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RADEMACHER FUNCTIONS IN NAKANO SPACES

SERGEY ASTASHKIN AND MIECZYSŁAW MASTYŁO

The closed span of Rademacher functions is investigated in Nakano spaces Lp. � / on Œ0; 1� equipped with
the Lebesgue measure. The main result of this paper states that under some conditions on distribution of
the exponent function p the Rademacher functions form in Lp. � / a basic sequence equivalent to the unit
vector basis in `2.

1. Introduction

We recall that the Rademacher functions on Œ0; 1� are defined by rk.t/D sign.sin 2k�t/ for every t 2 Œ0; 1�
and each k 2 N. It is well known that .rk/ is an incomplete orthogonal system of independent random
variables. This system plays a prominent role in the modern theory of Banach spaces and operators (see,
e.g., [Diestel et al. 1995; Pisier 1986]). Special emphasis in this connection is placed on the study of local
theory of Banach spaces and especially on using the notions of (Rademacher) type and cotype, which
reflect the interplay between geometry and probability in these spaces. We mention here only a special
case of the famous result due to Maurey and Pisier [1976]; it states that a Banach space has type strictly
bigger than 1 (resp., finite cotype) if and only if it does not contain `n1’s (resp., `n1’s) uniformly. For
more details and a precise quantitative version of this result we refer, for example, to [Diestel et al. 1995,
Chapter 14].

Rademacher functions play a significant role in the study of lattice and rearrangement-invariant
structures in arbitrary Banach spaces. This research was initiated in the memoir [Johnson et al. 1979] by
Johnson, Maurey, Schechtman and Tzafriri. By way of motivation let us also mention a classical result of
Rodin and Semenov [1975], which states that the sequence .rk/ is equivalent in a symmetric space X to
the unit vector basis in `2, that is, 1X

kD1

akrk


X

�

� 1X
kD1

jakj
2

�1=2
; .ak/ 2 `2;

if and only if G �X , where G is the closure of L1Œ0; 1� in the Orlicz space LN Œ0; 1� generated by the
function N.t/D exp.t2/� 1 for all t � 0. When this condition is satisfied, the span Œrk� of Rademacher
functions is complemented in X if and only if X �G0, where the Köthe dual space G0 to G coincides
(with equivalence of norms) with the Orlicz space LN� Œ0; 1� generated by the Young conjugate N� which
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is equivalent at infinity to the function t 7! t log1=2 t . This was proved independently by Rodin and
Semenov [1979] and Lindenstrauss and Tzafriri [1979, pp. 134–138].

It is well known that .rk/ is a symmetric basic sequence in every symmetric space on Œ0; 1�, however
this is not true in the case of nonsymmetric Banach function lattices. In particular, this phenomenon
takes place, for example, in the space of functions of bounded mean oscillation and as well as in Cesàro
function spaces (see [Astashkin et al. 2011; Astashkin and Maligranda 2010]); this motivates searching
for conditions under which Rademacher functions form a symmetric or an unconditional basic sequence
in Banach function lattices.

The main purpose of this paper is to investigate the behaviour of Rademacher functions in the Nakano
function spaces Lp. � / on Œ0; 1�. These spaces (which are also called “variable exponent Lebesgue spaces”
in certain parts of the literature) are generalisations of the classical Lp-spaces, where the exponent p is
allowed to vary measurably over a set of values in Œ1;1/.

Nakano spaces belong to the large family of Musielak–Orlicz spaces, and therefore many their basic
properties follow from general results (see [Musielak 1983]). There are several books related to Nakano
spaces, which cover some joint material, however, from somewhat different viewpoints. Let us mention
[Diening et al. 2011] and [Cruz-Uribe and Fiorenza 2013], in which the authors provide a presentation of
fundamentals of Nakano spaces and study whether certain principal results in modern harmonic analysis
have natural analogues in the Nakano space setting. In the last decades the investigation on this topic has
been also motivated by the modelling the so-called electrorheological fluids and some other applications
(see [Cruz-Uribe and Fiorenza 2013], and also the more recent [Cruz-Uribe et al. 2014], where interesting
connections between theory of Nakano spaces and strongly hyperbolic systems with time-dependent
coefficients were discovered).

It is worth noting that a number of results related to the spaces Lp. � / is proved under some smoothness
conditions on the exponent function p. Let us recall, as an example, a result of Sharapudinov [1986]
which states that the Haar system is a basis in a Nakano space Lp. � / provided the exponent function p
satisfies the piecewise Dini–Lipschitz condition with exponent ˛ � 1 (see also the above-cited [Diening
et al. 2011; Cruz-Uribe and Fiorenza 2013]). In contrast to that in this paper we impose conditions upon
distribution of p and investigate the problem whether they are sufficient or necessary for equivalence of
the Rademacher sequence .rk/ in Lp. � / to the unit vector basis in `2.

2. Preliminaries

If .�;†;�/ is a � -finite measure space, then, as usual, L0 WDL0.�/ denotes the space of all real-valued
�-measurable functions. We say that .X; k � kX / is a Banach function lattice (in short, Banach lattice) on
.�;†;�/ if X is an ideal in L0 and kf kX � kgkX whenever f; g 2X and jf j � jgj. The Köthe dual
space X 0 of X is a collection of all elements g 2 L0 such that

kgkX 0 WD sup
�Z

�

jfgj d�I kf kX � 1

�
<1:

The space .X 0; k �kX 0/ is a Banach function lattice with the Fatou property. Recall that a Banach function
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lattice X is said to have the Fatou property if the conditions supn�1 kxnkX <1 and xn! x a.e. imply
that x 2X and kxkX � lim infn!1 jjxnjjX . It is well known that X has the Fatou property if and only if
the natural embedding of X into its second Köthe dual X 00 is an isometric surjection.

Let f 2 L0.I;m/, where I WD Œ0; 1� is equipped with the Lebesgue measure m. The distribution
function of f is defined by df .�/D �.ft 2 I I jf .t/j > �g/, � � 0, and its decreasing rearrangement
by f �.t/ D inffs > 0I df .s/ � tg, t > 0. One says that functions f and g are equimeasurable if
f �.t/D g�.t/, 0 < t � 1, or equivalently, df .�/D dg.�/, � > 0.

Recall some definitions and auxiliary results from the theory of symmetric spaces (for more details see
[Bennett and Sharpley 1988; Kreı̆n et al. 1982]).

A Banach function lattice X on .I;m/ is called a symmetric space if the conditions f � � g� a.e. on I
and g 2X imply f 2X and kf kX � kgkX . The fundamental function of a symmetric space X is given
by 'X .t/D k�Œ0;t/kX for all t 2 I . In what follows we will use the following obvious inequality for any
symmetric space X on I ,

f �.t/�
1

'X .t/
kf kX ; f 2X; t 2 .0; 1�: (1)

Important examples of symmetric spaces are Orlicz, Marcinkiewicz and Lorentz spaces. Recall that
ˆ W Œ0;1/! Œ0;1/ is called an Orlicz function if ˆ.0/D 0 and ˆ is positive, nondecreasing, convex
and left-continuous on .0;1/. If ˆ is such a function, the Orlicz space Lˆ consists of all f 2 L0.m/
for which there exists � > 0 such that Z

I

ˆ
�
jf j=�

�
dm <1:

It is a symmetric space equipped with the norm

kf kLˆ D inf
�
� > 0I

Z
I

ˆ

�
jf j

�

�
dm� 1

�
:

In what follows by LN (resp., LM ) we will denote the Orlicz space on Œ0; 1� generated by the function
N.t/D exp.t2/� 1 (resp., M.t/D exp.t2 log.t C 1//� 1) for all t � 0.

Let ' W I ! Œ0;1/ be a quasiconcave function, that is '.0/D 0, '.t/ > 0 for t 2 I and both ' and
t 7!e'.t/ WD t='.t/ are nondecreasing functions on .0; 1�. The Marcinkiewicz space M.'/ is defined to
be the space of all f 2 L0.m/ equipped with the norm

kf kM.'/ D sup
0<s2I

1

'.s/

Z s

0

f �.t/ dt:

If ' W I ! Œ0;1/ is an increasing concave function, '.0/D 0, the Lorentz space ƒ.'/ consists of all
f 2 L0 such that

kf kƒ.'/ D

Z 1

0

f �.t/ d'.t/ <1:

It is well known that L1 and L1 are, respectively, the largest and the smallest symmetric spaces on
I ; moreover, if X is a symmetric space on I with the fundamental function ', then ' is quasiconcave
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and the following continuous embeddings hold (see [Kreı̆n et al. 1982, Theorems II.5.5 and II.5.7] or
[Bennett and Sharpley 1988, Theorem II.5.13]):

ƒ.'/ ,!X ,!M.z'/;

where ' is the least concave majorant of '. In what follows we will frequently use the well-known fact
that the Orlicz space LN generated by the function N.t/D exp.t2/�1, t � 0, coincides up to equivalence
of norms with the Marcinkiewicz space M.'/ generated by the function '.t/D t log1=2.e=t/, 0 < t � 1
(see [Lorentz 1951]).

Let .�;†;�/ be a �-finite measure space. Given a measurable function p W�! Œ1;1/, we define
the Nakano space Lp. � /.�/ to be the space of all f 2 L0.�/ such that for some � > 0

��.f /D

Z
�

�
jf .t/j

�

�p.t/
d� <1:

Lp. � /.�/ becomes a Banach function lattice with the Fatou property when equipped with the norm

kf kLp. � / D kf kp. � / WD inff� > 0I ��.f =�/� 1g:

Throughout the paper a Nakano space defined on Œ0; 1� equipped with the Lebesgue measure m is
denoted for short Lp. � /. Notice that Lp. � / is not a symmetric space unless the exponent p is a constant
function, and in this case we write k � kp instead of k � kLp .

Further, we shall frequently use the following lemma which is an immediate consequence of Theorem 3
from [Fiorenza and Rakotoson 2007].

Lemma 2.1. Let f W Œ0; 1�! Œ0;1/ and p W Œ0; 1�! Œ1;1/ be two Lebesgue measurable functions. Then

kf kLp. � / � 4kf
�
kLp�. � / :

3. Main results

In this section we shall prove the main results of the paper. We recall that LN and LM are the Orlicz
spaces on Œ0; 1� generated by the functions N.t/D exp.t2/� 1 and M.t/D exp.t2 log.t C 1//� 1/.

Theorem 3.1. Let p W .0; 1�! Œ1;1/ be a Lebesgue measurable function and let Lp. � / be the Nakano
space generated by p. Each of the following conditions implies the next:

(i) LN � Lp. � /.

(ii) The Rademacher system .rn/ is equivalent in the space Lp. � / to the unit vector basis in `2.

(iii) There is a constant C > 0 such that

m.ft 2 Œ0; 1�I p.t/ > �g/� C����=2; �� 1:

(iv) LM � Lp. � /.

We start with the following distribution estimate, which will be useful for us in the sequel:
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Proposition 3.1. Suppose that for each k 2 N and m 2 N there exists ` > m such that `CkX
iD`C1

ri


Lp. � /

� B
p
k;

where B > 0 is independent of k and m. Then

m.ft 2 Œ0; 1�I p.t/ > �g/� 2.4B/����=2; �� 1:

Proof. Let �� 1 be fixed. We put

E� WD ft 2 Œ0; 1�Ip.t/ > �g:

Without loss of generality, we can assume that m.E�/ > 0. By the Sagher–Zhou local version of
Khintchine inequality for L1 (see [Sagher and Zhou 1990, Theorem 1]), it follows that there exists
n.�/ such that for all n� n.�/, every Rademacher sum Rn D

P1
kDn ak rk and arbitrary .ak/ 2 `2 with

k.ak/k`2 D 1, we have Z
E�

jRn.t/j dt � ˛ m.E�/;

where ˛ > 0 is a universal constant. Since �� 1,�
1

m.E�/

Z
E�

jRn.t/j
� dt

�1=�
�

1

m.E�/

Z
E�

jRn.t/j dt;

and so �Z
E�

jRn.t/j
� dt

�1=�
� ˛.m.E�//

1=�: (2)

On the other hand, it is well known (in particular, it is a consequence of the above-cited Rodin–Semenov
theorem) that there exists a constant ˇ > 0 such that 1X

kD1

akrk


LN

� ˇ k.ak/k`2 ; .ak/ 2 `2; (3)

where, as above, LN is the Orlicz space generated by the function N.t/D exp.t2/� 1, t � 0. Since the
fundamental function of LN is given by '.t/ D 1=N�1.1=t/ D log�1=2.1C 1=t/ for all t 2 .0; 1�, it
follows by (1) and (3) that� 1X

nD1

akrk

��
.t/� ˇ log1=2

�
1C

1

t

�
� ˇ log1=2

�
e

t

�
; t 2 .0; 1�;

for all .ak/ 2 `2 with k.ak/k`2 � 1. Hence, for every ı > 0 and E � Œ0; 1� with m.E/ < ı, we obtain�Z
E

jRn.t/j
� dt

�1=�
�

�Z ı

0

R�n.t/
� dt

�1=�
� ˇ

�Z ı

0

log�=2
�
e

t

�
dt

�1=�
:
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Choose ı D ı.�/ > 0 so that Z ı

0

log�=2
�
e

t

�
dt � ˇ��˛�m.E�/:

Then, from the preceding inequality and (2), it follows that�Z
E

jRn.t/j
� dt

�1=�
� ˛.m.E�//

1=�
�

�Z
E�

jRn.t/j
� dt

�1=�
: (4)

provided m.E/ < ı and k.ak/k`2 D 1.
We denote by I �

k
the dyadic interval Œ.k� 1/2�� ; k2�� � for each � 2 ZC and each 1� k � 2� . Then

we can find a finite union of pairwise disjoint intervals F D
Sm
jD1 I

�j
kj

, 1� kj � 2�j , 1� j �m such
that

m.E�4F /�max
˚
ı; 1
2
m.E�/

	
(here, A4B WD .AnB/[ .B nA/). Hence, m.F /�m.E�/�m.E�4F /� 1

2
m.E�/, and for each sum

Rn D
P1
kDn akrk with k.ak/k`2 D 1, by (4), we obtain�Z

F

jRn.t/j
� dt

�1=�
�

�Z
E�

jRn.t/j
� dt

�1=�
C

�Z
E�4F

jRn.t/j
� dt

�1=�
� 2

�Z
E�

jRn.t/j
� dt

�1=�
:

This implies that�
1

m.E�/

Z
E�

jRn.t/j
� dt

�1=�
�
1

2

�
1

2m.F /

Z
F

jRn.t/j
� dt

�1=�
�
1

4

�
1

m.F /

Z
F

jRn.t/j
� dt

�1=�
:

Now, let a positive integer m � n.�/ be such that all Rademacher functions rk with k � m change
their sign at least once on each dyadic component of the set F . Then for any .ak/ 2 `2,�

1

m.F /

Z
F

ˇ̌̌̌ 1X
kDm

ak rk.t/

ˇ̌̌̌�
dt

�1=�
D

 1X
kDm

ak rk


�

:

Combining this equality with the above estimate, we obtain�
1

m.E�/

Z
E�

jRm.t/j
� dt

�1=�
�
1
4
kRmk� (5)

for every sum Rm D
P1
kDm akrk , k.ak/k`2 D 1 (m depends on �). Our hypothesis implies that for each

�� 1 we can find ` > m such that  `CŒ��X
iD`C1

ri


Lp. � /

� B
p
Œ��; (6)

where, as usual, Œx� is the integer part of x. In the opposite direction, we will use the following well-known
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inequality (see, e.g., [Blei 2001, Lemma VII.30, p. 167]):

2

 kX
jD1

rj


k

� k; k 2 N:

If R�;` WD
`CŒ��P
iD`C1

ri , this inequality yields

2 kR�;`k� � 2 kR�;`kŒ�� D 2

 Œ��X
jD1

rj


Œ��

� 2 Œ��:

Let R�;` WDR�;`=
p
Œ��. Then, from the latter inequality it follows thatR�;`Œ�� � 2pŒ���p�:

Moreover, it is easy to see that R�;` D
1P
kDm

a0
k
rk , with k.a0

k
/k`2 D 1. Combining the preceding estimate

with inequality (5), we obtain �
1

m.E�/

Z
E�

ˇ̌
R�;`.t/

ˇ̌�
dt

�1=�
�
1
4

p
�;

or equivalently,

kR�;` �E�k� �
1
4

p
�m.E�/

1=�: (7)

where �E� is the characteristic function of the set E�. On the other hand, in view of (6) we have
kR�;`kLp. � / � B and so, setting E� D ft 2 E�I jR�;`.t/j � Bg, by the definition of the norm in the
Nakano space Lp. � /, we deduceZ

E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

Z
E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt C

Z
E�nE�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

Z 1

0

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌p.t/
dt C 1� 2: (8)

Therefore, from (7) it follows that

2�

Z
E�

ˇ̌̌̌
R�;`.t/

B

ˇ̌̌̌�
dt �

��=2

.4B/�
m.E�/;

whence m.E�/� 2.4B/����=2: This completes the proof. �

Proof of Theorem 3.1. (i)) (ii). First, by [Diening et al. 2011, Theorem 3.3.1], for any exponent p. � /
we have

kf kL1 � 2 kf kLp. � / ; f 2 Lp. � /:

Combining this with the Khintchine inequality in L1 (see [Szarek 1976]), we obtain 1X
kD1

ak rk


Lp. � /

�
1

2
p
2
k.ak/k`2 ; .ak/ 2 `2:
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Thus our hypothesis and (3) imply that there exists a constant C > 0 such that 1X
kD1

ak rk


Lp. � /

� Ck.ak/k`2 ; .ak/ 2 `2:

The implication (ii)) (iii) follows from Proposition 3.1.

(iii)) (iv). Note that the Orlicz space LM , where M.t/D exp.t2 log.1C t //�1 for all t � 0, coincides
with the Marcinkiewicz space with the fundamental function ' WD 'LM given by

'.t/ WD

�
log.e=t/

log log.e2=t/

��1=2
; 0 < t � 1

(see, e.g., [Lorentz 1951] or [Astashkin 2009, Lemma 3.2]). Hence, LM can be characterised as the set
of all measurable functions x on Œ0; 1� for which there exists a constant C > 0 such that

x�.t/�
C

'.t/
; 0 < t � 1:

Thus, since Lp. � / is a Banach lattice, the embedding Lp. � / � LM will be proved if we show that the
space Lp. � / contains all functions equimeasurable with the function

f0.t/D
1

'.t/
; 0 < t � 1:

By hypothesis and Lemma 2.1, it follows that we need only to check that for some � > 0Z 1

0

�
f0.t/

�

�g.t/
dt <1; (9)

where g is a decreasing positive function on .0; 1� such that g.t/� 1 and

m.ft 2 .0; 1�I g.t/ > xg/D g�1.x/D C xx�x=2; x � 1;

for some C � 1.
For x0 � 1, which can be chosen later, we haveZ g�1.x0/

0

�
f0.t/

�

�g.t/
dt D�

Z 1
x0

�
f0.C

xx�x=2/

�

�x
d.C xx�x=2/

D

Z 1
x0

�
f0.C

xx�x=2/

�

�x
C xx�x=2 log.C�1e1=2x1=2/ dx:

If x0 is sufficiently large, then for all x � x0 we infer

f0.C
xx�x=2/D

�
log.eC�xxx=2/

log log.e2C�xxx=2/

�1=2
D

1
p
2

�
x log.C�xe2=xx/

log xC log
�
1
2

log.C�2e4=xx/
��1=2 �x1=2:
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Therefore, the preceding inequality impliesZ g�1.x0/

0

�
f0.t/

�

�g.t/
dt �

Z 1
x0

�
C

�

�x
log.C�1e1=2x1=2/ dx <1;

provided that � > C . Clearly, we obtain (9).
Finally, implication (iv)) (i) is an immediate consequence of the obvious embedding LN � LM ,

and the proof is complete. �

We do not know whether the distribution condition from (iii) implies the embedding LN � Lp. � / or
the equivalence of Rademacher system in Lp. � / to the unit vector basis in `2. However, the next result
can be treated as an approach to the solution of these problems. In its first part we prove that some
stronger condition on the distribution function of an exponent p. � / insures the embedding LN � Lp. � /

and in the second one we show that this result is in a sense sharp.

Theorem 3.2. Let p W .0; 1�! Œ1;1/ be a Lebesgue measurable function.

(a) If there exists a constant C > 0 such that

m.ft 2 .0; 1�Ip.t/ > xg/� C x.x log x/�x=2; x � 1;

then LN � Lp. � /.

(b) If there exists an increasing differentiable function � such that limx!1 �.x/ D 1, the function
x 7! �.x/x�1=2 log�1=2 x is decreasing for large enough x, and lim infx!1m.ft 2 .0; 1�I p.t/ >
xg �.x/�xxx=2 logx=2 x > 0;

then LN 6� Lp. � /.

Proof. (a) It can be easily checked that the function x 7! C x.x log x/�x=2 decreases if x � x0, where
x0 > 1 is sufficiently large. Denote by q the function inverse to it on the interval Œ0; t0�, where q.t0/D x0.
Then, from our hypothesis on p, it follows that p�.t/ � q.t/ for all 0 < t � t0. Recall that the space
LN coincides with the Marcinkiewicz space whose fundamental function is given by t 7! log�1=2.e=t/,
t 2 .0; 1/. Therefore, thanks to Lemma 2.1, we need only to check that for some � > 0

I� WD

Z t0

0

�
log1=2.e=t/

�

�q.t/
dt <1:

In fact,

I� D�

Z 1
x0

.��1 log1=2.eC�x.x log x/x=2//x d.C x.x log x/�x=2/

D
1

2

Z 1
x0

��x
�
x

2

�x=2
logx=2.e2=xC�2x log x/ �C x.x log x/�x=2

�
log.C�2x log x/C

log xC 1
log x

�
dx

� C1

Z 1
x0

�
C

�

�x�
log.x log x/C

log xC 1
log x

�
dx <1;

provided � > C , and this completes the proof.
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(b) It is sufficient to show that for every � > 0 there exists a measure-preserving transformation ! of
.0; 1� such that Z 1

0

�
��1 log1=2.e=!.t//

�p.t/
dt D1: (10)

In fact, from (10) it follows that log1=2.e=!/ …Lp. � /. On the other hand, since ! preserves measure, we
have �

log1=2
�

e

!. � /

���
.t/D log1=2

�
e

t

�
; t 2 .0; 1�:

Combining this with the fact that LN D M.'/, where '.t/ D t log1=2.e=t/, 0 < t � 1, we infer
log1=2.e=!/ 2 LN and the desired result follows.

Let us prove (10). Without loss of generality, we can assume that

�.x/� log1=2 x; for large enough x (11)

(otherwise, instead of �.x/ we can take the function minf�.x/; log1=2 xg). Moreover, our hypotheses on
� imply �

�.x/2

x log x

�0
D x�2 log�2 x.2� 0.x/�.x/x log x� �2.x/.1C log x//� 0;

and so
2x� 0.x/

�.x/
�
1C log x

x
; x � x0; (12)

if x0 � 1 is sufficiently large.
By assumption, there exists ˛ 2 .0; 1/ such that for all x � x0 we have

mft 2 .0; 1�I p.t/ > xg � ˛ .x/x :

Hence, if g is the inverse function to the mapping x 7! ˛ .x/x , x � x0, we obtain

p�.t/� g.t/; 0 < t � t0; (13)

for some t0 2 .0; 1�. If it is necessary, diminishing t0 we can assume also, for a given �> 0, the inequality
log1=2.e=t/� � to be valid for all t 2 .0; t0�.

Let ! be a measure-preserving transformation of .0; 1� such that p.t/D p�.!.t// (see [Bennett and
Sharpley 1988, Theorem 2.7.5]). From inequality (13) it follows that

p.t/� g.!.t//; t 2E;

where E D !�1.Œ0; t0�/. As a consequence,

I� WD

Z
E

�
��1 log1=2.e=!.t//

�p.t/
dt �

Z
E

�
��1 log1=2.e=!.t//

�g.!.t//
dt

D

Z t0

0

.��1 log1=2.e=t//g.t/ dt;
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and by letting x D g.t/, we obtain

I� � �˛

Z 1
g.t0/

��x logx=2
�

e

˛ .x/x

�
d. .x/x/:

Together with the elementary calculations

. .x/x/0 D

�
exp

�
�
x

2
log.�.x/�2x log x/

��0
D  .x/x

�
�
1

2
log.�.x/�2x log x/�

x

2

�.x/2

x log x
��4.x/

�
.1Clog x/�2.x/�2�.x/� 0.x/x log x

��
D�

1

2
 .x/x

�
log

x log x
�2.x/

C
1C log x

log x
�
2x� 0.x/

�.x/

�
;

inequality (12) shows that

. .x/x/0 � �
1

2
 .x/x log

x log x
�2.x/

; x � x0:

Combining this with the preceding inequality and (11), we obtain

I� �
˛

2

Z 1
g.t0/

��x
�
x

2

�x=2
logx=2.˛�2=xe2=x�.x/�2x log x/ �.x/xx�x=2 log�x=2 x log

x log x
�2.x/

dx

�
˛

2

Z 1
g.t0/

.�
p
2/�x�.x/x log x dx:

Since limx!1 �.x/D1, from the last estimate it follows that I� D1, which implies (10).
The proof is complete. �

We conclude the paper with the result which can be treated as a complement to Theorem 3.1 showing
that equivalence of the Rademacher system in Lq. � / with arbitrary exponent q, which is equimeasurable
with a given p, to the unit vector basis in `2 implies the embedding LN � Lp. � /.

Given a Lebesgue measurable function p W Œ0; 1�! Œ1;1/ we let �.p/ to be the set of all functions
q 2 L0.m/ which are equimeasurable with p.

Theorem 3.3. Suppose that for every q 2�.p/ the Rademacher system is equivalent in the space Lq. � /

to the standard basis in `2. Then LN � Lq. � / for every q 2�.p/.

Proof. Our hypothesis yields that for any q 2 �.p/ there exits a constant Cq > 0 such that for every
aD .ak/ 2 `2  1X

kD1

akrk


Lq. � /

� Cq kak`2 : (14)

We claim that there is a constant C0>0 such that for every measure-preserving mapping ! W Œ0; 1�! Œ0; 1�
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and all aD .ak/ 2 `2 we have  1X
kD1

akrk


Lp
�.!. � //

� C0 kak`2 : (15)

To see this we define the linear operator T! W `2! Lp
�. � /:

T!.ak/ WD

1X
kD1

ak rk.!
�1/; .ak/ 2 `2;

generated by an arbitrary measure-preserving mapping ! W Œ0; 1�! Œ0; 1�. Since for any � > 0Z 1

0

ˇ̌̌̌
1

�
T!a.t/

ˇ̌̌̌p�.t/
dt D

Z 1

0

�
1

�

ˇ̌̌̌ 1X
kD1

akrk.t/

ˇ̌̌̌�p�.!.t//
dt (16)

and the function q WD p�.!/ 2�.p/, from (14) it follows that the operator T! is bounded from `2 into
Lp
�. � /.
For a given sequence bD .bk/ 2 `2 we let f D

ˇ̌P1
kD1 bk rk

ˇ̌
. Applying Theorem 2.7.5 from [Bennett

and Sharpley 1988] once more, we can find a measure-preserving mapping v W Œ0; 1�! Œ0; 1� such that
f D f �.v/. Since p�.v/ 2�.p/, by (14), we have

kf kLp�.v/ �K WD Cp�.v/ kbk`2 :

Therefore, Z 1

0

�
f �.t/

K

�p�.t/
dt D

Z 1

0

�
f .v�1.t//

K

�p�.t/
dt D

Z 1

0

�
f .t/

K

�p�.v.t//
dt � 1;

whence, by Lemma 2.1,Z 1

0

�
f .t/

K

�p�.!.t//
dt D

Z 1

0

�
f .!�1.t//

K

�p�.t/
dt � 3:

Combining the last inequality and equality (16), with aD b, we get

kT!bkLp�. � / � 3K D 3Cp�.v/kbk`2 ;

where the constant Cp�.v/ does not depend on !. Thus, the family of operators fT!g!2�.p/ is pointwise
bounded, and thanks to the uniform boundedness principle, we obtain

kT!akLp�. � / � C0kak`2

for some constant C0 independent of !. Clearly, inequality (15) is an immediate consequence of the
latter inequality and (16).

Let us continue the proof of Theorem 3.3. As above, G is the closure L1 in the Orlicz space LN .
By [Astashkin and Semënov 2013, Theorem 4], for arbitrary x 2 G there exists a Rademacher sum
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f1 D
P1
kD1 akrk such that

kak`2 � C1kxkLN and x�.t/� C2.kak`2 Cf
�
1 .t//; t 2 .0; 1�: (17)

Take a measure-preserving mapping ! W Œ0; 1�! Œ0; 1�, for which jf1j D f �1 .!/. Then, from (17) and
(15) it follows

kx�kLp�. � / � C2.kak`2 Ckf1.!
�1/kLp�. � //D C2.kak`2 Ckf1kLp�.!//

� C2.1CC0/ kak`2 � C1C2.1CC0/kxkLN :

Furthermore, letting xn.t/Dmin
˚
n; log1=2

�
e=t/

	
, t 2 .0; 1�, we have xnD x�n 2G and kxnkLN � ˛ WD

klog1=2.e=t/kLN for each n 2 N. Hence, from the previous inequality it follows that

kxnkLp�. � / � C1C2.1CC0/˛; n 2 N:

Since the spaceLp
�. � / has the Fatou property and limt!1 xn.t/D log1=2.e=t/, we infer that the function

t 7! log1=2.e=t/ lies in Lp
�. � /. Recall that LN consists of all x 2L0.m/ such that x�.t/�C log1=2.e=t/

for all t 2 .0; 1� and some constant C >0. Therefore, by Lemma 2.1, we obtain LN �Lp
�. � /. Combining

this with the fact that LN is a symmetric space, we deduce LN �Lq. � / for arbitrary exponent q 2�.p/,
which completes the proof. �

Let us observe that, if a function p satisfies the conditions of Theorem 3.2(b), the Rademacher system
.rn/ in Lq. � / is not equivalent to the unit vector basis in `2 for every q 2 �.p/ (otherwise we would
arrive to contradiction by Theorem 3.3); therefore, we obtain

Corollary 3.1. Suppose that a function p satisfies the conditions of Theorem 3.2(b). Then there exists a
function q 2�.p/ such that the Rademacher system is not equivalent in Lq. � / to the unit vector basis
in `2.
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NONEXISTENCE OF SMALL DOUBLY PERIODIC SOLUTIONS
FOR DISPERSIVE EQUATIONS

DAVID M. AMBROSE AND J. DOUGLAS WRIGHT

We study the question of existence of time-periodic, spatially periodic solutions for dispersive evolution
equations, and in particular, we introduce a framework for demonstrating the nonexistence of such
solutions. We formulate the problem so that doubly periodic solutions correspond to fixed points of a
certain operator. We prove that this operator is locally contracting, for almost every temporal period, if
the Duhamel integral associated to the evolution exhibits a weak smoothing property. This implies the
nonexistence of nontrivial, small-amplitude time-periodic solutions for almost every period if the smooth-
ing property holds. This can be viewed as a partial analogue of scattering for dispersive equations on
periodic intervals, since scattering in free space implies the nonexistence of small coherent structures. We
use a normal form to demonstrate the smoothing property on specific examples, so that it can be seen that
there are indeed equations for which the hypotheses of the general theorem hold. The nonexistence result
is thus established through the novel combination of small-divisor estimates and dispersive smoothing
estimates. The examples treated include the Korteweg–de Vries equation and the Kawahara equation.

1. Introduction

In the absence of the ability to “explicitly” compute solutions of the Cauchy problem for a nonlinear
dispersive system by some specialized technique particular to the equation at hand (such as complete
integrability), coherent structures often form the backbone for both qualitative and quantitative descriptions
of the dynamics of the system. Such structures, be they traveling waves, self-similar solutions, time-
periodic solutions or some other sort of solution, give great insight into the short-time behavior of the
system and often provide possible states towards which solutions trend as time goes to infinity.

For dispersive equations in free space, many authors have proved scattering results; we cannot hope to
list all such results here, but a sampling is [Christ and Weinstein 1991; Ginibre and Velo 1986; Liu 1997;
Ponce and Vega 1990; Strauss 1974]. For instance, Strauss [1974] showed that for a generalized Korteweg–
de Vries (KdV) equation and for a nonlinear Schrödinger equation, all sufficiently small solutions decay to
zero. There is no generally agreed upon meaning for scattering on periodic intervals, and one cannot expect
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decay of solutions. However, decay of solutions implies the nonexistence of small-amplitude coherent struc-
tures, and the nonexistence of small coherent structures is a question which can be studied on periodic in-
tervals. In the present work, we study the nonexistence of small time-periodic solutions for dispersive equa-
tions on periodic intervals. We prove a general theorem, showing that the existence of sufficiently strong
dispersive smoothing effects implies the nonexistence of small doubly periodic solutions for almost every
temporal period; we then demonstrate the required dispersive smoothing for particular examples. We have
partially described the results of the present work briefly in the announcement [Ambrose and Wright 2014].

One method of constructing doubly periodic solutions of dispersive equations is to use Nash–Moser-
type methods. These methods typically work in a function space with periodic boundary conditions
in both space and time, so that the Fourier transform of the evolution equation can be taken in both
variables. Then, a solution is sought nearby to an equilibrium solution. The implicit function theorem
cannot be used due to the presence of small divisors. Instead, the small divisors are compensated for
by the fast convergence afforded by Newton’s method. A version of such arguments is now known
as the Craig–Wayne–Bourgain method [Bourgain 1994; 1995a; Craig and Wayne 1993; Wayne 1990],
which they used to demonstrate existence of doubly periodic solutions for a number of equations, such as
nonlinear wave and nonlinear Schrödinger equations.

Such methods have since been extended to other systems, such as the irrotational gravity water wave, on
finite or infinite depth, by Plotnikov, Toland, and Iooss [Plotnikov and Toland 2001; Iooss et al. 2005], or
irrotational gravity-capillary waves by Alazard and Baldi [2015]. Also, Baldi [2013] used such methods to
demonstrate existence of doubly periodic solutions for perturbations of the Benjamin–Ono equation. The
typical result of these small-divisor methods is the existence of small-amplitude doubly periodic waves
for the system under consideration, for certain values of the relevant parameters. One such parameter is
the frequency (or equivalently, the temporal period) of the solution; other parameters may arise in specific
applications, such as the surface tension parameter in [Alazard and Baldi 2015]. With these methods, the
parameter values for which solutions are shown to exist are typically in a Cantor set.

The most classical version of small-divisor theory is due to Kolmogorov, Arnold, and Moser (KAM).
KAM theory has been used by Kuksin [1988; 1998] to show that quasiperiodic solutions of the KdV
equation persist under certain perturbations; see also the book of Kappeler and Pöschel [2003] and the
references therein. Our work is complementary to these approaches, as we offer a nonexistence theory.
That is, we give certain regions of frequency-amplitude space in which doubly periodic solutions cannot
exist, whereas KAM theory gives instead regions where such solutions do in fact exist. Furthermore, we
mention that the method of the present work requires no special structure on the equations; we only need
certain estimates to be satisfied to conclude nonexistence of small doubly periodic solutions, and these
are likely unrelated to any integrable or near-integrable structure.

For certain completely integrable equations, time-periodic waves can be shown to exist by producing
exact, closed-form solutions. This is the case, for instance, for the KdV equation [Dubrovin 1975] and the
Benjamin–Ono equation [Dobrokhotov and Krichever 1991; Matsuno 2004; Satsuma and Ishimori 1979].
The first author and Wilkening found that these time-periodic solutions of the Benjamin–Ono equation
form continuous families [Ambrose and Wilkening 2009; 2010; Wilkening 2008]; this is in sharp contrast
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to results proved by small-divisor methods, then. The small-divisor methods do not address the question
of whether such results are optimal; it is not possible at present to conclude whether or not time-periodic
solutions exist as continuous families for such equations.

Thus, we find it of significant interest to develop further tools to answer the questions of both existence
and nonexistence of doubly periodic waves for dispersive partial differential equations. In the present
contribution, we develop a framework by which the nonexistence of small-amplitude time-periodic waves
can be established. We do this by first using the Duhamel formula together with the time-periodic ansatz.
Then we rewrite this formula, factoring out the linear operator. The resulting equation yields the notion
of time-periodic solutions as fixed points of a new operator, which is the composition of the inverse of
the linear operator with the Duhamel integral.

We then prove a general theorem, showing that under certain conditions, this operator is contracting
in a neighborhood of the origin in a certain function space. Since the operator is the composition of two
operators, we prove estimates for these individual operators separately. We are able to prove that the inverse
of the linear operator acts like differentiation of order p for some p > 1. Of course, in order to have the
contracting property, the composition must map from some function space, X , to itself. We use Sobolev
spaces, so since the inverse of the linear operator acts like differentiation of order p, the Duhamel integral
must satisfy an estimate with some form of a gain at least p derivatives. In Theorem 4, then, we have a
general condition for the nonexistence of small-amplitude time-periodic waves for almost every possible
temporal period: if the Duhamel integral possesses a weak form of smoothing (with an associated estimate),
then the equation does not possess arbitrarily small doubly periodic waves for almost every period. The
results described thus far are the content of Section 2. We mention that we are aware of one other result in
the literature on nonexistence of small time-periodic solutions for almost every period; de la Llave [2000]
uses a variational method to demonstrate nonexistence of small doubly periodic solutions for nonlinear
wave equations. The methods of proof of the current work and of [de la Llave 2000] appear to be quite
different, since in the present work we rely on smoothing estimates which derive from the linear part
of the evolution; such smoothing estimates would not be expected to hold in the case of wave equations.

Clearly, we must address the question of whether there is an equation for which the truth of the
hypotheses of Theorem 4 can be demonstrated. We demonstrate the required smoothing for the Duhamel
integral associated to some dispersive evolution equations with fifth-order dispersion in Sections 3 and 4.1,
and with seventh-order dispersion in Section 4.2. For these equations, the Duhamel integral satisfies a
strong smoothing property: the Duhamel integral gains p > 1 derivatives, compensating for the loss of
derivatives from the inverse of the linear operator. Theorem 4 does not, however, require so strong a
smoothing property. In Section 5, we demonstrate that the Duhamel integral for the KdV equation satisfies
a weaker smoothing property, allowing Theorem 4 to be applied and demonstrating the nonexistence of
small doubly periodic solutions for almost every temporal period.

The estimates for the inverse of the linear operator (Lemma 1, Lemma 2, and Corollary 3 below),
in which we demonstrate that the inverse of our linear operator acts like differentiation of order p, are
proved by small-divisor techniques. In fact, these are versions of classical results, such as can be found,
for instance, in [Ghys 2007]. As with all small-divisor results, some parameter values are discarded;
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in the present case, the parameter is the temporal period of the solution. Thus, we arrive at a result
about nonexistence of small solutions for almost every possible temporal period. Even though such a
small-divisor argument is classical, we provide our own proof because the detailed information about the
set of temporal periods in the proof is helpful.

For our particular examples of dispersive equations, we prove smoothing estimates for the Duhamel
integral by following the lines of an argument by Erdoğan and Tzirakis [2013]. By using a normal form
representation, they showed that the Duhamel integral for the KdV equation gains 1� " derivatives as
compared to the initial data, for any " > 0. (We mention that a similar result has been demonstrated on
the real line by Linares and Scialom [1993].) For the equations with fifth-order dispersion which we
consider in Sections 3 and 4.1, we find a gain of two derivatives. This is in line with the usual, expected
gain of regularity from dispersion. In general, if the dispersion relation is of order r (say, for instance, the
linearized evolution equation is, in the Fourier transform, Owt D ikr Ow), then one expects to gain .r �1/=2

derivatives in some sense [Kenig et al. 1991]; this is known as the Kato smoothing effect [1983]. With
fifth-order dispersion, this means the expected gain is two derivatives. Given the results of [Erdoğan and
Tzirakis 2013] as well as the present work, it does appear that it is reasonable to expect the same order of
smoothing in the spatially periodic setting, for the Duhamel integral. In fact, in Section 4.2, we show that
for an evolution equation with seventh-order dispersion, the gain of regularity on the Duhamel integral is
four derivatives; thus, the smoothing effect in [Erdoğan and Tzirakis 2013] and the present work is not
the same as Kato smoothing, but is still due to the presence of dispersion. To demonstrate our weaker
smoothing estimate for the KdV equation in Section 5, we begin with the same normal form as before,
but we estimate the terms differently.

We close with some discussion in Section 6.

2. Nonexistence of doubly periodic solutions

We begin with the evolution equation

@tuDAuCN u; (1)

where A is a linear operator and N is a nonlinear operator. Then, the solution of (1) with initial data
u. � ; 0/D u0, if there is a solution, can be represented with the usual Duhamel formula,

u. � ; t/D eAtu0C

Z t

0

eA.t��/N.u. � ; �// d�: (2)

Given a time t , we define the linear solution operator SL.t/ D eAt and the difference of the solution
operator and the linear solution operator to be SD.t/; thus, SD is exactly the Duhamel integral:

SD.t/u0 D

Z t

0

eA.t��/N.u. � ; �// d�:

We work in the spatially periodic case, so we assume that solutions u of (1) satisfy

u.xC 2�; t/D u.x; t/ 8x 2 R:
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We assume that (1) maintains the mean of solutions; that is, given any u in a reasonable function space,
we have Z 2�

0

u.x; t/ dx D

Z 2�

0

u0.x/ dx:

For the remainder of the present section, we will assume that u0 (and thus u. � ; t/) has mean zero.
If u0 is the initial data for a time-periodic solution of (1) with temporal period T , then we have

u0 D SL.T /u0CSD.T /u0:

We rewrite this as �
I �SL.T /�SD.T /

�
u0 D 0: (3)

Our goal is to demonstrate nonexistence of small-amplitude doubly periodic solutions of (3) for certain
temporal periods. We begin now to focus only on certain values of T , and our first restriction on values
of T is to ensure that I �SL.T / is invertible. For s > 0, define the space H s

0
to be the subset of the usual

spatially periodic Sobolev space H s such that for all f 2H s
0

, the mean of f is equal to zero. We assume
that the operator SL.t/ is bounded,

SL.t/ WH
s
0 !H s

0 8t 2 R:

Then, we define the set W to be

W D
˚
t 2 .0;1/ W ker.I �SL.t//D f0g

	
:

For any T 2W , we rewrite (3) by factoring out I �SL.T /:

.I �SL.T //
�
I � .I �SL.T //

�1SD.T /
�
u0 D 0:

We see, then, that if u0 is the initial data for a time-periodic solution of (1) with temporal period T 2W ,
then u0 is a fixed point of the operator

K.T / WD .I �SL.T //
�1SD.T /:

If we can show that this is (locally) a contraction on H s
0

, then there are no (small) nontrivial time-periodic
solutions in the space H s

0
with temporal period T . To establish this, we will need estimates both for

.I � SL.T //
�1 and for SD.T /. In Sections 2.1 and 2.2, we establish estimates for .I � SL.T //

�1;
the results are that the symbol can be bounded as jkjp, where k is the variable in Fourier space for
some p > 1, for certain values of T . Thus, the inverse of the linear operator acts like differentiation of
order p > 1. In Section 2.3, then, we will state a corollary of these estimates: if the operator SD satisfies
a certain estimate related to a gain of p derivatives, then the operator K.T / is locally contracting, and
thus there are no small time-periodic solutions with temporal period T .

2.1. The linear estimate: the homogeneous case. We now prove our estimate for .I �SL.T //
�1 in the

case that the linear operator A has symbol

F.A/.k/D ikr
8k 2 Z; (4)
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with r being an odd integer. This estimate is the content of Lemma 1. We note that this is not, strictly
speaking, useful to us, as we will prove a version of the lemma for a more general class of operators A in the
following section. However, we include Lemma 1 because the simplicity of the form of (4) allows for clarity
of exposition. The proof of Lemma 2 below will build upon the proof of Lemma 1, which we now present.

We mention that the restriction that r is an odd integer is for two reasons, neither of which is essential.
First, since we are interested in equations of KdV-type, these are the natural values of r to consider.
Second, the restriction is for ease of exposition, since Lemma 1 would be equally true if we allowed the
symbol of A to be defined by

F.A/.k/D i jkjr1kr2 (5)

for all k 2 Z, with r1 2 .0;1/ and r2 2 f0; 1g. The presentation, however, is slightly streamlined if we
use (4) instead of (5).

Lemma 1. Let the linear operator A be given by (4). Let 0 < T1 < T2 be given. Let 0 < ı < T2 �T1

be given. Let p > 1 be given. There exists a set Wp;ı � ŒT1;T2�\W and there exists c1 > 0 such that
the Lebesgue measure of Wp;ı satisfies �.Wp;ı/ > T2�T1� ı, and for all k 2 Z n f0g, for all T 2Wp;ı ,
we have ˇ̌

F.I �SL.T //
�1.k/

ˇ̌
< c1jkj

p:

Proof. For the moment, we fix k 2 Z n f0g. We need to estimateˇ̌
F.I �SL.T //

�1.k/
ˇ̌
D

ˇ̌̌̌
1

1� expfikr T g

ˇ̌̌̌
D

1
p

2
.1� cos.kr T //�1=2: (6)

Clearly, the symbol of the inverse operator is undefined if there exists n 2 N such that T D 2�n=jkjr .
With the assumption that T 2 ŒT1;T2�, the associated values of n comprise the set

N WD
�
jkjr T1

2�
;
jkjr T2

2�

�
\N:

We remove a small set of possible periods around each of these values; that is to say, we consider

T 2 ŒT1;T2� n
[

n2N

�
2�n

jkjr
� ";

2�n

jkjr
C "

�
(7)

for some 0< "� 1 to be specified.
To start, we may notice that the collection of intervals

�
2�n=jkjr � "; 2�n=jkjr C "

�
do not overlap

for different values of n as long as, for all n 2N , we have

2�n

jkjr
C " <

2�.nC 1/

jkjr
� ":

This is satisfied as long as " < �=jkjr . When we choose ", this condition will be satisfied.
A simple calculation shows that, on an interval of values of � which does not include an integer multiple

of 2� , the value of .1� cos �/ is minimized at the endpoints of the interval. Thus, the value of (6) is
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largest on our set of possible periods at the values T D 2�n=jkjr ˙ " for n 2N . At such values, we findˇ̌̌̌
F
��

I �SL

�
2�n

jkjr
˙ "

���1�
.k/

ˇ̌̌̌
D

1

p
2

�
1� cos

�
kr

�
2�n

jkjr
˙ "

���1=2

D
1

p
2.1� cos.˙2�n˙ "kr //1=2

D
1

p
2.1� cos."kr //1=2

: (8)

We will now perform a Taylor expansion for cosine, paying attention to the error estimates. For any � 2R,
we have the formula

cos � D 1� 1
2
�2C

1
6

sin.�/�3

for some � between 0 and � . We notice that
ˇ̌

1
6

sin.�/�3
ˇ̌
�

1
4
�2, as long as j� j � 3

2
. Thus, for j� j � 3

2
,

we have
j1� cos � j D

ˇ̌
1
2
�2�

1
6

sin.�/�3
ˇ̌
�

1
4
�2: (9)

Combining (9) with (8), we find that for any T satisfying (7), if "jkjr < 3
2

, then we have

ˇ̌
F
�
.I �SL.T //

�1.k/
�ˇ̌
�

1

.
p

2/
�

1
2
"jkjr

� D p2

"jkjr
: (10)

We choose "D c0jkj
�p�r . This choice of " immediately yields the claimed estimate for the symbol.

Recall that we have specified p > 1; the positive constant c0 is to be specified. The conditions we have
placed on " above are (1) "<�=jkjr and (2) "jkjr < 3

2
. These conditions are both satisfied as long as c0<

3
2

.
For fixed k 2 Z n f0g and for fixed n 2N , we have removed a set of measure 2"D 2c0jkj

�r�p from
the interval ŒT1;T2�. Since N is the intersection of an interval with the natural numbers, we see that the
cardinality of N is less than jkjr .T2�T1/C1, so for fixed k, we have removed a set of measure no more
than 2c0.1CT2�T1/jkj

�p . Summing over k, since we have chosen p> 1, the measure of the set we have
removed is finite. Taking c0 sufficiently small, we can conclude that the measure of the set which is removed
has Lebesgue measure smaller than ı. To be definite, we write the definition of the set Wp;ı, which is

Wp;ı D ŒT1;T2� n
[

k2Znf0g

[
n2N

�
2�n

jkjr
�

c0

jkjrCp
;
2�n

jkjr
C

c0

jkjrCp

�
;

where c0 is chosen so that 0< c0 <
3
2

, and also so that

c0 <
ı

2.1CT2�T1/
P

k2Znf0g jkj
�p
:

Finally, the constant c1 is given by c1 D
p

2=c0. This completes the proof. �

We note that we can see clearly the dependence of the constant c1 on the parameters T1, T2, p, and ı.
If we want a larger set of potential periods, we could take T2�T1 larger or ı smaller; this would result
in a larger value of c1. Choosing smaller values of p > 1 also leads to larger values of c1.
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2.2. The linear estimate: the nonresonant case. The estimate of Section 2.1 can be generalized to allow
operators which include lower-order terms, in some cases: there must not be a resonance between the
different terms, in the sense that we require FA.k/¤ 0 for any nonzero k 2 Z. To be very precise, we
consider linear operators A which satisfy the conditions (H), which we now describe.

(H) Let M 2 N be given, with M � 2. For each m 2 f1; 2; : : : ;M g, let rm be an odd integer, with
these rm satisfying r1 > r2 > � � � > rM > 0. For all m 2 f1; 2; : : : ;M g, let Zm � R be bounded. Let
Z DZ1 �Z2 � � � � �ZM . Let Ę D .˛1; ˛2; : : : ; ˛M /. Assume there exists ˇ1 > 0 and ˇ2 > 0 such that
for all ˛1 2Z1,

j˛1j> ˇ1; (11)

and for all Ę 2Z, for all k 2 Z n f0g, ˇ̌̌̌ MX
mD1

˛mkrm

ˇ̌̌̌
� ˇ2: (12)

Given Ę 2Z, let the linear operator A be defined through its symbol as

F.A/.k/D i

MX
mD1

˛mkrm 8k 2 Z: (13)

We again remark that the condition that the rm be odd integers is for ease of exposition and because these
are the relevant values for the KdV equation and for the other equations (such as Kawahara equations) which
we consider in the present work; as mentioned previously, this restriction can be relaxed with no difficulty.
We further remark that the condition (11) ensures that the equation is dispersive of order r1 (i.e., the leading-
order term is of the same order for all Ę 2Z). The condition (12) ensures that the symbol never vanishes.

Lemma 2. Let the set Z and the linear operator A satisfy the hypotheses (H), so that in particular, A

is defined by (13). Let 0 < T1 < T2 be given. Let 0 < ı < T2 �T1 be given. Let p > 1 be given. There
exists a set Wp;ı � ŒT1;T2�\W and there exists c1 > 0 such that the Lebesgue measure of Wp;ı satisfies
�.Wp;ı/ > T2�T1� ı, and such that for all Ę 2Z, for all k 2 Z n f0g, for all T 2Wp;ı, we haveˇ̌

F.I �SL.T //
�1.k/

ˇ̌
< c1jkj

p:

Proof. The proof of Lemma 1 can be repeated, with kr replaced in every instance by
PM

mD1 ˛mkrm ,
until (10); to be concise, we introduce the notation

�k D

MX
mD1

˛mkrm :

We choose "D c0jkj
�p�r1 , with c0 to be specified.

Similarly to the previous case, we have the conditions (i) " < �j�k j
�1, and (ii) "j�k j<

3
2

. The relevant
product satisfies

j"�k j D c0

ˇ̌̌̌ MX
mD1

˛mkrm jkj�r1�p

ˇ̌̌̌
� c0

MX
mD1

j˛mj 8k 2 Z n f0g:
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Thus, recalling that the sets Zm are bounded, we can clearly take c0 sufficiently small to satisfy condi-
tions (i) and (ii).

We must revisit the estimate (10) in the present setting. We haveˇ̌
F.I �SL.T //

�1.k/
ˇ̌
�

p
2

"j�k j
D

p
2

c0

jkjp

j�kk�r1 j
:

Since �k is never equal to zero, we conclude that �kk�r1 is also never equal to zero for k 2 Z n f0g.
Furthermore, there exists K 2 N such that for all k 2 Z satisfying jkj>K, for all Ę 2Z, we haveˇ̌̌̌ MX

mD2

˛mkrm�r1

ˇ̌̌̌
� jKjr2�r1

MX
mD2

j˛mj<
1
2
ˇ1:

This implies that for all k 2 Z with jkj>K, for all Ę 2Z,

j�kk�r1 j D

ˇ̌̌̌
˛1C

1X
mD2

˛mkrm�r1

ˇ̌̌̌
�

1
2
ˇ1 > 0;

j�kk�r1 j D

ˇ̌̌̌
˛1C

1X
mD2

˛mkrm�r1

ˇ̌̌̌
�
�

sup
˛12Z1

j˛1j
�
C

1
2
ˇ1:

Furthermore, for any k 2 Z n f0g satisfying jkj �K, we know

inf
Ę2Z

j�k j

jkr1 j
D inf
Ę2Z
j�kk�r1 j 2 .0;1/;

sup
Ę2Z

j�k j

jkr1 j
D sup
Ę2Z

j�kk�r1 j 2 .0;1/:

Combining this information, we see that

inf
k2Znf0g

inf
Ę2Z
j�kk�r1 j 2 .0;1/;

sup
k2Znf0g

sup
Ę2Z

j�kk�r1 j 2 .0;1/:

Our value of c1 is therefore

c1 D

p
2

c0

�
inf

k2Znf0g
inf
Ę2Z
j�kk�r1 j

��1
:

In the current setting, for each Ę 2Z, for each k 2 Z n f0g, the set N is defined by

N D
�

T1j�k j

2�
;
T2j�k j

2�

�
\N:

Thus, for all Ę 2Z, for all k 2 Z n f0g, the cardinality of N satisfies

card.N /� .T2�T1/j�k jC 1� .T2�T1/jkj
r1 j�kk�r1 jC 1

� .T2�T1/jkj
r1
�

sup
k2Znf0g

sup
Ę2Z

j�kk�r1 j
�
C 1:
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We then take the product 2" card.N /, finding the estimate

2" card.N /� 2c0

�
1C .T2�T1/ sup

k2Znf0g

sup
Ę2Z

j�kk�r1 j
�
jkj�p:

As in the proof of Lemma 1, we sum over k, and we find that we can take c0 sufficiently small to satisfy
the remaining claims of the lemma. �

Lemma 2 allows for two kinds of uniformity: the same set Wp;ı works for all Ę 2Z, and the constant c1

is able to be used for all T 2Wp;ı . The cost of this uniformity with respect to the constant c1 is that the
set Wp;ı does not have full measure. By sending ı to zero, we can achieve an estimate for almost every
T 2 ŒT1;T2�, but then the constant will depend on the choice of T . In doing this, we are able to maintain
the uniformity with respect to the set Z. This is the content of the following corollary.

Corollary 3. Let the set Z and the linear operator A satisfy the hypotheses (H), with A given by (13).
Let p > 1 be given. Let 0< T1 < T2 be given. For almost every T 2 ŒT1;T2�, there exists c > 0 such that
for all Ę 2Z and for all k 2 Z n f0g, we have the estimateˇ̌

F
�
.I �SL.T //

�1
�
.k/
ˇ̌
� cjkjp:

Proof. For any ı satisfying 0< ı < T2�T1, let the set Wp;ı be as in Lemma 2. For any T 2 ŒT1;T2�, if
there exists a value of ı such that T 2Wp;ı, then the desired estimate is satisfied. Let

Wp D

1[
nD2

Wp;.T2�T1/=n:

Then, for all T 2Wp , the estimate holds. Since for all n� 2 we have Wp;.T2�T1/=n �Wp � ŒT1;T2�, and
since �.Wp;.T2�T1/=n/� .T2�T1/.1�1=n/, we see that �.Wp/DT2�T1. This completes the proof. �

2.3. The general theorem. We are now able to state a general theorem which follows from the above
discussion. In Theorem 4, when we say that N is “as above”, this includes the property that the evolution
equation (1) preserves the mean value of the initial data. The theorem contains two statements about
nonexistence of small-amplitude time-periodic solutions. The first statement is for a given ı > 0; for T in
the set Wp;ı, we conclude that there is a uniform threshold for the amplitude of time-periodic solutions.
For the second statement, we conclude that for almost any T 2 ŒT1;T2�, there is a threshold for the
amplitude of time-periodic solutions; this second statement is not uniform. These results are conditional
on the existence of smoothing estimates. In Sections 3, 4.1, 4.2, and 5, we will demonstrate the required
smoothing estimate for particular equations.

Theorem 4. Let 0<T1<T2 be given, and let 0<ı <T2�T1 be given. Let the set Z and the operator A

satisfy the hypotheses (H), with A given by (13). Let the nonlinear operator N be as above. Assume there
exists p > 1, Qp � 0, q > 0, s � 0, c > 0, and � > 0 such that for all u0 2H

sC Qp
0

with ku0kH sC Qp � �, for
all Ę 2Z, the following estimate is satisfied:

kSD.T /u0kH sCp � cku0kH sku0k
q

H sC Qp (14)
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for all T 2Wp;ı . Then, there exists r0 > 0 such that if u is a smooth, nontrivial, mean-zero time-periodic
solution of (1) with temporal period T 2Wp;ı, then

inf
t2Œ0;T �

kukH sC Qp � r0: (15)

Furthermore, if (14) holds for every T 2Wp , then for every T 2Wp , there exists r0 > 0 such that if u is
a nontrivial mean-zero time-periodic solution of (1) with temporal period T , then (15) holds.

Proof. The assumptions of the theorem, together with either Lemma 2 or Corollary 3, imply that there
exists C > 0 such that for all u0 2H

sC Qp
0

satisfying ku0kH sC Qp < �,

kK.T /u0kH s � Cku0kH sku0k
q

H sC Qp :

If u0 satisfies
0< Cku0k

q

H sC Qp < 1;

then kK.T /u0kH s < ku0kH s , and thus u0 cannot be a fixed point of K.T /. Thus, the only fixed point
in a ball around zero is zero. �

Remark 5. In the announcement [Ambrose and Wright 2014], the version of this theorem which appeared
was restricted to the case Qp D 0. In this case, the inverse of the linear operator acts like differentiation
of order p > 1, and the Duhamel integral has a compensating gain of p derivatives. In Sections 3
and 4, we will give examples for which this smoothing property holds; these examples include the
Kawahara equation. However, as the estimate (14) shows, what is needed is actually much weaker than
the Duhamel integral gaining p derivatives; instead, it is only necessary that sC p derivatives of the
Duhamel integral satisfy a nonlinear estimate in which one factor involves only s derivatives. In Section 5,
we will demonstrate that the estimate (14) holds with Qp > 0 for the KdV equation.

3. Application to a fifth-order dispersive equation

In this section, we will apply the above results to a specific dispersive equation, with sufficiently strong
dispersion, with QpD 0. We are using a version of the Erdoğan–Tzirakis argument [2013] for the equation

@t QuD @
5
x Qu� 2 Qu @x QuC Q! @x Qu (16)

(for any Q! 2 R) to get the desired smoothing effect. As we have discussed, we consider the spatially
periodic case, with spatial period equal to 2� . We first rewrite (16) to remove the mean, and also to
remove the tildes.

We consider the initial condition Qu.x; 0/D Qg.x/. Assume the mean of Qg is equal to Ng, which can be
any real number. Let uD Qu� Ng. Since the evolution for Qu conserves the mean, the mean of u will equal
zero at all times. The evolution equation satisfied by u is

@tuD @
5
xu� 2u @xuC! @xu; (17)

where ! D Q! � 2 Ng. The initial data for (17) is g D Qg� Ng, which of course has mean zero.
We now discuss the appropriate existence theory for (17).
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3.1. Existence theory. The well-posedness of the initial value problem for (17) (or for (16)) has been
established in [Bourgain 1995b], in the space H s for s > 0; a more general family of equations including
these was also shown to be well-posed in H s for s > 1

2
in [Hu and Li 2015]. In the present work, we are

not concerned with demonstrating results at the lowest possible regularity, but instead in finding estimates
which will work with the nonexistence argument. Towards this end, we will give a simple existence
theorem for the initial value problem for (17) in the space H 6, as the resulting estimates will be useful. We
mention that the choice of H 6 as the function space is made so that the solutions are classical solutions.

Proposition 6. Let u0 2H 6 be given. There exists T > 0 and a unique u 2 C.Œ0;T �IH 6/ such that u

solves the initial value problem (17) with data u. � ; 0/D u0.

Proof. We begin by introducing a mollifier, J", for " > 0. We use the mollifier to make an approximate
evolution equation,

@tu
"
D J 2

" @
5
xu"�J".2.J"u"/.J"u"x//C!J

2
" u"x : (18)

When combined with the mollifier, all of the derivatives on the right-hand side have become bounded
operators, and thus solutions for the initial value problem for u", with initial data u". � ; 0/D g 2H 6,
exist in C.Œ0;T"�IH

6/ by Picard’s theorem (see Chapter 3 of [Majda and Bertozzi 2002]).
In order to show that the interval of existence can be taken to be independent of ", we must make an

energy estimate. We let the energy functional be an equivalent version of the square of the H 6 norm:

E.t/D 1

2

Z 2�

0

.u"/2C .@6
xu"/2 dx:

Taking the time derivative, we find

dE
dt
D

Z 2�

0

.u"/.@tu
"/ dxC

Z 2�

0

.@6
xu"/.@t@

6
xu"/ dx D IC II:

For I, we plug in from the evolution equation, using the fact that J" is self-adjoint and commutes
with @x:

ID
Z 2�

0

.J"u"/ @5
x.J"u

"/� 2.J"u"/2.J"u"x/C!.J u"/.J"u"x/ dx:

All of these terms vanish upon integrating by parts and/or recognizing perfect derivatives; therefore, ID 0.
To study the term II, it is helpful to first apply six spatial derivatives to (18). We use the product rule,

finding

@t@
6
xu"DJ 2

" @
11
x u"�J".2.J"u"/.@7

xJ"u
"//C!J 2

" @
7
xu"�2J"

� 6X
mD1

� 6

m

�
.@m

x J"u"/.@7�m
x J"u"/

�
: (19)

We can then write
IID II1C II2C II3C II4;

where each of these terms corresponds to one of the four terms on the right-hand side of (19). We will
now deal with these one at a time.
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We again will frequently use the fact that J" is self-adjoint and commutes with @x . To begin, we have

II1 D

Z 2�

0

.@6
xJ"u

"/.@11
x J"u"/ dx:

After integrating by parts and recognizing a perfect derivative, we see that II1 D 0.
For II2, we have

II2 D�2

Z 2�

0

.J"u"/.@6
xJ"u

"/.@7
xJ"u

"/ dx:

We recognize a perfect derivative and integrate by parts, finding

II2 D

Z 2�

0

.J"u"x/.@
6
xJ"u

"/2 dx � cE3=2:

For II3, we have

II3 D !

Z 2�

0

.@6
xJ"u

"/.@7
xJ"u

"/ dx D 0:

As before, this integrates to zero because it is the integral of a perfect derivative over a periodic interval.
Finally, we treat II4. We have

II4 D�2

6X
mD1

� 6

m

� Z 2�

0

.@6
xJ"u

"/.@m
x J"u"/.@7�m

x J"u"/ dx: (20)

Each of the integrals on the right-hand side of (20) can be bounded by E3=2.
We therefore conclude that there exists c > 0 such that

dE
dt
� cE3=2:

This can be rephrased as
dku"kH 6

dt
� cku"k2

H 6 :

This estimate clearly indicates that the solutions u" cannot blow up arbitrarily quickly, and thus exist
on a common time interval. So, we have shown that there exists T > 0, independent of ", such that for
all " > 0, we have u" 2 C.Œ0;T �IH 6/, with the norm bounded independently of ".

Since u" is bounded uniformly (in both t and ") and since u" solves (18), we see that @tu
" is uniformly

bounded in H 1, and thus in L1. By the Arzelà–Ascoli theorem, there exists a subsequence (which we
do not relabel) and a limit, u 2 C.Œ0; 2��� Œ0;T �/, such that u"! u in this space. Standard arguments
(again, see Chapter 3 of [Majda and Bertozzi 2002], for instance) then imply that u belongs to the
space C.Œ0;T �IH 6/, that u obeys the same uniform bound as the u", and that u is a solution of (17).

Uniqueness of solutions (and, in fact, continuous dependence on the initial data) follows from a more
elementary version of the energy estimate. If we let u2C.Œ0;T �IH 6/ be a solution corresponding to initial
data u02H 6, and if we let v2C.Œ0;T �IH 6/ be a solution corresponding to initial data v02H 6, then we can
estimate the norm of u�v. If EdDku�vk

2
L2 , then a straightforward calculation, together with the uniform

bounds established previously, indicates d
dt

Ed � cEd . This implies that Ed �Ed .0/e
ct for all t for which

the solutions are defined. If u0 D v0, then we see that uD v. This is the desired uniqueness result. �
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Remark 7. These estimates are uniform in !, since all of the terms in the energy estimate which involve !
are equal to zero.

3.2. Reformulation. In this section, we use a normal form [Shatah 1985] to rewrite the evolution equation
in a beneficial way.

Taking the Fourier transform, we let uk be the Fourier coefficients of u. We get the evolution equations

@tuk D ik5uk C i!kuk � ik

1X0

jD�1

uk�j uj :

We only consider k ¤ 0 since we know already that @tu0 D u0 D 0. The prime on the sum indicates that
j D 0 and j D k are excluded, as these modes are unnecessary since the mean of u is equal to zero. The
initial condition is

uk.0/D Og.k/:

We bring the linear terms to the left-hand side:

@tuk � ik5uk � i!kuk D�ik

1X0

jD�1

uk�j uj :

We use an integrating factor, so we define vk through the equation

vk.t/D uk.t/e
�ik5t�i!kt :

This yields

@tvk D�ik

1X0

jD�1

e�ik5t�i!ktei.k�j/5tCi!.k�j/teij5tCi!jtvk�jvj :

The exponents simplify as the terms in the exponent related to the transport speed ! all cancel. This
leaves us with

@tvk D�ik

1X0

jD�1

e�ik5tei.k�j/5teij5tvk�jvj :

It will therefore be helpful to understand the quantity k5� .k � j /5� j 5, as this appears in the exponent.
Elementary calculations show that, upon introducing the notation � D k2� j kC j 2, we have

k5
� .k � j /5� j 5

D 5.k � j /j k�:

Using this identity, we are able to write the evolution equation for the vk ,

@tvk D�ik

1X0

jD�1

e�5i.k�j/jk� tvk�jvj : (21)

We can then rewrite this, recognizing that the exponential is in fact the derivative of an exponential:

@tvk D�ik

1X0

jD�1

�
@t

�
e�5i.k�j/jk� t

�5i.k � j /j k�

��
vk�jvj D

1X0

jD�1

�
@t

�
e�5i.k�j/jk� t

5.k � j /j�

��
vk�jvj :
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Next, we “differentiate by parts”, moving the time derivative:

@tvk D @t

�
1

5

1X0

jD�1

e�5i.k�j/jk� t

.k � j /j�
vk�jvj

�
�

1

5

1X0

jD�1

e�5i.k�j/jk� t

.k � j /j�
@t .vk�jvj /:

We define B through its Fourier coefficients, Bk.t/, as

Bk.t/D�
1

5

1X0

jD�1

e�5i.k�j/jk� t

.k � j /j�
vk�jvj : (22)

We then are able to write the evolution equations as

@t Œvk CBk �D�
1

5

1X0

jD�1

�
e�5i.k�j/jk� t

.k � j /j�

��
.@tvk�j /vj C vk�j .@tvj /

�
:

Next, we substitute for @tvk�j and @tvj . We let Q� D j 2� j `C `2; using (21), we have

@tvj D�ij

1X0

`D�1

e�5itj`.j�`/Q�vj�`v`:

We are then able, using a symmetry between k � j and j , to write

@t Œvk CBk �D
2i

5

1X0

jD�1

1X0

`D�1

�
e�5it Œ.k�j/jk�C.j�`/j` Q��

.k � j /�

�
vk�jvj�`v`: (23)

(We reiterate that k ¤ j .) We give the name Rk to the right-hand side of (23), and we let R be the
function with Fourier coefficients equal to Rk for all k. So, we have @t Œvk CBk �DRk . Integrating with
respect to time, we have

vk.t/� vk.0/D Bk.0/�Bk.t/C

Z t

0

Rk.s/ ds: (24)

We transform back to u by multiplying (24) by eik5tCi!kt , and we note that vk.0/ D uk.0/. These
considerations yield

uk.t/� eik5tCi!ktuk.0/D eik5tCi!kt

�
Bk.0/�Bk.t/C

Z t

0

Rk.s/ ds

�
: (25)

Notice that (25) is the k-th Fourier coefficient of the Duhamel integral at time t , or F.SD.t/u0/.k/.

3.3. Estimates. We now estimate B and R and associated quantities, to demonstrate the smoothing
described in Theorem 4 for our equation with fifth-order dispersion.

Remark 8. It will be plain to see that all estimates made in the present section are uniform in !.

Lemma 9. If s � 1 and v 2H s , then B 2H sC3, with the estimate

kBk2
H sC3 � ckvk4H s :

(We note that for our main theorem, we only actually need B 2H sC2, but it turns out that B 2H sC3.)
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Proof. We will show that @3
xB is in H s . We begin by taking three derivatives of B, which requires

multiplying (22) by .ik/3:

.ik/3Bk D
i

5

1X0

jD�1

E.k; j /
k3

j .k � j /.k2� kj C j 2/
vk�jvj ;

where E.k; j / represents the exponential, E.k; j /D e�5itjk.k�j/� .
We will demonstrate now that

k3

j .k � j /.k2� kj C j 2/

is bounded by a constant. To begin, we considerˇ̌̌̌
k

j .k � j /

ˇ̌̌̌
D

ˇ̌̌̌
k � j C j

j .k � j /

ˇ̌̌̌
�

ˇ̌̌̌
1

j

ˇ̌̌̌
C

ˇ̌̌̌
1

k � j

ˇ̌̌̌
� 2:

Next, we consider � D k2� kj C j 2. We observe that

� D 1
2
k2
C

1
2
.k � j /2C 1

2
j 2; (26)

so clearly � � 1
2
k2. Thus, ˇ̌̌̌

k2

�

ˇ̌̌̌
� 2: (27)

Thus, for any k and any j , we haveˇ̌̌̌
E.k; j /

k3

j .k � j /.k2� kj C j 2/

ˇ̌̌̌
� 4: (28)

We give the name

ˆ.k; j /DE.k; j /
k3

j .k � j /.k2� kj C j 2/
:

Of course, we have
k@sC3

x Bk2
L2 D

jkjs.ik3Bk/
2

`2 :

We then havejkjs.ik3Bk/
2

`2 D
1

25

1X
kD�1

1X0

jD�1

1X0

`D�1

ˆ.k; j /ˆ.k; `/k2svk�jvj Nvk�` Nv`:

In light of (28), we have jkjs.ik3Bk/
2

`2 �

X
k;j ;`

k2s
jvk�j jjvj jjvk�`jjv`j: (29)

Let V be the function defined through its Fourier coefficients as FV .k/ D jvk j for all k. Note
that since v 2 H s , we have V 2 H s , with kvkH s D kV kH s . Since V 2 H s with s � 1, we can see
that V 2 2H s , with kV 2kH s � ckvk2

H s . Notice that the right-hand side of (29) is equal to k@s
x.V

2/k2
L2 .

This completes the proof. �
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The particular estimate we need for B follows from Lemma 9:

Corollary 10. If s � 1 and u 2 C.Œ0;T �IH s/, and if t 2 Œ0;T �, then

F�1
�
eik5tCi!kt .Bk.0/�Bk.t//

�
2H sC3;

with the bound F�1
�
eik5tCi!kt .Bk.0/�Bk.t//

�
H sC3 � ckuk2C.Œ0;T �IH s/:

Proof. This follows immediately from Lemma 9, and from the fact that jei� j D 1 for any real � . �

Having proved a satisfactory estimate for B, we turn to R.

Lemma 11. If s � 1 and v 2H s , then R 2H sC2, with the estimate

kRk2
H sC2 � ckvk6H s :

Proof. Recall the formula for Rk ,

Rk D
2i

5

1X
jD�1

0
1X

`D�1

0 1

.k � j /�
.vk�jvj�`v`/ exp

˚
.�5i t/.kj .k � j /� C j `.j � `/ Q�/

	
;

with � D k2�kj Cj 2 and Q� D j 2�j `C`2. As we noted in the proof of Lemma 9, we have k2=� � 2.
Following the lines of the proof of Lemma 9, we arrive at

k@sC2
x Rk2

L2 � c
X

k;j ;`;m;n

k2s
jvk�j jjvj�`jjv`jjvk�mjjvm�njjvnj:

Letting V be as in the proof of Lemma 9, we see that the right-hand side is a constant times the square of
the L2 norm of @s

x.V
3/. Thus, this is bounded by kvk6

H s , as claimed. �

Lemma 11 implies the following, which is the estimate we need for R:

Corollary 12. If s � 1 and u 2 C.Œ0;T �IH s/, and if t 2 Œ0;T �, then

F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�
2H sC2;

with F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�
H sC2

� ckuk3C.Œ0;T �IH s/:

Proof. We begin by noting that, of course,@sC2
x F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�2

L2

D

.ik/sC2eik5tCi!kt

Z t

0

Rk.s/ ds

2

`2

D

Z t

0

ksC2Rk.s/ ds

2

`2

D

1X
kD�1

�Z t

0

ksC2Rk.s/ ds

��Z t

0

ksC2Rk.�/ d�

�
:
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We use the triangle inequality:@sC2
x F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�2

L2

�

1X
kD�1

�Z t

0

jksC2Rk.s/j ds

��Z t

0

jksC2Rk.�/j d�

�
:

By Tonelli’s theorem, we can exchange the sum and the integrals:@sC2
x F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�2

L2

�

Z t

0

Z t

0

1X
kD�1

jksC2Rk.s/jjk
sC2Rk.�/j ds d�:

We then use the Cauchy–Schwarz inequality:@sC2
x F�1

�
eik5tCi!kt

Z t

0

Rk.s/ ds

�2

L2

� c

Z t

0

Z t

0

kR. � ; s/kH sC2kR. � ; �/kH sC2 ds d�:

We then use Lemma 11, and the proof is complete. �

We are now in a position to show that the necessary estimate for the Duhamel integral holds for (17).

Theorem 13. Let 0 < T1 < T2 be given. There exists  > 0 such that for any u0 2 H 6 such that
ku0kH 6 <  , there is a unique solution of the initial value problem (17) with initial data u0, with the
solution u 2 C.Œ0;T2�IH

6/. There exists c > 0 and Q 2 .0;  / such that for any T 2 ŒT1;T2�, and for any
u0 2H 6

0
such that ku0kH 6 < Q , we have

kSD.T /u0kH 8 � cku0k
2
H 6 :

Proof. The formula (25) and the estimates of Corollaries 10 and 12 for B and R immediately imply

kSD.T /u0kH 8 � ckuk2
C.Œ0;T �IH 6/

:

However, we are not yet finished because we need the bound to be in terms of the initial data, and not in
terms of the solution at positive times.

As discussed in Section 3.1 above, we have

d

dt
ku"kH 6 � cku"k2

H 6 :

Let ku0kH 6 D ı=2. Then, as long as ku". � ; t/kH6
� ı D 2ku0kH 6 , we have

d

dt
ku"kH 6 � cıku"kH 6 ;

and thus
ku"kH 6 � ku0kH 6ecıt

D
1
2
ıecıt :

This implies that ku"kH 6 � 2ku0kH 6 as long as ecıt < 2. This is valid as long as t < ln.2/=cı; notice that
this bound goes to infinity as ı vanishes (that is, the “doubling time” for solutions goes to infinity as the ini-
tial size of the solutions goes to zero). Taking the limit as " vanishes, then (along our subsequence), we find

kukH 6 � 2ku0kH 6 ;

as long as t < ln.2/=cı.
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Given the set of potential temporal periods of interest, ŒT1;T2�, we may choose ı sufficiently small
so that as long as ku0kH 6 < ı=2, for all t 2 Œ0;T2�, we have ku. � ; t/kH 6 < 2ku0kH 6 . We have shown
above that kSD.T /u0kH 8 � ckuk2

C.Œ0;T2�IH 6/
. We now can bound this in terms of ku0kH 6 , so that

kSD.T /u0kH 8 � 4cku0k
2
H 6

for any T 2 ŒT1;T2� and for any u0 satisfying our smallness assumption. This is the desired bound. �

3.4. Completion of the example. In this section, we state a specific theorem on nonexistence of time-
periodic solutions, making use of the above. Consider the equation

@t QuD @
5
x Qu� 2 Qu @x Qu: (30)

Consider the initial data, Qu0 2H 6, with the mean of Qu0 equal to ˛. As above, we define u0 D Qu0 � ˛,
and we let uD Qu�˛. The evolution equation satisfied by u, as discussed above, is

@tuD @
5
xu� 2˛ @xu� 2u @xu: (31)

If we let AD @5
x � 2˛@x , then we see that the symbol of A is

OA.k/D i.k5
� 2˛k/D ik.k4

� 2˛/: (32)

Thus, if 2˛ < 1, then there are no zeros of the symbol in Z n f0g. Recalling the hypotheses (H), we have
M D 2, and we let r1 D 5, r2 D 1, Z1 D f1g, and Z2 D

�
�

1
2
; 1

2

�
. Letting ˛1 2Z1 and ˛2 2Z2, we see

that we may take ˇ1D
1
2

and ˇ2D
1
2

. Letting ˛2D�2˛, we see that the hypotheses (H) are satisfied, and
Lemma 2 and Corollary 3 hold, with uniform estimates for ˛ 2

�
�

1
4
; 1

4

�
. Therefore, Theorem 4 applies

for ˛ 2
�
�

1
4
; 1

4

�
. Theorem 13 also applies, and in light of Remarks 7 and 8, we see that the constants in

Theorem 13 can be taken to be uniform with respect to ˛. This implies that (31) does not possess small,
nonzero time-periodic solutions, uniformly in ˛ 2

�
�

1
4
; 1

4

�
.

Adding the mean ˛ back to u, we get QuD . Qu�˛/C˛, with uD Qu�˛. We know that for ˛2
�
�

1
4
; 1

4

�
, Qu�˛

does not possess small, nonzero time-periodic solutions with the associated periods (T 2Wp;ı or T 2Wp ,
as appropriate). Furthermore, we know that k QukH 6 � k Qu�˛kH 6 . This implies that the only small time-
periodic solutions of (30) with the given temporal periods are QuD ˛. Thus (30) does not possess small,
nonconstant time-periodic solutions with the given temporal periods. This proves the following corollary:

Corollary 14. Let 0 < T1 < T2 be given. Let p 2 .1; 2� be given. Let 0 < ı < T2 � T1 be given. Let
Wp;ı � ŒT1;T2� be as in Lemma 2, with A given by (32) for j˛j � 1

4
. There exists r1 > 0 such that for

all T 2Wp;ı, if u is a smooth, nonconstant time-periodic solution of (30) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r1:

Let Wp � ŒT1;T2� be as in Corollary 3. Let T 2Wp be given. Then there exists r2 such that if u is a
smooth, nonconstant time-periodic solution of (30) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r2:
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4. Further examples with Qp D 0

In this section, we provide a few other equations which can be treated similarly to the above. We do not
provide full proofs in this section, but instead point out the differences with the prior proof.

4.1. Nonresonant Kawahara equations. The Kawahara equation has been justified as a model for water
waves with surface tension [Düll 2012; Schneider and Wayne 2002]. It can be written as

@t QuD @
5
x Qu� � @

3
x Qu� 2 Qu @x Qu; (33)

with � > 0. As before, we take this with initial data Qu. � ; 0/D Qu0, and we assume that the mean of Qu0 is
equal to ˛. We again let uD Qu�˛, and we find that the equation satisfied by u is

@tuD @
5
xu� � @3

xu� 2˛ @xu� 2u @xu: (34)

Our prior results extend to the Kawahara equation as long as the constant � is chosen to avoid resonance.
In particular, we must require k5� �k3 ¤ 0 for all k 2 Z n f0g. Notice that this is the same as requiring

min
k2Znf0g

jk5
� �k3

j> 0: (35)

This implies that there exists a constant N̨ > 0 and a constant ˇ2 > 0 such that for all ˛ 2 .� N̨ ; N̨ /, for all
k 2 Z n f0g,

jk5
� �k3

� 2˛kj � ˇ2:

We now verify (H), taking M D 3. We let r1 D 5, r2 D 3, and r3 D 1. We let Z1 D f1g and Z2 D f�g.
We take ˛1 D 1, ˛2 D � , and ˛3 D�2˛, with Z3 D .�2 N̨ ; 2 N̨ /. Then, (H) is satisfied, with ˇ1 D

1
2

.
This means that Theorem 4 applies, and all that must be done to conclude the nonexistence of small

doubly periodic waves for the nonresonant Kawahara equation is that the smoothing property must be
demonstrated. We are able to demonstrate the smoothing property with Qp D 0.

