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We study the future causally geodesically complete solutions of the spherically symmetric Einstein-scalar
field system. Under the a priori assumption that the scalar field φ scatters locally in the scale-invariant
bounded-variation (BV) norm, we prove that φ and its derivatives decay polynomially. Moreover, we
show that the decay rates are sharp. In particular, we obtain sharp quantitative decay for the class of
global solutions with small BV norms constructed by Christodoulou. As a consequence of our results, for
every future causally geodesically complete solution with sufficiently regular initial data, we show the
dichotomy that either the sharp power law tail holds or that the spacetime blows up at infinity in the sense
that some scale invariant spacetime norms blow up.
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1. Introduction

In this paper, we study the quantitative long time dynamics for the spherically symmetric dispersive
spacetimes satisfying the Einstein-scalar field equations. More precisely, these are spherically symmetric
solutions (M, g, φ) to the Einstein-scalar field system, where g is a Lorentzian metric and φ is a real-
valued function on a 3+1-dimensional manifold M, such that (M, g) is future causally geodesically
complete and φ scatters locally in the scale-invariant bounded-variation (BV) norm. For these spacetimes,
we establish a Price-law-type decay for the scalar field φ, the Christoffel symbols associated to g and all
of their derivatives. To obtain the decay results, we do not need to assume any smallness of the initial
data. Moreover, we show that the decay rates in this paper are sharp.
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Figure 1. The dispersive case.

i+

BH

S
b0

0
H+

6

I+

i0

Figure 2. The black hole case.

The spherically symmetric Einstein-scalar field system, being one of the simplest models of self-
gravitating matter in this symmetry class, has been studied extensively both numerically and mathemat-
ically. In a seminal series of papers by Christodoulou [1987; 1991; 1993; 1994; 1999], he achieved
a complete understanding of the singularity structure of spherically symmetric spacetime solutions to
this system. The culmination of the results shows that generic1 spherically symmetric initial data with
one asymptotically flat end give rise to a spacetime whose global geometry is either dispersive (with
a Penrose diagram represented by Figure 1) or contains a black hole region BH which terminates in a
spacelike curvature singularity S (with a Penrose diagram represented by Figure 2). In particular, in
either of these generic scenarios, the spacetime possesses a complete null infinity I+ and thus obeys
the weak cosmic censorship conjecture. Moreover, in either case, the maximal Cauchy development
of the data is inextendible with a C2 Lorentzian metric and therefore also verifies the strong cosmic
censorship conjecture. We refer the readers to [Kommemi 2013] for a comprehensive discussion of
general singularity structures for spherically symmetric spacetimes.

The remarkable resolution of the cosmic censorship conjectures, however, gives very little information
on the long time dynamics for these spacetimes except for the small data2 case [Christodoulou 1993]. In
particular, not much is known about the asymptotic decay of the scalar field as measured by a far-away

1In the BV class, i.e., the initial data for ∂v(rφ) has bounded variation. More precisely, Christodoulou showed that the
nongeneric set of initial data has codimension at least two in the BV topology.

2That is, when the initial data is close to that of Minkowski space.
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observer at null infinity. In the dispersive case, Christodoulou showed that the Bondi mass decays to zero
along null infinity without an explicit decay rate. In the black hole case, he showed that the Bondi mass
approaches the mass of the black hole, from which one can infer the nonquantitative decay for the scalar
field along null infinity [Christodoulou 1993].

The long time dynamics in the case where the spacetime settles to a black hole was subsequently
studied3 in the seminal work of Dafermos and Rodnianski [2005]. They proved a quantitative decay rate
for the scalar field (and its derivatives) in the spacetime including along null infinity I+ and the event
horizon H+. The proof is based on the local conservation of energy, which is subcritical, together with
techniques exploiting the conformal geometry of the spacetime and the celebrated red-shift effect along
the event horizon. The result in particular justified, in a nonlinear setting, the heuristics of [Price 1972]. It
turns out that the quantitative decay rates, when combined with the results of [Dafermos 2005], also have
interesting consequences for the strong cosmic censorship conjecture in the context of the spherically
symmetric Einstein–Maxwell-scalar field system.

In this paper, we study the other generic scenario, spherically symmetric dispersive spacetime solutions
to the Einstein-scalar field system. Unlike in the black hole case, the monotonic Hawking mass is
supercritical and provides no control over the dynamics of the solution. We thus do not expect to be able
to obtain quantitative decay rates for large solutions without imposing extra assumptions. Instead, we
assume a priori the nonquantitative decay of a critical quantity — the BV norm4 — but only locally in
a region where the area of the orbit of the symmetry group SO(3) remains uniformly bounded. Under
this assumption of local BV scattering, we show that the scalar field and all its derivatives decay with a
quantitative rate, reminiscent of the Price law decay rates in the black hole case. (We refer the readers
to the statement of the main theorems in Section 3 for the precise rates that we obtain.) We prove, in
particular, a quantitative decay rate for the scalar field along null infinity.

Our results apply in particular to the class of solutions arising from initial data with small BV norm.
Christodoulou [1993] showed that these spacetimes are future causally geodesically complete. One can
easily deduce from [Christodoulou 1993] that in fact these spacetimes satisfy the BV scattering assumption
and therefore the solutions obey the quantitative decay estimates of our main theorem (see Theorem 3.15).
On the other hand, our results do not require any smallness assumptions on the initial data. We conjecture
that indeed our class of spacetimes contains those arising from large data:

Conjecture 1. There exists initial data of arbitrarily large BV norm whose maximal global development
scatters locally in the BV norm.

In addition to the upper bounds that we obtain in our main theorem, we also construct examples where
we prove lower bounds for the solutions with the same rates as the upper bounds. In particular, there
exists a class of initial data with compactly supported scalar field whose future development saturates the
decay estimates in the main theorem. This shows that the decay rates are sharp. We note that the decay
rate is also consistent with the numerical study of Bizón, Chmaj and Rostworowski [Bizoń et al. 2009].

3In fact, they considered the more general Einstein–Maxwell-scalar field equations.
4Solutions of bounded variation were first studied by Christodoulou [1993] and play an important role in the proof of the

cosmic censorship conjectures [Christodoulou 1999].
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As a corollary of the main result on decay, we show the following dichotomy: either the quantitative
decay rates are satisfied or the solution blows up at infinity. The latter are solutions such that some
scale-invariant spacetime norms become infinite (see the precise definition in Definition 3.12).

The decay result in this paper easily implies that the locally BV scattering solutions that we consider are
stable against small, regular, spherically symmetric perturbations. More ambitiously, one may conjecture:

Conjecture 2. Spherically symmetric, locally BV scattering dispersive solutions to the Einstein-scalar
field equations are stable against nonspherically symmetric perturbations.

Conjecture 2, if true, will generalize the monumental theorem on the nonlinear stability of Minkowski
spacetime of [Christodoulou and Klainerman 1993] (see also a simpler proof in [Lindblad and Rodnianski
2010]). For nonlinear wave equations satisfying the null condition, it is known [Alinhac 2009; Yang 2015]
that large solutions decaying sufficiently fast are globally stable against small perturbations. On the other
hand, our main theorem shows a quantitative decay rate for spherically symmetric, locally BV scattering
dispersive spacetimes. Conjecture 2 can therefore be viewed as an attempt to generalize the results in
[Alinhac 2009; Yang 2015] to the Einstein-scalar field system. We will address both Conjectures 1 and 2
in future works.

1A. Outline of the paper. In Section 2, we discuss the set-up of the problem and in particular define the
class of solutions considered in the main theorem, i.e., the locally BV scattering solutions. In Section 3,
we state the main theorems in the paper (Theorems 3.1 and 3.2), their consequences and additional
theorems on the optimality of the decay rates. In the same section, we outline the main ideas of the proof.
In Sections 4 and 5, we explain the main analytic features of the equations and the geometry of the class
of spacetimes that we consider.

Sections 6 and 7 consist of the main content of this paper. In Section 6, we prove the decay estimates
for φ, ∂v(rφ) and ∂u(rφ), that is, the first main theorem (Theorem 3.1). In Section 7, using in particular
the results in Section 6, we derive the decay bounds for the second derivatives for rφ and the metric
components, that is, the second main theorem (Theorem 3.2).

In the remaining sections of the paper, we turn to other theorems stated in Section 3. In Section 8, we
give a proof of the dichotomy alluded to above, that either the quantitative decay holds or the spacetime
blows up at infinity. In Section 9, we sketch a proof of a refinement of the conclusions of the main
theorems in the small data case. Finally, in Section 10, we prove optimality of the decay rates asserted by
the main theorems.

2. Set-up

In this section, we define the set-up, formulate the equations in a double null coordinate system and explain
the characteristic initial value problem. This will allow us to state the main theorem in the next section.

2A. Spherically symmetric Einstein-scalar-field system (SSESF). We begin with a brief discussion on
the derivation of the spherically symmetric Einstein-scalar-field system (SSESF) from the 3+1-dimensional
Einstein-scalar-field system.
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Solutions to the Einstein-scalar field equations can be represented by a triplet (M, gµν, φ), where
(M, gµν) is a 3+1-dimensional Lorentzian manifold and φ a real-valued function on M. The spacetime
metric gµν and the scalar field φ satisfy the Einstein-scalar-field system{

Rµν − 1
2 gµνR = 2Tµν,

∇
µ∂µφ = 0,

(2-1)

where Rµν is the Ricci curvature of gµν , R is the scalar curvature and ∇µ is the covariant derivative
given by the Levi-Civita connection on (M, g). The energy–momentum tensor Tµν is given by the scalar
field φ:

Tµν = ∂µφ ∂νφ− 1
2 gµν ∂λφ ∂λφ. (2-2)

Assume that the solution (M, gµν, φ) is spherically symmetric, that is, the group SO(3) of three-
dimensional rotations acts smoothly and isometrically on (M, g), where each orbit is either a point or is
isometric to S2 with a round metric. The scalar field φ is required to be constant on each of the orbits.
These assumptions are propagated by (2-1); hence, if (M, gµν, φ) is a Cauchy development, then it
suffices to assume spherical symmetry only on the initial data.

The quotient M/SO(3) gives rise to a 1+1-dimensional Lorentzian manifold with boundary, which
we denote by (Q, gab). The boundary 0 consists of fixed points of the group action. We define the area
radius function r on Q to be

r :=

√
Area of symmetry sphere

4π

and r = 0 at 0. Note that each component of 0 is a timelike geodesic.
We assume that 0 is nonempty and connected, and moreover that there exist global double null

coordinates (u, v), i.e., a coordinate system (u, v) covering Q in which the metric takes the form

gab dxa
· dxb
=−�2 du · dv (2-3)

for some �> 0. We remark that both assumptions are easily justified if (M, g) is a Cauchy development
of a spacelike hypersurface homeomorphic to R3.

The metric gµν of M is characterized by � and r and takes the form

gµν dxµ · dxν =−�2 du · dv+ r2 ds2
S2, (2-4)

where ds2
S2 is the standard line element on the unit sphere S2. Therefore, we may reformulate the

spherically symmetric Einstein-scalar field system (SSESF) in terms of the triplet (φ, r, �) as

r ∂u∂vr =−∂ur ∂vr − 1
4�

2,

r2 ∂u∂v log�= ∂ur ∂vr + 1
4�

2
− r2 ∂uφ ∂vφ,

r ∂u∂vφ =−∂ur ∂vφ− ∂vr ∂uφ,

2�−1 ∂ur ∂u�= ∂
2
ur + r(∂uφ)

2,

2�−1 ∂vr ∂v�= ∂2
vr + r(∂vφ)2,

(SSESF)

with the boundary condition r = 0 along 0.
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2B. Basic assumptions, notations and conventions. In this subsection, we introduce the basic assump-
tions on the base manifold Q, as well as some notations and conventions that will be used in the rest of
the paper.

Definition of Q and M. Denote by R1+1 the 1+1-dimensional Minkowski space, with the standard
double null coordinates (u, v). Let Q be a 1+1-dimensional Lorentzian manifold which is conformally
embedded into R1+1 with ds2

Q = −�
2 du · dv. Given a nonnegative function r on Q, we define the

set 0 := {(u, v) ∈ Q : r(u, v) = 0}, called the axis of symmetry. We also define (M, gµν) to be the
1+3-dimensional Lorentzian manifold with M=Q×S2 and gµν given by (2-3); this is to be thought of
as the full spacetime before the symmetry reduction. (We refer to Section 2A for the full interpretation.)

Assumptions on the conformal geometry of Q. We assume that 0 ⊂ Q is a connected set which is the
image of a future-directed timelike curve emanating from the point (1, 1). We also assume that C1 ⊂Q,
where

C1 = {(u, v) ∈ R1+1
: u = 1, 1≤ v <∞}.

Furthermore, Q is assumed to be the domain of dependence of 0 and C1 to the future, in the sense that
every causal curve in Q has its past endpoint on either 0 or C1.

Notations for the conformal geometry of Q. Denote by Cu (resp. Cv) the constant-u (resp. constant-v)
curve in Q. Note that these are null curves in Q.

Given (u0, v0) ∈Q, we define the domain of dependence of the line segment Cu0 ∩ {v ≤ v0}, denoted
by D(u0, v0), to be the set of all points p ∈Q such that all past-directed causal curves passing p intersect
0 ∪ (Cu0 ∩ {v ≤ v0}) plus the line segment (Cu0 ∩ {v ≤ v0}) itself.

Also, we define the future null infinity I+ to be the set of ideal points (u,+∞) such that supCu
r =∞.

Integration over null curves. Whenever we integrate over a subset of Cu or Cv , we will use the standard
line element dv or du for the integrals, i.e.,∫

Cv∩{u1≤u≤u2}

f =
∫ u2

u1

f (u′, v) du′,∫
Cu∩{v1≤v≤v2}

f =
∫ v2

v1

f (u, v′) dv′.

Functions of bounded variation. Unless otherwise specified, functions of bounded variation (BV) consid-
ered in this paper will be assumed to be right-continuous. By convention,

∂v f dv or ∂v f

will refer to the distributional derivative of f , which is a finite signed measure, and

|∂v f | dv or |∂v f |
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will denote the total variation measure. Unless otherwise specified, these measures will be evaluated on
intervals of the form (v1, v2]. Thus, according to our conventions,∫ v2

v1

∂v f (v) dv = f (v2)− f (v1),∫ v2

v1

|∂v f (v)| dv = TV(v1,v2][ f ].

New variables. We introduce the following notation for the directional derivatives of r :

λ :=
∂r
∂v
, ν :=

∂r
∂u
,

The Hawking mass m(u, v) is defined by the relation

1− 2m
r
= ∂ar∂ar =−4�−2∂ur ∂vr. (2-5)

For a solution to (SSESF), the quantity m possesses useful monotonicity properties (see Lemma 4.3),
which will be one of the key ingredients of our analysis. We define the mass ratio to be

µ :=
2m
r
.

We also define the Bondi mass on Cu by M(u) := limv→∞m(u, v), provided the limit exists. The
Bondi mass Mi := M(1)= limv→∞m(1, v) on the initial curve C1 is called the initial Bondi mass.

2C. Reformulation in terms of the Hawking mass. The Hawking mass as defined in (2-5) turns out to
obey useful monotonicity (see Section 4B). We therefore reformulate (SSESF) in terms of m and eliminate
�. Notice that, by (2-4) and (2-5), the metric is determined by r and m.

We say that (φ, r,m) on Q is a solution to (SSESF) if the following equations hold:

∂uλ=
µ

(1−µ)r
λν, and ∂vν =

µ

(1−µ)r
λν, (2-6)

2ν ∂um = (1−µ)r2(∂uφ)
2 and 2λ ∂vm = (1−µ)r2(∂vφ)

2, (2-7)

∂u∂v(rφ)=
µλν

(1−µ)r
φ, (2-8)

and, moreover, the following boundary conditions hold:

r = 0 and m = 0 along 0.

We remark that, using (2-6), the wave equation (2-8) for φ may be rewritten in either of the following
two equivalent forms:

∂u(∂v(rφ))= (∂uλ)φ, (2-8′)

∂v(∂u(rφ))= (∂vν)φ. (2-8′′)
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2D. Choice of coordinates. Note that Q is ruled by the family of null curves Cu . Since a null curve Cu

with u 6= 1 cannot intersect C1, its past endpoint must be on 0. Therefore, our assumptions so far impose
the following conditions on the double null coordinates (u, v) on Q: u is constant on each future-directed
null curve emanating from 0 and v is constant on each conjugate null curve. However, these conditions
are insufficient to give a unique choice of a coordinate system, as the system (SSESF) and assumptions
so far are invariant under the change of coordinates

u 7→U (u), v 7→ V (v), U (1)= V (1)= 1

for any strictly increasing functions U and V . To remove this ambiguity, we fix the choice of the coordinate
system, once and for all, as follows.

We first fix v on C1, relating it to the function r . Specifically, we will require that v = 2r + 1 on C1,
which in particular implies that

λ(1, v)= 1
2 . (2-9)

Next, in order to fix u, we prescribe u such that 0 = {(u, v) : u = v}. To do so, for every outgoing null
curve C in Q, follow the incoming null curve to the past starting from C ∩0 until the point p∗ where it
intersects the initial curve C1. We then define the u-coordinate value for C to be the v-coordinate value
for p∗.

Under this coordinate choice, D(u0, v0) may be expressed as

D(u0, v0)= {(u, v) ∈Q : u ∈ [u0, v0], v ∈ [u, v0]}.

Moreover, if r and φ are sufficiently regular functions on Q, then our coordinate choice leads to

lim
v→u+

(λ+ ν)(u, v)= lim
u→v−

(λ+ ν)(u, v)= 0,

lim
v→u+

(∂v + ∂u)(rφ)(u, v)= lim
u→v−

(∂v + ∂u)(rφ)(u, v)= 0.

These conditions will be incorporated into precise formulations of solutions to (SSESF) with limited
regularity in the following subsection.

2E. Characteristic initial value problem. We will study the characteristic initial value problem for
(SSESF) with data prescribed on C1 under quite general assumptions on the regularity. In this subsection,
we give precise formulations of initial data and solutions to (SSESF) to be considered.

We begin with a discussion on the constraint imposed by (SSESF) (more precisely, (2-6)–(2-8)) on
initial data for (φ, r,m). In fact, the constraint is very simple, thanks to the fact that they are prescribed on
a characteristic (i.e., null) curve C1. Once we prescribe φ on C1, the coordinate condition (2-9) dictates
the initial values of r , and the initial values of m are then determined by the constraint (2-7) along the
v-direction as well as the boundary condition m(1, 1) = 0. In other words, initial data for (φ, r,m)
possess only one degree of freedom, namely the prescription of a single real-valued function φ(1, v) or,
equivalently, ∂v(rφ)(1, v).
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Following [Christodoulou 1993], we say that an initial data set for (φ, r,m) is of bounded variation
(BV) if ∂v(rφ)(1, · ) is a (right-continuous) BV function on [1,∞) with finite total variation on (1,∞).
We also define the notion of solution of bounded variation to (SSESF) as follows:

Definition 2.1. A solution (φ, r,m) to (SSESF) is called a solution of bounded variation on Q if, on
every compact domain of dependence D(u0, v0), the following conditions hold:

(1) supD(u0,v0)
(−ν) <∞ and supD(u0,v0)

λ−1 <∞.

(2) λ is BV on each Cu ∩D(u0, v0) uniformly in u, and ν is BV on each Cv ∩D(u0, v0) uniformly in v.

(3) For each a with (a, a) ∈ 0,

lim
ε→0+

(ν+ λ)(a, a+ ε)= 0.

(4) φ is an absolutely continuous function on each Cu∩D(u0, v0) with total variation bounded uniformly
in u, and also an absolutely continuous function on each Cv ∩D(u0, v0) with total variation bounded
uniformly in v.

(5) For each a with (a, a) ∈ 0,

lim
ε→0

sup
0<δ≤ε

TV{a−δ}×(a−δ,a)[φ] = 0, lim
ε→0

sup
0<δ≤ε

TV(a−ε,a−δ)×{a−δ}[φ] = 0,

lim
ε→0

sup
0<δ≤ε

TV(a,a+δ)×{a+δ}[φ] = 0, lim
ε→0

sup
0<δ≤ε

TV{a+δ}×(a+δ,a+ε)[φ] = 0.

(6) ∂v(rφ) is BV on each Cu ∩D(u0, v0) uniformly in u, and ∂u(rφ) is BV on each Cv ∩D(u0, v0)

uniformly in v.

(7) For each a with (a, a) ∈ 0,

lim
ε→0+

(∂v(rφ)+ ∂u(rφ))(a, a+ ε)= 0.

We also consider more regular data and solutions, as follows. We say that an initial data set for (φ, r,m)
is C1 if ∂v(rφ)(1, · ) is C1 on [1,∞) with supC1

|∂2
v (rφ)|<∞. In the following definition, we define the

corresponding notion of a C1 solution to (SSESF).

Definition 2.2. A solution (φ, r,m) to (SSESF) is called a C1 solution on Q if the following conditions
hold on every compact domain of dependence D(u0, v0):

(1) supD(u0,v0)
(−ν) <∞ and supD(u0,v0)

λ−1 <∞.

(2) λ and ν are C1 on D(u0, v0).

(3) For each a with (a, a) ∈ 0,

lim
ε→0+

(ν+ λ)(a, a+ ε)= lim
ε→0+

(ν+ λ)(a− ε, a)= 0.

(4) ∂v(rφ) and ∂u(rφ) are C1 on D(u0, v0).
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(5) For each a with (a, a) ∈ 0,

lim
ε→0+

(∂v(rφ)+ ∂u(rφ))(a, a+ ε)= lim
ε→0+

(∂v(rφ)+ ∂v(rφ))(a− ε, a)= 0.

Remark 2.3. By [Christodoulou 1993, Theorem 6.3], a BV initial data set leads to a unique BV solution
to (SSESF) on {(u, v) : 1 ≤ u ≤ 1+ δ, v ≥ u} for some δ > 0. If the initial data set is furthermore C1,
then it is not difficult to see that the corresponding solution is also C1 (persistence of regularity). In fact,
this statement follows from the arguments in Section 7; see, in particular, the proof of Lemma 7.7.

2F. Local scattering in BV and asymptotic flatness. We are now ready to formulate the precise notion of
locally BV scattering solutions to (SSESF), which is the class of solutions that we consider. In particular,
for this class of solutions, we make a priori assumptions on its global geometry.

Definition 2.4. We say that a BV solution (φ, r,m) to (SSESF) is locally scattering in the bounded
variation norm (BV), or a locally BV scattering solution, if the following conditions hold:

(1) Future completeness of radial null geodesics: Every incoming null geodesic in Q has its future
endpoint on 0, and every outgoing null geodesic in Q is infinite towards the future in the affine
parameter. Moreover, there exists a global system of null coordinates (u, v) and Q is given by

Q= {(u, v) : u ∈ [1,∞), v ∈ [u,∞)}. (2-10)

(2) Vanishing final Bondi mass:

M f := lim
u→∞

M(u)= 0. (2-11)

(3) Scattering in BV in a compact r-region: There exists R > 0 such that, for the region Qcpt :=

{(u, v) ∈Q : r(u, v)≤ R}, we have∫
Cu∩Qcpt

|∂2
v (rφ)| → 0 and

∫
Cu∩Qcpt

|∂v log λ| → 0 (2-12)

as u→∞.

Several remarks concerning Definition 2.4 are in order.

