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RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS

FRÉDÉRIC KLOPP

Dedicated to Johannes Sjöstrand on the occasion of his seventieth birthday.

The present paper is devoted to the study of resonances for one-dimensional quantum systems with a
potential that is the restriction to some large box of an ergodic potential. For discrete models, both on a
half-line and on the whole line, we study the distributions of the resonances in the limit when the size of
the box goes to infinity. For periodic and random potentials, we analyze how the spectral theory of the
limit operator influences the distribution of the resonances.

Dans cet article, nous étudions les résonances d’un système unidimensionnel plongé dans un potentiel
qui est la restriction à un grand intervalle d’un potentiel ergodique. Pour des modèles discrets sur la
droite et la demie droite, nous étudions la distribution des résonances dans la limite de la taille de boîte
infinie. Pour des potentiels périodiques et aléatoires, nous analysons l’influence de la théorie spectrale de
l’opérateur limite sur la distribution des résonances.
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0. Introduction

Consider V : Z→ R a bounded potential and, on `2(Z), the Schrödinger operator H =−1+ V defined
by

(Hu)(n)= u(n+ 1)+ u(n− 1)+ V (n)u(n) for all n ∈ Z

for u ∈ `2(Z).
The potentials V we will deal with are of two types:

It is a pleasure to thank N. Filonov for interesting discussions at the early stages of this work and T. T. Phong, C. Shirley
and M. Vogel for pointing out misprints in previous versions of the article. This work was partially supported by the grant
ANR-08-BLAN-0261-01.
MSC2010: 35B34, 47B80, 47H40, 60H25, 82B44.
Keywords: resonances, random operators, periodic operators.
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Figure 1. The meromorphic continuation.

• V periodic;

• V = Vω, the random Anderson model, i.e., the entries of the diagonal matrix V are independent,
identically distributed, nonconstant random variables.

The spectral theory of such models has been studied extensively (see, e.g., [Kirsch 2008]) and it is
well known that

• when V is periodic, the spectrum of H is purely absolutely continuous;

• when V = Vω is random, the spectrum of H is almost surely pure point, i.e., the operator only has
eigenvalues; moreover, the eigenfunctions decay exponentially at infinity.

Pick L ∈ N∗. The main object of our study is the operator

HL =−1+ V 1[[−L+1,L]] (0-1)

when L is large. Here, [[−L+1, L]] is the integer interval {−L+1, . . . , L}, and 1[[a,b]](n)= 1 if a≤ n≤ b
and 1[[a,b]](n)= 0 if not.

For L large, the operator HL is a simple Hamiltonian modeling a large sample of periodic or random
material in the void. It is well known in this case (see, e.g., [Zworski 2002]) that not only is the spectrum
of HL of importance but also its (quantum) resonances, which we will now define.

As V 1[[−L+1,L]] has finite rank, the essential spectrum of HL is the same as that of the discrete Laplace
operator, that is, [−2, 2], and it is purely absolutely continuous. Outside this absolutely continuous
spectrum, HL has only discrete eigenvalues associated to exponentially decaying eigenfunctions.

We are interested in the resonances of the operator HL in the limit when L→+∞. They are defined
to be the poles of the meromorphic continuation of the resolvent of HL through (−2, 2), the continuous
spectrum of HL (see Figure 1, Theorem 1.3 and, e.g., [loc. cit.]). The resonances widths, that is, their
imaginary part, play an important role in the large time behavior of e−i t HL , especially the resonances of
smallest width that give the leading order contribution (see [loc. cit.]).

Quantum resonances are basic objects in quantum theory. They have been the focus of a vast number of
studies, both mathematical and physical (see, e.g., [loc. cit.] and references therein). Our purpose here is
to study the resonances of HL in the asymptotic regime L→+∞. As L→+∞, HL converges to H in
the strong resolvent sense. Thus, it is natural to expect that the differences in the spectral nature between
the cases V periodic and V random should reflect into differences in the behavior of the resonances in both
cases. We shall see below that this is the case. To illustrate this as simply as possible, we begin by stating
three theorems, one for periodic potentials and two for random potentials, that underline these different
behaviors. These results can be considered as paradigmatic for our main results, presented in Section 1.
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The scattering theory or the closely related questions of resonances for the operator (0-1) or for closely
related one-dimensional models have already been discussed in various works, both in the mathematical
and physical literature (see, e.g., [Faris and Tsay 1989; 1994; Lifshits et al. 1988; Kunz and Shapiro
2006; Texier and Comtet 1999; Comtet and Texier 1997; Kunz and Shapiro 2008; Barra and Gaspard
1999; Kottos 2005; Titov and Fyodorov 2000]). We will make more comments on the literature as we
develop our results in Section 1.

0A. When V is periodic. Assume that V is p-periodic (p∈N∗) and does not vanish identically. Consider
H =−1+ V and let 6Z be its spectrum, 6◦Z be its interior and E 7→ N (E) be its integrated density of
states, i.e., the number of states of the system per unit of volume below energy E (see Section 1B and,
e.g., [Teschl 2000] for precise definitions and details).

Theorem 0.1. There exist

• D, a discrete (possibly empty) set of energies in (−2, 2)∩6◦Z,

• a function h that is real analytic in a complex neighborhood of (−2, 2) and that does vanish on
(−2, 2) \D

such that, for I ⊂ (−2, 2) \D a compact interval such that either I ∩6Z = ∅ or I ⊂ 6◦Z, there exists
c0 > 0 such that, for L sufficiently large with L ∈ pN, one has:

• If I ∩6Z =∅, then HL has no resonance in I + i[−c0, 0].

• If I ⊂6◦Z, one has:

– There are plenty of resonances in I + i[−c0, 0]; more precisely,

1
2L

#{z ∈ I + i[−c0, 0] | z a resonance of HL} =

∫
I

d N (E)+ o(1), (0-2)

where o(1)→ 0 as L→+∞.
– Let (z j ) j be the resonances of HL in I + i[−c0, 0] ordered by increasing real part; then

L ·Re(z j+1− z j )� 1 and L · Im z j = h(Re z j )+ o(1), (0-3)

the estimates in (0-3) being uniform for all the resonances in I + i[−c0, 0] when L→+∞.

After rescaling their width by L , resonances are nicely interspaced points lying on an analytic curve
(see Figure 2). We give a more precise description of the resonances in Theorem 1.7 and Propositions 1.8
and 1.9. In particular, we describe the set of energies D and the resonances near these energies: they lie
further away from the real axis, the maximal distance being of order L−1 log L (see Figure 3). Theorem 0.1
only describes the resonances closest to the real axis. In Section 1B, we also give results on the resonances
located deeper in the lower half of the complex plane.

0B. When V is random. Assume now that V = Vω is the Anderson potential, i.e., its entries are i.i.d.
and distributed uniformly on [0, 1] for concreteness. Consider H =−1+ Vω. Let 6 be its almost sure
spectrum (see, e.g., [Pastur and Figotin 1992] for this and the following notions), E 7→ n(E) its density
of states (i.e., the derivative of the integrated density of states; see also Section 1B) and E 7→ ρ(E)
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Figure 2. The rescaled resonances for the periodic (left) and the random (right) potential.

its Lyapunov exponent (see also Section 1C). The Lyapunov exponent is known to be continuous and
positive; the density of states satisfies n(E) > 0 for a.e. E ∈6 (see, e.g., [Bougerol and Lacroix 1985]).

Define Hω,L := −1+ Vω1[[−L+1,L]]. We prove:

Theorem 0.2. Pick I ⊂ (−2, 2) a compact interval.

• If I ∩6 =∅ then there exists cI > 0 such that ω-a.s., for L sufficiently large,

{z a resonance of Hω,L in I + i(−cI , 0]} =∅.

• If I ⊂6◦ then, for any c > 0, ω-a.s. one has

lim
L→+∞

1
L

#{z a resonance of Hω,L in I + i(−∞,−e−2cL
]} =

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E .

As the first statement of Theorem 0.2 is clear, let us discuss the second. Define c+ :=maxE∈I ρ(E).
For c ≥ c+, ω-a.s. for L large the number of resonances in the strip {Re z ∈ I, Im z ≤ −e−2cL

} is
approximately 2L

∫
I n(E) d E ; thus, in {Re z ∈ I, −e2c+L

≤ Im z < 0}, one finds at most o(L) resonances.
We shall see that, for δ > 0, ω-a.s. for L large the strip {Re z ∈ I, −e(2c++δ)L ≤ Im z< 0} actually contains
no resonances (see Theorem 1.13).

Define c− := minE∈I ρ(E). For c ≤ c−, ω-a.s. for L large the strip {Re z ∈ I, Im z ≤ −e−2cL
}

contains approximately 2cL
∫

I n(E)/ρ(E) d E resonances. We shall see that, for κ ∈ [0, 1), the number
of resonances in the strip {Re z ∈ I, Im z ≤−e−Lκ

} is O(Lκ), thus o(L) (see Theorem 1.17).
One can also describe the resonances locally. Fix E0 ∈ (−2, 2)∩6◦ such that n(E0) > 0. Let (zL

l (ω))l

be the resonances of Hω,L . We first rescale them. Define

x L
l (ω)= 2Ln(E0)(Re zL

l (ω)− E0) and yL
l (ω)=−

1
2Lρ(E0)

log|Im zL
l (ω)|. (0-4)

Consider now the two-dimensional point process

ξL(E0, ω)=
∑

zL
l resonances of Hω,L

δ(x L
l (ω),y

L
l (ω))

.

We prove:

Theorem 0.3. The point process ξL converges weakly to a Poisson process of intensity 1 in R×[0, 1].

In the random case, the structure of the (properly rescaled) resonances is quite different from that in the
periodic case (see Figure 2). The real parts of the resonances are scaled in such a way that their average



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 263

spacing becomes of order one. By Theorem 0.2, the imaginary parts are typically exponentially small
(in L); when the resonances are rescaled as in (0-4), their imaginary parts are rewritten on a logarithmic
scale so as to become of order 1 too. Once rescaled in this way, the local picture of the resonances of
Hω,L is that of a two-dimensional cloud of Poisson points (see the right-hand side of Figure 2).

Theorem 0.3 is the analogue for resonances of the well-known result on the distribution of eigenvalues
and localization centers for the Anderson model in the localized phase (see, e.g., [Minami 1996; Killip
and Nakano 2007; Germinet and Klopp 2014]).

As in the case of the periodic potential, Theorem 0.3 only describes the resonances closest to the real
axis. In Section 1C, we also give results on resonances located deeper in the lower half of the complex
plane. Up to distances of order L−∞ to the real axis, the cloud of resonances (once properly rescaled)
will have the same Poissonian behavior as described above (see Theorem 1.10).

Besides proving Theorems 0.1 and 0.3, the goal of the paper is to describe the statistical properties
of the resonances and relate them (the distribution of the resonances and of the widths) to the spectral
characteristics of H =−1+ V, and possibly to the distribution of its eigenvalues (see, e.g., [Germinet
and Klopp 2011]).

As they can be analyzed in a very similar way, we will discuss three models:

• The model HL defined above.

• Its analogue on the half-line N, i.e., on HL , we impose an additional Dirichlet boundary condition
at 0.

• The “half-infinite” model on `2(Z), that is,

H∞ =−1+W, where
{

W (n)= 0 for n ≥ 0,
W (n)= V (n) for n ≤−1,

(0-5)

where V is chosen as above, periodic or random.

Though in the present paper we restrict ourselves to discrete models, it is clear that continuous
one-dimensional models can be dealt with essentially using the methods developed here.

1. The main results

We now turn to our main results, a number of which were announced in [Klopp 2012]. Pick V : Z→ R a
bounded potential and, for L ∈ N, consider the operators

• H Z
L =−1+ V 1[[0,L]] on `2(Z);

• H N
L =−1+ V 1[[0,L]] on `2(N) with Dirichlet boundary conditions at 0;

• H∞, defined in (0-5).

Remark 1.1. Here, by “Dirichlet boundary condition at 0”, we mean that H N
L is the operator H Z

L
restricted to the subspace `2(N), i.e., if 5 : `2(Z)→ `2(N) is the orthogonal projector on `2(N), one has
H N

L =5H Z
L5. In the literature, this is sometime called “Dirichlet boundary condition at −1” (see, e.g.,

[Teschl 2000]).
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For the sake of simplicity, in the half-line case we only consider Dirichlet boundary conditions at 0.
But the proofs show that these are not crucial; any selfadjoint boundary condition at 0 would do and,
mutatis mutandis, the results would be the same.

Note also that by a shift of the potential V, replacing L by L+L ′, studying H Z
L is equivalent to studying

HL ,L ′ = −1+ V 1[[−L ′,L]] on `2(Z). Thus, to derive the results of Section 0 from those in the present
section, it suffices to consider the models above, in particular H Z

L .

For the models H N
L and H Z

L , we start with a discussion of the existence of a meromorphic continuation
of the resolvent, then study the resonances when V is periodic and finally turn to the case when V is
random.

As H∞ is not a relatively compact perturbation of the Laplacian, the existence of a meromorphic
continuation of its resolvent depends on the nature of V ; so, it will be discussed when specializing to V
periodic or random.

Remark 1.2 (notations). In the sequel, we write a . b if for some C > 0 (independent of the parameters
coming into a or b) one has a ≤ Cb. We write a � b if a . b and b . a.

1A. The meromorphic continuation of the resolvent. One proves the well-known and simple:

Theorem 1.3. The operator-valued functions z 7→ (z− H N
L )
−1 and z 7→ (z− H Z

L )
−1 for z ∈ C+ admit a

meromorphic continuation from C+ to C \ ((−∞,−2] ∪ [2,+∞)) through (−2, 2) (see Figure 1) with
values in the operators from l2

comp to l2
loc.

Moreover, the number of poles of each of these meromorphic continuations in the lower half-plane is at
most equal to L.

The resonances are defined to be the poles of this meromorphic continuation (see Figure 1).

1B. The periodic case. We assume that, for some p > 0, one has

Vn+p = Vn for all n ≥ 0. (1-1)

Let 6N be the spectrum of H N
= −1+ V acting on `2(N) with Dirichlet boundary condition at 0

and 6Z be the spectrum of H Z
=−1+ V acting on `2(Z). One has the following description for these

spectra:

• 6Z is a union of intervals, i.e., 6Z := σ(H) =
⋃p

j=1[E
−

j , E+j ], where E−j < E+j (1 ≤ j ≤ p) and
a+j−1 ≤ E−j (2≤ j ≤ p) (see, e.g., [van Moerbeke 1976]); the spectrum of H Z is purely absolutely
continuous and the spectral resolution can be obtained via a Bloch–Floquet decomposition (see, e.g.,
[loc. cit.]).

• On `2(N) (see, e.g., [Pavlov 1994]), one has

– 6N =6Z ∪ {v j | 1≤ j ≤ n} and 6Z is the absolutely continuous spectrum of H ;
– the (v j )0≤ j≤n are isolated simple eigenvalues associated to exponentially decaying eigen-

functions.
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It may happen that some of the gaps are closed, i.e., that the number of connected components of 6Z be
strictly less than p. There still is a natural way to write 6Z := σ(H)=

⋃p
j=1[E

−

j , E+j ] (see Section 4A1),
but in this case, for some of the j, one has E+j−1 = E−j ; we shall call the energies E+j−1 = E−j closed gaps
(see Definition 4.5). The existence of closed gaps is nongeneric (see [van Moerbeke 1976]).

The operators H • (for • ∈ {N,Z}) admit an integrated density of states defined by

N (E)= lim
L→+∞

#{eigenvalues of (−1+ V )|[[−L ,L]]∩• in (−∞, E]}
#([[−L , L]] ∩ •)

. (1-2)

Here, the restriction of −1+V to [[−L , L]]∩ • is taken with Dirichlet boundary conditions; this is for
concreteness as it is known that, in the limit L→+∞, other selfadjoint boundary conditions would yield
the same result for the limit (1-2).

The integrated density of states is the same for H N and H Z (see, e.g., [Pastur and Figotin 1992]). It
defines the distribution function of some probability measure on 6Z that is real analytic on 6◦Z. Let n
denote the density of states of H N and H Z, that is, n(E)= d N (E)/d E .

Remark 1.4. When L gets large, as H N
L tends to H N in the strong resolvent sense, interesting phenomena

for the resonances of H N
L should take place near energies in 6N.

Define τk to be the shift by k steps to the left, that is, τk V ( · )= V ( · + k). Then, for (`L)L such that
lL→+∞ and L−`L→+∞ when L→+∞, τ ∗lL

H Z
L τlL tend to H Z in the strong resolvent sense. Thus,

interesting phenomena for the resonances of H Z
L should take place near energies in 6Z.

1B1. Resonance-free regions. We start with a description of resonance-free regions near the real axis.
To this end, we introduce some operators on the positive and the negative half-lattice.

Above we have defined HN; we shall need another auxiliary operator. On `2(Z−) (where Z−={n≤ 0}),
consider the operator H−k =−1+ τk V with Dirichlet boundary condition at 0 (where τk is defined to be
the shift by k steps to the left, that is, τk V ( · )= V ( · + k)). Let 6−k = σ(H

−

k ).
As is the case for H N, one knows that σess(H−k )=6Z and that σess(H−k ) is purely absolutely continuous

(see, e.g., [Teschl 2000, Chapter 7]). H−k may also have discrete eigenvalues in R \6Z.
We prove:

Theorem 1.5. Let I be a compact interval in (−2, 2).

(1) If I ⊂ R \ 6N (resp. I ⊂ R \ 6Z), then there exists c > 0 such that, for L sufficiently large,
H N

L (resp. H Z
L ) has no resonances in the rectangle {Re z ∈ I, Im z ∈ [−c, 0]}.

(2) If I ⊂6Z, then there exists c > 0 such that, for L sufficiently large, H N
L and H Z

L have no resonances
in the rectangle {Re z ∈ I, Im z ∈ [−c/L , 0]}.

(3) Fix 0 ≤ k ≤ p− 1 and assume the compact interval I is such that {v j } = I ◦ ∩6N = I ∩6N and
I ∩6Z =∅ (the (v j ) j are as defined in the beginning of Section 1B).

(a) If I ∩6−k =∅ then there exists c> 0 such that, for L sufficiently large with L ≡ k mod p, H N
L has

a unique resonance in the rectangle {Re z ∈ I, −c≤ Im z ≤ 0}; moreover, this resonance, say z j ,
is simple and satisfies Im z j �−e−ρ j L and |z j − λ j | � e−ρ j L for some ρ j > 0 independent of L.
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(b) If I ∩6−k 6= ∅ then there exists c > 0 such that, for L sufficiently large with L ≡ k mod p,
H N

L has no resonance in the rectangle {Re z ∈ I, −c ≤ Im z ≤ 0}.

So, below the spectral interval (−2, 2), there exists a resonance-free region of width at least of order L−1.
For H N

L , if L ≡ k mod p each discrete eigenvalue of H N that is not an eigenvalue of H−k generates a
resonance for H N

L exponentially close to the real axis (when L is large). When the eigenvalue of H−k is
also an eigenvalue of H N

= H+0 ; it may also generate a resonance but only much further away in the
complex plane, at least at a distance of order 1 to the real axis.

In case (3a) of Theorem 1.5, one can give an asymptotic expansion for the resonances (see Section 5B1).
We now turn to the description of the resonances of H •

L near [−2, 2]. To this end, it will be useful to
introduce a number of auxiliary functions and operators.

1B2. Some auxiliary functions. To H−k defined above, we associate N−k , the distribution function of its
spectral measure (which is a probability measure), i.e., for ϕ ∈ C∞0 (R), we define

∫
R
ϕ(λ) d N−k (λ) :=

ϕ(H−k )(0, 0), where (ϕ(H−k )(x, y))(x,y)∈(Z−)2 denotes the kernel of the operator ϕ(H−k ).
On 6◦Z, the spectral measure d N−k admits a density with respect to the Lebesgue measure, say n−k , and

this density is real analytic (see Proposition 5.6).
For E ∈6◦Z, define

S−k (E) := p.v.
(∫

R

d N−k (λ)
λ− E

)
= lim
ε→0+

(∫ E−ε

−∞

d N−k (λ)
λ− E

−

∫
+∞

E+ε

d N−k (λ)
λ− E

)
. (1-3)

The existence and analyticity of the Cauchy principal value S−k on 6◦Z is guaranteed by the analyticity
of n−k (see, e.g., [King 2009]). Moreover, for E ∈6◦Z, one has

S−k (E)= lim
ε→0+

∫
R

d N−k (λ)
λ− E − iε

− iπn−k (E). (1-4)

In the lower half-plane {Im E < 0}, define the function

4−k (E) :=
∫

R

d N−k (λ)
λ− E

+ e−i arccos(E/2)
=

∫
R

d N−k (λ)
λ− E

+
E
2
+

√(E
2

)2
− 1, (1-5)

where

• in the first formula, the function z 7→ arccos z is the analytic continuation to the lower half-plane of
the branch of arccos z taking values in [−π, 0] on the interval [−1, 1];

• in the second formula, the branch of the square root z 7→
√

z2− 1 has positive imaginary part for
z ∈ (−1, 1).

The function 4−k is analytic in {Im E < 0} and in a neighborhood of (−2, 2) ∩ 6◦Z. Moreover,
4−k vanishes identically if and only if V ≡ 0 (see Proposition 5.7).

From now on we assume that V 6≡ 0. In this case, in {Im E < 0} and on (−2, 2)∩6◦Z, the analytic
function 4−k has only finitely many zeros, each of finite multiplicity (see Proposition 5.7).

We shall need the analogues of the above-defined functions for the already-introduced operator
H+0 := H N

= −1+ V considered on `2(N) with Dirichlet boundary conditions at 0. We define the



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 267

function N+0 as the distribution function of the spectral measure of H+0 , i.e., for ϕ ∈ C∞0 (R), we define∫
R
ϕ(λ) d N+0 (λ) := ϕ(H

+

0 )(0, 0). In the same way as we have defined n−k , S−k and 4−k from H−k , one can
define n+0 , S+0 and 4+0 from H+0 . They also satisfy Proposition 5.6, relation (1-4) and Proposition 5.7.

For the description of the resonances, it will be convenient to define the following functions on 6◦Z:

cN(E) := i +
4−k (E)
πn−k (E)

=
1

πn−k (E)
(S−k (E)+ e−i arccos(E/2)) (1-6)

and

cZ(E) :=

(S+0 (E)+ e−i arccos(E/2))(S−k (E)+ e−i arccos(E/2))

n+0 (E)n
−

k (E)
−π2

π(S+0 (E)+ e−i arccos(E/2))

n+0 (E)
+
π(S−k (E)+ e−i arccos(E/2))

n−k (E)

. (1-7)

We shall see that the zeros of c•− i play a special role for the resonances of H •

L ; therefore, we define

D• = {z ∈6◦Z | c
•(z)= i}. (1-8)

The set D introduced in Theorem 0.1 is the set DZ
∩ (−2, 2).

Remark 1.6. Before describing the resonances, let us explain why the operators H+0 and H−k naturally
occur in this study. They respectively are the strong resolvent limits (when L→+∞ with L ∈ pN+ k)
of the operator H Z

L restricted to [[0, L]] with Dirichlet boundary conditions at 0 and L “seen” from the
left- and the right-hand side, respectively.

Indeed, define HL to be the operator H N
L restricted to [[0, L]] with Dirichlet boundary conditions at L

(see Remark 1.1). Note that HL is also the operator H Z
L restricted to [[0, L]] with Dirichlet boundary

conditions at 0 and L .
Clearly, the operator H+0 is the strong resolvent limit of HL when L→+∞.
If τ̃L denotes the translation by−L that unitarily maps `2([[0, L]]) into `2([[−L , 0]]), then H̃L= τ̃L HL τ̃

∗

L
converges in the strong resolvent sense to H−k when L→+∞ and L ≡ k mod p. Indeed, τL V = τk V as
V is p-periodic.

1B3. Description of the resonances closest to the real axis. Let (λl)0≤l≤L = (λ
L
l )0≤l≤L be the eigenvalues

of HL (that is, the eigenvalues of H N
L or H Z

L restricted to [[0, L]] with Dirichlet boundary conditions; see
Remark 1.1) listed in increasing order. They are described in Theorem 4.2; those away from the edges
of 6Z are shown to be nicely interspaced points at a distance roughly L−1 from one another.

We first state our most general result describing the resonances in a uniform way. We then derive two
corollaries describing the behavior of the resonance, first far from the set of exceptional energies D• and
second close to an exceptional energy.

Pick a compact interval I ⊂ (−2, 2)∩6◦Z. For • ∈ {N,Z} and λl ∈ I , for L large, define the complex
number

z̃•l = λl +
1

πn(λl)L
cot−1

◦c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)]
, (1-9)

where the branch of cot−1 is the inverse of the branch of z 7→ cot z that maps [0, π)×(0,−∞) onto C+\{i}.
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Note that, by Proposition 5.8, for L sufficiently large we know that, for any l such that λl ∈ I , one has

Im c•
(
λl − i

log L
L

)
∈ (0,+∞) \ {1}

and

Im c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)]
∈ (0,+∞) \ {1}.

Thus, the formula (1-9) defines z̃•l properly and in a unique way. Moreover, as the zeros of E 7→c•(E)−i
are of finite order, one checks that

− log L . L · Im z̃•l .−1 and 1. L ·Re(z̃•l+1− z̃•l ), (1-10)

where the implicit constants are uniform for l such that λl ∈ I .
We prove:

Theorem 1.7. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let E0 ∈ (−2, 2)∩6◦Z.
Then there exists η0 > 0 and L0 > 0 such that, for L > L0 satisfying L = k mod p, for each

λl ∈ I := [E0− η0, E0+ η0], there exists a unique resonance of H •

L , say z•l , in the rectangle[ 1
2 Re(z̃•l + z̃•l−1),

1
2 Re(z̃•l + z̃•l+1)

]
+ i[−η0, 0];

this resonance is simple and it satisfies |z•l − z̃•l |. 1/(L log L).

This result calls for a few comments. First, the picture one gets for the resonances can be described as
follows (see also Figure 3). As long as λl stays away from any zero of E 7→ c•(E)− i , the resonances
are nicely spaced points, as the following proposition proves.

Proposition 1.8. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let I ⊂ (−2, 2)∩6◦Z be a compact interval
such that I ∩D• =∅.

Then, for L sufficiently large and each λl ∈ I , the resonance z•l admits the expansion

z•l = λl +
1

πn(λl)L
cot−1

◦c•(λl)+ O
(

1
L2

)
, (1-11)

where the remainder term is uniform in l.

The proof of Proposition 1.8 actually yields a complete asymptotic expansion in powers of L−1 for the
resonances in this zone (see Section 5B5).

Proposition 1.8 implies Theorem 0.1: we choose •= Z and k = 0, then the set D of exceptional points
in Theorem 0.1 is exactly DZ

∩ (−2, 2); to obtain (0-3), it suffices to use the asymptotic form of the
Dirichlet eigenvalues given by Theorem 4.2.

Near the zeros of E 7→ c•(E)− i , the resonances take a “plunge” into the lower half of the complex
plane (see Figure 3) and their imaginary part becomes of order L−1 log L . Indeed, Theorem 1.7 and (1-9)
imply:
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resonances
log L

E0 I

1

Figure 3. The resonances close to the real axis in the periodic case (after rescaling their
imaginary parts by L).

Proposition 1.9. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let E0 ∈ D• be a zero of E 7→ c•(E)− i of
order q in (−2, 2)∩6◦Z.

Then, for α > 0 and L sufficiently large, if l is such that |λl − E0| ≤ L−α, the resonance z•l satisfies

Im z•l =
q

2πn(λl)

log
(
|λl − E0|

2
+
(
q log L/(2πn(λl)L)

)2)
2L

(1+ o(1)), (1-12)

where the remainder term is uniform in l such that |λl − E0| ≤ L−α.

When •= Z, the asymptotic (1-12) shows that there can be a “resonance” phenomenon for resonances:
when the two functions 4−k and 4+0 share a zero at the same real energy, the maximal width of the
resonances increases; indeed, the factor in front of L−1 log L is proportional to the multiplicity of the
zero of 4−k 4

+

0 .

1B4. Description of the low-lying resonances. The resonances found in Theorem 1.7 are not necessarily
the only ones: deeper in the lower complex plane, one may find more resonances. They are related to the
zeros of 4−k when •= N and of 4−k 4

+

0 when •= Z (see Proposition 5.8).
We now study what happens below the line {Im z =−η0} (see Theorem 1.7) for the resonances of H N

L
and H Z

L .
The functions 4−k and 4+0 are analytic in the lower half-plane and, by Proposition 5.7, they don’t

vanish in an neighborhood of −i∞. Hence, the functions 4−k and 4+0 have only finitely many zeros in
the lower half-plane.

We prove:

Theorem 1.10. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let (E •j )1≤ j≤J be the zeros of E 7→ c•(E)− i in
I + i(−∞, 0). Pick E0 ∈ (−2, 2)∩6◦Z.

There exists η0 > 0 such that, for I = E0+ [−η0, η0] and L sufficiently large with L ≡ k mod p, one
has:

• If E0 6∈ {Re E •j | 1≤ j ≤ J }, then in the rectangle I + i(−∞, 0] the only resonances of H N
L and H Z

L
are those given by Theorem 1.7.

• If E0 ∈ {Re E •j | 1≤ j ≤ J }, then
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– in the rectangle I+i[−η0, 0], the only resonances of H N
L and H Z

L are those given by Theorem 1.7;
– in the strip I + i[−∞,−η0], the resonances of H •

L are contained in
⋃J

j=1 D(E •j , e−η0 L);
– in D(E •j , e−η0 L), the number of resonances (counted with multiplicity) is equal to the order of

E •j as a zero of E 7→ c•(E)− i .

We see that the total number of resonances below a compact subset of (−2, 2)∩6◦Z that do not tend to
the real axis when L→+∞ is finite. These resonances are related to the resonances of H∞, to which
we turn now.

1B5. The half-line periodic perturbation. Fix p ∈ N∗. On `2(Z), we now consider the operator H∞ =
1+ V, where V (n)= 0 for n ≥ 0 and V (n+ p)= V (n) for n ≤−1. We prove:

Theorem 1.11. The resolvent of H∞ can be analytically continued from the upper half-plane through
(−2, 2) ∩ 6◦Z to the lower half-plane. The resulting operator does not have any poles in the lower
half-plane or on (−2, 2)∩6◦Z .

The resolvent of H∞ can be analytically continued from the upper half-plane through (−2, 2) \6Z

(resp. 6◦Z \ [−2, 2]) to the lower half-plane; the poles of the continuation through (−2, 2) \6Z (resp.
6◦Z \[−2, 2]) are exactly the zeros of the function E 7→ 1−eiθ(E)

∫
R

1/(λ− E) d N−p−1(λ) when continued
from the upper half-plane through (−2, 2) \6Z (resp. 6◦Z \ [−2, 2]) to the lower half-plane.

Remark 1.12. In Theorem 1.11 and below, every time we consider the analytic continuation of a resolvent
through some open subset of the real line we implicitly assume the open subset to be nonempty.

In Figure 4, to illustrate Theorem 1.11, assuming that 6Z (in blue) has a single gap that is contained
in (−2, 2), we have drawn the various analytic continuations of the resolvent of H∞ and the presence or
absence of resonances for the different continuations.

Using the same arguments as in the proof of Proposition 5.7, one easily sees that the continuations of
the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d N−p−1(λ) to the lower half-plane through (−2, 2) \6Z and
6◦Z \ [−2, 2] have at most finitely many zeros and that these zeros are away from the real axis.

resonance no resonance resonance resonance

no resonance

6Z

−2 2

Figure 4. The analytic continuation of the resolvent and resonances for H∞.
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This also implies that the spectrum on H∞ in [−2, 2] ∪6Z is purely absolutely continuous except
possibly at the points of ∂6Z ∪ {−2, 2}, where ∂6Z is the set of edges of 6Z.

1C. The random case. We now turn to the random case. Let V = Vω, where (Vω(n))n∈Z are bounded
independent and identically distributed random variables. Assume that the common law of the random
variables admits a bounded compactly supported density, say g.

Set H N
ω =−1+Vω on `2(N) (with Dirichlet boundary condition at 0 for concreteness). Let σ(H N

ω ) be
the spectrum of H N

ω . Consider also H Z
ω =−1+ Vω acting on `2(Z). Then one knows (see, e.g., [Kirsch

2008]) that, ω-almost surely,

σ(H Z
ω )=6 := [−2, 2] + supp g. (1-13)

One has the following description for the spectra σ(H N
ω ) and σ(H Z

ω ):

• ω-almost surely, σ(H Z
ω ) = 6; the spectrum is purely punctual; it consists of simple eigenvalues

associated to exponentially decaying eigenfunctions (Anderson localization; see, e.g., [Pastur and
Figotin 1992; Kirsch 2008]); one can prove that, under the assumptions made above, the whole
spectrum is dynamically localized (see, e.g., [Cycon et al. 1987] and references therein).

• For H N
ω (see, e.g., [Pastur and Figotin 1992; Carmona and Lacroix 1990]), one has, ω-almost surely,

σ(H N
ω )=6 ∪ Kω, where

– 6 is the essential spectrum of H N
ω and it consists of simple eigenvalues associated to exponentially

decaying eigenfunctions;
– the set Kω is the discrete spectrum of H N

ω , which may be empty and depends on ω.

1C1. The integrated density of states and the Lyapunov exponent. It is well known (see, e.g., [Pastur and
Figotin 1992]) that the integrated density of states of H , say N (E), is defined as the limit

N (E)= lim
L→+∞

#
{
eigenvalues of H Z

ω |[[−L ,L]] in (−∞, E]
}

2L + 1
. (1-14)

The above limit does not depend on the boundary conditions used to define the restriction H Z
ω |[[−L ,L]].

It defines the distribution function of a probability measure supported on 6. Under our assumptions on the
random potential, N is known to be Lipschitz continuous ([Pastur and Figotin 1992; Kirsch 2008]). Let
n(E)= d N (E)/d E be its derivative; it exists for almost all energies. If one assumes more regularity on g,
the density of the random variables (ωn)n , then the density of states n can be shown to exist everywhere
and to be regular (see, e.g., [Cycon et al. 1987]).

One also defines the Lyapunov exponent, say ρ(E), as

ρ(E) := lim
L→+∞

log ‖TL(E, ω)‖
L + 1

,

where

TL(E;ω) :=
(

E − Vω(L) −1
1 0

)
× · · ·×

(
E − Vω(0) −1

1 0

)
(1-15)
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For any E , ω-almost surely, the Lyapunov exponent is known to exist and to be independent of ω
(see, e.g., [Cycon et al. 1987; Pastur and Figotin 1992; Carmona and Lacroix 1990]). It is positive at all
energies. Moreover, by the Thouless formula [Cycon et al. 1987], it is continuous for all E and is the
harmonic conjugate of n(E).

For • ∈ {N,Z}, we now define H •

ω,L to be the operator −1•+ Vω1[[0,L]]. The goal of the next sections
is to describe the resonances of these operators in the limit L→+∞.

As in the case of a periodic potential V, the resonances are defined as the poles of the analytic
continuation of z 7→ (H •

ω,L − z)−1 from C+ through (−2, 2) (see Theorem 1.3).

1C2. Resonance-free regions. We again start with a description of the resonance-free region near a
compact interval in (−2, 2). As in the periodic case, the size of the H •

ω,L -resonance-free region below a
given energy will depend on whether this energy belongs to σ(H •

ω) or not. We prove:

Theorem 1.13. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2). Then, ω-a.s., one has:

(1) For • ∈ {N,Z}, if I ⊂ R \ σ(H •

ω) then there exists C > 0 such that, for L sufficiently large, there are
no resonances of H •

ω,L in the rectangle {Re z ∈ I, 0≥ Im z ≥−1/C}.

(2) If I ⊂6◦, then for ε ∈ (0, 1) there exists L0 > 0 such that, for L ≥ L0, there are no resonances of
H •

ω,L in the rectangle {Re z ∈ I, 0≥ Im z ≥−e−2η•ρL(1+ε))}, where
• ρ is the maximum of the Lyapunov exponent ρ(E) on I ,

• η• =

{
1 if •= N,
1
2 if •= Z.

(3) Pick v j = v j (ω) ∈ Kω (see the description of the spectrum of H N
ω just above Section 1C1) and

assume that {v j } = I ◦ ∩ σ(H N
ω ) = I ∩ σ(H N

ω ) and I ∩6 = ∅; then there exists c > 0 such that,
for L sufficiently large, H N

ω,L has a unique resonance in {Re z ∈ I, −c ≤ Im z ≤ 0}; moreover, this
resonance, say z j , is simple and satisfies Im z j � −e−ρ j (ω)L and |z j − λ j | � e−ρ j (ω)L for some
ρ j (ω) > 0 independent of L.

When comparing point (2) of this result with Theorem 1.5(2), it is striking that the width of the
resonance-free region below 6 is much smaller in the random case (it is exponentially small in L) than
in the periodic case (it is polynomially small in L). This a consequence of the localized nature of the
spectrum, i.e., of the exponential decay of the eigenfunctions of H •

ω.

1C3. Description of the resonances closest to the real axis. We will now see that below the resonance-free
strip exhibited in Theorem 1.13 one does find resonances — actually, many of them. We prove:

Theorem 1.14. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2)∩
◦

6.

(1) For any κ ∈ (0, 1), ω-a.s. one has

#{z resonance of H •

ω,L | Re z ∈ I, 0> Im z ≥−e−Lκ
}

L
→

∫
I

n(E) d E .

(2) For E ∈ I such that n(E) > 0 and λ ∈ (0, 1), define the rectangle

R•(E, λ, L , ε, δ) :=
{
z ∈ C

∣∣ n(E)|Re z− E | ≤ 1
2ε, −eη•ρ(E)δL

≤ e2η•ρ(E)λL Im z ≤−e−η•ρ(E)δL},
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where η• is as defined in Theorem 1.13; then ω-a.s. one has

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{z resonances of H •

ω,L in R•(E, λ, L , ε, δ)}

Lεδ
= 1. (1-16)

(3) For E ∈ I such that n(E) > 0, define

R•
±
(E, 1, L , ε, δ)=

{
z ∈ C

∣∣ n(E)|Re z− E | ≤ 1
2ε, −e−2η•ρ(E)(1±δ)L ≤ Im z < 0

}
;

then ω-a.s. one has

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{resonances in R•
±
(E, 1, L , ε, δ)}

Lεδ
=

{
1 if ±=−,
0 if ±=+.

(1-17)

(4) For c > 0, ω-a.s. one has

lim
L→+∞

#{z resonances of H •

ω,L in I + i(−∞,−e−2cL
]}

L
=

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E . (1-18)

The striking fact is that the resonances are much closer to the real axis than in the periodic case; the
lifetime of these resonances is much larger. The resonant states are quite stable, with lifetimes that are
exponentially large in the width of the random perturbation. Point (4) is an integral version of point (2).
Let us also note here that when •= Z, Theorem 1.14(4) is the statement of Theorem 0.2.

Note that the rectangles R•(E, λ, L , ε, δ) are very stretched along the real axis; their side-length in the
imaginary part is exponentially small in L whereas their side-length in the real part is of order 1.

To understand Theorem 1.14(2), rescale the resonances of H •

ω,L , say (z•l,L(ω))l , as

x •l = x •l,L(E, ω)= n(E)L(Re z•l,L(ω)− E) and y•l = y•l,L(E, ω)=−
1

2η•ρ(E)L
log |Im z•l,L(ω)|.

(1-19)
For λ ∈ (0, 1), this rescaling maps the rectangle R•(E, λ, L , ε, δ) into

{
|x | ≤ 1

2 Lε, |y− λ| ≤ 1
2δ
}

and
the rectangles R•

±
(E, 1, L , ε, δ) are mapped into {|x | ≤ Lε/2, 1∓ δ ≤ y}, respectively. The denominator

of the quotient in (1-16) is just the area of the rescaled R•(E, λ, L , ε, δ) for λ ∈ (0, 1) or the rescaled
R•
+
(E, 1, L , ε, δ) \ R•

−
(E, 1, L , ε, 0). So, (2) states that, in the limit with ε and δ small and L large, the

rescaled resonances become uniformly distributed in the rescaled rectangles.
We see that the structure of the set of resonances is very different from the one observed in the periodic

case (see Figure 2). We will now zoom in on the resonance even more so as to make this structure clearer.
We consider the two-dimensional point process ξ •L(E, ω) defined by

ξ •L(E, ω)=
∑

z•l,L resonance of H•ω,L

δ(x•l ,y
•

l )
, (1-20)

where x •l and y•l are defined by (1-19).
We prove:

Theorem 1.15. Fix E ∈ (−2, 2)∩6◦ such that n(E) > 0. Then the point process ξ •L(E, ω) converges
weakly to a Poisson process in R× (0, 1] with intensity 1. That is, for any p ≥ 0, if (In)1≤n≤p (resp.
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(Cn)1≤n≤p) are disjoint intervals of the real line R (resp. [0, 1]), then

lim
L→+∞

P
({
ω
∣∣ #{ j | x •l,L(E, ω) ∈ In, y•l,L(E, ω) ∈ Cn} = kn for n = 1, . . . , p

})
=

p∏
n=1

e−µn
(µn)

kn

kn!
,

where µn := |In||Cn| for 1≤ n ≤ p.

This is the analogue of the celebrated result on the Poisson structure of the eigenvalues and localization
centers of a random system (see, e.g., [Molchanov 1982; Minami 1996; Germinet and Klopp 2014]).

When considering the model for •= Z, Theorem 1.15 is Theorem 0.3.

In [Klopp 2011], we proved decorrelation estimates that can be used in the present setting to prove:

Theorem 1.16. Fix E ∈ (−2, 2)∩6◦ and E ′ ∈ (−2, 2)∩6◦ such that E 6= E ′, n(E) > 0 and n(E ′) > 0.
Then the limits of the processes ξ •L(E, ω) and ξ •L(E

′, ω) are stochastically independent.

Due to the rescaling, the above results only give a picture of the resonances in a zone of the type

E + L−1
[−ε−1, ε−1

] − i[e−2η•(1+ε)ρ(E)L , e−2εη•ρ(E)L ] (1-21)

for ε > 0 arbitrarily small.
When L gets large, this rectangle is of a very small width and located very close to the real axis.

Theorems 1.14, 1.15 and 1.16 describe the resonances lying closest to the real axis. As a comparison
between points (1) and (2) in Theorem 1.14 shows, these resonances are the most numerous.

