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We establish an equivalence between the Nirenberg problem on the circle and the boundary of holomorphic
immersions of the disk into the plane. More precisely we study the nonlocal Liouville-type equation

(−1)
1
2 u = κeu

− 1 in S1, (1)

where (−1)
1
2 stands for the fractional Laplacian and κ is a bounded function. The equation (1) can

actually be interpreted as the prescribed curvature equation for a curve in conformal parametrization.
Thanks to this geometric interpretation we perform a subtle blow-up and quantization analysis of (1). We
also show a relation between (1) and the analogous equation in R,

(−1)
1
2 u = K eu in R (2)

with K bounded on R.
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1. Introduction

A famous problem posed by Louis Nirenberg is the question of for which positive functions K on the
standard sphere (Sn, gSn ) there exists a function u on Sn such that the scalar curvature (Gauss curvature
in dimension n = 2) of the conformal metric g = e2ugSn is equal to K . This problem, prescribing the
scalar curvature within a conformal class of manifolds, has stimulated a lot of works in geometry and
analysis. In dimension n = 2 it consists in solving the so-called Liouville equation. More precisely, if
(6, g0) is a smooth, closed Riemann surface with Gauss curvature Kg0 , an easy computation shows that a
function K (x) is the Gauss curvature for some metric g = e2ug0 conformally equivalent to the metric g0

with u :6→ R if and only if there exists a solution u = u(x) of

−1g0u = K e2u
− Kg0 on 6, (3)

Martinazzi is supported by the Swiss National Foundation, project no. PP00P2-144669.
MSC2010: primary 30C20, 35B65, 58E20, 35B44, 35R11; secondary 30C62.
Keywords: nonlocal Liouville equation, Nirenberg problem, fractional harmonic maps, blow-up analysis of solutions, regularity

of solutions, conformal variational problems, quasiconformal mappings in the plane.

1757

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2015.8-7
http://dx.doi.org/10.2140/apde.2015.8.1757
http://msp.org


1758 FRANCESCA DA LIO, LUCA MARTINAZZI AND TRISTAN RIVIÈRE

where 1g0 is the Laplace–Beltrami operator on (6, g0) (see, e.g., [Chang 2005] for more details).
In particular, when 6 = R2 or 6 = S2, (3) reads, respectively,

−1u = K e2u on R2 (4)

and
−1S2u = K e2u

− 1 on S2. (5)

Singular Liouville equations of the form

−1g0u = K e2u
− Kg0 − 2π

m∑
i=1

αiδpi on 6 (6)

have a role in fluid dynamics — see [Tur and Yanovsky 2004] — as well as in the study of electroweak
theory or abelian Chern–Simons vortices; see, e.g., [Tarantello 2008]. For the latter cases, singular points
represent zeroes of the scalar wave function involved in the model.

Equations (4), (5) and also (6) have been largely studied in the literature. Here we would like to recall
the famous blow-up result of Brezis and Merle [1991] concerning (4):

Theorem 1.1 [Brezis and Merle 1991, Theorem 3]. Assume that (uk) ⊂ L1(�), � an open subset
of R2, is a sequence of solutions to (4) satisfying Kk ≥ 0, ‖Kk‖L p ≤ C1, and ‖euk‖L p′ ≤ C2 for
some 1 < p ≤ ∞. Then, up to subsequences, one of the following alternatives holds: either (uk) is
bounded in L∞loc(�), or uk(x)→−∞ uniformly on compact subsets of �, or there is a finite nonempty
(blow-up) set B = {a1, . . . , aN } ⊂� such that uk(x)→−∞ on compact subsets of � \ B. In addition, in
this last case, Kke2uk converges in the sense of measure on � to

∑N
i=1 αiδai , with αi ≥ 2π/p′.

The purpose of this work is to investigate an analogous prescribed curvature problem in dimension 1.
Even if this is a classical problem, it has never been studied so far (to our knowledge) from the point of
view of conformal geometry. In the case, for instance, of a planar Jordan curve (namely, a continuous
closed and simple curve) there is the possibility to parametrize it through the trace of the Riemann
mapping between the disk D2 and the simply connected domain enclosed by the curve. The equation
corresponding to such a parametrization is

(−1)
1
2λ= κeλ− 1 in S1, (7)

where eλdθ and κeλdθ are the length form and the curvature density, respectively, of the curve in this
parametrization. The definition and relevant properties of the operator (−1)

1
2 will be given in Appendix A.

One of the main results of this paper is the one-to-one correspondence between the solutions to the
Nirenberg problem (7) in S1 and the space of holomorphic immersions of the disk D2 (see Theorem 1.4
below). This correspondence can be seen as a sort of generalized Riemann mapping theorem.

This permits us to perform a complete blow-up analysis of (7) in the spirit of Theorem 1.1, even if we
do not get exactly the same dichotomy. More precisely, our first main result is the following theorem:

Theorem 1.2. Let (λk)⊂ L1(S1,R) be a sequence with

Lk := ‖eλk‖L1(S1) ≤ L (8)
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satisfying
(−1)

1
2λk = κkeλk − 1 in S1, (9)

where κk ∈ L∞(S1,R) satisfies
‖κk‖L∞(S1) ≤ κ̄ . (10)

Then up to subsequence we have κkeλk ⇀ µ weakly in W 1,p
loc (S

1
\ B) for every p <∞, where µ is a

Radon measure, B := {a1, . . . , aN } is a (possibly empty) subset of S1 and κk
∗⇀ κ∞ in L∞(S1). Set

λ̄k := (1/2π)
∫

S1 λk dθ . Then one of the following alternatives holds:

(i) λ̄k→−∞ as k→∞, N = 1 and µ= 2πδa1 . In this case,

vk := λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ {a1}) for every p <∞,

where v∞(eiθ )=− log
(
2(1− cos(θ − θ1))

)
for a1 = eiθ1 , solving

(−1)
1
2 v∞ =−1+ 2πδa1 in S1. (11)

(ii) λ̄k→−∞ as k→∞, N = 2 and µ= π(δa1 + δa2). In this case,

vk := λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ {a1, a2}) for every p <∞,

where

v∞(eiθ )=− 1
2 log

(
2(1− cos(θ − θ1))

)
−

1
2 log

(
2(1− cos(θ − θ2))

)
, a1 = eiθ1, a2 = eiθ2,

solves
(−1)

1
2 v∞ =−1+πδa1 +πδa2 in S1. (12)

(iii) |λ̄k | ≤ C and µ= κ∞eλ∞ +π(δa1 +· · ·+ δaN ) for some λ∞ ∈W 1,p
loc (S

1
\ B), with λ∞, eλ∞ ∈ L1(S1)

and

(−1)
1
2λ∞ = κ∞eλ∞ − 1+

N∑
i=1

πδai in S1. (13)

We would like to stress that we obtain a quantization-type result, namely the curvature concentrating at
each blow-up point is precisely π , without any assumption on the sign of the curvature (this hypothesis is
crucial in [Brezis and Merle 1991]) and on the convergence of the κk . Actually, several works on equations
(4) and (5) have extended the result of Brezis and Merle, showing that, under the crucial assumption
that the prescribed curvatures Kk converge in C0, the amount of curvature concentrating at each point is
a multiple of 4π , i.e., a multiple of the total Gaussian curvature of S2; see, e.g., [Li and Shafrir 1994].
(Also, higher-dimensional extensions were studied under the same strong assumptions of convergence
of Kk in C0 or even C1; see, e.g., [Druet and Robert 2006; Malchiodi 2006; Martinazzi 2009b].) In
[Brezis and Merle 1991] the functions Kk can belong to L p(R), with 1< p ≤+∞. We believe that in
the case of the nonlocal Liouville equation (7) the quantization result by π does not hold once we replace
κ ∈ L∞ by κ ∈ L p with 1< p <+∞.

The fact that we are able to get a quantization result only under the minimal (and geometrically mean-
ingful) bounds (8) and (10) is better understood through the above-mentioned one-to-one correspondence
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between the solutions to (7) and the space of holomorphic immersions of the disk D2. Precisely, given a
solution λ to (7) with κ ∈ L∞(S1), the function eλ provides a “conformal” parametrization of a closed
curve γ : S1

→ C in normal parametrization whose curvature at the point γ (z) is exactly κ(z).

Definition 1.3. A function 8 ∈ C1(D2,C) is called a holomorphic immersion if 8 is holomorphic in D2

and 8′(z) := ∂z8(z) 6= 0 for every z ∈ D2.
A curve γ ∈ C1(S1,C) is said to be in normal parametrization if |γ̇ | is constant, and is in conformal

parametrization if there exists a holomorphic immersion 8 ∈ C1(D2,C) with 8|S1 = γ .

Then we have the following characterization:

Theorem 1.4. A function λ ∈ L1(S1,C) with L := ‖eλ‖L1(S1) <∞ satisfies

(−1)
1
2λ= κeλ− 1 in S1 (14)

for some function κ : S1
→ R, κ ∈ L∞(S1), if and only if there exists a closed curve γ ∈ W 2,∞(S1,C)

with |γ̇ | ≡ L/(2π), a holomorphic immersion 8 : D2
→ C and a diffeomorphism σ : S1

→ S1 such that,
for all z ∈ S1, we have 8 ◦ σ(z)= γ (z),

|8′(z)| = eλ(z) (15)

and the curvature of 8(S1) is κ . While 8 uniquely determines λ via (15), λ determines 8 up to a rotation
and a translation. Moreover,

|8′(z)| = eλ̃(z), z ∈ D2, (16)

where λ̃ : D2
→ R is the harmonic extension of λ.

Figures 1, 2 and 5 provide some examples of curves satisfying the assumptions of Theorem 1.4.
Theorem 1.4 allows us to interpret and reformulate Theorem 1.2 from the point of view of the behavior

γk
normal

Jordan curve

S1

σk

diffeomorphism
D2

8k

conformal

Figure 1. A domain bounded by a Jordan curve γk and biholomorphic to the unit disk D2

via a map 8k : D2
→ C.
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γk
normal parametrization

S1

σk

diffeomorphism
D2

8k

conformal

Figure 2. The curve γk can have self-intersections. In this case, 8k : D2
→ C is a

holomorphic immersion but it is not injective.

γ∞
normal parametrization

S1

D2

8∞
conformal

Figure 3. As k→∞ the curves γk can generate a pinching phenomenon. In this case,
8k can converge to a constant or, as in this figure, to a holomorphic immersion 8∞
(singular at finitely many points of ∂D2) whose image “selects” one of the “components”
bounded by γ∞.

of the sequences of the curves γk (in normal parametrization) and of the immersions 8k corresponding to
a sequence of solutions to (9); see Figures 3 and 4.

Theorem 1.5. Let a sequence (λk) ⊂ L1(S1,R) satisfy (8)–(10), let 8k : D2
→ C be a holomorphic

immersion satisfying (15), and let σk and γk with γk = 8k ◦ σk be as given by Theorem 1.4. Then,
up to extracting a subsequence, there exists an at most countable family J such that for every j ∈ J
there exist a sequence of Möbius transformations f j

k : D
2
→ D2 and a finite set of finitely many points
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γ∞
normal parametrization

S1

D2

8̃∞ = limk→+∞8k ◦ f j
k

conformal

Figure 4. Composing 8k as in Figure 3 with suitable Möbius transformations, one can
have 8∞ cover a different “component” bounded by γ∞. In this figure one can choose
among 4 different components, or choose 8∞ to be constant.

B j = {a
j
1 , . . . a

j
N j
} ⊂ S1 such that

γk ⇀γ∞ in W 2,p(S1) and 8̃
j
k :=8k ◦ f j

k ⇀ 8̃ j
∞

in W 2,p
loc (D

2
\ B j ),

where p <∞, the 8̃ j
∞ : D2

\ B j → C are holomorphic immersions satisfying

(γ∞)∗[S1
] =

∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ], (17)

where, for any φ : S1
→ C and differential form ω on C,

〈φ∗[S1
], ω〉 :=

∫
S1
φ∗ω.

If λ j
k := log

∣∣(8̃ j
k )
′
|S1

∣∣ then, up to a subsequence, λ j
k ⇀λ

j
∞ in W 1,p

loc (S
1
\ B j ), where

(−1)
1
2λ j
∞
= κ j
∞

eλ
j
∞ − 1−

N j∑
i=1

πδa j
i

(18)

and κk ◦ f j
k
∗⇀κ

j
∞ in L∞(S1,R) as k→+∞.

Theorem 1.5 says that it is always possible, up to the action of sequences of Möbius transformations,
to recover all the connected components enclosed by the limiting curve γ∞ (see in particular (17)). We
will also see that these components are separated by what we call pinched points (see Definition 3.7),
namely (roughly speaking) a pair of points p 6= p′ ∈ S1 such that γ∞(p)= γ∞(p′). The angle between the
tangent vectors in these pairs of points is shown to necessarily be π . This also explains the coefficient π
in front of each δai in (18).
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It would be interesting to compare Theorems 1.2 and 1.5 to the blow-up analysis obtained recently by
Mondino and Rivière [2014] in the case of sequences of weak conformal immersions from S2 into Rm ;
they study the possible limit of the Liouville equation

−1g0u = K e2u
− 1 on S2 (19)

satisfied by the conformal factor of the immersion 8 (g8 = e2ug0) under the assumption that the
second fundamental form is bounded in L2. Also in their case, a sort of bubbling phenomenon occurs
and the choice of different sequences of Möbius transformations of S2 permits them to detect all the
limiting enclosed currents. However, the 2-dimensional blow-up analysis differs substantially from the
1-dimensional case: in the 2-dimensional case the area is quantized, namely there is no production of
area in the neck region between the different bubbles, whereas in the 1-dimensional case the quantization
of the length does not hold. Precisely, Mondino and Rivière [2014] show that∑

“bubbles”

∫
S2

e2u∞ dv = lim inf
k→+∞

∫
S2

e2uk dv,

whereas in the present situation one can produce examples such that∑
“bubbles”

∫
S1

eλ∞ dθ < lim inf
k→+∞

∫
S1

eλk dθ.

We insist on the fact that “conformal” parametrizations of planar curves are relevant in different
applications. For instance, they should be one of the main tools of the Willmore plateau problem, of
the analysis of the renormalizing area of surfaces in the hyperbolic space H2 and of the free boundaries
problem. In particular, for the latter, Da Lio [2015] has observed that there is a one-to-one correspondence
between free boundaries and 1

2 -harmonic maps and here we show that the holomorphic immersion φ for
which eλ(z) = |∂φ/∂θ(z)|, z ∈ S1, is a 1

2 -harmonic map into φ(S1).
In forthcoming work, we are going to investigate the topological and differential structure of the

subspace of C1,α(S1)×C0,α(S1) made of solutions (u, κ) of the Nirenberg problem in S1 (the Nirenberg
moduli space). The present work should be interpreted as an attempt to describe the “boundary of the
Nirenberg moduli space”. We mention that a nonlocal version of the Nirenberg problem in dimension n≥2
has recently been studied in [Jin et al. 2014; 2015a].

We finally prove a link between (7) and the analogous nonlocal equation in R. Precisely, if u ∈ L 1
2
(R)

(see (130)), eu
∈ L1(R) and u satisfies

(−1)
1
2 u = K eu in R (20)

for some K ∈ L∞(R), then λ(z) := u(5(z))− log(1+sin z) (where5 : S1
\{−i}→R is the stereographic

projection) satisfies

(−1)
1
2λ= K ◦5eλ− 1+ (2π −‖(−1)

1
2 u‖L1)δ−i in S1. (21)

Owing to this correspondence from Theorem 1.2, we can deduce the following compactness result in R:
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Theorem 1.6. Let uk ∈ L 1
2
(R) be a sequence of solutions to

(−1)
1
2 uk = Kkeuk in R

with ‖Kk‖L∞ ≤C and ‖euk‖L1 ≤C. Then, up to subsequence, we have Kkeuk ⇀µ weakly in W 1,p
loc (R\B)

for every p <∞, where µ is a finite Radon measure in R, B := {a1, . . . , aN } is a (possibly empty) subset
of R and Kk

∗⇀ K∞ in L∞(R). Moreover, one of the following alternatives holds:

(i) µ|R\B = K∞eu∞ for some u∞ ∈W 1,p
loc (R \ B) satisfying

(−1)
1
2 u∞ = K∞eu∞ +

N∑
i=1

πδai in R. (22)

(ii) µ|R\B ≡ 0, N ≤ 2 and uk→−∞ locally uniformly in R \ B.

