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We consider the determination of a conductivity function in a two-dimensional domain from the Cauchy
data of the solutions of the conductivity equation on the boundary. We prove uniqueness results for
this inverse problem, posed by Calderón, for conductivities that are degenerate, that is, they may not
be bounded from above or below. Elliptic equations with such coefficient functions are essential for
physical models used in transformation optics and the study of metamaterials, e.g., the zero permittivity
materials. In particular, we show that the elliptic inverse problems can be solved in a class of conduc-
tivities which is larger than L∞. Also, we give new counterexamples for the uniqueness of the inverse
conductivity problem.

We say that a conductivity is visible if the inverse problem is solvable so that the conductivity inside of
the domain can be uniquely determined, up to a change of coordinates, using the boundary measurements.
The original counterexamples for the inverse problem are related to the invisibility cloaking. This means
that there are conductivities for which a part of the domain is shielded from detection via boundary
measurements and even the existence of the shielded domain is hidden. Such conductivities are called
invisibility cloaks.

In the present paper, we identify the borderline of the visible conductivities and the borderline of
invisibility cloaking conductivities. Surprisingly, these borderlines are not the same. We show that between
the visible and the cloaking conductivities, there are the electric holograms. These are conductivities which
create an illusion of a nonexisting body. Such conductivities give counterexamples for the uniqueness
of the inverse problem which are less degenerate than the previously known ones. These examples are
constructed using transformation optics and the inverse maps of the optimal blow-up maps. The proofs of
the uniqueness results for inverse problems are based on the complex geometrical optics and the Orlicz
space techniques.
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1. Introduction and main results

Invisibility cloaking has been a very topical subject in recent studies in mathematics, physics, and material
science [Ammari et al. 2013; Alu and Engheta 2005; Greenleaf et al. 2007c; 2003a; 2003c; Milton and
Nicorovici 2006; Leonhardt 2006; Liu 2013; Liu and Sun 2013; Pendry et al. 2006]. By invisibility
cloaking we mean the possibility, both theoretical and practical, of shielding a region or object from
detection via electromagnetic fields.

Counterexamples for inverse problems and the proposals for invisibility cloaking are closely related. In
2003, before the appearance of practical possibilities for cloaking, it was shown in [Greenleaf et al. 2003c]
that passive objects can be coated with a layer of material with a degenerate conductivity which makes the
object undetectable by electrostatic boundary measurements in such a way that the coated object appears
in all measurements the same as a body made of homogeneous material. These constructions were based
on blow-up maps and gave counterexamples for uniqueness of the inverse conductivity problem in the
three- and higher-dimensional cases. In the two-dimensional case, the mathematical theory of the cloaking
examples for the conductivity equation have been studied in [Kohn et al. 2008; 2010]. Besides for the
conductivity equation, these results can be applied for other physical models based on elliptic equations.

The interest in cloaking was raised in particular in 2006 when it was realized that practical cloaking
constructions are possible using so-called metamaterials which allow fairly arbitrary specification of
electromagnetic material parameters. The construction of Leonhardt [2006] was based on conformal
mapping on a nontrivial Riemannian surface. At the same time, Pendry et al. [2006] proposed a cloaking
construction for Maxwell’s equations using a blow-up map and the idea was demonstrated in laboratory
experiments [Schurig et al. 2006]. Cloaking for the conductivity equation has been demonstrated in labo-
ratory experiments by Yang et al. [2012]. In the now very large literature, there are also other suggestions
for cloaking based on negative material parameters [Alu and Engheta 2005; Milton and Nicorovici 2006].

In this paper, we consider both new counterexamples and uniqueness results for inverse problems. We
study Calderón’s inverse problem in the two-dimensional case, that is, the question of whether an unknown
conductivity distribution inside a domain can be determined from the voltage and current measurements
made on the boundary of a simply connected domain�⊂R2; see [Borcea 2002]. Mathematically the mea-
surements correspond to the knowledge of the Dirichlet-to-Neumann map3σ (or the quadratic form) asso-
ciated to σ , i.e., the map taking the Dirichlet boundary values of the solution of the conductivity equation

∇ · σ(x)∇u(x)= 0 in � (1-1)

to the corresponding Neumann boundary values,

3σ : u|∂� 7→ ν · σ∇u|∂�. (1-2)

In the classical theory of the problem, the conductivity σ is bounded uniformly from above and below.
The problem was originally proposed by Calderón [1980]. Sylvester and Uhlmann [1987] proved the
unique identifiability of the conductivity in dimensions three and higher for isotropic conductivities which
are C∞-smooth, and Nachman [1988] gave a reconstruction method. In three dimensions or higher,
unique identifiability of the conductivity is proven in [Haberman and Tataru 2013] for C1-conductivities;
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for earlier studies on the topic, see [Greenleaf et al. 2003b; Päivärinta et al. 2003]. The problem has also
been solved with measurements only on a part of the boundary [Kenig et al. 2007].

In two dimensions, the first global solution of the inverse conductivity problem is due to Nachman
[1996] for conductivities with two derivatives. In this seminal paper, the ∂̄ technique was used for the
first time in the study of Calderón’s inverse problem. The smoothness requirements were reduced in
[Brown and Uhlmann 1997] to Lipschitz conductivities. Finally, in [Astala and Päivärinta 2006] the
uniqueness of the inverse problem was proven in the form that the problem was originally formulated
in [Calderón 1980], i.e., for general isotropic conductivities in L∞ which are bounded from below and
above by positive constants. Stability of this reconstruction is studied in [Alessandrini 1988; Barceló
et al. 2001; 2007] and the numerical solutions in [Astala et al. 2011; Isaacson et al. 2004; Knudsen et al.
2007; 2009; Mueller and Siltanen 2012; Siltanen et al. 2000].

The Calderón problem with anisotropic, i.e., matrix-valued, conductivities that are uniformly bounded
from above and below, has been studied in two dimensions [Sylvester 1990; Nachman 1996; Lassas et al.
2003; Lassas and Uhlmann 2001; Astala et al. 2005; Imanuvilov et al. 2010] and in dimensions n ≥ 3
[Lee and Uhlmann 1989; Lassas and Uhlmann 2001; Dos Santos Ferreira et al. 2009]. For example, for
the anisotropic inverse conductivity problem in the two-dimensional case, it is known that the Dirichlet-
to-Neumann map determines a regular conductivity tensor only up to a diffeomorphism F : �→ �;
i.e., one can obtain an image of the interior of � in deformed coordinates. This implies that the inverse
problem is not uniquely solvable, but the nonuniqueness of the problem can be characterized. This makes
it possible, e.g., to find the unique conductivity that is closest to isotropic ones [Kolehmainen et al. 2005;
2010; 2013]. We note that this problem in higher dimensions is presently solved only in special cases,
when the conductivity is real analytic; see [Lassas et al. 2003; Lassas and Uhlmann 2001].

In this work, we will study the inverse conductivity problem in the two-dimensional case with degenerate
conductivities. Such conductivities appear in physical models where the medium varies continuously from
a perfect conductor to a perfect insulator or in high-contrast problems [Borcea et al. 1996; Borcea 1999].
As an example, we may consider a case where the conductivity goes to zero or to infinity near ∂D, where
D ⊂� is a smooth open set. We ask what kind of degeneracy prevents solving the inverse problem; that
is, we study what is the border of visibility. We also ask what kind of degeneracy makes it possible to coat
an arbitrary object so that it appears the same as a homogeneous body in all static measurements; that is,
we study what is the border of the invisibility cloaking. Surprisingly, these borders are not the same. We
identify these borderlines and show that between them there are the electric holograms, that is, the conduc-
tivities creating an illusion of a nonexistent body (see Figure 1). These conductivities are counterexamples
for the unique solvability of inverse problems for which even the topology of the domain cannot be
determined using boundary measurements. Our main results for the uniqueness of the inverse problem are
given in Theorems 1.8, 1.9, and 1.11 and the counterexamples are formulated in Theorems 1.6 and 1.7.

The cloaking constructions have given rise to the design technique called transformation optics.
The metamaterials built to operate at microwave frequencies [Schurig et al. 2006] and near the optical
frequencies [Ergin et al. 2010] are inherently prone to dispersion, so that realistic cloaking must currently be
considered as occurring at a very narrow range of wavelengths. Fortunately, in many physical applications
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Figure 1. Left: tr(σ ) of three radial and singular conductivities on the positive x axis.
The curves correspond to the invisibility cloaking conductivity (red), with the singularity
σ 22(x, 0) ∼ (|x | − 1)−1 for |x | > 1, a visible conductivity (blue) with a log log-type
singularity at |x | = 1, and an electric hologram (black) with the conductivity having the
singularity σ 11(x, 0) ∼ |x |−1. Right, top: All measurements on the boundary of the
invisibility cloak (left) coincide with the measurements for the homogeneous disc (right).
The color shows the value of the solution u with the boundary value u(x, y)|∂B(2) = x
and the black curves are the integral curves of the current −σ∇u. Right, bottom:
All measurements on the boundary of the electric hologram (left) coincide with the
measurements for an isolating disc covered with the homogeneous medium (right). The
solutions and the current lines corresponding to the boundary value u|∂B(2)= x are shown.

the materials need to operate only near a single frequency. The cloaking-type constructions have also
inspired suggestions for possible devices producing extreme effects on wave propagation, including
invisibility cloaks for magnetostatics [Gömöry et al. 2012], acoustics [Chen and Chan 2007a], quantum
mechanics [Greenleaf et al. 2007a, 2008; 2011a], field rotators [Chen and Chan 2007b], electromagnetic
wormholes [Greenleaf et al. 2007b], invisible sensors [Alu and Engheta 2009; Greenleaf et al. 2011b],
perfect absorbers [Landy et al. 2008], and cloaked wave amplifiers [Greenleaf et al. 2012]. We also note
that the differential equations with degenerate coefficients modeling cloaking devices have turned out
to have interesting properties, such as nonexistence results for solutions with nonzero sources and local
[Greenleaf et al. 2007c; Liu and Zhou 2011] and nonlocal [Lassas and Zhou 2011; Nguyen 2012] hidden
boundary conditions. For reviews on the topic, see [Greenleaf et al. 2009a; 2009b].

Finally, the classical assumption that the electromagnetic material parameters (i.e., the coefficient
functions in the elliptic equations) are uniformly bounded from below by positive constants is not valid in
the modern study of materials, e.g., on the optical frequencies [Capolino 2009]. Thus one of the aims of
this paper is to bring the mathematical study of elliptic equations and inverse problems closer to current
topics in optics and imaging methods in physics.
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The structure of the paper is the following. The main results and the formulation of the boundary
measurements are presented in the first section. The proofs for the existence of the solutions of the
direct problem as well as for the new counterexamples and the invisibility cloaking examples with
a nonsmooth background are given in Section 2. The uniqueness result for isotropic conductivities
is proven in Sections 3–4 and the reduction of the general problem to the isotropic case is shown in
Section 5. In Sections 3–5, the degeneracy of the conductivity yields that the exponentially growing
solutions, the standard tools used to study Calderón’s inverse problem, cannot be constructed using purely
microlocal or functional analytic methods. Because of this, we will extensively need the topological
properties of the solutions: By Stoilow’s theorem, the solutions are compositions of analytic functions
and homeomorphisms. Using this, the continuity properties of the weakly monotone maps, and Orlicz
estimates holding for homeomorphisms, we prove the existence of the solutions in the Sobolev–Orlicz
spaces. These spaces are chosen so that we can obtain the subexponential asymptotics for the families of
exponentially growing solutions needed in the ∂̄ technique used to solve the inverse problem.

1A. Definition of measurements and solvability. Let �⊂ R2 be a bounded simply connected domain
with a C∞-smooth boundary. Let6=6(�) be the class of measurable matrix-valued functions σ :�→M ,
where M is the set of generalized matrices m of the form

m =U
(
λ1 0
0 λ2

)
U t ,

where U ∈ R2×2 is an orthogonal matrix, U−1
= U t and λ1, λ2 ∈ [0,∞). We denote by W s,p(�) and

H s(�)=W s,2(�) the standard Sobolev spaces.
In the following, let dm(z) denote the Lebesgue measure in C and |E | be the Lebesgue measure of

the set E ⊂ C. Instead of defining the Dirichlet-to-Neumann operator for the above conductivities, we
consider the corresponding quadratic forms.

Definition 1.1. Let h ∈ H 1/2(∂�). The Dirichlet-to-Neumann quadratic form corresponding to the
conductivity σ ∈6(�) is given by

Lσ [h] = inf Aσ [u], where Aσ [u] =
∫
�

σ(z)∇u(z) · ∇u(z) dm(z), (1-3)

and the infimum is taken over real-valued u ∈ L1(�) such that ∇u ∈ L1(�;R2) and u|∂� = h. In the case
where Lσ [h]<∞ and Aσ [u] reaches its minimum at some u, we say that u is a W 1,1(�) solution of the
conductivity problem.

When σ is smooth and bounded from below and above by positive constants, Lσ [h] is the quadratic
form corresponding the Dirichlet-to-Neumann map (1-2),

Lσ [h] =
∫
∂�

h3σh d S, (1-4)

where d S is the length measure on ∂�. Physically, Lσ [h] corresponds to the power needed to keep
voltage h at the boundary. For smooth conductivities bounded from below, for every h ∈ H 1/2(∂�), the
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integral Aσ [u] always has a unique minimizer u ∈ H 1(�) with u|∂� = h, which is also a distributional
solution to (1-1). Conversely, for functions u ∈ H 1(�), their traces lie in H 1/2(∂�). It is for this reason
that we chose to consider the H 1/2-boundary functions also in the most general case. We interpret that the
Dirichlet-to-Neumann form corresponds to an idealization of the boundary measurements for σ ∈6(�).

We note that the conductivities studied in the context of cloaking are not even in L1
loc. As σ is

unbounded, it is possible that Lσ [h] =∞. Even if Lσ [h] is finite, the minimization problem in (1-3) may
generally have no minimizer and even if they exist, the minimizers need not be distributional solutions to
(1-1). However, if the singularities of σ are not too strong, minimizers satisfying (1-1) do always exist.
To show this, we need to define suitable subclasses of degenerate conductivities.

Let σ ∈6(�). We start with precise quantities describing the possible degeneracy or loss of uniform
ellipticity. First, a natural measure of the anisotropy of the conductivity σ at z ∈� is

kσ (z)=

√
λ1(z)
λ2(z)

,

where λ1(z) and λ2(z) are the eigenvalues of the matrix σ(z) with λ1(z)≥ λ2(z). If we want to simultane-
ously control both the size and the anisotropy, this is measured by the ellipticity K (z) := Kσ (z) of σ(z),
i.e., the smallest number 1≤ K (z)≤∞ such that

1
K (z)
|ξ |2 ≤ ξ · σ(z)ξ ≤ K (z)|ξ |2 for all ξ ∈ R2. (1-5)

For a general, positive matrix-valued function σ(z), we have at z ∈� that

K (z)= kσ (z)max
{
(det σ(z))1/2, (det σ(z))−1/2}. (1-6)

Consequently, we always have the following simple estimates.

Lemma 1.2. For any measurable matrix function σ(z), we have

1
4

(
tr σ(z)+ tr(σ (z)−1)

)
≤ K (z)≤ tr σ(z)+ tr(σ (z)−1).

Proof. Let λmax and λmin be the eigenvalues of σ = σ(z). Then K (z) = max(λmax, λ
−1
min). Since

tr σ(z)= λmax+ λmin and tr(σ (z)−1)= λ−1
max+ λ

−1
min, the claim follows. �

Due to Lemma 1.2, we use the quantity tr σ(z)+tr(σ (z)−1) as a measure of size and anisotropy of σ(z).

For the degenerate elliptic equations, it may be that the optimization problem (1-3) has a minimizer
which satisfies the conductivity equation but this solution may not have the standard W 1,2

loc regularity.
Therefore more subtle smoothness estimates are required. We start with the exponentially integrable
conductivities, and the natural energy estimates they require. As an important consequence, we will
see the correct Sobolev–Orlicz regularity to work with. These observations are based on the following
elementary inequality.

Lemma 1.3. Let K ≥ 1 and A ∈ R2×2 be a symmetric matrix satisfying

1
K
|ξ |2 ≤ ξ · Aξ ≤ K |ξ |2, ξ ∈ R2.
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Then for every p > 0,

|ξ |2

log(e+ |ξ |2)
+

|Aξ |2

log(e+ |Aξ |2)
≤

2
p
(ξ · Aξ + epK ).

Proof. Since K ≥ 1 and t 7→ t/ log(e+ t) is an increasing function, we have

|ξ |2

log(e+ |ξ |2)
≤

K ξ · Aξ
log(e+ K ξ · Aξ)

≤
1
p

(
ξ · Aξ

log(e+ ξ · Aξ)

)
pK

≤
1
p
(ξ · Aξ + epK ),

where the last estimate follows from the inequality

ab ≤ a log(e+ a)+ eb, a, b ≥ 0.

Moreover, as K is at least as large as the maximal eigenvalue of A, we have |Aξ |2 ≤ K ξ · Aξ . Thus we
see as above that

|Aξ |2

log(e+ |Aξ |2)
≤

K ξ · Aξ
log(e+ K ξ · Aξ)

≤
1
p
(ξ · Aξ + epK ).

Adding the above estimates together proves the claim. �

Lemma 1.3 implies in particular that if σ(z) is symmetric-matrix-valued function satisfying (1-5) for
a.e. z ∈� and u ∈W 1,1(�), then we always have

p
∫
�

|∇u(z)|2

log(e+ |∇u(z)|2)
dm(z)≤

∫
�

∇u(z) · σ(z)∇u(z) dm(z)+
∫
�

epK (z) dm(z),

p
∫
�

|σ(z)∇u(z)|2

log(e+ |σ(z)∇u(z)|2)
dm(z)≤

∫
�

∇u(z) · σ(z)∇u(z) dm(z)+
∫
�

epK (z) dm(z).

(1-7)

Note that these inequalities are valid whether u is a solution of the conductivity equation or not!
Due to (1-7), we see that to analyze finite energy solutions corresponding to a singular conductivity of

exponentially integrable ellipticity, we are naturally led to consider the regularity gauge

Q(t)=
t2

log(e+ t)
, t ≥ 0. (1-8)

We say accordingly that f belongs to the Orlicz space W 1,Q(�) (see the Appendix) if f and its first
distributional derivatives are in L1(�) and∫

�

|∇ f (z)|2

log(e+ |∇ f (z)|)
dm(z) <∞.

The first existence result for solutions corresponding to degenerate conductivities is given as follows.
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Theorem 1.4. Let σ(z) be a measurable symmetric-matrix-valued function. Suppose further that for
some p > 0, ∫

�

exp
(

p
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z)= C1 <∞. (1-9)

Then, if h ∈ H 1/2(∂�) is such that Lσ [h]<∞ and there is a unique w ∈W 1,1(�), w|∂� = h such that

Aσ [w] = inf
{

Aσ [v] : v ∈W 1,1(�), v|∂� = h
}
. (1-10)

Moreover, w satisfies the conductivity equation

∇ · σ∇w = 0 in � (1-11)

in the sense of distributions, and it has the regularity w ∈W 1,Q(�)∩C(�).