One can get a number of other statistics (e.g., the distribution of the spacings between the resonances)
using the techniques developed for the study of the spectral statistics of a random system in the localized
phase (see [Germinet and Klopp 2011; 2014; Klopp 2013]) combined with the analysis developed in
Section 6.

1C4. The description of the low-lying resonances. It is natural to question what happens deeper in the
complex plane. To answer this question, fix an increasing sequence of scales (`L)L such that

`L

log L
→+∞ as L→+∞ and

`L

L
→ 0 as L→+∞. (1-22)

We first show that there are only a few resonances below the line {Im z = e−`L }, namely:

Theorem 1.17. Pick (`L)L a sequence of scales satisfying (1-22) and I as above.
Then, ω almost surely, for L large one has{

z resonances of H •

ω,L in {Re z ∈ I, Im z ≤−e−`L }
}
= O(`L). (1-23)

As we shall show now, after proper rescaling the structure of these resonances is the same as that of
the resonances closer to the real axis.

Fix E ∈ I such that n(E) > 0. Recall that (z•l,L(ω))l are the resonances of Hω,L . We now rescale the
resonances using the sequence (`L)L ; this rescaling will select resonances that are further away from the
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real axis. Define

x •l = x •l,`L
(ω)= n(E)`L(Re z•l,L(ω)− E) and y•j = y•l,`L

(ω)=
1

2η•`Lρ(E)
log |Im z•l,L(ω)|. (1-24)

Consider now the two-dimensional point process

ξ •L ,`(E, ω)=
∑

z•l,L resonance of H•ω,L

δ(x•l,`L
,y•l,`L

). (1-25)

We prove the following analogue of the results of Theorems 1.14, 1.15 and 1.16 for resonances lying
further away from the real axis.

Theorem 1.18. Fix E ∈ (−2, 2)∩6◦ and E ′ ∈ (−2, 2)∩6◦ such that E 6= E ′, n(E) > 0 and n(E ′) > 0.
Fix a sequence of scales (`L)L satisfying (1-22). Then one has:

(1) For λ ∈ (0, 1], ω-almost surely,

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{z resonances of H •

ω,L in R•(E, λ, `L , ε, δ)}

`Lεδ
= 1,

where R•(E, λ, L , ε, δ) is as defined in Theorem 1.14.

(2) The point processes ξ •L ,`(E, ω) and ξ •L ,`(E
′, ω) converge weakly to Poisson processes in R×(0,+∞)

of intensity 1.

(3) The limits of the processes ξ •L ,`(E, ω) and ξ •L ,`(E
′, ω) are stochastically independent.

Point (1) shows that, in (1-23), one actually has{
z resonances of H •

ω,L in {Re z ∈ I, Im z ≤−e−`L }
}
� `L .

Notice also that the effect of the scaling (1-24) is to select resonances that live in the rectangle

E + `−1
L [−ε

−1, ε−1
] − i[e−2η•(1+ε)ρ(E)`L , e−2εη•ρ(E)`L ]

This rectangle is now much further away from the real axis than the one considered in Section 1C3.
Modulo rescaling, the picture one gets for resonances in such rectangles is the same we got above in

the rectangles (1-21). This description is valid almost all the way from distances to the real axis that are
exponentially small in L up to distances that are of order e−(log L)α , α > 1 (see (1-22)).

1C5. Deep resonances. One can also study the resonances that are even further away from the real axis
in a way similar to what was done in the periodic case in Section 1B4. Define the random potentials on N

and Z

Ṽ N
ω,L(n)=

{
ωL−n for 0≤ n ≤ L ,
0 for L + 1≤ n,

Ṽ Z
ω,ω̃,L(n)=


0 for n ≤−1,
ω̃n for 0≤ n ≤

[ 1
2 L
]
,

ωL−n for
[ 1

2 L
]
+ 1≤ n ≤ L ,

0 for L + 1≤ n,

(1-26)
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where ω= (ωn)n∈N and ω̃= (ω̃n)n∈N are i.i.d. and satisfy the assumptions of the beginning of Section 1C.
Consider the operators

• H̃ N
ω,L =−1+ Ṽ N

ω,L on `2(N) with Dirichlet boundary condition at 0,

• H̃ Z
ω,ω̃,L =−1+ Ṽ Z

ω,ω̃,L on `2(Z).

Clearly, the random operator H̃ N
ω,L (resp. H̃ Z

ω,L ) has the same distribution as H N
ω,L (resp. H Z

ω,L ). Thus,
for the low lying resonances, we are now going to describe those of H̃ N

ω,L (resp. H̃ Z
ω,L ) instead of those

of H N
ω,L (resp. H Z

ω,L ).

Remark 1.19. The reason for this change of operators is the same as the one why, in the case of the
periodic potential, we had to distinguish various auxiliary operators depending on the congruence of L
modulo the period p: this gives a meaning to the limiting operators when L→+∞.

Define the probability measure d Nω(λ) using its Borel transform by, for Imz 6= 0,∫
R

d Nω(λ)
λ− z

:= 〈δ0, (H N
ω − E)−1δ0〉. (1-27)

Consider the function

4ω(E)=
∫

R

d Nω(λ)
λ− E

+ e−i arccos(E/2)
=

∫
R

d Nω(λ)
λ− E

+
1
2 E +

√( 1
2 E
)2
− 1, (1-28)

where the choice of z 7→ arccos z and z 7→
√

z2− 1 are those described after (1-5).
This random function 4ω is the analogue of 4−k in the periodic case. One has the analogue of

Proposition 5.7:

Proposition 1.20. If ω0 6= 0, one has 4ω(E)∼−ω0 E−2 as |E | →∞, Im E < 0. Thus, ω-almost surely,
4ω does not vanish identically in {Im E < 0}.

Pick I ⊂ 6◦ ∩ (−2, 2) compact. Then, ω-almost surely, the number of zeros of 4ω (counted with
multiplicity) in I + i(−∞, ε] is asymptotic to

∫
I n(E)/ρ(E) d E |log ε| as ε→ 0+; moreover, ω-almost

surely, there exists εω > 0 such that all the zeros of 4ω in I + i[−εω, 0) are simple.

It seems reasonable to believe that, except for the zero at −i∞, ω-almost surely all the zeros of 4ω
are simple; we do not prove it.

For the “deep” resonances, we then prove:

Theorem 1.21. Fix I ⊂6◦∩ (−2, 2) a compact interval. There exists c > 0 such that, with probability 1,
there exists cω > 0 such that, for L sufficiently large, one has:

(1) For each resonance of H̃ N
ω,L (resp. H̃ Z

ω,ω̃,L ) in I + i(−∞,−e−cL
], say E , there exists a unique zero

of 4ω (resp. 4ω4ω̃), say Ẽ , such that |E − Ẽ | ≤ e−cωL .

(2) Reciprocally, to each zero (counted with multiplicity) of 4ω (resp. 4ω4ω̃) in the rectangle
I + i(−∞,−e−cL

], say Ẽ , one can associate a unique resonance of H̃ N
ω,L (resp. H̃ Z

ω,ω̃,L ), say E ,
such that |E − Ẽ | ≤ e−cωL .
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One can combine this result with the description of the asymptotic distribution of the resonances given
by Theorem 1.18 to obtain the asymptotic distributions of the zeros of the function 4ω near a point E− iε
when ε→ 0+. Indeed, let (zl(ω))l be the zeros of 4ω in {Im E < 0}. Rescale the zeros:

xl,ε(ω)= n(E)|log ε|(Re zl(ω)− E) and yl,ε(ω)=−
1

2ρ(E)|log ε|
log |Im zl(ω)|; (1-29)

and consider the two-dimensional point process ξε(E, ω) defined by

ξε(E, ω)=
∑

zl (ω) zeros of 4ω

δ(xl,ε,yl,ε). (1-30)

Then one has:

Corollary 1.22. Fix E ∈ I such that n(E) > 0. Then the point process ξε(E, ω) converges weakly to a
Poisson process in R×R with intensity 1.

The function 4ω has been studied in [Kunz and Shapiro 2006; 2008], where the average density of its
zeros was computed. Here we obtain a more precise result.

1C6. The half-line random perturbation. On `2(Z), we now consider the operator H∞ω = −1+ Vω,
where Vω(n)= 0 for n ≥ 0, Vω(n)= ωn for n ≤−1 and (ωn)n≥0 are i.i.d. and have the same distribution
as above. The spectral theory of the continuous analogue of H∞ω , i.e., the Schrödinger operator on the
real line with a random potential on the half-line, was studied in [Carmona 1983].

Recall that 6 is the almost sure spectrum of H Z
ω (on `2(Z)). We prove:

Theorem 1.23. First, ω-almost surely, the resolvent of H∞ω does not admit an analytic continuation from
the upper half-plane through (−2, 2)∩6◦ to any subset of the lower half plane. Nevertheless, ω-almost
surely, the spectrum of H∞ω in (−2, 2)∩6◦ is purely absolutely continuous.

Second, ω-almost surely, the resolvent of H∞ω does admit a meromorphic continuation from the upper
half-plane through (−2, 2) \6 to the lower half-plane; the poles of this continuation are exactly the zeros
of the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d Nω(λ) when continued from the upper half-plane through
(−2, 2) \6 to the lower half-plane.

Third, ω-almost surely, the spectrum of H∞ω in 6◦ \ [−2, 2] is pure point associated to exponentially
decaying eigenfunctions; hence, the resolvent of H∞ω cannot be continued through 6◦ \ [−2, 2].

In Figure 5, to illustrate Theorem 1.23, assuming that 6Z (in blue) has a single gap that is contained in
(−2, 2), we have drawn the analytic continuation of the resolvent of H∞ω and the associated resonances;
we also indicate the real intervals of the spectrum through which the resolvent of H∞ω does not admit an
analytic continuation and the spectral type of H∞ω in the intervals.

Let us also note here that if 0 ∈ supp g (where g is the density of the random variables defining the
random potential) then, by (1-13), one has [−2, 2] ⊂6. In this case, there is no possibility to continue
the resolvent of H∞ω to the lower half-plane passing through [−2, 2].

Comparing Theorem 1.23 to Theorem 1.11, we see that, as for the operator H∞, when continued
through (−2, 2)∩6◦ the operator H∞ω does not have any resonances, but for very different reasons.
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no analytic continutation
but absolutely continuous spectrum

6Z

no analytic continuation

resonances

and dense pure point spectrum

−2 2

Figure 5. The analytic continuation of the resolvent and resonances for H∞ω .

When one does the continuation through (−2, 2) \6, one sees that the number of resonances is finite;
“near” the real axis, the continuation of the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d Nω(λ) has nontrivial
imaginary part and near∞ it does not vanish.

Theorem 1.23 also shows that the equation studied in [Kunz and Shapiro 2006; 2008], i.e., 4ω(E)= 0,
does not describe the resonances of H∞ω as is claimed in these papers: these resonances do not exist as there
is no analytic continuation of the resolvent of H∞ω through (−2, 2)∩6! As is shown in Theorem 1.21, the
solutions to the equation 4ω(E)= 0 give an approximation to the resonances of H N

ω,L (see Theorem 1.21).

1D. Outline of and reading guide to the paper. In the present section, we shall explain the main ideas
leading to the proofs of the results presented above.

In Section 2, we prove Theorem 1.3; this proof is classical. As a consequence of the proof, one sees
that, in the case of the half-lattice N (resp. lattice Z), the resonances are the eigenvalues of a rank-one
(resp. rank-two) perturbation of (−1+ V )|[[0,L]] with Dirichlet boundary condition. The perturbation
depends in an explicit way on the resonance. This yields a closed equation for the resonances in terms
of the eigenvalues and normalized eigenfunctions of the Dirichlet restriction (−1+ V )|[[0,L]]. To obtain
a description of the resonances we then are in need of a “precise” description of the eigenvalues and
normalized eigenfunctions. Actually, the only information needed on the normalized eigenfunctions is
their weight at the point L (and the point 0 in the full lattice case), 0 and L being the endpoints of [[0, L]].

In Section 3, we solve the two equations obtained previously under the condition that the weight
of the normalized eigenfunctions at L (and 0) be much smaller than the spacing between the Dirichlet
eigenvalues. This condition entails that the resonance equation we want to solve essentially factorizes
and become very easy to solve (see Theorems 3.1, 3.2 and 3.3), i.e., it suffices to solve it near any given
Dirichlet eigenvalue.

For periodic potentials, the condition that the eigenvalue spacing is much larger than the weight of the
normalized eigenfunctions at L (and 0) is not satisfied: both quantities are of the same order of magnitude
(see Theorem 4.2) for the Dirichlet eigenvalues in the bulk of the spectrum, i.e., the vast majority of



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 279

them. This is a consequence of the extended nature of the eigenfunctions in this case. Therefore, we find
another way to solve the resonance equation. This way goes through a more precise description of the
Dirichlet eigenvalues and normalized eigenfunctions which is the purpose of Theorem 4.2. We use this
description to reduce the resonance equation to an effective equation (see Theorem 5.1) up to errors of
order O(L−∞). It is important to obtain errors of at most that size. Indeed, the effective equation may
have solutions to any order (the order is finite and only depends on V but it is unknown); thus, to obtain
solutions to the true equation from solutions to the effective equation with a good precision, one needs
the two equations to differ by at most O(L−∞). We then solve the effective equation and, in Section 5B,
prove the results of Section 1B.

On the other hand, for random potentials, it is well known that the eigenfunctions of the Dirichlet
restriction (−1+ V )|[[0,L]] are exponentially localized and, for most of them localized, far from the
edge of [[0, L]]. Thus, their weight at L (and 0 in the full lattice case) is typically exponentially small
in L; the eigenvalue spacing however is typically of order L−1. We can then use the results of Section 3
to solve the resonance equation. The real part of a given resonance is directly related to a Dirichlet
eigenvalue and its imaginary part to the weight of the corresponding eigenfunction at L (and 0 in the
full lattice case). The main difficulty is to find the asymptotic behavior of this weight. Indeed, while
it is known that, in the random case, eigenfunctions decay exponentially away from a localization
center and that, for the full random Hamiltonian (i.e., the Hamiltonian on the line or half-line with
a random potential), at infinity this decay rate is given by the Lyapunov exponent, to the best of our
knowledge, before the present work, it was not known at which length scale this Lyapunov behavior sets
in (with a good probability). Answering this question is the purpose of Theorems 6.4 and 6.5 proved
in Section 6C: we show that, for the one-dimensional Anderson model, for δ > 0 arbitrary, on a box of
size L sufficiently large, all the eigenfunctions exhibit an exponential decay (we obtain both an upper
and a lower bound on the eigenfunctions) at a rate equal to the Lyapunov exponent at the corresponding
energy (up to an error of size δ) as soon as one is at a distance δL from the corresponding localization
center.

These bounds give estimates on the weight of most eigenfunctions at the point L (and 0 in the full
lattice case); this is directly related to the distance of the corresponding localization center to the points
L (and 0). One can then transform the known results on the statistics of the (rescaled) eigenvalues and
(rescaled) localization centers into statistics of the (rescaled) resonances. This is done in Section 6B and
proves most of the results in Section 1C.

Finally, Section 6D is devoted to the study of the full line Hamiltonian obtained from the free
Hamiltonian on one half-line and a random Hamiltonian on the other half-line; it contains in particular
the proof of Theorem 1.23.

2. The analytic continuation of the resolvent

Resonances for Jacobi matrices were considered in various works (see, e.g., [Brown et al. 2005; Iantchenko
and Korotyaev 2012] and references therein). For the sake of completeness, we provide an independent
proof of Theorem 1.3. It follows standard ideas that were first applied in the continuous setting, i.e., for
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−2 2
−π 0

θ
E

Figure 6. The mapping E 7→ θ(E).

partial differential operators instead of finite difference operators (see, e.g., [Sjöstrand and Zworski 1991]
and references therein).

The proof relies on the fact that the resolvent of the free Laplace operator can be continued holomorphi-
cally from C+ to C \ ((−∞,−2] ∪ [2,+∞)) as an operator valued function from l2

comp to l2
loc. This is an

immediate consequence of the fact that, by discrete Fourier transformation, −1 is the Fourier multiplier
by the function θ 7→ 2 cos θ .

Indeed, for −1 on `2(Z) and Im E > 0, one has, for (n,m) ∈ Z (assume n−m ≥ 0),

〈δn, (−1− E)−1δm〉 =
1

2π

∫ 2π

0

e−i(n−m)θ

2 cos θ − E
dθ =

1
2iπ

∫
|z|=1

zn−m

z2− Ez+ 1
dz

=
1

2
√( 1

2 E
)2
− 1

( 1
2 E −

√(1
2 E
)2
− 1

)n−m
=

ei(n−m)θ(E)

sin θ(E)
, (2-1)

where E = 2 cos θ(E) and θ = θ(E) is chosen so that Im θ > 0 and Re θ ∈ (−π, 0) for Im E > 0. The
choice satisfies θ(E)= θ(E).

The map E 7→ θ(E) can be continued analytically from C+ to the cut plane C\((−∞,−2]∪[2,+∞))
as shown in Figure 6.

The continuation is one-to-one and onto from C\ ((−∞,−2]∪ [2,+∞)) to (−π, 0)+ iR. It defines a
choice of E 7→ arccos

( 1
2 E
)
= θ(E).

Clearly, using (2-1), this continuation yields an analytic continuation of RZ
0 := (−1− E)−1 from

{Im E > 0} to C \ ((−∞,−2] ∪ [2,+∞)) as an operator from l2
comp to l2

loc.

Let us now turn to the half-line operator, i.e., −1 on N with Dirichlet condition at 0. Pick E such that
Im E > 0 and set E = 2 cos θ , where θ = θ(E) is chosen as above. If, for v ∈ CN bounded and n ≥−1,
one sets v−1 = 0 and

[RN
0 (E)(v)]n =

1
2i sin θ(E)

n∑
j=−1

v j sin((n− j)θ(E))− eiθ(E) sin((n+ 1)θ(E))
2i sin θ(E)

∑
j≥0

ei jθ(E)v j , (2-2)

then, for Im E > 0, a direct computations shows that:

(1) For v ∈ `2(N), the vector RN
0 (E)(v) is in the domain of the Dirichlet Laplacian on `2(N), i.e.,

[RN
0 (E)(v)]−1 = 0.
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(2) For n ≥ 0, one checks that

[RN
0 (E)(v)]n+1+ [RN

0 (E)(v)]n−1− E[RN
0 (E)(v)]n = vn. (2-3)

(3) RN
0 (E) defines a bounded map from `2(N) to itself.

Thus, RN
0 (E) is the resolvent of the Dirichlet Laplacian on N at energy E for Im E > 0.

Using the continuation of E 7→ θ(E), (2-2) yields an analytic continuation of the resolvent RN
0 (E) as

an operator from l2
comp to l2

loc.

Remark 2.1. Note that the resolvent RN
0 (E) at an energy E with Im E < 0 is given by (2-2) with θ(E)

replaced by −θ(E). For (2-2), one has to assume that (v j ) j∈N decays fast enough at∞.

To deal with the perturbation V, we proceed in the same way on Z and on N. Set V L
= V 1[[0,L]]

(viewed as a function on N or Z depending on the case). Letting R0(E) be either RZ
0 (E) or RN

0 (E), we
compute

−1+ V L
− E = (−1− E)(1+ R0(E)V L)= (1+ V L R0(E))(−1L − E).

Thus it suffices to check that the operator R0(E)V L (resp. V L R0(E)) can be analytically continued as
an operator from l2

loc to l2
loc (resp. l2

comp to l2
comp). This follows directly from (2-2) and the fact V L has

finite rank.
To complete the proof of Theorem 1.3, we just note that, since

• E 7→ R0(E)V L (resp. E 7→ V L R0(E)) is a finite-rank, operator-valued function, analytic on the
connected set C \ ((−∞,−2] ∪ [2,+∞)),

• −1 is not an eigenvalue of R0(E)V L (resp. V L R0(E)) for Im E > 0,

by the Fredholm principle, the set of energies E for which −1 is an eigenvalue of R0(E)V L (resp.
V L R0(E)) is discrete. Hence, the set of resonances is discrete.

This completes the proof of the first part of Theorem 1.3. To prove the second part, we will first write
a characteristic equation for resonances. The bound on the number of resonances will then be obtained
through a bound on the number of solutions to this equation.

2A. A characteristic equation for resonances. In the literature, we did not find a characteristic equation
for the resonances in a form suitable for our needs. The characteristic equation we derive will take
different forms depending on whether we deal with the half-line or the full line operator. But in both
cases, the coefficients of the characteristic equation will be constructed from the spectral data (i.e., the
eigenvalues and eigenfunctions) of the operator HL (see Remark 1.6).

2B. In the half-line case. We first consider H N
L on `2(N) and prove:

Theorem 2.2. Consider the operator HL defined as H N
L restricted to [[0, L]] with Dirichlet boundary

conditions at L and define:

• (λ j )0≤ j≤L = (λ j (L))0≤ j≤L are the Dirichlet eigenvalues of H N
L ordered so that λ j < λ j+1.

• aN
j = aN

j (L)= |ϕ j (L)|2, where ϕ j = (ϕ j (n))0≤n≤L is a normalized eigenvector associated to λ j .



282 FRÉDÉRIC KLOPP

Then an energy E is a resonance of H N
L if and only if

SL(E) :=
L∑

j=0

aN
j

λ j − E
=−e−iθ(E), E = 2 cos θ(E), (2-4)

θ(E) being chosen so that Im θ(E) > 0 and Re θ(E) ∈ (−π, 0) when Im E > 0.

Let us note that

aN
j (L) > 0 for all 0≤ j ≤ L and

L∑
j=0

aN
j (L)=

L∑
j=0

|ϕ j (L)|2 = 1. (2-5)

Proof of Theorem 2.2. By the proof of the first statement of Theorem 1.3 (see the beginning of Section 2),
we know that an energy E is a resonance if and only if −1 if an eigenvalue of R0(E)V L , where R0(E) is
defined by (2-2). Pick E an resonance and let u = (un)n≥0 be a resonant state that is an eigenvector of
R0(E)V L associated to the eigenvalue −1. As V L

n = 0 for n ≥ L + 1, (2-2) yields that, for n ≥ L + 1,
un = βeinθ(E) for some fixed β ∈C∗. As u =−R0(E)V Lu, for n ≥ L+1 it satisfies un+1+un−1 = Eun .
Thus, uL+1 = eiθ(E)uL and, by (2-3), u is a solution to the eigenvalues problem

un+1+ un−1+ Vnun = Eun for all n ∈ [[0, L]],
u−1 = 0,
uL+1 = eiθ(E)uL .

This can be equivalently be rewritten as
V0 1 0 · · · 0
1 V1 1 0
...
. . .

. . .
. . .

0 1 VL−1 1
0 · · · 0 1 VL + eiθ(E)




u0

...

uL

= E


u0

...

uL

 . (2-6)

The matrix in (2-6) is the Dirichlet restriction of H N
L to [[0, L]] perturbed by the rank-one operator

eiθ(E)δL⊗δL . Thus, by rank-one perturbation theory (see, e.g., [Simon 1995]), an energy E is a resonance
if and only if satisfies (2-4).

This completes the proof of Theorem 2.2. �

Proof of Theorem 1.3. Let us now complete the proof of Theorem 1.3 for the operator on the half-line.
Let us first note that, for Im E > 0, the imaginary part of the left-hand side of (2-4) is positive by (2-7).
On the other hand, the imaginary part of the right-hand side of (2-4) is equal to −eIm θ(E) sin(Re θ(E))
and, thus, is negative (recall that Re θ(E) ∈ (−π, 0) (see Figure 1). Thus, as already emphasized, (2-4)
has no solution in the upper half-plane or on the interval (−2, 2).

Clearly, (2-4) is equivalent to the polynomial equation of degree 2L + 2 in the variable z = e−iθ(E)

L∏
k=0

(z2
− 2λkz+ 1)−

L∑
j=0

aN
j

∏
0≤k≤L

k 6= j

(z2
− 2λkz+ 1)= 0. (2-7)
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We are looking for the solutions to (2-7) in the upper half-plane. As the polynomial in the right-hand
side of (2-7) has real coefficients, its zeros are symmetric with respect to the real axis. Moreover, one
notices that, by (2-5), 0 is a solution to (2-7). Hence, the number of solutions to (2-7) in the upper
half-plane is bounded by L . This completes the proof of Theorem 1.3. �

2C. On the whole line. Now consider H Z
L on `2(Z). We prove:

Theorem 2.3. Using the notations of Theorem 2.2, an energy E is a resonance of H Z
L if and only if

det
( L∑

j=0

1
λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
+ e−iθ(E)

)
= 0, (2-8)

where det ( · ) denotes the determinant of a square matrix, E = 2 cos θ(E) and θ(E) is chosen as in
Theorem 2.2.

So, an energy E is a resonance of H Z
L if and only if −e−iθ(E) belongs to the spectrum of the 2× 2

matrix

0L(E) :=
L∑

j=0

1
λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
. (2-9)

Proof of Theorem 2.3. The proof is the same as that of Theorem 2.2 except that now E is a resonance if
there exists a nontrivial solution u to the eigenvalues problem

un+1+ un−1+ Vnun = Eun for all n ∈ [[0, L]],
u−1 = eiθ(E)u0

uL+1 = eiθ(E)uL .

This can equivalently be rewritten as
V0+ eiθ(E) 1 0 · · · 0

1 V1 1 0
...

. . .
. . .

. . .

0 1 VL−1 1
0 · · · 0 1 VL + eiθ(E)




u0

...

uL

= E


u0

...

uL

 .

Thus, using rank-one perturbations twice, we find that an energy E is a resonance if and only if(
1+ eiθ(E)

L∑
j=0

|ϕ j (0)|2

λ j − E

)(
1+ eiθ(E)

L∑
j=0

|ϕ j (L)|2

λ j − E

)
= e2iθ(Ek)

∑
0≤ j, j ′≤L

ϕ j (L)ϕ j ′(0)ϕ j ′(L)ϕ j (0)
(λ j − E)(λ j ′ − E)

,

that is, if and only if (2-8) holds. This completes the proof of Theorem 2.3. �

Let us now complete the proof of Theorem 1.3 for the operator on the full line. Let us first show
that (2-8) has no solution in the upper half-plane. If −e−iθ(E) belongs to the spectrum of the matrix
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defined by (2-8) and u ∈ C2 is a normalized eigenvector associated to −e−iθ(E), one has

L∑
j=0

1
λ j − E

∣∣∣∣〈(ϕ j (L)
ϕ j (0)

)
, u
〉∣∣∣∣2 =−e−iθ(E).

This is impossible in the upper half-plane and on (−2, 2) as the two sides of the equation have imaginary
parts of opposite signs.

Note that
L∑

j=0

(
ϕ j (L)
ϕ j (0)

) (
ϕ j (L) ϕ j (0)

)
=

(
1 0
0 1

)
.

Note also that −e−iθ(E) is an eigenvalue of (2-8) if and only if it satisfies

1+ eiθ(E)
L∑

j=0

|ϕ j (L)|2+ |ϕ j (0)|2

λ j − E
=−

1
2 e2iθ(E)

∑
0≤ j, j ′≤L

1
(λ j − E)(λ j ′ − E)

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2. (2-10)

As the eigenvalues of HL are simple, one computes∑
0≤ j, j ′≤L

1
(λ j − E)(λ j ′ − E)

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2 = 2
∑

0≤ j≤L

1
λ j − E

∑
j ′ 6= j

1
λ j ′ − λ j

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2. (2-11)

Thus, (2-10) is equivalent to the polynomial equation of degree 2(L + 1) in the variable z = e−iθ(E)

z
L∏

k=0

(z2
− λkz+ 1)−

L∑
j=0

(2aZ
j z+ bZ

j )
∏

0≤k≤L
k 6= j

(z2
− λkz+ 1)= 0, (2-12)

where we have defined

aZ
j :=

1
2
(|ϕ j (L)|2+ |ϕ j (0)|2)=

1
2

∥∥∥∥(ϕ j (L)
ϕ j (0)

)∥∥∥∥2

=
1
2

∥∥∥∥( |ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)∥∥∥∥ (2-13)

and

bZ
j :=

∑
j ′ 6= j

1
λ j ′ − λ j

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2.
The sequence (aZ

j ) j also satisfies (2-5). Taking |E | to +∞ in (2-11), one notes that

L∑
j=0

bZ
j = 0 and

L∑
j=0

λ j bZ
j =−

1
2

∑
0≤ j, j ′≤L

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2 =−1. (2-14)

We are looking for the solutions to (2-12) in the upper half-plane. As the polynomial in the right-hand
side of (2-12) has real coefficients, its zeros are symmetric with respect to the real axis. Moreover, one
notices that, by (2-14), 0 is a root of order two of the polynomial in (2-12). Hence, as the polynomial has
degree 2L+3, the number of solutions to (2-12) in the upper half-plane is bounded by L . This completes
the proof of Theorem 1.3.
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3. General estimates on resonances

By Theorems 2.2 and 2.3, we want to solve equations (2-4) and (2-8) in the lower half-plane. We first
derive some general estimates for zones in the lower half-plane free of solutions to equations (2-4)
and (2-8) (i.e., resonant-free zones for the operators H N

L and H Z
L ) and then a result on the existence of

solutions to equations (2-4) and (2-8) (i.e., resonances for the operators H N
L and H Z

L ).

3A. General estimates for resonant-free regions. We keep the notations of Theorems 2.2 and 2.3. To
simplify the notations in the theorems of this section, we will write a j for either aN

j when solving (2-4)
or aZ

j when solving (2-8). We will specify the superscript only when there is risk of confusion.
We first prove:

Theorem 3.1. Fix δ > 0. Then there exists C > 0 (independent of V and L) such that, for any L and
j ∈ {0, . . . , L} with −4+ δ ≤ λ j−1+λ j < λ j+1+λ j ≤ 4− δ, equations (2-4) and (2-8) have no solution
in the set (see Figure 7)

U j :=
{

E ∈ C
∣∣ Re E ∈

[1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, 0≥ C · θ ′δ Im E >−a j d2

j |sin Re θ(E)|
}
, (3-1)

where the map E 7→ θ(E) is as defined in Section 2 and we have set

d j :=min(λ j+1− λ j , λ j − λ j−1, 1) and θ ′δ := max
|E |≤2−δ/2

|θ ′(E)|. (3-2)

In Theorem 3.1 there are no conditions on the numbers (a j ) j or (d j ) j except their being positive. In
our application to resonances, this holds. Theorem 3.1 becomes optimal when a j � d2

j . In our application
to resonances, for periodic operators one has a j � L−1 and d j � L−1 (see Theorem 5.2), and for random
operators one has a j � e−cL and d j & L−4 (see Theorem 6.4 and (6-10)). Thus, in the random case
Theorem 3.1 will provide an optimal strip free of resonances, whereas in the periodic case we will use a
much more precise computation (see Theorem 5.1) to obtain sharp results.

When a j � d2
j , one proves the existence of another resonant-free region near a energy λ j , namely:

Theorem 3.2. Fix δ > 0. Pick j ∈ {0, . . . , L} such that −4+ δ < λ j−1+ λ j < λ j+1+ λ j < 4− δ. There
exists C > 0 (depending only on δ) such that, for any L , if a j ≤ d2

j /C2 then equations (2-4) and (2-8)
have no solution in the set (see Figure 7)

Ũ j :=

{
E ∈C

∣∣∣∣Re E ∈
[ 1

2(λ j+λ j−1), λ j−Ca j
]
∪
[
λ j+Ca j ,

1
2(λ j+λ j+1)

]
, −Ca j ≤ Im E≤−

a j d2
j

C

}
∪

{
E ∈ C

∣∣∣∣ Re E ∈
[ 1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
, −

d2
j

C
≤ Im E ≤−Ca j

}
. (3-3)

Theorem 3.2 becomes optimal when a j is small and d j is of order one. This will be sufficient to deal
with the isolated eigenvalues for both the periodic and the random potential. It will also be sufficient to
give a sharp description of the resonant-free region for random potentials. For the periodic potential, we
will rely on much more precise computations (see Theorem 5.1).

Note that Theorem 3.2 guarantees that, if d j is not too small, outside R j (see Theorem 3.3) resonances
are quite far below the real axis.
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λ j−1 λ j λ j+1
U j

Ũ j

R j

Figure 7. The resonance-free zones U j and Ũ j .

Proof of Theorem 3.1. The basic idea of the proof is that, for E close to λ j , SL(E) and the matrix 0L(E)
are either large or have a very small imaginary part while, as −4< λ j−1+ λ j < λ j+1+ λ j < 4, e−iθ(E)

has a large imaginary part. Thus, (2-4) and (2-8) have no solution in this region.
We start with (2-4). Pick E ∈U j for some C large to be chosen later on. Assume first that |E − λ j | ≤

a j d j (2+C0d j )
−1 for C0 := 2e1/C . Recall that 0 < a j , d j ≤ 1. Note that, for C sufficiently large, for

E ∈U j , one has

|Im e−iθ(E)
| = eIm θ(E)

|sin Re θ(E)| = eIm[θ(E)−θ(Re E)]
|sin Re θ(E)|

≥ eθ
′

δ Im E
|sin Re θ(E)| ≥ e−1/C

|sin Re θ(E)| (3-4)

and

|e−iθ(E)
| ≤ 1≤ e1/C . (3-5)

One estimates

|SL(E)| ≥
a j

|λ j − E |
−

∑
k 6= j

ak

|λk − E |
≥

2
d j
+C0−

∑
k 6= j

2ak

mink 6= j |λk − λ j |
≥ C0 = 2e1/C . (3-6)

Thus, comparing (3-6) and (3-5), we see that (2-4) has no solution in U j ∩{|E−λ j | ≤ a j d j (2+Cd j )
−1
}.

Assume now that |E − λ j |> a j d j (2+C0d j )
−1. Then, for E ∈U j , one has

|Im E | ≤
1
θ ′δC

a j d2
j |sin Re θ(E)|. (3-7)

Thus, for E ∈U j ∩ {|E − λ j |> a j d j (2+C0d j )
−1
}, one computes

|Im SL(E)| ≤ |Im E |
(

a j

|λ j −Re E |2+ |Im E |2
+

4
d2

j + |Im E |2

)
≤

1
θ ′δC

a j d2
j |sin(Re θ(E))|

(
(2+C0d j )

2a j

a2
j d

2
j

+
4
d2

j

)
≤

4
θ ′δC

(1+ e1/C)2|sin(Re θ(E))| ≤ 1
2

e−1/C
|sin(Re θ(E))| (3-8)

provided C satisfies 8e1/C(1+ e1/C)2 < θ ′δC .
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Hence, the comparison of (3-4) with (3-8) shows that (2-4) has no solution in

U j ∩ {|E − λ j |> a j d j (2+C0d j )
−1
}

if we choose C large enough (independent of (a j ) j and (λ j ) j ). Thus, we have proved that, for some
C > 0 large enough (independent of (a j ) j and (λ j ) j ), (2-4) has no solution in U j .

Let us now turn to the case of (2-8). The basic ideas are the same as for (2-4). Consider the matrix
0L(E) defined by (2-9). The summands in (2-9) are hermitian, of rank 1, and their norm is given by (2-13).

Assume that E ∈U j is a solution to (2-8). Define the vectors

v j := a−1/2
j

(
ϕ j (L)
ϕ j (0)

)
for j ∈ {0, . . . , L}.

Here, a j = aZ
j .

Note that, by definition of a j , one has ‖v j‖
2
= 2. Pick u in C2 a normalized eigenvector of 0L(E)

associated to the eigenvalue −e−iθ(E). Thus, u satisfies

L∑
j=0

a j 〈v j , u〉v j

λ j − E
=−e−iθ(E)u. (3-9)

Note that, by assumption, one has

sup
E∈U j

∥∥∥∥∑
k 6= j

ak〈vk, u〉vk

λk − E

∥∥∥∥. 1
d j

and
∣∣∣∣Im(∑

k 6= j

ak |〈vk, u〉|2

λk − E

)∣∣∣∣. |Im E |
d2

j
, (3-10)

where the constants are independent of C , the one defining U j .
Taking the (real) scalar product of (3-9) with ū, and then the imaginary part, we obtain

−
a j |〈v j , u〉|2 Im E
|λ j − E |2

+ Im(e−iθ(E))= O
(
|Im E |

d2
j

)
.

Thus, for E ∈U j , as a j ≤ 1, for C in (3-1) sufficiently large (depending only on δ),

a j |〈v j , u〉|2|Im E |
|λ j − E |2

≥
1
2
|sin Re θ(E)|.

Hence, for a solution to (2-8) in U j and u as above, one has

|λ j − E | ≤ |〈v j , u〉|

√
2a j |Im E |
|sin Re θ(E)|

≤ 2

√
a j |Im E |
|sin Re θ(E)|

.

Hence, by the definition of U j , for C large we get∣∣∣∣ a j

λ j − E

∣∣∣∣≥ Cθ ′δ
d j
�

1
d j
. (3-11)
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By (3-10), the operator 0L(E) can be written as

0L(E)=
a j

λ j − E
v j ⊗ v j + R j (E)+ i I j (E), (3-12)

where R j (E) and I j (E) are selfadjoint (I j is nonnegative) and satisfy

‖R j (E)‖.
1
d j

and ‖I j (E)‖.
|Im E |

d2
j
. (3-13)

An explicit computation shows that the eigenvalues of the two-by-two matrix
a j

λ j−E
v j ⊗ v j + R j (E)

satisfy

λ=
a j

λ j − E

(
1+ O

(
d j

Cθ ′δ

))
or |Im λ|.

|Im E |
a j

,

where the implicit constants are independent of the one defining U j .
Thus, by (3-12), using (3-11) and the second estimate in (3-13), we see that the eigenvalues of the

matrix 0L(E) satisfy

λ=
a j

λ j − E

(
1+ O

(
d j

Cθ ′δ

))
or |Im λ| ≤

2
Cθ ′δ

.

Clearly, for C large, no such value can be equal to −e−iθ(E), being too large — by (3-11) — in the first
case or having too small imaginary part in the second. The proof of Theorem 3.1 is complete. �

Proof of Theorem 3.2. Again, we start with the solutions to (2-4). For z ∈ Ũ j , we compute

Im SL(E)=
L∑

k=0

ak Im E

(λk −Re E)2+ Im2 E
=

a j Im E

(λ j −Re E)2+ Im2 E
+

∑
0≤k≤L

k 6= j

−ak Im E

(λk −Re E)2+ Im2 E
. (3-14)

When −d2
j /C ≤ Im E ≤−Ca j , the second equality above and (2-5) yield, for C sufficiently large,

0≤ Im SL(E).
a j

|Im E |
+
|Im E |

d2
j + Im2 E

≤
2
C
. (3-15)

On the other hand, for some K > 0, one has

|Im e−iθ(E)
| ≥ |Im e−iθ(Re E)

| −
K d2

j

C
.

Now, since under the assumptions of Theorem 3.2 one has

min
E∈[(λ j+λ j−1)/2,(λ j+λ j+1)/2]

|Im e−iθ(E)
| ≥

1
4 min(

√
16− (λ j + λ j−1)

2,
√

16− (λ j + λ j+1)
2), (3-16)

we obtain that (2-4) has no solution in Ũ j ∩ {−d j/C ≤ Im E ≤−Ca j }.
Now pick E ∈ Ũ j such that −Ca j ≤ Im E ≤−a j d2

j /C . Then (3-5) and (2-5) yield, for C sufficiently
large,

Im SL(E).
a j Im E

C2a2
j + Im2 E

+
Ca j

d2
j
≤

1
C
+

1
2C
.
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The imaginary part of e−iθ(E) is estimated as above. Thus, for C sufficiently large, (2-4) has no solution
in Ũ j ∩ {−Ca j ≤ Im E ≤−a j d2

j /C}.

The case of (2-8) is studied in exactly the same way except that, as in the proof of Theorem 3.1, one has
to replace the study of SL(E) by that of 〈0L(E)u, u〉 for u a normalized eigenvector of 0L(E) associated
to −e−iθ(E) and, thus, the coefficient ak in (3-14) gets multiplied by a factor |〈vk, u〉|2 that is bounded
by 2.

This completes the proof of Theorem 3.2. �

3B. The resonances near an “isolated” eigenvalue. We will now solve (2-4) near a given λ j under the
additional assumptions that a j � d2

j . By Theorems 3.1 and 3.2, we will do so in the rectangle R j (see
Theorem 3.3 and Figure 7). Actually, we prove that in R j there is exactly one resonance and give an
asymptotic for this resonance in terms of a j , d j and λ j . This result is going to be applied to the case of
random V and to that of isolated eigenvalues (for any V ).

Using the notations of Section 3, for j ∈ {0, . . . , L} we define

SL , j (E) :=
∑
k 6= j

aN
k

λk − E
and 0L , j (E) :=

∑
k 6= j

1
λk − E

(
|ϕk(L)|2 ϕk(0)ϕk(L)
ϕk(0)ϕk(L) |ϕk(0)|2

)
. (3-17)

We prove:

Theorem 3.3. Pick j ∈ {0, . . . , L} such that −4 < λ j−1 + λ j < λ j+1 + λ j < 4. There exists C > 1
(depending only on (λ j−1 + λ j )+ 4 and 4− (λ j+1 + λ j )) such that, for any L , if a j ≤ d2

j /C , (2-4)
and (2-8) have exactly one solution in the set

R j :=

{
E ∈ C

∣∣∣∣ Re E ∈ λ j +Ca j [−1, 1], −Ca j ≤ Im E ≤−
a j d2

j

C

}
. (3-18)

Moreover, the solution to (2-4), say zN
j , satisfies

zN
j = λ j +

aN
j

SL , j (λ j )+ e−iθ(λ j )
+ O((aN

j d−1
j )2) (3-19)

and the solution to (2-8), say zZ
j , satisfies

zZ
j = λ j +

〈(
ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉
+ O((aZ

j d−1
j )2). (3-20)

Note that, if aN
j d−2

j is small, (3-19) gives the asymptotic of the width of the solution zN
j , namely,

Im zN
j =

aN
j sin θ(λ j )

[SL , j (λ j )+ cos θ(λ j )]2+ sin2 θ(λ j )
(1+ o(1)). (3-21)
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Recall that sin θ(λ j ) < 0 (see Theorem 2.2). For H Z
L , using the bounds (3-28) and (3-29), we see that

the asymptotic of the imaginary part of the solution zZ
j satisfies

−
1
C

aZ
j ≤ Im zZ

j ≤−CaZ
j d2

j . (3-22)

This and (3-21) will be useful when a•j � d2
j , as will be the case for random potentials. The case when

a•j and d j are of the same order of magnitude requires more information. This is the case that we meet in
the next section when dealing with periodic potentials.