We take the Fourier transform of (34), finding

@tuk D ik5uk C i�k3uk � 2i˛kuk � ik

1X
jD�1

uk�j uj :

As before, we use an integrating factor, defining

vk D uk exp
˚
i t.�k5

� �k3
C 2˛k/

	
:

We have the following evolution equation for vk :

@tvk D�ik

1X0

jD�1

.vk�jvj / expfi tˆ.j ; k/g;

where the phase function, ˆ, is given by

ˆ.j ; k/D�k5
� �k3

C 2˛kC .k � j /5C �.k � j /3� 2˛.k � j /C j 5
C �j 3

� 2˛j:
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This simplifies, as all the terms with ˛ cancel, and also since we previously computed k5� .k�j /5�j 5.
We have not previously computed k3� .k � j /3� j 3, but this is straightforward:

k3
� .k � j /3� j 3

D 3j k.k � j /:

These considerations imply

ˆ.j ; k/D 5j k.k � j /� C 3�j k.k � j /D 5j k.k � j /
�
� C 3

5
�
�
:

The critical step in the proof of smoothing in Section 3 was inequality (27). We see that the corre-
sponding inequality in the present case is ˇ̌̌̌

k2

� C 3
5
�

ˇ̌̌̌
� 2;

which follows immediately from (26) and the condition � > 0. The rest of the proof of Section 3 can be
repeated, establishing the following:

Corollary 15. Let 0 < T1 < T2 be given. Let p 2 .1; 2� be given. Let 0 < ı < T2 � T1 be given. Let
� > 0 satisfy (35), and let N̨ > 0 be as above. Let Wp;ı � ŒT1;T2� be as in Lemma 2, with A given by
F.A/D i.�k5��k3C2˛k/ for j˛j � N̨ . There exists r1 > 0 such that for all T 2Wp;ı , if u is a smooth,
nonconstant time-periodic solution of (33) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r1:

Let Wp � ŒT1;T2� be as in Corollary 3. Let T 2Wp be given. Then there exists r2 such that if u is a
smooth, nonconstant time-periodic solution of (33) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r2:

Remark 16. Above, we appeared to use in a fundamental way the property � > 0. We assume � > 0

only because this appears to be a feature of the Kawahara equation as it exists in the prior literature.
If we instead had � < 0, our argument would still work. For a particular value of � , if there exist
.j ; k/ 2 .Z n f0g/2 such that � C 3

5
� D 0, then we treat such values of .j ; k/ differently. The arguments

of Section 3 continue to apply whenever this quantity does not vanish. All that remains is to observe that,
as can be seen from (26), the set of .j ; k/ for which � C 3

5
� does vanish is bounded for a fixed value

of � (or for values of � in a bounded set), and that regularity is determined by behavior for large k.

4.2. Seventh-order equations. The proof of smoothing for the fifth-order equation above depended
on the factorization of k5 � .k � j /5 � j 5. With dispersion of seventh order, we must understand
k7� .k � j /7� j 7. By making elementary calculations, one may show that

k7
� .k � j /7� j 7

D 7.k � j /j k�; (36)

where

� D 1
2
k4
C

1
2
.k � j /4C 1

2
j 4
I
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note the similarity to (26). Clearly, we have the inequalityˇ̌̌
k4

�

ˇ̌̌
D

k4

�
� 2: (37)

We can then perform all of the calculations of Section 3 for the equation

@tuD @
7
xu� 2u @xu: (38)

Recall that B and R, defined in Section 3.2, were shown in Section 3.3 to gain two derivatives. This
property hinged on the inequality (27). In the present setting, the analogues of B and R would now gain
four derivatives because of (37). (As noted in the introduction, this allows one to see that the smoothing
mechanism we are using is different than Kato smoothing, as Kato smoothing would provide a gain of
three derivatives with seventh-order dispersion.) Following the argument of Section 3, but using (37), we
arrive at the following:

Corollary 17. Let 0 < T1 < T2 be given. Let p 2 .1; 4� be given. Let 0 < ı < T2 � T1 be given. Let
Wp;ı � ŒT1;T2� be as in Lemma 2, with A given by F.A/D i.�k7C˛k/ for j˛j � 1

2
. There exists r1 > 0

such that for all T 2Wp;ı, if u is a smooth, nonconstant time-periodic solution of (38) with temporal
period T , then

inf
t2Œ0;T �

kukH 8 > r1:

Let Wp � ŒT1;T2� be as in Corollary 3. Let T 2Wp be given. Then there exists r2 such that if u is a
smooth, nonconstant time-periodic solution of (38) with temporal period T , then

inf
t2Œ0;T �

kukH 8 > r2:

We note that a change from Corollary 17 as compared to Corollary 14 is that we are now using H 8

instead of H 6. The function space is chosen so that the solutions under consideration are classical
solutions; using the space H 8, the seventh derivative of u appearing on the right-hand side of (38) is
classically defined.

5. The KdV equation

We study the equation

@t QuD�@
3
x Qu� Qu @x Qu: (39)

(This is not the most traditional choice of coefficients for the KdV equation, but the coefficients are
changeable by scaling, so it makes no difference.) The evolution equation (39) is taken with initial data
u. � ; 0/D Qg. We let the mean of Qg be denoted as ˛, and we define g D Qg�˛. Then, noticing that (39)
preserves the mean of the solution, we define uD Qu�˛, so that the mean of u is equal to zero, as long as
the solution Qu of (39) exists. The evolution equation satisfied by u is

@tuD�@
3
xu�˛ @xu�u @xu: (40)
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We note that there are very many papers in the literature treating the well-posedness of the KdV equation.
For example, in [Bourgain 1993], global well-posedness for the periodic KdV equation with initial data
in H s for s � 0 is established, and in [Kappeler and Topalov 2006], global well-posedness is established
in H s for s � �1. Nevertheless, we remark that the simple well-posedness proof for (16) given in
Section 3.1 can be suitably and straightforwardly modified to the KdV equation, yielding the same results:
that classical solutions exist for arbitrarily long intervals of time if the initial data is sufficiently small,
and that the doubling time of such solutions goes to infinity as the size of the data vanishes.

We take the Fourier transform of (40):

@tuk D i.k3
�˛k/uk � i

1X0

jD�1

uk�j .j uj /:

Since the mean of u is equal to zero, the values j D 0 and j D k are unnecessary; as before, the prime
indicates that these indices are excluded from the summation. We use an integrating factor, defining
vk D uk expf�i t.k3�˛k/g:

@tvk D�i

1X0

jD�1

exp
˚
�i t.k3

� .k � j /3� j 3/
	
vk�j .j vj /:

(Notice that the terms in the exponential involving ˛ all canceled.) From Pascal’s triangle, we see that
k3� .k � j /3� j 3 D 3kj .k � j /. Thus, we may write

@tvk D�i

1X0

jD�1

exp
˚
�3i tkj .k � j /

	
vk�j .j vj /: (41)

We now manipulate the exponential:

@tvk D�i

1X0

jD�1

@t

�
e�3itkj.k�j/

�3ikj .k � j /

�
vk�j .j vj /:

We cancel the factor of �i , and we also “differentiate by parts”:

@tvk D @t

� 1X0

jD�1

e�3itkj.k�j/

3kj .k � j /
vk�j .j vj /

�
�

1X
jD�1

e�3itkj.k�j/

3kj .k � j /
@t .vk�j .j vj //:

We can write this as

@t .vk CBk/DRk ;

with

Bk D�
1

3

1X
jD�1

e�3itkj.k�j/

kj .k � j /
vk�j .j vj /;

Rk D�
1

3

1X0

jD�1

e�3itkj.k�j/

kj .k � j /
@t .vk�j .j vj //: (42)
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We continue to rewrite this, by applying the time derivative on the right-hand side of (42). Using (41), we
have

@tvk�j D�i

1X0

mD�1

exp
˚
�3i t.k � j /m.k � j �m/

	
vk�j�m.mvm/;

@tvj D�i

1X0

`D�1

exp
˚
�3i tj `.j � `/

	
vj�`.`v`/:

Using these, we write Rk DR1
k
CR2

k
, with

R1
k D

i

3

1X0

jD�1

1X0

mD�1

exp
˚
�3i t.k � j /.kj Cm.k � j �m//

	
kj .k � j /

vk�j�m.j vj /.mvm/;

R2
k D

i

3

1X0

jD�1

1X0

`D�1

exp
˚
�3i tj .k.k � j /C `.j � `//

	
kj .k � j /

vk�j .j .vj�`/.`v`//:

We further rewrite R2
k

by writing j D j � `C `:

Rk
2 D

i

3

1X0

jD�1

1X0

`D�1

exp
˚
�3i tj .k.k � j /C `.j � `//

	
kj .k � j /

vk�j ..j � `/vj�`/.`v`/

C
i

3

1X0

jD�1

1X0

`D�1

exp
˚
�3i tj .k.k � j /C `.j � `//

	
kj .k � j /

vk�jvj�`.`
2v`/:

Using the inequality ˇ̌̌̌
k2

kj .k � j /

ˇ̌̌̌
� 2;

and our previous arguments, we find the bounds

kBkH sC2 � ckvkH skvkH sC1 ;

kR1
kH sC2 � ckvkH skvk2

H sC1 ;

kR2
kH sC2 � ckvkH s

�
kvk2

H sC1 CkvkH skvkH sC2

�
:

If kvkH sC2 < 1, then the right-hand sides can all be bounded by

ckvkH skvkH sC2 :

Following the arguments of the previous cases, we are able to conclude, for sufficiently small u0 2H sC2
0

,

kSD.T /u0kH sC2 � cku0kH sku0kH sC2 :

This is estimate (14) with p D Qp D 2 and q D 1, so we see that the nonexistence result holds for the
KdV equation:



NONEXISTENCE OF SMALL DOUBLY PERIODIC SOLUTIONS FOR DISPERSIVE EQUATIONS 39

Corollary 18. Let 0 < T1 < T2 be given. Let p 2 .1; 2� be given. Let 0 < ı < T2 � T1 be given. Let
Wp;ı � ŒT1;T2� be as in Lemma 2, with A given by

AD�@3
x �˛ @x;

with j˛j � 1
2

. There exists r1 > 0 such that for all T 2Wp;ı, if u is a smooth, nonconstant time-periodic
solution of (39) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r1:

Let Wp � ŒT1;T2� be as in Corollary 3. Let T 2Wp be given. Then there exists r2 such that if u is a
smooth, nonconstant time-periodic solution of (39) with temporal period T , then

inf
t2Œ0;T �

kukH 6 > r2:

We note that the result of Corollary 18 is given for solutions in H 6. This is because we take s D 4

so that we work with classical solutions, and we have Qp D 2. An application of Theorem 4 then gives a
restriction on the H sC Qp DH 6 norm.

6. Discussion

We have developed a theoretical framework for the demonstration of nonexistence of small doubly periodic
solutions for dispersive evolution equations. The abstract theorem indicates that nonexistence follows
from the demonstration of dispersive smoothing estimates. In particular cases, we have demonstrated
that the required dispersive smoothing estimates hold. These results are an analogue of scattering results
for dispersive equations on the real line, since scattering implies the nonexistence of small-amplitude
coherent structures.

Other work to be done includes treating additional specific examples, and possibly proving a general
theorem about when the weak smoothing property (14) holds. For example, it should be investigated
whether the necessary properties can be shown to hold for other dispersive equations in one space dimension
(like the Benjamin–Ono equation) and in higher dimensions (such as Schrödinger equations). For equations
with sufficiently strong dispersion, the stronger smoothing estimate (corresponding to Qp D 0, in which
the Duhamel integral gains more than one derivative) will likely hold. A class of equations with strong
dispersion are fourth-order Schrödinger equations (see, e.g., [Fibich et al. 2002; 2003; Karpman and
Shagalov 2000]). Such equations are of the form

i t C� Cj j
2� C "�2 D 0;

with � > 0 and " > 0, and can arise by including higher-order corrections when deriving a Schrödinger
equation from the Maxwell equations. The above linear estimates, such as Lemma 2 and Corollary 3,
are valid in one spatial dimension. As pointed out to the authors by the referee of [Ambrose and Wright
2014], in n spatial dimensions, the result requires p > n rather than p > 1. Thus, in higher dimensions,
one would expect to need to use the weaker smoothing property (corresponding to Qp > 0) in order to
follow the strategy of the present paper.
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We consider the determination of a conductivity function in a two-dimensional domain from the Cauchy
data of the solutions of the conductivity equation on the boundary. We prove uniqueness results for
this inverse problem, posed by Calderón, for conductivities that are degenerate, that is, they may not
be bounded from above or below. Elliptic equations with such coefficient functions are essential for
physical models used in transformation optics and the study of metamaterials, e.g., the zero permittivity
materials. In particular, we show that the elliptic inverse problems can be solved in a class of conduc-
tivities which is larger than L∞. Also, we give new counterexamples for the uniqueness of the inverse
conductivity problem.

We say that a conductivity is visible if the inverse problem is solvable so that the conductivity inside of
the domain can be uniquely determined, up to a change of coordinates, using the boundary measurements.
The original counterexamples for the inverse problem are related to the invisibility cloaking. This means
that there are conductivities for which a part of the domain is shielded from detection via boundary
measurements and even the existence of the shielded domain is hidden. Such conductivities are called
invisibility cloaks.

In the present paper, we identify the borderline of the visible conductivities and the borderline of
invisibility cloaking conductivities. Surprisingly, these borderlines are not the same. We show that between
the visible and the cloaking conductivities, there are the electric holograms. These are conductivities which
create an illusion of a nonexisting body. Such conductivities give counterexamples for the uniqueness
of the inverse problem which are less degenerate than the previously known ones. These examples are
constructed using transformation optics and the inverse maps of the optimal blow-up maps. The proofs of
the uniqueness results for inverse problems are based on the complex geometrical optics and the Orlicz
space techniques.
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1. Introduction and main results

Invisibility cloaking has been a very topical subject in recent studies in mathematics, physics, and material
science [Ammari et al. 2013; Alu and Engheta 2005; Greenleaf et al. 2007c; 2003a; 2003c; Milton and
Nicorovici 2006; Leonhardt 2006; Liu 2013; Liu and Sun 2013; Pendry et al. 2006]. By invisibility
cloaking we mean the possibility, both theoretical and practical, of shielding a region or object from
detection via electromagnetic fields.

Counterexamples for inverse problems and the proposals for invisibility cloaking are closely related. In
2003, before the appearance of practical possibilities for cloaking, it was shown in [Greenleaf et al. 2003c]
that passive objects can be coated with a layer of material with a degenerate conductivity which makes the
object undetectable by electrostatic boundary measurements in such a way that the coated object appears
in all measurements the same as a body made of homogeneous material. These constructions were based
on blow-up maps and gave counterexamples for uniqueness of the inverse conductivity problem in the
three- and higher-dimensional cases. In the two-dimensional case, the mathematical theory of the cloaking
examples for the conductivity equation have been studied in [Kohn et al. 2008; 2010]. Besides for the
conductivity equation, these results can be applied for other physical models based on elliptic equations.

The interest in cloaking was raised in particular in 2006 when it was realized that practical cloaking
constructions are possible using so-called metamaterials which allow fairly arbitrary specification of
electromagnetic material parameters. The construction of Leonhardt [2006] was based on conformal
mapping on a nontrivial Riemannian surface. At the same time, Pendry et al. [2006] proposed a cloaking
construction for Maxwell’s equations using a blow-up map and the idea was demonstrated in laboratory
experiments [Schurig et al. 2006]. Cloaking for the conductivity equation has been demonstrated in labo-
ratory experiments by Yang et al. [2012]. In the now very large literature, there are also other suggestions
for cloaking based on negative material parameters [Alu and Engheta 2005; Milton and Nicorovici 2006].

In this paper, we consider both new counterexamples and uniqueness results for inverse problems. We
study Calderón’s inverse problem in the two-dimensional case, that is, the question of whether an unknown
conductivity distribution inside a domain can be determined from the voltage and current measurements
made on the boundary of a simply connected domain�⊂R2; see [Borcea 2002]. Mathematically the mea-
surements correspond to the knowledge of the Dirichlet-to-Neumann map3σ (or the quadratic form) asso-
ciated to σ , i.e., the map taking the Dirichlet boundary values of the solution of the conductivity equation

∇ · σ(x)∇u(x)= 0 in � (1-1)

to the corresponding Neumann boundary values,

3σ : u|∂� 7→ ν · σ∇u|∂�. (1-2)

In the classical theory of the problem, the conductivity σ is bounded uniformly from above and below.
The problem was originally proposed by Calderón [1980]. Sylvester and Uhlmann [1987] proved the
unique identifiability of the conductivity in dimensions three and higher for isotropic conductivities which
are C∞-smooth, and Nachman [1988] gave a reconstruction method. In three dimensions or higher,
unique identifiability of the conductivity is proven in [Haberman and Tataru 2013] for C1-conductivities;
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for earlier studies on the topic, see [Greenleaf et al. 2003b; Päivärinta et al. 2003]. The problem has also
been solved with measurements only on a part of the boundary [Kenig et al. 2007].

In two dimensions, the first global solution of the inverse conductivity problem is due to Nachman
[1996] for conductivities with two derivatives. In this seminal paper, the ∂̄ technique was used for the
first time in the study of Calderón’s inverse problem. The smoothness requirements were reduced in
[Brown and Uhlmann 1997] to Lipschitz conductivities. Finally, in [Astala and Päivärinta 2006] the
uniqueness of the inverse problem was proven in the form that the problem was originally formulated
in [Calderón 1980], i.e., for general isotropic conductivities in L∞ which are bounded from below and
above by positive constants. Stability of this reconstruction is studied in [Alessandrini 1988; Barceló
et al. 2001; 2007] and the numerical solutions in [Astala et al. 2011; Isaacson et al. 2004; Knudsen et al.
2007; 2009; Mueller and Siltanen 2012; Siltanen et al. 2000].

The Calderón problem with anisotropic, i.e., matrix-valued, conductivities that are uniformly bounded
from above and below, has been studied in two dimensions [Sylvester 1990; Nachman 1996; Lassas et al.
2003; Lassas and Uhlmann 2001; Astala et al. 2005; Imanuvilov et al. 2010] and in dimensions n ≥ 3
[Lee and Uhlmann 1989; Lassas and Uhlmann 2001; Dos Santos Ferreira et al. 2009]. For example, for
the anisotropic inverse conductivity problem in the two-dimensional case, it is known that the Dirichlet-
to-Neumann map determines a regular conductivity tensor only up to a diffeomorphism F : �→ �;
i.e., one can obtain an image of the interior of � in deformed coordinates. This implies that the inverse
problem is not uniquely solvable, but the nonuniqueness of the problem can be characterized. This makes
it possible, e.g., to find the unique conductivity that is closest to isotropic ones [Kolehmainen et al. 2005;
2010; 2013]. We note that this problem in higher dimensions is presently solved only in special cases,
when the conductivity is real analytic; see [Lassas et al. 2003; Lassas and Uhlmann 2001].

In this work, we will study the inverse conductivity problem in the two-dimensional case with degenerate
conductivities. Such conductivities appear in physical models where the medium varies continuously from
a perfect conductor to a perfect insulator or in high-contrast problems [Borcea et al. 1996; Borcea 1999].
As an example, we may consider a case where the conductivity goes to zero or to infinity near ∂D, where
D ⊂� is a smooth open set. We ask what kind of degeneracy prevents solving the inverse problem; that
is, we study what is the border of visibility. We also ask what kind of degeneracy makes it possible to coat
an arbitrary object so that it appears the same as a homogeneous body in all static measurements; that is,
we study what is the border of the invisibility cloaking. Surprisingly, these borders are not the same. We
identify these borderlines and show that between them there are the electric holograms, that is, the conduc-
tivities creating an illusion of a nonexistent body (see Figure 1). These conductivities are counterexamples
for the unique solvability of inverse problems for which even the topology of the domain cannot be
determined using boundary measurements. Our main results for the uniqueness of the inverse problem are
given in Theorems 1.8, 1.9, and 1.11 and the counterexamples are formulated in Theorems 1.6 and 1.7.

The cloaking constructions have given rise to the design technique called transformation optics.
The metamaterials built to operate at microwave frequencies [Schurig et al. 2006] and near the optical
frequencies [Ergin et al. 2010] are inherently prone to dispersion, so that realistic cloaking must currently be
considered as occurring at a very narrow range of wavelengths. Fortunately, in many physical applications



46 KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

0 0.5 1 1.5 2
0

5

10

15

20

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

Figure 1. Left: tr(σ ) of three radial and singular conductivities on the positive x axis.
The curves correspond to the invisibility cloaking conductivity (red), with the singularity
σ 22(x, 0) ∼ (|x | − 1)−1 for |x | > 1, a visible conductivity (blue) with a log log-type
singularity at |x | = 1, and an electric hologram (black) with the conductivity having the
singularity σ 11(x, 0) ∼ |x |−1. Right, top: All measurements on the boundary of the
invisibility cloak (left) coincide with the measurements for the homogeneous disc (right).
The color shows the value of the solution u with the boundary value u(x, y)|∂B(2) = x
and the black curves are the integral curves of the current −σ∇u. Right, bottom:
All measurements on the boundary of the electric hologram (left) coincide with the
measurements for an isolating disc covered with the homogeneous medium (right). The
solutions and the current lines corresponding to the boundary value u|∂B(2)= x are shown.

the materials need to operate only near a single frequency. The cloaking-type constructions have also
inspired suggestions for possible devices producing extreme effects on wave propagation, including
invisibility cloaks for magnetostatics [Gömöry et al. 2012], acoustics [Chen and Chan 2007a], quantum
mechanics [Greenleaf et al. 2007a, 2008; 2011a], field rotators [Chen and Chan 2007b], electromagnetic
wormholes [Greenleaf et al. 2007b], invisible sensors [Alu and Engheta 2009; Greenleaf et al. 2011b],
perfect absorbers [Landy et al. 2008], and cloaked wave amplifiers [Greenleaf et al. 2012]. We also note
that the differential equations with degenerate coefficients modeling cloaking devices have turned out
to have interesting properties, such as nonexistence results for solutions with nonzero sources and local
[Greenleaf et al. 2007c; Liu and Zhou 2011] and nonlocal [Lassas and Zhou 2011; Nguyen 2012] hidden
boundary conditions. For reviews on the topic, see [Greenleaf et al. 2009a; 2009b].

Finally, the classical assumption that the electromagnetic material parameters (i.e., the coefficient
functions in the elliptic equations) are uniformly bounded from below by positive constants is not valid in
the modern study of materials, e.g., on the optical frequencies [Capolino 2009]. Thus one of the aims of
this paper is to bring the mathematical study of elliptic equations and inverse problems closer to current
topics in optics and imaging methods in physics.
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The structure of the paper is the following. The main results and the formulation of the boundary
measurements are presented in the first section. The proofs for the existence of the solutions of the
direct problem as well as for the new counterexamples and the invisibility cloaking examples with
a nonsmooth background are given in Section 2. The uniqueness result for isotropic conductivities
is proven in Sections 3–4 and the reduction of the general problem to the isotropic case is shown in
Section 5. In Sections 3–5, the degeneracy of the conductivity yields that the exponentially growing
solutions, the standard tools used to study Calderón’s inverse problem, cannot be constructed using purely
microlocal or functional analytic methods. Because of this, we will extensively need the topological
properties of the solutions: By Stoilow’s theorem, the solutions are compositions of analytic functions
and homeomorphisms. Using this, the continuity properties of the weakly monotone maps, and Orlicz
estimates holding for homeomorphisms, we prove the existence of the solutions in the Sobolev–Orlicz
spaces. These spaces are chosen so that we can obtain the subexponential asymptotics for the families of
exponentially growing solutions needed in the ∂̄ technique used to solve the inverse problem.

1A. Definition of measurements and solvability. Let �⊂ R2 be a bounded simply connected domain
with a C∞-smooth boundary. Let6=6(�) be the class of measurable matrix-valued functions σ :�→M ,
where M is the set of generalized matrices m of the form

m =U
(
λ1 0
0 λ2

)
U t ,

where U ∈ R2×2 is an orthogonal matrix, U−1
= U t and λ1, λ2 ∈ [0,∞). We denote by W s,p(�) and

H s(�)=W s,2(�) the standard Sobolev spaces.
In the following, let dm(z) denote the Lebesgue measure in C and |E | be the Lebesgue measure of

the set E ⊂ C. Instead of defining the Dirichlet-to-Neumann operator for the above conductivities, we
consider the corresponding quadratic forms.

Definition 1.1. Let h ∈ H 1/2(∂�). The Dirichlet-to-Neumann quadratic form corresponding to the
conductivity σ ∈6(�) is given by

Lσ [h] = inf Aσ [u], where Aσ [u] =
∫
�

σ(z)∇u(z) · ∇u(z) dm(z), (1-3)

and the infimum is taken over real-valued u ∈ L1(�) such that ∇u ∈ L1(�;R2) and u|∂� = h. In the case
where Lσ [h]<∞ and Aσ [u] reaches its minimum at some u, we say that u is a W 1,1(�) solution of the
conductivity problem.

When σ is smooth and bounded from below and above by positive constants, Lσ [h] is the quadratic
form corresponding the Dirichlet-to-Neumann map (1-2),

Lσ [h] =
∫
∂�

h3σh d S, (1-4)

where d S is the length measure on ∂�. Physically, Lσ [h] corresponds to the power needed to keep
voltage h at the boundary. For smooth conductivities bounded from below, for every h ∈ H 1/2(∂�), the
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integral Aσ [u] always has a unique minimizer u ∈ H 1(�) with u|∂� = h, which is also a distributional
solution to (1-1). Conversely, for functions u ∈ H 1(�), their traces lie in H 1/2(∂�). It is for this reason
that we chose to consider the H 1/2-boundary functions also in the most general case. We interpret that the
Dirichlet-to-Neumann form corresponds to an idealization of the boundary measurements for σ ∈6(�).

We note that the conductivities studied in the context of cloaking are not even in L1
loc. As σ is

unbounded, it is possible that Lσ [h] =∞. Even if Lσ [h] is finite, the minimization problem in (1-3) may
generally have no minimizer and even if they exist, the minimizers need not be distributional solutions to
(1-1). However, if the singularities of σ are not too strong, minimizers satisfying (1-1) do always exist.
To show this, we need to define suitable subclasses of degenerate conductivities.

Let σ ∈6(�). We start with precise quantities describing the possible degeneracy or loss of uniform
ellipticity. First, a natural measure of the anisotropy of the conductivity σ at z ∈� is

kσ (z)=

√
λ1(z)
λ2(z)

,

where λ1(z) and λ2(z) are the eigenvalues of the matrix σ(z) with λ1(z)≥ λ2(z). If we want to simultane-
ously control both the size and the anisotropy, this is measured by the ellipticity K (z) := Kσ (z) of σ(z),
i.e., the smallest number 1≤ K (z)≤∞ such that

1
K (z)
|ξ |2 ≤ ξ · σ(z)ξ ≤ K (z)|ξ |2 for all ξ ∈ R2. (1-5)

For a general, positive matrix-valued function σ(z), we have at z ∈� that

K (z)= kσ (z)max
{
(det σ(z))1/2, (det σ(z))−1/2}. (1-6)

Consequently, we always have the following simple estimates.

Lemma 1.2. For any measurable matrix function σ(z), we have

1
4

(
tr σ(z)+ tr(σ (z)−1)

)
≤ K (z)≤ tr σ(z)+ tr(σ (z)−1).

Proof. Let λmax and λmin be the eigenvalues of σ = σ(z). Then K (z) = max(λmax, λ
−1
min). Since

tr σ(z)= λmax+ λmin and tr(σ (z)−1)= λ−1
max+ λ

−1
min, the claim follows. �

Due to Lemma 1.2, we use the quantity tr σ(z)+tr(σ (z)−1) as a measure of size and anisotropy of σ(z).

For the degenerate elliptic equations, it may be that the optimization problem (1-3) has a minimizer
which satisfies the conductivity equation but this solution may not have the standard W 1,2

loc regularity.
Therefore more subtle smoothness estimates are required. We start with the exponentially integrable
conductivities, and the natural energy estimates they require. As an important consequence, we will
see the correct Sobolev–Orlicz regularity to work with. These observations are based on the following
elementary inequality.

Lemma 1.3. Let K ≥ 1 and A ∈ R2×2 be a symmetric matrix satisfying

1
K
|ξ |2 ≤ ξ · Aξ ≤ K |ξ |2, ξ ∈ R2.



THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERÓN’S INVERSE PROBLEM 49

Then for every p > 0,

|ξ |2

log(e+ |ξ |2)
+

|Aξ |2

log(e+ |Aξ |2)
≤

2
p
(ξ · Aξ + epK ).

Proof. Since K ≥ 1 and t 7→ t/ log(e+ t) is an increasing function, we have

|ξ |2

log(e+ |ξ |2)
≤

K ξ · Aξ
log(e+ K ξ · Aξ)

≤
1
p

(
ξ · Aξ

log(e+ ξ · Aξ)

)
pK

≤
1
p
(ξ · Aξ + epK ),

where the last estimate follows from the inequality

ab ≤ a log(e+ a)+ eb, a, b ≥ 0.

Moreover, as K is at least as large as the maximal eigenvalue of A, we have |Aξ |2 ≤ K ξ · Aξ . Thus we
see as above that

|Aξ |2

log(e+ |Aξ |2)
≤

K ξ · Aξ
log(e+ K ξ · Aξ)

≤
1
p
(ξ · Aξ + epK ).

Adding the above estimates together proves the claim. �

Lemma 1.3 implies in particular that if σ(z) is symmetric-matrix-valued function satisfying (1-5) for
a.e. z ∈� and u ∈W 1,1(�), then we always have

p
∫
�

|∇u(z)|2

log(e+ |∇u(z)|2)
dm(z)≤

∫
�

∇u(z) · σ(z)∇u(z) dm(z)+
∫
�

epK (z) dm(z),

p
∫
�

|σ(z)∇u(z)|2

log(e+ |σ(z)∇u(z)|2)
dm(z)≤

∫
�

∇u(z) · σ(z)∇u(z) dm(z)+
∫
�

epK (z) dm(z).

(1-7)

Note that these inequalities are valid whether u is a solution of the conductivity equation or not!
Due to (1-7), we see that to analyze finite energy solutions corresponding to a singular conductivity of

exponentially integrable ellipticity, we are naturally led to consider the regularity gauge

Q(t)=
t2

log(e+ t)
, t ≥ 0. (1-8)

We say accordingly that f belongs to the Orlicz space W 1,Q(�) (see the Appendix) if f and its first
distributional derivatives are in L1(�) and∫

�

|∇ f (z)|2

log(e+ |∇ f (z)|)
dm(z) <∞.

The first existence result for solutions corresponding to degenerate conductivities is given as follows.
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Theorem 1.4. Let σ(z) be a measurable symmetric-matrix-valued function. Suppose further that for
some p > 0, ∫

�

exp
(

p
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z)= C1 <∞. (1-9)

Then, if h ∈ H 1/2(∂�) is such that Lσ [h]<∞ and there is a unique w ∈W 1,1(�), w|∂� = h such that

Aσ [w] = inf
{

Aσ [v] : v ∈W 1,1(�), v|∂� = h
}
. (1-10)

Moreover, w satisfies the conductivity equation

∇ · σ∇w = 0 in � (1-11)

in the sense of distributions, and it has the regularity w ∈W 1,Q(�)∩C(�).

Note that if σ is bounded near ∂� then Lσ [h]<∞ for all h ∈ H 1/2(∂�). Theorem 1.4 is proven in
Theorem 2.1 and Corollary 2.3 in a more general setting.

Theorem 1.4 yields that for conductivities satisfying (1-9) and equal to 1 near ∂�, we can define the
Dirichlet-to-Neumann map

3σ : H 1/2(∂�)→ H−1/2(∂�), 3σ (u|∂�)= ν · σ∇u|∂�, (1-12)

where u satisfies (1-1). Many inverse scattering problems (see [Colton and Kress 2013]) can also be
formulated in terms of 3σ .

The reader should consider the exponential condition (1-9) as being close to the optimal one, still
allowing uniqueness in the inverse problem. Indeed, in view of Theorem 1.7 and Section 1E below, the
most general situation where the Calderón inverse problem can be solved involves conductivities whose
singularities satisfy a physically interesting small relaxation of the condition (1-9). Before solving inverse
problems for conductivities satisfying (1-9), we discuss some counterexamples.

1B. Counterexamples for the unique solvability of the inverse problem. Let F :�1→�2, y= F(x), be
an orientation-preserving homeomorphism between domains �1, �2⊂C for which F and its inverse F−1

are at least W 1,1-smooth and let σ(x)= [σ jk(x)]2j,k=1 ∈6(�1) be a conductivity on �1. Then the map F
pushes σ forward to a conductivity (F∗σ)(y), defined on �2 and given by

(F∗σ)(y)=
1

[det DF(x)]
DF(x)σ (x) DF(x)t , x = F−1(y). (1-13)

The main methods for constructing counterexamples to Calderón’s problem are based on the following
principle.

Proposition 1.5. Assume that σ, σ̃ ∈6(�) satisfy (1-9), and let F :�→ �̃ be a homeomorphism so that
F and F−1 are W 1,Q-smooth and C1-smooth near the boundary, and F |∂� = id. Suppose that σ̃ = F∗σ .
Then Lσ = L σ̃ .

This proposition generalizes the observation of L. Tartar expanded upon in [Kohn and Vogelius 1984]
to less smooth diffeomorphisms and conductivities and it follows from Lemma 2.4 proven later.
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1C. Counterexample 1: invisibility cloaking. We consider here invisibility cloaking in a general back-
ground σ ; that is, we aim to coat an arbitrary body with a layer of exotic material so that the coated body
appears in measurements the same as the background conductivity σ . Usually one is interested in the
case when the background conductivity σ is constant, isotropic, and σ = 1 · I . However, we consider
here a more general case and assume that σ is an L∞-smooth conductivity in B(R)= B(R), with R = 2,
σ(z)≥ c0 I , c0 > 0. Here, B(ρ) is an open two-dimensional disc of radius ρ and center zero and B(ρ) is
its closure. Consider a homeomorphism

F : B(2) \ {0} → B(2) \K, (1-14)

where K ⊂ B(2) is a compact set which is the closure of a smooth open set and suppose F and its
inverse F−1 are C1-smooth in B(2) \ {0} and B(2) \K, correspondingly. We also require that F(z)= z
for z ∈ ∂B(2). The standard example of invisibility cloaking [Greenleaf et al. 2003c; Pendry et al. 2006]
is the case when K = B(1) and the map is given by

F0(z)=
(
|z|
2
+ 1

)
z
|z|
. (1-15)

Using the map (1-14), we define a singular conductivity

σ̃ (z)=
{
(F∗σ)(z) for z ∈ B(2) \K,
η(z) for z ∈ K,

(1-16)

where η(z) = [η jk(x)] is any symmetric measurable matrix on K satisfying c1 I ≤ η(z) ≤ c2 I with
c1, c2> 0. The conductivity σ̃ is called the cloaking conductivity obtained from the transformation map F
and background conductivity σ and η(z) is the conductivity of the cloaked (i.e., hidden) object.

In particular, choosing σ to be the constant conductivity σ = 1, K= B(1), and F to be the map F0 given
in (1-15), we obtain the standard example of the invisibility cloaking. In dimensions n ≥ 3, it was shown
in [Greenleaf et al. 2003c] that the Dirichlet-to-Neumann map corresponding to H 1(�)-solutions for the
conductivity (1-16) coincide with the Dirichlet-to-Neumann map for σ = 1. In 2008, the analogous result
was proven in the two-dimensional case in [Kohn et al. 2008]. For cloaking results for the Helmholtz
equation with frequency k 6= 0 and for Maxwell’s system in dimensions n ≥ 3, see results in [Greenleaf
et al. 2007c]. We note also that John Ball [1982] has used the push-forward by the analogous radial
blow-up maps to study the discontinuity of solutions of partial differential equations, in particular the
appearance of cavitation in nonlinear elasticity.

In the sequel, we consider cloaking results using measurements given in Definition 1.1. As we have
formulated the boundary measurements in a new way, that is, in terms of the Dirichlet-to-Neumann
forms Lσ associated to the class W 1,1(�), we present in Section 2D the complete proof of the following
proposition, extending [Greenleaf et al. 2003c, Theorem 3]:

Theorem 1.6. (i) Let σ ∈ L∞(B(2)) be a scalar conductivity, σ(x) ≥ c0 > 0, K ⊂ B(2) be a relatively
compact open set with smooth boundary and

F : B(2) \ {0} → B(2) \K
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be a homeomorphism. Assume that F and F−1 are C1-smooth in B(2)\{0} and B(2)\K, correspondingly,
and F |∂B(2) = id. Moreover, assume there is C0 > 0 such that

‖DF−1(x)‖ ≤ C0 for all x ∈ B(2) \K.

Let σ̃ be the conductivity defined in (1-16). Then the boundary measurements for σ̃ and σ coincide in the
sense that L σ̃ = Lσ .

(ii) Let σ̃ be a cloaking conductivity of the form (1-16) obtained from the transformation map F and the
background conductivity σ , where F and σ satisfy the conditions in (i). Then

tr(σ̃ ) 6∈ L1(B(2) \K). (1-17)

The result (1-17) is optimal in the following sense. When F is the map F0 in (1-15) and σ = 1, the
eigenvalues of the cloaking conductivity σ̃ in B(2)\ B(1) behave asymptotically as |z|−1 and (|z|−1)−1

as |z| → 1. This cloaking conductivity has so strong a degeneracy that (1-17) holds. On the other hand,

tr(σ̃ ) ∈ L1
weak(B(2)), (1-18)

where L1
weak is the weak-L1 space. We note that in the case when σ = 1, det(σ̃ ) is identically 1 in

B(2) \ B(1).
The formula (1-18) for the blow-up map F0 in (1-15) and Theorem 1.6 identify the borderline of the

invisibility for the trace of the conductivity: Any cloaking conductivity σ̃ satisfies tr(σ̃ ) 6∈ L1(B(2)) and
there is an example of a cloaking conductivity for which tr(σ̃ ) ∈ L1

weak(B(2)). Thus the borderline of
invisibility is the same as the border between the space L1 and the weak-L1 space.

1D. Counterexample 2: illusion of a nonexistent obstacle. Next we consider new counterexamples for
the inverse problem which could be considered as creating an illusion of a nonexisting obstacle. The
example is based on a radial shrinking map, that is, a mapping B(2) \ B(1)→ B(2) \ {0}. The suitable
maps are the inverse maps of the blow-up maps F1 : B(2) \ {0} → B(2) \ B(1), which are constructed by
Iwaniec and Martin [2001] and have the optimal smoothness. Alternative constructions for such blow-up
maps have also been proposed by Kauhanen et al. [2003]. Using the properties of these maps and defining
a conductivity σ1 = (F−1

1 )∗1 on B(2) \ {0}, we will later prove the following result.

Theorem 1.7. Let γ1 be a conductivity in B(2) which is identically 1 in B(2)\ B(1) and zero in B(1) and
A : [1,∞]→ [0,∞] be any strictly increasing positive smooth function with A(1)= 0 which is sublinear
in the sense that ∫

∞

1

A(t)
t2 dt <∞. (1-19)

Then there is a conductivity σ1 ∈6(B2) satisfying det(σ1)= 1 and∫
B(2)

exp
(
A
(
tr(σ1)+ tr(σ−1

1 )
))

dm(z) <∞ (1-20)

such that Lσ1 = Lγ1 , i.e., the boundary measurements corresponding to σ1 and γ1 coincide.
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We observe that, for instance, the function A0(t) = t/(1+ log t)1+ε satisfies (1-19) and for such a
weight function, we have σ1 ∈ L1(B2). The proof of Theorem 1.7 is given in Section 2D.

Note that γ1 corresponds to the case when B(1) is a perfect insulator which is surrounded with constant
conductivity 1. Thus Theorem 1.7 can be interpreted by saying that there is a relatively weakly degenerated
conductivity satisfying integrability condition (1-20) that creates in the boundary observations an illusion
of an obstacle that does not exist (see [Lai et al. 2009] for related results based on use of negative medium).
Thus the conductivity can be considered as “electric hologram”. As the obstacle can be considered as a
“hole” in the domain, we can say also that even the topology of the domain cannot be detected. In other
words, Calderón’s program to image the conductivity inside a domain using the boundary measurements
cannot work within the class of degenerate conductivities satisfying (1-19) and (1-20).

1E. Positive results for Calderón’s inverse problem. Let us formulate our first main theorem which
deals with inverse problems for anisotropic conductivities where both the trace and the determinant of the
conductivity can be degenerate.

Theorem 1.8. Let�⊂C be a bounded simply connected domain with smooth boundary. Let σ1,σ2∈6(�)

be matrix-valued conductivities in � which satisfy the integrability condition∫
�

exp
(

p
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z) <∞

for some p > 1. Moreover, assume that∫
�

E(q det σ j (z)) dm(z) <∞ for some q > 0, (1-21)

where E(t)=exp(exp(exp(t1/2
+t−1/2))) and Lσ1= Lσ2 . Then there is a W 1,1

loc -homeomorphism F :�→�

satisfying F |∂� = id such that
σ1 = F∗σ2. (1-22)

Equation (1-22) can be stated as saying that σ1 and σ2 are the same up to a change of coordinates; that
is, the underlying manifold structures corresponding to these conductivities are the same; see [Lee and
Uhlmann 1989; Lassas and Uhlmann 2001].

In the case when the conductivities are isotropic, we can improve the result of Theorem 1.8. The
following theorem is our second main result for uniqueness of the inverse problem. For the earlier
conjectures on the problem, see [Ingerman 2000].

Theorem 1.9. Let�⊂C be a bounded simply connected domain with smooth boundary. If σ1, σ2 ∈6(�)

are isotropic conductivities, i.e., σ j (z)= γ j (z)I , γ j (z) ∈ [0,∞] satisfying∫
�

exp
(

exp
(

q
(
γ j (z)+

1
γ j (z)

)))
dm(z) <∞ for some q > 0, (1-23)

and Lσ1 = Lσ2 , then σ1 = σ2.

Let us next consider anisotropic conductivities with bounded determinant but more degenerate ellipticity
function Kσ (z) defined in (1-5), and ask how far can we then generalize Theorem 1.8. Motivated by the
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counterexample given in Theorem 1.7, we consider the following class: we say that σ ∈6(�) has an (at
most) exponentially degenerated anisotropy with a weight A, denoted σ ∈6A :=6A(�), if σ(z) ∈ R2×2

for a.e. z ∈� and ∫
�

exp
(
A
(
tr σ + tr(σ−1)

))
dm(z) <∞. (1-24)

In view of Theorem 1.7, for obtaining uniqueness for the inverse problem, we need to consider weights
that are strictly increasing positive smooth functions A : [1,∞]→ [0,∞], A(1)= 0, with∫

∞

1

A(t)
t2 dt =∞ and tA′(t)→∞ as t→∞. (1-25)

We say that A has almost linear growth if (1-25) holds. The point here is the first condition, that is, the
divergence of the integral. The second condition is a technicality, which is satisfied by all weights one
encounters in practice (which do not oscillate too much); the condition guarantees that the Sobolev-gauge
function P(t) defined below in (1-26) is equivalent to a convex function for large t ; see [Astala et al.
2009, Lemma 20.5.4].

Note, in particular, that affine weights A(t)= pt − p, p > 0, satisfy the condition (1-25). To develop
uniqueness results for inverse problems within the class 6A, the first problems we face are to establish the
right Sobolev–Orlicz regularity for the solutions u of finite energy, Aσ [u]<∞, and to solve the Dirichlet
problem with given boundary values.

To start with this, we need the counterpart of the gauge Q(t) defined in (1-8). In the case of a general
weight A, we define

P(t)=


t2 for 06 t < 1,

t2

A−1(log(t2))
for t > 1,

(1-26)

where A−1 is the inverse function of A. As an example, note that if A is affine, A(t) = pt − p for
some number p > 0, then the condition (1-24) takes us back to the exponentially integrable distortion of
Theorem 1.8, while P(t)= t2

(
1+(1/p) log+(t2)

)−1 is equivalent to the gauge function Q(t) used in (1-8).
The inequalities (1-7) corresponding to the case when A is affine can be generalized for the following

result holding for general gauge A satisfying (1-25).

Lemma 1.10. Suppose u ∈W 1,1
loc (�) and A satisfies the almost linear growth condition (1-25). Then∫

�

(
P(|∇u|)+ P(|σ∇u|)

)
dm ≤ 2

∫
�

eA(tr σ+tr(σ−1)) dm(z)+ 2
∫
�

∇u · σ∇u dm

for every measurable function of symmetric matrices σ(z) ∈ R2×2.

Proof. We have, in fact, pointwise estimates. For these, note first that the conditions for A(t) imply that
P(t)≤ t2 for every t ≥ 0. Hence, if |∇u(z)|2 ≤ expA

(
tr σ(z)+ tr(σ−1(z))

)
then

P(|∇u(z)|)≤ expA
(
tr σ(z)+ tr(σ−1(z))

)
. (1-27)
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If, however, |∇u(z)|2 > expA
(
tr σ(z)+ tr(σ−1(z))

)
, then

P(|∇u(z)|)=
|∇u(z)|2

A−1(log |∇u(z)|2)
≤
|∇u(z)|2

tr(σ−1(z))
≤ ∇u(z) · σ(z)∇u(z). (1-28)

Thus at a.e. z ∈�, we have

P(|∇u(z)|)≤ expA
(
tr σ(z)+ tr(σ−1(z))

)
+∇u(z) · σ(z)∇u(z). (1-29)

Similar arguments give pointwise bounds for P(|σ(z)∇u(z)|). Summing these estimates and integrating
these pointwise estimates over � proves the claim. �

In the following, we say that u ∈W 1,1
loc (�) is in the Orlicz space W 1,P(�) if∫
�

P(|∇u(z)|) dm(z) <∞.

There are further important reasons that make the gauge P(t) a natural and useful choice. For instance,
in constructing a minimizer for the energy Aσ [u], we are faced with the problem of possible equicontinuity
of Sobolev functions with Aσ [u] uniformly bounded. In view of Lemma 1.10, this is reduced to describing
those weight functions A(t) for which the condition P(|∇u(z)|) ∈ L1(�) implies that the continuity
modulus of u can be estimated. As we will see later in (3-14), this follows for weakly monotone functions u
(in particular, for homeomorphisms), as soon as the divergence condition∫

∞

1

P(t)
t3 dt =∞ (1-30)

is satisfied; that is, P(t) has almost quadratic growth. In fact, note that the divergence of the integral∫
∞

1 (A(t)/t2) dt is equivalent to∫
∞

1

P(t)
t3 dt =

1
2

∫
∞

1

A′(t)
t

dt =
1
2

∫
∞

1

A(t)
t2 dt =∞, (1-31)

where we have used the substitution A(s)= log(t2). Thus the condition (1-25) is directly connected to
the smoothness properties of solutions of finite energy for conductivities satisfying (1-24).

We are now ready to formulate our third main theorem for uniqueness for the inverse problem, which
gives a sharp result for singular anisotropic conductivities with a determinant bounded from above and
below by positive constants.

Theorem 1.11. Let � ⊂ C be a bounded simply connected domain with smooth boundary and
A : [1,∞)→ [0,∞) be a strictly increasing smooth function satisfying the almost linear growth condi-

tion (1-25). Let σ1, σ2∈6(�) be matrix-valued conductivities in�which satisfy the integrability condition∫
�

exp
(
A
(
tr σ(z)+ tr(σ (z)−1)

))
dm(z) <∞. (1-32)

Moreover, suppose that c1 ≤ det(σ j (z))≤ c2, with z ∈�, j = 1, 2, for some c1, c2 > 0, and Lσ1 = Lσ2 .

Then there is a W 1,1
loc -homeomorphism F :�→� satisfying F |∂� = id such that

σ1 = F∗σ2.
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We note that the determination of σ from Lσ in Theorems 1.8, 1.9, and 1.11 is constructive in the
sense that one can write an algorithm which constructs σ from 3σ . For example, for nondegenerate scalar
conductivities, such a construction has been numerically implemented in [Astala et al. 2011].

Let us next discuss the borderline of the visibility somewhat formally. Below we say that a conductivity
is visible if there is an algorithm which reconstructs the conductivity σ from the boundary measure-
ments Lσ , possibly up to a change of coordinates. In other words, for visible conductivities, one can use
the boundary measurements to produce an image of the conductivity in the interior of � in some deformed
coordinates. For simplicity, let us consider conductivities with det σ bounded from above and below.
Then, Theorems 1.7 and 1.11 can be interpreted by saying that the almost linear growth condition (1-25)
for the weight function A gives the borderline of visibility for the trace of the conductivity matrix: If A
satisfies (1-25), the conductivities satisfying the integrability condition (1-32) are visible. However, if A
does not satisfy (1-25), we can construct a conductivity in � satisfying the integrability condition (1-32)
which appears as if an obstacle (which does not exist in reality) would have been included in the domain.

Thus the borderline of the visibility is between any spaces 6A1 and 6A2 , where A1 satisfies condi-
tion (1-25) and A2 does not satisfy it. Examples of such gauge functions are A1(t)= t (1+ log t)−1 and
A2(t)= t (1+ log t)−1−ε with ε > 0.

Summarizing the results, in terms of the trace of the conductivity, we have identified the borderline
of visible conductivities and the borderline of invisibility cloaking conductivities. Moreover, these
borderlines are not the same and between the visible and the invisibility cloaking conductivities, there are
conductivities creating electric holograms.

2. Proofs for the existence and uniqueness of the solution of the direct problem
and for the counterexamples

First we show that under the conditions (1-24) and (1-25), the Dirichlet problem for the conductivity
equation admits a unique solution u with finite energy Aσ [u].

2A. The Dirichlet problem. In this section we prove Theorem 1.4. In fact, we prove it in a more general
setting than it was stated.

Theorem 2.1. Let σ ∈ 6A(�), where A satisfies the almost linear growth condition (1-25). Then, if
h ∈ H 1/2(∂�) is such that Lσ [h] <∞ and X = {v ∈ W 1,1(�) : v|∂� = h}, there is a unique w ∈ X
satisfying (1-10). Moreover, w satisfies the conductivity equation

∇ · σ∇w = 0 in � (2-1)

in the sense of distributions, and has the regularity w ∈W 1,P(�).

Proof. For N > 0, define �N = {x ∈� : ‖σ(x)‖+‖σ(x)−1
‖ ≤ N }. Let wn ∈ X be such that

lim
n→∞

Aσ [wn] = C0 = inf{Aσ [v] : v ∈ X} = Lσ [h]<∞

and Aσ [wn]< C0+ 1. Then by Lemma 1.10,∫
�

P(|∇wn(x)|) dm(x)+
∫
�

P(|σ(x)∇wn(x)|) dm(x)≤ 2(C1+C0+ 1)= C2, (2-2)
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where

C1 =

∫
�

eA(K (z)) dm(z).

By [Astala et al. 2009, Lemmas 20.5.3, 20.5.4], there is a convex and unbounded function 8 : [0,∞)→R

such that

8(t)≤ P(t)+ c0 ≤ 28(t)

with some c0 > 0 and moreover, the function t 7→8(t5/8) is convex and increasing. This implies that
P(t)≥ c1t8/5

− c2 for some c1 > 0, c2 ∈ R. Thus (2-2) yields that for all 1< q ≤ 8/5,

‖∇wn‖Lq (�) ≤ C3 = C3(q,C0,C1) for n ∈ Z+.

Using the Poincaré inequality in Lq(�) and that (wn −w1)|∂� = 0, we see that

‖wn −w1‖Lq (�) ≤ C4C3.

Thus, there is C5 such that ‖wn‖W 1,q (�) <C5 for all n. By restricting to a subsequence of (wn)
∞

n=1, which
we denote in the sequel also by wn , we see, using the Banach–Alaoglu theorem, that wn converges as
n→∞ to a limit in W 1,q(�). We denote this limit by w. As W 1,q(�) embeds compactly to H s(�) for
s < 2(1− q−1), we see that ‖wn −w‖H s(�)→ 0 as n→∞ for all s ∈

( 1
2 ,

3
4

)
. Thus wn|∂�→ w|∂� in

H s−1/2(∂�) as n→∞. This implies that w|∂� = h and w ∈ X . Moreover, for any N > 0,

1
N

∫
�N

|∇wn(x)|2 dm(x)≤
∫
�N

∇wn(x) · σ(x)∇wn(x) dm(x)≤ C0+ 1.

This implies that ∇wn|�N are uniformly bounded in L2(�N ). Thus by restricting to a subsequence,
we can assume that ∇wn|�N converges weakly in L2(�N )

2 as n→∞. Clearly, the weak limit must
be ∇w|�N . Since the norm

V 7→
(∫

�N

V · σV dm
)1/2

in L2(�N )
2 is weakly lower semicontinuous, we see that∫
�N

∇w(x) · σ(x)∇w(x) dm(x)≤ lim inf
n→∞

∫
�N

∇wn(x) · σ(x)∇wn(x) dm(x)≤ C0.

As this holds for all N , we see by applying the monotone convergence theorem as N →∞ that (1-10)
holds. Thus w is a minimizer of Aσ in X .

By the above, σ∇wn → σ∇w weakly in L2(�N ) as n→∞ for all N . As noted above, there is a
convex function 8 : [0,∞)→ R such that

8(t)≤ P(t)+ c0 ≤ 28(t), c0 > 0,

and 8(t) is increasing for large values of t . Thus it follows from the semicontinuity results for integral op-
erators, [Attouch et al. 2006, Theorem 13.1.2], Lebesgue’s monotone convergence theorem, and (2-2) that
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�

(
8(|∇w|)+8(|σ∇w|)

)
dm(x)≤ lim

N→∞
lim inf
n→∞

∫
�N

(
8(|∇wn|)+8(|σ∇wn|)

)
dm

≤ lim
N→∞

lim inf
n→∞

∫
�N

(
P(|∇wn|)+ P(|σ∇wn|)

)
dm+ 2c0|�|

≤ C2+ 2c0|�|.

It follows from the above and the inequality P(t)≥ c1t8/5
− c2 that σ(x)∇w(x) ∈ L1(�). Consider next

φ ∈ C∞0 (�). As w+ tφ ∈ X , t ∈ R, and as w is a minimizer of Aσ in X , it follows that

d
dt

Aσ [w+ tφ]
∣∣
t=0 = 2

∫
�

∇φ(x) · σ(x)∇w(x) dm(x)= 0.

This shows that the conductivity equation (2-1) is valid in the sense of distributions.
Next, assume thatw and w̃ are both minimizers of Aσ in X . Using the convexity of Aσ , we see that then

the second derivative of t 7→ Aσ [tw+ (1− t)w̃] vanishes at t = 0. This implies that ∇(w− w̃)= 0 for a.e.
x ∈�. As w and w̃ coincide at the boundary, this yields that w = w̃ and thus the minimizer is unique. �

The fact that the minimizer w is continuous will be proven in the next subsection.

2B. The Beltrami equation. It is natural to ask if the minimizer w in (1-10) is the only solution of finite
σ -energy Aσ [w] to the boundary value problem

∇ · σ∇w = 0 in �,

w|∂� = h.
(2-3)

It turns out that this is the case and to prove this we introduce one of the basic tools in this work, the
Beltrami differential equation.

To this end, recall the Hodge-star operator ∗, which in two dimensions is just the rotation

∗ =

(
0 −1
1 0

)
.

Note that ∇ · (∗∇w) = 0 for all w ∈ W 1,1(�) and recall that � ⊂ C is simply connected. If σ(x) =
[σ jk(x)]2j,k=1 ∈6A(�), where A satisfies (1-19), and if u ∈W 1,1(�) is a distributional solution to the
conductivity equation

∇ · σ(x)∇u(x)= 0, (2-4)

then by Lemma 1.10, we have P(∇u), P(σ∇u) ∈ L1(�) and thus in particular σ∇u ∈ L1(�). By (2-4)
and the Poincaré lemma, there is a function v ∈W 1,1(�) such that

∇v = ∗ σ(x)∇u(x). (2-5)

Then
∇ · σ ∗(x)∇v = 0 in �, σ ∗(x)= ∗ σ(x)−1

∗
t . (2-6)

In particular, the above shows that u, v ∈W 1,P(�). Moreover, an explicit calculation (see, e.g., [Astala
et al. 2009, Formula (16.20)]) reveals that the function f = u+ iv satisfies

∂z̄ f = µ∂z f + ν ∂z f , (2-7)
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where

µ=
σ 22
− σ 11

− 2iσ 12

1+ tr(σ )+ det(σ )
, ν =

1− det(σ )
1+ tr(σ )+ det(σ )

, (2-8)

and ∂ z̄ =
1
2(∂x1 + i ∂x2) with ∂z =

1
2(∂x1 − i ∂x2). Note that |µ(z)| + |ν(z)| < 1 for a.e. z. Summarizing,

for σ ∈6A(�), any distributional solution u ∈W 1,1(�) of (2-4) is the real part of a solution f of (2-7).
Conversely, the real part of any solution f ∈W 1,1(�) of (2-7) satisfies (2-4), while the imaginary part is
a solution to (2-6) and as σ ∈6A(�), (2-4)–(2-6) and Lemma 1.10 yield that u, v ∈W 1,P(�), and hence
f ∈W 1,P(�).

Furthermore, the ellipticity bound of σ(z) is closely related to the distortion of the mapping f . Indeed,
in the case when σ(z0)= diag(λ1, λ2), a direct computation shows that

Kσ (z0)= Kµ,ν(z0), where Kµ,ν(z)=
1+ |µ(z)| + |ν(z)|

1− (|µ(z)| + |ν(z)|)
(2-9)

and Kσ (z) is the ellipticity of σ(z) defined in (1-5). Using the chain rule for the complex derivatives,
which can be written as

∂(v ◦ F)= (∂v) ◦ F · ∂F + (∂̄v) ◦ F · ∂̄F, (2-10)

∂̄(v ◦ F)= (∂v) ◦ F · ∂̄F + (∂̄v) ◦ F · ∂F, (2-11)

we see that |µ(z)| and |ν(z)| do not change in an orthogonal rotation of the coordinate axis, z 7→ αz,
where α ∈ C, |α| = 1. Since, for any z0 ∈� there exists an orthogonal rotation of the coordinate axis so
that matrix σ(z0) is diagonal in the rotated coordinates, we see that the identity (2-9) holds for all z0 ∈�.

Equation (2-7) is also equivalent to the Beltrami equation

∂̄ f (z)= µ̃(z) ∂ f (z) in �, (2-12)

with the Beltrami coefficient

µ̃(z)=
{
µ(z)+ ν(z) ∂z f (x)(∂z f (x))−1 if ∂z f (x) 6= 0,
µ(z) if ∂z f (x)= 0

(2-13)

satisfying |µ̃(z)| ≤ |µ(z)| + |ν(z)| pointwise. We define the distortion of f at z to be

K (z, f ) := Kµ̃(z)=
1+ |µ̃(z)|
1− |µ̃(z)|

≤ Kσ (z), z ∈�. (2-14)

Below we will also use the notation K (z, f )= K f (z).
In the sequel we will use frequently these different interpretations of the Beltrami equation. Note that

K (z, f )=
1+ |µ̃(z)|
1− |µ̃(z)|

so that

K (z, f )=
|∂ f | + |∂̄ f |
|∂ f | − |∂̄ f |

.
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As ‖D f ‖2 = (|∂ f | + |∂̄ f |)2 and J (z, f ) = |∂ f |2 − |∂̄ f |2, this yields the distortion equality (see, e.g.,
[Astala et al. 2009, Formula (20.3)])

‖D f (z)‖2 = K (z, f ) J (z, f ) for a.e. z ∈�. (2-15)

We will use extensively the fact that if a homeomorphism F : �→ �′, F ∈ W 1,1(�), is a finite
distortion mapping with the distortion KF ∈ L1(�) then by [Hencl et al. 2005] or [Astala et al. 2009,
Theorem 21.1.4] the inverse function H = F−1

:�′→� is in W 1,2(�′) and its derivative DH satisfies

‖DH‖L2(�′)
≤ 2‖KF‖L1(�)

. (2-16)

We will also need a few basic notions (see [Astala et al. 2009]) from the theory of Beltrami equations.
As the coefficients µ, ν are defined only in the bounded domain �, outside � we set µ(z)= ν(z)= 0
and σ(z)= 1, and consider global solutions to (2-7) in C. In particular, we consider the case when � is
the unit disc D= B(1). We say that a solution f ∈W 1,1

loc (C) of (2-7) in z ∈ C is a principal solution if

(1) f : C→ C is a homeomorphism of C and

(2) f (z)= z+O(1/z) as z→∞.

The existence of principal solutions is a fundamental fact that holds true in quite wide generality. Further,
with the principal solution one can classify all solutions, of sufficient regularity, to the Beltrami equation.
These facts are summarized in the following version of Stoilow’s factorization theorem (see [Astala et al.
2009, Theorem 20.5.2] for the proof).

Theorem 2.2. Suppose µ(z) is supported in the unit disk D, |µ(z)|< 1 a.e. and∫
D

exp(A(Kµ(z))) dm(z) <∞, Kµ(z)=
1+ |µ(z)|
1− |µ(z)|

,

where A satisfies the almost linear growth condition (1-25). Then the equation

∂̄8(z)= µ(z) ∂8(z), z ∈ C, (2-17)

8(z)= z+O(1/z) as z→∞, (2-18)

has a unique solution in 8 ∈ W 1,1
loc (C). The solution 8 : C→ C is a homeomorphism and satisfies

8 ∈W 1,P
loc (C). Moreover, when �1 ⊂ C is open, every solution of the equation

∂̄ f (z)= µ(z) ∂ f (z), z ∈�1, (2-19)

with the regularity f ∈W 1,P
loc (�1), can be written as f = H ◦8, where 8 is the solution to (2-17)–(2-18)

and H is a holomorphic function in �′1 =8(�1).

Below we combine this result with the Poincaré lemma to analyze the solutions of the conductivity
equation in the simply connected domain �.

Corollary 2.3. Let σ ∈6A(�), where A satisfies (1-25), and u ∈W 1,1
loc (�) satisfy

∇ · σ∇u = 0 in � and
∫
�

∇u(x) · σ(x)∇u(x) dm(x) <∞. (2-20)
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Then there exists a homeomorphism 8 : C→ C, 8 ∈W 1,P
loc (C), and a harmonic function w, defined in the

domain �′ =8(�), such that u = w ◦8. In particular, u :�→ R is continuous.

Proof. Let v ∈W 1,1
loc (�) be the conjugate function of u, described in (2-5), and set f = u+ iv. Then by

Lemma 1.10, we have f ∈ W 1,P(�), and Theorem 2.2 yields that f = H ◦8, where 8 : C→ C is a
homeomorphism with 8 ∈W 1,P

loc (C) and H is holomorphic in 8(�). Thus the real part u = (Re H) ◦8
has the required factorization with w = Re H . �

Theorem 2.1 and Corollary 2.3 yield Theorem 1.4.

2C. Invariance of the Dirichlet-to-Neumann form under coordinate transformations. In this section,
we assume that σ ∈6A(�), where A satisfies (1-25). We say that F :�→�′ satisfies the condition N
if for any measurable set E ⊂ �, we have |E | = 0⇒ |F(E)| = 0. Also, we say that F satisfies the
condition N−1 if for any measurable set E ⊂�, we have |F(E)| = 0⇒ |E | = 0.

Let σ ∈6A(C) be such that σ is constantly 1 in C \�. Let

µ̂(z)=
σ 11(z)− σ 22(z)+ 2iσ 12(z)
σ 11(z)+ σ 22(z)+ 2

√
det σ(z)

(2-21)

be the Beltrami coefficient associated to the isothermal coordinates corresponding to σ ; see, e.g., [Sylvester
1990; Astala et al. 2009, Theorem 10.1.1]. A direct computation shows that Kµ̂(z)= Kσ (z) and thus

exp(A(Kµ̂)) ∈ L1
loc(C),

and by Theorem 2.2, there exists a homeomorphism F :C→C satisfying (2-17)–(2-18) with the Beltrami
coefficient µ̂ such that F ∈W 1,P

loc (C). Due to the choice of µ̂, the conductivity F∗σ is isotropic; see, e.g.,
[Sylvester 1990; Astala et al. 2009, Theorem 10.1.1]. Let us next consider the properties of the map F .
First, as

exp(A(Kµ̂)) ∈ L1
loc(C),

it follows from [Kauhanen et al. 2003] that the function F satisfies the condition N . Moreover, the fact
that KF = Kµ̂ ∈ L1

loc(C) implies by (2-16) that its inverse H = F−1 is in W 1,2
loc (C). This yields by [Astala

et al. 2009, Theorem 3.3.7] that F−1 satisfies the condition N . In particular, the above yields that both F
and F−1 are in W 1,P

loc (C).
The following lemma formulates the invariance of the Dirichlet-to-Neumann forms in the diffeomor-

phisms satisfying the above properties.

Lemma 2.4. Assume that �, �̃ ⊂ C are bounded, simply connected domains with smooth boundaries
and that σ ∈6A(�) and σ̃ ∈6A(�̃), where A satisfies (1-25). Let F :�→ �̃ be a homeomorphism so
that F and F−1 are W 1,P -smooth and F satisfies conditions N and N−1. Assume that F and F−1 are
C1-smooth near the boundary and assume that ρ = F |∂� is C2-smooth. Also, suppose σ̃ = F∗σ . Then

L σ̃ [h̃] = Lσ [h̃ ◦ ρ]

for all h̃ ∈ H 1/2(∂�̃).
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Proof. As F has the properties N and N−1, we have the area formula∫
�̃

H(y) dm(y)=
∫
�

H(F(x)) J (x, F) dm(x) (2-22)

for all simple functions H : �̃→ C, where J (x, F) is the Jacobian determinant of F at x . Thus (2-22)
holds for all H ∈ L1(�̃).

Let h̃ ∈ H 1/2(∂�̃) and assume that L σ̃ [h̃]<∞. Let ũ : �̃→ R be the unique minimizer of Aσ̃ [v] in
X̃ = {ṽ ∈W 1,1(�̃) : ṽ|∂�̃ = h̃}. Then ũ is the solution of the conductivity equation

∇ · σ̃∇ũ = 0, ũ|∂�̃ = h̃. (2-23)

We define h = h̃ ◦ F |∂� and u = ũ ◦ F :�→ C.
By Corollary 2.3, ũ can be written in the form ũ = w̃ ◦ G̃, where w̃ is harmonic and G̃ ∈W 1,1

loc (C) is a
homeomorphism G̃ : C→ C.

By the Gehring–Lehto theorem (see [Astala et al. 2009, Corollary 3.3.3]), a homeomorphism F∈W 1,1
loc (�)

is differentiable almost everywhere in �, say in the set � \ A, where A has Lebesgue measure zero.
Similar arguments for G̃ show that G̃ and the solution ũ are differentiable almost everywhere, say in the
set �̃ \ A′, where A′ has Lebesgue measure zero.

Since F has the property N−1, we see that A′′= A′∪F−1(A′)⊂� has measure zero, and for x ∈�\A′′,
the chain rule gives

Du(x)= (Dũ)(F(x)) · DF(x). (2-24)

Note that the facts that F is a map with an exponentially integrable distortion and that ũ is a real part of a
map with an exponentially integrable distortion, do not generally imply, at least according to the knowledge
of the authors, that their composition u is in W 1,1

loc (�). To overcome this problem, we define for m > 1,

�̃m =
{

y ∈ �̃ : ‖DF−1(y)‖+‖DF(F−1(y))‖+‖σ̃ (y)‖+ |∇ũ(y)|< m
}

and �m = F−1(�̃m). Then ∇u|�m ∈ L2(�m) and ‖σ‖< m5 in �m ; see (1-13).
Now for any m > 0, ∫

�̃m

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y)≤ Aσ̃ [ũ]<∞. (2-25)

Due to the definition of σ̃ = F∗σ , we see by using formulae (2-22) and (2-24) that∫
�m

∇u(x) · σ(x)∇u(x) dm(x)=
∫
�̃m

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y). (2-26)

Letting m→∞ and using the monotone convergence theorem, we see that∫
�

∇u(x) · σ(x)∇u(x) dm(x)=
∫
�̃

∇ũ(y) · σ̃ (y)∇ũ(y) dm(y)= Aσ̃ [ũ]<∞. (2-27)

By Lemma 1.10, this implies that u ∈W 1,P(�)⊂W 1,1(�).
Clearly, as ρ = F |∂� is C2-smooth, h := h̃ ◦ F ∈ H 1/2(∂�) and u|∂� = h. Thus

u ∈ X = {w ∈W 1,1(�) : w|∂� = h}.
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Since ũ is a minimizer of Aσ̃ in X̃ , and u satisfies

Aσ [u] ≤ Aσ̃ [ũ] = L σ̃ (h̃),

we see that
Lσ [h] ≤ L σ̃ [h̃].

Changing the roles of σ̃ and σ , we obtain an opposite inequality, and prove the claim. �

In particular, if σ ∈6A(�), σ̃ ∈6A(�̃) and F are as in Lemma 2.4 and in addition to that, σ and σ̃ are
bounded near ∂� and ∂�̃ respectively and ρ = F |∂� : ∂�→ ∂�̃ is C2-smooth, then the quadratic forms
Lσ and L σ̃ can be written in terms of the Dirichlet-to-Neumann maps 3σ : H 1/2(∂�)→ H−1/2(∂�) and
3σ̃ : H 1/2(∂�̃)→ H−1/2(∂�̃) as in formula (1-4). Then, Lemma 2.4 implies that

3σ̃ = ρ∗3σ , (2-28)

where ρ∗3σ is the push-forward of 3σ in ρ defined by

(ρ∗3σ )(h̃)= j ·
(
(3σ (h̃ ◦ ρ)) ◦ ρ−1)

for h̃ ∈ H 1/2(∂�̃), where j (z) is the Jacobian of the map ρ−1
: ∂�̃→ ∂�.

2D. Counterexamples revisited. In this section we give the proofs of the claims stated in Section 1B.
We start by proving Theorem 1.6. Since the change of variables used in the integration is singular, we
present the arguments in detail.

Proof of Theorem 1.6. (i) Our aim is first to show that we have Lσ [h] ≤ L σ̃ [h] and then to prove the
opposite inequality. The proofs of these inequalities are based on different techniques due to the fact
that σ̃ is not even in L1(B(2)).

Let 0< r < 2 and
K(r)= K∪ F(B(r)).

Moreover, let σ̃r be a conductivity that coincides with σ̃ in B(2) \K(r) and is zero in K(r). Similarly,
let σr be a conductivity that coincides with σ in B(2)\ B(r) and is zero in B(r). For these conductivities,
we define the quadratic forms Ar

:W 1,1(B(2))→ R+ ∪ {0,∞} and Ãr
:W 1,1(B(2))→ R+ ∪ {0,∞},

Ar
[v] =

∫
B(2)\B(r)

∇v · σ∇v dm(x), Ãr
[v] =

∫
B(2)\K(r)

∇v · σ̃∇v dm(x).

If we minimize Ãr
[v] over v ∈ W 1,1(B(2)) with v|∂B(2) = h, we see that minimizers exist and that the

restriction of any minimizer to B(2) \K(r) is the function ũr ∈W 1,2(B(2) \K(r)) satisfying

∇ · σ̃∇ũr = 0 in B(2) \K(r), ũr |∂B(2) = h, ν · σ̃∇ũr |∂K(r) = 0.

Analogous equations hold for the minimizer ur of Ar . As σ in B(2) \ B(r) and σ̃ in B(2) \K(r) are
bounded from above and below by positive constants, we see using the change of variables and the chain
rule that

Lσr [h] = L σ̃r [h] for h ∈ H 1/2(∂B(2)). (2-29)
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As σ(x)≥ σr (x) and σ̃ (x)≥ σ̃r (x) for all x ∈ B(2),

Lσ [h] ≥ Lσr [h], L σ̃ [h] ≥ L σ̃r [h]. (2-30)

Let us consider the minimization problem (1-3) for σ . It is solved by the unique minimizer u ∈
W 1,1(B(2)) satisfying

∇ · σ∇u = 0 in B(2), u|∂B(2) = h.

As σ, σ−1
∈ L∞(B(2)), we have u ∈W 1,2(B(2)) and Morrey’s theorem [1938] yields that the solution u

is C0,α-smooth in the open ball B(2) for some α > 0. Thus u|B(R) is in the Royden algebra

R(B(R))= C(B(R))∩ L∞(B(R))∩W 1,2(B(R))

for all R < 2; see [Astala et al. 2009, p. 77].
By, e.g., [Iwaniec and Martin 2001, p. 443], for any 0 < R < 2, the p-capacity of the disc B(r) in

B(R) goes to zero as r→ 0 for all p > 1. Using this, and that u ∈W 1,2(B(2))⊂ Lq(B(2)) for q <∞,
we see that (see [Kohn et al. 2008] for explicit estimates in the case when σ = 1)

lim
r→0

Lσr [h] = Lσ [h];

that is, the effect of an insulating disc of radius r in the boundary measurements vanishes as r→ 0. This
and the inequalities (2-29) and (2-30) yield L σ̃ [h] ≥ Lσ [h]. Next we consider the opposite inequality.

Let ũ = u ◦ F−1 in B(2) \K. As F is a homeomorphism, we see that if x→ 0 then d(F(x),K)→ 0
and vice versa. Thus, as u is continuous at zero, we see that ũ ∈ C(B(2) \Kint) and ũ has the constant
value u(0) on ∂K. Moreover, as F−1

∈ C1(B(2) \K), we have ‖DF−1
‖ ≤ C0 in B(2) \K and u is in the

Royden algebra R(B(R)) for all R < 2; we have by [Astala et al. 2009, Theorem 3.8.2] that the chain
rule holds implying that Dũ = ((Du) ◦ F−1) · DF−1 a.e. in B(2) \K. Let 0< R′ < R′′ < 2. Then

|Dũ(z)| ≤ C0‖Du‖C(B(R′′)) for z ∈ F(B(R′′)) \K.

As F and F−1 are C1-smooth up to ∂B(2), we have ũ∈W 1,1(B(2)\B(R′)). These give ũ∈W 1,1(B(2)\K).
Let ṽ ∈W 1,1(B(2)) be a function that coincides with ũ in B(2) \K and with u(0) in K.

Again, using the chain rule and the area formula as in the proof of Lemma 2.4, we see that Ãr
[ṽ]= Ar

[u]
for r > 1. Applying the monotone convergence theorem twice, we obtain

L σ̃ [h] ≤ Aσ̃ [ṽ] = lim
r→0

Ãr
[ṽ] = lim

r→0
Ar
[u] = Lσ [h]. (2-31)

As we have already proven the opposite inequality, this proves the claim (i).

(ii) Assume that σ̃ is a cloaking conductivity obtained by the transformation map F and the background
conductivity σ ∈ L∞(B(2)), σ ≥ c1 > 0, but that opposite to the claim, we have tr(σ̃ ) ∈ L1(B(2) \K).
Using formula (1-6) and the facts det(σ̃ )= det(σ ◦ F−1) is bounded from above and below by strictly
positive constants and tr(σ̃ ) ∈ L1(B(2) \K), we see that

tr(σ̃−1)= tr(σ̃ )/ det(σ̃ ) ∈ L1(B(2) \K).
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Hence by Lemma 1.2, Kσ̃ ∈ L1(B(2)\K). Let G : B(2)\K→ B(2)\{0} be the inverse map of F . Using
the formulas (1-5), (1-13), and (2-15), we see that

‖σ̃ (y)‖ =
‖DF(x) · σ(x) · DF(x)t‖

J (x, F)
≥
‖DF(x)‖2

J (x, F)Kσ (x)
=

K F (x)
Kσ (x)

, x = F−1(y).

As KG = KF ◦ F−1 (see [Astala et al. 2009, Formula (2.15)] and ‖σ̃ (y)‖ ≤ Kσ̃ (y)), the above yields
KG ∈ L1(B(2) \K). Hence, we see using (2-16) that F = G−1 is in W 1,2(B(2) \ {0}) and

‖DF‖L2(B(2)\{0}) ≤ 2‖KG‖L1(B(2)\K).

By the removability of singularities in Sobolev spaces (see [Kilpeläinen et al. 2000]), this implies that
F : B(2)\{0}→ B(2)\K can be extended to a function Fext

: B(2)→C, Fext
∈W 1,2(B(2)). As the distor-

tion KF of the map F is finite a.e., the map Fext is also a finite distortion map; see [Astala et al. 2009, Defi-
nition 20.0.3]. Thus, as Fext

∈W 1,2
loc (B(2)), it follows from the continuity theorem of finite distortion maps

[Astala et al. 2009, Theorem 20.1.1] or [Manfredi 1994] that Fext
: B(2)→C is continuous. Let y0 = F(0).

Then the set Fext(B(2))= (B(2) \K)∪ {y0} is not closed as ∂K contains more that one point and thus it
is not compact. This is a contradiction with the fact that Fext is continuous. This proves the claim (ii). �

Next we prove the claim concerning the last counterexample.

Proof of Theorem 1.7. Let us start by reviewing the properties of the Iwaniec–Martin maps. Let
A1 : [1,∞]→ [0,∞] be a strictly increasing positive smooth function with A1(1)= 0 which satisfies the
condition (1-19). Then by [Iwaniec and Martin 2001, Theorem 11.2.1], there exists a W 1,1-homeomorphism
F : B(2) \ {0} → B(2) \ B(1) with Beltrami coefficient µ satisfying∫

B(2)\{0}
exp

(
A1(Kµ(z))

)
dm(z) <∞, where Kµ(z) :=

1+ |µ(z)|
1− |µ(z)|

. (2-32)

The function F can be obtained using the construction procedure of [Astala et al. 2009, Section 20.3]
(see [Iwaniec and Martin 2001, Theorem 11.2.1] for the original construction) as follows: Let S(t) be
solution of the equation

A1(S(t))= 1+ log(t−1), 0< t ≤ 1. (2-33)

Then S : (0, 1]→ [1,∞) is a well-defined decreasing function, S(1)= 1 and with suitably chosen c1 > 0,
the function

F(z)=
z
|z|
ρ(|z|), ρ(s)= 1+ c1

(
exp

(∫ s

0

dt
t S(t)

)
− 1

)
, (2-34)

is a homeomorphism F : B(2)\{0}→ B(2)\B(1). We say that F is the Iwaniec–Martin map corresponding
to the weight function A1(t).

Next let A : [1,∞]→ [0,∞] be a strictly increasing positive smooth function with A(1)= 0 which
satisfies the condition (1-19) and let F1 be the Iwaniec–Martin map corresponding to the weight function
A1(t)=A(4t).
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Using the inverse of the map F1, we define σ1 = (F−1
1 )∗1 on B(2) \ {0} and consider this function as

an a.e. defined measurable function on B(2). Using the definition of push-forward, (2-32), we see that
det(σ1)= 1 and

Kσ1(z)= K (F−1
1 (z), F−1

1 )= Kµ(z).

Thus Lemma 1.2 and the fact that F1 satisfies (2-32) with the weight function A1(t)=A(4t) yield that σ1

satisfies (1-20) with the weight function A(t).
Recall that the conductivity γ1 is identically 1 in B(2) \ B(1) and zero in B(1). Next, we consider the

minimization problem (1-3) with the conductivities γ1 and σ1. To this end, we make analogous definitions
to the proof of Theorem 1.6. For 1< r < 2, let γr be a conductivity that is 1 in B(2) \ B(r) and is zero
in B(r). Similarly, let σr be a conductivity that coincides with σ1 in B(2)\B(r−1) and is zero in B(r−1).

As in (2-29) and (2-30), we see for h ∈ H 1/2(∂B(2)) and r > 1, that

Lσr [h] = Lγr [h], Lσr [h] ≤ Lσ1[h], Lγr [h] ≤ Lγ1[h]. (2-35)

Let h ∈ H 1/2(∂B(2)). For 1≤ r < 2, the solution of the boundary value problem

1wr = 0 in B(2) \ B(r), wr |∂B(2) = h, ∂νwr |∂B(r) = 0

satisfies Lγr [h] = ‖∇wr‖
2
L2(B(2)\B(r))

and it is easy to see that

lim
r→0

Lγr [h] = Lγ1[h] for h ∈ H 1/2(∂B(2)). (2-36)

Let w = w1. Note that w ∈W 1,2(B(2) \ B(1)).
Let us consider the function v = w ◦ F1. As F1 is C1-smooth in B(2) \ {0} and the function w is

C1-smooth in B(R) \ B(1) for all 1< R < 2, we have by the chain rule that

Dv(x)= (Dw)(F1(x)) · DF1(x)

for all x ∈ B(2) \ {0}. As Dw ∈ L2(B(2) \ B(R)) and Dw ∈ L∞(B(R) \ B(1)) for all 1< R < 2, and

DF1(x)=
ρ(|x |)
|x |

(I − P(x))+ ρ ′(|x |)P(x),

where

P(x) : y 7→ |x |−2(x · y)x

is the projector to the radial direction at the point x , using (2-34) we see that ‖DF1(x)‖ ≤ C |x |−1 with
some C > 0 and

Dv ∈ L p(B(2) \ {0}) for any p ∈ (1, 2). (2-37)

Thus v∈W 1,p(B(2)\{0})with any p∈(1, 2) and by the removability of singularities in Sobolev spaces (see,
e.g., [Kilpeläinen et al. 2000, Theorem 4.6 and p. 241]), the function v can be considered as a measurable
function in B(2) for which v∈W 1,p(B(2)). Thus v is in the domain of definition of the quadratic form Aσ1 .
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As w ∈ C1(B(R) \ B(1)) for all 1< R < 2 and F1 is C1-smooth in B(2) \ B(1)), we can again use
the chain rule, the area formula, and the monotone convergence theorem to obtain

Lσ1[h] ≤ Aσ1[v] = lim
R→2

lim
ρ→0

∫
B(R)\B(ρ)

∇v · σ1∇v dm(x)

= lim
R→2

lim
ρ→0

∫
F1(B(R)\B(ρ))

∇w · γ1∇w dm(x)= Lγ1[h]. (2-38)

Next, consider the inequality opposite to (2-38). We have by (2-35) and (2-36) that

Lσ1[h] ≥ lim
r→1

Lσr [h] = lim
r→1

Lγr [h] = Lγ1[h]. (2-39)

The above inequalities prove the claim. �

3. Complex geometric optics solutions

In what follows, we assume that A satisfies the almost linear growth condition (1-25).

3A. Existence and properties of the complex geometric optics solutions. Let us start with the observa-
tion that if σ0 ∈ 6(�0) is a conductivity in a smooth simply connected domain �0 ⊂ C, and σ1 is a
conductivity in a larger smooth domain �1 which coincides with σ0 in �0 and is 1 in �1 \�0, then Lσ0

determines Lσ1 by the formula

Lσ1[h] = inf
{∫

�1\�0

|∇v|2 dm(z)+ Lσ0[v|∂�0]

∣∣∣∣ v ∈W 1,2(�1 \�0), v|∂�1 = h
}
.

