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We prove global-in-time Strichartz estimates without loss of derivatives for the solution of the Schrödinger
equation on a class of nontrapping asymptotically conic manifolds. We obtain estimates for the full set of
admissible indices, including the endpoint, in both the homogeneous and inhomogeneous cases. This
result improves on the results by Tao, Wunsch and the first author and by Mizutani, which are local in time,
as well as results of the second author, which are global in time but with a loss of angular derivatives. In
addition, the endpoint inhomogeneous estimate is a strengthened version of the uniform Sobolev estimate
recently proved by Guillarmou and the first author. The second author has proved similar results for the
wave equation.

1. Introduction 151
2. Spectral measure and partition of the identity at low energies 157
3. Spectral measure and partition of the identity at high energies 166
4. Proof of Proposition 1.5 172
5. L2 estimates 176
6. Dispersive estimates 180
7. Homogeneous Strichartz estimates 183
8. Inhomogeneous Strichartz estimates 184
Acknowledgements 190
References 190

1. Introduction

Strichartz estimates are an essential tool for studying the behaviour of solutions to nonlinear Schrödinger
equations, nonlinear wave equations and other nonlinear dispersive equations. In particular, global-in-time
Strichartz estimates are needed to show global well-posedness and scattering for these equations. The
purpose of this article is to prove global-in-time Strichartz estimates for the Schrödinger equation on
asymptotically conic, nontrapping manifolds.

Let (M◦, g) be a Riemannian manifold of dimension n ≥ 2 and let I ⊂ R be a time interval. Strichartz
estimates are a family of dispersive estimates on solutions u(t, z) : I × M◦ → C to the Schrödinger
equation

i ∂t u+1gu = 0, u(0)= u0(z), (1-1)
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where 1g denotes the Laplace–Beltrami operator on (M◦, g). The general Strichartz estimates state that

‖u(t, z)‖Lq
t Lr

z(I×M◦) ≤ C‖u0‖H s(M◦),

where H s denotes the L2-Sobolev space over M◦ and (q, r) is an admissible pair, i.e.,

2≤ q, r ≤∞, 2
q
+

n
r
=

n
2
, (q, r, n) 6= (2,∞, 2). (1-2)

It is well known that (1-1) holds for (M◦, g)= (Rn, δ) with s = 0 and I = R.
In this paper, we continue the investigations carried out in [Hassell et al. 2005; 2006] concerning

Strichartz inequalities on a class of non-Euclidean spaces, that is, smooth, complete, noncompact,
asymptotically conic Riemannian manifolds (M◦, g) which satisfy a nontrapping condition. Here,
“asymptotically conic” means that M◦ has an end of the form (r0,∞)r × Y , with metric asymptotic
to dr2

+r2h as r→∞, where (Y, h) is a closed Riemannian manifold of dimension n−1 (a more precise
definition is given below). Hassell, Tao and Wunsch [Hassell et al. 2006] established the local-in-time
Strichartz inequalities

‖ei t1g u0‖Lq
t Lr

z([0,1]×M◦) ≤ C‖u0‖L2(M◦). (1-3)

Here, we establish the same inequality on the full time interval R. To treat an infinite time interval, the
method of [Hassell et al. 2006] no longer works and we take a completely new approach (see Section 1C).
Although phrased in terms of asymptotically conic manifolds, we emphasize that our results apply in
particular to

• Schrödinger operators 1+ V on Rn with V suitably regular and decaying at infinity;

• nontrapping metric perturbations of flat Euclidean space with the perturbation suitably regular and
decaying at infinity.

1A. Geometric setting. Let us recall the asymptotically conic geometric setting, which is the same
as in [Guillarmou et al. 2013a; 2013b; Hassell and Wunsch 2005; Hassell et al. 2006]. Let (M◦, g)
be a complete, noncompact Riemannian manifold of dimension n ≥ 2 with one end, diffeomorphic
to (0,∞)× Y , where Y is a smooth, compact, connected manifold without boundary. Moreover, we
assume (M◦, g) is asymptotically conic, which means that M◦ can be compactified to a manifold M
with boundary ∂M = Y such that the metric g becomes a scattering metric on M . That is, in a collar
neighbourhood [0, ε)x × ∂M of ∂M , g takes the form

g =
dx2

x4 +
h(x)
x2 =

dx2

x4 +

∑
h jk(x, y) dy j dyk

x2 , (1-4)

where x ∈ C∞(M) is a boundary defining function for ∂M and h is a smooth family of metrics on Y .
Here we use y = (y1, . . . , yn−1) for local coordinates on Y = ∂M and the local coordinates (x, y) on M
near ∂M . Away from ∂M , we use z = (z1, . . . , zn) to denote the local coordinates. Moreover, if every
geodesic z(s) in M reaches Y as s→±∞, we say M is nontrapping. The function r := 1/x near x = 0
can be thought of as a “radial” variable near infinity and y = (y1, . . . , yn−1) can be regarded as n− 1
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“angular” variables. Rewriting (1-4) using coordinates (r, y), we see that the metric is asymptotic to the
exact conic metric dr2

+ r2h(0) on (r0,∞)r × Y as r→∞.
The Euclidean space M◦ = Rn , or any compactly supported perturbation of this metric, is an example

of an asymptotically conic manifold with Y equal to Sn−1 endowed with the standard metric.
Let (M◦, g) be an asymptotically conic manifold. The complex Hilbert space L2(M◦) is given by the

inner product

〈 f1, f2〉L2(M◦) =

∫
M◦

f1(z) f2(z) dg(z),

where dg(z)=
√

g dz is the measure induced by the metric g. Let 1g = ∇
∗
∇ be the Laplace–Beltrami

operator on M ; our sign convention is that 1g is a positive operator. Let V be a real potential function
on M such that

V ∈ C∞(M), V (x, y)= O(x3) as x→ 0. (1-5)

We assume that n ≥ 3 and that one of two conditions hold: either

H :=1g + V has no zero eigenvalue or zero-resonance, (1-6)

or the stronger condition

H :=1g + V has no nonpositive eigenvalues or zero-resonance. (1-7)

By a zero-resonance we mean a nontrivial solution u to Hu = 0 such that u→ 0 at infinity. Notice that
the second assumption, (1-7), implies that H is a nonnegative operator, so that we can define

√
H . These

assumptions allow us to use the results of [Guillarmou et al. 2013a; 2013b].

1B. Main results. Now we consider the Schrödinger equation

i ∂t u+ Hu = 0, u(0, · )= u0 ∈ L2(M). (1-8)

The main purpose of this paper is to prove the following results. Notice that the endpoint estimate (q = 2
and q̃ = 2) is included in both cases.

Theorem 1.1 (long-time homogeneous Strichartz estimate). Let (M◦, g) be an asymptotically conic,
nontrapping manifold of dimension n ≥ 3. Let H =1g + V satisfy (1-5) and (1-7) and suppose u is the
solution to (1-8). Then

‖u(t, z)‖Lq
t Lr

z(R×M◦) ≤ C‖u0‖L2(M◦) (1-9)

provided the admissible pair (q, r) ∈ [2,∞]2 satisfies (1-2).

Theorem 1.2 (long-time inhomogeneous Strichartz estimate). Let (M◦, g) and H be as in Theorem 1.1.
Suppose that u solves the inhomogeneous Schrödinger equation with zero initial data

i ∂t u+ Hu = F(t, z), u(0, · )= 0. (1-10)

Then the inhomogeneous Strichartz estimate

‖u(t, z)‖Lq
t Lr

z(R×M◦) ≤ C‖F‖
L q̃′

t L r̃ ′
z (R×M◦)

(1-11)
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holds for admissible pairs (q, r), (q̃, r̃).

Remark 1.3. If we make the weaker assumption (1-6), then the statements above still hold, provided
that u0 and F(t, · ) lie in the positive spectral subspace of H , or in other words that u0 = 1[0,∞)(H)(u0),
and similarly for F(t, · ) for almost every t .

Remark 1.4. We restrict to n ≥ 3 since the results of [Guillarmou and Hassell 2008] only apply to that
case. More recently, Sher [2013] has extended these results to n = 2; using his results, one could treat the
case n = 2 also (noting that the endpoint estimates fail in dimension 2, due to a logarithmic divergence in
the resolvent at zero energy occurring in dimension 2). For space reasons, we have not attempted to treat
this case in the present paper.

1C. Strategy of the proof. Our argument here extends to long time and to the endpoint Strichartz
estimates of Hassell et al. [2006], who constructed a “local” parametrix for the propagator ei t H based
on the parametrix from [Hassell and Wunsch 2005]. In that paper, Schrödinger solutions ei t Hu0 were
obtained by applying the parametrix to u0 and then correcting this approximate solution using Duhamel’s
formula, using local smoothing estimates to control the correction term. This approach works well on a
finite time interval, but cannot be expected to work on an infinite time interval as the errors accumulate
over time; certainly they cannot be expected to decay to zero as t→∞, as would be required to prove
Lq estimates in time on an infinite interval.

The main new idea in the current paper is to express the propagator ei t H exactly, using the spectral
measure d E√H(λ), exploiting the very precise information on the spectral measure for the Laplacian on
asymptotically conic, nontrapping manifolds that has recently become available from the works [Hassell
and Vasy 1999; Hassell and Wunsch 2008; Guillarmou et al. 2013a].

After expressing the propagator in terms of an integral of the multiplier ei tλ2
against the spectral

measure, our strategy is to use the abstract Strichartz estimate proved in [Keel and Tao 1998]. Thus,
with U (t) denoting the (abstract) propagator, we need to show uniform L2

→ L2 estimates for U (t),
and a L1

→ L∞ type dispersive estimate on the U (t)U (s)∗ with a bound of the form O(|t − s|−n/2). In
the flat Euclidean setting, the estimates are obvious because of the explicit formula for the propagator.
But in our general setting it turns out to be more complicated. It follows from [Hassell and Wunsch
2005] that the propagator U (t)(z, z′) fails to satisfy such a dispersive estimate at any pair of conjugate
points (z, z′) ∈ M◦×M◦ (i.e., pairs (z, z′) where geodesics emanating from z focus at z′). Our geometric
assumptions allow conjugate points, so we need to modify the propagator such that the failure of the
dispersive estimate at conjugate points is avoided.

This is possible due to the T T ∗ nature of the estimates required by the Keel–Tao formalism. Recall
that the dispersive estimate required by Keel and Tao is of the form

‖U (t)U (s)∗‖L1→L∞ ≤ C |t − s|−n/2. (1-12)

If U (t) is the propagator ei t H then the operator on the left-hand side is ei(t−s)H . However, nothing in
the Keel–Tao formalism requires the U (t) to form a group of operators. Hence we are free to break up
ei t H
=
∑

j U j (t) and prove the estimate (1-12) for each U j . Our choice of U j (t) (sketched directly below)
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means that U j (t)U j (s)∗ is essentially the kernel ei(t−s)H localized sufficiently close to the diagonal that
we avoid pairs of conjugate points, and hence can prove the dispersive estimate.

Our method of decomposing ei t H
=
∑

j U j (t) is motivated by a decomposition used in the proof in
[Guillarmou et al. 2013b] of a restriction estimate for the spectral measure, that is, an estimate of the form

‖d E√H(λ)‖L p(M◦)→L p′ (M◦) ≤ Cλn(1/p−1/p′)−1, 1≤ p ≤
2(n+ 1)

n+ 3
.

In [Guillarmou et al. 2013b], it was observed that, to prove a restriction estimate for d E√H(λ), it
suffices (via a T T ∗ argument) to prove the same estimate for the operators Q j (λ) d E√H(λ) Q j (λ)

∗,
where Q j (λ) is a partition of the identity operator in L2(M◦). The operators Q j (λ) used in [Guillarmou
et al. 2013b] are pseudodifferential operators (of a certain specific type) serving to localize d E√H(λ)

in phase space close to the diagonal. Guillarmou et al. [2013b] showed that the localized operators
Q j (λ) d E√H(λ) Q j (λ)

∗ satisfy kernel estimates analogous to those satisfied by the spectral measure for
√
1 on flat Euclidean space:∣∣(Q j (λ) d E (l)√

H
(λ) Q j (λ))(z, z′)

∣∣≤ Cλn−1−l(1+ λd(z, z′))−(n−1)/2+l, l ∈ N, (1-13)

where d E (l)√
H
(λ) is the l-th derivative in λ of the spectral measure and d is the Riemannian distance

on M◦.
The authors of [Guillarmou et al. 2013b] hoped that (1-13) could be used as a “black box” in applications

of their work. Unfortunately, (1-13) seems inadequate for our present purposes. This is because, in order
to obtain the dispersive estimate, we need to efficiently exploit the oscillation of the “spectral multiplier”
ei tλ2

, and particularly the discrepancy between the way this function oscillates relative to the oscillations
(in λ) of the Schwartz kernel of the spectral measure. The second main innovation of this paper is to
improve the estimate (1-13) on the localized spectral measure. We show:

Proposition 1.5. Let (M◦, g) and H be as in Theorem 1.1. Then there exists a λ-dependent operator
partition of unity on L2(M)

Id=
N∑

j=1

Q j (λ),

with N independent of λ, such that for each 1≤ j ≤ N we can write

(Q j (λ) d E√H(λ) Q∗j (λ))(z, z′)= λn−1
(∑
±

e±iλd(z,z′)a±(λ, z, z′)+ b(λ, z, z′)
)
, (1-14)

with estimates

|∂αλ a±(λ, z, z′)| ≤ Cαλ−α(1+ λd(z, z′))−(n−1)/2, (1-15)

|∂αλ b(λ, z, z′)| ≤ Cα,Mλ−α(1+ λd(z, z′))−K for any K . (1-16)

Here, d( · , · ) is the Riemannian distance on M◦.
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Remark 1.6. The estimates (1-15)–(1-16) are easily seen to imply (1-13) (using Lemma 2.3 to estimate
the λ-derivatives of the operators Qi (λ)). However, (1-15)–(1-16) also capture the oscillatory behaviour
of the spectral measure, which is crucial in obtaining sharp dispersive estimates in Section 6.