Note that if σ is bounded near ∂� then Lσ [h]<∞ for all h ∈ H 1/2(∂�). Theorem 1.4 is proven in
Theorem 2.1 and Corollary 2.3 in a more general setting.

Theorem 1.4 yields that for conductivities satisfying (1-9) and equal to 1 near ∂�, we can define the
Dirichlet-to-Neumann map

3σ : H 1/2(∂�)→ H−1/2(∂�), 3σ (u|∂�)= ν · σ∇u|∂�, (1-12)

where u satisfies (1-1). Many inverse scattering problems (see [Colton and Kress 2013]) can also be
formulated in terms of 3σ .

The reader should consider the exponential condition (1-9) as being close to the optimal one, still
allowing uniqueness in the inverse problem. Indeed, in view of Theorem 1.7 and Section 1E below, the
most general situation where the Calderón inverse problem can be solved involves conductivities whose
singularities satisfy a physically interesting small relaxation of the condition (1-9). Before solving inverse
problems for conductivities satisfying (1-9), we discuss some counterexamples.

1B. Counterexamples for the unique solvability of the inverse problem. Let F :�1→�2, y= F(x), be
an orientation-preserving homeomorphism between domains �1, �2⊂C for which F and its inverse F−1

are at least W 1,1-smooth and let σ(x)= [σ jk(x)]2j,k=1 ∈6(�1) be a conductivity on �1. Then the map F
pushes σ forward to a conductivity (F∗σ)(y), defined on �2 and given by

(F∗σ)(y)=
1

[det DF(x)]
DF(x)σ (x) DF(x)t , x = F−1(y). (1-13)

The main methods for constructing counterexamples to Calderón’s problem are based on the following
principle.

Proposition 1.5. Assume that σ, σ̃ ∈6(�) satisfy (1-9), and let F :�→ �̃ be a homeomorphism so that
F and F−1 are W 1,Q-smooth and C1-smooth near the boundary, and F |∂� = id. Suppose that σ̃ = F∗σ .
Then Lσ = L σ̃ .

This proposition generalizes the observation of L. Tartar expanded upon in [Kohn and Vogelius 1984]
to less smooth diffeomorphisms and conductivities and it follows from Lemma 2.4 proven later.
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1C. Counterexample 1: invisibility cloaking. We consider here invisibility cloaking in a general back-
ground σ ; that is, we aim to coat an arbitrary body with a layer of exotic material so that the coated body
appears in measurements the same as the background conductivity σ . Usually one is interested in the
case when the background conductivity σ is constant, isotropic, and σ = 1 · I . However, we consider
here a more general case and assume that σ is an L∞-smooth conductivity in B(R)= B(R), with R = 2,
σ(z)≥ c0 I , c0 > 0. Here, B(ρ) is an open two-dimensional disc of radius ρ and center zero and B(ρ) is
its closure. Consider a homeomorphism

F : B(2) \ {0} → B(2) \K, (1-14)

where K ⊂ B(2) is a compact set which is the closure of a smooth open set and suppose F and its
inverse F−1 are C1-smooth in B(2) \ {0} and B(2) \K, correspondingly. We also require that F(z)= z
for z ∈ ∂B(2). The standard example of invisibility cloaking [Greenleaf et al. 2003c; Pendry et al. 2006]
is the case when K = B(1) and the map is given by

F0(z)=
(
|z|
2
+ 1

)
z
|z|
. (1-15)

Using the map (1-14), we define a singular conductivity

σ̃ (z)=
{
(F∗σ)(z) for z ∈ B(2) \K,
η(z) for z ∈ K,

(1-16)

where η(z) = [η jk(x)] is any symmetric measurable matrix on K satisfying c1 I ≤ η(z) ≤ c2 I with
c1, c2> 0. The conductivity σ̃ is called the cloaking conductivity obtained from the transformation map F
and background conductivity σ and η(z) is the conductivity of the cloaked (i.e., hidden) object.

In particular, choosing σ to be the constant conductivity σ = 1, K= B(1), and F to be the map F0 given
in (1-15), we obtain the standard example of the invisibility cloaking. In dimensions n ≥ 3, it was shown
in [Greenleaf et al. 2003c] that the Dirichlet-to-Neumann map corresponding to H 1(�)-solutions for the
conductivity (1-16) coincide with the Dirichlet-to-Neumann map for σ = 1. In 2008, the analogous result
was proven in the two-dimensional case in [Kohn et al. 2008]. For cloaking results for the Helmholtz
equation with frequency k 6= 0 and for Maxwell’s system in dimensions n ≥ 3, see results in [Greenleaf
et al. 2007c]. We note also that John Ball [1982] has used the push-forward by the analogous radial
blow-up maps to study the discontinuity of solutions of partial differential equations, in particular the
appearance of cavitation in nonlinear elasticity.

In the sequel, we consider cloaking results using measurements given in Definition 1.1. As we have
formulated the boundary measurements in a new way, that is, in terms of the Dirichlet-to-Neumann
forms Lσ associated to the class W 1,1(�), we present in Section 2D the complete proof of the following
proposition, extending [Greenleaf et al. 2003c, Theorem 3]:

Theorem 1.6. (i) Let σ ∈ L∞(B(2)) be a scalar conductivity, σ(x) ≥ c0 > 0, K ⊂ B(2) be a relatively
compact open set with smooth boundary and

F : B(2) \ {0} → B(2) \K
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be a homeomorphism. Assume that F and F−1 are C1-smooth in B(2)\{0} and B(2)\K, correspondingly,
and F |∂B(2) = id. Moreover, assume there is C0 > 0 such that

‖DF−1(x)‖ ≤ C0 for all x ∈ B(2) \K.

Let σ̃ be the conductivity defined in (1-16). Then the boundary measurements for σ̃ and σ coincide in the
sense that L σ̃ = Lσ .

(ii) Let σ̃ be a cloaking conductivity of the form (1-16) obtained from the transformation map F and the
background conductivity σ , where F and σ satisfy the conditions in (i). Then

tr(σ̃ ) 6∈ L1(B(2) \K). (1-17)

The result (1-17) is optimal in the following sense. When F is the map F0 in (1-15) and σ = 1, the
eigenvalues of the cloaking conductivity σ̃ in B(2)\ B(1) behave asymptotically as |z|−1 and (|z|−1)−1

as |z| → 1. This cloaking conductivity has so strong a degeneracy that (1-17) holds. On the other hand,

tr(σ̃ ) ∈ L1
weak(B(2)), (1-18)

where L1
weak is the weak-L1 space. We note that in the case when σ = 1, det(σ̃ ) is identically 1 in

B(2) \ B(1).
The formula (1-18) for the blow-up map F0 in (1-15) and Theorem 1.6 identify the borderline of the

invisibility for the trace of the conductivity: Any cloaking conductivity σ̃ satisfies tr(σ̃ ) 6∈ L1(B(2)) and
there is an example of a cloaking conductivity for which tr(σ̃ ) ∈ L1

weak(B(2)). Thus the borderline of
invisibility is the same as the border between the space L1 and the weak-L1 space.

1D. Counterexample 2: illusion of a nonexistent obstacle. Next we consider new counterexamples for
the inverse problem which could be considered as creating an illusion of a nonexisting obstacle. The
example is based on a radial shrinking map, that is, a mapping B(2) \ B(1)→ B(2) \ {0}. The suitable
maps are the inverse maps of the blow-up maps F1 : B(2) \ {0} → B(2) \ B(1), which are constructed by
Iwaniec and Martin [2001] and have the optimal smoothness. Alternative constructions for such blow-up
maps have also been proposed by Kauhanen et al. [2003]. Using the properties of these maps and defining
a conductivity σ1 = (F−1

1 )∗1 on B(2) \ {0}, we will later prove the following result.

Theorem 1.7. Let γ1 be a conductivity in B(2) which is identically 1 in B(2)\ B(1) and zero in B(1) and
A : [1,∞]→ [0,∞] be any strictly increasing positive smooth function with A(1)= 0 which is sublinear
in the sense that ∫

∞

1

A(t)
t2 dt <∞. (1-19)

Then there is a conductivity σ1 ∈6(B2) satisfying det(σ1)= 1 and∫
B(2)

exp
(
A
(
tr(σ1)+ tr(σ−1

1 )
))

dm(z) <∞ (1-20)

such that Lσ1 = Lγ1 , i.e., the boundary measurements corresponding to σ1 and γ1 coincide.
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We observe that, for instance, the function A0(t) = t/(1+ log t)1+ε satisfies (1-19) and for such a
weight function, we have σ1 ∈ L1(B2). The proof of Theorem 1.7 is given in Section 2D.

Note that γ1 corresponds to the case when B(1) is a perfect insulator which is surrounded with constant
conductivity 1. Thus Theorem 1.7 can be interpreted by saying that there is a relatively weakly degenerated
conductivity satisfying integrability condition (1-20) that creates in the boundary observations an illusion
of an obstacle that does not exist (see [Lai et al. 2009] for related results based on use of negative medium).
Thus the conductivity can be considered as “electric hologram”. As the obstacle can be considered as a
“hole” in the domain, we can say also that even the topology of the domain cannot be detected. In other
words, Calderón’s program to image the conductivity inside a domain using the boundary measurements
cannot work within the class of degenerate conductivities satisfying (1-19) and (1-20).

1E. Positive results for Calderón’s inverse problem. Let us formulate our first main theorem which
deals with inverse problems for anisotropic conductivities where both the trace and the determinant of the
conductivity can be degenerate.

Theorem 1.8. Let�⊂C be a bounded simply connected domain with smooth boundary. Let σ1,σ2∈6(�)

be matrix-valued conductivities in � which satisfy the integrability condition∫
�

exp
(

p
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z) <∞

for some p > 1. Moreover, assume that∫
�

E(q det σ j (z)) dm(z) <∞ for some q > 0, (1-21)

where E(t)=exp(exp(exp(t1/2
+t−1/2))) and Lσ1= Lσ2 . Then there is a W 1,1

loc -homeomorphism F :�→�

satisfying F |∂� = id such that
σ1 = F∗σ2. (1-22)

Equation (1-22) can be stated as saying that σ1 and σ2 are the same up to a change of coordinates; that
is, the underlying manifold structures corresponding to these conductivities are the same; see [Lee and
Uhlmann 1989; Lassas and Uhlmann 2001].

In the case when the conductivities are isotropic, we can improve the result of Theorem 1.8. The
following theorem is our second main result for uniqueness of the inverse problem. For the earlier
conjectures on the problem, see [Ingerman 2000].

Theorem 1.9. Let�⊂C be a bounded simply connected domain with smooth boundary. If σ1, σ2 ∈6(�)

are isotropic conductivities, i.e., σ j (z)= γ j (z)I , γ j (z) ∈ [0,∞] satisfying∫
�

exp
(

exp
(

q
(
γ j (z)+

1
γ j (z)

)))
dm(z) <∞ for some q > 0, (1-23)

and Lσ1 = Lσ2 , then σ1 = σ2.

Let us next consider anisotropic conductivities with bounded determinant but more degenerate ellipticity
function Kσ (z) defined in (1-5), and ask how far can we then generalize Theorem 1.8. Motivated by the
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counterexample given in Theorem 1.7, we consider the following class: we say that σ ∈6(�) has an (at
most) exponentially degenerated anisotropy with a weight A, denoted σ ∈6A :=6A(�), if σ(z) ∈ R2×2

for a.e. z ∈� and ∫
�

exp
(
A
(
tr σ + tr(σ−1)

))
dm(z) <∞. (1-24)

In view of Theorem 1.7, for obtaining uniqueness for the inverse problem, we need to consider weights
that are strictly increasing positive smooth functions A : [1,∞]→ [0,∞], A(1)= 0, with∫

∞

1

A(t)
t2 dt =∞ and tA′(t)→∞ as t→∞. (1-25)

We say that A has almost linear growth if (1-25) holds. The point here is the first condition, that is, the
divergence of the integral. The second condition is a technicality, which is satisfied by all weights one
encounters in practice (which do not oscillate too much); the condition guarantees that the Sobolev-gauge
function P(t) defined below in (1-26) is equivalent to a convex function for large t ; see [Astala et al.
2009, Lemma 20.5.4].

Note, in particular, that affine weights A(t)= pt − p, p > 0, satisfy the condition (1-25). To develop
uniqueness results for inverse problems within the class 6A, the first problems we face are to establish the
right Sobolev–Orlicz regularity for the solutions u of finite energy, Aσ [u]<∞, and to solve the Dirichlet
problem with given boundary values.

To start with this, we need the counterpart of the gauge Q(t) defined in (1-8). In the case of a general
weight A, we define

P(t)=


t2 for 06 t < 1,

t2

A−1(log(t2))
for t > 1,

(1-26)

where A−1 is the inverse function of A. As an example, note that if A is affine, A(t) = pt − p for
some number p > 0, then the condition (1-24) takes us back to the exponentially integrable distortion of
Theorem 1.8, while P(t)= t2

(
1+(1/p) log+(t2)

)−1 is equivalent to the gauge function Q(t) used in (1-8).
The inequalities (1-7) corresponding to the case when A is affine can be generalized for the following

result holding for general gauge A satisfying (1-25).

Lemma 1.10. Suppose u ∈W 1,1
loc (�) and A satisfies the almost linear growth condition (1-25). Then∫

�

(
P(|∇u|)+ P(|σ∇u|)

)
dm ≤ 2

∫
�

eA(tr σ+tr(σ−1)) dm(z)+ 2
∫
�

∇u · σ∇u dm

for every measurable function of symmetric matrices σ(z) ∈ R2×2.

Proof. We have, in fact, pointwise estimates. For these, note first that the conditions for A(t) imply that
P(t)≤ t2 for every t ≥ 0. Hence, if |∇u(z)|2 ≤ expA

(
tr σ(z)+ tr(σ−1(z))

)
then

P(|∇u(z)|)≤ expA
(
tr σ(z)+ tr(σ−1(z))

)
. (1-27)



THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERÓN’S INVERSE PROBLEM 55

If, however, |∇u(z)|2 > expA
(
tr σ(z)+ tr(σ−1(z))

)
, then

P(|∇u(z)|)=
|∇u(z)|2

A−1(log |∇u(z)|2)
≤
|∇u(z)|2

tr(σ−1(z))
≤ ∇u(z) · σ(z)∇u(z). (1-28)

Thus at a.e. z ∈�, we have

P(|∇u(z)|)≤ expA
(
tr σ(z)+ tr(σ−1(z))

)
+∇u(z) · σ(z)∇u(z). (1-29)

Similar arguments give pointwise bounds for P(|σ(z)∇u(z)|). Summing these estimates and integrating
these pointwise estimates over � proves the claim. �

In the following, we say that u ∈W 1,1
loc (�) is in the Orlicz space W 1,P(�) if∫
�

P(|∇u(z)|) dm(z) <∞.

There are further important reasons that make the gauge P(t) a natural and useful choice. For instance,
in constructing a minimizer for the energy Aσ [u], we are faced with the problem of possible equicontinuity
of Sobolev functions with Aσ [u] uniformly bounded. In view of Lemma 1.10, this is reduced to describing
those weight functions A(t) for which the condition P(|∇u(z)|) ∈ L1(�) implies that the continuity
modulus of u can be estimated. As we will see later in (3-14), this follows for weakly monotone functions u
(in particular, for homeomorphisms), as soon as the divergence condition∫

∞

1

P(t)
t3 dt =∞ (1-30)

is satisfied; that is, P(t) has almost quadratic growth. In fact, note that the divergence of the integral∫
∞

1 (A(t)/t2) dt is equivalent to∫
∞

1

P(t)
t3 dt =

1
2

∫
∞

1

A′(t)
t

dt =
1
2

∫
∞

1

A(t)
t2 dt =∞, (1-31)

where we have used the substitution A(s)= log(t2). Thus the condition (1-25) is directly connected to
the smoothness properties of solutions of finite energy for conductivities satisfying (1-24).

We are now ready to formulate our third main theorem for uniqueness for the inverse problem, which
gives a sharp result for singular anisotropic conductivities with a determinant bounded from above and
below by positive constants.

Theorem 1.11. Let � ⊂ C be a bounded simply connected domain with smooth boundary and
A : [1,∞)→ [0,∞) be a strictly increasing smooth function satisfying the almost linear growth condi-

tion (1-25). Let σ1, σ2∈6(�) be matrix-valued conductivities in�which satisfy the integrability condition∫
�

exp
(
A
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z) <∞. (1-32)

Moreover, suppose that c1 ≤ det(σ j (z))≤ c2, with z ∈�, j = 1, 2, for some c1, c2 > 0, and Lσ1 = Lσ2 .

Then there is a W 1,1
loc -homeomorphism F :�→� satisfying F |∂� = id such that

σ1 = F∗σ2.
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We note that the determination of σ from Lσ in Theorems 1.8, 1.9, and 1.11 is constructive in the
sense that one can write an algorithm which constructs σ from 3σ . For example, for nondegenerate scalar
conductivities, such a construction has been numerically implemented in [Astala et al. 2011].

Let us next discuss the borderline of the visibility somewhat formally. Below we say that a conductivity
is visible if there is an algorithm which reconstructs the conductivity σ from the boundary measure-
ments Lσ , possibly up to a change of coordinates. In other words, for visible conductivities, one can use
the boundary measurements to produce an image of the conductivity in the interior of � in some deformed
coordinates. For simplicity, let us consider conductivities with det σ bounded from above and below.
Then, Theorems 1.7 and 1.11 can be interpreted by saying that the almost linear growth condition (1-25)
for the weight function A gives the borderline of visibility for the trace of the conductivity matrix: If A
satisfies (1-25), the conductivities satisfying the integrability condition (1-32) are visible. However, if A
does not satisfy (1-25), we can construct a conductivity in � satisfying the integrability condition (1-32)
which appears as if an obstacle (which does not exist in reality) would have been included in the domain.

Thus the borderline of the visibility is between any spaces 6A1 and 6A2 , where A1 satisfies condi-
tion (1-25) and A2 does not satisfy it. Examples of such gauge functions are A1(t)= t (1+ log t)−1 and
A2(t)= t (1+ log t)−1−ε with ε > 0.

Summarizing the results, in terms of the trace of the conductivity, we have identified the borderline
of visible conductivities and the borderline of invisibility cloaking conductivities. Moreover, these
borderlines are not the same and between the visible and the invisibility cloaking conductivities, there are
conductivities creating electric holograms.

2. Proofs for the existence and uniqueness of the solution of the direct problem
and for the counterexamples

First we show that under the conditions (1-24) and (1-25), the Dirichlet problem for the conductivity
equation admits a unique solution u with finite energy Aσ [u].

2A. The Dirichlet problem. In this section we prove Theorem 1.4. In fact, we prove it in a more general
setting than it was stated.