Remark 2.5. In fact, the condition (2-10) is a consequence of future completeness of radial null geodesics
and the preceding assumptions. To see this, first recall our assumption that C1={(u, v) :u=1, v∈[1,∞)}.
Hence from our choice of the coordinate u and future completeness of incoming radial null geodesics, it
follows that the range of u must be [1,∞). Furthermore, for each u ∈ [1,∞), the range of v on Cu is
[u,∞) by the future completeness of outgoing radial null geodesics and Definition 2.1. More precisely,
future completeness of Cu implies that it can be continued past {u}× [u, v0] as long as

∫ v0
u �2 dv <∞,

and Definition 2.1 implies5 that �2
=−4λν/(1−µ) indeed remains bounded on {u}× [u, v0] for every

finite v0.

5We refer to the proof of Proposition 5.3 below for details of estimating −ν/(1−µ) in terms of assumptions on φ, ∂v(rφ)
and λ.
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Remark 2.6. For more regular (e.g., C1) asymptotically flat solutions, (1) and (2) in Definition 2.4 may
be replaced by a single equivalent condition, namely requiring the full spacetime (M, g) to be future
casually geodesically complete as a 1+3-dimensional Lorentzian manifold. In particular, (2) follows
from the deep work [Christodoulou 1987], in which it was proved that if M f > 0 then the space-time
necessarily contains a black hole and thus is not future causally geodesically complete.

Remark 2.7. As we will see in the proof, there exists a universal ε̃0 such that (3) in Definition 2.4 can be
replaced by the weaker requirement that there exists R > 0 and U > 0 such that∫

Cu∩Qcpt

|∂2
v (rφ)| ≤ ε̃0 and

∫
Cu∩Qcpt

|∂v log λ| ≤ ε̃0

for u ≥U . To simplify the exposition, we will omit the proof of this improvement.

Remark 2.8. For a sufficiently regular, asymptotically flat solution to (SSESF), Definition 2.4(1) is
equivalent to requiring that the conformal compactification of Q is depicted by a Penrose diagram as in
Figure 1 (in the introduction). For more discussion on Penrose diagrams, we refer the reader to [Dafermos
and Rodnianski 2005, Appendix C; Kommemi 2013]. In fact, this equivalence follows easily from the
classification of all possible Penrose diagrams for the system (SSESF) given in the latter reference.

We also define the precise notion of asymptotic flatness for initial data with BV or C1 regularity. As
we shall see soon, in the main theorems, the rate of decay for the initial data, measured in r , is directly
related to the rate of decay of the corresponding solution in both u and r .

Definition 2.9 (asymptotic flatness of order ω′ in BV or C1). For ω′> 1, we make the following definition:

(1) We say that an initial data set is asymptotically flat of order ω′ in BV if ∂v(rφ)(1, · ) ∈ BV[1,∞)
and there exists I1 > 0 such that

sup
C1

(1+ r)ω
′

|∂v(rφ)| ≤ I1 <∞. (2-13)

(2) We say that an initial data set is asymptotically flat of order ω′ in C1 if ∂v(rφ)(1, · ) ∈ C1
[1,∞) and

there exists I2 > 0 such that

sup
C1

(1+ r)ω
′

|∂v(rφ)| + sup
C1

(1+ r)ω
′
+1
|∂2
v (rφ)| ≤ I2 <∞. (2-14)

Remark 2.10. The initial Bondi mass Mi := limv→∞m(1, v) can be easily bounded by CI2
1 ; see

Lemma 4.5.

Remark 2.11. Observe that both conditions imply that (rφ)(1, v) tends to a finite limit as v →∞;
in particular, limv→∞ φ(1, v) = 0. This serves to fix the gauge freedom (φ, r,m) 7→ (φ + c, r,m) for
solutions to (SSESF).
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3. Main results

3A. Main theorems. With the definitions of locally BV scattering solutions and asymptotically flat initial
data, we now have the necessary means to state the main theorems of this paper. Roughly speaking, these
theorems say that locally BV scattering solutions with asymptotically flat initial data exhibit quantitative
decay rates, which can be read off from the rate ω′ in Definition 2.9. The first theorem is for initial data
and solutions in BV.

Theorem 3.1 (main theorem in BV). Let (φ, r,m) be a locally BV scattering solution to (SSESF) with
asymptotically flat initial data of order ω′ in BV. Then, for ω :=min{ω′, 3}, there exists a constant A1 > 0
such that

|φ| ≤ A1 min{u−ω, r−1u−(ω−1)
}, (3-1)

|∂v(rφ)| ≤ A1 min{u−ω, r−ω}, (3-2)

|∂u(rφ)| ≤ A1u−ω. (3-3)

The second theorem is for initial data and solutions in C1.

Theorem 3.2 (main theorem in C1). Let (φ, r,m) be a locally BV scattering solution to (SSESF) with
asymptotically flat initial data of order ω′ in C1. Then, in addition to the bounds (3-1)–(3-3), there exists
a constant A2 > 0 such that, for ω :=min{ω′, 3},

|∂2
v (rφ)| ≤ A2 min{u−(ω+1), r−(ω+1)

}, (3-4)

|∂2
u (rφ)| ≤ A2u−(ω+1), (3-5)

|∂vλ| ≤ A2 min{u−3, r−3
}, (3-6)

|∂uν| ≤ A2u−3. (3-7)

Some remarks regarding the main theorems are in order.

Remark 3.3. Notice that in Theorem 3.2 the decay rates for ∂vλ and ∂uν are independent of the order ω′

of asymptotic flatness of the initial data. This is because the scalar field terms enter the equations for
∂u∂v log λ and ∂v∂u log ν quadratically (see equations (4-6) and (4-7)) and thus, as long as ω′ > 1, their
contributions to the decay rates of ∂vλ and ∂uν are of lower order than the term involving the Hawking
mass.

Remark 3.4. By Remark 2.3, a C1 initial data set gives rise to a C1 solution. Hence Remark 2.6 applies,
and conditions (1)–(2) of Definition 2.4 may be replaced by a single equivalent condition of future causal
geodesic completeness of (M, g) in the case of Theorem 3.2.

Remark 3.5. In general, the constants A1 and A2 depend not only on the size of the initial data (e.g., I1

and I2), but rather on the full profile of the solution. Nevertheless, for the special case of small initial
total variation of ∂v(rφ), A1 and A2 do depend only on the size of the initial data; see Section 3C.

Remark 3.6. If the initial data also verify higher-derivative estimates, then the techniques in proving
Theorems 3.1 and 3.2 also allow us to derive decay bounds for higher-order derivatives. The proof of the
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higher-derivative decay estimates is in fact easier than the proofs of the first- and second-derivative decay
bounds, since we have already obtained sufficiently strong control of the scalar field and the geometry of
the spacetime. We will omit the details.

Remark 3.7. The decay rates that we obtain in these variables imply, as immediate corollaries, decay
rates for ∂vφ, ∂uφ, etc. See Corollaries 6.9 and 7.13.

Remark 3.8. The decay rates in the main theorems are measured with respect to the double null coordi-
nates (u, v) normalized at the initial curve and the axis 0 as in Section 2D. To measure the decay rate
along null infinity, one can alternatively normalize the u-coordinate6 by requiring ∂ur =−1

2 at future null
infinity. As we will show in Section 5C, for the class of spacetimes considered in this paper, the decay
rates with respect to this new system of null coordinates are the same up to a constant multiplicative
factor.

Remark 3.9. In view of Remark 2.7, the assumption of local BV scattering can be replaced by the
boundedness of the subcritical quantities:∫

Cu∩Qcpt

|∂2
v (rφ)|

p
≤ C and

∫
Cu∩Qcpt

|∂v log λ|p ≤ C for p > 1.

This is because, for fixed ε̃0, one can choose R to be sufficiently small (depending on C) and apply
Hölder’s inequality to ensure that∫

Cu∩Qcpt

|∂2
v (rφ)| ≤ ε̃0 and

∫
Cu∩Qcpt

|∂v log λ| ≤ ε̃0.

Remark 3.10. We also notice that the proof of our main theorem can be carried out in an identical manner
for locally BV scattering solutions arising from asymptotically flat Cauchy data. More precisely, we can
consider initial data given on a Cauchy hypersurface,

v = f (u) with C−1
≤− f ′(u)≤ C,

and satisfying the constraint equation together with the following bounds on the initial data:

(1+ r)|φ| + (1+ r)ω
′(
|∂v(rφ)| + |∂u(rφ)| +

∣∣λ− 1
2

∣∣+ ∣∣ν+ 1
2

∣∣)≤ Ĩ1

and
(1+ r)ω

′
+1(|∂2

v (rφ)| + |∂
2
u (rφ)| + |∂v log λ| + |∂u log ν|)≤ Ĩ2.

Then, if we assume in addition that the spacetime is locally BV scattering to the future, the conclusions
of Theorems 3.1 and 3.2 hold.

Remark 3.11. Our main theorems can also be viewed as results on upgrading qualitative decay to
quantitative decay estimates. Such problems have been widely studied in the linear setting (without the
assumption on spherical symmetry) on nontrapping asymptotically flat Lorentzian manifolds [Dafermos
and Rodnianski 2010; Tataru 2013; Metcalfe et al. 2012], as well as for the obstacle problem on Minkowski

6In particular, this normalization is used in [Dafermos and Rodnianski 2005] for the black hole case. By changing the null
coordinates, we can thus more easily compare the decay rates in our setting with those in [Dafermos and Rodnianski 2005].
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space [Morawetz 1975; Strauss 1975]. In the nonlinear setting, we mention the work of Christodoulou
and Tahvildar-Zadeh [1993], who studied the energy critical, 2-dimensional, spherically symmetric wave
map system and proved asymptotic decay for the solution and its derivatives.

3B. BV scattering and the blow-up at infinity scenario. The condition of local BV scattering in the
main theorems follows if one rules out, a priori, a blow-up at infinity scenario. More precisely, we say
that a solution blows up at infinity if some scale-invariant spacetime norms are infinite, as follows:

Definition 3.12. Let (φ, r,m) be a BV solution to (SSESF) such that condition (1) of Definition 2.4
holds. We say that the solution blows up at infinity if at least one of the following holds:

(1) sup λ−1
0 =∞, where λ0(u) := limv→u+ λ(u, v).

(2)
∫
∞

1

∫
∞

u |∂vλ ∂uφ− ∂uλ ∂vφ| dv du =∞.

(3)
∫
∞

1

∫
∞

u |∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))| dv du =∞.

Remark 3.13. We do not prove in the paper the existence or nonexistence of solutions that blow up at
infinity. This is analogous to the blow-up at infinity scenarios which have recently been constructed in
some simpler semilinear, critical wave equations [Donninger and Krieger 2013].

It follows from our main theorem that, if a solution does not blow up at infinity, it obeys quantitative
decay estimates. More precisely, we have:

Theorem 3.14 (dichotomy between blow-up at infinity and BV scattering). Let (φ, r,m) be a BV solution
to (SSESF) such that condition (1) of Definition 2.4 holds. Assume furthermore that the initial data for
(φ, r,m) obey the condition7 limv→∞ φ(1, v)= 0 and∫

C1

|∂2
v (rφ)| dv+ sup

C1

|∂v(rφ)|<∞. (3-8)

Then, either:

(1) the solution blows up at infinity; or

(2) the solution is globally BV scattering, in the sense that conditions (2) and (3) of Definition 2.4 hold
with R =∞.

This theorem is established in Section 8. It then follows from our main theorems (Theorems 3.1
and 3.2) that, if a BV solution does not blow up at infinity and possesses asymptotically flat initial data,
then it obeys quantitative decay estimates.

3C. Refinement in the small data in BV case. By a theorem of Christodoulou [1993], the maximal
development of data with small BV norms does not blow up at infinity. The previous theorem applies,
and thus the corresponding solution is globally BV scattering, in the sense described in Theorem 3.14.
Moreover, a closer inspection of the proof of the main theorems reveals that the following stronger
conclusion holds in this case:

7By Remark 2.11, this is the only condition on limv→∞ φ(1, v) which is consistent with asymptotic flatness.
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Theorem 3.15 (sharp decay for data with small BV norm). There exists a universal ε0 > 0 such that, for
0< ε ≤ ε0, the following statements hold:

(1) If the initial data set is asymptotically flat of order ω′ in BV and∫
C1

|∂2
v (rφ)|< ε,

then the maximal development (φ, r,m) is globally BV scattering, in the sense that Definition 2.4
holds with arbitrarily large R > 0. Moreover, it satisfies estimates (3-1)–(3-3) with A1 ≤CI1(I1+ε).

Here (and similarly in (2)), we use the convention that CI1 depends on I1 in a nondecreasing
fashion.8

(2) If , in addition, the initial data set is asymptotically flat of order ω′ in C1, then the maximal develop-
ment also satisfies (3-4)–(3-7) with A2 ≤ CI2(I2+ ε).

The point of this theorem is that we only need the initial total variation to be small in order to conclude
pointwise decay rates; in particular, I1 and I2 can be arbitrarily large. In this sense, Theorem 3.15
generalizes both the small BV global well-posedness theorem [Christodoulou 1993, Theorem 6.2] and
the earlier small data scattering theorem [Christodoulou 1986] for data that are small in a weighted C1

norm. A proof of this theorem will be sketched in Section 9.

3D. Optimality of the decay rates. Our main theorems show upper bounds for the decay rates of the
scalar field φ and its derivatives both towards null infinity (i.e., in r) and along null infinity (in u).
For ω′ = ω < 3, if the decay rate of the initial data towards null infinity also satisfies a lower bound, then
we can show that both the r and u decay rates in Theorem 3.1 are saturated. More precisely:

Theorem 3.16 (sharpness of t−ω tail for 1 < ω < 3). Let 1 < ω < 3. Suppose, in addition to the
assumptions of Theorem 3.1, that there exists V ≥ 1 such that the initial data set satisfies the lower bound

rω ∂v(rφ)(1, v)≥ L > 0

for v ≥ V . Then there exists a constant Lω > 0 such that

∂v(rφ)(u, v)≥ Lω min{r−ω, u−ω},

−∂u(rφ)(u, v)≥ Lωu−ω,
for u sufficiently large.

Remark 3.17. One can also infer the sharpness of the decay of φ from that of its derivatives. We will
omit the details.

This theorem will be proved in Section 10A. In fact, the proof of this theorem is similar to the proof
of the upper bounds in the first main theorem (Theorem 3.1). We will show that after restricting to
u sufficiently large, the initial lower bound propagates and the nonlinear terms only give lower-order
contributions. Notice also that the analogous statement is false for ω′ ≥ 3, since the nonlinear terms may
dominate the contribution of the initial data.

8In particular, for I1 sufficiently small, we have the estimate A1 ≤ C(I1+ ε) for some absolute constant C .
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For ω′ ≥ 3, we can show that the decay rates in Theorem 3.1 are sharp, in the following sense:

Theorem 3.18 (sharpness of t−3 tail). For arbitrarily small ε > 0, there exists a locally BV scattering
solution (φ, r,m) to (SSESF) which satisfies the following properties:

(1) ∂v(rφ)(1, v) is smooth, compactly supported in the v-variable and has total variation less than ε:∫
C1

|∂2
v (rφ)|< ε.

(2) There exists a constant L3 > 0 such that

∂v(rφ)(u, v)≥ L3 min{r−3, u−3
},

−∂u(rφ)(u, v)≥ L3u−3,

for u sufficiently large.

To prove Theorem 3.18, we will first establish a sufficient condition for the desired lower bounds
in terms of (nonvanishing of) a single real number L, which is computed from information at the null
infinity. This result (Lemma 10.1) is proved using the decay rates proved in the main theorems, and we
believe it might be of independent interest. In Section 10C, we will complete the proof of Theorem 3.18,
by constructing an initial data set for which L can be bounded away from zero. This can be achieved by
showing that the solution is close to that of a corresponding linear problem, controlling the error terms
after taking ε > 0 to be sufficiently small and using Theorem 3.15.

3E. Strategy of the proof of the main theorems. Roughly speaking, the proof of decay of φ and its
derivatives can be split into three steps. In the first two steps, we control the incoming part9 of the
derivatives of the scalar field and metric components, that is, ∂v(rφ), ∂2

v (rφ) and ∂vλ. To this end,
we split the spacetime into the exterior region Qext := {(u, v) ∈ Q : v ≥ 3u} and the interior region
Qint := {(u, v) ∈Q : v ≤ 3u}. In the first step, we control the incoming part of the solution in the exterior
region. In this region, we have r & v, u, thus the negative r-weights in the equations give the required
decay of φ and its derivatives. We then prove bounds in the interior region in the second step. Here,
we exploit certain (nonquantitative) smallness in the spacetimes quantities as u →∞, given by the
assumption of local BV scattering, to propagate the decay estimates from the exterior region to the interior
region all the way up to the axis. Finally, in the third step, we control the outgoing part of the solution,
that is, ∂u(rφ), ∂2

u (rφ) and ∂uν, by showing that the decay bounds that we have proved along the axis
can be propagated in the outgoing direction.

We remind the readers that the above sketch is only a heuristic argument and is not true if taken
literally. In particular, in order to carry out this procedure we need to first show that the local BV
scattering assumption provides some control over the spacetime geometry. As we will show below,
the estimates are derived in slightly different fashions for the first and second derivatives of rφ. We
note in particular that carrying out this general scheme relies heavily on the analytic structure of the
Einstein-scalar field equations, including the monotonicity properties as well as the null structure of the
(renormalized) equations.

9We call these variables “incoming” because they obey a transport equation in the ∂u -direction.
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3E1. Estimates for first derivatives of rφ. To obtain decay bounds for the first derivatives of rφ, we will
rely on the wave equation

∂u∂v(rφ)=
2mλν

(1−µ)r2φ.

Notice that, when we solve for the incoming radiation ∂v(rφ) using this as a transport equation in u, the
right-hand side does not depend explicitly on the outgoing radiation ∂u(rφ). Instead, the right-hand side
consists of terms that are either lower order (in terms of derivatives) or satisfy a certain monotonicity
property.

In particular, this equation shows that, as long as φ can be controlled, we can estimate ∂v(rφ) by
integrating along the incoming u direction. On the other hand, we can also control φ once a bound on
∂v(rφ) is known, by integrating along the outgoing v-direction.

To achieve the desired decay rates for φ, ∂v(rφ) and ∂u(rφ), we follow the three steps outlined above:

(1) Bounds10 for ∂v(rφ) and φ in v≥ 3u: In the exterior region, we have r & u, v; it is therefore sufficient
to prove the decay in r . First, we prove that supCu

(1+ r)φ is bounded. This is achieved in a compact
region by continuity of the solution11 and in the region of large r by integrating ∂v(rφ) in the outgoing
direction from the compact region. Since ∂v(rφ) can in turn be controlled by φ, we get the desired bound.
To improve over this bound we define

B1(U ) := sup
u∈[1,U ]

sup
Cu

(uω|φ| + ruω−1
|φ|)

and show via the wave equation that

rω|∂v(rφ)| ≤ C(u1)+ ε(u1)B1(U ),

where ε→ 0 as u1→∞. This gives the optimal decay rate for ∂v(rφ) in the exterior region, up to an
arbitrarily small loss, which can be estimated once B1(U ) can be controlled.

(2) Bounds for ∂v(rφ) and φ in v ≤ 3u: For the decay of the first derivatives, the interior region {v ≤ 3u}
is further divided into the intermediate region {r ≥ R} and the compact region {r ≤ R}. In these two
regions, the r -weight in the equation is not sufficient to give the sharp decay rate. Instead, we start from
the decay rate ∂v(rφ) obtained in the first step in the exterior region and propagate this decay estimate
inwards. To achieve this, we need to show that

∫
2mλν/((1−µ)r2) is small when u is sufficiently large.

(2a) r ≥ R and v ≤ 3u: In the intermediate region, where we still have a lower bound on r , the required
smallness is given by the qualitative information that the Hawking mass approaches 0. Thus, from
some large time onwards,

∫
2mλν/((1−µ)r2) becomes sufficiently small and we can integrate the wave

equation directly to obtain the desired decay bounds.

10The estimates in this region are similar to the corresponding bounds for the black hole case in [Dafermos and Rodnianski
2005]. There, it was observed that the quantity ∂v(rφ), which Dafermos and Rodnianski called an almost Riemann invariant,
verifies an equation such that the right-hand side has useful weights in r and give the desired decay rates.

11In particular, since we are simply using compactness, the constants in Theorem 3.1 depend not only on the size of the initial
data.
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(2b) r ≤ R and v ≤ 3u: In this region, we use the local BV scattering assumption to show that∫
{r≤R} 2mλν/((1−µ)r2)→ 0 as u→∞. This smallness allows us to propagate the decay estimates

from the curve r = R to the region r < R. At this point, we can also recover the control for B1(U ) and
close the estimates in step (1). This allows us to derive all the optimal decay rates for φ and ∂v(rφ).

(3) Bounds for ∂u(rφ): To achieve the bounds for ∂u(rφ), first note that along the axis we have
∂u(rφ)=−∂v(rφ). Thus, by the previous derived control for ∂v(rφ), we also have the decay of ∂u(rφ)
along the axis. We then consider the wave equation as a transport equation in the outgoing direction for
∂u(rφ) to obtain the sharp decay for ∂u(rφ) in the whole spacetime.

3E2. Estimates for the second derivatives of rφ. As for the first derivatives, we control the second
derivatives by first integrating the equation in the exterior region up to a curve v = 3u. We then propagate
the decay bounds from the exterior region to the interior region using the estimates already derived for the
first derivative of φ, as well as the local BV scattering assumption. However, at this level of derivatives,
some new difficulties arise, as we now describe.

Renormalization and the null structure. The assumption of local BV scattering implies that∫
Cu∩{r≤R}

(|∂vφ| + |∂
2
v (rφ)|)→ 0 (3-9)

as u→∞. When combined with Christodoulou’s BV theory, this also implies that, as v→∞, we have∫
Cv∩{r≤R}

(|∂uφ| + |∂
2
u (rφ)|)→ 0. (3-10)

Notice that on Cu (resp. Cv), we only control the integral of ∂2
v (rφ) and ∂vφ (resp. ∂2

u (rφ) and ∂uφ).
Suppose, when integrating along the incoming direction to control ∂2

v (rφ) and ∂vλ, we need to estimate
terms of the form ∫

Cv∩{r≤R}
|∂uφ ∂vφ|.

We can apply the BV theory to show that, for v sufficiently large,∫
Cv∩{r≤R}

|∂uφ| ≤ ε.

On the other hand, one can show that

sup
Cv∩{r≤R}

|∂vφ| ≤ C sup
J−(Cv∩Qcpt)

|∂2
v (rφ)|,

which can be controlled by the quantity that we are estimating.
However, in (4-2) for ∂2

v (rφ), derived by differentiating (2-8), there are terms of the form

∂vφ ∂vφ

such that neither of the factors can be controlled a priori in L1 by the local BV scattering assumption. In
other words, the equation does not obey any null condition.



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1621

To deal with this problem, we follow [Christodoulou 1993] and introduce the renormalized variables

∂2
v (rφ)− (∂vλ)φ, ∂v log λ−

λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

∂2
u (rφ)− (∂uν)φ, ∂u log(−ν)−

ν

1−µ
µ

r
+ ∂uφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

which have the property that the nonlinear terms arising in the equations for these variables in fact have a
null structure. In particular, we can apply the above heuristic procedure to obtain decay estimates in the
compact region r ≤ R.

