣∣
r=1

dθ

=

∫
R

(v ◦5−1(x))
(
∂ϕ̃

∂r

∣∣∣∣
r=1
◦5−1(x)

)
2

1+ x2 dx

=−

∫
R

u
∂ψ̃

∂y

∣∣∣∣
y=0

dx

= 〈(−1)
1
2 u, ψ〉,

so that (103) is proven.
In order to prove (104), set f := ((−1)

1
2 v)|S1\{−i} ∈ D′(S1

\ {−i}) and notice that

‖ f ‖L1(S1) = ‖(−1)
1
2 u‖L1(R) = γ.

Since f ∈ L1(S1)⊂ D′(S1), we have

T := (−1)
1
2 v− f ∈ D′(S1) (105)
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and supp(T )⊂ {−i}. We claim that T = cδ−i for some constant c. By a rotation of S1, it is convenient to
assume that T is supported at {1}. In this case, we can write

T =
N∑

k=0

ck Dkδ0

for some N ∈ N and c0, . . . , cN ∈ C, which leads to

〈T, ϕ〉 =
N∑

k=0

ck(−1)k Dkϕ0 =

N∑
k=0

ck

∑
n∈Z

(−in)k ϕ̂(n) for ϕ ∈ D(S1). (106)

On the other hand, according to (124) we have, for ϕ ∈ D(S1),

〈(−1)
1
2 v, ϕ〉 =

∫
S1
v(θ)

∑
n∈N

|n|ϕ̂(n)e−inθ dθ

=

∑
n∈N

|n|ϕ̂(n)
∫

S1
v(θ)e−inθ dθ

= 2π
∑
n∈N

|n|v̂(n)ϕ̂(n), (107)

where the sum can be moved outside the integral because
∑

n∈N |n||ϕ̂(n)|<∞. Similarly,

〈 f, ϕ〉 = 2π
∑
n∈N

f̂ (n)ϕ̂(n) for ϕ ∈ D(S1). (108)

Clearly (105), (106), (107) and (108) are compatible only if ck = 0 for k = 1, . . . , N , hence proving (up
to rotating back) that T = c0δ−i , as claimed. Finally, testing with ϕ = 1 we obtain

0= 〈(−1)
1
2 v, 1〉 = 〈 f, 1〉+ 〈T, 1〉 = ‖(−1)

1
2 u‖L1 + c0,

which implies that c0 =−‖(−1)
1
2 u‖L1 . �

Now, given u ∈ L 1
2
(R) we want to define a function λ ∈ L1(S1) such that

5∗(e2u
|dx |2)= e2λ

|dθ |2,

where 5∗ denotes the pull-back of the stereographic projection, while |dx |2 and |dθ |2 are the standard
metrics on R and S1, respectively. Since

5∗(e2u
|dx |2)=

(
∂5

∂θ

)2

e2u(5(θ))
|dθ |2,

we find

λ(θ)= u(5(θ))+ log
∣∣∣∣∂5∂θ

∣∣∣∣= u(5(θ))− log(1+ sin θ) (109)

or equivalently, using (102),

u(x)= λ(5−1(x))+ log
2

1+ x2 . (110)
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Using Proposition 4.1 we can now easily relate (−1)
1
2 u and (−1)

1
2λ.

Proposition 4.2. Given u : R→ R, set λ as in (109). Then u ∈ L 1
2
(R) if and only if λ ∈ L1(S1), and

(−1)
1
2 u ∈ L1(R) if and only if (−1)

1
2λ ∈ L1(S1

\{−i}). In this case, u solves (20) if and only if λ solves

(−1)
1
2λ= κeλ− 1+ (2π − c)δ−i in S1 (111)

with κ = V ◦5 and c = ‖(−1)
1
2 u‖L1(R).

Proof. This follows at once from Proposition 4.2 and Lemma 4.3, below. �

Lemma 4.3. We have
(−1)

1
2 log(1+ sin θ)= 1− 2πδ−i .

Proof. Notice that by (102) we can write

log(1+ sin θ)= u1,0(5(θ)), u1,0(x)= log
2

1+ x2 .