We now define localized (in phase space) propagators U j (t) by

U j (t)=
∫
∞

0
ei tλ2

Q j (λ) d E√H(λ), 1≤ j ≤ N . (1-17)

Then the operator U j (t)U j (s)∗ is given, at least formally, by (see Lemma 5.3)

U j (t)U j (s)∗ =
∫

ei(t−s)λ2
Q j (λ) d E√H(λ) Q j (λ)

∗. (1-18)

However, there are subtleties involved in spectral integrals such as (1-17)–(1-18) containing operator-
valued functions. Even to show that (1-17) is well-defined as a bounded operator on L2(M◦) is nontrivial.
The third main innovation of this paper is to give an effective method for analyzing spectral integrals such
as (1-17)–(1-18) with operator-valued multipliers. We use a dyadic decomposition in λ and a Cotlar–Stein
almost orthogonality argument to show the well-definedness of (1-17) and prove a uniform estimate on
‖U j (t)‖L2→L2 , as required by the Keel–Tao formalism.

Having made sense of (1-18), we exploit the oscillations both in the multiplier ei(t−s)λ2
and in the

localized spectral measure (as expressed by (1-15)–(1-16)) to obtain the required dispersive estimate
for U j (t)U j (s)∗. The homogeneous Strichartz estimate for ei t H then follows by applying Keel–Tao to
each U j and summing over j .

Next we consider the inhomogeneous Strichartz estimates. As is well known, the non-endpoint cases
of the inhomogeneous estimate follow from the homogeneous estimate and the Christ–Kiselev lemma.
The endpoint inhomogeneous estimate requires an additional argument and, in particular, in this case
we require estimates on Ui (t)U j (s)∗ for i 6= j . This estimate turns out to be very similar to the uniform
Sobolev estimate (on asymptotically conic, nontrapping manifolds) of Guillarmou and Hassell [2014]. We
use the techniques of that paper, in particular a refined partition of the identity operator. This resemblance
to their proof is more than formal: as pointed out to us by Thomas Duyckaerts and Colin Guillarmou,
the inhomogeneous endpoint Strichartz estimate implies the uniform Sobolev estimate; we sketch this
argument in Section 8. Thus, this part of the paper can be regarded as a time-dependent reformulation of
the proof in [Guillarmou and Hassell 2014], leading to a more general result.

1D. Previous literature. Now we review some classical results about the Strichartz estimates. In the
flat Euclidean space, where M◦ = Rn and g jk = δ jk , one can take I = R; see [Strichartz 1977; Ginibre
and Velo 1985; Keel and Tao 1998] and references therein. The now-classic paper [Keel and Tao 1998]
developed an abstract approach to Strichartz estimates, which has become the standard approach in
most subsequent literature, including this paper. Strichartz estimates for compact metric perturbations
of Euclidean space were proved locally in time by Staffilani and Tataru [2002] and subsequently for
asymptotically Euclidean manifolds by Robbiano and Zuily [2005] and Bouclet and Tzvetkov [2007], and
in the asymptotically conic setting by Hassell et al. [2006] and Mizutani [2012]. In these works, either
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the metric is assumed to be nontrapping, or the theorem holds outside a compact set. Burq et al. [2010]
proved that Strichartz estimates without loss hold on an asymptotically conic manifold with hyperbolic
trapped set. Strichartz estimates have also been studied on exact cones [Ford 2010] and on asymptotically
hyperbolic spaces [Bouclet 2011].

There has also been work on Strichartz estimates on compact manifolds and on manifolds with boundary.
In the compact case, Strichartz estimates usually are local in time and with some loss of derivatives s
(i.e., the right-hand side of (1-9) has to be replaced by the H s norm of u0). Estimates for the standard
flat 2-torus were shown by Bourgain [1999] to hold for any s > 0. For any compact manifold, Burq
et al. [2004a] showed that the estimate holds for s = 1/q and that the loss of derivatives, as well as the
localization in time, is sharp on the sphere. Manifolds with boundary were studied in [Blair et al. 2008;
2009; 2012; Ivanovici 2010].

Global-in-time Strichartz estimates on asymptotically Euclidean spaces have been proved by Bouclet
and Tzvetkov [2008] (but with a low energy cutoff), Metcalfe and Tataru [2012], Marzuola, Metcalfe and
Tataru [Marzuola et al. 2008] and Marzuola, Metcalfe, Tataru and Tohaneanu [Marzuola et al. 2010].

The second author has obtained global-in-time Strichartz estimates for the wave equation on asymptot-
ically conic nontrapping manifolds [Zhang 2015b] and for the Schrödinger equation [Zhang 2015a].

As already noted, Strichartz estimates are an essential tool for studying the behaviour of solutions to
nonlinear dispersive equations. There is a vast literature on this topic, and it is beyond the scope of this
introduction to review it, so we refer instead to Tao’s book [2006] and the references therein.

1E. Organization of this paper. We review the partition of the identity and properties of the microlocal-
ized spectral measure for low energies in Section 2 and for high frequency in Section 3. In Section 4, we
prove Proposition 1.5 based on the properties of the microlocalized spectral measure. Section 5 is devoted
to the construction of microlocalized propagators and the proof of the L2 estimates. The dispersive
estimates are proved in Section 6. Finally, we prove the homogeneous Strichartz estimates in Section 7
and the inhomogeneous Strichartz estimates in Section 8.

2. Spectral measure and partition of the identity at low energies

The spectral measure for the operator H for low energies was constructed in [Guillarmou and Hassell
2008] on the “low energy space” M2

k,b. Here we recall the low energy space M2
k,b and the associated

space M2
k,sc. The latter space is needed in order to define the class of pseudodifferential operators in

which our operator partition Q j (λ) from Proposition 1.5 lies.

2A. Low energy space. The low energy space M2
k,b, defined in [Guillarmou and Hassell 2008] (based

on unpublished work of Melrose and Sá Barreto), is a blown-up version of1
[0, λ0]×M2. This space is

illustrated in Figure 1. More precisely, we define the codimension-3 corner C3 = {0}× ∂M× ∂M and the
codimension-2 submanifolds

C2,L = {0}× ∂M ×M, C2,R = {0}×M × ∂M, C2,C = [0, 1]× ∂M × ∂M.

1In [Guillarmou and Hassell 2008], the spectral parameter was denoted by k rather than λ, hence the subscript “k” in M2
k,b.
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rb

lb

bf

zf

bf0

x ′/x

lb0

rb0

λ/x

λ/x ′

Figure 1. The manifold M2
k,b. Arrows show the direction in which the indicated function

increases from 0 to∞.

Without loss of generality, we assume λ0 = 1. The space M2
k,b is defined by

M2
k,b = [[0, 1]×M2

;C3,C2,R,C2,L ,C2,C ]

with blow-down map βb : M2
k,b→ [0, 1] ×M2. Here the notation [X; Y ], where X is a manifold with

corners and Y a p-submanifold of X ,2 indicates that Y is blown up in X in the real sense; as a set, [X; Y ]
is the disjoint union of X \ Y and the inward-pointing spherical normal bundle SN+Y of Y . Moreover,
[X; Y1, Y2, . . . ] indicates iterated blow-up. See [Melrose 1994, Section 18] for further details.

The new boundary hypersurfaces created by these blow-ups are labelled by

rb= closβ−1
b ([0, 1]×M × ∂M), lb= closβ−1

b ([0, 1]× ∂M ×M), zf= closβ−1
b ({0}×M ×M),

the “b-face” bf= closβ−1
b (C2,C \C3) and

bf0 = β
−1
b (C3), rb0 = closβ−1

b (C2,R \C3), lb0 = closβ−1
b (C2,L \C3).

2We say that Y is a p-submanifold of X if, near every point p ∈ Y , there are local coordinates x1, . . . , xl , y1, . . . , yn−l ,
where xi ≥ 0, yi ∈ (−ε, ε) and p = (0, . . . , 0), such that Y is given locally by the vanishing of some subset of these coordinates.
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rb0

bf0

lb0

zf

rb

lb

bf

sc

Figure 2. The manifold M2
k,sc; the dashed line is the boundary of the lifted diagonal 1k,sc.

The closed lifted diagonal is given by diagb = closβ−1
b ([0, 1]× {(m,m);m ∈ M◦}) and its intersection

with the face bf is denoted by ∂bf diagb. We remark that zf is canonically diffeomorphic to the b-double
space

M2
b = [M

2
; ∂M × ∂M], (2-1)

as is each section M2
k,b ∩ {λ= λ∗} for fixed 0< λ∗ < 1.

We further define the space M2
k,sc to be the blow-up of M2

k,b at ∂bf diagb. This space is illustrated in
Figure 2. The sections M2

k,sc ∩ {λ = λ∗} for fixed 0 < λ∗ < 1 are all canonically diffeomorphic to the
scattering double space M2

sc, which is the blow-up of M2
b at the boundary of the lifted diagonal

M2
sc = [M

2
b ; ∂ diagb].

To avoid excessive notation, we denote the diagonal in M2
b and in M2

k,b by the same symbol diagb. We
similarly define diagsc to be the closure of the interior of diagb lifted to M2

sc (or M2
k,sc).

2B. Coordinates. Let (x, y) = (x, y1, . . . , yn−1) be local coordinates on M near a boundary point, as
discussed in Section 1A. We define functions x and y on M2

k,b by lifting from the left factor of M
(near ∂M), and x ′ and y′ by lifting from the right factor of M ; and similarly z and z′ (away from ∂M).
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Let ρ = x/λ, ρ ′ = x ′/λ and σ = ρ/ρ ′ = x/x ′. Then we can use coordinates (y, y′, σ, ρ ′, λ) near bf and
away from rb, while (y, y′, σ−1, ρ, λ) near bf and away from lb.

Next we consider local coordinates on the scattering double space M2
sc. The only difference between

this space and M2
b is at the boundary of the diagonal. In local coordinates, near ∂bf diagb, a boundary

defining function for bf is given by x/λ and the diagonal is given by σ = 1, y= y′. Therefore, coordinates
on the interior of the new boundary hypersurface, denoted by sc, created by this blow-up are

λ(σ − 1)
x

,
λ(y− y′)

x
, λ, y′.

We also need to consider coordinates on phase space. As emphasized by Melrose [1994], the appropriate
phase space for analyzing the Laplacian with respect to a scattering metric is the scattering cotangent
bundle. This is the dual space of the scattering tangent bundle scTM, which is the bundle whose sections are
the smooth vector fields over M which are uniformly of finite length with respect to g. Near the boundary,
due to the form of the metric (1-4), they are spanned over C∞(M) by the vector fields x2 ∂x and x ∂yi .
Dually, the scattering cotangent bundle is spanned near the boundary by vector fields dx/x2

=−d(1/x)
and dyi/x ; away from the boundary, it is canonically diffeomorphic to the usual cotangent bundle. Thus,
a point in the scattering cotangent bundle can be expressed as a linear combination

νλd
(

1
x

)
+

n−1∑
i=1

λµi
dyi

x
(2-2)

near the boundary, or
n∑

i=1

λζi dzi (2-3)

away from the boundary, which defines linear coordinates (µ, ν) or ζ on each fibre of the scattering
cotangent bundle. Notice that we have introduced a scaling by the spectral parameter λ; as λ= 1/h, this
is essentially the semiclassical scaling, appropriate to our operator 1− λ2

= λ2(h21− 1), although in
this low energy case, we are looking at the limit h→∞, rather than h→ 0 as in the high energy case in
Section 3.

The appropriate “compressed cotangent bundle” over M2
k,b is discussed in [Guillarmou et al. 2013a,

Section 2.3]. Here, we only describe this for λ > 0 plus a neighbourhood of the boundary hypersurface bf.
In this region, it is given by the lift of the bundle scT ∗M × scT ∗M to M2

× [0, 1] and then to M2
k,b. In

particular, we use coordinates (µ, ν) lifted from the left factor of M and (µ′, ν ′) lifted from the right
factor of M in a neighbourhood of bf. We remark that these coordinates remain valid in a neighbourhood
of bf even at λ= 0, which follows from the fact that (2-2) can be written in the form

νd
(

1
ρ

)
+

n−1∑
i=1

µi
dyi

ρ
.

The following lemma will be useful in our estimates in Section 4.
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Lemma 2.1. Let w = (w1, . . . , wn) denote a set of defining functions for diagb ⊂ M2
k,b; that is, the

differentials dwi are linearly independent and diagb = {w = 0}. For example, near bf0 or bf, we can
take w = (σ − 1, y1− y′1, . . . , yn−1− y′n−1). Then |w|/x is comparable to d(z, z′) in a neighbourhood of
diagb. Equivalently, |w|/ρ is comparable to λd(z, z′).

Proof. Away from bf0∪bf, |w|2 is a quadratic defining function for diagb and so is d(z, z′)2, hence they are
comparable. Now consider what happens near bf0 or bf. In coordinatesw= (σ−1, y1−y′1, . . . yn−1−y′n−1),
we have

|w|

x
∼

∣∣∣∣σ − 1
x

∣∣∣∣+ ∣∣∣∣ y− y′

x

∣∣∣∣.
Write r = 1/x ; then this is

|r − r ′| + r |y− y′|.

Given that the metric takes the form dr2
+ r2h(x, y, dy), where h is positive definite, we see that this is

comparable to d(z, z′). �

Remark 2.2. In the case M◦ = Rn , with Euclidean coordinates z = (z1, . . . , zn), we can take w =
(z1− z′1, . . . , zn − z′n).

2C. Pseudodifferential operators on the low energy space. We use the class of pseudodifferential oper-
ators 9m

k (M;�
1/2
k,b ) on M2

k,sc introduced by Guillarmou and Hassell [2008]. By definition, these operators
have Schwartz kernels which are half-densities conormal to the diagonal diagsc, smooth on M2

k,sc away
from the diagonal, and rapidly decreasing at all boundary hypersurfaces not meeting the diagonal, i.e.,
at lb0, rb0, lb and rb. In addition, we will only consider those operators with kernels supported where
ρ, ρ ′ ≤ C <∞. In this setting we can write the kernel in the form

λn
∫

eiλ/x ((1−σ)ν+(y−y′)·µ)a(λ, ρ, y, µ, ν) dµ dν |dg dg′|1/2, (2-4)

where a is a classical symbol of order m in the (µ, ν) variables, smooth in (λ, ρ, y) and supported
where ρ ≤ c. If we write this in the form A(z, z′, λ) |dg dg′|1/2, then the action on a half-density f |dg|1/2

is given by (∫
A(z, z′, λ) f (z′) dg(z′)

)
|dg(z)|1/2.