Nonrenormalized variables and decay towards null infinity. While the renormalization allows us to apply
the BV theory in the interior region, it does not give the optimal r decay rates in the exterior region. For
example, the renormalized quantity

∂v log λ−
µ

1−µ
λ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ))

decays only as r−2 towards null infinity due to the contribution of (µ/(1−µ))λ/r , which is weaker than
the desired r−3 decay for ∂v log λ. Therefore, in order to obtain the optimal estimates everywhere in the
spacetime, we need to use the variables ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν together with their renormalized

versions.

Coupling of the incoming and outgoing parts. Finally, an additional challenge is that, unlike the estimates
for the first derivatives of the scalar field, the bounds for the incoming part of the solution, ∂2

v (rφ) and ∂vλ
are coupled to that for the outgoing part, ∂2

u (rφ) and ∂uν. Likewise, to control ∂2
u (rφ), we need estimates for

∂2
v (rφ) and ∂vλ. For example, in the equation for ∂v log λ−(µ/(1−µ))λ/r+∂vφ(λ−1∂v(rφ)−ν−1∂u(rφ)),

there is a term involving ∂2
u (rφ) on the right-hand side. In particular, in order to obtain the desired decay

for ∂vλ, we need to at the same time prove the decay for ∂2
u (rφ).

Strategy for obtaining the decay estimates. With the above difficulties in mind, we can now give a very
rough sketch of the strategy of the proof:

(1) Bounds for ∂2
v (rφ) and ∂vλ for large r : As in the case for the first derivatives, we first prove the

optimal r decay for ∂2
v (rφ) and ∂vλ in the exterior region. To this end, we integrate the equations satisfied

by the nonrenormalized variables. We note that the error terms can all be bounded using the local BV
scattering assumption and the decay estimates already proved for the first derivatives.

(2) Bounds for all second derivatives: Steps (2) and (3) for the decay bounds for the first derivatives are
now coupled. Define

B2(U ) := sup
u∈[1,U ]

sup
Cu

(
uω|∂2

v (rφ)| + uω|∂2
u (rφ)| + uω|∂vλ| + uω|∂uν|

)
.

We then show that B2(U ) can control the error terms arising from integrating the renormalized equations
in the sense that we can obtain an inequality of the form

|weighted renormalized variables| ≤ C(u2)+ ε(u2)B2(U ),
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where ε(u2)→ 0 as u2 →∞. We then prove that the renormalized variables in fact control all the
weighted second derivatives in B2. After choosing u2 to be sufficiently large, we show that B2(U ) is
bounded independently of U and thus all the second derivatives have u−ω decay.

(3) Optimal bounds in terms of u decay: While we have obtained u−ω decay for the second derivatives,
the decay rates are not the sharp rates claimed in the main theorem. To finally obtain the desired bounds,
we integrate the equations of the nonrenormalized variables and use the preliminary estimates obtained in
(1) and (2) above. Here, we make use of the fact that the estimates obtained in step (2) are sufficiently
strong (both in terms of regularity and decay) to control the error terms in the nonrenormalized equations.

4. Analytic properties of (SSESF)

In this section, we discuss the analytic properties of (SSESF). These include scaling, monotonicity and
the null structure of the system. All these features will play crucial roles in the analysis.

4A. Scaling. For a > 0, (SSESF) is invariant under the scaling of the coordinate system

u 7→ au, v 7→ av

together with the scaling of the functions

r 7→ ar, m 7→ am, � 7→�, φ 7→ φ.

This in particular implies that the BV norms∫
∞

u
|∂2
v (rφ)(u, v

′)| dv′ and
∫
∞

u
|∂vλ(u, v′)| dv′

are scale invariant. Thus the a priori assumptions (2-12) are taken with respect to localized versions of
scale-invariant norms.

4B. Monotonicity properties. We first begin with basic monotonicity properties of r .

Lemma 4.1 (monotonicity of r ). Let (φ, r,m) be a BV solution to (SSESF). Then we have

ν < 0 in Q
and 

λ > 0 when 1−µ > 0,
λ= 0 when 1−µ= 0,
λ < 0 when 1−µ < 0.

Proof. This was proved in [Christodoulou 1993, Propositions 1.1 and 1.2]; we reproduce the proof for the
reader’s convenience. Note the equation

∂u∂v(r2)=− 1
2�

2,

which easily follows from (SSESF). As ∂ur2
= 2r∂ur = 0 on 0 and r > 0 on Q, we easily see that ν < 0.

Then, from the definition of 1−µ, the second conclusion also follows. �
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According to the sign of λ, a general Penrose diagram Q is divided into three subregions:

T := {(u, v) ∈Q : λ < 0}, A := {(u, v) ∈Q : λ= 0} and R := {(u, v) ∈Q : λ > 0}.

These are called the trapped region, apparent horizon and regular region, respectively. The next lemma,
which we borrow from [Christodoulou 1993], shows that the solutions to (SSESF) considered in this paper
consist only of the regular region R. Therefore, extensive discussion of T and A will be suppressed.

Lemma 4.2 [Christodoulou 1993, Proposition 1.4]. Let (φ, r,m) be a BV solution to (SSESF). Then
the causal past of 0 in Q is contained in R. In particular, Q =R if (φ, r,m) satisfies condition (1) in
Definition 2.4.

Next, we turn to monotonicity properties of the Hawking mass m, which will play an important role in
our paper. The following lemma is an obvious consequence of (2-7):

Lemma 4.3 (monotonicity of m). For a BV solution (φ, r,m) to (SSESF), we have

∂vm ≥ 0 and ∂um ≤ 0 in R.

By the monotonicity ∂vm ≥ 0, the limit M(u) := limv→∞m(u, v) exists (possibly +∞ at this point)
for each u. This is called the Bondi mass at retarded time u. The following statement is an easy corollary
of the preceding lemma:

Corollary 4.4 (monotonicity of the Bondi mass). Let (φ, r,m) be a BV solution to (SSESF) and suppose
that Cu ⊂R for u ∈ [u1, u2]. Then the Bondi mass M(u) is a nonincreasing function on [u1, u2].

The following lemma shows that Mi <∞ for initial data sets considered in this paper:

Lemma 4.5. Suppose that ∂v(rφ)(1, · ) is asymptotically flat of order ω′ > 1 in the sense of Definition 2.9.
Then we have

Mi := lim
v→∞

m(1, v)≤ CI2
1 . (4-1)

This is an easy consequence of (2-7) and Lemma 4.1; we omit its proof. By the preceding corollary, it
follows that M(u) <∞ for each u.

We conclude this subsection with additional monotonicity properties of solutions to (SSESF), useful
for controlling the geometry of locally BV scattering solutions to (SSESF).

Lemma 4.6. Let (φ, r,m) be a BV solution to (SSESF). For (u, v) ∈R, we have

λ

1−µ
(u, v)≤

λ

1−µ
(1, v) and ∂uλ= ∂vν ≤ 0.

Proof. The lemma follows from the formula

∂u log
∣∣∣∣ λ

1−µ

∣∣∣∣=−(−ν)−1r(∂uφ)
2

and (2-6). �



1624 JONATHAN LUK AND SUNG-JIN OH

4C. Null structure of the evolution equations. In this subsection, we follow [Christodoulou 1993] and
demonstrate that the evolution equations verify a form of null structure. In particular, the null structure
occurs in the equations for the second derivatives of the scalar field and the metric. However, it is
not apparent if we simply take the derivatives of the equations (2-6) and (2-8). Instead, we rewrite
the equations in renormalized variables for which the null structure is manifest. We will perform this
renormalization separately for the wave equations for φ and for the equations for λ and ν.

The wave equation for φ. Taking ∂v of (2-8), we obtain

∂u(∂
2
v (rφ))= ∂v(∂uλφ)= ∂uλ ∂vφ+ (∂v∂uλ)φ,

or equivalently, after substituting in the first equation in (2-6),

∂u(∂
2
v (rφ))=

2mλν
(1−µ)r2 ∂vφ+

ν

1−µ
(∂vφ)

2φ+
2mν

(1−µ)r2 (∂vλ)φ−
4m

(1−µ)r3λ
2νφ. (4-2)

Some terms on the right-hand side, such as (1−µ)−1ν(∂vφ)
2φ, do not exhibit null structure and are

dangerous near 0. To tackle this, we rewrite

(∂v∂uλ)φ = ∂u[(∂vλ)φ] − ∂vλ ∂uφ.

Thus, from the first equation, we derive

∂u[∂
2
v (rφ)− (∂vλ)φ] = ∂uλ ∂vφ− ∂vλ ∂uφ. (4-3)

By switching u and v, we obtain the following analogous equations in the conjugate direction:

∂v(∂
2
u (rφ))=

2mλν
(1−µ)r2 ∂uφ+

λ

1−µ
(∂uφ)

2φ+
2mλ

(1−µ)r2 (∂uν)φ−
4m

(1−µ)r3λν
2φ, (4-4)

∂v[∂
2
u (rφ)− (∂uν)φ] = ∂vν ∂uφ− ∂uν ∂vφ. (4-5)

The equations for λ and ν. From (2-6), we have

∂u log λ=
µ

(1−µ)r
ν, ∂v log(−ν)=

µ

(1−µ)r
λ.

Take ∂v and ∂u of the first and second equations, respectively. Using (2-6), it is not difficult to verify
that

∂u∂v log λ=
1

1−µ
λ−1ν(∂vφ)

2
−

4m
(1−µ)r3λν, (4-6)

∂v∂u log(−ν)=
1

1−µ
ν−1λ(∂uφ)

2
−

4m
(1−µ)r3λν. (4-7)

To reveal the null structure, we must carry out the renormalization as we have done for (4-3) and (4-5).
Following [Christodoulou 1993], it is easy to check that the above two equations are equivalent to

∂u

[
∂v log λ−

µ

1−µ
λ

r
+∂vφ(λ

−1∂v(rφ)−ν−1∂u(rφ))
]
=∂uφ ∂v(ν

−1∂u(rφ))−∂vφ ∂u(ν
−1∂u(rφ)) (4-8)
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and the conjugate equation

∂v

[
∂u log(−ν)−

µ

1−µ
ν

r
+∂uφ(λ

−1∂v(rφ)−ν−1∂u(rφ))
]
=−∂uφ ∂v(λ

−1∂v(rφ))+∂vφ ∂u(λ
−1∂v(rφ)).

(4-9)

5. Basic estimates for locally BV scattering solutions

In this section, we gather some basic estimates concerning locally BV scattering solutions. These estimates
will apply, in particular, to solutions satisfying the hypotheses of Theorem 3.1.

5A. Integration lemmas for φ. We first derive some basic inequalities for φ, λ−1∂v(rφ) and ∂vφ. We
remark that these are functional inequalities which hold under very general assumptions and in particular
do not rely on the locally BV scattering assumption.

Lemma 5.1. Let φ(u, · ) and r(u, · ) be Lipschitz functions on [u, v] with λ > 0 and r(u, u) = 0. Then
the following inequality holds:

|φ(u, v)| ≤ sup
v′∈[u,v]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. (5-1)

More generally, for u ≤ v1 ≤ v2, we have

|rφ(u, v1)− rφ(u, v2)| ≤ (r(u, v2)− r(u, v1)) sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. (5-2)

Proof. We shall prove (5-2), since (5-1) then follows as a special case. Integrating ∂v(rφ)(u, v′) over
v′ ∈ [v1, v2], we get

|rφ(u, v1)− rφ(u, v2)| ≤

∫ v2

v1

|∂v(rφ)(u, v′)| dv′

≤ sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣× ∫ v2

v1

λ(u, v′) dv′

= (r(u, v2)− r(u, v1)) sup
v′∈[v1,v2]

∣∣∣∣∂v(rφ)λ
(u, v′)

∣∣∣∣. �

Lemma 5.2. Let φ(u, · ) and r(u, · ) be functions on [u, v] such that ∂vφ is integrable, r is Lipschitz
with λ> 0 and r(u, u)= 0. Suppose furthermore that λ−1∂v(rφ)(u, · ) is BV on [u, v]. Then the following
statements hold:

(1) We have ∫ v

u
|∂vφ(u, v′)| dv′ ≤

∫ v

u
|∂v(λ

−1∂v(rφ))(u, v′)| dv′. (5-3)

(2) Suppose, in addition, that λ−1∂v(rφ)(u, · ) is Lipschitz on [u, v]. Then we have

|∂vφ(u, v)| ≤
1
2

supv′∈[u,v] λ(u, v
′)

infv′∈[u,v] λ(u, v′)
sup

v′∈[u,v]
|∂v(λ

−1∂v(rφ))(u, v′)|. (5-4)
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Proof. We proceed formally to compute

∂vφ(u, v)=
λ

r
(λ−1∂v(rφ)−φ)(u, v)

=
λ

r2 (u, v)
∫ v

u

(∫ v

v′
∂v(λ

−1∂v(rφ))(u, v′′) dv′′
)
λ(u, v′) dv′

=
λ

r2 (u, v)
∫ v

u
r(u, v′′)∂v(λ−1∂v(rφ))(u, v′′) dv′′.

The above computation is justified thanks to the hypotheses, where we interpret

∂v(λ
−1∂v(rφ))(u, v′′) dv′′

to be the weak derivative of λ−1∂v(rφ), which is a finite signed measure. For a fixed (u, v), observe that

sup
v′′∈[u,v]

r(u, v′′)
∫ v

v′′

λ(u, v′)
r2(u, v′)

dv′ ≤ 1.

This proves (5-3). For (5-4), note that the function λ−1∂v(rφ) is absolutely continuous on [u, v], so
∂v(λ

−1∂v(rφ)(u, · )) exists almost everywhere on [u, v]; moreover, it belongs to L∞ by the Lipschitz
assumption. Noting that

sup
v′∈[u,v]

λ(u, v′)
r2(u, v′)

∫ v′

u
r(u, v′′) dv′′ ≤ 1

2
supv′∈[u,v] λ(u, v

′)

infv′∈[u,v] λ(u, v′)
,

we obtain (5-4). �

5B. Geometry of locally BV scattering solutions. The goal of this subsection is to prove the following
proposition:

Proposition 5.3. Let (φ, r,m) be a locally BV scattering solution to (SSESF) as in Definition 2.4. Assume
furthermore that, on the initial slice C1, we have λ(1, · )= 1

2 and

sup
C1

|∂v(rφ)| +Mi <∞.

Then there exist finite constants K , 3> 0 such that the following bounds hold for all (u, v) ∈Q:

3−1
≤ λ(u, v)≤ 1

2 , (5-5)

3−1
≤−ν(u, v)≤ K , (5-6)

1≤ (1−µ(u, v))−1
≤ K3, (5-7)

0<
−ν

1−µ(u, v)
≤ K . (5-8)

Moreover, there exists a finite constant 9 > 0 such that, for all (u, v) ∈Q, we have

|∂v(rφ)(u, v)| ≤9, (5-9)

|φ(u, v)| ≤39. (5-10)
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Once we have this proposition, we will denote by 3, K and 9 the best constants such that (5-5)–(5-10)
hold.

By Lemma 4.2, we already know that λ > 0, −ν > 0 and (1−µ)−1 <∞. The first three bounds,
namely (5-5)–(5-7), ensure that these bounds concerning the geometry of the spacetime do not degenerate
anywhere, in particular along the axis 0. They will be very useful in the analysis that follows.

The proof of Proposition 5.3 will consist of several steps. We begin with elementary bounds for λ
and ν.

Lemma 5.4. Let (φ, r,m) be a BV solution to (SSESF) with Q=R. Then, for every (u, v) ∈Q, we have

λ(u, v)≤ λ(1, v), (5-11)

λ−1(u, v)≤ lim
u′→v−

λ−1(u′, v), (5-12)

ν(u, v)≤− lim
v′→u+

λ(u, v′). (5-13)

Proof. By (2-6), we have

λ(u, v)= λ(1, v) exp
(∫ u

1

(
2m

(1−µ)r2 ν

)
(u′, v) du′

)
,

λ−1(u, v)= lim
u′→v−

λ(u′, v)−1 exp
(∫ v

u

(
2m

(1−µ)r2 ν

)
(u′, v) du′

)
,

ν(u, v)= lim
v′→u+

ν(u, v′) exp
(∫ v

u

(
2m

(1−µ)r2λ

)
(u, v′) dv′

)
.

Since −ν, (1−µ) > 0 everywhere, (5-11) and (5-12) follow. Moreover, since

lim
v′→u+

ν(u, v′)=− lim
v′→u+

λ(u, v′),

and λ > 0 on Q, (5-13) follows as well. �

By Lemma 4.2, Q=R holds for a solution (SSESF) satisfying the hypotheses of Proposition 5.3. As
an immediate corollary, we have the following easy upper bound for λ:

Corollary 5.5. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
by the coordinate condition λ(1, v)= 1

2 and (5-11), we have

sup
Q
λ≤ 1

2 .

Next, we proceed to prove the lower bounds of (5-5) and (5-6). We begin with a technical lemma
concerning a large-r region, which will also be useful in our proof of (5-9) and (5-10).

Lemma 5.6. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
for arbitrarily small ε > 0, there exists r0 > 1 such that

sup
(u,v)∈{r≥r0}

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε. (5-14)
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Proof. For (u, v) ∈ {r ≥ r0}, we begin by simply estimating as follows:∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣≤ 2Mi

(1− 2Mi/r0)

(−ν)

r2

The above inequality holds as long as12 we choose r0 >max{2Mi , R}. Note that if (u, v) ∈ {r ≥ r0},
then the null curve {(u′, v) : u′ ∈ [1, u]} from the initial slice C1 to (u, v) lies entirely in {r ≥ r0}.
Integrating along this curve, we obtain for (u, v) ∈ {r ≥ r0}∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ <
2Mi

(1− 2Mi/r0)

1
r0

Taking r0 sufficiently large, (5-14) follows. �

Next, we prove an analogous result in a large-u region. Key to its proof will be the identity (5-16)
below, which will also be used to relate (5-14) and (5-15) to the desired lower bounds of λ and −ν.

Lemma 5.7. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then,
for arbitrarily small ε > 0, there exists U > 1 such that

sup
v≥U

∫ v

U

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε. (5-15)

Proof. Let ε > 0 be an arbitrary positive number. Using (2-6) and the fact that 1−µ > 0 and −ν > 0
on Q, we have, for any 1≤ u1 ≤ u2 < v,∫ u2

u1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ = log λ(u1, v)− log λ(u2, v). (5-16)

In order to prove (5-15), it therefore suffices to exhibit U > 1 such that

sup
(u,v),(u′,v′)∈{u≥U }

|log λ(u, v)− log λ(u′, v′)|< ε. (5-17)

In order to proceed, we divide Q into three regions: Qcpt := {r ≤ R}, Q[R,r0] := {R ≤ r ≤ r0} and
Q[r0,∞) := {r ≥ r0}, where r0 >max{2Mi , R} is chosen via Lemma 5.6 so that

sup
(u,v)∈Q[r0,∞)

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < ε

8
.

Using (5-16) and the fact that log λ(1, v)= 1
2 , the preceding inequality is equivalent to

sup
(u,v)∈Q[r0,∞)

∣∣log λ(u, v)− 1
2

∣∣< ε

8
. (5-18)

Next, we turn to the region Q[R,r0]; here we exploit the vanishing of the final Bondi mass. Indeed,
taking U1 large enough so that 2M(U1) < R, we may estimate∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣≤ 2M(U1)

(1− 2M(U1)/R)R2 (−ν) for u ≥U1.

12Indeed, it suffices to choose r0 > 2Mi here. The condition r0 > R will be used in the proof of Lemma 5.7.
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Consider now the timelike curve given by γ0 := {(u′, v′) : r(u′, v′) = r0}. On γ0 ∩ {(u, v) : u ≥ U1},
note that (5-18) holds. Integrating the preceding inequality along incoming null curves emanating from
γ0 ∩ {(u, v) : u ≥U1}, we obtain, for (u, v) ∈Q[R,r0] ∩ {(u, v) : u ≥U2},∣∣log λ(u, v)− 1

2

∣∣< ε

8
+

2M(U1)(r0− R)
(1− 2M(U1)/R)R2 ,

where U2 =U2(U1, r0) is the future endpoint of the incoming null curve in Q[R,r0] from the past endpoint
of γ0∩{(u, v) : u≥U1}; more precisely, U2= sup{u : r(u, V1)≥ R}, where V1 is defined by r(U1, V1)= r0.
Choosing U1 sufficiently large, we then obtain

sup
(u,v)∈Q[R,r0]∩{u≥U2}

∣∣log λ(u, v)− 1
2

∣∣< ε

4
. (5-19)

Finally, in Qcpt, we use the local BV scattering condition (2-12) to choose U ≥U2 large enough so
that we have

sup
(u,v),(u,v′)∈Qcpt∩{u≥U }

|log λ(u, v)− log λ(u, v′)|< ε

4
. (5-20)

To compare log λ(u, v) and log λ(u′, v′) with u 6= u′, we use (5-19), (5-20) and the triangle inequality.
Thus, the desired conclusion (5-17) follows. �

As a corollary of the preceding lemmas and (5-16) (or, more directly, (5-17) and (5-18)), we immediately
see that λ and −ν are uniformly bounded away from zero.

Corollary 5.8. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists 0<3<∞ such that, for all (u, v) ∈Q, we have

3−1
≤ λ(u, v) and 3−1

≤−ν(u, v).

Together with Corollary 5.5, this concludes the proof of (5-5). Next, using Lemmas 5.1, 5.6 and 5.7
and the wave equation (2-8) for φ, we prove (5-9) and (5-10) in the following lemma:

Lemma 5.9. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists a constant 0<9 <∞ such that

sup
Q
|∂v(rφ)| ≤9 and sup

Q
|φ| ≤39, (5-21)

where 3 is the best constant such that Corollary 5.8 holds.

Proof. Note that the second inequality of (5-21) is an immediate consequence of the first inequality,
Lemma 5.1 and Corollary 5.8. The proof of the first inequality will proceed in two steps: First, we shall
show that ∂v(rφ) is uniformly bounded on the large-r region, essentially via Lemma 5.6. By compactness,
it immediately follows that ∂v(rφ) is uniformly bounded on the finite-u region. Then in the second step,
we shall show that ∂v(rφ) is uniformly bounded on a large-u region as well using Lemma 5.7.

By Lemma 5.6, choose r0 > 0 so that

sup
(u,v)∈{r≥r0}

∫ u

1

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < 1
103

. (5-22)
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We also borrow the notation Q[r0,∞) :={(u, v) :r(u, v)≥r0} from the proof of Lemma 5.7. Given U ≥1,
define 9[r0,∞)(U ) to be

9[r0,∞)(U ) := sup
(u,v)∈Q[r0,∞)∩{1≤u≤U }

|∂v(rφ)(u, v)|.

Let (u, v) ∈Q[r0,∞). Using (2-8), we then write

∂u∂v(rφ)=
µ

1−µ
ν

r

(
λ

r
(rφ− r0φr0)+

λ

r
r0φr0

)
.

Here, φr0(u, v) :=φ(u, v
?
0(u)), where v?0(u) is the unique v-value for which r(u, v?0(u))= r0. Note that

the outgoing null curve from (u, v?0(u)) to (u, v) ∈Q[r0,∞) lies entirely in Q[r0,∞). Thus, by Lemma 5.1
and (5-5), we see that, for (u, v) ∈Q[r0,∞) with 1≤ u ≤U ,

|∂u∂v(rφ)| ≤
∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣(r − r0

2r
39[r0,∞)(U )+

r0

2r
|φr0 |

)
≤

∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣(39[r0,∞)(U )+ |φr0 |).