In particular, we can deduce the following:

Corollary 1.7. Under the hypotheses of Theorem 1.6, if Kk ≥ 0 and∫
R

Kkeuk dx ≤ 2π,

then either N = 1 and uk → −∞ locally uniformly R \ {a1}, or N = 0 and uk ⇀ u∞ in W 1,p(R)

as k→+∞, where u∞ solves
(−1)

1
2 u∞ = K∞eu∞ . (23)

We will give the proof of Theorem 1.6 and Corollary 1.7 in a forthcoming paper.
An interesting consequence of Theorem 1.4 is a proof of the classification of the solutions to the

nonlocal equation
(−1)

1
2 u = eu in R (24)

under the integrability condition

L :=
∫

R

eu dx <∞. (25)

Equation (24) is a special case of the problem

(−1)n/2u = (n− 1)!enu in Rn, V :=
∫

Rn
enu dx <∞, (26)

which has been studied by several authors in the last decades (see, e.g., [Chen and Li 1991; Chang and
Yang 1997; Lin 1998; Jin et al. 2015b; Martinazzi 2009a]). Geometrically, if u solves (26) and n ≥ 2,
then the metric e2u

|dx |2 on Rn has constant Q-curvature (n− 1)! and volume V ; see, e.g., [Chang 2004].
All the above-mentioned works rely on the application of a moving-plane technique, in order to show that
under certain growth conditions at infinity (needed only when n ≥ 3) the solutions to (26) have the form

uµ,x0(x) := log
2µ

1+µ2|x − x0|2
, x ∈ Rn, (27)
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for some µ > 0 and x0 ∈ Rn . For the case n = 1, instead of using the moving-plane technique, we will
use stereographic projection to transform (24) into (14), and use the geometric interpretation of the latter
(Theorem 1.4) to compute all its solutions (Corollary 2.3 below). This will yield:

Theorem 1.8. Every function u ∈ L 1
2
(R) solving (24)–(25) is of the form (27) for some µ> 0 and x0 ∈ R.

We also remark that, by changing the sign of the nonlinearity in (24), the problem has no solutions.
More precisely:

Proposition 1.9. Given a function K ∈ L∞(R) with K ≤ 0, the equation

(−1)
1
2 u = K eu in R

has no solution satisfying (25).

The proof of Proposition 1.9 is a simple application of the maximum principle for the operator (−1)
1
2 ,

but it is worth remarking that, for n ≥ 4, even solutions to (26) with (n− 1)! replaced by −(n− 1)! (or
any negative constant) do exist, as shown in [Martinazzi 2008].

The paper is organized as follows. In Section 2 we introduce the nonlocal Liouville equation (7) in S1

and we explain its geometric interpretation. In Section 3 we perform the blow-up and quantization analysis
of (7) and in particular we prove Theorems 1.2 and 1.5. Section 4 is devoted to the description of the
relation between equations (7) and (20). Finally, in Section 5 we prove Theorem 1.8 and Proposition 1.9.

Notations. We denote by 〈x, y〉 the scalar product of x , y ∈Rn . Let h :�⊂C→R and let γ : S1
→C be

a curve. We denote by
∫
γ

h(z) |dz| or
∫
γ

h(z) dθ the line integral of h along γ . Given z ∈ C, we denote
by <(z) and =(z) its real and imaginary part, respectively.

2. Nonlocal Liouville equation in S1

In this section we study the nonlocal Liouville-type equation

(−1)
1
2 u = κeu

− 1 in S1,

where u ∈ L1(S1), (−1)
1
2 u stands for the fractional Laplacian and κ : S1

→ R is a bounded function. In
Appendix A we recall the definition and some properties of the fractional Laplacian in S1.

Geometric interpretation of the Liouville equation in S1. The first key step in our analysis is the geo-
metric interpretation of (7). Roughly speaking, such an equation prescribes the curvature of a closed
curve in conformal parametrization.

It is easy to verify that for φ ∈ L1(S1) we have

(−1)
1
2φ(θ)=

∑
n∈Z

|n|φ̂(n)einθ
=H

(
∂φ

∂θ

)
=
∂H(φ)

∂θ
, (28)

where H is the Hilbert transform on S1 defined by

H( f )(θ) :=
∑
n∈Z

−i sign(n) f̂ (n)einθ , f ∈ D′(S1).
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We recall that the Hilbert transform has the following property, a proof of which can be found, e.g., in
[Katznelson 2004, Chapter III].

Lemma 2.1. The Hilbert transform H is bounded from L p(S1) into itself for 1 < p < +∞ and it is of
weak type (1, 1). A function f := u+ iv with u, v ∈ L1(S1,R) can be extended to a holomorphic function
in D2 if and only if v =H(u)+ a for some a ∈ C.

Proof of Theorem 1.4. (1) Let 8 ∈ C1(D2,C) be a holomorphic immersion. Set λ := (log |8′|)|S1 . Since
8′ : D2

→ C \ {0} is holomorphic, 8′|S1 = eλ+iρ+iθ0 for some θ0 ∈ [0, 2π), where ρ := H(λ) is the
Hilbert transform of λ. Indeed, by Lemma 2.1, the function f := λ+ iρ has a holomorphic extension
f̃ to D2; hence, e f̃ is holomorphic in D2 and e f̃

|S1 = e f
= eλ+iρ . But |e f

| = eλ = (|8′|)|S1 , so that by
Lemma B.1 we have 8′/e f̃

= eiθ0 for some constant θ0. Up to a rotation of 8 we can assume that θ0 = 0.
Up to such a rotation and a translation, 8 is determined by λ, and we have

∂8(z)
∂θ

(z)= ieλ(z)+iρ(z)+iθ . (29)

Now let

s(θ) :=
∫ θ

0

∣∣∣∣∂8(eiθ ′)

∂θ ′

∣∣∣∣ dθ ′.

We have s : [0, 2π ] → [0, L], where L = ‖∂8/∂θ‖L1(S1) is the length of the curve 8(S1), and up to a
scaling we will assume that L = 2π . Let θ := s−1

: [0, 2π ] → [0, 2π ]. One can also easily see that
θ ∈ C1([0, 2π ], [0, 2π ]). Then, using (29) and that

ṡ(θ)= |8′(eiθ )| = eλ(e
iθ ) > 0, θ̇ (s)= e−λ(e

iθ(s)),

we compute

τ(s) := d
ds
8(eiθ(s))=8′(eiθ(s))ieiθ(s)θ̇ (s)=

∂8

∂θ
(eiθ(s))e−λ(e

iθ(s)).

Notice that |τ | ≡ 1, i.e., the curve γ : eis
7→ 8(eiθ(s)) is parametrized by arc-length and τ is its unit

tangent vector. Using (28), (29) and identifying s with eis , the curvature of γ is given by

κ(s)= 〈iτ(s), τ̇ (s)〉 =
〈
iτ(s), d

ds
(ieiρ(eiθ(s))+iθ(s))

〉
=

(
dρ(eiθ(s))

dθ
+ 1

)
θ̇ (s)

= ((−1)
1
2λ(eiθ(s))+ 1)e−λ(e

iθ(s)).

(30)

From (30) it follows that λ satisfies (14) with κ(eis(θ)) :=
〈
iτ(s(θ)), τ̇ (s(θ))

〉
. Since |κ(eis)| = |γ̈ (eis)| is

in L∞(S1), we also have γ ∈W 2,∞(S1,C).

(2) Conversely, let us assume that λ∈ L1(S1) with eλ ∈ L1(S1) weakly satisfies (14) for some κ ∈ L∞(S1).
By regularity theory, λ ∈ W 1,p(S1) for any p <∞. We set ρ := H(λ). Let φ ∈ W 1,p(D2,C) be the
holomorphic extension of the function eλ+iρ

∈W 1,p(S1) and set

8(z) :=
∫
60,z

φ(w) dw, z ∈ D2, (31)
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Figure 5. Plot of the curve ecos θ (cos(2π sin θ)+ i sin(2π sin θ)), θ ∈ [0, 2π ]. It has the
same kind of self-intersections as the curve 8(eiθ ) = e2πeiθ

, whose plot is difficult to
inspect, since |8(z)| oscillates between e2π and e−2π .

where 60,z is any path in D2 connecting 0 and z. Then 8 ∈W 2,p(D2,C) satisfies (29). From part (1) we
see that κ is the curvature of the curve 8(S1) in normal parametrization.

Let 8̂ : D2
→ C be another holomorphic immersion such that |8̂′(z)| = eλ(z), z ∈ S1. We claim that

8= eiθ08̂+ a in D2 for some θ0 ∈ R, a ∈ C. (32)

Indeed, the function h :=8′/8̂′ never vanishes in D2 and satisfies

|h(z)| =
|8′(z)|

|8̂′(z)|
=

eλ(z)

eλ(z)
= 1, z ∈ S1.

It follows from Lemma B.1 that h is a constant of modulus 1, say h ≡ eiθ0 , and (32) follows at once. �

Remark 2.2. In Theorem 1.4, we cannot expect that 8 is a biholomorphism from D2 onto 8(D2).
For instance, the function 8(z) := eaz for any a > 0 is an immersion and 8(S1) has self-intersections
whenever a ≥ π , as is easily seen by writing (see Figure 5)

8(eiθ )= ea cos θ (cos(a sin θ)+ i sin(a sin θ)).

Corollary 2.3. All functions λ ∈ L1(S1) with eλ ∈ L1(S1) that are solutions to

(−1)
1
2λ= C0eλ− 1 on S1, (33)

where C0 is an arbitrary positive constant, are given by

λ(θ)= log
∣∣∣∣ ∂∂θ z− a1

1− ā1z

∣∣∣∣− log C0 (34)

for some a1 in D2.
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Proof. Up to the translation λ̃ = λ+ log C0 we can assume C0 = 1. By Theorem 1.4, the function λ
determines a holomorphic immersion 8 ∈ C1(D2,C) such that 8(S1) is a curve of curvature 1; hence,
up to a translation, 8(S1)⊆ S1, and therefore it is a Möbius transformation of the disk. From (15) we
infer that λ= log

∣∣8′|S1

∣∣, and we conclude. �

The following corollary is an easy consequence of Theorem 1.4 and Corollary 2.3:

Corollary 2.4. Let 8, λ and κ be as in Theorem 1.4 and let f : D2
→ D2 be a Möbius diffeomorphism.

Set 8̃ :=8 ◦ f , λ̃ := log
∣∣8̃′|S1

∣∣ and κ̃ := κ ◦ f |S1 . Then

λ̃= λ ◦ f |S1 + log
∣∣ f ′|S1

∣∣ and (−1)
1
2 λ̃= κ̃eλ̃− 1.

Remark 2.5. One can also give an analogous geometric characterization for an equation of the type

(−1)
1
2λ= κeλ− n in S1 (35)

with n> 1. In this case there is a correspondence between the solutions of (35) and holomorphic functions
8 : D2

→ C of the form 8′(z)=9(z)h(z), where 9 is the Blaschke product

9(z) :=
n−1∏
k=1

z− ak

1− ākz
, a1, . . . , an−1 ∈ D2,

and h(z) 6= 0 for every z ∈ D2. In this case, n− 1= i9 · ∂9/∂θ = deg9.

Next, we show that the existence of a holomorphic immersion of the disk D2 is equivalent to the
existence of a positive diffeomorphism of the disc D2. Such a result can be seen as a sort of generalized
Riemann mapping theorem in the case of closed curves which are not necessarily injective. We start with
the following lemma, giving better regularity up to the boundary of a holomorphic immersion u : D2

→C

under the assumption that the curve u|S1 has a W 2,∞-constant-speed parametrization.

Lemma 2.6. Let u ∈ C0(D2,C) be holomorphic in D2 with ∂zu 6= 0 in D2 and suppose there is
γ ∈ W 2,∞(S1,C) with |γ̇ | constant and a homeomorphism σ : S1

→ S1 such that γ = u ◦ σ . Then
u ∈W 2,p(D2,C) for every p <+∞ and ∂zu(z) 6= 0 for all z ∈ S1.

Proof. Let z0 ∈ S1. Since γ̇ (z0) 6= 0, we can find some ρ > 0 such that γ (S1
∩ B(z0, ρ)) coincides up to

a rotation with a piece of the graph of a function ϕ ∈ C1,α(R) that satisfies ϕ′(u1(x0))= 0. We may also
assume that u = u1+ iu2 takes values in the set {(ξ, η) ∈ R2

| η ≥ ϕ(ξ)}. Define

û = û1+ i û2 with û1 := u1, û2 := u2−ϕ(u1).

Claim. The function û2 satisfies{
∂xi (ai j∂x j û2)= 0 in B(x0, ρ)∩ D2,

û2 = 0 in B(x0, ρ)∩ S1,
(36)

where the matrix

(ai j )=

1− 1
1+ (ϕ′)2(u1)

ϕ′(u1)

1+ (ϕ′)2(u1)

−
ϕ′(u1)

1+ (ϕ′)2(u1)
1− 1

1+ (ϕ′)2(u1)

 (37)
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is in L∞(D2) and uniformly elliptic.

Proof. We can write u = û + iϕ(u1). Since, by hypothesis, ∂z̄u(z) = 0 for all z ∈ D2, the following
estimates hold:

∂z̄u1 =−i∂z̄u2,

∂z̄ û(z)=−iϕ′(u1)∂z̄u1 =−ϕ
′(u1)∂z̄u2,

∂z̄u1+ i∂z̄ û2(z)=−iϕ′(u1)∂z̄u1,

∂z̄u1 =−
i

1+ iϕ′(u1)
∂z̄ û2(z),

∂z̄ û =−
ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z).

Therefore,

1û2 = 4=(∂z∂z̄ û)=−4=
[
∂z

[
ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z)

]]
. (38)

Writing

ϕ′(u1)

1+ iϕ′(u1)
∂z̄ û2(z)=

ϕ′(u1)

1+ (ϕ′)2(u1)

∂x1 û2+ϕ
′(u1)∂x2 û2+ i(∂x2 û2−ϕ

′(u1)∂x1 û2)

2
,

we compute the right-hand side of (38) and get

1û2 =−=

[
(∂x1 − i∂x2)

ϕ′(u1)

1+ (ϕ′)2(u1)
[(∂x1 û2+ϕ

′(u1)∂x2 û2)+ i(∂x2 û2−ϕ
′(u1)∂x1 û2)]

]
.

Therefore û2 satisfies (36)–(37) and the claim is proven. �

Elliptic estimates imply that û2 ∈ W 2,p(B(z0, r/4) ∩ D2) for every p < +∞; in particular, it is in
C1,α(B(z0, r/4)∩ D2) for every α ∈ (0, 1). Now, since û2 ≥ 0 in D2 and û2(z0) = 0, Hopf’s lemma
yields that ∂r û2(z0) 6= 0. Since u = û+ iϕ(u1), it follows that

∂r u(z0)= ∂r û1(z0)+ i∂r û2(z0)+ i ϕ′(u1(z0))︸ ︷︷ ︸
=0

∂r û1(z0) 6= 0

and, since z0 ∈ S1 was arbitrary, we conclude that ∂r u 6= 0 everywhere on S1. Then, since u is conformal
up to the boundary, we also have ∂zu 6= 0 on S1. �

We introduce the set

T :=
{
γ : S1

→C
∣∣γ ∈W 2,∞, |γ̇ | constant, and there is 9 ∈ C1(D2,C) with det Jac(9(z)) > 0, z ∈ D2,

and (9 ◦ σ)(z)= γ (z), z ∈ S1, for some diffeomorphism σ : S1
→ S1}.

Theorem 2.7 (generalized Riemann mapping theorem ). A curve γ is in T if and only if there exists a
holomorphic immersion 8 : D2

→ C and a diffeomorphism σ : S1
→ S1 such that 8 ◦ σ = γ .