The proof of Theorem 3.3 also yields the behavior of the functions E 7→ SL(E) + e−iθ(E) and
E 7→ det(0L(E)+ e−iθ(E)) near their zeros in R j and, in particular, shows the following:

Proposition 3.4. Fix δ > 0. Under the assumptions of Theorem 3.3, there exists c > 0 such that, for
−4+ δ < λ j−1+ λ j < λ j+1+ λ j < 4− δ, one has

inf
0<r<caN

j d−1
j

min
|E−zN

j |=r

|SL(E)+ e−iθ(E)
|

r
≥ c and inf

0<r<caZ
j d−1

j

min
|E−zZ

j |=r

|det(0L(E)+ e−iθ(E))|

r
≥ c.

Proposition 3.4 is a consequence of the analogues of (3-24) and (3-30) on the rectangles

R̃ j = z̃ j + ca•j d
−1
j [−1, 1]× [−1, 1]

for • ∈ {N,Z} and c sufficiently small.

Proof of Theorem 3.3. Let us start with (2-4). To prove the statement in (2-4), in R j we compare the
function E 7→ SL(E)+ e−iθ(E) to the function

E 7→ S̃L , j (E)=
aN

j

λ j − E
+ SL , j (λ j )+ e−iθ(λ j ).

Clearly, in C, the equation S̃L , j (E)= 0 admits a unique solution, given by

z̃ j = λ j +
aN

j

SL , j (λ j )+ e−iθ(λ j )
.

For E ∈ ∂R j , the boundary of R j , one has

|S̃L , j (E)| ≥
1

2C
and

∣∣∣∣ aN
j

λ j − E

∣∣∣∣≥ 1
2C
,

|e−iθ(E)
− e−iθ(λ j )| ≤ CaN

j and |SL , j (E)− SL , j (λ j )| ≤ CaN
j d−2

j .

(3-23)

Hence, as d j ≤ 1, one gets

max
E∈∂R j

|S̃L , j (E)− SL(E)− e−iθ(E)
|

|S̃L , j (E)|
≤ 4CaN

j d−2
j .

Thus, by Rouché’s theorem, (2-4) has a unique solution in R j .
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To obtain the asymptotics of the solution, it suffices to use Rouché’s theorem again with the functions
S̃L , j and SL(E)+ e−iθ(E) on the smaller rectangle R̃ j = z̃ j + K (aN

j d−1
j )2[−1, 1] × [−1, 1]. One then

estimates

max
E∈∂ R̃ j

|S̃L , j (E)− SL(E)− e−iθ(E)
|

|S̃L , j (E)|
≤ 4C K−1. (3-24)

Thus, for K sufficiently large, this completes the proof of the statements on the solutions to (2-4) contained
in Theorem 3.3.

Let us turn to (2-8). On R j , we now compare 0L(E)+ e−iθ(E) to the matrix-valued function

E 7→ 0̃L , j (E) :=
1

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
+0L , j (λ j )+ e−iθ(λ j ).

The matrix (
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
has rank 1 and can be diagonalized as(

|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
= Pj

(
aZ

j 0
0 0

)
P∗j ,

where aZ
j is given by (2-13) and

Pj =
1
√

aZ
j

(
ϕ j (L) −ϕ j (0)
ϕ j (0) ϕ j (L)

)
.

Thus, 0̃L , j (E) is unitarily equivalent to

M :=
1

λ j − E

(
aZ

j 0
0 0

)
+ P∗j 0L , j (λ j )Pj + e−iθ(λ j ). (3-25)

As P∗j 0L , j (λ j )Pj is real and the imaginary part of e−iθ(λ j ) does not vanish, M0 := P∗j 0L , j (λ j )Pj+e−iθ(λ j )

is invertible. By rank-1 perturbation theory (see, e.g., [Simon 2005]), we know that M is invertible if and
only if aZ

j [M
−1
0 ]11+ λ j 6= E (where [M]11 is the upper right coefficient of the 2× 2 matrix M). In this

case, one has

M−1
= M−1

0 −
aZ

j

aZ
j [M

−1
0 ]11+ λ j − E

M−1
0

(
1 0
0 0

)
M−1

0 . (3-26)

Hence, 0 is an eigenvalue of M if and only if

E = λ j + aZ
j [(P

∗

j 0L , j (λ j )Pj + e−iθ(λ j ))−1
]11

= λ j +

〈(
ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉
. (3-27)
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Note that, as 0L , j (λ j ) is real symmetric and ‖0L , j (λ j )‖ ≤ Cd−1
j , one has∣∣∣∣〈(ϕ j (L)

ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉∣∣∣∣≤ aZ
j

|sin θ(λ j )|
(3-28)

and

Im
(〈(

ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉)
≤

aZ
j d2

j sin θ(λ j )

1+ d2
j

. (3-29)

Using (3-25), (3-26), (3-28) and (3-29),we see that, for E ∈ ∂R j , the boundary of R j , 0̃L , j (E) is invertible
and that one has

‖[0̃L , j (E)]−1
‖ ≤ 2C and ‖0L , j (E)−0L , j (λ j )‖ ≤ CaZ

j d−2
j .

Hence, as d j ≤ 1, taking (3-23) into account, one gets

max
E∈∂R j

‖1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))‖ ≤ 4C2aZ
j d−2

j .

In the same way, one proves

max
E∈∂ R̃ j

‖1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))‖. K−1, (3-30)

where we recall that R̃ j = z̃ j + K (aN
j d−1

j )2[−1, 1]× [−1, 1].
Thus, we can apply Rouché’s theorem to compare the following two functions on ∂R j and ∂ R̃ j (for K

sufficiently large):
det(0̃L , j (E)) and det(0L(E)+ e−iθ(E)),

as

|det(0̃L , j (E))− det(0L(E)+ e−iθ(E))|

|det(0̃L , j (E))|
=
∣∣1− det

(
1−

[
1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))

])∣∣.
We then conclude as in the case of (2-4). This completes the proof of Theorem 3.3. �

Combining Theorems 3.3, 3.1 and 3.2, we get a pretty clear picture of the resonances near the Dirichlet
eigenvalues in (−2, 2) as long as the associated a•j and d j behave correctly. As said, this and the knowledge
of the spectral statistics for random operators will enable us to prove the results described in Section 1C.
For the periodic case, Theorems 3.1, 3.2 and 3.3 will prove not to be sufficient. As we shall see, in this
case, a•j and d j are of the same order of magnitude. Thus, neighboring Dirichlet eigenvalues have a
sizable effect on the location of resonances. Therefore, in the next section, we compute the Dirichlet
spectral data for the truncated periodic potential.

4. The Dirichlet spectral data for periodic potentials

As we did not find any suitable reference for this material, we first derive a suitable description of the
spectral data (i.e., the (a•j ) j and (λ j ) j ) for the Dirichlet restriction of a periodic operator to the interval
[[0, L]] when L becomes large.
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Consider a potential V :N→R such that, for some p≥ 1, one has Vk = Vk+p for all k ≥ 0. We assume
p to be minimal, i.e., to be the period of V. In our first result, we describe the spectrum of H Z

=−1+V
on `2(Z) and H N

=−1+V on `2(N) (with Dirichlet boundary conditions at 0). In the second result we
turn to HL , the Dirichlet restriction H N to [[0, L]] and describe its spectral data, i.e., its eigenvalues and
eigenfunctions.

We recall:

Theorem 4.1. The spectrum of H Z, say 6Z, is a union of at most p disjoint intervals that all consist in
purely absolutely continuous spectrum.

The spectrum of H N is the union of 6Z and at most finitely many simple eigenvalues outside 6Z,
say (v j )0≤ j≤n . 6Z consists of purely absolutely continuous spectrum and the eigenfunctions associated to
(v j )0≤ j≤n , say (ψ j )0≤ j≤n , are exponentially decaying at infinity.

Except for the exponential decay of the eigenfunctions, the proof of the statement for the periodic
operator on Z and N is classical and can, e.g., be found in a more general setting in [Teschl 2000, Chapters
2, 3 and 7] (see also [van Moerbeke 1976; Reed and Simon 1980]). The exponential decay is an immediate
consequence of Floquet theory for the periodic Hamiltonian on Z and the fact that the eigenvalues lie in
gaps of 6Z.

For H Z, one can define its Bloch quasimomentum (see the beginning of Section 4A for details), which
we denote by θp; it is continuous and strictly increasing on 6Z and real analytic on 6◦Z, the interior of 6Z.
Decompose 6Z into its connected components, i.e., 6Z =

⋃q
r=1 Br , where q ≤ p. Let cq be the number

of closed gaps contained in q. Then θp is continuous and strictly increasing on Br and real analytic on
B◦r , the interior of the r-th band. Moreover, on this set, its derivative can be expressed in terms of the
density of states, defined in (1-2) as

n(λ)= 1
π
θ ′p(λ). (4-1)

We first describe the eigenvalues of HL .

Theorem 4.2. One has:

(1) For any k ∈ {0, . . . , p− 1}, there exists hk :6Z→ R, a continuous function that is real analytic in a
neighborhood of 6◦Z such that, for L sufficiently large with L ≡ k mod p,

(a) for 1≤ r ≤ q, the function hk maps Br into (−(cr + 1)π, (cr + 1)π);
(b) the function

θp,L := θp −
hk

L − k
(4-2)

is continuous and strictly monotonous on each Br (1≤ r ≤ q);
(c) for 1 ≤ r ≤ q, the eigenvalues of HL in Br , the r-th band of 6Z, say (λr

j ) j , are the solutions
(in 6Z) to the quantization conditions

θp,L(λ
r
j )=

jπ
L − k

, j ∈ Z. (4-3)



294 FRÉDÉRIC KLOPP

(2) There exists c > 0 such that, if λ is an eigenvalue of HL outside 6Z, then for L = N p+ k sufficiently
large there exists λ∞ ∈6+0 ∪6

−

k \6Z such that one has |λ− λ∞| ≤ e−cL .

Recall that 6+0 and 6−k are the spectra of H+0 and H−k , respectively, defined in Section 1B2.
In Theorem 4.2, when solving (4-3), one has to do it for each band Br and, for each band and each j

such that jπ/(L − k) ∈ θp,L(Br ), (4-3) admits a unique solution. But, it may happen that one has two
solutions to (4-3) for a given j belonging to neighboring bands. In the sequel, to simplify the notations,
we will not distinguish between the different bands, i.e., we will write eigenvalues (λ j ) j not referring to
the band they belong to.

Let us now describe the associated eigenfunctions.

Theorem 4.3. Recall that (λ j ) j are the eigenvalues of HL in 6Z (enumerated as in Theorem 4.2).

(1) There exist p + 2 positive functions, say f +0 , ( f −k )0≤k≤p−1 and f̃ , that are real analytic in a
neighborhood of 6◦Z such that there exists σr ∈ {+1,−1} such that, for L = N p+ k sufficiently large
and λ j in B◦r , the interior of r-th band of 6Z, one has

|ϕl(L)|2 =
f −k (λ j )

L − k

(
1+

f̃ (λ j )

L − k

)−1

, |ϕl(0)|2 =
f +0 (λ j )

f −k (λ j )
|ϕl(L)|2,

and ϕl(L)ϕl(0)= σr eiπl
|ϕl(L)||ϕl(0)| = σr ei(L−k)θp(λ j )−hk(λ j )|ϕl(L)||ϕl(0)|. (4-4)

(2) Let λ be an eigenvalue of HL outside 6Z (see Theorem 4.2(2)). If ϕ is a normalized eigenfunction
associated to λ and HL , one has one of the following alternatives for L large:

(a) If λ∞ ∈6+0 \6
−

k , one has

|ϕ(L)| � e−cL and |ϕ(0)| � 1. (4-5)

(b) If λ∞ ∈6−k \6
+

0 , one has

|ϕ(L)| � 1 and |ϕ(0)| � e−cL . (4-6)

(c) If λ∞ ∈6−k ∩6
+

0 , one has

|ϕ(L)| � 1 and |ϕ(0)| � 1. (4-7)

For later use, let us define θp,L , f0,L and fk,L by

fk,L(λ)= f −k (λ)
(

1+
f̃ (λ)

L − k

)−1

and f0,L(λ)= f +0 (λ)
(

1+
f̃ (λ)

L − k

)−1

, (4-8)

where θp, hk , f0, fk and f̃ are as defined in Theorem 4.2.
As a consequence of Theorem 4.2, we obtain:
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Corollary 4.4. For λ ∈6◦Z, for L ≡ k mod p sufficiently large, one has

d N−k
dλ

(λ)= n−k (λ)= f −k (λ)n(λ)=
1
π

f −k (λ)θ
′

p(λ)=
1
π

fk,L(λ)θ
′

p,L(λ), (4-9)

d N+0
dλ

(λ)= n+0 (λ)= f +0 (λ)n(λ)=
1
π

f +0 (λ)θ
′

p(λ)=
1
π

f0,L(λ)θ
′

p,L(λ). (4-10)

Here, θP , f +0 and f −k are the functions defined in Theorem 4.2.

Proof of Corollary 4.4. To prove the first equalities in (4-9) and (4-10), it suffices to prove that, for any
χ ∈ C∞0 (6

◦

Z),

〈δ0, χ(H−k )δ0〉 =

∫
R

χ(λ) d N−k (λ)=
1
π

∫
R

χ(θ−1
p (k)) f −k (θ

−1
p (k)) dk = 1

π

∫
R

χ(λ) f −k (λ)θ
′

p(λ) dλ,

(4-11)

〈δ0, χ(H+0 )δ0〉 =

∫
R

χ(λ) d N+0 (λ)=
1
π

∫
R

χ(θ−1
p (k)) f +0 (θ

−1
p (k)) dk = 1

π

∫
R

χ(λ) f +0 (λ)θ
′

p(λ) dλ,

(4-12)

the full statement then following by standard density argument. The operator HL converges to H+0
in the norm resolvent sense. Thus, we know that 〈δ0, χ(H+0 )δ0〉 = limL→+∞〈δ0, χ(HL)δ0〉. Now, by
Theorem 4.2, as χ is supported in 6◦Z, using the Poisson formula one computes

〈δ0, χ(HL)δ0〉 =
∑

j

χ(λ j )||ϕ j (0)|2 =
1

L − k

∑
l

χ

(
θ−1

p,L

(
lπ

L − k

))
f0,L

(
θ−1

p,L

(
lπ

L − k

))

=
1

L − k

∑
j∈Z

∫
R

e−i2π jλχ

(
θ−1

p,L

(
πλ

L − k

))
f0,L

(
θ−1

p,L

(
πλ

L − k

))
dλ

=
1
π

∑
j∈Z

∫
R

e−i2(L−k) jθp,L (λ)χ(λ) f0,L(λ)θ
′

p,L(λ) dλ.

Thus, using the nonstationary phase, i.e., integrating by parts, one gets, for any N ≥ 2,∣∣∣∣〈δ0, χ(HL)δ0〉−
1
π

∫
R

χ(λ) f0,L(λ)θ
′

p,L(λ) dλ
∣∣∣∣≤∑

j≥1

CN ,K‖χ‖CN (| j |(L − k))−N

≤ CN ,K‖χ‖CN ((L − k))−N . (4-13)

Here we have used the analyticity of the functions θp,L and f0,L .
To deal with H−k , we recall the operator H̃L (which is unitarily equivalent to HL ) defined in Remark 1.6.

One has 〈δL , HLδL〉 = 〈δ0, χ(H̃L)δ0〉; thus, as H−k is the strong resolvent sense limit of H̃L , one gets
〈δ0, χ(H−k )δ0〉 = limL→+∞〈δL , χ(HL)δL〉.

Then (4-11) and (4-12) — and, thus, the first equalities in (4-9) and (4-10) — follow, as θ ′p,L , f0,L

and fk,L converge (locally uniformly on 6◦Z) to θ ′p, f +0 and f −k , respectively (see (4-8) and Theorem 4.2).
Let us now prove the second equalities in (4-9) and (4-10). To this end, we use an almost analytic

extension (see [Mather 1971]) of χ , say χ̃ , that is, a function χ̃ : C→ C satisfying
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(1) χ̃(z)= χ(z) for z ∈ R,

(2) supp(χ̃)⊂ {z ∈ C | | Im(z)|< 1},

(3) χ̃ ∈ S({z ∈ C | | Im(z)|< 1}),

(4) the family of functions x 7→ ∂χ̃(x+ iy)/∂ z̄ · |y|−n (for 0< |y|< 1) is bounded in S(R) for any n ∈N.

Moreover, χ̃ can be chosen so that one has the following estimates: for n ≥ 0, α ≥ 0, β ≥ 0, there
exists Cn,α,β > 0 such that

sup
0<|y|≤1

sup
x∈R

∣∣∣∣xα ∂β∂xβ

(
|y|−n ∂χ̃

∂ z̄
(x + iy)

)∣∣∣∣≤ Cn,α,β sup
β ′≤n+β+2α′≤α

sup
x∈R

∣∣∣∣xα′ ∂β ′χ∂xβ ′
(x)
∣∣∣∣. (4-14)

By the definition of χ , the right-hand side of (4-14) is bounded uniformly in E complex.
Let χ ∈ C∞0 (R) and χ̃ be an almost analytic extension of χ(x). Then, by [Helffer and Sjöstrand 1990;

Klopp 1995], we know that, for any n and ω ∈�,

χ(H•)=
i

2π

∫
C

∂χ̃

∂ z̄
(z)(z− H•)−1 dz ∧ dz̄, (4-15)

where H• equals HL , H̃L , H+0 or H−k .
Using the geometric resolvent equation (see, e.g., [Kirsch 2008, Theorem 5.20]) and the Combes–

Thomas estimate (see, e.g., [Kirsch 2008, Theorem 11.2]), we know that for some C > 0, for Imz 6= 0,∣∣〈δ0, [(H̃L− z)−1
− (H−k − z)−1

]δ0〉
∣∣+ ∣∣〈δ0, [(HL− z)−1

− (H+0 − z)−1
]δ0〉

∣∣≤ C
|Im z|

e−L|Im z|/C . (4-16)

Plugging (4-16) into (4-15) and using (4-14), we get∣∣∣∣ L∑
j=0

χ(λ j )|ϕ j (0)|2−
∫

R

χ(λ) d N+0 (λ)
∣∣∣∣≤ C̃N

∫
|y|≤1
|y|N−1e−L|y|/C dy ≤ CN L−N .

Thus, by (4-12) and (4-13), we obtain that, for χ ∈ C∞0 (6
◦

Z) and any N ≥ 0, there exists CN > 0 such
that∣∣∣∣∫

R

χ(λ)[ f0,L(λ)θ
′

p,L(λ)− f +0 (λ)θ
′

p(λ)] dλ
∣∣∣∣

=

∣∣∣∣∫
R

χ(λ) f0,L(λ)θ
′

p,L(λ) dλ−
∫

R

χ(λ) d N+0 (λ)
∣∣∣∣≤ CN L−N . (4-17)

Now, by (4-3) and (4-8), the function f0,Lθ
′

p,L − f +0 θ
′
p admits an expansion in inverse powers of L that

converges uniformly on compact subsets of 6◦Z, namely,

f0,Lθ
′

p,L − f +0 θ
′

p =
∑
k≥1

L−kαk .

Thus, (4-17) immediately yields that, for any k ≥ 1, one has αk ≡ 0 on 6◦Z. Hence, f0,Lθ
′

p,L ≡ f +0 θ
′
p

on 6◦Z. This completes the proof of Corollary 4.4. �
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4A. The proofs of Theorems 4.2 and 4.3. We will first describe some objects from the spectral theory
of H Z, use them to describe the spectral theory of H N, prove Theorem 4.2 and finally prove Theorem 4.3.

4A1. The spectral theory of H Z. This material is classical (see, e.g., [van Moerbeke 1976; Teschl 2000]);
we only recall it for the reader’s convenience. For 0≤ j ≤ p− 1, define T̃ j = T̃ j (E) to be a monodromy
matrix for the periodic finite difference operator H Z, that is,

T̃ j (E)= T j+p−1, j (E)= T j+p−1(E) · · · T j (E)=:

(
a j

p(E) b j
p(E)

a j
p−1(E) b j

p−1(E)

)
, (4-18)

where

T j (E)=
(

E − V j −1
1 0

)
. (4-19)

The coefficients of T̃ j (E) are monic polynomials in the energy E ; a j
p(E) has degree p and b j

p(E) has
degree p− 1. Clearly, det T̃ j (E)= 1. As j 7→ V j is p-periodic, so is j 7→ T̃ j (E). Moreover, for j ′ < j ,
one has

T̃ j (E)T j, j (E)= T j+p−1, j ′+p−1(E)T̃ j ′(E)= T j, j ′(E)T̃ j ′(E). (4-20)

Thus, the discriminant 1(E) := tr T̃ j (E)= a j
p(E)+ b j

p−1(E) is a polynomial of degree p that is inde-
pendent of j ; so are ρ(E) and ρ−1(E), the eigenvalues of T̃ j (E). One defines the Bloch quasimomentum
E 7→ θp(E) by

1(E)= ρ(E)+ ρ−1(E)= 2 cos(pθp(E)). (4-21)

Let us recall some basic properties of the discriminant 1 and the coefficients of T̃ j , the proofs of which
can be found in [van Moerbeke 1976]:

(1) If 1′(E)= 0 then |1(E)| ≥ 2.

(2) The zeros of 1′ are simple.

(3) E is a zero of 1′ such that |1(E)| = 2 if and only if T̃ j (E) ∈ {+ Id,− Id} (for any j).

(4) The polynomials b j
p and a j

p−1 only vanish in the set {|1(E)| ≥ 2}; they keep a fixed sign in each of
the connected components of the set {|1(E)|< 2}.

Note that 1(E) is real when E is real. Thus, for E real, |1(E)| ≤ 2 implies that ρ−1(E) = ρ(E)
and |1(E)| > 2 implies that ρ(E) is real. When |1(E)| ≤ 2 we will fix ρ(E) := ei pθp(E) and when
|1(E)|> 2 we will fix ρ(E) so that |ρ(E)|< 1.

E belongs to the spectrum of H Z (i.e., −1+ V on `2(Z)) if and only if |1(E)| ≤ 2 (see, e.g., [Teschl
2000]).

Properties (1)–(3) above imply that, for E0 a zero of 1′ such that 1(E0) = ±2, θp is real analytic
near E0 and θ ′p(E0) 6= 0.

Definition 4.5. E0 is said to be a closed gap if and only if |1(E0)| = 2 and 1′(E0)= 0 or, equivalently,
if and only if T̃0(E0) is diagonal.



298 FRÉDÉRIC KLOPP

Consider ∂6Z. It is the set of energies that are solutions to |1(E)| = 2 where T̃0(E) is not diagonal; it
is also the set of roots of |1(E)| = 2 that are not closed gaps. From the upper half of the complex plane,
one can continue E 7→ θp(E) analytically to the universal cover of C \ ∂6Z. Each of the points in ∂6Z is
a branch point of θp of square root type. Moreover, for E 6∈ ∂6Z, there exist two linearly independent
solutions to the eigenvalue equation (−1+ V − E)u = 0, say ϕ±(E), satisfying, for n ∈ Z,

ϕ±(n+ p, E)= e±i pθp(E)ϕ±(n, E). (4-22)

4A2. The spectral theory of H N. Let us now turn to the spectrum of the operator on the half-lattice.

The operator H+0 . For the operator H+0 = H N (that is, −1 + V on `2(N) with Dirichlet boundary
conditions at 0), E is in the spectrum if and only if

• either |1(E)| ≤ 2,

• or |1(E)|> 2 and [T̃0(E)]n
( 1

0

)
stays bounded as n→+∞.

The second condition is equivalent to requiring that [T̃ j (E)]nT j−1(E) · · · T0(E)
( 1

0

)
stay bounded

as n→+∞.
When |1(E)| 6= 2 and a0

p−1(E) 6= 0, one can diagonalize T̃0(E) in the following way(
a0

p−1(E) ρ(E)− a0
p(E)

−a0
p−1(E) a0

p(E)− ρ
−1(E)

)
T̃0(E)=

(
ρ(E) 0

0 ρ−1(E)

)(
a0

p−1(E) ρ(E)− a0
p(E)

−a0
p−1(E) a0

p(E)− ρ
−1(E)

)
. (4-23)

Thus, using∣∣∣∣ρ(E)− a0
p(E) −b0

p(E)
−a0

p−1(E) ρ(E)− b0
p−1(E)

∣∣∣∣= ∣∣∣∣ρ(E)− a0
p(E) −b0

p(E)
−a0

p−1(E) a0
p(E)− ρ

−1(E)

∣∣∣∣= 0 (4-24)

for n ∈ Z, one computes

(T̃0(E))n =
(

t̃11
0,n(E) t̃12

0,n(E)
t̃21
0,n(E) t̃22

0,n(E)

)
, (4-25)

where

t̃11
0,n(E) := ρ

n(E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ ρ−n(E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
,

t̃12
0,n(E) := (ρ

−n(E)− ρn(E))
b0

p(E)

ρ(E)− ρ−1(E)
,

t̃21
0,n(E) := (ρ

n(E)− ρ−n(E))
a0

p−1(E)

ρ(E)− ρ−1(E)
,

t̃22
0,n(E) := ρ

−n(E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ ρn(E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
.

(4-26)

Clearly, the formulas (4-23), (4-25) and (4-26) stay valid even if a0
p−1(E)= 0. They also stay valid if

|1(E)| = 2 and 1′(E)= 0. Indeed, by points (1)–(3) in Section 4A1, the functions ρ− ρ−1, a0
p − ρ

−1,
−ρ− a0

p, b0
p and a0

p−1 are analytic near and have simple zeros at such points.
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We have thus proved:

Lemma 4.6. For E 6∈ ∂6Z, (T̃0(E))n has the form (4-25)–(4-26)

Simple computations then show that E is in the spectrum of H+0 if and only if one of the following
conditions is satisfied:

(1) |1(E)| ≤ 2: moreover, the set {E ∈ R | |1(E)| ≤ 2} is contained in the absolutely continuous
spectrum of H+0 .

(2) |1(E)|> 2 and

a0
p−1(E)= 0 and |a0

p(E)|< 1. (4-27)

Thus, on 6Z, the spectrum of H+0 is purely absolutely continuous; it does not contain any embedded
eigenvalues.

Note that, in case (2), [T̃0(E)]n
( 1

0

)
actually decays exponentially fast. In this case, E is an eigenvalue

associated to the (nonnormalized) eigenfunction (ul)l∈N, where, for n ≥ 0 and j ∈ {0, . . . , p− 1},

unp+ j (E)=
〈
T j−1(E) · · · T0(E)

(
1
0

)
,

(
1
0

)〉
· [a0

p(E)]
n
= a j (E)[a0

p(E)]
n, (4-28)

writing

T j−1(E) · · · T0(E)=:
(

a j (E) b j (E)
a j−1(E)b j−1(E)

)
. (4-29)

It is well known that, for any j , the zeros of a j and b j are simple (see, e.g., [Teschl 2000, Section 4]),
and the roots of a j+1 (resp. b j+1) interlace those of a j (resp. b j ). Let E ′ be an eigenvalue of H+0 .
Differentiating (4-24) at the energy E ′, we compute

b0
p(E
′)

da0
p−1

d E
(E ′)+ (ρ(E ′)− ρ−1(E ′))

d(ρ− a0
p)

d E
(E ′)= 0. (4-30)

The eigenvalues of the operator H−k . Let us now turn to H−k . Recalling (4-29) and using the representa-
tion (4-25), we obtain that the eigenvalues of H−k outside 6Z satisfy(

ρ(E)− a0
p(E) −a0

p−1(E)
−b0

p(E) a0
p(E)− ρ

−1(E)

)(
ak+1(E)
bk+1(E)

)
= 0. (4-31)

As for H+0 , the eigenfunction associated to E and H−k decays exponentially fast. Indeed, the eigenvalues
of H−k in the region |1(E)|> 2 can be analyzed in the same way as we analyzed those of H+0 , i.e., they are
the energies such that [T̃k(E)]−n

( 0
1

)
stays bounded; this yields the quantization conditions bk

p(E)= 0 and
|bk

p−1(E)|< 1. In this case, E is an eigenvalue associated to the (nonnormalized) eigenfunction (ul)−l∈N,
where, for n ≥ 0 and k ∈ {0, . . . , p− 1},

u−np−k(E)= bk(E)[bk
p−1(E)]

−n. (4-32)
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Common eigenvalues to H+0 and H−k . Assume now that E ′ is simultaneously an eigenvalue of H−k and H+0 .
In this case, one has a0

p−1(E
′) = 0, |a0

p(E
′)| < 1 and b0

p(E
′)bk+1(E ′) = ak+1(E ′)(ρ−1(E ′)− ρ(E ′)).

So (4-31) (see also (4-30)) becomes(
d(ρ− a0

p)(E
′)/d E −da0

p−1(E
′)/d E

−b0
p(E) a0

p(E
′)− ρ−1(E ′)

)(
ak+1(E ′)
bk+1(E ′)

)
= 0. (4-33)

Hence, the analytic function E 7→ ak+1(E)(a0
p(E)− ρ(E))− bk+1(E)a0

p−1(E) has a root of order at
least 2 at E ′. It also implies that ak+1(E ′) 6= 0. Indeed, if ak+1(E ′)= 0, (4-33) implies bk+1(E ′)= 0 as
da0

p−1(E
′)/d E 6= 0.

Conversely, if E ′∈σ(H+0 ) is such that |1(E ′)|>2 and E 7→ak+1(E)(a0
p(E)−ρ(E))−bk+1(E)a0

p−1(E)
has a root of order at least 2 at E ′, then (4-33) holds and E ′ is an eigenvalue of H−k .

We have thus proved:

Lemma 4.7. E0 ∈ σ(H+0 ) ∩ σ(H
−

k ) \ Z if and only if |1(E0)| > 2 and E0 is a double root of E 7→
ak+1(E)(a0

p(E)− ρ(E))− bk+1(E)a0
p−1(E).

4A3. The Dirichlet eigenvalues for a periodic potential: the proof of Theorem 4.2. Let us now turn to the
study of the eigenvalues and eigenvectors of HL , i.e., to the proof of Theorem 4.2. We first prove the
statements for the eigenvalues and then, in the next section, turn to the eigenvectors.

Recall that L ≡ k mod p; we write L = N p+ k. By definition, E is an eigenvalue of −1+ V on
[[0, L]] with Dirichlet boundary conditions if and only if

0= det
(

TL+1(E)TL(E)TL−1(E) · · · T0(E)
(

1
0

)
,

(
0
1

))
= det

(
Tk(E) · · · T0(E) · [T̃0(E)]N

(
1
0

)
,

(
1
0

))
, (4-34)

where T̃k(E) is the monodromy matrix defined above.
We use the notations of sections 4A2 and 4A1. Let us first show Theorem 4.2(1), namely:

Lemma 4.8. For L large, one has

∂6Z ∩ σ(HL)= {E0 | ak+1(E0)= a0
p−1(E0)= 0 and b0

p(E0) 6= 0}.

Proof. For E0 ∈ ∂6Z, we know that |1(E0)| = 2 and T̃0(E0) is not diagonal. Assume 1(E0)= 2 (the
case 1(E0) = −2 is dealt with in the same way); hence, T̃0(E0) has a Jordan normal form, i.e., there
exists a 2× 2 invertible matrix P and α ∈ R∗ such that

T̃0(E0)= P−1
(

1 0
α 1

)
P, where P =

(
p11 p12

p21 p22

)
. (4-35)
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Thus, by (4-34), E0 ∈ σ(HL) if and only if

0=
∣∣∣∣(ak+1(E0) bk+1(E0)

ak(E0) bk(E0)

)
(T̃0(E0))

N
(

1
0

)
,

(
0
1

)∣∣∣∣
=

∣∣∣∣(ak+1(E0) bk+1(E0)

ak(E0) bk(E0)

)
P−1

(
1 0

Nα 1

)
P
(

1
0

)
,

(
0
1

)∣∣∣∣; (4-36)

that is,

0=
∣∣∣∣( 1 0

Nα 1

)
P
(

1
0

)
, P

(
−bk+1(E0)

ak+1(E0)

)∣∣∣∣= (det P)ak+1(E0)− Nαp11(−p11bk+1(E0)+ p12ak+1(E0)).

For N large, this expression vanishes if and only if

(det P)ak+1(E0)= 0 and αp11(−p11bk+1(E0)+ p12ak+1(E0))= 0.

Since P is invertible, |bk+1(E0)| + |ak+1(E0)| 6= 0 and α 6= 0, one has ak+1(E0)= 0 and p11 = 0.
In this case, using bk+1(E0) 6= 0, we can then rewrite the eigenvalue equation (4-36) as

0=
∣∣∣∣(T̃0(E0))

N
(

1
0

)
,

(
1
0

)∣∣∣∣= t̃21
0,N (E0). (4-37)

For E ∈6◦Z close to E0, by (4-26) we have

t21
0,N (E)=

(ρN (E)− ρ−N (E))a0
p−1(E)

ρ(E)− ρ−1(E)
= ρN−1

( N−1∑
j=0

ρ−2 j (E)
)

a0
p−1(E).

As ρ is continuous at E0 and ρ2(E0)= 1, taking E to E0 we get

a0
p−1(E0)= 0.

As T̃0(E0) is not diagonal, this implies b0
p(E0) 6= 0. This completes the proof of Lemma 4.8. �

Now, pick E 6∈ ∂6Z. Then, by Lemma 4.6, the quantization condition (4-34) becomes∣∣∣∣∣∣∣∣
ρN (E)

a0
p(E)− ρ

−1(E)

ρ(E)− ρ−1(E)
+ ρ−N (E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
−bk+1(E)

(ρN (E)− ρ−N (E))
a0

p−1(E)

ρ(E)− ρ−1(E)
ak+1(E)

∣∣∣∣∣∣∣∣= 0. (4-38)

The eigenvalues outside of6Z. Let us first study the eigenvalues outside6Z, i.e., in the region |1(E)|> 2.
If, for j ∈ N, we define

α j (E) := a j (E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ b j (E)

a0
p−1(E)

ρ(E)− ρ−1(E)

and β j (E) := a j (E)
ρ(E)− a0

p(E)

ρ(E)− ρ−1(E)
− b j (E)

a0
p−1(E)

ρ(E)− ρ−1(E)
,

(4-39)
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(4-38) can be rewritten as βk+1(E)+ ρ2N (E)αk+1(E)= 0; using

αk+1(E)+βk+1(E)= ak+1(E), (4-40)

(4-38) becomes

βk+1(E)=−
ρ2N (E)

1− ρ2N (E)
ak+1(E). (4-41)

We first show:

Lemma 4.9. There exists η > 0 such that, for L sufficiently large, σ(HL)∩ [(6Z+ [−η, η]) \6Z] =∅.

Proof. Using (4-39), we rewrite (4-41) as

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)= ρ
2N+1(E)

1− ρ2(E)
1− ρ2N (E)

ak+1(E). (4-42)

Pick E0 ∈ ∂6Z . Then, by our choice for ρ, for η > 0 small we know that, for E ∈ [E0− η, E0+ η] \6Z,
ρ2(E)= e−c0

√
|E−E0|(1+O(

√
|E−E0|)). Hence, for E ∈ [E0− η, E0+ η] \6Z, one has∣∣∣∣ρ2N+1(E)

1− ρ2(E)
1− ρ2N (E)

∣∣∣∣.min
(√
|E − E0|,

1
N

)
. (4-43)

Thus, if ak+1(E0)(ρ(E0)−a0
p(E0))−bk+1(E0)a0

p−1(E0) 6=0, (4-42) has no solution in [E0−η, E0+η]\6Z

for η small and L sufficiently large.
Let us now assume that ak+1(E0)(ρ(E0)− a0

p(E0))− bk+1(E0)a0
p−1(E0)= 0.

• If ak+1(E0) 6= 0, one computes

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)= ak+1(E0)(ρ(E)− ρ(E0))(1+ o(1))

and
ρ2N+1(E)

1− ρ2(E)
1− ρ2N (E)

ak+1(E)=−(ρ(E)− ρ(E0))ak+1(E0)
ρ2(N+1)(E)
1− ρ2N (E)

(1+ o(1)).

Hence, for η > 0 small and E ∈ [E0− η, E0+ η] \6Z, the two sides of (4-42) have opposite signs; there
is no solution to (4-42) in this interval.

• If ak+1(E0)=0, then bk+1(E0) 6=0, a0
p−1(E0)=0, ρ(E0)=a0

p(E0) and (a0
p−1)

′(E0) 6=0; one computes

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)=−bk+1(E0)(a0
p−1)

′(E0)(E − E0)(1+ o(1))

and, by (4-43), for η > 0 small and E ∈ [E0− η, E0+ η] \6Z,∣∣∣∣ρ2N+1(E)
1− ρ2(E)

1− ρ2N (E)
ak+1(E)

∣∣∣∣. |E − E0|min
(√
|E − E0|,

1
N

)
.

Hence, for η > 0 small and E ∈ [E0− η, E0+ η] \6Z, there is no solution to (4-42) in this interval.

This completes the proof of Lemma 4.9. �

In Lemma 4.8, we saw that, if E0 ∈ ∂6Z satisfies

ak+1(E0)= 0 and ak+1(E0)(ρ(E0)− a0
p(E0))− bk+1(E0)a0

p−1(E0)= 0,
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then E0 is an eigenvalue of HL for L large.
By Lemma 4.9, it now suffices to consider energies such that |1(E)| > 2+ η for some η > 0. In

this case, we note that the left-hand side in (4-41) is the left-hand side of the first equation in (4-31)
(up to the factor ρ − ρ−1, which does not vanish outside 6Z). On the other hand, the right-hand side
in (4-41) is uniformly exponentially small for large N on {E ∈ R | |1(E)|> 2+ η}. Thus, for L large,
the solutions to (4-41) are exponentially close to E ′, which is either an eigenvalue of H+0 or one of H−k .
One distinguishes between the following cases:

(1) If E ′ is an eigenvalue of H+0 but not of H−k , then E ′ is a simple root of the function E 7→ βk+1(E)
(see Section 4A2); one has to distinguish two cases depending on whether ak+1(E ′) vanishes or not.
Assume first ak+1(E ′) = 0; then, by (4-28), we know that the eigenvector of H+0 actually satisfies the
Dirichlet boundary conditions at L; thus, E ′ is a solution to (4-41), i.e., an eigenvalue of HL , and (4-28)
gives a (nonnormalized) eigenvector.

Assume now that ak+1(E ′) 6= 0; then, by Rouché’s theorem, the unique solution to (4-41) close to E ′

satisfies

E − E ′ =−
ρ2N (E ′)
β ′k+1(E

′)
ak+1(E ′)(1+ o(ρ2N (E ′))). (4-44)

(2) If E ′ is an eigenvalue of H−k but not of H+0 , mutatis mutandis, the analysis is the same as in point (1).

(3) If E ′ is an eigenvalue of both H+0 and H−k , then we are in a resonant tunneling situation. The
analysis done in the Appendix shows that, near E ′, HL has two eigenvalues, say E±, satisfying, for some
constant α > 0,

E±− E ′ =±αρN (E ′))
(
1+ O(Nρ(E ′)N )

)
. (4-45)

This completes the proof of the statements of Theorem 4.2 for the eigenvalues outside 6Z.

The eigenvalues inside 6Z. We now study the eigenvalues in the region 6◦Z. One can express ρ(E) in
terms of the Bloch quasimomentum θp(E) and use ρ−1(E)= ρ(E). Notice that, on 6◦Z, one has:

• Im ρ(E) does not vanish.

• The function E 7→ ρ(E) is real analytic.

• The functions E 7→ a0
p(E), E 7→ a0

p−1(E), E 7→ ak+1(E) and E 7→ bk+1(E) are real-valued
polynomials.

We prove:

Lemma 4.10. The function αk+1 is analytic and does not vanish on 6◦Z.

Proof. Assume that the function αk+1 vanishes at a point E0 in 6◦Z.

• If ρ(E0) 6= ρ
−1(E0), then one has ak+1(E0)(a0

p(E0)−ρ
−1(E0))+bk+1(E0)a0

p−1(E0)= 0; as ρ(E0) 6=

ρ−1(E0) and E0 ∈6
◦

Z, one has ρ−1(E0)= ρ(E0) 6∈ R; thus, for

ak+1(E0)(a0
p(E0)− ρ

−1(E0))− bk+1(E0)a0
p−1(E0)
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to vanish, one needs ak+1(E0) = 0 and a0
p−1(E0) = 0 (as bk+1 and ak+1 don’t vanish together); this

implies that ρ(E0)=±1 and contradicts ρ(E0) 6= ρ
−1(E0).

• If ρ(E0)= ρ
−1(E0), such a point E0 is a simple root of the three functions a0

p−1, ρ− ρ−1 and a0
p − ρ

that are analytic near E0 (see points (1)–(4) in Section 4A1). Moreover, one checks that the derivatives of
these functions at that point are respectively real, purely imaginary and neither real nor purely imaginary;
for E close to E0, one has

a0
p−1(E)= A(E − E0)(1+ O(E − E0)),

ρ(E)− ρ−1(E)= 2iC(E − E0)(1+ O(E − E0)),

a0
p(E)− ρ

−1(E)= (B+ iC)(E − E0)(1+ O(E − E0)), where (A, B,C) ∈ (R∗)3.

(4-46)

Now, as ak+1 and bk+1 are real-valued and can’t vanish at the same point, we see that αk+1(E0) 6= 0.
This complete the proof of Lemma 4.10 �

Now, as L = N p+ k, the characteristic equation (4-38) (valid for E ∈6◦Z) becomes

ρ2N (E)= e2i N pθp(E) =−
αk+1(E)
αk+1(E)

=−
βk+1(E)

βk+1(E)

=
ak+1(E)(ρ(E)− a0

p(E))− bk+1(E)a0
p−1(E)

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)
=: e2ihk(E). (4-47)

By Lemma 4.10, the function E 7→ hk(E) defined in (4-47) is real analytic on 6◦Z. Clearly, as we are
inside 6Z, ρ is real only at bands’ edges or closed gaps, hk takes values in πZ only at bands’ edges or
closed gaps. This implies Theorem 4.2(a). We prove:

Lemma 4.11. The function hk can be extended continuously from 6◦Z to 6Z; for E0 ∈ ∂6Z, one has

hk(E0) ∈

{π
2 +πZ if ak+1(E0) 6= 0 and ak+1(E0)(ρ(E0)− a0

p(E0))− bk+1(E0)a0
p−1(E0)= 0,

πZ if not.