Given that we have a canonical half-density factor, namely the Riemannian half-density |dg|1/2, we will
usually omit the half-density factors below.

From the representation (2-4) it is easy to see the following:

Lemma 2.3. If A ∈ 9m
k (M;�

1/2
k,b ) then (λ ∂λ)N A is also a pseudodifferential operator of order m, i.e.,

(λ∂λ)
N A ∈9m

k (M;�
1/2
k,b ).

Proof. It suffices to prove this for N = 1 and use induction. If λ ∂λ hits the function a in (2-4), then
a is still a symbol of order m in the (µ, ν) variables, smooth in (λ, ρ, y) and supported where ρ ≤ c.
(Notice that ρ = x/λ depends on λ as well.) On the other hand, if λ ∂λ hits the phase, this is the same as
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ν ∂ν +µ∂µ hitting the phase, as it is homogeneous of degree 1 in both λ and (ν, µ). Integrating by parts,
we obtain another symbol ã of order m. This completes the proof. �

Lemma 2.4. If A = A(z, z′, λ) |dg dg′|1/2 ∈9m
k (M;�

1/2
k,b ) and m <−n, then A satisfies a kernel bound

|A(z, z′, λ)| ≤ λn(1+ λd(z, z′))−N (2-5)

for any N ∈ N.

Proof. If the order m is less than −n, then the integral (2-4) is absolutely convergent, showing that the
kernel of λ−n A is uniformly bounded. Next, we note that the differential operator

1− ∂2
ν −

∑
i ∂

2
µi

1+ λ2(x−2(σ − 1)2+ x−2|y− y′|2)

leaves the exponential in (2-4) invariant. By applying this N times to the exponential and then integrating
by parts, we see that the integral is bounded by

CN
(
1+ λ2(x−2(σ − 1)2+ x−2

|y− y′|2)
)−N

for any N . Finally, as in the proof of Lemma 2.1, the square of the Riemannian distance on M is
comparable to

(σ − 1)2

x2 +
|y− y′|2

x2 ,

so the integral is bounded by CN (1+ λ d(z, z′))−N for any N . �

Corollary 2.5. If A ∈ 9m
k (M;�

1/2
k,b ) and m < −n, then A is bounded L2(M◦)→ L2(M◦) uniformly

as λ→ 0. The same is true for (λ ∂λ)N A for any N.

Proof. This follows from the kernel bound in Lemma 2.4, the volume estimate crn
≤ V (z, r)≤ Crn for

the volume V (z, r) of the ball of radius r centred at z ∈ M◦, and Schur’s test. �

2D. Low energy partition of the identity. Recall that, in Proposition 1.5, we employ a partition of the
identity. We use essentially the same partition of the identity as in [Guillarmou et al. 2013b]. To define it,
we specify the symbols of these operators, which must form a partition of unity on the phase space. We
point out that, in our approach, it is crucial to be able to localize in phase space (and hence necessary to
use pseudodifferential operators) in order to eliminate difficulties with conjugate points.

For low energies and for a given small positive ε, this partition is defined as follows. We first form an
open cover G0 ∪ · · · ∪G Nl of the phase space scT ∗M . The set G0 consists of all points away from the
boundary, that is, the points with x > ε. The next set G1 consists of points near the boundary, say x < 2ε,
but away from the characteristic variety, that is, satisfying |µ|2h+ ν

2 < 1
2 or |µ|2h+ ν

2 > 3
2 . We then break

up the set
{

x < 2ε, |µ|2h+ν
2
∈
[1

4 , 2
]}

into a finite number of sets G2, . . . ,G Nl such that, for each set G j ,
the value of ν lies in some interval of length ≤ δ, where δ is taken to be sufficiently small.

We then form a partition of unity subordinate to this open cover and take these as the principal symbols
of pseudodifferential operators Qlow

j in the class 90
k (M;�

1/2
k,b ) described above. More precisely, we

choose a function χ ∈ C∞(R) of a real variable with χ(t) = 0 for t ≤ ε and χ(t) = 1 for t ≥ 2ε. We
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define Qlow
0 (λ) to be multiplication by the function 1−χ(ρ) (recall ρ = x/λ). Next, we choose Q′1(λ)

such that its (full) symbol is equal to 0 for 1
2 ≤ |µ|

2
h + ν

2
≤

3
2 and equal to 1 outside 1

4 ≤ |µ|
2
h + ν

2
≤ 2.

Then we define Qlow
1 = χ(ρ)Q

′

1. This means that the symbol of Id−Qlow
0 −Qlow

1 is supported where ρ is
small and close to the characteristic variety |µ|2h + ν

2
= 1. We then decompose this as Qlow

2 + · · ·+ Qlow
Nl

so that the symbol of each Qlow
j , j ≥ 2 in supported in G j , hence supported where ν is contained in an

interval of length ≤ δ.

2E. Localized spectral measure. The main result of [Guillarmou et al. 2013a] was that the spectral
measure for the Laplacian on an asymptotically conic manifold is, for low energies, a Legendre dis-
tribution associated to a pair of Legendre submanifolds, the “propagating Legendrian” Lbf and the
“incoming/outgoing Legendrian” L]. We now explain very briefly what this means. We first have to
introduce the contact manifold in which these Legendre submanifolds live. Consider the bundle 8T ∗M2

b ,
obtained by lifting scT ∗M× scT ∗M (viewed as a bundle over M2) to M2

b . This bundle carries a symplectic
structure, but the symplectic form degenerates at the boundary. Nevertheless, it determines a contact
structure on this bundle restricted to the boundary hypersurface bf,3 which we denote by 8T ∗bf M

2
b . We give

this contact structure in local coordinates (y, y′, σ, µ,µ′, ν, ν ′) for 8T ∗bf M
2
b , where σ = x/x ′, (µ, ν) are

as in (2-2) and, as above, the unprimed/primed coordinates are lifted from the left/right copies of scT ∗M .
In these coordinates, the contact form has an expression

dν−µ · dy+ σ(dν ′−µ′ · dy′).

A Legendrian submanifold is, by definition, an 2n−1-dimensional submanifold of this 4n−1-dimensional
space on which the contact form vanishes. The Legendre submanifold L] is easy to define: it is the
submanifold

{(y, y′, σ, µ,µ′, ν, ν ′) | µ= µ′ = 0, ν = ν ′ = 1}.

The other Legendre submanifold, Lbf, is more interesting. It encodes the geodesic flow on the cone
over (∂M, h) where h = h(0) is the metric in (1-4). Let (y, η) be an element of the cosphere bundle
S∗∂M of T ∗∂M and let γ (s)= (y(s), η(s)) be the geodesic with (y(0), η(0))= (y, η). Then Lbf is given
by the union of the leaves γ 2

= γ 2(y, η),

γ 2
= clos

{(
y, y′, σ =

x
x ′
, µ, µ′, ν, ν ′

) ∣∣∣∣ y= y(s), y′= y(s ′), µ= η(s) sin s, µ′=−η(s ′) sin s ′,

ν =− cos s, ν ′ = cos s ′, σ =
sin s
sin s ′

, (s, s ′) ∈ (0, π)2
}

(2-6)

as (y, η) ranges over S∗∂M . We note that this closure includes the sets

T± = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ ∈ R, µ= µ′ = 0, ν =−ν ′ =±1}, (2-7)

corresponding to the limits s, s ′→ 0 and s, s ′→ π .

3We denote the new boundary hypersurface of M2
b , created by the blow-up (2-1), by bf. This is slightly at odds with the way

bf is used as a boundary hypersurface of M2
k,b — here it really corresponds to taking a section of M2

k,b at fixed λ∗ > 0 — but
hopefully no confusion will be caused.
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The statement that the spectral measure is a Legendre distribution with respect to the pair of Legendre
submanifolds (Lbf, L]) means that the Schwartz kernel of the spectral measure can be expressed as
an oscillatory function or oscillatory integral, with a phase function that “parametrizes” the Legendre
submanifold. We now state what “parametrizes” means, first in the case of a Legendre submanifold L that
projects diffeomorphically to the base bf, in the sense that the projection from 8T ∗bf M

2
b to bf restricts to a

(local) diffeomorphism from L to bf. In this case, there exists a function 8 : bf→ R such that (locally)
L is the graph of the differential of the function 8/x or, in coordinates,

L={µ=dy8(y, y′, σ ), µ′=σ−1 dy′8(y, y′, σ ), ν=8(y, y′, σ )−σ dσ8(y, y′, σ ), ν ′=dσ8(y, y′, σ )}.

We say that 8, or more accurately 8/x , (locally) parametrizes L . In the general case, there always exist
(nonunique) functions8(y, y′, σ, v), depending on extra variables (v1, . . . , vk), that locally parametrize L
in the sense that

L =
{
µ= dy8(y, y′, σ, v), µ′ = σ−1 dy′8(y, y′, σ, v),

ν =8(y, y′, σ, v)− σ dσ8(y, y′, σ, v), ν ′ = dσ8(y, y′, σ, v)
∣∣ dv8= 0

}
. (2-8)

Observe that, if we take the union of the points of (2-6) with s = s ′, over all (y, η) ∈ S∗∂M , then we
get a codimension-1 submanifold of Lbf, which is also a codimension-1 submanifold of the conormal
bundle of the diagonal N ∗ diagb, given by

N ∗ diagb = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ = 1, µ=−µ′, ν =−ν ′}.

Claim. In a deleted neighbourhood of N ∗ diagb, Lbf projects in a 2:1 fashion to the base bf, i.e.,
Lbf
\ N ∗ diagb consists of 2 sheets, each of which projects diffeomorphically to the base bf, that are

parametrized by the function ±dconic, where dconic is the distance function on the cone over ∂M.

The conic metric dconic has an explicit expression when d∂M(y, y′) < π . Writing r = 1/x and
r ′ = 1/x ′ = σ/x , it takes the form

dconic(y, y′, r, r ′)=
√

r2+ r ′2− 2rr ′ cos d∂M(y, y′)= r
√

1+ σ 2− 2σ cos d∂M(y, y′). (2-9)

Note that dconic(y, y′, r, r ′)/r indeed has the form8(y, y′, σ )/x and is smooth provided that cos d∂M(y, y′)
is smooth, i.e., d∂M(y, y′) is less than the injectivity radius on (∂M, h).

We next explain why we consider the localized (or more precisely microlocalized) spectral measure,
by which we mean any of the operators Q(λ) d E√H(λ) Q(λ)∗, where Q(λ) is a member of our partition
of the identity. The reason is, as shown in [Guillarmou et al. 2013b, Section 5], these terms are also
Legendre distributions, but associated only to part of the Legendrian, namely to the subset

{(y, y′, σ, µ,µ′, ν, ν ′) ∈ L | (y, µ, ν), (y′, µ′, ν ′) ∈WF′(Q)},

where WF′(Q) is the support of the symbol4 of Q. This is localized close to N ∗ diagb ∪T± (that is, those
points in (2-6) corresponding to s = s ′) if WF′(Q) is well localized. We can then use the Claim above to

4The relevant symbol here is the scattering symbol, or boundary symbol, in the scattering calculus, which is a function
on 8T ∗bf M2

b ; see [Melrose 1994].
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write this piece of the spectral measure using the conic distance function, except near N ∗ diagb itself,
where we can express it as an oscillatory integral using a slightly more complicated form of phase function
(as in Proposition 2.6(ii)).

We summarize the information we need from [Guillarmou et al. 2013a; 2013b] concerning the spectral
measure:

Proposition 2.6. Let Qlow
j (λ) be a member of the partition of the identity defined above. Let η > 0 be

given. Then, for j , k = 0, 1, Qlow
j (λ) d E√H(λ) Qlow

k (λ)∗ satisfies the estimates on the right-hand side
of (1-16) and Qlow

j (λ) d E√H(λ) Qlow
j (λ)∗, j ≥ 2, can be written as a finite sum of terms of two types:

(i) An oscillatory function of the form

λn−1e±iλ dconic(y,y′,1/x,σ/x)a(y, y′, σ, x, λ), (2-10)

where a is supported in x , x ′ ≤ η and d∂M(y, y′)≤ η and satisfies estimate (1-15).

(ii) An oscillatory integral of the form

λn−1
∫

Rn−1
ei8(y,y′,σ,v)/ρ ã(y, y′, σ, v, ρ, λ) dv, (2-11)

where ã is smooth in all its arguments and supported in a small neighbourhood of a point (y0, y0,1,v0,0,0)
such that dv8(y0, y0, 1, v0)= 0. Moreover, writing w = (w1, . . . , wn) for a set of coordinates defining
diagb ⊂ M2

k,b, i.e., w = (y− y′, σ −1) and v = (v2, . . . , vn), one can rotate in the w variables so that the
function 8=8(y, w, v) has the properties

dv j8= w j + O(w1), (2-12a)

8=

n∑
j=2

v j dv j8+ O(w1), (2-12b)

d2
v jvk

8= w1 A jk, (2-12c)

8

x
=±dconic

(
y, y′, 1

x
,
σ

x

)
if dv8= 0, (2-12d)

where A jk is nondegenerate for all (y, w, v) in the support of b. Here dconic is as in (2-9).

Proof. The statement about Qlow
j (λ) d E√H(λ) Qlow

k (λ)∗ for j , k = 0, 1, follows from the microlocal
support estimates in [Guillarmou et al. 2013b, Section 5]. In fact, Qlow

0 (λ) has empty wavefront set, while
Qlow

1 (λ) has wavefront set disjoint from the characteristic variety of H−λ2, which contains the microlocal
support of d E√H(λ). It follows that the operators Qlow

j (λ) d E√H(λ) Qlow
k (λ)∗, for j , k = 0, 1, vanish

rapidly at bf, lb and rb. Also, as shown in [Guillarmou et al. 2013a], d E√H(λ) is polyhomogeneous at
the other boundary hypersurfaces of M2

k,b, namely zf, lb0, rb0 and bf0, vanishing to order n− 1 at each
of these faces. Since the Qlow

j (λ) are pseudodifferential operators of order zero, the same is true of the
composition Qlow

j (λ) d E√H(λ) Qlow
k (λ)∗ for j , k = 0, 1 (see [Guillarmou et al. 2013b, Lemma 5.2]). To

translate this into an estimate, we observe that λ is a product of boundary defining functions for zf, lb0, rb0
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and bf0, while a product of boundary defining functions for bf, lb and rb is O((1+ λd(z, z′))−1). The
estimate (1-16) follows directly.