This observation implies that we may consider inverse problems by assuming that the conductivity σ is
the identity near ∂� without loss of generality. Also, we may assume that �=D, which we do below.
We note that boundary values of the isotropic conductivity can also be directly determined from 3σ ; see
[Alessandrini 1990].

The main result of this section is the following uniqueness and existence theorem for the complex
geometrical optics solutions.

Theorem 3.1. Let σ ∈6A(C) be a conductivity such that σ(x)= 1 for x ∈ C \�. Then for every k ∈ C,
there is a unique solution u( · , k) ∈W 1,P

loc (C), where P is given in (1-26), for

∇z · σ(z)∇z u(z, k)= 0 in C, (3-1)

u(z, k)= eikz
(

1+O
(1

z

))
as |z| →∞. (3-2)

We point out that the regularity u ∈W 1,P
loc (C) is optimal in the sense that the standard slightly stronger

assumption u ∈W 1,2
loc (C) would not be valid for the solutions; see [Astala et al. 2009, Section 20.4.6].

We prove Theorem 3.1 in several steps. Recalling the reduction to the Beltrami equation (2-7), we
start with the following lemma, where we define

BA(D)=

{
µ ∈ L∞(C)

∣∣∣∣ supp(µ)⊂ D, 0≤ µ(x) < 1 a.e., and
∫

D

exp(A(Kµ(z))) dm(z) <∞
}
.



68 KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

Lemma 3.2. Assume that µ ∈ BA(D) and f ∈W 1,P
loc (C) satisfies

∂̄ f (z)= µ(z) ∂ f (z) for a.e. z ∈ C, (3-3)

f (z)= βeikz
(

1+O
(1

z

))
for |z| →∞, (3-4)

where β ∈ C \ {0} and k ∈ C. Then

f (z)= βeik8(z), (3-5)

where 8 ∈ W 1,P
loc (C) is a homeomorphism 8 : C→ C, ∂̄8(z) = 0 for |z| > 1, K (z,8) = K (z, f ) for

a.e. z ∈ C, and

8(z)= z+O
(1

z

)
for |z| →∞. (3-6)

Proof. By Theorem 2.2, we have for f the Stoilow factorization f = h ◦8, where h : C→ C is a
holomorphic function and 8 is the principal solution of (3-3). This and the formulae (3-4) and (3-6) imply

h(8(z))
βeik8(z) =

f (z)
βeik8(z) → 1 when |z| →∞.

Thus, h(ζ )= βeikζ for all ζ ∈ C, and f has the representation (3-5). The claimed properties of 8 follow
from the formula (3-5) and the similar properties of f . �

Next we consider case where β = 1. Below we will use the fact that if 8 :C→C is a homeomorphism
such that 8∈W 1,1

loc (C), we have 8(z)− z= o(1) as z→∞ and that if 8 is analytic outside the disc B(r),
r > 0, then by [Astala et al. 2009, Theorem 2.10.1 and (2.61)],

|8(z)| ≤ |z| + 3r for z ∈ C and |8(z)− z| ≤ r for |z|> 2r. (3-7)

In particular, the map 8 defined in Lemma 3.2 satisfies this with r = 1.

Lemma 3.3. Assume that ν, µ : C→ C are measurable functions satisfying

µ(z)= ν(z)= 0 for z ∈ C \D, (3-8)

|µ(z)| + |ν(z)|< 1 for a.e. z ∈ D, (3-9)

and that Kµ,ν(z) defined in (2-9) satisfies∫
D

exp(A(Kµ,ν(z))) dm(z) <∞. (3-10)

Then for k ∈ C, the equation

∂ z̄ f = µ∂z f + ν ∂z f , z ∈ C, (3-11)

has at most one solution f ∈W 1,P
loc (C) satisfying

f (z)= eikz
(

1+O
(1

z

))
for |z| →∞. (3-12)
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Proof. Observe that we can write (3-11) in the form

∂ z̄ f = µ̃ ∂z f , z ∈ C, (3-13)

where the coefficient µ̃ is given by (2-13). Since |µ̃(z)| ≤ |µ(z)| + |ν(z)|, we see that µ̃ ∈ BA(D).
Next, assume (3-13) has two solutions f1 and f2 having the asymptotics (3-12). Let ε > 0 and consider

the function

fε(z)= f1(z)− (1+ ε) f2(z).

Then, fε ∈W 1,P
loc (C), the function fε satisfies (3-11), and

fε(z)=−εeikz
(

1+O
(1

z

))
for |z| →∞.

By Lemma 3.2 and (3-7), there is 8ε(z) such that

fε(z)= f1(z)− (1+ ε) f2(z)=−εeik8ε(z)

and |8ε(z)| ≤ |z| + 3. Then for any z ∈ C, we have that

f1(z)− f2(z)= lim
ε→0

fε(z)= 0.

Thus f1 = f2. �

3B. Proof of Theorem 3.1. In the following, we use general facts for weakly monotone mappings, and
to this end, we recall some basic facts. Let � ⊂ C be open and u ∈ W 1,1(�) be real-valued. We say
that u is weakly monotone if both of the functions u(x) and −u(x) satisfy the maximum principle in the
following weak sense: for any a ∈ R and relatively compact open sets �′ ⊂�,

max(u(z)− a, 0) ∈W 1,1
0 (�′) implies that u(z)≤ a for a.e. z ∈�′;

see [Iwaniec and Martin 2001, Section 7.3]. We remark that if f ∈ W 1,1
loc (�1) and f : �1 → �2 is a

homeomorphism, where �1, �2 ⊂ C are open, the real part of f is weakly monotone. By [Astala et al.
2009, Lemma 20.5.8], if f ∈W 1,1(�) is the solution of the Beltrami equation ∂̄ f =µ∂ f with a Beltrami
coefficient µ satisfying |µ(z)|< 1 for a.e. z ∈ C, then the real and the imaginary parts of f are weakly
monotone functions. An important property of weakly monotone functions is that their modulus of
continuity can be estimated in an explicit way. Let M(t)= MP(t) be the P-modulus, that is, the function
determined by the condition: for M = M(t), we have∫ 1/t

1
P(s M)

ds
s3 = P(1) for all t ∈ [0,∞);

see (1-30) and [Iwaniec and Martin 2001, Section 7.5]. The function MP : [0,∞)→[0,∞) is continuous
at zero and MP(0) = 0. Then by [Iwaniec and Martin 2001, Theorem 7.5.1], it holds that if z′, z ∈ �
satisfy B(z, r)⊂�, r < 1, and |z′− z|< r/2, and f ∈W 1,P(�) is a weakly monotone function, then for
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almost every z, z′ ∈ B(z, r), we have

| f (z′)− f (z)| ≤ 32πr ‖D f ‖(P,r)MP

(
|z− z′|

2r

)
, (3-14)

where

‖∇ f ‖(P,r) = inf
{

1
λ

∣∣∣∣ λ > 0, 1
πr2

∫
B(z,r)

P(λ|D f (x)|) dm(z)≤ P(1)
}
.

As we will see, this can be used to estimate the modulus of continuity of principal solutions of Beltrami
equations corresponding to µ ∈ BA(D).

Below, we use the unimodular function ek given by

ek(z)= ei(kz+k̄ z̄). (3-15)

The following result shows the existence of the complex geometric solutions for degenerated conductivities.

Lemma 3.4. Assume that µ and ν satisfy (3-8)–(3-10) and let k ∈ C \ {0}. Then (3-11) has a solution
f ∈W 1,P

loc (C) satisfying the asymptotics (3-12). Moreover, this solution can be written in the form

f (z)= eikϕ(z), (3-16)

where ϕ :C→C is a homeomorphism satisfying the asymptotics ϕ(z)= z+O(z−1). Moreover, for R> 1,∫
B(R)

P(|Dϕ(x)|) dm(x)≤ CA(R)
∫

B(R)
exp(A(Kµ,ν(z))) dm(z), (3-17)

where CA(R) depends on R and the weight function A. In addition,

∂̄ϕ(z)= µ(z) ∂ϕ(z)−
k̄
k
ν(z)e−k(ϕ(z)) ∂ϕ(z) for a.e. z ∈ C. (3-18)

Proof. Let us approximate the functions µ and ν with functions

µn(z)=

{
µ(z) if |µ(z)| + |ν(z)| ≤ 1− 1

n ,
µ(z)
|µ(z)|(1−

1
n ) if |µ(z)| + |ν(z)|> 1− 1

n ,
(3-19)

νn(z)=

{
ν(z) if |µ(z)| + |ν(z)| ≤ 1− 1

n ,
ν(z)
|ν(z)|(1−

1
n ) if |µ(z)| + |ν(z)|> 1− 1

n ,
(3-20)

where n ∈ Z+. Consider the equations

∂̄ fn(z)= µn(z)∂ fn(z)+ νn(z)∂ fn(z) for a.e. z ∈ C, (3-21)

fn(z)= eikz
(

1+O
(1

z

))
for |z| →∞. (3-22)

By Lemma 3.3, equations (3-21)–(3-22) have at most one solution fn ∈ W 1,P
loc (C). The existence of

the solutions can be seen as in the proof of [Astala et al. 2005, Lemma 3.5]; by [Astala et al. 2005,
Lemma 3.2], solutions fn for (3-21)–(3-22) can be constructed via the formula fn = h ◦ g, where g is the
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principal solution of ∂̄g = µ̂∂g, constructed in Theorem 2.2, and h is the solution of

∂̄h = (ν̂ ◦ g−1) ∂h, h(z)= eikz
(

1+O
(1

z

))
constructed in [Astala and Päivärinta 2006, Theorem 4.2], where ν̂ = (1+ νn)µ̄n and µ̂= µn(1+ ν̂), and
moreover, it holds that fn ∈W 1,2

loc (C).
Let us now define the coefficient µ̃ according to formula (2-13), and define an approximative coef-

ficient µ̃n using formula (2-13), where µ and ν are replaced by µn and νn and f by fn . We can write
(3-21) in the form

∂̄ fn(z)= µ̃n(z) ∂ fn(z) for a.e. z ∈ C, (3-23)

where |µ̃n| ≤ 1− n−1.
By (3-22), (3-23), and Lemma 3.2, the function fn can be written in the form

fn(z)= eikϕn(z), (3-24)

where ϕn is a homeomorphism, ∂̄ϕn(z)= 0 for |z|> 1, K (z, ϕn)= K (z, fn) for a.e. z ∈ C, and

ϕn(z)= z+O
(1

z

)
for |z| →∞. (3-25)

Then
|∂̄ fn(z)| = |µ̃n(z)||∂ fn(z)| ≤ |µ̃(z)||∂ fn(z)|.

Let us consider next a, b > 0 and 0≤ t ≤ (ab)1/2. Using the definition (1-26) of P(t), we see that

P(t)≤ exp(A(a)) for t2
≤ eA(a),

P(t)≤
ab

A−1(log exp(A(a)))
= b for t2 > eA(a),

which imply the inequality P(t)≤ b+ exp(A(a)). Due to the distortion equality (2-15), we can use this
for a = K (z, ϕn), b = J (z, ϕn), and t = |Dϕn(z)| and obtain

P(|Dϕn(z)|)≤ J (z, ϕn)+ exp(A(K (z, ϕn))). (3-26)

Then, we see using (3-7) and the fact that ϕn is a homeomorphism that∫
B(R)

P(|Dϕn(z)|) dm(z)≤
∫

B(R)
J (z, ϕn) dm(z)+

∫
B(R)

eA(K (z,ϕn) dm(z)

≤ m(ϕn(B(R)))+
∫

B(R)
exp(A(Kµ̃(z))) dm(z)

≤ π(R+ 3)2+
∫

B(R)
exp(A(Kµ̃(z))) dm(z) (3-27)

is finite by the assumption (3-10). We emphasize that the fact that ϕn is a homeomorphism is the essential
fact which together with the inequality (3-26) yields the Orlicz estimate (3-27).

The estimate (3-27) together with the inequality (3-14) implies that the functions ϕn have uniformly
bounded modulus of continuity in all compact sets of C. Moreover, by (3-7), |ϕn(z)| ≤ |z| + 3.
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Next we consider the Beltrami equation for ϕ. To this end, let ψ ∈ C∞0 (C) and R > 1 be so large
that supp(ψ) ⊂ B(R). Since the family {ϕn}

∞

n=1 is uniformly bounded in the space W 1,P(B(R)) and
W 1,P(B(R))⊂W 1,q(B(R)) for some q > 1, we see that there is a subsequence ϕn j that converges weakly
in W 1,q(B(R)) to some limit ϕ when j→∞. Let us denote

κn(z)=−
k̄
k
νn(z)e−k(ϕn(z)), κ(z)=−

k̄
k
ν(z)e−k(ϕ(z)).

Moreover, functions ϕn are uniformly bounded and have a uniformly bounded modulus of continuity
in compact sets by (3-14) and thus by the Arzelà–Ascoli theorem, there is a subsequence, denoted also
by ϕn j , that converges uniformly to some function ϕ′ in B(R) for all R> 1. As ϕn j converges in C(B(R))
uniformly to ϕ′ and weakly in W 1,q(B(R)) to ϕ, we see using convergence in distributions that ϕ′ = ϕ.
Thus, we see that

lim
j→∞

e−k(ϕn j (z))= e−k(ϕ(z)) uniformly for z ∈ B(R),

and by the dominated convergence theorem κn→ κ in L p(B(R)), where 1/p+ 1/q = 1.
As ϕn : C→ C is a homeomorphism and ϕn ∈ W 1,1

loc (C), we can use chain rules (2-10) a.e. by the
Gehring–Lehto theorem (see [Astala et al. 2009, Corollary 3.3.3]) and see using (3-21) and (3-24) that

∂̄ϕn(z)= µn(z) ∂ϕn(z)−
k̄
k
νn(z)e−k(ϕn(z)) ∂ϕn(z) for a.e. z ∈ C. (3-28)

Recall that there is a convex function 8 : [0,∞)→ [0,∞) such that 8(t) ≤ P(t)+ c0 ≤ 28(t). By
[Attouch et al. 2006, Theorem 13.1.2], the map

φ 7→

∫
B(R)

8(|Dφ(x)|) dm(x)

is weakly lower semicontinuous in W 1,1(B(R)). By (3-27), the integral of8(|Dϕn|) is uniformly bounded
in n∈Z+ over any disc B(R). In particular, this yields that ϕ∈W 1,P(B(R)) for R>1 and that (3-17) holds.

Furthermore, as |ϕ(z)| ≤ |z| + 3, this yields that

f (z) := eikϕ(z)
∈W 1,P

loc (C). (3-29)

Next define ϕn(∞)= ϕ(∞)=∞. As ϕn and ϕ are conformal at infinity, we see using the Cauchy formula
for (ϕn(1/z)−ϕ(0))−1 that

ϕ(z)= z+O
(1

z

)
for |z| →∞. (3-30)

As Dϕn j converges weakly in Lq(B(R)) to Dϕ and their norms are uniformly bounded, we have∣∣∣∣∫
C

(∂̄ϕ−µ∂ϕ−κ ∂ϕ)ψ dm(z)
∣∣∣∣= lim

j→∞

∣∣∣∣∫
C

(∂̄ϕn j−µ∂ϕn j−κ ∂ϕn j )ψ dm(z)
∣∣∣∣

≤ lim
j→∞

∣∣∣∣∫
C

i
(
(µn j−µ)∂ϕn j+(κn j−κ)∂ϕn j

)
ψ dm(z)

∣∣∣∣
≤ lim

j→∞

(
‖µn j−µ‖L p(B(1))+‖κn j−κ‖L p(B(1))

)
‖∂ϕn j‖Lq (B(1))‖ψ‖L∞(B(1))=0.

This implies that ϕ(z) satisfies (3-18).
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Next we show that ϕ is a homeomorphism As K (z)= Kν,µ ∈ L1
loc(C), we have K (z;ϕn)∈ L1

loc(C); thus
by (2-16), the inverse maps ϕ−1

n satisfy ϕ−1
n ∈W 1,2

loc (C;C) and for all R > 1, the norms ‖ϕ−1
n ‖W 1,2(B(R)),

n ∈ Z+, are uniformly bounded. Thus by the formula (3-14), the family (ϕ−1
n )∞n=1 has a uniform modulus

of continuity in compact sets. Hence, we see that there is a continuous function ψ : C→ C such that
ϕ−1

n → ψ uniformly on compact sets when n→∞. As ϕn are conformal at infinity, we see, using again
the Cauchy formula, that ϕ−1

n j
→ ψ uniformly on the Riemann sphere S2 as j→∞. Then,

ψ ◦ϕ(z)= lim
j→∞

ϕ−1
n j
(ϕ(z))= lim

j→∞
ϕ−1

n j
(ϕn j (z))= z,

which implies that ϕ : S2
→ S2 is a continuous injective map and hence a homeomorphism.

As ϕ : C→ C is a homeomorphism and ϕ ∈ W 1,1
loc (C), we can, by the Gehring–Lehto theorem, use

chain rules (2-10) a.e. and see using (3-18) that f (z)= eikϕ(z) satisfies (3-11). By (3-30), f (z) satisfies
the asymptotics (3-12). This proves the claim. �

The above uniqueness and existence results have now proven Theorem 3.1.

4. Inverse conductivity problem with degenerate isotropic conductivity

In this section, we consider exponentially integrable scalar conductivities σ . In particular, we assume
that σ is 1 in an open set containing C\D and its ellipticity function K (z)= Kσ (z) of the conductivity σ
satisfies an Orlicz space estimate∫

B(R1)

exp
(
exp(q K (x))

)
dm(x)≤ C0 for some C0, q > 0, (4-1)

with R1 = 1. Note that by the John–Nirenberg lemma, (4-1) is satisfied if

exp(q K (x)) ∈ BMO(D) for some q > 0. (4-2)

As noted before, we may assume without loss of generality that � is the unit disc D.

4A. Estimates for principal solutions in Orlicz spaces. Let us consider next the principal solution of
the Beltrami equation

∂̄8(z)= µ(z) ∂8(z), z ∈ C, (4-3)

8(z)= z+ O
(1

z

)
when |z| →∞. (4-4)

To this end, let R0 ≥ 1,

B p
exp,N (B(R0))=

{
µ:C→C

∣∣∣∣ |µ(z)|<1 for a.e. z, supp(µ)⊂B(R0) and
∫

B(R0)

exp(pKµ(z))dm(z)≤N
}

and
B p

exp(B(R0))=
⋃
N>0

B p
exp,N (B(R0)).

The reason that we use the radius R0 is to be able to apply the obtained results for the inverse function
of the solution of the Beltrami equation satisfying another Beltrami equation with modified coefficients;
see (4-45).
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Assume that p > 2 and µ ∈ B p
exp(B(R0)). Then by [Astala et al. 2010, Theorem 1.1], we have the

L2-estimate

‖(µS)mµ‖L2(C)
≤ C(p, β)m−β/2

∫
B(R0)

exp(pKµ(z)) dm(z), 2< β < p, (4-5)

where
Sφ(z)=

1
π

∫
C

∂wφ(w)

w− z
dm(w),

is the Beurling operator. Below, we use the operator SB(R0)φ = Sφ|B(R0). In particular, as 8 satisfies

∂̄8= ∂̄(8− z)= µ∂(8− z)+µ= µS ∂̄( 8− z)+µ= µS ∂̄8+µ,

(4-5) yields

∂̄8=

∞∑
m=0

(µS)mµ, (4-6)

where the series converges in L2(C). To analyze the convergence more precisely, we need a refinement of
the L p-scale. In particular, we will use the Orlicz spaces X j,q(S), j ∈Z+, q ∈R, S⊂C that are defined by

u ∈ X j,q(S) if and only if
∫

S
M j,q(u(x)) dm(x) <∞, (4-7)

where
M j,q(t)= |t | j logq(e+ |t |). (4-8)

We use shorthand notations Xq(S)= X2,q(S) and Mq(t)= M2,q(t). Although (4-7)–(4-8) do not define
a norm in X j,q(S), there is an equivalent norm

‖u‖X j,q (S) = sup
v

{∫
S
|u(x)v(x)| dm(x)

∣∣∣∣ ∫
D

G j,q(|v(x)|) dm(x)≤ 1
}
, (4-9)

where G j,q(t) is such a function that (M j,q ,G j,q) are a Young complementary pair (see the Appendix)
and, in particular, the following lemma holds.

Lemma 4.1. Let j = 1, 2, . . . , and q ≥ 0.

(i) We have ∫
B(R0)

M j,q(u(x)) dm(x)≤ 2‖u‖ j
X j,q (B(R0))

logq(e+‖u‖X j,q (B(R0))
).

(ii) For
φ(t)= t1/j (1+ 2 logq(e+ t−1/j )),

we have

‖u‖X j,q (B(R0)) ≤ φ

(∫
B(R0)

M j,q(u(x)) dm(x)
)
.

Proof. (i) Let us denote M(t)=M j,q(t). For this function, we use the equivalent norms ‖u‖M and ‖u‖(M)
defined in the Appendix. To show the claim, we use the inequality

log(e+ st)≤ 2 log(e+ s) log(e+ t), t, s ≥ 0. (4-10)
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Let us consider the function w ∈ X j,q(B(R0)). By (4-10) we have, for k > 0, that∫
B(R0)

M j,q(kw) dm = k j
∫

B(R0)

|w| j logq(e+ k|w|) dm

≤ 2k j logq(e+ k)
∫

B(R0)

M j,q(w) dm. (4-11)

A function u ∈ X j,q(B(R0)) can be written as u = kw, where k = ‖u‖(M) and ‖w‖(M) = 1. Then by
(A-5)–(A-6), we have ∫

B(R0)

M j,q(w) dm = 1,

and hence (4-11) and (A-4) yield the claim (i).

(ii) Using (4-11) and the definition (A-2) of the Orlicz norm, we see that for all k > 0,

‖u‖X j,q (B(R0)) ≤
1
k

(
1+

∫
B(R0)

M j,q(ku) dm
)

≤
1
k

(
1+ 2k j logq(e+ k)

∫
B(R0)

M j,q(u) dm
)
.

Let T =
∫

B(R0)
M j,q(u) dm. Substituting k = T−1/j above, we obtain (ii). �

Theorem 4.2. Assume that µ ∈ B p
exp(B(R0)), 2< p <∞. Then the equations (4-3)–(4-4) have a unique

solution 8 ∈W 1,1
loc (C) which, for 0≤ q ≤ p/4, satisfies

∂̄8 ∈ Xq(C) (4-12)

and the series (4-6) converges in Xq(C). The convergence of the series (4-6) in Xq(C) is uniform for
µ ∈ B p

exp,N (B(R0)) with any N > 0. Moreover, for µ ∈ B p
exp,N (B(R0)), the Jacobian J8(z) of 8 satisfies

‖J8‖X1,q (B(R0)) ≤ C, (4-13)

where C depends only on p, q, N , and R0. Moreover, let s > 2 and assume that µm, µ̃m ∈ B p
exp,N (B(R0))

and 0≤ q ≤ p/4. Then we have the following implication:

lim
m→∞

‖µm − µ̃m‖Ls(B(R0)) = 0 ⇒ lim
m→∞

‖∂̄8m − ∂̄8̃m‖Xq (C) = 0, (4-14)

where 8m and 8̃m are the solutions of (4-3)–(4-4) corresponding to µm , µ̃m , respectively.

Proof. Let 8λ(z), where |λ| ≤ 1, z ∈ C, be the principal solution corresponding to the Beltrami
coefficient λµ, that is, the solution with the Beltrami equation (2-17)–(2-18) with coefficient λµ. These
solutions, in particular 8λ =81, exist and are unique by Theorem 2.2. It follows from [Astala et al. 2010,
Theorems 1.1 and 5.1] that the Jacobian determinant J8λ(z) of 8λ satisfies∫

B(R0)

J8λ log2q(e+ J8λ) dm(z)≤ C <∞, (4-15)

where C is independent of λ and µ ∈ B p
exp,N (B(R0)) and depends only on N , p, and q. Thus (4-13)

follows from Lemma 4.1(ii).
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We showed already that when p> 2, we have ∂̄8∈ L2(C) and that the series (4-6) converges in L2(C).
To show the convergence of (4-6) in Xq(C) and to prove (4-14), we present a few lemmas in terms of
Orlicz spaces Xq(B(R0)) and the function Mq defined in (4-8). Note that as µ vanishes in C \ B(R0),

‖(µS)nµ‖Xq (C) = ‖(µS)nµ‖Xq (B(R0))
.

Lemma 4.3. Let N ∈ Z+, 2< 2q < β < p, and µ ∈ B p
exp,N (B(R0)). Then∫

B(R0)

Mq(ψn(x)) dm(x)≤ cn−(β−q) < cn−q , (4-16)

where ψn = (µS)nµ and c > 0 depends only on N , p, β, and q.

Proof. Let En = {z ∈ B(R0) : |ψn(z)| ≥ An
}, where A > 1 is a constant to be chosen later. By (4-5),

‖ψn‖L2(B(R0))
≤ CN ,β,pn−β/2. (4-17)

Thus

|En| ≤ C2
N ,β,p A−2nn−β . (4-18)

Using (4-17), we obtain∫
B(R0)\En

|ψn|
2 logq(e+ |ψn|) dm ≤ ‖ψn‖

2
L2(B(R0))

logq(e+ An)≤ C1n−β+q , (4-19)

where C1 = C2
N ,β,p logq(e+ A).

The principal solution corresponding to the Beltrami coefficient λµ can be written in the form

8λ(z)= z+
1
π

∫
C

∂̄8λ(w)

w− z
dm(w), ∂̄8λ = (I − λµS)−1(λµ).

Expanding ∂̄z8
λ(z) as a power series in λ, we see that by (4-6) we can write, using any 0< ρ < 1,

χEn (z)ψn(z)=
1

2π i

∫
|λ|=ρ

λ−n−2χEn (z) ∂̄z8
λ(z) dλ.

This gives

‖χEnψn‖Xq (B(R0))
≤ ρ−(n+2) sup

|λ|=ρ

‖χEn ∂̄z8
λ
‖Xq (B(R0))

. (4-20)

Using the facts that |λ| = ρ and that the Beltrami coefficient 8λ is bounded by |λ|, we have, by the
distortion equality (2-15), that

|∂̄z8
λ(z)|2 ≤ ρ2(1− ρ2)−1 J8λ(z).

Hence,

I :=
∫

En

Mq(∂̄z8
λ(z)) dm(z)≤

ρ2

1− ρ2

∫
En

J8λ logq
(

e+
(

ρ2

1− ρ2 J8λ
)1/2)

dm.
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Next, let Ĉ denote a generic constant which is a function of N , β, p, q and ρ but not of A. The above
implies by (4-10), (4-15), and the inequality log(e+ t1/2)≤ 1+ log(e+ t), t ≥ 0, that

I ≤ Ĉ
∫

En

J8λ(z)(1+ log(e+ J8λ))q dm(z)

≤ Ĉ
(∫

En

J8λ(z) dm(z)
)1/2(∫

En

J8λ(z)(1+ log(e+ J8λ(z)))2q dm(z)
)1/2

≤ Ĉ
(∫

En

J8λ(z) dm(z)
)1/2

.

By the area distortion theorem from [Astala 1994], as formulated in [Astala et al. 2009, Theorem 13.1.4],
we have ∫

En

J8λ(z) dm(z)≤ |8λ(En)| ≤ Ĉ |En|
1/M
≤ Ĉ A−2n/M ,

where M = (1+ ρ)/(1− ρ) > 1, and thus I ≤ Ĉ A−n/M . By Lemma 4.1(ii), we also have the estimate

‖χEn ∂̄8
λ
‖Xq ≤ Ĉ A−n/M .

Taking ρ > e−1/2 and A = eM , we see using (4-20) and Lemma 4.1 again that∫
En

Mq(ψn) dm(z)≤ Ĉe−n/2

for sufficiently large n ∈ Z+. Thus the assertion follows from (4-19). �

Lemmas 4.1(ii) and 4.3 and the fact that µ vanishes outside B(R0) yield that for q > 1 and p > 2q,
there is an N > 0 such that the series (4-6) converges in Xq(C), and moreover, convergence of the
series (4-6) is uniform for µ ∈ B p

exp,N (B(R0)). Thus to prove Theorem 4.2 it remains to show (4-14).

Lemma 4.4. Let 2< 2q < p, N > 0, 2<β < p, s> 2, µ, ν ∈ B p
exp,N (B(R0)), and Bn = (µS)nµ−(νS)nν.

Then
sup

n∈Z+

∫
C

Mq(Bn(x)) dm(x)≤ C, (4-21)

where C > 0 depends only on N , p, and q. Moreover, there is T > 1 such that

‖Bn‖L2(C)
≤ CN ,β,p,s,T min

(
nT n
‖µ− ν‖Ls(B(R0))

, n−β/2
)
. (4-22)

Proof. Lemmas 4.1 and 4.3 yield (4-21). Next, let us observe that for z ∈ C,

Bn(z)= (µS)nµ− (νS)nν =
n∑

j=0

A j (z), A j (z)= (µS) j (µ− ν)(Sν)n− jχB(R0).

As ‖ν‖L∞ ≤ 1 and ‖S‖q := ‖S‖Lq (C)→Lq (C) <∞ for 1< q <∞, we have that∫
C

|A j (z)|q dm(z)≤ (‖S‖qq)
j
∫

B(R0)

|µ(z)−ν(z)|q |((Sν)n− jχB(R0))(z)|
q dm(z)

≤‖S‖ jq
q

(∫
B(R0)

|µ(z)−ν(z)|qρdm(z)
)1/ρ(∫

B(R0)

|((Sν)n− jχB(R0))(z)|
qρ′dm(z)

)1/ρ′

,
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where ρ−1
+ (ρ ′)−1

= 1 and 1< ρ <∞. Thus

‖A j (z)‖Lq (C) ≤ (‖S‖q)
j
‖µ− ν‖Lρq (B(R0))

(‖S‖qqρ′)
n− j
‖ν‖

q
Lqρ′ (B(R0))

,

where ‖ν‖Lqρ′ (B(R0))
≤ πR2

0 . Thus by choosing q = 2 and ρ so that s = qρ > 2 yielding qρ ′ = 2s/(s−2),
we obtain

‖(µS)nµ− (νS)nν‖L2(C)
≤ (n+ 1)π2 R4

0(1+‖S‖
2
(2s/(s−2)))

n
‖µ− ν‖Ls(B(R0))

.

This and (4-5) show that (4-22) is valid. �

Now we are ready to prove (4-14), which finishes the proof of Theorem 4.2. Let

Bn,m = (µm S)nµm − (µ̃m S)nµ̃m .

By the Schwarz inequality, we have that (4-21), (4-22) and Lemma 4.1 yield∫
B(R0)

Mq(Bn,m(z)) dm(z)≤
∫

B(R0)

|Bn,m |
2 logq(e+ |Bn,m |) dm(z)

≤

(∫
B(R0)

M2q(Bn,m(z)) dm(z)
)1/2

‖Bn,m‖L2(B(R0))

≤ C min
(
nT n
‖µm − µ̃m‖Ls(B(R0))

, n−β/2
)
, (4-23)

where C depends only on q, p, β, s, T , and N .
Let ε > 0. As µm and µ̃m vanish outside B(R0),

‖∂̄8m − ∂̄8̃m‖Xq (C) = ‖∂̄8m − ∂̄8̃m‖Xq (B(R0))
≤

∞∑
n=0

‖Bn,m‖Xq (B(R0))
.

Thus by (4-23) and Lemma 4.1(ii), we can take n0 ∈ N so large that for all m,
∞∑

n=n0

‖Bn,m‖Xq (B(R0)) ≤
ε

2
.

Applying again (4-23) and Lemma 4.1(ii), we can choose δ > 0 so that

n0−1∑
n=0

‖Bn,m‖Xq (B(R0))
≤
ε

2
when ‖µm − µ̃m‖Ls(B(R0))

≤ δ.

This proves Theorem 4.2. �

Lemma 4.5. Assume that Kµ corresponding to µ supported in D satisfies (4-1) with q,C0> 0 and R1= 1.
Let 8 be the principal solution of the Beltrami equation corresponding to µ. Then for all β, R > 0, the
inverse function 9 =8−1

: C→ C of 8 satisfies∫
B(R)

exp(βKµ(9(z))) dm(z) < C,

where C depends only on q,C0, β, and R.
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Proof. Since 8 satisfies the condition N by [Astala et al. 2010, Corollary 4.3], we may change variable
in integration to see that∫

B(R)
exp(βKµ(9(z))) dm(z)=

∫
9(B(R))

exp(βKµ(w))J8(w) dm(w). (4-24)

Using (3-7) for the function 8 and R > 3, we see that 9(B(R)) ⊂ B̃ = B(R̃), R̃ = R + 1. By (4-1),
exp(Kµ(z)) ∈ Lq(B̃) for all q > 1 and thus by (4-13), J8 ∈ X1,q(B(R)) for R > 0.

Let us next use properties of Orlicz spaces and the notations discussed in the Appendix using a Young
complementary pair (F,G), where

F(t)= exp(t1/p)− 1

and G(t) satisfies G(t)= C pt (log(1+C pt))p for t > Tp with suitable C p, Tp > 0; see [Krasnosel’skiı̆
and Rutickiı̆ 1961, Theorem I.6.1].

By using u(z)= exp(βKµ(z)) and v = J8(z), we obtain from Young’s inequality (A-7) the inequality∫
B(R)

exp(βKµ(9(z))) dm(z)

≤

∫
B̃

F(exp(βKµ(w))) dm(w)+
∫

B̃
G(J8(w)) dm(w)

≤

∫
B̃

exp((exp(βKµ(w)))
1/p) dm(w)+

∫
B̃

C p J8(w)(log(1+C p J8(w)))p dm(w). (4-25)

We apply this by using p > β/q, so that(
exp(βKµ(w))

)1/p
≤ exp(q Kµ(w)).

Thus ∫
B̃

exp
((

exp(βKµ(w))
)1/p) dm(w)≤

∫
B̃

exp
(
exp(q Kµ(w))

)
dm(w) <∞.

The last term in (4-25) is finite by (4-15), and thus the claim follows. �

4B. Asymptotics of the phase function of the exponentially growing solution. Let µ ∈ B p
exp(B(R0)),

k ∈C\{0} and λ∈C satisfy |λ| ≤ 1. Then using Lemmas 3.3 and 3.4, with the affine weight A(t)= pt− p
corresponding to the gauge function Q, we see that the equation

∂̄z fk(z)= λµ(z) ∂z fk(z) for a.e. z ∈ C, (4-26)

fk(z)= eikz
(

1+ O
(1

z

))
as |z| →∞, (4-27)

has the unique solution fk ∈W 1,Q
loc (C). Moreover, this solution can be written in the form

fk(z)= eikϕk(z), (4-28)
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where ϕk : C→ C is a homeomorphism satisfying

∂̄ϕk(z)=−
λk̄
k
µ(z)e−k(ϕk(z)) ∂ϕk(z) for a.e. z ∈ C, (4-29)

ϕk(z)= z+O
(1

z

)
as |z| →∞. (4-30)

Below, we set fk(z) = f (z, k) and ϕk(z) = ϕ(z, k) and estimate the next functions ϕk in the Orlicz
space Xq(C). The following lemma is a generalization of results of [Astala and Päivärinta 2006] to the
Orlicz space setting.

Lemma 4.6. Assume that ν ∈ B p
exp(B(R0)) for all 0< p <∞. For k ∈ C \ {0}, let 8k ∈W 1,1(C) be the

solution of

∂̄8k(z)=−
k̄
k
ν(z)e−k(z) ∂8k(z) for a.e. z ∈ C, (4-31)

8k(z)= z+O
(1

z

)
. (4-32)

Then for all ε > 0, there exists C0 > 0 such that ∂̄z8k(z) = gk(z)+ hk(z), where gk, hk ∈ Xq(C) are
supported in B(R0) and

sup
k∈C\{0}

‖hk‖Xq < ε, (4-33)

sup
k∈C\{0}

‖gk‖Xq < C0, (4-34)

lim
k→∞

ĝk(ξ)= 0, (4-35)

where for all compact sets S ⊂ C, the convergence in (4-35) is uniform for ξ ∈ S.

Proof. Let us define
ν̃k(z)=−k̄k−1ν(z)

for k ∈ C \ {0}. Note that then for any p > 0, there is N > 0 such that ν̃k( · , k)e−k( · ) ∈ B p
exp,N (B(R0))

for all k ∈ C \ {0}. By Theorem 4.2,

lim
n→∞

∥∥∥∥∂̄8k −

∞∑
n=0

(ν̃ke−k S)n(ν̃ke−k)

∥∥∥∥
Xq (C)

= 0

uniformly in k ∈ C \ {0}. For m ∈ Z+, we define

gk(z)= g(m)k (z)=−
m∑

n=0

(ν̃ke−k S)n(ν̃ke−k),

hk(z)= h(m)k (z)=−
∞∑

n=m+1

(ν̃ke−k S)n(ν̃ke−k).

For given ε > 0, we can choose m so large that (4-33) holds for all k ∈C\{0}, and then using Lemma 4.3,
choose C0 so that (4-34) holds for all k ∈ C \ {0}.
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Next, we show (4-35) when ε and m are fixed so that (4-33) and (4-34) hold. We can write

gk(z)=−
m∑

n=0

e−nk Gn, Gn =

(
k̄
k

)n+1

νSn(k)ν · · · νS1(k)ν,

where S j (k) is the Fourier multiplier

(S j (k)φ)∧(ξ)= m(ξ + jk)φ̂(ξ), m(ξ)=
ξ̄

ξ
.

The proof of [Astala and Päivärinta 2006, Lemma 7.3] for n ≥ 1 and the Riemann–Lebesgue lemma for
n = 0 yield that for any ε̃ > 0, there exists R(n, ε̃)≥ 0 such that, for n ≤ m,

|Ĝn(ξ)| ≤ (n+ 1)κn ε̃ for |ξ |> R(n, ε̃),

where κ = ‖ν‖L∞ ≤ 1. Thus for n ≤ m,

|Ĝn(ξ)| ≤ (m+ 1)ε̃ for |ξ |> R0 =max
n≤m

R(n, ε̃), n = 0, 1, 2, . . . ,m. (4-36)

As
(e−nk Gn)

∧(ξ)= Ĝn(ξ − nk),

we see that for any L > 0, there is k0 > 0 such that if |k|> k0 then j |k|− L > R0 for 1≤ n ≤m. Then it
follows from (4-36) that if |k|> k0, then

sup
|ξ |<L
|ĝk(ξ)| ≤ (m+ 1)2 ε̃.

This proves the limit (4-35), with the convergence being uniform for ξ belonging in a compact set. �

Proposition 4.7. Assume that ν ∈ B p
exp(B(R0)) with p > 4 and 8k(z) is the solution of (4-31)–(4-32).

Then
lim

k→∞
8k(z)= z uniformly for z ∈ C. (4-37)

Proof. Step 1: We will first show that for all q with 4< q < p, we have ∂̄z8k(z)→ 0 weakly in Xq(C)

as k→∞. Let η ∈ X−q(C) and ε1 > 0. By Theorem 4.2, there is C1 > 0 such that

sup
k
‖∂̄8k‖Xq ≤ C1.

Since C∞0 (C) is dense in X−q(C) (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Section II.10]), we can find a
function η0 ∈ C∞0 (C) such that

‖η− η0‖X−q ≤min(1, ε1/C1).

Then
|〈η, ∂̄8k〉| ≤ |〈η0, ∂̄8k〉| + ‖η− η0‖X−q (C)‖∂̄8k‖Xq (C), (4-38)

where the second term on the right-hand side is smaller than ε1. Moreover, by Lemma 4.6, we can write

∂̄8k = hk + gk

so that (4-33)–(4-35) are satisfied for ε = ε1(‖η‖X−q + 1)−1 and some C0 > 0. Then |〈η0, hk〉| ≤ ε1.
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Since η̂0 is a rapidly decreasing function, ĝk(ξ) is uniformly bounded for ξ ∈ C and k ∈ C \ {0} by
Lemma 4.6, and ĝk→ 0 uniformly in all bounded domains as k→∞, we see that

〈η0, gk〉 = 〈η̂0, ĝk〉 → 0 as k→∞. (4-39)

Combining these, we see that 〈η0, ∂̄8k〉 → 0 as k →∞, and thus ∂̄z8k(z)→ 0 weakly in Xq(C) as
k→∞.

Step 2: Next we show the pointwise convergence

lim
k→∞

∂̄z8k(z)= 0. (4-40)

To this end, we observe that the function

ηz(w)=
1

π(w−z)
χB(R0)(w)

satisfies ηz ∈ X−q(C) for q > 1. Since 8k(z)− z =O(1/z) and ∂̄8k is supported in B(R0), we have

8k(z)= z− 1
π

∫
B(R0)

(w− z)−1 ∂̄w8k(w) dm(w)= z−〈ηz, ∂̄8k〉. (4-41)

As ∂̄8k→ 0 weakly in Xq(C), we see (4-40) holds for all z ∈ C.

Step 3: By (3-14) and (3-17), we see that the family {8k(z)}k∈C\{0} of homeomorphisms has a uniform
modulus of continuity in compact sets. Moreover, since

sup
k
‖∂̄8k‖L1(C)

≤ sup
k
‖∂̄8k‖Xq (B(R0))

= C2 <∞,

we obtain by (4-40), for |z|> R0+ 1, that

|8k(z)− z| = |〈ηz, ∂̄8k〉| ≤
C
|z|
‖∂̄8k‖L1(C)

≤
CC2

|z|
. (4-42)

Thus, as the functions {8k(z)}k∈C\{0} are uniformly equicontinuous in compact sets, (4-42) and the
pointwise convergence (4-40) yield the uniform convergence (4-37). �

4C. Properties of the solutions of the nonlinear Beltrami equation. Let λ ∈ C, |λ| ≤ 1 and µ(z) be
supported in B(R0), R0≥ 1, and assume that K = Kµ satisfies (4-1) with q,C0> 0 and R1= 1. Motivated
by Lemma 3.4, we consider next the solutions ϕk of the equation

∂̄zϕλ(z, k)=−λ
k̄
k
µ(z)e−k(ϕλ(z, k)) ∂zϕλ(z, k), z ∈ C, (4-43)

ϕλ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-44)

Let ψλ( · , k)= ϕλ( · , k)−1 be the inverse function of ϕλ( · , k). A simple computation based on differenti-
ation of the identity ψλ(ϕλ(z, k), k)= z in the z-variable shows that

∂̄zψλ(z, k)=−λ
k̄
k
µ(ψλ(z, k))e−k(z) ∂zψλ(z, k), z ∈ C, (4-45)

ψλ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-46)
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Define

ν(z)=−λ
k̄
k
µ(z)

and consider the equations (4-43) and (4-45) simultaneously by defining the sets

Bµ =
{
(ϕ, ν) : |ν| ≤ |µ| a.e. and ϕ : C→ C is a homeomorphism with ∂̄ϕ = ν∂ϕ, ϕ(z)= z+ O(z−1)

}
and, for Q defined by (1-8),

Gµ =
{
g ∈W 1,Q

loc (C) : ∂̄g = (ν ◦ϕ−1)∂g, g(z)= z+ O(z−1), (ϕ, ν) ∈ Bµ
}
.

Now exp(exp(q Kµ)) ∈ L1(B(R0)) with some 0 < q <∞ and |ν| ≤ |µ| almost everywhere. Then
Kν(z)≤ Kµ(z) almost everywhere. Let

∂̄ϕ = ν ∂ϕ in C, ϕ(z)= z+ O(z−1),

so that ∂̄ϕ = ν̃ ∂ϕ with |ν̃(z)| = |ν(z)|. Then for ψ = ϕ−1, we have K (z, ψ) = Kν(ψ(z)); see (2-14).
Thus by Lemma 4.5, we have

sup
g∈Gµ
‖ exp(βK ( · , g))‖L1(B(R)) = sup

(ϕ,ν)∈Bµ
‖ exp(βKν ◦ϕ

−1)‖L1(B(R)) <∞ (4-47)

for all β >0 and R>0. Using this and Theorem 2.2, we see that the functions g∈Gµ are homeomorphisms.
Moreover, recall that µ ∈ B p

exp(B(R)) for all p ∈ (1,∞). Thus for g ∈ Gµ, the condition g ∈W 1,Q
loc (C) is

equivalent to (see (4-7) and (4-8)) Dg ∈ X−1
loc (C). Furthermore by (4-13), we have

sup
(ϕ,ν)∈Bµ

‖Jϕ‖X1,q (B(R)) <∞ (4-48)

for all q > 0.

Lemma 4.8. The set Gµ is relatively compact in the topology of uniform convergence.

Proof. Let (ϕ, ν) ∈ Bµ and ψ = ϕ−1 and

∂̄g = (ν ◦ϕ−1)∂g, g(z)= z+ O(z−1).

As µ is supported in B(R0), the function ϕ is analytic outside B(R0); we see using (3-7) for the
function ϕ that for R > 0, we have ϕ(B(R)) ⊂ B(R + 3R0), ψ(B(R)) ⊂ B(R + 3R0), and that ψ is
analytic outside B(4R0).

Thus (3-7) and the same arguments which we used to prove the estimate (3-27) yield that for R > 0,

‖Q(|Dg|)‖L1(B(R)) ≤ π(R+ 3R0)
2
+

∫
B(R)

exp
(
q Kν(ψ(w))− q

)
dm(w)

≤ π(R+ 3R0)
2
+

∫
B(R+3R0)

exp(q Kν(z)− q)Jϕ(z) dm(z), (4-49)

where Q(t) = |t |2/ log(|t | + e). We will next use Young’s inequality (A-7) with the admissible pair
(F,G), where (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Chapter 1.3])

F(t)= et
− t − 1, G(t)= (1+ t) log(1+ t)− t. (4-50)
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By Young’s inequality, we have∫
B(R+3R0)

exp(q Kν(z)− q)Jϕ(z) dm(z)≤∫
B(R+3R0)

exp
(
exp(q Kν(w)− q)

)
dm(w)+

∫
B(R+3R0)

(1+ Jϕ(w)) log(1+ Jϕ(w)) dm(w).

This, (4-1), (4-48), and (4-49) show that there is a constant C(R, µ) such that for g ∈ Gµ,

‖Q(|Dg|)‖L1(B(R)) ≤ C(R, µ). (4-51)

As g ∈ Gµ are homeomorphisms, this, (3-14) and (A-1)–(A-3) imply that functions g ∈ Gµ are equicontinu-
ous in compact sets of C. As supp(ν◦ψ)⊂ B(4R0), functions g ∈ Gµ are analytic outside the disc B(4R0)

and the inequality (3-7) yields, for R > 0 and g ∈ Gµ, that

g(B(R))⊂ B(R+ 12R0).

By the Arzelà–Ascoli theorem, these imply that the set {g|B(R) : g ∈ Gµ} is relatively compact in the
topology of uniform convergence in B(R) for any R > 0. Thus by using a diagonalization argument, we
see that for an arbitrary sequence gn ∈ Gµ, n = 1, 2, . . . , there is a subsequence gn j which converges
uniformly in all discs B(R), R > 0. Finally, by Young’s inequality (see the Appendix), we get using the
same notations as in (4-41) that for |z|> 4R0+ 1,

|gk(z)− z| =
∣∣∣∣ 1
π

∫
B(4R0)

(w− z)−1 ∂̄wgk(w) dm(w)
∣∣∣∣

≤
1

π(|z|−4R0)

∫
B(4R0)

(
Q(|∂̄wgk(w)|)+G0(1)

)
dm(w), (4-52)

where Q(t) and G0(t)= |t |2 log(|t | + 1) form a Young complementary pair. Thus

|gk(z)− z| ≤
Cµ

|z| − 4R0
for |z|> 4R0+ 1.

Using this and the uniform convergence of gn j in all discs B(R), R > 0, we see that gn has a subsequence
converging uniformly in C. �

Theorem 4.9. Let λ, k ∈ C \ {0}, |λ| = 1. Assume that ϕλ(z, k) satisfies (4-43)–(4-44) with µ supported
in D which satisfies (4-1) with q > 0 and R1 = 1. Then

lim
k→∞

ϕλ(z, k)= z

uniformly in z ∈ C and |λ| = 1.

Proof. Let ψλ( · , k) be the inverse function of ϕλ( · , k). It is sufficient to show that

lim
k→∞

ψλ(z, k)= z

uniformly in z ∈ C and |λ| = 1.
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Then, ψλ( · , k) is the solution of (4-45)–(4-46). Define

ν(z)=−λk̄k−1µ(z)

and note that |ν(z)| = |µ(z)|. Hence (
ϕλ( · , k), ν( · ) e−k( · )

)
∈ Bµ

and ψλ( · , k)∈ Gµ. Moreover, as ϕλ( · , k) is homeomorphism in C and analytic outside of B(1), it follows
from (3-7) with r = 1 that ϕλ( · , k) maps the ball B(1) into B(4) and moreover, its inverse ψλ( · , k) maps
the disc B(4) into B(5) and C \ B(4) into C \ B(1).

It follows from Lemma 4.8 that if the claim is not valid, there are sequences (λn)
∞

n=1, |λn| = 1, and
(kn)

∞

n=1, kn→∞, such that
ψ∞(z)= lim

n→∞
ψλn (z, kn), (4-53)

where the convergence is uniform, z ∈ C, and ψ∞(z) is not equal to z. Thus, to prove the claim, it is
enough to show that any limit of form (4-53) satisfies ψ∞(z)= z. Note that by considering subsequences,
we can assume that λn→λ and k̄nk−1

n →β as n→∞, where |λ|= |β|= 1. Next define ν0(z)=−λβµ(z).
Let us consider the solution of

∂̄z8λ(z, k)= ν0(ψ∞(z))e−k(z) ∂z8λ(z, k), (4-54)

8λ(z, k)= z+ O
(1

z

)
as |z| →∞. (4-55)

We note that here ν0(ψ∞(z)) = 0 for |z| > 4 as ν0 is supported in B(1) and ψ∞ maps C \ B(4) into
C \ B(1). By Proposition 4.7, 8λ(z, k)→ z as k→∞ uniformly in z ∈ C. Since for every z ∈ C, the
function ηz : w 7→ χB(4)(w)(z−w)−1 is in X−q(C) for q > 1, we obtain, using (4-41), that

|ψλn (z, kn)−8λ(z, kn)| =
1
π

∣∣∣∣∫
B(4)

(w− z)−1 ∂̄w
(
ψλn (w, kn)−8λ(w, kn)

)
dm(w)

∣∣∣∣
≤ ‖ηz‖X−q

∥∥∂̄(ψλn ( · , kn)−8λ( · , kn))
∥∥

Xq (B(4)). (4-56)

Let us next assume that we can prove that

lim
n→∞

∥∥µ ◦ψλn ( · , kn)−µ ◦ψ∞( · , kn)
∥∥

Ls(C)
= 0 for some s > 2. (4-57)

If this is the case, let p ∈ (4q,∞). By assumption (4-1) and Lemma 4.5, there is N such that the Beltrami
coefficients of functions ψλn ( · , kn) are in B p

exp,N (D) for all n ∈Z+ and p> 4. By Theorem 4.2 and (4-57),

lim
n→∞

∥∥∂̄(ψλn ( · , kn)−8λ( · , kn)
)∥∥

Xq (C)
= 0.

As limn→∞8λ(z, kn)= z uniformly in z ∈ C, this and (4-56) show that ψ∞(z)= z.
Thus, to prove the claim it is enough to show (4-57). First, as ψλn ( · , kn)→ ψ∞( · ) uniformly as

n→∞ and as ψλn ( · , kn) maps C\ B(3) into C\ B(2), we see using the dominated convergence theorem
that the formula (4-57) is valid when µ is replaced by a smooth compactly supported function. Next,
let (F,G) be the complementary Young pair given by (4-50) and EF (B(R)) be the closure of L∞(B(R))
in X F (B(R)). By [Adams 1975, Theorem 8.21], the set C∞0 (D) is dense in EF (D) with respect to the
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norm of X F . Thus when µ is a nonsmooth Beltrami coefficient satisfying the assumption (4-1) and ε > 0,
we can find a smooth function θ ∈ C∞0 (D), ‖θ‖∞ < 2 such that ‖µ− θ‖F < ε. Then, since |µ− θ | is
supported in D and bounded by 3, we have∥∥µ◦ψλn ( · ,kn)−θ◦ψλn ( · ,kn)

∥∥s
Ls(C)
=

∫
D

|µ(z)−θ(z)|s Jgn (z)dm(z)

≤ 3s−1
(∫

D

F(|µ(z)−θ(z)|)dm(z)
)(∫

D

G(Jgn (z))dm(z)
)
, (4-58)

where gn is the inverse of the function ψλn ( · , kn). Then,∫
D

G(Jgn ) dm ≤ C‖Jgn‖X1,1(B(2))

and by (4-48), ‖Jgn‖X1,1(D) is uniformly bounded in n. Using (4-58) and (A-5), we see that (4-57) holds
for all µ satisfying the assumption (4-1) and thus claim of the theorem follows. �

4D. ∂̄-equations in k-planes. Let us consider a Beltrami coefficient µ ∈ B p
exp(D) and approximate µ

with functions µn supported in D for which

lim
n→∞

µn(z)= µ(z) and ‖µn‖∞ ≤ cn < 1;

see, e.g., (3-19). Let fµ( ·, k) ∈W 1,Q
loc (C) be the solution of the equations

∂̄z fµ(z, k)= µ(z) ∂z fµ(z, k) for a.e. z ∈ C, (4-59)

fµ(z, k)= eikz
(

1+Ok

(1
z

))
for |z| →∞, (4-60)

and fµn ( ·, k) ∈W 1,Q
loc (C) be the solution of the similar equations of Beltrami coefficients µn and µ; see

Lemma 3.4. Here Ok(h(z)) means a function of (z, k) that satisfies |Ok(h(z))| ≤ C(k)|h(z)| for all z
with some constant C(k) depending on k ∈ C. Let

ϕµ(z, k)= (ik)−1 log( fµ(z, k)), ϕµn (z, k)= (ik)−1 log( fn(z, k));

see (3-5). Then by (3-7), we have

|ϕµn (z, k)| ≤ |z| + 3, |ϕµ(z, k)| ≤ |z| + 3. (4-61)

By the proof of Lemma 3.4, we see that by choosing a subsequence of µn , n ∈ Z+, which we continue to
denote by µn , we can assume that

lim
n→∞

ϕµn (z, k)= ϕµ(z, k) uniformly in (z, k) ∈ B(R)×{k0} for all R > 0 and k0 ∈ C. (4-62)

Let us write the solutions fµn and fµ as

fµn (z, k)= eikϕµn (z,k) = eikz Mµn (z, k),

fµ(z, k)= eikϕµ(z,k) = eikz Mµ(z, k).
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Similar notations are introduced when µ is replaced by −µ etc. Let

h(+)µn
(z, k)= 1

2

(
fµn (z, k)+ f−µn (z, k)

)
,

h(−)µn
(z, k)= 1

2 i
(

fµn (z, k)− f−µn (z, k)
)
,

and
u(1)µn

(z, k)= h(+)µn
(z, k)− ih(−)µn

(z, k),

u(2)µn
(z, k)=−h(−)µn

(z, k)+ ih(+)µn
(z, k).

Then by (4-61), h(+)µn (z, k) and h(−)µn (z, k) are uniformly bounded for (z, k) ∈ B(R1)× B(R2) for any
R1, R2 > 0. By (4-62), we can define the pointwise limits

lim
n→∞

h(±)µn
(z, k)= h(±)µ (z, k), lim

n→∞
u( j)
µn
(z, k)= u( j)

µ (z, k), j = 1, 2. (4-63)

The above formulae imply

u(2)µ (z, k)= iu(1)−µ(z, k) and u(1)µ (z, k)=−iu(2)−µ(z, k). (4-64)

Moreover, for

τµn (k)=
1
2

(
tµn (k)− t−µn (k)

)
, τµn (k)=

1
2

(
tµn (k)− t−µn (k)

)
,

and

t±µn (k)=
i

2π

∫
∂D

M±µn (z, k) dz, t±µ(k)=
i

2π

∫
∂D

M±µ(z, k) dz,

we see using the dominated convergence theorem that limn→∞ tµn (k)= tµ(k) for all k ∈ C, and hence

lim
n→∞

τµn (k)= τµ(k) for all k ∈ C. (4-65)

Then, as |µn| ≤ cn < 1 correspond to conductivities σn satisfying σn, σ
−1
n ∈ L∞(D), we have by [Astala

and Päivärinta 2006, Formula (8.2)] the ∂̄-equations with respect to the k-variables,

∂̄ku( j)
µn
(z, k)=−iτµn (k)u

( j)
µn (z, k), k ∈ C, j = 1, 2; (4-66)

see also [Nachman 1988; 1996] for a different formulation of such equations. For z∈C, functions u( j)
µn (z, · ),

n ∈ Z+, are uniformly bounded in B(R) for all R > 0; the limit (4-63) and the dominated convergence
theorem imply that u( j)

µn (z, · )→ u( j)
µ (z, · ) as n→∞ in L p(B(R)) for all p <∞ and R > 0. Since the

functions |τµn (k)|, n ∈ Z+, are uniformly bounded in compact sets, the pointwise limits (4-63), (4-65)
and the equation (4-66) yield that

∂̄ku( j)
µ (z, k)=−iτµ(k)u

( j)
µ (z), k ∈ C, j = 1, 2, (4-67)

holds for all z ∈ C in the sense of distributions and u( j)
µ (z, · ) ∈W 1,p

loc (C) for all p <∞.
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4E. Proof of uniqueness results for isotropic conductivities.

Proof of Theorem 1.9. Let us consider isotropic conductivities σ j , j =1, 2. Due to the above proven results,
the proof will go along the lines of Section 8 of [Astala and Päivärinta 2006], where L∞-conductivities are
considered, and its reformulation, presented in Section 18 of [Astala et al. 2009] in a quite straightforward
way, when the changes explained below are made. The key point is the following proposition.

Proposition 4.10. Assume that µ ∈ B p
exp(D) and let f±µ(z, k) satisfy (4-59)–(4-60) with the Beltrami

coefficients ±µ. Then f±µ(z, k)= ei zk M±µ(z, k), where

Re
M+µ(z, k)
M−µ(z, k)

> 0 (4-68)

for every z, k ∈ C.

Proof. Let us consider the Beltrami coefficients µn(z), n ∈ Z+, defined in Section 4D that converge
pointwise to µ(z) and satisfy |µn| ≤ cn < 1. By Lemma 3.2, the functions M±µn (z, k) do not attain the
value zero anywhere. By [Astala and Päivärinta 2006, Proposition 4.3], the inequality (4-68) holds for the
functions M±µn (z, k). Then, f±µn (z, k)→ f±µ(z, k) as n→∞ for all k, z ∈ C, and thus we see that

Re
M+µ(z, k)
M−µ(z, k)

= lim
n→∞

Re
M+µn (z, k)
M−µn (z, k)

≥ 0. (4-69)

To show that the equality does not hold in (4-69), we assume the opposite. In this case, there are z0 and k0

such that
M+µ(z0, k0)= i t M−µ(z0, k0) (4-70)

for some t ∈ R \ {0}. Then

f (z, k0)= eik0z(M+µ(z, k0)− i t M−µ(z, k0)
)

is a solution of (4-59) and satisfies the asymptotics

f (z, k0)= (1− i t)eik0z
(

1+O
(1

z

))
for |z| →∞.

By using (2-13) to write (4-59) in the form (3-13) and applying Lemma 3.2, we see that the solution
f (z, k0) can be written in the form

f (z, k0)= (1− i t)eik0ϕ(z).

This is in contradiction with (4-70), which would be implied by f (z0, k0)= 0, and thus proves (4-68). �

Let f±µ(z, k) be as in Proposition 4.10 and use below for the functions defined in (4-63) the shorthand
notation u(1)µ (z, k)= u1(z, k) and u(2)µ (z, k)= u2(z, k). Then u1(z, k) and u2(z, k) are solutions of (4-67).
A direct computation shows also that

∇ · σ∇u1( · , k)= 0 and ∇ ·
1
σ
∇u2( · , k)= 0,

where
σ(z)= (1−µ(z))/(1+µ(z))
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is the conductivity corresponding to µ. Note that the conductivity 1/σ(z)= (1+µ(z))/(1−µ(z)) is the
conductivity corresponding to −µ.

Generally, the near field measurements, that is, the Dirichlet-to-Neumann map 3σ on ∂�, determines
the scattering measurements, in particular the scattered fields outside �; see [Nachman 1988]. In our
setting, this means that we can use Lemma 5.1 and argue, e.g., as in the proof of Proposition 6.1 in [Astala
and Päivärinta 2006], that 3σ determines uniquely the solutions f±µ(z0, k) and τ±µ(k) for z0 ∈ C \D

and k ∈C. We note that a constructive method based on integral equations on ∂D to determine f±µ(z0, k)
from 3σ is presented in [Astala et al. 2011].

As u j (z, · ), j = 1, 2, are bounded and nonvanishing functions which satisfy (4-67), we have ∂̄u j (z, · )∈
L∞loc(C). This implies that

∂u j (z, · ) ∈ BMOloc(C)⊂ L p
loc(C) for all p <∞

(see, e.g., [Astala et al. 2009, Theorem 4.6.5]), and hence u j (z, · ) ∈W 1,p
loc (C).

Let us now consider the isotropic conductivities σ and σ̃ in �= D which are equal to 1 near ∂D and
satisfy (1-23). Assume that 3σ =3σ̃ . Then, by the above considerations, τ±µ(k)= τ±µ̃(k) for k ∈ C.

Let

µ= (1− σ)/(1+ σ) and µ̃= (1− σ̃ )/(1+ σ̃ )

be the Beltrami coefficients corresponding to σ and σ̃ .
By applying Lemma 3.3 with k = 0, we see that fµ(z, 0)= 1 for all z ∈ C and hence u1(z, 0)= 1. By

Lemma 3.2, the map z 7→ fµ(z, k) is continuous. Thus

u1 ∈ X p, 1< p <∞,

where X p is the space of functions v(z, k), (k, z) ∈ C2 for which v(z, · ) ∈ W 1,p
loc (C) and v(z, · ) are

bounded for all z ∈ C and the function v( · , k) is continuous for all k ∈ C. These properties are crucial in
the following lemma, which is a reformulation of the properties of the functions u1(z, k), with z, k ∈ C,
proven in [Astala and Päivärinta 2006] for L∞-conductivities.

Lemma 4.11. (i) The functions u1(z, k) with k 6= 0 have the z-asymptotics

u1(z, k)= exp(ikz+ v(z; k)), (4-71)

where C(k) > 0 is such that |v(z, k)| ≤ C(k) for all z ∈ C.

(ii) The functions u1(z, k) have the k-asymptotics

u1(z, k)= exp(ikz+ kεµ(k; z)), k 6= 0, (4-72)

where for each fixed z, we have εµ(k; z)→ 0 as k→∞.

(iii) Let 1 < p < ∞. The u1(z, k) given in (4-63) is the unique function in X p such that u1(z, k)
is nonvanishing, u1(z, 0) = 1 for all z ∈ C, and u1(z, k) satisfies the ∂̄-equation (4-67) with the
asymptotics and (4-71) and (4-72).
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Proof. (i) Let us omit the (z, k)-variables in some expressions and define u1(z, k)= u1, fµ(z, k)= fµ,
etc. By the definition of u1,

u1 =
1
2

(
fµ+ f−µ+ fµ− f−µ

)
= fµ

(
1+

fµ− f−µ
fµ+ f−µ

)−1(
1+

fµ− f−µ
fµ+ f−µ

)
, (4-73)

where each factor is nonvanishing by Proposition 4.10. Thus (4-60) yields (4-71).

(ii) Let
Ft(z, k)= e−i t/2

(
fµ(z, k) cos t

2
+ i f−µ(z, k) sin t

2

)
, t ∈ R.

Then
∂̄z Ft(z, k)= µ(z)e−i t∂z Ft(z, k) for z ∈ C,

Ft(z, k)= eikz(1+ Ok(z−1)) as z→∞.

Thus Ft(z, k) = exp(kϕλ(z, k)), where λ = e−i t and ϕλ(z, k) solves (4-43). Note that fµ(z, k) =
exp(kϕλ0(z, k)), where λ0 = 1. Then

fµ− f−µ
fµ+ f−µ

+ ei t
=

2ei t Ft

fµ+ f−µ
=

exp(kϕλ(z, k))
exp(kϕλ0(z, k))

2ei t

1+M−µ(z, k)/Mµ(z, k)
. (4-74)

By Theorem 4.9, we have, for z ∈ C and k ∈ C \ {0}, that

e−|k|ε1(k) ≤ |M±µ(z, k)| ≤ e|k|ε1(k), (4-75)
and

e−|k|ε2(k) ≤ inf
|λ|=1

∣∣∣∣ exp(kϕλ(z, k))
exp(kϕλ0(z, k))

∣∣∣∣≤ sup
|λ|=1

∣∣∣∣ exp(kϕλ(z, k))
exp(kϕλ0(z, k))

∣∣∣∣≤ e|k|ε2(k), (4-76)

where ε j (k)→ 0 as k→∞. Since Re(M−µ/Mµ) > 0, estimates (4-74) and (4-75) yield for z ∈C, k 6= 0,
that

inf
t∈R

∣∣∣∣ fµ− f−µ
fµ+ f−µ

+ ei t
∣∣∣∣≥ e−|k|ε(k) and

| fµ− f−µ|
| fµ+ f−µ|

≤ 1− e−|k|ε(k).

This and (4-73) yield the k-asymptotics (4-72).

(iii) As observed above, the function u1(z, k) given in (4-63) satisfies the conditions stated in (iii).
Next, let u1(z, k) and ũ1(z, k) be two functions which satisfy the assumptions of the claim. Let us

consider the logarithms

δ1(z, k)= log u1(z, k), δ̃1(z, k)= log ũ1(z, k), k, z ∈ C.

As u1(z, · ) ∈W 1,p
loc (C) for some p <∞ and u1(z, · ) is a bounded and nonvanishing function, we see

that δ1(z, · ) ∈W 1,p
loc (C). As u1(z, 0)= 1, we have

δ1(z, 0)= 0 for z ∈ C. (4-77)

Moreover, z 7→ δ1(z, k) is continuous for any k. Let k 6= 0 be fixed. Then by (4-71),

δ1(z, k)= ikz+ v(z, k), z ∈ C, (4-78)

where v( ·, k) is bounded and we see using elementary degree theory [O’Regan et al. 2006, Corol-
lary 1.2.10] that the map Hk : C→ C, Hk(z)= δ1(z, k), is surjective.
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The function δ̃1(z, k) has the same above properties as δ1(z, k). Next we want to show that δ1(z, k)=
δ̃1(z, k) for all z ∈ C and k 6= 0. As the map Hk : z 7→ δ1(z, k) is surjective for all k 6= 0, this follows if
we show that

w 6= z and k 6= 0 ⇒ δ1(w, k) 6= δ̃1(z, k). (4-79)

To this end, let z, w ∈ C, z 6= w. Functions u1 and ũ1 satisfy the same equation (4-67) with the
coefficient τ(k) = τµ(k). Subtracting these equations from each other, we see that the difference
g(k;w, z)= δ1(w, k)− δ̃1(z, k) satisfies

∂̄k g(k;w, z)= γ (k;w, z)g(k;w, z), k ∈ C,

γ (k;w, z)=−iτ(k) exp
(
i Im δ1(k;w, z)

)
E
(
i Im g(k;w, z)

)
,

(4-80)

where

E(t)= (e−t
− 1)/t.

Here, γ (·;w, z) is a locally bounded function. As w 6= z, the principle of the argument for pseudoanalytic
functions (see [Astala and Päivärinta 2006, Proposition 3.3]), (4-80), the boundedness of γ , and the
asymptotics

g(k;w, z)= ik(w− z)+ kε(k, w, z),

where ε(k, w, z)→ 0 as k→∞, imply that k 7→ g(k;w, z) vanishes for one and only one value of k ∈C.
Thus by (4-77), g(k;w, z)= 0 implies that k = 0, and hence (4-79) holds. Thus δ1(z, k)= δ̃1(z, k) and
u1(z, k)= ũ1(z, k) for all z ∈ C and k 6= 0. �

Remark 4.12. Note that τ±µ(k) is determined by 3σ . Thus Lemma 4.11 means that u1(z, k) can
be constructed as a unique complex curve z 7→ u1(z, · ), z ∈ C, in the space of the solutions of the
∂̄-equation (4-67) which has the properties stated in (iii).

When u j (z, k) and ũ j (z, k), j = 1, 2, are functions corresponding to µ and µ̃, the above shows that
u1(z, k)= ũ1(z, k). Using τ−µ instead of τµ and (4-64), we see by Lemma 4.11 that u2(z, k)= ũ2(z, k)
for all z ∈ C and k 6= 0.

Thus f±µ(z, k) = f±µ̃(z, k) for all z ∈ C and k 6= 0. By [Astala et al. 2009, Theorem 20.4.12], the
Jacobians of f±µ ∈ W 1,Q

loc (C) are nonvanishing almost everywhere. Thus we see using the Beltrami
equation (4-59) and the fact that f±µ(z, k) = f±µ̃(z, k) for all z ∈ C and k 6= 0 that µ = µ̃ almost
everywhere. Hence σ = σ̃ a.e. This proves the claim of Theorem 1.9. �

5. Reduction of the inverse problem for an anisotropic conductivity to the isotropic case

In this section, we assume that the weight function A satisfies the almost linear growth condition (1-25).
Let σ = σ jk

∈6A(C) be a conductivity matrix such that σ(z)= 1 for z in C\� and in some neighborhood
of ∂�.

Let z0 ∈ ∂�, and define

Hσ (z)=
∫
ηz

(3σ (u|∂�))(z′) ds(z′), (5-1)
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where ηz is the path (oriented in the positive direction) from z0 to z along ∂�. This map is called the
σ -Hilbert transform, and it can be considered a bounded map

Hσ : H 1/2(∂�)→ H 1/2(∂�)/C.

As shown in beginning of Section 2C, there exists a homeomorphism F : C→ C such that F(�)= �̃,
σ̃ = F∗σ is isotropic (i.e., a scalar function times the identity matrix), F and F−1 are W 1,P -smooth, and
F(z)= z+ O(1/z). Moreover, F satisfies conditions N and N−1. Also, as σ = 1 near the boundary, we
have that F and F−1 are C∞-smooth near the boundary.

By the definition of σ̃ = F∗σ , we see that

det(σ̃ (y))= det(σ (F−1(y))) (5-2)

for y ∈ �̃. Thus under the assumptions of Theorem 1.11, where det(σ ), det(σ )−1
∈ L∞(�), we see that

the isotropic conductivity σ̃ satisfies σ̃ , σ̃−1
∈ L∞(�).

Let us next consider the case when the assumptions of Theorem 1.8 are valid and we have A(t)= pt− p,
with p > 1. Then, as F satisfies the condition N , the area formula gives

I1 =

∫
�̃

exp
(

exp
(

q
(
σ̃ (y)+

1
σ̃ (y)

))
dm(y)

=

∫
�

exp
(

exp
(

q
(

det(σ (x))1/2+
1

det(σ (x))1/2

)))
JF (x) dm(x). (5-3)

In the case when A(t)= pt − p, with p > 1, [Astala et al. 2010, Theorem 1.1] implies that

JF logβ(e+ JF ) ∈ L1(�)

for 0< β < p. Then, Young’s inequality (A-7) with the admissible pair (4-50) implies that∫
�

exp
(

exp
(

q
(

det(σ (x))1/2+
1

det(σ (x))1/2

)))
JF (x) dm(x)

≤

(∫
�

exp
(

exp
(

exp
(

q
(

det(σ )1/2+
1

det(σ )1/2

))))
dm
)(∫

�

(1+ JF ) log(1+ JF ) dm
)
, (5-4)

and if conductivity σ satisfies (1-21), we see that I1 is finite for some q > 0.
Thus under assumptions of Theorem 1.8, we see that I1 is finite for the isotropic conductivity σ̃ .
Let ρ = F |∂�. It follows from Lemma 2.4 and (2-28) that ρ∗3σ =3σ̃ . Then,

Hσ̃h =Hσ (h ◦ ρ−1)

for all h ∈ H 1/2(∂�̃).
Next we seek a function G�(z, k), with z ∈ C \�, k ∈ C, that satisfies

∂̄zG�(z, k)= 0 for z ∈ C \�, (5-5)

G�(z, k)= eikz(1+Ok(z−1)) as z→∞, (5-6)

Im G�( · , k)|∂� =Hσ (Re G�( · , k)|∂�). (5-7)
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To study it, we consider a similar function G�̃( · , k) :C\�̃→C corresponding to the scalar conductivity σ̃ ,
which satisfies in the domain C \ �̃ the equations (5-5)–(5-6) and the boundary condition

Im G�̃( · , k)=Hσ̃ (Re G�̃( · , k)) on z ∈ ∂�̃.

Below, let µ̃= (1− σ̃ )/(1+ σ̃ ) be the Beltrami coefficient corresponding to the conductivity σ̃ .

Lemma 5.1. Assume that σ ∈6A(�) is 1 near ∂�. Then for all k ∈ C,

(i) For k ∈ C and z ∈ C \ �̃, we have G�̃(z, k) = W (z, k), where W ( · , k) ∈ W 1,P
loc (C) is the unique

solution of

∂̄zW (z, k)= µ̃(z)∂zW (z, k) for z ∈ C, (5-8)

W (z, k)= eikz(1+Ok(z−1)) as z→∞. (5-9)

(ii) The equations (5-5)–(5-7) have a unique solution G�( · , k)∈C∞(C\�) and G�(z, k)=G�̃(F(z), k)
for z ∈ C \�.

Proof. The definition of the Hilbert transform Hσ̃ implies that any solution G�̃(z, k) of (5-5)–(5-7) can
be extended to a solution W (z, k) of (5-8). On other hand, the restriction of the solution W (z, k) of
(5-8)–(5-9) satisfies (5-5)–(5-7). The equations (5-8)–(5-9) have a unique solution by Theorem 3.1. As
the solution W ( · , k) is analytic in C \ supp(σ̃ ), the claim (i) follows.

The claim (ii) follows immediately as F : C \�→ C \ �̃ is conformal, F(z) = z +O(1/z), and
Hσ̃h =Hσ (h ◦ ρ) for all h ∈ H 1/2(∂�̃). �

Lemma 5.2. Assume that � is given and that σ ∈6A(�) is 1 near ∂�. Then the Dirichlet-to-Neumann
form Lσ determines the values of the restriction F |C\�, the boundary ∂�̃, and the Dirichlet-to-Neumann
map 3σ̃ of the isotropic conductivity σ̃ = F∗σ on �̃.

Proof. When σ = 1 near ∂�, the Dirichlet-to-Neumann form Lσ determines the Dirichlet-to-Neumann
map 3σ . By Lemma 3.4, we have W (z, k)= exp(ikϕ(z, k)), where by Theorem 4.9,

lim
k→∞

sup
z∈C

|ϕ(z, k)− z| = 0. (5-10)

For k 6= 0, we choose the branch of the logarithm of G(z, k) = W (F(z), k) so that it is a continuous
function of z ∈ C \� and

lim
z→∞

(log G(z, k)− ikz)= 0.

Then,
lim

k→∞
(ik)−1log G(z, k)= lim

k→∞
ϕ(F(z), k)= F(z). (5-11)

By Lemma 5.1, G(z, k) can be constructed for any z ∈ C \� by solving the equations (5-5)–(5-9).
Thus the restriction of F to C \� is determined by the values of the limit (5-11). As �̃= C \ F(C \�)
and 3σ̃ = (F |∂�)∗3σ , this proves the claim. �

Above we saw that if the assumptions of Theorem 1.8 for σ are satisfied then for the isotropic conduc-
tivity σ̃ = F∗σ , we have σ̃ , σ̃−1

∈ L∞(�̃). Also, under the assumptions of Theorem 1.8 for σ , the integral
I1 in (5-3) is finite for some q > 0. Thus Theorems 1.8 and 1.11 follow by Theorem 1.9 and Lemma 5.2.
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Appendix: Orlicz spaces

For the proofs of the facts discussed in this appendix, we refer to [Adams 1975; Krasnosel’skiı̆ and
Rutickiı̆ 1961].

Let F,G : [0,∞) → [0,∞) be bijective convex functions. The pair (F,G) is called a Young
complementary pair if

F ′(t)= f (t), G ′(t)= g(t), g = f −1.

In the following, we will consider also extensions of these functions defined by F,G : C→ [0,∞) by
setting F(t)= F(|t |) and G(t)= G(|t |). By [Krasnosel’skiı̆ and Rutickiı̆ 1961, Section I.7.4], there are
examples of such pairs for which

F(t)= 1
p

t p loga t, G(t)= 1
q

tq log−a t,

where p, q ∈ (1,∞), p−1
+ q−1

= 1 and a ∈ R. We define that u : D→ C, where D ⊂ R2, is in the
Orlicz class KF (D) if ∫

D

F(|u(x)|) dm(x) <∞. (A-1)

The Orlicz space X F (D) is the smallest vector space containing the set KF (D). For a Young comple-
mentary pair (F,G), one can define for u ∈ X F (D) the norm

‖u‖F = sup
{∫

D
|u(x)v(x)| dm(x)

∣∣∣∣ ∫
D

G(u(x)) dm(x)≤ 1
}
. (A-2)

There is also a Luxenburg norm

‖u‖(F) = inf
{

t > 0
∣∣∣∣ ∫

D
F
(

u(x)
t

)
dm(x)≤ 1

}
, (A-3)

which is equivalent to the norm ‖u‖F , and one always has

‖u‖(F) ≤ ‖u‖F ≤ 2‖u‖(F). (A-4)

By [Adams 1975, Theorem 8.10], L X (D) is a Banach space with respect to the norm ‖u‖(F). Moreover,
it holds that (see [Krasnosel’skiı̆ and Rutickiı̆ 1961, Theorems II.9.5 and II.10.5])

‖u‖(F) ≤ 1 ⇒

∫
D

F(u(x)) dm(x)≤ ‖u‖F , (A-5)

‖u‖(F) ≥ 1 ⇒

∫
D

F(u(x)) dm(x)≥ ‖u‖(F). (A-6)

We also recall Young’s inequality [Krasnosel’skiı̆ and Rutickiı̆ 1961, Theorem II.9.3], uv ≤ F(u)+G(v)
for u, v ≥ 0, which implies ∣∣∣∣∫

D
u(x)v(x) dm(x)

∣∣∣∣≤ ‖u‖F ‖u‖G . (A-7)

The set KF (D) is a vector space when F satisfies the 12-condition, that is, there is k > 1 such that
F(2t)≤ k F(t) for all t ∈ R+; see [Adams 1975, Lemma 8.8]. In this case, X F (D)= KF (D).

We will use functions

Mp,q(t)= |t |p(log(1+ |t |))q , 1≤ p <∞, q ∈ R,
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and use for F(t)=Mp,q(t) the notations X F (D)= X p,q(D) and ‖u‖F =‖u‖X p,q (D). For p= 2, we define

M2,q(t)= Mq(t), X2,q(D)= Xq(D).

Note that if D is bounded, 1< p <∞ and 0< ε < p− 1, then

L p+ε(D)⊂ X p,q(D)⊂ L p−ε(D).

Finally, we note that the dual space of Xq(D) is X−q(D) and∣∣∣∣∫
D

u(x)v(x) dm(x)
∣∣∣∣≤ ‖u‖Xq (D)‖v‖X−q (D). (A-8)
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A CHARACTERIZATION OF 1-RECTIFIABLE DOUBLING MEASURES
WITH CONNECTED SUPPORTS

JONAS AZZAM AND MIHALIS MOURGOGLOU

Garnett, Killip, and Schul have exhibited a doubling measure µ with support equal to Rd that is 1-
rectifiable, meaning there are countably many curves 0i of finite length for which µ

(
Rd
\
⋃
0i
)
= 0. In

this note, we characterize when a doubling measure µ with support equal to a connected metric space X
has a 1-rectifiable subset of positive measure and show this set coincides up to a set of µ-measure zero
with the set of x ∈ X for which lim infr→0 µ(BX (x, r))/r > 0.

1. Introduction

Recall that a Borel measure µ on a metric space X is doubling if there is Cµ > 0 so that

µ(BX (x, 2r))≤ Cµµ(BX (x, r)) for all x ∈ X and r > 0. (1-1)

Garnett, Killip, and Schul [Garnett et al. 2010] exhibit a doubling measure µ with support equal to Rn ,
n > 1, that is 1-rectifiable in the sense that there are countably many curves 0i of finite length such that
µ
(
Rn
\
⋃
0i
)
= 0. This is surprising given that such measures give zero measure to smooth or bi-Lipschitz

curves in Rd . To see this, note that, for such a curve 0 and for each x ∈ 0, there are rx , δx > 0 so that
for all r ∈ (0, rx) there is BRd (yx,r , δxr) ⊆ BRn (x, rx) \0, so by the Lebesgue differentiation theorem,
µ(0) = 0. If 0 is just Lipschitz and not bi-Lipschitz, however, we only know this property holds for
every point in 0 outside a set of zero length. The aforementioned result shows that Lipschitz curves of
finite length can in some sense be coiled up tightly enough that this zero-length set accumulates on a set
of positive doubling measure.

The notion of rectifiability of a measure that we are using is not universal. In [Azzam et al. 2015],
a measure µ in Euclidean space being d-rectifiable means µ�H d and suppµ is d-rectifiable. In our
setting, however, we don’t require absolute continuity of our measures. To avoid ambiguity, we fix our
definition below, which is the convention used in [Federer 1969, §3.2.14].