The function θp,L is strictly increasing on the bands of 6Z.

Proof. Pick E0 ∈ ∂6Z. It suffices to study the behavior of, for E ∈6Z,

E 7→ s(E) := ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)

near E0 inside 6Z. Write E = E0± t2 for t real and positive; here, the sign ± depends on whether E0 is
a left or right edge of 6Z and is chosen so that E = E0± t2

∈6◦Z for t small.
First, t 7→ ρ(E0± t2) is analytic near 0; thus, so is t 7→ s(E0± t2). Solving the characteristic equation

ρ2(E)−1(E)ρ(E)+ 1= 0, one finds

ρ(E0± t2)= ρ(E0)+ iat + bt2
+ O(t3), a ∈ R∗, b ∈ R.

Thus,

s(E0± t2)= s(E0)+ iak+1(E0) · a · t + c · t2
+ O(t3),
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where

c :=a′k+1(E0)(ρ(E0)−a0
p(E0))+ak+1(E0)(b−(a0

p)
′(E0))−(b′k+1(E0)a0

p−1(E0)+bk+1(E0)(a0
p−1)

′(E0)).

Hence:

• If s(E0) 6= 0, then s(E0± t2)= s(E0)+ O(t); hence, hk(E0± t2)= πn+ O(t) for some n ∈ Z.

• If s(E0)= 0 and ak+1(E0) 6= 0, one has s(E0± t2)= iak+1(E0) · a · t + O(t2); thus, hk(E0± t2)=
π
2 +πn+ O(t) for some n ∈ Z.

• If s(E0)=ak+1(E0)=0, one has bk+1(E0) 6=0, a0
p−1(E0)=0, ρ(E0)=a0

p(E0) and (a0
p−1)

′(E0) 6=0;
thus s(E0± t2)=−bk+1(E0)(a0

p−1)
′(E0)t2

+0(t2); hence, hk(E0± t2)= πn+O(t) for some n ∈Z.

This completes the proof of the statement of Lemma 4.11 on the function hk .

Let us now control the monotony of θp,L (see Theorem 4.2) on the bands of 6Z. It is well known that,
keeping the above notations, θp(E0 ± t2)− θp(E0) = ±αt (1+ tg0(t)) with α > 0. The computations
done in the previous paragraph show that hk(E0± t2)= hk(E0)+ atk(1+ tg1(t)), k ≥ 1. Hence:

• If k > 1, we have θp,L(E0± t2)− θp,L(E0)=±αt (1+ tg2(t)).

• If k = 1, we have θp,L(E0± t2)− θp,L(E0)= (±α+ a/(L − k))t (1+ tg2(t)).

Hence, θp,L is strictly increasing inside the band near E0 for L sufficiently large. Outside a neighborhood
of the edges of a band, by analyticity of hk , as the bands are compact, we have |θ ′p,L − θ

′
p|. L−1. As θp

is strictly increasing on each band, θp,L is also strictly increasing outside a neighborhood of the edges of
a band. This completes the proof of Lemma 4.11. �

One proves:

Lemma 4.12. Let E0 be a closed gap for H Z (see Definition 4.5). Then, for any L = N p+ k,

E0 ∈ σ(HL) ⇐⇒ hk(E0) ∈ πZ ⇐⇒ ak+1(E0)= 0 ⇐⇒ αk+1(E0) ∈ iR∗. (4-48)

Proof. The proof of the first equivalence follows immediately from Definition 4.5 and the quantization
condition (4-47); the second follows from (4-39) and the expansions in (4-46); the third follows from
Lemma 4.11, (4-39) and (4-47). �

Let us note that, in particular, closed gaps where ak+1 vanishes are eigenvalues of HL for all L= N p+k.

Remark 4.13. The characteristic equation (4-47) and the computations done at the end of the proof of
Lemma 4.10 show that, for L = N p+ k large, an energy E0 such that ρ(E0)= ρ

−1(E0) is an eigenvalue
of HL if and only if ak+1(E0)= 0. This is an extension of Lemma 4.8.

In view of the definition and monotony of θp,L , the quantization condition (4-47) is clearly equivalent
to (4-3). This completes the proof Theorem 4.1 on the eigenvalues of HL . Let us now turn to the
computation of the associated eigenfunctions.
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4A4. The Dirichlet eigenfunctions for a truncated periodic potential: the proof of Theorem 4.3. Recall
that we assume L = N p+ k. First, if (u j

l )
L
l=0 is an eigenfunction associated to the eigenvalue λ j , the

eigenvalue equation reads(
u j

l+1
u j

l

)
= Tl(λ j )

(
u j

l
u j

l−1

)
for 0≤ l ≤ L , where u j

L+1 = u j
−1 = 0.

To normalize the solution, we assume that u j
0 = 1. The coefficients we want to compute are

|ϕ j (L)|2 = |u
j
L |

2
( L∑

l=0

|u j
l |

2
)−1

and |ϕ j (0)|2 =
( L∑

l=0

|u j
l |

2
)−1

. (4-49)

Fix l = np+m. Thus, using the notations of Section 4A3 and the expressions (4-25), (4-26) and (4-23),
one computes(

u j
l

u j
l−1

)
= Tm−1,0(λ j )(T̃0(λ j ))

n
(

1
0

)
=

(
αm(λ j )ρ

n(λ j )+βm(λ j )ρ
−n(λ j )

αm−1(λ j )ρ
n(λ j )+βm−1(λ j )ρ

−n(λ j )

)
, (4-50)

where αm and βm are as defined in (4-39).

The eigenvectors associated to eigenvalues inside 6Z. As ρ−1(λ j ) = ρ(λ j ), βm(λ j ) = αm(λ j ) and as
the functions (αm)0≤m≤p−1 do not vanish on 6◦Z, we compute

|u j
np+m |

2
= 2|αm(λ j )|

2
(

1+Re
[
αm(λ j )

αm(λ j )
ρ2n(λ j )

])
. (4-51)

As L = N p+ k, using the quantization condition (4-47), we obtain that

L∑
l=0

|u j
l |

2

= 2
k∑

m=0

|αm(λ j )|
2
(

1+Re
[
αm(λ j )

αm(λ j )
ρ2N (λ j )

])
+ 2

p−1∑
m=0

|αm(λ j )|
2

N−1∑
n=0

(
1+Re

[
αm(λ j )

αm(λ j )
ρ2n(λ j )

])
= N p f (λ j )

(
1+

1
N p

f̃ (λ j )

)
, (4-52)

where we have defined

f (E) := 2
p

p−1∑
m=0

|αm(E)|2 (4-53)

and, using the quantization condition (4-47), computed

f̃ (E) :=
2

f (E)
Re
[( p−1∑

m=0

α2
m(E)

)
1

1− ρ2(E)

(
1+

αk+1(E)
αk+1(E)

)]

+
2

f (E)

k∑
m=0

|αm(E)|2
(

1−Re
[
αm(E)αk+1(E)

αm(E)αk+1(E)

])
. (4-54)
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The function E 7→ f (E) is real analytic and does not vanish on 6◦Z.
We prove:

Proposition 4.14. For E0, a closed gap, one has
∑p−1

m=0 α
2
m(E0)= 0.

Proof. By the definition of (a j , b j )— see (4-29) — and that of α j (E)— see (4-39) — the sequence
(α j (E)) j∈Z satisfies the equation α j+1+α j−1+(V j−E)α j =0. As T̃0(E)=Tp−1(E) · · · T0(E), by (4-23),
for j ∈Z one has α j+p(E)=ρ(E)α j (E). Hence, the column vector A(E)= (α1(E), . . . , αp(E))t satisfies

(Hρ − E)A(E)= 0, where Hρ =



V1 1 0 · · · 0 ρ(E)
1 V2 1 0 · · · 0
0 1 V3 1 · · · 0
...

. . .
...

0 · · · 0 1 Vp−1 1
ρ−1(E) 0 · · · 0 1 Vp


.

Thus, we have

〈(Hρ − E)A(E), A(E)〉R = 0, (4-55)

where 〈 · , · 〉R denotes the real scalar product over Cp, i.e.,

〈z1
...

z p

 ,
z′1
...

z′p

〉
R

=

p∑
j=1

z j z′j .

The functions E 7→ A(E) and E 7→ ρ(E) being analytic over 6◦Z (see Section 4A1 and Lemma 4.10),
one can differentiate (4-55) with respect to E to obtain

0=−〈A(E), A(E)〉R+ (ρ(E)− ρ−1(E))
(
ρ−1(E)ρ ′(E)α1(E)αp(E)−αp(E)α′1(E)+α1(E)α′p(E)

)
.

(4-56)
Here we have used the fact that, if H t

ρ is the transpose of the matrix Hρ , then

H t
ρ − Hρ = (ρ(E)− ρ−1(E))


0 · · · 0 −1
0 · · · 0 0
...

...

0 0 · · · 0
1 0 · · · 0

 .

At E0, a closed gap, one has ρ(E0)= ρ
−1(E0). Hence, (4-56) implies

0= 〈A(E0), A(E0)〉R =

p−1∑
m=0

α2
m(E0).

This completes the proof of Proposition 4.14. �
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In view of (4-54), the function f̃ is real analytic on 6◦Z; indeed, the only poles of the function
E 7→ [ρ(E)− ρ−1(E)]−1 in 6◦Z are the closed gaps; they are simple poles of this function and, by
Proposition 4.14, the real analytic function E 7→

∑p−1
m=0 α

2
m(E) vanishes at these poles.

Now that we have computed the normalization constant, let us compute the coefficient u j
L defined

in (4-49). As L = N p+ k, the characteristic equation for λ j — that is, (4-47) — reads

αk+1(λ j )ρ
N (λ j )=−βk+1(λ j )ρ

−N (λ j )=−αk+1(λ j )ρN (λ j ). (4-57)

Hence, one computes

u j
L = αk(λ j )ρ

N (λ j )+αk(λ j )ρN (λ j )= ρ
N (λ j )

αk(λ j )αk+1(λ j )−αk(λ j )αk+1(λ j )

αk+1(λ j )

=
−ρN (λ j )a0

p−1(λ j )

(ρ(λ j )− ρ−1(λ j ))αk+1(λ j )
=

−ei[N pθp(λ j )−hk(λ j )]a0
p−1(λ j )∣∣ak+1(λ j )(a0

p(λ j )− ρ−1(λ j ))+ bk+1(λ j )a0
p−1(λ j )

∣∣
=

−eiπ j a0
p−1(λ j )∣∣ak+1(λ j )(a0

p(λ j )− ρ−1(λ j ))+ bk+1(λ j )a0
p−1(λ j )

∣∣ , (4-58)

where we have used the quantization condition satisfied by λ j , the last equality in (4-47), and that

∣∣∣∣αk+1(λ j ) αk(λ j )

αk+1(λ j ) αk(λ j )

∣∣∣∣=
∣∣∣∣∣∣∣∣∣

a0
p−1(λ j )

ρ(λ j )− ρ−1(λ j )

a0
p(λ j )− ρ

−1(λ j )

ρ(λ j )− ρ−1(λ j )

−
a0

p−1(λ j )

ρ(λ j )− ρ−1(λ j )

ρ(λ j )− a0
p(λ j )

ρ(λ j )− ρ−1(λ j )

∣∣∣∣∣∣∣∣∣
∣∣∣∣bk+1(λ j ) bk(λ j )

ak+1(λ j ) ak(λ j )

∣∣∣∣
and ∣∣∣∣∣∣∣∣∣

1
a0

p(λ j )− ρ
−1(λ j )

ρ(λ j )− ρ−1(λ j )

−1
ρ(λ j )− a0

p(λ j )

ρ(λ j )− ρ−1(λ j )

∣∣∣∣∣∣∣∣∣=
∣∣∣∣bk(λ j ) bk+1(λ j )

ak(λ j ) ak+1(λ j )

∣∣∣∣= 1.

Lemma 4.15. Define the function f̃ −k (E) by

f̃ −k (E) :=
|a0

p−1(E)|
2

|ak+1(E)(a0
p(E)− ρ−1(E))+ bk+1(E)a0

p−1(E)|
2
.

Then the function f̃ −k does not vanish on 6◦Z.

Proof. By the definition of αk+1, one has

f̃ −k (E)=
|a0

p−1(E)|
2

|ρ(E)− ρ−1(E))|2|αk+1(E)|2
.

That this expression is well defined and does not vanish on 6◦Z follows from Lemma 4.10 and the
computations made in the proof thereof. �
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Plugging (4-58) into this and (4-51) into (4-49), recalling that u j
0 = 1, outside the bad closed gaps we

obtain (4-4) if

• in addition to (4-53) and (4-54), we set f +0 (E) := 1/ f (E) and f −k (E)= f +0 (E) · f̃ −k (E),

• we remember that the function a0
p−1 only changes sign in the gaps of the spectrum 6Z (see point (4)

in Section 4A1) and set σr to be the sign of −a0
p−1 on Br , the r -th band.

By (4-49) and (4-51), we obtain (4-4) using Lemma 4.15. This completes the proof of the statements
in Theorem 4.3 on the eigenfunctions of HL associated to eigenvalues in 6◦Z.

Remark 4.16. To complete our study let us also see what happens to the eigenfunctions near the edges
of the spectrum. Pick E0 ∈ ∂6Z. One then knows that, for E ∈6Z with E close to E0, one has

θp(E)− θp(E0)= a
√
|E − E0|(1+ o(1)) (4-59)

(see the proof of Lemma 4.11).
Let us rewrite f̃ (see (4-54)) as

f̃ (E)=
2

f (E)

[ p−1∑
m=0

|αm(E)|2 cos
(
hk(E)− 2hm−1(E)− pθp(E)

)] sin(hk(E))
sin(pθp(E))

+
2

f (E)

k∑
m=0

|αm(E)|2
(
1− cos

(
2(hk(E)− hm−1(E))

))
.

(4-60)

Let us first show:

Lemma 4.17. For any 0≤ m ≤ p− 1, E 7→ 2|αm(E)|2/(p f (E)) can be extended continuously from 6◦Z
to 6Z.

Proof. For p = 1 there is nothing to be done as 2|αm(E)|2/(p f (E))≡ 1.
For p ≥ 2, we note that for 0≤ m ≤ m+ 1≤ p− 1, as∣∣∣∣am+1(E) bm+1(E)

am(E) bm(E)

∣∣∣∣= 1

by (4-29),
0= am+1(E0)(a0

p(E0)− ρ
−1(E0))+ bm+1(E0)a0

p−1(E0)

= am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0)

if and only if a0
p−1(E0)= 0 (as this implies a0

p(E0)− ρ
−1(E0)= 0).

Let us assume this is the case. As p ≥ 2, we know that
∑p−1

j=0 |a j (E0)|
2
6= 0. By (4-46), for at least

one m0 ∈ {0, . . . , p − 1} one has am0(E0) 6= 0 and αm0(E) = bc−1am0(E0)+ O(
√
|E − E0|). Hence,

E 7→ 2|αm(E)|2/(p f (E)) can be continued to E0, setting

2|αm(E0)|
2

p f (E0)
=

|am(E0)|
2

|a0(E0)|2+ · · ·+ |ap−1(E0)|2
.
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Actually, f (E) can be continued at E0 by setting

f (E0)= |a0(E0)|
2
+ · · ·+ |ap−1(E0)|

2. (4-61)

Let us now assume that a0
p−1(E0) 6= 0. We study the behavior of αm near E0. Recall (4-39). Then one has

(1) either dm := am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0) 6= 0, in which case, by (4-46), one has

αm(E)= (dmc−1/
√
|E − E0|)(1+ o(1));

(2) or dm = am(E0)(a0
p(E0)−ρ

−1(E0))+bm(E0)a0
p−1(E0)= 0, in which case, since for some Am ∈R∗

and km ≥ 1 one has

am(E)(a0
p(E)− ρ

−1(E0))+ bm(E)a0
p−1(E)= Am(E − E0)

km (1+ o(1)),

by (4-46), one can continue αm to E0 by setting αm(E0)=
1
2am(E0).

As a0
p−1(E0) 6= 0, we know that for some m0 ∈ {0, . . . , p− 1} we are in case (a). Hence, one has

f (E)=
2

p|E − E0|

p−1∑
m=0

∣∣am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0)

∣∣2(1+ o(1)) (4-62)

and E 7→ 2|αm(E)|2/(p f (E)) can be continued to E0, setting

2|αm(E0)|
2

p f (E0)
=

|dm |
2

|d0|2+ · · ·+ |dp−1|2

(using the notation introduced in point (a)).
This completes the proof of Lemma 4.17. �

By Lemma 4.11, we know that, for 1 ≤ k ≤ p and E0 ∈ ∂6Z, one has 2hk(E0) ∈ πZ. Thus, for
1 ≤ k ≤ p, 1 ≤ m ≤ p and E0 ∈ ∂6Z, one has cos(hk(E0)− 2hm−1(E0)− pθp(E0)) sin(hk(E0)) = 0.
Using the expansions leading to the proof of Lemma 4.11, one gets

cos(hk(E)− 2hm−1(E)− pθp(E)) sin(hk(E))= c
√
|E − E0|(1+ o(1)).

Recalling (4-59) and the fact that pθp(E0)∈πZ, Lemma 4.17 implies that f̃ can be extended continuously
up to E0. Hence, the expansion (4-52) again yields

L∑
l=0

|u j
l |

2
� N p f (λ j ). (4-63)

Let us now review the computation (4-58) in this case. We distinguish two cases:

(1) If a0
p−1(E0)= 0, then (4-58) and the fact that ak+1(E0) 6= 0 (this case was dealt with in point (1)),

yields that, for |λ j − E0| sufficiently small,

|u j
L | �

√
|λ j − E0|.
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By (4-61) and (4-63), we obtain

|ϕ j (L)|2 �
|λ j − E0|

N p
and |ϕ j (0)|2 �

1
N p

. (4-64)

(2) If a0
p−1(E0) 6= 0, then

(a) if dk+1 6= 0 (see case (a) in the proof of Lemma 4.17), by (4-62) and (4-63) one has

|ϕ j (0)|2 �
|λ j − E0|

N p
and |ϕ j (L)|2 �

|λ j − E0|

N p
. (4-65)

(b) if dk+1 = 0, by (4-62) and (4-63) one has

|ϕ j (0)|2 �
|λ j − E0|

N p
and |ϕ j (L)|2 �

1
N p

. (4-66)

The eigenvectors associated to eigenvalues outside 6Z. Let us now turn to the eigenfunctions associated
to eigenvalues HL in the gaps of 6Z, i.e., in the region {E | |1(E)| > 2}. On R \6Z, the eigenvalue
E 7→ρ(E) is real-valued (recall that we pick it so that |ρ(E)|<1) and so are all the functions (αm)0≤m≤p−1

and (βm)0≤m≤p−1 (see (4-39)). For 0≤ m ≤ p− 1, (4-50) yields

|u j
np+m |

2
= α2

m(E)ρ
2n(E)+β2

m(E)ρ
−2n(E)+ 2αm(E)βm(E). (4-67)

As when we studied the eigenvalues of HL , let us now distinguish the cases when E is close to an
eigenvalue of H+0 or to an eigenvalue of H−k :

(1) Pick E ′ an eigenvalue of H+0 but not an eigenvalue of H−k ; then recall that a0
p−1(E

′) = 0 =
a0

p(E
′)− ρ(E ′). Thus, for 0 ≤ m ≤ p − 1, one has βm(E ′) = 0. Assume that E is close to E ′. As

E satisfies (4-44), using (4-41), (4-67) becomes

|u j
np+m |

2
= ρ2n(E ′)

∣∣∣∣αm(E ′)−
β ′m(E

′)

β ′k+1(E
′)

ak+1(E ′)[ρ(E ′)− ρ−1(E ′)]ρ2(N−n)(E ′)+ O(ρ2N (E))
∣∣∣∣2

for 0≤ m ≤ p− 1 if 0≤ n ≤ N − 1 and 0≤ m ≤ k if n = N .
Using (4-40), one computes

|u j
np+m |

2
= ρ2n(E ′)

∣∣∣∣am(E ′)−
β ′m(E

′)

β ′k+1(E
′)

ak+1(E ′)ρ2(N−n)(E ′)+ O(ρ2N (E))
∣∣∣∣2. (4-68)

This yields

L∑
l=0

|u j
l |

2
=

p−1∑
m=0

N−1∑
n=0

ρ2n(E ′)a2
m(E

′)+ O(Nρ2N (E))=
1

1− ρ2(E ′)

p−1∑
m=0

a2
m(E

′)+ O(Nρ2N (E)).

Moreover, by (4-49), (4-67) and (4-39), as a0
p−1(E

′)= 0= a0
p(E
′)− ρ(E ′), we obtain

|ϕ j (L)|2 = ρ2N (E ′)
(1− ρ2(E ′))a2

k+1(E
′)

[β ′k+1(E
′)]2

∑p−1
m=0 a2

m(E ′)

∣∣∣∣ β ′k(E ′) ak(E ′)
β ′k+1(E

′) ak+1(E ′)

∣∣∣∣2+ O(Nρ4N (E))

= γρ2N (E ′)+ O(Nρ4N (E)),
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where

γ :=
(1− ρ2(E ′))a2

k+1(E
′)

[β ′k+1(E
′)]2

∑p−1
m=0 a2

m(E ′)

(da0
p−1

d E
(E ′)

)2

> 0.

Hence, |ϕ j (L)| is exponentially small in L (recall |ρ(E)|< 1).

(2) If E ′ is an eigenvalue of H−k but not of H+0 , then, inverting the parts of H−k and H+0 , we see that
|ϕ j (L)| is of order 1. A precise asymptotic can be computed but it won’t be needed.

(3) If E ′ is an eigenvalue of H+0 and of H−k , the double well analysis done in the Appendix shows that,
for normalized eigenvectors, say ϕ j , j = 1, 2, associated to the two eigenvalues of HL close to E ′, the four
coefficients |ϕ j (0)| and |ϕ j (L)|, j = 1, 2, are of order 1. Again, precise asymptotics can be computed
but won’t be needed.

This completes the description of the eigenfunctions given by Theorem 4.3 and completes the proof of
this result.

5. Resonances in the periodic case

We are now in the state to prove the results stated in Section 1B. We first study the function E 7→ SL(E)
and E 7→ 0L(E) in the complex strip I + i(−∞, 0) for I ⊂6◦Z.

5A. The matrix 0L in the periodic case. Using Theorem 4.2, we first prove:

Theorem 5.1. Fix I ⊂ 6◦Z a compact interval. There exists εI > 0 and σI ∈ {+1,−1} such that, for
any N ≥ 0, there exists CN > 0 such that, for L sufficiently large with L ≡ k mod p, one has

sup
Re E∈I

−εI<Im E<0

|0L(E)−0eff
L (E)| ≤ CN L−N , (5-1)

where

0eff
L (E)=−

θ ′p(E)

sin uL(E)

(
e−iuL (E) f −k (E) σI

√

f −k (E) f +0 (E)
σI
√

f −k (E) f +0 (E) e−iuL (E) f +0 (E)

)

+

(∫
R

1/(λ− E) d N−k (λ) 0
0

∫
R

1/(λ− E) d N+0 (λ)

)
(5-2)

and uL(E) := (L − k)θp,L(E) (see (4-2)),

The sign σI only depends on the spectral band containing I .
Deeper in the lower half-plane, we obtain the following simpler estimate:

Theorem 5.2. There exists C > 0 such that, for any ε > 0 and L ≥ 1 sufficiently large with L = N p+ k,
one has

sup
Re E∈I

Im E<−ε

∣∣∣∣0L(E)−
(∫

R
1/(λ− E) d N−k (λ) 0

0
∫

R
1/(λ− E) d N+0 (λ)

)∣∣∣∣≤ Cε−2e−εL/C . (5-3)
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In Section 5B, the approximations (5-1) and (5-3) will be used to prove Theorems 1.5, 1.7 and 1.10.
Let us note that, as cot z = i + O(e−2i Im z), for ε ∈ (0, εI ) the asymptotics given by Theorems 5.1

and 5.2 coincide in the region {Re E ∈ I, Im E ∈ (−εI ,−ε)}; indeed, one has

sup
Re E∈I

−εI<Im E<−ε

∥∥∥∥ θ ′p(E)

sin uL(E)

(
e−iuL (E) f −k (E) σI

√

f −k (E) f +0 (E)
σI
√

f −k (E) f +0 (E) e−iuL (E) f +0 (E)

)∥∥∥∥≤ e−εL/C .

Let us now turn to the proofs of Theorems 5.1 and 5.2.

5A1. The proof of Theorem 5.1. To prove Theorem 5.1, we split the sum SL(E) into two parts, one
containing the Dirichlet eigenvalues “close” to Re E , the other containing those “far” from Re E . By
“far”, we mean that the distance to Re E is bounded from below by a small constant independent of L . The
“close” eigenvalues are then described by Theorem 4.2. For the “far” eigenvalues, the strong resolvent
convergence of HL to H+0 , that of H̃L to H−k (see Remark 1.6), and Combes–Thomas estimates enable
us to compute the limit and to show that the prelimit and the limit are O(L−∞) close to each other. For
the “close” eigenvalues, the sum occurring in (2-9), the definition of 0L , is a Riemann sum. We use the
Poisson summation formula to obtain a precise approximation.

As I is a compact interval in6◦Z, we pick ε > 0 such that, for E ∈ I , one has [E−6ε, E+6ε]⊂6◦Z. Let
χ ∈ C∞0 (R) be a nonnegative cut-off function such that χ ≡ 1 on [−4ε, 4ε] and χ ≡ 0 outside [−5ε, 5ε].
For E ∈ I , define χE( · )= χ( · − E).

We first give the asymptotic for the sum over the Dirichlet eigenvalues far from Re E . We prove:

Lemma 5.3. For any N > 1, there exists CN > 0 such that, for L sufficiently large with L ≡ k mod p,
one has

sup
E∈C

∣∣∣∣ L∑
j=1

1−χRe E(λ j )

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
− M̃(E)

∣∣∣∣≤ CN L−N , (5-4)

where

M̃(E) :=
(∫

R
(1−χRe E)(λ)/(λ− E) d N−k (λ) 0

0
∫

R
(1−χRe E)(λ)/(λ− E) d N+0 (λ)

)
. (5-5)

Proof of Lemma 5.3. Recall (see Theorem 2.2) that HL is the operator H+0 restricted to [[0, L]] with
Dirichlet boundary condition at L; as L ≡ k mod p, it is unitarily equivalent to the operator H−k restricted
to [[−L , 0]] with Dirichlet boundary condition at −L (see Remark 1.6).

Pick χ̃ ∈ C∞0 such that χ̃ ≡ 1 on σ(H+0 )∪ σ(H
−

k ). First, we compute

L∑
j=0

(1−χRe E)(λ j )
|ϕ j (0)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N+0 (λ)
λ− E

=
〈
δ0, [χ̃(1−χRe E)](HL)(HL − E)−1δ0

〉
−
〈
δ0, [χ̃(1−χRe E)](H+0 )(H

+

0 − E)−1δ0
〉
,
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L∑
j=0

(1−χRe E)(λ j )
|ϕ j (L)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N−k (λ)
λ− E

=
〈
δL , [χ̃(1−χRe E)](HL)(HL − E)−1δL

〉
−
〈
δL , [χ̃(1−χRe E)](H−k )(H

−

k − E)−1δL
〉
,

and
L∑

j=0

(1−χRe E)(λ j )
ϕ j (L)ϕ j (0)
λ j − E

=
〈
δL , [χ̃(1−χRe E)](HL)(HL − E)−1δ0

〉
.

By the definition of χRe E , the function λ 7→ (λ− E)−1χ̃(λ)(1− χRe E)(λ) is C∞0 on R; moreover, its
seminorms (see (4-14)) are bounded uniformly in E ∈ C. Thus there exists an almost analytic extension
of [χ̃(1−χRe E)]( · )( · − E)−1 such that, uniformly in E , one has (4-14).

In the same way as we obtained (4-16), we obtain∣∣〈δL , [(H̃L−z)−1
−(H−k −z)−1

]δL
〉∣∣+∣∣〈δ0, [(HL−z)−1

−(H+0 −z)−1
]δ0
〉∣∣+|〈δ0, (HL−z)−1δL〉|

≤
C
|Im z|2

e−L|Im z|/C . (5-6)

Plugging (5-6) into (4-15) and using (4-14) for [χ̃(1−χRe E)]( · )( · − E)−1, we get

sup
L≥1

L≡k mod p

L K
∣∣∣∣ L∑

j=0

(1−χRe E)(λ j )
|ϕ j (0)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N+0 (λ)
λ− E

∣∣∣∣<+∞ for all K ∈ N.

This entails (5-4) and completes the proof of Lemma 5.3. �

Let us now estimate the part of 0L(E) associated to the Dirichlet eigenvalues close to Re E . Define

0
χ

L (E)=
L∑

j=1

χRe E(λ j )

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
. (5-7)

We prove:

Lemma 5.4. There exists ε > 0 such that, for N ≥ 1, there exists CN such that, for L sufficiently large
with L ≡ k mod p, one has

sup
Re E∈I
−ε<Im E<0

|0
χ

L (E)−0
eff
L (E)+ M̃(E)| ≤ CN L−N ,

where M̃ is as defined in (5-5).

Clearly Lemmas 5.3 and 5.4 immediately yield Theorem 5.1.

Proof of Lemma 5.4. Recall that the quasimomentum θp defines a real analytic one-to-one monotonic
map from the interior of each band of spectrum onto the set (0, π), (−π, 0) or (−π, π) (depending on
the spectral band containing I +[−4ε, 4ε], where ε > 0 has been fixed above) (see, e.g., [Teschl 2000]).
Moreover, the derivative θ ′p is positive in the interior of a spectral band. Thus, for L sufficiently large, the
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real part of the derivative θ ′p,L (see (4-2)) is positive I+[−3ε, 3ε] and θp,L is real analytic one-to-one on a
complex neighborhood of (I +[−3ε, 3ε])+ i[−3ε, 3ε] (possibly at the expense of reducing ε somewhat).

By (2-9), (4-8) and Theorem 4.2, one may write

0
χ

L (E)=
1

L − k

∑
j∈Z

χRe E
(
θ−1

p,L(π j/(L − k))
)

θ−1
p,L(π j/(L − k))− E

M
(
θ−1

p,L

(
π j

L − k

))
, (5-8)

where

M(λ) :=
(

fk,L(λ) σI ei(L−k)θp,L (λ)
√

fk,L(λ) f0,L(λ)

σI ei(L−k)θp,L (λ)
√

fk,L(λ) f0,L(λ) f0,L(λ)

)
(5-9)

and the matrix M is analytic in the rectangle (I + [−3ε, 3ε])+ i[−3ε, 3ε]. Thus, the Poisson formula
tells us that

0
χ

L (E)=
1

L − k

∑
j∈Z

∫
R

e−2iπ j x
χRe E

(
θ−1

p,L(πx/(L − k))
)

θ−1
p,L(πx/(L − k))− E

M
(
θ−1

p,L

(
πx

L − k

))
dx

=

∑
j∈Z

1
π

∫
R

e−2i j (L−k)θp,L (λ)
χRe E(λ)

λ− E
θ ′p,L(λ)M(λ) dλ

=

∑
j∈Z

1
π

∫
R

M j,χ (E, λ, λ) dλ (5-10)

by the definition of χRe E ; here, we have set

M j,χ (E, λ, β) := e−2i j (L−k)θp,L (β+Re E) χ(λ)

β − i Im E
θ ′p,L(β +Re E)M(β +Re E).

Let us now study the individual terms in the last sum in (5-10). Recall that, on [−4ε, 4ε], χ is identically 1
and that λ 7→ θp,L(λ+ Re E) and λ 7→ M(λ) are analytic in (I + [−3ε, 3ε])+ i[−3ε, 3ε]; moreover,
by (4-3), for some δ > 0 one has

lim inf
L→+∞

inf
λ∈[−4ε,4ε]

θ ′p,L(λ+Re E)≥ lim inf
L→+∞

inf
E∈I

θ ′p,L(E)≥ δ. (5-11)

Recall also that Im E < 0. Consider χ̃ : R→ [0, 1] smooth such that χ̃ = 1 on [−2ε, 2ε] and χ̃ = 0
outside [−3ε, 3ε].

In the complex plane, consider the paths γ± : R→ C defined by

γ±(λ)= λ± 2iεχ̃(λ).

As −ε ≤ Im E < 0, by contour deformation we have∫
R

M j,χ (E, λ, λ) dλ=
∫

R

M j,χ (E, λ, γ+(λ)) dλ

=−2iπe−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+
∫

R

M j,χ (E, λ, γ−(λ)) dλ.

We then estimate:
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• For j < 0, using a nonstationary phase argument since the integrand is the product of a smooth function
with an rapidly oscillating function (using | j |(L − k) as the large parameter), one then estimates∫

R

M j,χ (E, λ, γ+(λ)) dλ= O
(
(| j |L)−∞

)
.

The phase function is complex but its real part is nonpositive as Im θp,L(γ+( · )+Re E)≥ 0 on the support
of χ (by (5-11)). Note that the off-diagonal terms of M(λ) also carry a rapidly oscillating exponential
(see (5-9)) but it clearly does not suffice to counter the main one.

• In the same way, for j > 0, one has∫
R

M j,χ (E, λ, γ−(λ)) dλ= O((| j |L)−∞).

Thus, we compute ∫
R

M j,χ (E, λ, λ) dλ= O
(
(| j |L)−∞

)
for j < 0, (5-12)∫

R

M j,χ (E, λ, λ) dλ=−2iπe−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+ O((| j |L)−∞) for j > 0. (5-13)

Finally, for j = 0, the contour deformation along γ+ yields∫
R

χ(λ)

λ− i Im E
M(λ+Re E) dλ=

∫
R

χRe E(λ)

λ− E
θ ′p,L(λ)

(
fk,L(λ) 0

0 f0,L(λ)

)
dλ+ O(L−∞)

=

∫
R

χRe E(λ)

λ− E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+ O(L−∞)

by Corollary 4.4.
Plugging this, (5-12) and (5-13) into (5-10) and computing the geometric sum immediately yields the

asymptotic expansion (where the remainder term is uniform on the rectangle I + i[−ε, 0))

0
χ

L (E)=−2i
∑
j>0

e−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+
∫

R

χRe E(λ)

λ−E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+O(L−∞)

=
−e−i(L−k)θp,L (E)

sin((L−k)θp,L(E))
θ ′p,L(E)M(E)+

∫
R

χRe E(λ)

λ−E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+O(L−∞). (5-14)

This completes the proof of Lemma 5.4. �

5A2. The proof of Theorem 5.2. To prove (5-1), for Im E <−ε it suffices to write

L∑
j=0

|ϕ j (0)|2

λ j − E
−

∫
R

d N+0 (λ)
λ− E

= 〈δ0, (HL − E)−1δ0〉− 〈δ0, (H+0 − E)−1δ0〉

= 〈δ0, (HL − E)−1δL〉〈δL+1, (H+0 − E)−1δ0〉
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and
L∑

j=0

|ϕ j (L)|2

λ j − E
−

∫
R

d N−k (λ)
λ− E

= 〈δ0, (HL − E)−1δL〉〈δL+1, (H−k − E)−1δ0〉,

L∑
j=0

ϕ j (L)ϕ j (0)
λ j − E

= 〈δL , (HL − E)−1δ0〉,

and to use the Combes–Thomas estimate (5-6). This completes the proof of Theorem 5.2.

5B. The proofs of Theorems 1.5, 1.7 and 1.10. We will now use Theorems 5.1 and 5.2 to prove Theo-
rems 1.5, 1.7 and 1.10.

5B1. The proof of Theorem 1.5. The first statement of Theorem 1.5 is an immediate consequence of the
characteristic equations for the resonances (2-4) and (2-8) and the description of the eigenvalues of HL

given in Theorem 4.2.
When • = N, i.e., for the operator on the half-line, if I ⊂ (−2, 2) does not meet 6N, there exists

C > 0 such that, for L sufficiently large, dist(I, σ (HL)) > 1/C . Thus, on the set I − i[0,+∞), one has
Im SL(E)≤ Im E/C . Since on I one has Im θp(E)>1/C (see Section 2), the characteristic equation (2-4)
admits a solution E such that Re E ∈ I only if Im E < 1/C2. This completes the proof of Theorem 1.5(1)
for •= N.

For • = Z, i.e., to study (2-8), one reasons in the same way except that one replaces the study of
SL(E) by that of 〈0L(E)u, u〉 for u an arbitrary vector in C2 of unit length. This completes the proof of
Theorem 1.5(1).

Point (3a) is an immediate consequence of Theorems 3.3 and 3.2 and the description of the eigenvalues
of HL outside 6Z. Notice that, in the present case, d j in Theorems 3.3 and 3.2 is bounded from below by
a constant independent of L , and a•j is exponentially small and described by Theorem 4.2.

Point (3b) is an immediate consequence of the description of the eigenvalues of HL outside 6Z in
Theorems 5.2(2) and 3.1. Indeed, in the present case, d j and a•j are both of order 1; thus, Theorem 3.1
guarantees, around the common eigenvalue for H−k and H+0 , a rectangle of width of order 1 free of
resonances.

Let us now turn to the proof of point (2). We first prove the following corollary of Theorem 5.1:

Corollary 5.5. Fix I ⊂6◦Z compact. There exists η0 > 0 such that, for L sufficiently large, one has

min
Re E∈I

Im E∈[−η0/L ,0)

|SL(E)+ e−iθ(E)
| ≥ η0 and min

Re E∈I
Im E∈[−η0/L ,0)

|det(0L(E)+ e−iθ(E))| ≥ η0. (5-15)

Clearly, Corollary 5.5 implies that neither (2-4) nor (2-8) can have a solution in I + i]−η0/L , 0]. This
proves Theorem 1.5(2).

Before proving Corollary 5.5, we first prove Propositions 5.7 and 5.8, as these will be used in the proof
of Corollary 5.5.
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5B2. Results on the auxiliary functions defined in Section 1B2. Recall that N−k is defined in Section 1B2.
We prove:

Proposition 5.6. For k ∈ {0, . . . , p− 1}, d N−k is a positive measure that is absolutely continuous on 6Z.
Moreover, its density, say E 7→ n−k (E), is real analytic on 6◦Z and there exists f −k :6

◦

Z→ R a positive
real analytic function such that, on 6◦Z, one has n−k (E)= f −k (E)n(E).

Proof. Proposition 5.6 is an immediate consequence of Theorems 5.1 and 5.2 and Corollary 4.4. �

For 4−k defined in (1-5), we prove:

Proposition 5.7. 4−k vanishes identically if and only if V ≡ 0, i.e., V vanishes identically. Moreover, if
V 6≡ 0 then there exists ξ−k 6= 0 and α−k ∈ {2, 3, . . . } such that 4−k (E)∼ ξ

−

k E−α
−

k as |E | →∞, Im E < 0.

Proof. We will do the proofs for the function 4−k . Proposition 5.7 is an immediate consequence of the
fact that, in the lower half-plane, the function E 7→ −e−i arccos(E/2)

=−
1
2 E −

√
1
4 E2
− 1 (i.e., the choice

of it defined above) is equal to the Stieltjes (or Borel) transform of the spectral measure associated to
the Dirichlet Laplacian on N and the vector δ0; this follows from a direct computation (see Remark 2.1
and (2-2) for n = 0). Now, if one lets W be the symmetric of τk V with respect to 0, the spectral measure
d N−k is also the spectral measure of the Schrödinger operator Hk =−1+W on N associated to δ0. The
equality of the Borel transforms implies the equality of the measures but δ0 is cyclic for both operators,
so the operators have equal spectral measures. This implies that the two operators are equal and, thus, the
symmetric of τk V has to vanish identically on N. As V is periodic, V must vanish identically.

As for the second point, if the function 4−k were to vanish to infinite order at E = −i∞, as each
of the terms

∫
R

1/(λ− E) d N−k (λ) and −1
2 E −

√
1
4 E2
− 1 admits an infinite asymptotic expansion in

powers of E−1, these two expansions would be equal. The n-th coefficient of these expansions are the
n-th moments of the spectral measures of Hk and −1+0 , respectively (associated to the cyclic vector δ0).
So these moments would coincide and, thus, the spectral measures would coincide. One concludes as
above. �

For c• defined in (1-6) and (1-7), we prove:

Proposition 5.8. Pick • ∈ {N,Z}. Let I ⊂ (−2, 2)∩6◦Z be a compact interval.
There exists a neighborhood of I such that, in this neighborhood, the function E 7→ c•(E) is analytic

and has a positive imaginary part.
The function cN (resp. cZ) takes the value i only at the zeros of 4−k (resp. 4−k 4

+

0 ).

Proof. On {Im E < 0}, define the functions

g−k (E) := i +
4−k (E)
πn−k (E)

=
1

πn−k (E)
(S−k (E)+ e−i arccos(E/2)), (5-16)

g+0 (E) := i +
4+0 (E)

πn+0 (E)
=

1
πn+0 (E)

(S+0 (E)+ e−i arccos(E/2)). (5-17)

First, the analyticity of g−k and g+0 is clear; indeed, all the functions involved are analytic and the
functions n+0 and n−k stay positive on 6◦Z. Moreover, these functions can be analytically continued through
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(−2, 2)∩6◦Z . By (1-4), for E real one has Im g−k (E)= Im g+0 (E)= Im e−iθ(E), which is positive (see
Section 2). Thus the functions E 7→ g−k (E) and E 7→ g+0 (E) do not vanish on I . Moreover, as

g+0 (E)g
−

k (E)− 1
g+0 (E)+ g−k (E)

=−
1

g+0 (E)+ g−k (E)
+

1
1/g+0 (E)+ 1/g−k (E)

, (5-18)

this function has a positive imaginary part on I .
This proves the first two properties of c• stated in Proposition 5.8. By the very definition of c• and g−k ,

the last property stated in Proposition 5.8 is obviously satisfied in the case of the half-line; for the full
line, i.e., if •= Z, the last property is a consequence of the computation

cZ(E)− i =
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

− i =
(g+0 (E)− i)(g−k (E)− i)

g+0 (E)+ g−k (E)

=
4+0 (E)4

−

k (E)

2iπ2n+0 (E)n
−

k (E)+πn−k (E)4
+

0 (E)+πn+0 (E)4
−

k (E)
. (5-19)

This completes the proof of Proposition 5.8. �

5B3. The proof of Corollary 5.5. In view of Theorem 5.1, to obtain (5-15) it suffices to prove that there
exists η0 > 0 such that, for L sufficiently large, one has

min
Re E∈I

Im E∈[−η0/L ,0)

∣∣∣∣θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
∣∣∣∣≥ η0,

where uL(E) := (L − k)θp,L(E).
We compute

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
= θ ′p,L(E) f −k (E)(cot uL(E)− g−k (E)), (5-20)

where g−k is as defined in (5-16).
Thus, ∣∣∣∣θ ′p,L(E) f −k (E)e

−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
∣∣∣∣& |cot uL(E)− g−k (E)|

as, for η sufficiently small and L ≥ 1, one has

0< min
Re E∈I

Im E∈[−η/L ,0)

|θ ′p,L(E) f −k (E)| ≤ max
Re E∈I

Im E∈[−η/L ,0)

|θ ′p,L(E) f −k (E)|<+∞.