Then Propositions 5.1 and 4.1 imply

(−1)
1
2 log(1+ sin θ)=

(−1)
1
2 u(5(θ))

1+ sin θ
−‖(−1)

1
2 u‖L1δ−i =

eu1,0(5(θ))

1+ sin θ
− δi

∫
R

eu1,0(x) dx

= 1− 2πδ−i . �

5. Proof of Theorem 1.8 and Proposition 1.9

Before proving Theorem 1.8, we show that the functions defined in (27) are indeed solutions of (24)–(25).

Proposition 5.1. For every µ > 0 and x0 ∈ R, the function uµ,x0 defined in (27) belongs to L 1
2
(R),

satisfies (25) with L = 2π , and solves (24).

Proof. That uλ,x0 ∈ L 1
2
(R) and

∫
R

euλ,x0 dx = 2π is elementary. The equation is invariant under translations
and dilations in the sense that, for all x0 ∈R and λ> 0, if u is a solution of (24) then u(λ(x+x0))+ log(λ)
is a solution of (24) as well; hence, it suffices to prove that u1,0(x)= log(2/(1+ x2)) is a solution. From
Proposition A.3 we get, integrating by parts,

π(−1)
1
2 u1,0(x)= lim

ε→0

∫
R\[x−ε,x+ε]

log 1+ y2

1+ x2

(x − y)2
dy

= lim
ε→0

{
−

log 1+ y2

1+ x2

y− x

∣∣∣∣x−ε
−∞

−

log 1+ y2

1+ x2

y− x

∣∣∣∣∞
x+ε
+

∫
R\[x−ε,x+ε]

2y
(y− x)(1+ y2)

dy
}

= lim
ε→0

{2 arctan y+ x log (y− x)2

1+ y2

1+ x2

∣∣∣∣x−ε
−∞

+

2 arctan y+ x log (y− x)2

1+ y2

1+ x2

∣∣∣∣∞
x+ε

}
=

2π
1+ x2 = πeu1,0(x). �



1796 FRANCESCA DA LIO, LUCA MARTINAZZI AND TRISTAN RIVIÈRE

Theorem 5.2. There exist constants C1, C2 > 0 such that for any ε ∈ (0, π) one has

C1 ≤ sup
u∈H̃1,1

1 (I )

‖(−1)
1
2 u‖L1(I )≤1

ε

|I |

∫
I

e(π−ε)|u| dθ ≤ C2, (112)

where H̃ 1,1
1 (I ) := {u ∈ L1(R) : supp(u)⊂ I , (−1)

1
2 u ∈ L1(R)}.

Lemma 5.3. The Green function of (−1)
1
2 on the interval I = (−1, 1) can be decomposed as

G 1
2
(x, y)= F1

2
(|x − y|)+ H 1

2
(x, y),

where F1
2
(x) := (1/π) log(1/|x |) and H 1

2
is bounded above.

Proof. This follows from the explicit expression of G(x, y) (see, e.g., [Blumenthal et al. 1961; Bucur
2015]), namely

G(x, y)= 1
2π

∫ r0(x,y)

0

1
√

r(r + 1)
dr = 1

π
log(

√
r0(x, y)+

√
r0(x, y)+ 1),

where

r0(x, y) :=
(1− |x |2)(1− |y|2)

|x − y|2
. �

Proof of Theorem 5.2. Up to a translation and dilation we can assume that I = (−1, 1). With Lemma 5.3
we write, for u ∈ H̃ 1,1

1 (I ) and f := (−1)
1
2 u,

|u(x)| =
∣∣∣∣∫

I
G(x, y) f (y) dy

∣∣∣∣,
and we bound

G(x, y)≤ 1
π

log
(

2
|x − y|

)
+C, x, y,∈ I,

hence

|u(x)| ≤ 1
π

∫
I

log
(

2
|x − y|

)
| f (y)| dy+C (113)

and, exactly as in (56), one gets∫
I

e(π−ε)|u(x)| dx ≤ C
∫

I
| f (y)|

∫
I

(
2

|x − y|

)1− επ
dx dy ≤ C

ε
.