Definition 1.1. If µ is a Borel measure on a metric space X , d is an integer, and E ⊆ X a Borel set,
we say E is (µ, d)-rectifiable if µ

(
E \

⋃
∞

i=1 0i
)
= 0 where 0i = fi (Ei ), Ei ⊆ Rd , and fi : Ei → X is

Lipschitz. We say µ is d-rectifiable if suppµ is (µ, d)-rectifiable.

A set E ⊆Rn of positive and finite H d -measure is d-rectifiable if it is (H d , d)-rectifiable (see [Mattila
1995, Definition 15.3] and the few paragraphs preceding it). This is also equivalent to being covered up
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to set of H d -measure zero by Lipschitz graphs [Mattila 1995, Lemma 15.4]. The example from [Garnett
et al. 2010], however, shows that being almost covered by Lipschitz graphs versus Lipschitz images are
not equivalent definitions for rectifiability of a measure.

Since this example was published, it has been an open question to classify which doubling measures
on Rd are rectifiable. Very recently, Badger and Schul have given a complete description. First, for a
general Radon measure in Rd and A compact with µ(A) > 0, define

β
(1)
2 (µ, A)2 = inf

L

∫
A

(
dist(x, L)

diam A

)2 dµ(x)
µ(A)

where the infimum is taken over all lines L ⊆ Rd .

Theorem 1.2 [Badger and Schul 2015b, Corollary 1.12]. If µ is a Radon measure on Rd such that
lim infr→0 β

(1)
2 (µ, BRd (x, r)) > 0 for µ-almost every x ∈ Rd , then µ is 1-rectifiable if and only if∑

x∈Q
`(Q)≤1

diam Q
µ(Q)

<∞ µ-a.e. (1-2)

where the sum is over half-open dyadic cubes Q.

It is not hard to show that, if µ is a doubling measure with suppµ = Rd , d ≥ 2, then there is c > 0
depending on the doubling constant such that β(1)2 (µ, B) ≥ c > 0 for any ball B ⊆ Rd , so the above
theorem characterizes all 1-rectifiable doubling measures with support equal to all of Rd .

In this short note, we take a different approach and provide a complete classification of 1-rectifiable
doubling measures not just with support equal to Rd but with support equal to any topologically connected
metric space. It turns out that the rectifiable part of such a measure coincides up to a set of µ-measure
zero with the set of points where the lower 1-density is positive, where for s > 0 we define the lower
s-density as

Ds(µ, x) := lim inf
r→0

µ(BX (x, r))
r s .

Theorem 1.3 (main theorem). Let µ be a doubling measure whose support is a topologically connected
metric space X , and let E ⊆ X be compact. Then E is (µ, 1)-rectifiable if and only if D1(µ, x) > 0 for
µ-a.e. x ∈ E.

Note that there are no other topological or geometric restrictions on X : the support of µ may have
topological dimension two (like R2 for example), yet if D1(µ, x) > 0 µ-a.e., then µ is supported on a
countable union of Lipschitz images of R. Also observe that the condition D1(µ, x) > 0 is a weaker
condition than (1-2). An interesting corollary of the main theorem and Theorem 1.2 is the following.

Corollary 1.4. If µ is a doubling measure in Rd with connected support such that

lim inf
r→0

β
(1)
2 (µ, BRd (x, r)) > 0

and D1(µ, x) > 0 µ-a.e., then (1-2) holds.
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2. Proof of the main theorem: sufficiency

When dealing with any metric space X , we will let BX (x, r) denote the set of points in X of distance
less than r > 0 from x . If B = BX (x, r) and M > 0, we will denote M B = BX (x,Mr). For a Borel set
A ⊆ X , we define the (spherical) 1-Hausdorff measure as

H 1
δ (A)= inf

{ ∞∑
i=1

2ri : A ⊆
∞⋃

i=1

BX (xi , ri ), xi ∈ A, ri ∈ (0, δ)
}

and H 1(A)= infδ>0 H 1
δ (A).

For A, B ⊆ X , we set
dist(A, B)= inf{|x − y| : x ∈ A, y ∈ B}

and, for x ∈ X , dist(x, A)= dist({x}, A).

Remark 2.1. By the Kuratowski embedding theorem, if X is separable (which happens, for example,
if X = suppµ for a locally finite measure µ), X is isometrically embeddable into C(X), where C(X)
is the Banach space of bounded continuous functions on X equipped with the supremum norm | f | =
supx∈X | f (x)|. Thus, we can assume without loss of generality that X is the subset of a complete Banach
space, and we will abuse notation by calling this space C(X) as well so that X ⊆ C(X).

The forward direction of the main theorem is proven for general measures in Euclidean space by Badger
and Schul [2015a, Lemma 2.7], who in fact prove a higher-dimensional version. Below we provide a
proof that works for metric spaces in the one-dimensional case.

Proposition 2.2. Let µ be a finite measure with X := suppµ a metric space, and suppose µ is 1-rectifiable.
Then D1(µ, x) > 0 for µ-a.e. x ∈ suppµ.

Proof. Let
F = {x ∈ suppµ : D1(µ, x)= 0},

and let ε, δ > 0. Since µ is rectifiable, there are Lipschitz functions fi : Ai → X , where Ai ⊆ [0, 1] are
compact Borel sets of positive measure and i = 1, . . . , N , so that

µ

(
E \

N⋃
i=1

fi (Ai )

)
< δ.

We can extend each fi affinely on the intervals in the complement of Ai to a Lipschitz function
fi : [0, 1] → C(X). Let d = mini=1,...,N diam fi ([0, 1]) so that r ∈ (0, d) and x ∈ G :=

⋃N
i=1 fi ([0, 1])

implies H 1(BC(X)(x, r)∩G)≥ r (simply because now the images of the fi are connected).
For each x ∈ F ∩G, there is rx ∈ (0, d/5) so that µ(BX (x, 5rx)) < εrx . By the Vitali covering theorem

[Heinonen 2001, Lemma 1.2], there are countably many disjoint balls Bi = BX (xi , ri ) with centers in F
so that

⋃
5Bi ⊇ F . Thus,

µ(F ∩G)≤
∑

i

µ(5Bi )≤ ε
∑

i

ri ≤ ε
∑

i

H 1(BC(X)(xi , ri )∩G)≤ εH 1(G).
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Thus,
µ(F) < δ+ εH 1(G).

Keeping δ (and hence G) fixed and sending ε→ 0, we get µ(F) < δ for all δ > 0 and thus µ(F)= 0. �

3. Proof of the main theorem: necessity

What remains is to prove the reverse direction of the main theorem, which we summarize in the next
lemma.

Lemma 3.1. Let µ be a doubling measure with constant Cµ> 0 and support X , a topologically connected
metric space. Then {x ∈ X : D1(µ, x) > 0} is (µ, 1)-rectifiable.

To prove Lemma 3.1, it suffices to show the following lemma.

Lemma 3.2. Let µ be a doubling measure and support X a topologically connected complete metric
space. If E ⊆ X is a compact set for which E ⊆ BX (ξ0, r0/2) for some ξ0 ∈ X , r0 > 0, and

µ(BX (x, r))≥ 2r for all x ∈ E and r ∈ (0, r0), (3-1)

then E = f (A) for some A ⊆ R and Lipschitz function f : A→ X.

Proof of Lemma 3.1 using Lemma 3.2. First, note that, if we define µ(A) = µ(A ∩ X), then µ is a
doubling measure on X , where the closure is in C(X) (recall Remark 2.1). Moreover, the closure X
is still topologically connected but now is a complete metric space since C(X) is complete. Thus, for
proving Lemma 3.1, we can assume without loss of generality that X is complete.

Let F := {x ∈ X : D1(µ, x) > 0}. For j, k ∈ N, let

F j,k = {x ∈ F : µ(BX (x, r))≥ r/j for 0< r < k−1
}.

Then F =
⋃

j,k∈N F j,k . Furthermore, we can write F j,k as a countable union of sets {F j,k,`}`∈N with
diameters less than 1/(3k). It suffices then to show that each one of these sets is 1-rectifiable. Fix
j, k, ` ∈N. Then the measure jµ and the set F j,k,` satisfy the conditions for Lemma 3.2 with r0 = k−1

except that F j,k,` is not necessarily compact. However, F j,k,` is a closed set still satisfying these conditions,
it is totally bounded since µ is doubling, and since X is complete, the Heine–Borel theorem implies
F j,k,` is compact. Thus, we can apply Lemma 3.2 to get that F j,k,` is rectifiable. Since F =

⋃
j,k,` F j,k,`,

we now have that F is also rectifiable. �

The rest of the paper is devoted to proving Lemma 3.2, so fix µ, E , ξ0, and r0 as in the lemma.

Proof of Lemma 3.2. We will require the notion of dyadic cubes on a metric space. This theorem was
originally developed by David [1988] and Christ [1990], but the current formulation we take from Hytönen
and Martikainen [2012].

Theorem 3.3. Let X be a metric space equipped with a doubling measure µ. Let Xn be a nested sequence
of maximal ρn-nets for X where ρ < 1/1000, and let c0 = 1/500. For each n ∈ Z, there is a collection Dn

of “cubes”, which are Borel subsets of X such that:
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(1) For every n, X =
⋃
1∈Dn

1.

(2) If 1,1′ ∈ D =
⋃

Dn and 1∩1′ 6=∅, then 1⊆1′ or 1′ ⊆1.

(3) For 1 ∈ D , let n(1) be the unique integer so that 1 ∈ Dn and set `(1) = 5ρn(1). Then there is
ζ1 ∈ Xn so that

BX (ζ1, c0`(1))⊆1⊆ BX (ζ1, `(1))

and
Xn = {ζ1 :1 ∈ Dn}.

It is not necessary for there to exist a doubling measure but just that the metric space is geometrically
doubling. Moreover, Hytönen and Martikainen [2012] use sequences of sets Xn slightly more general
than maximal nets.

Let Xn be a nested sequence of maximal ρn-nets for X where ρ < 1/1000 and D the resulting cubes
from Theorem 3.3. By picking our net points Xn appropriately, we may assume that E ⊆10 ∈ D .

Lemma 3.4 [Azzam 2014, §3]. Let µ be a Cµ-doubling measure and D the cubes from Theorem 3.3 for
X = suppµ with admissible constants c0 and ρ. Let E ⊆10 ∈D be a Borel set, M > 1, and δ > 0, and set

P = {1⊆10 :1∩ E 6=∅, there exists ξ ∈ BX (ζ1,M`(1)) such that dist(ξ, E)≥ δ`(1)}.

Then there is C1 = C1(M, δ,Cµ) > 0 so that, for all 1′ ⊆10,∑
1⊆1′

1∈P

µ(1)≤ C1µ(1
′). (3-2)

The theorem is stated in [Azzam 2014] in slightly more generality. For the reader’s convenience, we
provide a shorter proof in the Appendix.

Let M, δ > 0, to be decided later, and let P be the set from Lemma 3.4 applied to our set E . Our
goal now is to construct a metric space Y containing X , then a curve 0 ⊆ Y that contains E as a subset,
and then show it has finite length. We will do this by adding bridges through Y between net points
around cubes in P since these are the cubes where E has large holes and thus potentially has big gaps or
disconnections. We don’t need the endpoints of these bridges to be in E , but their union plus the set E
will be connected. We now proceed with the details.

Let X̃ =
⋃

Xn , and equip C(X)⊕RX̃×X̃ (where RX̃×X̃
=
∏
α∈X̃×X̃ R; see [Munkres 1975, p. 112–117]

for the notation) with norm |a⊕ b| =max{|a|, |b|}, where the norm on RX̃×X̃ is the `2 norm.
For x, y ∈ X̃ , let [x, y] denote the straight line segment between them in C(X)⊕RX̃×X̃ , e(x,y) is the

unit vector corresponding to the (x, y) coordinate in RX̃×X̃ , and define

[x, y]∗ :=
[
x, (x, |x − y|e(x,y))

]
∪
[
y, (y, |x − y|e(x,y))

]
∪
[
(x, |x − y|e(x,y)), (y, |x − y|e(x,y))

]
⊆ C(X)⊕RX̃×X̃ .

The set [x, y]∗ is two segments going straight up from x and y, respectively, in the e(x,y) direction
and a segment connecting the endpoints, thus giving a polygonal curve connecting x to y that hops out
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of C(X). Let

Y = X ∪
⋃

x,y∈X̃

[x, y]∗,

and define a metric on Y (also denoted by | · |) by setting

|x − y| = inf
N∑

i=1

|xi − xi+1|

where x1 = x , xN+1 = y, and for each i , {xi , xi+1} ⊆ X or {xi , xi+1} ⊆ [x ′, y′]∗ for some x ′, y′ ∈ X̃ . It is
easy to check that the resulting metric space Y is separable and X is a metric subspace in Y . Moreover,
the following lemma is immediate from the definition of Y .

Lemma 3.5. Let F ⊆ X be compact and x, y ∈ X̃ . Then

dist([x, y]∗, F)= dist({x, y}, F).

We will let

B1 := BY (ζ1, `(1))⊇ BX (ζ1, `(1)).

For 1 ∈ Dn , let

01 =
⋃{
[x, y]∗ ⊆ C(X)⊕RX̃×X̃

: x, y ∈ Xn+n0 ∩M B1
}

where n0 is an integer we will pick later. Note that 01 is connected and contains ζ1.
Now define

0 = E ∪
⋃
1∈P

01.

Lemma 3.6. H 1(0) <∞.

Proof. We first claim that

H 1(E)≤ 10µ(E). (3-3)

Indeed, let 0 < δ < r0. Take any countable collection of balls centered on E of radii less than δ that
cover E . Since µ is doubling, we can use the Vitali covering theorem [Heinonen 2001, Theorem 1.2]
to find a countable subcollection of disjoint balls Bi with radii ri < δ centered on E so that E ⊆

⋃
5Bi .

Then

H 1
δ (E)≤

∑
10ri ≤ 10

∑
µ(Bi )≤ 10µ({x ∈ X : dist(x, E) < δ}).

Since
⋂
δ>0{x ∈ X : dist(x, E) < δ} = E , sending δ→ 0, we obtain H 1(E) ≤ 10µ(E), which proves

the claim.
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With this estimate in hand, we have

H 1(0) ≤ H 1(E)+
∑
1∈P

H 1(01)
(3-3)
≤ 10µ(E)+C

∑
1∈P

`(1)

(3-1)
≤ 10µ(E)+C

∑
1∈P

µ(1)
(3-2)
≤ 10µ(E)+Cµ(10) <∞

where C here stands for various constants that depend only on δ,M, n0, ρ, and the doubling constant Cµ. �

Lemma 3.7. 0 is compact.

Proof. To see this, let xn ∈0 be any sequence. If xn ∈01 infinitely many times for some1∈P or is in E
infinitely many times, then since each of these sets are compact, we can find a convergent subsequence
with a limit in 0. Otherwise, xn visits infinitely many 01. Let xn j be a subsequence so that xn j ∈ 01 j

where each 1 j ∈P is distinct. Then `(1 j )→ 0, and since 1∩ E 6=∅ for all 1 ∈P , dist(xn j , E)→ 0.
Pick x ′n j

∈ E ∩1 j . Since E is compact, there is a subsequence x ′n jk
converging to a point in E , and xn jk

will have the same limit. We have thus shown that any sequence in 0 has a convergent subsequence,
which implies 0 is compact. �

Lemma 3.8. A compact connected metric space X of finite length can be parametrized by a Lipschitz
image of an interval in R; that is, X = f ([0, 1]) where f : [0, 1] → X is Lipschitz.

A proof of this fact for Hilbert spaces is given in [Schul 2007, Corollary 3.7], but the same proof works
in our setting, so we omit it. Hence, to show that 0 (and hence E) is rectifiable, all that remains to show
is that 0 is connected.

Lemma 3.9. The set 0 is connected.

Proof. Suppose for the sake of a contradiction that there exist two open and disjoint sets A and B that
cover 0, and set 0A = 0 ∩ A and 0B = 0 ∩ B. Suppose without loss of generality that 010 ⊆ 0A, which
we may do since 010 is connected. We sort the proof into a series of steps.

(a) 0B ⊆ 2B10 . To see this, suppose instead that there is z ∈ 0B \ 2B10 . Then z ∈ [x, y]∗ ⊆ 01 for some
1 ∈P. Moreover, dist(z, {x, y}) ≤ 2|x − y| ≤ 4M`(1) since x, y ∈ M B1. Since ζ1 ∈ 1 ⊆ 10 and
x ∈ M B1, we get

`(10)≤ dist(z, B10)≤ |z− x | + dist(x, B10)≤ 4M`(1)+M`(1)

= 5M`(1).

For n0 large enough so that 5Mρn0 < 1, this implies ζ1 ∈ Xn+n0∩M B10 and so 01∩010 6=∅. Hence,
01 ⊆ 0A since 01 is connected, contradicting that z ∈ 0B . This proves the claim.

(b) The open sets A′ = A∪ (4B10)
c and B ′ = B ∩ 2B10 are disjoint and cover 0. First, observe that

A′ ∩ B ′ = (A∩ B ∩ 2B10)∪ ((4B10)
c
∩ B ∩ 2B10)

⊆ (A∩ B)∪ ((4B10)
c
∩ 2B10)=∅.
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Moreover, by part (a),

0 ∩ (A′ ∪ B ′)⊇ 0A ∪ (0B ∩ 2B10)= 0A ∪0B = 0,

which completes the proof of this step.

(c) Set 0A′ = 0 ∩ A′ and 0B ′ = 0 ∩ B ′. These sets are disjoint by part (b), and hence, they are compact
since 0 was compact. We define new open sets

A′′ = (4B10)
c
∪

⋃
ξ∈0A′

BY (ξ, dist(ξ, 0B ′)/2)

and

B ′′ =
⋃
ξ∈0B′

BY (ξ, dist(ξ, 0A′)/2).

We claim these sets are disjoint. Suppose there is z ∈ A′′ ∩ B ′′. Then z ∈ BY (ξ, dist(ξ, 0A′)/2) for
some ξ ∈ 0B ′ . If we also have z ∈ BY (ξ

′, dist(ξ ′, 0B ′)/2) for some ξ ′ ∈ 0A′ , then

max{dist(ξ, 0B ′), dist(ξ ′, 0A′)} ≤ |ξ − ξ
′
| ≤ |ξ − z| + |z− ξ |<

dist(ξ, 0B ′)

2
+

dist(ξ ′, 0A′)

2
,

which is a contradiction, so we must have z ∈ (4B10)
c. Since ξ ∈ 0B ′ , we know ξ ∈ 2B10 by part (a),

and ζ10 ∈ 010 ⊆ 0A′ implies dist(ξ, 0A′)≤ 2`(10). Hence,

BY (ξ, dist(ξ, 0A′)/2)⊆ BY (ξ, `(10))⊆ BY (ζ10, 3`(10))= 3B10,

which proves the claim.

(d) Note that X \ (A′′ ∪ B ′′) is nonempty since X is connected and A′′ and B ′′ are disjoint open sets.
Moreover, X\(A′′∪B ′′)⊆4B10 and hence a bounded set; since X is a doubling metric space, X\(A′′∪B ′′)
is in fact totally bounded and thus compact by the Heine–Borel theorem. This implies we can find a point

z ∈ X \ (A′′ ∪ B ′′)⊆ 4B10

of maximal distance from the compact set 0.

(e) Let ξ ∈ E be the closest point to z and 1 the smallest cube containing ξ so that z ∈ 5B1; since
z ∈ 4B10 ⊆ 5B10 , this is well defined. We claim 1 ∈P. If 11 denotes the child of 1 that contains ξ ,
then z 6∈ 5B11 , and so

dist(z, E)= |ξ − z| ≥ |z− ζ11 | − |ζ11 − ξ | ≥ 5`(11)− `(11)

= 4ρ`(1). (3-4)

Thus, for M > 10, BX (z, 4ρ`(1))⊆ M B1 \ E , so if δ < 4ρ, then 1 ∈P, which proves the claim.

(f) Since 1 ∈P, Xn(1)+n0 is a maximal ρn(1)+n0-net,

ρn(1)+n0 < ρn0`(1) < `(1),
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and z ∈ 5B1, we can find

ζ ∈ Xn(1)+n0 ∩ BX (z, ρn(1)+n0) (3-5)

⊆ Xn(1)+n0 ∩ BX (ζ1, 5`(1)+ ρn(1)+n0)

⊆ Xn(1)+n0 ∩ BX (ζ1, 6`(1))⊆ 01, (3-6)

where the last containment follows if we assume M > 6.
Since 01 is connected and A′ and B ′ are disjoint open sets, we may without loss of generality suppose

0A′ ⊇ 01 and let ζ ′ ∈ 0B ′ be the closest point to ζ . Then

|z− ζ | ≥ |ζ − ζ ′|/2= dist(ζ, 0B ′)/2 (3-7)

since otherwise would imply z ∈ BY (ζ, dist(ζ, 0B ′)/2)⊆ A′′, contradicting that z ∈ X \ (A′′ ∪ B ′′).
We may assume ζ ′ ∈ 01′ for some 1′ ∈P , and we assume 1′ is the largest such cube for which this

happens. Note that this implies 01′ ⊆ 0B ′ since ζ ′ ∈ 0B ′ ∩01′ and 01′ is connected. By Lemma 3.5
with F = {ζ }, we can assume ζ ′ ∈ X , and so ζ ′ ∈ Xn(1′)+n0 ∩M B1′ .

(g) We claim that n(1)+ 1≤ n(1′)≤ n(1)+ 2. Note that, since

5ρn(1)+n0 ≤ `(1)ρn0 ≤ ρ`(1) < `(1), (3-8)

we have

|ζ ′− ζ1| ≤ |ζ
′
− ζ | + |ζ − ζ1|

(3-6)
(3-7)
< 2|ζ − z| + 6`(1)

(3-5)
< 2ρn(1)+n0 + 6`(1)

(3-8)
≤ 8`(1). (3-9)

Thus, for M > 8, we must have n(1′) > n(1); otherwise, since ξ ∈1⊆ B1, we would have

ζ ′ ∈ Xn(1′)+n0 ∩ 8B1 ⊆ Xn(1)+n0 ∩M B1 ⊆ 01

so that 01 ∩01′ 6=∅, which implies 0A′ ∩0B ′ 6=∅, a contradiction. Thus, `(1′) < `(1), which proves
the first inequality in the claim.

Note this implies `(1′)≤ ρ`(1). Let ξ ′ ∈1′ ∩ E (which exists since 1′ ∈P). Since ζ ′ ∈ M B1′ ,

4ρ`(1)
(3-4)
≤ dist(z, E)≤ |ξ ′− z| ≤ |ξ ′− ζ1′ | + |ζ1′ − ζ ′| + |ζ ′− ζ | + |ζ − z|

(3-7)
≤ `(1′)+M`(1′)+ 2|ζ − z| + |ζ − z| ≤ (M + 1)`(1′)+ 3ρn(1)+n0

(3-8)
≤ (M + 1)`(1′)+ ρ`(1)

and so
3ρ

M + 1
`(1)≤ `(1′).

Thus, ρ < 3/(M + 1) implies ρ2`(1)≤ `(1′), and so n(1′)≤ n(1)+ 2, which finishes the claim.

(h) Now we’ll show that 01 ∩01′ 6=∅. Observe that

|ζ1− ζ1′ | ≤ |ζ1− ζ
′
| + |ζ ′− ζ1′ |

(3-9)
≤ 8`(1)+M`(1′)≤ (8+Mρ)`(1) < M`(1) (3-10)
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if ρ−1 > M > 9. Since n(1′)≤ n(1)+2, we have that ζ1′ ∈ Xn(1)+n0∩M B1 for n0≥ 2 and so ζ1′ ∈01.
But ζ1′ ∈ Xn(1′)+n0 ∩M B1′ ⊆ 01′ ; thus, 01 ∩01′ 6=∅, which proves the claim.

This gives us a grand contradiction since 01 ⊆ 0A′ and 01′ ⊆ 0B ′ , and we assumed these sets to be
disjoint. �

Combining Lemmas 3.6, 3.7, 3.8, and 3.9, we have now shown that E is contained in the Lipschitz
image of an interval in R. This completes the proof of Lemma 3.2. �

Appendix: Proof of Lemma 3.4

For 1 ∈ D , define B1 = BX (ζ1, `(1)). For 1 ∈P , let ξ1 ∈ M B1 be such that dist(ξ, E)≥ δ`(1). Let
M be the collection of maximal cubes for which 2B1 ⊆ Ec and 1̃∈M be the largest cube containing ξ1.
Then if 1̃1 denotes the parent cube of 1̃, 2B1̃1 ∩ E 6=∅, and so

δ`(1)≤ dist(ξ1, E)≤ diam 2B1̃1 ≤ 4`(1̃1)=
4
ρ
`(1̃). (A-1)

Moreover,

`(1̃)≤
2M
c0
`(1), (A-2)

for otherwise 1̃ ⊇ c0 B1̃ ⊇ M B1 ⊇1, and since 1∩ E 6= ∅, this means 2B1̃ ∩ E 6= ∅, contradicting
our definition of 1̃.

Let N1 be such that
2N1c0`(1̃) > 2M`(1) > 2N1−1c0`(1̃). (A-3)

Then 2N1c0 B1̃ ⊇ M B1, and 2N1 <
4M`(1)

c0`(1̃)
, so

N1 < log2

(
4M`(1)

c0`(1̃)

)
. (A-4)

Thus,
µ(1̃)

µ(1)
≥

µ(c0 B1̃)
µ(1)

(1-1)
≥

µ(2N1c0 B1̃)

C N1
µ µ(1)

(A-3)
≥

µ(M B1)

C N1
µ µ(1)

(A-4)
≥ C log2 c0/(4M)

µ

(
`(1̃)

`(1)

)log2 Cµ (A-1)
≥ C log2 c0/(4M)

µ

(
4
ρ

)log2 Cµ
=: a. (A-5)

Since µ is doubling and 1 and 1′ are always of comparable sizes by (A-1) and (A-2), there is b
depending on M, δ, ρ, c0, and Cµ such that at most b many cubes 1 ∈M with 1̃=1′ for some fixed 1′.
Hence, for 1′ ⊆10 with 1∩ E 6=∅,∑
1⊆1′

1∈P

µ(1)
(A-5)
≤

∑
1⊆1′

1∈P

aµ(1̃)=
∑
1′∈M

1⊆M B10

∑
1⊆1′

1∈P
1̃=1′

aµ(1̃)≤
∑
1′∈M

1⊆M B10

abµ(1′)

≤ abµ(M B10\ E)≤ abµ(M B10)
(1-1)
≤ abC log2 M/c0+1

µ µ(c0 B10)≤ abC log2 M/c0+1
µ µ(10).
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This finishes the proof of Lemma 3.4.
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CONSTRUCTION OF HADAMARD STATES
BY CHARACTERISTIC CAUCHY PROBLEM

CHRISTIAN GÉRARD AND MICHAŁ WROCHNA

We construct Hadamard states for Klein–Gordon fields in a spacetime M0 equal to the interior of the
future lightcone C from a base point p in a globally hyperbolic spacetime (M, g).

Under some regularity conditions at the future infinity of C , we identify a boundary symplectic space
of functions on C , which allows us to construct states for Klein–Gordon quantum fields in M0 from states
on the CCR algebra associated to the boundary symplectic space. We formulate the natural microlocal
condition on the boundary state on C , ensuring that the bulk state it induces in M0 satisfies the Hadamard
condition.

Using pseudodifferential calculus on the cone C , we construct a large class of Hadamard states on the
boundary with pseudodifferential covariances and characterize the pure states among them. We then show
that these pure boundary states induce pure Hadamard states in M0.

1. Introduction

Hadamard states are widely accepted as physically admissible states for noninteracting quantum fields on
a curved spacetime, one of the main reasons being their link with the renormalization of the stress–energy
tensor, a basic step in the formulation of semiclassical Einstein equations. Furthermore, they are nowadays
considered a necessary ingredient in the perturbative formulation of interacting (nonlinear) theories (see
the recent review articles [Khavkine and Moretti 2015; Hollands and Wald 2015]).

For Klein–Gordon fields, the construction of Hadamard states amounts to finding bisolutions of the
Klein–Gordon equation (called in this context two-point functions and denoted here by λ±) with a specified
wavefront set (that is, verifying the microlocal spectrum condition) and satisfying additionally a positivity
property [Radzikowski 1996].

There exist several ways to construct Hadamard states for Klein–Gordon fields: the first method
relies on the Fulling–Narcowich–Wald deformation argument [Fulling et al. 1981], which reduces the
construction of Hadamard states on an arbitrary spacetime to the case of ultrastatic spacetimes, where
vacuum or thermal states are easily shown to be Hadamard states.

The second approach, worked out in [Junker 1995; Junker and Schrohe 2002; Gérard and Wrochna
2014], uses pseudodifferential calculus on a fixed Cauchy surface6 in (M, g) and relies on the construction
of a parametrix for the Cauchy problem on 6. To use pseudodifferential calculus, some restrictions
on 6 and on the behavior of the metric g at spatial infinity are necessary. On the other hand, the method

MSC2010: 35S05, 81T20.
Keywords: Hadamard states, microlocal spectrum condition, pseudodifferential calculus, characteristic Cauchy problem, curved

spacetimes.
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produces a large classes of rather explicit Hadamard states, whose covariances, expressed in terms of
Cauchy data, are pseudodifferential operators.

Another method, initiated by Moretti [2006; 2008] applies to conformal field equations, like the
conformal wave equation, on an asymptotically flat vacuum spacetime (M0, g0). By asymptotic flatness,
there exists a metric g̃0, conformal to g0, and a spacetime (M, g̃) such that (M0, g̃0) can be causally
embedded as an open set in (M, g̃) with the boundary C = ∂M0 of M0 being null in (M, g̃). States on the
boundary symplectic space, containing the traces on C of solutions of the wave equation in M0, naturally
induce states inside M0.

This method has been successfully applied in [Moretti 2006; 2008] to construct a distinguished
Hadamard state for asymptotically flat vacuum spacetimes with past time infinity and then extended to
several other geometrical situations in [Dappiaggi et al. 2009; 2011; Brum and Jorás 2015]. Further
results also include generalizations to Maxwell fields [Dappiaggi and Siemssen 2013] and linearized
gravity [Benini et al. 2014].

In the present paper we rework the above strategy systematically in terms of the associated characteristic
Cauchy problem in order to construct a large class of Hadamard states (instead of a preferred single one)
and to characterize the pure ones. For the sake of clarity, we do not impose geometrical assumptions
on M0 that allow one to correctly embed it in a larger spacetime M .

Instead we go the other way around and work in an a priori arbitrary globally hyperbolic space-
time (M, g), fix a base point p and consider the interior of the future lightcone

C := ∂ J+(p)\{p}

as the spacetime M0 of main interest, that is, M0 := I+(p), where I+(p) (resp. J+(p)) is the timelike
(resp. causal) shadow of p; see [Wald 1984, Section 8.1].

We make the following assumption on the geometry of C .

Hypothesis 1.1. We assume that there exists f ∈ C∞(M) such that:

(1) C ⊂ f −1({0}), ∇a f 6= 0 on C , ∇a f (p)= 0 and ∇a∇b f (p)=−2gab(p).

(2) The vector field ∇a f is complete on C .

Using Hypothesis 1.1 one can construct coordinates ( f, s, θ) near C such that C ⊂ { f = 0} and

g�C =−2 d f ds+ h(s, θ) dθ2,

where h(s, θ) dθ2 is a Riemannian metric on Sd−1.
This choice of coordinates allows one to identify C with C̃ := R×Sd−1. A natural space of smooth

functions on C̃ is then provided by H(C̃)— the intersection of Sobolev spaces of all orders, defined using
the standard metric m(θ) dθ2 on Sd−1.

We consider the Klein–Gordon operator P =−�g + r(x) (with r(x) ∈ C∞(M) real-valued) and its
restriction on M0, denoted by P0 := P�M0 . The bulk-to-boundary correspondence can be expressed in
this setup as follows. For an appropriate choice of β(s, θ) ∈ C∞(M0), the restriction map

ρφ := (β−1φ)�C , φ ∈ C∞sc (M0),
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is a monomorphism1 between the symplectic space of smooth, space-compact solutions of P0 (endowed
with the usual symplectic form induced by the causal propagator) and H(C̃), equipped with the symplectic
form

ḡ1σC g2 :=

∫
R×Sd−1

(∂s ḡ1g2− ḡ1 ∂s g2)|m|1/2(θ) ds dθ, g1, g2 ∈H(C̃). (1-1)

Thus, a quasifree state on (H(C̃), σC) with two-point functions λ± induces a unique quasifree state on
the usual symplectic space associated to P0.

Product-type pseudodifferential operators. In [Gérard and Wrochna 2014] we constructed Hadamard
states whose two-point functions on a Cauchy surface 6 are pseudodifferential operators. In the present
case, the obvious difference is that on the cone C the coordinate s is distinguished both from the point of
view of the microlocal spectrum condition (from now on abbreviated (µsc)) and in the expression (1-1)
for the symplectic form. This suggests that one should rather consider product-type pseudodifferential
operators 9 p1,p2(C̃) with symbols satisfying estimates

|∂α1
s ∂β1

σ ∂
α2
θ ∂

β2
η a(s, θ, σ, η)| ∈ O(〈σ 〉p1−|β1|〈η〉p2−|β2|)

in the covariables ξ = (σ, η) relative to the decomposition C̃ =R×Sd−1. Actually, to cope with the issue
that σC is defined using an operator Ds := i−1∂s whose spectrum is not separated from {0} (analogously
to the infrared problem in massless theories), we need to introduce a larger class 9̃ p1,p2(C̃) that includes
some operators whose symbol is discontinuous at η = 0. Namely, we set

9̃ p1,p2(C̃) :=9 p1,p2(C̃)+ B−∞9 p2(C̃),

where B−∞9 p2(C̃) is the class of pseudodifferential operators of order p2 (in the θ variables) with values
in operators on R that infinitely increase Sobolev regularity. Then, for instance, |Ds | ⊗ 1θ ∈ 9̃1,0(C̃)
although it is not in the pseudodifferential class 91,0(C̃).

Summary of results. Our main results can be summarized as follows. We always assume Hypothesis 1.1.
If E and F are topological vector spaces, we write T : E→ F to mean T : E→ F is linear and continuous.

(1) For pairs2 of two-point functions λ± on C satisfying λ± :H(C)→H(C), we give in Theorem 5.3
conditions on WF(λ±) that guarantee that the corresponding two-point functions on M0 satisfy (µsc).
This is essentially an adaptation of the results of [Moretti 2008] to our framework.

(2) In Theorem 7.4 we construct a large class of Hadamard states by specifying their two-point functions
λ± ∈ 9̃0,0(C̃) on the cone.

(3) In Theorem 8.2 we characterize the subclass of Hadamard states constructed in (2), which additionally
are pure on the symplectic space (H(C̃), σC) on the cone. It turns out that they can be parametrized
by a single operator in 9̃−∞,0(C̃).

1By monomorphism of symplectic spaces we mean an injective linear map that intertwines the symplectic forms.
2We work with charged fields, in which case it is natural to associate a pair of two-point functions to a quasifree state; see

Section 3B1. The charged and neutral approaches are equivalent.
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p

60

M1

C0

6

C

Figure 1. The Cauchy surface 6 in the future of p.

(4) In Theorem 8.4 we prove that if dim M ≥ 4 then the pure states considered in (3) induce pure states
in the interior M0 of the cone.

In Section 2C we argue that Hypothesis 1.1 covers the case when M0 is an asymptotically flat vacuum
spacetime with future time infinity, after a conformal transformation. Thus, our result (4) solves an open
question of Moretti [2008] for dim M ≥ 4.

Characteristic Cauchy problem. The proof of our main result (4) relies on rather standard results on the
characteristic Cauchy problem (also called the Goursat problem in the literature) in appropriate Sobolev
spaces.

Let 6 be a Cauchy surface for (M, g) in the future of {p} and 60 :=6 ∩M0. We set

M1 := I−(60;M)∩M0 and C0 := (J−(60;M)∩C)∪ {p};

see Figure 1. M1 is relatively compact in M with ∂M1 = 60 ∪C0, 60 and C0 are compact in M with
smooth boundary ∂60= ∂C0. We denote by H 1

0 (60) and H 1
0 (C0) the respective restricted Sobolev spaces

of order 1, i.e., the spaces of distributions in H 1(60) and H 1(C0) that vanish on the boundary.
If f ∈ H 1

0 (60)⊕ L2(60) is a pair of Cauchy data, we denote by e60 f its extension by 0 to 6 and by
u =U60 f the restriction to M1 of the solution of the Cauchy problem{

Pu = 0 in M,
ρu = e60 f on 6,

where ρu = (u�6 , i−1∂νu�6 ). By standard energy estimates one obtains that

U60 : H
1
0 (60)⊕ L2(60)→ H 1(M1)

is continuous.
In Section 8C we prove the following result.

Theorem 1.2. The map

T : H 1
0 (60)⊕ L2(60)→ H 1

0 (C0), f 7→ (U60 f )�C0,

is a homeomorphism. Moreover, if dim M ≥ 4 then T (C∞0 (60)⊕C∞0 (60)) is dense in |Ds |
−1/2L2(C̃).
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The first part of Theorem 1.2 is equivalent to the existence and uniqueness of solutions in M1 of the
characteristic Cauchy problem {

Pu = 0 in M1,

u�C0 = ϕ, ϕ ∈ H 1
0 (C0).

The proof proceeds by reduction to a case already considered by Hörmander [1990b], namely when
the characteristic surface is the graph of a Lipschitz function defined on a compact domain. Beside
[Hörmander 1990b] there is a considerable literature on the characteristic Cauchy problem for the Klein–
Gordon equation, for example [Bär and Wafo 2015; Cagnac 1981; Dossa 2002; Nicolas 2006]; let us also
mention related works on the Dirac equation [Nicolas 2002; Häfner and Nicolas 2011; Joudioux 2011].
The first part of Theorem 1.2 could actually also be deduced from [Bär and Wafo 2015, Theorem 23].

The second part of Theorem 1.2 asserts that there is no loss of information on the level of purity of
states when going from the cone C to its interior M0. The precise form of the statement comes from the
fact that the one-particle Hilbert space associated to our Hadamard states, namely, the completion of
H(C̃) for the inner product ( · | (λ++ λ−) · ), equals |Ds |

−1/2L2(C̃). The validity of this result appears
to be very delicate; it would be for instance problematic for |Ds |

−αL2(C̃) with α < 1
2 instead of α = 1

2
and we do not know whether it holds for d < 3. The generalization of Theorem 1.2 to other geometrical
situations is thus an interesting open problem, particularly relevant for the quantum field theoretical
bulk-to-boundary correspondence.

Plan of the paper. In Section 2 we fix the geometric setup and outline the construction of null coordinates
near the cone C . In Section 3 we briefly review the Klein–Gordon field in M0 and the definition of
Hadamard states. Section 4 is devoted to the so-called bulk-to-boundary correspondence, i.e., to the
definition of a convenient symplectic space (H(C̃), σC) of functions on C , containing the traces on C of
space-compact solutions in M0.

In Section 5, we formulate the Hadamard condition on C , that is, the natural microlocal condition on
the two-point functions of a quasifree state on (H(C̃), σC) that ensures that the induced state in M0 is a
Hadamard state.

Section 6 is devoted to the pseudodifferential calculus on R×Sd−1, more precisely to the “product-type”
classes associated to bihomogeneous symbols. We also describe more general operator classes, which are
pseudodifferential only in the variables in Sd−1.

In Section 7 we construct large classes of Hadamard states on the cone, whose covariances belong
to the operator classes introduced in Section 6. In Section 8 we characterize pure Hadamard states and
show that they induce pure states in M0. Finally in Section 9 we discuss the invariance of our classes of
Hadamard states under change of null coordinates on C . Various technical results are collected in the
Appendix.

2. Geometric setup

In this section we describe our geometrical setup and construct null coordinates near the cone C .
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2A. Future lightcone. We consider a globally hyperbolic spacetime (M, g) of dimension dim M = d+1.
If K ⊂M , then I±(K ;M) and J±(K ;M) denote the future/past timelike and causal, respectively, shadow
of K in M ; see, e.g., [Wald 1984, Chapter 8] or [Bär et al. 2007, Section 1.3] for more details. If the
spacetime M is clear from the context these sets will simply be denoted by I±(K ) and J±(K ).

As outlined in the introduction, we fix a base point p ∈ M and consider

C = ∂ J+(p)\{p} and M0 = I+(p),

so that C is the future lightcone from p, with tip removed, and M0 is the interior of C . From [Wald 1984,
Section 8.1] we know that M0 is open, with

M0 = J+(p), ∂M0 = ∂ J+(p)= C ∪ {p}.

We assume Hypothesis 1.1, i.e., that there exists f ∈ C∞(M) such that:

(1) C ⊂ f −1({0}), ∇a f 6= 0 on C , ∇a f (p)= 0 and ∇a∇b f (p)=−2gab(p).

(2) The vector field ∇a f is complete on C .

It follows that C is a smooth hypersurface, although C is not smooth. Moreover, since C is a null
hypersurface, ∇a f is tangent to C .

2B. Causal structure. We now collect some useful results on the causal structure of M0 and M .

Lemma 2.1. Let K ⊂ M0 be compact. Then:

J−(K )∩ J+(p) is compact, (2-1)

J+(K )∩C =∅. (2-2)

Proof. Equation (2-1) follows from [Bär et al. 2007, Lemma A.5.7]. Moreover, if V ⊂ M0 is open
with K ⊂ V , we have J+(K )⊂ I+(V )⊂ M0. Since ∂ J−(p)= ∂M0 and M0 is open, this implies (2-2).

�

The following lemma is due to Moretti [2006, Theorem 4.1(a)]. If K ⊂ M0, the notation J±(K ;M0)

or J±(K ;M) is used in place of J±(K ) to specify which causal structure one refers to.

Lemma 2.2. The Lorentzian manifold (M0, g) is globally hyperbolic. Moreover,

J+(K ;M0)= J+(K ;M) and J−(K ;M0)= J−(K ;M)∩M0 for all K ⊂ M0. (2-3)

The next proposition is also due to Moretti [2008, Lemma 4.3].

Proposition 2.3. Let K ⊂ M0 be compact. Then there exists a neighborhood U1 of p in M such that no
null geodesic starting from K intersects C ∩U1.
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2C. Asymptotically flat spacetimes. In what follows we explain the relation between Hypothesis 1.1 and
the geometrical assumptions met in the literature on Hadamard states [Moretti 2006; 2008; Dappiaggi
and Siemssen 2013; Benini et al. 2014].

Let us consider two globally hyperbolic spacetimes (M0, g0) and (M, g), where M0 is an embedded
submanifold of M . One introduces the following set of assumptions:

Hypothesis 2.4. Suppose the spacetime (M, g) is such that

(1) there exists � ∈ C∞(M) with �> 0 on M0 and g�M0 =�
2�M0 g0,

(2) there exists i− ∈ M such that J+(i−;M) is closed and

M0 = J+(i−;M)\∂ J+(i−;M),

(3) g0 solves the vacuum Einstein equations at least in a neighborhood of

I − := ∂ J+(i−;M)\{i−},

(4) �= 0 and d� 6= 0 on I −, d�(i−)= 0 and ∇a∇b�(i−)=−2gab(i−),

(5) if na
:= gab

∇b�, then there exists ω ∈ C∞(M) with ω > 0 on M0 ∪I − and

(a) ∇a(ω
4na)= 0 on I −,

(b) the vector field ω−1n is complete on I −.

Above, the symbols ∇a refer to the metric g.
One says that (M0, g0) is an asymptotically flat vacuum spacetime with past time infinity i− if there

exists a spacetime (M, g) such that M0 is an embedded submanifold of M and Hypothesis 2.4 is satisfied.3

Lemma 2.5. Suppose (M0, g0) is an asymptotically flat vacuum spacetime with past time infinity i− and
let (M, g) satisfy Hypothesis 2.4. Then Hypothesis 1.1 is satisfied for p := i− and f = ω�.

Note that actually only conditions (1), (2), (4) and (5b) in Hypothesis 2.4 are needed in Lemma 2.5.
In the present paper we construct Hadamard states for the Klein–Gordon operator P =−�g + r(x)

in (M0, g�M0) for any smooth, real-valued r . In the special case of the conformal wave operator P =
−�g + (n − 2)/(4(n − 1))R (with R the scalar curvature) this yields, however, also Hadamard states
on (M0, g0), since the two metrics are conformally related; see Appendix A2.

2D. Null coordinates near C. For later use it is convenient to introduce null coordinates near C . The
construction seems to be well known; we sketch it for the reader’s convenience. Note however the
estimates in Lemma 2.6, which will be useful later on.

We first choose normal coordinates (y0, ȳ) at p such that C = {(y0, ȳ) | (y0)2− |ȳ|2 = 0, y0 > 0} on
a neighborhood of p.

Set
v := y0

+ |ȳ|, w := y0
− |ȳ|, ψ :=

ȳ
|ȳ|
∈ Sd−1, (2-4)

3Note that we consider here only globally hyperbolic spacetimes; see [Moretti 2008, Appendix A] for a more general
definition.
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so that on a neighborhood of p one has C = {w = 0, v > 0}. Abusing notation slightly, we denote by
ψ1, . . . , ψd−1 coordinates on Sd−1 and use the same letter for their pullback to local coordinates on M
near p. We set

S := {w = 0, v = ε0}, (2-5)

where ε0 > 0 will be chosen to be small enough. Note that S ⊂ C is diffeomorphic to Sd−1.

Lemma 2.6. (1) There exists a unique solution s ∈ C∞(C) of{
(∇a f∇as)�C =−1,
s�S = 0.

(2) There exists unique solutions θ j
∈ C∞(C), 1≤ j ≤ d − 1, of{

(∇a f∇aθ
j )�C = 0,

θ j�S = ψ j .

(3) Moreover, there exists 0< ε0 < ε1 and k, θ̃ j
∈ C∞(]−ε1, ε1[×Sd−1) such that

s(v, ψ)= 1
2 ln(v)+ k(v, ψ) and θ j (v, ψ)= θ̃ j (v, ψ) on ]0, ε0[×Sd−1.

Proof. The proof is given in Appendix A4. �

It remains to extend s and θ j to smooth functions on a neighborhood of C .
We argue as in [Wald 1984, Section 11.1]: for s0 ∈ R, the submanifold Ss0 = {s = s0} ⊂ C is spacelike,

of codimension 2 in M . At a given point of Ss0 the orthogonal to its tangent space is two-dimensional
and timelike, and hence contains two null lines. One of them is generated by ∇a f ; the other is transverse
to C . We extend (s, θ) to a neighborhood of C by imposing that (s, θ) are constant along the above
family of null geodesics, transverse to C .

Lemma 2.7. The functions ( f, s, θ) constructed above are a system of local coordinates near C with
C ⊂ { f = 0} and

g�C =−2 d f ds+ hi j (s, θ) dθ i dθ j , (2-6)

where hi j (s, θ) dθ i dθ j is a smooth, s-dependent Riemannian metric on Sd−1.

Proof. The proof will be given in Appendix A3. �

2E. Estimates on traces. In this subsection we derive estimates, in the coordinates (s, θ) on C constructed
above, for the restriction to C of a smooth, space-compact function in M . These estimates will be applied
later to traces on C of solutions of the Klein–Gordon equation in M0.

We recall that C∞sc (M) denotes the space of smooth space compact functions, i.e., the space of
φ ∈ C∞(M) such that suppφ ⊂ J+(K )∪ J−(K ) for some compact K ⊂ M .

We will slightly abuse notation by writing φ(x0, . . . , xd) for the function φ expressed in some coordinate
system (x0, . . . , xd) near p. We will similarly write, for example, φ(v, ψ) or φ(s, θ) for φ ∈ C∞(C).

By Lemma 2.1 we see that suppφ ∩C is compact in C if φ ∈ C∞sc (M). This means that it suffices to
control the derivatives in (s, θ) of φ�C (s, θ) near s = −∞, that is, of φ�C (v, ψ) near v = 0. Clearly
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the only task is to control what happens near p, that is, when s→−∞. We first derive estimates in the
coordinates (v, ψ) introduced in (2-4) in a neighborhood of v = 0. If φ ∈ C∞sc (M) we denote by φ(y0, ȳ)
the function φ expressed in normal coordinates at p, which is defined on a neighborhood of 0. We then
set

φ̂(v, ψ)= φ
( 1

2v,
1
2vψ

)
∈ C∞(]−ε1, ε1[×Sd−1) for some ε1 > 0,

so that
φ�C = φ̂�{v>0} .

We denote by S0 the space of functions u(v, ψ) ∈ C∞(]−ε1, ε1[×Sd−1) which are bounded with all
derivatives.

Lemma 2.8. (1) If φ ∈ C∞sc (M) then φ̂(v, ψ) belongs to S0.

(2) Let |h| = det[hi j ]. Then |h|(v, ψ)= v2(d−1)r0(v, ψ) for r0, r−1
0 ∈ S0.

Proof. Considering the map χ : Sd−1
→ Rd , ψ 7→ ψ , and still denoting by ψ some coordinates, on Sd−1

we have
∂vφ̃ =

1
2(∂y0φ−ψ · ∂ȳφ) and ∂ψ i φ̃ = 1

2v∂ψ iχ j ∂ȳ jφ.

From this we obtain (1). To prove (2) we need to express hi j = 〈∂θ i | g∂θ j 〉 on C . An easy computation
using the estimates in Lemma 2.6 shows that on C we have

∂θ i = a j
i (v, ψ)∂ψ j + vr0(v, ψ)∂v,

where a j
i , r0 ∈ S0 and [ai j

](v, ψ) is invertible. Plugging this into (A-9), we obtain

[hi j ](v, ψ)= v
2(t
[a j

i ](v, ψ)[mi j ](ψ)[a
j
i ](v, ψ)+ v[bi j ](v, ψ)

)
,

where bi j ∈ S0. This implies (2). �

Later we will also need the following lemma. We denote by mi j (θ) dθ i dθ j the standard Riemannian
metric on Sd−1 and set

β(s, θ) := |m|1/4(θ)|h|−1/4(s, θ). (2-7)

Lemma 2.9. Let
φ̃(s, θ) := β−1(s, θ)φ�C(s, θ), φ ∈ C∞sc (M).

Then for all s1 ∈ R one has

∂αs ∂
β
θ φ̃ ∈ O(es(d−1)), s ∈ ]−∞, s1], for all α, β.

Proof. We note that β−1
= v(d−1)/2r0(v, ψ), for r0, r−1

0 ∈ S0. From this and Lemma 2.8, it follows that
if φ ∈ C∞0 (M) then φ̃(v, ψ) ∈ v(d−1)/2S0. It remains to estimate the derivatives of φ̃ with respect to s
and θ . By a standard computation we obtain, for u ∈ C∞(]−ε1, ε1[×Sd−1),

∂θ i u = a j
i (v, ψ)∂ψ j u+ vri (v, ψ)∂vu, and ∂su = v(1+ vr0(v, ψ))∂vu+ vb j (v, ψ)∂ψ j u

for r0, ri , b j , a j
i ∈ S0 and [a j

i ] invertible. From this point on the lemma is a routine computation. �
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3. Klein–Gordon fields inside the future lightcone

3A. Klein–Gordon equation in M0. We fix a smooth real function r ∈ C∞(M) and consider the Klein–
Gordon operator on (M, g)

P(x, Dx)=−∇
a
∇a + r(x) acting on C∞(M).

We denote by E± in D′(M ×M) the retarded and advanced Green’s functions for P , by E = E+− E−
in D′(M ×M) the Pauli–Jordan commutator function and by Solsc(P) the space of smooth, complex-
valued, space-compact solutions of

P(x, Dx)φ = 0 in M.

Recall that we have set in Section 2A

M0 := I+(p)

and, by Lemma 2.2, we know that (M0, g) is globally hyperbolic.
We denote by P0 =−∇

a
∇a+ r(x) the restriction of P to M0, by E0 ∈D′(M0×M0) the Pauli–Jordan

function for P0 and by Solsc(P0) the space of smooth, complex-valued, space-compact solutions of

P0(x, Dx)φ0 = 0 in M0.

By the global hyperbolicity of (M0, g)we know that Solsc(P0)= E0D(M0). From (2-3) and the uniqueness
of E0± we obtain that E0± = E±�M0×M0 ; hence,

E0 = E�M0×M0 .

It follows that any φ0 ∈ Solsc(P0) uniquely extends to φ ∈ Solsc(P); in fact,

φ0 = E0 f0, f0 ∈ D(M0) =⇒ φ0 = E f0�M0 . (3-1)

As usual we equip Solsc(P0) with the symplectic form

φ1σ0φ2 :=

∫
60

∇aφ1φ2−φ1∇aφ2na dσh, (3-2)

where 60 ⊂ M0 is a Cauchy hypersurface for (M0, g) (see Appendix A1 for notation). It is well known
that

E0 : (C∞0 (M0)/P0C∞0 (M0), E0)→ (Solsc(P0), σ0)

is a symplectomorphism.

3B. Hadamard states in M0. We first briefly recall some standard facts and refer, for example, to [Gérard
and Wrochna 2014, Section 2] for details and notation.
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3B1. Covariances of a quasifree state. If (Y, σ ) is a complex symplectic space, the complex covariances
3± ∈ Lh(Y,Y∗) of a (gauge-invariant) quasifree state ω on CCR(Y, σ ) (the polynomial CCR ∗-algebra
of (Y, σ )) are defined by

ω(ψ(y1)ψ
∗(y2))=: (y1 |3

+y2), ω(ψ∗(y2)ψ(y1))=: (y1 |3
−y2), y1, y2 ∈ Y.

From the CCR we obtain that 3+−3− = iσ =: q , and the necessary and sufficient condition for 3± to
be the complex covariances of a (gauge-invariant) quasifree state is that 3± ≥ 0.

If (Y, σ )= (C∞0 (M0)/PC∞0 (M0), E0), the complex covariances of a stateω are induced from two-point
functions, still denoted by 3±, such that

3± ∈ D′(M0×M0), P3± =3±P = 0,

where we identify operators on C∞0 (M0) with sesquilinear forms using the scalar product

(u | v) :=
∫

M0

ūv dµg, u, v ∈ C∞0 (M0).

3B2. Hadamard condition. We now recall the Hadamard condition for quasifree states. We denote
by T ∗M the cotangent bundle of M and by Z = {(x, 0)} ⊂ T ∗M the zero section. The principal symbol
of P is p(x, ξ)= ξagab(x)ξb; the set

N := {(x, ξ) ∈ T ∗M\Z : p(x, ξ)= 0}

is called the characteristic manifold of p.
The Hamilton vector field of p will be denoted by Hp, whose integral curves inside N are called

bicharacteristics.
We will use the notation X = (x, ξ) for points in T ∗M\Z and write X1 ∼ X2 if X1 = (x1, ξ1) and

X2 = (x2, ξ2) are in N and X1 and X2 lie on the same bicharacteristic of p.
Let us fix a time orientation and denote by Vx± ⊂ Tx M for x ∈ M the open future/past lightcones

and V ∗x± the dual cones

V ∗±x := {ξ ∈ T ∗x M : ξ · v > 0 for all v ∈ Vx± with v 6= 0}.

The set N has two connected components invariant under the Hamiltonian flow of p, namely

N± := {X ∈ N : ξ ∈ V ∗±x }.

Definition 3.1. A quasifree state ω on CCR(C∞0 (M0)/PC∞0 (M0), E0) with two-point functions 3±

satisfies the microlocal spectrum condition if

WF(3±)′ ⊂ N±×N±. (µsc)

Quasifree states satisfying (µsc) are called Hadamard states.

This form of the Hadamard condition was shown in [Sahlmann and Verch 2001] to be equivalent
to older definitions [Radzikowski 1996]; we refer the reader to [Sanders 2010; Wrochna 2013] for a
discussion on equivalent formulations of the microlocal spectrum condition.
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4. Bulk-to-boundary correspondence

4A. Boundary symplectic space. We equip C with the coordinates (s, θ) constructed in Section 2D and
hence identify C with

C̃ := R×Sd−1. (4-1)

We denote by H k(C̃), k ∈ N, the Sobolev space

H k(C̃) :=
{

g ∈ D′(R×Sd−1) :

∫
|∂αs ∂

β
θ g|2|m|1/2 ds dθ <∞, α+ |β| ≤ k

}
,

and extend the definition of H k(C̃) to k ∈ R in the usual way. The space H 0(C̃) will be denoted simply
by L2(C̃). We set also

H(C̃) :=
⋂
k∈R

H k(C̃) and H′(C̃) :=
⋃
k∈R

H k(C̃),

equipped with their canonical topologies.
We set

ḡ1σC g2 :=

∫
R×Sd−1

(∂s ḡ1g2− ḡ1∂s g2)|m|1/2(θ) ds dθ, g1, g2 ∈H(C̃). (4-2)

Introducing the charge q := iσC we have

ḡ1qg2 = 2(g1 | Ds g2)L2(C̃), g1, g2 ∈H(C̃),

where Ds = i−1∂s is selfadjoint on L2(C̃) on its natural domain. Clearly (H(C̃), σC) is a complex
symplectic space.

4B. Bulk-to-boundary correspondence.

Definition 4.1. Let β ∈ C∞(C̃) be as defined in (2-7). We set

ρ : Solsc(P0)→ C∞(R×Sd−1), φ 7→ β−1(s, θ)φ�C(s, θ).

Proposition 4.2. (1) ρ maps Solsc(P0) into H(C̃).

(2) ρ : (Solsc(P0), σ )→ (H(C̃), σC) is a monomorphism, i.e.,

ρφ1σCρφ2 = φ1σφ2 for all φ1, φ2 ∈ Solsc(P0).

Proof. Let φ0 and φ be as in (3-1). By Lemma 2.1 and the support properties of E , we see that suppφ∩C
is compact in M . Therefore the restriction of φ to C equals the restriction of a smooth, compactly
supported function to C . By Lemma 2.9 and the fact that ρφ0 is supported in ]−∞, s1[ × Sd−1 for
some s1, we obtain that ρφ0 ∈H(C̃), which proves (1).

We now prove (2). Let φi,0 ∈ Solsc(P0), i = 1, 2, be restrictions to M0 of φi ∈ Solsc(P). We fix a
Cauchy surface 60 for (M0, g) such that suppφi,0 ∩60 ⊂ K b M0. We can find a Cauchy surface 6 for
(M, g) such that 6 ∩ K =60 ∩ K . Denoting by

Ja(φ1, φ2) := φ1∇aφ2−∇aφ1φ2,



CONSTRUCTION OF HADAMARD STATES BY CHARACTERISTIC CAUCHY PROBLEM 123

the conserved current, we have
φ1,0σ0φ2,0 = φ1σφ2,

where

φ1σφ2 =−

∫
6

Ja(φ1, φ2)na dσh

is the symplectic form on Solsc(P). We now apply Stokes formula in the form (A-6) to the domain
U ⊂ M bounded by 6 ∩ K , C and ∂ J+(6 ∩ K ), using that ∇a J a(φ1, φ2) = 0. The boundary term on
6∩ K yields −φ1σφ2; the boundary term on ∂ J+(6∩ K ) vanishes. To express the boundary term on C ,
we use the coordinates ( f, s, θ) constructed in Section 2D. We formally obtain the quantity

ḡ1σ̂ g2 =

∫
R×Sd−1

(∂s ḡ1g2− ḡ1∂s g2)|h|1/2(s, θ) ds dθ

for gi = (φi )�C . This equals ρφ1σCρφ2 by an easy computation.
To justify the use of Stokes formula, we need to take care of the fact that C is not smooth at p. This

can be done as follows: for 0< ε� 1, we denote by Uε some ε-neighborhood of p. We replace C by a
smooth hypersurface Cε , obtained by smoothly gluing C\Uε to a piece of a Cauchy surface 6′ε passing
through Uε . The contribution of the integral on 6ε is written using (A-4) and converges to 0 when ε→ 0,
using that φi are smooth functions. The contribution of the integral on C\Uε converges to ρφ1σCρφ2,
using that ρφi ∈H(C̃). This completes the proof of the proposition. �

4C. Pullback of states from the boundary. Since

ρ : (Solsc(P0), σ0)→ (H(C̃), σC)

is a monomorphism, we can pull back a quasifree state ωC on CCR(H(C̃), σC) to a quasifree state ω0 on
CCR(C∞0 (M0)/P0C∞0 (M0), E0) by setting

ω0(ψ(u1)ψ
∗(u2)) := ωC (ψ(ρ ◦ E0u1)ψ

∗(ρ ◦ E0u2)), u1, u2 ∈ C∞0 (M0). (4-3)

If λ± ∈ Lh(H(C̃),H(C̃)∗) are the complex covariances of ωC , then the complex covariances of ω0 are
(formally) given by

3± := (ρ ◦ E0)
∗
◦ λ± ◦ (ρ ◦ E0). (4-4)

5. Hadamard condition on the cone

In this section we formulate the natural boundary version of the bulk Hadamard condition (µsc).

5A. Preparations. We recall that p(x, ξ) denotes the principal symbol of the Klein–Gordon operator P
(or P0).

Let C ⊂ M be the forward lightcone introduced in Section 2A. We denote by N ∗C ⊂ T ∗M\Z the
conormal bundle to C , namely,

N ∗C := {(x, ξ) ∈ T ∗M\Z : x ∈ C and ξ = 0 on TxC}.
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The fact that C is characteristic is equivalent to

N ∗C ⊂ N, (5-1)

where N is the characteristic manifold of p. Since N ∗C is Lagrangian, it is well known that (5-1) implies
that N ∗C is invariant under the flow of Hp. The projections on M of bicharacteristics starting from N ∗C
are (modulo reparametrization) characteristic curves, i.e., integral curves of the vector field va

=∇
a f if

f ∈ C∞(M) is some defining function of C , that is, f = 0 and d f 6= 0 on C .
We will use the coordinates ( f, s, θ) introduced in Section 2D, which, for ease of notation, will

be denoted by x = (r, s, y) ∈ R × R × Sd−1. The dual coordinates are denoted by ξ = (%, σ, η),
elements of T ∗M will sometimes be denoted by X = (x, ξ) and elements of T ∗C will be denoted by
Y = ((s, y), (σ, η)).

In the above coordinates, we have

C = {r = 0} and N ∗C = {r = 0, σ = η = 0}

and, from (2-6), we obtain that

p(x, ξ)�C =−2%σ + h(s, y, η), (5-2)

where we set h(s, y, η) = hi j (0, s, y)ηiη j . Note that h(s, y, η) is elliptic, that is, h(s, y, η) ≥ c0|η|
2

for c0 > 0, locally in (s, y), since hi j dyi dy j is Riemannian.
For later use let us extend the notation X1 ∼ X2 introduced in Section 3B2. For Y = (s, y, σ, η) ∈ T ∗C

and X = (x, ξ) ∈ T ∗M , we will write Y ∼ X if

σ 6= 0 and ((0, s, y), ((2σ)−1h(s, y, η), σ, η))∼ X. (5-3)

Recall also that the positive/negative energy components N± of N were defined in Section 3B2.

Lemma 5.1. Let Y1 = (s1, y1, σ1, η1) ∈ T ∗C and X2 = (x2, ξ2) ∈ T ∗M with x2 6∈ C. Then:

(1) There exists %1 ∈ R such that

X1 := ((0, s1, y1), (%1, σ1, η1))∼ (x2, ξ2)=: X2

if and only if σ1 6= 0, in which case %1 = (2σ1)
−1h(s1, y1, η1) and Y1 ∼ X2.

(2) If Y1 ∼ X2, then X2 ∈ N± if and only if ±σ1 > 0.

Proof. Let X1 = ((0, s1, y1), (%1, σ1, η1)) ∈ N. By (5-2) we have

−2%1σ1+ h(s1, y1, η1)= 0.

If σ1 = 0 then h(s1, y1, η1) = 0, hence η1 = 0 by ellipticity of h. Therefore σ1 = 0 implies X1 ∈ N ∗C .
Since X2∼ X1 and N ∗C is invariant under the flow of Hp, we also have X2 ∈ N ∗C , which contradicts the
hypothesis that x2 6∈ C . Therefore, necessarily σ1 6= 0, and hence %1 = (2σ1)

−1h(s1, y1, η1) and Y1 ∼ X2.
This proves (1).
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To prove (2) we have to show that

±σ1 > 0 ⇐⇒ ((0, s1, y1), ((2σ1)
−1h(s1, y1, η1), σ1, η1)) ∈ N±. (5-4)

Let us fix (y1, η1) ∈ T ∗Sd−1 and σ1 ∈ R. Since N± are the two connected components of N, it suffices,
by connectivity, to prove (5-4) for s1 in a neighborhood of −∞, i.e., in a neighborhood of p in M . Recall
that we introduced Gaussian normal coordinates (y0, ȳ) near p with ∂y0 future oriented. Let α be the
one-form (2σ1)

−1h(s1, y1, η1) dr + σ1 ds+ η1 dy. Then

((0, s1, y1), ((2σ1)
−1h(s1, y1, η1), σ1, η1)) ∈ N± ⇐⇒ ∓〈α | g−1 dy0

〉> 0.

Since it suffices to check the sign of 〈α | g−1 dy0
〉 near p, we can, by a simple approximation argument

(see, e.g., (A-9)) replace g by the flat metric at p. We then have — see Lemma 2.6 and recall that s = u
and r = f —

y0
= v+w, v = es, w = e−sr,

hence

∓〈α | g−1 dy0
〉 = ±2(e−s1σ1+ es1(2σ1)

−1h(s1, y1, η1))

has the same sign as ±σ1, which proves (5-4). �

Recall that E ∈ D′(M ×M) is the Pauli–Jordan commutator function for P and ρ : D(M)→ C∞(C̃),
u 7→ u�C , is (modulo a smooth, nonzero multiplicative factor) the operator of restriction to C , defined in
Definition 4.1.

Let us recall some notation: identifying T ∗(M1×M2)with T ∗M1×T ∗M2, we write (T ∗M1×T ∗M2)\Z
for the image of T ∗(M1×M2)\Z under this identification. If 0 ⊂ (T ∗M1× T ∗M2)\Z , one sets

M10 := {(x1, ξ1) : (x1, ξ1, x2, 0) ∈ 0 for some x2} ⊂ T ∗M1\Z1,

0M2 := {(x2, ξ2) : (x1, 0, x2, ξ2) ∈ 0 for some x1} ⊂ T ∗M2\Z2,
(5-5)

where Zi is the zero section of T ∗Mi .

Proposition 5.2. Let χ ∈ C∞0 (M) with suppχ ⊂ M\C and ψ ∈ C∞0 (C̃). Then:

(1) WF(ψρ ◦ Eχ)′ ⊂ {(Y1, X2) : y1 ∈ suppψ, x2 ∈ suppχ, Y1 ∼ X2}, where the notation Y ∼ X is as
defined in (5-3).

(2) ψρ ◦ Eχ : D(M)→ D(C̃) extends continuously as ψρ ◦ Eχ : D′(M)→ D′(C̃).

Proof. It is well known that

supp E ⊂ {(x1, x2) : x1 ∈ J (x2)},

WF(E)′ = {(X1, X2) ∈ N×N : X1 ∼ X2}.
(5-6)

On the other hand, the distributional kernel of ρ equals

δ(r2)⊗ δ(s1, y1, s2, y2)β
−1(s1, y1) ∈ D′(C̃ ×M).
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It follows that

WF(ρ)′ = {(Y1, X2) : r2 = 0, (s1, y1)= (s2, y2), (σ1, η1)= (σ2, η2), (σ2, η2) 6= (0, 0)}. (5-7)

Since E : D(M)→ E(M), we see that ψρ ◦ Eχ : D(M)→ D(C̃). Moreover, there exists χ1 ∈ C∞0 (M)
such that ψρ ◦ Eχ = ψρ ◦χ1 Eχ . We then have

C̃ WF(ρ)′ =WF(E)′M =∅

and it follows from [Hörmander 1990a, Chapter 8] and (5-6)–(5-7) that

WF(ψρ ◦ Eχ)′ ⊂WF(ψρ)′ ◦WF(Eχ)′

⊂ {(Y1, X2) : ((0, s1, y1), (%1, σ1, η1))∼ X2 for some %1, x2 ∈ suppχ}.

Using that suppχ ∩C =∅ and Lemma 5.1(1), this implies (1). Moreover, (1) implies that

WF(ψρ ◦ Eχ)′M =∅. (5-8)

Again by [Hörmander 1990a], this implies that ψρ ◦ Eχ = D(M)→ D(C̃) extends continuously as
ψρ ◦ Eχ : D′(M)→ D′(C̃). �

5B. Hadamard condition on the cone. Recall from Section 4B that we can associate to a quasifree state
ωC on CCR(H(C̃), σC) a quasifree state ω0 on CCR(C∞0 (M0)/PC∞0 (M0), E0). In this subsection we
give natural conditions on the covariances λ± of ωC which ensure that the induced state ω0 satisfies the
microlocal spectrum condition (µsc).

Recall that we denote by Y = ((s, y), (σ, η)) the points in T ∗C̃ . We also denote by 1 the diagonal in
T ∗C̃ × T ∗C̃ and we will use the notation C̃0 and 0C̃ introduced in (5-5).

Theorem 5.3. Let λ± :H(C̃)→H(C̃) and

3± := (ρ ◦ E0)
∗
◦ λ± ◦ (ρ ◦ E0).

Then:

(1) 3± ∈ D′(M0×M0).

(2) If

(i) WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 < 0 or ± σ2 < 0} =∅,
(ii) WF(λ+− λ−)′ ∩ {(Y1, Y2) : σ1 and σ2 6= 0} ⊂1,

then

(iii) WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 > 0 and ± σ2 > 0} ⊂1.

(3) Assume moreover that λ± :H(C̃)→H(C̃) and C̃ WF(λ±)′ =WF(λ±)′
C̃
=∅. Then, if (i) and (iii) in

(2) hold, 3± satisfy (µsc).

Proof. To prove (1) it suffices to check that ρ ◦E0 :D(M0)→H(C̃). If χ ∈C∞0 (M0) then, by Lemma 2.1,
ρ ◦ E0χ = ρ ◦ χ1 Eχ for some χ1 ∈ C∞0 (M). Since E : D(M)→ E(M) and ρ : D(M)→ H(C̃) are
continuous, this proves (1).
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To prove (2) we write

WF(λ±)′ ∩ {±σ1 > 0, ±σ2 > 0}
⊂ (WF(λ∓)′ ∩ {±σ1 > 0, ±σ2 > 0})∪ (WF(λ+− λ−)′ ∩ {±σ1 > 0, ±σ2 > 0})

⊂ (WF(λ∓)′ ∩ {±σ1 > 0, ±σ2 > 0})∪ (WF(λ+− λ−)′ ∩ {σ1, σ2 6= 0}).

The first set in the last line is empty by (i), and the second is contained in 1 by (ii).
To prove (3) we follow an argument due to Moretti [2008]. We treat only the case of λ+, the case of λ−

being similar, and omit the + superscript. Let χi ∈ C∞0 (M0), i = 1, 2. By Proposition 2.3 there exists
ψi ∈ C∞0 (C) (and hence ψi ≡ 0 near p) such that any null geodesic starting from suppχi intersects C
in {ψi = 1}. We have:

χ13χ2 = χ1(ρ ◦ E)∗ψ1 ◦ λ ◦ψ2(ρ ◦ E)χ2+χ1(ρ ◦ E)∗ψ1 ◦ λ ◦ (1−ψ2)(ρ ◦ E)χ2

+χ1(ρ ◦ E)∗(1−ψ1) ◦ λ ◦ψ2(ρ ◦ E)χ2+χ1(ρ ◦ E)∗(1−ψ1) ◦ λ ◦ (1−ψ2)(ρ ◦ E)χ2

=:31+32+33+34.

By the properties of χi and ψi , we can find χ̃i ∈ C∞0 (M) supported near p such that

(a) (1−ψi )(ρ ◦ E)χi = (1−ψi )ρ ◦ χ̃i Eχi ,

(b) no null geodesic from suppχi intersects supp χ̃i .

It follows from (b) and (5-6) that χ̃i Eχi has a smooth, compactly supported kernel, hence

χ̃i Eχi : D
′(M)→ D(M).

Since (1−ψi )ρ : D(M)→H(C̃), we see that

(1−ψi )ρ ◦ Eχi : D
′(M)→H(C̃), (5-9)

hence

χi (ρ ◦ E)∗(1−ψi ) :H
′(C̃)→ D(M). (5-10)

It remains to examine the properties of ψi (ρ ◦ E)χi . By Proposition 5.2, ψi (ρ ◦ E)χi : D
′(M)→ E′(C̃).

Since E′(C̃)⊂H′(C̃) continuously, we have

ψi (ρ ◦ E)χi : D
′(M)→H′(C̃), (5-11)

hence

χi (ρ ◦ E)∗ψi :H(C̃)→ D(M). (5-12)

From (5-9)–(5-12) and the assumption that λ : H(C̃)→ H(C̃) it follows that 3i : D
′(M0)→ D(M0),

which hence has a smooth kernel for i = 2, 3, 4, and WF(χ13χ2)
′
=WF(31)

′.
To bound WF(31)

′ we choose ψ̃i ∈ C∞0 (C̃) such that ψ̃iψi = ψi and write

31 = (χ1(ρ ◦ E)ψ1) ◦ (ψ̃1λψ̃2) ◦ (ψ2(ρ ◦ E)2)=: K ∗1 ◦ d ◦ K2,
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where Ki =ψi (ρ ◦ E)χi ∈ E′(M× C̃) and d = ψ̃1cψ̃2 ∈ E′(C̃× C̃). The distributions K1, K2 and d have
compact support. Moreover, we have

WF(d)′C̃ =C̃ WF(d)′ =WF(K1)
′

M =M WF(K ∗2 )
′
=∅.

In fact, the first two equalities follow from the corresponding hypothesis on WF(c)′ and the last two
from (5-8). We can then apply the results in [Hörmander 1990a, Chapter 8] on the composition of kernels
and obtain that K ∗2 ◦ d ◦ K1 is well defined and

WF(K ∗2 ◦ d ◦ K1)⊂WF(K ∗2 )
′
◦WF(d)′ ◦WF(K1)

′.

Now we apply Proposition 5.2(1), the fact that WF(d)′ ⊂WF(λ)′ and Lemma 5.1(1). We obtain that,
if (X1, X2) ∈WF(3)′, necessarily X1, X2 ∈ N+ and X1 ∼ X2, which is exactly condition (µsc). �

6. Pseudodifferential calculus

In this section we collect rather standard results on the pseudodifferential calculus on C̃ = R×Sd−1.
We will however need to consider bihomogeneous symbols on R×Sd−1, i.e., symbols having different
homogeneities in the covariables σ and η, dual to s and θ .

The reason for this is that the charge q =−2Ds is not an elliptic differential operator in the usual sense
(considered on C̃), hence operators like (q − z)−1 for z ∈ C\R are not in the usual pseudodifferential
classes.

For k, k ′ ∈ R, we denote by H k(R) and H k′(Sd−1) the Sobolev spaces on R and Sd−1 of orders k
and k ′ and by ‖ · ‖k and ‖ · ‖k′ their respective norms. Furthermore, we denote by H k,k′(R×Sd−1) the
Sobolev space on R×Sd−1 of biorder (k, k ′), that is, the completion of C∞0 (R×Sd−1) for the norm

‖ψ‖k,k′ := ‖〈Ds〉
k
〈Dθ 〉

k′ψ‖2.

We set also, for p ∈ R,
B p(R)=

⋂
k∈R

B(H k(R), H k−p(R)),

equipped with its natural topology.

6A. Pseudodifferential operators on R × Rd−1.

Definition 6.1. Let p1, p2 ∈ R.

(1) We denote by S p1,p2(R×Rd−1) the space of symbols a ∈ C∞(T ∗R× T ∗Rd−1) such that

|∂α1
s ∂β1

σ ∂
α2
y ∂

β2
η a| ∈ O(〈σ 〉p1−|β1|〈η〉p2−|β2|), α1, β1 ∈ N, α2, β2 ∈ Nd−1.

(2) We denote by B p1 S p2(R×Sd−1) the space of a ∈ C∞(T ∗Rd−1, B p1(R)) such that

‖∂α2
y ∂

β2
η a‖p1,k1 ∈ O(〈η〉p2−|β2|), α2, β2 ∈ Nd−1,

where ‖ · ‖p1,k1 is any seminorm of a in B p1(R).
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Using the Weyl quantization on R×Rd−1, we obtain a map

S p1,p2(R×Rd−1)→ B(C∞0 (R×Rd−1),C∞(R×Rd−1)), a 7→ Op(a),

whose range, denoted by 9 p1,p2(R×Rd−1), is the space of pseudodifferential operators on R×Rd−1 of
biorder (p1, p2). Similarly, using the Weyl quantization on Rd−1, we obtain a map

B p1 S p2(R×Rd−1)B(C∞0 (R×Rd−1),C∞(R×Rd−1)), a 7→ Op(a),

whose range will be denoted by B p19 p2(R×Rd−1).

6B. Pseudodifferential operators on C̃. Let A : C∞0 (C̃)→ C∞(C̃). If χi ∈ C∞(Sd−1), i = 1, 2, are
cutoff functions supported in chart open sets �i ⊂ Sd−1 and φi :�i → Rd−1 are coordinate charts, then
φ∗1 ◦χ1 Aχ2 ◦φ

−1∗
2 : C∞0 (R×Rd−1)→ C∞(R×Rd−1).

Definition 6.2. (1) We denote by 9 p1,p2(C̃) the space of operators A :C∞0 (C̃)→C∞(C̃) such that, for
any χi and φi as above, φ∗1 ◦χ1 Aχ2 ◦φ

−1∗
2 ∈9 p1,p2(R×Rd−1).

(2) We denote by B p19 p2(C̃) the space of operators A : C∞0 (C̃)→ C∞(C̃) such that, for any χi and φi

as above, φ∗1 ◦χ1 Aχ2 ◦φ
−1∗
2 ∈ B p19 p2(R×Rd−1).

(3) We set

9−∞,p2(C̃)=
⋂
p1∈R

9 p1,p2(C̃) and B−∞9 p2(C̃)=
⋂
p1∈R

B p19 p2(C̃).

(4) We set
9̃ p1,p2(C̃)=9 p1,p2(C̃)+ B−∞9 p2(C̃).

Note that if one defines, analogously, 9̃−∞,p2(C̃) :=
⋂

p1∈R 9̃
p1,p2(C̃), then actually 9̃−∞,p2(C̃)=

B−∞9 p2(C̃). Moreover, it is easy to check that

9̃ p1,p2(C̃) ◦ 9̃q1,q2(C̃)⊂ 9̃ p1+p2,q1+q2(C̃).

We refer the reader to [Rodino 1975; Borsero and Schulz 2014; Ruzhansky and Turunen 2010] and
references therein for more details on the pseudodifferential calculus on products of manifolds.4

6C. The Beals criterion. Let us denote by9 p(Sd−1) the classes of standard pseudodifferential operators
on Sd−1. It is well known that 9 p(Sd−1) can be characterized by the Beals criterion, namely an operator
A : C∞(Sd−1)→ C∞(Sd−1) belongs to 9 p(Sd−1) if and only if

ad f1 · · · ad fn adX1 · · adXm A : H k(Sd−1)→ H k−p+n(Sd−1), n,m ∈ N, k ∈ Z, (6-1)

for any fi ∈ C∞(Sd−1) and smooth vector fields X j on Sd−1 [Ruzhansky and Turunen 2010]. Moreover,
one can find a finite set of such fi and X j such that the topology on 9 p(Sd−1) given by the collection of
the norms of the multicommutators is equivalent to the standard topology on 9 p(Sd−1), given by the

4Note however that the literature discusses mostly the case when both manifolds are compact.
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symbol space topologies of the pullbacks φ∗i ◦χi Aχ j ◦φ j in Definition 6.2, for a fixed covering of Sd−1

by chart neighborhoods Ui .
These characterizations immediately carry over to the classes B p19 p2(C̃). In fact it is easy to see that

A ∈ B p1 S p2(C̃) if and only if

ad f1 · · · ad fn adX1 · · · adXm A : H k,k′(C̃)→ H k−p1,k′−p2+n(Sd−1), n,m ∈ N, k, k ′ ∈ Z. (6-2)

This result can be deduced from the previous one by considering the operators

((u1| ⊗1Sd−1) ◦ A ◦ (|u2)⊗ 1Sd−1) : C∞(Sd−1)→ C∞(Sd−1)

for u1 ∈ H−k+p1(R) and u2 ∈ H k(R), which belong to 9 p2(Sd−1) if (6-2) holds. Applying the result re-
called above about the equivalence of the standard topology and the topology given by the multicommutator
norms, one obtains that A ∈ B p19 p2(C̃) if (6-2) holds.

In the usual case one can deduce from the Beals criterion standard results on the functional calculus
for pseudodifferential operators, for example on complex powers of elliptic pseudodifferential operators
[Bony 1997]. These results are easy to extend to the classes B p19 p2(C̃). We will need only a very
simple one, which we now state. Recall that 9̃−∞,0(C̃) = B−∞90(C̃) ⊂ B(L2(C̃)). The spectrum of
b ∈ B(L2(C̃)) is denoted by spec(b).

Proposition 6.3. Let b ∈ 9̃−∞,0(C̃) and let be F holomorphic near spec(b) with F(0) = 0. Then
F(b) ∈ 9̃−∞,0(C̃).

Proof. The proof consists of expressing F(b) as a contour integral and applying the Beals criterion to the
resolvent (b− z)−1. �

6D. Essential support. We denote by 9 p
ph(R), p ∈ R, the class of global pseudodifferential operators

on R with polyhomogeneous symbols.

Definition 6.4. The essential support of a ∈9 p1,p2(C̃), denoted by ess supp(a)⊂ T ∗R\Z , is defined by
(s0, σ0) 6∈ ess supp(a) if there exists b ∈90

ph(R) that is elliptic at (s0, σ0) such that b ◦ a ∈9−∞,p2(C̃).

Clearly ess supp(a) is a closed conic subset of T ∗R\Z . Moreover, one can equivalently require that
a ◦ b ∈9−∞,p2(C̃) for some b ∈90

ph(R) that is elliptic at (s0, σ0).