Now notice that by Corollary 4.4, for E ∈ I , one has

Im
(∫

R

d N−k (λ)
λ− E

)
=−θ ′p,L(E) f −k (E)=−

1
π

n−k (E). (5-21)

Thus, as E 7→ Im e−iθ(E) is positive on I , the analytic function E 7→ g−k (E) has positive imaginary
part larger than, say 2η̃ on I ; hence, it has imaginary part larger than, say, η̃ in some neighborhood
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of I + D(0, η0) (for sufficiently small η0 > 0). Let M be the maximum modulus of this function
on I + D(0, η0). Then, as maxRe E∈I, Im E∈[−η0/L ,0) |θ

′

p,L(E)|. 1, one has

max
Re E∈I

Im E∈[−η0/L ,0)
|cot(uL (E))|<2M

|Im cot uL(E)|. (M2
+ 1)η0.

Possibly reducing η0, this guarantees that, for Re E ∈ I and Im E ∈ [−η0/L , 0), one has

|cot uL(E)− g−k (E)| ≥ 2M −M ≥ M or Im(cot uL(E)− g−k (E))≤−η̃+
1
2 η̃ =−

1
2 η̃.

This completes the proof of the first lower bound in (5-15) in Corollary 5.5.
To prove the second bound in (5-15), using (5-2) we compute

det(0eff
L (E)+ e−iθ(E))

n−k (E)n
+

0 (E)
= (cot uL(E)− g−k (E))(cot uL(E)− g+0 (E))−

1

sin2 uL(E)

=−(g+0 (E)+ g−k (E))
(

cot uL(E)−
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

)
, (5-22)

where g−k and g+0 are defined by (5-16) and (5-17).
Using Proposition 5.8, one then concludes the nonvanishing of E 7→ det(0eff

L (E)+ e−iθ(E)) in the
complex rectangle {Re E ∈ I, Im E ∈ [−η0/L , 0)} (for η0 sufficiently small) in the same way as above.
This completes the proof of Corollary 5.5.

5B4. The proof of Theorem 1.7. To solve (2-4) and (2-8), by Theorem 5.1, we first solve the equations

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
=

∫
R

d N−k (λ)
λ− E

− e−iθ(E) and det(0eff
L (E)+ e−iθ(E))= 0 (5-23)

in a rectangle I + i[−η,−η̃/L]. Indeed, in such a rectangle, by Theorem 5.1 equations (2-4) and (2-8)
are equivalent to

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
=

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
+ O(L−∞)

and det(0eff
L (E)+ e−iθ(E))= O(L−∞),

(5-24)

respectively, where the terms O(L−∞) are analytic in a rectangle Ĩ + i[−2η,−0) (where I ⊂ Ĩ ) and the
bound O(L−∞) holds in the supremum norm.

Thanks to (5-20) for •= N and to (5-22) for •= Z, to solve the equations (5-23) it suffices to solve

cot uL(E)= c•(E), (5-25)

where we recall uL(E) := (L − k)θp,L(E), g+0 and g−k are as defined in (5-17) and (5-16), respectively,
and, as in Section 1B3, we have set

• cN(E) := g−k (E) in the case of the half-line,
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• cZ(E) :=
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

in the case of the line.

We want to solve (5-25) is a rectangle I + i[−ε, 0) for some ε small but fixed. Using Proposition 5.8,
we pick ε so small that, in the rectangle I + i[−ε, 0], the only zeros of c•− i are those on the real line
and Im c• is positive in I + i[−ε, 0).

To solve (5-25), we change variables u = (L − k)θp,L(E), that is, we write

E = θ−1
p,L

(
u

L − k

)
.

As, for L0 sufficiently large, infL≥L0, E∈I+i[−ε,0) Re θ ′p,L(E) > c > 0, at the cost of possibly re-
ducing ε this real analytic change of variables maps I + [−ε, ε] + i[−ε, 0) into, say, DL such that
IL+ i[−η(L−k), 0] ⊂ DL (for some η > 0), where IL = (L−k)θp,L

(
I +

[
−

1
2ε,

1
2ε
])

; the inverse change
of variable maps IL+ i[−η(L−k), 0] into some domain, say D̃L , such that I+[−ε′, ε′]+ i[−ε′, 0] ⊂ D̃L

(for some 0< ε′ < ε). Now, to find all the solutions to (5-25) in I + i[−ε′, 0), we first solve the following
equation in IL + i[−η(L − k), 0]:

cot u = c• ◦ θ−1
p,L

(
u

L − k

)
(5-26)

As u 7→ cot u is π -periodic, we split IL + i[−η(L − k), 0] into vertical strips of the type

lπ + [0, π] + i[−η(L − k), 0], l− ≤ l ≤ l+, (l−, l+) ∈ Z2.

Without loss of generality, we may assume that IL = [l−, l+]π . To solve (5-26) on the rectangle
lπ+[0, π]+i[−η(L−k), 0], we shift u by lπ and solve the following equation on [0, π]+i[−η(L−k), 0]:

cot u = c•l,L(u), where c•l,L( · ) := c• ◦ θ−1
p,L

(
· + lπ
L − k

)
. (5-27)

In proving Theorem 1.5, we have already shown that, for some η̃ > 0 (independent of L sufficiently
large and l− ≤ l ≤ l+), (5-27) does not have a solution in [0, π] + i[−η̃, 0]. The cotangent is an
analytic one-to-one mapping from [0, π)+ i(−∞, 0] to C+ \ {i}. Thus, for L sufficiently large and η̃
sufficiently small, the cotangent defines a one-to-one mapping from [0, π)+ i[−η(L − k),−η̃] onto
TL = D(z+, r+) \ D(z−, r−), analytic in the interior of [0, π)+ i[−η(L − k),−η̃] and continuous up to
the boundary, where we have defined

z+ = i
e4η(L−k)

+ 1
e4η(L−k)− 1

, z− = i
e4η̃
− 1

e4η̃− 1
, r+ =

2e2η̃

e4η̃− 1
, r− =

2e2η(L−k)

e4η(L−k)− 1
.

Moreover, the boundaries {0}+ i[−η(L − k),−η̃] and {π}+ i[−η(L − k),−η̃] are mapped onto the
interval [z−+ ir−, z++ ir+].

Let Z̃ • denote the finite set of zeros of E 7→ c•(E)− i in I . Then, by a Taylor expansion near the zeros
of c− i , we know that, for η sufficiently small, there exist ε0 > 0 and k̃ ≥ 1 such that, for L sufficiently
large:
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• For ε ∈ (0, ε0), there exists 0< η− such that, for l− ≤ l ≤ l+, if one has∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣≥ ε for all Ẽ ∈ Z̃ •,

then one has η− ≤ |Im c•l,L(u)− 1| for all u ∈ [0, π] + i[−η(L − k), 0].

• For u ∈ [0, π] + i[−η(L − k), 0] and Ẽ the point in Z̃ • closest to θ−1
p,L(lπ/(L − k)), one has

ε0 ≤ (1− Im c•l,L(u)) ·
[∣∣∣∣θ−1

p,L

(
Re u+ lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−k̃

≤
1
ε0
, (5-28)

where k̃ is the order of Ẽ as a zero of E 7→ c•(E)− i .

As a consequence of the above description of c•l,L , we obtain:

Lemma 5.9. There exists η̃ and η small such that, for L sufficiently large, for all l− ≤ l ≤ l+, u 7→ c•l,L(u)
maps the rectangle [0, π]+ i[−η(L − k),−η̃] into a compact subset of D(z+, r+) \ D(z−, r−) in such a
way that

sup
u∈∂([0,π ]+i[−η(L−k),−η̃])

|cot u− c•l,L(u)|&
(∣∣∣∣Ẽ − θ−1

p,L

(
lπ

L − k

)∣∣∣∣+ η̃

L − k

)k̃

, (5-29)

where Ẽ is the root of E 7→ c•(E)− i closest to θ−1
p,L(lπ/(L − k)) and k̃ is the order of this root.

Note that, under the assumptions of Lemma 5.9, (5-29) implies that

sup
u∈∂([0,π ]+i[−η(L−k),−η̃])

|cot u− c•l,L(u)|& L−k̃ .

Thus we can define the analytic mapping cot−1
◦c•l,L on [0, π]+ i[−η(L− k),−η̃]; it maps the rectangle

[0, π] + i[−η(L − k),−η̃] into a compact subset of (0, π)+ i(−η(L − k),−η̃). Equation (5-27) on
[0, π] + i[−η(L − k),−η̃] is, thus, equivalent to the fixed point equation on the same rectangle,

u = cot−1
◦c•l,L(u) (5-30)

We note that, for α ∈ (0, 1) and L sufficiently large, if for some Ẽ ∈ Z̃ • of multiplicity k̃ one has
|θ−1

p,L(lπ/(L − k))− Ẽ |< L−α, then (5-27) has no solution in [0, π]+ i[−η(L − k),−η̃] outside of the
set

Rl,L := [0, π] + i
[
−η(L − k),

αk̃
4

log
[∣∣∣∣θ−1

p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ 1
L

]]
.

Indeed, for u ∈ ([0, π] + i[−η(L − k),−η̃]) \ Rl,L , by (5-28), that is, for

0≤ Re u ≤ π and −
αk̃
4

log L ≤
αk̃
4

log
[∣∣∣∣θ−1

p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ 1
L

]
≤ Im u ≤−η̃,

one has |c•l,L(u)− i |. L−αk̃ and |cot u− i |& L−αk̃/2.
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So if for some Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L − k))− Ẽ |< L−α , it suffices to solve (5-30) on Rl,L . We

compute the derivative of c•l,L in the interior of Rl,L :

d
du
(cot−1

◦c•l,L)(u)=−
1

L − k

c′ ◦ θ−1
p,L((u+ lπ)/(L − k))

1+ (c•l,L(u))2
·

1

θ ′p,L
(
θ−1

p,L((u+ lπ)/(L − k))
)

=
1

L − k

c′ ◦ θ−1
p,L((u+ lπ)/(L − k))

c•l,L(u)− i
·

1
c•l,L(u)+ i

·
1

θ ′p,L
(
θ−1

p,L((u+ lπ)/(L − k))
) .

Thus, fixing α ∈ (0, 1):

• If l is such that for some Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L− k))− Ẽ |< L−α , then for u ∈ Rl,L we estimate∣∣∣∣ d

du
(cot−1

◦c•l,L)(u)
∣∣∣∣

.
1

L − k

[∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−1

.
1

(L − k)|θ−1
p,L(lπ/(L − k))− Ẽ | +

∣∣log
[
|θ−1

p,L(lπ/(L − k))− Ẽ | + η̃/(L − k)
]∣∣

.
1

log L
. (5-31)

• If l is such that for all Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L−k))− Ẽ |≥ L−α , for u ∈[0, π]+i[−η(L−k),−η̃]

we estimate ∣∣∣∣ d
du
(cot−1

◦c•l,L)(u)
∣∣∣∣. 1

L − k

[∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−1

.
1

(L − k)|θ−1
p,L(lπ/(L − k))− Ẽ |

.
1

L1−α . (5-32)

Hence, for L sufficiently large, cot−1
◦c•l,L is a contraction on Rl,L . Equation (5-30) thus admits a

unique solution, say ũ•l,L , in the rectangle [0, π] + i[−η(L − k),−η̃]. This solution is a simple root of
u 7→ u− cot−1

◦c•l,L(u). Hence, ũ•l,L is the only solution to (5-27) in [0, π] + i[−η(L − k),−η̃].
By (5-24), for L sufficiently large and l− ≤ l ≤ l+, both the equations

SL ◦ θ
−1
p,L

(
u+ lπ
L − k

)
+ e−iθ(θ−1

p,L ((u+lπ)/(L−k)))
= 0,

det
(
0L ◦ θ

−1
p,L

(
u+ lπ
L − k

)
+ e−iθ(θ−1

p,L ((u+lπ)/(L−k)))
)
= 0,

(5-33)

can be rewritten as

u = cot−1(c•l,L(u)+ O(L−∞))= cot−1
◦c•l,L(u)+ O(L−∞) (5-34)

in [0, π] + i[−η(L − k),−η̃].
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Thus each of the equations in (5-33) admits a single solution in [0, π]+ i[−η(L−k),−η̃] and this root
is simple; moreover, this solution, say ul,L , satisfies |u•l,L − ũ•l,L | = O(L−∞); indeed, the bounds (5-31)
and (5-32) guarantee that one can apply Rouché’s theorem on the disk D(ũ•l,L , L−k) for any k ≥ 0.

Thus, we have proved:

Lemma 5.10. Pick I as above. Then there exists η > 0 such that, for L sufficiently large with L = N p+k,
the resonances in I + i[−η, 0] are the energies (z•l )l−≤l≤l+ defined by

z•l = θ
−1
p,L

(u•l,L + lπ

L − k

)
, (5-35)

belonging to I + i[−η, 0].

Let us complete the proof of Theorem 1.14, that is, prove that, for η sufficiently small and L sufficiently
large such that L ≡ k mod p, z•l is the unique resonance in

[1
2 Re(z̃•l + z̃•l−1),

1
2 Re(z̃•l + z̃•l+1)

]
+ i[−η, 0];

recall that z̃•l is defined in (1-9).
We first note that the Taylor expansion of θ−1

p,L , (4-1) and the quantization condition (4-3) imply that

z•l = λl +
1

πn(λl)L
u•l,L + O

((
log L

L

)2)
as Re ul,L ∈ [0, π) and − log L . Im ul,L .−1.

Moreover, as

c•l,L(u)= c•
[
λl +

u
πn(λl)L

+ O
(

u2

L2

)]
,

using (1-9) and (5-35) we compute

z•l − z̃•l =
1

πn(λl)L

(
u•l,L − cot−1

◦c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)])
+ O

((
log L

L

)2)
.

Thus, one has

z•l − z̃•l =
1

πn(λl)L

(
u•l,L − cot−1

◦c•l,L
[
cot−1

◦c•l,L(−iπn(λl) log L)
])
+ O

((
log L

L

)2)
.

As ul,L solves (5-34), sing (5-31) and (5-32) we thus obtain that

|z•l − z̃•l |.
1

L log L

∣∣u•l,L − cot−1
◦c•l,L(−iπn(λl) log L)

∣∣+( log L
L

)2

.
|u•l,L | + log L

L log2 L
+

(
log L

L

)2

.
1

L log L
,

using again Re ul,L ∈ [0, π) and − log L . Im ul,L .−1.
Taking into account (1-10), this completes the proof of Theorem 1.7.
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5B5. The proofs of Propositions 1.8 and 1.9. Proposition 1.9 is an immediate consequence of Theorem 1.7,
the definition (1-9) of z̃•l and the standard asymptotics of cot near−i∞, i.e., cot z= i+2ie−2i z

+O(e−4i z).

To prove Proposition 1.8, it suffices to notice that, under the assumptions of Proposition 1.8, the
bound (5-32) on the derivative of cot−1

◦c•l,L on the rectangle Rl,L becomes∣∣∣∣ d
du
(cot−1

◦c•l,L)(u)
∣∣∣∣. 1

L
.

Thus, as a solution to (5-30), u•l,L admits an asymptotic expansion in inverse powers of L . Plugging this
into (5-35) yields the asymptotic expansion for the resonance. Then (1-11) follows from the computation
of the first terms.

5B6. The proof of Theorem 1.10. Theorem 1.10 is an immediate consequence of Theorem 5.2, the fact
that the functions are analytic in the lower complex half-plane and have only finitely many zeros there,
and the argument principle.

5C. The half-line periodic perturbation: the proof of Theorem 1.11. Using the same notations as above,
we can write

H∞ =
(

H−
−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −1
+

0

)
,

where −1+0 is the Dirichlet Laplacian on `2(N).
Define the operators

0(E) := H−
−1− E −〈δ0|(−1

+

0 − E)−1
|δ0〉|δ−1〉〈δ−1|,

0̃(E) := −1+0 − E −〈δ−1|(H−−1− E)−1
|δ−1〉|δ0〉〈δ0|.

For Im E 6= 0, 〈δ−1|(H−−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉 have a nonvanishing imaginary part

of the same sign; hence, the complex number(
〈δ0|(−1

+

0 − E)−1
|δ0〉

)−1
−〈δ−1|(H−−1− E)−1

|δ−1〉

does not vanish. Thus, by rank-one perturbation theory, (see, e.g., [Simon 2005]), we know that 0(E)
and 0̃(E) are invertible and their inverses are given by

0−1(E) := (H−
−1− E)−1

+

∣∣(H−
−1− E)−1

|δ−1〉〈δ−1|(H−−1− E)−1
∣∣(

〈δ0|(−1
+

0 − E)−1|δ0〉
)−1
−〈δ−1|(H−−1− E)−1|δ−1〉

(5-36)

and

0̃−1(E) := (−1+0 − E)−1
+

∣∣(−1+0 − E)−1
|δ0〉〈δ0|(−1

+

0 − E)−1
∣∣(

〈δ−1|(H−−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉
. (5-37)

Thus, for Im E 6= 0, using Schur’s complement formula we compute

(H∞− E)−1
=

(
0(E)−1 γ (E)
γ ∗(E) 0̃(E)−1

)
, (5-38)
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where γ ∗(E) is the adjoint of γ (E) and

γ (E) := −|0(E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1
|.

Now, when coming from Im E > 0 and passing through (−2, 2)∩6◦Z, the complex numbers

〈δ−1|(H−−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉

keep imaginary parts of the same positive sign; thus, the two operator-valued functions E 7→ 0−1(E)
and E 7→ (H∞− E)−1 can be analytically continued through (−2, 2)∩6◦Z from the upper to the lower
complex half-plane (as operators from `2

comp(N) to `2
loc(N) and from `2

comp(Z) to `2
loc(Z), respectively).

When coming from the upper half-plane and passing through (−2, 2) \6Z and 6◦Z \ [−2, 2], (5-38)
also provides an analytic continuation of (H∞− E)−1. Definition (5-36) and formula (5-38) immediately
show that the poles of these continuations only occur at the zeros of the function

E 7→ 1−〈δ−1|(H−−1− E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1
|δ0〉 = 1− eiθ(E)

∫
R

d N−p−1(λ)

λ− E

when continued from the upper half-plane through the sets (−2, 2) \6Z and 6◦Z \ [−2, 2] (these sets are
finite unions of open intervals).

This completes the proof of Theorem 1.11.

6. Resonances in the random case

As for the periodic potential, for the random potential we start with a description of the function
E 7→ 0L(E) (see (2-9)), that is, with a description of the spectral data for the Dirichlet operator Hω,L .

6A. The matrix 0L in the random case. We recall a number of results on the Dirichlet eigenvalues of
Hω,L that will be used in our analysis.

It is well known that, under our assumptions, in dimension one the whole spectrum of Hω is in the
localization region (see, e.g., [Kunz and Souillard 1980; Cycon et al. 1987; Carmona and Lacroix 1990]),
that is:

Theorem 6.1. There exists ρ > 0 and α ∈ (0, 1) such that one has

sup
L∈N∪{+∞}

y∈[[0,L]]
Im E 6=0

E

{ ∑
x∈[[0,L]]

eρ|x−y|
|〈δx , (Hω,L − E)−1δy〉|

α

}
<∞ (6-1)

and

sup
L∈N∪{+∞}

y∈[[0,L]]

E

{ ∑
x∈[[0,L]]

eρ|x−y| sup
supp f⊂R
| f |≤1

|〈δx , f (Hω,L)δy〉|

}
<∞, (6-2)

where Hω,+∞ := H N
ω and [[0,+∞]] =N. The supremum is taken over the functions f that are Borelian

and compactly supported.

As a consequence, one can define localization centers, e.g., by means of the following results:
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Lemma 6.2 [Germinet and Klopp 2014]. Fix (lL)L a sequence of scales, i.e., lL →+∞ as L→+∞.
There exists ρ > 0 such that, for L sufficiently large, with probability larger than 1− e−`L , if

(1) ϕ j,ω is a normalized eigenvector of Hω,L associated to E j,ω in 6,

(2) x j (ω) ∈ [[0, L]] is a maximum of x 7→ |ϕ j,ω(x)| in [[0, L]],

then for x ∈ [[0, L]] one has

|ϕ j,ω(x)| ≤
√

Le2`L e−ρ|x−x j (ω)|. (6-3)

Note that Lemma 6.2 is of interest only if `L . L; otherwise (6-3) is obvious. This result can, for
example, be applied for the scales lL = 2 log L . In this case, the probability estimate of the bad sets (i.e.,
when the conclusions of Lemma 6.3 does not hold) is summable. The point x j (ω) is a localization center
for E j,ω or ϕ j,ω. It is not defined uniquely, but, one easily shows that there exists C > 0 such that for any
two localization centers, say x and x ′, one has |x − x ′| ≤ C log L (see [Germinet and Klopp 2014]). For
concreteness, we set the localization center associated to the eigenvalue E j,ω to be the leftmost maximum
of x 7→ ‖ϕ j,ω‖x .

We show:

Lemma 6.3. For any p > 0, there exist C > 0 and L0 > 0 (depending on α and p) such that, for L ≥ L0,
for any sequence satisfying (1-22), with probability at least 1− L−p there exist at most C`L eigenvalues
having a localization center in [[0, `L ]] ∪ [[L − `L , L]].

We will now use the fact that we are dealing with one-dimensional systems to improve upon the
estimate (6-3). We prove:

Theorem 6.4. For any δ > 0 and p ≥ 0, there exist C > 0 and L0 > 0 (depending on p and δ) such
that, for L ≥ L0, with probability at least 1 − L−p if E j,ω is an eigenvalue in 6 associated to the
eigenfunction ϕ j,ω and the localization center x j,ω then:

• If x j,ω ∈ [[0, L −C log L]], one has

−ρ(E j,ω)− δ ≤
log |ϕ j,ω(L)|

L − x j,ω
≤−ρ(E j,ω)+ δ. (6-4)

• If x j,ω ∈ [[C log L , L]], one has

−ρ(E j,ω)− δ ≤
log |ϕ j,ω(0)|

x j,ω
≤−ρ(E j,ω)+ δ. (6-5)

To analyze the resonances of H N
ω,L (resp. H Z

ω,L ), we shall use (6-4) (resp. (6-4) and (6-5)).
We now use these estimates as the starting point of a short digression from the main theme of this

paper. Let us first state a corollary to Theorem 6.4; we prove:

Theorem 6.5. For any δ > 0 and p ≥ 0, for L sufficiently large (depending on p and δ), with probability
at least 1− L−p, if E j,ω is an eigenvalue in 6 associated to the eigenfunction ϕ j,ω and the localization
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center x j,ω then, for |x − x j,ω| ≥ δL and 1≤ x ≤ L , one has

−ρ(E j,ω)− δ ≤
log
(
|ϕ j,ω(x)| + |ϕ j,ω(x − 1)|

)
|x − x j,ω|

≤ −ρ(E j,ω)+ δ. (6-6)

Compare (6-6) to (6-3). There are two improvements. First, the unknown rate of decay ρ is replaced
by the Lyapunov exponent ρ(E j,ω), which was expected to be the correct decay rate. Indeed, for the
one-dimensional discrete Anderson model on the half-axis, it is well known (see, e.g., [Bougerol and
Lacroix 1985; Carmona and Lacroix 1990; Pastur and Figotin 1992]) that, ω-almost surely, the spectrum is
localized and the eigenfunctions decay exponentially at infinity at a rate given by the Lyapunov exponent.
In Theorem 6.5, we state that, with good probability, this is true for finite volume restrictions.

Second, in (6-6), we get both an upper and lower bound on the eigenfunction. This is more precise
than (6-3).

To our knowledge, such a result was not known until the present paper. The strategy that we use to
prove this result can be applied in a more general one-dimensional setting to obtain analogues of (6-6)
(see [Klopp ≥ 2016]).

We complement this with the much simpler:

Lemma 6.6. For any C > 0 and p ≥ 0, there exists K > 0 and L0 > 0 (depending on p and C) such that,
for L ≥ L0, with probability at least 1− L−p if E j,ω is an eigenvalue in 6 associated to the eigenfunction
ϕ j,ω and the localization center x j,ω then:

• If x j,ω ∈ [[L −C log L , L]], one has L−K
≤ |ϕ j,ω(L)|.

• If x j,ω ∈ [[0,C log L]], one has L−K
≤ |ϕ j,ω(0)|.

The proof of this result is obvious and only uses the fact that the matrices in the cocycle defining the
operator (see Section 6C) are bounded, that is, equivalently, that the solutions to the Schrödinger equation
grow at most exponentially at a rate controlled by the potential.

Let us return to the resonances in the random case and the description of the function SL . Recall that
in (2-4) the values (λ j ) j are the eigenvalues (E j,ω)0≤ j≤L of Hω,L and the coefficients (a•j ) j are defined
in Theorem 2.2 and by (2-13). Thus, Theorem 6.4 describes the coefficients (a•j ) j coming into SL and 0L

(see (2-4) and (2-8)). Let us now state a few consequences of Theorem 6.4.
Fix a compact interval I in 6, the almost sure spectrum of Hω. For • ∈ {N,Z}, define

d•j,ω =
{

L − x j,ω for •= N,

min(x j,ω, L − x j,ω) for •= Z.
(6-7)

Taking p > 2 in Theorem 6.4 and using a Borel–Cantelli argument, we obtain:

ω-almost surely, for δ > 0 and L sufficiently large,

if λ j = E j,ω ∈ I and d•j,ω ≥ C log L then − 2ρ(λ j )− δ ≤
log a•j
d•j,ω

≤−2ρ(λ j )+ δ. (6-8)
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This and the continuity of the Lyapunov exponent (see, e.g., [Bougerol and Lacroix 1985; Carmona
and Lacroix 1990; Pastur and Figotin 1992]) guarantees that

ω-almost surely, for any δ > 0 and L large, one has − 2η• sup
E∈I

ρ(E)(1+ δ)L ≤ inf
λ j∈I

log a•j , (6-9)

where η• is as defined in Theorem 1.13.
To use the analysis performed in Section 3, we also need a description for the (λ j ) j , i.e., the Dirichlet

eigenvalues of Hω,L . To this end, we will use the results of [Germinet and Klopp 2014; Klopp 2011;
2013] (see also [Germinet and Klopp 2011]).

We first recall the Minami estimate satisfied by Hω,L (see, e.g., [Combes et al. 2009] and references
therein): there exists C > 0 such that, for I ⊂ R, one has

P
(
tr(1I (Hω,L))≥ 2

)
≤ E

(
tr(1I (Hω,L))

[
tr(1I (Hω,L))− 1

])
≤ C |I |2(L + 1)2.

Here 1I (H) denotes the spectral projector for the selfadjoint operator H onto the energy interval I .
By a simple covering argument, this entails the estimate

P(|λi − λ j | ≤ L−q for some i 6= j)≤ C L−q+2.

Thus, for q > 3, a Borel–Cantelli argument yields that

ω-almost surely, for L sufficiently large, min
i 6= j
|λi − λ j | ≥ L−q . (6-10)

6B. The proofs of the main results in the random case. We are now going to prove the results stated in
Section 1C.

6B1. The proof of Theorem 1.13. As for Theorem 1.5, this result follows from Theorem 3.1. Point (1)
is proved exactly as Theorem 1.5(1). Point (2) follows immediately from Theorem 3.1 and (6-9). This
completes the proof of Theorem 1.13.

6B2. The proof of Theorem 1.14. Recall that κ ∈ (0, 1). To prove (1) we proceed as follows. The
standard result guaranteeing the existence of the density of states N (see, e.g., [Bougerol and Lacroix
1985; Carmona and Lacroix 1990; Pastur and Figotin 1992]) implies that, ω-almost surely, one has

#{λ j ∈ I }
L + 1

→

∫
I

d N (E). (6-11)

This, in particular, shows that if I ⊂6◦ is a compact interval then, ω-almost surely, for L sufficiently
large I is covered by intervals of the form [λ j , λ j+1] and their number is of size � L (actually this holds
for λ j ∈ I + [−ε, ε] if ε > 0 is chosen small enough). Moreover, the estimate (6-10) guarantees that
d j ≥ L−q (for any q > 3 fixed) for all λ j ∈ I . Thus, Theorems 3.1, 3.2 and 3.3 and the estimate (6-8)
guarantee that, ω-almost surely, all the resonances in the strip I−i[e−Lκ , 0) are described by Theorem 3.3.
Indeed, for such a resonance the imaginary part must be larger than −e−Lκ; thus, by Theorem 3.1, for
every rectangle

[ 1
2(λ j +λ j−1),

1
2(λ j +λ j+1)

]
− i[e−Lκ , 0) containing a resonance, one has a•j . e−Lκ L2q

Thus, a•j � d2
j and one can apply Theorem 3.3 to compute the resonance.
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Let us count the number of those resonances. To this end, let `L = τ Lκ, where τ is to be chosen.
By (6-8) and (6-10), ω-almost surely one has a•j � d2

j for all j such that λ j ∈ I as long as the Dirichlet
eigenvalue λ j is associated to a localization center in [[0, L−`L ]] (actually this holds for λ j ∈ I +[−ε, ε]
if ε > 0 is chosen small enough); thus, we can apply Theorems 3.3 and 3.2 to each of the (λ j ) j that are
associated to a localization center in [[0, L−`L ]]. By (3-19), each of these eigenvalues gives rise to a single
simple resonance, the imaginary part of which is of size� a•j ; they lie above the line {Imz≥ e−ρ`L = e−Lκ

}

for τρ = 1. Actually, the estimate (6-10) guarantees that d j ≥ L−q (for any q > 3 fixed) and Theorem 3.2
shows that these resonances are the only ones above the line Imz ≥−L−q. Moreover, by Lemma 6.3, we
know there at most C`L eigenvalues λ j that do not have their localization center in [[0, L − `L ]]. Thus
we obtain, ω-almost surely,

lim
L→+∞

1
L

#
{
z resonance of Hω,L with Re z ∈ I, Im z ≥−e−Lκ}

=

∫
I

d N (E).

Point (2) is proved in the same way. Pick λ ∈ (0, 1). In addition to what was used above, one uses the
continuity of the density of states E 7→ n(E) and the Lyapunov exponent E 7→ ρ(E). Assume E is as in
point (2). Then, ω-almost surely, the reasoning done above shows that, for any η > 0, there exists ε0 > 0
such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{
λl eigenvalue of H N

ω,L in E+
ε

2n(E)
[−1+η, 1−η] with −eη•ρ(E)δL.e2η•ρ(E)λLa•l .−e−η•ρ(E)δL

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{
λl eigenvalue of H N

ω,L in E +
ε

2n(E)
[−1− η, 1+ η]

with − eη•ρ(E)δL . e2η•ρ(E)λLa•l .−e−η•ρ(E)δL
}
.

Using Theorem 6.4 and the continuity of the Lyapunov exponent in conjunction with the definition
of a j (see (2-4) and (2-13)), we obtain that, ω-almost surely, for any η > 0 there exists ε0 > 0 such that,
for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{

eigenvalue of H N
ω,L in E +

ε

2n(E)
[−1+ η, 1− η]with localization center in I •(L , δ,−η)

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{

eigenvalue of H N
ω,L in E +

ε

2n(E)
[−1− η, 1+ η] with localization center in I •(L , δ, η)

}
,

where I N(L , λ, δ, η) is the interval — here [r ] denotes the integer part of r ∈ R —

I N(L , λ, δ, η)= [Lλ] + [[−Lδ(1+ η), Lδ(1+ η)]]

and I Z(L , λ, δ, η) is the union of intervals

I Z(L , λ, δ, η)=
([1

2 Lλ
]
+ [[−Lδ(1+ η), Lδ(1+ η)]]

)
∪
([

L
(
1− 1

2λ
)]
+ [[−Lδ(1+ η), Lδ(1+ η)]]

)
.
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Now, using the exponential localization of the eigenfunctions, one has that, ω-almost surely, for any
η > 0 there exists ε0 > 0 such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{

eigenvalue of H N
ω,L ,λ,δ,−2η,• in E +

ε

2n(E)
[−1+ 2η, 1− 2η]

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{

eigenvalue of H N
ω,L ,λ,δ,2η,• in E +

ε

2n(E)
[−1− 2η, 1+ 2η]

}
, (6-12)

where H N
ω,L ,λ,δ,η,• = (H

N
ω,L)|I •(L ,λ,δ,η) with Dirichlet boundary conditions at the edges of the interval

I •(L , λ, δ, η).
This immediately yields point (2) for λ ∈ (0, 1), using (6-11) for the operators H N

ω,L ,λ,δ,η,•. The case
λ= 1 is dealt with in the same way.

As already said, point (3) is an “integral” version of point (2). Using the same ideas as above,
partitioning I =

⋃P
p=0 Ip so that |Ip| ∼ ε centered in E p, one proves

P∑
p=0

#
{

eigenvalue of H−ω,p,L ,• in E p +
ε

2n(E p)
[−1+ 2η, 1− 2η]

}
≤ #

{
z resonance of H •

ω,L in I + [−e−Lκ ,−e−cL
]
}

≤

P∑
p=0

#
{

eigenvalue of H+ω,p,L ,• in E p +
ε

2n(E p)
[−1− 2η, 1+ 2η]

}
,

where

• H−ω,p,L ,• is the operator H N
ω restricted to

– [[2Lκ , (inf(cρ−1(E p), 1)− η)L]] if •= N,
– [[2Lκ , (inf(cρ−1(E p), 1)/2− η)L]] ∪ [[(1− inf(cρ−1(E p), 1)/2+ η)L , L − 2Lκ ]] if •= Z;

• H+ω,p,L ,• is the operator H N
ω restricted to

– [[Lκ/2, (inf(cρ−1(E p), 1)+ η)L]] if •= N,
– [[Lκ/2, (inf(cρ−1(E p), 1)/2+ η)L]] ∪ [[(1− inf(cρ−1(E p), 1)/2− η)L , L − Lκ/2]] if •= Z.

In the computation above, we used the continuity of both the density of states E 7→ n(E) and the
Lyapunov exponent E 7→ ρ(E). Thus, we obtain

#
{
z resonance of H •

ω,L in I + (−∞, e−cL
]
}

= L
( P∑

p=0

inf(cρ−1(E p), 1)n(E p)|Ip| + o(1)
)
+ #{z resonance of H •

ω,L in I + (−∞, e−Lκ
]}.

The last term being controlled by Theorem 1.17, one obtains point (3) as the Riemann sum in the
right-hand side above converges to the integral in the right-hand side of (1-18) as ε→ 0. This completes
the proof of Theorem 1.14.
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6B3. The proof of Theorem 1.15. The proof of Theorem 1.15 relies on [Germinet and Klopp 2014, Theo-
rem 1.13], which describes the local distribution of the eigenvalues and localization centers (E j,ω, x j,ω);
namely, one has

lim
L→+∞

P
({
ω
∣∣ #{n | E j,ω ∈ E+L−1 In, x j,ω ∈ LCn} = kn for n= 1, . . . , p

})
=

p∏
n=1

e−µ̃n
(µ̃n)

kn

kn!
, (6-13)

where µ̃n := n(E)|In||Cn| for 1≤ n ≤ p.
Recall that (zL

j (ω)) j are the resonances of Hω,L . By the argument used in the proof of Theorem 1.14,
we know that, ω-almost surely, all the resonances in KL := [E − ε, E + ε]+ i[−e−Lκ , 0] are constructed
from the (λ j , a•j ) by formula (3-19). Thus, up to renumbering, the rescaled real and imaginary parts
(see (1-19)) become

x j = (Re z•l,L(ω)− E)L = (λ j − E)L + O(La j )= (E j,ω− E)L + O(Le−Lκ ),

y j =−
1

2L
log|Im z•l,L(ω)| = −

log a•j
2L
+ O(1/L)= ρ(E)

d•j,ω
L
+ o(1),

where λ j = E j,ω and d•j,ω is defined as in (6-7); here we used the continuity of E 7→ ρ(E).
On the other hand, for the resonances below the line in {Im z=−e−Lκ

}, one has y j . Lκ−1. So all these
resonances are “pushed upwards” towards the upper half-plane. Hence, the statement of Theorem 1.15 is
an immediate consequence of (6-13).

6B4. The proof of Theorem 1.16. Using the computations of the previous section, as E 6=E ′, Theorem 1.16
is a direct consequence of [Klopp 2011, Theorem 1.2] (see also [Germinet and Klopp 2014, Theorem 1.11]).

6B5. The proof of Theorem 1.17. Consider equations (2-4) and (2-8). By Theorem 6.4 and Lemma 6.3,
ω-almost surely, for L large the number of (a•j ) j larger than e−10`L is bounded by C`L . Solving (2-4)
and (2-8) in the strip {Re E ∈ I, Im E <−e−`L }, we can write SL(E)= S−L (E)+ S+L (E), where

S−L (E) :=
∑

aN
j ≤e−10`L

aN
j

λ j − E
and S+L (E) :=

∑
aN

j >e−10`L

aN
j

λ j − E
,

and similarly decompose 0L(E)= 0−L (E)+0
+

L (E). For L large, one then has

sup
Im E<−e−`L

‖S−L (E)‖+‖0
−

L (E)‖ ≤ e−8`L . (6-14)

The count of the number of resonances given by the proof of Theorems 2.2 and 2.3 then shows that the
equations (2-4) and (2-8), where SL and 0L are respectively replaced by S+L and 0+L , have at most C`L

solutions in the lower half-plane. We will call the equations where SL and 0L are replaced by S+L and 0+L
the +-equations. The analogues of Theorems 3.1, 3.2 and 3.3 for the +-equations and Theorem 6.4 show
that the only solutions to the +-equations in the strip {Re E ∈ I, −e−4`L/5 < Im E <−e−3`L/4} are given
by formulas (3-19) and (3-20) for the eigenvalues of the Dirichlet problem associated to a localization
center in

[[
L − 2`L , L − 1

2`L
]]

if •= N and in
[[ 1

2`L , 2`L
]]
∪
[[

L − 2`L , L − 1
2`L

]]
if •= Z. Thus, these
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λ j−1 λ j λ j+1
U j

Ũ j

R j

new path

Figure 8. The new path (in blue).

zeros are simple and separated by a distance at least L−4 from each other (recall (6-10)). Moreover, we
can cover the interval I by intervals of the type

[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, that is, one can write

I ⊂
j+⋃

j= j−

[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, (6-15)

where λ j−−1 6∈ I , λ1+ j+ 6∈ I , λ j− ∈ I and λ j+ ∈ I .
Consider now the line {Im E =−e−`L } and its intersection with the vertical strip[1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
− iR+.

Three things may occur:

(1) e−`L < a•j d
2
j |sin θ(λ j )|/C (the constant C is defined in Theorem 3.1); then, on the interval[ 1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
− ie−`L ,

one has
|S+L (E)+ e−iθ(E)

|& 1 and |det(0+L (E)+ e−iθ(E))|& 1; (6-16)

this follows from the proof of Theorem 3.1 (see in particular (3-5), (3-6), (3-7) and (3-8)) for some
fixed c > 0; recall that, on the interval I + ie−`L , one has |sin θ(E)|& 1.

(2) e−`L > Ca•j (the constant C is defined in Theorem 3.2); then, on the interval[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
− ie−`L ,

one has again (6-16) for a possibly different constant; this follows from the proof of Theorem 3.2 (see in
particular (3-15) and (3-16)).

(3) If we are neither in case (1) nor in case (2), then the line {Im E = −e−`L } may cross R j (defined
in Theorem 3.3; see also Figure 7); we change the contour {Im E =−e−`L } so as to enter Ũ j until we
reach the boundary of R j and then follow this boundary, getting closer to the real axis, turning around R j

and finally reaching the line {Im E = −e−`L } again on the other side of R j and following it up to the
boundary of Ũ j (see Figure 8); on this new line, the bound (6-16) again holds; moreover, this new line is
closer to the real axis than the line {Im E =−e−`L }.
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Let us call C` the path obtained by gluing together the paths constructed in points (1)–(3) for j−≤ j≤ j+

and the half-lines 1
2(λ j− + λ j−−1)− i[e−`L ,+∞) and 1

2(λ j+ + λ j++1)− i[e−`L ,+∞) (see (6-15)). One
can then apply Rouché’s theorem to compare the +-equations to the equations (2-4) and (2-8): by (6-14)
and (6-16), on the line C` one has |S−L |< |S

+

L + e−iθ
| and

|det(0L(E)+ e−iθ(E)) det(0+L (E)+ e−iθ(E))| ≤ 1
2 |det(0L(E)+ e−iθ(E))|.

Thus, the number of solutions to equations (2-4) and (2-8) below the line C` is bounded by C`L ; as
C` lies above {Im E =−e−`L }, in the half-plane {Im E <−e−`L } the equations (2-4) and (2-8) have at
most C`L solutions. We have proved Theorem 1.17.

6B6. The proof of Theorem 1.18. The first point in Theorem 1.18 is proved in the same way as point (2)
in Theorem 1.14 up to the change of scales, L being replaced by `L . Pick scales (`′L)L satisfying (1-22)
such that `′L � `L . One has:

Lemma 6.7. Fix two sequences (aL)L and (bL)L such that aL <bL . With probability one, for L sufficiently
large,

#
{
eigenvalue of Hω,`L−2`′L/ρ in [aL + e−`

′

L , bL − e−`
′

L ]
}

≤ #
{
eigenvalue of Hω,L in [aL , bL ] with localization center in [[0, `L ]]

}
≤ #

{
eigenvalue of Hω,`L+2`′L/ρ in [aL − e−`

′

L , bL + e−`
′

L ]
}
,

where ρ is given by Lemma 6.2.