Theorem 2.1. Let σ ∈ 6A(�), where A satisfies the almost linear growth condition (1-25). Then, if
h ∈ H 1/2(∂�) is such that Lσ [h] <∞ and X = {v ∈ W 1,1(�) : v|∂� = h}, there is a unique w ∈ X
satisfying (1-10). Moreover, w satisfies the conductivity equation

∇ · σ∇w = 0 in � (2-1)

in the sense of distributions, and has the regularity w ∈W 1,P(�).

Proof. For N > 0, define �N = {x ∈� : ‖σ(x)‖+‖σ(x)−1
‖ ≤ N }. Let wn ∈ X be such that

lim
n→∞

Aσ [wn] = C0 = inf{Aσ [v] : v ∈ X} = Lσ [h]<∞

and Aσ [wn]< C0+ 1. Then by Lemma 1.10,∫
�

P(|∇wn(x)|) dm(x)+
∫
�

P(|σ(x)∇wn(x)|) dm(x)≤ 2(C1+C0+ 1)= C2, (2-2)
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where

C1 =

∫
�

eA(K (z)) dm(z).

By [Astala et al. 2009, Lemmas 20.5.3, 20.5.4], there is a convex and unbounded function 8 : [0,∞)→R

such that

8(t)≤ P(t)+ c0 ≤ 28(t)

with some c0 > 0 and moreover, the function t 7→8(t5/8) is convex and increasing. This implies that
P(t)≥ c1t8/5

− c2 for some c1 > 0, c2 ∈ R. Thus (2-2) yields that for all 1< q ≤ 8/5,

‖∇wn‖Lq (�) ≤ C3 = C3(q,C0,C1) for n ∈ Z+.

Using the Poincaré inequality in Lq(�) and that (wn −w1)|∂� = 0, we see that

‖wn −w1‖Lq (�) ≤ C4C3.

Thus, there is C5 such that ‖wn‖W 1,q (�) <C5 for all n. By restricting to a subsequence of (wn)
∞

n=1, which
we denote in the sequel also by wn , we see, using the Banach–Alaoglu theorem, that wn converges as
n→∞ to a limit in W 1,q(�). We denote this limit by w. As W 1,q(�) embeds compactly to H s(�) for
s < 2(1− q−1), we see that ‖wn −w‖H s(�)→ 0 as n→∞ for all s ∈

( 1
2 ,

3
4

)
. Thus wn|∂�→ w|∂� in

H s−1/2(∂�) as n→∞. This implies that w|∂� = h and w ∈ X . Moreover, for any N > 0,

1
N

∫
�N

|∇wn(x)|2 dm(x)≤
∫
�N

∇wn(x) · σ(x)∇wn(x) dm(x)≤ C0+ 1.

This implies that ∇wn|�N are uniformly bounded in L2(�N ). Thus by restricting to a subsequence,
we can assume that ∇wn|�N converges weakly in L2(�N )

2 as n→∞. Clearly, the weak limit must
be ∇w|�N . Since the norm

V 7→
(∫

�N

V · σV dm
)1/2

in L2(�N )
2 is weakly lower semicontinuous, we see that∫
�N

∇w(x) · σ(x)∇w(x) dm(x)≤ lim inf
n→∞

∫
�N

∇wn(x) · σ(x)∇wn(x) dm(x)≤ C0.

As this holds for all N , we see by applying the monotone convergence theorem as N →∞ that (1-10)
holds. Thus w is a minimizer of Aσ in X .

By the above, σ∇wn → σ∇w weakly in L2(�N ) as n→∞ for all N . As noted above, there is a
convex function 8 : [0,∞)→ R such that

8(t)≤ P(t)+ c0 ≤ 28(t), c0 > 0,

and 8(t) is increasing for large values of t . Thus it follows from the semicontinuity results for integral op-
erators, [Attouch et al. 2006, Theorem 13.1.2], Lebesgue’s monotone convergence theorem, and (2-2) that
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�

(
8(|∇w|)+8(|σ∇w|)

)
dm(x)≤ lim

N→∞
lim inf
n→∞

∫
�N

(
8(|∇wn|)+8(|σ∇wn|)

)
dm

≤ lim
N→∞

lim inf
n→∞

∫
�N

(
P(|∇wn|)+ P(|σ∇wn|)

)
dm+ 2c0|�|

≤ C2+ 2c0|�|.

It follows from the above and the inequality P(t)≥ c1t8/5
− c2 that σ(x)∇w(x) ∈ L1(�). Consider next

φ ∈ C∞0 (�). As w+ tφ ∈ X , t ∈ R, and as w is a minimizer of Aσ in X , it follows that

d
dt

Aσ [w+ tφ]
∣∣
t=0 = 2

∫
�

∇φ(x) · σ(x)∇w(x) dm(x)= 0.

This shows that the conductivity equation (2-1) is valid in the sense of distributions.
Next, assume thatw and w̃ are both minimizers of Aσ in X . Using the convexity of Aσ , we see that then

the second derivative of t 7→ Aσ [tw+ (1− t)w̃] vanishes at t = 0. This implies that ∇(w− w̃)= 0 for a.e.
x ∈�. As w and w̃ coincide at the boundary, this yields that w = w̃ and thus the minimizer is unique. �

The fact that the minimizer w is continuous will be proven in the next subsection.

2B. The Beltrami equation. It is natural to ask if the minimizer w in (1-10) is the only solution of finite
σ -energy Aσ [w] to the boundary value problem

∇ · σ∇w = 0 in �,

w|∂� = h.
(2-3)

It turns out that this is the case and to prove this we introduce one of the basic tools in this work, the
Beltrami differential equation.

To this end, recall the Hodge-star operator ∗, which in two dimensions is just the rotation

∗ =

(
0 −1
1 0

)
.

Note that ∇ · (∗∇w) = 0 for all w ∈ W 1,1(�) and recall that � ⊂ C is simply connected. If σ(x) =
[σ jk(x)]2j,k=1 ∈6A(�), where A satisfies (1-19), and if u ∈W 1,1(�) is a distributional solution to the
conductivity equation

∇ · σ(x)∇u(x)= 0, (2-4)

then by Lemma 1.10, we have P(∇u), P(σ∇u) ∈ L1(�) and thus in particular σ∇u ∈ L1(�). By (2-4)
and the Poincaré lemma, there is a function v ∈W 1,1(�) such that

∇v = ∗ σ(x)∇u(x). (2-5)

Then
∇ · σ ∗(x)∇v = 0 in �, σ ∗(x)= ∗ σ(x)−1

∗
t . (2-6)

In particular, the above shows that u, v ∈W 1,P(�). Moreover, an explicit calculation (see, e.g., [Astala
et al. 2009, Formula (16.20)]) reveals that the function f = u+ iv satisfies

∂z̄ f = µ∂z f + ν ∂z f , (2-7)
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where

µ=
σ 22
− σ 11

− 2iσ 12

1+ tr(σ )+ det(σ )
, ν =

1− det(σ )
1+ tr(σ )+ det(σ )

, (2-8)

and ∂ z̄ =
1
2(∂x1 + i ∂x2) with ∂z =

1
2(∂x1 − i ∂x2). Note that |µ(z)| + |ν(z)| < 1 for a.e. z. Summarizing,

for σ ∈6A(�), any distributional solution u ∈W 1,1(�) of (2-4) is the real part of a solution f of (2-7).
Conversely, the real part of any solution f ∈W 1,1(�) of (2-7) satisfies (2-4), while the imaginary part is
a solution to (2-6) and as σ ∈6A(�), (2-4)–(2-6) and Lemma 1.10 yield that u, v ∈W 1,P(�), and hence
f ∈W 1,P(�).

Furthermore, the ellipticity bound of σ(z) is closely related to the distortion of the mapping f . Indeed,
in the case when σ(z0)= diag(λ1, λ2), a direct computation shows that

Kσ (z0)= Kµ,ν(z0), where Kµ,ν(z)=
1+ |µ(z)| + |ν(z)|

1− (|µ(z)| + |ν(z)|)
(2-9)

and Kσ (z) is the ellipticity of σ(z) defined in (1-5). Using the chain rule for the complex derivatives,
which can be written as

∂(v ◦ F)= (∂v) ◦ F · ∂F + (∂̄v) ◦ F · ∂̄F, (2-10)

∂̄(v ◦ F)= (∂v) ◦ F · ∂̄F + (∂̄v) ◦ F · ∂F, (2-11)

we see that |µ(z)| and |ν(z)| do not change in an orthogonal rotation of the coordinate axis, z 7→ αz,
where α ∈ C, |α| = 1. Since, for any z0 ∈� there exists an orthogonal rotation of the coordinate axis so
that matrix σ(z0) is diagonal in the rotated coordinates, we see that the identity (2-9) holds for all z0 ∈�.

Equation (2-7) is also equivalent to the Beltrami equation

∂̄ f (z)= µ̃(z) ∂ f (z) in �, (2-12)

with the Beltrami coefficient

µ̃(z)=
{
µ(z)+ ν(z) ∂z f (x)(∂z f (x))−1 if ∂z f (x) 6= 0,
µ(z) if ∂z f (x)= 0

(2-13)

satisfying |µ̃(z)| ≤ |µ(z)| + |ν(z)| pointwise. We define the distortion of f at z to be

K (z, f ) := Kµ̃(z)=
1+ |µ̃(z)|
1− |µ̃(z)|

≤ Kσ (z), z ∈�. (2-14)

Below we will also use the notation K (z, f )= K f (z).
In the sequel we will use frequently these different interpretations of the Beltrami equation. Note that

K (z, f )=
1+ |µ̃(z)|
1− |µ̃(z)|

so that

K (z, f )=
|∂ f | + |∂̄ f |
|∂ f | − |∂̄ f |

.
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As ‖D f ‖2 = (|∂ f | + |∂̄ f |)2 and J (z, f ) = |∂ f |2 − |∂̄ f |2, this yields the distortion equality (see, e.g.,
[Astala et al. 2009, Formula (20.3)])

‖D f (z)‖2 = K (z, f ) J (z, f ) for a.e. z ∈�. (2-15)

We will use extensively the fact that if a homeomorphism F : �→ �′, F ∈ W 1,1(�), is a finite
distortion mapping with the distortion KF ∈ L1(�) then by [Hencl et al. 2005] or [Astala et al. 2009,
Theorem 21.1.4] the inverse function H = F−1

:�′→� is in W 1,2(�′) and its derivative DH satisfies

‖DH‖L2(�′)
≤ 2‖KF‖L1(�)

. (2-16)

We will also need a few basic notions (see [Astala et al. 2009]) from the theory of Beltrami equations.
As the coefficients µ, ν are defined only in the bounded domain �, outside � we set µ(z)= ν(z)= 0
and σ(z)= 1, and consider global solutions to (2-7) in C. In particular, we consider the case when � is
the unit disc D= B(1). We say that a solution f ∈W 1,1

loc (C) of (2-7) in z ∈ C is a principal solution if

(1) f : C→ C is a homeomorphism of C and

(2) f (z)= z+O(1/z) as z→∞.

The existence of principal solutions is a fundamental fact that holds true in quite wide generality. Further,
with the principal solution one can classify all solutions, of sufficient regularity, to the Beltrami equation.
These facts are summarized in the following version of Stoilow’s factorization theorem (see [Astala et al.
2009, Theorem 20.5.2] for the proof).

Theorem 2.2. Suppose µ(z) is supported in the unit disk D, |µ(z)|< 1 a.e. and∫
D

exp(A(Kµ(z))) dm(z) <∞, Kµ(z)=
1+ |µ(z)|
1− |µ(z)|

,

where A satisfies the almost linear growth condition (1-25). Then the equation

∂̄8(z)= µ(z) ∂8(z), z ∈ C, (2-17)

8(z)= z+O(1/z) as z→∞, (2-18)

has a unique solution in 8 ∈ W 1,1
loc (C). The solution 8 : C→ C is a homeomorphism and satisfies

8 ∈W 1,P
loc (C). Moreover, when �1 ⊂ C is open, every solution of the equation

∂̄ f (z)= µ(z) ∂ f (z), z ∈�1, (2-19)

with the regularity f ∈W 1,P
loc (�1), can be written as f = H ◦8, where 8 is the solution to (2-17)–(2-18)

and H is a holomorphic function in �′1 =8(�1).

Below we combine this result with the Poincaré lemma to analyze the solutions of the conductivity
equation in the simply connected domain �.

Corollary 2.3. Let σ ∈6A(�), where A satisfies (1-25), and u ∈W 1,1
loc (�) satisfy

∇ · σ∇u = 0 in � and
∫
�

∇u(x) · σ(x)∇u(x) dm(x) <∞. (2-20)
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Then there exists a homeomorphism 8 : C→ C, 8 ∈W 1,P
loc (C), and a harmonic function w, defined in the

domain �′ =8(�), such that u = w ◦8. In particular, u :�→ R is continuous.

Proof. Let v ∈W 1,1
loc (�) be the conjugate function of u, described in (2-5), and set f = u+ iv. Then by

Lemma 1.10, we have f ∈ W 1,P(�), and Theorem 2.2 yields that f = H ◦8, where 8 : C→ C is a
homeomorphism with 8 ∈W 1,P

loc (C) and H is holomorphic in 8(�). Thus the real part u = (Re H) ◦8
has the required factorization with w = Re H . �

Theorem 2.1 and Corollary 2.3 yield Theorem 1.4.

2C. Invariance of the Dirichlet-to-Neumann form under coordinate transformations. In this section,
we assume that σ ∈6A(�), where A satisfies (1-25). We say that F :�→�′ satisfies the condition N
if for any measurable set E ⊂ �, we have |E | = 0⇒ |F(E)| = 0. Also, we say that F satisfies the
condition N−1 if for any measurable set E ⊂�, we have |F(E)| = 0⇒ |E | = 0.

Let σ ∈6A(C) be such that σ is constantly 1 in C \�. Let

µ̂(z)=
σ 11(z)− σ 22(z)+ 2iσ 12(z)
σ 11(z)+ σ 22(z)+ 2

√
det σ(z)

(2-21)

be the Beltrami coefficient associated to the isothermal coordinates corresponding to σ ; see, e.g., [Sylvester
1990; Astala et al. 2009, Theorem 10.1.1]. A direct computation shows that Kµ̂(z)= Kσ (z) and thus

exp(A(Kµ̂)) ∈ L1
loc(C),

and by Theorem 2.2, there exists a homeomorphism F :C→C satisfying (2-17)–(2-18) with the Beltrami
coefficient µ̂ such that F ∈W 1,P

loc (C). Due to the choice of µ̂, the conductivity F∗σ is isotropic; see, e.g.,
[Sylvester 1990; Astala et al. 2009, Theorem 10.1.1]. Let us next consider the properties of the map F .
First, as

exp(A(Kµ̂)) ∈ L1
loc(C),

it follows from [Kauhanen et al. 2003] that the function F satisfies the condition N . Moreover, the fact
that KF = Kµ̂ ∈ L1

loc(C) implies by (2-16) that its inverse H = F−1 is in W 1,2
loc (C). This yields by [Astala

et al. 2009, Theorem 3.3.7] that F−1 satisfies the condition N . In particular, the above yields that both F
and F−1 are in W 1,P

loc (C).
The following lemma formulates the invariance of the Dirichlet-to-Neumann forms in the diffeomor-

phisms satisfying the above properties.

Lemma 2.4. Assume that �, �̃ ⊂ C are bounded, simply connected domains with smooth boundaries
and that σ ∈6A(�) and σ̃ ∈6A(�̃), where A satisfies (1-25). Let F :�→ �̃ be a homeomorphism so
that F and F−1 are W 1,P -smooth and F satisfies conditions N and N−1. Assume that F and F−1 are
C1-smooth near the boundary and assume that ρ = F |∂� is C2-smooth. Also, suppose σ̃ = F∗σ . Then

L σ̃ [h̃] = Lσ [h̃ ◦ ρ]

for all h̃ ∈ H 1/2(∂�̃).
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Proof. As F has the properties N and N−1, we have the area formula∫
�̃

H(y) dm(y)=
∫
�

H(F(x)) J (x, F) dm(x) (2-22)

for all simple functions H : �̃→ C, where J (x, F) is the Jacobian determinant of F at x . Thus (2-22)
holds for all H ∈ L1(�̃).

Let h̃ ∈ H 1/2(∂�̃) and assume that L σ̃ [h̃]<∞. Let ũ : �̃→ R be the unique minimizer of Aσ̃ [v] in
X̃ = {ṽ ∈W 1,1(�̃) : ṽ|∂�̃ = h̃}. Then ũ is the solution of the conductivity equation

∇ · σ̃∇ũ = 0, ũ|∂�̃ = h̃. (2-23)

We define h = h̃ ◦ F |∂� and u = ũ ◦ F :�→ C.
By Corollary 2.3, ũ can be written in the form ũ = w̃ ◦ G̃, where w̃ is harmonic and G̃ ∈W 1,1

loc (C) is a
homeomorphism G̃ : C→ C.

By the Gehring–Lehto theorem (see [Astala et al. 2009, Corollary 3.3.3]), a homeomorphism F∈W 1,1
loc (�)

is differentiable almost everywhere in �, say in the set � \ A, where A has Lebesgue measure zero.
Similar arguments for G̃ show that G̃ and the solution ũ are differentiable almost everywhere, say in the
set �̃ \ A′, where A′ has Lebesgue measure zero.

Since F has the property N−1, we see that A′′= A′∪F−1(A′)⊂� has measure zero, and for x ∈�\A′′,
the chain rule gives

Du(x)= (Dũ)(F(x)) · DF(x). (2-24)

Note that the facts that F is a map with an exponentially integrable distortion and that ũ is a real part of a
map with an exponentially integrable distortion, do not generally imply, at least according to the knowledge
of the authors, that their composition u is in W 1,1

loc (�). To overcome this problem, we define for m > 1,

�̃m =
{

y ∈ �̃ : ‖DF−1(y)‖+‖DF(F−1(y))‖+‖σ̃ (y)‖+ |∇ũ(y)|< m
}

and �m = F−1(�̃m). Then ∇u|�m ∈ L2(�m) and ‖σ‖< m5 in �m ; see (1-13).
Now for any m > 0, ∫

�̃m

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y)≤ Aσ̃ [ũ]<∞. (2-25)

Due to the definition of σ̃ = F∗σ , we see by using formulae (2-22) and (2-24) that∫
�m

∇u(x) · σ(x)∇u(x) dm(x)=
∫
�̃m

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y). (2-26)

Letting m→∞ and using the monotone convergence theorem, we see that∫
�

∇u(x) · σ(x)∇u(x) dm(x)=
∫
�̃

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y)= Aσ̃ [ũ]<∞. (2-27)

By Lemma 1.10, this implies that u ∈W 1,P(�)⊂W 1,1(�).
Clearly, as ρ = F |∂� is C2-smooth, h := h̃ ◦ F ∈ H 1/2(∂�) and u|∂� = h. Thus

u ∈ X = {w ∈W 1,1(�) : w|∂� = h}.
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Since ũ is a minimizer of Aσ̃ in X̃ , and u satisfies

Aσ [u] ≤ Aσ̃ [ũ] = L σ̃ (h̃),

we see that
Lσ [h] ≤ L σ̃ [h̃].