6E. Wavefront set of kernels. For N =R, Sd−1, R×Sd−1, we denote by1N the diagonal in T ∗N×T ∗N
and by Z N the zero section in T ∗N .

For an operator a ∈ 9 p1,p2(R×Sd−1), it is in general not true that WF(a)′ is contained in the full
diagonal 1R×Sd−1 (as would be the case for an operator in 9 p(R×Sd−1)). Instead one has the following
estimate, which can be thought as a natural generalization of the usual estimate for the wavefront set of
tensor products of distributions (in this case Schwartz kernels) [Borsero and Schulz 2014].

Lemma 6.5. Let a ∈9 p1,p2(R×Sd−1). Then

WF(a)′ ⊂1R×1Sd−1 ∪1R× (ZSd−1 × ZSd−1)∪ (ZR× ZR)×1Sd−1 .

Less precise estimates are valid for the 9̃ p1,p2(R×Sd−1) classes:
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Lemma 6.6. (1) Let a ∈ B−∞9 p2(C̃). Then

WF(a)′ ∩ {(Y1, Y2) : σ1 6= 0 or σ2 6= 0} =∅.

(2) Let a ∈ 9̃ p1,p2(C̃). Then

C̃ WF(a)′ =WF(a)′C̃ =∅.

The proof is given in Appendix A5.

6F. Toeplitz pseudodifferential operators on C̃. We recall that H(C̃)=
⋂

m∈R H m(C̃)=
⋂

k∈R H k,k(C̃).
Let us set

L2
±
(C̃) := 1R±(Ds)L2(C̃)

and denote by i± : L2
±
(C̃)→ L2(C̃) the corresponding isometric injection, so that π± := i±i∗

±
= 1R±(Ds)

is the orthogonal projection on L2
±
(C̃) in L2(C̃). We also set

H±(C̃) := i∗
±

H(C̃)⊂H(C̃). (6-3)

We will see in Section 7 that this provides a useful setup for the discussion of the positivity condition
λ± ≥ 0 for the two-point functions of a Hadamard state.

Writing 1R± = χ1R± + (1−χ)1R± for a cutoff function χ ∈ C∞0 (R) equal to 1 near 0, we see that

π± ∈ 9̃
0,0(C̃). (6-4)

For α, β ∈ {+,−} and p1, p2 ∈ R, we set

9̃
p1,p2
αβ (C̃) := iα ◦ 9̃ p1,p2(C̃) ◦ i∗β .

By (6-3) we see that 9̃ p1,p2
αβ (C̃) :Hβ(C̃)→Hα(C̃). Moreover, if we set

Rαβ : 9̃ p1,p2(C̃)→ 9̃
p1,p2
αβ (C̃), a 7→ i∗α ◦ a ◦ iβ

then, using (6-4), we see that Rαβ has right inverse

Tαβ : 9̃
p1,p2
αβ (C̃)→ 9̃ p1,p2(C̃), a 7→ iα ◦ a ◦ i∗β,

which allows us to identify 9̃ p1,p2
αβ (C̃) with Ran Tαβ ⊂ 9̃ p1,p2(C̃). From (6-4) we also have

9̃
p1,p2
αβ (C̃) ◦ 9̃q1,q2

βγ (C̃)⊂ 9̃ p1+q1,p2+q2
αγ (C̃). (6-5)

7. Construction of Hadamard states on the cone

From the discussion in Section 5B, in particular Theorem 5.3, we are led to the following definition:
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Definition 7.1. A pair of maps λ± :H(C̃)→H(C̃) is called a pair of Hadamard two-point functions on
the cone C if

C̃ WF(λ±)′ =WF(λ±)′C̃ =∅, (Had-i)

WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 < 0 or ± σ2 < 0} =∅, (Had-ii)

λ+− λ− = 2Ds, (Had-iii)

λ± ≥ 0 on H(C̃). (Had-iv)

As the name suggests, if λ± are Hadamard two-point functions on C in the sense of the above definition,
then 3± defined in (4-4) are Hadamard two-point functions on M0 (as follows from Theorem 5.3).

We now discuss in more detail the various conditions in (Had-i)–(Had-iv). It is natural to consider
pseudodifferential two-point functions, i.e., to assume that λ±∈9̃ p1,p2(C̃). Moreover to analyze conditions
(Had-iii)–(Had-iv) it is convenient to reduce oneself to λ± of the form

λ± = (2|Ds |)
1/2c±(2|Ds |)

1/2, where c± ∈ 9̃ p1,p2(C̃), (7-1)

for p1, p2 ∈R. Note that, writing (2|Ds |)
1/2 as χ(Ds)(2|Ds |)

1/2
+(1−χ(Ds))(2|Ds |)

1/2 for χ ∈C∞0 (R)
equal to 1 near 0, we see that (7-1) implies that λ± ∈ 9̃ p1+1,p2(C̃).

7A. Wavefront set. We first analyze conditions (Had-i)–(Had-ii).

Proposition 7.2. Assume that

λ± = a±+ r±, a± ∈9 p1,p2(C̃), r± ∈ 9̃−∞,p2(C̃), (R×R∓)∩ ess supp(a±)=∅. (7-2)

Then λ± satisfies conditions (Had-i)–(Had-ii).

Proof. The fact that λ± satisfy (Had-i) follows from Lemma 6.6(2). Also, since, by Lemma 6.6(1),
r± satisfy (Had-ii) we can assume that λ± = a±. We treat only the case of λ+ and use the notation in the
proof of Lemma 6.6. Let Ỹ1, Ỹ2 ∈ T ∗C̃\Z with σ̃1 6= 0 or σ̃2 6= 0. Let us assume that σ̃1 6= 0, the case
σ̃2 6= 0 being similar, using the remark after Definition 6.4.

Since (R×R+)∩ ess supp(a+)=∅, we can find a cutoff function χ1 with χ1(s̃1) 6= 0, a neighborhood
V1 of σ̃1 and some m1 ∈ 9

0
ph(R) elliptic at (s̃1, σ̃1) such that (1− m1)(s, Ds)vσ,λ ∈ O(〈λ〉−∞) in all

H k(R) and m1(s, Ds) ◦ a ∈ 9̃−∞,p2(C̃). The fact that (Ỹ1, Ỹ2) 6∈WF(a)′ then follows from the same
arguments as in the proof of Lemma 6.6. �

In terms of c± appearing in (7-1), a natural condition implying (7-2) is

1R∓(Ds)c± ∈ 9̃−∞,p2(C̃), (µscC )

which clearly implies that λ± satisfy (7-2).

Lemma 7.3. Let λ± be given by (7-1) and such that (µscC ) holds. Then

c± = 1R±(Ds)+ 9̃
−∞,p2(C̃).
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Proof. In terms of c±, (Had-iii) becomes c+− c− = sgn(Ds). Let χ± ∈ C∞(R) be cutoff functions equal
to 1 near ±∞ and to 0 near ∓∞. From (µscC ) and pseudodifferential calculus we obtain that

c± = χ±(Ds)c±χ∓(Ds)+ 9̃
−∞,p2(C̃). (7-3)

Using successively (7-3) and c+− c− = sgn(Ds), we obtain

c± = χ±c±χ±+ 9̃−∞,p2(C̃)

= χ±(c∓± sgn(Ds))χ
±
+ 9̃−∞,p2(C̃)

= χ±c∓χ±+χ±χ±+ 9̃−∞,p2(C̃)

= χ±χ∓c∓χ∓χ±+χ±+ 9̃−∞,p2(C̃)

= χ±+ 9̃−∞,p2(C̃)

= 1R±(Ds)+ 9̃
−∞,p2(C̃). �

7B. Positivity. We now discuss conditions (Had-iii)–(Had-iv). In terms of c± they become

c+− c− = sgn(Ds), (7-4-iii)

c± ≥ 0 on H(C̃). (7-4-iv)

To analyze (7-4-iii)–(7-4-iv) we use the framework of Section 6F. We denote c+ simply by c and set

cαβ = i∗α ◦ c ◦ iβ, α, β ∈ {+,−},

so that

c =
∑

α,β∈{+,−}

iαcαβ i∗β . (7-5)

Then (7-4-iii)–(7-4-iv) is equivalent to(
c++ c+−
c−+ c−−

)
≥ 0 and

(
c++− 1 c+−

c−+ c−−+1

)
≥ 0 on H+(C̃)⊕H−(C̃), (7-6)

which is equivalent to

(i) c++ ≥ 0, c−− ≥ 1 and c−+ = c∗
+−

.

(ii)

∣∣(u+ | c+−u−)
∣∣≤ (u+ | c++u+)1/2(u− | c−−u−)1/2,∣∣(u+ | c+−u−)
∣∣≤ (u+ | (c++− 1)u+)1/2(u− | (c−−+ 1)u−)1/2,

u± ∈H±(C̃).

Condition (ii) above is implied by∣∣(u+ | c+−u−)
∣∣≤ (u+ | (c++−1)u+)1/2(u− | c−−u−)1/2, u± ∈H±(C̃).

We are now in position to prove the following theorem, which is the analog of [Gérard and Wrochna 2014,
Theorem 7.5] in the present situation. It provides a rather large class of Hadamard two-point functions
on C and hence, by Theorem 5.3, of Hadamard states on M0.
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Theorem 7.4. Assume that

c++ = 1+ a∗
+

a+, c−− = a∗
−

a−, c+− = c∗
−+
= a∗
+

da−

for a+ ∈ 9̃
−∞,0
++ (C̃), a− ∈ 9̃

−∞,0
−− (C̃), d ∈ 9̃0,0

+−(C̃) with ‖d‖B(L2
−(C̃),L

2
+(C̃))
≤ 1.

Let c be given by (7-5), λ+= (2|Ds |)
1/2c(2|Ds |)

1/2 and λ−=λ+−2Ds . Then λ± is a pair of Hadamard
two-point functions on the cone.

Proof. We set, as before, λ± = (2|Ds |)
1/2c±(2|Ds |)

1/2
∈ 9̃1,0(C̃), so that c+ = c and c− = c− sgn(Ds).

Conditions (7-4-iii)–(7-4-iv) follow from the above discussion. It remains to check condition (µscC ). We
embed the spaces 9̃ p1,p2

αβ (C̃) into 9̃ p1,p2(C̃) as explained at the end of Section 6F and we have

c+ = a∗
+

a++ a∗
+

da−+ a∗
−

d∗a++ a∗
−

a−+1R+(Ds),

c− = a∗
+

a++ a∗
+

da−+ a∗
−

d∗a++ a∗
−

a−+1R−(Ds),

hence
1R−(Ds)c+ = a∗

+
a++ a∗

+
da− ∈ 9̃−∞,0(C̃),

1R+(Ds)c− = a∗
−

d∗a++ a∗
−

a− ∈ 9̃−∞,0(C̃),

and condition (µscC ) is satisfied. �

Remark 7.5. The special choice of vanishing a+, a− and d in Theorem 7.4 gives two-point functions

λ± =±21R±(Ds)Ds .

In the setting of asymptotically flat spacetimes with past time infinity i−, these correspond to the Hadamard
state found and further studied in [Moretti 2006; 2008].

8. Pure Hadamard states

In this section we first characterize pure Hadamard states on the cone C . We then prove that any pure
Hadamard state ωC on C induces a pure Hadamard state ω0 in M0.

8A. An abstract criterion for purity. Let (Y, σ ) a complex symplectic space and ω a gauge invariant
quasifree state on CCR(Y, σ ), with complex covariances λ±.

Let Ycpl the completion of Y for the norm

‖y‖ω := (ȳ · λ+y+ ȳ · λ−y)1/2. (8-1)

Let us introduce the hermitian form q = iσ ∈ Lh(Y,Y∗). Clearly q and λ± extend uniquely to Ycpl.
Then, by [Araki and Shiraishi 1971/72], ω is pure if and only if

(1) q is nondegenerate on Ycpl,

(2) there exists an involution κ : Ycpl
→ Ycpl such that κ∗qκ = q, qκ ≥ 0 and λ± = 1

2q(κ ±1).

From this discussion we immediately obtain the following lemma:
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Lemma 8.1. Let (Yi , σi ), i = 1, 2, be two complex symplectic spaces and ρ : Y1→ Y2 an injective map
such that ρ∗σ2ρ = σ1. Let ω2 be a pure, gauge-invariant quasifree state on CCR(Y2, σ2). Let ω1 be the
gauge-invariant, quasifree state on CCR(Y1, σ1) defined by the complex covariances

λ±1 = ρ
∗λ±2 ρ.

Then, if ρY1 is dense in Y2 for the norm ‖ · ‖ω2 defined in (8-1), the state ω1 is pure on CCR(Y1, σ1).

8B. Pure Hadamard states on the cone. The following theorem is the exact analog of [Gérard and
Wrochna 2014, Theorem 7.10]. In what follows we will use the notations introduced in Section 6F.

Theorem 8.2. Let λ± be the two-point functions of a state ωC on (H(C̃), σC) of the form (7-1) and
satisfying (µscC ). Then ωC is pure if and only if there exists a ∈ 9̃−∞,0−+ (C̃) such that

c+ =
(

1+ a∗a a∗(1+ aa∗)1/2

(1+ aa∗)1/2a aa∗

)
.

Proof. We consider the pair c± obtained from λ±, write as before c+ for c and identify c with the matrix(
c++ c+−
c−+ c−−

)
.

Arguing as in the proof of [Gérard and Wrochna 2014, Theorem 7.10], we obtain that the state ωC on
(H(C̃), σC) with covariances λ± is pure if and only if

c =
(

1+ a∗a a∗(1+ aa∗)1/2

(1+ aa∗)1/2a aa∗

)
(8-2)

for some a : L2
+
(C̃)→ L2

−
(C̃). This proves the “if”.

Let us now prove the “only if”. Since we assumed that c± ∈ 9̃0,0(C̃) satisfy (µscC ), we obtain that

a∗a ∈ 9̃−∞,0++ (C̃), (1+ aa∗)1/2a ∈ 9̃−∞,0−+ (C̃). (8-3)

We claim that
(1+ aa∗)−1/2

∈ 1+ 9̃−∞,0−− (C̃). (8-4)

Let us prove (8-4). We use the operators Rαβ and Tαβ defined at the end of Section 6F. We first embed
aa∗ into 9̃−∞,0(C̃), i.e., consider b = T−−(a∗a). Then b ≥ 0 on L2(C̃) and, applying Proposition 6.3 to
F(z)= (1+ z)1/2−1, we obtain that (1+b)−1/2

−1 ∈ 9̃−∞,0(C̃). Writing b as a 2×2 matrix acting on
L2
+
(C̃)⊕ L2

−
(C̃) we see that R++((1+ b)1/2)= (1+ aa∗)1/2, which proves (8-4). From (8-4) and (8-3)

we obtain that a ∈ 9̃−∞,0−+ (C̃). �

In the next lemma we identify the completion of H(C̃) for the norm (8-1) associated to any Hadamard
state considered in Theorem 8.2.

Let us first fix some notation. For a : L2
+
(C̃)→ L2

−
(C̃) we denote by c+(a) the operator defined

in (8-2) and set c−(a)= c+(a)− sgn(Ds) and

λ±(a)= (2|Ds |)
1/2c±(a)(2|Ds |)

1/2. (8-5)
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If H is a Hilbert space and h ≥ 0 is a selfadjoint operator on H with Ker h = {0}, we denote by hH the
completion of Dom h−1 (the range of h) for the norm ‖h−1u‖H.

Lemma 8.3. Let a : L2
+
(C̃)→ L2

−
(C̃). Then the completion of H(C̃) for the norm ( · |(λ+(a)+λ−(a)) · )1/2

equals |Ds |
−1/2L2(C̃).

Proof. By (8-5) and the definition of |Ds |
−1/2L2(C̃), it suffices to prove that the completion of H(C̃) for

the norm
(
u
∣∣ (c+(a)+ c−(a))u

)1/2 equals L2(C̃). Let

u(a)=
(
(1+ aa∗)1/2 a

a∗ (1+ a∗a)1/2

)
and note that

u(a)∗c±(0)u(a)= c±(a). (8-6)

Moreover, using the identity a f (a∗a) = f (aa∗)a, valid for any Borel function f , we obtain that
u(a)−1

= u(−a), hence u(a) : L2(C̃)→ L2(C̃) is boundedly invertible. By (8-6), it suffices to treat the
case a = 0, which is obvious since c+(0)+ c−(0)= 1. �

8C. Pure Hadamard states in M0. Our main result concerns the purity of the states induced in the bulk.
We postpone the introduction of the key technical ingredients of the proof to Section 8D for the sake of
self-consistency of our results on the characteristic Cauchy problem.

Theorem 8.4. Assume that dim M ≥ 4. Let ωC be a pure Hadamard state on CCR(H(C̃), σC) as in
Theorem 8.2. Then the state ω induced by ωC on CCR(C∞0 (M0) /PC∞0 (M0), E0) is a pure state.

Proof. The proof relies on Lemma 8.1 and on some results on the characteristic Cauchy problem
in M0, proved below in Section 8D. Recall that the map ρ : Solsc(P0) → H(C̃) was introduced in
Definition 4.1. By Lemmas 8.1 and 8.3 it suffices to check that ρ(Solsc(P0)) is dense in |Ds |

−1/2L2(C̃).
Since C∞0 (R×Sd−1) is dense in |Ds |

−1/2L2(C̃), it suffices, for w ∈ C∞0 (R×Sd−1), to find a sequence
φn ∈ Solsc(P0) such that ρφn→ w in |Ds |

−1/2L2(C̃).
We will use freely the notation introduced in Section 8D. We first fix a Cauchy surface 6 in (M, g) as

in Section 8D2 to the future of suppw. Note that, since w vanishes near s=−∞, we know that w belongs
to the space H̃ 1

0 (C̃0) introduced in Proposition 8.8. By Theorem 8.7 and Proposition 8.8, there exists f in
the energy space E0(60) such that w= R◦T f . Since C∞0 (60)⊕C∞0 (60) is dense in E0(60), there exists
a sequence fn ∈ C∞0 (60)⊕C∞0 (60) such that fn→ f in E0(60). By Theorem 8.7 and Proposition 8.8
we have R ◦ T fn→ w in H̃ 1

0 (C̃0), hence also R ◦ T fn→ w in |Ds |
−1/2L2(C̃), by Remark 8.9.

Let φn ∈ Solsc(P0) be the solution with Cauchy data fn on 60. Then ρφn = R ◦ T fn → w in
|Ds |

−1/2L2(C̃), which completes the proof of the theorem. �

8D. A characteristic Cauchy problem in M0. From Lemma 8.1 we see that, to deduce purity of the bulk
state from the purity of the boundary state, the range of ρ in H(C̃) should be sufficiently large. One way
to ensure this is to solve a characteristic Cauchy problem in M0, that is, to construct an inverse for ρ.
If M has a compact Cauchy surface, the characteristic problem was shown to be well posed in energy
spaces by Hörmander [1990b]. With some care those results can be used in our situation.
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8D1. Characteristic Cauchy problem for compact Cauchy surfaces. We recall an important result of
[Hörmander 1990b] on the characteristic Cauchy problem in energy spaces, whose framework is as
follows:

One considers a spacetime (M̃, g̃) for M̃ = R× 6̃, where 6̃ is a smooth compact manifold and
g̃ =−β̃(t, x) dt2

+ h̃i j (t, x) dxi dx j . One also fixes a real function r̃ ∈ C∞(M̃).
If 6̃1 is a Cauchy hypersurface in (M̃, g̃), we will denote by

Ũ6̃1
: C∞(6̃1)⊕C∞(6̃1)→ C∞(M̃)

the Cauchy evolution operator for −�g̃ + r̃ , so that φ = Ũ6̃1
f solves

−�g̃φ+ r̃φ = 0,
φ�6̃1
= f 0,

nµ∇µφ�6̃1
= f 1.

A hypersurface C̃ of the form

C̃ = {(F(x), x) : x ∈ 6̃}, F Lipschitz, (8-7)

is called spacelike (resp. weakly spacelike) if

sup
x∈6̃

(
−β−1(F(x), x)+ ∂i F(x)hi j (F(x), x)∂ j F(x)

)
< 0 (resp. ≤ 0).

If F is smooth then of course C̃ is spacelike (resp. weakly spacelike) if and only if all tangent vectors at
each point of C̃ are spacelike (resp. spacelike or null).

Since 6̃ is compact and F Lipschitz, the Sobolev space H 1(C̃) and of course L2(C̃) are well defined,
for example by identifying C̃ with 6̃ and using the Riemannian metric h̃i j (0, x) dxi dx j on 6̃ to equip C̃
with a density dνC̃ .

One also needs the measure

dν0
C̃ = (β

−1
− hi j ∂i F̃ ∂ j F̃) dνC̃ ,

which vanishes if C̃ is a null hypersurface.
We now set

E(C̃) := H 1(C̃)⊕ L2(C̃, dν0
C̃). (8-8)

Note that if C̃ is spacelike (i.e., a Cauchy hypersurface), then E(C̃)= H 1(C̃)⊕ L2(C̃).

Theorem 8.5 [Hörmander 1990b]. Let 6̃1 be any Cauchy hypersurface in M̃ and let C̃ be weakly spacelike
of the form (8-7). Then the map

T̃ : E(6̃1)→ E(C̃), f 7→ ((Ũ6̃1
f )�C̃ , (β

−1∂tŨ6̃1
f )�C̃),

is a homeomorphism.

Note that, if C̃ is characteristic, then L2(C̃, dν0
C̃
) = {0} and E(C̃) = H 1(C̃), so one obtains as a

particular case the solvability of the characteristic Cauchy problem in energy spaces.
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p

60

C0

6̃
∂C0

C̃
t

Figure 2. The modified cone C̃ .

8D2. Embedding M0 into M̃. We will use Hörmander’s result, recalled above, to solve a characteristic
Cauchy problem in M0 in an arbitrary neighborhood of p. The first task is to locally embed M into a
spacetime M̃ as above.

We fix a Cauchy hypersurface 6 to the future of p and identify M with R×6 equipped with

g =−β(t, x) dt2
+ hi j (t, x) dxi dx j .

We set 60 =6 ∩M0 and fix an open, precompact set U such that J−(60)∩ J+(p)⊂U .
The following lemma shows that, over U , C can be parametrized by 6.

Lemma 8.6. There exists a bounded, Lipschitz function F defined on 6 such that

C ∩U = {(t, x) : t = F(x)} ∩U.

Proof. The proof is given in Appendix A6. �

We next embed 60 into a smooth compact manifold 6̃. We consider the spacetime M̃ = R× 6̃ and
extend F to a Lipschitz function F̃ on 6̃ and g to a metric g̃ as in Section 8D1. We set

C̃ = {t = F̃(x)} ⊂ M̃

and define
C0 := (J−(60;M)∩C)∪ {p}. (8-9)

C0 is an open subset of C , with C0 compact in M and

∂60 = ∂C0. (8-10)

We claim that we can choose the embedding 60 ⊂ 6̃ and the extensions F̃ and g̃ so that

J−(6̃\60; M̃)∩C0 =∅, (8-11)

C̃ is weakly spacelike in M̃ . (8-12)

This is clearly possible by modifying 6, F and g only outside a large open set U and using that the
embedding of (M0, g) into (M, g) is causally compatible; see (2-3).

The situation is summarized in Figure 2. Identification symbols (a single and double bar) are used to
stress that 6̃ is compact.
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8D3. Sobolev spaces. We now recall some well-known facts about Sobolev spaces. If � is a relatively
compact open set in a compact manifold X with smooth boundary ∂�, then H 1

0 (�)— defined as the
closure of C∞0 (�) in H 1(�)— can also be characterized as H 1

0 (�) = {u ∈ H 1(�) : u�∂� = 0}. The
restriction operator r� : H 1(X)→ H 1(�) is surjective from H 1

∂�(X)= {u ∈ H 1(X) : u�∂� = 0} to H 1
0 (�),

with right inverse e� : H 1
0 (�)→ H 1

∂�(X) equal to the extension by 0 in X\�.
We set E0(�) := H 1

0 (�)⊕ L2(�) and E∂�(X)= H 1
∂�(X)⊕ L2(X). We will still denote the operator

r�⊕ r� : E∂�(X)→ E0(�) by r� and e�⊕ e� : E0(�)→ E∂�(X) by e�.
We will use these facts for �=60, C0 and X = 6̃, C̃ . If �= C0, then we use the notation in (8-8),

i.e., E0(C0)= H 1
0 (C0)⊕{0} ∼ H 1

0 (C0), since C0 is characteristic.

8D4. Characteristic Cauchy problem. In the theorem below, we denote by U60 the operator U6̃ ◦ e60 ,
that is, the Cauchy evolution operator (in M̃) for Cauchy data in E0(60) (extended by 0 in 6̃\60).

Theorem 8.7. The map
T : E0(60)→ E0(C0), f 7→ (U60 f )�C0,

is a homeomorphism.

Proof. We will prove the theorem by reducing ourselves to Theorem 8.5. We first claim that

T = rC0 ◦ T̃ ◦ e60 . (8-13)

In fact this follows from the fact that e60 : E0(60)→ E(6̃) is the extension by 0.
By Theorem 8.5, this implies that T : E0(60)→ E(C0). Moreover, by finite speed of propagation, if

f ∈ C∞0 (60)⊕C∞0 (60) then T f vanishes near ∂C0, hence T maps continuously E0(60) into E0(C0).
We next claim that S=r60◦T̃

−1
◦eC0 is a right inverse to T . In fact, let g∈E0(C0) and f̃ = T̃−1

◦eC0 g=
( f̃ 0, f̃ 1) ∈ E(6̃). Since ∂60 = ∂C0, we have f̃ 0�∂60 = g�∂C0 = 0, hence e60 ◦ r60 f̃ ∈ E(6̃). Since
f̃ − e60 ◦ r60 f̃ vanishes on 60, we obtain by (8-11) and finite speed of propagation that

rC0 ◦ T̃ ( f̃ − e60 ◦ r60 f̃ )= 0,

hence T ◦ Sg = rC0 ◦ T̃ f̃ = rC0 ◦ eC0 g = g. This completes the proof of the theorem. �

8E. Sobolev space on the cone in null coordinates. Let us set

R : C∞(C)→ C∞(R×Sd−1), g 7→ β−1g(s, θ).

The goal in this subsection is to describe more precisely the image of H 1
0 (C0) under R.

We will denote by C̃0 ⊂ R×Sd−1 the image of C0 under the map q 7→ (s(q), θ(q)) for q ∈ C , where
the coordinates (s, θ) are as constructed in Lemma 2.6. Using that ∂C0 = ∂60 is spacelike and included
in C , we easily obtain from Lemma 2.7 that C̃0 is of the form

C̃0 = {(s, θ) ∈ R×Sd−1
: s < s0(θ)}

for some smooth function s0. To simplify notation, the measure |m|1/2(θ) dθ on Sd−1 will be simply
denoted by dθ . We also set r = es .
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Proposition 8.8. Assume d = dim M − 1≥ 3. Then the image of H 1
0 (C0) under R equals the completion

of C∞0 (C̃0) under the norm

‖ψ‖1 :=

(∫
C̃0

(r−1
|∂sψ |

2
+ r−1

|∂θψ |
2
+ r−1

|ψ |2) ds dθ
)1

2

.

We will denote this space by H̃ 1
0 (C̃0).

Remark 8.9. Since r ≤ r0 on C0, we see that H̃ 1
0 (C̃0) injects continuously into |Ds |

−1/2L2(R×Sd−1).

Proof. We recall that (v, ψ) (see (2-4)) are coordinates on C such that the topology in H 1
0 (C0) is given

by the norm (∫
C0

(|v|d−1
|∂vg|2+ |v|d−3

|∂ψg|2+ |v|d−1
|g|2) dv dψ

)1
2

.

Recall that we have set r = es . A function g ∈ H 1
0 (C0) expressed in the coordinates (s, θ) or (r, θ) will

still be denoted by g. Similarly, the image of C̃0 under the map (s, θ) 7→ (es, θ) will still be denoted
by C̃0.

From Lemma 2.6(3) and a routine computation, we see that an equivalent norm on H 1
0 (C0) is(∫

C̃0

(rd−1
|∂r g|2+ rd−3

|∂θg|2+ rd−1
|g|2 dr dθ)

)1
2

. (8-14)

Since d = dim M−1≥ 3, Hardy’s inequality −1≥C |x |−2 holds on L2(Rd). Considering (r, θ) as polar
coordinates on Rd , we obtain that∫

C̃0

rd−1
|∂r g|2+ rd−3

|∂θg|2 dr dθ ≥ C
∫

C̃0

rd−3
|g|2 dr dθ, g ∈ H 1

0 (C0).

Therefore, adding a term rd−3
|g|2 under the integral in (8-14) yields an equivalent norm on H 1

0 (C0).
Since r is bounded on C̃0, this term dominates the term rd−1

|g|2 and we finally obtain that the topology
of H 1(C0) is given by the norm(∫

C̃0

(rd−1
|∂r g|2+ rd−3

|∂θg|2+αrd−3
|g|2) dr dθ

)1
2

,

where the constant α > 0 can be chosen arbitrarily large. Going back to coordinates (s, θ), we obtain the
norm (∫

C̃0

(rd−2
|∂s g|2+ rd−2

|∂θg|2+αrd−2
|g|2) ds dθ

)1
2

. (8-15)

For two functions m, n ∈ C∞(C0) we write m ∼ n if m = r0n for some r0, r−1
0 ∈ S0, where the class S0

is as defined in Section 2E. We have β ∼ r−(d−1)/2, hence

∂sβ, ∂θβ ∼ r−(d−1)/2. (8-16)

Setting ψ = Rg = β−1g, we have

∂s g = β∂sψ + (∂sβ)ψ and ∂θg = β∂θψ + (∂θβ)ψ.
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Then, using (8-16) and choosing α� 1 in (8-15), we obtain that (8-15) is equivalent to(∫
C̃0

(r−1
|∂sψ |

2
+ r−1

|∂θψ |
2
+ r−1

|ψ |2) ds dθ
)1

2

. (8-17)

This completes the proof of the proposition. �

9. Change of null coordinates

The map ρ : Solsc(P0)→H(C̃) introduced in Definition 4.1 depends on the choice of the null coordinates
(s, θ) on C , i.e., on the choice of the initial hypersurface S used in Lemma 2.6 to construct (s, θ). In this
section we discuss how our class of Hadamard states depends on the above choice.

9A. New null coordinates. We fix a reference hypersurface S in C , yielding null coordinates (s, θ)
near C such that g�C is given by (2-6) and S = { f = s = 0}.

We choose another hypersurface S̃ transverse to ∇a f in C , hence

S̃ = { f = 0, s = b(θ)} for some b ∈ C∞(Sd−1). (9-1)

Since ∇a f�C = ∂s , we obtain that the new coordinates (s̃, θ̃ ) obtained from Lemma 2.6 with S replaced
by S̃ are given by

θ̃ = θ, s̃(s, θ)= s− b(θ). (9-2)

We then have
g�C =−2 d f ds̃+ h̃i j (s̃, θ) dθ i dθ j

and a standard computation shows that |h|(s̃, θ)= |h|(s, θ), hence β̃(s̃, θ)= β(s, θ). Denoting by ρ̃ the
analog of ρ in Definition 4.1 for the new coordinates (s̃, θ) we then have

ρ̃φ =Uρφ, φ ∈ Solsc(P0), (9-3)

where
U :H(C̃)→H(C̃), g 7→Ug(s, θ)= g(s+ b(θ), θ).

The map U is symplectic on (H(C̃), σC) and unitary on L2(C̃) with U∗DsU = Ds .

Proposition 9.1. If A ∈ 9̃−∞,p(C̃) then U AU−1
∈ 9̃−∞,p(C̃).

Remark 9.2. The above invariance property does not hold for the classes 9m,p(C̃) since, for example,
the classes 9m,p(R×Rd−1) are not even preserved by linear changes of variables (s, y) 7→ (s+ Ay, y).

Proof. We will use the Beals criterion explained in Section 6C, which implies that B ∈ 9̃−∞,p(C̃) if and
only if, for any functions g1, . . . gn ∈ C∞(Sd−1) and smooth vector fields X1, . . . , Xm on Sd−1 and any
N ∈ N, k, k ′ ∈ R, one has

adX1 · · · adXm adg1 · · · adgn B : H k,k′(C̃)→ H k+N ,k′−p+n(C̃). (9-4)

To simplify notation, we rewrite (9-4) as

adαX adβḡ B : H k,k′(C̃)→ H k+N ,k′+p+|β|(C̃), (9-5)
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denoting by X and ḡ an arbitrary n-tuple of vector fields and m-tuple of functions, respectively.
If g is a function on Sd−1, considered as a multiplication operator, and X is a vector field on Sd−1, we

have

U−1gU = g, U−1 XU = X + (X · db)∂s, U−1∂sU = ∂s . (9-6)

Now let A∈ 9̃−∞,p(C̃). Forψ ∈C∞(Sd−1
×Sd−1), let us denote by Aψ the operator with distributional

kernel A(s1, s2, θ1, θ2)ψ(θ1, θ2). By the well-known properties of the pseudodifferential calculus on Sd−1,
we know that if ψ = 1 in some neighborhood of the diagonal then A− Aψ ∈ 9̃−∞,−∞(C̃) or, equivalently,
maps H k,k′(C̃) into H k+N ,k′+N (C̃) for any k, k ′ and N . Using (9-6) this implies that U (A− Aψ)U−1

has the same property, hence belongs to 9̃−∞,−∞(C̃).
Therefore we can replace A by Aψ and assume that the kernel of A is supported in R×R×�, where

� is an arbitrarily small neighborhood of the diagonal in Sd−1
×Sd−1. Introducing a smooth partition of

unity 1=
∑M

1 χi on Sd−1, we see that we can replace A by χ Aχ , where χ ∈C∞(Sd−1) is supported in a
small neighborhood of a point θ0 ∈Sd−1. We pick local coordinates θ1, . . . , θd−1 near θ0 and rewrite (9-5)
as

〈∂s〉
k+N
〈∂θ 〉

k′−p+|β| adαX adβḡ A〈∂s〉
−k
〈∂θ 〉

−k′
∈ B(L2(C̃)). (9-7)

We now set A′=U AU−1. Note first that if the kernel of A is supported in R×R×� then so is the kernel
of A′, hence by the above discussion it suffices to check that A′ satisfies (9-7). Let us set U−1 XU = X ′

if X is a vector field on Sd−1 and, in particular, ∂ ′θ =U−1∂θU = ∂θ + ∂θb∂s . Then an easy computation
yields

〈∂s〉
k+N
〈∂θ 〉

k′−p+|β| adαX adβḡ U AU−1
〈∂s〉
−k
〈∂θ 〉

−k′

=U 〈∂s〉
k+N
〈∂ ′θ 〉

k′−p+|β| adαX ′ adβḡ A〈∂s〉
−k
〈∂ ′θ 〉

−k′U−1. (9-8)

Using (9-6) and the fact that A ∈ 9̃−∞,p(C̃), we obtain that

adαX ′ adβḡ A ∈ 9̃−∞,p−|β|(C̃) and 〈∂s〉
N
〈∂θ 〉

k′−p+|β| adαX̄ ′ adβḡ A〈∂s〉
N
〈∂θ 〉

−k′
∈ B(L2(C̃))

for any N ∈ N. It follows that the left-hand side of (9-8) belongs to B(L2(C̃)) if, for any s ∈ R, there
exists N ∈ N such that

〈∂s〉
−N
〈∂ ′θ 〉

s
〈∂θ 〉

−s, 〈∂s〉
−N
〈∂θ 〉

s
〈∂ ′θ 〉

−s
∈ B(L2(C̃)). (9-9)

Let us now prove (9-9). The first statement of (9-9) is easy to check for s ∈N, using that ∂ ′θ = ∂θ + ∂θb∂s .
Conjugation by U gives the second statement for s ∈ N. By duality and interpolation, we then obtain
(9-9) for arbitrary s, which completes the proof of the proposition. �

From Proposition 9.1 and the fact that U∗DsU = Ds , we immediately obtain the following result:

Proposition 9.3. The classes of Hadamard states obtained in Theorems 7.4 and 8.2 are independent of
the choice of the null coordinates (s, θ).
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Appendix

A1. Stokes formula. Let (M, g) an orientable, oriented pseudo-Riemannian manifold of dimension n.
We denote by d Volg ∈

∧n
(M) the associated volume form and by dµg = |d Volg| the associated density.

Let 6 ⊂ M a smooth submanifold of codimension 1 and ι : 6 → M the natural injection, which
induces ι∗ :

∧
(M)→

∧
(6). From the orientation of M and a continuous transverse vector field v ∈ T6M ,

we obtain an induced orientation of 6. If 6 ⊂ ∂U for an open set U ⊂ M with piecewise smooth
boundary ∂U , we choose v pointing outwards.

If ω ∈
∧n
(M) and X ∈ T M , then Xyω ∈

∧n−1
(M) and one sets

ι∗Xω := ι
∗(Xyω) ∈

∧n−1
(6).

Similarly, if µ= |ω| is a density on M , we set ι∗Xµ := |ιXω|, which is a density on 6.
If ∇a is the Levi-Civita connection associated to g then

∇a Xa d Volg = d(Xy d Volg),

which, applying Stokes formula ∫
U

dω =
∫
∂U
ι∗ω, ω ∈

∧n−1
(M), (A-1)

to ω = ι∗X d Volg yields ∫
U
∇a Xa d Volg =

∫
∂U
ι∗X d Volg . (A-2)

Noncharacteristic boundaries. Assume first 6 ⊂ ∂U is noncharacteristic, that is, the one-dimensional
space

Tx(6)
ann
⊂ Tx M∗

is not null (the superscript “ann” denotes the annihilator). It follows that the metric h := ι∗g on 6
is nondegenerate (in the Lorentzian case, one typically assume that 6 is spacelike; then h = ι∗g is
Riemannian). Let n ∈ T6M be the unit, outward-pointing normal vector field to σ . Then

d Volh = ι∗n d Volg and ι∗X d Volg = Xana d Volh, (A-3)

hence ∫
6

ι∗X d Volg :=

∫
6

Xana dσh .

If all of ∂U is noncharacteristic, then from (A-2) we obtain Gauss’s formula∫
U
∇a Xa dµg =

∫
6

Xana dσh, (A-4)

where dσh = |d Volh|.
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Characteristic boundaries. Assume now that 6 is characteristic. Then there is no normal vector field
anymore. To express the right-hand side of (A-2), one chooses a defining function f for 6, i.e., such that
f = 0 and d f 6= 0 on 6, and completes f with coordinates y1, . . . , yn−1 such that d f ∧dy1

∧· · ·∧dyn−1

is positively oriented. Then, computing in the coordinates f , y1, . . . , yn−1, one sees that

ι∗X d Volg = Xa
∇a f |g|1/2 dy1

∧ · · · ∧ dyn−1,

hence ∫
6

ι∗X d Volg =

∫
6

Xa∇
a f |g|1/2 dy1

∧ · · · ∧ dyn−1 (A-5)

In the general case we can, for example, split ∂U as 61 ∪62, where 61 is noncharacteristic and 62 is
characteristic, and obtain∫

U
∇a Xa dµg =

∫
61

Xana dσh +

∫
62

Xa∇
a f |g|1/2 dy1

∧ · · · ∧ dyn−1. (A-6)

A2. Conformal transformations. In this section we briefly discuss conformal transformations of a
globally hyperbolic spacetime (M, g). Let ω ∈ C∞(M) be strictly positive and consider the conformally
related metric

g′ = ω2g.

Set

P =−∇a
∇a +

n− 2
4(n− 1)

R,

where R is the scalar curvature. For this special choice of the lower-order terms, the conformal transfor-
mation g→ g′ amounts to

P ′ = ω−n/2−1 Pωn/2−1.

This entails that the causal propagators are related by E ′ = ω−n/2+1 Eωn/2+1. One concludes that
multiplication by ω−n/2+1 induces a symplectic map

(Solsc(P), σ )
ω−n/2+1

−−−−→ (Solsc(P ′), σ ′), (A-7)

where σ and σ ′ are defined as in (3-2) using the respective volume densities.
We apply this discussion to (M0, g) and the conformally related spacetime with metric g′ = ω2g. In

the setting of Section 4A, there is a monomorphism of symplectic spaces

(Solsc(P0), σ0)
ρ
−→ (H(C̃), σC).

By (A-7) we also have a monomorphism

(Solsc(P ′0), σ
′

0)
ρ◦ωn/2−1

−−−−−→ (H(C̃), σC).

Therefore, one can construct states for the conformally related spacetime using the bulk-to-boundary
correspondence with a modified trace map ρ ′ = ρ ◦ωn/2−1.
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A3. Proof of Lemma 2.7. We fix a point q ∈C and complete the coordinate x0
= f by local coordinates

x̄ = (x1, . . . , xd) near q . The functions s and θk defined on C are denoted by s(x̄) and θk(x̄), since x̄ are
local coordinates on C . We denote by h(x̄) the restriction of g−1 to T ∗C . Note that the fact that C is null
implies that g00(0, x̄)≡ 0 and that from Lemma 2.6 we have

gi0(x̄)∂i s(x̄)=−1, gi0(x̄)∂iθk(x̄)= 0. (A-8)

If X is a null vector, orthogonal to C ∩ {s(x̄)= s(q)} and transverse to C , we obtain that

gX = λ
( 1

2∇i s∇ i s,∇i s
)
, λ ∈ R.

Let us denote for the moment by s̃ and θ̃k the extensions of s and θk outside C , which are constant along
the flow of X . We obtain that, on C ,

ds̃ =
( 1

2 ds · h ds, ds
)
, d θ̃k = (ds · h dθk, dθk).

Using also d f = (1, 0, . . . , 0) and (A-8), a routine computation leads to the following identities on C :

d f · g−1 d f = ds̃ · g−1 ds̃ = d f · g−1 d θ̃k = ds̃ · g−1 d θ̃k = 0,

d f · g−1 ds̃ = ds̃ · g−1 d f =−1,

d θ̃k · g−1 d θ̃l = ∂iθkhi j∂ jθl .

This implies that g is of the form (2-6) on C .

A4. Proof of Lemma 2.6. Since (y0, ȳ) are normal coordinates, we have

g�C =−dv dw+ 1
4v

2mi j (ψ) dψ i dψ j
+ v2g1, (A-9)

where mi j (ψ) dψ i dψ j is the standard Riemannian metric on Sd−1 and g1 is a smooth pseudo-Riemannian
metric in the arguments dv, dw and v dψ i .

We start by expressing f in the normal coordinates (y0, ȳ). By Malgrange’s preparation theorem
[Hörmander 1990a, Theorem 7.5.6] one can write

f (y0, ȳ)= m(y0, ȳ)((y0)2− |ȳ|2)+ a(ȳ)y0
+ b(ȳ)

for m near (0, 0) and a, b ∈ C∞ near 0. Since C ⊂ f −1({0}), we obtain that b(ȳ)= a(ȳ)|ȳ| and, since
b ∈ C∞(Rd), necessarily a ∈ O(|ȳ|∞). Moreover, from the Hessian of f at p we obtain that m(0, 0)= 1.

Going to coordinates (v,w,ψ), we obtain

f (v,w,ψ)= m(v,w,ψ)vw+wa(v,w,ψ)

for a ∈ O(|w− v|∞). Using also that m(0, 0, ψ)= 1, it follows that

∂v f (v, 0, ψ)= ∂ψ i f (v, 0, ψ)= 0 and ∂w f (v, 0, ψ)= v+ r(v, ψ)

for r ∈ O(|v|2). Using (A-9) to express (g−1)�C , we obtain after an easy computation that

∇
a f =−2v

(
(1+ va0(v, ψ))∂v + vai (v, ψ)∂ψ i

)
, (A-10)
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where a0 and ai are smooth, bounded functions near v = 0.
Let us now prove (1). Using (A-10) we obtain the equation near p

(v+ v2a0(v, ψ))∂vs+ v2ai (v, ψ)∂ψ i s = 1
2

for smooth functions a0 and ai . We set s = 1
2 ln(vh(v, ψ)) and obtain after an elementary computation

(1+ va0)∂vh+ a0h+ vai (v, ψ)∂ψ i h = 0,

which we can uniquely solve on [−ε1, ε1]×Sd−1 by fixing h(0, ψ). We may fix h(0, ψ) > 0 to ensure
that s(ε0, ψ)= 0. We obtain s = 1

2 ln v+ 1
2 ln h(v, ψ) for h ∈ C∞([−ε1, ε1]×Sd−1), h > 0.

It remains to extend s globally to C . To do this it suffices to check that, for any q ∈ C , the integral
curve of ∇a f through q crosses S at one and only one point. By [Wald 1984, Corollary to Theorem 8.1.2]
we know that q can be joined to p by a null geodesic γ . Locally, a null geodesic on C is, modulo
reparametrization, an integral curve of ∇a f . Since ∇a f is complete, the whole γ \{p} is an integral curve
of ∇a f . Hence the integral curve of ∇a f through q crosses S. Choosing ε0 in (2-5) small enough, we
can ensure that ∇a f∇av > 0 on S, hence the integral curve through q crosses S at only one point. We
can hence extend s globally to C as a C∞ function.

The proof of (2) is similar. We obtain the equation near p

(v+ v2a0(v, ψ))∂vθ
j
+ v2ai (v, ψ)∂ψ i θ j

= 0

or, equivalently,
(1+ va0(v, ψ))∂vθ

j
+ vai (v, ψ)∂ψ i θ j

= 0,

which we can solve in ]−ε1, ε1[×Sd−1 by imposing θ j (ε0, ψ)=ψ
j . The estimate (3) on θ j is immediate.

We extend θ j to all of C by the same argument as before.

A5. Proof of Lemma 6.6. We use the characterization of the wavefront set of kernels using oscillatory
test functions, which we now recall.

Let (s̃, ỹ) ∈ C and λ≥ 1. We set, for (σ, η) ∈ R×Rd−1,

vσ,λ( · )= χ( · )eiλ〈 · ,σ 〉
∈ C∞0 (R) and wη,λ( · )= ψ( · )eiλ〈 · ,η〉

∈ C∞(Sd−1), (A-11)

where χ ∈C∞0 (R) andψ ∈C∞(Sd−1) are supported near s̃ and ỹ, respectively. We set u(σ,η),λ=vσ,λ⊗wη,λ.
Note that if V and W are small neighborhoods of σ̃ ∈R and η̃∈Rd−1, respectively, then for n+=max(n, 0)
we have, uniformly on U = V ×W ,

‖u(σ,η),λ‖k,k′ ∈


O(〈λ〉k++k′+),

O(〈λ〉k+k′+) if σ0 6= 0,
O(〈λ〉k++k′) if η0 6= 0.

(A-12)

Let Ỹ1, Ỹ2 ∈ T ∗C . Then (Ỹ1, Ỹ2) 6∈WF(a)′ if there exist cutoff functions χi and ψi with χi (s̃i ), ψi (ỹi ) 6= 0
and neighborhoods Ui = Vi ×Wi of (σ̃i , η̃i ) such that

(u(σ1,η1),λ | au(σ2,η2),λ)L2(C) ∈ O(〈λ〉−∞) uniformly for (σi , ηi ) ∈Ui . (A-13)
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We first prove (1). Let a ∈ B−∞9 p2(C) and Ỹ1, Ỹ2 ∈ T ∗C such that σ̃1 6= 0 or σ̃2 6= 0. Then (A-13)
follows from (A-12) and the fact that a : H k1,k2 → H k1+m,k2+p2 for any m ≥ 0.

We now prove (2). If a ∈9 p1,p2(C) the statement follows from Lemma 6.5. It remains to consider the
case a ∈ B−∞9 p2(C) and to prove that (A-13) holds if (σ̃1, η̃1)= (0, 0) and (σ̃2, η̃2) 6= 0 or vice versa.
If σ̃1 6= 0 or σ̃2 6= 0, we have already proved (A-13).

Assume now that η̃1 = 0 and η̃2 6= 0, the other case being similar. Then we can find cutoff functions
gi ∈ C∞0 (R

d−1) supported near η̃i with disjoint supports such that (1− gi (λ
−1 Dy))u(σi ,ηi ),λ ∈ O(λ−∞)

in all H k,k′ uniformly for (σi , ηi ) ∈U . It follows that

(u(σ1,η1),λ | au(σ2,η2),λ)L2(C) = (u(σ1,η1),λ | g1(λ
−1 Dy)ag2(λ

−1 Dy)u(σ2,η2),λ)L2(C)+ O(〈λ〉−∞)

uniformly for (σi , ηi )∈Ui . By pseudodifferential calculus on Sd−1, we know that g1(λ
−1 Dy)ag2(λ

−1 Dy)

is in O(〈λ〉−∞) in B(H k,k′) for any k, k ′ ∈ R. Combined with (A-12), we obtain (A-13) also if η̃1 = 0
and η̃2 6= 0. This completes the proof of the lemma.

A6. Proof of Lemma 8.6. Set γx= {(s, x) : s ≤ 0} for x∈6. To prove that C is the graph of a function F
over 6 we have to show that γx intersects C at one and only one point for each x ∈6. Then we have

F(x)= inf{s ≤ 0 : (s, x) ∈ I+(p)}.

If F(x)=−∞ then γx ⊂ I+(p)∩ J−((0, x))⊂ J+(p)∩ J−((0, x)). This last set is compact by global
hyperbolicity, which is a contradiction. Hence γx intersects C . Moreover, if (t1, x)∈C then (s, x)∈ J−(p)
for all t1 ≤ s ≤ 0. This shows that γx intersects C at only one point, hence the function F is well defined,
and bounded.

Let (T 0, x0) be the coordinates of p. For x 6= x0, C is smooth near (F(x), x) and ∂t is transverse to C .
By the implicit function theorem this implies that F is smooth near x. Moreover, if K1 ⊂6 is a compact
set then d F is uniformly bounded on K1\{x0

}. To prove this it suffices to introduce normal coordinates
at p such that, near p, C becomes a neighborhood of the tip of the flat lightcone.
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GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON
NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS

ANDREW HASSELL AND JUNYONG ZHANG

We prove global-in-time Strichartz estimates without loss of derivatives for the solution of the Schrödinger
equation on a class of nontrapping asymptotically conic manifolds. We obtain estimates for the full set of
admissible indices, including the endpoint, in both the homogeneous and inhomogeneous cases. This
result improves on the results by Tao, Wunsch and the first author and by Mizutani, which are local in time,
as well as results of the second author, which are global in time but with a loss of angular derivatives. In
addition, the endpoint inhomogeneous estimate is a strengthened version of the uniform Sobolev estimate
recently proved by Guillarmou and the first author. The second author has proved similar results for the
wave equation.
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1. Introduction

Strichartz estimates are an essential tool for studying the behaviour of solutions to nonlinear Schrödinger
equations, nonlinear wave equations and other nonlinear dispersive equations. In particular, global-in-time
Strichartz estimates are needed to show global well-posedness and scattering for these equations. The
purpose of this article is to prove global-in-time Strichartz estimates for the Schrödinger equation on
asymptotically conic, nontrapping manifolds.

Let (M◦, g) be a Riemannian manifold of dimension n ≥ 2 and let I ⊂ R be a time interval. Strichartz
estimates are a family of dispersive estimates on solutions u(t, z) : I × M◦ → C to the Schrödinger
equation

i ∂t u+1gu = 0, u(0)= u0(z), (1-1)
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where 1g denotes the Laplace–Beltrami operator on (M◦, g). The general Strichartz estimates state that

‖u(t, z)‖Lq
t Lr

z(I×M◦) ≤ C‖u0‖H s(M◦),

where H s denotes the L2-Sobolev space over M◦ and (q, r) is an admissible pair, i.e.,

2≤ q, r ≤∞, 2
q
+

n
r
=

n
2
, (q, r, n) 6= (2,∞, 2). (1-2)

It is well known that (1-1) holds for (M◦, g)= (Rn, δ) with s = 0 and I = R.
In this paper, we continue the investigations carried out in [Hassell et al. 2005; 2006] concerning

Strichartz inequalities on a class of non-Euclidean spaces, that is, smooth, complete, noncompact,
asymptotically conic Riemannian manifolds (M◦, g) which satisfy a nontrapping condition. Here,
“asymptotically conic” means that M◦ has an end of the form (r0,∞)r × Y , with metric asymptotic
to dr2

+r2h as r→∞, where (Y, h) is a closed Riemannian manifold of dimension n−1 (a more precise
definition is given below). Hassell, Tao and Wunsch [Hassell et al. 2006] established the local-in-time
Strichartz inequalities

‖ei t1g u0‖Lq
t Lr

z([0,1]×M◦) ≤ C‖u0‖L2(M◦). (1-3)

Here, we establish the same inequality on the full time interval R. To treat an infinite time interval, the
method of [Hassell et al. 2006] no longer works and we take a completely new approach (see Section 1C).
Although phrased in terms of asymptotically conic manifolds, we emphasize that our results apply in
particular to

• Schrödinger operators 1+ V on Rn with V suitably regular and decaying at infinity;

• nontrapping metric perturbations of flat Euclidean space with the perturbation suitably regular and
decaying at infinity.

1A. Geometric setting. Let us recall the asymptotically conic geometric setting, which is the same
as in [Guillarmou et al. 2013a; 2013b; Hassell and Wunsch 2005; Hassell et al. 2006]. Let (M◦, g)
be a complete, noncompact Riemannian manifold of dimension n ≥ 2 with one end, diffeomorphic
to (0,∞)× Y , where Y is a smooth, compact, connected manifold without boundary. Moreover, we
assume (M◦, g) is asymptotically conic, which means that M◦ can be compactified to a manifold M
with boundary ∂M = Y such that the metric g becomes a scattering metric on M . That is, in a collar
neighbourhood [0, ε)x × ∂M of ∂M , g takes the form

g =
dx2

x4 +
h(x)
x2 =

dx2

x4 +

∑
h jk(x, y) dy j dyk

x2 , (1-4)

where x ∈ C∞(M) is a boundary defining function for ∂M and h is a smooth family of metrics on Y .
Here we use y = (y1, . . . , yn−1) for local coordinates on Y = ∂M and the local coordinates (x, y) on M
near ∂M . Away from ∂M , we use z = (z1, . . . , zn) to denote the local coordinates. Moreover, if every
geodesic z(s) in M reaches Y as s→±∞, we say M is nontrapping. The function r := 1/x near x = 0
can be thought of as a “radial” variable near infinity and y = (y1, . . . , yn−1) can be regarded as n− 1
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“angular” variables. Rewriting (1-4) using coordinates (r, y), we see that the metric is asymptotic to the
exact conic metric dr2

+ r2h(0) on (r0,∞)r × Y as r→∞.
The Euclidean space M◦ = Rn , or any compactly supported perturbation of this metric, is an example

of an asymptotically conic manifold with Y equal to Sn−1 endowed with the standard metric.
Let (M◦, g) be an asymptotically conic manifold. The complex Hilbert space L2(M◦) is given by the

inner product

〈 f1, f2〉L2(M◦) =

∫
M◦

f1(z) f2(z) dg(z),

where dg(z)=
√

g dz is the measure induced by the metric g. Let 1g = ∇
∗
∇ be the Laplace–Beltrami

operator on M ; our sign convention is that 1g is a positive operator. Let V be a real potential function
on M such that

V ∈ C∞(M), V (x, y)= O(x3) as x→ 0. (1-5)

We assume that n ≥ 3 and that one of two conditions hold: either

H :=1g + V has no zero eigenvalue or zero-resonance, (1-6)

or the stronger condition

H :=1g + V has no nonpositive eigenvalues or zero-resonance. (1-7)

By a zero-resonance we mean a nontrivial solution u to Hu = 0 such that u→ 0 at infinity. Notice that
the second assumption, (1-7), implies that H is a nonnegative operator, so that we can define

√
H . These

assumptions allow us to use the results of [Guillarmou et al. 2013a; 2013b].

1B. Main results. Now we consider the Schrödinger equation

i ∂t u+ Hu = 0, u(0, · )= u0 ∈ L2(M). (1-8)

The main purpose of this paper is to prove the following results. Notice that the endpoint estimate (q = 2
and q̃ = 2) is included in both cases.

Theorem 1.1 (long-time homogeneous Strichartz estimate). Let (M◦, g) be an asymptotically conic,
nontrapping manifold of dimension n ≥ 3. Let H =1g + V satisfy (1-5) and (1-7) and suppose u is the
solution to (1-8). Then

‖u(t, z)‖Lq
t Lr

z(R×M◦) ≤ C‖u0‖L2(M◦) (1-9)

provided the admissible pair (q, r) ∈ [2,∞]2 satisfies (1-2).

Theorem 1.2 (long-time inhomogeneous Strichartz estimate). Let (M◦, g) and H be as in Theorem 1.1.
Suppose that u solves the inhomogeneous Schrödinger equation with zero initial data

i ∂t u+ Hu = F(t, z), u(0, · )= 0. (1-10)

Then the inhomogeneous Strichartz estimate

‖u(t, z)‖Lq
t Lr

z(R×M◦) ≤ C‖F‖
L q̃′

t L r̃ ′
z (R×M◦)

(1-11)
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holds for admissible pairs (q, r), (q̃, r̃).

Remark 1.3. If we make the weaker assumption (1-6), then the statements above still hold, provided
that u0 and F(t, · ) lie in the positive spectral subspace of H , or in other words that u0 = 1[0,∞)(H)(u0),
and similarly for F(t, · ) for almost every t .

Remark 1.4. We restrict to n ≥ 3 since the results of [Guillarmou and Hassell 2008] only apply to that
case. More recently, Sher [2013] has extended these results to n = 2; using his results, one could treat the
case n = 2 also (noting that the endpoint estimates fail in dimension 2, due to a logarithmic divergence in
the resolvent at zero energy occurring in dimension 2). For space reasons, we have not attempted to treat
this case in the present paper.

1C. Strategy of the proof. Our argument here extends to long time and to the endpoint Strichartz
estimates of Hassell et al. [2006], who constructed a “local” parametrix for the propagator ei t H based
on the parametrix from [Hassell and Wunsch 2005]. In that paper, Schrödinger solutions ei t Hu0 were
obtained by applying the parametrix to u0 and then correcting this approximate solution using Duhamel’s
formula, using local smoothing estimates to control the correction term. This approach works well on a
finite time interval, but cannot be expected to work on an infinite time interval as the errors accumulate
over time; certainly they cannot be expected to decay to zero as t→∞, as would be required to prove
Lq estimates in time on an infinite interval.

The main new idea in the current paper is to express the propagator ei t H exactly, using the spectral
measure d E√H(λ), exploiting the very precise information on the spectral measure for the Laplacian on
asymptotically conic, nontrapping manifolds that has recently become available from the works [Hassell
and Vasy 1999; Hassell and Wunsch 2008; Guillarmou et al. 2013a].

After expressing the propagator in terms of an integral of the multiplier ei tλ2
against the spectral

measure, our strategy is to use the abstract Strichartz estimate proved in [Keel and Tao 1998]. Thus,
with U (t) denoting the (abstract) propagator, we need to show uniform L2

→ L2 estimates for U (t),
and a L1

→ L∞ type dispersive estimate on the U (t)U (s)∗ with a bound of the form O(|t − s|−n/2). In
the flat Euclidean setting, the estimates are obvious because of the explicit formula for the propagator.
But in our general setting it turns out to be more complicated. It follows from [Hassell and Wunsch
2005] that the propagator U (t)(z, z′) fails to satisfy such a dispersive estimate at any pair of conjugate
points (z, z′) ∈ M◦×M◦ (i.e., pairs (z, z′) where geodesics emanating from z focus at z′). Our geometric
assumptions allow conjugate points, so we need to modify the propagator such that the failure of the
dispersive estimate at conjugate points is avoided.

This is possible due to the T T ∗ nature of the estimates required by the Keel–Tao formalism. Recall
that the dispersive estimate required by Keel and Tao is of the form

‖U (t)U (s)∗‖L1→L∞ ≤ C |t − s|−n/2. (1-12)

If U (t) is the propagator ei t H then the operator on the left-hand side is ei(t−s)H . However, nothing in
the Keel–Tao formalism requires the U (t) to form a group of operators. Hence we are free to break up
ei t H
=
∑

j U j (t) and prove the estimate (1-12) for each U j . Our choice of U j (t) (sketched directly below)
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means that U j (t)U j (s)∗ is essentially the kernel ei(t−s)H localized sufficiently close to the diagonal that
we avoid pairs of conjugate points, and hence can prove the dispersive estimate.

Our method of decomposing ei t H
=
∑

j U j (t) is motivated by a decomposition used in the proof in
[Guillarmou et al. 2013b] of a restriction estimate for the spectral measure, that is, an estimate of the form

‖d E√H(λ)‖L p(M◦)→L p′ (M◦) ≤ Cλn(1/p−1/p′)−1, 1≤ p ≤
2(n+ 1)

n+ 3
.

In [Guillarmou et al. 2013b], it was observed that, to prove a restriction estimate for d E√H(λ), it
suffices (via a T T ∗ argument) to prove the same estimate for the operators Q j (λ) d E√H(λ) Q j (λ)

∗,
where Q j (λ) is a partition of the identity operator in L2(M◦). The operators Q j (λ) used in [Guillarmou
et al. 2013b] are pseudodifferential operators (of a certain specific type) serving to localize d E√H(λ)

in phase space close to the diagonal. Guillarmou et al. [2013b] showed that the localized operators
Q j (λ) d E√H(λ) Q j (λ)

∗ satisfy kernel estimates analogous to those satisfied by the spectral measure for
√
1 on flat Euclidean space:∣∣(Q j (λ) d E (l)√

H
(λ) Q j (λ))(z, z′)

∣∣≤ Cλn−1−l(1+ λd(z, z′))−(n−1)/2+l, l ∈ N, (1-13)

where d E (l)√
H
(λ) is the l-th derivative in λ of the spectral measure and d is the Riemannian distance

on M◦.
The authors of [Guillarmou et al. 2013b] hoped that (1-13) could be used as a “black box” in applications

of their work. Unfortunately, (1-13) seems inadequate for our present purposes. This is because, in order
to obtain the dispersive estimate, we need to efficiently exploit the oscillation of the “spectral multiplier”
ei tλ2

, and particularly the discrepancy between the way this function oscillates relative to the oscillations
(in λ) of the Schwartz kernel of the spectral measure. The second main innovation of this paper is to
improve the estimate (1-13) on the localized spectral measure. We show:

Proposition 1.5. Let (M◦, g) and H be as in Theorem 1.1. Then there exists a λ-dependent operator
partition of unity on L2(M)

Id=
N∑

j=1

Q j (λ),

with N independent of λ, such that for each 1≤ j ≤ N we can write

(Q j (λ) d E√H(λ) Q∗j (λ))(z, z′)= λn−1
(∑
±

e±iλd(z,z′)a±(λ, z, z′)+ b(λ, z, z′)
)
, (1-14)

with estimates

|∂αλ a±(λ, z, z′)| ≤ Cαλ−α(1+ λd(z, z′))−(n−1)/2, (1-15)

|∂αλ b(λ, z, z′)| ≤ Cα,Mλ−α(1+ λd(z, z′))−K for any K . (1-16)

Here, d( · , · ) is the Riemannian distance on M◦.
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Remark 1.6. The estimates (1-15)–(1-16) are easily seen to imply (1-13) (using Lemma 2.3 to estimate
the λ-derivatives of the operators Qi (λ)). However, (1-15)–(1-16) also capture the oscillatory behaviour
of the spectral measure, which is crucial in obtaining sharp dispersive estimates in Section 6.

We now define localized (in phase space) propagators U j (t) by

U j (t)=
∫
∞

0
ei tλ2

Q j (λ) d E√H(λ), 1≤ j ≤ N . (1-17)

Then the operator U j (t)U j (s)∗ is given, at least formally, by (see Lemma 5.3)

U j (t)U j (s)∗ =
∫

ei(t−s)λ2
Q j (λ) d E√H(λ) Q j (λ)

∗. (1-18)

However, there are subtleties involved in spectral integrals such as (1-17)–(1-18) containing operator-
valued functions. Even to show that (1-17) is well-defined as a bounded operator on L2(M◦) is nontrivial.
The third main innovation of this paper is to give an effective method for analyzing spectral integrals such
as (1-17)–(1-18) with operator-valued multipliers. We use a dyadic decomposition in λ and a Cotlar–Stein
almost orthogonality argument to show the well-definedness of (1-17) and prove a uniform estimate on
‖U j (t)‖L2→L2 , as required by the Keel–Tao formalism.

Having made sense of (1-18), we exploit the oscillations both in the multiplier ei(t−s)λ2
and in the

localized spectral measure (as expressed by (1-15)–(1-16)) to obtain the required dispersive estimate
for U j (t)U j (s)∗. The homogeneous Strichartz estimate for ei t H then follows by applying Keel–Tao to
each U j and summing over j .

Next we consider the inhomogeneous Strichartz estimates. As is well known, the non-endpoint cases
of the inhomogeneous estimate follow from the homogeneous estimate and the Christ–Kiselev lemma.
The endpoint inhomogeneous estimate requires an additional argument and, in particular, in this case
we require estimates on Ui (t)U j (s)∗ for i 6= j . This estimate turns out to be very similar to the uniform
Sobolev estimate (on asymptotically conic, nontrapping manifolds) of Guillarmou and Hassell [2014]. We
use the techniques of that paper, in particular a refined partition of the identity operator. This resemblance
to their proof is more than formal: as pointed out to us by Thomas Duyckaerts and Colin Guillarmou,
the inhomogeneous endpoint Strichartz estimate implies the uniform Sobolev estimate; we sketch this
argument in Section 8. Thus, this part of the paper can be regarded as a time-dependent reformulation of
the proof in [Guillarmou and Hassell 2014], leading to a more general result.

1D. Previous literature. Now we review some classical results about the Strichartz estimates. In the
flat Euclidean space, where M◦ = Rn and g jk = δ jk , one can take I = R; see [Strichartz 1977; Ginibre
and Velo 1985; Keel and Tao 1998] and references therein. The now-classic paper [Keel and Tao 1998]
developed an abstract approach to Strichartz estimates, which has become the standard approach in
most subsequent literature, including this paper. Strichartz estimates for compact metric perturbations
of Euclidean space were proved locally in time by Staffilani and Tataru [2002] and subsequently for
asymptotically Euclidean manifolds by Robbiano and Zuily [2005] and Bouclet and Tzvetkov [2007], and
in the asymptotically conic setting by Hassell et al. [2006] and Mizutani [2012]. In these works, either
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the metric is assumed to be nontrapping, or the theorem holds outside a compact set. Burq et al. [2010]
proved that Strichartz estimates without loss hold on an asymptotically conic manifold with hyperbolic
trapped set. Strichartz estimates have also been studied on exact cones [Ford 2010] and on asymptotically
hyperbolic spaces [Bouclet 2011].

There has also been work on Strichartz estimates on compact manifolds and on manifolds with boundary.
In the compact case, Strichartz estimates usually are local in time and with some loss of derivatives s
(i.e., the right-hand side of (1-9) has to be replaced by the H s norm of u0). Estimates for the standard
flat 2-torus were shown by Bourgain [1999] to hold for any s > 0. For any compact manifold, Burq
et al. [2004a] showed that the estimate holds for s = 1/q and that the loss of derivatives, as well as the
localization in time, is sharp on the sphere. Manifolds with boundary were studied in [Blair et al. 2008;
2009; 2012; Ivanovici 2010].

Global-in-time Strichartz estimates on asymptotically Euclidean spaces have been proved by Bouclet
and Tzvetkov [2008] (but with a low energy cutoff), Metcalfe and Tataru [2012], Marzuola, Metcalfe and
Tataru [Marzuola et al. 2008] and Marzuola, Metcalfe, Tataru and Tohaneanu [Marzuola et al. 2010].

The second author has obtained global-in-time Strichartz estimates for the wave equation on asymptot-
ically conic nontrapping manifolds [Zhang 2015b] and for the Schrödinger equation [Zhang 2015a].

As already noted, Strichartz estimates are an essential tool for studying the behaviour of solutions to
nonlinear dispersive equations. There is a vast literature on this topic, and it is beyond the scope of this
introduction to review it, so we refer instead to Tao’s book [2006] and the references therein.

1E. Organization of this paper. We review the partition of the identity and properties of the microlocal-
ized spectral measure for low energies in Section 2 and for high frequency in Section 3. In Section 4, we
prove Proposition 1.5 based on the properties of the microlocalized spectral measure. Section 5 is devoted
to the construction of microlocalized propagators and the proof of the L2 estimates. The dispersive
estimates are proved in Section 6. Finally, we prove the homogeneous Strichartz estimates in Section 7
and the inhomogeneous Strichartz estimates in Section 8.

2. Spectral measure and partition of the identity at low energies

The spectral measure for the operator H for low energies was constructed in [Guillarmou and Hassell
2008] on the “low energy space” M2

k,b. Here we recall the low energy space M2
k,b and the associated

space M2
k,sc. The latter space is needed in order to define the class of pseudodifferential operators in

which our operator partition Q j (λ) from Proposition 1.5 lies.

2A. Low energy space. The low energy space M2
k,b, defined in [Guillarmou and Hassell 2008] (based

on unpublished work of Melrose and Sá Barreto), is a blown-up version of1
[0, λ0]×M2. This space is

illustrated in Figure 1. More precisely, we define the codimension-3 corner C3 = {0}× ∂M× ∂M and the
codimension-2 submanifolds

C2,L = {0}× ∂M ×M, C2,R = {0}×M × ∂M, C2,C = [0, 1]× ∂M × ∂M.

1In [Guillarmou and Hassell 2008], the spectral parameter was denoted by k rather than λ, hence the subscript “k” in M2
k,b.
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rb

lb

bf

zf

bf0

x ′/x

lb0

rb0

λ/x

λ/x ′

Figure 1. The manifold M2
k,b. Arrows show the direction in which the indicated function

increases from 0 to∞.

Without loss of generality, we assume λ0 = 1. The space M2
k,b is defined by

M2
k,b = [[0, 1]×M2

;C3,C2,R,C2,L ,C2,C ]

with blow-down map βb : M2
k,b→ [0, 1] ×M2. Here the notation [X; Y ], where X is a manifold with

corners and Y a p-submanifold of X ,2 indicates that Y is blown up in X in the real sense; as a set, [X; Y ]
is the disjoint union of X \ Y and the inward-pointing spherical normal bundle SN+Y of Y . Moreover,
[X; Y1, Y2, . . . ] indicates iterated blow-up. See [Melrose 1994, Section 18] for further details.

The new boundary hypersurfaces created by these blow-ups are labelled by

rb= closβ−1
b ([0, 1]×M × ∂M), lb= closβ−1

b ([0, 1]× ∂M ×M), zf= closβ−1
b ({0}×M ×M),

the “b-face” bf= closβ−1
b (C2,C \C3) and

bf0 = β
−1
b (C3), rb0 = closβ−1

b (C2,R \C3), lb0 = closβ−1
b (C2,L \C3).

2We say that Y is a p-submanifold of X if, near every point p ∈ Y , there are local coordinates x1, . . . , xl , y1, . . . , yn−l ,
where xi ≥ 0, yi ∈ (−ε, ε) and p = (0, . . . , 0), such that Y is given locally by the vanishing of some subset of these coordinates.
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rb0

bf0

lb0

zf

rb

lb

bf

sc

Figure 2. The manifold M2
k,sc; the dashed line is the boundary of the lifted diagonal 1k,sc.

The closed lifted diagonal is given by diagb = closβ−1
b ([0, 1]× {(m,m);m ∈ M◦}) and its intersection

with the face bf is denoted by ∂bf diagb. We remark that zf is canonically diffeomorphic to the b-double
space

M2
b = [M

2
; ∂M × ∂M], (2-1)

as is each section M2
k,b ∩ {λ= λ∗} for fixed 0< λ∗ < 1.

We further define the space M2
k,sc to be the blow-up of M2

k,b at ∂bf diagb. This space is illustrated in
Figure 2. The sections M2

k,sc ∩ {λ = λ∗} for fixed 0 < λ∗ < 1 are all canonically diffeomorphic to the
scattering double space M2

sc, which is the blow-up of M2
b at the boundary of the lifted diagonal

M2
sc = [M

2
b ; ∂ diagb].

To avoid excessive notation, we denote the diagonal in M2
b and in M2

k,b by the same symbol diagb. We
similarly define diagsc to be the closure of the interior of diagb lifted to M2

sc (or M2
k,sc).

2B. Coordinates. Let (x, y) = (x, y1, . . . , yn−1) be local coordinates on M near a boundary point, as
discussed in Section 1A. We define functions x and y on M2

k,b by lifting from the left factor of M
(near ∂M), and x ′ and y′ by lifting from the right factor of M ; and similarly z and z′ (away from ∂M).
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Let ρ = x/λ, ρ ′ = x ′/λ and σ = ρ/ρ ′ = x/x ′. Then we can use coordinates (y, y′, σ, ρ ′, λ) near bf and
away from rb, while (y, y′, σ−1, ρ, λ) near bf and away from lb.

Next we consider local coordinates on the scattering double space M2
sc. The only difference between

this space and M2
b is at the boundary of the diagonal. In local coordinates, near ∂bf diagb, a boundary

defining function for bf is given by x/λ and the diagonal is given by σ = 1, y= y′. Therefore, coordinates
on the interior of the new boundary hypersurface, denoted by sc, created by this blow-up are

λ(σ − 1)
x

,
λ(y− y′)

x
, λ, y′.

We also need to consider coordinates on phase space. As emphasized by Melrose [1994], the appropriate
phase space for analyzing the Laplacian with respect to a scattering metric is the scattering cotangent
bundle. This is the dual space of the scattering tangent bundle scTM, which is the bundle whose sections are
the smooth vector fields over M which are uniformly of finite length with respect to g. Near the boundary,
due to the form of the metric (1-4), they are spanned over C∞(M) by the vector fields x2 ∂x and x ∂yi .
Dually, the scattering cotangent bundle is spanned near the boundary by vector fields dx/x2

=−d(1/x)
and dyi/x ; away from the boundary, it is canonically diffeomorphic to the usual cotangent bundle. Thus,
a point in the scattering cotangent bundle can be expressed as a linear combination

νλd
(

1
x

)
+

n−1∑
i=1

λµi
dyi

x
(2-2)

near the boundary, or
n∑

i=1

λζi dzi (2-3)

away from the boundary, which defines linear coordinates (µ, ν) or ζ on each fibre of the scattering
cotangent bundle. Notice that we have introduced a scaling by the spectral parameter λ; as λ= 1/h, this
is essentially the semiclassical scaling, appropriate to our operator 1− λ2

= λ2(h21− 1), although in
this low energy case, we are looking at the limit h→∞, rather than h→ 0 as in the high energy case in
Section 3.

The appropriate “compressed cotangent bundle” over M2
k,b is discussed in [Guillarmou et al. 2013a,

Section 2.3]. Here, we only describe this for λ > 0 plus a neighbourhood of the boundary hypersurface bf.
In this region, it is given by the lift of the bundle scT ∗M × scT ∗M to M2

× [0, 1] and then to M2
k,b. In

particular, we use coordinates (µ, ν) lifted from the left factor of M and (µ′, ν ′) lifted from the right
factor of M in a neighbourhood of bf. We remark that these coordinates remain valid in a neighbourhood
of bf even at λ= 0, which follows from the fact that (2-2) can be written in the form

νd
(

1
ρ

)
+

n−1∑
i=1

µi
dyi

ρ
.

The following lemma will be useful in our estimates in Section 4.
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Lemma 2.1. Let w = (w1, . . . , wn) denote a set of defining functions for diagb ⊂ M2
k,b; that is, the

differentials dwi are linearly independent and diagb = {w = 0}. For example, near bf0 or bf, we can
take w = (σ − 1, y1− y′1, . . . , yn−1− y′n−1). Then |w|/x is comparable to d(z, z′) in a neighbourhood of
diagb. Equivalently, |w|/ρ is comparable to λd(z, z′).

Proof. Away from bf0∪bf, |w|2 is a quadratic defining function for diagb and so is d(z, z′)2, hence they are
comparable. Now consider what happens near bf0 or bf. In coordinatesw= (σ−1, y1−y′1, . . . yn−1−y′n−1),
we have

|w|

x
∼

∣∣∣∣σ − 1
x

∣∣∣∣+ ∣∣∣∣ y− y′

x

∣∣∣∣.
Write r = 1/x ; then this is

|r − r ′| + r |y− y′|.

Given that the metric takes the form dr2
+ r2h(x, y, dy), where h is positive definite, we see that this is

comparable to d(z, z′). �

Remark 2.2. In the case M◦ = Rn , with Euclidean coordinates z = (z1, . . . , zn), we can take w =
(z1− z′1, . . . , zn − z′n).

2C. Pseudodifferential operators on the low energy space. We use the class of pseudodifferential oper-
ators 9m

k (M;�
1/2
k,b ) on M2

k,sc introduced by Guillarmou and Hassell [2008]. By definition, these operators
have Schwartz kernels which are half-densities conormal to the diagonal diagsc, smooth on M2

k,sc away
from the diagonal, and rapidly decreasing at all boundary hypersurfaces not meeting the diagonal, i.e.,
at lb0, rb0, lb and rb. In addition, we will only consider those operators with kernels supported where
ρ, ρ ′ ≤ C <∞. In this setting we can write the kernel in the form

λn
∫

eiλ/x ((1−σ)ν+(y−y′)·µ)a(λ, ρ, y, µ, ν) dµ dν |dg dg′|1/2, (2-4)

where a is a classical symbol of order m in the (µ, ν) variables, smooth in (λ, ρ, y) and supported
where ρ ≤ c. If we write this in the form A(z, z′, λ) |dg dg′|1/2, then the action on a half-density f |dg|1/2

is given by (∫
A(z, z′, λ) f (z′) dg(z′)

)
|dg(z)|1/2.

Given that we have a canonical half-density factor, namely the Riemannian half-density |dg|1/2, we will
usually omit the half-density factors below.

From the representation (2-4) it is easy to see the following:

Lemma 2.3. If A ∈ 9m
k (M;�

1/2
k,b ) then (λ ∂λ)N A is also a pseudodifferential operator of order m, i.e.,

(λ∂λ)
N A ∈9m

k (M;�
1/2
k,b ).

Proof. It suffices to prove this for N = 1 and use induction. If λ ∂λ hits the function a in (2-4), then
a is still a symbol of order m in the (µ, ν) variables, smooth in (λ, ρ, y) and supported where ρ ≤ c.
(Notice that ρ = x/λ depends on λ as well.) On the other hand, if λ ∂λ hits the phase, this is the same as
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ν ∂ν +µ∂µ hitting the phase, as it is homogeneous of degree 1 in both λ and (ν, µ). Integrating by parts,
we obtain another symbol ã of order m. This completes the proof. �

Lemma 2.4. If A = A(z, z′, λ) |dg dg′|1/2 ∈9m
k (M;�

1/2
k,b ) and m <−n, then A satisfies a kernel bound

|A(z, z′, λ)| ≤ λn(1+ λd(z, z′))−N (2-5)

for any N ∈ N.

Proof. If the order m is less than −n, then the integral (2-4) is absolutely convergent, showing that the
kernel of λ−n A is uniformly bounded. Next, we note that the differential operator

1− ∂2
ν −

∑
i ∂

2
µi

1+ λ2(x−2(σ − 1)2+ x−2|y− y′|2)

leaves the exponential in (2-4) invariant. By applying this N times to the exponential and then integrating
by parts, we see that the integral is bounded by

CN
(
1+ λ2(x−2(σ − 1)2+ x−2

|y− y′|2)
)−N

for any N . Finally, as in the proof of Lemma 2.1, the square of the Riemannian distance on M is
comparable to

(σ − 1)2

x2 +
|y− y′|2

x2 ,

so the integral is bounded by CN (1+ λ d(z, z′))−N for any N . �

Corollary 2.5. If A ∈ 9m
k (M;�

1/2
k,b ) and m < −n, then A is bounded L2(M◦)→ L2(M◦) uniformly

as λ→ 0. The same is true for (λ ∂λ)N A for any N.

Proof. This follows from the kernel bound in Lemma 2.4, the volume estimate crn
≤ V (z, r)≤ Crn for

the volume V (z, r) of the ball of radius r centred at z ∈ M◦, and Schur’s test. �

2D. Low energy partition of the identity. Recall that, in Proposition 1.5, we employ a partition of the
identity. We use essentially the same partition of the identity as in [Guillarmou et al. 2013b]. To define it,
we specify the symbols of these operators, which must form a partition of unity on the phase space. We
point out that, in our approach, it is crucial to be able to localize in phase space (and hence necessary to
use pseudodifferential operators) in order to eliminate difficulties with conjugate points.

For low energies and for a given small positive ε, this partition is defined as follows. We first form an
open cover G0 ∪ · · · ∪G Nl of the phase space scT ∗M . The set G0 consists of all points away from the
boundary, that is, the points with x > ε. The next set G1 consists of points near the boundary, say x < 2ε,
but away from the characteristic variety, that is, satisfying |µ|2h+ ν

2 < 1
2 or |µ|2h+ ν

2 > 3
2 . We then break

up the set
{

x < 2ε, |µ|2h+ν
2
∈
[1

4 , 2
]}

into a finite number of sets G2, . . . ,G Nl such that, for each set G j ,
the value of ν lies in some interval of length ≤ δ, where δ is taken to be sufficiently small.

We then form a partition of unity subordinate to this open cover and take these as the principal symbols
of pseudodifferential operators Qlow

j in the class 90
k (M;�

1/2
k,b ) described above. More precisely, we

choose a function χ ∈ C∞(R) of a real variable with χ(t) = 0 for t ≤ ε and χ(t) = 1 for t ≥ 2ε. We
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define Qlow
0 (λ) to be multiplication by the function 1−χ(ρ) (recall ρ = x/λ). Next, we choose Q′1(λ)

such that its (full) symbol is equal to 0 for 1
2 ≤ |µ|

2
h + ν

2
≤

3
2 and equal to 1 outside 1

4 ≤ |µ|
2
h + ν

2
≤ 2.