The rest of the proof is also similar to the proof of Theorem 3.2. �

Remark 5.4. A slight modification of (112) is

C1 ≤ sup
u=F1/2∗ f

supp( f )⊂I , ‖ f ‖L1(I )≤1

ε

|I |

∫
I

e(π−ε)|u| dθ ≤ C2, (114)



BLOW-UP ANALYSIS OF A NONLOCAL LIOUVILLE-TYPE EQUATION 1797

where F1
2

is as in Lemma 5.3. The proof of (114) is similar to the proof of (112), since u = F1
2
∗ f

obviously satisfies (113). An alternative proof of a nonsharp version of (114), namely

sup
u=F1

2
∗ f

supp( f )⊂I , ‖ f ‖L1(I )≤1

∫
I

eδ|u−ū| dθ ≤ C2 for some δ > 0 and ū := −
∫

I
u dx,

can be obtained noticing that, for u = F1
2
∗ f , one has [u]BMO(I ) ≤ C[F1

2
]BMO(R)‖ f ‖L1(I ), and one can

apply the John–Niremberg inequality.

Proposition 5.5. Let u ∈ L 1
2
(R) satisfy (24)–(25). Then there is a constant C0 ∈ R such that

u(x)= 1
π

∫
R

log
(

1+ |y|
|x − y|

)
eu(y) dy+C0. (115)

In the proof of Proposition 5.5 we use two lemmata.

Lemma 5.6. For any f ∈ L1(R) the function

w(x) := I[ f ](x) := 1
π

∫
R

log
(

1+ |y|
|x − y|

)
f (y) dy (116)

is well defined, belongs to L 1
2
(R) and satisfies

(−1)
1
2w = f in S′. (117)

Proof of Lemma 5.6. Let us first assume that f belongs to the Schwartz space S. Remember that, for
F(x) := (1/π) log(1/|x |), we have (see, e.g., [Vladimirov 1971, p. 132])

F̂(ξ)= P
1
|ξ |
+Cδ0 in S′, (118)

where P(1/|ξ |) ∈ S′ is the tempered distribution defined by〈
P

1
|ξ |
, ϕ

〉
=

∫
|ξ |≤1

ϕ(ξ)−ϕ(0)
|ξ |

dξ +
∫
|ξ |>1

ϕ(ξ)

|ξ |
dξ, ϕ ∈ S. (119)

For every f ∈ C∞c (R) one easily sees that F ∗ f ∈ C∞(R) and F ∗ f ∈ L 1
2
(R). Then

〈(−1)
1
2 (F ∗ f ), ϕ〉 :=

∫
R

(F ∗ f )F−1(|ξ |ϕ̂) dx

=

∫
R

F( f̃ ∗F−1(|ξ |ϕ̂)) dx

=

∫
R

FF
(
F−1( f̃ ∗F−1(|ξ |2σ ϕ̂))

)
dx

=
1

2π

∫
R

FF( f̂ |ξ | ˆ̃ϕ) dx

=
1

2π

∫
R

f̂ ˆ̃ϕ dξ =
∫

R

f ϕ dx, (120)
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where in order to apply (119) in the fifth identity can approximate the function ψ(ξ) = f̂ |ξ |ϕ̂ by a
sequence of functions ψε = f̂ ηε ˆ̃ϕ ∈ S(R) with ηε ∈ C∞(R) suitably chosen (see, for instance, [Jin et al.
2015b]). Hence, (−1)

1
2 (F ∗ f ) = f in D′(R) and, since f ∈ D(R), the identity also holds in a strong

sense. Moreover, since obviously

(−1)
1
2

(
1
π

∫
R

log(1+ |y|) f (y) dy
)
= 0,

we see that (117) is satisfied when f ∈ D(R).
For a general function f ∈ L1(R) we can find a sequence ( fk) ⊂ D(R) with fk → f in L1(R) and

take ϕ ∈ S(R). Then

(I )k := 〈(−1)
1
2 I[ fk], ϕ〉 = 〈 fk, ϕ〉 → 〈 f, ϕ〉

as k→∞, while

(I )k = 〈I[ fk], (−1)
1
2ϕ〉 =

∫
R

I[ fk](x)ψ(x) dx,

where ψ := (−1)
1
2ϕ satisfies

|ψ(x)| ≤ C(1+ |x |2). (121)

It remains to show that ∫
R

I[ fk − f ](x)ψ(x) dx→ 0 as k→∞.