Changing the roles of σ̃ and σ , we obtain an opposite inequality, and prove the claim. �

In particular, if σ ∈6A(�), σ̃ ∈6A(�̃) and F are as in Lemma 2.4 and in addition to that, σ and σ̃ are
bounded near ∂� and ∂�̃ respectively and ρ = F |∂� : ∂�→ ∂�̃ is C2-smooth, then the quadratic forms
Lσ and L σ̃ can be written in terms of the Dirichlet-to-Neumann maps 3σ : H 1/2(∂�)→ H−1/2(∂�) and
3σ̃ : H 1/2(∂�̃)→ H−1/2(∂�̃) as in formula (1-4). Then, Lemma 2.4 implies that

3σ̃ = ρ∗3σ , (2-28)

where ρ∗3σ is the push-forward of 3σ in ρ defined by

(ρ∗3σ )(h̃)= j ·
(
(3σ (h̃ ◦ ρ)) ◦ ρ−1)

for h̃ ∈ H 1/2(∂�̃), where j (z) is the Jacobian of the map ρ−1
: ∂�̃→ ∂�.

2D. Counterexamples revisited. In this section we give the proofs of the claims stated in Section 1B.
We start by proving Theorem 1.6. Since the change of variables used in the integration is singular, we
present the arguments in detail.

Proof of Theorem 1.6. (i) Our aim is first to show that we have Lσ [h] ≤ L σ̃ [h] and then to prove the
opposite inequality. The proofs of these inequalities are based on different techniques due to the fact
that σ̃ is not even in L1(B(2)).

Let 0< r < 2 and
K(r)= K∪ F(B(r)).

Moreover, let σ̃r be a conductivity that coincides with σ̃ in B(2) \K(r) and is zero in K(r). Similarly,
let σr be a conductivity that coincides with σ in B(2)\ B(r) and is zero in B(r). For these conductivities,
we define the quadratic forms Ar

:W 1,1(B(2))→ R+ ∪ {0,∞} and Ãr
:W 1,1(B(2))→ R+ ∪ {0,∞},

Ar
[v] =

∫
B(2)\B(r)

∇v · σ∇v dm(x), Ãr
[v] =

∫
B(2)\K(r)

∇v · σ̃∇v dm(x).

If we minimize Ãr
[v] over v ∈ W 1,1(B(2)) with v|∂B(2) = h, we see that minimizers exist and that the

restriction of any minimizer to B(2) \K(r) is the function ũr ∈W 1,2(B(2) \K(r)) satisfying

∇ · σ̃∇ũr = 0 in B(2) \K(r), ũr |∂B(2) = h, ν · σ̃∇ũr |∂K(r) = 0.

Analogous equations hold for the minimizer ur of Ar . As σ in B(2) \ B(r) and σ̃ in B(2) \K(r) are
bounded from above and below by positive constants, we see using the change of variables and the chain
rule that

Lσr [h] = L σ̃r [h] for h ∈ H 1/2(∂B(2)). (2-29)
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As σ(x)≥ σr (x) and σ̃ (x)≥ σ̃r (x) for all x ∈ B(2),

Lσ [h] ≥ Lσr [h], L σ̃ [h] ≥ L σ̃r [h]. (2-30)

Let us consider the minimization problem (1-3) for σ . It is solved by the unique minimizer u ∈
W 1,1(B(2)) satisfying

∇ · σ∇u = 0 in B(2), u|∂B(2) = h.

As σ, σ−1
∈ L∞(B(2)), we have u ∈W 1,2(B(2)) and Morrey’s theorem [1938] yields that the solution u

is C0,α-smooth in the open ball B(2) for some α > 0. Thus u|B(R) is in the Royden algebra

R(B(R))= C(B(R))∩ L∞(B(R))∩W 1,2(B(R))

for all R < 2; see [Astala et al. 2009, p. 77].
By, e.g., [Iwaniec and Martin 2001, p. 443], for any 0 < R < 2, the p-capacity of the disc B(r) in

B(R) goes to zero as r→ 0 for all p > 1. Using this, and that u ∈W 1,2(B(2))⊂ Lq(B(2)) for q <∞,
we see that (see [Kohn et al. 2008] for explicit estimates in the case when σ = 1)

lim
r→0

Lσr [h] = Lσ [h];

that is, the effect of an insulating disc of radius r in the boundary measurements vanishes as r→ 0. This
and the inequalities (2-29) and (2-30) yield L σ̃ [h] ≥ Lσ [h]. Next we consider the opposite inequality.

Let ũ = u ◦ F−1 in B(2) \K. As F is a homeomorphism, we see that if x→ 0 then d(F(x),K)→ 0
and vice versa. Thus, as u is continuous at zero, we see that ũ ∈ C(B(2) \Kint) and ũ has the constant
value u(0) on ∂K. Moreover, as F−1

∈ C1(B(2) \K), we have ‖DF−1
‖ ≤ C0 in B(2) \K and u is in the

Royden algebra R(B(R)) for all R < 2; we have by [Astala et al. 2009, Theorem 3.8.2] that the chain
rule holds implying that Dũ = ((Du) ◦ F−1) · DF−1 a.e. in B(2) \K. Let 0< R′ < R′′ < 2. Then

|Dũ(z)| ≤ C0‖Du‖C(B(R′′)) for z ∈ F(B(R′′)) \K.

As F and F−1 are C1-smooth up to ∂B(2), we have ũ∈W 1,1(B(2)\B(R′)). These give ũ∈W 1,1(B(2)\K).
Let ṽ ∈W 1,1(B(2)) be a function that coincides with ũ in B(2) \K and with u(0) in K.

Again, using the chain rule and the area formula as in the proof of Lemma 2.4, we see that Ãr
[ṽ]= Ar

[u]
for r > 1. Applying the monotone convergence theorem twice, we obtain

L σ̃ [h] ≤ Aσ̃ [ṽ] = lim
r→0

Ãr
[ṽ] = lim

r→0
Ar
[u] = Lσ [h]. (2-31)

As we have already proven the opposite inequality, this proves the claim (i).

(ii) Assume that σ̃ is a cloaking conductivity obtained by the transformation map F and the background
conductivity σ ∈ L∞(B(2)), σ ≥ c1 > 0, but that opposite to the claim, we have tr(σ̃ ) ∈ L1(B(2) \K).
Using formula (1-6) and the facts det(σ̃ )= det(σ ◦ F−1) is bounded from above and below by strictly
positive constants and tr(σ̃ ) ∈ L1(B(2) \K), we see that

tr(σ̃−1)= tr(σ̃ )/ det(σ̃ ) ∈ L1(B(2) \K).
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Hence by Lemma 1.2, Kσ̃ ∈ L1(B(2)\K). Let G : B(2)\K→ B(2)\{0} be the inverse map of F . Using
the formulas (1-5), (1-13), and (2-15), we see that

‖σ̃ (y)‖ =
‖DF(x) · σ(x) · DF(x)t‖

J (x, F)
≥
‖DF(x)‖2

J (x, F)Kσ (x)
=

K F (x)
Kσ (x)

, x = F−1(y).

As KG = KF ◦ F−1 (see [Astala et al. 2009, Formula (2.15)] and ‖σ̃ (y)‖ ≤ Kσ̃ (y)), the above yields
KG ∈ L1(B(2) \K). Hence, we see using (2-16) that F = G−1 is in W 1,2(B(2) \ {0}) and

‖DF‖L2(B(2)\{0}) ≤ 2‖KG‖L1(B(2)\K).

By the removability of singularities in Sobolev spaces (see [Kilpeläinen et al. 2000]), this implies that
F : B(2)\{0}→ B(2)\K can be extended to a function Fext

: B(2)→C, Fext
∈W 1,2(B(2)). As the distor-

tion K F of the map F is finite a.e., the map Fext is also a finite distortion map; see [Astala et al. 2009, Defi-
nition 20.0.3]. Thus, as Fext

∈W 1,2
loc (B(2)), it follows from the continuity theorem of finite distortion maps

[Astala et al. 2009, Theorem 20.1.1] or [Manfredi 1994] that Fext
: B(2)→C is continuous. Let y0 = F(0).

Then the set Fext(B(2))= (B(2) \K)∪ {y0} is not closed as ∂K contains more that one point and thus it
is not compact. This is a contradiction with the fact that Fext is continuous. This proves the claim (ii). �

Next we prove the claim concerning the last counterexample.

Proof of Theorem 1.7. Let us start by reviewing the properties of the Iwaniec–Martin maps. Let
A1 : [1,∞]→ [0,∞] be a strictly increasing positive smooth function with A1(1)= 0 which satisfies the
condition (1-19). Then by [Iwaniec and Martin 2001, Theorem 11.2.1], there exists a W 1,1-homeomorphism
F : B(2) \ {0} → B(2) \ B(1) with Beltrami coefficient µ satisfying∫

B(2)\{0}
exp

(
A1(Kµ(z))

)
dm(z) <∞, where Kµ(z) :=

1+ |µ(z)|
1− |µ(z)|

. (2-32)

The function F can be obtained using the construction procedure of [Astala et al. 2009, Section 20.3]
(see [Iwaniec and Martin 2001, Theorem 11.2.1] for the original construction) as follows: Let S(t) be
solution of the equation

A1(S(t))= 1+ log(t−1), 0< t ≤ 1. (2-33)

Then S : (0, 1]→ [1,∞) is a well-defined decreasing function, S(1)= 1 and with suitably chosen c1 > 0,
the function

F(z)=
z
|z|
ρ(|z|), ρ(s)= 1+ c1

(
exp

(∫ s

0

dt
t S(t)

)
− 1

)
, (2-34)

is a homeomorphism F : B(2)\{0}→ B(2)\B(1). We say that F is the Iwaniec–Martin map corresponding
to the weight function A1(t).

Next let A : [1,∞]→ [0,∞] be a strictly increasing positive smooth function with A(1)= 0 which
satisfies the condition (1-19) and let F1 be the Iwaniec–Martin map corresponding to the weight function
A1(t)=A(4t).
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Using the inverse of the map F1, we define σ1 = (F−1
1 )∗1 on B(2) \ {0} and consider this function as

an a.e. defined measurable function on B(2). Using the definition of push-forward, (2-32), we see that
det(σ1)= 1 and

Kσ1(z)= K (F−1
1 (z), F−1

1 )= Kµ(z).

Thus Lemma 1.2 and the fact that F1 satisfies (2-32) with the weight function A1(t)=A(4t) yield that σ1

satisfies (1-20) with the weight function A(t).
Recall that the conductivity γ1 is identically 1 in B(2) \ B(1) and zero in B(1). Next, we consider the

minimization problem (1-3) with the conductivities γ1 and σ1. To this end, we make analogous definitions
to the proof of Theorem 1.6. For 1< r < 2, let γr be a conductivity that is 1 in B(2) \ B(r) and is zero
in B(r). Similarly, let σr be a conductivity that coincides with σ1 in B(2)\B(r−1) and is zero in B(r−1).

As in (2-29) and (2-30), we see for h ∈ H 1/2(∂B(2)) and r > 1, that

Lσr [h] = Lγr [h], Lσr [h] ≤ Lσ1[h], Lγr [h] ≤ Lγ1[h]. (2-35)

Let h ∈ H 1/2(∂B(2)). For 1≤ r < 2, the solution of the boundary value problem

1wr = 0 in B(2) \ B(r), wr |∂B(2) = h, ∂νwr |∂B(r) = 0

satisfies Lγr [h] = ‖∇wr‖
2
L2(B(2)\B(r))

and it is easy to see that

lim
r→0

Lγr [h] = Lγ1[h] for h ∈ H 1/2(∂B(2)). (2-36)

Let w = w1. Note that w ∈W 1,2(B(2) \ B(1)).
Let us consider the function v = w ◦ F1. As F1 is C1-smooth in B(2) \ {0} and the function w is

C1-smooth in B(R) \ B(1) for all 1< R < 2, we have by the chain rule that

Dv(x)= (Dw)(F1(x)) · DF1(x)

for all x ∈ B(2) \ {0}. As Dw ∈ L2(B(2) \ B(R)) and Dw ∈ L∞(B(R) \ B(1)) for all 1< R < 2, and

DF1(x)=
ρ(|x |)
|x |

(I − P(x))+ ρ ′(|x |)P(x),

where

P(x) : y 7→ |x |−2(x · y)x

is the projector to the radial direction at the point x , using (2-34) we see that ‖DF1(x)‖ ≤ C |x |−1 with
some C > 0 and

Dv ∈ L p(B(2) \ {0}) for any p ∈ (1, 2). (2-37)

Thus v∈W 1,p(B(2)\{0})with any p∈(1, 2) and by the removability of singularities in Sobolev spaces (see,
e.g., [Kilpeläinen et al. 2000, Theorem 4.6 and p. 241]), the function v can be considered as a measurable
function in B(2) for which v∈W 1,p(B(2)). Thus v is in the domain of definition of the quadratic form Aσ1 .
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As w ∈ C1(B(R) \ B(1)) for all 1< R < 2 and F1 is C1-smooth in B(2) \ B(1)), we can again use
the chain rule, the area formula, and the monotone convergence theorem to obtain

Lσ1[h] ≤ Aσ1[v] = lim
R→2

lim
ρ→0

∫
B(R)\B(ρ)

∇v · σ1∇v dm(x)

= lim
R→2

lim
ρ→0

∫
F1(B(R)\B(ρ))

∇w · γ1∇w dm(x)= Lγ1[h]. (2-38)

Next, consider the inequality opposite to (2-38). We have by (2-35) and (2-36) that

Lσ1[h] ≥ lim
r→1

Lσr [h] = lim
r→1

Lγr [h] = Lγ1[h]. (2-39)

The above inequalities prove the claim. �

3. Complex geometric optics solutions

In what follows, we assume that A satisfies the almost linear growth condition (1-25).

3A. Existence and properties of the complex geometric optics solutions. Let us start with the observa-
tion that if σ0 ∈ 6(�0) is a conductivity in a smooth simply connected domain �0 ⊂ C, and σ1 is a
conductivity in a larger smooth domain �1 which coincides with σ0 in �0 and is 1 in �1 \�0, then Lσ0

determines Lσ1 by the formula

Lσ1[h] = inf
{∫

�1\�0

|∇v|2 dm(z)+ Lσ0[v|∂�0]

∣∣∣∣ v ∈W 1,2(�1 \�0), v|∂�1 = h
}
.

This observation implies that we may consider inverse problems by assuming that the conductivity σ is
the identity near ∂� without loss of generality. Also, we may assume that �=D, which we do below.
We note that boundary values of the isotropic conductivity can also be directly determined from 3σ ; see
[Alessandrini 1990].

The main result of this section is the following uniqueness and existence theorem for the complex
geometrical optics solutions.

Theorem 3.1. Let σ ∈6A(C) be a conductivity such that σ(x)= 1 for x ∈ C \�. Then for every k ∈ C,
there is a unique solution u( · , k) ∈W 1,P

loc (C), where P is given in (1-26), for

∇z · σ(z)∇z u(z, k)= 0 in C, (3-1)

u(z, k)= eikz
(

1+O
(1

z

))
as |z| →∞. (3-2)

We point out that the regularity u ∈W 1,P
loc (C) is optimal in the sense that the standard slightly stronger

assumption u ∈W 1,2
loc (C) would not be valid for the solutions; see [Astala et al. 2009, Section 20.4.6].

We prove Theorem 3.1 in several steps. Recalling the reduction to the Beltrami equation (2-7), we
start with the following lemma, where we define

BA(D)=

{
µ ∈ L∞(C)

∣∣∣∣ supp(µ)⊂ D, 0≤ µ(x) < 1 a.e., and
∫

D

exp(A(Kµ(z))) dm(z) <∞
}
.
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Lemma 3.2. Assume that µ ∈ BA(D) and f ∈W 1,P
loc (C) satisfies

∂̄ f (z)= µ(z) ∂ f (z) for a.e. z ∈ C, (3-3)

f (z)= βeikz
(

1+O
(1

z

))
for |z| →∞, (3-4)

where β ∈ C \ {0} and k ∈ C. Then

f (z)= βeik8(z), (3-5)

where 8 ∈ W 1,P
loc (C) is a homeomorphism 8 : C→ C, ∂̄8(z) = 0 for |z| > 1, K (z,8) = K (z, f ) for

a.e. z ∈ C, and

8(z)= z+O
(1

z

)
for |z| →∞. (3-6)

Proof. By Theorem 2.2, we have for f the Stoilow factorization f = h ◦8, where h : C→ C is a
holomorphic function and 8 is the principal solution of (3-3). This and the formulae (3-4) and (3-6) imply

h(8(z))
βeik8(z) =

f (z)
βeik8(z) → 1 when |z| →∞.

Thus, h(ζ )= βeikζ for all ζ ∈ C, and f has the representation (3-5). The claimed properties of 8 follow
from the formula (3-5) and the similar properties of f . �

Next we consider case where β = 1. Below we will use the fact that if 8 :C→C is a homeomorphism
such that 8∈W 1,1

loc (C), we have 8(z)− z= o(1) as z→∞ and that if 8 is analytic outside the disc B(r),
r > 0, then by [Astala et al. 2009, Theorem 2.10.1 and (2.61)],

|8(z)| ≤ |z| + 3r for z ∈ C and |8(z)− z| ≤ r for |z|> 2r. (3-7)

In particular, the map 8 defined in Lemma 3.2 satisfies this with r = 1.

Lemma 3.3. Assume that ν, µ : C→ C are measurable functions satisfying

µ(z)= ν(z)= 0 for z ∈ C \D, (3-8)

|µ(z)| + |ν(z)|< 1 for a.e. z ∈ D, (3-9)

and that Kµ,ν(z) defined in (2-9) satisfies∫
D

exp(A(Kµ,ν(z))) dm(z) <∞. (3-10)

Then for k ∈ C, the equation

∂ z̄ f = µ∂z f + ν ∂z f , z ∈ C, (3-11)

has at most one solution f ∈W 1,P
loc (C) satisfying

f (z)= eikz
(

1+O
(1

z

))
for |z| →∞. (3-12)
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Proof. Observe that we can write (3-11) in the form

∂ z̄ f = µ̃ ∂z f , z ∈ C, (3-13)

where the coefficient µ̃ is given by (2-13). Since |µ̃(z)| ≤ |µ(z)| + |ν(z)|, we see that µ̃ ∈ BA(D).
Next, assume (3-13) has two solutions f1 and f2 having the asymptotics (3-12). Let ε > 0 and consider

the function

fε(z)= f1(z)− (1+ ε) f2(z).

Then, fε ∈W 1,P
loc (C), the function fε satisfies (3-11), and

fε(z)=−εeikz
(

1+O
(1

z

))
for |z| →∞.