Proof. To prove Lemma 6.7, we apply Lemma 6.2 to L = `L + `
′

L (i.e., for the operator Hω restricted to
the interval [[0, `L + `

′

L ]]) and lL = `
′

L . The probability of the bad set is the O(L−∞), thus summable
in L . Using the localization estimate (6-3), one proves that

• each eigenvalue of Hω,`L−2`′L/ρ is at a distance of at most e−`
′

L of an eigenvalue of Hω,L with
localization center in [[0, `L ]];

• each eigenvalue of Hω,L with localization center in [[0, `L ]] is at a distance of at most e−`
′

L of an
eigenvalue of Hω,`L+2`′L/ρ .

Lemma 6.7 follows. �

The first point in Theorem 1.18 is then Theorem 1.14(2) for the operators Hω,`L−2`′L/ρ and Hω,`L+2`′L/ρ

and the fact that `′L � `L .

The proof of the second statement in Theorem 1.18 is very similar to that of Theorem 1.15. Fix
a compact interval I in 6◦. As `L satisfies (1-22), one can find `′L < `′′L also satisfying (1-22) such
that e−`

′′

L � e−`L � e−`
′

L . For the same reasons as in the proof of Theorem 1.15, after rescaling all
the resonances in I − i(−∞, 0) outside the strip I − i[e−`

′

L , e−`
′′

L ) are then pushed to either 0 or i∞
as L→+∞.

On the other hand, the resonances in the strip I − i[e−`
′

L , e−`
′′

L ) are described by (3-19). The rescaled
real and imaginary parts of the resonances (see (1-24)) now become x j = (E j,ω − E)`L + o(1) and
y j = ρ(E)d j,ω/`L + o(1).
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Now, to compute the limit of P(#{ j | x j ∈ I, y j ∈ J } = k), using the exponential decay property (6-3)
it suffices to use [Germinet and Klopp 2014, Theorem 1.14]. Let us note here that [Germinet and Klopp
2014, Condition (1.50)] on the scales (`L)L is slightly stronger than (1-22). That condition (1-22) suffices
is a consequence of the stronger localization property known in the present case (compare Theorem 6.4
to [Germinet and Klopp 2014, Assumption (Loc)]). This completes the proof of the second point in
Theorem 1.18. The final statement in 1.18 is proved in exactly the same way as Theorem 1.16.

The proof of Theorem 1.18 is complete.

6B7. The proofs of Proposition 1.20 and Theorem 1.21. Localization for the operator H N
ω can be described

by the following:

Lemma 6.8. There exists ρ > 0 and q > 0 such that, ω-almost surely, there exists Cω > 0 such that, for
L sufficiently large, if

(1) ϕ j,ω is a normalized eigenvector of Hω,L associated to E j,ω in 6,

(2) x j (ω) ∈ N is a maximum of x 7→ |ϕ j,ω(x)| in N,

then, for x ∈ N, one has
|ϕ j,ω(x)| ≤ Cω(1+ |x j (ω)|

2)q/2e−ρ|x−x j (ω)|. (6-17)

Moreover, the mapping ω 7→ Cω is measurable and E(Cω) <+∞.

This result for our model is a consequence of Theorem 6.1 (see, e.g., [Kunz and Souillard 1980; Cycon
et al. 1987; Carmona and Lacroix 1990]) and [Germinet and Klopp 2014, Theorem 6.1].

We thus obtain the representation for the function 4ω

4ω(E)=
∑

j

|ϕ j,ω(0)|2

E j,ω− E
+ e−i arccos(E/2). (6-18)

As H N
ω satisfies a Dirichlet boundary condition at −1, one has

|ϕ j,ω(0)|> 0 for all j and
∑

j

|ϕ j,ω(0)|2 = 1. (6-19)

As E→−i∞, the representation (6-18) yields

4ω(E)=−E−2
∑

j

|ϕ j,ω(0)|2 E j,ω+ O(E−3)=−E−2
〈δ0, H N

ω δ0〉+ O(E−3)=−ω0 E−2
+ O(E−3).

This proves the first point in Proposition 1.20.
As a direct consequence of Theorem 6.1 and the computation leading to Theorem 5.2 (see Section 5A2),

we obtain that there exists c̃ > 0 such that, for L sufficiently large, with probability at least 1− e−c̃L one
has

sup
Im E≤−e−c̃L

∣∣∣∣∫
R

d Nω(λ)
λ− E

−〈δ0, (Hω,L − E)−1δ0〉

∣∣∣∣≤ e−c̃L . (6-20)

Taking
L = Lε ∼ c−1

|log ε| (6-21)
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for some sufficiently small c > 0, this and Rouché’s theorem implies that, with probability 1− ε3, the
number of zeros of 4ω (counted with multiplicity) in I + i(−∞, ε] is bounded

• from above by the number of resonances of Hω,Lε in I+ε + i(−∞,−ε− ε2
],

• from below by the number of resonances of Hω,Lε in I−ε + i(−∞,−ε+ ε2
],

where I+ε = [a− ε, b+ ε] and I+ε = [a+ ε, b− ε] if I = [a, b].
Here, to apply Rouché’s theorem, we apply the same strategy as in the proof of Theorem 1.17 and con-

struct a path bounding a region larger (resp. smaller) than I+ε +i(−∞,−ε−ε2
] (resp. I−ε +i(−∞,−ε+ε2

])
on which one can guarantee |SL(E)+ e−iθ(E)

|& 1.
Now, we choose the constant c (see (6-21)) to be so small that c <minE∈I ρ(E). Applying point (3)

of Theorem 1.14 to Hω,Lε with this constant c, we obtain that the number of resonances of Hω,Lε in
I+ε + i(−∞, ε− ε2

] (resp. I−ε + i(−∞, ε+ ε2
]) is bounded from above (resp. bounded from below) by

Lε

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E (1+ O(1))=
|log ε|

c

∫
I

c
ρ(E)

n(E) d E (1+ O(1))

= |log ε|
∫

I

n(E)
ρ(E)

d E (1+ O(1)).

Hence, we obtain the second point of Proposition 1.20. The last point of this proposition is then an
immediate consequence of the arguments developed to obtain the second point if one takes into account
the following facts:

• The minimal distance between the Dirichlet eigenvalues of H N
ω,L is bounded from below by L−4

(see (6-10)).

• The growth of the function E 7→ SL(E)+e−iθ(E) near the resonances (i.e., its zeros) is well controlled
by Proposition 3.4.

Indeed, this implies that the resonances of H N
ω,L are simple in I + i[−e−

√
L , 0) (one can choose larger

rectangles) and that near each resonance one can apply Rouché’s theorem to control the zero of 4ω. Note
that this also yields, ω-almost surely, there exists cω such that

min
z zero of 4ω

z∈I+i(−εω,0)

inf
0<r<εω(Im z)3/2

min
|E−z|=r

|4ω(E)|
r

& 1. (6-22)

This completes the proof of Proposition 1.20.

Theorem 1.21 is a consequence of the following:

Theorem 6.9. There exists c̃ > 0 such that, ω-almost surely, for L ≥ 1 sufficiently large one has

sup
Re E∈I

Im E<−e−c̃L

∣∣∣∣0L ,ω,ω̃(E)−
(∫

R
1/(λ− E) d Nω̃(λ) 0

0
∫

R
1/(λ− E) d Nω(λ)

)∣∣∣∣+∣∣∣∣SL ,ω(E)−
∫

R

d Nω(λ)
λ− E

∣∣∣∣≤e−c̃L ,

where 0L ,ω,ω̃(E) (resp. SL ,ω(E)) is the matrix 0L(E) (resp. the function SL(E)) — see (2-9) — con-
structed from the Dirichlet data on [[0, L]] of −1 + V Z

ω,ω̃,L (resp. −1 + V N
ω,L ) (see (1-26)) using

formula (2-9) (resp. (2-4)).
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Theorem 6.9 is proved exactly as Theorem 5.2 except that one uses the localization estimates (6-2)
instead of the Combes–Thomas estimates.

Theorem 1.21 is then an immediate consequence of the estimate (6-20). Indeed, this implies that if z is
a resonance for, e.g., H N

ω,L in I + i(−∞, ec̃L
], then |4ω(z)| ≤ e−c̃L . By the last point of Proposition 1.20,

ω-almost surely we know that the multiplicity of the zeros of 4ω is bounded by Nω. Moreover, for the
zeros of 4ω in I + i(−εω, 0), we know the bound (6-22). This bound and (6-20) imply that

max
z zero of 4ω

z∈I+i(−εω,e−c̃L )

max
|E−z|=e−c̃L

|4ω(E)− (Sω,L(E)+ e−iθ(E))|

|4ω(E)|
< e−c̃L .

This yields Theorem 1.21(2) by an application of Rouché’s theorem. Point (1) is obtained in the same
way, using Proposition 3.4, which gives

max
z resonance of H N

ω,L

z∈I+i(−εω,e−c̃L )

max
|E−z|=e−c̃L

|4ω(E)− (Sω,L(E)+ e−iθ(E))|

|Sω,L(E)+ e−iθ(E)|
< e−c̃L .

The case of H Z
ω,ω̃,L is dealt with in the same way.

This completes the proof of Theorem 1.21.

6C. Estimates on the growth of eigenfunctions. In the present section we are going to prove Theo-
rems 6.4 and 6.5. At the end of the section, we also prove the simpler Lemma 6.3.

The proof of Theorem 6.4 relies on locally uniform estimates on the rate of growth of the cocycle (1-15)
attached to the Schrödinger operator, which we present now. Define

TL(E, ω)= T (E, ωL) · · · T (E, ω0), (6-23)

where

T (E, ω j )=

(
E −ω j −1

1 0

)
.

We start with an upper bound on the large deviations of the growth rate of the cocycle that is uniform
in energy. Fix α > 1 and δ ∈ (0, 1). For one part, the proof of Theorem 6.4 relies on the following:

Lemma 6.10. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such that,
for L ≥ Lδ and any K > 0, one has

P

(
log ‖TL(E; τ k(ω))u‖

L + 1
≤ ρ(E)+ δ for all 0≤ k ≤ K , E ∈ I, ‖u‖ = 1

)
≥ 1− K e−η(L+1), (6-24)

where we recall that τ :�→� denotes the left shift (i.e., if ω = (ωn)n≥0 then [τ(ω)]n = ωn+1 for n ≥ 0)
and τ n

= τ ◦ · · · ◦ τ n times.

At the heart of this result is a large deviation principle for the growth rate of the cocycle (see [Bougerol
and Lacroix 1985, Section I and Theorem 6.1]). As it also serves in the proof of Theorem 6.4, we recall
it now. One has:
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Lemma 6.11. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such that,
for L ≥ Lδ, one has

sup
E∈I
‖u‖=1

P

(∣∣∣∣ log ‖TL(E;ω)u‖
L + 1

− ρ(E)
∣∣∣∣≥ δ)≤ e−η(L+1). (6-25)

While this result is not stated as is in [Bougerol and Lacroix 1985], it can be obtained from their
Lemma 6.2 and Theorem 6.1. Indeed, by inspecting the proof of these results, it is clear that the quantities
involved (in particular, the principal eigenvalue of T (z; E) = T (z) in [loc. cit., Theorem 4.3]) are
continuous functions of the energy E . Thus, taking this into account, the proof of [loc. cit., Theorem 6.1]
yields, for our cocycle, a convergence that is locally uniform in energy, that is, (6-25).

To prove Theorem 6.4, in addition to Lemma 6.10 we also need to guarantee a uniform lower bound
on the growth rate of the cocycle. We need this bound at least on the spectrum of Hω,L with a good
probability. Actually, this is the best one can hope for: a uniform bound in the style of (6-24) will not hold.

We prove:

Lemma 6.12. Fix I a compact interval and δ > 0. Pick u ∈C2 with ‖u‖ = 1. For 0≤ j ≤ L , if j ≤ L−1,
define

K+j (ω, L , δ, u) :=
{

E ∈ I
∣∣∣ ∣∣∣∣ log ‖T−1

L−( j+1)(E, τ
j+1(ω))u‖

L − j
− ρ(E)

∣∣∣∣> δ}
and, if 1≤ j , define

K−j (ω, L , δ, u) :=
{

E ∈ I
∣∣∣ ∣∣∣∣ log ‖T j−1(E, ω)u‖

j
− ρ(E)

∣∣∣∣> δ};
finally, define K+L (ω, L , δ, u)=∅= K−0 (ω, L , δ, u).

Recall that (E j,ω)0≤ j≤L are the eigenvalues of Hω,L and let x j,ω be the associated localization centers.
For 0≤ `≤ L , define the sets

�+B (L , `, δ, u) := {ω | L − x j,ω ≥ ` and E j,ω ∈ K+x j,ω
(ω, L , δ, u) for some j}

and

�−B (L , `, δ, u) := {ω | x j,ω ≥ ` and E j,ω ∈ K−x j,ω
(ω, L , δ, u) for some j}.

Then the sets �±B (L , `, δ, u) are measurable and, for any δ > 0, there exist η > 0 and `0 > 0 such that,
for L ≥ `≥ `0, one has

max
(
P(�+B (L , `, δ, u)), P(�−B (L , `, δ, u))

)
≤
(L + 1)|I |e−η(`−1)

1− e−η
. (6-26)

Here, the constant η is the one given by (6-25).

First, let us explain the meaning of Lemma 6.12. Since by Lemma 6.10 we already control the growth
of the cocycle from above, we see that in the definitions of the sets K−j (ω, L , δ, u) and K+j (ω, L , δ, u) it
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would have sufficed to require

log ‖T j−1(E, ω)u‖
j

− ρ(E)≤−δ and
log ‖T−1

L−( j+1)(E, τ
j+1(ω))u‖

L − ( j + 1)
− ρ(E)≤−δ,

respectively.
Hence, what Lemma 6.12 measures is that the probability that the cocycle at energy En,ω leading from

a localization center xn,ω to either 0 or L decays at a rate smaller than the rate predicted by the Lyapunov
exponent.

The sets �±B (L , `, δ, u) are the sets of bad configurations, i.e., the events when the rate of decay of the
solution is far from the Lyapunov exponent. Indeed, for ω outside �±B (L , `, δ), i.e., if the reverse of the
inequalities defining K±j (ω, L , δ, u) hold, when j = xn,ω and E = En,ω we know that the eigenfunction
ϕn,ω has to decay from the center of localization xn,ω (which is a local maximum of its modulus) towards
the edges of the intervals at a rate larger than γ (En,ω)− δ. The eigenfunction being normalized, at the
localization center it is of size at least L−1/2. This will entail the estimates (6-4) and (6-5) with a good
probability.

There is a major difference in the uniformity in energy obtained in Lemmas 6.12 and 6.10. In
Lemma 6.12, we do not get a lower bound on the decay rate that is uniform all over I : it is merely
uniform over the spectrum inside I (which is sufficient for our purpose, as we shall see). The reason for
this difference in the uniformity between Lemma 6.10 and 6.12 is the same that makes the Lyapunov
exponent E 7→ ρ(E) in general only upper semicontinuous and not lower semicontinuous (in the present
situation, it actually is continuous).

We postpone the proofs of Lemmas 6.10 and 6.12 to the end of this section and turn to the proofs of
Theorems 6.4 and 6.5.

6C1. The proof of Theorem 6.4. By Lemma 6.10, as TL(E, ω) ∈ SL(2,R), with probability at least
1− K Le−η(L+1), for L ≥ Lδ and any K > 0, one also has

∀0≤ k ≤ K ∀E ∈ I ∀‖u‖ = 1
log ‖T−1

L (E; τ k(ω))u‖
L + 1

≤ ρ(E)+ δ.

Now pick `=C log L , where C > 0 is to be chosen later on. We know that, with probability P satisfying

P≥ 1− L2e−η`, (6-27)

for L ≥ Lδ, any l ∈ [`, L] and any k ∈ [0, L], one also has

∀E ∈ I ∀‖u‖ = 1
log ‖T−1

l (E; τ k(ω))u‖
l + 1

≤ ρ(E)+ δ. (6-28)

Let ϕ j,ω be a normalized eigenfunction associated to the eigenvalue E j,ω ∈ I with localization
center x j,ω. By the definition of the localization center, one has

1
L + 1

≤

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥2

≤ 1 and
1

L + 1
≤

∥∥∥∥(ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)∥∥∥∥2

≤ 1. (6-29)
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By the eigenvalue equation, for x ∈ [[0, L]] one has

(
ϕ j,ω(x)

ϕ j,ω(x − 1)

)
=


Tx−x j,ω(E; τ

x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
if x ≥ x j,ω,

T−1
x j,ω−x(E; τ

x(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
if x ≤ x j,ω.

(6-30)

Hence, by (6-24) and (6-28), with probability at least 1− 2L2e−η` − L−p, if |x j,ω − x | ≥ ` then for
x j,ω < x ≤ L one has

e−(ρ(E j,ω)+δ)|x−x j,ω|

√
L + 1

≤ e−(ρ(E j,ω)+δ)|x−x j,ω|

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
≤

∥∥∥∥Tx−x j,ω(E; τ
x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥= ∥∥∥∥( ϕ j,ω(x)
ϕ j,ω(x − 1)

)∥∥∥∥ (6-31)

and for 0≤ x < x j,ω one has∥∥∥∥( ϕ j,ω(x)
ϕ j,ω(x − 1)

)∥∥∥∥= ∥∥∥∥T−1
x−x j,ω

(E; τ x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
≥ e−(ρ(E j,ω)+δ)|x−x j,ω|

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥≥ e−(ρ(E j,ω)+δ)|x−x j,ω|

√
L + 1

(6-32)

On the other hand, by the definition of the Dirichlet boundary conditions, we know that(
ϕ j,ω(0)
ϕ j,ω(−1)

)
= ϕ j,ω(0)

(
1
0

)
and

(
ϕ j,ω(L + 1)
ϕ j,ω(L)

)
= ϕ j,ω(L)

(
0
1

)
.

Thus,

ϕ j,ω(0)Tx j,ω−1(E;ω)
(

1
0

)
=

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
and

ϕ j,ω(L)
(

0
1

)
= TL−x j,ω−1(E; τ x j,ω+1(ω))

(
ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)
.

Thus, for ω 6∈ �+B (L , `, δ, u+)∪�−B (L , `, δ, u−), where we have set u− :=
( 0

1

)
and u+ :=

( 1
0

)
, we

know that

e−(ρ(E j,ω)−δ)(L−x j,ω) ≤
∥∥T−1

L−x j,ω−1(E; τ
x j,ω+1(ω))u+

∥∥ and e−(ρ(E j,ω)−δ)x j,ω ≤ ‖Tx j,ω−1(E;ω)u−‖.

Thus we obtain that, for ω 6∈�+B (L , `, δ, u+)∪�−B (L , `, δ, u−), one has

|ϕ j,ω(L)| =
∥∥∥∥T−1

L−x j,ω
(E; τ x j,ω+1(ω))

(
0
1

)∥∥∥∥−1∥∥∥∥(ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)∥∥∥∥≤ e−(ρ(E j,ω)−δ)(L−x j,ω−1) (6-33)

and

|ϕ j,ω(0)| =
∥∥∥∥Tx j,ω

(E; τ x j,ω(ω))

(
0
1

)∥∥∥∥−1∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥≤ e−(ρ(E j,ω)−δ)(x j,ω−1). (6-34)
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The estimates given by Lemma 6.12 on the probability of �+B (L , `, δ, u+) and �−B (L , `, δ, u−) for
`= C log L and the estimate (6-27) then imply that, with a probability at least 1− 4L2e−η(`−1)

− L−p,
the bounds (6-31), (6-32), (6-33) and (6-34) hold. Thus, picking `= C log L for C > 0 sufficiently large
(depending only on η and, thus, on δ and p), these bounds hold with a probability at least 1− L−p. This
completes the proof of Theorem 6.4.

Remark 6.13. One may wonder whether the uniform growth estimate given by Lemmas 6.10 and 6.12 is
actually necessary in the proof of Theorem 6.4. That they are necessary is due to the fact that both the
eigenvalue E j,ω and the localization center x j,ω (and, thus, the vector∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
also) depend on ω. Thus, (6-25) is not sufficient to estimate the second term in the left-hand sides of (6-31)
and (6-32).

6C2. The proof of Theorem 6.5. To prove Theorem 6.5, we follow the strategy that led to the proof of
Theorem 6.4. First, note that (6-31) and (6-32) provide the expected lower bounds on the eigenfunction
with the right probability. As for the upper bound, by (6-30), using the conclusions of Theorem 6.4 and
the bounds given by Lemma 6.10, we know that, e.g., for 0≤ x < x j,ω,∥∥∥∥( ϕ j,ω(x)

ϕ j,ω(x − 1)

)∥∥∥∥= ∥∥∥∥Tx(E;ω)
(

1
0

)∥∥∥∥|ϕ j,ω(0)| ≤ e(ρ(E j,ω)+δ)x e−(ρ(E j,ω)−δ)x j,ω ≤ e−(ρ(E j,ω)−Cδ)|x−x j,ω|

if (1+C)x ≤ (C − 1)x j,ω, i.e., 2(1+C)−1x j,ω ≤ x j,ω− x .
For x ≥ x j,ω one reasons similarly and, thus, completes the proof of Theorem 6.5.

Remark 6.14. Actually, as the proof shows, the results one obtains are more precise than the claims
made in Theorem 6.5 (see [Klopp ≥ 2016]).

6C3. The proof of Lemma 6.12. The proofs for the two sets �±B (L , `, δ, u) are the same. We will only
write out the one for �+B (L , `, δ, u). Let us first address the measurability issue for �+B (L , `, δ, u).
The functions ω 7→ E j,ω and ω 7→ ϕ j,ω are continuous (as the eigenvalues and eigenvectors of finite-
dimensional matrices depending continuously on the parameter ω = (ω j )0≤ j≤L ). Thus, for fixed j , the
sets {ω | E j,ω ∈K−j (ω, L , δ, u)} and {ω | x j,ω > j} are open (we used the definition of x j,ω as the leftmost
localization center (see Theorem 6.4)). This yields the measurability of �+B (L , `, δ, u).

We claim that
1

L + 1
1�+B (L ,`,δ,u) ≤

L+1−`∑
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉, (6-35)

where 1K+j (ω,L ,δ,u)
(Hω,L) denotes the spectral projector associated to Hω,L on the set K+j (ω, L , δ, u).

Indeed, if one has E j,ω 6∈ K+x j,ω
(ω, L , δ, u) for all j then the left-hand side of (6-35) vanishes and

the right-hand side is nonnegative. On the other hand, if, for some j , one has 0 ≤ x j,ω ≤ L − ` and
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E j,ω ∈ K+x j,ω
(ω, L , δ, u), then we compute

L−∑̀
l=0

〈δl, 1K+j (ω,L ,δ,u)
(Hω,L)δl〉=

L−∑̀
l=0

∑
k

Ek,ω∈K+j (ω,L ,δ,u)

|ϕk,ω(l)|2≥|ϕ j,ω(x j,ω)|
2
≥

1
L + 1

≥
1

L + 1
1�+B (L ,`,δ,u)

by the definition of x j,ω.
An important fact is that, by construction (see Lemma 6.12), the set of energies K+j (ω, L , δ, u) does not

depend on ω j . Hence, denoting by Eω j ( · ) the expectation with respect to ω j and Eω̂ j ( · ) the expectation
with respect to ω̂ j = (ωk)k 6= j , we compute

E

( L−∑̀
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉

)
=

L−∑̀
j=0

Eω̂ j

(
Eω j

(
〈δ j , 1K+j (ω,L ,δ,u)

(Hω,L)δ j 〉
))
.

As ω j is assumed to have a bounded, compactly supported distribution and as K+j (ω, L , δ, u) does not
depend on ω j , a standard spectral averaging lemma (see, e.g., [Simon 2005, Theorem 11.8]) yields

Eω j

(
〈δ j , 1K+j (ω,L ,δ,u)

(Hω,L)δ j 〉
)
≤ |K+j (ω, L , δ, u)|,

where | · | denotes the Lebesgue measure. Thus, we obtain

E

( L−∑̀
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉

)
≤

L−∑̀
j=0

Eω̂ j

(
|K+j (ω, L , δ, u)|

)
=

L−∑̀
j=0

E
(
|K+j (ω, L , δ, u)|

)
. (6-36)

By Lemma 6.11 and the Fubini–Tonelli theorem, we know that

E
(
|K+j (ω, L , δ, u)|

)
= E

(∫
I

1K+j (ω,L ,δ,u)
(E) d E

)
=

∫
I

E(1K+j (ω,L ,δ,u)
(E)) d E

≤ |I | sup
E∈I

P

(∣∣∣∣ log ‖T−1
L−( j+1)(E, ω)u‖

L − j
− ρ(E)

∣∣∣∣> δ)
≤ |I |r−η(L− j).

Taking the expectation of both sides of (6-35) and plugging this into (6-36), we obtain

P(�+B (L , `, δ, u))≤ (L + 1)|I |e−η(`−1)
L−∑̀
j=0

e−η j
≤
(L + 1)|I |e−η(`−1)

1− e−η
.

In the same way, one obtains

P(�−B (L , `, δ, u))≤
(L + 1)|I |e−η(`−1)

1− e−η
.

This completes the proof of Lemma 6.12.

Remark 6.15. This proof can be seen as the analogue for products of finitely many random matrices of
the so-called Kotani trick (see, e.g., [Cycon et al. 1987]).
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6C4. The proof of Lemma 6.10. The basic idea of this proof is to use the estimate (6-25), in particular,
the exponentially small probability and some perturbation theory for the cocycles so as to obtain a uniform
estimate.

Let η be given by (6-25). Fix η′ < 1
2η and write

I =
⋃
j∈J

[E j , E j+1], where 1
2 e−η

′(L+1)
≤ E j+1− E j ≤ 2e−η

′(L+1)
; (6-37)

thus, #J . eη
′(L+1).

We now want to estimate what happens for E ∈ [E j , E j+1]. Using (1-15) and(
E − Vω(n) −1

1 0

)
−

(
E j − Vω(n) −1

1 0

)
= (E − E j )1T, where 1T :=

∣∣∣∣(1
0

)〉〈(
1
0

)∣∣∣∣,
we compute

TL(E, ω)= TL(E j , ω)+

L∑
l=1

(E − E j )
l Sl, (6-38)

where

Sl :=
∑

n1<n2<···<nl

Tn1(E j , τ
L−n1ω)×1T ×Tn2−n1−1(E j , τ

n2ω)×1T ×· · ·×1T ×TL−nl−1(E j , τ
nlω)

=

∑
n1<n2<···<nl

l∏
m=2

〈(
1
0

)
, Tnm−nm−1−1(E j , τ

nmω)

(
1
0

)〉∣∣∣∣Tn1(E j , τ
L−n1ω)

(
1
0

)〉〈(
1
0

)∣∣∣∣TL−nl−1(E j , τ
nlω).

Clearly, as the random variables have compact support, one has the uniform bound

sup
E∈I
ω∈�

‖TL(E;ω)‖ ≤ eC L . (6-39)

Thus one has

sup
ω∈�

‖Sl‖ ≤ L leC L . (6-40)

Hence, for l0 fixed, one computes∥∥∥∥ L∑
l=l0

(E − E j )
l Sl

∥∥∥∥≤ L∑
l=l0

(E − E j )
l
‖Sl‖ ≤

L∑
l=l0

e−η
′(L+1)l L leC L

≤ 1 (6-41)

if η′l0 > 2C and L is sufficiently large (depending only on η′ and C).
We now assume that l0 satisfies η′l0 > 2C and pick 1 ≤ l ≤ l0. Pick δ0 ∈ (0, 1) small, to be fixed

later. Assume moreover that L is such that δ0L ≥ Lδ, where Lδ is as defined in Lemma 6.11. Then, by
Lemma 6.11, for m ∈ {2, . . . , l} one has

(1) either nm − nm−1 ≤ Lδ, in which case one has

‖Tnm−nm−1−1(E j , τ
nm−1ω)‖ ≤ eC(nm−nm−1);
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(2) or nm − nm−1 ≥ Lδ, in which case, by (6-25), with probability at least equal to 1− e−η(nm−nm−1)/2,
one has

‖Tnm−nm−1−1(E j , τ
nm−1ω)‖ ≤ e(nm−nm−1)(ρ(E j )+δ).

Define

Gn1,...,nl = {m ∈ {2, . . . , l} | nm − nm−1 ≥ Lδ} and Bn1,...,nl = {2, . . . , l} \Gn1,...,nl .

By definition, one has∑
m∈Bn1,...,nl

(nm − nm−1)≤ l Lδ and
∑

m∈Gn1,...,nl

(nm − nm−1)≥ L − l Lδ. (6-42)

For a fixed sequence n1 < n2 < · · · < nm , the random variables (Tnm′−nm′−1−1(E j , τ
nm′ω))1≤m′≤m are

independent. Hence, by (6-25), for a fixed (m1, . . . ,mK ) ∈ Gn1,...,nl , one has

P
(

inf
1≤k≤K

∥∥Tnmk−nmk−1−1(E j , τ
nmkω)

∥∥≥ e(ρ(E j )+δ)(nmk−nmk−1)
)
≤ e−η

∑K
k=1 nmk−nmk−1 .

Thus, for ε ∈ (0, 1), one has

P

(
inf

1≤k≤K
‖Tnmk−nmk−1−1(E j , τ

nmk−1ω)‖ ≥ e(ρ(E j )+δ)(nmk−nmk−1)

for some (m1, . . . ,mK ) ∈ Gn1,...,nl with
K∑

k=1

nmk − nmk−1 ≥ εL
)
≤ L le−ηεL .

Hence, with probability at least 1− L le−ηεL , we know that there exists (m1, . . . ,mK ) ∈ Gn1,...,nl such
that

K∑
k=1

nmk − nmk−1 ≥ L − l Lδ − εL and ‖Tnmk−nmk−1−1(E j , τ
nmk−1ω)‖ ≤ e(ρ(E j )+δ)(nmk−nmk−1)

for all 1≤ k ≤ K . Using the estimates (6-42) and (6-39) for the remaining terms in the product below,
for any given m-tuple (n1, . . . , nm) one obtains

P

( l∏
m=1

‖Tnm−nm−1−1(E j , τ
nmk−1ω)‖ ≤ e(ρ(E j )+δ)(1−ε)(L−l Lδ)+C(εL+l Lδ)

)
≥ 1− L le−ηεL .

Hence, with probability at least 1− l0L l0e−ηεL , for 1≤ l ≤ l0 we estimate

‖Sl‖ ≤
∑

n1<n2<···<nl

l∏
m=1

‖Tnm−nm−1−1(E j , τ
nmkω)‖

≤ L le(ρ(E j )+δ)(1−ε)L+CεL+(C−(ρ(E j )+δ)(1−ε))l Lδ

≤ L le[ρ(E j )+δ+(C−ρ(E j )−δ)ε]L+[C−(ρ(E j )+δ)(1−ε)]Lδl

≤ L l0e[ρ(E j )+δ+(C−ρ(E j )−δ)ε]L+[C−(ρ(E j )+δ)(1−ε)]Lδl0 . (6-43)
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It remains now to choose the quantities η′, l0 and ε so that the following requirements are satisfied:

η′l0 > 2C, (C − ρ(E j )− δ)ε ≤
δ

2
, l0L l0e−ηεLeη

′(L+1)
� 1

and
[C − (ρ(E j )+ δ)(1− ε)]Lδl0

L + 1
≤

δ

2(ρ(E j )+ δ)
. (6-44)

Fixing ε small, picking 0< η′ < 1
3ηε and setting l0 = Lα , where α ∈ (0, 1), we see that all the conditions

in (6-44) are satisfied for L sufficiently large. Moreover, one has

l0L l0e−ηεLeη
′(L+1)

≤ e−ηεL/2.

Plugging this and the last estimate in (6-43) into (6-38), we obtain that, with probability at least 1−e−ηεL/2,
for any j ∈ J (see (6-37)) and E ∈ [E j , E j+1] one has

‖TL(E, ω)− TL(E j , ω)‖ ≤ 1+
l0∑

l=1

e−η
′l(L+1)L le(ρ(E j )+2δ)L

≤ 1+ e(ρ(E j )+2δ)(L+1). (6-45)

As ρ is continuous (see, e.g., [Bougerol and Lacroix 1985]), one gets that, for any δ > 0 and L sufficiently
large, with probability at least 1− e−ηεL/2, one has, for any E ∈ I ,

‖TL(E, ω)‖. e(ρ(E)+2δ)(L+1).

Hence, as TL(E, ω) ∈ SL(2,R), one has ‖T−1
L (E, ω)‖. e(ρ(E)+2δ)(L+1).

Using the fact that the probability measure on � is invariant under the shift (it is a product measure),
we obtain (6-24). This completes the proof of Lemma 6.10.

6C5. The proof of Lemma 6.3. Assume the realization ω is such that the conclusions of Lemma 6.2
hold in I for the scales lL = 2 log L . Fix α > 0 and let EL ,ω be the set of indices of the eigenvalues
(E j,ω)0≤ j≤L of Hω,L having a localization center in [[L − `L , L]]. Fix C > α > 0 and consider the
projector 5C := 1[[L−C`L ,L]] in `2([[0, L]]).

Consider the Gram matrices

G(EL ,ω)=
(
(〈ϕ j,ω, ϕ j,ω〉)

)
(n,m)∈EL ,ω×EL ,ω

= IdN ,

where N = #EL ,ω, and

Gπ (EL ,ω)=
(
(〈5Cϕ j,ω,5Cϕ j,ω〉)

)
(n,m)∈EL ,ω×EL ,ω

.

By definition, the rank of Gπ (EL ,ω) is bounded by the rank of 5C , i.e., by C`L . Moreover, as by (6-3)
one has ‖(1−5C)ϕ j,ω‖ ≤ Lqe−ρηC`L , one has

‖IdN −Gπ (EL ,ω)‖ ≤ L2+qe−ρηC`L ≤ L2+q−Cρη.

Thus, picking Cηρ > q + 2 yields that, for L sufficiently large, Gπ (EL ,ω) is invertible and its rank
is N . This yields #EL ,ω = N ≤ C`L and the proof of Lemma 6.3 is complete.
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6D. The half-line random perturbation: the proof of Theorem 1.23. Using the same notations as in
Section 5C, we can write

H∞ =
(

H−ω,−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −1
+

0

)
,

where

• −1+0 is the Dirichlet Laplacian on `2(N),

• H−ω,−1 =−1+ Vω on `2({n ≤−1}) with Dirichlet boundary conditions at 0.

Define the operators

0ω(E) := −1+0 − E −〈δ−1|(H−ω,−1− E)−1
|δ−1〉|δ0〉〈δ0|,

0̃ω(E) := H−ω,−1− E −〈δ0|(−1
+

0 − E)−1
|δ0〉|δ−1〉〈δ−1|.

For Im E 6= 0, the numbers 〈δ−1|(H−ω,−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉 have nonvanishing

imaginary parts of the same sign; hence, the complex number

(〈δ−1|(H−ω,−1− E)−1
|δ−1〉)

−1
−〈δ0|(−1

+

0 − E)−1
|δ0〉

does not vanish. Thus, by rank-one perturbation theory (see, e.g., [Simon 2005]), we thus know that
0ω(E) and 0̃ω(E) are invertible for Im E 6= 0 and that

0−1
ω (E)= (−1+0 − E)−1

+
|(−1+0 − E)−1

|δ0〉〈δ0|(−1
+

0 − E)−1
|(

〈δ−1|(H−ω,−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉
(6-46)

0̃−1
ω (E)= (H−ω,−1− E)−1

+
|(H−ω,−1− E)−1

|δ−1〉〈δ−1|(H−ω,−1− E)−1
|(

〈δ0|(−1
+

0 − E)−1|δ0〉
)−1
−〈δ−1|(H−ω,−1− E)−1|δ−1〉

. (6-47)

Thus, for Im E 6= 0, using Schur’s complement formula we compute

(H∞ω − E)−1
=

(
0̃−1
ω (E) γ (E)
γ ∗(E) 0−1

ω (E)

)
, (6-48)

where γ ∗(E) is the adjoint of γ (E) and

γ (E) := −
∣∣(H−ω,−1− E)−1

|δ−1〉〈δ0|0
−1
ω (E)

∣∣
6D1. The continuation through (−2, 2)\6. Let us start with the analytic continuation through (−2, 2)\6.

One easily checks that the function E 7→ 〈δ−1|(H−ω,−1−E)−1
|δ−1〉

−1 is analytic outside6, the essential
spectrum of H−ω,−1, and has simple zeros at the isolated eigenvalues of H−ω,−1. Hence, E 7→ 0−1

ω (E) can
be analytically continued near an isolated eigenvalue of H−ω,−1 different from −2 and 2.

As for 0̃−1
ω , using the spectral decomposition of (H−ω,−1 − E)−1, as for any eigenvector of H−ω,−1,

say ϕ, one has 〈δ−1, ϕ〉 6= 0; for E0 an isolated eigenvalue of H−ω,−1 different from −2 and 2, doing a
polar decomposition of 0̃−1

ω near E0 one checks that E 7→ 0̃−1
ω (E) can be analytically continued to a

neighborhood of E0.
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Finally let us check what happens with γ . We compute

γ (E)=−〈δ−1|(H−ω,−1− E)−1
|δ−1〉

−1∣∣(H−ω,−1− E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1∣∣.
As E 7→ 〈δ−1|(H−ω,−1− E)−1

|δ−1〉
−1(H−ω,−1− E)−1 is analytic near any isolated eigenvalue of H−ω,−1,

we see that E 7→ γ (E) can be can be analytically continued to a neighborhood of an isolated eigenvalue
of H−ω,−1.

Hence, the representation (6-48) immediately shows that the resolvent (H∞ω − E)−1 can be continued
through (−2, 2) \6, the poles of the continuation being given by the zeros of the function

E 7→ 1−〈δ0|(−1
+

0 − E)−1
|δ0〉〈δ−1|(H−ω,−1− E)−1

|δ−1〉 = 1− eiθ(E)
∫

R

d Nω(λ)
λ− E

.

6D2. No continuation through (−2, 2)∩6◦. Let us study the analytic continuation through (−2, 2)∩6◦.
Considering the lower right coefficient of this matrix, we see that, when coming from upper half-plane
through (−2, 2)∩6◦, E 7→ (H∞ω − E)−1 can be continued meromorphically to the lower half plane (as
an operator from `2

comp(Z) to `2
loc(Z)) only if E 7→ 0−1

ω (E) can be continued meromorphically (as an
operator from `2

comp(N) to `2
loc(N)).

As E 7→ (−1+0 − E)−1 can be analytically continued (see Section 2), by (6-46) the meromorphic
continuation of E 7→ 0−1

ω (E) will exist if and only if the complex-valued map

E 7→ gω(E) :=
1(

〈δ−1|(H−ω,−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉

can be meromorphically continued from the upper half-plane through (−2, 2)∩6◦. Fix ω such that the
spectrum of H−ω,−1 is equal to 6 and pure point (this is almost sure; see, e.g., [Carmona and Lacroix
1990; Pastur and Figotin 1992]). As δ−1 is a cyclic vector for H−ω,−1, for E an eigenvalue of H−ω,−1 one
then has

lim
ε→0+

(
〈δ−1|(H−ω,−1− E − iε)−1

|δ−1〉
)−1
= 0. (6-49)

Hence, if the analytic continuation of gω would exist on (−2, 2)∩6◦ it would be equal to

gω(E + i0)=−
1

〈δ0|(−1
+

0 − E − i0)−1|δ0〉
. (6-50)

By analyticity of both sides, this in turn would imply that (6-50) holds on the whole upper half-plane;
thus, in view of the definition of gω, that (6-49) holds on the whole upper half plane: this is absurd! Thus,
we have proved that, ω-almost surely, E 7→ (H∞ω − E)−1 does not admit a meromorphic continuation
through (−2, 2)∩6◦.

6D3. Absolutely continuity of the spectrum of H∞ω in (−2, 2)∩6◦. Let us now prove that the spectral
measure of H∞ω in (−2, 2) ∩6◦ is purely absolutely continuous. It suffices (see, e.g., [Teschl 2000,
Section 2.5; Simon 2005, Theorem 11.6]) to prove that, for all E ∈ (−2, 2)∩6◦, one has

lim sup
ε→0+

∣∣〈δ0, (H∞ω − E − iε)−1δ0〉
∣∣+ ∣∣〈δ−1, (H∞ω − E − iε)−1δ−1〉

∣∣<+∞.
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Using (6-46), (6-47) and (6-48), for Im E 6= 0 we compute

〈δ−1, (H∞ω − E)−1δ−1〉 =
〈δ−1|(H−ω,−1− E)−1

|δ−1〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
, (6-51)

〈δ−n, (H∞ω − E)−1δm〉 =
−〈δ−n|(H−ω,−1− E)−1

|δ−1〉〈δ0|(−1
+

0 − E)−1
|δm〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
(6-52)

for n ≥ 1 and m ≤ 0, and

〈δ0, (H∞ω − E)−1δ0〉 =
〈δ0|(−1

+

0 − E)−1
|δ0〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
. (6-53)

Thus, to prove the absolute continuity of the spectral measure of H∞ω in (−2, 2)∩6◦, it suffices to
prove that, for E ∈ (−2, 2)∩6◦, one has

lim sup
ε→0+

(∣∣∣∣ 1(
〈δ−1|(H−ω,−1− E − iε)−1|δ−1〉

)−1
−〈δ0|(−1

+

0 − E − iε)−1|δ0〉

∣∣∣∣
+

∣∣∣∣ 1(
〈δ0|(−1

+

0 − E − iε)−1|δ0〉
)−1
−〈δ−1|(H−ω,−1− E − iε)−1|δ−1〉

∣∣∣∣)<∞.
This is the case, as

• the signs of the imaginary parts of−
(
〈δ−1|(H−ω,−1−E−iε)−1

|δ−1〉
)−1 and 〈δ0|(−1

+

0 −E−iε)−1
|δ0〉

are the same (negative if Im E < 0 and positive if Im E > 0),

• for E ∈ (−2, 2), 〈δ0|(−1
+

0 − E − iε)−1
|δ0〉 has a finite limit when ε→ 0+,

• for E ∈ (−2, 2), the imaginary part of 〈δ0|(−1
+

0 −E− iε)−1
|δ0〉 does not vanish in the limit ε→ 0+.

So, we have proved the part of Theorem 1.23 concerning the absence of analytic continuation of the
resolvent of H∞ω through (−2, 2)∩6◦ and the nature of its spectrum in this set.

6D4. The spectrum of H∞ω is pure point in 6◦ \ [−2, 2]. Let us now prove the last part of Theorem 1.23.
The proof relies again on (6-48). We pick β ∈

(
0, 1

2α
)
, where α is determined by Theorem 6.1 for H−ω,−1.