Integrating this over the incoming null curve from (1, v) to (u, v) (which lies in Q[r0,∞) ∩ {1≤ u ≤U })
and using Lemma 5.6, we then obtain

9[r0,∞)(U )≤ sup
C1∩Q[r0,∞)

|∂v(rφ)| +
1

10
9[r0,∞)(U )+

1
103

sup
γ0∩{1≤u≤U }

|φ|,

where γ0 is the timelike curve {(u, v) : r(u, v)= r0}. Note that the first term on the right-hand side is finite
by the assumptions on the initial data, whereas the last term is finite for every 1≤U <∞ by compactness
of γ0 ∩ {(u, v) : 1≤ u ≤U } and continuity of φ. Then, by a simple continuity argument, it follows that
9[r0,∞)(U ) <∞ for every 1≤U <∞. Moreover, by compactness of {(u, v) : r(u, v)≤ r0, 1≤ u ≤U },
as well as the uniform BV assumption on ∂v(rφ), we also have

9[0,∞)(U ) := sup
(u,v)∈{1≤u≤U }

|∂v(rφ)(u, v)|<∞.

We now proceed to deal with the large-u region, namely {(u, v) : u ≥ U }. Using Lemma 5.7, we
choose U0 ≥ 1 sufficiently large that

sup
v≥U0

∫ v

U0

∣∣∣∣ µ

1−µ
ν

r
(u′, v)

∣∣∣∣ du′ < 1
103

. (5-23)

Proceeding, as before, via Lemma 5.1, we estimate, for (u, v) ∈ {(u, v) : u ≥U0},

|∂u∂v(rφ)(u, v)| ≤
∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣3 sup
v′∈[u,v]

|∂v(rφ)(u, v′)|.

Integrating along incoming null curves from CU0 , we see that

9[0,∞)(U )≤9[0,∞)(U0)+
1

109[0,∞)(U )

for any U ≥U0. Absorbing the second term on the right-hand side into the left-hand side and taking U→∞,
we obtain (5-21) with 9 ≤ 10

9 9[0,∞)(U0) <∞. �
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We are finally ready to conclude the proof of Proposition 5.3, by proving (5-8). Indeed, the upper
bounds in (5-6) and (5-7) would then follow immediately. Moreover, the lower bound in (5-7) is trivial,
as µ= 2m/r ≥ 0.

Lemma 5.10. Let (φ, r,m) be a solution to (SSESF) satisfying the hypotheses of Proposition 5.3. Then
there exists a finite constant K > 0 such that, for all (u, v) ∈Q,

−ν

1−µ
(u, v)≤ K . (5-24)

Proof. To prove (5-24), we shall rely on the equation

∂v log
(
−ν

1−µ

)
= λ−1r(∂vφ)2, (5-25)

which may be easily derived from (2-6) and (2-7).
For (u, v) ∈Q, we begin by integrating (5-25) on the outgoing null curve from (u, u) ∈ 0 to (u, v),

which gives (
−ν

1−µ

)
(u, v)≤

(
lim
v′→u+

(
−ν

1−µ

)
(u, v′)

)
exp

(∫ v

u
λ−1r(∂vφ)2(u, v′) dv′

)
.

We claim that limv′→u+(−ν)(u, v′) = limv′→u+ λ(u, v′) ≤ 1
2 and limv′→u+ µ(u, v′) = 0. The first

assertion is obvious. To prove the second one, we first use (2-7) to write

m(u, v)≤ 1
2

(
sup

v′∈[u,v]
|r2∂vφ|(u, v′)

) ∫ v

u
|∂vφ(u, v′)| dv′.

Now observe that supv′∈[u,v]|r
2∂vφ|(u, v′)≤ Cr(u, v) supv′∈[u,v]|∂v(rφ)| and the remaining integral goes

to 0 as v→ u+, since φ is assumed to be absolutely continuous on Cu near the axis by Definition 2.1.
By the above claim, we have(

−ν

1−µ

)
(u, v)≤ 1

2 exp
(∫ v

u
λ−1r(∂vφ)2(u, v′) dv′

)
.

The lemma would therefore follow if we could prove

sup
(u,v)∈Q

∫ v

u
λ−1r(∂vφ)2(u, v′) dv′ <∞.

To achieve this, we shall divide the integral into two parts, one in Qcpt and the other in its com-
plement Qc

cpt. Indeed, defining v?(u) to be the unique v-value such that r(u, v?(u)) = R, we split the
integral into

∫ v?(u)
u and

∫ v
v?(u). If v < v?(u), the latter integral will be taken to be zero.

For the first integral, let us begin by pulling out λ−1r∂vφ from the integral. Using the identity
λ−1r∂vφ = λ−1∂v(rφ)−φ, we have∫ v?(u)

u
λ−1r(∂vφ)2(u, v′) dv′ ≤ sup

v′∈[u,v?(u)]

(
λ−1
|∂v(rφ)|(u, v′)+ |φ|(u, v′)

) ∫ v?(u)

u
|∂vφ(u, v′)| dv′.
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Then, by Lemmas 5.2 and 5.9 and the local BV scattering assumption, the right-hand side is uniformly
bounded in u from above, as desired. For the second integral, note that, by Lemma 4.6 and Corollary 5.8,
we have

(1−µ)−1(u, v)≤3
λ

1−µ
(u, v)≤ 1

23 sup
C1

(1−µ)−1.

Notice that the quantity supC1
(1−µ)−1 for the initial data is finite, since 1−µ > 0 everywhere and

1−µ(1, v)→ 1 as v→∞. Moreover, for v ≥ v?(u), we have r(u, v)≥ R. Therefore, in view of (2-7),
we may estimate∫ v

v?(u)
λ−1r(∂vφ)2 dv′ ≤

3

R
sup
C1

(1−µ)−1
∫ v

v?(u)

1
2λ
−1(1−µ)r2(∂vφ)

2(u, v′) dv′

≤
3

R
sup
C1

(1−µ)−1(m(u, v)−m(u, v?(u))
)

≤ C3,R,Mi ,supC1
(1−µ)−1 <∞,

from which the lemma follows. �

We conclude this subsection with a pair of identities which are useful for estimating
∫
|∂uλ| du and∫

|∂vν| dv in terms of information on φ.

Lemma 5.11. From (SSESF), the following identities hold:∫ v

u

µ

1−µ
λ

r
(u, v′) dv′ = log(1−µ)(u, v)+

∫ v

u
λ−1r(∂vφ)2(u, v′) dv′, (5-26)∫ v

u

µ

1−µ
(−ν)

r
(u′, v) du′ = log(1−µ)(u, v)+

∫ v

u
(−ν)−1r(∂uφ)

2(u′, v) du′. (5-27)

Proof. We shall prove (5-26), leaving the similar proof of (5-27) to the reader. From the proof of
Lemma 5.4, we have ∫ v

u

µ

1−µ
λ

r
(u, v′)= log

ν(u, v)
limv′→u+ ν(u, v′)

.

Comparing with the integral of (5-25), along with the fact that limv′→u+(1−µ)(u, v′)= 1, we arrive
at (5-26). �

5C. Normalization of the coordinate system. In Section 2D, the coordinates are normalized so that λ is
constant on the initial hypersurface {u = 1}. Alternatively, one can introduce a new coordinate system
(u∞, v∞) which is normalized at future null infinity by requiring that ν∞→−1

2 along each outgoing
null curve towards null infinity and require, as before, that 0 = {(u, v) : u = v}. We will show that the
coordinate functions u and u∞ are comparable and thus the main theorem on the decay rates can also be
stated in this alternatively normalized coordinate system.

We can explicitly compute the coordinate change, which is given by

du∞
du

(u)=−2 lim
v→∞

ν(u, v), u∞(1)= 1 and v∞(v)= u∞(v).
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Notice that the limit limv→∞ ν(u, v) is well-defined due to the monotonicity of ν, and

u∞(u)=−2
∫ u

1

(
lim
v→∞

ν(u′, v)
)

du′+ 1.

By Proposition 5.3, the following estimate holds:

2(3)−1(u− 1)≤ u∞− 1≤ 2K (u− 1).

5D. Consequence of local BV scattering. In this subsection, we give some estimates for ∂2
u (rφ), ∂uφ

and ∂uν that follow from the local BV scattering assumption. To this end, we will need the analysis for
solutions to (SSESF) with small bounded variation norm in [Christodoulou 1993], in particular:

Theorem 5.12 [Christodoulou 1993, Theorem 6.2]. There exist universal constants ε0 and C0 such that,
for ε < ε0, if λ(1, · )= 1

2 and ∂v(rφ)(1, · ) is of bounded variation with∫
C1

|∂2
v (rφ)|< ε, (5-28)

then its maximal development (φ, r,m) satisfies condition (1) in Definition 2.4 and obeys

1
3 ≤ λ≤

1
2 ,

1
3 ≤−ν ≤

2
3 ,

2
3 ≤ 1−µ≤ 1, (5-29)

sup
u≥1

∫
Cu

(
|∂v(λ

−1∂v(rφ))| + |∂vφ| + |∂v log λ|
)
< C0ε, (5-30)

sup
v≥1

∫
Cv

(
|∂u(ν

−1∂u(rφ))| + |∂uφ| + |∂u log ν|
)
< C0ε. (5-31)

Remark 5.13. In [Christodoulou 1993], it is implicitly assumed13 that φ(1, 1)= 0. Note, however, that
the bounds in the above theorem are stated in such a way that they are invariant under the transform
(φ, r,m) 7→ (φ+c, r,m), under which (SSESF) is also invariant. Any solution may then be transformed to
satisfy φ(1, 1)= 0. As a consequence, we do not need to check φ(1, 1)= 0 in order to apply the theorem.

Using Theorem 5.12, we prove the following bound for locally BV scattering solutions to (SSESF):

Theorem 5.14. Let (φ, r,m) be a locally BV scattering solution to (SSESF). For every ε > 0, there exists
u0 > 1 such that the following estimate holds:

sup
v∈[u0,∞)

(∫
Cv∩{u≥u0}∩Qcpt

|∂2
u (rφ)| +

∫
Cv∩{u≥u0}∩Qcpt

|∂uφ| +

∫
Cv∩{u≥u0}∩Qcpt

|∂u log ν|
)
< ε.

Moreover, we have

sup
Q
|∂u(rφ)| ≤ CK ,39. (5-32)

13In [Christodoulou 1993], the intersection between 0 and the initial outgoing null curve is called (0, 0), as opposed to our
convention (1, 1).
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Proof. We first show that, for a locally BV scattering solution to (SSESF),∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| → 0 as u→∞.

Expanding this expression, we have∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| ≤

∫
Cu∩Qcpt

λ−1(
|∂2
v (rφ)| + |(∂v log λ)∂v(rφ)|

)
.

By (5-5) and (5-9), we have∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| ≤ C3,9

∫
Cu∩Qcpt

|∂2
v (rφ)| + |∂v log λ|,

which, by (2-12) in Definition 2.4, tends to 0 as u→∞. Notice that the quantity
∫

Cu∩Qcpt
|∂v(λ

−1∂v(rφ))|
which we have controlled is invariant under any rescaling of the coordinate v and also under the transform
(φ, r,m) 7→ (φ+ c, r,m).

We now proceed to the proof of the theorem. Let v0 be sufficiently large and u?(v0) be the unique
r(u?(v0), v0)= R. By the finite speed of propagation of the equations, the solution on Cv0 ∩Qcpt depends
only on the data on Cu?(v0) ∩Qcpt.

In order to apply Theorem 5.12, we change coordinates (u, v) 7→ (U (u), V (v)) in the region bounded
by Cu?(v0) and Cv0 to a new double null coordinate (U, V ) such that, for U ?

= U (u?(v0)), we have
λ(U ?, V )= 1

2 . To this end, define V (v) by

dV
dv
= 2λ(u?(v0), v), V (v0)= v0.

Notice that this is acceptable since λ > 0. In order for the condition U = V to hold on 0, we require
U (u)= V (u). Then, with respect to the coordinate V ,

∂V r(U ?, V )= 1
2
.

By (5-5), we have

3−1
≤

dV
dv
,

dU
du
≤

1
2
.

Moreover, ∫ v0

u?(v0)

∣∣∣∣d2V
dv2 (v

′)

∣∣∣∣ dv′ ≤ 2
∫ v0

u?(v0)

|∂vλ(u?(v0), v
′)| dv′,

which tends to 0 as v0→∞ by the assumption of local BV scattering. For v0 sufficiently large, in the
(U, V ) coordinate system,

∫
Cu?(v0)∩Qcpt

|∂V ((∂V r)−1∂V (rφ))| dV is small and ∂V r = 1
2 . The data satisfy
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the assumptions of Theorem 5.12 and therefore14∫
Cv0∩Qcpt

(
|∂U ((∂Ur)−1∂U (rφ))| + |∂Uφ| + |∂U log ∂Ur |

)
dU → 0

as v0→∞. Returning to the original coordinate system (u, v), the first statement easily follows.
Finally, for the L∞ estimate for ∂u(rφ), notice that |∂u(rφ)| ≤ 9 at the axis by (5-9) and (7) of

Definition 2.1. Using (2-8′′), (2-6) (in particular, the fact that ∂vν ≤ 0), (5-10) and (5-6), we have

|∂u(rφ)(u, v)| ≤9 +39
∫ v

u
(−∂vν) dv′ ≤ CK ,39. �

6. Decay of φ and its first derivatives

In this section, we prove the first main theorem (Theorem 3.1). Throughout this section, we assume that
(φ, r,m) is a locally BV scattering solution to (SSESF) with asymptotically flat initial data of order ω′

in BV, as in Definitions 2.4 and 2.9. Let ω =min{ω′, 3}.

6A. Preparatory lemmas. The following lemma will play a key role in the proof of both Theorems 3.1
and 3.2. It is a consequence of the scattering assumption (2-12) and vanishing of the final Bondi mass.

Lemma 6.1. Let ε > 0 be an arbitrary positive number. For u1 > 1 sufficiently large, we have

sup
v∈[u1,∞)

∫
Cv∩{u≥u1}

∣∣∣∣ 2mν
(1−µ)r2

∣∣∣∣< ε, (6-1)

sup
u∈[u1,∞)

∫
Cu

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣< ε. (6-2)

Proof. The first statement, (6-1), was proved in Lemma 5.7; thus it only remains to prove (6-2).
Divide Q into Qcpt =Q∩ {r ≤ R} and Qc

cpt :=Q \Qcpt. First, note that by (2-12) we have

sup
u∈[u1,∞)

∫
Cu∩Qcpt

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣< ε

2

for u1 sufficiently large. Next, we consider Qc
cpt. Define v?(u) := sup{v ∈ [u,∞) : r(u, v) ≥ R}; note

that r(u, v?(u))= R by continuity. We now compute∫
Cu∩Qc

cpt

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣= ∫ ∞
v?(u)

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′ ≤ 2K3M(u1)

∫
∞

v?(u)

λ

r2 (u, v
′) dv′ ≤ 2R−1K3M(u1)

uniformly in u ≥ u1. As limu1→∞ M(u1) = 0 by (2-11), the last line can be made arbitrarily small by
taking u1 sufficiently large. This proves (6-2). �

The following lemma allows us to estimate φ in terms of |∂v(rφ)|.

14More precisely, we apply Theorem 5.12 to the truncated initial data

∂V (r φ̃)(U
?, V )=

{
∂V (rφ)(U?, V ) for V < v0,

∂V (rφ)(U?, v0) for V ≥ v0.
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Lemma 6.2. The following estimates hold:

|φ|(u, v)≤3 sup
Cu

|∂v(rφ)| and ruω−1
|φ|(u, v)≤ C3

(
sup
Cu

uω|∂v(rφ)| + sup
Cu

rω|∂v(rφ)|
)
.

Proof. The first estimate follows from Lemma 5.1 and Proposition 5.3. The second estimate is a
consequence of the first when r(u, v)≤ u, so it suffices to assume r(u, v)≥ u. Introducing a parameter
v1 ∈ [u, v], we estimate

ruω−1
|φ|(u, v)≤ uω−1

∫ v

u
|∂v(rφ)(u, v′)| dv′

≤3uω−1(sup
Cu

|∂v(rφ)|
) ∫ v1

u
λ(u, v′) dv′+3uω−1(sup

Cu

rω|∂v(rφ)|
) ∫ v

v1

λ

rω
(u, v′) dv′

≤3

(
r(u, v1)

u

)
sup
Cu

uω|∂v(rφ)| +
3

ω− 1
uω−1

r(u, v1)ω−1 sup
Cu

rω|∂v(rφ)|.

Choosing v1 so that r(u, v1)= u (which is possible since r(u, v)≥ u), the desired estimate follows. �

6B. Preliminary r-decay for φ. In this subsection, we derive bounds for φ which are sharp in terms of
r -weights. As a consequence, they give sharp decay rates towards null infinity.

Lemma 6.3. There exists a constant 0< H1 <∞ such that

sup
Q
(1+ r)|φ| ≤ H1. (6-3)

Proof. Let r1 > 0 be a large number, to be chosen below. Different arguments will be used in {r ≥ r1}

and {r ≤ r1}. For each u ≥ 1, let v?1(u) be the unique v-value for which r(u, v?1(u)) = r1. By the
fundamental theorem of calculus, we have

rφ = r1φ(u, v?1(u))+
∫ v

v?1(u)
∂v(rφ)(u, v′) dv′. (6-4)

Integrate (2-8) along the incoming direction from (1, v) to (u, v). By Corollary 4.4 and Proposition 5.3,
we have

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλν
(1−µ)r3 (rφ)(u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K3Mi

2
1

r2(u, v)
sup

u′∈[1,u]
|rφ(u′, v)|.

Substituting the preceding bound into (6-4), we obtain

sup
Cu∩{r≥r1}

|rφ| ≤ |r1φ(u, v?1(u))| +
∫ v

v?1(u)
|∂v(rφ)(1, v′)| dv′+

K32 Mi

2r1
sup

u′∈[1,u]
supCu′∩{r≥r1}|rφ|. (6-5)

The first term on the right-hand side is bounded by r139, by (5-10), whereas the second term depends
only on the initial data and can be estimated in terms of I1 as follows:∫ v

v?1(u)
|∂v(rφ)(1, v′)| dv′ ≤3I1

∫
∞

1
(1+ r(1, v′))−ω

′

λ(1, v′) dv′ ≤
3

ω′− 1
I1.
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Moreover, choosing r1 to be large enough that

K32 Mi

2r1
≤

1
2
,

the last term of (6-5) can be absorbed in to the left-hand side and we conclude

sup
{r≥r1}

|rφ| ≤ 2r139 +
2

ω′− 1
3I1.

On the other hand, in {r ≤ r1} we have

sup
{r≤r1}

|rφ| ≤ r139

by (5-10). Combining the bounds in {r ≥ r1} and {r ≤ r1}, the lemma follows. �

Remark 6.4. The preceding argument shows that Lemma 6.3 holds with15

H1 ≤ CI1,K ,3 (I1+9). (6-6)

6C. Propagation of u-decay for ∂u(rφ). Here, we show that u-decay estimates proved for ∂v(rφ) and φ
may be “transferred” to ∂u(rφ); this reduces the proof of Theorem 3.1 to showing only (3-1) and (3-2).
To this end, we integrate ∂v∂u(rφ) from the axis 0, along which ∂u(rφ)=−∂v(rφ).

Lemma 6.5. Suppose that there exists a finite positive constant A such that

sup
Q
|φ| ≤ Au−ω and sup

Q
|∂v(rφ)| ≤ Au−ω.

Then
sup
Q
|∂u(rφ)| ≤ (1+ K )Au−ω.

Proof. Fix u ≥ 1 and v ≥ u. Integrate (2-8′′) along the outgoing direction from (u, u) to (u, v) and take
the absolute value. Using (7) of Definition 2.1, (2-6) (in particular, ∂vν ≤ 0), (5-6) and the hypotheses,
we have

|∂u(rφ)(u, v)| ≤ lim
v′→u+

|∂v(rφ)(u, v′)| + sup
u≤v′≤v

|φ(u, v′)|
∫ v

u
(−∂vν) dv′ ≤ Au−ω+ K Au−ω. �

6D. Full decay for φ and ∂v(rφ). In this subsection, we finish the proof of Theorem 3.1. By Lemma 6.5,
it suffices to establish the full decay of φ and ∂v(rφ), i.e., (3-1) and (3-2). For the convenience of the
reader, we recall these estimates:

|φ| ≤ A min{u−ω, r−1u−(ω−1)
} and |∂v(rφ)| ≤ A min{u−ω, r−ω}.

For U > 1, let
B1(U ) := sup

u∈[1,U ]
sup
Cu

(uω|φ| + ruω−1
|φ|).

15Notice that, while the constant CI1,K ,3 depends on I1, the preceding argument moreover allows us to choose CI1,K ,3 to
be nondecreasing in I1. In particular, for I1 sufficiently small, we have H1 ≤ CK ,3 (I1+9). It is for this reason that we prefer
to write the expression CI1,K ,3 (I1+9) instead of the more general CI1,K ,3,9 .
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Notice that this is finite for every fixed U , by Lemma 6.3. To establish the decay estimate (3-1), it
suffices to prove that B1(U ) is bounded by a finite constant which is independent of U . We will show
that this also implies (3-2). Divide Q into Qext ∪Qint, defined by

Qext := {(u, v) ∈Q : v ≥ 3u}, Qint := {(u, v) ∈Q : v ≤ 3u}.

We first establish a bound for ∂v(rφ) with the sharp r-weight, which thus gives the sharp decay rate
in Qext.

Lemma 6.6. Let u1 > 1. Then, for u1 ≤ u ≤U ,

sup
Cu

rω|∂v(rφ)| ≤ I1+CK ,Mi u1 H1+Cu−1
1 K Mi B1(U ). (6-7)

Proof. We separate the proof into cases ω ≥ 2 and 1< ω ≤ 2.

Case 1: ω ≥ 2. First, notice that

|φ| ≤ B1(U )(r−1u−(ω−1))ω−2(u−ω)1−(ω−2)
≤ B1(U )r−(ω−2)u−2.

Applying Lemma 6.3, we also have
|φ| ≤ (1+ r)−1 H1.

By Corollary 4.4 and Proposition 5.3, we have the following pointwise bounds:

sup
u′∈[1,u1]

∣∣∣∣ mλν
1−µ

∣∣∣∣≤ K Mi

2
, sup

u′∈[u1,∞)

∣∣∣∣ mλν
1−µ

∣∣∣∣≤ K M(u1)

2
.

Therefore, integrating (2-8) along the incoming direction from (1, v) to (u, v), we have

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλνφ
(1−µ)r2 (u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K Mi

r2(u, v)(1+ r(u, v))
H1

∫ u1

1
du′+

K M(u1)

rω(u, v)
B1(U )

∫ u

u1

(u′)−2 du′

≤ |∂v(rφ)(1, v)| +
u1K Mi

r2(u, v)(1+ r(u, v))
H1+

K M(u1)

u1rω(u, v)
B1(U ).

Multiplying both sides by rω(u, v) and using the fact that r(u, v)≤ r(1, v), we conclude

rω|∂v(rφ)|(u, v)≤ rω|∂v(rφ)|(1, v)+ u1
rω−2

1+ r
K Mi H1+ u−1

1 K M(u1)B1(U )

≤ I1+Cu1,K ,Mi H1+ u−1
1 K Mi B1(U ).