By Lemma 3.2 and (3-7), there is 8ε(z) such that

fε(z)= f1(z)− (1+ ε) f2(z)=−εeik8ε(z)

and |8ε(z)| ≤ |z| + 3. Then for any z ∈ C, we have that

f1(z)− f2(z)= lim
ε→0

fε(z)= 0.

Thus f1 = f2. �

3B. Proof of Theorem 3.1. In the following, we use general facts for weakly monotone mappings, and
to this end, we recall some basic facts. Let � ⊂ C be open and u ∈ W 1,1(�) be real-valued. We say
that u is weakly monotone if both of the functions u(x) and −u(x) satisfy the maximum principle in the
following weak sense: for any a ∈ R and relatively compact open sets �′ ⊂�,

max(u(z)− a, 0) ∈W 1,1
0 (�′) implies that u(z)≤ a for a.e. z ∈�′;

see [Iwaniec and Martin 2001, Section 7.3]. We remark that if f ∈ W 1,1
loc (�1) and f : �1 → �2 is a

homeomorphism, where �1, �2 ⊂ C are open, the real part of f is weakly monotone. By [Astala et al.
2009, Lemma 20.5.8], if f ∈W 1,1(�) is the solution of the Beltrami equation ∂̄ f =µ∂ f with a Beltrami
coefficient µ satisfying |µ(z)|< 1 for a.e. z ∈ C, then the real and the imaginary parts of f are weakly
monotone functions. An important property of weakly monotone functions is that their modulus of
continuity can be estimated in an explicit way. Let M(t)= MP(t) be the P-modulus, that is, the function
determined by the condition: for M = M(t), we have∫ 1/t

1
P(s M)

ds
s3 = P(1) for all t ∈ [0,∞);

see (1-30) and [Iwaniec and Martin 2001, Section 7.5]. The function MP : [0,∞)→[0,∞) is continuous
at zero and MP(0) = 0. Then by [Iwaniec and Martin 2001, Theorem 7.5.1], it holds that if z′, z ∈ �
satisfy B(z, r)⊂�, r < 1, and |z′− z|< r/2, and f ∈W 1,P(�) is a weakly monotone function, then for
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almost every z, z′ ∈ B(z, r), we have

| f (z′)− f (z)| ≤ 32πr ‖D f ‖(P,r)MP

(
|z− z′|

2r

)
, (3-14)

where

‖∇ f ‖(P,r) = inf
{

1
λ

∣∣∣∣ λ > 0, 1
πr2

∫
B(z,r)

P(λ|D f (x)|) dm(z)≤ P(1)
}
.

As we will see, this can be used to estimate the modulus of continuity of principal solutions of Beltrami
equations corresponding to µ ∈ BA(D).

Below, we use the unimodular function ek given by

ek(z)= ei(kz+k̄ z̄). (3-15)

The following result shows the existence of the complex geometric solutions for degenerated conductivities.

Lemma 3.4. Assume that µ and ν satisfy (3-8)–(3-10) and let k ∈ C \ {0}. Then (3-11) has a solution
f ∈W 1,P

loc (C) satisfying the asymptotics (3-12). Moreover, this solution can be written in the form

f (z)= eikϕ(z), (3-16)

where ϕ :C→C is a homeomorphism satisfying the asymptotics ϕ(z)= z+O(z−1). Moreover, for R> 1,∫
B(R)

P(|Dϕ(x)|) dm(x)≤ CA(R)
∫

B(R)
exp(A(Kµ,ν(z))) dm(z), (3-17)

where CA(R) depends on R and the weight function A. In addition,

∂̄ϕ(z)= µ(z) ∂ϕ(z)−
k̄
k
ν(z)e−k(ϕ(z)) ∂ϕ(z) for a.e. z ∈ C. (3-18)

Proof. Let us approximate the functions µ and ν with functions

µn(z)=

{
µ(z) if |µ(z)| + |ν(z)| ≤ 1− 1

n ,
µ(z)
|µ(z)|(1−

1
n ) if |µ(z)| + |ν(z)|> 1− 1

n ,
(3-19)

νn(z)=

{
ν(z) if |µ(z)| + |ν(z)| ≤ 1− 1

n ,
ν(z)
|ν(z)|(1−

1
n ) if |µ(z)| + |ν(z)|> 1− 1

n ,
(3-20)

where n ∈ Z+. Consider the equations

∂̄ fn(z)= µn(z)∂ fn(z)+ νn(z)∂ fn(z) for a.e. z ∈ C, (3-21)

fn(z)= eikz
(

1+O
(1

z

))
for |z| →∞. (3-22)

By Lemma 3.3, equations (3-21)–(3-22) have at most one solution fn ∈ W 1,P
loc (C). The existence of

the solutions can be seen as in the proof of [Astala et al. 2005, Lemma 3.5]; by [Astala et al. 2005,
Lemma 3.2], solutions fn for (3-21)–(3-22) can be constructed via the formula fn = h ◦ g, where g is the
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principal solution of ∂̄g = µ̂∂g, constructed in Theorem 2.2, and h is the solution of

∂̄h = (ν̂ ◦ g−1) ∂h, h(z)= eikz
(

1+O
(1

z

))
constructed in [Astala and Päivärinta 2006, Theorem 4.2], where ν̂ = (1+ νn)µ̄n and µ̂= µn(1+ ν̂), and
moreover, it holds that fn ∈W 1,2

loc (C).
Let us now define the coefficient µ̃ according to formula (2-13), and define an approximative coef-

ficient µ̃n using formula (2-13), where µ and ν are replaced by µn and νn and f by fn . We can write
(3-21) in the form

∂̄ fn(z)= µ̃n(z) ∂ fn(z) for a.e. z ∈ C, (3-23)

where |µ̃n| ≤ 1− n−1.
By (3-22), (3-23), and Lemma 3.2, the function fn can be written in the form

fn(z)= eikϕn(z), (3-24)

where ϕn is a homeomorphism, ∂̄ϕn(z)= 0 for |z|> 1, K (z, ϕn)= K (z, fn) for a.e. z ∈ C, and

ϕn(z)= z+O
(1

z

)
for |z| →∞. (3-25)

Then
|∂̄ fn(z)| = |µ̃n(z)||∂ fn(z)| ≤ |µ̃(z)||∂ fn(z)|.

Let us consider next a, b > 0 and 0≤ t ≤ (ab)1/2. Using the definition (1-26) of P(t), we see that

P(t)≤ exp(A(a)) for t2
≤ eA(a),

P(t)≤
ab

A−1(log exp(A(a)))
= b for t2 > eA(a),

which imply the inequality P(t)≤ b+ exp(A(a)). Due to the distortion equality (2-15), we can use this
for a = K (z, ϕn), b = J (z, ϕn), and t = |Dϕn(z)| and obtain

P(|Dϕn(z)|)≤ J (z, ϕn)+ exp(A(K (z, ϕn))). (3-26)

Then, we see using (3-7) and the fact that ϕn is a homeomorphism that∫
B(R)

P(|Dϕn(z)|) dm(z)≤
∫

B(R)
J (z, ϕn) dm(z)+

∫
B(R)

eA(K (z,ϕn) dm(z)

≤ m(ϕn(B(R)))+
∫

B(R)
exp(A(Kµ̃(z))) dm(z)

≤ π(R+ 3)2+
∫

B(R)
exp(A(Kµ̃(z))) dm(z) (3-27)

is finite by the assumption (3-10). We emphasize that the fact that ϕn is a homeomorphism is the essential
fact which together with the inequality (3-26) yields the Orlicz estimate (3-27).

The estimate (3-27) together with the inequality (3-14) implies that the functions ϕn have uniformly
bounded modulus of continuity in all compact sets of C. Moreover, by (3-7), |ϕn(z)| ≤ |z| + 3.
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Next we consider the Beltrami equation for ϕ. To this end, let ψ ∈ C∞0 (C) and R > 1 be so large
that supp(ψ) ⊂ B(R). Since the family {ϕn}

∞

n=1 is uniformly bounded in the space W 1,P(B(R)) and
W 1,P(B(R))⊂W 1,q(B(R)) for some q > 1, we see that there is a subsequence ϕn j that converges weakly
in W 1,q(B(R)) to some limit ϕ when j→∞. Let us denote

κn(z)=−
k̄
k
νn(z)e−k(ϕn(z)), κ(z)=−

k̄
k
ν(z)e−k(ϕ(z)).

Moreover, functions ϕn are uniformly bounded and have a uniformly bounded modulus of continuity
in compact sets by (3-14) and thus by the Arzelà–Ascoli theorem, there is a subsequence, denoted also
by ϕn j , that converges uniformly to some function ϕ′ in B(R) for all R> 1. As ϕn j converges in C(B(R))
uniformly to ϕ′ and weakly in W 1,q(B(R)) to ϕ, we see using convergence in distributions that ϕ′ = ϕ.
Thus, we see that

lim
j→∞

e−k(ϕn j (z))= e−k(ϕ(z)) uniformly for z ∈ B(R),

and by the dominated convergence theorem κn→ κ in L p(B(R)), where 1/p+ 1/q = 1.
As ϕn : C→ C is a homeomorphism and ϕn ∈ W 1,1

loc (C), we can use chain rules (2-10) a.e. by the
Gehring–Lehto theorem (see [Astala et al. 2009, Corollary 3.3.3]) and see using (3-21) and (3-24) that

∂̄ϕn(z)= µn(z) ∂ϕn(z)−
k̄
k
νn(z)e−k(ϕn(z)) ∂ϕn(z) for a.e. z ∈ C. (3-28)

Recall that there is a convex function 8 : [0,∞)→ [0,∞) such that 8(t) ≤ P(t)+ c0 ≤ 28(t). By
[Attouch et al. 2006, Theorem 13.1.2], the map

φ 7→

∫
B(R)

8(|Dφ(x)|) dm(x)

is weakly lower semicontinuous in W 1,1(B(R)). By (3-27), the integral of8(|Dϕn|) is uniformly bounded
in n∈Z+ over any disc B(R). In particular, this yields that ϕ∈W 1,P(B(R)) for R>1 and that (3-17) holds.

Furthermore, as |ϕ(z)| ≤ |z| + 3, this yields that

f (z) := eikϕ(z)
∈W 1,P

loc (C). (3-29)

Next define ϕn(∞)= ϕ(∞)=∞. As ϕn and ϕ are conformal at infinity, we see using the Cauchy formula
for (ϕn(1/z)−ϕ(0))−1 that

ϕ(z)= z+O
(1

z

)
for |z| →∞. (3-30)

As Dϕn j converges weakly in Lq(B(R)) to Dϕ and their norms are uniformly bounded, we have∣∣∣∣∫
C

(∂̄ϕ−µ∂ϕ−κ ∂ϕ)ψ dm(z)
∣∣∣∣= lim

j→∞

∣∣∣∣∫
C

(∂̄ϕn j−µ∂ϕn j−κ ∂ϕn j )ψ dm(z)
∣∣∣∣

≤ lim
j→∞

∣∣∣∣∫
C

i
(
(µn j−µ)∂ϕn j+(κn j−κ)∂ϕn j

)
ψ dm(z)

∣∣∣∣
≤ lim

j→∞

(
‖µn j−µ‖L p(B(1))+‖κn j−κ‖L p(B(1))

)
‖∂ϕn j‖Lq (B(1))‖ψ‖L∞(B(1))=0.

This implies that ϕ(z) satisfies (3-18).
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Next we show that ϕ is a homeomorphism As K (z)= Kν,µ ∈ L1
loc(C), we have K (z;ϕn)∈ L1

loc(C); thus
by (2-16), the inverse maps ϕ−1

n satisfy ϕ−1
n ∈W 1,2

loc (C;C) and for all R > 1, the norms ‖ϕ−1
n ‖W 1,2(B(R)),

n ∈ Z+, are uniformly bounded. Thus by the formula (3-14), the family (ϕ−1
n )∞n=1 has a uniform modulus

of continuity in compact sets. Hence, we see that there is a continuous function ψ : C→ C such that
ϕ−1

n → ψ uniformly on compact sets when n→∞. As ϕn are conformal at infinity, we see, using again
the Cauchy formula, that ϕ−1

n j
→ ψ uniformly on the Riemann sphere S2 as j→∞. Then,

ψ ◦ϕ(z)= lim
j→∞

ϕ−1
n j
(ϕ(z))= lim

j→∞
ϕ−1

n j
(ϕn j (z))= z,

which implies that ϕ : S2
→ S2 is a continuous injective map and hence a homeomorphism.

As ϕ : C→ C is a homeomorphism and ϕ ∈ W 1,1
loc (C), we can, by the Gehring–Lehto theorem, use

chain rules (2-10) a.e. and see using (3-18) that f (z)= eikϕ(z) satisfies (3-11). By (3-30), f (z) satisfies
the asymptotics (3-12). This proves the claim. �

The above uniqueness and existence results have now proven Theorem 3.1.

4. Inverse conductivity problem with degenerate isotropic conductivity

In this section, we consider exponentially integrable scalar conductivities σ . In particular, we assume
that σ is 1 in an open set containing C\D and its ellipticity function K (z)= Kσ (z) of the conductivity σ
satisfies an Orlicz space estimate∫

B(R1)

exp
(
exp(q K (x))

)
dm(x)≤ C0 for some C0, q > 0, (4-1)

with R1 = 1. Note that by the John–Nirenberg lemma, (4-1) is satisfied if

exp(q K (x)) ∈ BMO(D) for some q > 0. (4-2)

As noted before, we may assume without loss of generality that � is the unit disc D.

4A. Estimates for principal solutions in Orlicz spaces. Let us consider next the principal solution of
the Beltrami equation

∂̄8(z)= µ(z) ∂8(z), z ∈ C, (4-3)

8(z)= z+ O
(1

z

)
when |z| →∞. (4-4)

To this end, let R0 ≥ 1,

B p
exp,N (B(R0))=

{
µ:C→C

∣∣∣∣ |µ(z)|<1 for a.e. z, supp(µ)⊂B(R0) and
∫

B(R0)

exp(pKµ(z))dm(z)≤N
}

and
B p

exp(B(R0))=
⋃
N>0

B p
exp,N (B(R0)).

The reason that we use the radius R0 is to be able to apply the obtained results for the inverse function
of the solution of the Beltrami equation satisfying another Beltrami equation with modified coefficients;
see (4-45).
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Assume that p > 2 and µ ∈ B p
exp(B(R0)). Then by [Astala et al. 2010, Theorem 1.1], we have the

L2-estimate

‖(µS)mµ‖L2(C)
≤ C(p, β)m−β/2

∫
B(R0)

exp(pKµ(z)) dm(z), 2< β < p, (4-5)

where
Sφ(z)=

1
π

∫
C

∂wφ(w)

w− z
dm(w),

is the Beurling operator. Below, we use the operator SB(R0)φ = Sφ|B(R0). In particular, as 8 satisfies

∂̄8= ∂̄(8− z)= µ∂(8− z)+µ= µS ∂̄( 8− z)+µ= µS ∂̄8+µ,

(4-5) yields

∂̄8=

∞∑
m=0

(µS)mµ, (4-6)

where the series converges in L2(C). To analyze the convergence more precisely, we need a refinement of
the L p-scale. In particular, we will use the Orlicz spaces X j,q(S), j ∈Z+, q ∈R, S⊂C that are defined by

u ∈ X j,q(S) if and only if
∫

S
M j,q(u(x)) dm(x) <∞, (4-7)

where
M j,q(t)= |t | j logq(e+ |t |). (4-8)

We use shorthand notations Xq(S)= X2,q(S) and Mq(t)= M2,q(t). Although (4-7)–(4-8) do not define
a norm in X j,q(S), there is an equivalent norm

‖u‖X j,q (S) = sup
v

{∫
S
|u(x)v(x)| dm(x)

∣∣∣∣ ∫
D

G j,q(|v(x)|) dm(x)≤ 1
}
, (4-9)

where G j,q(t) is such a function that (M j,q ,G j,q) are a Young complementary pair (see the Appendix)
and, in particular, the following lemma holds.

Lemma 4.1. Let j = 1, 2, . . . , and q ≥ 0.

(i) We have ∫
B(R0)

M j,q(u(x)) dm(x)≤ 2‖u‖ j
X j,q (B(R0))

logq(e+‖u‖X j,q (B(R0))
).

(ii) For
φ(t)= t1/j (1+ 2 logq(e+ t−1/j )),

we have

‖u‖X j,q (B(R0)) ≤ φ

(∫
B(R0)

M j,q(u(x)) dm(x)
)
.

Proof. (i) Let us denote M(t)=M j,q(t). For this function, we use the equivalent norms ‖u‖M and ‖u‖(M)
defined in the Appendix. To show the claim, we use the inequality

log(e+ st)≤ 2 log(e+ s) log(e+ t), t, s ≥ 0. (4-10)



THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERÓN’S INVERSE PROBLEM 75

Let us consider the function w ∈ X j,q(B(R0)). By (4-10) we have, for k > 0, that∫
B(R0)

M j,q(kw) dm = k j
∫

B(R0)

|w| j logq(e+ k|w|) dm

≤ 2k j logq(e+ k)
∫

B(R0)

M j,q(w) dm. (4-11)

A function u ∈ X j,q(B(R0)) can be written as u = kw, where k = ‖u‖(M) and ‖w‖(M) = 1. Then by
(A-5)–(A-6), we have ∫

B(R0)

M j,q(w) dm = 1,

and hence (4-11) and (A-4) yield the claim (i).

(ii) Using (4-11) and the definition (A-2) of the Orlicz norm, we see that for all k > 0,

‖u‖X j,q (B(R0)) ≤
1
k

(
1+

∫
B(R0)

M j,q(ku) dm
)

≤
1
k

(
1+ 2k j logq(e+ k)

∫
B(R0)

M j,q(u) dm
)
.

Let T =
∫

B(R0)
M j,q(u) dm. Substituting k = T−1/j above, we obtain (ii). �

Theorem 4.2. Assume that µ ∈ B p
exp(B(R0)), 2< p <∞. Then the equations (4-3)–(4-4) have a unique

solution 8 ∈W 1,1
loc (C) which, for 0≤ q ≤ p/4, satisfies

∂̄8 ∈ Xq(C) (4-12)

and the series (4-6) converges in Xq(C). The convergence of the series (4-6) in Xq(C) is uniform for
µ ∈ B p

exp,N (B(R0)) with any N > 0. Moreover, for µ ∈ B p
exp,N (B(R0)), the Jacobian J8(z) of 8 satisfies

‖J8‖X1,q (B(R0)) ≤ C, (4-13)

where C depends only on p, q, N , and R0. Moreover, let s > 2 and assume that µm, µ̃m ∈ B p
exp,N (B(R0))

and 0≤ q ≤ p/4. Then we have the following implication:

lim
m→∞

‖µm − µ̃m‖Ls(B(R0)) = 0 ⇒ lim
m→∞

‖∂̄8m − ∂̄8̃m‖Xq (C) = 0, (4-14)

where 8m and 8̃m are the solutions of (4-3)–(4-4) corresponding to µm , µ̃m , respectively.