Define gk := fk − f → 0 in L1(R). Then, from ‖h1 ∗ h2‖L1 ≤ ‖h1‖L1‖h2‖L1 , we get∣∣∣∣∫
B(x,1)

log
(

1+ |y|
|x − y|

)
gk(y) dy

∣∣∣∣≤ log(2+ |x |)‖gk‖L1(R)+C‖gk‖L1

and, using that for |x − y| ≥ 1 we have log((1+ |y|)/|x − y|)≤ C(1+ log(|x |)),∣∣∣∣∫
R\B(x,1)

log
(

1+ |y|
|x − y|

)
gk(y) dy

∣∣∣∣≤ C(1+ log |x |)‖gk‖L1 .

Therefore, taking (121) into account, we see that

(I )k→ 〈I[ f ], (−1)
1
2ϕ〉 as k→∞;

hence, we conclude that (−1)
1
2w = f in S′(R). �

Lemma 5.7. Let f ∈ L 1
2
(R) satisfy (−1)

1
2 f = 0. Then f is constant.

Proof. This is identical to the proof of Lemma 14 in [Jin et al. 2015b]. �

Proof of Proposition 5.5. Set w(x) as in (116) with f (y) := eu(y). Then (−1)
1
2 (u−w)= 0 by Lemma 5.6;

hence, by Lemma 5.7, u−w ≡ C0 for some C0 ∈ R. �

Proposition 5.8. Let u ∈ L 1
2
(R) satisfy (24)–(25). Then u ∈ C∞(R).
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Proof. Up to scaling, assume that ∫ 1

−1
eu(x) dx < ε,

where ε will be fixed later.
Let us split u = u1+ u2, where

u1(x)=
1
π

∫ 1

−1
log
(

1+ |y|
|x − y|

)
eu(y) dy+C0 =

1
π

∫ 1

−1
log
(

1
|x − y|

)
eu(y) dy+C1. (122)

Then (115) implies that u2 is defined by the same formula, integrating over R \ [−1, 1] instead of R. It is
easy to see that

‖u2‖L∞([− 1
2 ,

1
2 ])
≤ C

∫
R

eu(x) dx <∞.

From (114) if follows that, given p < ∞, choosing ε > 0 small enough (depending on p) we have
e|u1| ∈ L p([−1, 1]), so eu

∈ L p
[
−

1
2 ,

1
2

]
.

The same argument, together with translations and dilations, can be performed in a neighborhood of
every point in R, giving eu

∈ L p
loc(R) for 1< p<∞. Going back to (115) it is easy to bootstrap regularity

and prove that u is actually smooth. �

Corollary 5.9. Every function λ ∈ L1(S1) solving (33) with (−1)
1
2λ ∈ L1(S1) is smooth.

Proof. By Proposition 4.2 the function u : R→ R given by (110) is in L 1
2
(R) and it solves (24). Then, by

Proposition 5.8, u is smooth; hence, λ ∈ C∞(S1
\ {−i}). Since (33) is invariant under rotations, we have

that actually λ ∈ C∞(S1). �

Lemma 5.10. For u ∈ L 1
2
(R)∩C1(R) solving (24)–(25), set

α :=

∫
R

eu(x) dx .

Then α = 2π .

Proof. This argument is taken from [Xu 2005] and is based on a Pohozaev-type identity. Differentiating
(115) (for instance, by splitting the domain of integration into [−a, a] and R \ [−a, a] for some a > |x |
and using elementary calculus) we obtain

x
∂u
∂x
=−

1
π

PV
∫

R

x
x − y

eu(y) dy.

Multiplying by eu(x) and integrating with respect to x on the interval [−R, R], we get

(I ) :=
∫ R

−R
x
∂u
∂x

eu(x) dx =− 1
π

∫ R

−R
PV

∫
R

x
x − y

eu(y) dy eu(x) dx =: (II).