We next discuss (i) and (ii). Everything in this statement has been proved in [Guillarmou et al. 2013b,
Lemma 6.5 and Proposition 6.2] except for the statement that 8 is given by the conic distance function
when dv8 = 0. To see this, we use the explicit formula (2-9) for the conic distance function, the
relation (2-8) and the description of the Legendre submanifold Lbf in (2-6). From (2-8), it follows that
8= ν+ σν ′. Writing ν and ν ′ in terms of s and s ′, using (2-6), we see that

dv8= 0 =⇒ 8=− cos s+ σ cos s ′.

If we square this then we get

dv8= 0 =⇒ 82
= cos2 s+ σ 2 cos2 s ′− 2σ cos s cos s ′.

We can write the right-hand side in the form

1− sin2 s+ σ 2(1− sin2 s ′)− 2σ(cos(s− s ′)− sin s sin s ′).

Noting that sin2 s+ σ 2 sin2 s ′ = 2σ sin s sin s ′, using the expression for σ in (2-6), we see that

dv8= 0 =⇒ 82
= 1+ σ 2

− 2σ cos d∂M(y, y′). �

Remark 2.7. It might help to give an example to show how (2-12) works. In Euclidean space, the
Schwartz kernel of the spectral measure d E√1(λ) of

√
1 is given by

d E√1(λ; z, z′)=
λn−1

(2π)n

∫
Sn−1

eiλ(z−z′)·ζ dζ

and one can find the phase function (z − z′) · ζ , where ζ ∈ Sn−1. Locally near ζ = (1, 0, . . . , 0), we
can write ζ = (

√
1− |v|2, v2, . . . , vn). Write x = |z|−1 and w = (z− z′)/|z|. Then the phase function

becomes

8= w1

√
1− v2

2 − · · ·− v
2
n +

n∑
j=2

w jv j ,

and we can check that properties (2-12) hold in this case.

3. Spectral measure and partition of the identity at high energies

In the previous section we recalled the partition of the identity operator and the structure of the localized
spectral measure for low energy, i.e., 0< λ ≤ λ0. We now do the same for high energies, λ ∈ [λ0,∞).
For the sake of convenience, we introduce the semiclassical parameter h = λ−1 (which should not be
confused with h in the metric g), so that we pay our attention to the range h ∈ (0, h0], where h0 = λ

−1
0 .

The spectral measure of the operator H for high energy was constructed in [Hassell and Wunsch 2008]
on the high energy space X . Our main task is to adapt each of the main results in the previous section to
the high energy setting.
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3A. High energy space. The high energy X , introduced in [Hassell and Wunsch 2008], is defined by
X = [0, h0] × M2

b , where M2
b = [M

2
; ∂M × ∂M] is as in (2-1). We label the boundary hypersurfaces

in X by rb, lb, bf and mf, according as they are the lifts to X of the faces

[0, h0]×M × ∂M, [0, h0]× ∂M ×M, [0, h0]× ∂M × ∂M or {0}×M2

of [0, h0]×M2, respectively. The labelling of boundary hypersurfaces is consistent with the notations
defined in the low energy space, since when λ ∈ (C−1,C) (where λ= 1/h) the spaces both have the form
(C−1,C)×M2

b . Recall σ = x/x ′; we can use coordinates (y, y′, σ, x ′, h) near bf and away from rb, and
coordinates (y, y′, σ−1, x, h) near bf and away from lb. We use coordinates (z, z′, h) away from bf, rb
and lb.

3B. Semiclassical scattering pseudodifferential operators. We recall the space 9m,l,k
sc,h (M;

s8�1/2) of
semiclassical scattering pseudodifferential operators, introduced by Wunsch and Zworski [2000] based on
Melrose’s scattering calculus [1994]. Such operators are indexed by the differential order m, the boundary
order l and the semiclassical order k. One can express this space in terms of the space with l = k = 0 by

9
m,l,k
sc,h (M;

s8�1/2)= x lh−k9
m,0,0
sc,h (M; s8�1/2).

The Schwartz kernel of semiclassical pseudodifferential operator A ∈ 9m,0,0
sc,h (M; s8�1/2) takes the

following form on X : near the diagonal diagb ⊂ M2
b and away from bf, it takes the form

h−n
∫

ei(z−z′)·ζ/ha(z, ζ, h) dζ |dg dg′|1/2, n = dim M, (3-1)

while near the boundary of the diagonal, diagb ∩ bf, it takes the form

h−n
∫

ei((y−y′)·µ+(σ−1)ν)/(hx)a(x, y, µ, ν, h) dµ dν |dg dg′|1/2 (3-2)

Here, a is a symbol of order m in the variable ζ or (η, ν) variables and is smooth in the remaining
variables. Finally, away from diagb, the kernel of A is smooth and vanishes to all orders at bf, lb, rb
and mf.

Lemma 3.1. If A ∈9m,0,0
sc,h (M; s8�1/2) then (h ∂h)

N A is also a pseudodifferential operator of order m,
i.e., (h ∂h)

N A ∈9m,0,0
sc,h (M; s8�1/2).

Proof. Away from the diagonal, the result is trivial, as the kernel is smooth and O(h∞). So, consider
the representations (3-1)–(3-2). The proof is parallel to the argument in Lemma 2.3. By induction, we
only need to consider N = 1. If h∂h hits the function a in (3-2), then a is still a symbol of order m in the
(η, ν) variables, smooth in (h, x, y) and supported in xh ≤ c. On the other hand, if h ∂h hits the phase,
this is the same as ν∂ν + η · ∂η hitting the phase, as it brings a factor which is homogeneous of degree −1
in h and degree 1 in (ν, η). Integrating by parts, we obtain another symbol ã of order m. The argument
for (3-1) is analogous. This completes the proof. �

Lemma 3.2. If A= A(z, z′, h) |dg dg′|1/2 ∈9m,0,0
sc,h (M; s8�1/2) and m <−n, then A satisfies the kernel

bound (2-5) (with λ= h−1) for any N ∈ N.



168 ANDREW HASSELL AND JUNYONG ZHANG

Proof. This estimate is straightforward away from the diagonal, as the Schwartz kernel of A vanishes
rapidly at all boundaries away from the diagonal. This follows from the nonvanishing of the differential
of the phase away from the diagonal. On the other hand, the right-hand side is a positive multiple of
hN−nρN

lbρ
N
bfρ

N
rb away from the diagonal.

Near the diagonal, we have the representations (3-1)–(3-2). The argument in the case (3-2) is the same
as in Lemma 2.4. In the interior case (3-1) we note that the differential operator

1+1ζ
1+ h−2|z− z′|2

leaves the exponential in (3-2) invariant. Applying this differential operator N times and integrating by
parts, we see that the integral is bounded by

CN (1+ h−2
|z− z′|2)−N

for any N . In the interior, the square of the Riemannian distance on M is comparable to |z− z′|2, so the
integral is bounded by CN (1+ h−1d(z, z′))−N for any N . �

Corollary 3.3. If A ∈9m,0,0
sc,h (M; s8�1/2) and m <−n, then A is bounded L2(M◦)→ L2(M◦) uniformly

as h→ 0. The same is true for (h∂h)
N A for any N.

Proof. This follows from the kernel bound (2-5) and Schur’s test, since there is a uniform volume estimate
crn
≤ V (z, r)≤ Crn for the volume V (z, r) of the ball of radius r centred at z ∈ M◦. �

3C. High energy partition of the identity. We now describe the partition of the identity used in Proposition
1.5 for high energies. Similar to before, these operators are obtained by quantizing symbols which form
a partition of unity (independent of h) in the scattering cotangent bundle scT ∗M . We modify the open
cover G0, . . . ,G Nl from Section 2D by replacing G0 by a smaller set G̃0 given by the points satisfying
x > ε and |ζ |2g ≤

1
2 or |ζ |2g ≥

3
2 , i.e., the set G̃0 is disjoint from the characteristic variety. Then we cover

the compact set
{

x ≥ ε, |ζ |2g ∈
[ 1

4 , 2
]}

, which contains G0 \ G̃0, by a finite number G Nl+1, . . . ,G Nh of
open sets of sufficiently small diameter.

As before, we form a partition of unity subordinate to this refined open cover and take these as the
principal symbols of operators Qhigh

j in the class 90,0,0
sc,h (M;

s8�1/2) microsupported in G j (or G̃0 in the
case j = 0). We will assume that Qhigh

j (λ)= Qlow
j (λ) for intermediate energies λ∼ 1 and 1≤ j ≤ Nl .

3D. Localized spectral measure. Hassell and Wunsch [2008] showed that the spectral measure for the
Laplacian on this setting is, for high energy, a Legendre distribution associated to a pair of Legendre
submanifolds L and L]. We briefly explain the meaning of this statement. The Legendre submanifold L]

has already been defined in Section 2E; it lives in the contact manifold 8T ∗bf M
2
b , living over the boundary

hypersurface bf. The new Legendre submanifold L encodes the geodesic flow on T ∗M◦. It is a submanifold
of R×8T ∗M2

b , which has a natural contact form, described as follows. We write α for the contact form
on scT ∗M induced by the inclusion of T ∗M◦ into scT ∗M , and α and α′ for the lift of this contact form to
8T ∗M2

b by the left and right projections, respectively. Writing τ for the coordinate on the R-factor in
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R×8T ∗M2
b , the contact form on this space takes the form

α+α′− dτ.

Then L is given as follows: Let 6 denote the characteristic variety of h21g−1, given in local coordinates
by {|ζ |g(z) = 1} in the interior or {|µ|2h(x,y)+ ν

2
= 1} near the boundary. Then L is given in terms of the

geodesic flow G t by
L = {(q, q ′, τ ) | q, q ′ ∈6, q = Gτ (q ′)} (3-3)

(this follows from [Guillarmou et al. 2013b, Equation 7.9] and the discussion following). In R×8T ∗M2
b ,

L can be restricted to R× 8T ∗bf M
2
b , i.e., restricted to lie over bf, then, forgetting the τ component, we

obtain the Legendre submanifold Lbf from Section 2E.5

As in Section 2E, the statement that an operator is Legendrian with respect to L means that its Schwartz
kernel can be expressed as an oscillatory function or oscillatory integral using a phase function that locally
parametrizes L . In the interior of X , this means a function 9(z, z′, v) such that, locally, using coordinates
(z, ζ, z′, ζ ′, τ ) on R×8T ∗M2

b , we have

L = {(z, dz9, z′, dz′9,9) | dv9 = 0}.

In particular, τ is equal to the value of the phase function when dv9 = 0. If there are no v variables,
the condition dv9 = 0 is omitted and then L is (essentially) the graph of the differential of 9. Near the
boundary bf, we use local coordinates (x, y, y′, σ, µ, ν, µ′, ν ′, τ ) and then a local parametrization of L
is given by a function 9(x, y, y′, σ, v)/x such that

L = {(x, y, y′, σ, dy9,9 − x dx9,−σ dσ9, σ−1 dy′9, dσ9,9) | dv9 = 0}.

We give some consequences of this result for the localized spectral measure needed in this pa-
per. As in the low energy case, the localized spectral measure refers to any operator of the form
Qhigh(λ) d E√H(λ) Qhigh(λ)∗ where Qhigh(λ) is a member of the partition of the identity operator from
Section 3C. As above, we write h = 1/λ.

Proposition 3.4. Let Qhigh
j (λ) be a member of the partition of the identity defined above. Then, for

j , k = 0, 1, the operator Qhigh
j (λ) d E√H(λ) Qhigh

k (λ)∗ satisfies the estimates on the right-hand side of
(1-16) and Qhigh

j (λ) d E√H(λ) Qhigh
j (λ)∗, j ≥ 2, can be written as a finite sum of terms of the following

three types:

(i) An oscillatory function of the form

h−(n−1)e±id(z,z′)/h ã(z, z′, h), (3-4)

where ã satisfies estimate (1-15).

(ii) An oscillatory integral supported in x , x ′ ≥ ε of the form

h−(n−1)
∫

Rn−1
ei9(z,z′,v)/hb(z, z′, v, h) dv, (3-5)

5The relation between the various Legendre submanifolds is explained in detail in [Hassell and Wunsch 2008, Part 1].
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where b is smooth in all its arguments and supported in a small neighbourhood of a point (z0, z0, v0, 0)
such that dv9(z0, z0, v0)= 0. Moreover, writing w = z− z′ and v = (v2, . . . , vn), one can rotate in the
w variables so that the function 9 =9(z, w, v) has the properties

dv j9 = w j + O(w1), (3-6a)

9 =

n∑
j=2

v j dv j9 + O(w1), (3-6b)

d2
v jvk

9 = w1 A jk, (3-6c)

9(z, z′, v)=±d(z, z′) if dv9 = 0, (3-6d)

where A jk is nondegenerate at (z0, z0, v0) and d(z, z′) is the Riemannian distance function on M◦×M◦.

(iii) An oscillatory integral supported near x = x ′ = 0 of the form

h−(n−1)
∫

Rn−1
ei9(y,y′,σ,x,v)/(hx)b(y, y′, σ, x, v, h) dv, (3-7)

where b is smooth in all its arguments and supported in a small neighbourhood of a point (y0, y0,1,0, v0,0)
such that dv9(y0, y0, 1, v0)= 0. Moreover, writing w = (w1, . . . , wn) for a set of coordinates defining
diagb ⊂ M2

b , i.e., w = (y− y′, σ − 1) and v = (v2, . . . , vn), one can rotate in the w variables so that the
function 9 =9(y, w, x, v) has the properties

dv j9 = w j + O(w1), (3-8a)

9 =

n∑
j=2

v j dv j9 + O(w1), (3-8b)

d2
v jvk

9 = w1 A jk, (3-8c)

9/x =±d(z, z′) if dv9 = 0, (3-8d)

where A jk is nondegenerate at (y0, y0, 1, 0, v0, 0).

Remark 3.5. Since λ= 1/h, this is an analogue of Proposition 2.6 for the case X = [0, h0]×M2
b .

Proof. The proof is analogous to the proof of Proposition 2.6, with the main difference being that the
computation takes place over the whole of M2

b (including the interior), not just at the boundary as in
the low energy case. We prove (ii), i.e., we work in the interior of M2

b , using coordinates (z, z′), with
z a coordinate on the left copy of M◦ and z′ on the right copy. The proof for (iii) is only notationally
different.