Proof. Let 8λ(z), where |λ| ≤ 1, z ∈ C, be the principal solution corresponding to the Beltrami
coefficient λµ, that is, the solution with the Beltrami equation (2-17)–(2-18) with coefficient λµ. These
solutions, in particular 8λ =81, exist and are unique by Theorem 2.2. It follows from [Astala et al. 2010,
Theorems 1.1 and 5.1] that the Jacobian determinant J8λ(z) of 8λ satisfies∫

B(R0)

J8λ log2q(e+ J8λ) dm(z)≤ C <∞, (4-15)

where C is independent of λ and µ ∈ B p
exp,N (B(R0)) and depends only on N , p, and q. Thus (4-13)

follows from Lemma 4.1(ii).
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We showed already that when p> 2, we have ∂̄8∈ L2(C) and that the series (4-6) converges in L2(C).
To show the convergence of (4-6) in Xq(C) and to prove (4-14), we present a few lemmas in terms of
Orlicz spaces Xq(B(R0)) and the function Mq defined in (4-8). Note that as µ vanishes in C \ B(R0),

‖(µS)nµ‖Xq (C) = ‖(µS)nµ‖Xq (B(R0))
.

Lemma 4.3. Let N ∈ Z+, 2< 2q < β < p, and µ ∈ B p
exp,N (B(R0)). Then∫

B(R0)

Mq(ψn(x)) dm(x)≤ cn−(β−q) < cn−q , (4-16)

where ψn = (µS)nµ and c > 0 depends only on N , p, β, and q.

Proof. Let En = {z ∈ B(R0) : |ψn(z)| ≥ An
}, where A > 1 is a constant to be chosen later. By (4-5),

‖ψn‖L2(B(R0))
≤ CN ,β,pn−β/2. (4-17)

Thus

|En| ≤ C2
N ,β,p A−2nn−β . (4-18)

Using (4-17), we obtain∫
B(R0)\En

|ψn|
2 logq(e+ |ψn|) dm ≤ ‖ψn‖

2
L2(B(R0))

logq(e+ An)≤ C1n−β+q , (4-19)

where C1 = C2
N ,β,p logq(e+ A).

The principal solution corresponding to the Beltrami coefficient λµ can be written in the form

8λ(z)= z+
1
π

∫
C

∂̄8λ(w)

w− z
dm(w), ∂̄8λ = (I − λµS)−1(λµ).

Expanding ∂̄z8
λ(z) as a power series in λ, we see that by (4-6) we can write, using any 0< ρ < 1,

χEn (z)ψn(z)=
1

2π i

∫
|λ|=ρ

λ−n−2χEn (z) ∂̄z8
λ(z) dλ.

This gives

‖χEnψn‖Xq (B(R0))
≤ ρ−(n+2) sup

|λ|=ρ

‖χEn ∂̄z8
λ
‖Xq (B(R0))

. (4-20)

Using the facts that |λ| = ρ and that the Beltrami coefficient 8λ is bounded by |λ|, we have, by the
distortion equality (2-15), that

|∂̄z8
λ(z)|2 ≤ ρ2(1− ρ2)−1 J8λ(z).

Hence,

I :=
∫

En

Mq(∂̄z8
λ(z)) dm(z)≤

ρ2

1− ρ2

∫
En

J8λ logq
(

e+
(

ρ2

1− ρ2 J8λ
)1/2)

dm.
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Next, let Ĉ denote a generic constant which is a function of N , β, p, q and ρ but not of A. The above
implies by (4-10), (4-15), and the inequality log(e+ t1/2)≤ 1+ log(e+ t), t ≥ 0, that

I ≤ Ĉ
∫

En

J8λ(z)(1+ log(e+ J8λ))q dm(z)

≤ Ĉ
(∫

En

J8λ(z) dm(z)
)1/2(∫

En

J8λ(z)(1+ log(e+ J8λ(z)))2q dm(z)
)1/2

≤ Ĉ
(∫

En

J8λ(z) dm(z)
)1/2

.

By the area distortion theorem from [Astala 1994], as formulated in [Astala et al. 2009, Theorem 13.1.4],
we have ∫

En

J8λ(z) dm(z)≤ |8λ(En)| ≤ Ĉ |En|
1/M
≤ Ĉ A−2n/M ,

where M = (1+ ρ)/(1− ρ) > 1, and thus I ≤ Ĉ A−n/M . By Lemma 4.1(ii), we also have the estimate

‖χEn ∂̄8
λ
‖Xq ≤ Ĉ A−n/M .

Taking ρ > e−1/2 and A = eM , we see using (4-20) and Lemma 4.1 again that∫
En

Mq(ψn) dm(z)≤ Ĉe−n/2

for sufficiently large n ∈ Z+. Thus the assertion follows from (4-19). �

Lemmas 4.1(ii) and 4.3 and the fact that µ vanishes outside B(R0) yield that for q > 1 and p > 2q,
there is an N > 0 such that the series (4-6) converges in Xq(C), and moreover, convergence of the
series (4-6) is uniform for µ ∈ B p

exp,N (B(R0)). Thus to prove Theorem 4.2 it remains to show (4-14).

Lemma 4.4. Let 2< 2q < p, N > 0, 2<β < p, s> 2, µ, ν ∈ B p
exp,N (B(R0)), and Bn = (µS)nµ−(νS)nν.

Then
sup

n∈Z+

∫
C

Mq(Bn(x)) dm(x)≤ C, (4-21)

where C > 0 depends only on N , p, and q. Moreover, there is T > 1 such that

‖Bn‖L2(C)
≤ CN ,β,p,s,T min

(
nT n
‖µ− ν‖Ls(B(R0))

, n−β/2
)
. (4-22)

Proof. Lemmas 4.1 and 4.3 yield (4-21). Next, let us observe that for z ∈ C,

Bn(z)= (µS)nµ− (νS)nν =
n∑

j=0

A j (z), A j (z)= (µS) j (µ− ν)(Sν)n− jχB(R0).

As ‖ν‖L∞ ≤ 1 and ‖S‖q := ‖S‖Lq (C)→Lq (C) <∞ for 1< q <∞, we have that∫
C

|A j (z)|q dm(z)≤ (‖S‖qq)
j
∫

B(R0)

|µ(z)−ν(z)|q |((Sν)n− jχB(R0))(z)|
q dm(z)

≤‖S‖ jq
q

(∫
B(R0)

|µ(z)−ν(z)|qρdm(z)
)1/ρ(∫

B(R0)

|((Sν)n− jχB(R0))(z)|
qρ′dm(z)

)1/ρ′

,
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where ρ−1
+ (ρ ′)−1

= 1 and 1< ρ <∞. Thus

‖A j (z)‖Lq (C) ≤ (‖S‖q)
j
‖µ− ν‖Lρq (B(R0))

(‖S‖qqρ′)
n− j
‖ν‖

q
Lqρ′ (B(R0))

,

where ‖ν‖Lqρ′ (B(R0))
≤ πR2

0 . Thus by choosing q = 2 and ρ so that s = qρ > 2 yielding qρ ′ = 2s/(s−2),
we obtain

‖(µS)nµ− (νS)nν‖L2(C)
≤ (n+ 1)π2 R4

0(1+‖S‖
2
(2s/(s−2)))

n
‖µ− ν‖Ls(B(R0))

.

This and (4-5) show that (4-22) is valid. �

Now we are ready to prove (4-14), which finishes the proof of Theorem 4.2. Let

Bn,m = (µm S)nµm − (µ̃m S)nµ̃m .

By the Schwarz inequality, we have that (4-21), (4-22) and Lemma 4.1 yield∫
B(R0)

Mq(Bn,m(z)) dm(z)≤
∫

B(R0)

|Bn,m |
2 logq(e+ |Bn,m |) dm(z)

≤

(∫
B(R0)

M2q(Bn,m(z)) dm(z)
)1/2

‖Bn,m‖L2(B(R0))

≤ C min
(
nT n
‖µm − µ̃m‖Ls(B(R0))

, n−β/2
)
, (4-23)

where C depends only on q, p, β, s, T , and N .
Let ε > 0. As µm and µ̃m vanish outside B(R0),

‖∂̄8m − ∂̄8̃m‖Xq (C) = ‖∂̄8m − ∂̄8̃m‖Xq (B(R0))
≤

∞∑
n=0

‖Bn,m‖Xq (B(R0))
.

Thus by (4-23) and Lemma 4.1(ii), we can take n0 ∈ N so large that for all m,
∞∑

n=n0

‖Bn,m‖Xq (B(R0)) ≤
ε

2
.

Applying again (4-23) and Lemma 4.1(ii), we can choose δ > 0 so that

n0−1∑
n=0

‖Bn,m‖Xq (B(R0))
≤
ε

2
when ‖µm − µ̃m‖Ls(B(R0))

≤ δ.

This proves Theorem 4.2. �

Lemma 4.5. Assume that Kµ corresponding to µ supported in D satisfies (4-1) with q,C0> 0 and R1= 1.
Let 8 be the principal solution of the Beltrami equation corresponding to µ. Then for all β, R > 0, the
inverse function 9 =8−1

: C→ C of 8 satisfies∫
B(R)

exp(βKµ(9(z))) dm(z) < C,

where C depends only on q,C0, β, and R.
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Proof. Since 8 satisfies the condition N by [Astala et al. 2010, Corollary 4.3], we may change variable
in integration to see that∫

B(R)
exp(βKµ(9(z))) dm(z)=

∫
9(B(R))

exp(βKµ(w))J8(w) dm(w). (4-24)

Using (3-7) for the function 8 and R > 3, we see that 9(B(R)) ⊂ B̃ = B(R̃), R̃ = R + 1. By (4-1),
exp(Kµ(z)) ∈ Lq(B̃) for all q > 1 and thus by (4-13), J8 ∈ X1,q(B(R)) for R > 0.

Let us next use properties of Orlicz spaces and the notations discussed in the Appendix using a Young
complementary pair (F,G), where

F(t)= exp(t1/p)− 1

and G(t) satisfies G(t)= C pt (log(1+C pt))p for t > Tp with suitable C p, Tp > 0; see [Krasnosel’skiı̆
and Rutickiı̆ 1961, Theorem I.6.1].

By using u(z)= exp(βKµ(z)) and v = J8(z), we obtain from Young’s inequality (A-7) the inequality∫
B(R)

exp(βKµ(9(z))) dm(z)

≤

∫
B̃

F(exp(βKµ(w))) dm(w)+
∫

B̃
G(J8(w)) dm(w)

≤

∫
B̃

exp((exp(βKµ(w)))
1/p) dm(w)+

∫
B̃

C p J8(w)(log(1+C p J8(w)))p dm(w). (4-25)

We apply this by using p > β/q, so that(
exp(βKµ(w))

)1/p
≤ exp(q Kµ(w)).

Thus ∫
B̃

exp
((

exp(βKµ(w))
)1/p) dm(w)≤

∫
B̃

exp
(
exp(q Kµ(w))

)
dm(w) <∞.

The last term in (4-25) is finite by (4-15), and thus the claim follows. �

4B. Asymptotics of the phase function of the exponentially growing solution. Let µ ∈ B p
exp(B(R0)),

k ∈C\{0} and λ∈C satisfy |λ| ≤ 1. Then using Lemmas 3.3 and 3.4, with the affine weight A(t)= pt− p
corresponding to the gauge function Q, we see that the equation

∂̄z fk(z)= λµ(z) ∂z fk(z) for a.e. z ∈ C, (4-26)

fk(z)= eikz
(

1+ O
(1

z

))
as |z| →∞, (4-27)

has the unique solution fk ∈W 1,Q
loc (C). Moreover, this solution can be written in the form

fk(z)= eikϕk(z), (4-28)
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where ϕk : C→ C is a homeomorphism satisfying

∂̄ϕk(z)=−
λk̄
k
µ(z)e−k(ϕk(z)) ∂ϕk(z) for a.e. z ∈ C, (4-29)

ϕk(z)= z+O
(1

z

)
as |z| →∞. (4-30)

Below, we set fk(z) = f (z, k) and ϕk(z) = ϕ(z, k) and estimate the next functions ϕk in the Orlicz
space Xq(C). The following lemma is a generalization of results of [Astala and Päivärinta 2006] to the
Orlicz space setting.

Lemma 4.6. Assume that ν ∈ B p
exp(B(R0)) for all 0< p <∞. For k ∈ C \ {0}, let 8k ∈W 1,1(C) be the

solution of

∂̄8k(z)=−
k̄
k
ν(z)e−k(z) ∂8k(z) for a.e. z ∈ C, (4-31)

8k(z)= z+O
(1

z

)
. (4-32)

Then for all ε > 0, there exists C0 > 0 such that ∂̄z8k(z) = gk(z)+ hk(z), where gk, hk ∈ Xq(C) are
supported in B(R0) and

sup
k∈C\{0}

‖hk‖Xq < ε, (4-33)

sup
k∈C\{0}

‖gk‖Xq < C0, (4-34)

lim
k→∞

ĝk(ξ)= 0, (4-35)

where for all compact sets S ⊂ C, the convergence in (4-35) is uniform for ξ ∈ S.

Proof. Let us define
ν̃k(z)=−k̄k−1ν(z)

for k ∈ C \ {0}. Note that then for any p > 0, there is N > 0 such that ν̃k( · , k)e−k( · ) ∈ B p
exp,N (B(R0))

for all k ∈ C \ {0}. By Theorem 4.2,

lim
n→∞

∥∥∥∥∂̄8k −

∞∑
n=0

(ν̃ke−k S)n(ν̃ke−k)

∥∥∥∥
Xq (C)

= 0

uniformly in k ∈ C \ {0}. For m ∈ Z+, we define

gk(z)= g(m)k (z)=−
m∑

n=0

(ν̃ke−k S)n(ν̃ke−k),

hk(z)= h(m)k (z)=−
∞∑

n=m+1

(ν̃ke−k S)n(ν̃ke−k).

For given ε > 0, we can choose m so large that (4-33) holds for all k ∈C\{0}, and then using Lemma 4.3,
choose C0 so that (4-34) holds for all k ∈ C \ {0}.
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Next, we show (4-35) when ε and m are fixed so that (4-33) and (4-34) hold. We can write

gk(z)=−
m∑

n=0

e−nk Gn, Gn =

(
k̄
k

)n+1

νSn(k)ν · · · νS1(k)ν,

where S j (k) is the Fourier multiplier

(S j (k)φ)∧(ξ)= m(ξ + jk)φ̂(ξ), m(ξ)=
ξ̄

ξ
.

The proof of [Astala and Päivärinta 2006, Lemma 7.3] for n ≥ 1 and the Riemann–Lebesgue lemma for
n = 0 yield that for any ε̃ > 0, there exists R(n, ε̃)≥ 0 such that, for n ≤ m,

|Ĝn(ξ)| ≤ (n+ 1)κn ε̃ for |ξ |> R(n, ε̃),

where κ = ‖ν‖L∞ ≤ 1. Thus for n ≤ m,

|Ĝn(ξ)| ≤ (m+ 1)ε̃ for |ξ |> R0 =max
n≤m

R(n, ε̃), n = 0, 1, 2, . . . ,m. (4-36)

As
(e−nk Gn)

∧(ξ)= Ĝn(ξ − nk),

we see that for any L > 0, there is k0 > 0 such that if |k|> k0 then j |k|− L > R0 for 1≤ n ≤m. Then it
follows from (4-36) that if |k|> k0, then

sup
|ξ |<L
|ĝk(ξ)| ≤ (m+ 1)2 ε̃.

This proves the limit (4-35), with the convergence being uniform for ξ belonging in a compact set. �

Proposition 4.7. Assume that ν ∈ B p
exp(B(R0)) with p > 4 and 8k(z) is the solution of (4-31)–(4-32).

Then
lim

k→∞
8k(z)= z uniformly for z ∈ C. (4-37)

Proof. Step 1: We will first show that for all q with 4< q < p, we have ∂̄z8k(z)→ 0 weakly in Xq(C)

as k→∞. Let η ∈ X−q(C) and ε1 > 0. By Theorem 4.2, there is C1 > 0 such that

sup
k
‖∂̄8k‖Xq ≤ C1.

Since C∞0 (C) is dense in X−q(C) (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Section II.10]), we can find a
function η0 ∈ C∞0 (C) such that

‖η− η0‖X−q ≤min(1, ε1/C1).

Then
|〈η, ∂̄8k〉| ≤ |〈η0, ∂̄8k〉| + ‖η− η0‖X−q (C)‖∂̄8k‖Xq (C), (4-38)

where the second term on the right-hand side is smaller than ε1. Moreover, by Lemma 4.6, we can write

∂̄8k = hk + gk

so that (4-33)–(4-35) are satisfied for ε = ε1(‖η‖X−q + 1)−1 and some C0 > 0. Then |〈η0, hk〉| ≤ ε1.
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Since η̂0 is a rapidly decreasing function, ĝk(ξ) is uniformly bounded for ξ ∈ C and k ∈ C \ {0} by
Lemma 4.6, and ĝk→ 0 uniformly in all bounded domains as k→∞, we see that

〈η0, gk〉 = 〈η̂0, ĝk〉 → 0 as k→∞. (4-39)

Combining these, we see that 〈η0, ∂̄8k〉 → 0 as k →∞, and thus ∂̄z8k(z)→ 0 weakly in Xq(C) as
k→∞.

Step 2: Next we show the pointwise convergence

lim
k→∞

∂̄z8k(z)= 0. (4-40)

To this end, we observe that the function

ηz(w)=
1

π(w−z)
χB(R0)(w)

satisfies ηz ∈ X−q(C) for q > 1. Since 8k(z)− z =O(1/z) and ∂̄8k is supported in B(R0), we have

8k(z)= z− 1
π

∫
B(R0)

(w− z)−1 ∂̄w8k(w) dm(w)= z−〈ηz, ∂̄8k〉. (4-41)

As ∂̄8k→ 0 weakly in Xq(C), we see (4-40) holds for all z ∈ C.