Integrating by parts we find

(I )=
∫ R

−R
x
∂eu(x)

∂x
dx = R(eu(R)

+ eu(−R))−

∫ R

−R
eu(x) dx→−α as R→∞,
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where we used that, at least on a subsequence, R(eu(R)
− eu(−R))→ 0 as R→∞, otherwise (25) would

be violated. As for (II), we compute

(II)=− 1
2π

∫ R

−R

∫
R

eu(y) dy eu(x) dx − 1
2π

∫ R

−R
PV

∫
R

x + y
x − y

eu(y) dy eu(x) dx→−
α2

2π
+ 0

as R→∞. Therefore, from (I )= (II) we infer α = α2/(2π), i.e., α = 2π . �

Proof of Theorem 1.8. Given u ∈ L 1
2
(R) satisfying (24)–(25), by Proposition 4.2 the function λ(θ) :=

u(5(θ))− log(1+ sin θ) solves

(−1)
1
2λ= eλ− 1+ (2π −α)δ−i in S1

and, by Lemma 5.10, α = 2π ; hence,

(−1)
1
2λ= eλ− 1 in S1.

By Corollary 2.3, λ is of the form given by (34) for some a ∈ D2.
To complete the proof, write a = αeiθ0 = α(t + is) with α, t , s ∈ R. We have

u(x)= λ ◦5−1(x)+ log
2

1+ x2 = log
2(1−α2)

|1−α(t + is)5−1(x)|2(1+ x2)
.

The right-hand side can be computed using (101):

u(x)= log
2(1−α2)∣∣∣1+α−2t x + s(1− x2)

1+ x2 − iα 2sx + t (1− x2)

1+ x2

∣∣∣2(1+ x2)

= log
2(1−α2)

x2(1− 2αs+α2)− 4αt x + 1+ 2αs+α2 .

Completing the square in the denominator on the right-hand side, we get

u(x)= log
2(1−α2)

(1− 2αs+α2)
(

x − 2αt
1− 2αs+α2

)2
+

(1−α2)2

1− 2αs+α2

= log
2µ

1+µ2(x − x0)2

with

x0 =
2αt

1− 2αs+α2 , µ=
1− 2αs+α2

1−α2 . �

The following can been seen as a nonlocal version of the classical mean value property of harmonic
functions. It appears in [Silvestre 2007, Proposition 2.2.6] in a slightly different case, but with a proof
which readily extends to the following case.

Proposition 5.11. There exists a positive function γ1 ∈ C1,1(R) with
∫

R
γ1 dx = 1 such that, setting

γλ(x) := (1/λ)γ1(x/λ), we have
u(x0)≥ u ∗ γλ(x0)

for every λ > 0 and every u ∈ L 1
2
(R) satisfying (−1)

1
2 u ≥ 0.
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Proof of Proposition 1.9. Since (−1)
1
2 u ≤ 0, we have, by Proposition 5.11 below,

u(0)≤ u ∗ γλ(0) for every λ > 0,

where γλ is as in Proposition 5.11. Since dµλ(x) := γλ(−x) dx satisfies
∫

R
dµλ = 1, from Jensen’s

inequality we get ∫
R

eu dµλ ≥ exp
(∫

R

u dµλ

)
= eu∗γλ(0) ≥ eu(0).

On the other hand, since dµλ ≤ (C/λ) dx , we estimate∫
R

eu dx ≥
λ

C

∫
R

eu dµλ ≥
λ

C
eu(0)
→∞ as λ→∞,

contradicting (25). �

Appendix A: The fractional Laplacian

The half-Laplacian on S1. Given u ∈ L1(S1), we define its Fourier coefficients as

û(n)=
1

2π

∫
S1

u(θ)e−inθ dθ, n ∈ Z.