As in the low energy case, the Legendre submanifold L has the property that it intersects N ∗ diagb in
a codimension-1 submanifold and, in a deleted neighbourhood of N ∗ diagb, it projects in a 2:1 fashion
down to the base, mf= M2

b , so that the two sheets are parametrized by the phase functions ±d(z, z′).
We now apply [Guillarmou et al. 2013b, Lemma 7.6 and (ii) of Lemma 7.7]. This tells us that, for any

point in the microlocal support of Qhigh
j (λ) d E√H(λ) Qhigh

j (λ)∗, either there is a neighbourhood in which
L projects diffeomorphically to the base M2

b or the point lies at the conormal bundle to the diagonal, i.e.,
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z = z′ and ζ =−ζ ′. In the former case, the function ±d(z, z′) can be used directly as the phase function
and we obtain the statement (i) in the proposition. In the latter case, a phase function 9 depending on
n− 1 variables v2, . . . , vn can be constructed following the general approach of [Guillarmou et al. 2013b,
Proposition 7.5]. Since this was not written down explicitly in the coordinates (z, z′) valid in the interior
of M2

b , we sketch briefly how this is done. It follows from the proof of Lemma 7.6 of [Guillarmou et al.
2013b] that we can rotate coordinates so that w1, ζ2, . . . , ζn , z′ give coordinates on L locally. (The proof
of Lemma 7.6 shows that one can take (τ, ζ2, . . . , ζn, z′) but, since it is also shown that ∂z1/∂τ 6= 0, one
can substitute z1 for τ and then substitute w1 = z1− z′1 for z1.) One can therefore express the functions
w2, . . . , wn and τ on L as smooth functions W j (w1, ζ2, . . . , ζn, z′) and T (w1, ζ2, . . . , ζn, z′) of these
coordinates. Then the function

9(w, z′, v)=
n∑

j=2

(w j −W j (w1, ζ2, . . . , ζn, z′))v j + T (w1, ζ2, . . . , ζn, z′)

satisfies the requirements of (3-6) and parametrizes L locally. This is shown by adapting the argument
of [Guillarmou et al. 2013b, Proof of Proposition 6.2] in a straightforward way (which itself is a minor
variation on [Hörmander 1985, Theorem 21.2.18]), so we omit the details. This establishes part (iii) of
the proposition. When working close to x = x ′ = 0, we need to use coordinates as in [Guillarmou et al.
2013b, Proposition 7.5] and apply [Guillarmou et al. 2013b, Lemma 7.6 and (i) of Lemma 7.7], and we
end up with the statement in part (ii). �

Remark 3.6. The Lagrangian L is smooth up to the boundary when viewed as a submanifold in the
“scattering-fibred cotangent bundle” described in [Guillarmou et al. 2013a]. The boundary at bf is naturally
isomorphic to Lbf in Proposition 2.6. Correspondingly, we find that the distance function d(z, z′) on M2

b
satisfies

d(z, z′)− dconic

(
y, y′, 1

x
,
σ

x

)
= e(z, z′)

is a bounded function on M2
b or, more precisely, on that part of M2

b where x , x ′ ≤ η and d∂M(y, y′)≤ η
for sufficiently small η (see [Hassell et al. 2005, Lemma 9.4]). From this we see that the results of
Propositions 2.6 and 3.4 are compatible, as the factor exp (iλe(z, z′))— which is the discrepancy between
(2-10) and (3-4) and between (2-12d) and (3-6d) — can be absorbed in the symbols ã and b, respectively.

Remark 3.7. The results of this paper could be extended to long-range scattering metrics, as treated
in [Hassell et al. 2006]. However, this would require an extension of the results of [Hassell and Vasy
2001; Hassell and Wunsch 2008; Guillarmou et al. 2013a] to Lagrangian submanifolds which are only
conormal, rather than smooth, at the boundary. If this were done, then the discrepancy e(z, z′) between
the distance function and the conic distance function would no longer be smooth or even bounded, but
rather conormal at the boundary with a bound of the form (x + x ′)−1+ε at the boundary of M2

b , i.e., a
bit smaller than the distance functions themselves. In this case, the correct description of the localized
spectral measure would be with the true distance function d(z, z′) as phase function, rather than (2-10),
which is only true in the short-range case.
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The assumption on the potential could also be weakened; for example, one could assume that V only
decays as x2+ε as x→ 0, and is only conormal, rather than smooth, as x→ 0, instead of (1-5). However,
if one assumes only O(x2) decay then it is not clear whether Theorem 1.1 will hold. For example,
if V ∈ x2C∞(M) and V0 := x−2V |∂M takes values in the range

(
−

1
4(n− 2)2, 0

)
, then it follows from

[Guillarmou et al. 2013a, Corollary 1.5] that the L1
→ L∞ norm of the propagator is at least a constant

times t−(ν0+1) as t→∞, where ν2
0 is the smallest eigenvalue of 1∂M +V0+

1
4(n− 2)2. Under the above

assumption on the range of V0, we see that ν0 <
1
2 n− 1. This implies that the dispersive estimate (1-12)

will no longer be valid as |t− s|→∞. However, the implications of that for the global-in-time Strichartz
estimates are not clear; in the case of inverse-square potentials on Rn , global-in-time Strichartz estimates
hold despite the fact that the dispersive estimate is not known to hold for negative inverse-square potentials
[Burq et al. 2004b] (for positive inverse-square potentials, the dispersive estimate is proved in [Fanelli
et al. 2013]).

The problem, however, is only with the long-time Strichartz estimates; for estimates on a finite time
interval, the decay condition on V as x→ 0 could be weakened considerably.

4. Proof of Proposition 1.5

We now prove Proposition 1.5. We define our partition of unity Q j by combining the low-energy and
high-energy partitions. We choose a cutoff function χ(λ) supported in [0, 2] such that 1−χ is supported
in [1,∞) and define

Q1(λ)= χ(λ)(Qlow
0 + Qlow

1 )+ (1−χ(λ))(Qhigh
0 + Qhigh

1 ),

Q j (λ)= χ(λ)Qlow
j + (1−χ(λ))Q

high
j for 2≤ j ≤ Nl,

Q j (λ)= (1−χ(λ))Q
high
j for Nl + 1≤ j ≤ N .

(4-1)

We first note that the term with Q1(λ) satisfies (1-14) (with only the “b” term present) and (1-16),
according to Propositions 2.6 and 3.4. (In the case of low energies we also need to use Remark 3.6, which
tells us that we can replace the distance function by the conic distance function dconic in (1-14) without
affecting the estimates on the amplitudes a±.)

Next we prove the proposition for low energies, i.e., for λ≤ 2, and j ≥ 2. Consider the second type
of representation, (2-11), in Proposition 2.6. We break the estimate into various cases. We first observe
that estimates of the form (1-15) and (1-16) are unaffected by multiplication by a cutoff function of the
form χ(λd(z, z′)), where χ ∈ C∞c (R). Therefore, we may treat the cases λd(z, z′). 1 and λd(z, z′)& 1
separately. Consider first the case λd(z, z′). 1 or, equivalently, |w|. ρ. In this case, we show that (2-11)
has the form (1-14), where only the “b” term is present, satisfying (1-16). Thus, we need to show that

(λ ∂λ)
α

∫
Rn−1

eiλ8(y,w,v)/x ã
(
λ,

x
λ
, y, w1, v

)
dv

is uniformly bounded. For α = 0 this is obvious. So consider the effect of applying λ ∂λ. This is
harmless when it hits ã. When it hits the phase, it brings down a factor iλ8/x . We have λ8/x =8/ρ =
v · dv8/ρ+ O(w1/ρ) and, since |w|. ρ, the O(w1/ρ) is harmless. To treat the v · dv8/ρ term, we can
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write, using (2-12b),
v · dv8
ρ

ei8/ρ
=−iv · dvei8/ρ,

and integrating by parts we see that this term is O(1) after integration. Repeated applications of λ∂λ are
treated similarly.

Second, suppose that |w| ≥ Cρ for some large C but that |w1| ≤ ρ. For large enough C , this means
that dv j8 6= 0 for some j ≥ 2 since, by (2-12a), we have dv j8=w j − O(w1). So, by choosing j so that
|w j | is maximal and then C large enough, we have |dv j8| ≥ c|w|. Then we can write

ei8/ρ
=

(
ρ dv j

i dv j8

)N

ei8/ρ

and integrate by parts. Each integration by parts gains us a factor of ρ/|w|. Thus we can estimate (2-11)
by (1+ |w|/ρ)−K

= (1+ λd(z, z′))−K for any K . Estimating the terms for α > 0 is done just as in the
first case above.

Third, suppose that |w| ≥ C |w1| for some large C and that |w1| ≥ ρ. Then we can integrate by parts
and gain any number of factors of (1+ λd(z, z′))−1 as in the second case above.

Finally we come to the case where |w1| ≥ ρ and |w1| is comparable to |w|. In this case, we have
removed a neighbourhood of N ∗ diagb from the microlocal support of the localized spectral measure. As
discussed in Section 2, in this region the Lagrangian Lbf is a union of two sheets, each of which projects
diffeomorphically to the base bf and is parametrized by the phase function ±dconic (in terms of the phase
function 8 as in (2-11)–(2-12), this simply corresponds to the sign of w1). We can thus split this case
into two parts, according to the sign of w1, which give rise to the “±” terms in (1-14).

In this case, the key is to exploit property (2-12c). Define

8̃(x, y, w, v)= |w1|
−1(8(y, w, v)∓ xd(z, z′)) (4-2)

and let ω = |w1|/ρ; then we need to estimate

λα ∂αλ a(λ, z, z′)=
∑

β+γ=α

α!

β!γ !
ωβ
∫

Rn−1
eiω8̃(x,y,w,v)8̃β(λγ ∂

γ

λ ã)(λ, ρ, y, w1, v) dv.

Let b̃ = λγ ∂γλ ã; then |∂γλ b̃| ≤ Cγλ−γ . Thus, noting ω ≥ 1, it suffices to show that, for any 0≤ β ≤ α,∣∣∣∣∫
Rn−1

eiω8̃(x,y,w,v)(ω8̃)β b̃(λ, ρ, y, w1, v) dv
∣∣∣∣≤ Cω−(n−1)/2. (4-3)

To proceed, we fix (x, y, w) with w 6= 0 (and hence w1 6= 0 due to our assumption that |w1| is comparable
to |w|). We use a cutoff function ϒ to divide the v integral into two parts: one on the support of ϒ , in
which |dv8̃| ≥ 1

2 ε̃, and the other on the support of 1−ϒ , in which |dv8̃| ≤ ε̃. On the support of ϒ , we
integrate by parts in v and gain any power of ω−1, proving (4-3). On the support of 1−ϒ , we make the
variable change

(v2, . . . , vn)→ (θ2, . . . , θn), θi = dvi 8̃, i = 2, . . . , n.
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Note that, by property (2-12c),
∂θ j

∂vk
= d2

v jvk
8̃=±A jk .

The nondegeneracy of A jk shows that this change of variables is locally nonsingular provided ε̃ is
sufficiently small. Thus, for each point v in the support of 1−ϒ , there is a neighbourhood in which we
can change variables to θ as above. Using the compactness of the support of b in (2-11), we see that there
are a finite number of neighbourhoods covering the intersection of the support of ϒ and the v-support
of b. For simplicity of exposition, we assume that there is only one such neighbourhood U below.

Let Bδ := {θ : |θ | ≤ δ} and choose a C∞ function χBδ
(θ) which equals 1 on the set Bδ but equals 0

outside B2δ, with bounds on the derivatives given by

|∇
( j)
θ χBδ

(θ)| ≤ Cδ− j .

Here δ is a parameter to be chosen later (depending on ω). Consider the integral (4-3) after changing
variables and with the cutoff function χBδ

(θ) inserted (note that 1−ϒ = 1 on the support of χBδ
(θ),

provided δ ≤ 1
2 ε̃): ∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)χBδ

(θ)
dθ

|A−1(y, w, θ)|

∣∣∣∣.
Using property (2-12d), we see that 8̃= 0 when θ = 0. Also, due to our choice of θ , we have dθ8̃= 0
when θ = 0, so 8̃= O(|θ |2). Hence,∣∣∣∣ωβ∫ eiω8̃(x,y,w,θ)8̃β b̃(λ, ρ, y, w1, θ)χBδ

(θ)
dθ

|A−1(y, w, θ)|

∣∣∣∣≤ C(ωδ2)βδn−1.

It remains to treat the integral with cutoff 1−χBδ
(θ) inserted. Notice that |dθ8̃| is comparable to |θ |

since dθ8̃= 0 when θ = 0, and

d2
θi θ j
8̃=

∑
k,l

(A−1)il(A−1) jk d2
vkvl
8̃

is nondegenerate when θ = 0. We define the differential operator L by

L =
−i dθ8̃ · ∂θ
ω|dθ8̃|2

.

Then the adjoint operator is given by

tL =−L +
i
ω

(
1θ8̃

|dθ8̃|2
− 2

d2
θ j θk
8̃ dθ j 8̃ dθk 8̃

|dθ8̃|4

)
.

Since Leiω8̃
= eiω8̃, we integrate by parts N times to obtain∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ

(θ))(1−ϒ) dθ
∣∣∣∣

≤ C
∫ ∣∣(tL)N ((ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ

(θ))(1−ϒ)
)∣∣ dθ.
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Inductively, we find that∣∣(tL)N ((ω8̃)β b̃(1−χBδ
)(1−ϒ)

)∣∣≤ Cω−N+β max{|θ |2β−2N , |θ |2β−N δ−N
}.

Choosing N large enough, we get∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ
)(1−ϒ) dθ

∣∣∣∣≤ ω−N+β
∫
|θ |≥δ

(|θ |2β−2N
+|θ |2β−N δ−N ) dθ

≤ Cω−N+βδ2β−2N δn−1.

Choose δ = ω−1/2 to balance the two parts of the integral (with χBδ
and with 1−χBδ

). We finally obtain∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−ϒ) dθ
∣∣∣∣≤ Cω−(n−1)/2,

which proves (4-3), as desired.
We next sketch how to prove (1-16) in the high-energy case i > Nl . In terms of Proposition 3.4,

consider a term of type (iii); it suffices to show

a(h, z, z′)= e∓id(z,z′)/h
∫

Rn−1
ei9(y,w,x,v)/(xh)b(h, x, y, w1, v) dv,

satisfies

|(h ∂h)
αa(h, z, z′)| ≤ Cα

(
1+
|w|

xh

)− n−1
2
.