Step 3: By (3-14) and (3-17), we see that the family {8k(z)}k∈C\{0} of homeomorphisms has a uniform
modulus of continuity in compact sets. Moreover, since

sup
k
‖∂̄8k‖L1(C)

≤ sup
k
‖∂̄8k‖Xq (B(R0))

= C2 <∞,

we obtain by (4-40), for |z|> R0+ 1, that

|8k(z)− z| = |〈ηz, ∂̄8k〉| ≤
C
|z|
‖∂̄8k‖L1(C)

≤
CC2

|z|
. (4-42)

Thus, as the functions {8k(z)}k∈C\{0} are uniformly equicontinuous in compact sets, (4-42) and the
pointwise convergence (4-40) yield the uniform convergence (4-37). �

4C. Properties of the solutions of the nonlinear Beltrami equation. Let λ ∈ C, |λ| ≤ 1 and µ(z) be
supported in B(R0), R0≥ 1, and assume that K = Kµ satisfies (4-1) with q,C0> 0 and R1= 1. Motivated
by Lemma 3.4, we consider next the solutions ϕk of the equation

∂̄zϕλ(z, k)=−λ
k̄
k
µ(z)e−k(ϕλ(z, k)) ∂zϕλ(z, k), z ∈ C, (4-43)

ϕλ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-44)

Let ψλ( · , k)= ϕλ( · , k)−1 be the inverse function of ϕλ( · , k). A simple computation based on differenti-
ation of the identity ψλ(ϕλ(z, k), k)= z in the z-variable shows that

∂̄zψλ(z, k)=−λ
k̄
k
µ(ψλ(z, k))e−k(z) ∂zψλ(z, k), z ∈ C, (4-45)

ψλ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-46)
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Define

ν(z)=−λ
k̄
k
µ(z)

and consider the equations (4-43) and (4-45) simultaneously by defining the sets

Bµ =
{
(ϕ, ν) : |ν| ≤ |µ| a.e. and ϕ : C→ C is a homeomorphism with ∂̄ϕ = ν∂ϕ, ϕ(z)= z+ O(z−1)

}
and, for Q defined by (1-8),

Gµ =
{
g ∈W 1,Q

loc (C) : ∂̄g = (ν ◦ϕ−1)∂g, g(z)= z+ O(z−1), (ϕ, ν) ∈ Bµ
}
.

Now exp(exp(q Kµ)) ∈ L1(B(R0)) with some 0 < q <∞ and |ν| ≤ |µ| almost everywhere. Then
Kν(z)≤ Kµ(z) almost everywhere. Let

∂̄ϕ = ν ∂ϕ in C, ϕ(z)= z+ O(z−1),

so that ∂̄ϕ = ν̃ ∂ϕ with |ν̃(z)| = |ν(z)|. Then for ψ = ϕ−1, we have K (z, ψ) = Kν(ψ(z)); see (2-14).
Thus by Lemma 4.5, we have

sup
g∈Gµ
‖ exp(βK ( · , g))‖L1(B(R)) = sup

(ϕ,ν)∈Bµ
‖ exp(βKν ◦ϕ

−1)‖L1(B(R)) <∞ (4-47)

for all β >0 and R>0. Using this and Theorem 2.2, we see that the functions g∈Gµ are homeomorphisms.
Moreover, recall that µ ∈ B p

exp(B(R)) for all p ∈ (1,∞). Thus for g ∈ Gµ, the condition g ∈W 1,Q
loc (C) is

equivalent to (see (4-7) and (4-8)) Dg ∈ X−1
loc (C). Furthermore by (4-13), we have

sup
(ϕ,ν)∈Bµ

‖Jϕ‖X1,q (B(R)) <∞ (4-48)

for all q > 0.

Lemma 4.8. The set Gµ is relatively compact in the topology of uniform convergence.

Proof. Let (ϕ, ν) ∈ Bµ and ψ = ϕ−1 and

∂̄g = (ν ◦ϕ−1)∂g, g(z)= z+ O(z−1).

As µ is supported in B(R0), the function ϕ is analytic outside B(R0); we see using (3-7) for the
function ϕ that for R > 0, we have ϕ(B(R)) ⊂ B(R + 3R0), ψ(B(R)) ⊂ B(R + 3R0), and that ψ is
analytic outside B(4R0).

Thus (3-7) and the same arguments which we used to prove the estimate (3-27) yield that for R > 0,

‖Q(|Dg|)‖L1(B(R)) ≤ π(R+ 3R0)
2
+

∫
B(R)

exp
(
q Kν(ψ(w))− q

)
dm(w)

≤ π(R+ 3R0)
2
+

∫
B(R+3R0)

exp(q Kν(z)− q)Jϕ(z) dm(z), (4-49)

where Q(t) = |t |2/ log(|t | + e). We will next use Young’s inequality (A-7) with the admissible pair
(F,G), where (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Chapter 1.3])

F(t)= et
− t − 1, G(t)= (1+ t) log(1+ t)− t. (4-50)
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By Young’s inequality, we have∫
B(R+3R0)

exp(q Kν(z)− q)Jϕ(z) dm(z)≤∫
B(R+3R0)

exp
(
exp(q Kν(w)− q)

)
dm(w)+

∫
B(R+3R0)

(1+ Jϕ(w)) log(1+ Jϕ(w)) dm(w).

This, (4-1), (4-48), and (4-49) show that there is a constant C(R, µ) such that for g ∈ Gµ,

‖Q(|Dg|)‖L1(B(R)) ≤ C(R, µ). (4-51)

As g ∈ Gµ are homeomorphisms, this, (3-14) and (A-1)–(A-3) imply that functions g ∈ Gµ are equicontinu-
ous in compact sets of C. As supp(ν◦ψ)⊂ B(4R0), functions g ∈ Gµ are analytic outside the disc B(4R0)

and the inequality (3-7) yields, for R > 0 and g ∈ Gµ, that

g(B(R))⊂ B(R+ 12R0).

By the Arzelà–Ascoli theorem, these imply that the set {g|B(R) : g ∈ Gµ} is relatively compact in the
topology of uniform convergence in B(R) for any R > 0. Thus by using a diagonalization argument, we
see that for an arbitrary sequence gn ∈ Gµ, n = 1, 2, . . . , there is a subsequence gn j which converges
uniformly in all discs B(R), R > 0. Finally, by Young’s inequality (see the Appendix), we get using the
same notations as in (4-41) that for |z|> 4R0+ 1,

|gk(z)− z| =
∣∣∣∣ 1
π

∫
B(4R0)

(w− z)−1 ∂̄wgk(w) dm(w)
∣∣∣∣

≤
1

π(|z|−4R0)

∫
B(4R0)

(
Q(|∂̄wgk(w)|)+G0(1)

)
dm(w), (4-52)

where Q(t) and G0(t)= |t |2 log(|t | + 1) form a Young complementary pair. Thus

|gk(z)− z| ≤
Cµ

|z| − 4R0
for |z|> 4R0+ 1.

Using this and the uniform convergence of gn j in all discs B(R), R > 0, we see that gn has a subsequence
converging uniformly in C. �

Theorem 4.9. Let λ, k ∈ C \ {0}, |λ| = 1. Assume that ϕλ(z, k) satisfies (4-43)–(4-44) with µ supported
in D which satisfies (4-1) with q > 0 and R1 = 1. Then

lim
k→∞

ϕλ(z, k)= z

uniformly in z ∈ C and |λ| = 1.

Proof. Let ψλ( · , k) be the inverse function of ϕλ( · , k). It is sufficient to show that

lim
k→∞

ψλ(z, k)= z

uniformly in z ∈ C and |λ| = 1.



THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERÓN’S INVERSE PROBLEM 85

Then, ψλ( · , k) is the solution of (4-45)–(4-46). Define

ν(z)=−λk̄k−1µ(z)

and note that |ν(z)| = |µ(z)|. Hence (
ϕλ( · , k), ν( · ) e−k( · )

)
∈ Bµ

and ψλ( · , k)∈ Gµ. Moreover, as ϕλ( · , k) is homeomorphism in C and analytic outside of B(1), it follows
from (3-7) with r = 1 that ϕλ( · , k) maps the ball B(1) into B(4) and moreover, its inverse ψλ( · , k) maps
the disc B(4) into B(5) and C \ B(4) into C \ B(1).

It follows from Lemma 4.8 that if the claim is not valid, there are sequences (λn)
∞

n=1, |λn| = 1, and
(kn)

∞

n=1, kn→∞, such that
ψ∞(z)= lim

n→∞
ψλn (z, kn), (4-53)

where the convergence is uniform, z ∈ C, and ψ∞(z) is not equal to z. Thus, to prove the claim, it is
enough to show that any limit of form (4-53) satisfies ψ∞(z)= z. Note that by considering subsequences,
we can assume that λn→λ and k̄nk−1

n →β as n→∞, where |λ|= |β|= 1. Next define ν0(z)=−λβµ(z).
Let us consider the solution of

∂̄z8λ(z, k)= ν0(ψ∞(z))e−k(z) ∂z8λ(z, k), (4-54)

8λ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-55)

We note that here ν0(ψ∞(z)) = 0 for |z| > 4 as ν0 is supported in B(1) and ψ∞ maps C \ B(4) into
C \ B(1). By Proposition 4.7, 8λ(z, k)→ z as k→∞ uniformly in z ∈ C. Since for every z ∈ C, the
function ηz : w 7→ χB(4)(w)(z−w)−1 is in X−q(C) for q > 1, we obtain, using (4-41), that

|ψλn (z, kn)−8λ(z, kn)| =
1
π

∣∣∣∣∫
B(4)

(w− z)−1 ∂̄w
(
ψλn (w, kn)−8λ(w, kn)

)
dm(w)

∣∣∣∣
≤ ‖ηz‖X−q

∥∥∂̄(ψλn ( · , kn)−8λ( · , kn))
∥∥

Xq (B(4)). (4-56)

Let us next assume that we can prove that

lim
n→∞

∥∥µ ◦ψλn ( · , kn)−µ ◦ψ∞( · , kn)
∥∥

Ls(C)
= 0 for some s > 2. (4-57)

If this is the case, let p ∈ (4q,∞). By assumption (4-1) and Lemma 4.5, there is N such that the Beltrami
coefficients of functions ψλn ( · , kn) are in B p

exp,N (D) for all n ∈Z+ and p> 4. By Theorem 4.2 and (4-57),

lim
n→∞

∥∥∂̄(ψλn ( · , kn)−8λ( · , kn)
)∥∥

Xq (C)
= 0.

As limn→∞8λ(z, kn)= z uniformly in z ∈ C, this and (4-56) show that ψ∞(z)= z.
Thus, to prove the claim it is enough to show (4-57). First, as ψλn ( · , kn)→ ψ∞( · ) uniformly as

n→∞ and as ψλn ( · , kn) maps C\ B(3) into C\ B(2), we see using the dominated convergence theorem
that the formula (4-57) is valid when µ is replaced by a smooth compactly supported function. Next,
let (F,G) be the complementary Young pair given by (4-50) and EF (B(R)) be the closure of L∞(B(R))
in X F (B(R)). By [Adams 1975, Theorem 8.21], the set C∞0 (D) is dense in EF (D) with respect to the
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norm of X F . Thus when µ is a nonsmooth Beltrami coefficient satisfying the assumption (4-1) and ε > 0,
we can find a smooth function θ ∈ C∞0 (D), ‖θ‖∞ < 2 such that ‖µ− θ‖F < ε. Then, since |µ− θ | is
supported in D and bounded by 3, we have∥∥µ◦ψλn ( · ,kn)−θ◦ψλn ( · ,kn)

∥∥s
Ls(C)
=

∫
D

|µ(z)−θ(z)|s Jgn (z)dm(z)

≤ 3s−1
(∫

D

F(|µ(z)−θ(z)|)dm(z)
)(∫

D

G(Jgn (z))dm(z)
)
, (4-58)

where gn is the inverse of the function ψλn ( · , kn). Then,∫
D

G(Jgn ) dm ≤ C‖Jgn‖X1,1(B(2))

and by (4-48), ‖Jgn‖X1,1(D) is uniformly bounded in n. Using (4-58) and (A-5), we see that (4-57) holds
for all µ satisfying the assumption (4-1) and thus claim of the theorem follows. �

4D. ∂̄-equations in k-planes. Let us consider a Beltrami coefficient µ ∈ B p
exp(D) and approximate µ

with functions µn supported in D for which

lim
n→∞

µn(z)= µ(z) and ‖µn‖∞ ≤ cn < 1;

see, e.g., (3-19). Let fµ( ·, k) ∈W 1,Q
loc (C) be the solution of the equations

∂̄z fµ(z, k)= µ(z) ∂z fµ(z, k) for a.e. z ∈ C, (4-59)

fµ(z, k)= eikz
(

1+Ok

(1
z

))
for |z| →∞, (4-60)

and fµn ( ·, k) ∈W 1,Q
loc (C) be the solution of the similar equations of Beltrami coefficients µn and µ; see

Lemma 3.4. Here Ok(h(z)) means a function of (z, k) that satisfies |Ok(h(z))| ≤ C(k)|h(z)| for all z
with some constant C(k) depending on k ∈ C. Let

ϕµ(z, k)= (ik)−1 log( fµ(z, k)), ϕµn (z, k)= (ik)−1 log( fn(z, k));

see (3-5). Then by (3-7), we have

|ϕµn (z, k)| ≤ |z| + 3, |ϕµ(z, k)| ≤ |z| + 3. (4-61)

By the proof of Lemma 3.4, we see that by choosing a subsequence of µn , n ∈ Z+, which we continue to
denote by µn , we can assume that

lim
n→∞

ϕµn (z, k)= ϕµ(z, k) uniformly in (z, k) ∈ B(R)×{k0} for all R > 0 and k0 ∈ C. (4-62)

Let us write the solutions fµn and fµ as

fµn (z, k)= eikϕµn (z,k) = eikz Mµn (z, k),

fµ(z, k)= eikϕµ(z,k) = eikz Mµ(z, k).
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Similar notations are introduced when µ is replaced by −µ etc. Let

h(+)µn
(z, k)= 1

2

(
fµn (z, k)+ f−µn (z, k)

)
,

h(−)µn
(z, k)= 1

2 i
(

fµn (z, k)− f−µn (z, k)
)
,

and
u(1)µn

(z, k)= h(+)µn
(z, k)− ih(−)µn

(z, k),

u(2)µn
(z, k)=−h(−)µn

(z, k)+ ih(+)µn
(z, k).

Then by (4-61), h(+)µn (z, k) and h(−)µn (z, k) are uniformly bounded for (z, k) ∈ B(R1)× B(R2) for any
R1, R2 > 0. By (4-62), we can define the pointwise limits

lim
n→∞

h(±)µn
(z, k)= h(±)µ (z, k), lim

n→∞
u( j)
µn
(z, k)= u( j)

µ (z, k), j = 1, 2. (4-63)

The above formulae imply

u(2)µ (z, k)= iu(1)−µ(z, k) and u(1)µ (z, k)=−iu(2)−µ(z, k). (4-64)

Moreover, for

τµn (k)=
1
2

(
tµn (k)− t−µn (k)

)
, τµn (k)=

1
2

(
tµn (k)− t−µn (k)

)
,

and

t±µn (k)=
i

2π

∫
∂D

M±µn (z, k) dz, t±µ(k)=
i

2π

∫
∂D

M±µ(z, k) dz,

we see using the dominated convergence theorem that limn→∞ tµn (k)= tµ(k) for all k ∈ C, and hence

lim
n→∞

τµn (k)= τµ(k) for all k ∈ C. (4-65)

Then, as |µn| ≤ cn < 1 correspond to conductivities σn satisfying σn, σ
−1
n ∈ L∞(D), we have by [Astala

and Päivärinta 2006, Formula (8.2)] the ∂̄-equations with respect to the k-variables,

∂̄ku( j)
µn
(z, k)=−iτµn (k)u

( j)
µn (z, k), k ∈ C, j = 1, 2; (4-66)

see also [Nachman 1988; 1996] for a different formulation of such equations. For z∈C, functions u( j)
µn (z, · ),

n ∈ Z+, are uniformly bounded in B(R) for all R > 0; the limit (4-63) and the dominated convergence
theorem imply that u( j)

µn (z, · )→ u( j)
µ (z, · ) as n→∞ in L p(B(R)) for all p <∞ and R > 0. Since the

functions |τµn (k)|, n ∈ Z+, are uniformly bounded in compact sets, the pointwise limits (4-63), (4-65)
and the equation (4-66) yield that

∂̄ku( j)
µ (z, k)=−iτµ(k)u

( j)
µ (z), k ∈ C, j = 1, 2, (4-67)

holds for all z ∈ C in the sense of distributions and u( j)
µ (z, · ) ∈W 1,p

loc (C) for all p <∞.
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4E. Proof of uniqueness results for isotropic conductivities.

Proof of Theorem 1.9. Let us consider isotropic conductivities σ j , j =1, 2. Due to the above proven results,
the proof will go along the lines of Section 8 of [Astala and Päivärinta 2006], where L∞-conductivities are
considered, and its reformulation, presented in Section 18 of [Astala et al. 2009] in a quite straightforward
way, when the changes explained below are made. The key point is the following proposition.

Proposition 4.10. Assume that µ ∈ B p
exp(D) and let f±µ(z, k) satisfy (4-59)–(4-60) with the Beltrami

coefficients ±µ. Then f±µ(z, k)= ei zk M±µ(z, k), where

Re
M+µ(z, k)
M−µ(z, k)

> 0 (4-68)

for every z, k ∈ C.

Proof. Let us consider the Beltrami coefficients µn(z), n ∈ Z+, defined in Section 4D that converge
pointwise to µ(z) and satisfy |µn| ≤ cn < 1. By Lemma 3.2, the functions M±µn (z, k) do not attain the
value zero anywhere. By [Astala and Päivärinta 2006, Proposition 4.3], the inequality (4-68) holds for the
functions M±µn (z, k). Then, f±µn (z, k)→ f±µ(z, k) as n→∞ for all k, z ∈ C, and thus we see that

Re
M+µ(z, k)
M−µ(z, k)

= lim
n→∞

Re
M+µn (z, k)
M−µn (z, k)

≥ 0. (4-69)

To show that the equality does not hold in (4-69), we assume the opposite. In this case, there are z0 and k0

such that
M+µ(z0, k0)= i t M−µ(z0, k0) (4-70)

for some t ∈ R \ {0}. Then

f (z, k0)= eik0z(M+µ(z, k0)− i t M−µ(z, k0)
)

is a solution of (4-59) and satisfies the asymptotics

f (z, k0)= (1− i t)eik0z
(

1+O
(1

z

))
for |z| →∞.

By using (2-13) to write (4-59) in the form (3-13) and applying Lemma 3.2, we see that the solution
f (z, k0) can be written in the form

f (z, k0)= (1− i t)eik0ϕ(z).

This is in contradiction with (4-70), which would be implied by f (z0, k0)= 0, and thus proves (4-68). �

Let f±µ(z, k) be as in Proposition 4.10 and use below for the functions defined in (4-63) the shorthand
notation u(1)µ (z, k)= u1(z, k) and u(2)µ (z, k)= u2(z, k). Then u1(z, k) and u2(z, k) are solutions of (4-67).
A direct computation shows also that

∇ · σ∇u1( · , k)= 0 and ∇ ·
1
σ
∇u2( · , k)= 0,

where
σ(z)= (1−µ(z))/(1+µ(z))
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is the conductivity corresponding to µ. Note that the conductivity 1/σ(z)= (1+µ(z))/(1−µ(z)) is the
conductivity corresponding to −µ.

Generally, the near field measurements, that is, the Dirichlet-to-Neumann map 3σ on ∂�, determines
the scattering measurements, in particular the scattered fields outside �; see [Nachman 1988]. In our
setting, this means that we can use Lemma 5.1 and argue, e.g., as in the proof of Proposition 6.1 in [Astala
and Päivärinta 2006], that 3σ determines uniquely the solutions f±µ(z0, k) and τ±µ(k) for z0 ∈ C \D

and k ∈C. We note that a constructive method based on integral equations on ∂D to determine f±µ(z0, k)
from 3σ is presented in [Astala et al. 2011].