If u is smooth, we can define
(−1)

1
2 u(θ)=

∑
n∈Z

|n|û(n)einθ . (123)

For u ∈ L1(S1), we can define (−1)
1
2 u ∈ D′(S1) as a distribution as

〈(−1)
1
2 u, ϕ〉 :=

∫
S1

u(−1)
1
2ϕ dθ, ϕ ∈ C∞(S1). (124)

Notice that ϕ ∈ C∞(S1) implies that (−1)
1
2ϕ ∈ C∞(S1) (here, (−1)

1
2ϕ is defined as in (123)). In fact,

given ϕ ∈ L1(S1), we have ϕ ∈ C∞(S1) if and only if ϕ̂(n)= o(|n|−k) for every k ≥ 0.
We can also give a definition of (−1)

1
2 u in terms of harmonic extensions. If u ∈ L1(S1), let ũ(r, θ) be

its harmonic extension in D2, explicitly given by the Poisson formula

ũ(r, θ)= 1
2π

∫ 2π

0
P(r, θ − t)u(t) dt, P(r, θ)=

∑
n∈Z

r |n|einθ
=

1− r2

1− 2r cos θ + r2 (125)

Then one can define (using polar coordinates)

(−1)
1
2 u =

∂ ũ
∂r

∣∣∣∣
r=1

in D′(S1), (126)

where the distribution ∂ ũ/∂r
∣∣
r=1 is defined as〈

∂ ũ
∂r

∣∣∣∣
r=1
, ϕ

〉
:=

∫
S1

u
∂ϕ̃

∂r

∣∣∣∣
r=1

dθ,

where ϕ ∈ C∞(S1) and ϕ̃ is the harmonic extension of ϕ in D2.
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Notice that, if u ∈ C∞(S1), the equivalence of (123), (124) and, in fact, (126) is elementary, and (126)
holds pointwise. For instance, the equivalence of (123) and (126) follows at once from

ũ(r, θ)=
∑
n∈Z

û(n)r |n|einθ .

Proposition A.1. The definitions (124) and (126) are equivalent.

Proof. Since (126) holds pointwise for smooth functions, one has, for u ∈ L1(S1) and ϕ ∈ C∞(S1),

〈(−1)
1
2 u, ϕ〉 :=

∫
S1

u(−1)
1
2ϕ dx =

∫
S1

u
∂ϕ̃

∂θ
dθ =:

〈
∂ ũ
∂r

∣∣∣∣
r=1
, ϕ

〉
. �

For u ∈ C1,α(S1), there is also the following pointwise definition of (−1)
1
2 u:

Proposition A.2. If u ∈ C1,α(S1) for some α ∈ (0, 1], then (−1)
1
2 u ∈ C0,α(S1) and

(−1)
1
2 u(eiθ )=

1
π

PV
∫ 2π

0

u(eiθ )− u(ei t)

2− 2 cos(θ − t)
dt, (127)

where the principal value is well defined because 2− 2r cos(θ − t)= (θ − t)2+ O((θ − t)4) as t→ θ .

Proof. Considering Proposition A.1, it suffices to show the equivalence of (126) and (127). Set ũ as
in (125). Then

∂ ũ(r, θ)
∂r

∣∣∣∣
r=1
= lim

r↑1

ũ(r, θ)− u(eiθ )

r − 1

= lim
r↑1

1
2π(r − 1)

∫ 2π

0

(1− r2)(u(eiθ )− u(ei t))

1− 2r cos(θ − t)+ r2 dt

= lim
r↑1

1
2π

∫ 2π

0

(1+ r)(u(eiθ )− u(ei t))

1− 2r cos(θ − t)+ r2 dt

=
1
π

PV
∫ 2π

0

u(eiθ )− u(ei t)

2− 2r cos(θ − t)
dt. �

The half-Laplacian on R. For u ∈ S (the Schwarz space of rapidly decaying functions), we set

̂
(−1)

1
2 u(ξ)= |ξ |û(ξ), f̂ (ξ) :=

∫
R

f (x)e−i xξ dx . (128)

One can prove that

(−1)
1
2 u(x)= 1

π
PV

∫
R

u(x)− u(y)
(x − y)2

dy := 1
π

lim
ε→0

∫
R\[−ε+x,x+ε]

u(x)− u(y)
(x − y)2

dy, (129)

from which it follows that

sup
x∈R

|(1+ x2)(−1)
1
2ϕ(x)|<∞ for every ϕ ∈ S.