Proof. (1) Suppose that there exists a holomorphic immersion 8 : D2
→ C and a diffeomorphism

σ : S1
→ S1 such that 8 ◦ σ = γ . Then one can take 9 =8. Therefore, γ ∈ T.

(2) Conversely, let 9 ∈ C1(D2,C) with 9|S1 = γ and det Jac(9) > 0 in D2.
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(2i) Consider the pull-back of the Euclidean metric g on R2 by 9,

hi j := 〈∂xi9, ∂x j9〉.

Since det Jac(ψ) > 0, we have
c−1δi j ≤ (hi j )≤ cδi j .

We can write
h = h11 dx2

+ 2h12 dx dy+ h22 dy2. (39)

Setting z = x + iy, one can write h in the form

h = ν |dz+µ dz̄|2,

where ν is a positive continuous function on U and µ is a complex-valued continuous function with
‖µ‖L∞(D2) < 1 on U . Actually, ν and µ are given by

ν = 1
4(h11+ h22+ 2

√
h11h22− h2

12),

µ=
h11− h22+ 2ih12

h11+ h22+ 2
√

h11h22− h2
12

.

Moreover, 9 solves the equation

∂w̄9(w)

∂w9(w)
= µ(w) in D2. (40)

The function µ is the so-called Beltrami coefficient associated to the metric h. Now we extend µ by 0
outside D2 (we still denote this extension by µ). Then there exists a unique homeomorphism ξ : C→ C

(here C= C∪ {∞} ' S2) which satisfies, in a distributional sense,

∂z̄ξ = µ(z) ∂zξ in C

and the normalization conditions

ξ(0)= 0, ξ(1)= 1, ξ(∞)=∞.

Moreover, ξ ∈W 1,p
loc (C) for some p > 2 and ∂zξ 6= 0 a.e. in C. The function ξ is called a quasiconformal

map with dilation coefficient µ (see, e.g., Theorem 4.30 in [Imayoshi and Taniguchi 1992]).
Since ξ is a homeomorphism, ξ(S1) is a Jordan curve.

(2ii) Consider now 9̃ :=9 ◦ ξ−1
: ξ(D2)→ C. From [Imayoshi and Taniguchi 1992, Proposition 4.13]

it follows that the complex dilatation of 9̃ is 0 in ξ(D2); therefore, ∂z̄9̃ = 0 and 9̃ is holomorphic
in ξ(D2); see [Imayoshi and Taniguchi 1992, Lemma 4.6].

(2iii) Now we apply the Riemann mapping theorem: there exists a biholomorphic map u from D2

onto ξ(D2). In particular, ∂zu 6= 0 in D2. Take 8 :=9 ◦ ξ−1
◦u. We observe that det Jac(9) > 0 implies

∂z9 6= 0 in D2. Therefore,

∂z8= ∂w(9 ◦ ξ
−1)∂zu+ ∂w̄(9 ◦ ξ−1)∂z ū = ∂w(9 ◦ ξ−1)∂zu+ ∂w̄(9 ◦ ξ−1)∂z̄u = ∂w(9 ◦ ξ−1)∂zu.
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We observe that 8 is holomorphic in D2 because it is the composition of two holomorphic maps
and ∂z8 6= 0 in D2. From Lemma 2.6, it follows that ∂z8 6= 0 in D2 and we conclude the proof of
Theorem 2.7. �

From the next lemma we can deduce that if γ ∈T then the winding number (or equivalently the degree)
of γ is 1.

Lemma 2.8. Let 8 ∈W 2,p(D2,C) for some 1< p ≤+∞ be a holomorphic function such that ∂z8 6= 0
in D2. Then

deg8= 1
2π

∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ = 1+ 1

2π i

∫
S1

f ′(z)
f (z)

dz = 1, (41)

where f (z)=8′(z).

We note that Lemma 2.8 is a direct corollary of Theorem 1.4. Indeed, deg8|S1 = (1/2π)
∫

S1 κ|8
′
| dθ =

(1/2π)
∫

S1 κeλ dθ but, since (−1)
1
2λ= κeλ− 1, integrating gives

∫
S1 κeλ dθ = 2π .

Anyway, we provide a direct proof for the reader’s convenience:

Proof. We recall that

8′(z)= 1
2

e−iθ
(
∂8

∂r
−

i
r
∂8

∂θ

)
=: f (z).

Since 8 is holomorphic, we have
∂8

∂r
=−

i
r
∂8

∂θ
. (42)

Hence,∫
S1

f ′(z)
f (z)

dz =
∫

S1

e−iθ

2
(
∂
∂r −

i
r
∂
∂θ

) e−iθ

2
(
∂8
∂r −

i
r
∂8
∂θ

)
e−iθ

2
(
∂8
∂r −

i
r
∂8
∂θ

) dz

=

∫
S1

(
∂
∂r −

i
r
∂
∂θ

)(
−

i
r e−iθ ∂8

∂θ

)
∂8
∂r −

i
r
∂8
∂θ

dz (by (42))

=

∫
S1

e−iθ
2i
r2
∂8
∂θ
−

i
r
∂28
∂r∂θ −

1
r2
∂28
∂2θ

−2i
r
∂8
∂θ

dz

=−

∫
S1

e−iθ dz+
∫

S1
e−iθ

∂28
∂r∂θ

−2i ∂8
∂θ

dz
∫

S1
e−iθ

∂28
∂2θ

−2i ∂8
∂θ

dz (since r = 1 on S1)

=−2π i − i
2

∫ 2π

0

∂28
∂r∂θ
∂8
∂θ

dθ − 1
2

∫ 2π

0

∂28
∂θ∂θ
∂8
∂θ

dθ

=−2π i −
∫ 2π

0

∂28
∂θ∂θ
∂8
∂θ

dθ (by (42)). (43)
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On the other hand, we have∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ = 1

2

∫ 2π

0

−i∂θ8∂2
θ28

∂θ8∂θ8
dθ + 1

2

∫ 2π

0

i∂θ8∂2
θ28

∂θ8∂θ8
dθ. (44)

We observe that

1
2

∫ 2π

0

i∂θ8∂2
θ28

∂θ8∂θ8
dθ =− i

2

∫ 2π

0
∂θ8

∂2
θ28

|∂θ8|2
dθ − i

2

∫ 2π

0
|∂θ8|

2∂θ (|∂θ8|
−2) dθ

=−
i
2

∫ 2π

0

∂2
θ28

∂θ8
dθ. (45)

It follows that ∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ =−i

∫ 2π

0

∂2
θ28

∂θ8
dθ. (46)

By combining the estimates (43)–(46), we get∫
S1

1
2π i

f ′(z)
f (z)

dz =−1− 1
2π i

∫ 2π

0

∂2
θ28

∂θ8
dθ =−1+ 1

2π

∫ 2π

0

〈i∂θ8, ∂2
θ8〉

|∂θ8|2
dθ. �

Connection with half-harmonic maps. In this subsection we show an interesting connection between
the solutions of (7) and the half-harmonic maps into a given curve 0.

Let φ̃ =8 ∈ C1(D2,C) be the map given by Theorem 2.7 and set φ :=8|S1 . Then 8 is conformal up
to the boundary, i.e., ∂φ/∂θ · ∂φ̃/∂r = 0 on S1. Since ∂φ̃/∂r

∣∣
r=1 = (−1)

1
2φ, we deduce

(−1)
1
2φ ⊥ Tφ0, i.e.,

∂φ

∂θ
· (−1)

1
2φ = 0 on D′(S1). (47)

Equation (47) says that φ is a 1
2 -harmonic map into 0 (see [Da Lio and Rivière 2011]).

We would like to recall a characterization of 1
2 -harmonic maps of S1 into submanifolds of Rn , which

has been already observed in [Da Lio 2015] and then in [Millot and Sire 2015].

Theorem 2.9 [Da Lio et al. ≥ 2015]. Let u ∈ H
1
2 (S1,N), where N is a k-dimensional smooth submanifold

of Rm without boundary. Then u is a weak 1
2 -harmonic map, i.e., (−1)

1
2 u ⊥ TuN, if and only if its

harmonic extension ũ ∈W 1,2(D2,Rm) is conformal, in which case

∂r ũ ⊥ TuN in D′(S1). (48)

Proof. Let u ∈ H
1
2 (S1,N) be a weak 1

2 -harmonic map and let ũ ∈W 1,2(D,Rm) be the harmonic extension
of u. Then

E(u) :=
∫

S1
|(−1)

1
4 u|2 |dz| =

∫
D2
|∇ũ|2 |dz|.

Claim. For every X̃ ∈ C∞(D2,R2) such that X̃(z) · z = 0 for z ∈ S1,(
d
dt

∫
D2

∣∣∇ũ(z+ t X̃(z))
∣∣2 |dz|

)∣∣∣∣
t=0
= 0. (49)
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Proof of the claim. It has been proved in [Da Lio and Rivière 2011] that, if u is 1
2 -harmonic, then

u ∈ C∞(S1); in particular, u satisfies(
d
dt

∫
S1

∣∣(−1) 1
4 u(z+ t X (z))

∣∣2 |dz|
)∣∣∣∣

t=0
= 0 (50)

for every X ∈ C∞(S1).
Let X̃ ∈C∞(D2,R2) be such that X̃(z) · z= 0 for z ∈ S1. We observe that, for all z ∈ S1, Y := dũ · X̃ =

du · X̃ ∈ TuN and(
d
dt

∫
D2
|∇ũ(z+ t X̃(z))|2 |dz|

)∣∣∣∣
t=0
=

∫
D2
∇ũ ·∇Y |dz| =

∫
S1
∂r ũ ·Y |dz| = −

∫
S1
(−1)

1
2 u ·Y |dz| = 0,

where the last equality follows from (50). �

From Proposition 2.10 below and the regularity of ũ up to the boundary, it follows that ũ is also
conformal in D2, i.e.,

|∂x1 ũ| = |∂x2 ũ|, ∂x1 ũ · ∂x2 ũ = 0.

Conversely, suppose the harmonic extension ũ of u is conformal and satisfies (48). Since ∂r ũ=−(−1)
1
2 u,

we deduce that u is 1
2 -harmonic. �

Proposition 2.10 [Rivière 2012, Proposition II.2]. Let ũ be a map in W 1,2(D2,Rm) satisfying(
d
dt

∫
D2
|∇ũt |

2
|dz|

)∣∣∣∣
t=0
= 0, ut(x) := u(x + t X (x)),

for every X ∈ C∞(D2,R2) such that 〈X (x), x〉 = 0 for x ∈ S1. Then ũ is conformal in D2.

In the case of 1
2 -harmonic maps u : S1

→ S1, we deduce from Theorem 2.9 the following:

Corollary 2.11. Let u ∈ H
1
2 (S1, S1) with deg u = 1. Then u is a weak 1

2 -harmonic map if and only if its
harmonic extension ũ : D2

→ D2 is a Möbius map, namely it has the form

ũ(z)= eiθ0
z− a

1− āz
for some |a|< 1 and θ0 ∈ [0, 2π).

3. Compactness of the Liouville equation in S1

In this section we analyze the asymptotics of solutions to (7).

The ε-regularity lemma and first compactness result. A key point in the proof of Theorem 1.2 is an
ε-regularity lemma, asserting, roughly speaking, that if the L1 norm in conformal parametrization of the
curvature (κkeλk ) is small (less than π ) in a neighborhood of a point, then λk −Ck is uniformly bounded
in the same neighborhood for some constant Ck . This result (Lemma 3.3) depends on Theorem 3.2 below.

Lemma 3.1 (fundamental solution of (−1)
1
2 on S1). The function

G(θ) := − 1
2π

log(2(1− cos θ))
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belongs to BMO(S1), can be decomposed as

G(θ)= 1
π

log π

|θ |
+ H(θ), θ ∈ [−π, π] ∼ S1, with H ∈ C0(S1), (51)

and satisfies

(−1)
1
2 G = δ1−

1
2π

in S1,

∫
S1

G(θ) dθ = 0, (52)

and, for every function u ∈ L1(S1) with (−1)
1
2 u ∈ L1(S1), one has

u− ū = G ∗ (−1)
1
2 u :=

∫
S1

G( · − θ)(−1)
1
2 u(θ) dθ for almost every t ∈ S1. (53)

Proof. The identity (52) follows at once from Lemma 4.3. That G ∈BMO(S1) follows from parametrizing
S1
= [−π, π]/{π ∼−π}, writing 1− cos θ = 1

2θ
2
+ O(θ4) as θ→ 0 and therefore

G(θ)=− 1
2π
(
log
( 1

2θ
2)
+ log(1+ O(θ2))

)
as θ→ 0. Similarly, (51) follows from the explicit expression of G, since

H(θ) := G(θ)− 1
π

log π

|θ |
= C + log(1+ O(θ)2)→ C as θ→ 0

and H(θ)→−(log 2)/(2π) as |θ | → π , so that H ∈ C0(S1).
To prove (53) for u ∈ C∞, we write

u(0)− ū =
〈
δ1−

1
2π
, u
〉
= 〈(−1)

1
2 G, u〉 :=

∫
S1

G(θ)(−1)
1
2 u(θ) dθ

and, translating, one gets (53) also for t 6= 0. For a general function u ∈ H 1,1
1 (S1), take a sequence

(uk)⊂ C∞(S1) with

uk→ u, (−1)
1
2 uk→ (−1)

1
2 u in L1(S1),

which can be easily obtained by convolution. Then

u L1(S1)
←−−− uk =

∫
S1

G( · − θ)(−1)suk(θ) dy L1(S1)
−−−→

∫
S1

G( · − θ)(−1)s(θ) dθ,

the convergence on the right following from (51) and Fubini’s theorem:∫
S1

∣∣∣∣∫
S1

G(t − θ)[(−1)suk(θ)− (−1)
su(θ)] dθ

∣∣∣∣ dt ≤ ‖G‖L1(S1)‖(−1)
suk − (−1)

su‖L1(S1)→ 0

as k→∞. Since the convergence in L1 implies a.e. convergence (up to a subsequence), (53) follows.
The last claim follows at once from the explicit expression of G. �

The following theorem, which is a generalization of Theorem I in [Brezis and Merle 1991], is a sort of
Moser–Trudinger inequality and it is crucial for proving Lemma 3.3.
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Theorem 3.2. There exist constants C1, C2 > 0 such that, for any ε ∈ (0, π), one has

C1 ≤ sup
u=G∗ f
‖ f ‖L1(S1)≤1

ε

∫
S1

e(π−ε)|u| dθ ≤ C2 (54)

and, in particular,

C1 ≤ sup
u∈L1(S1):

‖(−1)
1
2 u−α‖L1(S1)≤1

for some α∈R

ε

∫
S1

e(π−ε)|u−ū| dθ ≤ C2. (55)

Proof. Clearly the second inequality in (55) follows from the second inequality in (54) and (52). Let us
now prove (54). Given f with ‖ f ‖L1(S1) ≤ 1 and setting u = G ∗ f , we get

|u(t)| =
∣∣∣∣ 1
π

∫ t+π

t−π
log
(

π

|θ − t |

)
f (θ) dθ +

∫ t+π

t−π
H(θ − t) f (θ) dθ

∣∣∣∣
≤

1
π

∫ t+π

t−π
log
(

π

|θ − t |

)
| f (θ)| dθ +C.

With Jensen’s inequality and Fubini’s theorem, and using that ‖ f ‖L1(S1) ≤ 1, it follows that∫ π

−π

e(π−ε)|u(t)−ū| dt ≤ C
∫ π

−π

exp
(
π−ε

π

∫ t+π

t−π
log
(

π

|θ − t |

)
| f (θ)| dθ

)
dt

≤ C
∫ π

−π

∫ t+π

t−π
exp

(
π−ε

π
log

π

|θ − t |

)
| f (θ)| dθ dt

= C
∫ t+π

t−π
| f (θ)|

∫ π

−π

(
π

|θ − t |

)1− επ
dt dθ ≤

C2

ε
. (56)

This proves the second inequality in (54).
To prove the first inequalities in (54) and in (55), fix ε ∈ (0, π), choose ( fk)⊂ C∞(S1) nonnegative

such that fk→ δ0 weakly in the sense of measures with ‖ fk‖L1(S1) = 1, and let uk solve

(−1)
1
2 uk = fk −

1
2π

in S1, ūk = 0.