As u j (z, · ), j = 1, 2, are bounded and nonvanishing functions which satisfy (4-67), we have ∂̄u j (z, · )∈
L∞loc(C). This implies that

∂u j (z, · ) ∈ BMOloc(C)⊂ L p
loc(C) for all p <∞

(see, e.g., [Astala et al. 2009, Theorem 4.6.5]), and hence u j (z, · ) ∈W 1,p
loc (C).

Let us now consider the isotropic conductivities σ and σ̃ in �= D which are equal to 1 near ∂D and
satisfy (1-23). Assume that 3σ =3σ̃ . Then, by the above considerations, τ±µ(k)= τ±µ̃(k) for k ∈ C.

Let

µ= (1− σ)/(1+ σ) and µ̃= (1− σ̃ )/(1+ σ̃ )

be the Beltrami coefficients corresponding to σ and σ̃ .
By applying Lemma 3.3 with k = 0, we see that fµ(z, 0)= 1 for all z ∈ C and hence u1(z, 0)= 1. By

Lemma 3.2, the map z 7→ fµ(z, k) is continuous. Thus

u1 ∈ X p, 1< p <∞,

where X p is the space of functions v(z, k), (k, z) ∈ C2 for which v(z, · ) ∈ W 1,p
loc (C) and v(z, · ) are

bounded for all z ∈ C and the function v( · , k) is continuous for all k ∈ C. These properties are crucial in
the following lemma, which is a reformulation of the properties of the functions u1(z, k), with z, k ∈ C,
proven in [Astala and Päivärinta 2006] for L∞-conductivities.

Lemma 4.11. (i) The functions u1(z, k) with k 6= 0 have the z-asymptotics

u1(z, k)= exp(ikz+ v(z; k)), (4-71)

where C(k) > 0 is such that |v(z, k)| ≤ C(k) for all z ∈ C.

(ii) The functions u1(z, k) have the k-asymptotics

u1(z, k)= exp(ikz+ kεµ(k; z)), k 6= 0, (4-72)

where for each fixed z, we have εµ(k; z)→ 0 as k→∞.

(iii) Let 1 < p < ∞. The u1(z, k) given in (4-63) is the unique function in X p such that u1(z, k)
is nonvanishing, u1(z, 0) = 1 for all z ∈ C, and u1(z, k) satisfies the ∂̄-equation (4-67) with the
asymptotics and (4-71) and (4-72).
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Proof. (i) Let us omit the (z, k)-variables in some expressions and define u1(z, k)= u1, fµ(z, k)= fµ,
etc. By the definition of u1,

u1 =
1
2

(
fµ+ f−µ+ fµ− f−µ

)
= fµ

(
1+

fµ− f−µ
fµ+ f−µ

)−1(
1+

fµ− f−µ
fµ+ f−µ

)
, (4-73)

where each factor is nonvanishing by Proposition 4.10. Thus (4-60) yields (4-71).

(ii) Let
Ft(z, k)= e−i t/2

(
fµ(z, k) cos t

2
+ i f−µ(z, k) sin t

2

)
, t ∈ R.

Then
∂̄z Ft(z, k)= µ(z)e−i t∂z Ft(z, k) for z ∈ C,

Ft(z, k)= eikz(1+ Ok(z−1)) as z→∞.

Thus Ft(z, k) = exp(kϕλ(z, k)), where λ = e−i t and ϕλ(z, k) solves (4-43). Note that fµ(z, k) =
exp(kϕλ0(z, k)), where λ0 = 1. Then

fµ− f−µ
fµ+ f−µ

+ ei t
=

2ei t Ft

fµ+ f−µ
=

exp(kϕλ(z, k))
exp(kϕλ0(z, k))

2ei t

1+M−µ(z, k)/Mµ(z, k)
. (4-74)

By Theorem 4.9, we have, for z ∈ C and k ∈ C \ {0}, that

e−|k|ε1(k) ≤ |M±µ(z, k)| ≤ e|k|ε1(k), (4-75)
and

e−|k|ε2(k) ≤ inf
|λ|=1

∣∣∣∣ exp(kϕλ(z, k))
exp(kϕλ0(z, k))

∣∣∣∣≤ sup
|λ|=1

∣∣∣∣ exp(kϕλ(z, k))
exp(kϕλ0(z, k))

∣∣∣∣≤ e|k|ε2(k), (4-76)

where ε j (k)→ 0 as k→∞. Since Re(M−µ/Mµ) > 0, estimates (4-74) and (4-75) yield for z ∈C, k 6= 0,
that

inf
t∈R

∣∣∣∣ fµ− f−µ
fµ+ f−µ

+ ei t
∣∣∣∣≥ e−|k|ε(k) and

| fµ− f−µ|
| fµ+ f−µ|

≤ 1− e−|k|ε(k).

This and (4-73) yield the k-asymptotics (4-72).

(iii) As observed above, the function u1(z, k) given in (4-63) satisfies the conditions stated in (iii).
Next, let u1(z, k) and ũ1(z, k) be two functions which satisfy the assumptions of the claim. Let us

consider the logarithms

δ1(z, k)= log u1(z, k), δ̃1(z, k)= log ũ1(z, k), k, z ∈ C.

As u1(z, · ) ∈W 1,p
loc (C) for some p <∞ and u1(z, · ) is a bounded and nonvanishing function, we see

that δ1(z, · ) ∈W 1,p
loc (C). As u1(z, 0)= 1, we have

δ1(z, 0)= 0 for z ∈ C. (4-77)

Moreover, z 7→ δ1(z, k) is continuous for any k. Let k 6= 0 be fixed. Then by (4-71),

δ1(z, k)= ikz+ v(z, k), z ∈ C, (4-78)

where v( ·, k) is bounded and we see using elementary degree theory [O’Regan et al. 2006, Corol-
lary 1.2.10] that the map Hk : C→ C, Hk(z)= δ1(z, k), is surjective.



THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERÓN’S INVERSE PROBLEM 91

The function δ̃1(z, k) has the same above properties as δ1(z, k). Next we want to show that δ1(z, k)=
δ̃1(z, k) for all z ∈ C and k 6= 0. As the map Hk : z 7→ δ1(z, k) is surjective for all k 6= 0, this follows if
we show that

w 6= z and k 6= 0 ⇒ δ1(w, k) 6= δ̃1(z, k). (4-79)

To this end, let z, w ∈ C, z 6= w. Functions u1 and ũ1 satisfy the same equation (4-67) with the
coefficient τ(k) = τµ(k). Subtracting these equations from each other, we see that the difference
g(k;w, z)= δ1(w, k)− δ̃1(z, k) satisfies

∂̄k g(k;w, z)= γ (k;w, z)g(k;w, z), k ∈ C,

γ (k;w, z)=−iτ(k) exp
(
i Im δ1(k;w, z)

)
E
(
i Im g(k;w, z)

)
,

(4-80)

where

E(t)= (e−t
− 1)/t.

Here, γ (·;w, z) is a locally bounded function. As w 6= z, the principle of the argument for pseudoanalytic
functions (see [Astala and Päivärinta 2006, Proposition 3.3]), (4-80), the boundedness of γ , and the
asymptotics

g(k;w, z)= ik(w− z)+ kε(k, w, z),

where ε(k, w, z)→ 0 as k→∞, imply that k 7→ g(k;w, z) vanishes for one and only one value of k ∈C.
Thus by (4-77), g(k;w, z)= 0 implies that k = 0, and hence (4-79) holds. Thus δ1(z, k)= δ̃1(z, k) and
u1(z, k)= ũ1(z, k) for all z ∈ C and k 6= 0. �

Remark 4.12. Note that τ±µ(k) is determined by 3σ . Thus Lemma 4.11 means that u1(z, k) can
be constructed as a unique complex curve z 7→ u1(z, · ), z ∈ C, in the space of the solutions of the
∂̄-equation (4-67) which has the properties stated in (iii).

When u j (z, k) and ũ j (z, k), j = 1, 2, are functions corresponding to µ and µ̃, the above shows that
u1(z, k)= ũ1(z, k). Using τ−µ instead of τµ and (4-64), we see by Lemma 4.11 that u2(z, k)= ũ2(z, k)
for all z ∈ C and k 6= 0.

Thus f±µ(z, k) = f±µ̃(z, k) for all z ∈ C and k 6= 0. By [Astala et al. 2009, Theorem 20.4.12], the
Jacobians of f±µ ∈ W 1,Q

loc (C) are nonvanishing almost everywhere. Thus we see using the Beltrami
equation (4-59) and the fact that f±µ(z, k) = f±µ̃(z, k) for all z ∈ C and k 6= 0 that µ = µ̃ almost
everywhere. Hence σ = σ̃ a.e. This proves the claim of Theorem 1.9. �

5. Reduction of the inverse problem for an anisotropic conductivity to the isotropic case

In this section, we assume that the weight function A satisfies the almost linear growth condition (1-25).
Let σ = σ jk

∈6A(C) be a conductivity matrix such that σ(z)= 1 for z in C\� and in some neighborhood
of ∂�.

Let z0 ∈ ∂�, and define

Hσ (z)=
∫
ηz

(3σ (u|∂�))(z′) ds(z′), (5-1)
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where ηz is the path (oriented in the positive direction) from z0 to z along ∂�. This map is called the
σ -Hilbert transform, and it can be considered a bounded map

Hσ : H 1/2(∂�)→ H 1/2(∂�)/C.

As shown in beginning of Section 2C, there exists a homeomorphism F : C→ C such that F(�)= �̃,
σ̃ = F∗σ is isotropic (i.e., a scalar function times the identity matrix), F and F−1 are W 1,P -smooth, and
F(z)= z+ O(1/z). Moreover, F satisfies conditions N and N−1. Also, as σ = 1 near the boundary, we
have that F and F−1 are C∞-smooth near the boundary.

By the definition of σ̃ = F∗σ , we see that

det(σ̃ (y))= det(σ (F−1(y))) (5-2)

for y ∈ �̃. Thus under the assumptions of Theorem 1.11, where det(σ ), det(σ )−1
∈ L∞(�), we see that

the isotropic conductivity σ̃ satisfies σ̃ , σ̃−1
∈ L∞(�).

Let us next consider the case when the assumptions of Theorem 1.8 are valid and we have A(t)= pt− p,
with p > 1. Then, as F satisfies the condition N , the area formula gives

I1 =

∫
�̃

exp
(

exp
(

q
(
σ̃ (y)+

1
σ̃ (y)

))
dm(y)

=

∫
�

exp
(

exp
(

q
(

det(σ (x))1/2+
1

det(σ (x))1/2

)))
JF (x) dm(x). (5-3)

In the case when A(t)= pt − p, with p > 1, [Astala et al. 2010, Theorem 1.1] implies that

JF logβ(e+ JF ) ∈ L1(�)

for 0< β < p. Then, Young’s inequality (A-7) with the admissible pair (4-50) implies that∫
�

exp
(

exp
(

q
(

det(σ (x))1/2+
1

det(σ (x))1/2

)))
JF (x) dm(x)

≤

(∫
�

exp
(

exp
(

exp
(

q
(

det(σ )1/2+
1

det(σ )1/2

))))
dm
)(∫

�

(1+ JF ) log(1+ JF ) dm
)
, (5-4)

and if conductivity σ satisfies (1-21), we see that I1 is finite for some q > 0.
Thus under assumptions of Theorem 1.8, we see that I1 is finite for the isotropic conductivity σ̃ .
Let ρ = F |∂�. It follows from Lemma 2.4 and (2-28) that ρ∗3σ =3σ̃ . Then,

Hσ̃h =Hσ (h ◦ ρ−1)

for all h ∈ H 1/2(∂�̃).
Next we seek a function G�(z, k), with z ∈ C \�, k ∈ C, that satisfies

∂̄zG�(z, k)= 0 for z ∈ C \�, (5-5)

G�(z, k)= eikz(1+Ok(z−1)) as z→∞, (5-6)

Im G�( · , k)|∂� =Hσ (Re G�( · , k)|∂�). (5-7)
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To study it, we consider a similar function G�̃( · , k) :C\�̃→C corresponding to the scalar conductivity σ̃ ,
which satisfies in the domain C \ �̃ the equations (5-5)–(5-6) and the boundary condition

Im G�̃( · , k)=Hσ̃ (Re G�̃( · , k)) on z ∈ ∂�̃.

Below, let µ̃= (1− σ̃ )/(1+ σ̃ ) be the Beltrami coefficient corresponding to the conductivity σ̃ .

Lemma 5.1. Assume that σ ∈6A(�) is 1 near ∂�. Then for all k ∈ C,

(i) For k ∈ C and z ∈ C \ �̃, we have G�̃(z, k) = W (z, k), where W ( · , k) ∈ W 1,P
loc (C) is the unique

solution of

∂̄zW (z, k)= µ̃(z)∂zW (z, k) for z ∈ C, (5-8)

W (z, k)= eikz(1+Ok(z−1)) as z→∞. (5-9)

(ii) The equations (5-5)–(5-7) have a unique solution G�( · , k)∈C∞(C\�) and G�(z, k)=G�̃(F(z), k)
for z ∈ C \�.

Proof. The definition of the Hilbert transform Hσ̃ implies that any solution G�̃(z, k) of (5-5)–(5-7) can
be extended to a solution W (z, k) of (5-8). On other hand, the restriction of the solution W (z, k) of
(5-8)–(5-9) satisfies (5-5)–(5-7). The equations (5-8)–(5-9) have a unique solution by Theorem 3.1. As
the solution W ( · , k) is analytic in C \ supp(σ̃ ), the claim (i) follows.

The claim (ii) follows immediately as F : C \�→ C \ �̃ is conformal, F(z) = z +O(1/z), and
Hσ̃h =Hσ (h ◦ ρ) for all h ∈ H 1/2(∂�̃). �

Lemma 5.2. Assume that � is given and that σ ∈6A(�) is 1 near ∂�. Then the Dirichlet-to-Neumann
form Lσ determines the values of the restriction F |C\�, the boundary ∂�̃, and the Dirichlet-to-Neumann
map 3σ̃ of the isotropic conductivity σ̃ = F∗σ on �̃.

Proof. When σ = 1 near ∂�, the Dirichlet-to-Neumann form Lσ determines the Dirichlet-to-Neumann
map 3σ . By Lemma 3.4, we have W (z, k)= exp(ikϕ(z, k)), where by Theorem 4.9,

lim
k→∞

sup
z∈C

|ϕ(z, k)− z| = 0. (5-10)

For k 6= 0, we choose the branch of the logarithm of G(z, k) = W (F(z), k) so that it is a continuous
function of z ∈ C \� and

lim
z→∞

(log G(z, k)− ikz)= 0.

Then,
lim

k→∞
(ik)−1log G(z, k)= lim

k→∞
ϕ(F(z), k)= F(z). (5-11)

By Lemma 5.1, G(z, k) can be constructed for any z ∈ C \� by solving the equations (5-5)–(5-9).
Thus the restriction of F to C \� is determined by the values of the limit (5-11). As �̃= C \ F(C \�)
and 3σ̃ = (F |∂�)∗3σ , this proves the claim. �

Above we saw that if the assumptions of Theorem 1.8 for σ are satisfied then for the isotropic conduc-
tivity σ̃ = F∗σ , we have σ̃ , σ̃−1

∈ L∞(�̃). Also, under the assumptions of Theorem 1.8 for σ , the integral
I1 in (5-3) is finite for some q > 0. Thus Theorems 1.8 and 1.11 follow by Theorem 1.9 and Lemma 5.2.
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Appendix: Orlicz spaces

For the proofs of the facts discussed in this appendix, we refer to [Adams 1975; Krasnosel’skiı̆ and
Rutickiı̆ 1961].

Let F,G : [0,∞) → [0,∞) be bijective convex functions. The pair (F,G) is called a Young
complementary pair if

F ′(t)= f (t), G ′(t)= g(t), g = f −1.

In the following, we will consider also extensions of these functions defined by F,G : C→ [0,∞) by
setting F(t)= F(|t |) and G(t)= G(|t |). By [Krasnosel’skiı̆ and Rutickiı̆ 1961, Section I.7.4], there are
examples of such pairs for which

F(t)= 1
p

t p loga t, G(t)= 1
q

tq log−a t,

where p, q ∈ (1,∞), p−1
+ q−1

= 1 and a ∈ R. We define that u : D→ C, where D ⊂ R2, is in the
Orlicz class KF (D) if ∫

D

F(|u(x)|) dm(x) <∞. (A-1)

The Orlicz space X F (D) is the smallest vector space containing the set KF (D). For a Young comple-
mentary pair (F,G), one can define for u ∈ X F (D) the norm

‖u‖F = sup
{∫

D
|u(x)v(x)| dm(x)

∣∣∣∣ ∫
D

G(u(x)) dm(x)≤ 1
}
. (A-2)

There is also a Luxenburg norm

‖u‖(F) = inf
{

t > 0
∣∣∣∣ ∫

D
F
(

u(x)
t

)
dm(x)≤ 1

}
, (A-3)

which is equivalent to the norm ‖u‖F , and one always has

‖u‖(F) ≤ ‖u‖F ≤ 2‖u‖(F). (A-4)

By [Adams 1975, Theorem 8.10], L X (D) is a Banach space with respect to the norm ‖u‖(F). Moreover,
it holds that (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Theorems II.9.5 and II.10.5])

‖u‖(F) ≤ 1 ⇒

∫
D

F(u(x)) dm(x)≤ ‖u‖F , (A-5)

‖u‖(F) ≥ 1 ⇒

∫
D

F(u(x)) dm(x)≥ ‖u‖(F). (A-6)

We also recall Young’s inequality [Krasnosel’skiı̆ and Rutickiı̆ 1961, Theorem II.9.3], uv ≤ F(u)+G(v)
for u, v ≥ 0, which implies ∣∣∣∣∫

D
u(x)v(x) dm(x)

∣∣∣∣≤ ‖u‖F ‖u‖G . (A-7)

The set KF (D) is a vector space when F satisfies the 12-condition, that is, there is k > 1 such that
F(2t)≤ k F(t) for all t ∈ R+; see [Adams 1975, Lemma 8.8]. In this case, X F (D)= KF (D).

We will use functions

Mp,q(t)= |t |p(log(1+ |t |))q , 1≤ p <∞, q ∈ R,
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and use for F(t)=Mp,q(t) the notations X F (D)= X p,q(D) and ‖u‖F =‖u‖X p,q (D). For p= 2, we define

M2,q(t)= Mq(t), X2,q(D)= Xq(D).

Note that if D is bounded, 1< p <∞ and 0< ε < p− 1, then

L p+ε(D)⊂ X p,q(D)⊂ L p−ε(D).

Finally, we note that the dual space of Xq(D) is X−q(D) and∣∣∣∣∫
D

u(x)v(x) dm(x)
∣∣∣∣≤ ‖u‖Xq (D)‖v‖X−q (D). (A-8)
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