Notice that λ = 1/h and 9 has the same properties (2-12a)–(2-12d) as 8. Therefore the low energy
proof works verbatim, with the argument x of 9 acting as a smooth parameter, and leads to the desired
conclusion. The proof in case (ii) works in exactly the same way, with w given by z− z′.

Remark 4.1. To illustrate this theorem, consider the case of the spectral measure on flat R3, which is

d E√1(λ)(z, z′)=
1

2π2

λ2 sin λ|z− z′|
λ|z− z′|

dλ.

We decompose this, using the cutoff function χ as in (4-1), according to the size of λ|z − z′|. Where
λ|z− z′| ≥ 1, that is, more than one wavelength from the diagonal, we split the sine factor into exponential
terms. Within O(1) wavelengths of the diagonal, however, we keep the sine factor as is, to exploit the
cancellation in the difference e+iλ|z−z′|

− e−iλ|z−z′| when λ|z− z′| is small. This gives us an expression

λ2

2π2

(
(1−χ)(λ|z− z′|)

eiλ|z−z′|

2iλ|z− z′|
− (1−χ)(λ|z− z′|)

e−iλ|z−z′|

2iλ|z− z′|
+χ(λ|z− z′|)

sin λ|z− z′|
λ|z− z′|

)
.

This is a decomposition into “±” and “b” terms as in (1-14), where the amplitudes satisfy (1-15) and (1-16).
So, we can think of the b term as the near-diagonal term and the other terms as related to the two sheets of
the Lagrangian L or Lbf, which are separated away from the diagonal. The function of the microlocalizing
operators Q j (λ) (which are not required in the case of flat Euclidean space) is to remove parts of the
Lagrangian that do not project diffeomorphically to the base.
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5. L2 estimates

In this section, we prove L2
→ L2 estimates on microlocalized versions of the Schrödinger propagator,

using the operator partition of unity Q j described at the beginning of the previous section, based on
[Guillarmou et al. 2013b].

We begin by defining microlocalized propagators. First we give a formal definition. It is not immediately
clear that the formal definition is well defined, so our first task is to show this. We do so by showing that
each microlocalized propagator is a bounded operator on L2. This serves both to show the well-definedness
of each microlocalized propagator and to establish the L2

→ L2 estimate needed for the abstract Keel–Tao
argument.

We define, as in the introduction,

U j (t)=
∫
∞

0
ei tλ2

Q j (λ) d E√H(λ), (5-1)

where Q j is the decomposition defined in (4-1).
Our first task is to make sense of this expression. We do this by showing that each U j (t) is a bounded

operator on L2(M◦). We have:

Proposition 5.1. For each j , the integral (5-1) defining U j (t) is well defined on each finite interval and
converges on R+ in the strong operator topology to define a bounded operator on L2(M◦). Moreover, the
operator norm of U j (t) on L2(M◦) is bounded uniformly for t ∈ R. Finally, we have∑

j

U j (t)= ei t H . (5-2)

Proof. Suppose that A(λ) is a family of bounded operators on L2(M◦), compactly supported and C1

in λ ∈ (0,∞). Integrating by parts, ∫
∞

0
A(λ) d E√H(λ)

is given by

−

∫
∞

0

( d
dλ

A(λ)
)

E√H(λ) dλ.

In view of Corollaries 2.5 and 3.3, we can take A(λ) to be a smooth function of λ with compact support
in (0,∞) multiplied by ei tλ2

Q j (λ). This means that the integral (5-1) is well defined over any compact
interval in (0,∞). We need to show that the integral over the whole of R+ converges in the strong
operator topology. To do so, we introduce a dyadic partition of unity on the positive λ axis by choosing
φ ∈ C∞c

([1
2 , 2

])
, taking values in [0, 1], such that∑

m∈Z

φ

(
λ

2m

)
= 1.

We now define

U j,m(t)=−
∫
∞

0

d
dλ

(
ei tλ2

φ

(
λ

2m

)
Q j (λ)

)
E√H(λ). (5-3)



GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS 177

We next show that the sum over m of the operators U j,m(t) in (5-3) is well defined. For this we use
the Cotlar–Stein lemma, which we recall here (we use the version in [Grafakos 2009, Chapter 8]):

Lemma 5.2 (Cotlar–Stein lemma). Suppose that {A j } is a sequence of bounded linear operators on a
Hilbert space H such that

‖A∗m An‖H→H ≤ (γ (m− n))2, ‖Am A∗n‖H→H ≤ (γ (m− n))2, (5-4)

where {γ (m)}m∈Z is a sequence of positive constants such that C =
∑

m∈Z γ (m)<∞. Then, for all f ∈ H ,
the sequence

∑
|m|≤N Am f converges as N→∞ to an element A f ∈ H. The operators A=

∑
m Am and

A∗ =
∑

m A∗m so defined (in the strong operator topology) satisfy

‖A‖H→H ≤ C, ‖A∗‖H→H ≤ C. (5-5)

Moreover, the operator norms of
∑

m∈J Am and
∑

m∈J A∗m are bounded by C for any finite subset J of
the integers.

We also use the following lemma:

Lemma 5.3. Suppose that Al(λ) for l = 1, 2 is a family of operators compactly supported in λ in the
open interval (0,∞) with Al(λ) and ∂λAl(λ) uniformly bounded on L2(M◦). Define

Bl =

∫
Al(λ) d E√H(λ).

Then

B1 B∗2 =
∫

A1(λ) d E√H(λ) A2(λ)
∗,

where by definition the last expression is equal to∫ (
−

d
dλ

A1(λ)

)
E√H(λ)A2(λ)− A1(λ)E√H(λ)

(
d

dλ
A2(λ)

)
. (5-6)

Proof. We compute

B1 B∗2 =
∫∫ (

d
dλ

A1(λ)

)
E√H(λ)E

√
H(µ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

=

∫∫
λ≤µ

(
d

dλ
A1(λ)

)
E√H(λ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

+

∫∫
µ≤λ

(
d

dλ
A1(λ)

)
E√H(µ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

=

∫ (
d

dλ
A1(λ)

)
E√H(λ)(−A2(λ)

∗) dλ+
∫
(−A1(µ))E√H(µ)

(
d

dµ
A2(µ)

∗

)
dµ

= (5-6). (5-7)

This concludes the proof. �
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Now we show that the sum in (5-3) is well defined. We first note a simplification: since the Q j (λ) are
a partition of the identity, we have

Vm(t) :=
N∑

j=1

U j,m(t)=
∫

ei tλ2
χ(λ)φ

(
λ

2m

)
d E√H(λ),

which is clearly bounded on L2(M◦) with operator norm bounded by 1 using spectral theory. Moreover,
the sum of any subset of the Vm converges strongly to an operator with norm bounded by 1. Due to this,
we may ignore the case j = 1 and prove the L2 boundedness only for j ≥ 2.

We have, by Lemma 5.3,

U j,m(t)U j,n(t)∗ =
∫
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ) d E√H(λ) Q j (λ)

∗

= −

∫
d

dλ

(
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ)

)
E√H(λ)Q j (λ)

∗

−

∫
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ)E√H(λ)

d
dλ

Q j (λ)
∗. (5-8)

We observe that this is independent of t and is identically zero unless |m−n| ≤ 2. When |m−n| ≤ 2, we
note that the integrand is a bounded operator on L2, with an operator bound of the form C/λ, where C is
uniform, as we see from Corollary 2.5 and the support property of φ. The integral is therefore uniformly
bounded, as we are integrating over a dyadic interval in λ.

We next consider the operators U∗j,m(0)U j,n(0), just in the case t = 0. This has an expression∫∫
E√H(λ)

d
dλ

(
φ

(
λ

2m

)
Q j (λ)

∗

)
d

dµ

(
Q j (µ)φ

(
µ

2n

))
E√H(µ) dλ dµ.

It is clear that each of these operators is uniformly bounded in m, n in operator norm. To apply Cotlar–
Stein, we show a estimate of the form C2−|m−n| for the operator norm of this term. Write Q∗j,m(λ) and
Q j,n(µ) for the operators in parentheses above. Consider first the case 2 ≤ j ≤ Nl , in which Q j has
Schwartz kernel supported near the boundary of the diagonal. For convenience of exposition, we assume
that λ, µ≤ 2 (or, equivalently, m, n ≤ 1). Then, by the construction of Q j for 2≤ j ≤ Nl (see Section 2D
and (4-1)), the scattering pseudodifferential operators Q∗j,m(λ) and Q j,n(µ) are smooth and compactly
supported in x ′/λ and x ′/µ, respectively, and are microlocally supported near the characteristic set. More
precisely, we see the composition of the two scattering pseudodifferential operators for j ≥ 2 takes the
form

Q∗j,m(λ)Q j,n(µ)=

∫
e−iλ((y−y′)·η+(σ−1)ν)/x ′eiµ((y′−y′′)·η′+(σ ′−1)ν′)/x ′

× q j,m

(
λ, y′,

x ′

λ
, η, ν

)
q j,n

(
µ, y′,

x ′

µ
, η′, ν ′

)
dx ′ dy′ dη dν dη′ dν ′,

where σ = x ′/x and σ ′ = x ′/x ′′, and q j,m and q j,n are smooth and polyhomogeneous in λ and µ and
compactly supported in x ′/λ, x ′/µ and y′. In addition, we have ν2

+ |η|2 ≥ 1
4 and ν ′ 2+ |η′|2 ≥ 1

4 on the



GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS 179

support of q j,mq j,n . By symmetry, we assume λ > µ without loss of generality. Let us introduce the
operator

L= i[λ(|ν|2+ |η|2)]−1(x ′η ∂y′ − νx ′2 ∂x ′);

then Le−iλ((y−y′)·η+(σ−1)ν)/x ′
= e−iλ((y−y′)·η+(σ−1)ν)/x ′ . By using L to integrate by parts, we gain the

factor λ−1 since |ν|2+ |η|2 is uniformly bounded from below; we incur a factor µ if the derivative falls
on eiµ((y′−y′′)·η′+(σ ′−1)ν′)/x ′ , or a factor of x ′ or x ′2/µ if the derivative falls on q j,m or q j,n . Since x ′ ≤ µ
on the support of q j,m , we have an overall gain of µ/λ∼ 2−|m−n|. The L2 boundedness of the spectral
projection gives ‖U∗j,m(0)U j,n(0)‖L2→L2 ≤ C2−|m−n|.

A similar argument works if one or both of m and n are at least 1.
A similar estimate is true in the case Nl + 1 ≤ j ≤ N , in which case we are automatically in the

high-energy case, and with Schwartz kernels supported in the interior of M◦×M◦. The argument is also
almost exactly the same as the previous case. We can write the composition

d
dλ

(
φ

(
λ

2 j

)
Q j (λ)

∗

)
d

dµ

(
Q j (µ)φ

(
µ

2k

))
in the form

λnµn
∫∫∫

eiλ(z−z′′)·ζq j,m(z′′, ζ, λ)eiµ(z′′−z′)·ζ ′q j,n(z′′, ζ ′, µ) dζ dζ ′ dz′′, (5-9)

where q j,m is supported where λ ∼ 2m and |ζ |2 ∼ 1, and is such that Dα
z Dβ

ζ q j,m is bounded by Cλ−1.
Assume without loss of generality that m > n, i.e., λ > µ on the support of the integrand. We note that
the differential operator

L=
iζ · ∂z′′

λ|ζ |2

leaves eiλ(z−z′′)·ζ invariant, so we can apply it to this phase factor in the integral (5-9). Integrating by
parts, the ∂z′′ derivative either hits the other phase factor eiµ(z′′−z′)·ζ ′ , in which case we incur a factor of µ,
or it hits one of the symbols qi, j or qi,k , in which case we incur no factor. Thus, we gain a factor of
either µ/λ∼ 2−| j−k| or 1/λ— which is even better since µ > 1 on the support of q j,n(z′′, ζ ′, µ). This
completes the Cotlar–Stein estimates for Ui (0).

It now follows from the Cotlar–Stein lemma that U j (0)∗, j = 2, . . . , N , is well-defined as the strong
limit of the sequence of operators ∑

|m|≤l

U j,m(0)∗.

Consider the sequence
∑
|m|≤l U j,m(t)∗. We claim that this sequence converges strongly and define U j (t)∗

to be this limit. To prove this claim, choose an arbitrary f ∈ L2(M◦). We have shown that

lim
l→∞

sup
L>l

∥∥∥∥ ∑
l≤|m|≤L

U j,m(0)∗ f
∥∥∥∥2

2
= 0.

This is equivalent to
lim

l→∞
sup
L>l

∑
l≤|m|,|m′|≤L

〈U j,m(0)U j,m′(0)∗ f, f 〉 = 0.
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But we saw in (5-8) that U j,m(0)U j,m′(0)∗ =U j,m(t)U j,m′(t)∗. Hence we have

lim
l→∞

sup
L>l

∑
l≤|m|,|m′|≤L

〈U j,m(t)U j,m′(t)∗ f, f 〉 = 0,

which implies that

lim
l→∞

sup
L>l

∥∥∥∥ ∑
l≤|m|≤L

U j,m(t)∗ f
∥∥∥∥2

2
= 0.

Hence the sequence
∑
|m|≤l U j,m(t)∗ f converges for every f ∈ L2(M◦) as l →∞, i.e., the sequence∑

|m|≤l U j,m(t)∗ converges strongly. We see from this that the integral∫
e−i tλ2

d E√H(λ) Q j (λ)
∗

converges in the strong topology, hence defines U j (t)∗. Finally we show that the operator norm of U j (t)∗

is bounded uniformly in t . Since
∑
|m|≤l U j,m(t)∗ converges in the strong operator topology, we have

‖U j (t)∗‖ ≤ sup
l→∞

∥∥∥∥∑
|m|≤l

U j,m(t)∗
∥∥∥∥.