Case 2: 1< ω ≤ 2. We will use the following bounds for φ. First,

|φ| ≤ B1(U )(r−1u−(ω−1))ω−1(u−ω)(2−ω) ≤ B1(U )r−(ω−1)u−1.

Also, Lemma 6.3 implies
|φ| ≤ (1+ r)−1 H1.
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As in Case 1 we integrate (2-8) along the incoming direction from (1, v) to (u, v):

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(1, v)| +
∣∣∣∣∫ u

1

2mλνφ
(1−µ)r2 (u

′, v) du′
∣∣∣∣

≤ |∂v(rφ)(1, v)| +
K3Mi H1

1+ r

∫ u1

1

−ν

r2 du′+
K3M(u1)

u1
B1(U )

∫ u

u1

−ν

rω+1 du′

≤ |∂v(rφ)(1, v)| +
ωK3Mi

r(u, v)(1+ r(u, v))
H1+

ωK3M(u1)

u1rω(u, v)
B1(U ).

Multiply both sides by rω to arrive at the conclusion, as in Case 1. In this case, note that the second
term is a bit better than what is claimed, as there is no dependence on u1 ≥ 1. �

Remark 6.7. The proof of this lemma requires ω ≤ 3. More precisely, this limitation comes from the
contribution of the right-hand side of (2-8)

We are now ready to prove the bounds (3-1) and (3-2). The idea is to “propagate” the exterior decay
estimate (6-7) into Qint to obtain decay in u, using the smallness coming from Lemma 6.1 in the region
where u is sufficiently large. On the other hand, the preliminary r -decay estimates proved in Section 6B
will give the desired r -decay rates in rest of the space-time.

Proof of (3-1) and (3-2). Let 1 ≤ u1 ≤ U . For (u, v) ∈ Q with u ∈ [3u1,U ], integrate (2-8) along the
incoming direction from (u/3, v) to (u, v). Then

|∂v(rφ)(u, v)| ≤ |∂v(rφ)(u/3, v)| + 1
2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′. (6-8)

Multiply both sides by uω and estimate each term on the right-hand side. For the first term, the key
observation is the following: for v ≥ u, the point

( 1
3 u, v

)
lies in Qext, where (6-7) is effective. Indeed,

note that (2
33
)
u ≤3−1(v− ( 1

3 u
))
≤ r

( 1
3 u, v

)
.

Thus, by (6-7),

uω
∣∣∂v(rφ)( 1

3 u, v
)∣∣≤ ( 3

23
)ω(rω( 1

3 u, v
)∣∣∂v(rφ)(1

3 u, v
)∣∣)

≤
( 3

23
)ω(I1+Cu1,K ,Mi H1+Cu−1

1 K MiB1(U )
)

≤ Cu1,K ,3,Mi (I1+ H1)+CK ,3Mi u−1
1 B1(U ).

For the second term on the right-hand side of (6-8), we have

uω

2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′ ≤
3ω

2

(∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ).

Combining these estimates, we deduce

sup
Cu

uω|∂v(rφ)(u, v)|

≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ). (6-9)
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Recalling the bounds of φ in terms of ∂v(rφ) in Lemma 6.2, we have

B1(U )≤ (1+ 23) sup
u∈[1,U ]

sup
Cu

(
uω|∂v(rφ)| + rω|∂v(rφ)|

)
.

The right-hand side can be controlled by (6-9) and (6-7), from which we conclude

B1(U )≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ). (6-10)

As a consequence of Lemma 6.1, the entire coefficient in front of B1(U ) can made to be smaller than
(say) 1

2 by taking u1 sufficiently large. Since B1(U ) <∞, we can then absorb this term into the left-hand
side. Observing that this bound is independent of U > 1, we have thus obtained (3-1).

To prove (3-2), simply apply (6-9) and (6-7), which shows that

sup
u∈[1,U ]

sup
Cu

(
uω|∂v(rφ)| + rω|∂v(rφ)|

)
≤ Cu1,K ,3,Mi (I1+ H1)+

(
CK ,3Mi u−1

1 +C
∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B1(U ).

This boundedness of B1(U ) that we just proved thus implies (3-2). �

Remark 6.8. According to the proof that we have just given, the constant A1 > 0 depends on our
choice of u1 > 1, which in turn depends on how fast the coefficient in front of B1(U ) in (6-10) vanishes
as u1→∞. This explains why A1 > 0 does not depend only on the size of the initial data, as remarked
in Section 3. Controlling the size of u1 > 1 under an additional small data assumption will be key to
proving (1) of Theorem 3.15 in Section 9.

6E. Additional decay estimates. We end this section with the following decay estimates for ∂vφ, ∂uφ

and m.

Corollary 6.9. Let (φ, r,m) be a locally BV scattering solution to (SSESF) with asymptotically flat initial
data of order ω′ in BV , and define ω = min{ω′, 3}. Let A1 be the constant in Theorem 3.1. Then the
following decay estimates hold:

|∂vφ| ≤ C A1 min{r−1u−ω, r−2u−(ω−1)
}, (6-11)

|∂uφ| ≤ CK A1 r−1u−ω, (6-12)

m ≤ C3A2
1 min{ru−2ω, u−(2ω−1)

}. (6-13)

Proof. Let u ≥ 1 and v ≥ u. Since

r∂vφ = ∂v(rφ)− λφ, r∂uφ = ∂u(rφ)− νφ,

the estimates (6-11) and (6-12) follow from (3-1)–(3-3) and the fact that supQ|λ| ≤
1
2 , supQ|ν| ≤ K .

On the other hand, by (2-7), we have

m(u, v)= 1
2

∫ v

u
λ−1(1−µ)r2(∂vφ)

2(u, v′) dv′. (6-14)
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Using |∂vφ(u, v)| ≤ C A1r−1u−ω (which has just been established), we obtain

m(u, v)≤ C3A2
1 ru−2ω,

which proves a “half” of (6-13). To prove the other “half”, let us introduce a parameter r1 > 0 (to be
determined later) and define v?1(u) to be the unique v-value such that r(u, v?1(u)) = r1. For v ≥ v?1(u),
split the v′-integral in (6-14) into

∫ v?1(u)
u +

∫ v
v?1(u)

and use |∂vφ(u, v)| ≤ C A1 r−1u−ω for the former and
|∂vφ(u, v)| ≤ C A1 r−2u−(ω−1) for the latter. As m(u, v) is nondecreasing in v, we then arrive at the
estimate

sup
Cu

m ≤ C3A2
1 r1u−2ω

+C3A2
1 r−1

1 u−2(ω−1).

Choosing r1 = u, we obtain (6-13). �

7. Decay of second derivatives

In this section, we establish our second main theorem (Theorem 3.2). Throughout the section, we assume
that (φ, r,m) is a locally BV scattering solution to (SSESF) with asymptotically flat initial data of
order ω′ in C1, as in Definitions 2.4 and 2.9. As discussed in Remark 2.3, (φ, r,m) is then a C1 solution
to (SSESF). As before, let ω =min{ω′, 3}.

7A. Preparatory lemmas. The following lemma, along with Lemma 6.1, provides the crucial smallness
for our proof of Theorem 3.2.

Lemma 7.1. For every ε > 0, there exists u2 > 1 such that

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

|∂uφ|< ε, (7-1)

sup
u∈[u2,∞)

∫
Cu

|∂vφ|< ε. (7-2)

Proof. We will only prove (7-1), leaving the similar proof of (7-2) to the reader. As in the proof of
Lemma 6.1, we divide Q into Qcpt :=Q∩ {r ≤ R} and Qc

cpt :=Q \Qcpt, and argue separately. First, by
Theorem 5.14, we have

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}∩Qcpt

|∂uφ|<
ε

2

for u2 sufficiently large. Next, to derive (7-1) in Qc
cpt, we define u?(v) := sup{u ∈ [u2, v] : r(u, v)≥ R},

where we use the convention u?(v)= u2 when the set is empty. Then, using Proposition 5.3 and Schwarz,
we compute∫

Cv∩{u≥u2}∩Qc
cpt

|∂uφ| =

∫ u?(v)

u2

|∂uφ(u′, v)| du′ ≤

√
2K3

R

√∫ u?(v)

u2

1
2(−ν)

−1(1−µ)r2(∂uφ)2(u′, v) du′

≤

√
2K3

R
m(u2, v)≤

√
2K3

R
M(u2).
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By (2-11), limu2→∞ M(u2)= 0, and (7-1) thus follows. �

The next lemma allows us to estimate the first derivative of φ at (u, v) in terms of information on
Cu ∩ {(u, v′) : u ≤ v′ ≤ v}.

Lemma 7.2. For every (u, v) ∈Q, the following inequalities hold:

|∂vφ(u, v)| ≤ 1
43

2 sup
u≤v′≤v

|∂2
v (rφ)(u, v

′)| + 1
43

3 sup
u≤v′≤v

|∂v(rφ)(u, v′)| sup
u≤v′≤v

|∂vλ(u, v′)|,

|∂uφ(u, v)| ≤3 sup
u≤v′≤v

(−ν)(u, v′)|∂vφ(u, v′)|.

Proof. The first is an easy consequence of (5-4) in Section 5A. To prove the second inequality, we start
from the equation

∂v(r∂uφ)=−ν∂vφ,

which follows from (2-6) and (2-8). Therefore, we have

|∂uφ(u, v)| ≤
1

r(u, v)

∫ v

u
(−ν)|∂vφ|(u, v′) dv′,

from which the second inequality easily follows. �

In the next lemma, we show that improved estimates for m near 0 hold if we assume an L∞ control
of ∂vφ.

Lemma 7.3. For every (u, v) ∈Q, the following inequalities hold:

µ

r
(u, v)≤32 sup

u≤v′≤v
|∂v(rφ)(u, v′)| sup

u≤v′≤v
|∂vφ(u, v′)|, (7-3)

µ

r2 (u, v)≤
1
33

2 sup
u≤v′≤v

|∂vφ(u, v′)|2. (7-4)

Proof. Recall µ= 2m/r . By (2-7), we have

2m(u, v)=
∫ v

u
(1−µ)λ−1r2(∂vφ)

2(u, v′) dv′.

Pulling everything except r2λ outside the integral and using
∫ v

u r2λ(u, v′) dv′ = 1
3r3(u, v), we ob-

tain (7-4). On the other hand, using λ−1r∂vφ = λ−1∂v(rφ)− φ and
∫ v

u rλ(u, v′) dv′ = 1
2r2(u, v), we

easily deduce
µ

r
(u, v)≤ 1

2 sup
u≤v′≤v

(
32
|∂v(rφ)(u, v′)| +3|φ(u, v′)|

)
|∂vφ(u, v′)|.

From the fact that |φ(u, v)| ≤3 supu≤v′≤v|∂v(rφ)(u, v
′)|, (7-3) easily follows. �
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7B. Preliminary r-decay for ∂2
v (rφ) and ∂vλ. In this subsection, we establish decay estimates for ∂2

v (rφ)
and ∂vλ which are sharp in terms of r -weights in the region Qext. We remind the reader the decomposition
Q=Qext ∪Qint, where

Qext = {(u, v) ∈Q : v ≥ 3u}, Qint = {(u, v) ∈Q : v ≤ 3u}.

In particular, note that r ≥ 23−1u > 0 in Qext.

Lemma 7.4. The following estimates hold:

sup
Qext

r3
|∂vλ| ≤ CK ,3A2

1, (7-5)

sup
Qext

rω+1
|∂2
v (rφ)| ≤ CI2+CK ,3,Mi A3

1. (7-6)

Proof. We begin by proving (7-5). Recall (4-6):

∂u∂v log λ=
1

1−µ
λ−1ν(∂vφ)

2
−

4m
(1−µ)r3λν.

Note that ∂v log λ= 0 on C1 by our choice of coordinates. Therefore, integrating the preceding equation
along the incoming direction from (1, v) to (u, v), we have

|∂v log λ(u, v)| ≤
∫ u

1

∣∣∣∣ 1
1−µ

λ−1ν(∂vφ)
2(u′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ 4m
(1−µ)r3λν(u

′, v)

∣∣∣∣ du′.

Then (7-5) follows using Proposition 5.3, (6-11) and (6-13). We remark that the power of r is dictated
by the second integral.

The proof of (7-6) is very similar. We start by recalling (4-2):

∂u(∂
2
v (rφ))=

2mλν
(1−µ)r2 ∂vφ+

ν

1−µ
(∂vφ)

2φ+
2mν

(1−µ)r2 (∂vλ)φ−
4m

(1−µ)r3λ
2νφ.

For u ≥ 1, we have r(u, v) ≤ r(1, v); moreover, by hypothesis, we have the estimate for the initial
data term

(1+ r(1, v))ω
′
+1
|∂2
v (rφ)(1, v)| ≤ I2.

Therefore, by the fundamental theorem of calculus, it suffices to bound∫ u

1

∣∣∣∣ 2mλν
(1−µ)r2 ∂vφ(u

′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ ν

1−µ
(∂vφ)

2φ(u′, v)
∣∣∣∣ du′

+

∫ u

1

∣∣∣∣ 2mν
(1−µ)r2 (∂vλ)φ(u

′, v)

∣∣∣∣ du′+
∫ u

1

∣∣∣∣ 4m
(1−µ)r3λ

2νφ(u′, v)
∣∣∣∣ du′

by CK ,3,Mi A3
1r−(ω+1). This is an easy consequence of Proposition 5.3, (3-1), (6-11), (6-13) and also (7-5),

which has just been established. Note that the last term is what limits ω ≤ 3. �
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7C. Propagation of u-decay for ∂2
u(rφ) and ∂uν. Here, we show that certain u-decay for ∂2

u (rφ) and ∂uν

proved in Qint can be propagated to Q. The technique employed is very similar to that in the previous
subsection.

Lemma 7.5. For U ≥ 1, suppose that there exist finite positive constants A, k1 and k2 such that

0≤ k1 ≤ 2ω+ 1, 0≤ k2 ≤ 3ω+ 1

and, for u ∈ [1,U ], we have

sup
Cu∩Qint

uk1 |∂uν| ≤ A and sup
Cu∩Qint

uk2 |∂2
u (rφ)| ≤ A.

Then for u ∈ [1,U ], the following estimates hold:

sup
Cu

uk1 |∂uν| ≤ CK ,3A+CK ,3A2
1, (7-7)

sup
Cu

uk2 |∂2
u (rφ)| ≤ A+CK ,3A3

1+CK ,3A3
1 sup

Cu

u|∂uν|. (7-8)

Furthermore, the following alternative to (7-8) also holds:

sup
Cu

uk2 |∂2
u (rφ)| ≤ A+CK ,3A3

1+CK ,39

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′ · sup
Cu

uk2 |∂uν|. (7-9)

Proof. Let us begin with (7-7). Recall (4-7):

∂v∂u log ν =
1

1−µ
λν−1(∂uφ)

2
−

4m
(1−µ)r3λν.

Given (u, v) ∈Qext (with u ∈ [1,U ]), let us integrate this equation along the outgoing direction from
(u, 3u) to (u, v), take the absolute value and multiply by uk1 . Using the hypothesis

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uk1 |∂uν| ≤ A,

(7-7) is reduced to showing

uk1

∫
∞

3u

∣∣∣∣ 1
1−µ

λν−1(∂uφ)
2(u, v)

∣∣∣∣ dv ≤ CK ,3A2
1, (7-10)

uk1

∫
∞

3u

∣∣∣∣ 4m
(1−µ)r3λν(u, v)

∣∣∣∣ dv ≤ CK ,3A2
1, (7-11)

for u ∈ [1,U ].
Using Proposition 5.3 and (6-12), the left-hand side of (7-10) is bounded by

CK ,3A2
1 uk1−2ω

∫
∞

3u

1
r2λ dv ≤ CK ,3A2

1 uk1−2ωr−1(u, 3u).

As u ≥ 1 and r(u, 3u) ≥ 23−1u, (7-10) follows. Similarly, by (5-7) and (6-13), the left-hand side
of (7-11) is also bounded by‘CK ,3A2

1 uk1−2ωr−1(u, 3u), from which (7-11) immediately follows.
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Next, we turn to (7-8) and (7-9); as they are proved similarly to before, we will only outline the main
points. Recall (4-4):

∂v(∂
2
u (rφ))=

2mλν
(1−µ)r2 ∂uφ+

λ

1−µ
(∂uφ)

2φ+
2mλ

(1−µ)r2 (∂uν)φ−
4m

(1−µ)r3λν
2φ.

Fix (u, v)∈Qext with u ∈ [1,U ]. We then integrate the preceding equation along the outgoing direction
from (u, 3u) to (u, v), take the absolute value and multiply by uk2 . In order to prove (7-8), in view of the
hypothesis

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uk2 |∂2
u (rφ)| ≤ A,

it suffices to establish the following estimates for u ∈ [1,U ]:

uk2

∫
∞

3u

∣∣∣∣ 2mλν
(1−µ)r2 ∂uφ(u, v)

∣∣∣∣ dv ≤ CK ,3A3
1,

uk2

∫
∞

3u

∣∣∣∣ λ

1−µ
(∂uφ)

2φ(u, v)
∣∣∣∣ dv ≤ CK ,3A3

1,

uk2

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2 (∂uν)φ(u, v)

∣∣∣∣ dv ≤ CK ,3A3
1 sup

Q
u|∂uν|,

uk2

∫
∞

3u

∣∣∣∣ 4m
(1−µ)r3λν

2φ(u, v)
∣∣∣∣ dv ≤ CK ,3A3

1.

The proof of these estimates is similar to that of (7-10) and (7-11); we omit the details. To prove (7-9),
we replace the third estimate by

uk2

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2 (∂uν)φ(u, v)

∣∣∣∣ dv ≤ CK ,39

∫
∞

3u

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′ · sup
Cu

uk2 |∂uν|,

which is an easy consequence of Proposition 5.3. �

7D. Full decay for ∂2
v (rφ), ∂2

u(rφ), ∂vλ and ∂uν. With all the preparations so far, we are finally ready
to prove Theorem 3.2. Our proof consists of two steps. The first step is to use the local BV scattering
assumption to prove a preliminary decay rate of u−ω for ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν. In this step, it is

crucial to pass to the renormalized variables and exploit the null structure of (SSESF), in order to utilize
the a priori bounds in the local BV scattering assumption. The second step to upgrade these decay rates
to those that are claimed in Theorem 3.2. Thanks to the preliminary u−ω decay from the first step, the
null structure is not necessary at this point.

We now begin with the first step. The null structure of (SSESF), as demonstrated in Section 4C, is
used in an essential way.

Proposition 7.6. There exists a finite constant A′2 > 0 such that

|∂2
v (rφ)| ≤ A′2u−ω, |∂2

u (rφ)| ≤ A′2u−ω,

|∂vλ| ≤ A′2u−ω, |∂uν| ≤ A′2u−ω.
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Proof. For U > 1, we define

B2(U ) := sup
u∈[1,U ]

sup
Cu

(
uω|∂2

v (rφ)| + uω|∂2
u (rφ)| + uω|∂vλ| + uω|∂uν|

)
. (7-12)

Notice that the above is finite for every fixed U due to Lemmas 7.4 and 7.5. As indicated earlier, we
need to use the null structure of the system (SSESF) as in Section 4C. For convenience, we define the
shorthands

F1 := ∂
2
v (rφ)− (∂vλ)φ,

G1 := ∂
2
u (rφ)− (∂uν)φ,

and

F2 := ∂v log λ−
λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)),

G2 := ∂u log(−ν)−
ν

1−µ
µ

r
+ ∂uφ(λ

−1∂v(rφ)− ν−1∂u(rφ)).

Then (4-3), (4-5), (4-8) and (4-9) may be rewritten in the following fashion:

∂u F1 = ∂uλ ∂vφ− ∂vλ ∂uφ, (7-13)

∂u F2 = ∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ)), (7-14)

∂vG1 = ∂vν ∂uφ− ∂uν ∂vφ, (7-15)

∂vG2 =−∂uφ ∂v(λ
−1∂v(rφ))+ ∂vφ ∂u(λ

−1∂v(rφ)). (7-16)

The following lemma is the key technical component of the proof:

Lemma 7.7. There exists a finite positive constant C = CA1,I2,K ,3 and positive function ε(u) satisfying

ε(u)→ 0 as u→∞

such that the following inequalities holds for 1≤ u2 ≤U :

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

(uω|F1| + uω|G1|)≤ C3I2+CK ,3,Mi A3
1+ ε(u2)B2(U ), (7-17)

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

(uω|F2| + uω|G2|)≤ CK ,3A2
1+ ε(u2)B2(U ). (7-18)

We defer the proof of this lemma. Instead, we first finish the proof of Proposition 7.6, assuming
Lemma 7.7.

First, we claim that (7-17) and (7-18) imply

sup
Qint∩{(u,v)∈Q:u∈[3u2,U ]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ H2+ (ε+ ε

′)(u2)B2(U ) (7-19)

for some constant 0< H2 <∞ and some positive function ε′(u2) which tends to zero as u2→∞.
The point is that F1, F2, G1 and G2 control ∂2

v (rφ), ∂
2
u (rφ), ∂vλ and ∂uν, respectively, up to higher-order

terms, which may be absorbed into the second term on the right-hand side. Indeed, consider u ∈ [3u2,U ].



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1647

For F1 and G1, we estimate

uω|∂2
v (rφ)(u, v)| = uω|F1+ (∂vλ)φ|(u, v)≤ uω|F1(u, v)| + sup

Cu

|φ| ·B2(U ),

uω|∂2
u (rφ)(u, v)| = uω|G1+ (∂uν)φ|(u, v)≤ uω|G1(u, v)| + sup

Cu

|φ| ·B2(U ),

which are acceptable, because supCu
|φ| → 0 as u ≥ 3u2 → ∞, by Theorem 3.1. For F2, we use

Proposition 5.3 to estimate

uω|∂vλ| = uωλ
∣∣∣∣F2+

λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ))
∣∣∣∣

≤
1
2 uω|F2| +

1
4 K3uω

∣∣∣∣µr
∣∣∣∣+ 1

23uω|∂vφ|
(
|∂v(rφ)| + |∂u(rφ)|

)
.

Applying (7-3) (from Lemma 7.3) to the second term on the last line, and then using Lemma 7.2 to
control uω|∂vφ|, we arrive at

uω|∂vλ(u, v)| ≤ 1
2 uω|F2(u, v)| +CK ,39 sup

Cu

(
|∂v(rφ)| + |∂u(rφ)|

)
·B2(U ),

which is acceptable in view of Theorem 3.1. Proceeding similarly, but also using the second inequality of
Lemma 7.2 to control |∂uφ|, we obtain

uω|∂uν(u, v)| ≤ K uω|G2(u, v)| +CK ,39 sup
Cu

(
|∂v(rφ)| + |∂u(rφ)|

)
·B2(U ).