Such uk can easily be constructed using the Fourier formula for (−1)
1
2 ; see (123). Then, by Lemma 3.1,

|uk(t)| ≥
∫

S1
G(t − θ) fk(θ) dθ ≥ 1

π

∫ t+π

t−π
log
(

π

|θ − t |

)
fk(θ) dθ −C.

Multiplying by π − ε, exponentiating, integrating on S1 and taking the limit as k→∞, one gets

lim
k→∞

∫
S1

e(π−ε)|uk(t)| dt ≥ lim
k→∞

1
C

∫ π

−π

exp
(
π−ε

π

∫ t+π

t−π
log
(

π

|θ − t |

)
fk(θ) dθ

)
dt

=
1
C

∫ π

−π

exp
(
π−ε

π
log

π

|t |

)
dt = 1

C

∫ π

−π

(
π

|t |

)1− επ
dt =

C1

ε
,

which proves (54) and also (55), since ūk = 0. �
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Lemma 3.3 (ε-regularity lemma). Let u ∈ L1(S1) be a solution of

(−1)
1
2 u = κeu

− 1 (57)

with κ ∈ L∞(S1), eu
∈ L1(S1) and 3 := ‖κeu

‖L1 . Assume that, for some arc A ⊂ S1,∫
A
|κ|eu dθ ≤ π − ε (58)

for some ε > 0. Then, for every arc A′ b A with dist(Ac, A′)= δ,

‖u− ū‖L∞(A′) ≤ C(δ, ε,3). (59)

Proof. Set f := (−1)
1
2 u. We split f = f1+ f2, where

f1 = κeuχA, f2 = κeuχAc .

Let us now define

ui (t) := G ∗ fi (t)=
∫

S1
G(t − θ) fi (θ) dθ, i = 1, 2,

where G is as in Lemma 3.1. From (52) and (53) it follows that

u− ū = G ∗ (κeu
− 1)= G ∗ (κeu)= u1+ u2.

Choose an arc A′′ with A′ b A′′ b A and dist(A′′, Ac) = dist(A′, (A′′)c) = 1
2δ. With (51) we easily

bound

‖u2‖L∞(A′′) ≤ C1 = C1(3, δ). (60)

It follows from (58) and Theorem 3.2 that ‖e|u1|‖L p(S1) ≤ C p,ε for some p > 1 and, consequently,
also eū

≤ C . Then, for t ∈ A′ we have

u1(t)≤
∫

A
G(t − θ)(|κ|eu1(θ)eu2(θ)+ū

− 1) dθ

≤ ‖κ‖L∞

(
eC1+ū

∫
A′′

G(t − θ)eu1(θ) dθ︸ ︷︷ ︸
(1)

+

∫
A\A′′

G(t − θ)eu(θ) dθ︸ ︷︷ ︸
(2)

+C
)

≤ C,

where in (1) we use that G ∈ Lq(S1) for q ∈ [1,∞) and in (2) we use that G ∈ L∞(A′× (A \ A′′)). �

Lemma 3.4. Let λ : S1
→ S1 satisfy (−1)

1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of λ to D2.

Then

‖∇λ̃‖L(2,∞)(D2) ≤ C‖(−1)
1
2λ‖L1(S1) (61)

and, for any ball Br (x0),

1
r

∫
Br (x0)∩D2

|∇λ̃| dx ≤ C‖∇λ̃‖L(2,∞)(Br (x0)∩D2). (62)
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Proof. Let λ : S1
→ S1 satisfy (−1)

1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of λ to D2. Then

we can write

λ̃(x)=
∫

S1
G(x, y)

∂λ̃

∂ν
(y) dy =

∫
S1

G(x, y)(−1)
1
2λ(y) dy, (63)

where G is the Green function associated to the Neumann problem. It is known that ∇x(G(x, y)) is in
L(2,∞)(S1) (see, e.g., [Kenig 1994]). Therefore, ∇λ̃(x) ∈ L(2,∞)(D2) as well and (61) holds.

The proof of (62) follows from O’Neil’s inequality [1963]∫
A
|∇λ̃| dx ≤ ‖χA‖L(2,1)(A)‖∇λ̃‖L(2,∞)(A) =

√
|A|‖∇λ̃‖L(2,∞)(A)

for any A ⊂ D2. �

Theorem 3.5. Let (λk) be a sequence as in Theorem 1.2 and let (8k) ⊂ C1(D2,C) be holomorphic
immersions with λk(z) = log |8′k(z)| for z ∈ S1 and 8k(1) = 0 (compare to Theorem 1.4) Then, up to
extracting a subsequence, the set

B :=
{

a ∈ S1
∣∣∣∣ lim

r→0+
lim sup

k→∞

∫
B(a,r)∩S1

|κk |eλk dθ ≥ π
}
= {a1, . . . , aN } (64)

is finite and, for functions v∞ ∈ L1(S1,R) and 8∞ ∈W 1,2(D2,C) we have, for 1≤ p <∞,

λk − λ̄k ⇀v∞ in W 1,p
loc (S

1
\ B), λ̄k :=

1
2π

∫
S1
λk dθ, (65)

and
8k ⇀8∞ in W 2,p

loc (D
2
\ B,C) and in W 1,2(D2,C). (66)

Moreover, one of the following alternatives holds:

(1) The sequence (λk) ⊂ R is bounded and 8∞ is a holomorphic immersion of D2
\ B (i.e., it is

holomorphic in D2 and ∂z8∞ 6= 0 for z ∈ D2
\ B).

(2) λk→−∞ locally uniformly as k→+∞ and 8∞ ≡ Q for some constant Q ∈ C.

Proof. The sequence of measures |κk |eλk dθ on S1 is bounded (for the total variation norm); hence,
up to extracting a subsequence, we have |κk |eλk dx ∗⇀µ weakly in the sense of measures for a Radon
measure µ ∈M(S1). Let B := {a ∈ S1

| µ({a})≥ π}. Then B is clearly finite, say B = {a1, . . . , aN }, and
is characterized by the first identity in (64). Indeed, if µ({a})≥ π , then for every r > 0 and ϕ ∈ C0(S1)

supported in B(a, r)∩ S1 such that 0≤ ϕ ≤ 1= ϕ(a) one has

lim sup
k→∞

∫
B(a,r)∩S1

|κk |eλk dθ ≥ lim sup
k→∞

∫
S1
|κk |eλkϕ dθ =

∫
S1
ϕ dµ≥ πϕ(a)= π,

and, conversely, if µ({a}) < π , then µ(B(a, r0)∩ S1) < π for some r0 > 0; hence, taking ϕ ∈ C0(S1)

supported in B(a, r0)∩ S1 with 0≤ ϕ ≤ 1 and ϕ ≡ 1 on B(a, r0/2)∩ S1, one gets

lim sup
k→∞

∫
B(a,r0/2)∩S1

|κk |eλk dθ ≤ lim sup
k→∞

∫
S1
|κk |eλkϕ dθ =

∫
S1
ϕ dµ≤ µ(B(a, r0)) < π.
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We now show that for every compact K ⊂ S1
\ B there exists a constant cK depending on L and κ̄ in

(8)–(10) such that

‖eλk‖L∞(K ) ≤ cK (67)

and

‖λk − λ̄k‖L∞(K ) ≤ cK . (68)

Indeed, cover K with finitely many arcs Ai ∩ S1 such that∫
Ai∩S1
|κk |eλk dθ < π.

From Lemma 3.3 it follows that λk − λ̄k is bounded in each Ai , and (68) follows. Moreover, considering
that ‖eλk‖L1(S1)= Lk ≤ L , it follows that λ̄k and λk are bounded above, and this proves (67). Now, writing
λk − λ̄k = G ∗ (κkeλk − 1) as in (53) of Lemma 3.1, we can bootstrap regularity and obtain that λk − λ̄k is
bounded in W 1,p(K ) for every p <∞, and (65) follows from weak compactness.

Let λ̃k be the harmonic extension of λk . From (68), (61) and (62) we get

‖λ̃k − λ̄k‖L∞(∂(D2\∪N
i=1 B(ai ,δ)))

≤ Cδ for every δ > 0;

hence,

(λ̃k − λ̄k) is bounded in W 1,p
loc (D

2
\ B). (69)

Since 8k is harmonic and conformal, ∫
D2
|∇8k(z)|2 ≤ 1

2 L2
k . (70)

Since 8k(1) = 0, it follows that the sequence (8k) is bounded in W 1,2(D2) and, up to a subsequence,
8k ⇀8∞ weakly in W 1,2(D2), where 8∞ is holomorphic.

From (16) it follows that |∇8k | is bounded in W 1,p
loc (S

1
\ B), so 8k is bounded in W 2,p

loc (S
1
\ B) and

up to a subsequence one gets 8k ⇀8∞ in W 2,p
loc (D

1
\ B), as desired.

Further, if λ̄k→−∞ then (69) yields ∇8k→ 0 uniformly locally in D2
\ B; hence, 8∞ is constant.

Similarly, if λk ≥ −C then |∇8k | is locally uniformly lower bounded on D2
\ B; hence, ∇8∞ 6= 0

in D2
\ B. �

Blow-up analysis. In this section we associate to a sequence (λk) satisfying (8)–(10) a sequence of curves
(γk) ⊂ W 2,∞(S1,C) with bounded lengths Lk ≤ L , curvatures bounded by κ̄ , and |γ̇k | ≡ Lk/(2π); a
sequence (8k) ⊂ C1(D2,C) of holomorphic immersions such that |(8′k)|S1 | = eλk ; and a sequence of
diffeomorphisms σk : S1

→ S1 such that 8k ◦ σk = γk . Up to a translation we can assume that 8k(1)= 0
and, by the Arzelà–Ascoli theorem, γk→ γ∞ in C1(S1,C) for a curve γ∞ ∈W 2,∞(S1,C).

Notice that (8k) and (λk) satisfy the hypothesis of Theorem 3.5 and, up to a subsequence, we
can assume that (65) and (66) hold for a finite set B = {a1, . . . , aN } and functions v∞ ∈ L1(S1,R)

and 8∞ ∈W 1,2(D2,C). Moreover, either (1) or (2) in Theorem 3.5 holds.
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We introduce the following distance function Dk : S1
× S1
→ R+:

Dk(q, q ′)

= inf
{(∫ 1

0
|8′k(1k(t))|2|1′k(t)|

2 dt
)1

2
∣∣∣∣1k ∈W 1,2([0, 1], D2), 1k(0)=σk(q), 1k(1)=σk(q ′)

}
, (71)

It is well known that the infimum in (71) is attained by a path1k such that |8′k(1k(t))||1′k(t)| is constant.
For such a path we then have(∫ 1

0
|8′k(1k(t))|2|1′(t)|2 dt

)1
2

=

∫ 1

0
|8′k(1k(t))||1′k(t)| dt =:

∫
1k

|8′k(z)| |dz|.

In the sequel we sometimes identify the parametrization of a curve 1 with its image.

Proposition 3.6. (1) The function Dk is Lipschitz continuous with ‖∇Dk‖L∞ ≤ 1 and it converges
uniformly.

(2) The infimum in (71) is attained by a curve 1k in normal parametrization such that the curvature of
8k ◦1k is bounded by ‖κk‖L∞ .

Proof. (1) Let q , q ′, q̃ , q̃ ′ ∈ S1. The following estimate holds:

Dk(q, q ′)≤ Dk(q̃, q̃ ′)+ |arc (γk(q), γk(q̃))| + |arc (γk(q ′), γk(q̃ ′))| ≤ Dk(q̃, q̃ ′)+ |q − q̃| + |q ′− q̃ ′|,

where arc( · , · ) is the shortest arc between two points. By exchanging (q, q ′) and (q̃, q̃ ′), we get that

|Dk(q, q ′)− Dk(q̃, q̃ ′)| ≤ |q − q̃| + |q ′− q̃ ′|,

and we conclude.

(2) For a geodesic 1 with respect to Dk , the curve 8k ◦1 is a geodesic in C under the constraint
that 8k ◦1⊂8k(D2). This must be a union of segments (contained in 8k(D2)) and arcs of the curve γk ,
where the segments touch the curve γk tangentially. Hence the curvature of 8k ◦1 is bounded by ‖κk‖L∞ .

This completes the proof of Proposition 3.6. �

We give next the definition of a pinched point for the curve γ∞.

Definition 3.7. A point p∈ S1 is called a pinched point for the sequence (γk) if there exists p′∈ S1, p 6= p′,
such that limk→+∞ Dk(p, p′)= 0. We call p′ the “dual” of p and we will show in Lemma 3.12 below
that this dual is unique. We denote by P the set of the pinched points of γ∞.

Remark 3.8. The definition of pinched point is independent of8k and σk in the sense that if 8̃k =8k ◦ fk ,
where fk : D2

→ D2 is a Möbius transformation, and if σ̃k = f −1
k ◦ σk , then

lim
k→+∞

∫ 1

0
|8′k(1(t))||1

′(t)| dt = 0 ⇐⇒ lim
k→+∞

∫ 1

0
|8̃′k(1̃(t))||1̃

′(t)| dt = 0.

Proposition 3.9. Assume that we are in case (2) of Theorem 3.5, i.e.,8k→ Q in C1,α
loc (D

2
\{a1, . . . , aN })

for a constant Q ∈ C. Then N ∈ {1, 2}. If N = 2, let C+ and C− be the connected components
of S1

\ {a1, a2}. Then σ−1
k → p± locally uniformly on C±, where p+, p− ∈ P are dual. Moreover,
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Q = γ∞(p+)= γ∞(p−) and γ̇∞(p+)=−γ̇∞(p−), and κkeλk ∗⇀π(δa1 + δa2) and vk := λk − λ̄k ⇀ v∞

in W 1,p
loc (S

1
\ {a1, a2}), where v∞ solves (12). If N = 1 then vk→ v∞ that solves (11).

Proof. By Theorem 3.5 we have λ̄k→−∞ and λk→−∞ uniformly locally in S1
\ B = {a1, . . . , aN }.

In particular, since the signed Radon measures κkeλk dx are uniformly bounded, we have µk
∗⇀µ for a

Radon measure supported in B, which we can then write as µ=
∑N

i=1 αiδai . Moreover, since∫
S1

κkeλk dθ = 2π,

we infer that
∑N

i=1 αi = 2π .
Let us assume that N ≥ 2. We want to prove that αi = π for every i , so necessarily N = 2. In order to

prove that αi = π , up to a rotation we can reduce to proving that α1 = π and assume that a1 = i . We
can also assume that N = 2 and a2 =−i . If this is not the case, it suffices to compose 8k with Möbius
diffeomorphisms fk(z)= (z− i tk)/(1+ i tkz) with tk ↑ 1 slowly enough that 8̃k :=8k ◦ fk is still as in
case (2) of Theorem 3.5, with B = {a1 = i, a2 =−i}.

Then let 8k be as above, with 8k ⇀ Q in W 2,p
loc (D

2
\ {i,−i}). Set

Vk(z)= e−λ̄k (8k(z)−8k(0)), vk = log |V ′k |S1 | = λk − λ̄k .

By Theorem 3.5 we have

vk ⇀v∞ in W 1,p
loc (S

1
\ {i,−i}) and in D′(S1),

where v∞ solves
(−1)

1
2 v∞ = αδi + (2π −α)δ−i − 1 (72)

for some α ∈ R. Similarly, Vk ⇀ V∞ in W 2,p
loc (D

2
\ {i,−i}). Solutions to (72) can be computed explicitly

using Lemma 3.1, so that

v∞(eiθ )=−
α

2π
log(2(1− sin θ))− 2π−α

2π
log(2(1+ sin θ)).