Then we define Qlow
1 = χ(ρ)Q

′

1. This means that the symbol of Id−Qlow
0 −Qlow

1 is supported where ρ is
small and close to the characteristic variety |µ|2h + ν

2
= 1. We then decompose this as Qlow

2 + · · ·+ Qlow
Nl

so that the symbol of each Qlow
j , j ≥ 2 in supported in G j , hence supported where ν is contained in an

interval of length ≤ δ.

2E. Localized spectral measure. The main result of [Guillarmou et al. 2013a] was that the spectral
measure for the Laplacian on an asymptotically conic manifold is, for low energies, a Legendre dis-
tribution associated to a pair of Legendre submanifolds, the “propagating Legendrian” Lbf and the
“incoming/outgoing Legendrian” L]. We now explain very briefly what this means. We first have to
introduce the contact manifold in which these Legendre submanifolds live. Consider the bundle 8T ∗M2

b ,
obtained by lifting scT ∗M× scT ∗M (viewed as a bundle over M2) to M2

b . This bundle carries a symplectic
structure, but the symplectic form degenerates at the boundary. Nevertheless, it determines a contact
structure on this bundle restricted to the boundary hypersurface bf,3 which we denote by 8T ∗bf M

2
b . We give

this contact structure in local coordinates (y, y′, σ, µ,µ′, ν, ν ′) for 8T ∗bf M
2
b , where σ = x/x ′, (µ, ν) are

as in (2-2) and, as above, the unprimed/primed coordinates are lifted from the left/right copies of scT ∗M .
In these coordinates, the contact form has an expression

dν−µ · dy+ σ(dν ′−µ′ · dy′).

A Legendrian submanifold is, by definition, an 2n−1-dimensional submanifold of this 4n−1-dimensional
space on which the contact form vanishes. The Legendre submanifold L] is easy to define: it is the
submanifold

{(y, y′, σ, µ,µ′, ν, ν ′) | µ= µ′ = 0, ν = ν ′ = 1}.

The other Legendre submanifold, Lbf, is more interesting. It encodes the geodesic flow on the cone
over (∂M, h) where h = h(0) is the metric in (1-4). Let (y, η) be an element of the cosphere bundle
S∗∂M of T ∗∂M and let γ (s)= (y(s), η(s)) be the geodesic with (y(0), η(0))= (y, η). Then Lbf is given
by the union of the leaves γ 2

= γ 2(y, η),

γ 2
= clos

{(
y, y′, σ =

x
x ′
, µ, µ′, ν, ν ′

) ∣∣∣∣ y= y(s), y′= y(s ′), µ= η(s) sin s, µ′=−η(s ′) sin s ′,

ν =− cos s, ν ′ = cos s ′, σ =
sin s
sin s ′

, (s, s ′) ∈ (0, π)2
}

(2-6)

as (y, η) ranges over S∗∂M . We note that this closure includes the sets

T± = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ ∈ R, µ= µ′ = 0, ν =−ν ′ =±1}, (2-7)

corresponding to the limits s, s ′→ 0 and s, s ′→ π .

3We denote the new boundary hypersurface of M2
b , created by the blow-up (2-1), by bf. This is slightly at odds with the way

bf is used as a boundary hypersurface of M2
k,b — here it really corresponds to taking a section of M2

k,b at fixed λ∗ > 0 — but
hopefully no confusion will be caused.
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The statement that the spectral measure is a Legendre distribution with respect to the pair of Legendre
submanifolds (Lbf, L]) means that the Schwartz kernel of the spectral measure can be expressed as
an oscillatory function or oscillatory integral, with a phase function that “parametrizes” the Legendre
submanifold. We now state what “parametrizes” means, first in the case of a Legendre submanifold L that
projects diffeomorphically to the base bf, in the sense that the projection from 8T ∗bf M

2
b to bf restricts to a

(local) diffeomorphism from L to bf. In this case, there exists a function 8 : bf→ R such that (locally)
L is the graph of the differential of the function 8/x or, in coordinates,

L={µ=dy8(y, y′, σ ), µ′=σ−1 dy′8(y, y′, σ ), ν=8(y, y′, σ )−σ dσ8(y, y′, σ ), ν ′=dσ8(y, y′, σ )}.

We say that 8, or more accurately 8/x , (locally) parametrizes L . In the general case, there always exist
(nonunique) functions8(y, y′, σ, v), depending on extra variables (v1, . . . , vk), that locally parametrize L
in the sense that

L =
{
µ= dy8(y, y′, σ, v), µ′ = σ−1 dy′8(y, y′, σ, v),

ν =8(y, y′, σ, v)− σ dσ8(y, y′, σ, v), ν ′ = dσ8(y, y′, σ, v)
∣∣ dv8= 0

}
. (2-8)

Observe that, if we take the union of the points of (2-6) with s = s ′, over all (y, η) ∈ S∗∂M , then we
get a codimension-1 submanifold of Lbf, which is also a codimension-1 submanifold of the conormal
bundle of the diagonal N ∗ diagb, given by

N ∗ diagb = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ = 1, µ=−µ′, ν =−ν ′}.

Claim. In a deleted neighbourhood of N ∗ diagb, Lbf projects in a 2:1 fashion to the base bf, i.e.,
Lbf
\ N ∗ diagb consists of 2 sheets, each of which projects diffeomorphically to the base bf, that are

parametrized by the function ±dconic, where dconic is the distance function on the cone over ∂M.

The conic metric dconic has an explicit expression when d∂M(y, y′) < π . Writing r = 1/x and
r ′ = 1/x ′ = σ/x , it takes the form

dconic(y, y′, r, r ′)=
√

r2+ r ′2− 2rr ′ cos d∂M(y, y′)= r
√

1+ σ 2− 2σ cos d∂M(y, y′). (2-9)

Note that dconic(y, y′, r, r ′)/r indeed has the form8(y, y′, σ )/x and is smooth provided that cos d∂M(y, y′)
is smooth, i.e., d∂M(y, y′) is less than the injectivity radius on (∂M, h).

We next explain why we consider the localized (or more precisely microlocalized) spectral measure,
by which we mean any of the operators Q(λ) d E√H(λ) Q(λ)∗, where Q(λ) is a member of our partition
of the identity. The reason is, as shown in [Guillarmou et al. 2013b, Section 5], these terms are also
Legendre distributions, but associated only to part of the Legendrian, namely to the subset

{(y, y′, σ, µ,µ′, ν, ν ′) ∈ L | (y, µ, ν), (y′, µ′, ν ′) ∈WF′(Q)},

where WF′(Q) is the support of the symbol4 of Q. This is localized close to N ∗ diagb ∪T± (that is, those
points in (2-6) corresponding to s = s ′) if WF′(Q) is well localized. We can then use the Claim above to

4The relevant symbol here is the scattering symbol, or boundary symbol, in the scattering calculus, which is a function
on 8T ∗bf M2

b ; see [Melrose 1994].
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write this piece of the spectral measure using the conic distance function, except near N ∗ diagb itself,
where we can express it as an oscillatory integral using a slightly more complicated form of phase function
(as in Proposition 2.6(ii)).

We summarize the information we need from [Guillarmou et al. 2013a; 2013b] concerning the spectral
measure:

Proposition 2.6. Let Qlow
j (λ) be a member of the partition of the identity defined above. Let η > 0 be

given. Then, for j , k = 0, 1, Qlow
j (λ) d E√H(λ) Qlow

k (λ)∗ satisfies the estimates on the right-hand side
of (1-16) and Qlow

j (λ) d E√H(λ) Qlow
j (λ)∗, j ≥ 2, can be written as a finite sum of terms of two types:

(i) An oscillatory function of the form

λn−1e±iλ dconic(y,y′,1/x,σ/x)a(y, y′, σ, x, λ), (2-10)

where a is supported in x , x ′ ≤ η and d∂M(y, y′)≤ η and satisfies estimate (1-15).

(ii) An oscillatory integral of the form

λn−1
∫

Rn−1
ei8(y,y′,σ,v)/ρ ã(y, y′, σ, v, ρ, λ) dv, (2-11)

where ã is smooth in all its arguments and supported in a small neighbourhood of a point (y0, y0,1,v0,0,0)
such that dv8(y0, y0, 1, v0)= 0. Moreover, writing w = (w1, . . . , wn) for a set of coordinates defining
diagb ⊂ M2

k,b, i.e., w = (y− y′, σ −1) and v = (v2, . . . , vn), one can rotate in the w variables so that the
function 8=8(y, w, v) has the properties

dv j8= w j + O(w1), (2-12a)

8=

n∑
j=2

v j dv j8+ O(w1), (2-12b)

d2
v jvk

8= w1 A jk, (2-12c)

8

x
=±dconic

(
y, y′, 1

x
,
σ

x

)
if dv8= 0, (2-12d)

where A jk is nondegenerate for all (y, w, v) in the support of b. Here dconic is as in (2-9).

Proof. The statement about Qlow
j (λ) d E√H(λ) Qlow

k (λ)∗ for j , k = 0, 1, follows from the microlocal
support estimates in [Guillarmou et al. 2013b, Section 5]. In fact, Qlow

0 (λ) has empty wavefront set, while
Qlow

1 (λ) has wavefront set disjoint from the characteristic variety of H−λ2, which contains the microlocal
support of d E√H(λ). It follows that the operators Qlow

j (λ) d E√H(λ) Qlow
k (λ)∗, for j , k = 0, 1, vanish

rapidly at bf, lb and rb. Also, as shown in [Guillarmou et al. 2013a], d E√H(λ) is polyhomogeneous at
the other boundary hypersurfaces of M2

k,b, namely zf, lb0, rb0 and bf0, vanishing to order n− 1 at each
of these faces. Since the Qlow

j (λ) are pseudodifferential operators of order zero, the same is true of the
composition Qlow

j (λ) d E√H(λ) Qlow
k (λ)∗ for j , k = 0, 1 (see [Guillarmou et al. 2013b, Lemma 5.2]). To

translate this into an estimate, we observe that λ is a product of boundary defining functions for zf, lb0, rb0
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and bf0, while a product of boundary defining functions for bf, lb and rb is O((1+ λd(z, z′))−1). The
estimate (1-16) follows directly.

We next discuss (i) and (ii). Everything in this statement has been proved in [Guillarmou et al. 2013b,
Lemma 6.5 and Proposition 6.2] except for the statement that 8 is given by the conic distance function
when dv8 = 0. To see this, we use the explicit formula (2-9) for the conic distance function, the
relation (2-8) and the description of the Legendre submanifold Lbf in (2-6). From (2-8), it follows that
8= ν+ σν ′. Writing ν and ν ′ in terms of s and s ′, using (2-6), we see that

dv8= 0 =⇒ 8=− cos s+ σ cos s ′.

If we square this then we get

dv8= 0 =⇒ 82
= cos2 s+ σ 2 cos2 s ′− 2σ cos s cos s ′.

We can write the right-hand side in the form

1− sin2 s+ σ 2(1− sin2 s ′)− 2σ(cos(s− s ′)− sin s sin s ′).

Noting that sin2 s+ σ 2 sin2 s ′ = 2σ sin s sin s ′, using the expression for σ in (2-6), we see that

dv8= 0 =⇒ 82
= 1+ σ 2

− 2σ cos d∂M(y, y′). �

Remark 2.7. It might help to give an example to show how (2-12) works. In Euclidean space, the
Schwartz kernel of the spectral measure d E√1(λ) of

√
1 is given by

d E√1(λ; z, z′)=
λn−1

(2π)n

∫
Sn−1

eiλ(z−z′)·ζ dζ

and one can find the phase function (z − z′) · ζ , where ζ ∈ Sn−1. Locally near ζ = (1, 0, . . . , 0), we
can write ζ = (

√
1− |v|2, v2, . . . , vn). Write x = |z|−1 and w = (z− z′)/|z|. Then the phase function

becomes

8= w1

√
1− v2

2 − · · ·− v
2
n +

n∑
j=2

w jv j ,

and we can check that properties (2-12) hold in this case.

3. Spectral measure and partition of the identity at high energies

In the previous section we recalled the partition of the identity operator and the structure of the localized
spectral measure for low energy, i.e., 0< λ ≤ λ0. We now do the same for high energies, λ ∈ [λ0,∞).
For the sake of convenience, we introduce the semiclassical parameter h = λ−1 (which should not be
confused with h in the metric g), so that we pay our attention to the range h ∈ (0, h0], where h0 = λ

−1
0 .

The spectral measure of the operator H for high energy was constructed in [Hassell and Wunsch 2008]
on the high energy space X . Our main task is to adapt each of the main results in the previous section to
the high energy setting.
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3A. High energy space. The high energy X , introduced in [Hassell and Wunsch 2008], is defined by
X = [0, h0] × M2

b , where M2
b = [M

2
; ∂M × ∂M] is as in (2-1). We label the boundary hypersurfaces

in X by rb, lb, bf and mf, according as they are the lifts to X of the faces

[0, h0]×M × ∂M, [0, h0]× ∂M ×M, [0, h0]× ∂M × ∂M or {0}×M2

of [0, h0]×M2, respectively. The labelling of boundary hypersurfaces is consistent with the notations
defined in the low energy space, since when λ ∈ (C−1,C) (where λ= 1/h) the spaces both have the form
(C−1,C)×M2

b . Recall σ = x/x ′; we can use coordinates (y, y′, σ, x ′, h) near bf and away from rb, and
coordinates (y, y′, σ−1, x, h) near bf and away from lb. We use coordinates (z, z′, h) away from bf, rb
and lb.

3B. Semiclassical scattering pseudodifferential operators. We recall the space 9m,l,k
sc,h (M;

s8�1/2) of
semiclassical scattering pseudodifferential operators, introduced by Wunsch and Zworski [2000] based on
Melrose’s scattering calculus [1994]. Such operators are indexed by the differential order m, the boundary
order l and the semiclassical order k. One can express this space in terms of the space with l = k = 0 by

9
m,l,k
sc,h (M;

s8�1/2)= x lh−k9
m,0,0
sc,h (M; s8�1/2).

The Schwartz kernel of semiclassical pseudodifferential operator A ∈ 9m,0,0
sc,h (M; s8�1/2) takes the

following form on X : near the diagonal diagb ⊂ M2
b and away from bf, it takes the form

h−n
∫

ei(z−z′)·ζ/ha(z, ζ, h) dζ |dg dg′|1/2, n = dim M, (3-1)

while near the boundary of the diagonal, diagb ∩ bf, it takes the form

h−n
∫

ei((y−y′)·µ+(σ−1)ν)/(hx)a(x, y, µ, ν, h) dµ dν |dg dg′|1/2 (3-2)

Here, a is a symbol of order m in the variable ζ or (η, ν) variables and is smooth in the remaining
variables. Finally, away from diagb, the kernel of A is smooth and vanishes to all orders at bf, lb, rb
and mf.

Lemma 3.1. If A ∈9m,0,0
sc,h (M; s8�1/2) then (h ∂h)

N A is also a pseudodifferential operator of order m,
i.e., (h ∂h)

N A ∈9m,0,0
sc,h (M; s8�1/2).

Proof. Away from the diagonal, the result is trivial, as the kernel is smooth and O(h∞). So, consider
the representations (3-1)–(3-2). The proof is parallel to the argument in Lemma 2.3. By induction, we
only need to consider N = 1. If h∂h hits the function a in (3-2), then a is still a symbol of order m in the
(η, ν) variables, smooth in (h, x, y) and supported in xh ≤ c. On the other hand, if h ∂h hits the phase,
this is the same as ν∂ν + η · ∂η hitting the phase, as it brings a factor which is homogeneous of degree −1
in h and degree 1 in (ν, η). Integrating by parts, we obtain another symbol ã of order m. The argument
for (3-1) is analogous. This completes the proof. �

Lemma 3.2. If A= A(z, z′, h) |dg dg′|1/2 ∈9m,0,0
sc,h (M; s8�1/2) and m <−n, then A satisfies the kernel

bound (2-5) (with λ= h−1) for any N ∈ N.
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Proof. This estimate is straightforward away from the diagonal, as the Schwartz kernel of A vanishes
rapidly at all boundaries away from the diagonal. This follows from the nonvanishing of the differential
of the phase away from the diagonal. On the other hand, the right-hand side is a positive multiple of
hN−nρN

lbρ
N
bfρ

N
rb away from the diagonal.

Near the diagonal, we have the representations (3-1)–(3-2). The argument in the case (3-2) is the same
as in Lemma 2.4. In the interior case (3-1) we note that the differential operator

1+1ζ
1+ h−2|z− z′|2

leaves the exponential in (3-2) invariant. Applying this differential operator N times and integrating by
parts, we see that the integral is bounded by

CN (1+ h−2
|z− z′|2)−N

for any N . In the interior, the square of the Riemannian distance on M is comparable to |z− z′|2, so the
integral is bounded by CN (1+ h−1d(z, z′))−N for any N . �

Corollary 3.3. If A ∈9m,0,0
sc,h (M; s8�1/2) and m <−n, then A is bounded L2(M◦)→ L2(M◦) uniformly

as h→ 0. The same is true for (h∂h)
N A for any N.

Proof. This follows from the kernel bound (2-5) and Schur’s test, since there is a uniform volume estimate
crn
≤ V (z, r)≤ Crn for the volume V (z, r) of the ball of radius r centred at z ∈ M◦. �

3C. High energy partition of the identity. We now describe the partition of the identity used in Proposition
1.5 for high energies. Similar to before, these operators are obtained by quantizing symbols which form
a partition of unity (independent of h) in the scattering cotangent bundle scT ∗M . We modify the open
cover G0, . . . ,G Nl from Section 2D by replacing G0 by a smaller set G̃0 given by the points satisfying
x > ε and |ζ |2g ≤

1
2 or |ζ |2g ≥

3
2 , i.e., the set G̃0 is disjoint from the characteristic variety. Then we cover

the compact set
{

x ≥ ε, |ζ |2g ∈
[ 1

4 , 2
]}

, which contains G0 \ G̃0, by a finite number G Nl+1, . . . ,G Nh of
open sets of sufficiently small diameter.

As before, we form a partition of unity subordinate to this refined open cover and take these as the
principal symbols of operators Qhigh

j in the class 90,0,0
sc,h (M;

s8�1/2) microsupported in G j (or G̃0 in the
case j = 0). We will assume that Qhigh

j (λ)= Qlow
j (λ) for intermediate energies λ∼ 1 and 1≤ j ≤ Nl .

3D. Localized spectral measure. Hassell and Wunsch [2008] showed that the spectral measure for the
Laplacian on this setting is, for high energy, a Legendre distribution associated to a pair of Legendre
submanifolds L and L]. We briefly explain the meaning of this statement. The Legendre submanifold L]

has already been defined in Section 2E; it lives in the contact manifold 8T ∗bf M
2
b , living over the boundary

hypersurface bf. The new Legendre submanifold L encodes the geodesic flow on T ∗M◦. It is a submanifold
of R×8T ∗M2

b , which has a natural contact form, described as follows. We write α for the contact form
on scT ∗M induced by the inclusion of T ∗M◦ into scT ∗M , and α and α′ for the lift of this contact form to
8T ∗M2

b by the left and right projections, respectively. Writing τ for the coordinate on the R-factor in
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R×8T ∗M2
b , the contact form on this space takes the form

α+α′− dτ.

Then L is given as follows: Let 6 denote the characteristic variety of h21g−1, given in local coordinates
by {|ζ |g(z) = 1} in the interior or {|µ|2h(x,y)+ ν

2
= 1} near the boundary. Then L is given in terms of the

geodesic flow G t by
L = {(q, q ′, τ ) | q, q ′ ∈6, q = Gτ (q ′)} (3-3)

(this follows from [Guillarmou et al. 2013b, Equation 7.9] and the discussion following). In R×8T ∗M2
b ,

L can be restricted to R× 8T ∗bf M
2
b , i.e., restricted to lie over bf, then, forgetting the τ component, we

obtain the Legendre submanifold Lbf from Section 2E.5

As in Section 2E, the statement that an operator is Legendrian with respect to L means that its Schwartz
kernel can be expressed as an oscillatory function or oscillatory integral using a phase function that locally
parametrizes L . In the interior of X , this means a function 9(z, z′, v) such that, locally, using coordinates
(z, ζ, z′, ζ ′, τ ) on R×8T ∗M2

b , we have

L = {(z, dz9, z′, dz′9,9) | dv9 = 0}.

In particular, τ is equal to the value of the phase function when dv9 = 0. If there are no v variables,
the condition dv9 = 0 is omitted and then L is (essentially) the graph of the differential of 9. Near the
boundary bf, we use local coordinates (x, y, y′, σ, µ, ν, µ′, ν ′, τ ) and then a local parametrization of L
is given by a function 9(x, y, y′, σ, v)/x such that

L = {(x, y, y′, σ, dy9,9 − x dx9,−σ dσ9, σ−1 dy′9, dσ9,9) | dv9 = 0}.

We give some consequences of this result for the localized spectral measure needed in this pa-
per. As in the low energy case, the localized spectral measure refers to any operator of the form
Qhigh(λ) d E√H(λ) Qhigh(λ)∗ where Qhigh(λ) is a member of the partition of the identity operator from
Section 3C. As above, we write h = 1/λ.

Proposition 3.4. Let Qhigh
j (λ) be a member of the partition of the identity defined above. Then, for

j , k = 0, 1, the operator Qhigh
j (λ) d E√H(λ) Qhigh

k (λ)∗ satisfies the estimates on the right-hand side of
(1-16) and Qhigh

j (λ) d E√H(λ) Qhigh
j (λ)∗, j ≥ 2, can be written as a finite sum of terms of the following

three types:

(i) An oscillatory function of the form

h−(n−1)e±id(z,z′)/h ã(z, z′, h), (3-4)

where ã satisfies estimate (1-15).

(ii) An oscillatory integral supported in x , x ′ ≥ ε of the form

h−(n−1)
∫

Rn−1
ei9(z,z′,v)/hb(z, z′, v, h) dv, (3-5)

5The relation between the various Legendre submanifolds is explained in detail in [Hassell and Wunsch 2008, Part 1].
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where b is smooth in all its arguments and supported in a small neighbourhood of a point (z0, z0, v0, 0)
such that dv9(z0, z0, v0)= 0. Moreover, writing w = z− z′ and v = (v2, . . . , vn), one can rotate in the
w variables so that the function 9 =9(z, w, v) has the properties

dv j9 = w j + O(w1), (3-6a)

9 =

n∑
j=2

v j dv j9 + O(w1), (3-6b)

d2
v jvk

9 = w1 A jk, (3-6c)

9(z, z′, v)=±d(z, z′) if dv9 = 0, (3-6d)

where A jk is nondegenerate at (z0, z0, v0) and d(z, z′) is the Riemannian distance function on M◦×M◦.

(iii) An oscillatory integral supported near x = x ′ = 0 of the form

h−(n−1)
∫

Rn−1
ei9(y,y′,σ,x,v)/(hx)b(y, y′, σ, x, v, h) dv, (3-7)

where b is smooth in all its arguments and supported in a small neighbourhood of a point (y0, y0,1,0, v0,0)
such that dv9(y0, y0, 1, v0)= 0. Moreover, writing w = (w1, . . . , wn) for a set of coordinates defining
diagb ⊂ M2

b , i.e., w = (y− y′, σ − 1) and v = (v2, . . . , vn), one can rotate in the w variables so that the
function 9 =9(y, w, x, v) has the properties

dv j9 = w j + O(w1), (3-8a)

9 =

n∑
j=2

v j dv j9 + O(w1), (3-8b)

d2
v jvk

9 = w1 A jk, (3-8c)

9/x =±d(z, z′) if dv9 = 0, (3-8d)

where A jk is nondegenerate at (y0, y0, 1, 0, v0, 0).

Remark 3.5. Since λ= 1/h, this is an analogue of Proposition 2.6 for the case X = [0, h0]×M2
b .

Proof. The proof is analogous to the proof of Proposition 2.6, with the main difference being that the
computation takes place over the whole of M2

b (including the interior), not just at the boundary as in
the low energy case. We prove (ii), i.e., we work in the interior of M2

b , using coordinates (z, z′), with
z a coordinate on the left copy of M◦ and z′ on the right copy. The proof for (iii) is only notationally
different.

As in the low energy case, the Legendre submanifold L has the property that it intersects N ∗ diagb in
a codimension-1 submanifold and, in a deleted neighbourhood of N ∗ diagb, it projects in a 2:1 fashion
down to the base, mf= M2

b , so that the two sheets are parametrized by the phase functions ±d(z, z′).
We now apply [Guillarmou et al. 2013b, Lemma 7.6 and (ii) of Lemma 7.7]. This tells us that, for any

point in the microlocal support of Qhigh
j (λ) d E√H(λ) Qhigh

j (λ)∗, either there is a neighbourhood in which
L projects diffeomorphically to the base M2

b or the point lies at the conormal bundle to the diagonal, i.e.,
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z = z′ and ζ =−ζ ′. In the former case, the function ±d(z, z′) can be used directly as the phase function
and we obtain the statement (i) in the proposition. In the latter case, a phase function 9 depending on
n− 1 variables v2, . . . , vn can be constructed following the general approach of [Guillarmou et al. 2013b,
Proposition 7.5]. Since this was not written down explicitly in the coordinates (z, z′) valid in the interior
of M2

b , we sketch briefly how this is done. It follows from the proof of Lemma 7.6 of [Guillarmou et al.
2013b] that we can rotate coordinates so that w1, ζ2, . . . , ζn , z′ give coordinates on L locally. (The proof
of Lemma 7.6 shows that one can take (τ, ζ2, . . . , ζn, z′) but, since it is also shown that ∂z1/∂τ 6= 0, one
can substitute z1 for τ and then substitute w1 = z1− z′1 for z1.) One can therefore express the functions
w2, . . . , wn and τ on L as smooth functions W j (w1, ζ2, . . . , ζn, z′) and T (w1, ζ2, . . . , ζn, z′) of these
coordinates. Then the function

9(w, z′, v)=
n∑

j=2

(w j −W j (w1, ζ2, . . . , ζn, z′))v j + T (w1, ζ2, . . . , ζn, z′)

satisfies the requirements of (3-6) and parametrizes L locally. This is shown by adapting the argument
of [Guillarmou et al. 2013b, Proof of Proposition 6.2] in a straightforward way (which itself is a minor
variation on [Hörmander 1985, Theorem 21.2.18]), so we omit the details. This establishes part (iii) of
the proposition. When working close to x = x ′ = 0, we need to use coordinates as in [Guillarmou et al.
2013b, Proposition 7.5] and apply [Guillarmou et al. 2013b, Lemma 7.6 and (i) of Lemma 7.7], and we
end up with the statement in part (ii). �

Remark 3.6. The Lagrangian L is smooth up to the boundary when viewed as a submanifold in the
“scattering-fibred cotangent bundle” described in [Guillarmou et al. 2013a]. The boundary at bf is naturally
isomorphic to Lbf in Proposition 2.6. Correspondingly, we find that the distance function d(z, z′) on M2

b
satisfies

d(z, z′)− dconic

(
y, y′, 1

x
,
σ

x

)
= e(z, z′)

is a bounded function on M2
b or, more precisely, on that part of M2

b where x , x ′ ≤ η and d∂M(y, y′)≤ η
for sufficiently small η (see [Hassell et al. 2005, Lemma 9.4]). From this we see that the results of
Propositions 2.6 and 3.4 are compatible, as the factor exp (iλe(z, z′))— which is the discrepancy between
(2-10) and (3-4) and between (2-12d) and (3-6d) — can be absorbed in the symbols ã and b, respectively.

Remark 3.7. The results of this paper could be extended to long-range scattering metrics, as treated
in [Hassell et al. 2006]. However, this would require an extension of the results of [Hassell and Vasy
2001; Hassell and Wunsch 2008; Guillarmou et al. 2013a] to Lagrangian submanifolds which are only
conormal, rather than smooth, at the boundary. If this were done, then the discrepancy e(z, z′) between
the distance function and the conic distance function would no longer be smooth or even bounded, but
rather conormal at the boundary with a bound of the form (x + x ′)−1+ε at the boundary of M2

b , i.e., a
bit smaller than the distance functions themselves. In this case, the correct description of the localized
spectral measure would be with the true distance function d(z, z′) as phase function, rather than (2-10),
which is only true in the short-range case.
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The assumption on the potential could also be weakened; for example, one could assume that V only
decays as x2+ε as x→ 0, and is only conormal, rather than smooth, as x→ 0, instead of (1-5). However,
if one assumes only O(x2) decay then it is not clear whether Theorem 1.1 will hold. For example,
if V ∈ x2C∞(M) and V0 := x−2V |∂M takes values in the range

(
−

1
4(n− 2)2, 0

)
, then it follows from

[Guillarmou et al. 2013a, Corollary 1.5] that the L1
→ L∞ norm of the propagator is at least a constant

times t−(ν0+1) as t→∞, where ν2
0 is the smallest eigenvalue of 1∂M +V0+

1
4(n− 2)2. Under the above

assumption on the range of V0, we see that ν0 <
1
2 n− 1. This implies that the dispersive estimate (1-12)

will no longer be valid as |t− s|→∞. However, the implications of that for the global-in-time Strichartz
estimates are not clear; in the case of inverse-square potentials on Rn , global-in-time Strichartz estimates
hold despite the fact that the dispersive estimate is not known to hold for negative inverse-square potentials
[Burq et al. 2004b] (for positive inverse-square potentials, the dispersive estimate is proved in [Fanelli
et al. 2013]).

The problem, however, is only with the long-time Strichartz estimates; for estimates on a finite time
interval, the decay condition on V as x→ 0 could be weakened considerably.

4. Proof of Proposition 1.5

We now prove Proposition 1.5. We define our partition of unity Q j by combining the low-energy and
high-energy partitions. We choose a cutoff function χ(λ) supported in [0, 2] such that 1−χ is supported
in [1,∞) and define

Q1(λ)= χ(λ)(Qlow
0 + Qlow

1 )+ (1−χ(λ))(Qhigh
0 + Qhigh

1 ),

Q j (λ)= χ(λ)Qlow
j + (1−χ(λ))Q

high
j for 2≤ j ≤ Nl,

Q j (λ)= (1−χ(λ))Q
high
j for Nl + 1≤ j ≤ N .

(4-1)

We first note that the term with Q1(λ) satisfies (1-14) (with only the “b” term present) and (1-16),
according to Propositions 2.6 and 3.4. (In the case of low energies we also need to use Remark 3.6, which
tells us that we can replace the distance function by the conic distance function dconic in (1-14) without
affecting the estimates on the amplitudes a±.)

Next we prove the proposition for low energies, i.e., for λ≤ 2, and j ≥ 2. Consider the second type
of representation, (2-11), in Proposition 2.6. We break the estimate into various cases. We first observe
that estimates of the form (1-15) and (1-16) are unaffected by multiplication by a cutoff function of the
form χ(λd(z, z′)), where χ ∈ C∞c (R). Therefore, we may treat the cases λd(z, z′). 1 and λd(z, z′)& 1
separately. Consider first the case λd(z, z′). 1 or, equivalently, |w|. ρ. In this case, we show that (2-11)
has the form (1-14), where only the “b” term is present, satisfying (1-16). Thus, we need to show that

(λ ∂λ)
α

∫
Rn−1

eiλ8(y,w,v)/x ã
(
λ,

x
λ
, y, w1, v

)
dv

is uniformly bounded. For α = 0 this is obvious. So consider the effect of applying λ ∂λ. This is
harmless when it hits ã. When it hits the phase, it brings down a factor iλ8/x . We have λ8/x =8/ρ =
v · dv8/ρ+ O(w1/ρ) and, since |w|. ρ, the O(w1/ρ) is harmless. To treat the v · dv8/ρ term, we can
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write, using (2-12b),
v · dv8
ρ

ei8/ρ
=−iv · dvei8/ρ,

and integrating by parts we see that this term is O(1) after integration. Repeated applications of λ∂λ are
treated similarly.

Second, suppose that |w| ≥ Cρ for some large C but that |w1| ≤ ρ. For large enough C , this means
that dv j8 6= 0 for some j ≥ 2 since, by (2-12a), we have dv j8=w j − O(w1). So, by choosing j so that
|w j | is maximal and then C large enough, we have |dv j8| ≥ c|w|. Then we can write

ei8/ρ
=

(
ρ dv j

i dv j8

)N

ei8/ρ

and integrate by parts. Each integration by parts gains us a factor of ρ/|w|. Thus we can estimate (2-11)
by (1+ |w|/ρ)−K

= (1+ λd(z, z′))−K for any K . Estimating the terms for α > 0 is done just as in the
first case above.

Third, suppose that |w| ≥ C |w1| for some large C and that |w1| ≥ ρ. Then we can integrate by parts
and gain any number of factors of (1+ λd(z, z′))−1 as in the second case above.

Finally we come to the case where |w1| ≥ ρ and |w1| is comparable to |w|. In this case, we have
removed a neighbourhood of N ∗ diagb from the microlocal support of the localized spectral measure. As
discussed in Section 2, in this region the Lagrangian Lbf is a union of two sheets, each of which projects
diffeomorphically to the base bf and is parametrized by the phase function ±dconic (in terms of the phase
function 8 as in (2-11)–(2-12), this simply corresponds to the sign of w1). We can thus split this case
into two parts, according to the sign of w1, which give rise to the “±” terms in (1-14).

In this case, the key is to exploit property (2-12c). Define

8̃(x, y, w, v)= |w1|
−1(8(y, w, v)∓ xd(z, z′)) (4-2)

and let ω = |w1|/ρ; then we need to estimate

λα ∂αλ a(λ, z, z′)=
∑

β+γ=α

α!

β!γ !
ωβ
∫

Rn−1
eiω8̃(x,y,w,v)8̃β(λγ ∂

γ

λ ã)(λ, ρ, y, w1, v) dv.

Let b̃ = λγ ∂γλ ã; then |∂γλ b̃| ≤ Cγλ−γ . Thus, noting ω ≥ 1, it suffices to show that, for any 0≤ β ≤ α,∣∣∣∣∫
Rn−1

eiω8̃(x,y,w,v)(ω8̃)β b̃(λ, ρ, y, w1, v) dv
∣∣∣∣≤ Cω−(n−1)/2. (4-3)

To proceed, we fix (x, y, w) with w 6= 0 (and hence w1 6= 0 due to our assumption that |w1| is comparable
to |w|). We use a cutoff function ϒ to divide the v integral into two parts: one on the support of ϒ , in
which |dv8̃| ≥ 1

2 ε̃, and the other on the support of 1−ϒ , in which |dv8̃| ≤ ε̃. On the support of ϒ , we
integrate by parts in v and gain any power of ω−1, proving (4-3). On the support of 1−ϒ , we make the
variable change

(v2, . . . , vn)→ (θ2, . . . , θn), θi = dvi 8̃, i = 2, . . . , n.
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Note that, by property (2-12c),
∂θ j

∂vk
= d2

v jvk
8̃=±A jk .

The nondegeneracy of A jk shows that this change of variables is locally nonsingular provided ε̃ is
sufficiently small. Thus, for each point v in the support of 1−ϒ , there is a neighbourhood in which we
can change variables to θ as above. Using the compactness of the support of b in (2-11), we see that there
are a finite number of neighbourhoods covering the intersection of the support of ϒ and the v-support
of b. For simplicity of exposition, we assume that there is only one such neighbourhood U below.

Let Bδ := {θ : |θ | ≤ δ} and choose a C∞ function χBδ
(θ) which equals 1 on the set Bδ but equals 0

outside B2δ, with bounds on the derivatives given by

|∇
( j)
θ χBδ

(θ)| ≤ Cδ− j .

Here δ is a parameter to be chosen later (depending on ω). Consider the integral (4-3) after changing
variables and with the cutoff function χBδ

(θ) inserted (note that 1−ϒ = 1 on the support of χBδ
(θ),

provided δ ≤ 1
2 ε̃): ∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)χBδ

(θ)
dθ

|A−1(y, w, θ)|

∣∣∣∣.
Using property (2-12d), we see that 8̃= 0 when θ = 0. Also, due to our choice of θ , we have dθ8̃= 0
when θ = 0, so 8̃= O(|θ |2). Hence,∣∣∣∣ωβ∫ eiω8̃(x,y,w,θ)8̃β b̃(λ, ρ, y, w1, θ)χBδ

(θ)
dθ

|A−1(y, w, θ)|

∣∣∣∣≤ C(ωδ2)βδn−1.

It remains to treat the integral with cutoff 1−χBδ
(θ) inserted. Notice that |dθ8̃| is comparable to |θ |

since dθ8̃= 0 when θ = 0, and

d2
θi θ j
8̃=

∑
k,l

(A−1)il(A−1) jk d2
vkvl
8̃

is nondegenerate when θ = 0. We define the differential operator L by

L =
−i dθ8̃ · ∂θ
ω|dθ8̃|2

.

Then the adjoint operator is given by

tL =−L +
i
ω

(
1θ8̃

|dθ8̃|2
− 2

d2
θ j θk
8̃ dθ j 8̃ dθk 8̃

|dθ8̃|4

)
.

Since Leiω8̃
= eiω8̃, we integrate by parts N times to obtain∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ

(θ))(1−ϒ) dθ
∣∣∣∣

≤ C
∫ ∣∣(tL)N ((ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ

(θ))(1−ϒ)
)∣∣ dθ.



GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS 175

Inductively, we find that∣∣(tL)N ((ω8̃)β b̃(1−χBδ
)(1−ϒ)

)∣∣≤ Cω−N+β max{|θ |2β−2N , |θ |2β−N δ−N
}.

Choosing N large enough, we get∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−χBδ
)(1−ϒ) dθ

∣∣∣∣≤ ω−N+β
∫
|θ |≥δ

(|θ |2β−2N
+|θ |2β−N δ−N ) dθ

≤ Cω−N+βδ2β−2N δn−1.

Choose δ = ω−1/2 to balance the two parts of the integral (with χBδ
and with 1−χBδ

). We finally obtain∣∣∣∣∫ eiω8̃(x,y,w,θ)(ω8̃)β b̃(λ, ρ, y, w1, θ)(1−ϒ) dθ
∣∣∣∣≤ Cω−(n−1)/2,

which proves (4-3), as desired.
We next sketch how to prove (1-16) in the high-energy case i > Nl . In terms of Proposition 3.4,

consider a term of type (iii); it suffices to show

a(h, z, z′)= e∓id(z,z′)/h
∫

Rn−1
ei9(y,w,x,v)/(xh)b(h, x, y, w1, v) dv,

satisfies

|(h ∂h)
αa(h, z, z′)| ≤ Cα

(
1+
|w|

xh

)− n−1
2
.

Notice that λ = 1/h and 9 has the same properties (2-12a)–(2-12d) as 8. Therefore the low energy
proof works verbatim, with the argument x of 9 acting as a smooth parameter, and leads to the desired
conclusion. The proof in case (ii) works in exactly the same way, with w given by z− z′.

Remark 4.1. To illustrate this theorem, consider the case of the spectral measure on flat R3, which is

d E√1(λ)(z, z′)=
1

2π2

λ2 sin λ|z− z′|
λ|z− z′|

dλ.

We decompose this, using the cutoff function χ as in (4-1), according to the size of λ|z − z′|. Where
λ|z− z′| ≥ 1, that is, more than one wavelength from the diagonal, we split the sine factor into exponential
terms. Within O(1) wavelengths of the diagonal, however, we keep the sine factor as is, to exploit the
cancellation in the difference e+iλ|z−z′|

− e−iλ|z−z′| when λ|z− z′| is small. This gives us an expression

λ2

2π2

(
(1−χ)(λ|z− z′|)

eiλ|z−z′|

2iλ|z− z′|
− (1−χ)(λ|z− z′|)

e−iλ|z−z′|

2iλ|z− z′|
+χ(λ|z− z′|)

sin λ|z− z′|
λ|z− z′|

)
.

This is a decomposition into “±” and “b” terms as in (1-14), where the amplitudes satisfy (1-15) and (1-16).
So, we can think of the b term as the near-diagonal term and the other terms as related to the two sheets of
the Lagrangian L or Lbf, which are separated away from the diagonal. The function of the microlocalizing
operators Q j (λ) (which are not required in the case of flat Euclidean space) is to remove parts of the
Lagrangian that do not project diffeomorphically to the base.



176 ANDREW HASSELL AND JUNYONG ZHANG

5. L2 estimates

In this section, we prove L2
→ L2 estimates on microlocalized versions of the Schrödinger propagator,

using the operator partition of unity Q j described at the beginning of the previous section, based on
[Guillarmou et al. 2013b].

We begin by defining microlocalized propagators. First we give a formal definition. It is not immediately
clear that the formal definition is well defined, so our first task is to show this. We do so by showing that
each microlocalized propagator is a bounded operator on L2. This serves both to show the well-definedness
of each microlocalized propagator and to establish the L2

→ L2 estimate needed for the abstract Keel–Tao
argument.

We define, as in the introduction,

U j (t)=
∫
∞

0
ei tλ2

Q j (λ) d E√H(λ), (5-1)

where Q j is the decomposition defined in (4-1).
Our first task is to make sense of this expression. We do this by showing that each U j (t) is a bounded

operator on L2(M◦). We have:

Proposition 5.1. For each j , the integral (5-1) defining U j (t) is well defined on each finite interval and
converges on R+ in the strong operator topology to define a bounded operator on L2(M◦). Moreover, the
operator norm of U j (t) on L2(M◦) is bounded uniformly for t ∈ R. Finally, we have∑

j

U j (t)= ei t H . (5-2)

Proof. Suppose that A(λ) is a family of bounded operators on L2(M◦), compactly supported and C1

in λ ∈ (0,∞). Integrating by parts, ∫
∞

0
A(λ) d E√H(λ)

is given by

−

∫
∞

0

( d
dλ

A(λ)
)

E√H(λ) dλ.

In view of Corollaries 2.5 and 3.3, we can take A(λ) to be a smooth function of λ with compact support
in (0,∞) multiplied by ei tλ2

Q j (λ). This means that the integral (5-1) is well defined over any compact
interval in (0,∞). We need to show that the integral over the whole of R+ converges in the strong
operator topology. To do so, we introduce a dyadic partition of unity on the positive λ axis by choosing
φ ∈ C∞c

([1
2 , 2

])
, taking values in [0, 1], such that∑

m∈Z

φ

(
λ

2m

)
= 1.

We now define

U j,m(t)=−
∫
∞

0

d
dλ

(
ei tλ2

φ

(
λ

2m

)
Q j (λ)

)
E√H(λ). (5-3)
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We next show that the sum over m of the operators U j,m(t) in (5-3) is well defined. For this we use
the Cotlar–Stein lemma, which we recall here (we use the version in [Grafakos 2009, Chapter 8]):

Lemma 5.2 (Cotlar–Stein lemma). Suppose that {A j } is a sequence of bounded linear operators on a
Hilbert space H such that

‖A∗m An‖H→H ≤ (γ (m− n))2, ‖Am A∗n‖H→H ≤ (γ (m− n))2, (5-4)

where {γ (m)}m∈Z is a sequence of positive constants such that C =
∑

m∈Z γ (m)<∞. Then, for all f ∈ H ,
the sequence

∑
|m|≤N Am f converges as N→∞ to an element A f ∈ H. The operators A=

∑
m Am and

A∗ =
∑

m A∗m so defined (in the strong operator topology) satisfy

‖A‖H→H ≤ C, ‖A∗‖H→H ≤ C. (5-5)

Moreover, the operator norms of
∑

m∈J Am and
∑

m∈J A∗m are bounded by C for any finite subset J of
the integers.

We also use the following lemma:

Lemma 5.3. Suppose that Al(λ) for l = 1, 2 is a family of operators compactly supported in λ in the
open interval (0,∞) with Al(λ) and ∂λAl(λ) uniformly bounded on L2(M◦). Define

Bl =

∫
Al(λ) d E√H(λ).

Then

B1 B∗2 =
∫

A1(λ) d E√H(λ) A2(λ)
∗,

where by definition the last expression is equal to∫ (
−

d
dλ

A1(λ)

)
E√H(λ)A2(λ)− A1(λ)E√H(λ)

(
d

dλ
A2(λ)

)
. (5-6)

Proof. We compute

B1 B∗2 =
∫∫ (

d
dλ

A1(λ)

)
E√H(λ)E

√
H(µ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

=

∫∫
λ≤µ

(
d

dλ
A1(λ)

)
E√H(λ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

+

∫∫
µ≤λ

(
d

dλ
A1(λ)

)
E√H(µ)

(
d

dµ
A2(µ)

∗

)
dλ dµ

=

∫ (
d

dλ
A1(λ)

)
E√H(λ)(−A2(λ)

∗) dλ+
∫
(−A1(µ))E√H(µ)

(
d

dµ
A2(µ)

∗

)
dµ

= (5-6). (5-7)

This concludes the proof. �
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Now we show that the sum in (5-3) is well defined. We first note a simplification: since the Q j (λ) are
a partition of the identity, we have

Vm(t) :=
N∑

j=1

U j,m(t)=
∫

ei tλ2
χ(λ)φ

(
λ

2m

)
d E√H(λ),

which is clearly bounded on L2(M◦) with operator norm bounded by 1 using spectral theory. Moreover,
the sum of any subset of the Vm converges strongly to an operator with norm bounded by 1. Due to this,
we may ignore the case j = 1 and prove the L2 boundedness only for j ≥ 2.

We have, by Lemma 5.3,

U j,m(t)U j,n(t)∗ =
∫
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ) d E√H(λ) Q j (λ)

∗

= −

∫
d

dλ

(
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ)

)
E√H(λ)Q j (λ)

∗

−

∫
χ(λ)2φ

(
λ

2m

)
φ

(
λ

2n

)
Q j (λ)E√H(λ)

d
dλ

Q j (λ)
∗. (5-8)

We observe that this is independent of t and is identically zero unless |m−n| ≤ 2. When |m−n| ≤ 2, we
note that the integrand is a bounded operator on L2, with an operator bound of the form C/λ, where C is
uniform, as we see from Corollary 2.5 and the support property of φ. The integral is therefore uniformly
bounded, as we are integrating over a dyadic interval in λ.

We next consider the operators U∗j,m(0)U j,n(0), just in the case t = 0. This has an expression∫∫
E√H(λ)

d
dλ

(
φ

(
λ

2m

)
Q j (λ)

∗

)
d

dµ

(
Q j (µ)φ

(
µ

2n

))
E√H(µ) dλ dµ.

It is clear that each of these operators is uniformly bounded in m, n in operator norm. To apply Cotlar–
Stein, we show a estimate of the form C2−|m−n| for the operator norm of this term. Write Q∗j,m(λ) and
Q j,n(µ) for the operators in parentheses above. Consider first the case 2 ≤ j ≤ Nl , in which Q j has
Schwartz kernel supported near the boundary of the diagonal. For convenience of exposition, we assume
that λ, µ≤ 2 (or, equivalently, m, n ≤ 1). Then, by the construction of Q j for 2≤ j ≤ Nl (see Section 2D
and (4-1)), the scattering pseudodifferential operators Q∗j,m(λ) and Q j,n(µ) are smooth and compactly
supported in x ′/λ and x ′/µ, respectively, and are microlocally supported near the characteristic set. More
precisely, we see the composition of the two scattering pseudodifferential operators for j ≥ 2 takes the
form

Q∗j,m(λ)Q j,n(µ)=

∫
e−iλ((y−y′)·η+(σ−1)ν)/x ′eiµ((y′−y′′)·η′+(σ ′−1)ν′)/x ′

× q j,m

(
λ, y′,

x ′

λ
, η, ν

)
q j,n

(
µ, y′,

x ′

µ
, η′, ν ′

)
dx ′ dy′ dη dν dη′ dν ′,

where σ = x ′/x and σ ′ = x ′/x ′′, and q j,m and q j,n are smooth and polyhomogeneous in λ and µ and
compactly supported in x ′/λ, x ′/µ and y′. In addition, we have ν2

+ |η|2 ≥ 1
4 and ν ′ 2+ |η′|2 ≥ 1

4 on the
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support of q j,mq j,n . By symmetry, we assume λ > µ without loss of generality. Let us introduce the
operator

L= i[λ(|ν|2+ |η|2)]−1(x ′η ∂y′ − νx ′2 ∂x ′);

then Le−iλ((y−y′)·η+(σ−1)ν)/x ′
= e−iλ((y−y′)·η+(σ−1)ν)/x ′ . By using L to integrate by parts, we gain the

factor λ−1 since |ν|2+ |η|2 is uniformly bounded from below; we incur a factor µ if the derivative falls
on eiµ((y′−y′′)·η′+(σ ′−1)ν′)/x ′ , or a factor of x ′ or x ′2/µ if the derivative falls on q j,m or q j,n . Since x ′ ≤ µ
on the support of q j,m , we have an overall gain of µ/λ∼ 2−|m−n|. The L2 boundedness of the spectral
projection gives ‖U∗j,m(0)U j,n(0)‖L2→L2 ≤ C2−|m−n|.

A similar argument works if one or both of m and n are at least 1.
A similar estimate is true in the case Nl + 1 ≤ j ≤ N , in which case we are automatically in the

high-energy case, and with Schwartz kernels supported in the interior of M◦×M◦. The argument is also
almost exactly the same as the previous case. We can write the composition

d
dλ

(
φ

(
λ

2 j

)
Q j (λ)

∗

)
d

dµ

(
Q j (µ)φ

(
µ

2k

))
in the form

λnµn
∫∫∫

eiλ(z−z′′)·ζq j,m(z′′, ζ, λ)eiµ(z′′−z′)·ζ ′q j,n(z′′, ζ ′, µ) dζ dζ ′ dz′′, (5-9)

where q j,m is supported where λ ∼ 2m and |ζ |2 ∼ 1, and is such that Dα
z Dβ

ζ q j,m is bounded by Cλ−1.
Assume without loss of generality that m > n, i.e., λ > µ on the support of the integrand. We note that
the differential operator

L=
iζ · ∂z′′

λ|ζ |2

leaves eiλ(z−z′′)·ζ invariant, so we can apply it to this phase factor in the integral (5-9). Integrating by
parts, the ∂z′′ derivative either hits the other phase factor eiµ(z′′−z′)·ζ ′ , in which case we incur a factor of µ,
or it hits one of the symbols qi, j or qi,k , in which case we incur no factor. Thus, we gain a factor of
either µ/λ∼ 2−| j−k| or 1/λ— which is even better since µ > 1 on the support of q j,n(z′′, ζ ′, µ). This
completes the Cotlar–Stein estimates for Ui (0).

It now follows from the Cotlar–Stein lemma that U j (0)∗, j = 2, . . . , N , is well-defined as the strong
limit of the sequence of operators ∑

|m|≤l

U j,m(0)∗.

Consider the sequence
∑
|m|≤l U j,m(t)∗. We claim that this sequence converges strongly and define U j (t)∗

to be this limit. To prove this claim, choose an arbitrary f ∈ L2(M◦). We have shown that

lim
l→∞

sup
L>l

∥∥∥∥ ∑
l≤|m|≤L

U j,m(0)∗ f
∥∥∥∥2

2
= 0.

This is equivalent to
lim

l→∞
sup
L>l

∑
l≤|m|,|m′|≤L

〈U j,m(0)U j,m′(0)∗ f, f 〉 = 0.
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But we saw in (5-8) that U j,m(0)U j,m′(0)∗ =U j,m(t)U j,m′(t)∗. Hence we have

lim
l→∞

sup
L>l

∑
l≤|m|,|m′|≤L

〈U j,m(t)U j,m′(t)∗ f, f 〉 = 0,

which implies that

lim
l→∞

sup
L>l

∥∥∥∥ ∑
l≤|m|≤L

U j,m(t)∗ f
∥∥∥∥2

2
= 0.

Hence the sequence
∑
|m|≤l U j,m(t)∗ f converges for every f ∈ L2(M◦) as l →∞, i.e., the sequence∑

|m|≤l U j,m(t)∗ converges strongly. We see from this that the integral∫
e−i tλ2

d E√H(λ) Q j (λ)
∗

converges in the strong topology, hence defines U j (t)∗. Finally we show that the operator norm of U j (t)∗

is bounded uniformly in t . Since
∑
|m|≤l U j,m(t)∗ converges in the strong operator topology, we have

‖U j (t)∗‖ ≤ sup
l→∞

∥∥∥∥∑
|m|≤l

U j,m(t)∗
∥∥∥∥.

But we have∥∥∥∥∑
|m|≤l

U j,m(t)∗
∥∥∥∥2

=

∥∥∥∥ ∑
|m|,|m′|≤l

U j,m(t)U j,m′(t)∗
∥∥∥∥= ∥∥∥∥ ∑

|m|,|m′|≤l

U j,m(0)U j,m′(0)∗
∥∥∥∥= ∥∥∥∥∑

|m|≤l

U j,m(0)∗
∥∥∥∥2

and the operator norm of
∑
|m|≤l U j,m(0)∗ is bounded uniformly in l by the estimates proved above using

the Cotlar–Stein lemma.
This completes the proof of Proposition 5.1. �

Remark 5.4. This argument allows us to avoid using a Littlewood–Paley-type decomposition in this
setting. Littlewood–Paley-type estimates were established in [Bouclet 2010] for asymptotically conic
manifolds in the form of

‖ f ‖L p .

(∑
k≥0

‖φ(2−2k1g) f ‖2L p

)1
2

+

∥∥∥∥∑
k≤0

φ(2−2k1g) f
∥∥∥∥

L p
.

6. Dispersive estimates

In this section, we use stationary phase and Proposition 1.5 to establish the microlocalized dispersive
estimates.

Proposition 6.1 (microlocalized dispersive estimates). Let Q j (λ) be as defined in (4-1). Then, for all
integers j ≥ 1, the kernel estimate∣∣∣∣∫ ∞

0
ei tλ2

(Q j (λ) d E√H(λ) Q∗j (λ))(z, z′) dλ
∣∣∣∣≤ C |t |−n/2 (6-1)

holds for a constant C independent of points z, z′ ∈ M◦.
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Proof. The key to the proof is to use the estimates in Proposition 1.5. We first consider j = 1. Since the
term with Q1(λ) satisfies (1-14) with only the “b” term, then we can use the estimate (1-16) to obtain∣∣∣∣( d

dλ

)N

(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′)
∣∣∣≤ CNλ

n−1−N for all N ∈ N. (6-2)

Let δ be a small constant to be chosen later. Recall that we chose φ∈C∞c
([1

2 , 2
])

with
∑

m∈Z φ(2
−mλ)=1;

we write φ0(λ)=
∑

m≤−1 φ(2
−mλ). Then∣∣∣∣∫ ∞

0
ei tλ2

(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′)φ0

(
λ

δ

)
dλ
∣∣∣∣≤ C

∫ δ

0
λn−1 dλ≤ Cδn.

We use integration by parts N times to obtain, using (6-2),∣∣∣∣∫ ∞
0

ei tλ2 ∑
m≥0

φ

(
λ

2mδ

)
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣
≤

∑
m≥0

∣∣∣∣∫ ∞
0

(
1

2λt
∂

∂λ

)N

(ei tλ2
)φ

(
λ

2mδ

)
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣
≤ CN |t |−N

∑
m≥0

∫ 2m+1δ

2m−1δ

λn−1−2N dλ

≤ CN |t |−N δn−2N .

Choosing δ = |t |−1/2, we have thus proved∣∣∣∣∫ ∞
0

ei tλ2
(Q1(λ) d E√H(λ) Q∗1(λ))(z, z′) dλ

∣∣∣∣≤ CN |t |−n/2. (6-3)

Now we consider the case j ≥ 2. Let r = d(z, z′) and r̄ = r t−1/2. In this case, we write the kernel
using Proposition 1.5 as∫
∞

0
ei tλ2(

Q j (λ) d E√H(λ) Q∗j (λ)
)
(z, z′) dλ

=

∑
±

∫
∞

0
ei tλ2

e±irλλn−1a±(λ, z, z′) dλ+
∫
∞

0
ei tλ2

λn−1b(λ, z, z′) dλ

= t−n/2
∑
±

∫
∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′) dλ+
∫
∞

0
ei tλ2

λn−1b(λ, z, z′) dλ, (6-4)

where a± satisfies
|∂αλ a±(λ, z, z′)| ≤ Cαλ−α(1+ λd(z, z′))−(n−1)/2,

and therefore
|∂αλ (a±(t

−1/2λ, z, z′))| ≤ Cαλ−α(1+ λr̄)−(n−1)/2. (6-5)

By (1.16), the above term with b(λ, z, z′) can be estimated by using the same argument as for Q1. Now
we consider first term in the right-hand side of (6-4). We divide it into two pieces using the partition of
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unity above. It suffices to prove that there exists a constant C independent of r̄ such that

I± :=
∣∣∣∣∫ ∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′)φ0(λ) dλ
∣∣∣∣≤ C,

II± :=
∣∣∣∣∑
m≥0

∫
∞

0
eiλ2

e±i r̄λλn−1a±(t−1/2λ, z, z′)φ
(
λ

2m

)
dλ
∣∣∣∣≤ C.

The estimate for I± is obvious, since λ≤ 1. For II+, we use integration by parts. Notice that

L+(eiλ2
+i r̄λ)= eiλ2

+i r̄λ, L+ =
−i

2λ+ r̄
∂

∂λ
.

Writing

eiλ2
+i r̄λ
= (L+)N (eiλ2

+i r̄λ)

and integrating by parts, we gain a factor of λ−2N thanks to (6-5). Thus II+ can be estimated by

∑
m≥0

∫
λ∼2m

λn−1−2N dλ≤ C.

To treat II−, we introduce a further decomposition, based on the size of r̄λ. We write II− = II−1 + II−2 ,
where (dropping the − superscripts and subscripts from here on)

II1 =

∣∣∣∣∑
m≥0

∫
eiλ2

e−i r̄λλn−1a(t−1/2λ, z, z′)φ
(
λ

2m

)
φ0(4r̄λ) dλ

∣∣∣∣,
II2 =

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))(1−φ0(4r̄λ)) dλ

∣∣∣∣.
Let 8(λ, r̄) = λ2

− r̄λ. We first consider II1. Since the integral for II1 is supported where λ ≤ (4r̄)−1

and λ≥ 1
2 , the integrand is only nonzero when r̄ ≤ 1

2 . Therefore, |∂λ8| = 2λ− r̄ ≥ 1
2λ. Define the operator

L = L(λ, r̄)= (2λ− r̄)−1 ∂λ. By (6-5) and using integration by parts, we obtain, for N > 1
2 n,

II1 ≤
∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)φ

(
λ

2m

)
φ0(4r̄λ) dλ

∣∣∣∣
=

∑
m≥0

∣∣∣∣∫ L N (ei(λ2
−r̄λ))

[
λn−1a(t−1/2λ, z, z′)φ

(
λ

2m

)
φ0(4r̄λ)

]
dλ
∣∣∣∣

≤ CN

∑
m≥0

∫
|λ|∼2m

λn−1−2N dλ

≤ CN .
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Finally, we consider II2. Here, we replace the decomposition
∑

m φ(2
−mλ)with a different decomposition,

based on the size of ∂λ8:

II2 ≤

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ0(2λ− r̄)(1−φ0(4r̄λ)) dλ

∣∣∣∣
+

∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ)) dλ

∣∣∣∣
:= II1

2+ II2
2.

If r̄ ≤ 10, then for the integrand of II1
2 to be nonzero we must have λ≤ 10, due to the φ0 factor. Then it is

easy to see that II1
2 is uniformly bounded. If r̄ ≥ 10, we have r̄ ∼ λ since |2λ− r̄ | ≤ 1. Hence, using (6-5)

with α = 0,

II1
2 ≤

∫
|2λ−r̄ |≤1

λn−1(1+ r̄λ)−(n−1)/2 dλ≤ C.

Now we consider the second term. Integrating by parts, we show by (6-5) that

II2
2 ≤

∑
m≥0

∣∣∣∣∫ eiλ2
e−i r̄λλn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ)) dλ

∣∣∣∣
=

∑
m≥0

∣∣∣∣∫ L N (ei(λ2
−r̄λ))

[
λn−1a(t−1/2λ, z, z′)(1−φ0(λ))φ

(
2λ− r̄

2m

)
(1−φ0(4r̄λ))

]
dλ
∣∣∣∣

≤ CN

∑
m≥0

2−m N
∫
|2λ−r̄ |∼2m

λn−1(1+ r̄λ)−(n−1)/2 dλ.

If r̄ ≤ 2m+1, then λ ≤ 2m+2 on the support of the integrand. The m-th term can then be estimated by
CN 2−m N 2(m+2)n , which is summable for N > n. Otherwise, we have λ∼ r̄ , which means the integrand
is bounded and we estimate the m-th term by CN 2−m N 2m , which is summable for N > 1. Therefore, we
have completed the proof of Proposition 6.1. �

7. Homogeneous Strichartz estimates

We use the L2 estimates and the microlocalized dispersive estimates to conclude the proof of Theorem 1.1.
By Proposition 5.1, we have, for all t ∈ R and all u0 ∈ L2,

‖U j (t)u0‖L2(M◦) . ‖u0‖L2(M◦).

By Lemma 5.3,

U j (s)U∗j (t) f =
∫
∞

0
ei(s−t)λ2

Q j (λ) d E√H(λ) Q∗j (λ) f.

Hence we have the decay estimates, by Proposition 6.1,

‖U j (s)U∗j (t) f ‖L∞ . |t − s|−n/2
‖ f ‖L1 .
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As a consequence of the Keel–Tao abstract Strichartz estimate [1998], we have

‖U j (t)u0‖Lq (R;Lr (M◦)) . ‖u0‖L2(M◦), (7-1)

where (q, r) is sharp n
2 -admissible, that is, q , r ≥ 2, (q, r, n) 6= (2,∞, 2) and 2

q +
n
r =

n
2 . By the definition

of U j (t) based on the construction of Q j , we see that

ei t H
=

N∑
j=1

U j (t). (7-2)

Combining (7-1) and (7-2) proves the long-time homogeneous Strichartz estimate.

8. Inhomogeneous Strichartz estimates

In this section, we prove Theorem 1.2, including at the endpoint (q, r)= (q̃, r̃)= (2, 2n/(n−2)) for n≥ 3.
Let U(t)= ei t H

: L2
→ L2. We have already proved that

‖U(t)u0‖Lq
t Lr

z
. ‖u0‖L2

holds for all (q, r) satisfying (1-2). By duality, the estimate is equivalent to∥∥∥∥∫
R

U(t)U∗(s)F(s) ds
∥∥∥∥

Lq
t Lr

z

. ‖F‖
L q̃′

t L r̃ ′
z
,

where both (q, r) and (q̃, r̃) satisfy (1-2). By the Christ–Kiselev lemma [2001], we obtain, for q > q̃ ′,∥∥∥∥∫
s<t

U(t)U∗(s)F(s) ds
∥∥∥∥

Lq
t Lr

z

. ‖F‖
L q̃′

t L r̃ ′
z
. (8-1)

Notice that q̃ ′ ≤ 2 ≤ q; therefore, we have proved all inhomogeneous Strichartz estimates except the
endpoint (q, r) = (q̃, r̃) = (2, 2n/(n − 2)). To treat the endpoint, we need to show the bilinear form
estimate

|T (F,G)| ≤ ‖F‖L2
t Lr ′

z
‖G‖L2

t Lr ′
z
, (8-2)

where r = 2n/(n− 2) and T (F,G) is the bilinear form

T (F,G)=
∫∫

s<t
〈U(t)U∗(s)F(s),G(t)〉L2 ds dt. (8-3)

Theorem 1.2 follows from:

Proposition 8.1. There exists a partition of the identity Q j (λ) on L2(M◦) such that, with U j (t) defined
as in (5-1), there exists a constant C such that, for each pair ( j, k), either∫∫

s<t
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z

(8-4)

or
∫∫

s>t
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z
. (8-5)
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Proof of Theorem 1.2 assuming Proposition 8.1. We have proved that, for all 1≤ j ≤ N ,

‖U j (t)u0‖L2
t Lr

z
. ‖u0‖L2;

hence it follows by duality that, for all 1≤ j , k ≤ N ,∫∫
R2
〈U j (t)U∗k (s)F(s),G(t)〉L2 ds dt ≤ C‖F‖L2

t Lr ′
z
‖G‖L2

t Lr ′
z
. (8-6)

Subtracting (8-5) from (8-6) shows that (8-4) holds for every pair ( j, k). Then, by summing over all j
and k, we obtain (8-2). �

To prove Proposition 8.1 we use the following lemma, proved in [Guillarmou and Hassell 2014,
Lemmas 5.3 and 5.4].

Lemma 8.2. The partition of the identity Q j (λ) can be chosen so that the pairs of indices ( j, k),
1≤ j , k ≤ N , can be divided into three classes,

{1, . . . , N }2 = Jnear ∪ Jnot-out ∪ Jnot-inc,

such that

• if ( j, k) ∈ Jnear, then Q j (λ) d E√H(λ) Qk(λ)
∗ satisfies the conclusions of Proposition 1.5;

• if ( j, k) ∈ Jnon-inc, then Q j (λ) is not incoming-related to Qk(λ), in the sense that no point in the
operator wavefront set (microlocal support) of Q j (λ) is related to a point in the operator wavefront
set of Qk(λ) by backward bicharacteristic flow;

• if ( j, k) ∈ Jnon-out, then Q j (λ) is not outgoing-related to Qk(λ), in the sense that no point in the
operator wavefront set of Q j (λ) is related to a point in the operator wavefront set of Qk(λ) by
forward bicharacteristic flow.

We exploit the not-incoming or not-outgoing property of Q j (λ) with respect to Qk(λ) in the following
two lemmas.

Lemma 8.3. Let Q j (λ) and Qk(λ) be such that Q j is not outgoing-related to Qk . Then, for λ≤ 2, as a
multiple of |dg dg′|1/2 |dλ| the Schwartz kernel of Q j (λ) d E√H(λ) Qk(λ)

∗ can be expressed as the sum
of a finite number of terms of the form

λn−1
∫

Rk
eiλ8(y,y′,σ,v)/x

(
x ′

λ

)n−1
2 −

k
2

a
(
λ, y, y′, σ,

x ′

λ
, v

)
dv (8-7)

or λn−1
∫

Rk−1

∫
∞

0
eiλ8(y,y′,σ,v,s)/x

(
x ′

λs

)n−1
2 −

k
2

sn−2a
(
λ, y, y′, σ,

x ′

λ
, v, s

)
ds dv (8-8)

in the region σ = x/x ′ ≤ 2, x ′/λ≤ 2, or

λn−1a
(
λ, y, y′, σ,

x ′

λ

)
(8-9)

in the region σ = x/x ′ ≤ 2, x ′/λ ≥ 1, where, in each case, 8 < −ε < 0 and a is a smooth function,
compactly supported in the v and s variables (where present), such that |(λ ∂λ)N a| ≤ CN for all N ∈ N.
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In each case, we may assume that k ≤ n− 1; if k = 0 in (8-7) or k = 1 in (8-8) then there is no variable v
and no v integral. The key point is that, in each expression, the phase function is strictly negative.

If , instead, Q j is not incoming-related to Qk , then the same conclusion holds with the reversed sign:
the Schwartz kernel can be written as a finite sum of terms with a strictly positive phase function.

Remark 8.4. For σ ≥ 1
2 , the Schwartz kernel has a similar description, as follows immediately from the

symmetry of the kernel under interchanging the left and right variables.

Proof. The statement that the Schwartz kernel has the indicated forms above follows immediately from the
description of the spectral measure in [Guillarmou et al. 2013a, Theorem 3.10] as a Legendre distribution
in the class I m,p;rlb,rrb(M2

k,b, (L
bf, L]);�1/2

k,b ), where m = −1
2 , p = 1

2(n − 2) and rlb = rrb =
1
2(n − 1).

The bound on k follows from the fact that k can be taken as the drop in rank of the projection from Lbf to
the base (∂M)2× (0,∞)σ , which is the front face (that is, the face created by blow-up) of M2

b . We claim
that the drop in rank is at most n− 1, which proves that we may assume that k ≤ n− 1. To prove this
claim, we show that the differentials dy1, . . . dyn−1 and at least one of dσ , dy′1, . . . , dy′n−1 are linearly
independent on L . This can be seen from the description of L as the flowout from the set

{(y, y, 1, µ,−µ, ν,−µ) | ν2
+ h(µ)= 1}, (8-10)

using the coordinates of (2-6), by the flow of the vector field Vr , which is the vector field given by x−1

multiplied by the Hamilton vector field of the principal symbol of 1 acting in the right variables on M2
k,b.

In fact, Vr = sin s ′ ∂s′ in the coordinates (s, s ′) on the leaves γ 2 of (2-6) and takes the form (see [Hassell
and Vasy 2001, Equation (2.26)] or [Guillarmou et al. 2013a, Equation (3.5)])

2ν ′σ
∂

∂σ
− 2ν ′µ′ ·

∂

∂µ′
+ h′

∂

∂ν ′
+

(
∂h′

∂µ′

∂

∂y′
−
∂h′

∂y′
∂

∂µ′

)
, h′ = h(y′, µ′)=

∑
i, j

hi j (y′)µ′iµ
′

j .

It is clear that dy1, . . . , dyn−1 are linearly independent at the initial set (8-10). Moreover, their Lie
derivative with respect to Vr vanishes, so they are linearly dependent on all of Lbf. Also, since h′+ν ′2= 1
on Lbf, either the ∂σ or the ∂y′ component of the vector field Vr does not vanish, unless σ = 0, showing
that either dσ or one of the dy′i do not vanish at each point of Lbf for σ 6= 0. But it was shown in [Hassell
and Vasy 2001] that Lbf is transversal to the boundary at σ = 0, which means that dσ 6= 0 on Lbf when σ
is small. This proves the claim.

We next show that 8 can be taken to be strictly negative. We use the microlocal support estimates from
[Guillarmou et al. 2013b]. Applying [Guillarmou et al. 2013b, Corollary 5.3], we find that the microlocal
support of Q j (λ) d E√H(λ) Qk(λ)

∗ is contained in that part of Lbf where, in the notation of (2-6), s < s ′

(since the initial set (8-10) corresponds to s = s ′, and ∂s and ∂s′ move in the outgoing and incoming
directions, respectively, along the flow). Repeating the calculation following (2-6), we see that the value
of 8 “on the Legendrian” is 8=− cos s+σ cos s ′ = (sin s ′)−1 sin(s− s ′), which is strictly negative. By
restricting the support of the amplitude a in (8-7)–(8-9), we can assume that 8 is negative everywhere on
the support of the integrand. �
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Lemma 8.5. Let Q j (λ) and Qk(λ) be such that Q j is not outgoing-related to Qk . Then, for λ≥ 1, and
as a multiple of |dg dg′|1/2 |dλ|, the Schwartz kernel of Q j (λ) d E√H(λ) Qk(λ)

∗ can be written in terms
of a finite number of oscillatory integrals of the form∫

Rk
eiλ8(y,y′,σ,x,v)/xλn−1+k/2x (n−1)/2−k/2a(λ, y, y′, σ, x, v) dv (8-11)

or
∫

Rk−1

∫
∞

0
eiλ8(y,y′,σ,x,v,s)/xλn−1+k/2

( x
s

)(n−1)/2−k/2
sn−2a(λ, y, y′, σ, x, v, s) ds dv (8-12)

in the region σ = x/x ′ ≤ 2, x ≤ δ, or∫
Rk

eiλ8(z,z′,v)λn−1+k/2a(λ, z, z′, v) dv (8-13)

in the region x ≥ δ, x ′ ≥ δ, where, in each case, 8 < −ε < 0 and a is a smooth function compactly
supported in the v and s variables (where present) such that |(λ ∂λ)N a| ≤ CN . In each case, we may
assume that k ≤ n−1; if k = 0 in (8-11) or (8-13), or k = 1 in (8-12), then there is no variable v and no v
integral. Again, the key point is that, in each expression, the phase function is strictly negative.

If , instead, Q j is not incoming-related to Qk , then the same conclusion holds with the reversed sign:
the Schwartz kernel can be written as a finite sum of terms with a strictly positive phase function.

Proof. The proof is essentially identical to that of Lemma 8.3. The form of the oscillatory integrals
comes from the fact that the spectral measure, for high energies, is a Legendre distribution in the
class I m,p;rlb,rrb(X, (L , L]);�s8�1/2), where the Lagrangian L is given by (3-3). The non-outgoing
relation implies, via the microlocal support estimates of [Guillarmou et al. 2013b, Section 7], that
Q j (λ) d E√H(λ) Qk(λ)

∗ is microsupported where τ < 0 in the coordinates of (3-3). Since 8= τ when
dv8= 0, this implies that 8< 0 when dv8= 0. By restricting the support of the amplitude close to the
set where dv8= 0, we can assume that 8< 0 everywhere on the support of the integrand. �

Lemma 8.6. We have the following dispersive estimates on U j (t)Uk(s)∗:

• If ( j, k) ∈ Jnear, then for all t 6= s we have

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-14)

• If ( j, k) is such that Q j is not outgoing-related to Qk , and t < s, then

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-15)

• Similarly, if ( j, k) is such that Q j is not incoming-related to Qk and s < t , then

‖U j (t)U∗k (s)‖L1→L∞ ≤ C |t − s|−n/2. (8-16)

Proof. The estimate (8-14) is essentially proved in Proposition 6.1, since we can use Proposition 1.5.
Assume that Q j is not incoming-related to Qk and consider (8-16). By Lemma 5.3, U j (t)Uk(s)∗ is given
by ∫

∞

0
ei(t−s)λ2

(Q j (λ) d E√H(λ) Q∗k(λ))(z, z′). (8-17)
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Then we need to show that, for s < t ,∣∣∣∣∫ ∞
0

ei(t−s)λ2
(Q j (λ) d E√H(λ) Q∗k(λ))(z, z′) dλ

∣∣∣∣≤ C |t − s|−n/2. (8-18)

Case 1: t − s ≥ 1. We introduce a dyadic partition of unity in λ. Let φ ∈ C∞c
([ 1

2 , 2
])

be as in Section 5
with

∑
m φ(2

−m√t − sλ)= 1, define

φ0(
√

t − sλ)=
∑
m≤0

φ(2−m√t − sλ)

and insert
1= φ0(

√
t − sλ)+

∑
m≥1

φm(
√

t − sλ), φm(λ) := φ(2−mλ),

into the integral (8-17). In addition, we substitute for Q j (λ) d E√H(λ) Q∗k(λ) one of the expressions in
Lemmas 8.3 and 8.5. Since t − s ≥ 1, for the φ0 term only the low energy expressions are relevant. The
estimate follows immediately from noticing that these expressions are pointwise bounded by Cλn−1,
using the fact that k ≤ n− 1 in these expressions.

To treat the φm terms for m ≥ 1, we again substitute one of the expressions in Lemmas 8.3 and 8.5.
For notational simplicity we consider the expression (8-13), but the argument is similar in the other cases.
We scale the λ variable and obtain the expression∫
∞

0

∫
Rk

ei(t−s)λ2
eiλ8(z,z′,v)λn−1+k/2a(λ, z, z′, v)φm(

√
t − sλ) dv dλ

= (t − s)−n/2−k/4
∫
∞

0

∫
Rk

ei(λ̄2
+λ̄8(z,z′,v)/

√
t−s)λ̄n−1+k/2a

(
λ̄

√
t − s

, y, y′, σ, v
)
φm(λ̄) dv dλ̄, (8-19)

where λ̄ =
√

t − sλ. We observe that the overall exponential factor is invariant under the differential
operator

L =
−i

2λ̄2+ λ̄8/
√

t − s
λ̄
∂

∂λ̄
.

The adjoint of this is

L t
=−L +

i
2λ̄2+ λ̄8/

√
t − s

− i
4λ̄2
+ λ̄8/

√
t − s

(2λ̄2+ λ̄8/
√

t − s)2
.

We apply L N to the exponential factors and integrate by parts N times. Since 8 ≥ 0 according to
Lemma 8.5, and since we have an estimate |(λ̄ ∂λ̄)

N a|≤CN , each time we integrate by parts we gain a factor
λ̄−2
∼ 2−2m . It follows that the integral with φ(2−m λ̄) inserted is bounded by (t − s)−n/22−m(2N−n−k/2)

uniformly for t − s ≥ 1. Hence we prove (8-16) by summing over m ≥ 0. The argument to prove (8-15)
is analogous.

Case 2: t − s ≤ 1. In this case, we use a dyadic decomposition in terms of the original variable λ. We
consider the integral (8-17), insert the dyadic decomposition

1=
∑
m≥0

φm(λ),
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and substitute for Q j (λ) d E√H(λ) Q∗k(λ) one of the expressions in Lemmas 8.3 and 8.5.
For the case m = 0, the estimate follows immediately from the uniform boundedness of (8-7)–(8-9).

For the cases m ≥ 1, we use the expressions in Lemma 8.5 and observe that the overall exponential factor
is invariant under the differential operator

L =
−i

2(t − s)λ2+ λ8
λ
∂

∂λ
.

The adjoint of this is

L t
=−L +

i
2(t − s)λ2+ λ8

− i
4(t − s)λ2

+ λ8

(2(t − s)λ2+ λ8)2
.

We apply L to the exponential factors N times and integrate by parts. Since 8 ≥ ε > 0 according to
Lemma 8.5, and since we have an estimate |(λ ∂λ)N a| ≤ CN , each time we integrate by parts we gain
a factor λ−1

∼ 2−m . It follows that the integral with φ(2−mλ) inserted is bounded by 2−m(N−n−k/2)

uniformly for t − s ≤ 1. Hence we prove (8-16) by summing over m ≥ 0. The argument to prove (8-15)
is analogous. �

Remark 8.7. Notice that, in the cases (8-15) and (8-16), there is a lot of “slack” in the estimates. This is
because the sign of t − s has the favourable sign relative to the sign of the phase function, so that the
overall phase in integrals such as (8-19) are never stationary. Then integration by parts give us more
decay than needed to prove the estimates. This is important because it overcomes the growth of the
spectral measure as λ→∞ at conjugate points: at pairs of conjugate points we have k > 0 and we see
from, say, (8-13) that the spectral measure will not obey the localized (near the diagonal) estimates of
Proposition 1.5, by a factor λk/2. The geometric meaning of k is the drop in rank of the projection from
L down to M2

b , hence is positive precisely at pairs of conjugate points.

We now complete the proof of Theorem 1.2 by proving Proposition 8.1.

Proof of Proposition 8.1. We use a partition of the identity as in Lemma 8.2. In the case that ( j, k) ∈ Jnear,
we have the dispersive estimate (8-14). This allows us to apply the argument of [Keel and Tao 1998,
Sections 4–7] to obtain (8-4). In the case that ( j, k) ∈ Jnon-out, we obtain (8-4) following the argument in
[Keel and Tao 1998] since we have the dispersive estimate (8-16) when s < t . Finally, in the case that
( j, k) ∈ Jnon-inc, we obtain (8-5) since we have the dispersive estimate (8-15) for s > t . �

Remark 8.8. The endpoint inhomogeneous Strichartz estimate is closely related to the uniform Sobolev
estimate

‖(H −α)−1
‖Lr→Lr ′ ≤ C, r =

2n
n+ 2

, (8-20)

where C is independent of α ∈ C. This estimate was proved by [Kenig et al. 1987] for the flat Laplacian
and by [Guillarmou and Hassell 2014] for the Laplacian on nontrapping asymptotically conic manifolds (it
was also shown in [Guillarmou and Hassell 2014] that (8-20) holds for r ∈ [2n/(n+2), 2(n+1)/(n+3)]
with a power of α on the right-hand side). In fact, it was pointed out to the authors by Thomas Duyckaerts
and Colin Guillarmou that the endpoint inhomogeneous Strichartz estimate implies the uniform Sobolev
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estimate (8-20). To see this, we choose w ∈ C∞c (M
◦) and χ(t) equal to 1 on [−T, T ] and zero for

|t | ≥ T + 1 and let u(t, z)= χ(t)eiαtw(z). Then

(i ∂t + H)u = F(t, z), F(t, z) := χ(t)eiαt(H −α)w(z)+ iχ ′(t)eiαtw(z).

Applying the endpoint inhomogeneous Strichartz estimate, we obtain

‖u‖L2
t Lr ′

z
≤ C‖F‖L2

t Lr
z
.

From the specific form of u and F we have

‖u‖L2
t Lr ′

z
=
√

2T ‖w‖Lr ′ + O(1), ‖F‖L2
t Lr

z
=
√

2T ‖(H −α)w‖Lr + O(1).

Taking the limit T →∞ we find that

‖w‖Lr ′ ≤ C‖(H −α)w‖Lr ,

which implies the uniform Sobolev estimate.
In the other direction, suppose that the uniform Sobolev estimate holds. If u and F satisfy (1-10), then

taking the Fourier transform in t we find that

(H −α)û(α, z)= F̂(α, z). (8-21)

Suppose for a moment that the following statement were true: “Fourier transformation in t is a bounded
linear map from L2(Rt ; L p(M◦)) to L2(Rα; L p(M◦)) for p= r ′, r”. Using this and the uniform Sobolev
inequality, applied to (8-21), we would obtain the inhomogeneous Strichartz estimate. Unfortunately,
the statement in quotation marks is known to be false, so this argument is purely heuristic. Nevertheless,
it illustrates the close relation between the two estimates. It would be interesting to know if there are
general conditions under which the two estimates are equivalent.
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LIMITING DISTRIBUTION OF ELLIPTIC HOMOGENIZATION ERROR
WITH PERIODIC DIFFUSION AND RANDOM POTENTIAL

WENJIA JING

We study the limiting probability distribution of the homogenization error for second order elliptic equa-
tions in divergence form with highly oscillatory periodic conductivity coefficients and highly oscillatory
stochastic potential. The effective conductivity coefficients are the same as those of the standard periodic
homogenization, and the effective potential is given by the mean. We show that the limiting distribution of
the random part of the homogenization error, as random elements in proper Hilbert spaces, is Gaussian and
can be characterized by the homogenized Green’s function, the homogenized solution and the statistics
of the random potential. This generalizes previous results in the setting with slowly varying diffusion
coefficients, and the current setting with fast oscillations in the differential operator requires new methods
to prove compactness of the probability distributions of the random fluctuation.