Combining these estimates with (7-17) and (7-18), we conclude (7-19) with

H2 = C3I2+CK ,3,Mi A3
1+CK ,3A2

1, (7-20)

ε′(u2)= C sup
u≥3u2

|φ| +CK ,39 sup
u≥3u2

(
|∂v(rφ)| + |∂u(rφ)|

)
. (7-21)

Next, note that the (nondecreasing) function

H ′2(u2) := sup
Qint∩{(u,v)∈Q:u∈[1,3u2]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≥ 0 (7-22)

is always finite for any fixed u2 ≥ 1, as the region Qint ∩ {(u, v) ∈Q : u ∈ [1, 3u2]} is compact and each
of these terms is a continuous function, since (φ, r,m) is a C1 solution (see Definition 2.2). Combining
with (7-19), we obtain

sup
Qint∩{(u,v)∈Q:u∈[1,U ]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ H2+ H ′2(u2)+ (ε+ ε

′)(u2)B2(U )

for every u2 ∈ [1,U ].
Now apply (7-7) and (7-9) in Lemma 7.5 to ∂2

u (rφ), ∂uν. Also apply Lemma 7.4 (along with the fact
that r(u, v)≥ 23−1u in Qext and ω≤ 3) to ∂2

v (rφ), ∂vλ in Qext. Then we see that there exist a nonnegative
and nondecreasing function H ′′2 (u2) and a positive function ε′′(u2) such that

B2(U )≤ H ′′2 (u2)+ ε
′′(u2)B2(U )
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and ε′′(u2)→ 0 as u2→∞. Taking u2 sufficiently large, the second term on the right-hand side can
be absorbed into the left-hand side; then we conclude that B2(U ) ≤ CA1,K ,3H ′′2 (u2). As this bound is
independent of U , Proposition 7.6 then follows. �

Remark 7.8. Using (7-7) and (7-9) in Lemma 7.5 and (7-5)–(7-6) in Lemma 7.4, the functions H ′′2 (u2)

and ε′′(u2) can be explicitly bounded from above as follows:

H ′′2 (u2)≤ CK ,3

(
1+9

∫
∞

3

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′
)
· (H2+ H ′(u2)+ A2

1+ A3
1)

+CI2+CK ,3A2
1+CK ,3,Mi A3

1, (7-23)

ε′′(u2)≤ CK ,3

(
1+9

∫
∞

3

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣(u, v′) dv′
)
· (ε+ ε′)(u2). (7-24)

These bounds will be useful in our proof of Theorem 3.15 in Section 9.

At this point, in order to complete the proof of Proposition 7.6, we are only left to prove Lemma 7.7.

Proof of Lemma 7.7. Let (u, v) ∈Qint (i.e., v ∈ [u, 3u]) with u ∈ [3u2,U ]. In this proof, we will use the
notation ε(u2) to refer to a positive quantity which may be made arbitrarily small by choosing u2 large
enough, which may vary from line to line.

We first estimate F1 and F2. Integrating (7-13) and (7-14) along the incoming direction from
(1

3 u, v
)

to (u, v), we obtain

|F1(u, v)| ≤
∣∣F1
( 1

3 u, v
)∣∣+ ∫ u

u/3
|∂uλ ∂vφ(u′, v)| + |∂vλ ∂uφ(u′, v)| du′,

|F2(u, v)| ≤
∣∣F2
( 1

3 u, v
)∣∣+ ∫ u

u/3
|∂uφ ∂v(ν

−1∂u(rφ))(u′, v)| + |∂vφ ∂u(ν
−1∂u(rφ))(u′, v)| du′.

Multiply both sides of these inequalities by uω. For v ∈ [u, 3u], note that
( 1

3 u, v
)
∈ Qext and

u ≤ 3
23r

( 1
3 u, v

)
. Therefore, using Theorem 3.1 for φ and ∂v(rφ), Corollary 6.9 for ∂vφ, Lemma 7.3

for µ/r , and Lemma 7.4 for ∂2
v (rφ) and ∂vλ, we have

uω
∣∣F1
( 1

3 u, v
)∣∣≤ C3rω

(
|∂2
v (rφ)| + |(∂vλ)φ|

)(1
3 u, v

)
≤ C3I2+CK ,3,Mi A3

1,

uω
∣∣F2
( 1

3 u, v
)∣∣≤ C3rω

(
|λ−1∂vλ| +

µ

1−µ
λ

r
+
∣∣∂vφ(λ−1∂v(rφ)− ν−1∂u(rφ))

∣∣)( 1
3 u, v

)
≤ CK ,3A2

1.

Therefore, we only need to deal with the u′-integrals. For u ∈ [3u2,U ], we claim that

uω
∫ u

u/3
|∂uλ(u′, v)||∂vφ(u′, v)| du′ ≤ ε(u2)B2(U ), (7-25)

uω
∫ u

u/3
|∂vλ(u′, v)||∂uφ(u′, v)| du′ ≤ ε(u2)B2(U ), (7-26)



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1649

uω
∫ u

u/3
|∂uφ(u′, v)||∂v(ν−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ), (7-27)

uω
∫ u

u/3
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ). (7-28)

Proof of (7-25). We proceed similarly as in the proof of Theorem 3.1. By (2-6), (5-9) and Lemma 7.2,
we estimate

uω
∫ u

u/3
|∂uλ(u′, v)||∂vφ(u′, v)| du′

≤ C3

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω
(
|∂2
v (rφ)| +9|∂vλ|

)
≤ C3,9

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)
B2(U ).

Thus (7-25) follows by Lemma 6.1.

Proof of (7-26). We have

uω
∫ u

u/3
|∂vλ(u′, v)||∂uφ(u′, v)| du′ ≤ C

(∫ v

u2

|∂uφ(u′, v)| du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω|∂vλ|

≤ C
(∫ v

u2

|∂uφ(u′, v)| du′
)
B2(U ).

Thus (7-26) follows by Lemma 7.1.

Proof of (7-27). We start with the identity

∂v(ν
−1∂u(rφ))=−

2m
(1−µ)r2λ(ν

−1∂u(rφ)−φ),

which is readily verifiable using (2-6) and (2-8). By (5-10) and (5-32), we estimate

uω
∫ u

u/3
|∂uφ(u′, v)||∂v(ν−1∂u(rφ))(u′, v)| du′

≤ CK ,39

(∫ v

u2

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′
)

sup
u′∈[u/3,u]

sup
Cu′

(u′)ω|∂uφ|.

The u′-integral vanishes as u2 → ∞ by Lemma 6.1. On the other hand, by Lemma 7.2 and
Proposition 5.3, we have

sup
Cu′

(u′)ω|∂uφ| ≤ CK ,3 sup
Cu′

(u′)ω|∂vφ| ≤ CK ,3,9B2(U ) (7-29)

for any u′ ∈ [1,U ]. Therefore, (7-27) follows.
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Proof of (7-28). Here we divide the integral into two, one in Qcpt and the other outside. Recall the
notation u?(v) = sup{u ∈ [1, v] : r(u, v) ≥ R}. Below, we will consider the case u?(v) ∈

[ 1
3 u, u

]
, i.e.,

when the line segment
{
(u′, v) ∈Q : u′ ∈

[ 1
3 u, u

]}
crosses {r = R}; the other case is easier and can be

handled with a minor modification.
We first deal with the integral over the portion in Qcpt. We claim that

uω
∫ u

u?(v)
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′ ≤ ε(u2)B2(U ).

This is an easy consequence of the bound for |∂vφ| in Lemma 7.2, the fact that u and u′ are comparable
over the domain of integration, and

sup
v∈[u2,∞)

∫
Cv∩{u≥u2}∩Qcpt

|∂u(ν
−1∂u(rφ))| → 0 as u2→∞,

which follows from (3-3), (5-6) and Theorem 5.14.
We now consider the remaining contribution to the integral. We begin as follows:

uω
∫ u?(v)

u/3
|∂vφ(u′, v)||∂u(ν

−1∂u(rφ))(u′, v)| du′

≤ CK ,3

(∫ u?(v)

u/3
|∂vφ(u′, v)| du′

)
sup

u′∈[u/3,u?(v)]
sup
Cu′

(u′)ω
(
|∂2

u (rφ)| +9|∂uν|
)

≤ CK ,3,9

(∫ u?(v)

u/3
|∂vφ(u′, v)| du′

)
B2(U ).

For u′ ∈
[1

3 u, u?(v)
]
, we have r(u′, v)≥ R. Thus, by (6-11), we have∫ u?(v)

u/3
|∂vφ(u′, v)| du′ ≤

CK A1

R

∫
∞

u2

(u′)−ω du′ ≤
CK A1

R
u−(ω−1)

2 ,

which vanishes as u2→∞. Therefore, in the case under consideration, (7-28) follows.

We have therefore obtained the desired bounds for F1 and F2. Next, we estimate G1 and G2. Let us
integrate (7-15) and (7-16) along the outgoing direction from (u, u) on the axis to (u, v). Then we obtain

|G1(u, v)| ≤ lim
v′→u+

|G1(u, v′)| +
∫ v

u
|∂vν ∂uφ(u, v′)| + |∂uν ∂vφ(u, v′)| dv′,

|G2(u, v)| ≤ lim
v′→u+

|G2(u, v′)| +
∫ v

u
|∂vφ ∂u(λ

−1∂v(rφ))(u, v′)| + |∂uφ ∂v(λ
−1∂v(rφ))(u, v′)| dv′.

Note that

lim
v→u+

µ

r
(u, v)= 0 and lim

v→u+
(λ−1∂v(rφ)(u, v)− ν−1∂u(rφ)(u, v))= 0,

since (φ, r,m) is a C1 solution. It follows that limv→u+ ∂u∂v(rφ)(u, v)= 0 and limv→u+ ∂u∂vr(u, v)= 0.
Moreover, we have

lim
v→u+

∂2
v (rφ)(u, v)=− lim

v→u+
∂2

u (rφ)(u, v) and lim
v→u+

∂vλ(u, v)=− lim
v→u+

∂uν(u, v).
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As a consequence,

lim
v′→u+

G1(u, v′)=− lim
v′→u+

F1(u, v′) and lim
v′→u+

G2(u, v′)= lim
v′→u+

F2(u, v′).

Therefore, by the previous estimates for F1 and F2, we have

uω lim
v′→u+

|G1(u, v′)| ≤ C3I2+CK ,3,Mi A3
1+ ε(u2)B2(U ),

uω lim
v′→u+

|G2(u, v′)| ≤ CK ,3A2
1+ ε(u2)B2(U ),

which are acceptable. Recalling that we are considering (u, v) ∈Qint, hence v ∈ [u, 3u], we are now left
to establish the following estimates:

uω
∫ 3u

u
|∂vν(u, v′)||∂uφ(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-30)

uω
∫ 3u

u
|∂uν(u, v′)||∂vφ(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-31)

uω
∫ 3u

u
|∂vφ(u, v′)||∂u(λ

−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ), (7-32)

uω
∫ 3u

u
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ). (7-33)

Proof of (7-30). Substituting ∂vν by (2-6) and using (7-29), we have

uω
∫ 3u

u
|∂vν(u, v′)||∂uφ(u, v′)| dv′ ≤ K

(∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)

sup
v′∈[u,3u]

uω|∂uφ(u, v′)|

≤ CK ,3,9

(
sup

u≥3u2

∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)
B2(U ).

Thus (7-30) follows by Lemma 6.1.

Proof of (7-31). We have

uω
∫ 3u

u
|∂uν(u, v′)||∂vφ(u, v′)| dv′ ≤

∫
∞

u
|∂vφ(u, v′)| dv′ sup

v′∈[u,3u]
uω|∂uν(u, v′)|

≤

(
sup

u≥3u2

∫
∞

u
|∂vφ(u, v′)| dv′

)
B2(U ).

Thus (7-31) follows by Lemma 7.1.

Proof of (7-32). By (2-6) and (2-8), we have the identity

∂u(λ
−1∂v(rφ))=−

2m
(1−µ)r2 ν(λ

−1∂v(rφ)−φ).
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Then, by Proposition 5.3, we have

uω
∫ 3u

u
|∂vφ(u, v′)||∂u(λ

−1∂v(rφ))(u, v′)| dv′

≤ CK ,39

(∫
∞

u

∣∣∣∣ 2mλ
(1−µ)r2 (u, v

′)

∣∣∣∣ dv′
)

sup
v′∈[u,3u]

uω|∂vφ(u, v′)|.

Now (7-32) follows by Lemmas 6.1 and 7.2 and (5-9).

Proof of (7-33). As in the proof of (7-28), we will divide the integral into two pieces. More precisely,
let us define v?(u) to be the unique v-value such that r(u, v?(u)) = R. Assuming v?(u) ∈ [u, 3u], the
integral

∫ 3u
u will be divided into

∫ v?(u)
u and

∫ 3u
v?(u). The remaining case v?(u) > 3u can be dealt with by

adapting the argument for the first integral.
For the first integral, we claim that

uω
∫ v?(u)

u
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′ ≤ ε(u2)B2(U ).

From the locally BV scattering assumption (2-12), we have

sup
u∈[3u2,∞)

∫
Cu∩Qcpt

|∂v(λ
−1∂v(rφ))| → 0 as u2→∞.

Combined with (7-29), the claim follows.
Next, we turn to the second integral. By (5-5) and (5-9), we estimate

uω
∫ 3u

v?(u)
|∂uφ(u, v′)||∂v(λ−1∂v(rφ))(u, v′)| dv′

≤ sup
v′∈[v?(u),3u]

uω
∣∣∂v(λ−1∂v(rφ))(u, v′)

∣∣ ∫ 3u

v?(u)
|∂uφ(u, v′)| dv′

≤ C3,9B2(U )
∫ 3u

v?(u)
|∂uφ(u, v′)| dv′.

For v′ ∈ [v?(u), 3u], we have r(u, v)≥ R. Thus, by (6-12), we have∫ 3u

v?(u)
|∂uφ(u, v′)| dv′ ≤

CK A1

R

∫ 3u

u
u−ω dv′ ≤

CK A1

R
u−(ω−1)

2 ,

which vanishes as u2→∞, and therefore finishes the proof of (7-33). We remark that the fact that we
are in Qint is used crucially here, as otherwise the integral would not be convergent. �

Remark 7.9. In the case where we have global BV scattering (i.e., conditions (2) and (3) of Definition 2.4
are satisfied with R =∞), we can take R =∞ in the preceding argument to obtain the following explicit
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upper bound on ε(u2):

ε(u2)≤ CK ,3,9 sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

∣∣∣∣ 2mν
(1−µ)r2

∣∣∣∣+C sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

|∂uφ|

+CK ,3,9 sup
v∈[u2,∞)

∫
Cv∩{u≥u2}

∣∣∂u(ν
−1∂u(rφ))

∣∣
+CK ,3,9 sup

u≥3u2

∫
Cu

∣∣∣∣ 2mλ
(1−µ)r2

∣∣∣∣+C sup
u≥3u2

∫
Cu

|∂vφ|

+CK ,3,9 sup
u∈[3u2,∞)

∫
Cu

∣∣∂v(λ−1∂v(rφ))
∣∣. (7-34)

This will be useful in our proof of the sharp decay rate in the case of small BV norm (Theorem 3.15)
in Section 9.

In the second step of our proof of Theorem 3.2, we use the preliminary u−ω decay proved in
Proposition 7.6 to obtain the optimal the u-decay. Key to this step is the following proposition, which
claims optimal u-decay in Qint:

Proposition 7.10. There exists a constant 0< A′′2 <∞ such that

sup
Qint

uω+1
|∂2
v (rφ)| ≤ A′′2, (7-35)

sup
Qint

uω+1
|∂2

u (rφ)| ≤ A′′2, (7-36)

sup
Qint

u3
|∂vλ| ≤ A′′2, (7-37)

sup
Qint

u3
|∂uν| ≤ A′′2. (7-38)

Once we establish Proposition 7.10, the desired decay for ∂2
v (rφ) and ∂vλ follow from Lemma 7.4

and the fact that r ≥ 23−1u in Qext. Furthermore, the desired decay for ∂2
u (rφ) and ∂uν follow from

Lemma 7.5.

Proof. Thanks to the fact that we have pointwise bounds for sufficient number of derivatives (albeit with
suboptimal decay) near 0 at this point, it suffices to work with the “nonrenormalized” equations (4-2),
(4-4), (4-6) and (4-7). In particular, we need not utilize the null structure of (SSESF).

Let (u, v) ∈ Qint (i.e., v ∈ [u, 3u]) with u ≥ 3. We begin with (7-35). Integrating ∂u∂
2
v (rφ) in the

u-direction from 1
3 u to u, multiplying by uω+1 and using r

( 1
3 u, v

)
≥

2
33
−1u, we obtain

uω+1
|∂2
v (rφ)|(u, v)≤ C3rω+1

|∂2
v (rφ)|

( 1
3 u, v

)
+ uω+1

∫ u

u/3
|∂u∂

2
v (rφ)|(u

′, v) du′. (7-39)

Since
( 1

3 u, v
)
∈Qext, the first term on the right-hand side is bounded by C3I2+CK ,3,Mi A3

1, thanks to
Lemma 7.4. To estimate the u′-integral, we substitute ∂u∂

2
v (rφ) by (4-2). Then, applying Proposition 5.3,
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Lemma 7.2, Lemma 7.3, Theorem 3.1 and Proposition 7.6, we obtain

|∂u∂
2
v (rφ)|(u

′, v)≤ CA1,K ,3(u
′)−3ωA1(A′2)

2.

Thus we have

uω+1
|∂2
v (rφ)|(u, v)≤ C3I2+CK ,3,Mi A3

1+CA1,K ,3A1(A′2)
2, (7-40)

where we have used the fact that ω > 1, and thus 3ω− 1> ω+ 1, to throw away the u-weight in the last
term. This proves (7-35).

Next, we prove (7-36). Integrating ∂v∂2
u (rφ) in the v-direction from u+ to v and multiplying by uω+1,

we have

uω+1
|∂2

u (rφ)|(u, v)≤ lim
v′→u+

uω+1
|∂2

u (rφ)|(u, v
′)+ uω+1

∫ 3u

u
|∂v∂

2
u (rφ)|(u, v

′) dv′. (7-41)

Recall that limv′→u+ ∂
2
u (rφ)(u, v

′)= limv′→u+ ∂
2
v (rφ)(u, v

′), as (φ, r,m) is a C1 solution. Thus the
first term on the right-hand side can be estimated via (7-40). Substitute ∂v∂2

u (rφ) by (4-4) and apply, as
before, Proposition 5.3, Lemma 7.2, Lemma 7.3, Theorem 3.1 and Proposition 7.6. Then we have

|∂v∂
2
u (rφ)|(u, v

′)≤ CA1,K ,3u−3ωA1(A′2)
2.

It now follows that

uω+1
|∂2

u (rφ)|(u, v)≤ C3I2+CK ,3,Mi A3
1+CA1,K ,3A1(A′2)

2, (7-42)

which proves (7-36).
At this point, combining Lemma 7.2, Theorem 3.1, Lemma 7.4 and (7-40), note that we have the

following improved u-decay for ∂vφ:

sup
Q

uω+1
|∂vφ| ≤ C3 sup

Q

(
uω+1
|∂2
v (rφ)| + u A1|∂vλ|

)
≤ B, (7-43)

where
B := C3I2+CK ,3,Mi A3

1+CA1,K ,3A1(A′2)
2
+C3A1 A′2. (7-44)

We now turn to (7-37). Integrating ∂u∂v log λ in the u-direction from 1
3 u to u, multiplying by u3 and

using r
( 1

3 u, v
)
≥

2
33
−1u, we obtain

u3
|∂v log λ|(u, v)≤ Cr3

|∂v log λ|
( 1

3 u, v
)
+ u3

∫ u

u/3
|∂u∂v log λ|(u′, v) du′. (7-45)

Since
( 1

3 u, v
)
∈Qext, the first term on the right-hand side is bounded by CK ,3A2

1, by Lemma 7.4 and
the fact that λ−1

≤ 3. Next, substituting ∂u log λ by (4-6), applying Proposition 5.3, Lemma 7.3 and
Lemma 7.2 and using the improved bound (7-43), we have

|∂u∂v log λ|(u′, v)≤ CK ,3B2(u′)−2(ω+1).

Therefore
u3
|∂vλ|(u, v)≤ CK ,3A2

1+CK ,3B2, (7-46)
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where we used 2(ω+ 1)− 1> 3 to throw away the u-weight in the last term. This proves (7-37).
Finally, we prove (7-38). Integrating ∂v∂u log ν in the v-direction from u+ to v and multiplying by u3,

we have

u3
|∂u log ν|(u, v)≤ lim

v′→u+
u3
|∂u log ν|(u, v′)+ u3

∫ 3u

u
|∂v∂u log ν|(u, v′) dv′. (7-47)

Since limv′→u+ ∂uν(u, v′)=− limv′→u+ ∂vλ(u, v′), the first term is bounded by (7-46). Furthermore,
substituting ∂v∂u log ν by (4-7) and applying Proposition 5.3, Lemma 7.3 and Lemma 7.2 and using the
improved bound (7-43), we have

|∂v∂u log ν|(u, v′)≤ CK ,3B2u−2(ω+1).

As before, it follows that
u3
|∂uν|(u, v)≤ CK ,3A2

1+CK ,3B2, (7-48)

which proves (7-38). �

Remark 7.11. Combining (7-40), (7-42), (7-46) and (7-48), we see that Proposition 7.10 holds with

A′′2 ≤ C3I2+CK ,3,Mi A3
1+CA1,K ,3A1(A′2)

2
+CK ,3A2

1+CK ,3B2, (7-49)

where B is as in (7-44).

Remark 7.12. According to the argument of this subsection, note that the size of A′2 in Proposition 7.6
depends on the choice of u2 through the term H ′2(u2), where the size of u2 depends on the rate of
convergence of ε′′(u2)→ 0 as u2→∞. This explains why A2 does not depend only on the size of the
initial data, as remarked in Section 3. On the other hand, as stated in Theorem 3.15(2), we shall show
that, in the case of small BV initial data, A2 depends only on the size of the initial data. To achieve this,
we show in Section 9 that we may take u2 = 1 under this small data assumption.

7E. Additional decay estimates. As in the previous section, we conclude this section by providing
additional decay rates concerning second derivatives of φ and r and improved decay for m near 0.

Corollary 7.13. Let (φ, r,m) be a locally BV scattering solution to (SSESF) with asymptotically flat C1

initial data of order ω′. Let A1 and A2 be the constants in Theorems 3.1 and 3.2, respectively. Then the
following bounds hold:

|∂vφ| ≤ C3(A1+ A2+ A1 A2)min{u−(ω+1), r−2u−(ω−1)
} (7-50)

|∂uφ| ≤ CK ,3(A1+ A2+ A1 A2)min{u−(ω+1), r−1u−ω} (7-51)

|∂2
vφ| ≤ C3(A1+ A2+ A1 A2)min{r−1u−(ω+1), r−3u−(ω−1)

}, (7-52)

|∂u∂vφ| ≤ CK ,3(A1+ A2+ A1 A2)min{r−1u−(ω+1), r−2u−ω}, (7-53)

|∂2
uφ| ≤ CK ,3(A1+ A2+ A1 A2)r−1u−(ω+1), (7-54)

|∂u∂vr | ≤ CK ,3(A1+ A2+ A1 A2)
2 min{ru−(2ω+2), r−2u−(2ω−1)

}, (7-55)

m ≤ CK ,3(A1+ A2+ A1 A2)
2 min{r3u−(2ω+2), u−(2ω−1)

}. (7-56)
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This corollary follows immediately from the estimates derived in Theorem 3.2. We sketch the proof:

Proof. First, note that (7-50) and (7-51) follows from Corollary 6.9, Theorem 3.2 and Lemma 7.2. Next,
(7-52) and (7-54) are easy consequences of the preceding estimates, Theorems 3.1 and 3.2, and the
identities

r ∂2
vφ = ∂

2
v (rφ)− (∂vλ)φ− 2λ ∂vφ, r ∂2

uφ = ∂
2
u (rφ)− (∂uν)φ− 2ν ∂uφ.