Notice that, writing z = x + iy, for z = eiθ
∈ S1 we have

2(1− sin θ)= x2
+ y2
− 2y+ 1= |z− i |2

and, similarly, 2(1+ sin θ)= |z+ i |2. In particular, v∞ can be extended to a holomorphic function

ṽ∞(z) := −
α

2π
log(|z− i |2)− 2π−α

2π
log(|z+ i |2), z ∈ D2

\ {i,−i}. (73)

The estimate (69) together with (16) implies that

c−1
δ ≤ |V

′

k | ≤ cδ on D2
\ (B(i, δ)∪ B(−i, δ)) for every δ > 0.

Therefore, Vk⇀V∞ as k→+∞ in W 2,p
loc (D

2
\{i,−i}), where V∞ is a conformal immersion of D2

\{i,−i}.
Moreover, still using (16), from (73) we obtain

|V ′
∞
(z)| =

1
|z− i |α/π |z+ i |2−α/π

.
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Since V ′
∞

is holomorphic in D2, up to a rotation (i.e., multiplication by a constant eiθ0) we obtain

V ′
∞
(z)=

1
(z− i)α/π (z+ i)2−α/π

, V∞(z)=
∫ z

0

dz
(z− i)α/π (z+ i)2−α/π

.

Up to possibly switching i with −i , we may assume that α ≤ π . The function V∞ is also known as
the Schwarz–Christoffel mapping1 and sends the two arcs C+, C− ⊂ S1 joining i and −i (chosen so
that ±1 ∈ C±) into two parallel straight lines if α = π and into two half-lines meeting at V∞(i), forming
an angle of π −α there if α < π .

Claim 1. As k→+∞ we have σ−1
k → p± in L∞loc(C±), where p+, p− ∈ S1 with p+ 6= p−.

Proof. Notice that 8k ⇀ Q in W 2,p
loc (D

2
\ {i,−i}) implies that

∂σ−1
k

∂θ
→ 0 uniformly locally in S1

\ {i,−i} as k→+∞.

This proves the first part of the claim. Assume for contradiction that p+ = p−. Set p±k = σ
−1
k (±1)→ p±.

By assumption, |arc(p+k , p−k )| → 0 (here arc(p+k , p−k ) denotes the shortest arc connecting p+k to p−k ).
Since σk is a diffeomorphism, σk(arc(p+k , p−k )) contains either S1

∩B(i, δ) or S1
∩B(−i, δ) for small δ >0.

Suppose it contains S1
∩ B(i, δ). Then∫

S1∩B(i,δ)
eλk dθ =

∫
S1∩B(i,δ)

|8′k(e
iθ )| dθ ≤

∫
arc(p+k ,p

−

k )

|γ̇k | dθ =
Lk

2π
|arc(p+k , p−k )| → 0 (74)

as k→∞. This contradicts that i ∈ B and concludes the proof of Claim 1. �

Claim 2. p+ is a pinched point and p− is dual to it.

Proof. Let p±k = σ
−1
k (±1) be as above. Consider the path

1k = arc(σk(p+), 1)∪ arc(σk(p−),−1)∪ [−1, 1],

where [−1, 1] is the segment in D2 joining −1 to 1. Since, as k→∞, we have∫
arc(σk(p±),±1)

|8′k(e
iθ )| dθ =

∫
arc(p±k ,p

±)

|γ̇k | dθ =
Lk |arc(p±k , p±)|

2π
→ 0 (75)

and ∫
[−1,1]

|8′k | |dz| ≤ 2 sup
[−1,1]
|8′k | |dz| → 0,

we immediately infer that ∫
1k

|8′k | |dz| → 0;

hence, p+ is dual to p−. This proves Claim 2. �

1Up to composition with a conformal transformation, since Schwarz–Christoffel maps are usually defined on the half-plane
{z ∈ C : <z > 0} instead of the unit disk.
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σk

p−k
p−

p−k e−iδ−k

p+

p+k

p+k eiδ+k

γk

γk(p+k )

γk(p−k )

8k

1k

π −α

V∞

8k(1k)

γk(p−k e−iδ−k )= γk(p+k eiδ+k )

σk(p−k e−iδ−k ) σk(p+k eiδ+k )

σk(p−k )=−1 1= σk(p+k )

Figure 6. Case 1 in the proof of Proposition 3.9.

Now,

2π
Lk
γ̇k(p±k )=

∂8k(±1)
∂θ∣∣∂8k(±1)
∂θ

∣∣ =
∂8k(±1)
∂θ

eλ̄k eλk(±1)−λ̄k
=
∂V∞(±1)

∂θ
eλ̄k−λk(±1)

+ o(1) as k→∞. (76)

In particular, denoting by (v,w)∧ the angle between two vectors, we have

(γ̇k(p+k ), γ̇k(p−k ))
∧
→

(
∂V∞(1)
∂θ

,
∂V∞(−1)

∂θ

)∧
= α. (77)

We consider different cases:

Case 1: 0< α < π . Since p±k → p± and p+ is pinched to p−, and since

|γk(p+k )−γk(p−k )|≤Dk(p+k , p−k )≤Dk(p+, p−)+
Lk

2π

(
|arc(p+, p+k )|+|arc(p−, p−k )|

)
→0 as k→∞,

taking (77) and the bound κ̄ on the curvature of γk into account we see that for positive numbers δ±k → 0
(as k→∞) we have

γk(p+k eiδ+k )= γk(p−k e−iδ−k ), (78)

i.e., the two curves t 7→ γk(p±k e±i t) cross in short time (see Figure 6).



BLOW-UP ANALYSIS OF A NONLOCAL LIOUVILLE-TYPE EQUATION 1783

Because δ±k → 0, we have

Dk(p+k eiδ+k , p−k e−iδ−k )≤ Dk(p+k , p−k )+
Lk(δ

+

k + δ
−

k )

2π
→ 0 as k→∞. (79)

Now let 1k : [0, 1] → D2 be a geodesic realizing the distance on the left-hand side of (79). Then (78)
implies that 8k ◦1k is a closed curve (nonconstant, since p+k eiδ+k 6= p−k e−iδ−k for k large), so that the
integral of its curvature is at least π (see Lemma 3.10 below). On the other hand, Proposition 3.6 implies
that the curvature of 8k ◦1k is bounded by κ̄ and, since the length of this geodesic is going to 0 according
to (79), we get a contradiction.

Case 2: α = 0. Similarly to case 1, if the curves γk(p±k e±i t) cross for small times δ±k → 0, we conclude
as before. If not, we can at least say that, up to a rotation of the axis,

V∞(D2)= {x + iy : y < 0} (80)

and that, for small times δ±k → 0,

<(γk(p+k eiδ+k ))=<(γk(p−k e−iδ−k )) (81)

and, without loss of generality,

=(γk(p+k eiδ+k )) > =(γk(p−k e−iδ−k )), (82)

where, for x , y ∈ R, we use the notation <(x + iy)= x , =(x + iy)= y (see Figure 7). Moreover, since
the curvature of γk is uniformly bounded and δ±k → 0, using (76) and (80) we infer2

γ̇k(p±k e±iδ±k )

|γ̇k(p±k e±iδ±k )|
=
γ̇k(p±k )
|γ̇k(p±k )|

+ o(1)=−1+ o(1), (83)

i.e., the curves t 7→ γk(p±k e±i t) at the time t = δ±k are almost horizontal and pointing into opposite
directions (notice the change of orientation between the curves t 7→γk(ei t) and t 7→γk(p−k e−i t)). As before,
(79) holds, so let 1k : [0, 1] → D2 be a geodesic realizing the distance in (79), with 1k(0)= γk(p+k eiδ+k )

and 1k(1)= γk(p−k e−iδ−k ). Up to a reparametrization we can assume that 1̃k :=8k ◦1k : [0, L] → C

satisfies | ˙̃1k(t)| ≡ 1. Since the map 8k preserves the orientation, from (83) we infer

=( ˙̃1k(0))≤ 0+ o(1), =( ˙̃1k(1))≥ 0+ o(1),

i.e., up to o(1)→ 0 as k→∞ we have that ˙̃1k(0) points downwards, while ˙̃1k(1) points upwards. Now
using (81) we see that the curve 1̃k has total curvature at least 1

2π −o(1) (see Lemma 3.11 below), again
contradicting Proposition 3.6 and (79).

Case 3: α < 0. Let 1 be the straight segment in D2 (seen as a smooth path) joining −1 to 1. Since
1 ⊂ D2

\ {i,−i} we have that Vk ◦1→ V∞ ◦1 and, by the explicit form of V∞, we deduce that the
unit tangent vector of the curve V∞ ◦1 describes an arc in S1 of length at least |α| +π (we are using

2The symbol γ̇k(p
±

k e±iδ±k ) denotes the derivative of the curve t 7→ γk(ei t ) evaluated for ei t
= p±k e±iδ±k and not the derivative

of the curve t 7→ γk(p
±

k e±i t ) evaluated for t = δ±k .
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σk

p−k
p−

p−k e−iδ−k

p+
p+k

p+k eiδ+k

γk

γk(p+k )

γk(p−k )

8k

1k

8k(1k)

γk(p+k eiδ+k )

γk(p−k e−iδ−k )

σk(p−k e−iδ−k ) σk(p+k eiδ+k )

σk(p−k )=−1 1= σk(p+k )

Figure 7. Case 2 in the proof of Proposition 3.9.

that 1 touches S1 perpendicularly and V∞ is conformal). This implies that, for k large enough, any
C1 curve of the form 8k ◦ 1̃ for a curve 1̃ ∈ C1([0, 1], D2) with 1̃(0) = −1 and 1̃(1) = 1 has a unit
tangent vector describing an arc of length no less than |α|−o(1). If such a curve minimizes Dk , since, by
Proposition 3.6, its curvature is bounded by κ̄ , its length cannot go to zero as k→∞. But this contradicts
that p+ and p− are pinched points, since, if 1k is a geodesic minimizing Dk(σk(p+), σk(p−)) (with
length going to 0 since p+ and p− are pinched), then joining 1k with the two arcs arc(σk(p±),±1) and
using (75) one would obtain paths joining −1 to 1 of Dk-length going to 0.

The only case left is α = π , which completes the proof of Proposition 3.9. �

In the proof of Proposition 3.9 we have used the following:

Lemma 3.10. Let 1 ∈ W 2,∞([0, L],C) be a curve satisfying |1̇(t)| = 1 for every t ∈ [0, L] and
1(0)=1(L). Then ∫ L

0
|κ(t)| dt > π,

where κ is the curvature of 1.
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Proof. Let θ : [0, L] → R be a continuous function such that 1̇(t)= eiθ(t) for t ∈ [0, L]. Then it is easy
to see that θ̇ = κ . We have θ([0, L])= [θ−, θ+] ⊂ R for some θ−, θ+ ∈ R. Assume now that

θ+− θ− ≤ π (84)

and set

θ̄ := 1
2(θ+− θ−), v := ei θ̄ .

Then, since |θ(t)− θ̄ | ≤ 1
2π for every t ∈ [0, L], we have

d
dt
〈1(t), v〉 = 〈1̇(t), v〉 = 〈eiθ(t), ei θ̄

〉 ≥ 0,

with equality possible only for a proper subset of [0, L], where |θ(t)− θ̄ | = 1
2π . But this contradicts that

1(0)=1(L). In particular, (84) cannot hold, and we get∫ L

0
|κ(t)| dt =

∫ L

0
|θ̇ (t)| dt ≥ osc θ = θ+− θ− > π. �

Lemma 3.11. Let1 ∈W 2,∞([0, L],C) be a curve satisfying |1̇(t)= 1| for every t ∈ [0, L]. Assume that

<(1(0))=<(1(L)), =(1(0)) < =(1(L)), (85)

and that for some (small) ε > 0 one has

=(1̇(0)) < ε and =(1̇(L)) >−ε. (86)

Then ∫ L

0
|κ(t)| dt > π

2
−Cε,

where κ is the curvature of 1 and C is a universal constant.

Proof. Let θ ∈ W 1,∞([0, L],R) be as in the proof of Lemma 3.10. Then (85) implies that for some
t1, t2 ∈ [0, L] one has <(eiθ(t1)) ≤ 0 and <(eiθ(t2)) ≥ 0 (otherwise 1̇ would always be pointing right,
or always left). Condition (86) implies that =(eiθ(0)) ≤ ε and =(eiθ(L)) > −ε. Then we immediately
infer that the oscillation of θ is at least 1

2π −Cε and we conclude as in the proof of Lemma 3.10, using
that κ = θ̇ . �

Next we prove some properties concerning the set P:

Lemma 3.12. Let p+ and p− be dual pinched points and assume that σk(p±) = ±1. Then 8k is as in
case (2) of Theorem 3.5, B = {a1, a2} and ±1 6∈ B. Moreover, every pinched point p has only one dual p′

and |arc(p, p′)| ≥ C/κ̄ .

Proof. Let us start with the first claim. If 8k is as in case (1) of Theorem 3.5, then∫
1k

|8′k(z)| |dz| ≥ C for every 1k with 1k(0)=−1, 1k(1)= 1, (87)
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in contrast with the fact that p+ and p− are pinched. Thus we are in case (2) of Theorem 3.5 and,
by Proposition 3.9, we have N ∈ {1, 2}. Assume now that a1 = 1 = σk(p+) (the reasoning is similar
if a1 =−1). Then we compose 8k with the Möbius diffeomorphism fk(z)= (z− tk)/(1− tkz), where
tk ↑ 1 is chosen so that for a fixed small δ > 0 we have, for k large enough,∫

S1∩Bδ(1)
|(8k ◦ fk)

′(z)| |dz| =
π

2κ̄
. (88)

In other words, the effect of fk is to stretch the disk to remove the concentration at the point a1 = 1,
concentrating the disk towards −1. Then 8̃k := 8k ◦ fk is necessarily as in case (1) of Theorem 3.5.
Moreover, the corresponding σ̃k := f −1

k ◦ σk still satisfies σ̃k(p±)=±1, since fk leaves ±1 fixed. This,
together with (88), contradicts that p+ and p− are pinched, since, by conformality and convergence of 8̃k ,
in a neighborhood Bδ/2(1) we have |8̃′k | ≥ C ; hence, (87) holds with 8̃k instead of 8k . Therefore, going
back to the original maps 8k , we have proven that ±1 6∈ B.

To rule out the case N = 1 it suffices to observe that in this case σk(p+) and σk(p−) would belong to
the same connected component of S1

\ B; hence, since 8k is as in case (2) of Theorem 3.5, we would get
|arc(σ−1

k (1), σ−1
k (1))| → 0, which is absurd, since σ−1

k (±1)= p± and p+ 6= p−.

Claim 1. Every pinched point p has a unique dual p′.

Proof. It suffices to prove that, given any pinched points p+ and p− dual to each other, γ̇∞(p+)=−γ̇∞(p−)
(since then a third point p̃ dual to p+ would be also dual to p−, whence γ̇∞( p̃) would have to coincide
both with γ̇∞(p+) and its opposite, which is impossible). Let us therefore consider two pinched points
p+ and p−, dual to each other. By considering 8̃k := 8k ◦ fk and σ̃k = f −1

k ◦ σk for suitable Möbius
transformations fk , we can assume that σ̃k(p±)=±1. Then, by the previous part of the lemma, 8̃k blows
up at two points a1 and a2 different from ±1. To such a 8̃k we can then apply Proposition 3.9 with C±
being the connected component of S1

\{a1, a2} containing±1. We then infer that γ̇∞(p+)=−γ̇∞(p−). �

Claim 2. We have |arc(p, p′)| ≥ C/κ̄ .

Proof. This follows from the fact that both arcs A1 and A1 joining σ̃k(p±)=±1 contain a blow-up point,
a1 or a2, so that ∫

Ai

|κ̃k |eλ̃k |dz| =
∫

fk(Ai )

|κk |eλk |dz| ≥ π − o(1). �

This concludes the proof of Lemma 3.12. �

Lemma 3.13. The set P is closed.

Proof. Let {pn} and {p′n} be a sequence of pinched points and their duals, respectively, with pn→ p∞
and p′n→ p′

∞
as k→+∞.