1. Introduction

In this article we study the limiting distribution, in certain Hilbert spaces, of the homogenization error for
second order elliptic equations in divergence form with highly oscillatory periodic diffusion coefficients
and highly oscillatory random potential.

More precisely, we consider the following Dirichlet problem on an open bounded subset D �Rn, with
homogeneous boundary condition and a source term f 2 L2.D/,8<:�

@

@xi

�
aij

�
x

"

�
@u"

@xj
.x; !/

�
C q

�
x

"
; !
�
u".x; !/D f .x/; x 2D;

u".x/D 0; x 2 @D:

(1-1)

The conductivity coefficients
�
aij
�
�
"

��
and the potential q

�
�
"
; !
�

are highly oscillatory in space, and
0 < "� 1 indicates the small scale on which these coefficients oscillate. We assume that the conductivity
coefficients are deterministic and periodic, and the potential is a stationary random field on some
probability space .�;F ;P/. More precise assumptions are given in Section 2. It is well known that,
under mild assumptions like stationary ergodicity of q.x; !/, the equation above homogenizes; i.e., u"

converges, almost surely in�, weakly inH 1.D/ and strongly inL2.D/ to the solution of the deterministic
homogenized problem 8̂<̂

:�Naij
@2u

@xi @xj
.x/C Nqu.x/D f .x/; x 2D;

u.x/D 0; x 2 @D:

(1-2)
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Here, the effective conductivity coefficients . Naij / are constants defined by

Naij D

Z
Td
aik.y/

�
ıkj C

@�k

@xj
.y/

�
dy; (1-3)

where Td D Œ0; 1�d denotes the unit cell and the correctors �k , with kD 1; : : : ; d , are given by the unique
solution of the corrector equation

�
@

@xi

�
aij .y/

�
ekC

@�k

@xj
.y/

��
D 0 on Td ; (1-4)

with the normalization condition
R

Td
�k dy D 0; ek above is the k-th standard unit basis vector of Rd .

We note that this formula for . Naij / is exactly the classic periodic homogenization formula for effective
conductivity. The effective potential Nq in (1-2) is given by the constant

Nq D Eq.0; !/; (1-5)

where E denotes the mathematical mean with respect to P.
In this paper we study the law (probability distribution) of the homogenization error u"�u, viewed as

random elements in certain Hilbert spaces. We split this error into two parts: Eu"�u and u"�Eu". In view
of the deterministic oscillations in the diffusion coefficients, we expect that the periodic homogenization
error, in the replacement of

�
aij
�
�
"

��
to . Naij /, makes significant contributions to the deterministic error

Eu" � u. Indeed, we show later that this error is essentially of order O."/, the same as periodic
homogenization. On the other hand, the effect of the random potential q

�
�
"
; !
�

becomes visible in the
random fluctuation u"� Eu", in which the (large) mean is removed. We are interested in characterizing
the size and the law of this random fluctuation, and the answers depend on finer information of the random
potential q, such as the decay rate of the correlations in q and higher-order moments of q; see Section 2
for notations and definitions.

We find that, when q.x; !/ has short-range correlations, the random fluctuation u" � Eu" scales
like "d=2^2 in the L1.�;L2.D//-norm, and scales like "d=2 when integrated against a test function.
Moreover, the law of the scaled random fluctuation "�d=2.u" � Eu"/ in L2.D/ for d D 2; 3 and in
H�1.D/ for d D 4; 5 converges to Gaussian distributions as follows (see Theorem 2.4 for details):

u"� Eu"
p

"d
distribution
������! �

Z
D

G.x; y/u.y/ dW.y/:

Here, W.y/ is the standard multiparameter Wiener process, and hence the law of the right-hand side above
defines a Gaussian probability measure on L2.D/ or H�1.D/. This Gaussian distribution is determined
by G.x; y/, which is the Green’s function associated to the homogenized problem (1-2), u.y/, which is
the homogenized solution, and � , which is some statistical parameter of the random potential q.x; !/.

We also consider the case when q.x; !/Dˆ.g.x; !// is constructed as a function of a Gaussian random
field g.x; !/, and g has long-range correlations that decay like jxj�˛ , with 0 < ˛ < d . Then the random
fluctuation scales like "˛=2^2 in the L1.�;L2.D//-norm, and scales like "˛=2 when integrated against a
test function. Moreover, the law of the scaled random fluctuation "�˛=2.u"�Eu"/ in L2.D/ for d D 2; 3
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and inH�1.D/ for d D4; 5 converges to a Gaussian distribution that can be written as a stochastic integral
as above, but with dW replaced by PW ˛ dy, where PW ˛ is a centered Gaussian random field with correlation
function jx�yj�˛, and � is replaced by some other statistical parameter; see Theorem 6.2 for details.

The study of the limiting distribution of the homogenization error goes back to [Figari et al. 1982],
where the Laplace operator with a random potential formed by Poisson bumps was considered. General
random potential with short-range correlations was considered recently in [Bal 2008], and in [Bal and Jing
2010; 2011] for other nonoscillatory differential operators with random potential. Long-range correlated
random potential was considered in [Bal et al. 2012]. When oscillatory differential operators were
considered, the limiting distribution of homogenization error was obtained in [Bourgeat and Piatnitski
1999] for short-range correlated elliptic coefficients, and in [Bal et al. 2008] for the long-range correlated
case, all in the one-dimensional setting. The main results of this paper show that the general framework
developed in [Bal 2008; Bal and Jing 2011; Bal et al. 2012], in order to characterize the random fluctuation
caused by the random potential, applies even when there are oscillations in the differential operators, as
long as these oscillations are not statistically related to those of the random potential.

Our approach is as follows: we introduce an auxiliary problem with periodic diffusion coefficients
and homogenized potential; let v" be the solution. Then the deterministic homogenization error Eu"�u

is essentially characterized by v"�u, which amounts to classical periodic homogenization theory. The
random fluctuation u" � Eu" is then the same as .u" � v"/� E.u" � v"/, which can be represented as
a truncated Neumann series. The first term X" in this series contributes to the limiting distribution.
By Prohorov’s theorem, we need to show that the probability measures of fX"g are tight in the proper
Hilbert space, and that their characteristic functions converge. The latter is essentially the convergence
in distribution of the integration of X" against test functions; in view of the uniform-in-" estimates of
the Green’s functions associated to the oscillatory diffusion, this step is the same as the earlier setting
with nonoscillatory diffusion. The role of oscillations in the diffusion, however, becomes prominent
in the step of proving tightness of the measures of fX"g. The simple and natural method used in [Bal
et al. 2012] fails completely; see Section 7 for details. New ideas are needed: we obtain tightness of the
measures of fX"g in L2.D/ by controlling the mean square of the H s-norm of fX"g for some 0 < s < 1

2
;

similarly, we get tightness in H�1.D/ by controlling the mean square of the H�s-norm with 1
2
< s < 1.

The constraints on the spatial dimension d arise naturally in the proof of such controls.

Our analysis relies on uniform estimates of the Green’s function associated to the periodic homoge-
nization problem; we refer to [Avellaneda and Lin 1987; 1991] for the classical results, and to [Kenig
et al. 2012; 2014] for recent development in this direction. We refer to [Armstrong and Smart 2014;
Armstrong et al. 2015; Marahrens and Otto 2015; Gloria and Otto 2014] for recent results on uniform
estimates of the Green’s function for equations with highly oscillatory random diffusion coefficients in
spatial dimension higher than one. We remark also that in the random setting, the limiting distribution of
the corrector function and that of the full random fluctuation u"� Eu", in negative Hölder space, were
obtained in [Mourrat and Nolen 2015] and [Gu and Mourrat 2015] respectively, in the discrete setting;
see also [Mourrat and Otto 2014]. Such results are apparently more challenging to obtain, and the proofs
require delicate calculus in the (infinite-dimensional) probability space.
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The rest of this paper is organized as follows: In Section 2 we make precise the main assumptions on
the parameters of the homogenization problem, in particular on the properties of the random potential,
and state the main results in the short-range correlation setting. Homogenization of (1-1) and some useful
results on periodic homogenization theory are recalled in Section 3. Sections 4 and 5 are devoted to
the proofs of the main results, where we characterize how the random fluctuation scales in the energy
norm and in the weak topology, and determine the limiting distribution of the scaled fluctuation. We
present new methods to prove the tightness of the probability measures of the random fluctuations. In
Section 6, we state and prove the corresponding results in the long-range correlation setting. We make
some comments and further discussions in Section 7 and prove some technical results, such as tightness
criteria for probability measures, in the Appendix.

2. Assumptions, preliminaries and main results

2A. Assumptions on the coefficients. Throughout this paper, we assume that the domain D in (1-1) is
an open bounded set of Rd with C 1;1-boundary. The coefficients aij

�
x
"

�
and q

�
x
"
; !
�

are the scaled
versions of aij .x/ and q.x; !/. We make the following main assumptions on aij and q.

Periodic diffusion coefficients. For the functions .aij /, we assume:

(A1) (periodicity) The function A WD .aij / W Rd ! Rd�d is periodic. That is, for all x 2 Rd , k 2 Zd and
i; j D 1; 2; : : : ; d , we have

aij .xC k/D aij .x/: (2-1)

(A2) (uniform ellipticity) For all y 2 Td , the matrix A.y/D .aij .y// is uniformly elliptic in the sense
that, for all � 2 Rd , one has

�j�j2 � �TA.y/� D

dX
i;jD1

�iaij .y/�j �ƒj�j
2: (2-2)

(A3) (smoothness) For some ;M with  2 .0; 1� and M > 0, one has

kAkC .Td / �M: (2-3)

We henceforth refer to the above assumptions together as (A).

Random potential. For the random field q.x; !/ on the probability space .�;F ;P/, we assume:

(P) (stationarity and ergodicity) There exists an ergodic group of P-preserving transformations .�x/x2Rd

on �, where ergodicity means that E 2 F and

�xE DE for all x 2 Rd

imply that P.E/ 2 f0; 1g. The random potential q.y; !/ is given by Qq.�y!/, where Qq W�! R is a
random variable satisfying

0� Qq.!/�M for all ! 2�: (2-4)
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Further assumptions on q. The above assumptions are sufficient for proving the homogenization result.
However, to estimate the size of the homogenization error and to characterize the limiting distribution of
the random fluctuation, more assumptions on the random field q. � ; !/ are necessary.

To simplify notations, we write in the sequel

q.x; !/D NqC �.x; !/;

where Nq is the mean of q and � is the fluctuation. Note that Nq is a deterministic constant and � is a mean zero
stationary ergodic random field. The autocorrelation function R.x/ of q (and hence �) is defined as

R.x/D E
�
�.xCy; !/�.y; !/

�
; �2 WD

Z
Rd
R.x/ dx: (2-5)

By Bochner’s theorem, R.x/ is a positive definite function and �2 � 0. We assume that � > 0. When R
is integrable on Rd , i.e., �2 <1, we say that q has short-range correlations; we say q has long-range
correlations if otherwise. We state and prove the main results in the setting where q has short-range
correlations, and mention the corresponding results for the long-range correlation setting in Section 6.

Short-range correlated random fields. In this case, we make an assumption on the rate of decay of the
correlation function. We denote by C the set of compact sets in Rd , and for two sets K1; K2 in C, the
distance d.K1; K2/ is defined to be

d.K1; K2/D min
x2K1;y2K2

jx�yj:

Given any compact set K � C, we denote by FK the �-algebra generated by the random variables
fq.x/ W x 2Kg. We define the “maximal correlation coefficient” % of q as follows: for each r > 0, %.r/ is
the smallest value such that the bound

E
�
'1.q/'2.q/

�
� %.r/

q
E.'21.q// E.'22.q// (2-6)

holds for any two compact sets K1; K2 2 C such that d.K1; K2/� r and for any two random variables
of the form 'i .q/, with i D 1; 2, such that 'i .q/ is FKi -measurable and E'i .q/D 0. We assume that

(S) The maximal correlation function satisfies %1=2 2 L1.RC; rd�1dr/; that is,Z 1
0

%
1
2 .r/rd�1 dr <1:

Assumptions on the mixing coefficient % of random media have been used in [Bal 2008; Bal and Jing
2011; Hairer et al. 2013]; we refer to these papers for explicit examples of random fields satisfying the
assumptions. We note that the autocorrelation function R.x/ can be bounded by %. For any x 2 Rd ,

jR.x/j D
ˇ̌
E.q.x/� Eq/.q.0/� Eq/

ˇ̌
� %.jxj/Var.q/:

By (2-4), q, and hence its variance, is bounded. In view of (S) and the fact that one can assume % 2 Œ0; 1�
(hence % �

p
%), we find that R is integrable. Therefore, (S) implies that q.x; !/ has short-range

correlations. In fact, (S) is a much stronger assumption, and not necessary for the main results of this
paper to hold. In Section 7, we will provide alternative and less restrictive assumptions that are sufficient.
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However, using the assumption (S) and Lemma 4.3 below, we can simplify significantly certain fourth-
order moment estimates of the random potential �.x; !/; such estimates appear often in the study of the
limiting distribution of the homogenization error.

Notations. Throughout the paper, by universal parameters we refer to �;ƒ;  and M in the assump-
tions (A), the autocorrelation function R, �2, and the mixing coefficients %, the domain D and its
boundary @D, and the dimension d . If a constant C depends only on these parameters, we say either C
depends on universal parameters or C is a universal constant. For the random potential �.x; !/ and the
functions %.x/, R.x/, etc. which are related to �, we use �"; %"; R", etc. to denote the scaled versions.
For instance, �".x; !/ is shorthand notation for �

�
x
"

�
. We use the notation H s.K/, with s � 0, for the

Sobolev or the fractional Sobolev space W s;2.K/ on some domain K � Rd ; when K is bounded, we use
H s
0 .K/ for the subspace that consists of functions having trace zero at @K; note that H s

0 .R
d /DH s.Rd /.

We denote by H�s.K/, with s > 0, the dual space .H s
0 .K//

0. For any Hilbert space H, we denote the
inner product in H by . � ; � /H; when HDL2.D/, we very often omit the subscript and write . � ; � / instead.
We use hf; gi whenever the formal integral

R
D fg makes sense. We typically use 1A for the indication

function of a set A� Rd , or if A is a statement, the indication function of A being true. Finally, for two
real numbers a and b, we use a^ b as a shorthand notation for minfa; bg, and a_ b means maxfa; bg.

2B. Probability distribution on functional spaces. We view the random fluctuation u" � Eu" in the
homogenization error as random elements in certain functional spaces, and aim to find the limit of its law
in that space. It turns out that the choice of functional spaces depends on the spatial dimension d .

When d D 1, one can choose the space C.D/ of continuous functions. In fact, convergence in
distribution in C.D/ was proved in [Bal 2008] for random diffusion coefficient a.x; !/ with random
potential q.x; !/, both having short-range correlations. In this paper, we prove that for d D 2; 3, the
space can be chosen as L2.D/ and for d D 4; 5, the space can be chosen as H�1.D/. Note that both
choices are Hilbert spaces. We recall some facts concerning weak convergence of probability measures
on Hilbert spaces. We refer to the books of Billingsley [1999] and Parthasarathy [1967] for more details.

Probability distributions on a Hilbert space. Let H be a separable Hilbert space, and let X.!/ be
an H-valued random element on the probability space .�;F ;P/. Then X determines a probability
measure PX on .H;B.H//, where B.H/ denotes the Borel � -algebra generated by open sets in H, by

PX .S/D P.X 2 S/ for any S 2 B.H/: (2-7)

We say a family fX"g"2.0;1/ of random elements in H converges in probability distribution (or in law),
as "! 0, to another random element X on H, if the probability measures PX

"

converge weakly to PX ;
i.e., for any real bounded continuous functional f WH! R,Z

H
f .g/ dPX

"

.g/!

Z
H
f .g/ dPX .g/:

In particular, any probability measure P on a separable Hilbert space H is determined by its characteristic
function �P WH! C,

�P .h/D

Z
H
ei.h;g/H dP.g/: (2-8)
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Moreover, the following result holds:

Theorem 2.1 [Parthasarathy 1967, Chapter VI, Lemma 2.1]. Let fX"g"2.0;1/ and X be random elements
in H, possibly defined on different probability spaces. Then X" converges to X in law in H, as "! 0, if
the family of probability measures fPX

"

g"2.0;1/ is tight and for any h 2H,

lim
"!0

�P
X"

.h/D �P
X

.h/: (2-9)

Remark 2.2. Let H D L2.D/, which is a separable Hilbert space, and let X be a random element in
L2.D/ defined on the probability space .�;F ;P/. The characteristic function of PX can be calculated
as follows: for any h 2 L2.D/,

�P
X

.h/D

Z
R

eiz dPX
�
f.h; g/ > zg

�
D

Z
R

eiz dP
�
f.h;X.!// > zg

�
D E ei.h;X/: (2-10)

Therefore, to prove that X" converges in distribution to X as L2-paths, it suffices to show that fPX
"

g is
tight and that for any h 2 L2.D/,

.h;X"/ distribution
������! .h;X/I (2-11)

that is, the random variables .h;X"/ converge in distribution to the random variable .h;X/.

In Theorem A.1 in the Appendix, we provide a tightness criterion for fPX
"

g on L2.D/, with the
assumption that fX". � ; !/g is in H s

0 .D/ for certain s > 0. The criterion is sufficient but by no means
necessary. Nevertheless, it is very handy for our analysis since the random fields X" that we are dealing
with come from solutions of (1-1), and hence are naturally in H s

0 .D/.

2C. Main results. We now state the main results of the paper under the assumption that q.x; !/ has short-
range correlations. Analogous results for the long-range correlation setting will be presented in Section 6.

The first main theorem concerns how the homogenization error scales.

Theorem 2.3. Let D � Rd be an open bounded C 1;1 domain, u" and u be the solutions to (1-1) and
(1-2) respectively. Suppose that (A), (P) and (S) hold, f 2 L2.D/ and 2 � d � 7. Then, there exists
positive constant C , depending only on the universal parameters, such that

E ku"�ukL2 � C"kf kL2 : (2-12)
Moreover,

E ku"� Eu"kL2 �

(
C"2^

d
2 kf kL2 if d ¤ 4;

C"2j log "j
1
2 kf kL2 if d D 4:

(2-13)

Furthermore, for any ' 2 L2.D/,

E
ˇ̌
.u"� Eu"; '/L2

ˇ̌
� C"

d
2 k'kL2 kf kL2 : (2-14)

This theorem provides L1.�;L2.D//-estimates of u"�u and its random part, and its proof is detailed
in Section 4. We note that the size of the full homogenization error is much larger than that of its random
part. This is because the oscillations in the diffusion coefficients cause some deterministic fluctuation in
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the solution of size O."/, as in standard periodic homogenization. The additional random fluctuation
caused by the short-range correlated random potential scales like ".d^4/=2 in the energy norm, and scales
like "d=2 in the weak topology. These results agree with the case of nonoscillatory diffusion coefficients;
see [Bal 2008; Bal and Jing 2011]. The next result exhibits the limiting law of the rescaled random
fluctuation "�d=2.u"� Eu"/.

Theorem 2.4. Suppose the assumptions in Theorem 2.3 hold. Let � be defined as in (2-5) and G.x; y/ be
the Green’s function of (1-2). Let W.y/ denote the standard d -parameter Wiener process. Then

(i) For d D 2; 3, as "! 0,

u"� Eu"
p

"d
distribution
������! �

Z
D

G.x; y/u.y/ dW.y/ in L2.D/: (2-15)

(ii) For d D 4; 5, as "! 0, the above holds as convergence in law in H�1.D/.

The proof of item (i) above can be found on page 217 and that of item (ii) is on page 220.

Remark 2.5. The integral on the right-hand side of (2-15) is understood, for each fixed x, as a Wiener
integral in y with respect to the multiparameter Wiener processW.y/. LetX denote the result. For dD2; 3,
because the Green’s function G.x; y/ is square integrable, X is a random element in L2.D/. For d D 4; 5,
X is understood through the Fourier transform of its distribution: given h�2H�1.D/, �P

X

.h�/ is defined
to be E exp

�
i�
R
DhG. � ; y/; h

�. � /iu.y/ dW.y/
�
, where E is the expectation with respect to the law ofW .

Remark 2.6. We expect that the scaling factor for the random fluctuation, with respect to the weak
topology, should be "�d=2 in all dimensions. More precisely, for any ' 2 L2.D/, we expect that
"�d=2.u"�Eu"; '/ should converge in distribution for all dimensions. However, in this paper we control
this term only for d � 7. This constraint is not intrinsic, and is mainly due to the fact that we stopped at
second order iteration in the series expansion (4-11). In fact, if higher- (than six or more) order moments
of the random field are under control, we can iterate as many times as we need in (4-11) until the last
term is small, and use higher-order moments to estimate the terms in between; see Remark 4.6 below.

The spatial dimension plays an intrinsic role on the choice of topology that one should use for the
limiting distribution of the random fluctuations. Indeed, for the term X" D�"�d=2G"�"v" to converge in
law in L2.D/, it is necessary that EkX"k2

L2
is controlled uniformly in ". In view of the singularity of the

Green’s function, namely, of order jx�yj�dC2 near the diagonal, we expect to control EkX"k2
L2

only
for d � 3, and similarly, we expect to have convergence in law in H�1 only for d < 6. Nevertheless,
we expect that convergence in law in H�k.D/, for certain k > 0 increasing with respect to d , could be
proved, provided more controls on the random field are available.

Finally, we remark that other topologies, e.g., those in [Bal et al. 2012; Gu and Mourrat 2015], can be
considered for the law of the random fluctuation as well. In particular, tightness criteria in the Hölder
space C ˛, with ˛ possibly negative, were established in [Mourrat 2015]. By a formal scaling argument,
the short-range noise �" belongs to the Hölder class C 0� and the Green’s function is in C 2�d . The
convergence of X", which is essentially a convolution of the Green’s function with the noise and then
divided by "d=2, should take place in C ˛, for ˛ < �d

2
C 2. In fact, this agrees with the constraint that
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convergence in L2 can be expected only for d < 4, and convergence in H�1 for d < 6. It would be
interesting to pursue this direction of studies further.

3. Homogenization and periodic error estimates

The following homogenization result for (1-1), without the random potential q".x; !/, is well known.
The effect of the presence of q" turns out to be minor for homogenization; nevertheless, we include a
proof here for the sake of completeness.

Theorem 3.1. Assume (A1), (A2) and (P) hold. Then there exists �1 2 F such that P.�1/D 1, and for
all ! 2�1, the solution u" of (1-1) converges to the solution u of (1-2) weakly in H 1.D/ and strongly in
L2.D/ for any f 2H�1.D/.

Let L" denote the differential operator

�
@

@xi

�
aij

�
x

"

�
@

@xj

�
C Nq; (3-1)

and let L";! be the differential operator L" C �.x" ; !/. We remark that L" has highly oscillatory but
deterministic coefficients while L";! has, in addition, a highly oscillatory and random potential. Let G";!

and G" be the solution operator of the Dirichlet boundary problems associated to L";! and L". Owing
to the conditions (2-2) and (2-4), G";! is well-defined for any ! 2�. Moreover, we have the standard
estimate, for any ! 2� and " > 0,

kG";!f kH1.D/ � Ckf kH�1.D/; (3-2)

with some constant C that depends on the universal parameters, and neither on ! nor ". By the same
token, G" is well-defined and shares the same estimate above.

Proof of Theorem 3.1. Step 1: For each ! 2�, the solution u" of (1-1) is given by G";!f , which satisfies
the standard estimates

ku"kH1.D/CkA
"
ru"kL2.D/Ckq

".x; !/u"kL2.D/ � C;

where C depends the universal parameters and f and is uniform in " and !. As a result, due to the
compact embeddings H 1.D/ ,! L2.D/ ,!H�1.D/, through a subsequence "j .!/! 0, which by an
abuse of notation is still denoted by ", we have

ru". � ; !/
"!0

L2
��*rv. � ; !/; A

�
�

"

�
ru". � ; !/

"!0

L2
��*�. � ; !/;

u". � ; !/
"!0

L2
��! v. � ; !/; q

�
�

"
; !
�
u". � ; !/

"!0

H�1
��!p. � ; !/

(3-3)

for some function v. � ; !/ 2H 1.D/ and some vector-valued function �. � ; !/ 2 ŒL2.D/�d .

Step 2: Recall that f�kgd
kD1

are the correctors defined in (1-4), and we can extend them periodically to
functions defined on Rd . Since A.y/.ekCr�k.y// is periodic, we have that

A
�
x

"

��
ekC .r�

k/
�
x

"

��
L2
��*

Z
Td
A.y/

�
ek.y/Cr�

k.y/
�
dy D Aek : (3-4)



202 WENJIA JING

For the same reason and the fact
R

Td
r�k dy D 0, we have

ekC .r�
k/
�
x

"

�
L2
��*

Z
Td
ekCr�

k.y/ dy D ek : (3-5)

Now fix an arbitrary function ' 2 C10 .D/. For each fixed ! 2�, let ".!/! 0 be the subsequence in
Step 1. Consider the integralZ

D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx:

On one hand, in view of the third item in (3-3), (3-5), and the facts that div.A"ru"/ D �f C q"u"

converges in H�1 (to �f Cp. � ; !/, where p is defined in (3-3)) and that ekC .r�k/.x="/ is curl-free,
by the div–curl lemma [Jikov et al. 1994, Lemma 1.1], the above integral satisfies

lim
"!0

Z
D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx D

Z
D

�.x; !/ � ek'.x/ dx:

On the other hand, in view of the first item in (3-3), (3-4), and the facts that div.A".ek Cr�k.x="///
converges in H�1 (they are all equal to zero) and that ru" is curl-free, by the div–curl lemma, we have

lim
"!0

Z
D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx D

Z
D

rvA � ek'.x/ dx:

The two limits above must be equal, and it follows that �. � ; !/D Arv. � ; !/ in distribution.

Step 3: Recall that the stationary random potential q.x; !/ can be written as Qq.�x!/, where Qq is an essen-
tially bounded random variable on �. By the Birkhoff ergodic theorem [Jikov et al. 1994, Theorem 7.2],
there exists �1 2 F with P.�1/D 1, and for each ! 2�1,

q
�
x

"
; !
�
D Qq.�x

"
!/

L˛loc.R
d/

����* Nq D Eq.0; !/ (3-6)

for any ˛ 2 .1;1/. From the weak formulation of u", for any ! 2�1 and for any ' 2 C10 .D/, we haveZ
D

A
�
x

"

�
ru".x; !/ � r'.x/ dxC

Z
D

q
�
x

"
; !
�
u".x/'.x/ dx D

Z
D

f .x/'.x/ dx:

Passing to the limit along the subsequence ".!/ found in Step 1, we haveZ
D

Arv � r'C

Z
D

Nqv.x/'.x/ dx D

Z
D

f .x/'.x/ dx� lim
"!0

Z
D

q
�
x

"
; !
�
.u"� v/'.x/ dx:

The first term on the left follows from (3-3) and the fact that � D Arv; the second term on the left is
due to (3-6). Finally, the last term on the right-hand side is zero since q is uniformly bounded and u"� v
converges to zero strongly in L2.D/. Consequently, the above limit shows that v solves the homogenized
equation (1-2). By uniqueness of the homogenized problem, we must have that vDu and v is deterministic.

Finally, for each ! 2�1, by the weak compactness in H 1.D/ and the uniqueness of the possible limit,
the whole sequence u" converges to u. This proves the homogenization theorem. �

Remark 3.2. We remark that the same proof works in the case when .aij / is not symmetric; indeed, it suf-
fices to replace �k above by the solution of the adjoint corrector equation. The same idea of proof can also
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be carried out in the case when .aij / are stationary ergodic random fields; indeed, the corrector equation in
that case is much more involved but, by now, its solution and analogs of (3-4) and (3-5), are well known.

3A. Decomposition of the homogenization error. To separate the fluctuations in the homogenization
error u"�u that are due to the periodic oscillations in the diffusion coefficients from those due to the
random potential, we introduce the function v" which solves the following deterministic problem:8<:�

@

@xi

�
aij

�
x

"

�
@

@xj
v".x; !/

�
C Nqv".x; !/D f .x/; x 2D;

v".x/D 0; x 2 @D:

(3-7)

Here, the potential field is already homogenized, and we expect that v"�u filters out the effect of the
random potential. The problem above is well-posed and its solution v" is given by G"f .

The standard periodic homogenization theory yields that v" converges weakly inH 1.D/ and strongly in
L2.D/ to u for any f 2H�1.D/. Using this function, we can write the homogenization error for (1-1) as

u"�uD .u"� v"/C .v"�u/: (3-8)

The deterministic part of the homogenization error is

Eu"�uD E.u"� v"/C .v"�u/; (3-9)

and the random fluctuation part of the homogenization error is

u"� Eu" D .u"� v"/� E.u"� v"/: (3-10)

The deterministic part of the homogenization error hence contains two parts, the mean of u"�v" and the
periodic homogenization error v"�u. Estimates for the second part amount to the convergence rate of peri-
odic homogenization, and we recall some of the well-known results below, together with uniform-in-" esti-
mates of the Green’s function associated to G". We postpone the estimates for E.u"�v"/ to the next section.

Theorem 3.3 (estimates in periodic homogenization). Let D � Rd be an open bounded C 1;1-domain,
and v" and u be the solutions to (3-7) and (1-2) respectively. Let G".x; y/, with x; y 2D, be the Green’s
function associated to the Dirichlet problem of (3-7). Assume (A) holds. Then there exists positive
constant C , depending only on the universal parameters, such that

(i) for any f 2 L2.D/, we have kv"�ukL2 � C"kf kL2 ,

(ii) for d � 2 and for any x; y 2D, x ¤ y, we have that G".x; y/ satisfies

jG".x; y/j �

(
C jx�yj2�d if d ¤ 2;

C
�
1C

ˇ̌
log jx�yj

ˇ̌�
if d D 2;

(3-11)

and
jrG".x; y/j � C jx�yj

1�d : (3-12)

The O."/-error estimates in L2 were proved in [Moskow and Vogelius 1997] for d D 2, and in [Griso
2006] for general C 1;1-domains; see also [Kenig et al. 2012]. The uniform-in-" estimates on the Green’s
function and its gradient can be found, e.g., in [Avellaneda and Lin 1987; 1991; 2015]. In particular,
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(3-11) was proved in [Avellaneda and Lin 1987, Theorem 13]; the estimate (3-12) follows from an interior
Lipschitz estimate, e.g., [Avellaneda and Lin 1987, Lemma 16], if the distance between x and y is smaller
compared with their distance from the boundary, and it follows from a boundary Lipschitz estimate, e.g.,
[Avellaneda and Lin 1987, Lemma 20], if otherwise; see also the proof of [Armstrong and Shen 2015,
Theorem 1.1].

The homogeneities in these bounds are the same as those for the Green’s function associated to
constant coefficient equations, namely the Laplace equations. The striking fact that these bounds still
hold for oscillatory equations is due to the fact that the problem (3-7) homogenizes to constant (smooth)
coefficient equations. Periodicity or other structural assumptions on the coefficients are crucial. We
remark also that it is to obtain such pointwise estimates that the Hölder regularity of the diffusion matrix,
i.e., assumption (A3), is needed.

4. Estimates for the homogenization error

In this section, we estimate the size of the homogenization error u"�u. In view of the decomposition (3-8),
(3-9), (3-10) and the error estimates in Theorem 3.3, it suffices to focus on the intermediate homogenization
error u"� v", with v" D G"f defined in (3-7).

We introduce the function w" which solves

L"w" D��"v"; (4-1)

with homogeneous Dirichlet boundary condition. With the notations G" and G";! introduced earlier, w" is
given by �G"�"v". It follows that

L";!.u"� v"�w"/D��"w";

and u" � v" �w" vanishes at the boundary. Hence we have u" � v" �w" D �G";!�"w". Due to the
assumptions (A), G";! is uniformly (in " and !) bounded as a linear operator L2! L2; we have

ku"� v"kL2 � Ckw
"
kL2 : (4-2)

An estimate of u"� v" thus follows from this result:

Lemma 4.1. Let v" D G"f and w" be as above. Under the same conditions of Theorem 2.3, there exists
a universal constant C and

Ekw"k2
L2.D/

�

(
C"d^4kf k2

L2
if d ¤ 4;

C"4j log "jkf k2
L2

if d D 4:
(4-3)

Proof. Using the Green’s function G", we write

w".x; !/D

Z
D

G".x; y/�

�
y

"

�
v".y/ dy: (4-4)

The L2-energy of w" is then

kw". � ; !/k2
L2
D

Z
D3
G".x; y/G".x; z/�

�
y

"

�
�

�
z

"

�
v".y/v".z/ dy dz dx:
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Taking the expectation and using the definition of the autocorrelation function R of q, we have

Ekw". � ; !/k2
L2
D

Z
D3
G".x; y/G".x; z/R

�
y � z

"

�
v".y/v".z/ dy dz dx: (4-5)

Integrate over x first. Apply the uniform estimates (3-11) and the fact (see, e.g., Lemma A.1 of [Bal
and Jing 2011]): for any y ¤ z, 0 < ˛; ˇ < d ,

Z
D

dx

jx�yjd�˛ jx� zjd�ˇ
�

8̂<̂
:
C if ˛Cˇ > d;

C
�
1C

ˇ̌
log jy � zj

ˇ̌�
if ˛Cˇ D d;

C jy � zj˛Cˇ�d if ˛Cˇ < d:

(4-6)

We get Z
D

jG".x; y/G".x; z/j dx �

(
C jy � zj�..d�4/^0/ if d ¤ 4;

C.1C log jy � zj/ if d D 4:
(4-7)

Hence, if d � 2 and d ¤ 4,

Ekw". � ; !/k2
L2
� C

Z
D2

jv".y/v".z/j

jy � zj.d�4/_0

ˇ̌̌̌
R

�
y � z

"

�ˇ̌̌̌
dy dz dx:

When d D 4, the term .jy� zj.d�4/_0/�1 should be replaced by 1C
ˇ̌
log jy� zj

ˇ̌
. In any case, the above

yields a bound of the form

Ekw". � ; !/k2
L2
� C

Z
Rd
j Qv".y/j.K" � Qv"/.y/ dy: (4-8)

Here, Qv" D v"1D and 1D denotes the indicator function of the set D, K".y/DR
�y
"

�
jyj.4�d/^01B�.y/

if d ¤ 4 and K".y/D R
�y
"

��
1C 1B�.y/

ˇ̌
log jyj

ˇ̌�
if d D 4. Here, B� is the ball centered at zero with

radius � and � is the diameter of D. We check that, when d ¤ 4,

kK".y/kL1 �

Z
Rd

ˇ̌̌̌
R

�
y

"

�ˇ̌̌̌
1

jyj.d�4/_0
dy D

"d

".d�4/_0

Z
Rd

jR.y/j

jyj.d�4/_0
D C"d^4; (4-9)

where in the last inequality we used R 2 L1\L1.Rd /. Similarly, when d D 4,

kK".y/kL1 D

Z
B�

ˇ̌̌̌
R

�
y

"

�ˇ̌̌̌�
1C

ˇ̌
log jyj

ˇ̌�
dy D "4

Z
B�="

jR.y/j
�
1C

ˇ̌
log j"yj

ˇ̌�
� C"4jlog "j: (4-10)

To get the last inequality, we evaluate the integral on B1 and B�=" nB1, and bound
ˇ̌
log j"yj

ˇ̌
by
ˇ̌
log j"�j

ˇ̌
for the second part. Applying Hölder’s and then Young’s inequalities to (4-8), we get

Ekw"k2
L2
� CkK"k

L1
kv"k2

L2
� CkK"k

L1
kf k2

L2
:

Combining this with the estimates in (4-9) and (4-10), we complete the proof of the lemma. �
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4A. Scaling of the energy in the random fluctuation. Now we estimate theL2.D/-norm (the energy) of
the random fluctuation u"�Eu" which, in view of (3-10), is the same as the fluctuation u"�v"�E.u"�v"/.

Using the first-order correctorw" defined by (4-1), and following the approach of [Bal 2008; Bal and Jing
2011], we can derive an expansion formula for u"�v" as follows. Rewrite the equations (1-1) and (3-7) as

L"u" D f � �"u"; L"v" D f:

Then it follows that u"� v" D�G"�"u" D�G"�"v"�G"�".u"� v"/. Iterate this relation another time;
we get the truncated Neumann series

u"� v" D�G"�"v"CG"�"G"�"v"CG"�"G"�".u"� v"/: (4-11)

In particular, the fluctuations in u"� v" can be written as

u"� Eu" D�G"�"v"C
�
G"�"G"�"v"� EG"�"G"�"v"

�
C
�
G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/

�
:

The first term above is exactly w", which has mean zero and its energy was estimated in Lemma 4.1. The
next lemma provides an estimate for the energy of the second term in the above expansion.

Lemma 4.2. Suppose that the assumptions of Theorem 2.3 are satisfied. Then there exists a constant
C > 0, depending only on the universal parameters and f , such that

E
G"�"G"�"v"� EG"�"G"�"v"

2
L2.D/

�

8̂<̂
:
C"2d if d D 2; 3;

C"8j log "j2 if d D 4;

C"8 if 5� d � 7:

(4-12)

Let I "2 denote the left-hand side of (4-12); it has the expression

I "2 D E

Z
D

�Z
D2
G".x; y/G".y; z/

�
�".y/�".z/� E�".y/�".z/

�
v".z/ dz dy

�2
dx

D

Z
D5
G".x; y/G".x; y

0/G".y; z/G".y
0; z0/v".z/v".z0/�

E

�
�

�
y

"

�
�

�
y0

"

�
�

�
z

"

�
�

�
z0

"

��
�R

�
y � z

"

�
R

�
y0� z0

"

��
dz0 dy0 dz dy dx:

It is then evident that we need to estimate certain fourth-order moments of �.x; !/, namely, the function

‰�.x; y; t; s/ WD E�.x/�.y/�.t/�.s/�
�
E�.x/�.y/

��
E�.t/�.s/

�
: (4-13)

Were � a Gaussian random field, its fourth-order moments would decompose as a sum of products of
pairs of R. This nice property does not hold for general random fields; however, the following estimate
for �-mixing random fields provides almost the same convenience.

Lemma 4.3. Suppose �.x; !/ is a random field with maximal correlation function % defined as in (2-6).
Then

j‰�.x; t; y; s/j � #.jx� t j/#.jy � sj/C#.jx� sj/#.jy � t j/; (4-14)

where #.r/D .K%.r=3//1=2, with K D 4k�kL1.��D/.
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We refer to [Hairer et al. 2013] for the proof of this lemma. Estimates of this type based on mixing prop-
erties already appeared in [Bal 2008]. We refer to [Bal and Jing 2011] for an alternative way to control terms
like ‰� , and to Section 7 for some comments on the connection of condition (S) with the lemma above.

Proof of Lemma 4.2. Integrate over x in the expression of I "2 , and apply the estimates (3-11), (4-7) and
(4-14). We find, for d � 3,

I "2 � C

 Z
D4

�
1C1dD4

ˇ̌
log jy �y0j

ˇ̌�
jv".z/v".z0/j

jy �y0j.d�4/_0 jy � zjd�2 jy0� z0jd�2
#

�
y �y0

"

�
#

�
z� z0

"

�
dz0 dy0 dz dy

C

Z
D4

�
1C1dD4

ˇ̌
log jy �y0j

ˇ̌�
jv".z/v".z0/j

jy �y0j.d�4/_0 jy � zjd�2 jy0� z0jd�2
#

�
y � z0

"

�
#

�
z�y0

"

�
dz0 dy0 dz dy

!
:

For d D 2, the terms jy � zj�.d�2/ and jy0 � z0j�.d�2/ above should be replaced by 1C
ˇ̌
log jy � zj

ˇ̌
and 1C

ˇ̌
log jy0� z0j

ˇ̌
respectively. Let I "21 and I "22 denote the two terms on the right-hand side of the

estimate above. In the following, we set � to be the diameter of D.

Estimate of I "21. We use the change of variables

y �y0

"
7! y;

z� z0

"
7! z; y0� z0 7! y0; z0 7! z0:

Then the integral in I "21 becomes, for d � 3,

C"2d

".d�4/_0

Z
B2
�="

dy dz

Z
B�

dy0
Z
D

dz0
�
1C1dD4

ˇ̌
log j"yj

ˇ̌�
jv".z0/v".z0C "z/j

jyj.d�4/_0 jy0C ".y � z/jd�2 jy0jd�2
#.y/#.z/:

We integrate over y0 first and apply (4-6), then integrate over z0 and obtain

I "21 � Ckv
"
k
2
L2
"2d�2.d�4/_0

Z
B2
�="

�
1C 1dD4

ˇ̌
log j"yj

ˇ̌��
1C1dD4

ˇ̌
log j".y � z/j

ˇ̌�
#.y/#.z/

jyj.d�4/_0 jy � zj.d�4/_0
dy dz:

When d D 3, the integral above is bounded because # 2 L1.Rd / thanks to assumption (S), and we
have I "21 � C"

2d . When d D 2, the situation is similar; after the integral over y0, there is again no
singularity in the denominator. Hence, I "21 � C"

2d .
When d � 5, by the Hardy–Littlewood–Sobolev inequality [Lieb and Loss 2001, Theorem 4.3], we

have, for p; r 2 .1;1/,Z
R2d

.#.y/=jyjd�4/#.z/

jy � zjd�4
dy dz � C

 #.y/
jyjd�4


Lp.Rd /

k#kLr .Rd /;
1

p
C
d � 4

d
C
1

r
D 2:

Take pD d=.4Cı/ and r D d=.d �ı/ for any .d �8/_0 < ı < d �4. Then because # 2L1\L1.Rd /
and jyj4�d 2 Lp.B1/, the above is finite and we have I "21 � C"

8.
When d D 4, we need to control the integralZ

B2
�="

�
1C

ˇ̌
log j"yj

ˇ̌��
1C

ˇ̌
log j".y � z/j

ˇ̌�
#.y/#.z/ dy dz;
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where D� D fy �y0� zC z0 W y; y0; z; z0 2Dg is some bounded region formed by certain combinations
of points in D. As a result, the logarithmic terms are bounded away from the poles. Hence, the above
integral is bounded by O.j log "j2/, and I "21 � C"

8j log "j2.

Estimate of I "22. We apply the change of variables

y � z0

"
7! y;

y0� z

"
7! y0; z� z0 7! z; z0 7! z0:

Then the integral in I "22 becomes, for d D 2,

C"2d
Z
B2
�="

dy dy0
Z
D

dz0
Z
B�

dz
ˇ̌
v".z0/v".z0C z/

ˇ̌�
1C

ˇ̌
log jz� "yj

ˇ̌�
.1C log jz� "y0j/#.y/#.y0/:

Integrate over z0, z and then over y0 and y. We find that I "22 � C"
2d . For d � 3, the same change of

variables transforms I "22 to

C"2d
Z
B2
�="

dy dy0
Z
B�

dz

Z
D

dz0
�
1C1dD4

ˇ̌
log jz� ".y �y0/j

ˇ̌�
jv".z0/v".z0C z/j

jz� ".y �y0/j.d�4/_0 jz� "yjd�2 jzC "y0jd�2
#.y/#.y0/:

After an integration over z0, we only need to control

C"2d
Z
B2
�="

dy dy0
Z
B�

dz

�
1C1dD4

ˇ̌
log jz� ".y �y0/j

ˇ̌�
jz� ".y �y0/j.d�4/_0 jz� "yjd�2 jzC "y0jd�2

#.y/#.y0/:

When d D 3, an integration over z removes the singularities in the denominator. Then integrating
over y and y0 yields that I "22 � C"

2d .
When d � 5, we need to control the integral; after another change of variables, "�1z� .y � y0/ 7! z

and �y 7! y, we haveZ
R3d

dy dy0 dz
C"8#.y/#.y0/

jzjd�4 jz�yjd�2 jz�y0jd�2
D

Z
Rd
dz
C"8jK.z/j2

jzjd�4
;

with K.z/D .jyj�.d�2/ �#/.z/. Since # 2 L1\L1.Rd /, we have

jK.z/j D

Z
B1.z/

#.y/ dy

jz�yjd�2
C

Z
RdnB1.z/

#.y/ dy

jz�yjd�2
�

Z
B1.z/

k#kL1 dy

jy � zjd�2
C

Z
RdnB1.z/

#.y/ dy � C:

Moreover, by the Hardy–Littlewood–Sobolev inequality, we have that

kKkL2.Rd / D
jyj�.d�2/ �#.y/

L2.Rd /
� Ck#k

L2d=.dC4/.Rd /
� Ck#k

d�4
2d

L1
k#k

dC4
2d

L1
:

Now we show that K 2 L1\L2.Rd /. It follows that the integral to be controlled is finite and we have
I "22 � C"

8.
When d D 4, after the same change of variables as in the case of d � 5, we are left to control

"8
Z
B2
�="

dy dy0
Z
B3�="

dz

�
1C

ˇ̌
log j"zj

ˇ̌�
#.y/#.y0/ dy dy0 dz

jz�yj2 jz�y0j2
D "8

Z
B3�="

�
1C

ˇ̌
log j"zj

ˇ̌�
.K.z//2 dz;
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where K.z/ D .1B�=".y/jyj
�2 � #/.z/. We verify again that K 2 L1 \L2�ı.Rd / for any ı 2 .0; 1/.

Estimate the integral again by breaking it into pieces inside and outside B1; we find I "22 � C"
8j log "j.

Combining these estimates above, we have proved (4-12). �

Moving on to the last term in the series (4-11), we observe that it cannot be controlled in the same
manner as above. Indeed, the term u"� v" is random and depends on �.x; !/ in a nonlinear way. As a
result, when we move the expectation into the integral representation, like in step (4-5), we cannot get a
simple closed form in terms of R.

We hence choose not to address the interaction between u"� v" and the random fluctuation �" in the
potential directly. Instead, by an application of Minkowski’s inequality, we haveEG"�"G"�".u"�u/


L2.D/

� E
G"�"G"�".u"�u/L2.D/:

Thus, we use the trivial bound on the L1.�;L2.D//-norm of the fluctuations in G"�"G"�".u"�u/:

r"2 WD E
G"�"G"�".u"�u/� �EG"�"G"�".u"�u/

�
L2.D/

� 2 E
G"�"G"�".u"�u/L2.D/;

and only control the energy of the last term in (4-11) itself, as contrast to its variance.

Lemma 4.4. Suppose that the assumptions of Theorem 2.3 are satisfied. Then there exists some con-
stant C , depending only on the universal parameters and f , such that

E
G"�"G"�".u"� v"/L2.D/ �

8̂<̂
:
C"d if d D 2; 3;

C"4j log "j
3
2 if d D 4;

C"6�
d
2 if d � 5:

(4-15)

To prove this result, we estimate the operator norm of G"�"G", which is random since �" depends on !,
and combine it with the control of u"� v", which was obtained earlier.

Lemma 4.5 (mean value of the operator norm kG"�"G"kL2!L2). Under the same assumptions of
Theorem 2.3, there exists some universal constant C such that

EkG"�"G"k2L2!L2 �

8̂<̂
:
C"d if d D 2; 3;

C"4jlog "j2 if d D 4;

C"8�d if d � 5:

(4-16)

Proof. For any h 2 L2.D/, we have

kG"�"G"hk2L2 D
Z
D

�Z
D2
G".x; y/�

".y/G".y; z/h.z/ dz dy

�2
dx:

Note that for almost every fixed x 2D,ˇ̌̌̌Z
D2
G".x; y/�

".y/G".y; z/h.z/ dz dy

ˇ̌̌̌
� khkL2

Z
D

G".x; y/�
".y/G".y; � / dy


L2
:
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It then follows that

kG"�"G"k2L2!L2.!/�
Z
D2

�Z
D

G".x; y/�
".y; !/G".y; z/ dy

�2
dz dx:

Taking the expectation, we find

EkG"�"G"k2L2!L2 �
Z
D4
G".x; y/G".x; �/R

�
y � �

"

�
G".y; z/G".�; z/ dy d� dz dx:

Integrate over z- and x-variables first. Using (3-11) and (4-6), we find that the integrals over x- and
z-variables are estimated as in (4-7). Then we have

EkG"�"G"k2L2!L2 � C
Z
D2

�
1C1dD4

ˇ̌
log jy � �j

ˇ̌
jy � �j.d�4/_0

�2 ˇ̌̌̌
R

�
y � �

"

�ˇ̌̌̌
dy d�:

Change variables in the above integral and carry out the analysis as before. We find that (4-16) holds.
Note that the estimates become useless for d � 8. �

Proof of Lemma 4.4. For each ! 2�, we haveG"�"G"�".u"� v"/L2 �MkG"�"G"kL2!L2 ku"� v"kL2 ;
where M is the uniform bound on the random potential in (2-4). Take the expectation and then the desired
estimate follows from (4-16), (4-2) and (4-3). �

4B. Scaling factor of the random fluctuations in the weak topology. In this section we aim to find the
correct scaling factor such that the random fluctuation u"� Eu", normalized properly according to this
factor, converges with respect to the weak topology. For that purpose, we fix an arbitrary ' 2 L2.D/
with unit norm, and estimate E.u"� Eu"; '/2.

Using the series expansion formula (4-11), we have

.u"� Eu"; '/D�.G"�"v"; '/C
�
G"�"G"�"v"� E.G"�"G"�"v"/; '

�
C
�
G"�"G"�".u"� v"/� E.G"�"G"�".u"� v"//; '

�
:

Since the operators G" and G"�"G" are self-adjoint on L2.D/, we can move them to '. Set  " D G"'.
The above expression becomes

.u"� Eu"; '/D�.�"v";  "/C
�
.�"G"�"v";  "/� E.�"G"�"v";  "/

�
C
�
.�".u"� v"/;G"�" "/� E.�".u"� v"/;G"�" "/

�
WD I "1 C .I

"
2 � EI "2 /C .I

"
3 � EI "3 /: (4-17)

The aim now is to control the variances of I "j , with j D 1; 2; 3.
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Estimate for I "1 . For I "1 , which is mean-zero, we have

E.I "1 /
2
D E

�Z
D

�".x/v".x/ ".x/ dx

�2
D

Z
D2
R

�
x�y

"

�
v".x/v".y/ ".x/ ".y/ dx dy

D

Z
Rd

�
R" �

�
v".y/ ".y/1D.y/

��
.x/ v".x/ ".x/1D.x/ dx

� CkR"kL1.Rd /kv
" "1Dk

2
L2.Rd /

:

Here, R".y/ D R
�y
"

�
is a shorthand notation. To obtain the last inequality, we applied Hölder’s and

Young’s inequalities. Note that kR"kL1.Rd / D "dkRkL1.Rd /. Note also that f; ' 2 L2.D/ implies
that v";  " 2 H 2.D/, which is embedded in L4.D/ for all 2 � d � 7. As a result, we conclude that
E jI "1 j � C"

d=2.

Estimate for Var.I "2 /. Before calculating the variance of I "2 , we first check that kI "2kL2.�/ can have size
larger than "d=2 for d � 4. By direct computation, for d � 3,

E.I "2 /
2
D

Z
D4
R

�
x�y

"

�
R

�
x0�y0

"

�
G".x; y/G".x

0; y0/v".y/v".y0/ ".x/ ".x0/ dx0 dy0 dx dy

.
Z
D4

ˇ̌̌̌
R

�
x�y

"

�
R

�
x0�y0

"

�ˇ̌̌̌
jv".y/v".y0/ ".x/ ".x0/j

jx�yjd�2 jx0�y0jd�2
dy0 dx0 dy dx:

(4-18)
For d D 2, the last integral above should be replaced byZ
D4

ˇ̌̌̌
R

�
x�y

"

�
R

�
x0�y0

"

�
v".y/v".y0/ ".x/ ".x0/

�
1C
ˇ̌
log jx�yj

ˇ̌��
1C
ˇ̌
log jx0�y0j

ˇ̌�ˇ̌̌̌
dy0dx0dy dx:

After the change of variables

x�y

"
7! x;

x0�y0

"
7! x0; y! y; y0! y0;

the integral to be controlled, for d � 3, becomes

"4
Z
B2
�="

Z
D2
jR.x/R.x0/j

ˇ̌
v".y/ ".yC "x/v".y0/ ".y0C "x0/

ˇ̌
jxjd�2 jx0jd�2

dy0 dy dx0 dx:

Integrating over y and y0 and then over x and x0, we find that the integral above is finite. Hence, E.I "2 /
2

is of order "4 when d � 3. When d D 2, the change of variables in the logarithmic functions yields
the term j log "j2, and we have E.I "2 /

2 is of order "4j log "j2. This shows that the second term in (4-11),
i.e., I "2 , is larger than or comparable to "d=2 for d � 4.
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We show next that the variance of I "2 , however, is smaller than "d=2 in all dimensions. Using the
definition of‰� in (4-13) and the estimate in Lemma 4.3, we bound E.I "2�EI "2 /

2DVar.I "2 /, for d � 3, by

Var.I "2 /D
Z
D4
‰�

�
x

"
;
y

"
;
x0

"
;
y0

"

�
G".x; y/G".x

0; y0/v".y/v".y0/ ".x/ ".x0/ dx0 dy0 dx dy

� C

Z
D4
#

�
x� x0

"

�
#

�
y �y0

"

�ˇ̌
v".y/v".y0/ ".x/ ".x0/

ˇ̌
jx�yjd�2 jx0�y0jd�2

dx0 dy0 dx dy

CC

Z
D4
#

�
x�y0

"

�
#

�
y � x0

"

�ˇ̌
v".y/v".y0/ ".x/ ".x0/

ˇ̌
jx�yjd�2 jx0�y0jd�2

dx0 dy0 dx dy:

The second integral above is essentially the same with the first one if we interchange x0 and y0. Hence,
we focus only on the first one. After the change of variables

x� x0

"
7! x;

y �y0

"
7! y; y � x0 7! x0; y0 7! y0;

the first integral becomes

C"2d
Z

R2d
dx dy

Z
B�

dx0
Z
D

dy0#.x/#.y/

ˇ̌
v".y0C"y/v".y0/ ".y0�x0C"xC"y/ ".y0�x0C"y/

ˇ̌
jx0�"xjd�2 jx0�"yjd�2

:

Integrate over y0 first and use the fact that kv"kL4 � C and k "kL4.D/ � C . Then the above integral is
bounded byZ

R2d
dx dy

Z
B�

#.x/#.y/
C"2d dx0

jx0� "xjd�2 jx0� "yjd�2
�

Z
R3d

C"2d�.d�4/_0#.x/#.y/ dx0 dx dy

jx�yj.d�4/_0

for d ¤ 4, where we integrated over x0 and used (4-6) to have the inequality. The resulting integral is
clearly finite. Hence we conclude that Var.I "2 /� C"

2d for d D 3 and that it is of order "dC4 for d � 5.
When d D 2, there is only logarithmic singularity to start with in the expression of Var.I "2 /, and we

find Var.I "2 /� C"
2d .

When d D 4, the integral that remains after we integrate over x0 has a term of the form�
log j".x�y/j

�
1".x�y/2B2� :

It follows then that Var.I "2 /� C"
8jlog "j.

To summarize, for d � 2, we have EjI "2�E I "2 j� EjI "1 j. That is, when the series expansion is integrated
against test functions and the mean is removed, the second term is much smaller than the leading term.

Estimate for I "3 . For the last term, we control it by the crude estimate E.I "3 � E I "3 /
2 � 2E.I "3 /

2. From
the expression I "3 D .�

".u"� v"/;G"�" "/, we have

EjI "3 j � E
�
k�"kL1 ku

"
� v"kL2 kG"�

" "kL2
�
� C

�
Eku"� v"k2

L2
EkG"�" "k2L2

�1
2

since G"�" " is exactly of the form of w" defined in (4-1). Owing to (4-2) and Lemma 4.1, we conclude
that E jI "3 j is of order "d for d D 2; 3, of order "4j log "j for d D 4, and of order "4 for d � 5. Hence, for
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all 2� d � 7, the truncation term in the Neumann series, with respect to the weak topology, has a scaling
factor that is smaller than that of the leading term (which is of order "d=2).

Remark 4.6. We find that for 2�d � 7, the random fluctuation u"�Eu" scales like "d=2 when integrated
against test functions, and the leading term is the dominating one. We do not expect the dimension
constraint d � 7 to be intrinsic. Firstly, it is related to the fact that we stopped at the second-order iteration
in the Neumann series, and had to control the last term by the crude estimate given by the Minkowski
inequality (not taking advantage of removing the mean). Secondly, it is also needed when we claim that
 " D G"�"' is in L4.D/. In general, if we assume a stronger condition, namely f 2 C.D/, then v" is
always bounded, and we only need  " 2 L2.D/, which holds in all dimensions if ' 2 L2.D/.

We conclude this section by collecting the facts obtained above to give a proof of Theorem 2.3.

Proof of Theorem 2.3. Let v" be as defined in (3-7). In view of (3-10) and the Minkowski inequality, we
have

Eku"� Eu"k2
L2
� E

�
2ku"� v"k2

L2
C 2 kE.u"� v"/k2

L2

�
� 4 Eku"� v"k2

L2
:

Owing to (4-2) and Lemma 4.1, we have (2-13).
In view of (3-8), (4-2), Lemma 4.1 and Theorem 3.3, we have

Eku"�ukL2 � Eku"� v"kL2 Ckv
"
�ukL2 � C"kf kL2 :

This proves (2-12).
Finally, to estimate Ej.u"� Eu"; '/L2 j for an arbitrary field ' 2 L2.D/, without loss of generality we

can assume k'kL2 D 1. Then this term is precisely what was studied immediately above. With I "j , where
j D 1; 2; 3, defined earlier, we have showed that for 2� d � 7, we have E j

P3
jD1.I

"
j � E I "j /j � C"

d=2,
which is precisely (2-14). �

5. Limiting distribution of the random fluctuation

In this section, we study the limiting distribution of the scaled random fluctuation, "�d=2.u" � Eu"/,
in functional spaces. As mentioned earlier, the choice of space depends on dimension. When d D 1,
convergence in law in C.D/ of the random fluctuation was proved in [Bourgeat and Piatnitski 1999; Bal
2008]. We prove Theorem 2.4 below, which establishes convergence in law of the random fluctuation in
L2.D/ for d D 2; 3 and in H�1.D/ for d D 4; 5.

Multiplying "�d=2 to the series expansion (4-11), we obtain the following expression for the scaled
random fluctuation:

�
G"�"v"
p

"d
C

G"�"G"�"v"� EG"�"G"�"v"
p

"d
C

G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/
p

"d
: (5-1)

Our strategy, as in [Bal 2008; Bal and Jing 2011], is to prove that the leading term X" D�"�d=2G"�"v"

contributes and converges in law to the right distribution depicted by Theorem 2.4, and show that the other
terms converge in stronger mode to the zero function and hence have no contribution to the limiting law.
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At the purely formal level, all these steps are the same as in the setting of nonoscillatory diffusion
coefficients. Indeed, we already established controls for the second and last terms above in the previous
section. Moreover, the "-dependence in G" and v" is not a problem, as we will see later, for the convergence
of the characteristic functions of X", thanks to the fact that G"'! G' in L2 for any ' 2H�1.D/. This
dependence, however, does impose difficulty on showing the tightness of the measures of fX"g". As
discussed in Section 7, the old approach for tightness in [Bal et al. 2012] fails and new ideas are needed.

Our new approach is to use some nonoptimal but convenient tightness criteria, described in Theorems A.1
and A.2, for probability measures on Hk.D/ that are induced by processes in HkCs.D/, with k D�1; 0
and s > 0. Since we do need s to be fractional in .0; 1/, we recall some definitions regarding fractional
Sobolev spaces; see [Di Nezza et al. 2012] for reference. Given an open set K � Rd , the fractional
Sobolev space H s

0 .K/, for s 2 .0; 1/, is the closure of C10 .K/ in the norm

kuk2H s.K/ WD kuk
2
L2.K/

C

Z
K2

ju.x/�u.y/j2

jx�yjdC2s
dx dy:

When K D Rd , an equivalent norm for u 2H s.Rd / is

kuk2
H s.Rd /

WD

Z
Rd
.1Cj�j2/s jFuj2.�/ d�: (5-2)

Moreover, for s 2 .0; 1/, the space H�s.K/ is defined to be the dual space .H s
0 .K//

0, and in particular
when K D Rd , the above norm for H�s.Rd / is still valid.

5A. Limiting distribution in L2.D/ for dimensions two and three. For d D 2; 3, we prove that the
leading term X" in (4-11) converges in law in L2.D/ and show that the other terms vanish in the limit.
The next lemma, together with Theorem A.1, yields tightness of X", which is the key step.

Lemma 5.1. Suppose that the conditions of Theorem 2.3 are satisfied. Assume further that d D 2; 3. Then
for any s2

�
0; 1
2

�
, there exists a constant C , depending only on the universal parameters and s, such that

Ek"�
d
2 G"�"v"k2H s � C: (5-3)

Proof. For each fixed ! 2� and " > 0, we know that "�d=2G"�"v" belongs to H 1
0 .D/ and hence also to

H s
0 .D/ for any s 2 .0; 1/. In particular, its H s-seminorm has the expression

Œ"�
d
2 G"�"v"�2H s.D/ D

1

"d

Z
D2

ˇ̌
.G"�"v"/.x/� .G"�"v"/.y/

ˇ̌2
jx�yjdC2s

dy dx:

Taking the expectation and using the L4-bounds of v", we have

EŒ"�
d
2 G"�"v"�2H s.D/�

C

"d

Z
D4

ˇ̌�
G".x; z/�G".y; z/

��
G".x; �/�G".y; �/

�ˇ̌
jx�yjdC2s

ˇ̌̌̌
R

�
z� �

"

�ˇ̌̌̌
d� dz dy dx:

We claim: there exists C , depending only on the universal parameters and s, such that for all �; z 2D,Z
D2

ˇ̌�
G".x; z/�G".y; z/

��
G".x; �/�G".y; �/

�ˇ̌
jx�yjdC2s

dy dx � C: (5-4)
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Figure 1. Decomposition criteria of the domain of integration based on the relative
position between four points. Left: .x; y/2D21 ; middle: .x; y/2D22 ; right: .x; y/2D23 .

We decompose the integration region D2 into three parts D2j , with j D 1; 2; 3, as follows: in D21 , one of
the points in fz; �g, namely � without loss of generality, lies outside B�.x/[B�.y/, where �D jx�yj;
in D22 , one of the points, namely z without loss of generality, lies in B�.x/ and satisfies jz�xj � jz�yj
and at the same time � 2B�.y/ and j��yj � j��xj; inD23 , we have that � and z cluster around one of the
points in fx; yg; without loss of generality, assume this point is x, so z; � 2B�.x/\f� W j��xj< j��yjg.
In Figure 1, the relative positions between fx; y; z; �g are illustrated for each case.

Let Ij be the integral over D2j of the integrand in (5-4). We estimate Ij , with j D 1; 2; 3, separately
and we focus on the case of d D 3. It is clear that when d D 2, the only change is that the Green’s
function has logarithmic bound, and the analysis below can be adapted.

On D21 , without loss of generality, we assume that jz�xj � jz�yj (if otherwise, we would switch the
roles of x and y). Hence jG".x; z/�G".y; z/j � C jx� zj2�d . By the mean value theorem,

jG".x; �/�G".y; �/j � jrG".�; �/jjx�yj for some � between x and y:

By the gradient bound (3-12) and the fact that j�� �j � jy � �j=2, we have

jrG".�; �/j �
C

j�� �jd�1
�

C

jy � �jd�1
; hence jG".x; �/�G".y; �/j �

C jx�yj

jy � �jd�1
:

As a result, we have,

I1 �

Z
D21

C

jx�yjdC2s�1

1

jx� zjd�2

1

jy � �jd�1
dx dy:

Integrate over x first and then over y, using (4-6) in each step; we find that as long as 0 < s < 1
2

, we have
I1 � C for some C that only depends on the universal parameters and s.

On D22 , we have jG".x; z/�G".y; z/j � C jx� zj2�d and jG".x; �/�G".y; �/j � C jy � �j2�d . At
the same time, jx� zj � jx�yj and jy � �j � jx�yj, so we may split the singularity into the integrals
over x and y so that each of them is essentially not singular. That is,

I2 �

Z
D22

C

jx� zj
d
2
Cs
jy � �j

d
2
Cs

1

jx� zjd�2

1

jy � �jd�2
dx dy:
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We note that the integral above can be separated, and as long as 0 < s < 2� d
2
D
1
2

, each integral is finite
and hence I2 � C .

On D23 , we assume without loss of generality that z and � cluster around x. Then we have

jG".x; �/�G".y; �/j � C jx� �j
2�d

for � 2 fz; �g. At the same time, jx�yj> jy � zj. As a result, we have

I3 �

Z
D23

C

jy � zjd�� jx� zj2sC�

1

jx� zjd�2

1

jx� �jd�2
dx dy:

We choose � > 0 so the integral over y is uniformly bounded. The integral over x is also bounded as
long as 2sC � < .4� d/^ 2 D 1, and we have I3 � C . We note that for any s 2

�
0; 1
2

�
, there exists

� 2 .0; 1� 2s/ satisfying the constraint 2sC � < 1.
The above bounds are uniform in ı. Therefore, taking the limit ı ! 0, we prove (5-4). Integrate

over z and � in the integral expression of EŒ"�d=2G"�"v"�2H s ; in particular, integrating R. � ="/ yields a
factor of "d that cancels the one in the denominator. We conclude that EŒ"�d=2G"�"v"�2H s � C for each
fixed s 2

�
0; 1
2

�
. Combining this with E k"�d=2G"�"v"k2L2 � C , which is due to (4-1) for d D 2; 3, we

prove (5-3). �

Remark 5.2. The key step in the proof above is to derive (5-4), which concerns only the Green’s
function G" and hence is obtained from a purely deterministic argument. Indeed, the scaling factor "�d=2

plays a role only afterward when we integrate against R", and it disappears in the final estimate because it
is the right scaling for integrals of R". In Section 6, where we consider the case of long-range correlated
random potential q.x; !/, the scaling in X" will be different, but the tightness of (the measures of) X",
with the right scaling, is obtained in the same way as above.

Next we address the convergence of the characteristic function of the measure of X". In view of
Theorem 2.1, this amounts to proving this:

Lemma 5.3. Assume (S) holds. For any fixed ' 2 L2.D/, we have

�
1
p

"d
.G"�"v"; '/L2

distribution
������!N .0; �2' /; where �2' WD �

2

Z
D

u2.x/.G'/2.x/ dx: (5-5)

Proof. Moving the operator G" to ', we have

�
1
p

"d
.G"�"v"; '/L2 D�

1
p

"d

Z
D

�
�
x

"

�
v".x/ ".x/ dx;

where  " D G"'. Let I "1 Œ'� denote the random variable above. Set  D G' and introduce

J "1 Œ'� WD �
1
p

"d

Z
D

�
�
x

"

�
u.x/ .x/ dx: (5-6)
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Since �.x; !/ is a stationary ergodic random field that has short-range correlation, u 2 L2.D/, we
apply the well-known functional central limit theorem (see, e.g., [Bal 2008, Theorem 3.8]) and obtain

J "1 Œ'�
distribution
������! I1Œ'� WD �

�Z
D

G.x; y/u.y/ dW.y/; '

�
L2
�N

�
0; �2

Z
D

.u.y/ .y//2 dy

�
: (5-7)

The last relation � above means equal in law. We note that

E
ˇ̌
J "1 Œ'�� I

"
1 Œ'�

ˇ̌2
D

1

"d
E

�Z
D

�
�
x

"

�
.v" "�u / dx

�2
� Ckv" "�u k2

L2
;

and from periodic homogenization theory, we have v"! u in L2,  "!  in L2, as "! 0; moreover,
v" and  " are bounded in L1 since H 2.D/ is embedded in L1.D/ for d D 2; 3. As a consequence,
the right-hand side above converges to zero as "! 0. As a result,

I "1 Œ'�D J
"
1 Œ'�C .I

"
1 Œ'��J

"
1 Œ'�/

is the sum of a term that converges in distribution to I1Œ'� and a term that converges to zero in L2.�/.
The desired result follows immediately. �

Finally, we collect the facts obtained above to give a proof of Theorem 2.4(i).

Proof of Theorem 2.4(i). Owing to Lemma 4.2 and Lemma 4.4, for d D 2; 3, we have

E
"�d2 �G"�"G"�"v"� EG"�"G"�"v"

�
C "�

d
2

�
G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/

�
L2
� "

d
2 :

By Chebyshev’s inequality, these two terms, as random elements of L2.D/, converge in probability to the
zero function. It follows that the limiting distribution of "�d=2.u"� Eu"/ is given by that of the leading
term X".!/ WD �"�d=2G"�"v".

Let X be the right-hand side of (2-15). It is a random element of L2.D/ defined on some probability
space . z�; zF ; zP/ on which the Wiener process W.y; Q!/ is defined. Let the distribution of X be PX and its
characteristic function be �P

X

. We note that, for any ' 2 L2.D/, the inner product .X; '/ has Gaussian
distribution N .0; �2' /, with �2' defined in (5-5). Indeed,

EP
X

.X; '/D � EP
X

Z
D

�Z
D

G.x; y/'.x/ dx

�
u.y/ dW.y/D 0;

and

EP
X

.X; '/2 D �2 EP
X

�Z
D

�Z
D

G.x; y/'.x/ dx

�
u.y/ dW.y/

�2
D �2

Z
D

.G'/2u2 dy:

This shows .X; '/ � N .0; �2' / in law. By Lemma 5.3, for any fixed ' 2 L2.D/, the random variable
.X"; '/ converges in distribution to N .0; �2' /. This shows that, as mentioned in Remark 2.2, the char-
acteristic function of the law of X" converges to that of X . In view of Lemma 5.1 and Theorem A.1,
the distribution of fX"g"2.0;1/ in L2.D/ is tight as well. Consequently, by applying Theorem 2.1, we
complete the proof of Theorem 2.4(i). �
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5B. Limiting distribution in H �1.D/ for dimensions four and five. For dimension d � 4, we do not
expect "�d=2.u"�Eu"/ to converge in distribution in L2.D/, because as shown in (2-13), the fluctuations
scale like "2j log "j1=2 for d D 4, and scale like "2 for d � 5. In both cases, the scaling is much stronger
than "d=2. Nevertheless, we prove that convergence in law in H�1.D/ holds.

As before, the key step is to show that the probability measure in H�1.D/ of the scaled leading term
fX"g WD �"�d=2G"�"v" in the expansion (4-11) is tight, and to show that the characteristic function of
this measure converges.

Let us first address the characteristic function �X
"

. We note that L2.D/ is naturally embedded to
H�1.D/. For any f 2 L2, the linear form Lf W H

1
0 .D/! R given by Lf . / D .f;  / is clearly an

element of H�1.D/, and

kLf kH�1.D/ D sup
 2H1

0 .D/; k kH1�1

Lf . /� kf kL2 :

We henceforth identify Lf 2 H�1.D/ with f when f 2 L2.D/. For any ` 2 H�1.D/, let l be the
element in H 1

0 .D/ that is related to ` by a Riesz representation. Then we have

.f; `/H�1.D/ D Lf .l/D .f; l/:

That is, the H�1.D/ inner product of f 2 L2.D/ with ` is the same as the L2 inner product of f
with l . As a result, Remark 2.2 applies for distribution on H�1.D/: to show �P

X"

converges to �P
X

as
characteristic functions of distributions in H�1.D/, it suffices to prove .X"; h/! .X; h/ in distribution
as random variables for each fixed h 2 L2.D/.

Now we address the tightness of the measures of fX"g. Our strategy is to control the mean of
kX"kH�s.D/ for some s 2 .0; 1/ and then apply Theorem A.2. To this purpose, we first observe that
X" 2 L2.D/ and hence X" 2H�s.D/ if we set

X" WH s
0 .D/! R by X".h/D

Z
D

X".x/h.x/ dx: (5-8)

For any h 2H s
0 .D/, the above clearly defines a continuous linear functional. Moreover, if we identify the

function X" with its extension to Rd by zero outside D, the above also defines an element in H�s.Rd /.
Since @D is regular (as a matter of fact, a C 0;1-boundary is sufficient), any h 2H s

0 .D/ can be extended
continuously to Eh 2H s.Rd /, which satisfies kEhkH s.Rd / � T khkH s.D/; see [Di Nezza et al. 2012,
Theorem 5.4]; by duality, H�s.Rd / is continuously embedded in H�s.D/. If fact, we have

kX"kH�s.D/ WD sup
w2H s

0 .D/;kwkHs.D/�1

.X"; w/L2 D sup
w2H s.D/;kwkHs

0
.D/�1

.X"; Ew/L2

� sup
v2H s.Rd /;kvk

Hs.Rd /
�T

.X"; v/L2 � T kX
"
kH�s.Rd /: (5-9)

We note that kX"kH�s.Rd / can be calculated using the formula (5-2).
Consider, for each fixed y 2D, the Green’s function G". � ; y/ for the Dirichlet problem (3-7). Extend

G". � ; y/ to Rd by zero outside D, and let Gy" denote the extended function. Then Gy" defines naturally a
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linear form on H s.Rd / by

Gy" WH
s.Rd /! R;

h 7!Gy" .h/ WD

Z
Rd
Gy" .x/h.x/ dx D

Z
D

G".x; y/h.x/ dx;
(5-10)

provided the integral is finite. Since G" is self-adjoint and by the Green’s function representation,
w.y/ WDG

y
" .h/ is the solution to the Dirichlet problem L"w D h on D, with zero boundary condition.

Note that the restriction of h on D is in H s.D/. Invoking elliptic regularity, we find that w is bounded
in H sC2.D/. Let s 2 .0; 1/ if d D 4 and s 2

�
1
2
; 1
�

if d D 5; then by the embedding theorem of fractional
Sobolev spaces, H sC2.D/�C 0;˛.D/ with ˛D sC2� d

2
2 .0; 1/; see [Grisvard 1985, Theorem 1.4.4.1].

As a result, jGy" .h/j � CkhkH s , where C only depends on the universal constants and the index s. We
hence proved the following fact:

Lemma 5.4. Assume (A) holds and Nq � 0. Identify G". � ; y/, for each fixed y 2D, with the element in
H�s.Rd / defined above. Suppose s 2 .0; 1/ for d D 4 and s 2

�
1
2
; 1
�

for d D 5. Then there exists C > 0,
depending only on universal parameters and s, such that

kG". � ; y/kH�s.Rd / � C: (5-11)

Using this fact and the Fourier transform formula for the H�s.Rd /-norm, we can prove the following
control of kX"kH�s.Rd / which, together with Theorem A.2, yields the tightness of fX"g.

Lemma 5.5. Suppose that the conditions of Theorem 2.3 are satisfied. Assume further that d D 4; 5. Let
s 2 .0; 1/ if d D 4 and s 2

�
1
2
; 1
�

if d D 5. Then there exists a constant C > 0, depending only on the
universal parameters and on s, such that

EkX"k2H�s.D/ � C: (5-12)

Proof. We identify X" with the element in H�s.D/ �H�s.Rd / defined earlier. In view of (5-9), we
have

kX"k2H�s.D/ � CkX
"
kH�s.Rd / D

1

"d

Z
Rd
jFX".�/j2.1Cj�j2/�s d�;

where FX" denotes the Fourier transform of the (extended) function X". Using the integral representation
of X", we rewrite the above as

kX"k2H�sD
1

"d

Z
Rd
d�.1Cj�j2/�s

Z
R2d

dxdy

Z
D2
dz dt ei��.x�y/G".x;z/G".y; t/�

".z/v".z/�".t/v".t/;

where the Green’s functions are extended by zero to Rd for their first variables. Take the expectation in
this formula; we have

EkX"k2H�s D
1

"d

Z
R2d

�Z
R3d

ei��.x�y/G".x; z/G".y; t/

.1Cj�j2/s
dx dy d�

�
R

�
z� t

"

�
v".z/v".t/ dt dz:

We claim that for any z and t in D,ˇ̌̌̌Z
R3d

ei��.x�y/G".x; z/G".y; t/

.1Cj�j2/s
dx dy d�

ˇ̌̌̌
� C: (5-13)
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Indeed, we recognize the quantity inside the absolute value sign to beZ
Rd

FGz" .�/FGt".�/

.1Cj�j2/s
d� �

�Z
Rd
jFGz" .�/j

2.1Cj�j2/�s
�1
2
�Z

Rd
jFGt".�/j

2.1Cj�j2/�s
�1
2

:

The term on the right-hand side is precisely kGz" kH�s.Rd /kG
t
"kH�s.Rd /. In view of Lemma 5.4, we can

apply (5-11) to get an upper bound for the quantity above and prove (5-11). Then (5-13) follows, which
in turn completes the proof. �

Finally, we conclude this section by collecting the facts above and proving Theorem 2.4(ii).

Proof of Theorem 2.4(ii). Step 1: Limiting distribution of the leading term. In view of Theorem A.1 and
Lemma 5.5, the probability measures onH�1.D/ induced by fX"g are tight. To check the limit of the char-
acteristic functions of fPX

"

g, it suffices to prove (2-11). This is done in Lemma 5.3. By Theorem 2.1, we
conclude that X"!X in distribution on H�1.D/, where X is defined to be the right-hand side of (2-15).

Step 2: Convergence to zero of the higher-order terms. By Lemma 4.2, and d D 4; 5, we see that the
second term in u" � Eu", i.e., G"�"G"�"v" � EG"�"G"�"v", converges in L2.�;L2.D// and hence in
L2.�;H�1.D// to the zero function. Similarly, the remainder term G"�"G"�".u"�v"/�EG"�"G"�".u"�v"/
converges to the zero function in L1.�;H�1.D//. These convergence results are stronger than the mode
of convergence in distribution in H�1.D/. The proof of Theorem 2.4(ii) is thus complete. �

6. The long-range correlated setting

In this section, we consider the setting where q.x; !/ has long-range correlations. In this setting, the
general central limit theorem (Lemma 5.3) does not hold, and we hence restrict to the special case where q
is constructed as a function of Gaussian random fields. Limiting theorems in the spirit of Lemma 5.3 are
then obtained from Gaussian computations; see, e.g., [Bal et al. 2008; 2012].

Long-range correlated potentials constructed from Gaussian fields. Let q.x; !/D NqC �.x; !/ with Nq a
nonnegative constant; we assume:

(L1) �.x; !/Dˆ.g.x//, and g.x; !/ is a centered stationary Gaussian random field with unit variance.
Furthermore, the correlation function of g.x; !/ has heavy tail. That is, for some positive constant �g
and some real number ˛ 2 .0; d/,

Rg.x/ WD E
˚
g.y; !/g.yC x; !/

	
� �g jxj

�˛ as jxj !1: (6-1)

(L2) The function ˆ W R! R satisfies �Nq �ˆ�M � Nq, and has Hermite rank one, i.e.,Z
R

ˆ.s/e�
s2

2 ds D 0; V1 WD

Z
R

sˆ.s/e�
s2

2 ds ¤ 0: (6-2)

(L3) The Fourier transform ŷ of the function ˆ satisfiesZ
R

j ŷ .�/j
�
1Cj�j3

�
<1: (6-3)

We henceforth refer to the above conditions together as (L).
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The assumption (L2) makes �.x; !/ D ˆ.g.x; !// mean zero, and the bounds on ˆ ensure that
0� q.x; !/�M , which is (2-4). From the above construction, we check that �.x; !/ is stationary ergodic
and has a long-range correlation function that decays like �jxj�˛ , where � D V 21 �g ; see Lemma A.3 for
the details. Assumption (L3) allows one to derive a (nonasymptotic) estimate (see Lemma A.4 in the
Appendix) for the fourth-order moments of �.x; !/. Universal constants in the long-range correlation
setting may depend on ˛;Rg ; �g ; ˆ and �.

For the scaling of the homogenization error, we have the following analogue of Theorem 2.3. We focus
on the error u"� Eu" because, as seen earlier, the main contribution to the deterministic error Eu"�u

comes from the periodic oscillation in the diffusion coefficients, and Theorem 3.3(i) holds independent of
the correlation length of �.x; !/.

Theorem 6.1. Let D � Rd be an open bounded C 1;1-domain, u" and u be the solutions to (1-1) and
(1-2) respectively. Suppose that (A), (P) and (L) hold and f 2 L2.D/. Then, there exists positive
constant C , which depends only on the universal parameters, such that if 2� d � 5 and 0 < ˛ < d or
6� d � 7 and 0 < ˛ < 6,

Eku"� Eu"kL2 �

(
C"

˛
2
^2
kf kL2 if d ¤ 4;

C"
˛
2 kf kL2 if d D 4:

(6-4)

Moreover, for any ' 2 L2.D/, with 2� d � 7 and 0 < ˛ < d ,

E
ˇ̌
.u"� Eu"; '/L2

ˇ̌
� C"

˛
2 k'kL2kf kL2 : (6-5)

This result shows that the random fluctuation u"� Eu" caused by the long-range correlated random
potential scales like ".˛^4/=2 in the energy norm, and scales like "˛=2 with respect to the weak topology.
Since ˛ < d , we note that the random fluctuation in this setting is larger than the case of short-range
correlated potential. We mention that if ˛ < 2, then the random fluctuations dominate the deterministic
fluctuation caused by the periodic diffusion.

The next result exhibits the limiting law of the rescaled random fluctuation "�˛=2.u"� Eu"/. In the
presentation, we define formally W ˛.dy/ as PW ˛.y/ dy; here PW ˛.y/ is a centered stationary Gaussian
random field with covariance function E. PW ˛.x/ PW ˛.y//D �jx�yj�˛ , where E denotes the expectation
with respect to the distribution of PW ˛ . Here, �D�gV 21 >0, where �g and V1 are defined in (6-1) and (6-2).

Theorem 6.2. Suppose that the assumptions in Theorem 6.1 hold. Let � be defined as in (6-2) andG.x; y/
be the Green’s function of (1-2). Let W ˛. dy/ be defined as above. Then

(i) For d D 2; 3, as "! 0,

u"� Efu"g
p
"˛ "!0

distribution
������!

p
�

Z
D

G.x; y/u.y/W ˛.dy/ in L2.D/: (6-6)

(2) For d D 4; 5, as "! 0, the above holds as convergence in law in H�1.D/.