On the other hand, for (7-53), we use the identity

r∂u∂vφ =−λ ∂uφ− ν ∂vφ,

which may be verified from (2-6) and (2-8).
Next, (7-56) follows from Corollary 6.9, Lemma 7.3 and (7-50). Finally, using Corollary 5.5,

Lemma 5.10, (7-56) and (2-6), we conclude (7-55). �

8. Decay and blow-up at infinity

In this section, we prove Theorem 3.14, that is, unless the solution blows up at infinity, a “future causally
geodesically complete” solution scatters in BV.

Take a BV solution to (SSESF) satisfying the hypotheses of Theorem 3.14 which does not blow up
at infinity. Note, in particular, that Q = R by (1) of Definition 2.4 and Lemma 4.2. In order to prove
Theorem 3.14, our goal is to show that such a spacetime is in fact BV scattering, i.e., (1), (2) and (3) in
Definition 2.4 hold and, moreover, (3) holds with R =∞.

The main step will be to show that there exists a constant C3 such that, for every ε > 0, there exists U
such that, for every u ≥U , we have ∫

Cu

|∂2
v (rφ)| +

∫
Cu

|∂vλ| ≤ C3ε. (8-1)

This will be achieved in a sequence of lemmas and propositions below.
Before we proceed, we first prove a preliminary bound on λ:

Proposition 8.1. There exists 0<3<∞ such that

3−1
≤ λ(u, v)≤ 1

2 . (8-2)

Proof. By (1) in Definition 3.12, there exists 0<3<∞ such that sup λ−1
0 ≤3. As limu→v− λ0(u)=

limu→v− λ(u′, v) (see [Christodoulou 1993, Section 7]), it follows from Lemma 5.4 that, for every
(u, v) ∈Q, we have the estimate (8-2). �

We now proceed to show (8-1). The first step is to show that, for u sufficiently large, the integrals
along Cu of |F1| and |F2| are small. Here, we recall the notation in the proof of Proposition 7.6,

F1 := ∂
2
v (rφ)− (∂vλ)φ,

F2 := ∂v log λ−
λ

1−µ
µ

r
+ ∂vφ(λ

−1∂v(rφ)− ν−1∂u(rφ)).
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Once we obtain the desired bounds for F1 and F2, we then derive (8-1) from these bounds. This will be
the most technical part (see discussions in Remark 8.3).

First, we bound the integrals of F1 and F2:

Proposition 8.2. For every ε > 0, there exists V sufficiently large such that the following bound holds
for u ≥ V : ∫

Cu

(|F1| + |F2|)(u, v)≤ 3ε. (8-3)

Proof. By (2) and (3) in Definition 3.12, we have∫
∞

1

∫
∞

u
|∂vλ ∂uφ− ∂uλ ∂vφ| dv du <∞

and ∫
∞

1

∫
∞

u

∣∣∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))
∣∣ dv du <∞.

Thus, by choosing V sufficiently large, we have∫
∞

V

∫
∞

u
|∂vλ ∂uφ− ∂vλ ∂vφ| dv du < ε (8-4)

and ∫
∞

V

∫
∞

u

∣∣∂uφ ∂v(ν
−1∂u(rφ))− ∂vφ ∂u(ν

−1∂u(rφ))
∣∣ dv du < ε. (8-5)

From the initial conditions, we easily see that F1(1, · ) and F2(1, · ) obey
∫

C1
|F1| + |F2|<∞. Thus,

by choosing V larger if necessary, we have∫
∞

V
(|F1| + |F2|)(1, v) dv ≤ ε. (8-6)

Notice that, by equations (7-13) and (7-14), the estimates (8-4) and (8-5) control
∫∫
|∂u F1| du dv and∫∫

|∂u F2| du dv. Thus, we have ∫
∞

max{u,V }
(|F1| + |F2|)(u, v) dv ≤ 3ε

for every u ≥ 1. In particular, for u ≥ V , we have∫
Cu

(|F1| + |F2|)(u, v)≤ 3ε,

as desired. �

The inequality (8-3) is the starting point for our proof of (8-1). More precisely, our basic strategy is
to use a continuous induction on v, beginning from the axis, to remove the quadratic and higher terms
from (8-3) and infer (8-1).

Remark 8.3. Before beginning the proof in earnest, we would like to point out two technical nuisances
that we confront: First, in order to estimate the scalar field φ itself from F1 and F2, we need to integrate
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essentially from null infinity,16 which is opposite to the direction of our method of continuity. Second, as
∂v(rφ) is only assumed to be BV, the left-hand side of (8-1) is not continuous in v in general. To overcome
the first, we make use of the invariance of (SSESF) and of F1 and F2 under the change φ 7→ φ+ c. To
take care of the second, we carefully keep track of the evolution of discontinuities of ∂v(rφ).

Notice that, in order to obtain (8-1) from (8-3), we only need to integrate on a fixed hypersurface Cu .
We now fix u0 ≥ V and define a new function φu0 by

φu0(u, v) := φ(u, v)− lim
v′→u0+

φ(u0, v
′). (8-7)

As remarked before, note that (SSESF) is invariant under the change (φ, r,m) 7→ (φu0, r,m), that is,
(φu0, r,m) is still a solution to (SSESF). Moreover, it is easy to check that F1 and F2 are also invariant
under this change, i.e.,

F1 = ∂
2
v (rφu0)− (∂vλ)φu0,

F2 = ∂v log λ−
λ

1−µ
µ

r
+ ∂vφu0(λ

−1∂v(rφu0)− ν
−1∂u(rφu0)).

(8-8)

The new scalar field has been chosen so that φu0(u0, · ) and ∂v(rφu0)(u0, · ) vanish at the axis, that is,

lim
v→u0+

φu0(u0, v)= lim
v→u0+

∂v(rφu0)(u0, v)= lim
v→u0+

∂u(rφu0)(u0, v)= 0. (8-9)

We claim that the original scalar field φ(u, v) obeys the condition

lim
v→∞

φ(u0, v)= 0 (8-10)

for every u0 ≥ 1. Therefore, by the definition given in (8-7), we see that φ and φu0 are also related by

φ(u, v)= φu0(u, v)− lim
v′→∞

φu0(u, v
′). (8-11)

To establish the claim (8-10), we proceed as in the proof of Lemma 6.3, but work with φ rather
than rφ. Fix u0 > 1 and let r1 > 0 be a large number, to be determined. For each u ≥ 1, let v?1(u) be the
unique v-value such that r(u, v?1(u))= r1. Consider (u, v) ∈ {1≤ u ≤ u0} ∩ {r ≥ r1}. Using the uniform
bound of m and λ/(1−µ) in terms of the data at u = 1 (which holds thanks to monotonicity), we may
integrate (2-8) along the incoming direction to estimate

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
C0

r(u, v)
sup

u′∈[1,u]
|φ(u′, v)|,

16More precisely, φ is determined from ∂v(rφ), which in turn can be determined from
∫
|∂2
v (rφ)| by integrating

from v =∞. Another conceptual reason why information near v =∞ is relevant for estimating φ is that the initial condition
limv→∞ φ(1, v)= 0 implies that limv→∞ φ(u, v)= 0 for every u ≥ 1. See the discussion before (8-11).
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where C0 depends only on the data at u = 1. Integrating both sides in the outgoing direction from v?1(u)
to v (using (8-2) for the right-hand side) and dividing by r = r(u, v), we obtain

|φ(u, v)|

≤
r1

r
|φ(u,v?1(u))|+

r(1,v?1(u))
r

|φ(1,v?1(u))|+
r(1,v)

r
|φ(1,v)|+

C03

r
log r

r1
sup

1≤u′≤u,v≥v∗1 (u)
|φ|. (8-12)

Now the idea is to use (8-12) to first show that φ is bounded on the region {1 ≤ u ≤ u0} and then
use (8-12) again with the additional boundedness of φ to conclude that (8-10) holds. To begin with,
observe that φ is bounded on each set compact subset of Q, since it is a BV solution in the sense of
Definition 2.1. Combined with the hypothesis that φ(1, v)→ 0 as v→∞, we see that the first three
terms are bounded by a constant that depends on r1. On the other hand, by taking r1 sufficiently large, the
coefficient (C03/r) log(r/r1) of the last term can be made arbitrarily small for r ≥ r1. This smallness
allows us to absorb the last term to the left-hand side, and conclude the desired boundedness of φ on the
region {1≤ u ≤ u0}. Then, plugging in u = u0 and the uniform bound for φ into (8-12), the claim (8-10)
follows from the hypothesis limv→∞ φ(1, v)= 0.

Let

I1(u, v) :=
∫ v

u
|∂2
v (rφu0)|(u, v

′) dv′ and I2(u, v) :=
∫ v

u
|∂vλ|(u, v′) dv′.

In the following two lemmas, we will show that

I1(u0, v)≤ 3ε+C3 I1(u0, v)I2(u0, v), (8-13)

I2(u0, v)≤ 3ε+C3 I1(u0, v)
2(1+ I1(u0, v))

2(1+ I2(u0, v))
2eC3 I1(u0,v)

2(1+I2(u0,v)), (8-14)

for every V ≤ u0 ≤ v, with C3 independent of u0 and v.

Lemma 8.4. There exists a constant C3 > 0 such that, for every V ≤ u0 ≤ v,

I1(u0, v)≤ 3ε+C3 I1(u0, v)I2(u0, v).

Proof. In this proof, we fix u0 ≥ V and use the abbreviations

φ := φu0, ∂v(rφ) := ∂v(rφu0) and ∂2
v (rφ) := ∂

2
v (rφu0). (8-15)

By Lemma 5.1, we have

|φ(u0, v)| ≤
1
r

∫ v

u0

∂v(rφ)(u0, v
′) dv′ ≤3 sup

u0≤v′≤v

|∂v(rφ)(u0, v
′)|. (8-16)

By the fundamental theorem of calculus and (8-9), note that

sup
u0≤v′≤v

|∂v(rφ)(u0, v
′)| ≤ I1(u0, v). (8-17)
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Thus, recalling the definition of F1 in (8-8), we have

I1(u0, v)≤

∫ v

u0

|F1(u0, v
′)| dv′+

∫ v

u0

|∂vλ||φ|(u0, v
′) dv′

≤

∫ v

u0

|F1(u0, v
′)| dv′+3 I1(u0, v)I2(u0, v)

≤ 3ε+C3 I1(u0, v)I2(u0, v). �

We now move on to estimate I2(u0, v).

Lemma 8.5. There exists a constant C3 > 0 such that, for every V ≤ u0 ≤ v,

I2(u0, v)≤ 3ε+C3 I1(u0, v)
2(1+ I1(u0, v))

2(1+ I2(u0, v))
2eC3 I1(u0,v)

2(1+I2(u0,v)).

Proof. Again, we fix u0 ≥ V and use the abbreviation (8-15), as well as

∂u(rφ)(u, v) := ∂u(rφu0)(u, v). (8-18)

Recalling the equation for F2 in (8-8), in order to control I2(u0, v) from F2, we need to estimate∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ and
∫ v

u0

∂vφ(λ
−1∂v(rφ)− ν−1∂u(rφ))(u0, v

′) dv′.

By Lemma 5.11,∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ = log(1−µ(u0, v))+

∫ v

u0

r(∂vφ)2

λ
(u0, v

′) dv′.

Since Q=R, the integrand on the left-hand side is nonnegative. Notice furthermore that, since µ≥ 0,
log(1−µ(u0, v)) < 0. Thus,∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ ≤
∣∣∣∣∫ v

u0

r(∂vφ)2

λ
(u0, v

′) dv′
∣∣∣∣

≤

∫ v

u0

|∂vφ(u0, v
′)|

∣∣∣∣(∂v(rφ)λ
−φ

)
(u0, v

′)

∣∣∣∣ dv′

≤ 23I1(u0, v)

∫ v

u0

|∂vφ(u0, v
′)| dv′,

where we have used (8-16) and (8-17) on the last line. Using Lemma 5.2, we estimate the integral on the
last line by ∫ v

u0

|∂vφ(u0, v
′)| dv′ ≤

∫ v

u0

|∂v(λ
−1∂v(rφ))(u0, v

′)| dv′, (8-19)

and the right-hand side can in turn be estimated, using (8-17), by∫ v

u0

|∂v(λ
−1∂v(rφ))(u0, v

′)| dv′ ≤
∫ v

u0

λ−1
|∂2
v (rφ)(u0, v

′)| dv′+
∫ v

u0

λ−2
|∂vλ ∂v(rφ)(u0, v

′)| dv′

≤3I1(u0, v)+3
2 I1(u0, v)I2(u0, v).
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Therefore, we have ∫ v

u0

(
λ

1−µ
µ

r

)
(u0, v

′) dv′ ≤ C3 I1(u0, v)
2(1+ I2(u0, v)). (8-20)

We now move on to bound
∫ v

u0
∂vφ λ

−1∂v(rφ)(u0, v
′) dv′. Using (8-17) and (8-19), we easily estimate∫ v

u0

|∂vφ λ
−1∂v(rφ)(u0, v

′)|dv′ ≤3
∫ v

u0

|∂vφ|(u0, v
′) dv′ sup

u0≤v′≤v

|∂v(rφ)(u0, v
′)|

≤ C3 I1(u0, v)
2(1+ I2(u0, v)). (8-21)

Finally, we are only left to bound −
∫ v

u0
∂vφ ν

−1∂u(rφ)(u0, v
′)dv′. As before, we begin by estimating∫ v

u0

|∂vφ ν
−1∂u(rφ)(u0, v

′)| dv′ ≤
∫ v

u0

|∂vφ|(u0, v
′) dv′ sup

u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)|

≤ C3 I1(u0, v)(1+ I2(u0, v)) sup
u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)|. (8-22)

In this case, we do not wish to pull out ν as we have not assumed any bound on it. Instead, we consider
ν−1∂u(rφ) as a whole and note that

∂v(ν
−1∂u(rφ))=−

(
λ

1−µ
µ

r

)
ν−1∂u(rφ)+

(
λ

1−µ
µ

r

)
φ. (8-23)

Then (8-23) holds since, by (2-6) and (2-8), we have

∂v(ν
−1∂u(rφ))=−

(
λ

1−µ
µ

r

)
ν−1∂u(rφ)+

(
λ

1−µ
µ

r

)
φ

and, moreover, both the left-hand side and the right-hand side of the equation are invariant under the
transformation φ 7→ φ+ c.

Therefore, by the variation of constants formula and (8-9), we have

ν−1∂u(rφ)(u0, v)= e−J (u0,v)

∫ v

u0

eJ (u0,v
′) λ

1−µ
µ

r
φ(u0, v

′) dv′,

where

J (u0, v) :=

∫ v

u0

λ

1−µ
µ

r
(u0, v

′) dv′.

By (8-17) and (8-20), we have

sup
u0≤v′≤v

|ν−1∂u(rφ)(u0, v
′)| ≤ C3 I1(u0, v)

3(1+ I2(u0, v))eC3 I1(u0,v)
2(1+I2(u0,v)).

Then, by (8-22), we conclude that∫ v

u0

|∂vφ ν
−1∂u(rφ)(u0, v

′)| dv′ ≤ C3 I1(u0, v)
4(1+ I2(u0, v))

2eC3 I1(u0,v)
2(1+I2(u0,v)). (8-24)

Combining (8-20), (8-21) and (8-24), we conclude that (8-14) holds. �

Next, we apply (8-13) and (8-14) to show:
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Proposition 8.6. For u0 sufficiently large and v ≥ u0, we have

I1(u0, v)+ I2(u0, v)≤ C3ε.

Remark 8.7. If it is the case that
∫ v

u0

(
|∂2
v (rφ)| + |∂vλ|

)
(u0, v

′) dv′ is continuous in v for each fixed u0,
then the desired conclusion follows from (8-13) and (8-14) via a simple continuity argument in v. In
particular, the conclusion follows in the case where the initial data of ∂v(rφ) are in W 1,1 or C1. The only
remaining difficulty is, therefore, to control the size of the delta function singularities in ∂2

v (rφ) in the
general case where we only have a BV solution.

Proof. We begin by studying the propagation of discontinuities for a BV solution to (SSESF). In the
general case where ∂v(rφ)(1, · ) is only in BV and contains jump discontinuities (at which ∂v(rφ)(1, · )
is assumed to be right-continuous), notice that the jump discontinuities for a BV function are discrete,
i.e., they occur only at a (possibly infinite) sequence of points V < v1 < v2 < v3 < · · · . On the other
hand, note that, by the initial condition r = 2v on C1, we have λ(1, v)= 1

2 ; in particular, λ is continuous
initially.

Thanks to the initial condition, it follows that λ does not possess any discontinuities outside 0. Indeed,
from the definition of a BV solution, m and r are continuous. Then, by (2-6), we see that ν is Lipschitz in
the v-direction outside of 0, with bounded Lipschitz constant on each compact interval of u. Looking back
at (2-6) and recalling that λ(1, v)= 1

2 , we then see that λ does not possess any discontinuities outside 0,
as desired. Since λ is a priori in BV, it follows that

∫ v
u0
|∂vλ(u0, v

′)| dv′ is continuous in v ∈ (u0,∞) with∫ v
u0
|∂vλ(u0, v

′)| dv′→ 0 as v→ u0+.
By the above regularity statements and (2-8), as well as the fact that φ is continuous outside 0 by the

definition of a BV solution, it now follows that the jump discontinuities of ∂v(rφ) are propagated along
constant-vi curves. Therefore, for u0 ≥ V , we see that ∂v(rφ)(u0, v) is a right-continuous BV function
on (u0,∞) with jump discontinuities at u0 < v1 < v2 < v3 < · · · with the same sizes as ∂v(rφ)(1, v).
From (8-7), notice that, using the abbreviations in (8-15) and (8-18),∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ =
∫ v

u0

|(∂2
v (rφ)− c∂vλ)(u0, v

′)| dv′

for the constant c = limv→u0+ φ(u0, v), which is independent of v. Thanks to the continuity property
of λ(u0, · ), we see that the integral of |∂2

v (rφ)(u0, · )| has the same jump discontinuities as |∂2
v (rφ)(u0, · )|.

In particular, by (8-6), each jump of I1(u0, v) is at most of size ε.
Fix C3 > 1 to be larger than the maximum of the constants from (8-13) and (8-14). First, a standard

continuity argument using (8-13) and (8-14) implies that, if

lim
v→vi+

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 5C3ε and lim
v→vi+

∫ v

u0

|∂vλ(u0, v
′)| dv′ ≤ 5ε

(with the convention v0 := u0), then∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 4C3ε and
∫ v

u0

|∂vλ(u0, v
′)| dv′ ≤ 4ε

for vi < v < vi+1.



QUANTITATIVE DECAY RATES FOR DISPERSIVE SOLUTIONS TO THE EINSTEIN-SCALAR FIELD SYSTEM 1663

Assume, for the sake of contradiction, that the conclusion of the proposition is not satisfied. Recall
that the integral of |∂vλ| is continuous. Thus, we have that, for some vi with i > 0,

lim
v→vi−

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ ≤ 4C3ε

holds, but at the same time

lim
v→vi+

∫ v

u0

|∂2
v (rφ)(u0, v

′)| dv′ > 5C3ε.

However, we have seen that the size of the jump in I1(u0, v) is bounded by ε, which is smaller than C3ε
if C3 > 1. This leads to a contradiction and thus the conclusion of the proposition holds. �

We are now ready to conclude the proof of Theorem 3.14.

Proof of Theorem 3.14. We first establish (8-1). In what follows, we use the abbreviations in (8-15) and
(8-18), such as φ=φu0 . The idea is to transform back, (φ, r,m) 7→ (φ, r,m), using (8-11). Note that |∂vλ|
remains the same under this change, so it suffices to estimate |∂2

v (rφ)|. By (8-19) and Proposition 8.6, for
sufficiently large u0 the limit φ(u0,∞) := limv→∞ φ(u0, v) exists and satisfies

|φ(u0,∞)| ≤ C3ε,

where we note that C3 is independent of u0.
By (8-11), we have φ(u, v)= φ(u, v)−φ(u,∞) for all u. Thus, using Proposition 8.6, we estimate∫

∞

u0

|∂2
v (rφ)(u0, v)| dv =

∫
∞

u0

∣∣∂2
v (rφ(u0, v)− rφ(u0,∞))

∣∣ dv

≤

∫
∞

u0

|∂2
v (rφ)(u0, v)| dv+ |φ(u0,∞)|

∫
∞

u0

|∂vλ(u0, v)| dv

≤ C3(ε+ ε2).

Since u0 ≥ V is arbitrary, this proves (8-1).
Finally, we prove that conditions (2) and (3) of Definition 2.4 hold. Indeed, since ∂v log λ= λ−1∂vλ,

(3) in Definition 2.4 follows from (8-1) and (8-2); in fact, it holds with arbitrarily large R > 0. Next,
by (2-7), nonnegativity of 1−µ and µ (by Lemma 4.1) and the fact that m is invariant under φ 7→ φ,

m(u0, v)≤
1
2 sup

u0≤v′≤v

|(λ−1∂v(rφ)−φ)(u0, v
′)|

∫ v

u0

|∂vφ(u0, v
′)| dv′,

where the right-hand side is bounded by Cε,3ε (with Cε,3 nondecreasing in ε) by the estimates proved so
far. Therefore, (2) of Definition 2.4 follows. This concludes the proof of Theorem 3.14. �

9. Refinement in the small data case

In this section, we sketch a proof of Theorem 3.15. The idea is to revisit the proofs of the main theorems
(Theorems 3.1 and 3.2), and notice that all the required smallness can be obtained by taking initial total
variation of ∂v(rφ) small. Key to this idea is the following lemma:
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Lemma 9.1. There exist universal constants ε0 and C0 such that, for ε < ε0, the following holds: Suppose
that λ(1, · )= 1

2 and ∂v(rφ)(1, · ) is of bounded variation with∫
C1

|∂2
v (rφ)|< ε. (9-1)

Suppose furthermore that limv→∞ φ(1, v)=0. Then the maximal development (φ, r,m) satisfies condition
(1) of Definition 2.4 and obeys

sup
v∈[1,∞)

∫
Cv

∣∣∣∣ µ

1−µ
ν

r

∣∣∣∣+ sup
u∈[1,∞)

∫
Cu

∣∣∣∣ µ

1−µ
λ

r

∣∣∣∣≤ C0ε
2, (9-2)

sup
v∈[1,∞)

∫
Cv

|∂uφ| + sup
u∈[1,∞)

∫
Cu

|∂vφ| ≤ C0ε, (9-3)

sup
v∈[1,∞)

∫
Cv

(|∂2
u (rφ)| + ∂u log ν)+ sup

u∈[1,∞)

∫
Cu

(|∂2
v (rφ)| + ∂v log λ)≤ C0ε. (9-4)

Moreover, the bounds in Proposition 5.3 hold with

K +3≤ C0, 9 ≤ C0ε. (9-5)

Proof. This lemma is an easy consequence of Theorem 5.12 and Lemma 5.11 once we show

sup
Q
|∂v(rφ)| ≤ C0ε,

using the additional condition limv→∞ φ(1, v)= 0. By Lemma 5.2, note that
∫

C1
|∂vφ| ≤ Cε; therefore,

integrating from v =∞, we have limv→1+|φ(1, v)| ≤ Cε. Then, using (9-1) to integrate from v = 1,
where we note that limv→1+ φ(1, v)= limv→1+ ∂v(rφ)(1, v), we obtain

sup
C1

|∂v(rφ)| ≤ Cε.