Then, for n ≥ 1 and m ≤ 0, using the Cauchy–Schwartz inequality, for Im E 6= 0 we compute

E
(∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣β)2

≤
∣∣〈δ0|(−1

+

0 − E)−1
|δm〉

∣∣2 · E(∣∣〈δ−n|(H−ω,−1− E)−1
|δ−1〉

∣∣2β)
· E

(∣∣∣∣ 1
1−〈δ0|(−1

+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉

∣∣∣∣2β). (6-54)

For a compact interval J ⊂ (−2, 2) \6, we know that, for n ≥ 1 and m ≤ 0,

• supIm E 6=0

∣∣〈δ0|(−1
+

0 − E)−1
|δm〉

∣∣. e−cm by the Combes–Thomas estimates;

• supIm E 6=0 E
(∣∣〈δ−n|(H−ω,−1 − E)−1

|δ−1〉
∣∣2β) . e−2βρn by the characterization (6-1) of localization

in 6 for H−ω,−1.
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It suffices now to estimate the last term in (6-54) using a standard decomposition of rank-one perturba-
tions (see, e.g., [Simon 2005; Aizenman and Molchanov 1993]); one writes

1
1−〈δ0|(−1

+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
=
ω−1− b
ω−1− a

,

where a and b only depend on (ω−n)n≥2. Thus, as (ω−n)n≥1 have a bounded density, for Im E 6= 0 one
has

E

(∣∣∣∣ 1
1−〈δ0|(−1

+

0 −E)−1|δ0〉·〈δ−1|(H−ω,−1−E)−1|δ−1〉

∣∣∣∣2β)≤E(ω−n)n≥2Eω−1

(∣∣∣∣ω−1−b
ω−1−a

∣∣∣∣2β)≤Cβ<+∞.

Thus, we have proved that, for a compact interval J ⊂6 \ [−2, 2], for β ∈
(
0, 1

2α
)

and some ρ̃ > 0,
for n ≥ 1 and m ≤ 0 one has

sup
Im E 6=0
Re E∈I

E
(∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣β)< Cβe−ρ̃(m−n).

In the same way, using (6-51) and (6-53), one proves that

sup
Im E 6=0
Re E∈I

E
(∣∣〈δ0, (H∞ω − E)−1δ0〉

∣∣β + ∣∣〈δ−1, (H∞ω − E)−1δ−1〉
∣∣β)<+∞.

Thus, we have proved that, for some ρ̃ > 0, one has

sup
Im E 6=0
Re E∈I

sup
m∈Z

E

(∑
n∈Z

eρ̃(m−n)
∣∣∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣∣∣β)<+∞.
Hence, we know that the spectrum of H∞ω in 6 \ [−2, 2] (as J can be taken arbitrarily, contained

in this set) is pure point associated to exponentially decaying eigenfunctions (see, e.g., [Aizenman and
Molchanov 1993; Aizenman 1994; Aizenman et al. 2001]). This completes the proof of Theorem 1.23.

Appendix

In this section we study the eigenvalues and eigenvectors of HL (see Remark 1.6) near an energy E ′ that
is an eigenvalue of both H+0 and H−k (see the ends of Sections 4A3 and 4A4). We keep the notations of
Sections 4A3 and 4A4.

Let ϕ+ ∈ `2(N) (resp. ϕ− ∈ `2(Z−)) be normalized eigenvectors of H+0 (resp. H−k ) associated to E−.
Thus, by (4-28) and (4-32), we can pick, for n ≥ 0 and l ∈ {0, . . . , p− 1},

ϕ+np+l = cal(E ′)ρn(E ′) and ϕ−
−np−l = c−bl(E ′)ρn(E ′). (A-1)

Assume L = N p+ k and, for l ∈ {0, . . . , L}, define ϕ±,L ∈ `2([[0, L]]) by

ϕ
+,L
l := ϕ+l , ϕ

+,L
−1 = ϕ

+,L
L+1 := ϕ

+

−1 = 0, ϕ
−,L
l := ϕ−l−L and ϕ

−,L
−1 = ϕ

−,L
L+1 := ϕ

−

0 = 0. (A-2)
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Thus, one has

HLϕ
+,L
= E ′ϕ+,L +ϕ+L+1δL , HLϕ

−,L
= E ′ϕ−,L +ϕ−

−L−1δ0 and 〈ϕ+,L , ϕ−,L〉 = O(NρN (E)).
(A-3)

Recall that ak(E ′) 6= 0 6= bk(E ′) (see Sections 4A3 and 4A4); thus, by (A-1), one has

|ϕ−
−L−1| � |ρ(E

′)|n � |ϕ+L+1|. (A-4)

Moreover, as HL converges to H+0 in the strong resolvent sense, for ε > 0 sufficiently small and L
sufficiently large, HL has no spectrum in the compact E ′+

[
−2ε,− 1

2ε
]
∪
[ 1

2ε, 2ε
]
. Let 5L be the spectral

projector onto the interval
[
−

1
2ε,

1
2ε
]
, that is, 5L := 1/(2iπ)

∫
|z−E ′|=ε(HL − z)−1 dz. By (A-3), one

computes

(1−5L)ϕ
+,L
=
ϕ+L+1

2iπ

∫
|z−E ′|=ε

(E ′− z)−1(HL − z)−1δ0 dz.

Thus, one gets
‖(1−5L)ϕ

+,L
‖+‖(1−5L)ϕ

−,L
‖. |ρ(E ′)|N . (A-5)

Define

χ̃+,L =
1

‖5Lϕ+,L‖
5Lϕ

+,L and χ̃−,L =
1

‖5Lϕ−,L‖
5Lϕ

−,L .

The Gram matrix of (χ̃+,L , χ̃−,L) then reads Id+O(NρN (E)). Orthonormalizing (χ̃+,L , χ̃−,L) into
(χ+,L , χ−,L) and computing the matrix elements of 5L(HL − E ′) in this basis, we obtain(

ϕ+L+1〈δL , ϕ
+,L
〉 ϕ+L+1〈δ0, ϕ

+,L
〉

ϕ−
−L−1〈δL , ϕ

−,L
〉 ϕ−
−L−1〈δ0, ϕ

−,L
〉

)
+ O(N 2ρ2N (E))= αρN (E)

(
0 1
1 0

)
+ O(N 2ρ2N (E))

Thus, we obtain that the eigenvalues of HL near E ′ are given by E ′±αρN (E)+O(N 2ρ2N (E)) and the
eigenvectors by 1

√
2
(ϕ+,L±ϕ−,L)+O(ρN (E)). In particular, their components at 0 and L are asymptotic

to nonvanishing constants.
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ON CHARACTERIZATION OF THE SHARP STRICHARTZ INEQUALITY
FOR THE SCHRÖDINGER EQUATION

JIN-CHENG JIANG AND SHUANGLIN SHAO

We study the extremal problem for the Strichartz inequality for the Schrödinger equation on R× R2.
We show that the solutions to the associated Euler–Lagrange equation are exponentially decaying in the
Fourier space and thus can be extended to be complex analytic. Consequently, we provide a new proof of
the characterization of the extremal functions: the only extremals are Gaussian functions, as investigated
previously by Foschi, Hundertmark and Zharnitsky.

1. Introduction

We begin with some notation. For a Schwarz function f on Rd , d ≥ 1, define the Fourier transform

F( f )(ξ)= f̂ (ξ)=
∫

Rd
e−i x ·ξ f (x) dx, ξ ∈ Rd .

The inverse of the Fourier transform,

F−1( f )(x)= f ∨(x)=
1

(2π)d

∫
Rd

ei x ·ξ f (ξ) dξ, x ∈ Rd .

The linear Strichartz inequality for the Schrödinger equation [Keel and Tao 1998; Tao 2006] asserts that

‖ei t1 f ‖L2+4/d
t,x (R×Rd )

≤ Cd‖ f ‖L2(Rd ), (1)

where ei t1 f (x)= (1/(2π)d)
∫

Rd ei x ·ξ+i t |ξ |2 f̂ (ξ) dξ . We specify d = 2 and consider

‖ei t1 f ‖L4
t,x (R×R2) ≤ R‖ f ‖L2(R2), (2)

where

R := sup
{
‖ei t1 f ‖L4

t,x (R×R2)

‖ f ‖L2(R2)

: f ∈ L2, f 6= 0
}
. (3)

We define an extremal function or extremal to (2) to be a nonzero function f ∈ L2 such that the
inequality is optimized, in the sense that

‖ei t1 f ‖L4
t,x (R×R2) = R‖ f ‖L2(R2). (4)

The extremal problem of (2) concerns:

(i) Whether there exists an extremal function?
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(ii) How to characterize the extremal functions? What are the explicit forms of extremal functions? Are
they unique up to the symmetry of the inequality?

From Foschi [2007] and Hundertmark and Zharnitsky [2006], it is known that the Gaussian functions
are the only extremal functions of the linear Strichartz inequality (2) for the dimensions d = 1, 2. Here
Gaussian functions Rd

→ C, d = 1, 2, are of the form

eA|x |2+B·x+C

with A, C ∈ C, B ∈ Cd and the real part of A negative. The existence of extremizers was established
previously by Kunze [2003] for the Strichartz inequality (1) when d = 1. When d ≥ 3, existence of
extremizers is proved by the second author in [Shao 2009] .

In this note, we are interested in the problem of how to characterize extremals for (2) via the study of
the associated Euler–Lagrange equation. We show that the solutions of this generalized Euler–Lagrange
equation enjoy fast decay in the Fourier space and thus can be extended to be complex analytic; see
Theorem 1.1. Then, as an easy consequence, we give an alternative proof that all extremal functions to
(2) are Gaussians, based on solving a functional equation of extremizers derived in [Foschi 2007]; see (7)
and Theorem 1.2. Indeed, in the proof given below we use the information that f is twice continuously
differentiable, i.e., f ∈C2, which can be lowered to continuity by a more refined argument. The functional
inequality (7) is a key ingredient in Foschi’s proof. To prove f in (7) to be a Gaussian function, local
integrability of f is assumed in [Foschi 2007], which is further reduced to measurable functions in
[Charalambides 2013].

Let f be an extremal function to (2) with the constant R. Then f satisfies the generalized Euler–
Lagrange equation

ω〈g, f 〉 = Q(g, f, f, f ) for all g ∈ L2, (5)

where ω = Q( f, f, f, f )/‖ f ‖2L2 > 0 and Q( f1, f2, f3, f4) is the integral∫
(R2)4

f̂ 1(ξ1) f̂ 2(ξ2) f̂3(ξ3) f̂4(ξ4)δ(ξ1+ ξ2− ξ3− ξ4)δ(|ξ1|
2
+ |ξ2|

2
− |ξ3|

2
− |ξ4|

2) dξ1 dξ2 dξ3 dξ4 (6)

for fi ∈ L2(R2), 1 ≤ i ≤ 4, and δ(ξ) = (2π)−d
∫

Rd eiξ ·x dx in the distribution sense for d = 1, 2. The
proof of (5) is standard; see, e.g., [Evans 2010, p. 489] or [Hundertmark and Lee 2012, Section 2] for
similar derivations of Euler–Lagrange equations.

Theorem 1.1. If f solves the generalized Euler–Lagrange equation (5) for some ω > 0, then there exists
µ > 0 such that

eµ|ξ |
2

f̂ ∈ L2(R2).

Furthermore, f can be extended to be complex analytic on C2.

To prove this theorem, we follow the argument in [Hundertmark and Shao 2012]. Similar reasoning
has appeared previously in [Erdoğan et al. 2011; Hundertmark and Lee 2009]. It relies on a multilinear
weighted Strichartz estimate and a continuity argument. See Lemmas 2.1 and 2.2.
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Next we prove that the extremals to (2) are Gaussian functions. We start with the study of the functional
equation derived in [Foschi 2007], which reads

f (x) f (y)= f (w) f (z) (7)

for any x , y, w, z ∈ R2 such that

x + y = w+ z and |x |2+ |y|2 = |w|2+ |z|2. (8)

Note that x , y, w, z ∈ R2 satisfy the relation (8) if and only if these four points form a rectangle in R2

with vertices x , y, w and z. Indeed, by (8), these four points x , y, w and z form a parallelogram on R2

and x ·y=w·z. Secondly, w−x is perpendicular to z−x , since (w−x)·(z−x)=w·z−w·x−x ·z+|x |2=
w · z − (x + y) · x + |x |2 = w · z − y · x = 0. This proves that x , y, w and z form a rectangle on R2.
In [Foschi 2007], it is proven that f ∈ L2 satisfies (7) if and only if f is an extremal function to (2).
Basically, this comes from two aspects. One is that, in the Foschi’s proof of the sharp Strichartz inequality,
only the Cauchy–Schwarz inequality is used at one place besides equality. So the equality in the Strichartz
inequality (2), or equivalently the equality in Cauchy-Schwarz, yields the same functional equation as (7),
where f is replaced by f̂ . The other one is that the Strichartz norm for the Schrödinger equation satisfies
the identity

‖ei t1 f ‖L4(R×R2) = C‖ei t1 f ∨‖L4(R×R2) (9)

for some C > 0.
Foschi [2007] is able to show that all the solutions to (7) are Gaussians under the assumption that f is

a locally integrable function. This can be viewed as an investigation of the Cauchy functional equation (7)
for functions supported on the paraboloids. To characterize the extremals for the Tomas–Stein inequality
for the sphere in R3, [Christ and Shao 2012] studies the same functional equation (7) for functions
supported on the sphere and prove that they are exponentially affine functions. Charalambides [2013]
generalizes the analysis in [Christ and Shao 2012] to some general hypersurfaces in Rn that include the
sphere, paraboloids and cones as special examples and proves that the solutions are exponentially affine
functions. In [Charalambides 2013; Christ and Shao 2012], the functions are assumed to be measurable
functions.

By the analyticity established in Theorem 1.1, equations (7) and (8) have the following easy consequence,
which recovers the result in [Foschi 2007; Hundertmark and Zharnitsky 2006].

Theorem 1.2. Suppose that f is an extremal function to (2). Then

f (x)= eA|x |2+B·x+C , (10)

where A, C ∈ C, B ∈ C2 and <(A) < 0.

Let f be an extremal function to (2). Then, by Theorem 1.1, f is continuous. This, together with (7)
and (8), implies that any nontrivial f is nowhere vanishing on R2; see, e.g., [Foschi 2007, Lemma 7.13].
For any a ∈ R2, there is a disk D(a, r)⊂ C2, r > 0, such that f is C2 by Theorem 1.1 and f is nowhere
vanishing. Then log f is C2 on D(a, r); see, e.g., [Krantz 1992, Lemma 6.1.9]. Similar claims can be
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made for log f 2. Then, up to a multiple of 2π ,

log f 2(a)= log f (a)+ log f (a).

After restriction to R2, f satisfies (7) for x , y, w and z satisfying (8). So, by taking r sufficiently small,

log f (x)+ log f (y)= log f (w)+ log f (z)

for x , y, w, z ∈ B(a, r) ⊂ R2 related as in (8). Since log f is twice differentiable, it is not hard to see
that log f is a quadratic polynomial on B(a, r). So log f is a quadratic polynomial on R2. Indeed, let
a = 0 and φ(x1)= log f (x1, 0), ψ(0, x2)= log f (0, x2). Then, since the four points (x1, x2), (x2,−x1),
(x1+ x2, x2− x1) and (0, 0) satisfy (8), we see that

[φ(x1)+ψ(x2)] + [φ(x2)+ψ(−x1)] = [φ(x1+ x2)+ψ(x2− x1)] + log f (0, 0).

By differentiating firstly in x1 and then in x2, we see that φ′′ = ψ ′′ is a constant. Thus f is a quadratic
polynomial. It is easy to see that this argument generalizes to any a ∈ R2.

2. Complex analyticity

In this section, we show that the solutions to the generalized Euler–Lagrange equation (5) can be extended
to be complex analytic.

We define
η := (η1, η2, η3, η4) ∈ (R

2)4,

a(η) := η1+ η2− η3− η4,

b(η) := |η1|
2
+ |η2|

2
− |η3|

2
− |η4|

2.

Let ε ≥ 0 and µ≥ 0. For ξ ∈ R2, define

F(ξ) := Fµ,ε(ξ)=
µ|ξ |2

1+ ε|ξ |2
. (11)

Define the weighted multilinear integral for hi ∈ L2(R2), 1≤ i ≤ 4, by

MF (h1, h2, h3, h4) :=

∫
(R2)4

eF(η1)−
∑4

j=2 F(η j )

4∏
j=1

|h(η j )|δ(a(η))δ(b(η)) dη. (12)

The multilinear estimate we need shows the weak interaction of Schrödinger waves between the high and
low frequency. More precisely:

Lemma 2.1. Let hi ∈ L2(R2), 1≤ i ≤ 4, and let s > 1 be a large number. If the Fourier transforms of h1

and h2 are supported in {ξ : |ξ | ≤ s} and {ξ : |ξ | ≥ Ns} with N > 1 a large number, respectively, then

MF (h1, h2, h3, h4)≤ C N−1/2
4∏

j=1

‖h j‖L2 . (13)



ON CHARACTERIZATION OF THE SHARP STRICHARTZ INEQUALITY FOR THE SCHRÖDINGER EQUATION 357

Proof. The proof of this lemma needs the following two inequalities:

MF (h1, h2, h3, h4)≤

∫
(R2)4

4∏
j=1

|h j (η j )|δ(a(η))δ(b(η)) dη (14)

and
‖ei t1h1ei t1h2‖L2

t,x
≤ C N−1/2

‖h1‖L2‖h2‖L2 . (15)

Together with the Cauchy–Schwarz inequality and the L2
→ L4 Strichartz inequality, the inequality (13)

follows from (14) and (15). Note that (15) is established in [Bourgain 1998]. Thus it remains to
establish (14), where we follow [Erdoğan et al. 2011; Hundertmark and Shao 2012].

On the support of η determined by δ(a(η)) and δ(b(η)), we have

η1+ η2 = η3+ η4 and |η1|
2
+ |η2|

2
= |η3|

2
+ |η4|

2.

Thus,
|η1|

2
≤ |η2|

2
+ |η3|

2
+ |η4|

2.

Since the function x 7→ x/(1+ εx) is increasing on the interval [0,∞), we have

|η1|
2

1+ ε|η1|2
≤

∑4
j=2 |η j |

2

1+
∑4

j=2 ε|η j |
2
=

4∑
j=2

|η j |
2

1+
∑4

j=2 ε|η j |
2
≤

4∑
j=2

|η j |
2

1+ ε|η j |
2 .

This implies that F(η1)≤
∑4

j=2 F(η j ), since µ≥ 0. Hence,

eF(η1)−
∑4

j=2 F(η j ) ≤ 1.

Therefore (14) follows by taking the absolute value in the integral. �

If f ∈ L2 satisfies the generalized Euler–Lagrange equation (5), the following bootstrap lemma shows
that f gains certain regularity; namely, there is a constant µ > 0 depending on the function f such
that eµ|ξ |

2
f̂ ∈ L2. This is enough to conclude that f can be extended to be complex analytic.

Lemma 2.2. If f solves the generalized Euler–Lagrange equation (5) for some ω > 0 and ‖ f ‖L2 = 1,
then for f̂> := f̂ 1|ξ |≥s2 with s > 0, there is a large constant s� 1 such that, for µ= s−4,

ω‖eF( · ) f̂>‖L2 ≤ o1(1)‖eF( · ) f̂>‖L2 +C‖eF( · ) f̂>‖
2
L2 +C‖eF( · ) f̂>‖

3
L2 + o2(1), (16)

where lims→∞ oi (1) = 0 uniformly for all ε > 0, i = 1, 2, and the constant C > 0 is independent of ε
and s.

Proof. Define h(ξ)= eF(ξ) f̂ (ξ) and h>(ξ)= eF(ξ) f̂>, where f̂> = f̂ 1|ξ |≥s2 . Let P denote the symbol of
differentiation −i∂x ; under the Fourier transform, P̂ = |ξ |. Correspondingly, we write F(P) with the
Fourier symbol µ|ξ |2/(1+ ε|ξ |2).

We expand

‖eF( · ) f̂>‖
2
L2 = 〈eF( · ) f̂>, eF( · ) f̂>〉 = 〈e

2F( · ) f̂>, f̂ 〉 = 〈e2F(P) f>, f 〉.
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Thus, in the generalized Euler–Lagrange equation (5), setting g = e2F(P) f>, we see that

ω‖eF(P) f>‖2L2 = Q(e2F(P) f>, f, f, f ). (17)

Since f̂ = e−F(ξ)h and e2F(ξ) f̂> = eF(ξ)h>,

Q(e2F(P) f>, f, f, f )=
∫
(R2)4

e2F(ξ1) f̂ >(ξ1) f̂ >(ξ2) f̂ (ξ3) f̂4(ξ4)δ(a(ξ))δ(b(ξ)) dξ

=

∫
(R2)4

eF(ξ1)h>(ξ1)e−F(ξ2)h(ξ2)e−F(ξ3)h(ξ3)e−F(ξ4)h(ξ4)δ(a(ξ))δ(b(ξ)) dξ

=

∫
(R2)4

eF(ξ1)−
∑4

j=2 F(ξ j )h>(ξ1)h(ξ2)h(ξ3)h(ξ4)δ(a(ξ))δ(b(ξ)) dξ,

where a(ξ) = ξ1 + ξ2 − ξ3 − ξ4 and b(ξ) = |ξ1|
2
+ |ξ2|

2
− |ξ3|

2
− |ξ4|

2 for ξ = (ξ1, ξ2, ξ3, ξ4) ∈
(
R2
)4.

Thus,

ω‖eF(P) f>‖2L2 ≤ MF (h>, h, h, h). (18)

Define

h∼ = h1s≤|ξ |≤s2, h� = h1|ξ |<s and h< = h�+ h∼ .

We split the integral MF (h>, h, h, h) into the following pieces:

MF (h>, h<, h<, h<)+
∑

j2, j3, j4

MF (h>, h j2, h j3, h j4)=: A+ B,

where h jk is either h> or h<, but at least one is h>. We further split A into two terms,

MF (h>, h�, h<, h<)+MF (h>, h∼, h<, h<);

we estimate this term by using Lemma 2.1:

A . s−1/2
‖h>‖L2‖h�‖L2‖h<‖2L2 +‖h>‖L2‖h∼‖L2‖h<‖2L2 . ‖h>‖L2(s−1/2

‖h�‖L2 +‖h∼‖L2)‖h<‖2L2 .

Since ‖ f ‖L2 = 1,

‖h<‖L2 ≤ eµs4
‖ f ‖L2 = eµs4

,

‖h�‖L2 ≤ eµs2
,

‖h∼‖L2 ≤ eµs4
‖ f
∼
‖L2,

where f
∼

is defined by f̂
∼
= f̂ 1s≤|ξ |≤s2 . Thus we have

A . e3µs4
‖h>‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2). (19)

Similarly we estimate the term B. We split B as B1+ B2, where B1 =
∑

j2, j3, j4 MF (h>, h j2, h j3, h j4)

contains exactly one h> in {h j2, h j3, h j4}, while B2 =
∑

j2, j3, j4 MF (h>, h j2, h j3, h j4) contains two or
more h>.
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To estimate B1,

B1 . eµs4
‖h>‖2L2‖h<‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2). e2µs4

‖h>‖2L2(s−1/2eµs2
−µs4
+‖ f

∼
‖L2). (20)

To estimate B2,

B2 . ‖h>‖3L2‖h<‖L2 +‖h>‖4L2 . eµs4
‖h>‖3L2 +‖h>‖4L2 . (21)

Thus, from (19), (20) and (21), we obtain

‖eF( · ) f̂>‖
2
L2

.e3µs4
‖h>‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2)+e2µs4

‖h>‖2L2(s−1/2eµs2
−µs4
+‖ f

∼
‖L2)+eµs4

‖h>‖3L2+‖h>‖4L2 .

Since lims→∞ ‖ f
∼
‖L2 = 0, we take s sufficiently large and set µ= s−4:

ω‖eF( · ) f̂>‖L2 ≤ o1(1)‖eF( · ) f̂>‖L2 +C‖eF( · ) f̂>‖
2
L2 +C‖eF( · ) f̂>‖

3
L2 + o2(1), (22)

which completes the proof of Lemma 2.2. �

Remark 2.3. Clearly the choice of µ in the preceding lemma depends on the function f itself.

Now we conclude that f in Lemma 2.2 gains certain regularity.

Proof of Theorem 1.1. Let f ∈ L2 and f 6= 0. We normalize f so that ‖ f ‖L2 = 1. In Lemma 2.2, we
choose s sufficiently large such that o1(1) ≤ 1

2ω and o2(1) ≤ 1
2 M , where M = sup{G(x) : x ∈ [0,∞)},

and

G(x) := 1
2ωx −Cx2

−Cx3, x ∈ [0,∞), (23)

and C is the same constant as in (16). It is easy to see that 0 ≤ M < ∞. Then G(x) ≤ M for all
x ∈ [0,∞) by Lemma 2.2. Also the function G is continuous on [0,∞). On the other hand, G ′′(x) < 0
for all x ∈ (0,∞); thus G is concave. The line G = 1

2 M intersects at two points of the positive x axis,
x = x0 and x = x1 > 0.

We define H : (0,∞)→ [0,∞) via

H(ε)=
(∫
|ξ |≥s2

|eFs−4,ε(ξ) f̂ |2 dξ
)1

2

.

The function H is continuous on (0,∞) by the dominated convergence theorem and H(0,∞) is connected.
Hence G−1

([
0, 1

2 M
])

is either contained in [0, x0] or [x1,∞); only one alternative holds. For ε = 1
and s sufficiently large, H(1)≥ x1 is impossible. Hence the first alternative holds.

Therefore G−1
([

0, 1
2 M

])
⊂ [0, x0], which yields that

‖eF( · ) f̂>‖L2 ≤ C0, that is, ‖es−4
|ξ |2/(1+ε|ξ |2) f̂>‖L2 ≤ C0, (24)

uniformly in all ε > 0. By the monotone convergence theorem,

‖es−4
|ξ |2 f̂>‖L2 ≤ C0 <∞.



360 JIN-CHENG JIANG AND SHUANGLIN SHAO

It is clear that es−4
|ξ |2 f̂ 1|ξ |≤s2 ∈ L2. Therefore,

es−4
|ξ |2 f̂ ∈ L2.

Let µ= s−4. This proves the first half of Theorem 1.1.
To prove that f can be extended to be complex analytic on C2, we observe that, by the Cauchy–Schwarz

inequality, for any λ ∈ R,

eλ|ξ | f̂ (ξ)= eλ|ξ |−µ|ξ |
2
eµ|ξ |

2
f̂ (ξ) ∈ L2(R2). (25)

So it is not hard to see that f can be extended to be complex analytic on C2; see, e.g., [Reed and Simon
1975, Theorem IX.13]. Alternatively, analyticity can be obtained in the following way. Similarly to in
(25) for k ∈ N∪ {0}, |ξ |keλ|ξ | f̂ ∈ L1(R2). For z ∈ C2, we choose λ > |z|, then

f (z)= (2π)−2
∫

R2
ei z·ξ−λ|ξ |eλ|ξ | f̂ (ξ) dξ.

Then, by taking differentiation under the integral sign, complex analyticity follows. �
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FUTURE ASYMPTOTICS AND GEODESIC COMPLETENESS
OF POLARIZED T 2-SYMMETRIC SPACETIMES

PHILIPPE G. LEFLOCH AND JACQUES SMULEVICI

We investigate the late-time asymptotics of future-expanding, polarized vacuum Einstein spacetimes with
T 2-symmetry on T 3, which, by definition, admit two spacelike Killing fields. Our main result is the
existence of a stable asymptotic regime within this class; that is, we provide here a full description of
the late-time asymptotics of the solutions to the Einstein equations when the initial data set is close to
the asymptotic regime. Our proof is based on several energy functionals with lower-order corrections (as
is standard for such problems) and the derivation of a simplified model that we exhibit here. Roughly
speaking, the Einstein equations in the symmetry class under consideration consist of a system of wave
equations coupled to constraint equations plus a system of ordinary differential equations. The unknowns
involved in the system of ordinary equations are blowing up in the future timelike directions. One of
our main contributions is the derivation of novel effective equations for suitably renormalized unknowns.
Interestingly, this renormalization is not performed with respect to a fixed background, but does involve
the energy of the coupled system of wave equations. In addition, we construct an open set of initial data
that are arbitrarily close to the expected asymptotic behavior. We emphasize that, in comparison, the class
of Gowdy spacetimes exhibits a very different dynamical behavior to the one we uncover in the present
work for general polarized T 2-symmetric spacetimes. Furthermore, all the conclusions of this paper are
valid within the framework of weakly T 2-symmetric spacetimes previously introduced by the authors.

1. Introduction

This is the third of a series of papers [LeFloch and Smulevici 2015; 2016] devoted to the study of
weakly regular, T 2-symmetric, vacuum spacetimes. There has been extensive work on the mathematical
analysis of T 2-symmetric spacetimes with high regularity and we refer for instance to the introduction of
[Smulevici 2011] for related literature. Our motivation in studying these spacetimes is two-fold. First
of all, given the high degree of symmetry, one can study these solutions under much weaker regularity
than in the general case. In [LeFloch and Smulevici 2015], we introduced the notion of weakly regular,
T 2-symmetric, vacuum spacetime and we established a future-expanding, global existence theory in the
so-called areal coordinates — generalizing a previous result in the smooth setup [Berger et al. 1997]. Our
notion of weakly regular spacetimes extended a notion first proposed by Christodoulou [1993] (see also
[LeFloch and Sormani 2015]) for radially symmetric spacetimes and later by [LeFloch 2015; LeFloch
and Mardare 2007; LeFloch and Rendall 2011; LeFloch and Stewart 2005; LeFloch and Stewart 2011]

MSC2010: 83C05, 83C20, 35Q76.
Keywords: Einstein equations, T 2-symmetry, future expanding spacetime, late-time asymptotics, geodesic completeness.
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for Gowdy symmetric spacetimes. See also the more recent developments in [Grubic and LeFloch 2013;
2015].

Our second motivation comes from the fact that, apart from special cases (see, for instance, [Chruściel
et al. 1990; Ringström 2004; 2009]), a complete description of the late-time asymptotics of T 2-symmetric
spacetimes has not been given yet even for smooth initial data sets. In fact, the techniques available until
now provide the existence of future developments, but are not sufficient to prove that these spacetimes
are future geodesically complete or not.

Recall that a T 2-symmetric, vacuum spacetime is a solution to the vacuum Einstein equations Ric(g)=0
arising from an initial data set which is assumed to be invariant under an action of the Lie group T 2. We
are concerned here with the study of T 2-symmetric spacetime arising from initial data given on T 3. For
such spacetimes, it is known [Chruściel 1990] that, unless the spacetime is flat (and therefore the solution
is trivial) the area of the orbits of symmetry, say R, admits a timelike gradient and, therefore, can be used
as time coordinate and leads one to define the so-called areal gauge. By convention, we can choose the
time direction so that R increases toward the future. In the present paper, we restrict attention to polarized
T 2-symmetric spacetimes, which are T 2-symmetric spacetimes for which the Killing fields generating
the T 2 symmetry can be chosen to be mutually orthogonal.

Our main result is a complete description of the future time-asymptotics of polarized, T 2-symmetric,
vacuum spacetimes, under the assumption that one starts sufficiently close to the expected asymptotic
regime. As a consequence, it follows that these spacetimes are future geodesically complete. We refer to
Theorems 7.1 and 8.1 for precise statements. These results are new even for smooth initial data, but we
also emphasize that all of our estimates are valid within the framework of weakly regular, T 2-symmetric
spacetimes introduced in [LeFloch and Smulevici 2015].

Prior to the present work, two important subclasses of T 2-symmetric solutions were studied in the
literature. First of all, when the initial data set is invariant not only by an action of T 2 on T 3 but by
the action of T 3 on itself, then the spacetime is homogeneous, i.e., admits three independent spatial
Killing fields. The Einstein equations then reduce to a set of ordinary differential equations. Second,
another subclass of solutions is the class of Gowdy spacetimes, which, by definition, are T 2-symmetric
solutions for which the family of 2-planes orthogonal to the orbits of symmetry is integrable. One of
the main differences between the Gowdy solutions and the general T 2-symmetric solutions is that the
equations in areal gauge are semilinear in the Gowdy case, while they are quasilinear in general. The
future time-asymptotics of Gowdy spacetimes were derived by Ringström [2004] (see also [Chruściel
et al. 1990] for polarized Gowdy spacetimes).

The following question thus arises. Are the asymptotics of homogeneous T 2-symmetric or Gowdy
spacetimes stable within the whole set of T 2-symmetric solutions? For homogeneous solutions, it turns
out that there are not even stable within the class of Gowdy spacetimes [Ringström 2004]. As far as
Gowdy spacetimes are concerned, the asymptotics derived in the present work show that they are not
stable within the set of T 2-symmetric solutions. For instance, according to Theorem 7.1, the norm of the
gradient of R behaves like R−2, while it decays exponentially in the Gowdy case. Of course, one question
which remains open is whether the future asymptotic behavior that we uncover here is stable, first within
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the whole class of T 2-symmetric solutions (i.e., for nonpolarized solutions) and, then, within the class of
solutions arising from arbitrary initial data defined on T 3. We observe that many of the estimates we
prove below can be generalized to the nonpolarized case.

Independently of this work, Ringström [2015] has recently obtained interesting and complementary
results on T 2-symmetric spacetimes. His main results can be summarized as follows. For any T 2-
symmetric spacetime that is nonflat and non-Gowdy, there is a certain geometric quantity1 which, if
bounded as R → +∞, implies that the solution is homogeneous. This result does not give sharp
asymptotics on the solutions, but it is a large-data result and therefore, it is so far the strongest result
available for T 2-symmetric spacetimes with arbitrary data. It implies, in particular, that the asymptotics
of non-Gowdy, nonhomogeneous solutions are quite different from the asymptotics of homogeneous or
Gowdy solutions. A second set of results proved in [Ringström 2015] concerns polarized T 2-symmetric
under a smallness assumption (which is slightly different from the initial data assumption that we make
here). A partial set of asymptotics is then obtained therein, while, in the present work, we derive a full set
of late-time asymptotics; it is interesting to point out that the methods of proof appear to be quite different.

The rest of this paper is organized as follows. In the following section, we introduce standard material
on T 2-symmetric and polarized solutions, which we will use throughout. In particular, we recall the
global existence of areal foliation for weakly regular initial data established in [LeFloch and Smulevici
2015]. Apart from this result, this paper is essentially self-contained. We conclude the preliminary section
by presenting the general strategy that we will use in order to derive the asymptotics. In Section 3, we
derive some formulas for the evolution of certain mean values and we also provide some estimates about
the commutator associated with the time derivative operator and the spatial average operator. Section 4 is
devoted to the analysis of the corrected energy. In Section 5, we introduce several renormalized unknowns,
derive a system of evolution equations for them and provide estimates on various error terms arising in
the analysis. In Section 6, we introduce and close a small bootstrap argument, linking all the previous
estimates together. In Sections 7 and 8, we present and give the proofs of the main results of this paper,
concerning the full set of asymptotics and the geodesic completeness of these spacetimes, respectively.
Finally, in Section 9, we construct an open set of initial data satisfying the assumptions of Theorem 7.1.

2. Preliminaries on T 2-symmetric polarized solutions

2A. Einstein equations in areal coordinates. Let (M, g) be a weakly regular, T 2-symmetric spacetime,
understood in the sense introduced in [LeFloch and Smulevici 2015]. From the existence theory therein,
we know that if R :M→ R denotes the area of the orbits of the symmetry group then its gradient vector
field ∇R is timelike (and future oriented thanks to the standard normalization adopted in [LeFloch and
Smulevici 2015]) and, consequently, the area can be used as a time coordinate. In these areal coordinates,
the variable R exhausts the interval [R0,+∞), where R0 > 0 is the (assumed) constant value of the area
on the initial slice and the metric takes the form

g = e2(η−U )(−d R2
+ a−2 dθ2)+ e2U (dx + A dy+ (G+ AH) dθ)2+ e−2U R2(dy+ H dθ)2. (2-1)

1In the notation of this paper, it coincides with the quantity P introduced in (2-19).
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Here, the independent variables x , y and θ belong to S1 (the 1-dimensional torus or circle) and the
metric coefficients U , A, η, a, G and H are functions of (R, θ), only. We will, for convenience in the
presentation, identify S1 with the interval [0, 2π ] and functions defined on S1 with 2π -periodic functions.
The vector fields ∂x and ∂y are Killing fields for the above metric and so are any linear combinations of
∂x and ∂y .

We are interested here in polarized T 2-symmetric spacetimes, defined as follows.

Definition 2.1. A T 2-symmetric spacetime is said to be polarized if one can choose linear combinations
X and Y of the vector fields ∂x and ∂y generating the T 2 symmetry such that g(X, Y )= 0.

For a polarized spacetime, it follows that the metric can be rewritten (possibly after a change of the
coordinates x and y) as

g = e2(η−U )(−d R2
+ a−2 dθ2)+ e2U (dx +G dθ)2+ e−2U R2(dy+ H dθ)2. (2-2)

Now, the Einstein equations for T 2-symmetric spacetimes written in areal coordinates have been
derived in [Berger et al. 1997] for smooth solutions (see also [Chruściel 1990] for the existence of areal
time). In [LeFloch and Smulevici 2015], we introduced the weak version of the Einstein equations for
weakly regular, T 2-symmetric spacetimes and we proved that, using areal coordinates, we could still
reduce the Einstein equations to those obtained in [Berger et al. 1997]. In the polarized case, we are thus
left with the following system of partial differential equations:

(1) Three evolution equations for the metric coefficients U , η and a:

(Ra−1UR)R − (RaUθ )θ = 0, (2-3)

(a−1ηR)R − (aηθ )θ =�η−
1

R3/2 (R
3/2(a−1)R)R, (2-4)

(2 ln a)R =−
K 2

R3 e2η, (2-5)

where K is a real constant and �η := −a−1U 2
R + aU 2

θ .

(2) Two constraint equations for the metric coefficient η:

ηR +
K 2

4R3 e2η
= a RE, (2-6)

ηθ = RF, (2-7)

where E := a−1U 2
R + aU 2

θ and F := 2URUθ .

(3) Two equations for the twists:

G R = 0 and HR =
K
R3 a−1e2η. (2-8)

Here, K is the twist constant and K = 0 corresponds geometrically to the integrability of the family of
2-planes orthogonal to ∂x and ∂y . The special solutions with K = 0 are called Gowdy spacetimes (with
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T 3 topology). Since the dynamics of Gowdy spacetimes are well known [Ringström 2004], we focus
here exclusively on the case K 6= 0.

Note that the metric functions G and H do not appear in the equations apart from (2-8). These latter
equations can simply be integrated in R, once enough information on their right-hand sides is obtained.
They will therefore be ignored in most parts of this paper. Note also that (2-4) is actually a redundant
equation, i.e., can be deduced from the other equations.2

Finally, observe that the identity (
e2η

a

)
R
= 2REe2η (2-9)

will be useful later in this paper; it can be easily derived from the Einstein equations (2-5) and (2-6).

2B. Global existence in areal coordinates. In [LeFloch and Smulevici 2015], we proved local and
global existence results for general T 2-symmetric spacetimes in areal coordinates. In the specific case of
polarized, T 2-symmetric spacetimes, these results imply the following conclusion:

Theorem 2.2 (global existence theory in areal coordinates). Fix any constants K , R0 > 0. Consider any
initial data (U0,U1) ∈ H 1(S1)× L2(S1), a0 ∈ W 2,1(S1) and η0 ∈ W 1,1(S1) such that a0 > 0. Suppose
moreover that the constraint equation (2-7) is satisfied initially, i.e.,

∂θ (η0)= 2R0U1 ∂θ (U0). (2-10)

Let C be the class of functions (U, η, a) such that

U ∈ C1([R0,+∞), L2(S1))∩C0([R0,+∞); H 1(S1)),

η ∈ C0([R0,+∞);W 1,1(S1)),

a ∈ C0([R0,+∞);W 2,1(S1)).

Then there exists a unique solution (U, η, a) ∈ C of the Einstein equations (2-3)–(2-7) which assumes the
given initial data at R = R0, in the sense

U (R0)=U0, UR(R0)=U1, η(R0)= η0, a(R0)= a0.

Moreover, on any compact time interval, the solution can be uniformly approximated by smooth solutions
in the norm associated with C.

Since all of our estimates here will be compatible with the density property stated at the end of the
above theorem, it is sufficient to perform our analysis by assuming our initial data to be smooth.

2More precisely, (2-4) can be obtained by multiplying (2-6) and (2-7) by a−1 and a, respectively, differentiating the resulting
equations in R and θ and taking their differences before replacing second derivatives of U and first derivatives of a using the
evolution equations.
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2C. Energy functionals. Important control on the metric coefficients, mostly on their first-order deriva-
tives, is obtained by analyzing the energy functionals

E (R) :=
∫

S1
E(R, θ) dθ, E = a−1U 2

R + a U 2
θ , (2-11)

and

EK (R) :=
∫

S1
EK (R, θ) dθ, EK := E +

K 2

4R4 a−1e2η. (2-12)

Using the Einstein equations (2-3)–(2-7), it follows that both functionals are nonincreasing in time, with

d
d R

E (R)=−
K 2

2R3

∫
S1

Ee2η dθ −
2
R

∫
S1

a−1(UR)
2 dθ,

d
d R

EK (R)=−
K 2

R5

∫
S1

a−1e2η dθ −
2
R

∫
S1

a−1(UR)
2 dθ.

(2-13)

As a direct consequence, we have the following result:

Lemma 2.3 (uniform energy bounds for T 2-symmetric spacetimes). The following uniform bounds hold:

sup
R∈[R0,+∞)

E (R)≤ E (R0) and sup
R∈[R0,+∞)

EK (R)≤ EK (R0), (2-14)

as well as the spacetime bounds∫
+∞

R0

∫
S1
(a−1cU

0 (UR)
2
+ acU

1 (Uθ )
2) d R dθ ≤ E (R0), (2-15)∫

+∞

R0

K 2

R5

∫
S1

e2η a−1 d R dθ ≤ EK (R0), (2-16)

with

cU
0 :=

2
R
+

K 2

2R3 e2η and cU
1 :=

K 2

2R3 e2η.

2D. Heuristics and general strategy. To understand the asymptotic behavior of the solutions to wave
equations such as (2-3), it is important to note that, while for the flat wave operator in 1+ 1 dimensions
there is no decay of solutions, the R-weights present in (2-3) reflect some expansion of our spacetime
and that, in general, waves decay on expanding spacetimes.