We first observe that |pn − p′n| ≥ C > 0 for all n ≥ 0, so p∞ 6= p′
∞

.
For each pn there exists a curve 1n,k ⊆ D2 with ∂1n,k = {σk(pn), σ (p′n)} and

lim
k→+∞

∫
1n,k

|8′k(z)| |dz| = 0.
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Since γk→ γ∞ in C1(S1) as k→+∞, we have

lim
k→+∞

lim
n→+∞

∫
arc(pn,p∞)

|γ̇k(t)| dt = 0,

lim
k→+∞

lim
n→+∞

∫
arc(p′n,p′∞)

|γ̇k(t)| dt = 0.
(89)

We set
1̃n,k :=1n,k ∪ arc(σk(pn), σk(p∞))∪ arc(σk(pn), σk(p∞)).

For all k, we have 1̃n,k→ 1̃∞,k as n→+∞ with ∂1̃k,∞ = {σk(p∞), σk(p′∞)} and, since 8k ◦ σk = γk

on S1 from (89), we have

lim
k→+∞

∫
1̃k,∞

|8′k(z)| |dz| = lim
k→+∞

lim
n→+∞

∫
1̃n,k

|8′k(z)| |dz| = 0.

Hence p∞ is by definition a pinched point and p′
∞

is its dual. �

We now introduce the following equivalence relation on the set S1
\ {P}:

Definition 3.14. Given p, q ∈ S1
\ {P}, we say that p ∼ q if and only if there exists a sequence of paths

1k : [0, 1] → D2 with 1k(0)= σk(p) and 1k(1)= σk(q) such that

lim inf
k→+∞

dk(1k, σk(P)) > 0, (90)

where dk : D2
× D2

→ R+ is the distance defined as

dk(z, w)= inf
{(∫ 1

0
|8′k(1(t))|

2
|1̇(t)|2 dt

)1
2
∣∣∣∣1 ∈W 1,2([0, 1], D2), 1(0)= z, 1(1)= w

}
.

Proposition 3.15. Let q ∈ S1
\ {P}, and let Aq and Bq be the equivalence class and the connected

component containing q, respectively. Then Bq ⊆Aq .

Proof. Let q ∈ S1
\ {P}. We show that Aq ∩Bq is open and closed in Bq .

(1) Aq ∩Bq is open in Bq : Choose δ > 0 small enough so that ei tq ∈ S1
\ {P} for t ∈ [−2δ, 2δ] and∫

σk(arc(e−2δi q,e2δi q))
|8′k(z)| |dz|<

π

2κ̄
. (91)

Now set q0 = e−iδq, q1 = q and q2 = eiδq. Let fk be the sequence of Möbius transformations of D2

such that σ̃k(q0)= 1, σ̃k(q1)= e2π i/3 and σ̃k(q2)= e4π i/3. We apply Theorem 3.5 to 8̃k :=8k ◦ fk and
notice that if we are in case (2) of Theorem 3.5, then there are one or two blow-up points. In the latter
case, away from the blow-up points {a1, a2}, we have that σ−1

k locally converges to two pinched points,
which implies that one of the qi lies in P, a contradiction. In the former case, for one pair of points, say
q1 and q2, one has ∫

arc(q1,q2)

|γ̇ (t)| dt =
∫

arc(σ̃k(q1),σ̃k(q2))

|8̃′k(z)| |dz| → 0,

contradicting that |γ̇k | is bounded away from 0 and |arc(q1, q2)| = δ.
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Therefore we are in case (1) of Theorem 3.5 and 8̃k ⇀8̃∞ in W 1,2(D2) and in W 2,p
loc (D

2
\ B), where

8̃∞ is a holomorphic immersion in D2
\ B, B = {a1, . . . , aN } and e2 jπ i/3

6∈ B for j = 0, 1, 2. Since
|8̃′
∞
|>Cδ > 0 in D2

\
⋃N

i=1 Bδ(ai ), for every p ∈ arc(q0, q2), choosing as 1k the segment joining σk(p)
to σk(q) that satisfies (90) shows that Bδ(q)∩ S1

⊂Aq .

(2) Aq ∩Bq is closed in Bq : Let qn ∈Aq ∩Bq be such that qn→ q∞ ∈Bq . For every n there exists 1k
n

with 1k
n(0)= σk(qn) and 1k

n(1)= σk(q), and

lim inf
k→+∞

dk(1
k
n, σk(P)) > 0. (92)

Consider now the path 6k
n = arc(σk(q∞), σk(qn))∪1

k
n joining σk(q∞) to σk(q). We claim that

lim inf
k→+∞

dk(6
k
n, σk(P)) > 0.

Indeed, considering (92), it suffices to prove that, for n sufficiently large,

lim inf
k→+∞

dk(arc(σk(q∞), σk(qn)), σk(P)) > 0. (93)

Assume for contradiction that the lim inf in (93) is zero.
For every k and n, let qk

n ∈ arc(q∞, qn) and pk
n ∈ P be such that

lim inf
k→+∞

Dk(qk
n , pk

n)= 0.

Up to a subsequence, qk
n → q∞ and pk

n→ p∞ ∈ P as n, k→∞, and

lim
k→+∞

lim
n→+∞

Dk(qk
n , pk

n)= lim
k→+∞

Dk(q∞, p∞)= 0,

but this contradicts that q∞ /∈P. This contradiction proves that q∞ ∈Aq ∩Bq ; hence, Aq ∩Bq is closed
in Bq . �

Proposition 3.16. Let A be an equivalence class in S1
\ {P}. Then there exists a sequence fk : D2

→ D2

of Möbius transformations such that 8̃k :=8k ◦ fk ⇀ 8̃∞ in W 2,p
loc (D

2
\ B), B = {a1, . . . , aN }, and, as

usual letting σ̃k be such that γk = 8̃k ◦ σ̃k , one has σ̃−1
k ⇀ψ∞ in W 2,p

loc (S
1
\ B),

ψ∞(S1
\ B)=A (94)

and γ∞(A)= 8̃∞(S1
\ B). In fact, (γ∞)∗[A] = (8̃∞)∗[S1

\ B].

Proof. Given q ∈A, take fk as in the proof of Proposition 3.15 and set 8̃k :=8k ◦ fk . We have shown
that 8̃k ⇀ 8̃∞ in W 1,2(D2) and in W 2,p

loc (D
2
\ B) for a finite set B = {a1, . . . , aN }, where 8̃∞ is a

holomorphic immersion (Theorem 3.5, case (1)). In particular, this implies that ψk := σ̃
−1
k is bounded in

W 2,p
loc (S

1
\ B) and, up to a subsequence, ψk ⇀ψ∞ in W 2,p

loc (S
1
\ B). Clearly,

ψ∞(S1
\ B)⊂A.

Conversely, given p 6∈ ψ∞(S1
\ B), we want to show that p 6∈A. Given such a p we have σ̃k(p)→ ai

for some ai ∈ B, since otherwise we would have p = ψk ◦ σ̃k(p)→ ψ∞(p∗) for p∗ ∈ S1
\ B. Since
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∇8̃∞ ∈ L2(D2), from Fubini’s theorem we can find a sequence δi
n→ 0 such that

lim
n→+∞

∫
∂B(ai ,δi

n)∩D2
|∇8̃∞(z)|2 |dz| = 0. (95)

For every ai , set {pi,−
k,n , pi,+

k,n } = σ̃
−1
k (∂B(ai , δ

i
n)∩ S1). We have |pi,−

k,n − pi,+
k,n |> C0 for any n and k large

enough, since by definition of the blow-up points one has, for k large enough,∫
arc(pi,−

k,n ,p
i,+
k,n )

|γ̇k(t)| dt =
∫

B(ai ,δi
n)∩S1

eλk(z) |dz|> π

2
.

Therefore, up to a subsequence, pi,−
k,n → pi,−

∞
and pi,+

k,n → pi,+
∞

with pi,+
∞
6= pi,−

∞
and

lim
k→∞

Dk(σ̃k(pi,−
∞
), σ̃k(pi,+

∞
))= 0

In particular, pi,−
∞

and pi,+
∞

are pinched. Then condition (95) implies that any path 1k joining σ̃k(q)
and σ̃k(p) for k large enough is close to σ̃k(pi,−

∞
) ∈ σ̃k(P), so p ∈ S1

\A.
Finally,

(γ∞)∗[A] = lim
δ→0

(γ∞)∗

[
ψ∞

(
S1
\

⋃
ai∈B

B(ai , δ)

)]
,

= lim
δ→0

lim
k→∞

(γk)∗

[
σ̃−1

k

(
S1
\

⋃
ai∈B

B(ai , δ)

)]
,

= lim
δ→0

lim
k→∞

(8̃k)∗

[
S1
\

⋃
ai∈B

B(ai , δ)

]
,

= lim
δ→0

(8̃∞)∗

[
S1
\

⋃
ai∈B

B(ai , δ)

]
,

= (8̃∞)∗[S1
\ B]. �

Quantization result: proof of Theorems 1.2 and 1.5. In this section we prove Theorems 1.2 and 1.5. In
Theorem 1.2 we will show that, under the hypothesis of Theorem 3.5, κkeλk ⇀µ weakly in the sense of
Radon measures, where µ is a Radon measure which is the sum of a locally bounded (possibly vanishing)
function and a (possibly empty) sum of Dirac masses. We also give precise estimates on the coefficients
of the Dirac masses. In Theorem 1.5, we show that up to a suitable choice of Möbius transformations we
can “detect” all the connected components arising in the limit.

Proof of Theorem 1.2. From Theorem 3.5 there is a (possibly empty) set B = {a1, . . . , aN } ⊂ S1 such that
(65) holds. Moreover, from (8) and (10) it follows that ‖(−1)

1
2λk‖L1(S1) ≤ C . Therefore, (53) implies

‖λk − λ̄k‖Lq (S1) ≤ C for every q <+∞.

Up to extracting a further subsequence, we have vk := λk − λ̄k ⇀v∞ in Lq(S1) and

κkeλk ∗⇀µ and (−1)
1
2 vk

∗⇀(−1)
1
2 v∞ = µ− 1 in M(S1), (96)
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where M(S1) denotes the space of finite signed measures on S1. Up to a subsequence we also have
κk
∗

⇀κ∞ in L∞(S1). We now distinguish three cases.
Case 1: Suppose that we are in case (2) of Theorem 3.5 and N = 1, i.e., λk →−∞ locally uniformly
in S1

\ {a1}. Then µ= c1δa1 and, since ∫
S1
κkeλk dθ = 2π,

it follows at once that c1 = 2π . The explicit form of v∞ follows from Lemma 3.1.
Case 2: Suppose that we are in case (2) of Theorem 3.5 and N > 1. Then we conclude by applying
Proposition 3.9, which in particular implies that N = 2 and µ= πδa1 +πδa2 . Again, the explicit form
of v∞ follows from Lemma 3.1.
Case 3: Suppose that we are in case (1) of Theorem 3.5, i.e., λk ≥ −C . Then λk ⇀ λ∞ weakly in
W 1,p

loc (S
1
\ B) and for every ϕ ∈ C∞c (S

1
\ B) we have

0= lim
k→∞

∫
S1
(λk(−1)

1
2ϕ− (κkeλk − 1)ϕ) dθ = lim

k→∞

∫
S1
(λ∞(−1)

1
2ϕ− (µ− 1)ϕ) dθ.

In particular, the distribution

T∞ := (−1)
1
2λ∞−µ+ 1

is supported in B and, since, by (96), T∞ ∈M(S1), the order of T∞ (as a distribution) is 0; hence,

T∞ =
N∑

j=1

c jδa j .

In order to compute the coefficients c j , let χδ : S1
→ R be 1 on S1

∩
⋃n

j=1 B(a j , δ) and 0 otherwise. We
rewrite (9) as follows:

(−1)
1
2λk = (1−χδ)κkeλk +χδκkeλk − 1. (97)

Since

lim
k→∞

(1−χδ)κkeλk = (1−χδ)κ∞eλ∞ in D′(S1),

testing (97) with ϕ ∈ C∞(S1) and letting k→∞ we get∫
S1
(λ∞(−1)

1
2ϕ− (1−χδ)κ∞eλ∞ϕ+ϕ) dθ = lim

k→∞

∫
S1
χδκkeλkϕ dθ

and, letting δ→ 0, we infer

〈T∞, ϕ〉 = lim
δ→0

lim
k→∞

∫
S1
χδκkeλkϕ dθ.

By choosing ϕ = 1 in a neighborhood of a j for a fixed j and ϕ = 0 in a neighborhood of B \ {a j }, we get

c j = lim
δ→0

lim
k→∞

∫
S1∩B(a j ,δ)

κkeλk dθ.
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We now want to compute c j for a fixed j ∈ {1, . . . , N }. Consider the Möbius transformation fk(z) =
(z− tka j )/(1− tk ā j z), and 8̃k :=8k ◦ fk , for a sequence tk ↑ 1 to be chosen. By Corollary 2.4 we have

λ̃k := log |8̃′k | = λk ◦ fk + log | f ′k |, κ̃k := κk ◦ fk,

and

(−1)
1
2 λ̃k = κ̃keλ̃k − 1.

Since log | f ′k | → −∞ locally uniformly in D2
\ {a j } and log | f ′k(a j )| → ∞, it is not difficult to see

that, if tk ↑ 1 slowly enough, then λ̃k → −∞ uniformly locally in D2
\ {a j ,−a j } and we can apply

Proposition 3.9 to 8̃k and obtain that

κ̃keλ̃k ∗⇀π(δa j + δ−a j ).

With a change of variable we then get

π = lim
δ→0

lim
k→∞

∫
S1∩B(a j ,δ)

κ̃keλ̃k dθ = lim
δ→0

lim
k→∞

∫
fk(S1∩B(a j ,δ))

κkeλk dθ = c j ,

where the last identity holds up to having tk ↑ 1 slowly enough. �

Proof of Theorem 1.5. From Proposition 3.15 it follows that S1
\ {P} =

⋃
j∈J Ai , where J is an at

most countable set and A j is an equivalence class generated by the relation in Definition 3.14. From
Proposition 3.16 it follows that for every class A j there is a sequence of Möbius transformations f j

k (z)
such that

8̃
j
k :=8k ◦ f j

k ⇀ 8̃ j
∞

in W 2,p
loc (D

2
\ B j ), B j = {b

j
1, . . . b

j
N j
},

where 8̃ j
∞ : D2

\ B j → R2 is a conformal immersion and γ∞(A j )= 8̃
j
∞(S1

\ B j ). Moreover, we have

(γ∞)∗[S1
\P] =

∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ].

We have ∑
j∈J

(γ∞)∗[A j ] =
∑
j∈J

(8̃ j
∞
)∗[S1

\ B j ]

and it remains to prove that

(γ∞)∗[P] = 0.

In order to do that, let τ : P→ P be the bijection which, to a pinched point p, associates its dual. For a
differential form φ : C→ L(C,C), we have

(γ∞)∗[P](φ)=

∫
P
φ(γ∞(t))γ̇∞(t) dt. (98)

Now recall that

γ∞(t)= γ∞(τ (t)), γ̇∞(t)=−γ̇∞(τ (t)). (99)
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For a sequence tn ∈ P with tn→ t ∈ P as n→∞, we have

γ∞(tn)= γ∞(t)+ γ̇∞(t)(tn − t)+ o(tn − t),

γ∞(τ (tn))= γ∞(τ (t))+ γ̇∞(τ (t))(τ (tn)− τ(t))+ o(τ (tn)− τ(t)),
(100)

where for simplicity of notation we identified S1 with the interval [0, 2π ], with zero corresponding to a
point in S1

\P. Using (99) and (100) we infer that

lim
n→∞

τ(tn)− τ(t)
tn − t

=−1.

Then, at a density point of P, we have dτ/dt =−1 in the sense of approximate differentials (if the density
of P is everywhere 0 then |P| = 0 and we are done). Therefore,∫

P
φ(γ∞(t))γ̇∞(t) dt =−

∫
P
φ
(
γ∞(τ (t))

)
γ̇∞(τ (t)) dt =−

∫
τ(P)=P

φ(γ∞(t))γ̇∞(t) dt,

where in the first identity we used (99) and in the second identity we made a change of variable. This
proves that the integral in (98) vanishes for every differential form φ; hence, (γ∞)∗[P] = 0.