Remark 6.3. The right-hand side of (6-6) is an integral with respect to the multiparameter Gaussian
random processes W ˛; we refer to [Khoshnevisan 2002] for the theory. Let X denote the result of
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the integral. When d � 4, ˛ < 4, the Green’s function G.x; � / is in Ld=.d�˛=2/ and X is a random
element in L2.D/. In general, X is understood through the Fourier transform of its distribution. Given
h� 2H�1.D/, the function �P

X

.h�/ is defined to be E exp
�
i
p
�
R
DhG. � ; y/; h

�. � /iu.y/W ˛.dy/
�
. In

particular, for any fixed positive integer N and functions f'i W 1� i �N g in L2.D/, the random variables
Ii WD hX; 'i i D

p
�
R
DhG. � ; y/; 'i . � /iu.y/W

˛.dy/, with i D 1; : : : ; N , are joint Gaussian, centered
and have covariance matrix †ij WDE.IiIj / given by

†ij WD �

Z
D2

.uG'i /.y/.uG'j /.z/
jy � zj˛

dy dz: (6-7)

We will not present the proofs of the results above here, but they can be found in a longer version
of this paper [Jing 2015]. The proofs are again based on the expansion formulas (4-11) and (4-17):
the leading term has mean zero and contributes to the limiting law; the other terms have larger mean
but smaller variance and, after the mean is removed, do not contribute to the limiting law. The main
difference in the analysis of the long-range correlation setting is as follows. Firstly, to estimate integrals
of R".x/, because R.x/ is not integrable, we cannot expect to gain a factor of "d by scaling the variable
in R". Instead, we gain a factor of "˛ by using the asymptotic of R" outside a .T "/-ball; see Lemma A.3.
Secondly, to control fourth-order moments of �, Lemma 4.3 is no longer useful and we use the estimate in
Lemma A.4 instead. In fact, this estimate is less restrictive and, even in the short-range correlation setting,
it could be used to replace %1=2 in the stronger assumption (S) by %. Last but not least, as mentioned earlier,
general central limit theorems, e.g., Lemma 5.3, are not available for the limiting law of the first term
in (4-17), and we need to appeal to limit theorems that are special for functions of Gaussian processes.

7. Further discussions

7A. An alternative condition for (S). In the short-range correlation setting for �.x; !/, we assumed the
condition (S). Upon applying Lemma 4.3, we can bound the (partial) fourth-order moment ‰� by the
sum of two terms, each consisting of the product of a pair of functions # 2 L1\L1.Rd /. However, as
remarked earlier, (S) essentially requires the mixing coefficient %.r/, and hence R.jxj/, to behave like
o.r�2d / at infinity, which is much stronger than R.x/ being integrable.

We remark that (S) is assumed mainly to simplify the presentation and the o.r�2d / decay of % is not
necessary. In fact, an alternative assumption used in [Bal and Jing 2011] to control fourth-order moments
is: there exists # WRd !RC in L1\L1.Rd / such that (A-6) holds. This is clearly a much more general
assumption, and it is satisfied if �.x; !/Dˆ.g.x; !//, with ˆ satisfying (L2) and (L3), and g.x; !/ a
centered stationary Gaussian random field with correlation function Rg D o.jxj�d / as jxj !1.

The conclusions of Theorem 2.4 still hold if (S) is replaced by the above alternative assumption. Indeed,
we only need to modify the control of ‰� in the proof of Lemma 4.2 and in Section 4B. For instance,
in the first inequality in the proof of Lemma 4.2, we have more but finitely many integrals instead of
two on the right-hand side. Nevertheless, in all of these integrals, at most one of the functions # has the
same variable as one of the Green’s function, and all of them can be controlled. We refer to [Jing 2015,
Section 6] for the details.
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7B. Comparison with the case of nonoscillatory diffusion. The main results of this paper show that the
framework developed in [Bal 2008; Bal and Jing 2011; Bal et al. 2012], in the setting of a nonoscillatory
differential operator with oscillatory random potential, applies even when the differential operator is also
oscillatory, as long as we have uniform-in-" control of the Green’s functions and their gradients, i.e.,
(3-11) and (3-12), and provided that there is no random correlation between the diffusion coefficients
and the potential. At the formal level, there is no difference in the proof, and the usual strategy using
(truncated) series expansion applies. However, the role played by the oscillatory diffusion coefficients
becomes prominent in getting the tightness of the measures of fX"g.

Let us recall the previous method used for tightness in the setting of a nonoscillatory differential
operator. Set

L WD �
dX

i;jD1

Naij
@2

@xi@xj
C Nq;

and consider the Dirichlet problem .LC �"/u" D f in D with zero boundary condition. Then u"

homogenizes to u, the solution of (1-2). As in [Bal et al. 2012], the limiting distribution of "�d=2.u"�Eu"/,
say, in the short-range correlation setting, is characterized by that ofX"D�"�d=2G�"u. To prove tightness
of the measures fX"g in L2.D/, the strategy of [Bal et al. 2012] is to use the spectral representation
of L2.D/. Note that L is formally self-adjoint and its inverse, i.e., G, is compact on L2.D/. Hence, L
admits real eigenvalues f�kg1kD1 such that,

0� Nq < �1 � �2 � � � � ; �k!1 as k!1;

and eigenfunctions f�kg1kD1, with k�kkL2 D 1, such that(
L�k D �k�k in D;

�k D 0 on @D:

Moreover, f�kg form an orthonormal basis ofL2.D/ and we have the following representation of the space
H0.D/D L2.D/ and the Sobolev space H1.D/DH 1

0 .D/; see [Evans 1998, Section 6.5]: for s D 0; 1,

Hs.D/D
�
f 2 C1.D/ W

1X
kD1

.f; �k/
2
L2
�s
k
<1

�
and kvk2Hs WD

1X
kD1

.f; �k/
2
L2
�sk : (7-1)

A natural criterion for tightness of (the measures of) fX"g is that their measures do not scatter to
higher and higher modes. More precisely, let PN denote the projection operator in L2.D/ to the space
WN WD spanf�1; : : : ; �N g spanned by the first N modes. Then fX"g is tight if EkX"kL2 � C and

lim
N!1

sup
"2.0;1/

EkX"�PNX
"
kL2 D 0: (7-2)

Using the representation formula in (7-1), and the fact that G�k D .�k/�1�k , we have

EkX"�PNX
"
k
2
L2
D

1

"d

1X
kDNC1

E.G�"u; �k/2 D
1

"d

1X
kDNC1

1

�2
k

E.�"u; �k/
2:
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As in Section 4B, we have sup"2.0;1/ supk E.�"u; �k/2 � C . In view of Weyl’s asymptotic formula for
the eigenvalues, �k � k2=d for k large, we conclude that

sup
"2.0;1/

EkX"�PNX
"
k
2
L2
.

1X
kDNC1

1

�2
k

.
1X

kDNC1

1

k
4
d

:

Hence, for d D 2; 3, we obtain tightness of fX"g for free, as byproduct of the analysis in Section 4B.
In the setting of this paper, L above is replaced by L", defined in (3-1). The above approach for

tightness fails completely. On the one hand, if we replace the eigenpairs .�k; �k/k by .�"
k
; �"
k
/k , where

the latter solve the eigenvalue problems associated to L", then instead of (7-2), we obtain

lim
N!1

sup
"2.0;1/

EkX"�P "NX
"
kL2 D 0;

where P "N is the projection to W "
N WD spanf�"1; : : : ; �

"
N g. This is useless because, a priori, the basis .�"

k
/k

changes with ", and it is not clear that the union (over " 2 .0; 1/) of unit balls in W "
N is still compact for

all N . On the other hand, if we fix a spectral representation, say, using .�k; �k/k defined before, then we
no longer have the relation G"�k D .�k/�1�k . It is not difficult to check that krG"�kkL2 � 1=

p
�k and

this estimate is sharp. An application of the Poincaré inequality yields that kG"�kkL2 �C=
p
�k � k

�1=d ,
with C uniform in " and k. It is not clear at all how to improve this estimate. Consequently, in view of
the estimate on I "1 in Section 4B, we have

sup
"2.0;1/

EkX"�PNX
"
k
2
L2
D
1

"d

1X
kDNC1

E.�"u;G"�k/2�
1X

kDNC1

CkG"�kk2L2�
1X

kDNC1

1

�k
�

1X
kDNC1

1

k
2
d

:

This fails to show (7-2) or the tightness of fX"g, even for d D 2.
In view of the analysis above, we find that the above approach for tightness, which is natural for

nonoscillatory differential operators, fails completely in the presence of fast oscillations in the diffusion
coefficients. The new approach used in Section 5 is necessary and more stable.

Appendix: Some technical results

Tightness criteria for probability measures in functional spaces. We first present a tightness criterion
for the probability measures fPX

"

g"2.0;1/ on L2.D/ induced by fX". � ; !/g that are random elements in
H s
0 .D/� L

2.D/, with s 2 .0; 1�.

Theorem A.1 (tightness in L2.D/). Let fX". � ; !/g"2.0;1/ be a family of random fields on the probability
space .�;F ;P/, withX". � ; !/2H s

0 .D/ for some 0< s� 1, for each fixed "2 .0; 1/ and ! 2�. Suppose
there exists C > 0, independent of " and !, such that

EkX"kH s � C: (A-1)

Then the family of probability measures fPX
"

g"2.0;1/ on L2.D/ is tight.
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Proof. By assumption, PX
"

concentrates on the subspace H s
0 .D/. For any fixed ı > 0, set Mı D Cı

�1

and define
Aı D

˚
f 2H s

0 .D/ W kf kH s �Mı

	
:

Clearly, Aı is closed and bounded in H s
0 .D/. In light of the fact that the embedding H s

0 .D/ ,!L2.D/ is
compact [Palatucci et al. 2013], we note that Aı is a compact set of L2.D/. Now for any fixed " 2 .0; 1/,
applying Chebyshev’s inequality, we find

PX
"

.Aı/D P
�˚
X" 2H s

0 .D/; kX
"
kH s �Mı

	�
D 1�P.fkX"kH s >Mıg/

� 1�
EkX"kH s

Mı

� 1�
C

Mı

D 1� ı:

Since ı and " are arbitrary, the above shows that fPX
"

g"2.0;1/ is tight. �

Next we give a similar tightness criterion for probability measures fPX
"

g"2.0;1/ on H�1.D/ induced
by fX". � ; !/g which belong to a smoother space.

Theorem A.2 (tightness in H�1.D/). Let fX". � ; !/g"2.0;1/ be a family of random fields on the proba-
bility space .�;F ;P/, with X". � ; !/ 2H�s.D/ for some 0� s < 1, for each fixed " 2 .0; 1/ and ! 2�.
Suppose there exists a constant C > 0, independent of " and !, such that

EkX"kH�s � C: (A-2)

Then the probability measures fPX
"

g"2.0;1/ on H�1.D/ are tight.

Proof. Since D is a bounded open set with regular boundary, the embedding H 1
0 .D/ ,!H s

0 .D/, for any
0� s < 1, is compact [Grisvard 1985, Theorem 1.4.3.2]. By duality, the embeddingH�s.D/ ,!H�1.D/

is also compact. The rest of the proof is exactly the same as in the proof of the theorem above. �

Functions of long-range correlated Gaussian random fields. Here we record some results for the ran-
dom potential �.x; !/Dˆ.g.x; !// that is constructed in (L). In particular, we express the asymptotic
behavior of its correlation function R.x/, and derive a (partial) fourth-order moment for �.

Autocorrelation function of the long-range model.

Lemma A.3. Assume (L1) and (L2) hold and let �.x; !/ be as constructed there. Set V1 D Efg0ˆ.g0/g,
where gx is the underlying Gaussian random field in (L). Then there exist constants T; C > 0, depending
only on the universal parameters, such that the autocorrelation function R.x/ of q satisfies

jR.x/�V 21 Rg.x/j � CR
2
g.x/ for all jxj � T; (A-3)

where Rg is the correlation function of g. Further,ˇ̌
Efg.y/q.yC x/g�V1Rg.x/

ˇ̌
� CR2g.x/ for all jxj � T: (A-4)

The proof of this result can be found in [Bal et al. 2008; 2012]. It says that �.x; !/ inherits the heavy
tail from the underlying Gaussian random field. The next result describes estimates on the integrals of R,
possibly against some potential function that has singularity at the origin.
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Fourth-order moments of �.x; !/. Finally, we present a nonasymptotic estimate for the four-moments of
�.x; !/ constructed in (L1) and (L2), with the additional assumption (L3). In the following, we denote
by U the collections of two pairs of unordered numbers in the set f1; 2; 3; 4g,

U WD
˚
p D f.p.1/; p.2//; .p.3/; p.4//g W p.i/ 2 f1; 2; 3; 4g; p.1/¤ p.2/; p.3/¤ p.4/

	
: (A-5)

As members in a set, the pairs .p.1/; p.2// and .p.3/; p.4// are required to be distinct; however, the two
pairs can have one common index. There are three elements in U that collect all four numbers. They
are precisely f.1; 2/; .3; 4/g, f.1; 3/; .2; 4/g and f.1; 4/; .2; 3/g. Let U� denote the subset formed by these
three elements, and let U� be its complement.

Lemma A.4. Assume (L) holds and let �.x; !/ be as constructed there. Then there exists # W Rd ! RC,
bounded and satisfying #.x/ � jxj�˛ as jxj ! 1, and some C > 0, depending only on the universal
parameters, such that for any four points fxi 2 Rd W 1� i � 4g,ˇ̌̌̌

E

4Y
iD1

�.xi /�
X
p2U�

R.xp.1/�xp.2//R.xp.3/�xp.4//

ˇ̌̌̌
�C

X
p2U�

#.xp.1/�xp.2//#.xp.3/�xp.4//: (A-6)

We refer to [Bal and Jing 2011, Proposition 4.1] for the proof of this result. In particular, # above can
be chosen as the autocorrelation function R.x/ of �.x; !/. As discussed earlier, (A-6) can be viewed as
an alternative for the estimates in Lemma 4.3.
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BLOW-UP RESULTS FOR A
STRONGLY PERTURBED SEMILINEAR HEAT EQUATION:
THEORETICAL ANALYSIS AND NUMERICAL METHOD

VAN TIEN NGUYEN AND HATEM ZAAG

We consider a blow-up solution for a strongly perturbed semilinear heat equation with Sobolev subcritical
power nonlinearity. Working in the framework of similarity variables, we find a Lyapunov functional
for the problem. Using this Lyapunov functional, we derive the blow-up rate and the blow-up limit of
the solution. We also classify all asymptotic behaviors of the solution at the singularity and give precise
blow-up profiles corresponding to these behaviors. Finally, we attain the blow-up profile numerically,
thanks to a new mesh-refinement algorithm inspired by the rescaling method of Berger and Kohn. Note
that our method is applicable to more general equations, in particular those with no scaling invariance.

1. Introduction

We are concerned in this paper with blow-up phenomena arising in the nonlinear heat problem�
@tuD�uCjujp�1uC h.u/;

u. � ; 0/D u0 2L1.Rn/;
(1-1)

where u.t/ W x 7! u.x; t/ 2 R for x 2 Rn and � stands for the Laplacian in Rn. The exponent p > 1 is
subcritical (which means that p < .nC 2/=.n� 2/ if n� 3) and h is given by

h.z/D �
jzjp�1z

loga.2C z2/
with a> 0; � 2 R: (1-2)

By standard results, the problem (1-1) has a unique classical solution u.x; t/ in L1.Rn/, which exists
at least for small times. The solution u.x; t/ may develop singularities in some finite time. We say that
u.x; t/ blows up in a finite time T if u.x; t/ satisfies (1-1) in Rn � Œ0;T / and

lim
t!T
ku.t/kL1.Rn/ DC1:

T is called the blow-up time of u.x; t/. In such a blow-up case, a point b 2 Rn is called a blow-up point
of u.x; t/ if and only if there exist .xn; tn/! .b;T / such that ju.xn; tn/j !C1 as n!C1.

In the case �D 0, the equation (1-1) is the semilinear heat equation

@tuD�uCjujp�1u: (1-3)
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Problem (1-3) has been addressed in different ways in the literature. The existence of blow-up solutions
has been proved by several authors (see [Fujita 1966; Levine 1973; Ball 1977]). Consider a solution
u.x; t/ of (1-3) which blows up at a time T . The very first question to be answered is the blow-up rate,
i.e., there are positive constants C1 and C2 such that

C1.T � t/�
1

p�1 � ku.t/kL1.Rn/ � C2.T � t/�
1

p�1 for all t 2 .0;T /: (1-4)

The lower bound in (1-4) follows by a simple argument based on Duhamel’s formula (see [Weissler
1981]). For the upper bound, Giga and Kohn [1987] proved (1-4) for 1< p < .3nC 8/=.3n� 4/ or for
nonnegative initial data with subcritical p.

Later, the estimate (1-4) was extended to all subcritical p without assuming nonnegativity for initial
data u0 by Giga, Matsui and Sasayama [Giga et al. 2004a]. The estimate (1-4) is a fundamental step to
obtain more information about the asymptotic blow-up behavior, locally near a given blow-up point yb.
Giga and Kohn [1989] showed that, for a given blow-up point yb 2 Rn,

lim
t!T

.T � t/
1

p�1 u.ybCy
p

T � t ; t/D˙�;

where � D .p� 1/�1=.p�1/, uniformly on compact sets of Rn.
This result was specified by Filippas and Liu [1993] (see also [Filippas and Kohn 1992]) and Velázquez

[1992; 1993] (see also [Herrero and Velázquez 1992a; 1992c; 1993]). Using the renormalization theory,
Bricmont and Kupiainen [1994] showed the existence of a solution of (1-3) such that

k.T � t/
1

p�1 u.ybC z
p
.T � t/j log.T � t/j; t/�f0.z/kL1.Rn/! 0 as t ! T; (1-5)

where

f0.z/D �

�
1C

p� 1

4p
jzj2

�� 1
p�1

: (1-6)

Merle and Zaag [1997] obtained the same result through a reduction to a finite-dimensional problem.
Moreover, they showed that the profile (1-6) is stable under perturbations of initial data (see also
[Fermanian Kammerer et al. 2000; Fermanian Kammerer and Zaag 2000; Masmoudi and Zaag 2008] for
related results).

In the program developed by those authors in the case �D 0, the invariance of (1-1) under the scaling
transformation

� 7! u�.�; �/D �
2

p�1 u.��; �2�/

played a crucial role. Indeed, this property is responsible for having an autonomous equation in similarity
variables defined in (1-10) below (see (1-11) below when �D 0), which helps a lot.

A similar situation is available for the equation

@tuD�uC eu

(see [Herrero and Velázquez 1993; Bebernes and Bricher 1992; Bressan 1990; 1992]).
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With more general nonlinearities, namely with

@tuD�uCf .u/ (1-7)

with f .u/ 6� jujp�1u and f .u/ 6� eu, no result is available on the blow-up behavior. The first example
available in the literature goes back to Giga and Kohn [1987], who considered (1-1) with a “weak”
perturbation, namely

jh.z/j �M.jzjqC 1/; q 2 Œ1;p/: (1-8)

They could extend various results from the case h� 0.
In our paper, we aim at doing better, by considering “strong” (in comparison with (1-8)) perturbations,

namely the case mentioned in (1-2). The resulting nonlinearity is so close to the power law jujp�1u that
it is not a priori clear if the perturbation is able to modify the blow-up behavior of the solution. A subtle
point is the following:

When �D 0, the similarity variables’ version of the PDE is autonomous (see (1-11) below with �D 0),
and classical energy methods à la [Levine 1973] give a Lyapunov functional (see (1-16) below) whose
role was crucial in the blow-up analysis performed by Giga and Kohn [1987; 1989] and later authors.

When �¤ 0, it is still possible to use the similarity variables, however, the resulting equation is not
autonomous (see (1-11) below). Moreover, the size of the perturbations introduced by the h term is larger
than in the “weak” case (1-8) and, more importantly, it is a priori larger than the correction computed
for the solution when �D O.1=sa/ with 0 < a < 1 as shown in Lemma 2.1, versus 1=s in the generic
case when �D 0. New ideas are crucially needed, in particular to find a perturbed Lyapunov functional
(see Theorem 1.1 below), and to go beyond the too-large perturbation term 1=sa (we linearize around �
defined in (1-21)–(1-22) instead of �).

Because of those difficulties and thanks to our new ideas, we believe that our paper gives a new
framework to the study of blow-up for semilinear heat equations of the type (1-7) when the nonlinearity
f .u/ could lack any scale invariance (exact, or approximate as in this case) at all.

In the case when the function h satisfies

jh.z/j �M

�
jzjp

loga.2C z2/
C 1

�
with a> 1 (1-9)

and M > 0, the first author derived the existence of a Lyapunov functional in the similarity variables (1-10)
for the problem (1-1), which is a crucial step in deriving the estimate (1-4). He also classified all possible
blow-up behaviors of the solution when it approaches to singularity. Here, we aim at extending the results
of [Nguyen 2015] to the case a 2 .0; 1�. As we mentioned above, the first step is to derive the blow-up
rate of the blow-up solution. As in [Giga et al. 2004a; Nguyen 2015], the key step is to find a Lyapunov
functional in similarity variables for (1-1). More precisely, we introduce for all b 2 Rn (b may be a
blow-up point of u or not) the following similarity variables:

y D
x� b
p

T � t
; s D� log.T � t/; wb;T D .T � t/

1
p�1 u.x; t/: (1-10)
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Hence wb;T satisfies, for all s � � log T and all y 2 Rn,

@swb;T D
1

�
div.�rwb;T /�

wb;T

p� 1
Cjwb;T j

p�1wb;T C e�
ps

p�1 h.e
s

p�1wb;T /; (1-11)

where

�.y/D

�
1

4�

�n
2

e�
jyj2

4 (1-12)

and

je�
ps

p�1 h.e
s

p�1 z/j �
C0

sa
.jzjpC 1/ for all z 2 R (1-13)

for some C0 > 0.
Following the method introduced by Hamza and Zaag [2012a; 2012b] for perturbations of the semilinear

wave equation, we introduce

JaŒw�.s/D EŒw�.s/e

a

s�a

C �s�a; (1-14)

where  and � are positive constants, depending only on p, a, � and n, which will be determined later,
and

EŒw�D E0Œw�CIŒw�; (1-15)

where

E0Œw�.s/D

Z
Rn

�
1

2
jrwj2C

1

2.p�1/
jwj2�

1

pC1
jwjpC1

�
� dy (1-16)

and

IŒw�.s/D�e�
.pC1/
p�1

s

Z
Rn

H.e
s

p�1w/� dy; H.z/D

Z z

0

h.�/ d�: (1-17)

The main novelty of this paper is to allow values of a in .0; 1�, which is possible at the expense of
taking the particular form (1-2) for the perturbation h. We aim at the following:

Theorem 1.1 (existence of a Lyapunov functional for (1-11)). Let a, p, n and � be fixed; consider w a
solution of (1-11). Then there exist ys0 D ys0.a;p; n; �/ � s0, y�0 D

y�0.a;p; n; �/ and  D  .a;p; n; �/
such that, if � � y�0, then Ja satisfies the following inequality for all s2 > s1 �maxfys0;� log T g:

JaŒw�.s2/�JaŒw�.s1/� �
1

2

Z s2

s1

Z
Rn

.@sw/
2� dy ds: (1-18)

As in [Giga et al. 2004a; Nguyen 2015], the existence of the Lyapunov functional is a crucial step for
deriving the blow-up rate (1-4) and then the blow-up limit. In particular, we have the following:

Theorem 1.2. Let a, p, n and � be fixed and let u be a blow-up solution of (1-1) with a blow-up time T .

(i) Blow-up rate: There exists ys1 D ys1.a;p; n; �/� ys0 such that, for all s � s0 Dmaxfys1;� log T g,

kwb;T .y; s/kL1.Rn/ � C; (1-19)

where wb;T is as defined in (1-10) and C is a positive constant depending only on n, p, � and a
bound of kwb;T .ys0/kL1 .
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(ii) Blow-up limit: If ya is a blow-up point, then

lim
t!T

.T � t/
1

p�1 u.yaCy
p

T � t ; t/D lim
s!C1

wya;T .y; s/D˙� (1-20)

holds in L2
� (L2

� is the weighted L2 space associated with the weight � of (1-12)) and also uniformly
on each compact subset of Rn.

Remark 1.3. We will not give the proof of Theorem 1.2 because its proof follows from Theorem 1.1 as
in [Nguyen 2015]. Hence, we only give the proof of Theorem 1.1 and refer the reader to [Nguyen 2015,
Section 2] for the proofs of (1-19) and (1-20).

The next step consists in obtaining an additional term in the asymptotic expansion given in Theorem
1.2(ii). Given b a blow-up point of u.x; t/, and up to changing u0 by �u0 and h by �h, we may assume
that wb;T ! � in L2

� as s!C1. As in [Nguyen 2015], we linearize wb;T around �, where � is the
positive solution of the ordinary differential equation associated to (1-11),

�0 D�
�

p� 1
C�p

C e�
ps

p�1 h.e
s

p�1�/ (1-21)

such that
�.s/! � as s!C1I (1-22)

see [Nguyen 2015, Lemma A.3] for the existence of �, and note that � is unique. For the reader’s
convenience, we give in Lemma A.1 the expansion of � as s!C1.

Let us introduce vb;T D wb;T � �.s/; then kvb;T .y; s/kL2
�
! 0 as s ! C1 and vb;T (or v for

simplicity) satisfies the equation

@sv D .LC!.s//vCF.v/CH.v; s/ for all y 2 Rn; s 2 Œ� log T;C1/;

where LD�� 1
2
y � r C 1 and !, F and H satisfy

!.s/D O

�
1

saC1

�
and jF.v/jC jH.v; s/j D O.jvj2/ as s!C1;

(see the beginning of Section 3 for the proper definitions of !, F and G).
It is well known that the operator L is self-adjoint in L2

�.R
n/. Its spectrum is given by

spec.L/D
˚
1� 1

2
m
ˇ̌
m 2 N

	
;

and it consists of eigenvalues. The eigenfunctions of L are derived from Hermite polynomials:
For nD 1, the eigenfunction corresponding to 1� 1

2
m is

hm.y/D

Œm=2�X
kD0

m!

k!.m� 2k/!
.�1/kym�2k ; (1-23)

For n� 2, we write the spectrum of L as

spec.L/D
˚
1� 1

2
jmj

ˇ̌
jmj Dm1C � � �Cmn; .m1; : : : ;mn/ 2 Nn

	
:
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For mD .m1; : : : ;mn/ 2 Nn, the eigenfunction corresponding to 1� 1
2
jmj is

Hm.y/D hm1
.y1/ � � � hmn

.yn/; (1-24)

where hm is as defined in (1-23).
We also denote cmD cm1

cm2
� � � cmn

and ymD y
m1

1
y

m2

2
� � �y

mn
n for any mD .m1; : : : ;mn/ 2Nn and

y D .y1; : : : ;yn/ 2 Rn.
In this way, we derive the following asymptotic behaviors of wb;T .y; s/ as s!C1:

Theorem 1.4 (classification of the behavior of wb;T as s ! C1). Consider a solution u.t/ of (1-1)
which blows-up at time T and b a blow-up point. Let wb;T .y; s/ be a solution of (1-11). Then one of the
following possibilities occurs:

(i) wb;T .y; s/� �.s/.

(ii) There exists l 2 f1; : : : ; ng such that, up to an orthogonal transformation of coordinates, we have

wb;T .y; s/D �.s/�
�

4ps

� lX
jD1

y2
j � 2l

�
CO

�
1

saC1

�
CO

�
log s

s2

�
as s!C1:

(iii) There exist an integer m� 3 and constants c˛ not all zero such that

wb;T .y; s/D �.s/� e�.
m
2
�1/s

X
j˛jDm

c˛H˛.y/C o.e�.
m
2
�1/s/ as s!C1:

The convergence takes place in L2
� as well as in C

k;
loc for any k � 1 and some  2 .0; 1/.

Remark 1.5. In [Nguyen 2015], we were unable to get this result in the case where h satisfies (1-9)
with a2 .0; 1�. Here, by taking the particular form of the perturbation (see (1-2)), we are able to overcome
technical difficulties in order to derive the result.

Remark 1.6. From Theorem 1.2(ii), we would naturally try to find an equivalent for w� � as s!C1.
A posteriori from our results in Theorem 1.4, we see that, in all cases, kw � �kL2

�
� C=sa0 with

a0 D minfa; 1g. This is indeed a new phenomenon observed in our (1-1) and which is different from
the case of the unperturbed semilinear heat equation, where either w� � � 0 or kw� �kL2

�
� C=s or

kw � �kL2
�
� Ce.1�m=2/s for some even m � 4. This shows the originality of our paper. In our case,

linearizing around � would keep us trapped in the 1=s scale. In order to escape that scale, we forget the
explicit function �, which is not a solution of Equation (1-11) and linearize instead around the nonexplicit
function �, which happens to be an exact solution of (1-11). This way, we escape the 1=s scale and reach
exponentially decreasing order.

Using the information obtained in Theorem 1.4, we can extend the asymptotic behavior of wb;T to
larger regions. Particularly, we have the following:
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Theorem 1.7 (convergence extension of wb;T to larger regions). For all K0 > 0:

(i) If Theorem 1.4(ii) occurs, then

sup
j�j�K0

jwb;T .�
p

s; s/�fl.�/j D O

�
1

sa

�
CO

�
log s

s

�
as s!C1; (1-25)

where

fl.�/D �

�
1C

p� 1

4p

lX
jD1

�2
j

�� 1
p�1

for all � 2 Rn (1-26)

with l given in Theorem 1.4(ii).

(ii) If Theorem 1.4(iii) occurs, then m� 4 is even and

sup
j�j�K0

jwb;T .�e
. 1

2
� 1

m
/s; s/� m.�/j ! 0 as s!C1; (1-27)

where

 m.�/D �

�
1C ��p

X
j˛jDm

c˛�
˛

�� 1
p�1

for all � 2 Rn; (1-28)

where c˛ is the same as in Theorem 1.4 and the multilinear for
P
j˛jDm c˛�

˛ is nonnegative.

Remark 1.8. Note that Theorem 1.7 is analogous to the result obtained in [Velázquez 1992] for problem
(1-1) without the perturbation. In particular, we follow the method of [loc. cit.] and care about the speed
of the convergence, which was not given in that paper. Note also that the asymptotic profiles described in
Theorem 1.7 are exactly the same as the ones derived in [loc. cit.] because we derived in this theorem
the first-order approximation for the solution, unlike in Theorem 1.4, where we find the following terms
in the expansion of the solution up to the second order. As in the unperturbed case (h� 0), we expect
that (1-25) is stable (see the previous remarks, particularly the paragraph after (1-5)) and (1-27) should
correspond to unstable behaviors. The instability of (1-27) was proved only in one space dimension
by Herrero and Velázquez [1992b; 1992d]. In particular, they proved the genericity of the asymptotic
profile (1-25) in the one-dimensional case and announced the same for higher-dimensional cases, but they
have never published it. While discussing numerical simulation for Equation (1-1) in one space dimension
(see Section 4B below), we see that the numerical solutions exhibit only the behavior (1-25) and we could
never obtain the behavior (1-27). This is probably due to the fact that the behavior (1-27) is unstable.

Remark 1.9. In [Nguyen and Zaag 2014], we constructed for the problem (1-1) with h given by (1-2) or
(1-9) a solution which blows up in finite time at only one point and verifies the behavior (1-25) with l D n.
The construction is inspired by the method of [Bricmont and Kupiainen 1994; Merle and Zaag 1997],
relying on the reduction of the problem to a finite-dimensional one and a topological argument based on
index theory.

At the end of this work, we give numerical confirmations for the asymptotic profile described in
Theorem 1.7. For this purpose, we propose a new mesh-refinement method inspired by the rescaling
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algorithm of [Berger and Kohn 1988]. Note that their method was successful to solve blowing-up problems
which are invariant under the transformation

 7! u .�; �/D 
2

p�1 u. �;  2�/ for all  > 0: (1-29)

However, there are a lot of equations whose solutions blow up in finite time but which do not satisfy the
property (1-29); one of them is (1-1) because of the presence of the perturbation term h. Although our
method is very similar to Berger and Kohn’s algorithm in spirit, it is better in the sense that it can be
applied to a larger class of blowing-up problems which do not satisfy the rescaling property (1-29). To
our knowledge, there are not many papers on the numerical blow-up profile, apart from [Berger and Kohn
1988] (see also [Nguyen 2014]), who already obtained numerical results for (1-1) without the perturbation
term. For other numerical aspects, there are several studies for (1-1) in the unperturbed case; see, for
example, [Abia, López-Marcos and Martínez 1998; 2001; Groisman and Rossi 2001; 2004; Groisman
2006; N’gohisse and Boni 2011; Kyza and Makridakis 2011; Cangiani et al. � 2016] and the references
therein. There is also the work of Baruch et al. [2010] studying standing-ring solutions.

This paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.1. Theorem 1.2
follows from Theorem 1.1. Since all the arguments presented in [Nguyen 2015] remain valid for the
case (1-9), except the existence of the Lyapunov functional for (1-11) (Theorem 1.1), we kindly refer
the reader to [Nguyen 2015, Sections 2.3 and 2.4] for details of the proof. Section 3 deals with results
on asymptotic behaviors (Theorems 1.4 and 1.7). In Section 4, we describe the new mesh-refinement
method and give some numerical justifications for the theoretical results.

2. Existence of a Lyapunov functional for (1-11)

In this section, we mainly aim at proving that the functional Ja defined in (1-14) is a Lyapunov functional
for (1-11) (Theorem 1.1). Note that this functional is far from being trivial and makes our main contribution.

In what follows, we denote by C a generic constant depending only on a, p, n and �. We first give
the following estimates on the perturbation term appearing in (1-11):

Lemma 2.1. Let h be the function defined in (1-2). For all � 2 .0;p�, there exists C0DC0.a; �;p; �/ > 0

and Ns0 D Ns0.a;p; �/ > 0 large enough such that, for all s � Ns0,

(i) je�
ps

p�1 h.e
s

p�1 z/j �
C0

sa
.jzjpCjzjp��/;

je�
.pC1/s

p�1 H.e
s

p�1 z/j �
C0

sa
.jzjpC1

C 1/;

where H is as defined in (1-17).

(ii) j.pC 1/e�
.pC1/s

p�1 H.e
s

p�1 z/� e�
ps

p�1 h.e
s

p�1 z/zj � C0

saC1 .jzj
pC1C 1/:

Proof. Note that (i) obviously follows from the estimate

8q > 0; 8b > 0;
jzjq

logb.2C e
2s

p�1 z2/
�

C

sb
.jzjqC 1/ for all s � Ns0; (2-1)
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where C D C.b; q/ > 0 and Ns0 D Ns0.b; q/ > 0.
In order to derive the estimate (2-1), by considering the first case z2e

s
p�1 � 4 then the case z2e

s
p�1 � 4,

we would obtain (2-1).
Part (ii) directly follows from an integration by parts and the estimate (2-1). Indeed, we have

H.�/D

Z �

0

h.x/ dx D �

Z �

0

jxjp�1x

loga.2Cx2/
dx

D
�j�jpC1

.pC 1/ loga.2C �2/
C

2a�

pC 1

Z �

0

jxjpC1x

.2Cx2/ logaC1.2Cx2/
dx:

Replacing � by es=.p� 1/z and using (2-1), we then derive (ii). This ends the proof of Lemma 2.1. �

We assert that Theorem 1.1 is a direct consequence of the following lemma:

Lemma 2.2. Let a, p, n and � be fixed andw be a solution of (1-11). There exists Qs0D Qs0.a;p; n; �/� s0

such that the functional of E defined in (1-15) satisfies the following inequality, for all s�maxfQs0;� log T g:

d

ds
EŒw�.s/� �

1

2

Z
Rn

w2
s � dyC  s�.aC1/EŒw�.s/CC s�.aC1/; (2-2)

where  D 4C0.pC 1/=.p� 1/2 and C0 is given in Lemma 2.1.

Let us first derive Theorem 1.1 from Lemma 2.2, which we will prove later.

Proof of Theorem 1.1, given Lemma 2.2. Differentiating the functional J defined in (1-14), we obtain

d

ds
JaŒw�.s/D

d

ds
fEŒw�.s/e


a

s�a

C �s�a
g

D
d

ds
EŒw�.s/e


a

s�a

�  s�.aC1/EŒw�.s/e

a

s�a

� a�s�.aC1/

� �
1

2
e

a

s�a

Z
Rn

w2
s � dyC ŒCe


a

s�a

� a��s�.aC1/ (using (2-2)).

Choosing � large enough that Ce Qs
�a
0
=a
� a� � 0 and noticing that e s�a=a � 1 for all s > 0, we derive

d

ds
JaŒw�.s/� �

1

2

Z
Rn

w2
s � dy for all s � Qs0:

This implies the inequality (1-18) and concludes the proof of Theorem 1.1, assuming that Lemma 2.2
holds. �

Proof of Lemma 2.2. Multiplying (1-11) by ws� and integrating by parts,Z
Rn

jwsj
2�D�

d

ds

�Z
Rn

�
1

2
jrwj2C

1

2.p�1/
jwj2�

1

pC1
jwjpC1

�
� dy

�
Ce�

ps
p�1

Z
Rn

h.e
s

p�1w/ws� dy:
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For the last term of the above expression, we obtain

e�
ps

p�1

Z
Rn

h.e
s

p�1w/ws� dy

D e�
.pC1/s

p�1

Z
Rn

h.e
s

p�1w/

�
e

s
p�1wsC

e
s

p�1

p� 1
w

�
� dy �

1

p�1
e�

ps
p�1

Z
Rn

h.e
s

p�1w/w� dy

D e�
pC1
p�1

s d

ds

Z
Rn

H.e
s

p�1w/� dy �
1

p�1
e�

ps
p�1

Z
Rn

h.e
s

p�1w/w� dy:

This yields Z
Rn

jwsj
2� dy D �

d

ds

�Z
Rn

�
1

2
jrwj2C

1

2.p�1/
jwj2�

1

pC1
jwjpC1

�
� dy

�
C

d

ds

�
e�

pC1
p�1

s

Z
Rn

H.e
s

p�1w/� dy

�
C

pC1

p�1
e�

pC1
p�1

s

Z
Rn

H.e
s

p�1w/� dy

�
1

p�1
e�

ps
p�1

Z
Rn

h.e
s

p�1w/w� dy:

From the definition of the functional E given in (1-15), we derive a first identity in the following:

d

ds
EŒw�.s/

D�

Z
Rn

jwsj
2� dyC

pC1

p�1
e�

pC1
p�1

s

Z
Rn

H.e
s

p�1w/� dy �
1

p�1
e�

ps
p�1

Z
Rn

h.e
s

p�1w/w� dy: (2-3)

A second identity is obtained by multiplying (1-11) by w� and integrating by parts:

d

ds

Z
Rn

jwj2� dy

D �4

�Z
Rn

�
1

2
jrwj2C

1

2.p�1/
jwj2�

1

pC1
jwjpC1

�
� dy�e�

.pC1/s
p�1

Z
Rn

H.e
s

p�1w/� dy

�
C

�
2�

4

pC1

� Z
Rn

jwjpC1� dy�4e�
pC1
p�1

s

Z
Rn

H.e
s

p�1w/� dyC2e�
ps

p�1

Z
Rn

h.e
s

p�1w/w� dy:

Using the definition of E given in (1-15) again, we rewrite the second identity as follows:

d

ds

Z
Rn

jwj2� dy D�4EŒw�.s/C 2
p�1

pC1

Z
Rn

jwjpC1� dy

� 4e�
pC1
p�1

s

Z
Rn

H.e
s

p�1w/� dyC 2e�
ps

p�1

Z
Rn

h.e
s

p�1w/w� dy: (2-4)

From (2-3), we estimate

d

ds
EŒw�.s/� �

Z
Rn

jwsj
2� dyC

1

p�1

Z
Rn

˚
j.pC 1/e�

.pC1/s
p�1 H.e

s
p�1w/� e�

ps
p�1 h.e

s
p�1w/wj

	
� dy:
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Using Lemma 2.1(ii), we have, for all s � Ns0,

d

ds
EŒw�.s/� �

Z
Rn

jwsj
2� dyC

C0s�.aC1/

p� 1

Z
Rn

jwjpC1� dyCC s�.aC1/: (2-5)

On the other hand, by (2-4) we haveZ
Rn

jwjpC1� dy �
2.pC1/

p�1
EŒw�.s/C

pC1

p�1

Z
Rn

jwswj� dy

C
2.pC1/

p�1

Z
Rn

�
je�

pC1
p�1

sH.e
s

p�1w/jC je�
ps

p�1 h.e
s

p�1w/wj
�
� dy:

Using Lemma 2.1(i) and the fact that jwswj � �.jwsj
2CjwjpC1/CC.�/ for all � > 0, we obtainZ

Rn

jwjpC1� dy �
2.pC1/

p�1
EŒw�.s/C �

Z
Rn

jwsj
2� dyC .�CC s�a/

Z
Rn

jwjpC1� dyCC:

Taking � D 1
4

and s1 large enough that C s�a �
1
4

for all s � s1, we haveZ
Rn

jwjpC1� dy �
4.pC1/

p�1
EŒw�.s/C

1

2

Z
Rn

jwsj
2� dyCC for all s > s1: (2-6)

Substituting (2-6) into (2-5) yields (2-2) with Qs0 DmaxfNs0; s1g. This concludes the proof of Lemma 2.2
and Theorem 1.1 also. �

3. Blow-up behavior

This section is devoted to the proof of Theorems 1.4 and 1.7. Consider a blow-up point b and write w
instead of wb;T for simplicity. From Theorem 1.2(ii) and up to changing the signs of w and h, we may
assume that kw.y; s/��kL2

�
! 0 as s!C1 uniformly on compact subsets of Rn. As mentioned in the

introduction, by setting v.y; s/D w.y; s/��.s/ (� is the positive solution of (1-21) such that �.s/! �

as s!C1), we see that kv.y; s/kL2
�
! 0 as s!C1 and v solves the equation

@sv D .LC!.s//vCF.v/CG.v; s/ for all y 2 Rn; s 2 Œ� log T;C1/; (3-1)

where LD�� 1
2
y � r C 1 and !, F and G are given by

!.s/D p.�p�1
� �p�1/C e�sh0.e

s
p�1�/;

F.v/D jvC�jp�1.vC�/��p
�p�p�1v;

G.v; s/D e�
ps

p�1
�
h.e

s
p�1 .vC�//� h.e

s
p�1�/� e

s
p�1 h0.e

s
p�1�/v

�
:

By a direct calculation, we can show that

j!.s/j D O

�
1

saC1

�
as s!C1 (3-2)

(see Lemma B.1 for the proof of this fact; note also that in the case where h is given by (1-9) and treated
in [Nguyen 2015], we just obtain j!.s/j D O.s�a/ as s!C1, which was a major reason preventing us
from deriving the result in the case a 2 .0; 1�) there.
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Now, introducing

V .y; s/D ˇ.s/v.y; s/; where ˇ.s/D exp
�
�

Z C1
s

!.�/ d�

�
; (3-3)

V satisfies

@sV D LV CF .V; s/; (3-4)

where F .V; s/D ˇ.s/.F.V /CG.V; s// satisfiesˇ̌̌̌
F .V; s/�

p

2�
V 2

ˇ̌̌̌
D O

�
V 2

sa

�
CO.jV j3/ as s!C1 (3-5)

(see [Nguyen 2015, Lemma C.1] for the proof of this fact; note that, in the case where h is given by (1-9),
the first term in the right-hand side of (3-5) is O.V 2=sa�1/).

Since ˇ.s/! 1 as s!C1, each equivalent for V is also an equivalent for v. Therefore, it suffices to
study the asymptotic behavior of V as s!C1. More precisely, we claim the following:

Proposition 3.1 (classification of the behavior of V as s ! C1). One of the following possibilities
occurs:

(i) V .y; s/� 0.

(ii) There exists l 2 f1; : : : ; ng such that, up to an orthogonal transformation of coordinates, we have

V .y; s/D�
�

4ps

� lX
jD1

y2
j � 2l

�
CO

�
1

saC1

�
CO

�
log s

s2

�
as s!C1:

(iii) There exist an integer m� 3 and constants c˛ not all zero such that

V .y; s/D�e.1�
m
2
/s
X
j˛jDm

c˛H˛.y/C o.e.1�
m
2
/s/ as s!C1:

The convergence takes place in L2
� as well as in C

k;
loc for any k � 1 and  2 .0; 1/.

Proof. Because we have the same equation (3-4) and a similar estimate (3-5) to the case treated in [Nguyen
2015], we do not give the proof and kindly refer the reader to Section 3 there. �

Let us derive Theorem 1.4 from Proposition 3.1.

Proof of Theorem 1.4. By the definition (3-3) of V , we see that given Proposition 3.1(i) it directly follows
that v.y; s/��.s/, which is Theorem 1.4(i). Using Proposition 3.1(ii) and the fact that ˇ.s/D1CO.1=sa/

as s!C1, we see that, as s!C1,

w.y; s/D �.s/CV .y; s/

�
1CO

�
1

sa

��
D �.s/�

�

4ps

� lX
jD1

y2
j � 2l

�
CO

�
1

saC1

�
CO

�
log s

s2

�
;

which yields Theorem 1.4(ii).
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Using Proposition 3.1(iii) and again the fact that ˇ.s/D 1CO.1=sa/ as s!C1, we have

w.y; s/D �.s/� e.1�
m
2
/s
X
j˛jDm

c˛H˛.y/C o.e.1�
m
2
/s/ as s!C1:

This concludes the proof of Theorem 1.4. �

We now give the proof of Theorem 1.7 from Theorem 1.4. Note that the derivation of Theorem 1.7
from Theorem 1.4 in the unperturbed case (h� 0) was done by Velázquez [1992]. The idea to extend the
convergence up to sets of the type fjyj �K0

p
sg or fjyj �K0e.1=2�1=m/sg is to estimate the effect of

the convective term �1
2
y � rw in (1-11) in L

q
� spaces with q > 1. Since the proof of Theorem 1.7 is, in

spirit, by the method given in [Velázquez 1992], all that we need to do is to control the strong perturbation
term in (1-11). We therefore give the main steps of the proof and focus only on the new arguments. Note
also that we only give the proof of Theorem 1.4(ii) because the proof of (iii) is exactly the same as in
Proposition 34 in [Nguyen 2015].

Let us restate Theorem 1.7(i) in the following proposition:

Proposition 3.2 (asymptotic behavior in the y=
p

s variable). Assume that w is a solution of (1-11) which
satisfies Theorem 1.4(ii). Then, for all K > 0,

sup
j�j�K

jw.�
p

s; s/�fl.�/j D O

�
1

sa

�
CO

�
log s

s

�
as s!C1;

where fl.�/D �
�
1C ..p� 1/=4p/

Pl
jD1 �

2
j

��1=.p�1/.

Proof. Define q D w�', where

'.y; s/D
�.s/

�

�
�

�
1C

p�1

4ps

lX
jD1

y2
j

�� 1
p�1
C

�l

2ps

�
; (3-6)

and � is the unique positive solution of (1-21) satisfying (1-22).
Note that in [Velázquez 1992; Nguyen 2015], the authors took

'.y; s/D �

�
1C

p�1

4ps

lX
jD1

y2
j

�� 1
p�1
C

�l

2ps
:

But this choice just works in the case where a> 1. In the particular case (1-2), we use in addition the
factor �.s/=�, which allows us to go beyond the order 1=sa coming from the strong perturbation term in
order to reach 1=saC1 in many estimates in the proof.

Using Taylor’s formula in (3-6) and Theorem 1.4(ii), we find that

kq.y; s/kL2
�
D O

�
1

saC1

�
CO

�
log s

s2

�
as s!C1: (3-7)

Straightforward calculations based on (1-11) yield

@sq D .LC˛/qCF.q/CG.q; s/CR.y; s/ for all .y; s/ 2 Rn
� Œ� log T;C1/; (3-8)
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where
˛.y; s/D p.'p�1

� �p�1/C e�sh0.e
s

p�1'/;

F.q/D jqC'jp�1.qC'/�'p
�p'p�1q;

G.q; s/D e�
ps

p�1 Œh.e
s

p�1 .qC'//� h.e
s

p�1'/� e
s

p�1 h0.e
s

p�1'/q�;

R.y; s/D�@s'C�' �
y

2
� r' �

'

p�1
C'p

C e�
ps

p�1 h.e
s

p�1'/:

Let K0 > 0 be fixed; we consider first the case jyj � 2K0

p
s and then jyj � 2K0

p
s and make a Taylor

expansion for � D y=
p

s bounded. Simultaneously we obtain, for all s � s0,

˛.y; s/�
C1

sa0
;

jF.q/jC jG.q; s/j � C1.q
2
C 1fjyj�2K0

p
sg/;

jR.y; s/j � C1

�
jyj2C 1

s1Ca0
C 1fjyj�2K0

p
sg

�
;

where a0Dminf1; ag, C1DC1.M0;K0/ > 0 and M0 is the bound of w in L1 norm. Note that we need
to use in addition the fact that � satisfies (1-21) to derive the bound for R (see Lemma B.2).

Let QD jqj; we then use the above estimates and Kato’s inequality, i.e., �f � sign.f /��.jf j/, to
derive from (3-8) the following: for all K0 > 0 fixed, there are C� D C�.K0;M0/ > 0 and a time s0 > 0

large enough such that, for all s � s� Dmaxfs0;� log T g,

@sQ�

�
LC

C�

sa0

�
QCC�

�
Q2
C
jyj2C 1

s1Ca0
C 1fjyj�2K0

p
sg

�
for all y 2 Rn: (3-9)

Since ˇ̌̌̌
w.y; s/�fl

�
y
p

s

�ˇ̌̌̌
�QC

C

sa0
;

the conclusion of Proposition 3.2 follows if we show that

8K0 > 0 sup
jyj�K0

p
s

Q.y; s/! 0 as s!C1: (3-10)

Let us now focus on the proof of (3-10) in order to conclude Proposition 3.2. For this purpose, we
introduce the following norm: for r � 0, q > 1 and f 2L

q
loc.R

n/,

Lq;r
� .f /� sup

j�j�r

�Z
Rn

jf .y/jq�.y � �/ dy

�1
q

:

Following the idea in [Velázquez 1992], we shall make estimates on solutions of (3-9) in the L
2;r.�/
�

norm, where r.�/DK0e.��Ns/=2 �K0

p
� . In particular, we have the following:

Lemma 3.3. Let s be large enough and let Ns be defined by es�Ns D s. Then, for all � 2 ŒNs; s� and K0 > 0,

g.�/� C0

�
e��Ns�.Ns/C

Z .��2K0/C

Ns

e��t�2K0g2.t/

.1� e�.��t�2K0//1=20
dt

�
;
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where g.�/ D L
2;r.K0;�;Ns/
� .Q.�//, r.K0; �; Ns/ D K0e.��Ns/=2, �.s/ D O.1=saC1/C O.log s=s2/, C0 D

C0.C�;M0;K0/ and zC Dmaxfz; 0g.

Proof. Multiplying (3-9) by ˇ.�/ D e
R �
Ns C�=t

a0 dt , we write Q.y; �/, for all .y; �/ 2 Rn � ŒNs; s�, in the
integral form

Q.y; �/D ˇ.�/SL.� � Ns/Q.y; Ns/CC�

Z �

Ns

ˇ.�/SL.� � t/

�
Q2
C
jyj2

t1Ca0
C

1

t1Ca0
C 1
fjyj�2K0

p
tg

�
dt;

where SL is the linear semigroup corresponding to the operator L.
Next, we take the L

2;r.K0;�;Ns/
� norms on both sides in order to get

g.�/� C0L2;r
� ŒSL.� � Ns/Q.Ns/�CC0

Z �

Ns

L2;r
� ŒSL.� � t/Q2.t/� dt

CC0

Z �

Ns

L2;r
�

�
SL.� � t/

�
jyj2

t1Ca0
C

1

t1Ca0

��
dt

CC0

Z �

Ns

L2;r
� ŒSL.� � t/1

fjyj�2K0

p
tg� dt

� J1CJ2CJ3CJ4:

Proposition 2.3 in [Velázquez 1992] yields

jJ1j � C0e��NskQ.Ns/kL2
�
D e��NsO.�.Ns// as Ns!C1;

jJ2j �
C0

Ns1Ca0
e��NsCC0

Z .��2K0/C

Ns

e.��t�2K0/

.1� e�.��t�2K0//1=20
ŒL2;r.K0;t;Ns/
� Q.t/�2 dt;

jJ3j �
C0e��Ns

Ns1Ca0
.1C .� � Ns//;

jJ4j � C0e�ı Ns; where ı D ı.K0/ > 0:

Putting together the estimates on Ji , i D 1; 2; 3; 4, we conclude the proof of Lemma 3.3. �

We now use the following Gronwall lemma:

Lemma 3.4 [Velázquez 1992]. Let �, C , R and ı be positive constants with ı 2 .0; 1/. Assume that H.�/

is a family of continuous functions satisfying

H.�/� �e� CC

Z .��R/C

0

e��sH2.s/

.1� e�.��s�R//ı
ds for � > 0:

Then there exist � D �.ı;C;R/ and �0 D �0.ı;C;R/ such that, for all � 2 .0; �0/ and any � for
which �e� � � , we have

H.�/� 2�e� :

Applying Lemma 3.4 with H� g, we see from Lemma 3.3 that, for s large enough,

g.�/� 2C0e��Ns�.Ns/ for all � 2 ŒNs; s�:
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If � D s, then es�Ns D s, r DK0

p
s and

g.s/�L
2;K0

p
s

� .Q.s//D O

�
1

sa

�
CO

�
log s

s

�
as s!C1:

By using the regularizing effects of the semigroup SL (see [Velázquez 1992, Proposition 2.3]), we then
obtain

sup
jyj�K0

p
s=2

Q.y; s/� C 0.C�;K0;M0/L
2;K0

p
s

� .Q.s//D O

�
1

sa

�
CO

�
log s

s

�
as s!C1;

which concludes the proof of Proposition 3.2. �

4. Numerical method

We give in this section a numerical study of the blow-up profile of (1-1) in one dimension. Though our
method is very similar to Berger and Kohn’s algorithm [1988] in spirit, it is better in the sense that it
can be applied to equations which are not invariant under the transformation (1-29). Our method differs
from Berger and Kohn’s in the following way: we step the solution forward until its maximum value
multiplied by a power of its mesh size reaches a preset threshold, where the mesh size and the preset
threshold are linked; for the rescaling algorithm, the solution is stepped forward until its maximum value
reaches a preset threshold, and the mesh size and the preset threshold do not need to be linked. For more
clarity, we present in the next subsection the mesh-refinement technique applied to (1-1), then give various
numerical experiments to illustrate the effectiveness of our method for the problem of the numerical
blow-up profile. Note that our method is more general than Berger and Kohn’s, in the sense that it applies
to non-scale-invariant equations. However, when applied to the unperturbed case F.u/D jujp�1u, our
method gives exactly the same approximation as that of [Berger and Kohn 1988].

4A. Mesh-refinement algorithm. As usually with numerical simulations of blow-up (see [Berger and
Kohn 1988]), we will simulate the equation on a bounded interval (say .�A;A/ with A > 0) with
homogeneous Dirichlet boundary conditions, rather than the whole line R. This choice is reasonable for
two reasons:

� If initial data on the line are symmetric and decreasing to zero at infinity, then this property persists
in time; hence, we are close to the situation of a bounded interval .�A;A/ with A > 0 large and
homogeneous Dirichlet condition.

� We believe that the blow-up on a bounded interval is the same as on the whole line, given that blow-up
does not occur on the boundary, as is already known for the pure power and �D 0. Moreover, as in
[Giga and Kohn 1987; Giga et al. 2004b], the results stated in the introduction can be extended to
the case when the problem (1-1) is considered in a convex domain of Rn with Dirichlet condition.
Thus, they hold for the problem (4-1).

For that reason we focus on the bounded interval case .�A;A/ here. For simplicity we will take AD 1.
In this section, we describe our refinement algorithm to solve numerically the problem (1-1) with initial
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data '.x/ > 0, '.x/D '.�x/, x d'.x/=dx < 0 for x¤ 0, which gives a positive symmetric and radially
decreasing solution. Let us rewrite the problem (1-1) (with �D 1) as8<:

@tuD @
2
xuCF.u/; .x; t/ 2 .�1; 1/� .0;T /;

u.1; t/D u.�1; t/D 0; t 2 .0;T /;

u.x; 0/D '.x/; x 2 .�1; 1/;

(4-1)

where p > 1 and

F.u/D up
C

up

loga.2Cu2/
with a> 0: (4-2)

Let ı and � be the initial space and time steps, we define C� D �=ı
2, xi D iı, tn D n� , I D 1=ı and

ui;n as the approximation of u.xi ; tn/, where ui;n is defined for all n� 0 and i 2 f�I; : : : ; Ig by

ui;nC1 D ui;nCC�Œui�1;n� 2ui;nCuiC1;n�C �F.ui;n/;

uI;n D u�I;n D 0;

ui;0 D 'i :

(4-3)

Note that this scheme is first-order accurate in time and second-order in space, and it requires the stability
condition C� D �=ı

2 �
1
2

.
Our algorithm needs to fix the following parameters:

� � < 1, the refining factor with ��1 being a small integer.

� M , the threshold to control the amplitude of the solution.

� ˛, the parameter controlling the width of interval to be refined.

The parameters � and M must satisfy the relation

M D ��
2

p�1 M0; where M0 D ı
2

p�1 k'k1: (4-4)

Note that the relation (4-4) is important to make our method work. In [Berger and Kohn 1988], the typical
choice is M0 D k'k1, hence M D ��2=.p�1/k'k1.

In the initial step of the algorithm, we simply apply the scheme (4-3) until ı2=.p�1/ku. � ; tn/k1

reaches M (note that in [Berger and Kohn 1988] the solution is stepped forward until ku. � ; tn/k1
reaches M ; in this first step, the thresholds of the two methods are the same, however, they will split after
the second step; roughly speaking, for the threshold we shall use the quantity ı2=.p�1/ku. � ; tn/k1 in our
method instead of the ku. � ; tn/k1 in [Berger and Kohn 1988]). Then, we use a linear interpolation in
time to find ��

0
such that

tn� � � �
�
0 � tn and ı

2
p�1 ku. � ; ��0 /k DM:

Afterward, we determine two grid points y�
0

and yC
0

such that(
ı

2
p�1 u.y�0 � ı; �

�
0 / < ˛M � ı

2
p�1 u.y�0 ; �

�
0 /;

ı
2

p�1 u.yC
0
C ı; ��0 / < ˛M � ı

2
p�1 u.yC

0
; ��0 /:

(4-5)
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Note that y�
0
D�yC

0
because of the symmetry of the solution. This finishes the initial step.

Let us begin the first refining step. Define

u.1/.y.1/; t .1//D u.y.1/; ��0 C t .1//; y.1/ 2 .y�0 ;y
C

0
/; t .1/ � 0; (4-6)

and set ı.1/ D �ı, � .1/ D �2� as the space and time step for the approximation of u.1/ (note that
� .1/=.ı.1//2 D �=ı2 D C�, which is a constant), y

.1/
i D iı.1/, t

.1/
n D n� .1/, I1 D yC

0
=ı.1/ and u

.1/
i;n

as the approximation of u.1/.y
.1/
i ; t

.1/
n /. Note that, in the unperturbed case, Berger and Kohn used the

transformation (1-29) to define u.1/.y.1/; t .1// D �2=.p�1/u.�y.1/; ��
0
C �2t .1// and then applied the

same scheme for u to u.1/. However, we can not do the same because (4-1) is not invariant under the
transformation (1-29). Then applying the scheme (4-3) to u.1/, we write

u
.1/
i;nC1

D u
.1/
i;n CC�Œu

.1/
i�1;n

� 2u
.1/
i;n Cu

.1/
iC1;n

�C � .1/F.u
.1/
i;n / (4-7)

for all n� 0 and i 2 f�I1C 1; : : : ; I1� 1g.
Note that the computation of u.1/ requires the initial data u.1/.y.1/; 0/ and the boundary condition

u.1/.y˙
0
; t .1//. For the initial condition, it is determined from u.x; ��

0
/ by using interpolation in space to

get values at the new grid points. For the boundary condition, since � .1/ D �2� , we have from (4-6) that

u.1/.y˙0 ; n�
.1//D u.y˙0 ; �

�
0 C n�2�/: (4-8)

Since u and u.1/ will be stepped forward, each on its own grid (u.1/ on .y�
0
;yC

0
/ with the space and

time steps ı.1/ and � .1/, and u on .�1; 1/ with the space and time steps ı and �), the relation (4-8)
will provide us with the boundary values for u.1/. In order to better understand how it works, let us
consider an example with � D 1

2
. After concluding the initial phase, the two solutions u.1/ and u are

stepped forward independently, each on its own grid; in other words, u.1/ on .y�
0
;yC

0
/ with the space and

time steps ı.1/ and � .1/, and u on .�1; 1/ with the space and time steps ı and � . Then, using the linear
interpolation in time for u, we get the boundary values for u.1/ by (4-8), since � .1/ D �2� D 1

4
� . This

means that u is stepped forward once every 4 time steps of u.1/. After 4 steps forward of u.1/, the values
of u on the interval .y�

0
;yC

0
/ must be updated to agree with the calculations of u.1/. In other words,

the approximation of u is used to assist in computing the boundary values for u.1/. At each successive
time step for u, the values of u on the interval .y�

0
;yC

0
/ must be updated to make them agree with the

more accurate fine grid solution u.1/. When .ı.1//2=.p�1/ku.1/. � ; n� .1//k1 first exceeds M , we use a
linear interpolation in time to find ��

1
2 Œ�

.1/
n�1

; �
.1/
n � such that .ı.1//2=.p�1/ku.1/. � ; ��

1
/k1 DM . On the

interval where .ı.1//2=.p�1/ku.1/. � ; ��
1
/k1 > ˛M , the grid is refined further and the entire procedure

for u.1/ is repeated to yield u.2/, and so forth.
Before going to a general step, we would like to comment on relation (4-4). When ı2=.p�1/ku. � ; t/k1

reaches the given threshold M in the initial phase, namely when ı2=.p�1/ku. � ; ��
0
/k1 DM , we want to

refine the grid so that the maximum value of .ı.1//2=.p�1/u.1/.y.1/; 0/ equals M0. By (4-6), this request
turns into .ı.1//2=.p�1/ku. � ; ��

0
/k1 DM0. Since ı.1/ D �ı, it follows that M D ��2=.p�1/M0, which

yields (4-4).
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Let k�0; we set ı.kC1/D��1ı.k/ and � .kC1/D�2� .k/ (note that � .kC1/=.ı.kC1//2D � .k/=.ı.k//2D

� � � D �=ı2 D C�), and let y.k/ and t .k/ be the variables of u.k/, with y
.k/
i D iı.k/ and t

.k/
n D n� .k/. By

convention, the index k D 0 means that u.0/.y.0/; t .0//� u.x; t/, ı.0/ � ı and � .0/ � � . The solution
u.kC1/ is related to u.k/ by

u.kC1/.y.kC1/; t .kC1//D u.k/.y.kC1/; ��k C t .kC1//; (4-9)

where y.kC1/ 2 .y�
k
;yC

k
/, t .kC1/ � 0, the time ��

k
2 Œt

.k/
n�1

; t
.k/
n � satisfies

.ı.k//
2

p�1 ku.k/.�; ��k /k1 DM;

and y�
k

and yC
k

are two grid points determined by(
.ı.k//

2
p�1 u.k/.y�k � ı

.k/; ��k / < ˛M � .ı.k//
2

p�1 u.k/.y�k ; �
�
k /;

.ı.k//
2

p�1 u.k/.yC
k
C ı.k/; ��k / < ˛M � .ı.k//

2
p�1 u.k/.yC

k
; ��k /:

(4-10)

The approximation of u.kC1/ at the point .y.kC1/
i ; t

.kC1/
n /, denoted by u

.kC1/
i;n , uses the scheme (4-3)

with the space step ı.kC1/ and the time step � .kC1/, which reads

u
.kC1/
i;nC1

D u
.kC1/
i;n CC�Œu

.kC1/
i�1;n

� 2u
.kC1/
i;n Cu

.kC1/
iC1;n

�C � .kC1/F.u
.kC1/
i;n / (4-11)

for all n � 1 and i 2 f�Ik C 1; � � � ; Ik � 1g, where Ik D yC
k
=ı.kC1/ (note that Ik is an integer since

��1 2 N).
As for the approximation of u.k/, the computation of u

.kC1/
i;n needs the initial data and the boundary

condition. From (4-9) and the fact that � .kC1/ D �2� .k/, we see that

u.kC1/.y.kC1/; 0/D u.k/.y.kC1/; ��k /; (4-12)

u.kC1/.y˙k ; n�
.kC1//D u.k/.y˙k ; �

�
k C n�2� .k//: (4-13)

From (4-12), the initial data is simply calculated from u.k/. � ; ��
k
/ by using a linear interpolation in space

in order to assign values at new grid points. The essential step in this new mesh-refinement method is
to determine the boundary condition through the identity (4-13), which means by a linear interpolation
in time of u.k/. Therefore, the previous solutions u.k/, u.k�1/; : : : are stepped forward independently,
each on its own grid. More precisely, � .kC1/ D �2� .k/ D �4� .k�1/ D � � � , so u.k/ is stepped forward
once every ��2 time steps of u.kC1/, u.k�1/ once every ��4 time steps of u.kC1/, etc. On the other
hand, the values of u.k/, u.k�1/; : : : must be updated to agree with the calculation of u.kC1/. When
.ı.kC1//2=.p�1/ku.kC1/. � ; � .kC1//k1 >M , it is time for the next refining phase.

We would like to comment on the output of the refinement algorithm:

(i) Let ��
k

be the time at which the refining takes place, then the ratio ��
k
=� .k/, which indicates the

number of time steps until .ı.k//2=.p�1/ku.k/k1 reaches the given threshold M , tends to a constant
as k!1.

(ii) Let u.k/. � ; ��
k
/ be the refining solution. If we plot .ı.k//2=.p�1/u.k/. � ; ��

k
/ on .�1; 1/, then their

graphs eventually converge to a predicted one as k!1.
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(iii) Let .y�
k
;yC

k
/ be the interval to be refined; then the quantity .ı.k//�2.yC

k
/2 behaves as a linear

function of k.

These assertions can be well understood by the following theorem:

Theorem 4.1 (formal analysis). Let u be a blowing-up solution to (4-1); then the output of the refinement
algorithm satisfies:

(i) The ratio ��
k
=� .k/ tends to a constant as k!1, namely

��
k

� .k/
!
.��2� 1/M 1�p

C�.p� 1/
as k!C1: (4-14)

(ii) Assume in addition that Theorem 1.7(i) holds. Defining v.k/.z/D .ı.k//2=.p�1/u.k/.zyC
k�1

; ��
k
/ for

all k � 1, we have

8jzj< 1 v.k/.z/�M.1C .˛1�p
� 1/��2z2/�

1
p�1 as k!C1: (4-15)

(iii) The quantity .ı.k//�2.yC
k
/2 behaves as a linear function, namely

.ı.k//�2.yC
k
/2 � kCB as k!C1; (4-16)

where

 D
2M 1�p.˛1�p � 1/j log�j

cp.p� 1/�2
; B D�

M 1�p.˛1�p � 1/

cp.p� 1/�2
log
�

M 1�pı2

p� 1

�
and cp D

p� 1

4p
:

Remark 4.2. Note that there is no assumption on the value of a in the hypothesis in Theorem 4.1. It is
understood in the sense that u blows up in finite time and its profile is described in Theorem 1.7.

Proof. As we will see in the proof, the statement (i) concerns the blow-up limit of the solution and (ii) is
due to the blow-up profile stated in Theorem 1.7.

(i) If �k is the real time when the refinement from u.k/ to u.kC1/ takes place, we have, by (4-9),

�k D �
�
0 C �

�
1 C � � �C �

�
k ;

where ��
k

is such that .ı.k//2=.p�1/ku.k/. � ; ��
k
/k1 DM . This means that

u.k/. � ; ��k /D u. � ; �k/: (4-17)

On the other hand, from Theorem 1.7(i) and the definition (1-26) of f , we see that

lim
t!T

.T � t/
1

p�1 ku. � ; t/kL1 D �: (4-18)

Combining (4-18) and (4-17) yields

.T � �k/
1

p�1 ku.k/. � ; ��k /k1 D �C o.1/; (4-19)

where o.1/ represents a term that tends to 0 as k!C1.



BLOW-UP RESULTS FOR A STRONGLY PERTURBED SEMILINEAR HEAT EQUATION 249

Since ku.k/. � ; ��
k
/k1 DM.ı.k//�2=.p�1/, we then derive

T � �k D .M
�1�/p�1.ı.k//2C o.1/: (4-20)

By the definition of �k and (4-17), we infer that ��
k
D �k � �k�1 (we can think ��

k
as the live time of

u.k/ in the k-th refining phase). Hence,

��
k

� .k/
D
�k � �k�1

� .k/
D

1

� .k/
Œ.T � �k�1/� .T � �k/�

D
1

� .k/
.M�1�/p�1..ı.k�1//2� .ı.k//2/C o.1/

D
.ı.k//2

� .k/
.M�1�/p�1.��2

� 1/C o.1/:

Since the ratio � .k/=.ı.k//2 is always fixed by the constant C�, we finally obtain

lim
k!C1

��
k

� .k/
D
.��2� 1/M 1�p

C�.p� 1/
;

which is the conclusion of Theorem 4.1(i).

(ii) By the symmetry of the solution, we have y�
k�1
D yC

k�1
. We then consider the following mapping:

for all k � 1,

z 7! v.k/.z/ for all jzj � 1; where v.k/.z/D
�
ı.k/

� 2
p�1 u.k/.zyC

k�1
; ��k /:

We will show that v.k/.z/ converges to some fixed function as k!C1. For this purpose, we first write
u.k/.y.k/; �k�/ in terms of w.�; s/ thanks to (4-17) and (1-10):

u.k/.y.k/; ��k /D u.y.k/; �k/D .T � �k/
� 1

p�1w.�.k/; sk/; (4-21)

where �.k/ D y.k/=
p

T � �k and sk D� log.T � �k/.
If we write Theorem 1.7(i) in the variable y=

p
s through (1-10), we have the equivalencew.y; s/�f � y

p
s

�
L1
! 0 as s!C1; (4-22)

where f is as given in (1-26).
From (4-22), (4-20) and (4-21), we derive

u.k/.y.k/; ��k /DM��1.ı.k//�
2

p�1f

�
y.k/

.M�1�/
p�1

2 ı.k/
p

sk

�
C o.1/:

Then, multiplying both of sides by .ı.k//2=.p�1/ and replacing y.k/ by zyC
k�1

, we obtain

.ı.k//
2

p�1 u.k/.zyC
k�1

; ��k /DM��1f

�
zyC

k�1

.M�1�/
p�1

2 ı.k/
p

sk

�
C o.1/: (4-23)
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From the definition (4-10) of yC
k�1

, we may assume that

.ı.k�1//
2

p�1 u.k�1/.yC
k�1

; ��k�1/D ˛M:

Combining this with (4-23), we have

˛ D ��1f

�
yC

k�1

.M�1�/
p�1

2 ı.k�1/psk�1

�
C o.1/:

Since sk D� log.T � �k/ and ı.k/ D �kı, we have from (4-20) that

sk D 2kjlog�j � log
�

M 1�pı2

p� 1

�
C o.1/; (4-24)

which implies limk!C1 sk�1=sk D 1. Thus, it is reasonable to assume that yC
k�1

=
p

sk�1 and yC
k�1

=
p

sk

tend to the positive root � as k!C1. Hence,

˛ D ��1f

�
�

.M�1�/
p�1

2 ı.k/��1

�
C o.1/:

Using the definition (1-26) of f , we have

˛ D

�
1C cp

ˇ̌̌̌
�

.M�1�/
p�1

2 ı.k/

ˇ̌̌̌2
�2

�� 1
p�1
C o.1/;

which implies ˇ̌̌̌
�

.M�1�/
p�1

2 ı.k/

ˇ̌̌̌2
D

1

cp
Œ.˛1�p

� 1/��2�C o.1/; (4-25)

where cp is the constant given in the definition (1-26) of f .
Substituting this into (4-23) and using the definition (1-26) of f again, we arrive at

v.k/.z/DM

�
1C cp

ˇ̌̌̌
�

.M�1�/
p�1

2 ı.k/

ˇ̌̌̌2
z2

�� 1
p�1
C o.1/DM.1C .˛1�p

� 1/��2z2/�
1

p�1 C o.1/:

Let k!C1; the conclusion of (ii) then follows.

(iii) From (4-25) and the fact that yC
k
=
p

sk ! � as k!C1, we have

.ı.k//�2.yC
k
/2 D

.˛1�p � 1/M 1�p

cp�2.p� 1/
log sk C o.1/:

Using (4-24), we then derive

.ı.k//�2.yC
k
/2 D

2kjlog�j.˛1�p � 1/M 1�p

cp�2.p� 1/
�
.˛1�p � 1/M 1�p

cp�2.p� 1/
log
�

M 1�pı2

p� 1

�
C o.1/;

which yields the conclusion of (iii) and finishes the proof of Theorem 4.1. �
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ı 0.040 0.020 0.010 0.005
M 0.320 0.160 0.080 0.040

Table 1. The value of M corresponds to the initial data and the initial space step.

4B. The numerical results. This subsection gives various numerical confirmations for the assertions
stated in the previous subsection (Theorem 4.1). All the experiments reported here used '.x/ D
2.1C cos.�x// as the initial data, ˛ D 0:6 as the parameter for controlling the interval to be refined,
�D 1

2
as the refining factor, C�D

1
4

as the stability condition for the scheme (4-3), pD 3 and aD 0:1, 1

and 10 in the nonlinearity F given in (4-2). The threshold M is chosen to satisfy the condition (4-4).
In Table 1, we give some values of M corresponding to the initial data and the initial space step ı. We
generally stop the computation after 40 refining phases. Indeed, since .ı.k//2=.p�1/ku.k/. � ; ��

k
/k1DM

and ı.k/ D �ı.k�1/, we have by induction that

ku.k/. � ; ��k /k1 D .ı
.k//�

2
p�1 M D .�ı.k�1//�

2
p�1 M D � � � D .�kı/�

2
p�1 M:

With these parameters, we see that the corresponding amplitude of u approaches 1012 after 40 iterations.

4B(i). The value ��
k
=� .k/ tends to a constant as k!C1. It is convenient to denote the computed value

of ��
k
=� .k/ by N .k/ and the predicted value given in the statement Theorem 4.1(i) by N pre. Note that the

value of N pre does not depend on a, but depends on ı because of the relation (4-4). More precisely,

N pre.ı/D
.1��2/k'k

1�p
1

C�.p� 1/ı2
:

Then, considering the quantity N .k/=N pre, theoretically it is expected to converge to 1 as k tends to
infinity. Table 2 provides computed values of N .k/=N pre at some selected indices of k, computing
with ı D 0:005 and three different values of a. According to the numerical results given in Table 2, the
computed values in the cases aD 10 and aD 1:0 approach to 1 as expected, which gives us a numerical
answer for the statement (4-18). However, the numerical results in the case aD 0:1 are not good due to
the fact that the speed of convergence to the blow-up limit (4-18) is 1=jlog.T � t/ja

0

with a0 Dminfa; 1g
(see Theorem 1.4).

4B(ii). The function v.k/.z/ introduced in Theorem 4.1(ii) converges to a predicted profile as k!C1.
As stated in Theorem 4.1(ii), if we plot v.k/.z/ over the fixed interval .�1; 1/ then the graph of v.k/

k 10 15 20 25 30 35 40

aD 10 1.0325 1.0203 1.0149 1.0117 1.0096 1.0080 1.0072
aD 1:0 0.9699 0.9771 0.9816 0.9845 0.9867 0.9885 0.9899
aD 0:1 0.5853 0.5885 0.5923 0.5957 0.5989 0.6016 0.6043

Table 2. The values of N .k/=N pre at some selected indices of k, computing with
ı D 0:005 and three different values of a.
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Figure 1. The graph of v.k/.z/ at some selected indices of k, computing with ıD 0:005

and aD 10. They converge to the predicted profile (the dash line) as stated in (4-15) as
k increases.

would converge to the predicted one. Figure 1 gives us a numerical confirmation for this fact, computing
with ı D 0:005 and aD 10. Looking at Figure 1, we see that the graph of v.k/ evidently converges to
the predicted one given in the right-hand side of (4-15) as k increases. The last curve v.40/ seemingly
coincides with the prediction. Figure 2 shows the graph of v.40/ and the predicted profile for another
experiment with ı D 0:005 and aD 0:1. They coincide to within plotting resolution.

In Table 3, we give the error in L1 between v.k/.z/ at index k D 40 and the predicted profile given in
the right-hand side of (4-15), namely

eı;a D sup
z2.�1;1/

ˇ̌
v.40/.z/�M.1C .˛1�p

� 1/��2z2/�
1

p�1

ˇ̌
: (4-26)

These numerical computations give us confirmation that the computed profiles vk converges to the
predicted one. Since the error eı;a tends to 0 as ı goes to 0, the numerical computations also answer
to the stability of the blow-up profile stated in Theorem 1.7(i). In fact, the stability makes the solution
visible in numerical simulations.

4B(iii). The quantity .ı.k//�2.yC
k
/2 behaves like a linear function in k. For making a quantitative

comparison between our numerical results and the predicted behavior as stated in Theorem 4.1(iii), we
plot the graph of .ı.k//�2.yC

k
/2 against k and denote by ı;a the slope of this curve. Then, considering

ı 0.04 0.02 0.01 0.005

aD 10 0.002906 0.000789 0.000470 0.000238
aD 1:0 0.001769 0.000671 0.000359 0.000213
aD 0:1 0.002562 0.000687 0.000380 0.000235

Table 3. Error eı;a in L1 between the computed and predicted profiles, defined in (4-26).
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Figure 2. The graph of v.k/.z/ at k D 40 and the predicted profile given in (4-15),
computing with ı D 0:005 and aD 0:1. They coincide to within plotting resolution.

the ratio ı;a= , where  is as given in Theorem 4.1(iii). As expected, this ratio ı;a= would approach 1.
Figure 3 shows .ı.k//�2.yC

k
/2 as a function of k, computing with the initial space step ı D 0:005 for

different values of a. Looking at Figure 3, we see that the two middle curves, corresponding to the cases
aD 10 and aD 1, behave like the predicted linear function (the top line), while this is not true in the case
aD 0:1 (the bottom curve). In order to make this clearer, Table 4 lists the values of ı;a= , computing
with various values of the initial space step ı for three different values of a. Here, the value of ı;a is
calculated for 20� k � 40. As Table 4 shows, the numerical values in the cases aD 10 and aD 1 agree
with the prediction stated in Theorem 4.1(ii), while the numerical values in the case aD 0:1 are far from
the predicted ones.
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Figure 3. The graph of .ı.k//�2.yC
k
/2 against k, computing with ı D 0:005 for three

different values of a.
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ı 0.04 0.02 0.01 0.005

aD 10 1.9514 1.1541 0.9991 0.9669
aD 1:0 1.9863 1.1436 1.0052 0.9682
aD 0:1 1.9538 0.8108 0.6417 0.5986

Table 4. The values of ı;a= , computing with various values of the initial space step ı
for three different values of a.

Appendix A

The following lemma from [Nguyen 2015] gives the expansion of �.s/, the unique solution of (1-21)
satisfying (1-22):

Lemma A.1. Let � be a positive solution of the ordinary differential equation

�s D�
�

p� 1
C�p

C
��p

loga.2C e
2s

p�1�2/
:

If we assume in addition �.s/! � as s!C1, then �.s/ takes the form

�.s/D �.1C �a.s//
� 1

p�1 as s!C1;

where

�a.s/� C�

Z C1
s

es��

�a
d� D

C�
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�
1C

X
j�1

bj

sj

�

with C� D �
�

1
2
.p� 1/

�a and bj D .�1/j
Qj�1

iD0
.aC i/.

Proof. See Lemma A.3 in [Nguyen 2015]. �

Appendix B

We aim at proving the following:

Lemma B.1 (estimate of !.s/). We have

j!.s/j D O

�
1

saC1

�
as s!C1:

Proof. From Lemma A.1, we write

p.�.s/p�1
� �p�1/D�

p�a.s/

p� 1
.1C �a.s//

�1
D�

pC�

.p� 1/sa
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�
:

A direct calculation yields
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�
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Adding the two above estimates, we obtain the desired result. This ends the proof of Lemma B.1. �

Lemma B.2 (estimate of R.y; s/). We have

jR.y; s/j D O

�
jyj2C 1

sa0C1

�
as s!C1

with a0 Dminf1; ag.

Proof. Let us write '.y; s/D .�.s/=�/�.y; s/, where
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1C
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4ps

lX
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y2
j

�� 1
p�1
C

�l

2ps
:

Then, we write R.y; s/D .�.s/=�/R1.y; s/CR2.y; s/, where

R1.y; s/D �s ��� �
y

2
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The term R1.y; s/ is already treated in [Velázquez 1992] and it is bounded by

jR1.y; s/j �
C.jyj2C 1/

s2
CC 1fjyj�2K0

p
sg:

To bound R2, we use the fact that � satisfies (1-22) to write

R2.y; s/D
��

�p
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s
p�1�/:

Noting that �.y; s/D �C N�.y; s/ with j N�.y; s/j � .C=s/.jyj2C 1/, uniformly for y 2 R and s � 1, and
recalling from Lemma A.1 that �.s/D �.1C�a.s//

�1=.p�1/, where �a.s/D O.s�a/, then using a Taylor
expansion, we derive

jR2.y; s/j � C

�
jyj2C 1

saC1
C 1fjyj�2K0

p
sg

�
:

This concludes the proof of Lemma B.2. �
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