Then one can set

L 1
2
(R) :=

{
u ∈ L1

loc(R)

∣∣∣∣ ∫
R

|u(x)|
1+ x2 dx <∞

}
, (130)
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and, for every u ∈ L 1
2
(R), one defines the tempered distribution (−1)

1
2 u as

〈(−1)
1
2 u, ϕ〉 :=

∫
R

u(−1)
1
2ϕ dx =

∫
R

uF−1(|ξ |ϕ̂(ξ)) dx for every ϕ ∈ S. (131)

An alternative definition of (−1)
1
2 can be given via the Poisson integral. For u ∈ L 1

2
(R), define the

Poisson integral

ũ(x, y) := 1
π

∫
R

yu(y)
(y2+ (x − ξ)2)

dξ, y > 0, (132)

which is harmonic in R× (0,∞) and whose trace on R×{0} is u. Then we have

(−1)
1
2 u =−

∂ ũ
∂y

∣∣∣∣
y=0
, (133)

where the identity is pointwise if u is regular enough (for instance, C1,α
loc (R)), and has to be read in the

sense of distributions in general, with〈
−
∂ ũ
∂y

∣∣∣∣
y=0
, ϕ

〉
:=

〈
u,−

∂ϕ̃

∂y

∣∣∣∣
y=0

〉
, ϕ ∈ S, ϕ̃ as in (132). (134)

More precisely:

Proposition A.3. If u ∈ L 1
2
(R) ∩ C1,α

loc ((a, b)) for some interval (a, b) ⊂ R and some α ∈ (0, 1),
then (−1)

1
2 u, the tempered distribution defined in (131), coincides on the interval (a, b) with the functions

given by (129) and (133). For general u ∈ L 1
2
(R), the definitions (131) and (133) are equivalent, where

the right-hand side of (133) is defined by (134).

Proof. Assume that u ∈ L 1
2
(R) ∩ C1,α

loc ((a, b)). Following [Caffarelli and Silvestre 2007], we have,
for x ∈ (a, b),

∂ ũ(x, y)
∂y

∣∣∣∣
y=0
= lim

y→0

ũ(x, y)− ũ(x, 0)
y

= lim
y→0

1
π

∫
R

u(ξ)− u(x)
y2+ (ξ − x)2

dξ = 1
π

PV
∫

R

u(ξ)− u(x)
(ξ − x)2

dξ,

where the last convergence follows from dominated convergence outside B1(x) and by a Taylor expansion
in a neighborhood of x . This proves the equivalence of (129) and (133). The equivalence between (129)
and (131) amounts to showing that∫

R

uF−1(|ξ |ϕ̂(ξ)) dx = 1
π

∫
R

PV
∫

R

u(x)− u(y)
(x − y)2

dy ϕ(x) dx (135)

whenever ϕ ∈ S is supported in (a, b). When u ∈ S, the equivalence is shown, e.g., in [Caffarelli and
Silvestre 2007] (passing through the definition given in (128)). In the general case, one approximates u with
functions uk ∈ S converging to u uniformly locally in (a, b) and in L 1

2
(R), as shown in Proposition 2.1.4

of [Silvestre 2007] (in order to have convergence in (135) as uk → u, it is convenient to consider ϕ
compactly supported first, in case (a, b) is not bounded).

The last statement follows at once by noticing that, applying (133) to ϕ ∈ S, one gets〈
u,−

∂ϕ̃

∂y

∣∣∣∣
y=0

〉
= 〈u, (−1)

1
2ϕ〉. �
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Appendix B: Useful results from complex analysis

Lemma B.1. Let h ∈ C0(D2,C) be holomorphic in D2 with h(S1) ⊂ S1 and 0 6∈ h(D2). Then h is
constant.

Proof. Since h never vanishes, log |h| is well defined, harmonic and vanishes on S1, hence everywhere.
This implies that |h| ≡ 1 and, from the conformality of h, it follows that h is constant. �

The following is a generalization of Lemma B.1:

Lemma B.2 [Burckel 1979]. If h∈C0(D2,C) be holomorphic in D2 with h(S1)⊂ S1 and deg h|S1=n≥0,
then h is a Blaschke product of degree n, i.e.,

h(z)= eiθ0

n∏
k=1

z− ak

1− ākz
, a1, . . . , an ∈ D2, θ0 ∈ R.
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