Since, for every j ∈ J , the sequence (8̃ j
k ) is as in case (1) of Theorem 3.5, i.e., setting λ j

k := log
∣∣(8̃ j

k )
′
|S1

∣∣
we have |λ̄ j

k | ≤C , we can apply Theorem 1.2(iii) and it follows at once that the blow-up set of λ j
k is B j . �

4. Relation between the Liouville equations in R and S1

Consider the conformal map G : D2
→ R2 given by

G(z)=
i z+ 1
z+ i

=
z+ z̄+ i(|z|2− 1)
1+ |z|2+ i(z̄− z)

.

We will use on the domain D2 the coordinate z = ξ + iη and on the target R2 the coordinates (x, y)
or x + iy. Writing G in components,

G1(z)=<G(z)=
2ξ

(1+ η)2+ ξ 2 , G2(z)= =G(z)=
ξ 2
+ η2
− 1

(1+ η)2+ ξ 2 ,

and using the polar coordinates (r, θ) on D2 one easily verifies

∂G1

∂r

∣∣∣∣
r=1
= 0,

∂G2

∂r

∣∣∣∣
r=1
=

1
1+ η

,
∂G1

∂θ

∣∣∣∣
r=1
=−

1
1+ η

,
∂G2

∂θ

∣∣∣∣
r=1
= 0.

Notice that G|S1(ξ + iη) = ξ/(1+ η), i.e., 5 := G1
|S1 is the classical stereographic projection from

S1
\ {−i} onto R. Its inverse is

5−1(x)=
2x

1+ x2 + i
(
−1+

2
1+ x2

)
. (101)

If we write 5−1(x)= eiθ(x), we get the useful relation

1+ sin(θ(x))=
2

1+ x2 ,
2

1+5(θ)2
= 1+ sin θ, (102)
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which follows easily from sin(θ(x))= =(5−1(x))= (1− x2)/(1+ x2).

Proposition 4.1. Given u : R→ R, set v := u ◦5 : S1
→ R, where 5 := G1

|S1 . Then u ∈ L 1
2
(R) if and

only if v ∈ L1(S1). In this case,

(−1)
1
2 v(eiθ )=

((−1)
1
2 u)(5(eiθ ))

1+ sin θ
in D′(S1

\ {−i}), (103)

that is,
〈(−1)

1
2 v, ϕ〉 = 〈(−1)

1
2 u, ϕ ◦5−1

〉 for every ϕ ∈ C∞0 (S
1
\ {−i}).

Further, if (−1)
1
2 u ∈ L1(R) or, equivalently, (−1)

1
2 v|S1\{−i} ∈ L1(S1), then

(−1)
1
2 v(eiθ )=

((−1)
1
2 u)(5(eiθ ))

1+ sin θ
− γ δ−i in D′(S1), γ =

∫
R

(−1)
1
2 u dx . (104)

Proof. Since ∫
S1
|v| dθ =

∫
R

2|v(5−1(x))|
1+ x2 dx,

it is clear that v ∈ L1(S1) if and only if u ∈ L 1
2
(R).

Given now ϕ ∈C∞c (S
1
\{−1}), set ψ :=ϕ◦5−1

∈C∞c (R) and let ϕ̃ ∈C∞(D2) and ψ̃ ∈C∞∩L∞(R2
+
)

be the harmonic extensions of ϕ and ψ given by the Poisson formulas (125) and (132), respectively. It is
not difficult to see that, setting G = (G1,−G2), ψ̃ ◦G|D2 is continuous, harmonic in D2 and it coincides
with ϕ̃ on S1. Then, by the maximum principle, ϕ̃ = ψ̃ ◦G in D2

\ {−i}.
Using polar coordinates we compute

∂ϕ̃

∂r

∣∣∣∣
r=1
◦5−1

=
∂(ϕ̃ ◦G−1)

∂x
∂G1

∂r

∣∣∣∣
r=1
+
∂(ϕ̃ ◦G−1)

∂y
∂G2

∂r

∣∣∣∣
r=1
=−

∂ψ̃

∂y

∣∣∣∣
y=0

1+ x2

2
.

Then, using Propositions A.1 and A.3, we get

〈(−1)
1
2 v, ϕ〉 =

∫
S1
v
∂ϕ̃

∂r

∣∣∣∣
r=1

dθ

=

∫
R

(v ◦5−1(x))
(
∂ϕ̃

∂r

∣∣∣∣
r=1
◦5−1(x)

)
2

1+ x2 dx

=−

∫
R

u
∂ψ̃

∂y

∣∣∣∣
y=0

dx

= 〈(−1)
1
2 u, ψ〉,

so that (103) is proven.
In order to prove (104), set f := ((−1)

1
2 v)|S1\{−i} ∈ D′(S1

\ {−i}) and notice that

‖ f ‖L1(S1) = ‖(−1)
1
2 u‖L1(R) = γ.

Since f ∈ L1(S1)⊂ D′(S1), we have

T := (−1)
1
2 v− f ∈ D′(S1) (105)
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and supp(T )⊂ {−i}. We claim that T = cδ−i for some constant c. By a rotation of S1, it is convenient to
assume that T is supported at {1}. In this case, we can write

T =
N∑

k=0

ck Dkδ0

for some N ∈ N and c0, . . . , cN ∈ C, which leads to

〈T, ϕ〉 =
N∑

k=0

ck(−1)k Dkϕ0 =

N∑
k=0

ck

∑
n∈Z

(−in)k ϕ̂(n) for ϕ ∈ D(S1). (106)

On the other hand, according to (124) we have, for ϕ ∈ D(S1),

〈(−1)
1
2 v, ϕ〉 =

∫
S1
v(θ)

∑
n∈N

|n|ϕ̂(n)e−inθ dθ

=

∑
n∈N

|n|ϕ̂(n)
∫

S1
v(θ)e−inθ dθ

= 2π
∑
n∈N

|n|v̂(n)ϕ̂(n), (107)

where the sum can be moved outside the integral because
∑

n∈N |n||ϕ̂(n)|<∞. Similarly,

〈 f, ϕ〉 = 2π
∑
n∈N

f̂ (n)ϕ̂(n) for ϕ ∈ D(S1). (108)

Clearly (105), (106), (107) and (108) are compatible only if ck = 0 for k = 1, . . . , N , hence proving (up
to rotating back) that T = c0δ−i , as claimed. Finally, testing with ϕ = 1 we obtain

0= 〈(−1)
1
2 v, 1〉 = 〈 f, 1〉+ 〈T, 1〉 = ‖(−1)

1
2 u‖L1 + c0,

which implies that c0 =−‖(−1)
1
2 u‖L1 . �

Now, given u ∈ L 1
2
(R) we want to define a function λ ∈ L1(S1) such that

5∗(e2u
|dx |2)= e2λ

|dθ |2,

where 5∗ denotes the pull-back of the stereographic projection, while |dx |2 and |dθ |2 are the standard
metrics on R and S1, respectively. Since

5∗(e2u
|dx |2)=

(
∂5

∂θ

)2

e2u(5(θ))
|dθ |2,

we find

λ(θ)= u(5(θ))+ log
∣∣∣∣∂5∂θ

∣∣∣∣= u(5(θ))− log(1+ sin θ) (109)

or equivalently, using (102),

u(x)= λ(5−1(x))+ log
2

1+ x2 . (110)
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Using Proposition 4.1 we can now easily relate (−1)
1
2 u and (−1)

1
2λ.

Proposition 4.2. Given u : R→ R, set λ as in (109). Then u ∈ L 1
2
(R) if and only if λ ∈ L1(S1), and

(−1)
1
2 u ∈ L1(R) if and only if (−1)

1
2λ ∈ L1(S1

\{−i}). In this case, u solves (20) if and only if λ solves

(−1)
1
2λ= κeλ− 1+ (2π − c)δ−i in S1 (111)

with κ = V ◦5 and c = ‖(−1)
1
2 u‖L1(R).

Proof. This follows at once from Proposition 4.2 and Lemma 4.3, below. �

Lemma 4.3. We have
(−1)

1
2 log(1+ sin θ)= 1− 2πδ−i .

Proof. Notice that by (102) we can write

log(1+ sin θ)= u1,0(5(θ)), u1,0(x)= log
2

1+ x2 .

Then Propositions 5.1 and 4.1 imply

(−1)
1
2 log(1+ sin θ)=

(−1)
1
2 u(5(θ))

1+ sin θ
−‖(−1)

1
2 u‖L1δ−i =

eu1,0(5(θ))

1+ sin θ
− δi

∫
R

eu1,0(x) dx

= 1− 2πδ−i . �

5. Proof of Theorem 1.8 and Proposition 1.9

Before proving Theorem 1.8, we show that the functions defined in (27) are indeed solutions of (24)–(25).

Proposition 5.1. For every µ > 0 and x0 ∈ R, the function uµ,x0 defined in (27) belongs to L 1
2
(R),

satisfies (25) with L = 2π , and solves (24).

Proof. That uλ,x0 ∈ L 1
2
(R) and

∫
R

euλ,x0 dx = 2π is elementary. The equation is invariant under translations
and dilations in the sense that, for all x0 ∈R and λ> 0, if u is a solution of (24) then u(λ(x+x0))+ log(λ)
is a solution of (24) as well; hence, it suffices to prove that u1,0(x)= log(2/(1+ x2)) is a solution. From
Proposition A.3 we get, integrating by parts,

π(−1)
1
2 u1,0(x)= lim

ε→0

∫
R\[x−ε,x+ε]

log 1+ y2

1+ x2

(x − y)2
dy

= lim
ε→0

{
−

log 1+ y2

1+ x2

y− x

∣∣∣∣x−ε
−∞

−

log 1+ y2

1+ x2

y− x

∣∣∣∣∞
x+ε
+

∫
R\[x−ε,x+ε]

2y
(y− x)(1+ y2)

dy
}

= lim
ε→0

{2 arctan y+ x log (y− x)2

1+ y2

1+ x2

∣∣∣∣x−ε
−∞

+

2 arctan y+ x log (y− x)2

1+ y2

1+ x2

∣∣∣∣∞
x+ε

}
=

2π
1+ x2 = πeu1,0(x). �
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Theorem 5.2. There exist constants C1, C2 > 0 such that for any ε ∈ (0, π) one has

C1 ≤ sup
u∈H̃1,1

1 (I )

‖(−1)
1
2 u‖L1(I )≤1

ε

|I |

∫
I

e(π−ε)|u| dθ ≤ C2, (112)

where H̃ 1,1
1 (I ) := {u ∈ L1(R) : supp(u)⊂ I , (−1)

1
2 u ∈ L1(R)}.

Lemma 5.3. The Green function of (−1)
1
2 on the interval I = (−1, 1) can be decomposed as

G 1
2
(x, y)= F1

2
(|x − y|)+ H 1

2
(x, y),

where F1
2
(x) := (1/π) log(1/|x |) and H 1

2
is bounded above.

Proof. This follows from the explicit expression of G(x, y) (see, e.g., [Blumenthal et al. 1961; Bucur
2015]), namely

G(x, y)= 1
2π

∫ r0(x,y)

0

1
√

r(r + 1)
dr = 1

π
log(

√
r0(x, y)+

√
r0(x, y)+ 1),

where

r0(x, y) :=
(1− |x |2)(1− |y|2)

|x − y|2
. �

Proof of Theorem 5.2. Up to a translation and dilation we can assume that I = (−1, 1). With Lemma 5.3
we write, for u ∈ H̃ 1,1

1 (I ) and f := (−1)
1
2 u,

|u(x)| =
∣∣∣∣∫

I
G(x, y) f (y) dy

∣∣∣∣,
and we bound

G(x, y)≤ 1
π

log
(

2
|x − y|

)
+C, x, y,∈ I,

hence

|u(x)| ≤ 1
π

∫
I

log
(

2
|x − y|

)
| f (y)| dy+C (113)

and, exactly as in (56), one gets∫
I

e(π−ε)|u(x)| dx ≤ C
∫

I
| f (y)|

∫
I

(
2

|x − y|

)1− επ
dx dy ≤ C

ε
.

The rest of the proof is also similar to the proof of Theorem 3.2. �

Remark 5.4. A slight modification of (112) is

C1 ≤ sup
u=F1/2∗ f

supp( f )⊂I , ‖ f ‖L1(I )≤1

ε

|I |

∫
I

e(π−ε)|u| dθ ≤ C2, (114)
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where F1
2

is as in Lemma 5.3. The proof of (114) is similar to the proof of (112), since u = F1
2
∗ f

obviously satisfies (113). An alternative proof of a nonsharp version of (114), namely

sup
u=F1

2
∗ f

supp( f )⊂I , ‖ f ‖L1(I )≤1

∫
I

eδ|u−ū| dθ ≤ C2 for some δ > 0 and ū := −
∫

I
u dx,

can be obtained noticing that, for u = F1
2
∗ f , one has [u]BMO(I ) ≤ C[F1

2
]BMO(R)‖ f ‖L1(I ), and one can

apply the John–Niremberg inequality.

Proposition 5.5. Let u ∈ L 1
2
(R) satisfy (24)–(25). Then there is a constant C0 ∈ R such that

u(x)= 1
π

∫
R

log
(

1+ |y|
|x − y|

)
eu(y) dy+C0. (115)

In the proof of Proposition 5.5 we use two lemmata.

Lemma 5.6. For any f ∈ L1(R) the function

w(x) := I[ f ](x) := 1
π

∫
R

log
(

1+ |y|
|x − y|

)
f (y) dy (116)

is well defined, belongs to L 1
2
(R) and satisfies

(−1)
1
2w = f in S′. (117)

Proof of Lemma 5.6. Let us first assume that f belongs to the Schwartz space S. Remember that, for
F(x) := (1/π) log(1/|x |), we have (see, e.g., [Vladimirov 1971, p. 132])

F̂(ξ)= P
1
|ξ |
+Cδ0 in S′, (118)

where P(1/|ξ |) ∈ S′ is the tempered distribution defined by〈
P

1
|ξ |
, ϕ

〉
=

∫
|ξ |≤1

ϕ(ξ)−ϕ(0)
|ξ |

dξ +
∫
|ξ |>1

ϕ(ξ)

|ξ |
dξ, ϕ ∈ S. (119)

For every f ∈ C∞c (R) one easily sees that F ∗ f ∈ C∞(R) and F ∗ f ∈ L 1
2
(R). Then

〈(−1)
1
2 (F ∗ f ), ϕ〉 :=

∫
R

(F ∗ f )F−1(|ξ |ϕ̂) dx

=

∫
R

F( f̃ ∗F−1(|ξ |ϕ̂)) dx

=

∫
R

FF
(
F−1( f̃ ∗F−1(|ξ |2σ ϕ̂))

)
dx

=
1

2π

∫
R

FF( f̂ |ξ | ˆ̃ϕ) dx

=
1

2π

∫
R

f̂ ˆ̃ϕ dξ =
∫

R

f ϕ dx, (120)
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where in order to apply (119) in the fifth identity can approximate the function ψ(ξ) = f̂ |ξ |ϕ̂ by a
sequence of functions ψε = f̂ ηε ˆ̃ϕ ∈ S(R) with ηε ∈ C∞(R) suitably chosen (see, for instance, [Jin et al.
2015b]). Hence, (−1)

1
2 (F ∗ f ) = f in D′(R) and, since f ∈ D(R), the identity also holds in a strong

sense. Moreover, since obviously

(−1)
1
2

(
1
π

∫
R

log(1+ |y|) f (y) dy
)
= 0,

we see that (117) is satisfied when f ∈ D(R).
For a general function f ∈ L1(R) we can find a sequence ( fk) ⊂ D(R) with fk → f in L1(R) and

take ϕ ∈ S(R). Then

(I )k := 〈(−1)
1
2 I[ fk], ϕ〉 = 〈 fk, ϕ〉 → 〈 f, ϕ〉

as k→∞, while

(I )k = 〈I[ fk], (−1)
1
2ϕ〉 =

∫
R

I[ fk](x)ψ(x) dx,

where ψ := (−1)
1
2ϕ satisfies

|ψ(x)| ≤ C(1+ |x |2). (121)

It remains to show that ∫
R

I[ fk − f ](x)ψ(x) dx→ 0 as k→∞.