But we have∥∥∥∥∑
|m|≤l

U j,m(t)∗
∥∥∥∥2

=

∥∥∥∥ ∑
|m|,|m′|≤l

U j,m(t)U j,m′(t)∗
∥∥∥∥= ∥∥∥∥ ∑

|m|,|m′|≤l

U j,m(0)U j,m′(0)∗
∥∥∥∥= ∥∥∥∥∑

|m|≤l

U j,m(0)∗
∥∥∥∥2

and the operator norm of
∑
|m|≤l U j,m(0)∗ is bounded uniformly in l by the estimates proved above using

the Cotlar–Stein lemma.
This completes the proof of Proposition 5.1. �

Remark 5.4. This argument allows us to avoid using a Littlewood–Paley-type decomposition in this
setting. Littlewood–Paley-type estimates were established in [Bouclet 2010] for asymptotically conic
manifolds in the form of

‖ f ‖L p .

(∑
k≥0

‖φ(2−2k1g) f ‖2L p

)1
2

+

∥∥∥∥∑
k≤0

φ(2−2k1g) f
∥∥∥∥

L p
.

6. Dispersive estimates

In this section, we use stationary phase and Proposition 1.5 to establish the microlocalized dispersive
estimates.

Proposition 6.1 (microlocalized dispersive estimates). Let Q j (λ) be as defined in (4-1). Then, for all
integers j ≥ 1, the kernel estimate∣∣∣∣∫ ∞

0
ei tλ2

(Q j (λ) d E√H(λ) Q∗j (λ))(z, z′) dλ
∣∣∣∣≤ C |t |−n/2 (6-1)

holds for a constant C independent of points z, z′ ∈ M◦.
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Proof. The key to the proof is to use the estimates in Proposition 1.5. We first consider j = 1. Since the
term with Q1(λ) satisfies (1-14) with only the “b” term, then we can use the estimate (1-16) to obtain∣∣∣∣( d

dλ

)N

(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′)
∣∣∣≤ CNλ

n−1−N for all N ∈ N. (6-2)

Let δ be a small constant to be chosen later. Recall that we chose φ∈C∞c
([1

2 , 2
])

with
∑

m∈Z φ(2
−mλ)=1;

we write φ0(λ)=
∑

m≤−1 φ(2
−mλ). Then∣∣∣∣∫ ∞

0
ei tλ2

(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′)φ0

(
λ

δ

)
dλ
∣∣∣∣≤ C

∫ δ

0
λn−1 dλ≤ Cδn.

We use integration by parts N times to obtain, using (6-2),∣∣∣∣∫ ∞
0

ei tλ2 ∑
m≥0

φ

(
λ

2mδ

)
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣
≤

∑
m≥0

∣∣∣∣∫ ∞
0

(
1

2λt
∂

∂λ

)N

(ei tλ2
)φ

(
λ

2mδ

)
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣
≤ CN |t |−N

∑
m≥0

∫ 2m+1δ

2m−1δ

λn−1−2N dλ

≤ CN |t |−N δn−2N .

Choosing δ = |t |−1/2, we have thus proved∣∣∣∣∫ ∞
0

ei tλ2
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣≤ CN |t |−n/2. (6-3)

Now we consider the case j ≥ 2. Let r = d(z, z′) and r̄ = r t−1/2. In this case, we write the kernel
using Proposition 1.5 as∫
∞

0
ei tλ2(

Q j (λ) d E√H(λ) Q∗j (λ)
)
(z, z′) dλ

=

∑
±

∫
∞

0
ei tλ2

e±irλλn−1a±(λ, z, z′) dλ+
∫
∞

0
ei tλ2

λn−1b(λ, z, z′) dλ

= t−n/2
∑
±

∫
∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′) dλ+
∫
∞

0
ei tλ2

λn−1b(λ, z, z′) dλ, (6-4)

where a± satisfies
|∂αλ a±(λ, z, z′)| ≤ Cαλ−α(1+ λd(z, z′))−(n−1)/2,

and therefore
|∂αλ (a±(t

−1/2λ, z, z′))| ≤ Cαλ−α(1+ λr̄)−(n−1)/2. (6-5)

By (1.16), the above term with b(λ, z, z′) can be estimated by using the same argument as for Q1. Now
we consider first term in the right-hand side of (6-4). We divide it into two pieces using the partition of
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unity above. It suffices to prove that there exists a constant C independent of r̄ such that

I± :=
∣∣∣∣∫ ∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′)φ0(λ) dλ
∣∣∣∣≤ C,

II± :=
∣∣∣∣∑
m≥0

∫
∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′)φ
(
λ

2m

)
dλ
∣∣∣∣≤ C.

The estimate for I± is obvious, since λ≤ 1. For II+, we use integration by parts. Notice that

L+(eiλ2
+i r̄λ)= eiλ2

+i r̄λ, L+ =
−i

2λ+ r̄
∂

∂λ
.

Writing

eiλ2
+i r̄λ
= (L+)N (eiλ2

+i r̄λ)

and integrating by parts, we gain a factor of λ−2N thanks to (6-5). Thus II+ can be estimated by

∑
m≥0

∫
λ∼2m

λn−1−2N dλ≤ C.

To treat II−, we introduce a further decomposition, based on the size of r̄λ. We write II− = II−1 + II−2 ,
where (dropping the − superscripts and subscripts from here on)

II1 =

∣∣∣∣∑
m≥0

∫
eiλ2

e−i r̄λλn−1a(t−1/2λ, z, z′)φ
(
λ

2m

)
φ0(4r̄λ) dλ

∣∣∣∣,
II2 =

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))(1−φ0(4r̄λ)) dλ

∣∣∣∣.
Let 8(λ, r̄) = λ2

− r̄λ. We first consider II1. Since the integral for II1 is supported where λ ≤ (4r̄)−1

and λ≥ 1
2 , the integrand is only nonzero when r̄ ≤ 1

2 . Therefore, |∂λ8| = 2λ− r̄ ≥ 1
2λ. Define the operator

L = L(λ, r̄)= (2λ− r̄)−1 ∂λ. By (6-5) and using integration by parts, we obtain, for N > 1
2 n,

II1 ≤
∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)φ

(
λ

2m

)
φ0(4r̄λ) dλ

∣∣∣∣
=

∑
m≥0

∣∣∣∣∫ L N (ei(λ2
−r̄λ))

[
λn−1a(t−1/2λ, z, z′)φ

(
λ

2m

)
φ0(4r̄λ)

]
dλ
∣∣∣∣

≤ CN

∑
m≥0

∫
|λ|∼2m

λn−1−2N dλ

≤ CN .
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Finally, we consider II2. Here, we replace the decomposition
∑

m φ(2
−mλ)with a different decomposition,

based on the size of ∂λ8:

II2 ≤

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ0(2λ− r̄)(1−φ0(4r̄λ)) dλ

∣∣∣∣
+

∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ)) dλ

∣∣∣∣
:= II1

2+ II2
2.

If r̄ ≤ 10, then for the integrand of II1
2 to be nonzero we must have λ≤ 10, due to the φ0 factor. Then it is

easy to see that II1
2 is uniformly bounded. If r̄ ≥ 10, we have r̄ ∼ λ since |2λ− r̄ | ≤ 1. Hence, using (6-5)

with α = 0,

II1
2 ≤

∫
|2λ−r̄ |≤1

λn−1(1+ r̄λ)−(n−1)/2 dλ≤ C.

Now we consider the second term. Integrating by parts, we show by (6-5) that

II2
2 ≤

∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ)) dλ

∣∣∣∣
=

∑
m≥0

∣∣∣∣∫ L N (ei(λ2
−r̄λ))

[
λn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ))

]
dλ
∣∣∣∣

≤ CN

∑
m≥0

2−m N
∫
|2λ−r̄ |∼2m

λn−1(1+ r̄λ)−(n−1)/2 dλ.

If r̄ ≤ 2m+1, then λ ≤ 2m+2 on the support of the integrand. The m-th term can then be estimated by
CN 2−m N 2(m+2)n , which is summable for N > n. Otherwise, we have λ∼ r̄ , which means the integrand
is bounded and we estimate the m-th term by CN 2−m N 2m , which is summable for N > 1. Therefore, we
have completed the proof of Proposition 6.1. �

7. Homogeneous Strichartz estimates

We use the L2 estimates and the microlocalized dispersive estimates to conclude the proof of Theorem 1.1.
By Proposition 5.1, we have, for all t ∈ R and all u0 ∈ L2,

‖U j (t)u0‖L2(M◦) . ‖u0‖L2(M◦).

By Lemma 5.3,

U j (s)U∗j (t) f =
∫
∞

0
ei(s−t)λ2

Q j (λ) d E√H(λ) Q∗j (λ) f.

Hence we have the decay estimates, by Proposition 6.1,

‖U j (s)U∗j (t) f ‖L∞ . |t − s|−n/2
‖ f ‖L1 .
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As a consequence of the Keel–Tao abstract Strichartz estimate [1998], we have

‖U j (t)u0‖Lq (R;Lr (M◦)) . ‖u0‖L2(M◦), (7-1)

where (q, r) is sharp n
2 -admissible, that is, q , r ≥ 2, (q, r, n) 6= (2,∞, 2) and 2

q +
n
r =

n
2 . By the definition

of U j (t) based on the construction of Q j , we see that

ei t H
=

N∑
j=1

U j (t). (7-2)

Combining (7-1) and (7-2) proves the long-time homogeneous Strichartz estimate.

8. Inhomogeneous Strichartz estimates

In this section, we prove Theorem 1.2, including at the endpoint (q, r)= (q̃, r̃)= (2, 2n/(n−2)) for n≥ 3.
Let U(t)= ei t H

: L2
→ L2. We have already proved that

‖U(t)u0‖Lq
t Lr

z
. ‖u0‖L2

holds for all (q, r) satisfying (1-2). By duality, the estimate is equivalent to∥∥∥∥∫
R

U(t)U∗(s)F(s) ds
∥∥∥∥

Lq
t Lr

z

. ‖F‖
L q̃′

t L r̃ ′
z
,

where both (q, r) and (q̃, r̃) satisfy (1-2). By the Christ–Kiselev lemma [2001], we obtain, for q > q̃ ′,∥∥∥∥∫
s<t

U(t)U∗(s)F(s) ds
∥∥∥∥

Lq
t Lr

z

. ‖F‖
L q̃′

t L r̃ ′
z
. (8-1)

Notice that q̃ ′ ≤ 2 ≤ q; therefore, we have proved all inhomogeneous Strichartz estimates except the
endpoint (q, r) = (q̃, r̃) = (2, 2n/(n − 2)). To treat the endpoint, we need to show the bilinear form
estimate

|T (F,G)| ≤ ‖F‖L2
t Lr ′

z
‖G‖L2

t Lr ′
z
, (8-2)

where r = 2n/(n− 2) and T (F,G) is the bilinear form

T (F,G)=
∫∫

s<t
〈U(t)U∗(s)F(s),G(t)〉L2 ds dt. (8-3)

Theorem 1.2 follows from:

Proposition 8.1. There exists a partition of the identity Q j (λ) on L2(M◦) such that, with U j (t) defined
as in (5-1), there exists a constant C such that, for each pair ( j, k), either∫∫

s<t
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z

(8-4)

or
∫∫

s>t
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z
. (8-5)
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Proof of Theorem 1.2 assuming Proposition 8.1. We have proved that, for all 1≤ j ≤ N ,

‖U j (t)u0‖L2
t Lr

z
. ‖u0‖L2;

hence it follows by duality that, for all 1≤ j , k ≤ N ,∫∫
R2
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z
. (8-6)

Subtracting (8-5) from (8-6) shows that (8-4) holds for every pair ( j, k). Then, by summing over all j
and k, we obtain (8-2). �

To prove Proposition 8.1 we use the following lemma, proved in [Guillarmou and Hassell 2014,
Lemmas 5.3 and 5.4].

Lemma 8.2. The partition of the identity Q j (λ) can be chosen so that the pairs of indices ( j, k),
1≤ j , k ≤ N , can be divided into three classes,

{1, . . . , N }2 = Jnear ∪ Jnot-out ∪ Jnot-inc,

such that

• if ( j, k) ∈ Jnear, then Q j (λ) d E√H(λ) Qk(λ)
∗ satisfies the conclusions of Proposition 1.5;

• if ( j, k) ∈ Jnon-inc, then Q j (λ) is not incoming-related to Qk(λ), in the sense that no point in the
operator wavefront set (microlocal support) of Q j (λ) is related to a point in the operator wavefront
set of Qk(λ) by backward bicharacteristic flow;

• if ( j, k) ∈ Jnon-out, then Q j (λ) is not outgoing-related to Qk(λ), in the sense that no point in the
operator wavefront set of Q j (λ) is related to a point in the operator wavefront set of Qk(λ) by
forward bicharacteristic flow.

We exploit the not-incoming or not-outgoing property of Q j (λ) with respect to Qk(λ) in the following
two lemmas.

Lemma 8.3. Let Q j (λ) and Qk(λ) be such that Q j is not outgoing-related to Qk . Then, for λ≤ 2, as a
multiple of |dg dg′|1/2 |dλ| the Schwartz kernel of Q j (λ) d E√H(λ) Qk(λ)

∗ can be expressed as the sum
of a finite number of terms of the form

λn−1
∫

Rk
eiλ8(y,y′,σ,v)/x

(
x ′

λ

)n−1
2 −

k
2

a
(
λ, y, y′, σ,

x ′

λ
, v

)
dv (8-7)

or λn−1
∫

Rk−1

∫
∞

0
eiλ8(y,y′,σ,v,s)/x

(
x ′

λs

)n−1
2 −

k
2

sn−2a
(
λ, y, y′, σ,

x ′

λ
, v, s

)
ds dv (8-8)

in the region σ = x/x ′ ≤ 2, x ′/λ≤ 2, or

λn−1a
(
λ, y, y′, σ,

x ′

λ

)
(8-9)

in the region σ = x/x ′ ≤ 2, x ′/λ ≥ 1, where, in each case, 8 < −ε < 0 and a is a smooth function,
compactly supported in the v and s variables (where present), such that |(λ ∂λ)N a| ≤ CN for all N ∈ N.
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In each case, we may assume that k ≤ n− 1; if k = 0 in (8-7) or k = 1 in (8-8) then there is no variable v
and no v integral. The key point is that, in each expression, the phase function is strictly negative.

If , instead, Q j is not incoming-related to Qk , then the same conclusion holds with the reversed sign:
the Schwartz kernel can be written as a finite sum of terms with a strictly positive phase function.