Using (2-8′), ∂uλ≤ 0, Lemma 5.1 (to control |φ| from |∂v(rφ)|) and 1
3 ≤ λ≤

1
2 (by Theorem 5.12), it

follows that

sup
D(1,v)
|∂v(rφ)| ≤ sup

1≤v′≤v
|∂v(rφ)(1, v′)| + sup

(u,v)∈D(1,v)
sup

1≤u′≤u
|φ(u′, v)|

∫ u

1
(−∂uλ)(u′, v) du′

≤ Cε+ 1
2 sup
D(1,v)
|∂v(rφ)|,

which proves supQ|∂v(rφ)| ≤ C0ε, as desired. �

Equipped with Lemma 9.1, we now proceed to outline the proof of Theorem 3.15.

Proof of (1) in Theorem 3.15. That (φ, r,m) is globally BV scattering follows from Theorem 3.14
and the fact that initial data with small total variation cannot lead to a development which blows up at
infinity; the latter fact follows from Theorem 6.2 in [Christodoulou 1993], as well as estimates proved in
[Christodoulou 1993, Section 4].
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It remains to prove that (3-1)–(3-3) hold with A1 ≤ CI1(I1+ ε) if ε > 0 is sufficiently small. By (6-6),
it follows that Lemma 6.3 holds with H1 ≤ CI1(I1+ ε), and (6-7) in Lemma 6.6 becomes

sup
Cu

rω|∂v(rφ)| ≤ CI1u1(I1+ ε)+C Mi u−1
1 B1(U ). ((6-7)′)

Note that Mi ≤ CI2
1 . Then, repeating the arguments in Section 6D, we see that (6-10) becomes

B1(U )≤ CI1u1(I1+ ε)+C(I2
1 u−1

1 + ε
2)B1(U ). ((6-10)′)

It is important to note that the constant C in the last term does not depend on I1. Take u1=1000C(1+I15)
2.

Then, for ε > 0 sufficiently small (independent of I1), we derive

B1(U )≤ CI1(I1+ ε).

It then follows that (3-1) and (3-2) hold with A1 ≤ CI1(I1+ ε). Applying Lemma 6.5, we conclude
that (3-3) holds with A1 ≤ CI1(I1+ ε) as well. �

Proof of (2) in Theorem 3.15. We need to prove that (3-4)–(3-7) hold with A2 ≤ CI2(I2+ ε). The key is
to show that Proposition 7.6 holds with

A′2 ≤ CI2(I2+ ε). (9-6)

Indeed, by the explicit bounds on the constants (in particular, (7-5), (7-6), (7-7), (7-8), (7-44) and
(7-49)), the desired conclusion easily follows once (9-6) is established.

Note that I1 ≤ I2 by definition, and thus A1 ≤ CI2(I2+ ε) by the preceding proof. We furthermore
claim that the following statements hold:

• Lemma 7.7 holds with
ε(u2)≤ Cε, (9-7)

for every u2 ≥ 1.
• We have

H ′2(1)≤ CI2(I2+ ε), (9-8)

where we remind the reader that

H ′2(1)= sup
{(u,v):u∈[1,3],v∈[u,3u]}

uω
(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
,

according to (7-22).

The first claim follows easily from Lemma 9.1 and (7-34). For the second claim, since 1≤ u ≤ 3, it
suffices to prove17

sup
D(1,9)

(
|∂2
v (rφ)| + |∂

2
u (rφ)| + |∂vλ| + |∂uν|

)
≤ C(I2+ ε),

which follows from a persistence-of-regularity argument, similar to our proof of Lemma 7.7.

17Recall that D(1, 9)= {(u, v) : u ∈ [1, 3], v ∈ [u, 3u]} is the domain of dependence of C1 ∩ {1≤ v ≤ 9}.
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To conclude the proof, recall that we had

B2(U )≤ H ′′2 (u2)+ ε
′′(u2)B2(U ),

where B2(U ) was defined in (7-12), and H ′′2 (u2) and ε′′(u2) obey the bounds in (7-23) and (7-24),
respectively. Thanks to (9-7), it follows that we may take u2 = 1 and ε′′(1) ≤ Cε, where C does not
depend on I2. Next, since u2 = 1, we see that H ′′2 (1) ≤ CI2(I2 + ε), by (9-8). Therefore, for ε > 0
sufficiently small (independent of I2), we conclude that

B2(U )≤ CI2(I2+ ε),

which proves that Proposition 7.6 holds with (9-6), as desired. �

10. Optimality of the decay rates

In this section, we show the optimality of the decay rates obtained above, i.e., we prove Theorems 3.16
and 3.18.

10A. Optimality of the decay rates in the case 1< ω′ < 3. In this subsection, we prove Theorem 3.16.
More precisely, we will demonstrate that the proof of the upper bounds for φ and its derivatives can in
fact be sharpened to give also lower bounds for ∂v(rφ) and ∂u(rφ) if the initial data satisfy appropriate
lower bounds for ω < 3.

Proof of Theorem 3.16. We first prove the lower bound for ∂v(rφ). We split the spacetime into the exterior
region Qext and interior region Qint, as before. Notice that, in the exterior region, u . r and it suffices to
prove a lower bound for rω∂v(rφ). Similarly, in the interior region, r . u and it suffices to prove a lower
bound for uω∂v(rφ).

Revisiting the proof of Lemma 6.6, we note that, instead of controlling ∂v(rφ) by the initial data
and error terms, we can bound the difference between ∂v(rφ)(u, v) and the corresponding initial value
of ∂v(rφ)(1, v). More precisely, from the proof of Lemma 6.6, we have

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
u1K Mi

r2(u, v)(1+ r(u, v))
H1+

K M(u1)

u1rω(u, v)
B1(U )

in the case 2< ω < 3 and

|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤
ωK Mi

r(u, v)(1+ r(u, v))
H1+

ωK M(u1)

u1rω(u, v)
B1(U )

in the case 1< ω ≤ 2. By the decay results proved in Section 6D, we have

sup
u
(H1+B1(u))≤ A

for some constant A. Therefore, by choosing u1 sufficiently large, we have, in the region 3u ≤ v,

rω|∂v(rφ)(u, v)− ∂v(rφ)(1, v)| ≤ 1
4 L ,
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as long as u≥ u1. We now apply the assumption on the lower bound for the initial data rω∂v(rφ)(1, v)≥ L
for v ≥ V . Choosing u larger if necessary, we can assume that u ≥ V . Then, we derive that, in 3u ≤ v,

rω∂v(rφ)(u, v)≥ 1
2 L .

We now move to the interior region, where 3u ≥ v. To this end, we improve the bounds in (6-8). First,
notice that the lower bound in the exterior region implies that there exists L ′ such that

uω∂v(rφ)(u, v)≥ L ′ (10-1)

for 3u ≤ v. Then, integrating (2-8) along the incoming direction from
( 1

3 u, v
)

to (u, v), we get

|∂v(rφ)(u, v)− ∂v(rφ)
( 1

3 u, v
)
| ≤

1
2

(
sup

u′∈[u/3,u]
sup
Cu′

|φ|
) ∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′.

By Theorem 3.1, we have

sup
Cu

|φ| ≤ A1u−ω

for some A1 > 0. Lemma 6.1 implies that∫ u

u/3

∣∣∣∣ 2mν
(1−µ)r2 (u

′, v)

∣∣∣∣ du′→ 0

as u→∞. Thus the right-hand side can be bounded by 1
2 L ′uω after choosing u to be sufficiently large.

Combining this with the lower bound (10-1), we have

uω∂v(rφ)(u, v)≥ 1
2 L ′

for 3u ≤ v and u sufficiently large.
We now proceed to obtain the lower bound for ∂u(rφ) by revisiting the proof of Lemma 6.5. Integrating

(2-8) along the outgoing direction from (u, u) to (u, v), we have∣∣∂u(rφ)(u, v)− lim
v′→u+

∂u(rφ)(u, v′)
∣∣≤ ∫

Cu

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣. (10-2)

As before, we use Theorem 3.1, i.e.,

sup
Cu

|φ| ≤ A1u−ω

for some A1 > 0. By Lemma 6.1 and the upper bound (5-6) for |ν|, we have∫
Cu

∣∣∣∣ µλν

(1−µ)r

∣∣∣∣→ 0 as u→∞.

Therefore, we can choose u sufficiently large such that

uω
∫

Cu

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣≤ 1
4 L ′.
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Returning to (10-2) and recalling that, for u large,

− lim
v′→u+

∂u(rφ)(u, v′)= lim
v′→u+

∂v(rφ)(u, v′)≥ 1
2 L ′u−ω,

we have

−∂u(rφ)(u, v)≥ 1
4 L ′u−ω

for u sufficiently large, as desired. �

10B. Key lower bound lemma. The goal of the remainder of this section is to prove Theorem 3.18. In
this subsection we establish a sufficient condition for the desired lower bounds on the decay of φ in
terms of a number (called L) computed on I+. This will be an important ingredient for our proof of
Theorem 3.18 in the next subsection.

Lemma 10.1 (key lower bound lemma). Let (φ, r,m) be a C1 solution to (SSESF) which is locally BV
scattering and asymptotically flat initial data of order ω = 3 in C1. Suppose, furthermore, that

L := lim
v→∞

r3∂v(rφ)(1, v)+
∫
∞

1
(Mν∞8)(u) du 6= 0,

where M(u) := limv→∞m(u, v), ν∞(u) := limv→∞ ν(u, v) and 8(u) := limv→∞ rφ(u, v). Then there
exist constants U , L3 > 0 such that the following lower bounds for the decay of ∂v(rφ), ∂u(rφ) hold on
{(u, v) : u ≥U }:

|∂v(rφ)(u, v)| ≥ L3 min{r(u, v)−3, u−3
}, (10-3)

|∂u(rφ)(u, v)| ≥ L3u−3. (10-4)

Remark 10.2. By (10-3) and (10-4), ∂v(rφ) and ∂u(rφ) have definite signs. In fact, the proof below
shows that the signs of ∂v(rφ) and −∂u(rφ) agree with that of L.

Proof. Without loss of generality, assume that L> 0. For 0< η ≤ 1, define the η-exterior region by

Qη
ext := {(u, v) ∈Q : u ≤ ηv}.

Step 1. In the first step, we make precise the relation between r and v in Qη
ext for small η. We claim that

r ∼ 1
2v in this region; more precisely,∣∣∣∣r(u, v)v

−
1
2

∣∣∣∣≤ ηCA1,A2,K ,3. (10-5)

Integrating by parts, we have

r(u, v)=
∫ v

u
λ(u, v′) dv′ =−

∫ v

u
∂vλ(u, v′)v′ dv′+ vλ(u, v)− uλ(u, u).

To make the leading term vλ(u, v) and small number u/v explicit, we rewrite the last expression as
follows:

r(u, v)= v
[
λ(u, v)−

u
v

(
λ(u, u)+

∫ v

u
∂vλ(u, v′)

v′

u
dv′
)]
.
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Recall that λ is uniformly bounded from above and below on Q, namely, 3−1
≤ λ≤ 1

2 . Moreover, by
the decay estimates for ∂vλ proved in Theorem 3.2, we have

sup
(u,v)∈Q

∫ v

u
|∂vλ(u, v′)|

v′

u
dv′ ≤ CA2 .

As a consequence, ∣∣∣∣r(u, v)v
− λ(u, v)

∣∣∣∣≤ ηCA2,3.

Thus (10-5) will follow once we establish∣∣λ(u, v)− 1
2

∣∣≤ η2CA1,A2,K ,3. (10-6)

This inequality is proved by integrating the decay estimate (7-55) for ∂uλ= ∂u∂vr along the incoming
direction, starting from the normalization λ(1, v)= 1

2 . Here, we use the easy geometric fact that, if (u, v)
lies in Qη

ext, then so does the incoming null curve from (1, v) to (u, v).

Step 2. We claim that, for U1 ≥ 1 sufficiently large and 0< η ≤ 1 suitably small, we have

∂v(rφ)(u, v)≥ 1
2L
( 1

2v
)−3 (10-7)

for (u, v) ∈Qη
ext ∩ {u ≥U1}.

We begin with(1
2v
)3
∂v(rφ)(u, v)=

( 1
2v
)3
∂v(rφ)(1, v)+

( 1
2v
)3
∫ u

1

2mλν
(1−µ)r3 rφ(u′, v) du′, (10-8)

obtained by integrating the ∂u∂v(rφ) equation and multiplying by
( 1

2v
)3. To prove (10-7), it suffices to

show that the right-hand side of (10-8) is bounded from below by 1
2L for (u, v) ∈Qη

ext ∩ {u ≥U1} with
sufficiently large U1 ≥ 1 and small 0< η ≤ 1.

Note that r = 1
2(v − 1) on C1, and v ≥ η−1 if (u, v) ∈ Qη

ext. Thus, for (u, v) ∈ Qη
ext and 0 < η ≤ 1

sufficiently small, we have ∣∣( 1
2v
)3
∂v(rφ)(1, v)− lim

v→∞
r3∂v(rφ)(1, v)

∣∣< 1
8L.

In order to proceed, it is useful to keep in mind the following technical point: for U1 ≥ 1, by the decay
estimates (3-1) and (6-13), we have

sup
v≥U1

∫ v

U1

∣∣∣∣2mλν
1−µ

rφ(u′, v)
∣∣∣∣ du′ ≤U−6

1 CA1,3. (10-9)

In what follows, let (u, v) ∈Qη
ext ∩ {u ≥U1}. Using (10-5), (10-9) and the fact that the null segment

from (1, v) to (u, v) lies in Qη
ext, we get∣∣∣∣( 1

2v
)3
∫ u

1

2mλν
(1−µ)r3 rφ(u′, v) du′−

∫ u

1

2mλν
1−µ

rφ(u′, v) du′
∣∣∣∣≤ ηCA1,A2,K ,3.



1670 JONATHAN LUK AND SUNG-JIN OH

Taking U1 ≥ 1 large enough and using (10-9), we may arrange

sup
v≥U1

∫ v

U1

∣∣∣∣2mλν
1−µ

rφ(u′, v)
∣∣∣∣ du′+

∫
∞

U1

|Mν∞8(u′)| du′ < 1
8L.

On the other hand, note that 2mλν(1−µ)−1rφ(u, v)→Mν∞8(u) for each u≥1 as v→∞. Therefore,
by the dominated convergence theorem, for 0< η ≤ 1 sufficiently small (so that v is large), we have∣∣∣∣∫ U1

1

2mλν
1−µ

rφ(u′, v) du′−
∫ U1

1
Mν∞8(u′) du′

∣∣∣∣< 1
8L.

Putting these together and taking 0< η ≤ 1 sufficiently small, we conclude (10-7).

Step 3. Next, we claim that there exists U2 = U2(U1, A2,3, K , η) ≥ 1 such that U2 ≥ U1 and, for
(u, v) ∈ (Q \Qη

ext)∩ {u ≥U2}, we have

∂v(rφ)(u, v)≥ 2η3L u−3. (10-10)

Combined with (10-7) (keeping in mind that r ∼ 1
2v in Qη

ext by (10-5)), this would establish (10-3).
Take U2 ≥ η

−1U1, and consider (u, v) ∈ (Q \Qη
ext)∩ {u ≥U2}. Integrating (2-8), we have

∂v(rφ)(u, v)= ∂v(rφ)(ηu, v)+
∫ u

ηu

2mλν
r2 φ(u′, v) du′.

Note that (ηu, v) ∈Qη
ext∩{u ≥U1} since v ≥ u and ηu ≥ ηU2 ≥U1. Therefore, by (10-7) and the fact

that η−1u > v (as (u, v) ∈Q \Qη
ext), the first term on the right-hand side obeys the lower bound

∂v(rφ)(ηu, v)≥ 1
2L
( 1

2v
)−3

> 4η3L u−3.

On the other hand, using (3-1) and (7-56), we have∣∣∣∣∫ u

ηu

2mλν
r2 φ(u′, v) du′

∣∣∣∣≤ CA1,A2,3,K

∫ u

ηu

1
(u′)10 du′ ≤ CA1,A2,3,K ,η u−9.

Taking U2 large enough, we conclude that (10-10) holds.

Step 4. Finally, we claim that there exists U =U (U2, A2,3, K , η)≥ 1 such that U ≥U2 ≥U1 and, for
(u, v) ∈ {u ≥U }, we have

−∂u(rφ)(u, v)≥ η3L u−3. (10-11)

This would prove (10-4), thereby completing the proof of Lemma 10.1.
Our argument will be very similar to the previous step. Take U ≥U2 and consider (u, v) ∈ {u ≥U }.

Integrating (2-8) along the outgoing direction, we have

−∂u(rφ)(u, v)=−∂u(rφ)(u, u)−
∫ v

u

2mλν
r2 φ(u, v′) dv′.

Recall that limv→u+ ∂u(rφ)(u, v)=− limv→u+ ∂v(rφ)(u, v). By (10-10) and the fact that u ≥U ≥U2,
we see that the first term on the right-hand side obeys the lower bound

−∂u(rφ)(u, u)≥ 2η3L u−3.
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On the other hand, using (3-1) and (7-56), we have∣∣∣∣∫ v

u

2mλν
r2 φ(u, v′) dv′

∣∣∣∣≤ CA1,A2,K

∫ v

u
min{u−10, r−2u−8

} λ dv′ ≤ CA1,A2,K u−9.

Taking U sufficiently large, we conclude that (10-11) holds. �

10C. Optimality of the decay rates, in the case ω′ ≥ 3. In this subsection, we prove Theorem 3.18 by
studying the solution to (SSESF) arising from the initial value

∂v(rφ)(1, v)= εχ̃
(
v− v0

N

)
,

where χ̃ : (−∞,∞)→ [0,∞) is a smooth function such that

supp χ̃ ⊂
(
−

1
2 ,

1
2

)
,

∫
R

χ̃ = 1.

We also require that v0 ≥ 2 and N ≤ v0. With such data, the initial total variation is of size at most Cε:∫
∞

1
|∂2
v (rφ)(1, v)| dv ≤ ε

∫
∞

−∞

∣∣∣∣χ̃ ′(v− v0

N

)∣∣∣∣ dv
N
≤ Cε.

We also see that I1 ≤ Cεv3
0 and I2 ≤ Cεv4

0/N with ω′ = 3, as

sup
v∈[1,∞)

(1+ r)3|∂v(rφ)|(1, v)≤ Cεv3
0 and sup

v∈[1,∞)
(1+ r)4|∂2

v (rφ)|(1, v)≤ Cε
v4

0

N
.

We are now ready to give a proof of Theorem 3.18. The idea is to compute L to the leading order
(which turns out to be −cε3 for some c > 0) and then control the lower order terms by taking ε > 0
sufficiently small and applying Theorem 3.15.

Proof of Theorem 3.18. For this proof, we fix v0 = 4 and N = 1. We use the shorthand

χ(v) := χ̃(v− 4).

By the preceding discussion on the size of initial data, we see that Theorem 3.15 applies when ε > 0 is
sufficiently small. Therefore, there exists a constant C > 0 independent of ε > 0 such that Theorems 3.1
and 3.2 and Proposition 5.3 hold with

A1, A2 ≤ Cε, K ,3≤ C. (10-12)

We begin by showing

∂v(rφ)(u, v)= εχ(v)+Err1(u, v), (10-13)

where

|Err1(u, v)| ≤ Cε3 min{u−3, r(u, v)−3
}. (10-14)
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The argument is similar to the proof of Theorem 3.16, but this time we rely on Theorem 3.15 to make
the dependence of Err1 on ε explicit. Indeed, by (2-8), we have

|Err1(u, v)| ≤
∫ u

1

∣∣∣∣ µλν

(1−µ)r
φ

∣∣∣∣(u′, v) du′.

Then, estimating the right-hand side using Theorem 3.1, Proposition 5.3 and Corollary 7.13, and using
(10-12) to make the ε-dependence explicit, (10-14) follows.

Integrating (10-13), we also have

rφ(u, v)=
∫ v

u
∂v(rφ)(u, v′) dv′

= ε

∫ v

u
χ(v′) dv′+

∫ v

u
Err1(u, v′) dv′

= εX (u, v)+Err2(u, v),

where X (u, v) :=
∫ v

u χ(v
′) dv′ and Err2(u, v) :=

∫ v
u Err1(u, v′) dv′. Integrating (10-14) and using the

bound C−1
≤ λ≤ 1

2 , we easily obtain

|Err2(u, v)| ≤ Cε3 min{ru−3, u−2
}. (10-15)

In particular, taking v→∞, we see that

|8(u)− εX (u,∞)| ≤ Cε3u−2. (10-16)

We now proceed to estimate M(u). We begin with the easy observation

M(u)≤ Cε2u−5, (10-17)

which follows from Corollary 7.13 and (10-12). On the other hand, recalling the definition of M(u)
from (2-7) and using the elementary inequality (a+ b)2 ≥ 1

2a2
− b2,

M(u)= 1
2

∫
∞

u

1−µ
λ

[
∂v(rφ)−

λ

r
(rφ)

]2

(u, v) dv

≥
ε2

4

∫
∞

u

1−µ
λ

(u, v)
[
χ(v)−

λ

r
X (u, v)

]2

dv− 1
2

∫
∞

u

1−µ
λ

[
Err1−

λ

r
Err2

]2

(u, v) dv.

By (10-12), (10-14) and (10-15), we have∣∣∣∣12
∫
∞

u

1−µ
λ

[
Err1−

λ

r
Err2

]2

(u, v) dv
∣∣∣∣≤ Cε6.

Furthermore, note that (1− µ) ≥ (K3)−1
≥ C−1 > 0, by Proposition 5.3 and (10-12). Also, for

(u, v) ∈ [1, 2]× [8,∞), note that χ(v)= 0 and X (u, v)= 1. Therefore, for 1≤ u ≤ 2, there exists c > 0
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(independent of ε > 0) such that

1
4

∫
∞

u

1−µ
λ

(u, v)
[
χ −

λ

r
X
]2

(u, v) dv ≥ (4C)−1
∫
∞

u

[
χ −

λ

r
X
]2

(u, v) λ−1(u, v) dv

≥ (4C)−1
∫
∞

8

λ

r2 (u, v) dv

≥ c.
Therefore, we conclude that

M(u)≥ cε2
−Cε6 for 1≤ u ≤ 2. (10-18)

We are now ready to compute L and complete the proof. We begin by observing that

lim
v→∞

r3
|∂v(rφ)(1, v)| = 0

by our choice of data. Therefore,

−L=

∫
∞

1
M(−ν∞)8(u) du = ε

∫
∞

1
M(u)(−ν∞)(u)X (u,∞) du+

∫
∞

1
M(u)(−ν∞)(u)Err2(u,∞) du.

By Proposition 5.3, (10-12), (10-15) and (10-17), we have∣∣∣∣∫ ∞
1

M(u)(−ν∞)(u)Err2(u,∞) du
∣∣∣∣≤ Cε5.

On the other hand, by Proposition 5.3, (10-12) and (10-18), we have (taking c> 0 smaller if necessary)

ε

∫
∞

1
M(u)(−ν∞)(u)X (u,∞) du ≥ ε

∫ 2

1
M(u)(−ν∞)(u)X (u,∞) du

≥3−1ε

∫ 2

1
M(u) du ≥ cε3

−Cε7.

Therefore, taking ε > 0 sufficiently small, we see that −L> 1
2 cε3 > 0. �
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