Define gk := fk − f → 0 in L1(R). Then, from ‖h1 ∗ h2‖L1 ≤ ‖h1‖L1‖h2‖L1 , we get∣∣∣∣∫
B(x,1)

log
(

1+ |y|
|x − y|

)
gk(y) dy

∣∣∣∣≤ log(2+ |x |)‖gk‖L1(R)+C‖gk‖L1

and, using that for |x − y| ≥ 1 we have log((1+ |y|)/|x − y|)≤ C(1+ log(|x |)),∣∣∣∣∫
R\B(x,1)

log
(

1+ |y|
|x − y|

)
gk(y) dy

∣∣∣∣≤ C(1+ log |x |)‖gk‖L1 .

Therefore, taking (121) into account, we see that

(I )k→ 〈I[ f ], (−1)
1
2ϕ〉 as k→∞;

hence, we conclude that (−1)
1
2w = f in S′(R). �

Lemma 5.7. Let f ∈ L 1
2
(R) satisfy (−1)

1
2 f = 0. Then f is constant.

Proof. This is identical to the proof of Lemma 14 in [Jin et al. 2015b]. �

Proof of Proposition 5.5. Set w(x) as in (116) with f (y) := eu(y). Then (−1)
1
2 (u−w)= 0 by Lemma 5.6;

hence, by Lemma 5.7, u−w ≡ C0 for some C0 ∈ R. �

Proposition 5.8. Let u ∈ L 1
2
(R) satisfy (24)–(25). Then u ∈ C∞(R).
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Proof. Up to scaling, assume that ∫ 1

−1
eu(x) dx < ε,

where ε will be fixed later.
Let us split u = u1+ u2, where

u1(x)=
1
π

∫ 1

−1
log
(

1+ |y|
|x − y|

)
eu(y) dy+C0 =

1
π

∫ 1

−1
log
(

1
|x − y|

)
eu(y) dy+C1. (122)

Then (115) implies that u2 is defined by the same formula, integrating over R \ [−1, 1] instead of R. It is
easy to see that

‖u2‖L∞([− 1
2 ,

1
2 ])
≤ C

∫
R

eu(x) dx <∞.

From (114) if follows that, given p < ∞, choosing ε > 0 small enough (depending on p) we have
e|u1| ∈ L p([−1, 1]), so eu

∈ L p
[
−

1
2 ,

1
2

]
.

The same argument, together with translations and dilations, can be performed in a neighborhood of
every point in R, giving eu

∈ L p
loc(R) for 1< p<∞. Going back to (115) it is easy to bootstrap regularity

and prove that u is actually smooth. �

Corollary 5.9. Every function λ ∈ L1(S1) solving (33) with (−1)
1
2λ ∈ L1(S1) is smooth.

Proof. By Proposition 4.2 the function u : R→ R given by (110) is in L 1
2
(R) and it solves (24). Then, by

Proposition 5.8, u is smooth; hence, λ ∈ C∞(S1
\ {−i}). Since (33) is invariant under rotations, we have

that actually λ ∈ C∞(S1). �

Lemma 5.10. For u ∈ L 1
2
(R)∩C1(R) solving (24)–(25), set

α :=

∫
R

eu(x) dx .

Then α = 2π .

Proof. This argument is taken from [Xu 2005] and is based on a Pohozaev-type identity. Differentiating
(115) (for instance, by splitting the domain of integration into [−a, a] and R \ [−a, a] for some a > |x |
and using elementary calculus) we obtain

x
∂u
∂x
=−

1
π

PV
∫

R

x
x − y

eu(y) dy.

Multiplying by eu(x) and integrating with respect to x on the interval [−R, R], we get

(I ) :=
∫ R

−R
x
∂u
∂x

eu(x) dx =− 1
π

∫ R

−R
PV

∫
R

x
x − y

eu(y) dy eu(x) dx =: (II).

Integrating by parts we find

(I )=
∫ R

−R
x
∂eu(x)

∂x
dx = R(eu(R)

+ eu(−R))−

∫ R

−R
eu(x) dx→−α as R→∞,
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where we used that, at least on a subsequence, R(eu(R)
− eu(−R))→ 0 as R→∞, otherwise (25) would

be violated. As for (II), we compute

(II)=− 1
2π

∫ R

−R

∫
R

eu(y) dy eu(x) dx − 1
2π

∫ R

−R
PV

∫
R

x + y
x − y

eu(y) dy eu(x) dx→−
α2

2π
+ 0

as R→∞. Therefore, from (I )= (II) we infer α = α2/(2π), i.e., α = 2π . �

Proof of Theorem 1.8. Given u ∈ L 1
2
(R) satisfying (24)–(25), by Proposition 4.2 the function λ(θ) :=

u(5(θ))− log(1+ sin θ) solves

(−1)
1
2λ= eλ− 1+ (2π −α)δ−i in S1

and, by Lemma 5.10, α = 2π ; hence,

(−1)
1
2λ= eλ− 1 in S1.

By Corollary 2.3, λ is of the form given by (34) for some a ∈ D2.
To complete the proof, write a = αeiθ0 = α(t + is) with α, t , s ∈ R. We have

u(x)= λ ◦5−1(x)+ log
2

1+ x2 = log
2(1−α2)

|1−α(t + is)5−1(x)|2(1+ x2)
.

The right-hand side can be computed using (101):

u(x)= log
2(1−α2)∣∣∣1+α−2t x + s(1− x2)

1+ x2 − iα 2sx + t (1− x2)

1+ x2

∣∣∣2(1+ x2)

= log
2(1−α2)

x2(1− 2αs+α2)− 4αt x + 1+ 2αs+α2 .

Completing the square in the denominator on the right-hand side, we get

u(x)= log
2(1−α2)

(1− 2αs+α2)
(

x − 2αt
1− 2αs+α2

)2
+

(1−α2)2

1− 2αs+α2

= log
2µ

1+µ2(x − x0)2

with

x0 =
2αt

1− 2αs+α2 , µ=
1− 2αs+α2

1−α2 . �

The following can been seen as a nonlocal version of the classical mean value property of harmonic
functions. It appears in [Silvestre 2007, Proposition 2.2.6] in a slightly different case, but with a proof
which readily extends to the following case.

Proposition 5.11. There exists a positive function γ1 ∈ C1,1(R) with
∫

R
γ1 dx = 1 such that, setting

γλ(x) := (1/λ)γ1(x/λ), we have
u(x0)≥ u ∗ γλ(x0)

for every λ > 0 and every u ∈ L 1
2
(R) satisfying (−1)

1
2 u ≥ 0.
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Proof of Proposition 1.9. Since (−1)
1
2 u ≤ 0, we have, by Proposition 5.11 below,

u(0)≤ u ∗ γλ(0) for every λ > 0,

where γλ is as in Proposition 5.11. Since dµλ(x) := γλ(−x) dx satisfies
∫

R
dµλ = 1, from Jensen’s

inequality we get ∫
R

eu dµλ ≥ exp
(∫

R

u dµλ

)
= eu∗γλ(0) ≥ eu(0).

On the other hand, since dµλ ≤ (C/λ) dx , we estimate∫
R

eu dx ≥
λ

C

∫
R

eu dµλ ≥
λ

C
eu(0)
→∞ as λ→∞,

contradicting (25). �

Appendix A: The fractional Laplacian

The half-Laplacian on S1. Given u ∈ L1(S1), we define its Fourier coefficients as

û(n)=
1

2π

∫
S1

u(θ)e−inθ dθ, n ∈ Z.

If u is smooth, we can define
(−1)

1
2 u(θ)=

∑
n∈Z

|n|û(n)einθ . (123)

For u ∈ L1(S1), we can define (−1)
1
2 u ∈ D′(S1) as a distribution as

〈(−1)
1
2 u, ϕ〉 :=

∫
S1

u(−1)
1
2ϕ dθ, ϕ ∈ C∞(S1). (124)

Notice that ϕ ∈ C∞(S1) implies that (−1)
1
2ϕ ∈ C∞(S1) (here, (−1)

1
2ϕ is defined as in (123)). In fact,

given ϕ ∈ L1(S1), we have ϕ ∈ C∞(S1) if and only if ϕ̂(n)= o(|n|−k) for every k ≥ 0.
We can also give a definition of (−1)

1
2 u in terms of harmonic extensions. If u ∈ L1(S1), let ũ(r, θ) be

its harmonic extension in D2, explicitly given by the Poisson formula

ũ(r, θ)= 1
2π

∫ 2π

0
P(r, θ − t)u(t) dt, P(r, θ)=

∑
n∈Z

r |n|einθ
=

1− r2

1− 2r cos θ + r2 (125)

Then one can define (using polar coordinates)

(−1)
1
2 u =

∂ ũ
∂r

∣∣∣∣
r=1

in D′(S1), (126)

where the distribution ∂ ũ/∂r
∣∣
r=1 is defined as〈

∂ ũ
∂r

∣∣∣∣
r=1
, ϕ

〉
:=

∫
S1

u
∂ϕ̃

∂r

∣∣∣∣
r=1

dθ,

where ϕ ∈ C∞(S1) and ϕ̃ is the harmonic extension of ϕ in D2.
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Notice that, if u ∈ C∞(S1), the equivalence of (123), (124) and, in fact, (126) is elementary, and (126)
holds pointwise. For instance, the equivalence of (123) and (126) follows at once from

ũ(r, θ)=
∑
n∈Z

û(n)r |n|einθ .

Proposition A.1. The definitions (124) and (126) are equivalent.

Proof. Since (126) holds pointwise for smooth functions, one has, for u ∈ L1(S1) and ϕ ∈ C∞(S1),

〈(−1)
1
2 u, ϕ〉 :=

∫
S1

u(−1)
1
2ϕ dx =

∫
S1

u
∂ϕ̃

∂θ
dθ =:

〈
∂ ũ
∂r

∣∣∣∣
r=1
, ϕ

〉
. �

For u ∈ C1,α(S1), there is also the following pointwise definition of (−1)
1
2 u:

Proposition A.2. If u ∈ C1,α(S1) for some α ∈ (0, 1], then (−1)
1
2 u ∈ C0,α(S1) and

(−1)
1
2 u(eiθ )=

1
π

PV
∫ 2π

0

u(eiθ )− u(ei t)

2− 2 cos(θ − t)
dt, (127)

where the principal value is well defined because 2− 2r cos(θ − t)= (θ − t)2+ O((θ − t)4) as t→ θ .

Proof. Considering Proposition A.1, it suffices to show the equivalence of (126) and (127). Set ũ as
in (125). Then

∂ ũ(r, θ)
∂r

∣∣∣∣
r=1
= lim

r↑1

ũ(r, θ)− u(eiθ )

r − 1

= lim
r↑1

1
2π(r − 1)

∫ 2π

0

(1− r2)(u(eiθ )− u(ei t))

1− 2r cos(θ − t)+ r2 dt

= lim
r↑1

1
2π

∫ 2π

0

(1+ r)(u(eiθ )− u(ei t))

1− 2r cos(θ − t)+ r2 dt

=
1
π

PV
∫ 2π

0

u(eiθ )− u(ei t)

2− 2r cos(θ − t)
dt. �

The half-Laplacian on R. For u ∈ S (the Schwarz space of rapidly decaying functions), we set

̂
(−1)

1
2 u(ξ)= |ξ |û(ξ), f̂ (ξ) :=

∫
R

f (x)e−i xξ dx . (128)

One can prove that

(−1)
1
2 u(x)= 1

π
PV

∫
R

u(x)− u(y)
(x − y)2

dy := 1
π

lim
ε→0

∫
R\[−ε+x,x+ε]

u(x)− u(y)
(x − y)2

dy, (129)

from which it follows that

sup
x∈R

|(1+ x2)(−1)
1
2ϕ(x)|<∞ for every ϕ ∈ S.

Then one can set

L 1
2
(R) :=

{
u ∈ L1

loc(R)

∣∣∣∣ ∫
R

|u(x)|
1+ x2 dx <∞

}
, (130)
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and, for every u ∈ L 1
2
(R), one defines the tempered distribution (−1)

1
2 u as

〈(−1)
1
2 u, ϕ〉 :=

∫
R

u(−1)
1
2ϕ dx =

∫
R

uF−1(|ξ |ϕ̂(ξ)) dx for every ϕ ∈ S. (131)

An alternative definition of (−1)
1
2 can be given via the Poisson integral. For u ∈ L 1

2
(R), define the

Poisson integral

ũ(x, y) := 1
π

∫
R

yu(y)
(y2+ (x − ξ)2)

dξ, y > 0, (132)

which is harmonic in R× (0,∞) and whose trace on R×{0} is u. Then we have

(−1)
1
2 u =−

∂ ũ
∂y

∣∣∣∣
y=0
, (133)

where the identity is pointwise if u is regular enough (for instance, C1,α
loc (R)), and has to be read in the

sense of distributions in general, with〈
−
∂ ũ
∂y

∣∣∣∣
y=0
, ϕ

〉
:=

〈
u,−

∂ϕ̃

∂y

∣∣∣∣
y=0

〉
, ϕ ∈ S, ϕ̃ as in (132). (134)

More precisely:

Proposition A.3. If u ∈ L 1
2
(R) ∩ C1,α

loc ((a, b)) for some interval (a, b) ⊂ R and some α ∈ (0, 1),
then (−1)

1
2 u, the tempered distribution defined in (131), coincides on the interval (a, b) with the functions

given by (129) and (133). For general u ∈ L 1
2
(R), the definitions (131) and (133) are equivalent, where

the right-hand side of (133) is defined by (134).

Proof. Assume that u ∈ L 1
2
(R) ∩ C1,α

loc ((a, b)). Following [Caffarelli and Silvestre 2007], we have,
for x ∈ (a, b),

∂ ũ(x, y)
∂y

∣∣∣∣
y=0
= lim

y→0

ũ(x, y)− ũ(x, 0)
y

= lim
y→0

1
π

∫
R

u(ξ)− u(x)
y2+ (ξ − x)2

dξ = 1
π

PV
∫

R

u(ξ)− u(x)
(ξ − x)2

dξ,

where the last convergence follows from dominated convergence outside B1(x) and by a Taylor expansion
in a neighborhood of x . This proves the equivalence of (129) and (133). The equivalence between (129)
and (131) amounts to showing that∫

R

uF−1(|ξ |ϕ̂(ξ)) dx = 1
π

∫
R

PV
∫

R

u(x)− u(y)
(x − y)2

dy ϕ(x) dx (135)

whenever ϕ ∈ S is supported in (a, b). When u ∈ S, the equivalence is shown, e.g., in [Caffarelli and
Silvestre 2007] (passing through the definition given in (128)). In the general case, one approximates u with
functions uk ∈ S converging to u uniformly locally in (a, b) and in L 1

2
(R), as shown in Proposition 2.1.4

of [Silvestre 2007] (in order to have convergence in (135) as uk → u, it is convenient to consider ϕ
compactly supported first, in case (a, b) is not bounded).

The last statement follows at once by noticing that, applying (133) to ϕ ∈ S, one gets〈
u,−

∂ϕ̃

∂y

∣∣∣∣
y=0

〉
= 〈u, (−1)

1
2ϕ〉. �
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Appendix B: Useful results from complex analysis

Lemma B.1. Let h ∈ C0(D2,C) be holomorphic in D2 with h(S1) ⊂ S1 and 0 6∈ h(D2). Then h is
constant.

Proof. Since h never vanishes, log |h| is well defined, harmonic and vanishes on S1, hence everywhere.
This implies that |h| ≡ 1 and, from the conformality of h, it follows that h is constant. �

The following is a generalization of Lemma B.1:

Lemma B.2 [Burckel 1979]. If h∈C0(D2,C) be holomorphic in D2 with h(S1)⊂ S1 and deg h|S1=n≥0,
then h is a Blaschke product of degree n, i.e.,

h(z)= eiθ0

n∏
k=1

z− ak

1− ākz
, a1, . . . , an ∈ D2, θ0 ∈ R.
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