Remark 8.4. For σ ≥ 1
2 , the Schwartz kernel has a similar description, as follows immediately from the

symmetry of the kernel under interchanging the left and right variables.

Proof. The statement that the Schwartz kernel has the indicated forms above follows immediately from the
description of the spectral measure in [Guillarmou et al. 2013a, Theorem 3.10] as a Legendre distribution
in the class I m,p;rlb,rrb(M2

k,b, (L
bf, L]);�1/2

k,b ), where m = −1
2 , p = 1

2(n − 2) and rlb = rrb =
1
2(n − 1).

The bound on k follows from the fact that k can be taken as the drop in rank of the projection from Lbf to
the base (∂M)2× (0,∞)σ , which is the front face (that is, the face created by blow-up) of M2

b . We claim
that the drop in rank is at most n− 1, which proves that we may assume that k ≤ n− 1. To prove this
claim, we show that the differentials dy1, . . . dyn−1 and at least one of dσ , dy′1, . . . , dy′n−1 are linearly
independent on L . This can be seen from the description of L as the flowout from the set

{(y, y, 1, µ,−µ, ν,−µ) | ν2
+ h(µ)= 1}, (8-10)

using the coordinates of (2-6), by the flow of the vector field Vr , which is the vector field given by x−1

multiplied by the Hamilton vector field of the principal symbol of 1 acting in the right variables on M2
k,b.

In fact, Vr = sin s ′ ∂s′ in the coordinates (s, s ′) on the leaves γ 2 of (2-6) and takes the form (see [Hassell
and Vasy 2001, Equation (2.26)] or [Guillarmou et al. 2013a, Equation (3.5)])

2ν ′σ
∂

∂σ
− 2ν ′µ′ ·

∂

∂µ′
+ h′

∂

∂ν ′
+

(
∂h′

∂µ′

∂

∂y′
−
∂h′

∂y′
∂

∂µ′

)
, h′ = h(y′, µ′)=

∑
i, j

hi j (y′)µ′iµ
′

j .

It is clear that dy1, . . . , dyn−1 are linearly independent at the initial set (8-10). Moreover, their Lie
derivative with respect to Vr vanishes, so they are linearly dependent on all of Lbf. Also, since h′+ν ′2= 1
on Lbf, either the ∂σ or the ∂y′ component of the vector field Vr does not vanish, unless σ = 0, showing
that either dσ or one of the dy′i do not vanish at each point of Lbf for σ 6= 0. But it was shown in [Hassell
and Vasy 2001] that Lbf is transversal to the boundary at σ = 0, which means that dσ 6= 0 on Lbf when σ
is small. This proves the claim.

We next show that 8 can be taken to be strictly negative. We use the microlocal support estimates from
[Guillarmou et al. 2013b]. Applying [Guillarmou et al. 2013b, Corollary 5.3], we find that the microlocal
support of Q j (λ) d E√H(λ) Qk(λ)

∗ is contained in that part of Lbf where, in the notation of (2-6), s < s ′

(since the initial set (8-10) corresponds to s = s ′, and ∂s and ∂s′ move in the outgoing and incoming
directions, respectively, along the flow). Repeating the calculation following (2-6), we see that the value
of 8 “on the Legendrian” is 8=− cos s+σ cos s ′ = (sin s ′)−1 sin(s− s ′), which is strictly negative. By
restricting the support of the amplitude a in (8-7)–(8-9), we can assume that 8 is negative everywhere on
the support of the integrand. �
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Lemma 8.5. Let Q j (λ) and Qk(λ) be such that Q j is not outgoing-related to Qk . Then, for λ≥ 1, and
as a multiple of |dg dg′|1/2 |dλ|, the Schwartz kernel of Q j (λ) d E√H(λ) Qk(λ)

∗ can be written in terms
of a finite number of oscillatory integrals of the form∫

Rk
eiλ8(y,y′,σ,x,v)/xλn−1+k/2x (n−1)/2−k/2a(λ, y, y′, σ, x, v) dv (8-11)

or
∫

Rk−1

∫
∞

0
eiλ8(y,y′,σ,x,v,s)/xλn−1+k/2

( x
s

)(n−1)/2−k/2
sn−2a(λ, y, y′, σ, x, v, s) ds dv (8-12)

in the region σ = x/x ′ ≤ 2, x ≤ δ, or∫
Rk

eiλ8(z,z′,v)λn−1+k/2a(λ, z, z′, v) dv (8-13)

in the region x ≥ δ, x ′ ≥ δ, where, in each case, 8 < −ε < 0 and a is a smooth function compactly
supported in the v and s variables (where present) such that |(λ ∂λ)N a| ≤ CN . In each case, we may
assume that k ≤ n−1; if k = 0 in (8-11) or (8-13), or k = 1 in (8-12), then there is no variable v and no v
integral. Again, the key point is that, in each expression, the phase function is strictly negative.

If , instead, Q j is not incoming-related to Qk , then the same conclusion holds with the reversed sign:
the Schwartz kernel can be written as a finite sum of terms with a strictly positive phase function.

Proof. The proof is essentially identical to that of Lemma 8.3. The form of the oscillatory integrals
comes from the fact that the spectral measure, for high energies, is a Legendre distribution in the
class I m,p;rlb,rrb(X, (L , L]);�s8�1/2), where the Lagrangian L is given by (3-3). The non-outgoing
relation implies, via the microlocal support estimates of [Guillarmou et al. 2013b, Section 7], that
Q j (λ) d E√H(λ) Qk(λ)

∗ is microsupported where τ < 0 in the coordinates of (3-3). Since 8= τ when
dv8= 0, this implies that 8< 0 when dv8= 0. By restricting the support of the amplitude close to the
set where dv8= 0, we can assume that 8< 0 everywhere on the support of the integrand. �

Lemma 8.6. We have the following dispersive estimates on U j (t)Uk(s)∗:

• If ( j, k) ∈ Jnear, then for all t 6= s we have

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-14)

• If ( j, k) is such that Q j is not outgoing-related to Qk , and t < s, then

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-15)

• Similarly, if ( j, k) is such that Q j is not incoming-related to Qk and s < t , then

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-16)

Proof. The estimate (8-14) is essentially proved in Proposition 6.1, since we can use Proposition 1.5.
Assume that Q j is not incoming-related to Qk and consider (8-16). By Lemma 5.3, U j (t)Uk(s)∗ is given
by ∫

∞

0
ei(t−s)λ2

(Q j (λ) d E√H(λ) Q∗k(λ))(z, z′). (8-17)
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Then we need to show that, for s < t ,∣∣∣∣∫ ∞
0

ei(t−s)λ2
(Q j (λ) d E√H(λ) Q∗k(λ))(z, z′) dλ

∣∣∣∣≤ C |t − s|−n/2. (8-18)

Case 1: t − s ≥ 1. We introduce a dyadic partition of unity in λ. Let φ ∈ C∞c
([ 1

2 , 2
])

be as in Section 5
with

∑
m φ(2

−m√t − sλ)= 1, define

φ0(
√

t − sλ)=
∑
m≤0

φ(2−m√t − sλ)

and insert
1= φ0(

√
t − sλ)+

∑
m≥1

φm(
√

t − sλ), φm(λ) := φ(2−mλ),

into the integral (8-17). In addition, we substitute for Q j (λ) d E√H(λ) Q∗k(λ) one of the expressions in
Lemmas 8.3 and 8.5. Since t − s ≥ 1, for the φ0 term only the low energy expressions are relevant. The
estimate follows immediately from noticing that these expressions are pointwise bounded by Cλn−1,
using the fact that k ≤ n− 1 in these expressions.

To treat the φm terms for m ≥ 1, we again substitute one of the expressions in Lemmas 8.3 and 8.5.
For notational simplicity we consider the expression (8-13), but the argument is similar in the other cases.
We scale the λ variable and obtain the expression∫
∞

0

∫
Rk

ei(t−s)λ2
eiλ8(z,z′,v)λn−1+k/2a(λ, z, z′, v)φm(

√
t − sλ) dv dλ

= (t − s)−n/2−k/4
∫
∞

0

∫
Rk

ei(λ̄2
+λ̄8(z,z′,v)/

√
t−s)λ̄n−1+k/2a

(
λ̄

√
t − s

, y, y′, σ, v
)
φm(λ̄) dv dλ̄, (8-19)

where λ̄ =
√

t − sλ. We observe that the overall exponential factor is invariant under the differential
operator

L =
−i

2λ̄2+ λ̄8/
√

t − s
λ̄
∂

∂λ̄
.

The adjoint of this is

L t
=−L +

i
2λ̄2+ λ̄8/

√
t − s

− i
4λ̄2
+ λ̄8/

√
t − s

(2λ̄2+ λ̄8/
√

t − s)2
.

We apply L N to the exponential factors and integrate by parts N times. Since 8 ≥ 0 according to
Lemma 8.5, and since we have an estimate |(λ̄ ∂λ̄)

N a|≤CN , each time we integrate by parts we gain a factor
λ̄−2
∼ 2−2m . It follows that the integral with φ(2−m λ̄) inserted is bounded by (t − s)−n/22−m(2N−n−k/2)

uniformly for t − s ≥ 1. Hence we prove (8-16) by summing over m ≥ 0. The argument to prove (8-15)
is analogous.

Case 2: t − s ≤ 1. In this case, we use a dyadic decomposition in terms of the original variable λ. We
consider the integral (8-17), insert the dyadic decomposition

1=
∑
m≥0

φm(λ),
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and substitute for Q j (λ) d E√H(λ) Q∗k(λ) one of the expressions in Lemmas 8.3 and 8.5.
For the case m = 0, the estimate follows immediately from the uniform boundedness of (8-7)–(8-9).

For the cases m ≥ 1, we use the expressions in Lemma 8.5 and observe that the overall exponential factor
is invariant under the differential operator

L =
−i

2(t − s)λ2+ λ8
λ
∂

∂λ
.

The adjoint of this is

L t
=−L +

i
2(t − s)λ2+ λ8

− i
4(t − s)λ2

+ λ8

(2(t − s)λ2+ λ8)2
.

We apply L to the exponential factors N times and integrate by parts. Since 8 ≥ ε > 0 according to
Lemma 8.5, and since we have an estimate |(λ ∂λ)N a| ≤ CN , each time we integrate by parts we gain
a factor λ−1

∼ 2−m . It follows that the integral with φ(2−mλ) inserted is bounded by 2−m(N−n−k/2)

uniformly for t − s ≤ 1. Hence we prove (8-16) by summing over m ≥ 0. The argument to prove (8-15)
is analogous. �

Remark 8.7. Notice that, in the cases (8-15) and (8-16), there is a lot of “slack” in the estimates. This is
because the sign of t − s has the favourable sign relative to the sign of the phase function, so that the
overall phase in integrals such as (8-19) are never stationary. Then integration by parts give us more
decay than needed to prove the estimates. This is important because it overcomes the growth of the
spectral measure as λ→∞ at conjugate points: at pairs of conjugate points we have k > 0 and we see
from, say, (8-13) that the spectral measure will not obey the localized (near the diagonal) estimates of
Proposition 1.5, by a factor λk/2. The geometric meaning of k is the drop in rank of the projection from
L down to M2

b , hence is positive precisely at pairs of conjugate points.

We now complete the proof of Theorem 1.2 by proving Proposition 8.1.

Proof of Proposition 8.1. We use a partition of the identity as in Lemma 8.2. In the case that ( j, k) ∈ Jnear,
we have the dispersive estimate (8-14). This allows us to apply the argument of [Keel and Tao 1998,
Sections 4–7] to obtain (8-4). In the case that ( j, k) ∈ Jnon-out, we obtain (8-4) following the argument in
[Keel and Tao 1998] since we have the dispersive estimate (8-16) when s < t . Finally, in the case that
( j, k) ∈ Jnon-inc, we obtain (8-5) since we have the dispersive estimate (8-15) for s > t . �

Remark 8.8. The endpoint inhomogeneous Strichartz estimate is closely related to the uniform Sobolev
estimate

‖(H −α)−1
‖Lr→Lr ′ ≤ C, r =

2n
n+ 2

, (8-20)

where C is independent of α ∈ C. This estimate was proved by [Kenig et al. 1987] for the flat Laplacian
and by [Guillarmou and Hassell 2014] for the Laplacian on nontrapping asymptotically conic manifolds (it
was also shown in [Guillarmou and Hassell 2014] that (8-20) holds for r ∈ [2n/(n+2), 2(n+1)/(n+3)]
with a power of α on the right-hand side). In fact, it was pointed out to the authors by Thomas Duyckaerts
and Colin Guillarmou that the endpoint inhomogeneous Strichartz estimate implies the uniform Sobolev
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estimate (8-20). To see this, we choose w ∈ C∞c (M
◦) and χ(t) equal to 1 on [−T, T ] and zero for

|t | ≥ T + 1 and let u(t, z)= χ(t)eiαtw(z). Then

(i ∂t + H)u = F(t, z), F(t, z) := χ(t)eiαt(H −α)w(z)+ iχ ′(t)eiαtw(z).

Applying the endpoint inhomogeneous Strichartz estimate, we obtain

‖u‖L2
t Lr ′

z
≤ C‖F‖L2

t Lr
z
.

From the specific form of u and F we have

‖u‖L2
t Lr ′

z
=
√

2T ‖w‖Lr ′ + O(1), ‖F‖L2
t Lr

z
=
√

2T ‖(H −α)w‖Lr + O(1).

Taking the limit T →∞ we find that

‖w‖Lr ′ ≤ C‖(H −α)w‖Lr ,

which implies the uniform Sobolev estimate.
In the other direction, suppose that the uniform Sobolev estimate holds. If u and F satisfy (1-10), then

taking the Fourier transform in t we find that

(H −α)û(α, z)= F̂(α, z). (8-21)

Suppose for a moment that the following statement were true: “Fourier transformation in t is a bounded
linear map from L2(Rt ; L p(M◦)) to L2(Rα; L p(M◦)) for p= r ′, r”. Using this and the uniform Sobolev
inequality, applied to (8-21), we would obtain the inhomogeneous Strichartz estimate. Unfortunately,
the statement in quotation marks is known to be false, so this argument is purely heuristic. Nevertheless,
it illustrates the close relation between the two estimates. It would be interesting to know if there are
general conditions under which the two estimates are equivalent.
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