The general strategy to capture this decay is to first observe that the global energy dissipation
bound (2-15) associated with the energy functional E (R) gives an integrated energy decay estimate
but with weaker weights for Uθ than for UR (see the missing 2/R in cU

1 compared to cU
0 ). To match the

weights between UR and Uθ , we will work instead with the modified energy functional

Ê (R) := E (R)+G U (R) (2-17)

with

G U
:=

1
R

∫
S1
(U −〈U 〉)URa−1 dθ,
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in which the average 〈 f 〉 of a function f = f (θ) is not defined with respect to the flat measure dθ but
with respect to a weighted measure a−1 dθ , i.e.,

〈 f 〉 :=

∫
S1 f a−1 dθ∫
S1 a−1 dθ

. (2-18)

Our strategy is then to “trade” a time derivative for a space derivative. This method of proof was previously
used in [Ringström 2004; Choquet-Bruhat and Moncrief 2001; Choquet-Bruhat 2003].

The following notation will be useful. We introduce the length P of the circle S1 with respect to the
measure a−1 dθ , that is,

P(R) :=
∫ 2π

0
a−1 dθ, (2-19)

which we refer to as the perimeter. The geometric interpretation of this quantity is that the principal
symbol of the wave operator appearing in the wave equation (2-3) for U is that of the 2-dimensional
metric

ds2
=−d R2

+ a−2 dθ2.

Thus, P is the volume of the constant-R slice for this metric.
Naively, one may expect the following behavior as R→+∞. In view of the energy identity (2-13)

satisfied by E and focusing on the second integral term, one may expect that

d
d R

E ≤−
2
R

E (modulo higher-order terms),

so that E should decay like 1/R2. This behavior is indeed correct for spatially homogeneous spacetimes,
as can be checked directly. However, for nonspatially homogeneous solutions, a space derivative must be
recovered from a time derivative, using the corrected energy Ê defined in (2-17), as we already explained
above. This would lead to a rate of decay determined by

d
d R

Ê (R)≤−
1
R

Ê (R) (modulo higher-order terms),

so that Ê should decay like 1/R. If one can then check that the correction term in Ê is of order o(1/R),
it should follow that E (R) is of order 1/R. This is indeed the rate of decay established by Ringström
[2004] for (sufficiently regular) Gowdy spacetimes.

For the more general class of spacetimes under consideration in the present paper, and due to the
variation of the metric coefficients a and η, the behavior E ∼ 1/R is not consistent with the field equations,
as we now check formally. At this stage of the discussion, we are working under the (later invalidated,
below) assumption that the first term in (2-13) is negligible, say specifically

‖e2η
‖L∞(S1)

2R3 .
1

R1+ε , ε > 0. (2-20)

From (2-5) we would deduce

(ln a)R =−K 2 e2η

2R3 ∈ L1
R,
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hence the coefficient a would then admit a finite limit as R→+∞. Next, in view of

ηR =−
K 2

2
e2η

2R3 + a RE,

in which
∫

S1 RE dθ is bounded thanks to our energy assumption, it would then follow that
∫

S1 ηR behaves
like 1 and thus

∫
S1
η ∼ R (modulo a multiplicative constant). In turn, this invalidates our original

assumption (2-20).
This means that the first term in (2-13) should not be neglected and that it contributes significantly to

the energy decay. We will prove that, modulo an error term due to the spatial variation of η, this term can
be rewritten as −(PR/P)E , where P is the perimeter defined by (2-19).

Taking this into account, it follows, assuming that all the error terms can be controlled, that the rescaled
energy

F :=PÊ (2-21)

should decay like 1/R and, in other words, the energy Ê should decay like 1/P R. This brings more
decay into our analysis, provided the perimeter P is growing as R→+∞— as we will actually show
later. Indeed, we will establish that the perimeter and metric coefficients have the asymptotic behavior
(possibly up to multiplicative constants)

P(R)∼ R1/2, PR(R)∼ R−1/2, e2η
∼ R2, a ∼ R−1/2. (2-22)

For the energy, we will therefore have E ∼ R−3/2. Surprisingly, all the multiplicative constants in the
above asymptotic behavior are linked to each other. For instance, we will show that R2P−1E → 5

4
as R→+∞. One of the main difficulties lies in fact in trying to understand these relations. Thus, our
work really consists of three ingredients:

(1) A version of the corrected energy functionals adapted to polarized, T 2-symmetric spacetimes
(Sections 3 and 4).

(2) A derivation and analysis of a dynamical system to understand the interplay between P and the
energy functionals (Section 5).

(3) Estimates on all the error terms involved in the above two steps and the interplay between all the
previous estimates. Since all the estimates involved in the above estimates depend on each other, we
use a small bootstrap argument to obtain closure (Section 6).

Once these elements have been obtained, deriving the asymptotics of the solutions consists mostly
in revisiting the previous estimates in the proper order (see Section 7). Finally, we prove the geo-
desic completeness by using the approach already developed in [LeFloch and Smulevici 2016] (see
Section 8).



FUTURE ASYMPTOTICS AND GEODESIC COMPLETENESS OF POLARIZED T 2-SYMMETRIC SPACETIMES 371

3. Evolution of the mean values

3A. The length variable. In addition to the perimeter P(R) introduced in (2-19), the metric coefficient a
also determines a length function

ϑ(θ, R) :=
∫ θ

0
a−1 dθ, θ ∈ S1, (3-1)

and its inverse 2=2(ϑ, R) (for each fixed R). In other words, we set 2(ϑ(θ, R), R)= θ for all θ ∈ S1,
so that

2(ϑ, R)=
∫ ϑ

0
a(2(ϑ ′, R), R) dϑ ′, 2(P(R), R)= 2π. (3-2)

Using the change of variable determined by the length function, we can parameterize any function
f = f (R, θ) into f̃ = f̃ (R, ϑ), defined by

f̃ (R, ϑ) := f (R,2(ϑ, R)). (3-3)

This is nothing but a change of coordinates from (R, θ) to (R, ϑ), but we insist on keeping the “tilde
notation” in order to avoid confusion (when taking averages and R-derivatives).

The average of any L1(S1) function f is now naturally computed with respect to the measure dϑ , that
is,

〈 f̃ (R)〉 :=
1

P(R)

∫ P(R)

0
f̃ (R) dϑ.=

1
P(R)

∫ 2π

0
f (R)a(R)−1 dθ = 〈 f (R)〉, (3-4)

which, as stated, obviously coincides with 〈 f (R)〉 as defined by (2-18). Note that the periodicity property
is preserved in the new variable, that is,

f̃ (R, ϑ +P(R))= f̃ (R, ϑ)

for all relevant values of R and ϑ .
Using the above notation, we can for instance rewrite the correction G U introduced in (2-17) in the

form

G U (R) :=
1
R

∫ P(R)

0

(
Ũ (R)−〈Ũ (R)〉

)
ŨR(R) dϑ. (3-5)

This form has some advantages when differentiating with respect to R, since it directly involves the
perimeter and its derivative, which have a geometric meaning.

3B. Derivatives of the mean values. We will be taking time derivatives of the above quantities but,
since the time-derivative operator and the spatial averaging operator do not commute, an analysis of the
corresponding “commutator” will be required. The following properties will be used throughout the rest
of this article.
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Lemma 3.1 (general identities for the mean values). For any (sufficiently regular) function f = f (R, θ),
one has

d
d R
〈 f̃ 〉 = 〈 f̃R〉+

K 2

2R3 〈 f̃ e2η〉−
PR

P
〈 f̃ 〉,

d
d R

(P〈 f̃ 〉)=P〈 f̃R〉+P
K 2

2R3 〈 f̃ e2η〉,

in which f̃ is defined by (3-3).

Proof. From the definition

〈 f̃ 〉 =
1
P

∫ P

0
f̃ dϑ =

1
P

∫ 2π

0
f (R, θ)a−1 dθ,

we deduce that
d

d R
〈 f̃ 〉 = 〈 f̃R〉+

1
P

∫ 2π

0
f (a−1)R dθ −

PR

P
〈 f̃ 〉

= 〈 f̃R〉+
1
P

∫ 2π

0
f

K 2e2η

2R3 a−1 dθ −
PR

P
〈 f̃ 〉

= 〈 f̃R〉+
K 2

2R3 〈 f̃ e2η〉−
PR

P
〈 f̃ 〉,

which leads us to the two identities stated in the lemma. �

The above lemma allows us to derive the following estimate:

Lemma 3.2 (commutator estimate). The commutator associated with the time-differentiation and averag-
ing operators satisfies, for all functions f ,∣∣∣∣ d

d R
〈 f̃ 〉− 〈 f̃R〉

∣∣∣∣≤ πK 2

R3 〈| f̃ |〉‖(e
2η)θ‖L1(S1).

Proof. From the above lemma, the expression of PR and the evolution equation satisfied by a, we deduce∣∣∣∣ d
d R
〈 f̃ 〉− 〈 f̃R〉

∣∣∣∣≤ K 2

2R3P2

∫ 2π

0
| f |a−1(R, θ)

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2ηa−1(R, θ ′) dθ ′

∣∣∣∣ dθ

≤
πK 2

R3P
〈| f̃ |〉 sup

θ∈S1

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2η(R, θ ′)a−1(R, θ ′) dθ ′

∣∣∣∣
with

sup
θ∈S1

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2η(R, θ ′)a−1(R, θ ′) dθ ′

∣∣∣∣≤P
(
sup
S1

e2η
−min

S1
e2η)
≤P‖(e2η)θ‖L1(S1). �

The following conserved quantity will also be useful in our analysis. It follows simply after a global
integration in space of the wave equation (2-3) and an integration in R on [R1, R].

Lemma 3.3. For all R ≥ R1, the following conservation law holds:

RP〈ŨR〉 = R1P(R1)〈ŨR〉(R1).
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4. Evolution of the modified energy functional

4A. Evolution of correction terms. Using Lemma 3.1, we can compute the time derivative of the
corrector G U in (3-5); indeed:

d
d R

G U
=−

1
R

G U
+

1
R

(∫ 2π

0
(U −〈Ũ 〉)URa−1 dθ

)
R

=−
1
R

G U
+

1
R

∫ 2π

0
U 2

Ra−1 dθ +
1
R

∫ P

0

(
−〈ŨR〉−

K 2

2R3 〈Ũe2η〉+
PR

P
〈Ũ 〉

)
ŨR dϑ

+
1
R

∫ 2π

0
(U −〈Ũ 〉)(URa−1)R dθ,

so that, by using the field equation (2-3) satisfied by U ,

d
d R

G U
=−

1
R

G U
+

1
R

∫ P

0
Ũ 2

R dϑ −
P

R
(〈ŨR〉)

2
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉

+
PR

R
〈Ũ 〉〈ŨR〉+

1
R

∫ 2π

0
(U −〈Ũ 〉)

(
−

URa−1

R
+ (aUθ )θ

)
dθ.

Integrating by parts the last term, we obtain

−
2
R

G U
+

1
R

∫ P

0
Ũ 2

R dϑ −
1
R

∫ P

0
Ũ 2
ϑ dϑ −

P

R
(〈ŨR〉)

2
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉+
PR

R
〈Ũ 〉〈ŨR〉.

After reorganizing some of the terms, this leads us to

d
d R

G U
=−

1
R

∫ P

0
Ũ 2
ϑ dϑ +

1
R

∫ P

0
Ũ 2

R dϑ −
1
R

G U
−

PR

P
G U
+�G U , (4-1)

with

�G U =
PR

P
G U
−

P

R
(〈ŨR〉)

2
−

1
R

G U
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉+
PR

R
〈Ũ 〉〈ŨR〉. (4-2)

The term �G U will be shown to be an “error term”, while the remaining terms in the right-hand side
of (4-1) will contribute to the derivation of a sharp energy decay estimate. In (4-1) and (4-2), we have
added and subtracted the term (PR/P)G U , as this will simplify some of our estimates.

4B. Evolution of the corrected energy. Summing together the contributions of the energy and the
correction G U , we find

d
d R

(E +G U )=−
K 2

2R3

∫ 2π

0
Ee2η dθ −

2
R

∫
S1
(a−1U 2

R) dθ

+
1
R

∫ 2π

0
a−1U 2

R dθ −
1
R

∫ P

0
Ũ 2
ϑ dϑ −

PR

P
G U
−

1
R

G U
+�G U

=−
PR

P
(E +G U )−

1
R
(E +G U )+�E +�G U , (4-3)
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where the error terms are �G U , defined by (4-2), and

�E =
PR

P
E −

K 2

2R3

∫ 2π

0
Ee2η dθ.

4C. Estimate for the energy correction. We will need the following 1-dimensional Poincaré (or Wirtinger)
inequality: for any a > 0, if f is an a-periodic function in H 1(0, a) and has mean value 0 on this interval,
then ∫

[0,a]
f 2
≤

a2

4π2

∫
[0,a]

f ′ 2. (4-4)

This is easily checked by, for instance, using a Fourier decomposition of f . Using the above notation, we
have the following lemma:

Lemma 4.1 (estimate of the G U correction of the energy). We have

|G U (R)| ≤
P(R)
4πR

E (R).

Proof. We apply the inequality ab≤ 1
2(a

2
+b2) to the integrand of RG U , but we insert weights of P/(2π)

so as to obtain

|RG U
| ≤

P

4π

∫ P

0
Ũ 2

R dϑ+
2π
2P

∫ P

0
(Ũ−〈Ũ 〉)2 dϑ ≤

P

4π

∫ 2π

0
U 2

Ra−1 dθ+
P

4π

∫ P

0
Ũ 2
ϑ dϑ =

P

4π
E . �

4D. Estimates for the error terms. In this section, we estimate all the error arising in the corrected
energy formula (4-3).

Lemma 4.2 (estimate for the |�E | error term). We have

|�E | ≤ E
K 2

2R3

∫ 2π

0
2REe2η

= E
K 2

2R3

∫ 2π

0

(
e2η

a

)
R
.

Proof. Recall that
PR

P
=

K 2

2R3

∫ 2π

0
e2ηa−1 dθ

(∫ 2π

0
a−1 dθ

)−1

,

so that∣∣∣∣− K 2

2R3

∫ 2π

0
Ee2η dθ +

PR

P
E

∣∣∣∣≤ K 2

2R3P

∫ 2π

0
E(R, θ) dθ

∫ 2π

0
a−1(R, θ ′)|e2η(R, θ ′)− e2η(R, θ)| dθ ′

≤ E
K 2

2R3

∫ 2π

0
|2ηθ |e2η dθ

≤ E
K 2

2R3

∫ 2π

0
2REe2η dθ = E

K 2

2R3

∫ 2π

0

(
e2η

a

)
R

dθ,

where we have used the constraint equation (2-7) for ηθ and the identity (2-9). �
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Next, we analyze the error term �G U . It is convenient to split it into three components as follows:
�G U = I1+ I2+ I3, where I1, I2 and I3 are defined as

I1 =−
1
R

G U ,

I2 =
PR

P
G U
+

PR

R
〈Ũ 〉〈ŨR〉−

K 2

2R4 P〈ŨR〉〈Ũe2η〉,

I3 =−
P

R
(〈ŨR〉)

2.

Lemma 4.3. The following estimates hold:

|I1| ≤
P(R)
4πR2 E (R),

|I2| ≤
PR

R
E ,

|I3| ≤
A

R3P(R)
,

where A is a nonnegative constant determined by the initial data:

A= R2
1P(R1)

2(〈ŨR〉)
2(R1).

Proof. The estimates on I1 and I3 follow immediately from Lemmas 4.1 and 3.3, respectively. We then
estimate I2 as follows. Note first that

I2 =
PR

P
G U
+

PR

R
〈Ũ 〉〈ŨR〉−

K 2

2R4 P〈ŨR〉〈Ũe2η〉

=
K 2

2R4P

∫ 2π

0
UR(R, θ ′)a−1(R, θ ′)

(∫ 2π

0
e2η(R, θ)a−1(R, θ)[U (R, θ ′)−U (R, θ)] dθ

)
dθ ′;

hence,

|I2| ≤
K 2

2R4P

∫ P

0
|ŨR| dϑ

∫ P

0
e2η̃ dϑ

∫ P

0
|Ũϑ | dϑ ≤

PR

RP
(E 1/2P1/2)2 ≤

PR

R
E . �

4E. Combining the estimates for the corrected energy. Collecting all the estimates for the error terms
above and noting that I3 has a sign, we obtain the estimate

d
d R

(E +G U )+

(
1
R
+

PR

P

)
(E +G U )≤

P

4πR2 E +
PR

R
E + E

K 2

2R3

∫ 2π

0

(
e2η

a

)
R
,

from which it follows that

RP(E +G U )(R)

≤ R0P(E +G U )(R0)+

∫ R

R0

P2E

4πR′
d R′+

∫ R

R0

PRPE d R′+
∫ R

R0

PE
K 2

2R′2

∫ 2π

0

(
e2η

a

)
R

dθ d R′.
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Similarly, we can obtain

d
d R

(RP(E +G U ))≥−
A

R2 −
P2

4πR
E +PPRE +PE

K 2

2R2

∫ 2π

0

(
e2η

a

)
R
, (4-5)

leading to

RP(E +G U )(R)≥ R0P(E +G U )(R0)−

∫ R

R0

P2E

4πR′
d R′

−

∫ R

R0

PRPE d R′−
∫ R

R0

PE
K 2

2R′2

∫ 2π

0

(
e2η

a

)
R

dθ d R′−
∫ R

R0

A

R′ 2
d R′,

where A is the constant in Lemma 4.3.

5. A dynamical system for the renormalized unknowns

5A. The dynamical system. In the previous section, we have obtained differential inequalities for the
quantity P(E +G U ), with error terms depending mostly on E and P . In this section, we will try to obtain
effective equations in order to control the asymptotic behavior of P. For convenience, we introduce the
notation

F :=PE and G :=P(E +G U ).

We have thus seen that G satisfies “good” differential inequalities while it is ultimately F that we want to
control, as it is a manifestly coercive quantity (contrary to G). We will rely on the guess that the function G

decays like 1/R, but we will not use yet the differential inequalities derived for G in the previous section.
In fact, G will appear here only in the form RG′/G.

The system of ODEs: spatial integration and first error terms. Let Q=
∫

S1
1
2 K 2e2ηa−1 dθ . After integra-

tion in the spatial variable of the Einstein equations (2-5)–(2-6), we obtain

PR =
Q

R3 , (5-1)

QR = 2RFQP−2
+�Q, (5-2)

where �Q is given by

�Q = 2R
(∫

S1

K 2

2
Ee2η
−P−1E Q

)
.

As in Lemma 4.2, �Q satisfies the estimate

|�Q| ≤ RK 2E

∫ 2π

0

(
e2η

a

)
R

dθ = 2RE QR. (5-3)

Renormalization. According to our previous discussion, we expect P to blow-up in the limit. One can
check heuristically that “P growing like R1/2” and “Q growing like R5/2” seem the only possibilities
(as powers of R) compatible with the equations, under the assumption that PE behaves like R−1 (see
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the discussion at the end of Section 2D). Thus, one may try to introduce variables c̃ = P R−1/2 and
d̃ = QR−5/2 and prove that c̃ and d̃ converge to some finite values. Using (5-2), the equation for d̃ is then

d̃R =
d̃
R

(
2R2FP−2

−
5
2

)
+�Q.

From this equation and the coupled equation for c̃, it is not clear whether c̃ and d̃ converge. However,
assuming �Q to be a negligible term, it suggests that 2RFP−2

→
5
2 as R → +∞. Equivalently, it

suggests that P/RF1/2
→

2
√

5
. Similarly, one can guess that Q/(R3F1/2)→ 1

√
5
. We thus introduce a

new set of variables c and d , replacing P and Q, based on these considerations.
However, since it is actually G that satisfies “good” differential inequalities, we define c and d as

c :=
P

R
√

G
, (5-4)

d :=
Q

R3
√

G
, (5-5)

where we recall that G=P(E +G U ). Once again, we emphasize that, while G behaves asymptotically
as F, it is important to use this normalization rather than the one based on F, since the normalization
procedure will introduce a derivative of G in the equation and it is this derivative (rather than that of F)
that we can control directly.

Note that, while F is manifestly nonnegative, this is not the case for G. In the rest of this section, we
will assume that G > 0, which ensures that all the computations below (as well as the definitions of c
and d) make sense. In the next section, a lower bound on G using a bootstrap argument will be recovered.

An easy computation shows that (c, d) satisfies

c′ =
d
R
−

c
R
−

c
2

G′

G
, (5-6)

d ′ =
F

G

2dc−2

R
−

3
R

d −
d
2

G′

G
+

�Q

R3
√

G
. (5-7)

To find the correct limits for (c, d), let us first consider, the ordinary differential system

c′ =
d
R
−

c
R
+

c
2R
,

d ′ =
2dc−2

R
−

3
R

d +
d

2R
,

(5-8)

which is obtained from the previous one by replacing F/G by 1, dropping the error term �Q/(R3
√

G)

and replacing −G′/G by 1/R.
Looking now for a static point (c∞, d∞) of the above system, we find that there is only one solution:

c∞ = 2
√

5
and d∞ = 1

√
5
. Thus, let us introduce c1 and d1 by

c1 = c−
2
√

5
and d1 = d −

1
√

5
. (5-9)
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We finally deduce the equations satisfied by c1 and d1 from the equations (5-6)–(5-7); that is,

c′1 =
d1+

1
√

5

R
−

2
√

5
+ c1

R
−

2
√

5
+ c1

2
G′

G
, (5-10)

d ′1 =
F

G

2
R

d1+
1
√

5( 2
√

5
+ c1

)2 −
3
R

(
d1+

1
√

5

)
−

(
d1+

1
√

5

)
G′

2G
+

�Q

R3
√

G
. (5-11)

Looking first at (5-10), we rewrite it in the form

c′1 =
1
R

d1−
1
2

c1

R
−

c1

2R

(
1+ R

G′

G

)
−

1

R
√

5

(
1+ R

G′

G

)
.

From (5-11), elementary calculations (keeping in mind the linearization of the system) lead us to

d ′1 =−
5

2R
c1+

d1

R

(
−

1
2
−

G′

2G
R
)
−

1
R

1

2
√

5

(
1+

RG′

G

)

+
1

R
(
c1+

2
√

5

)2 f (d1, c1)+
2
R

(
F

G
− 1

) d1+
1
√

5( 2
√

5
+ c1

)2 +
�Q

R3
√

G
,

where f (c1, d1) is a polynomial in c1 and d1 with vanishing linear part (the first terms are quadratic in c1

and d1). Thus, we have

d ′1 =−
5

2R
c1+�

d
lin+�

d
1 +�

d
2 +�

d
3 +�

d
4 , (5-12)

c′1 =
d1

R
−

c1

2R
+�c

lin+�
c
1, (5-13)

where the terms �c,d
i contain all the error terms, i.e.,

�d
lin =−

d1

2R

(
1+

G′

G
R
)
, (5-14)

�d
1 =−

1
R

1

2
√

5

(
1+

RG′

G

)
, (5-15)

�d
2 =

1

R
(
c1+

2
√

5

)2 f (d1, c1), (5-16)

�d
3 =

2
R

(
F

G
− 1

) d1+
1
√

5( 2
√

5
+ c1

)2 , (5-17)

�d
4 =

�Q

R3
√

G
, (5-18)

�c
lin =−

c1

2R

(
1+

RG′

G

)
, (5-19)

�c
1 =−

1

R
√

5

(
1+ R

G′

G

)
. (5-20)
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Setting now u :=
( c1

d1

)
, we rewrite the system under consideration as

u′ =
1
R

((
−

1
2 1
−

5
2 0

)
−

1
2

(
1+

G′R
G

)
I2

)
u+ω,

where ω contains all the terms �c,d
i apart from �d

lin and �c
lin and I2 is the identity matrix. Consider the

matrix

A =
(
−

1
2 1
−

5
2 0

)
and also let

B =−1
2

(
1+

G′R
G

)
I2.

Then, we find

u = exp
∫ R

R0

A+ B
R′

d R′ u(R0)+

∫ R

R0

[
exp

∫ R

R′

A+ B
R′′

d R′′
]
ω(R′) d R′. (5-21)

Note next that

exp
∫ R

R0

A+ B
R′

d R′ = exp
∫ R

R0

A
R′

d R′ exp
∫ R

R0

B
R′

d R′ = exp
∫ R

R0

A
R′

d R′
(

R0G(R0)

RG(R)

)1
2

and that the eigenvalues of A are λ± =− 1
4 ±

i
√

39
4 . Hence,∥∥∥∥exp

∫ R

R0

A
R′

d R′
∥∥∥∥≤ CA

(
R0

R

)1
4

for some constant CA > 0 depending on the matrix A and we have the following result:

Proposition 5.1. Provided the corrected energy G is positive for all R ∈ [R0, R1], one has, for all
R ∈ [R0, R1],

|u(R)| ≤ CA

(
R0

R

)1
4
(

R0G(R0)

RG(R)

)1
2

|u(R0)| +

∫ R

R0

CA

(
R′

R

)1
4
(

R′G(R′)
RG(R)

)1
2

|ω(R′)| d R′, (5-22)

where

|ω| ≤ C(|�d
1 | + |�

d
2 | + |�

d
3 | + |�

d
4 | + |�

c
1|).

It remains to combine the above inequality with our differential inequalities for G and estimates on the
error terms.

5B. Source terms of the dynamical system. We now combine our results in the latter two sections and
we estimate the source terms of the dynamical system. We will assume here that G is strictly positive, a
property that we shall retrieve below in a bootstrap argument.
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Estimate for |�Q/(R3
√

G)|. Since we have

Q= d R3
√

G and QR = dR R3
√

G+ 3 d R2
√

G+ d
R3

2
G′
√

G
,

it follows that ∣∣∣∣ �Q

R3
√

G

∣∣∣∣≤ 2E R dR + 6RE
d
R
+ RE d

G′

G
.

Observe that, while some terms in the right-hand side have no sign, their sum does (because QR is
positive).

Estimating RG′/G+ 1. From the corrected energy estimate, we get∣∣∣∣G′

P
+

G

P R

∣∣∣∣≤ P

4πR2 E +
A

R3P(R)
+ E

K 2

2R3

(∫
S1

e2η

a

)
R
+

PR

R
E ;

hence,∣∣∣∣ RG′

G
+1
∣∣∣∣≤ P

4πR
F

G
+

A

GR2 +
F

G

K 2

2R2

(∫
S1

e2η

a

)
R
+

F

G
PR ≤

A

GR2 +
F

G

QR

R2 +
F

G

√
G

4π
c+

F

G

√
Gd. (5-23)

Estimates for �i
1. It follows from the estimate (5-23) and the definition of �c

1 and �d
1 that there exists a

constant C > 0 such that, for i = d, c,

|�i
1| ≤

C
R

(
A

GR2 +
F

G

QR

R2 +
F

G

√
G

4π
c+

F

G

√
Gd
)
. (5-24)

Estimates for FG−1 and �d
3 . Using Lemma 4.1, we have∣∣∣∣FG − 1

∣∣∣∣= ∣∣∣∣F−G

G

∣∣∣∣= ∣∣∣∣PG U

G

∣∣∣∣≤ 1
4πR

P2E

G
≤

P

4πR
F

G
. (5-25)

As a consequence, provided that c1 is sufficiently small — so that 2
√

5
+ c1 is bounded from below by,

say, 1
√

5
— we find

|�d
3 | ≤ C(|d1| + 1)

P

4πR2

F

G
(5-26)

for some constant C > 0.
Note that at this point, we have estimates on all the error terms arising in (5-14)–(5-20), apart from �d

2
which will be estimated directly in the next section (using a smallness assumption on c, d).

Estimates on G. After integration of the corrected energy estimate, we find

|RG− R0G(R0)| ≤A

(
1
R0
−

1
R

)
+

∫ R

R0

(
P

4πR′
F+

FQR

R′ 2
+

FQ

R′ 3

)
d R′. (5-27)

The last term can be rewritten in terms of PR , giving

|RG− R0G(R0)| ≤A

(
1
R0
−

1
R

)
+

∫ R

R0

(
P

4πR′
F+

FQR

R′ 2
+FPR

)
d R′. (5-28)
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6. Small data theory

6A. Assumption on the initial data. We now restrict ourselves to small data in the following sense. Fix
C1 > 0, A ∈ [0,+∞) and R0 > 0, as well as some ε > 0. Consider the class of initial data satisfying

R0G(R0)−
A

R0
≥ C1 > 0, (6-1)

|c1|(R0)≤ ε, (6-2)

|d1|(R0)≤ ε, (6-3)∣∣∣∣FG − 1
∣∣∣∣(R0)≤ 1, (6-4)

G(R0)+
A

R2
0
≤ ε, (6-5)

where A= R2
0

(∫
S1 a−1UR

)2
(R0).

Note that the first assumption implies in particular that G> 0. The second and third assumptions imply
that P and PR are close to their expected asymptotic behavior (which depends on E , hence the need
for normalized quantities). The fourth condition implies that the correction term G U is “not too large”
compared to the energy E . The last inequality means that the (rescaled) energy is small.

Let Rb be the largest time R such that the following bootstrap assumptions are valid in B := [R0, Rb).
For all R ∈B, we have

|c1|(R) < ε1/4, (6-6)

|d1|(R) < ε1/4, (6-7)∣∣∣∣FG − 1
∣∣∣∣(R) < 2, (6-8)

0< G(R0) <

(
R0G(R0)+

A

R0

)
2
R
. (6-9)

The set B is clearly open in [R0,+∞). Moreover, B is nonempty, by the smallness assumptions.
As an immediate consequence of (6-6) and (6-7), if ε is sufficiently small then we have, in B,

1
c2 (R0)=

1(
c1+

2
√

5

)2 (R0)≤ 2, (6-10)

|c| =
∣∣∣∣ 2
√

5
+ c1

∣∣∣∣≤ 1, (6-11)

|d| =
∣∣∣∣ 1
√

5
+ d1

∣∣∣∣≤ 1. (6-12)

Furthermore, from (6-9) and (6-5), we have immediately, in B,

G≤ 2
R0

R

(
G(R0)+

A

R2
0

)
≤ 2ε

R0

R
≤ 2ε. (6-13)
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We now consider C1 and A as fixed in (6-1). We will show that there exists an ε0 > 0 and a constant
r > 0 such that, for all 0< ε < ε0 and R0 > r , the set B is closed; this will be done by “improving” each
of the bootstrap assumptions (6-6)–(6-9). Moreover, ε0 will depend only on a lower bound for r (as well
as A and C1).

6B. Improving the assumption on FG−1. In view of the estimate (5-25), we have∣∣∣∣FG − 1
∣∣∣∣≤ 3

cG1/2

4π
≤

3
√

2
4π

ε1/2, (6-14)

by using the bootstrap assumptions (6-8) and (6-11), and using (6-13). This improves (6-8).
Throughout, the letter C will be used to denote numerical constants that are independent of ε and R0

and may change at each occurrence. Thus, the above estimate reads∣∣∣∣FG − 1
∣∣∣∣≤ Cε1/2.

Improving the G assumption. From the corrected energy estimate (5-28), we have

RG≤ R0G(R0)+
A

R0
+

∫ R

R0

R′G
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)
d R′;

hence,

G≤
D0

R
exp

∫ R

R0

(1+Cε1/2)

[
P

4πR′ 2
+

(
QR R′ −3

+
PR

R′

)]
,

where D0 = R0G(R0)+A/R0 and we have used the improved inequality (6-14).
The integral

∫ R
R0
(P/(4πR′ 2)) d R′ can be estimated using (6-13):∫ R

R0

P

4πR′ 2
d R′ =

∫ R

R0

cR′G1/2

4πR′ 2
d R′ ≤

∫ R

R0

Cε1/2 R1/2
0

4πR′ 3/2
d R′ ≤ Cε1/2

for some fixed numerical constant C > 0.
For the other integrals, we integrate by parts:∫ R

R0

(
QR

R′ 3
+

PR

R′

)
d R′ ≤

Q

R3 +
P

R
+

∫ R

R0

[
3Q

R′ 4
+

P

R′ 2

]
d R′

≤ (c+ d)G1/2
+

∫ R

R0

3d + c
R′

G1/2(R′) d R′

≤ Cε1/2
+C

∫ R

R0

R1/2
0

R′ 3/2
ε1/2 d R′

≤ Cε1/2.

Combining this result with the previous estimate, we have thus obtained

RG≤ D0 exp((1+Cε1/2)Cε1/2) < 3
2 D0 (6-15)

providing that ε is small enough. This improves (6-9).
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A lower bound on G. We derive here a lower bound on RG. From the corrected energy inequality in
differential form (4-5) and the estimates on the error term, we have

d
d R

(RG)≥−
A

R2 − RG

[
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)]
. (6-16)

Let

�′ =
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)
.

The estimates of the previous sections have shown that∫ R

R0

�′ d R′ ≤ Cε1/2.

We can rewrite (6-16) as
d

d R
(RG)≥−

A

R2 − RG�′,

leading to

d
d R

(
RG exp

∫ R

R0

�′ d R′
)
≥−

A

R2 exp
∫ R

R0

�′ d R′

=
d

d R

(
A

R

)
exp

∫ R

R0

�′ d R′,

=
d

d R

(
A

R
exp

∫ R

R0

�′ d R′
)
−

A

R
�′ exp

∫ R

R0

�′ d R′.

Thus,
d

d R

[(
RG−

A

R

)
exp

∫ R

R0

�′ d R′
]
≥−

A

R
�′ exp

∫ R

R0

�′ d R′,

which leads after integration to

RG−
A

R
≥

(
R0G(R0)−

A

R0

)
(1−Cε1/2)−

A

R0
Cε1/2

= C1(1−Cε1/2)−
A

R0
Cε1/2

≥
C1

2
(6-17)

provided that ε is sufficiently small, depending on A, C1 and a lower bound on R0.
Since A ≥ 0, we have thus obtained RG ≥ 1

2C1. In particular, we have improved the lower bound
bootstrap inequality for G.

Remark 6.1. Instead of starting from the corrected energy inequality in differential form, one could use
here the estimate (5-28) as well as the estimates of the previous section to estimate the term containing G

in the error term. This would lead to an estimate of the form

RG≥ C1− D0Cε1/2

and would therefore require ε to be small compared to D0. The above method has the advantage of not
constraining ε any further.
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Improving the c1 and d1 assumptions. Using the lower bound on G just obtained, the bootstrap assumption
(6-9), the initial data assumptions (6-2) and (6-3) and the fact that R′/R ≤ 1 if R′ ∈ [R0, R], it follows
from (5-22) that

|u| ≤
(

CA D0

C1

)1
2

ε+C
(

4D0

C1

)1
2
∫ R

R0

(|�c
1|+|�

d
1 |+|�

d
4 |) d R′+C

(
4D0

C1

)1
2
∫ R

R0

(
R′

R

) 1
4

(|�d
2 |+|�

d
3 |) d R′.

(6-18)
We now estimate all the error terms in ω. First, we have

|�c
1, �

d
1 | ≤

C
R

∣∣∣∣1+ R
G′

G

∣∣∣∣≤ C
R

(
2

C1

A

R
+C

QR

R2 +CG1/2
)
, (6-19)

using (5-23), (5-24) and (6-8). The first term in the parentheses in the right-hand side of the last inequality
will contribute to (6-18) as(

4D0

C1

)1
2
∫ R

R0

2
C1

A

R′ 2
d R′ ≤ C

A

C3/2
1

D1/2
0 R−1

0 ≤ C
A

C3/2
1 R1/2

0

(D0 R−1
0 )1/2 ≤ C(C1, R0,A)ε1/2,

by using the smallness assumption (6-5). The second term can be estimated using an integration by parts,
leading to the estimate

C
(

D0

C1

)1
2
∫ R

R0

QR

R′ 3
d R′ ≤ C

(
D0

C1

)1
2

ε1/2.

Since D0/C1 = 1− 2A/(C1 R0), we thus obtain

C
(

D0

C1

)1
2
∫ R

R0

QR

R′ 3
d R′ ≤ Cε1/2,

by choosing ε sufficiently small, depending only on a lower bound on C1 and A and a lower bound on R0.
The last term in (6-19) can be estimated using (6-13) leading to∫ R

R0

G1/2

R′
d R′ ≤ Cε1/2.

The estimates for �d
2 and �d

3 are straightforward using the bootstrap assumptions

|�d
2 | ≤

C
R
ε1/2 and |�d

3 | ≤
C
R
ε1/2.

For �d
4 , we note that, in view of (5-18) and (5-3), we have

|�d
4 | ≤

2RE QR

R3
√

G
.

Then, we note that

E =
F

P
=

F

cRG1/2 ;

hence,

E G−1/2
=

1
cR

(
F

G

)
.
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Using the bootstrap assumptions, this leads to

|�d
4 | ≤

1
c

F

G

2QR

R3 ≤ CQR R−3, (6-20)

where we have used that QR ≥ 0 in the last estimate. Its integral can then be estimated by integration by
parts, as we have already done previously.

Combining all these estimates leads us to

|u| ≤ C
(

2D0

C1

)1
2

ε+C(C1, R0,A)ε1/2
≤ C(A, R0,C1)ε

1/2,

which improves (6-6) and (6-7). In conclusion, we have improved all of the bootstrap inequalities and it
follows that

B= [R0,+∞).

7. The asymptotic regime

In this section, we state and prove our main result.

Theorem 7.1 (late-time asymptotics of T 2-symmetric polarized vacuum spacetimes). Let A≥ 0 and let
C1 > 0 and r > 0 be fixed constants. Then there exists an ε0 such that, if 0 ≤ ε ≤ ε0 and R0 ≥ r then,
for any initial data set satisfying the smallness conditions (6-1)–(6-5), the associated solution has the
following asymptotic behavior: for all times R ≥ R0 and all θ ∈ S1,

|u|(R, θ)= O(R−1/4), (7-1)

|RG(R)−C∞| = O(R−1/2), (7-2)∣∣∣∣P(R)−
2
√

5
C1/2
∞

R1/2
∣∣∣∣= O(R1/4), (7-3)∣∣∣∣Q(R)− 1

√
5

C1/2
∞

R5/2
∣∣∣∣= O(R9/4), (7-4)∣∣∣∣E (R)−

√
5C1/2
∞

2R3/2

∣∣∣∣= O(R−7/4), (7-5)∣∣∣∣ 1
2π

∫
S1
η(R, θ ′) dθ ′− η(R, θ)

∣∣∣∣= O(R−1/2), (7-6)

|K 2e2η(R, θ)− R2
| = O(R7/4), (7-7)

|a−1(R, θ)P−1(R)−L(θ)| = O(R−1/2), (7-8)∣∣∣∣ 1
2π

∫
S1

U (R, θ) dθ −U (R, θ)
∣∣∣∣= O(R−1/2), (7-9)

|U (R, θ)−CU | = O(R−1/2), (7-10)∣∣∣∣H(R, θ)− 4

K
√

5
C1/2
∞

R1/2L(θ)

∣∣∣∣= O(R1/4), (7-11)
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where C∞ > 0 and CU are constants depending on the solution and L(θ) is a W 1,1(S1) strictly positive
function.

Proof. Most of the above estimates are simply obtained by revisiting the proof in the previous section and
checking that the error terms are now integrable.

For instance, in order to prove (7-1), note that, from (5-22) and the estimates of Section 6, we have

|u| ≤ C R−1/4
(

1+
∫ R

R0

R′1/4|ω(R′)| d R′
)
. (7-12)

From (6-19) and (6-20), one can easily see that the contributions of �c
1, �d

1 and �d
4 are integrable in R.

For instance, using an integration by parts,∫ R

R0

QR

R′ 3−1/4 ≤ C
Q

R3−1/4 +C
∫ R

R0

Q

R′ 4−1/4 d R′,

≤ C
Q

R3G1/2 (RG)1/2 R−1/4
+C

∫ R

R0

Q

R′ 3G1/2 (R
′G)1/2 R′−5/4 d R′,

≤ C R−1/4
+C

∫ R

R0

R′ −5/4 d R′

≤ C.

For �d
3 , it follows from (5-26) and the estimates of the previous section that |�d

3 | ≤ C R−3/2. Thus, its
contribution to the integral of (7-12) is integrable. Since, moreover, |�d

2 | ≤ (C/R)|u|2, (7-12) has now
been reduced to

|u| ≤ C R−1/4
(

1+
∫ R

R0

R′−3/4
|u|2(R′) d R′

)
. (7-13)

Since we already know from the estimates of the previous section that |u| ≤ Cε1/2, an application of
Gronwall’s lemma gives us the weak bound

R1/4
|u| ≤ C Rε

1/2
.

It then follows that R−3/4
|u|2 ≤ C R−5/4+ε and thus, for ε sufficiently small, (7-13) now implies the

desired estimate (7-1).
Similarly, to prove (7-2), first note that d(RG)/d R is integrable, using the estimates of Section 6

and (5-23). Thus, there exists a constant C∞ such that RG→ C∞ as R→+∞. Since RG is uniformly
bounded from below in view of (6-17), we have C∞ > 0. To get the rate of convergence, it then suffices
to write RG−C∞ =

∫
∞

R (d(R′G)/d R) d R′ and to estimate the integral as before.
Then, (7-3), (7-4) and (7-5) follow from the definitions of P, Q and E .
For (7-6), using (2-7), the simple estimate F ≤ E and (7-5), we have, for all R ≥ R0 and θ ∈ S1,∣∣∣∣ 1

2π

∫
S1
η(R, θ ′) dθ ′− η(R, θ)

∣∣∣∣≤ ∫
S1
|ηθ |(R, θ ′) dθ ′ ≤

∫
S1

RF dθ ′ ≤
∫

S1
RE ≤ C R−1/2
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for some C > 0. For (7-7), we use (7-6), (7-3) and (7-4) as well as

P 1
2 K 2e2η(R, θ)=

∫
S1

a−1(R, θ ′) 1
2 K 2e2(η(R,θ)−η(R,θ ′)+η(R,θ ′)) dθ ′

=

∫
S1

a−1(R, θ ′) 1
2 K 2e2(η(R,θ ′)+O(R−1/2)) dθ ′

= Q(1+ O(R−1/2)).

For (7-8), we first differentiate (2-5) in θ ; that is,

(2 ln a)Rθ =−
K 2

R3 e2η2ηθ . (7-14)

Note that the right-hand side is integrable in L([R0,+∞)× S1) since∫
∞

R0

∫
S1

∣∣∣∣K 2

R3 e2η2ηθ

∣∣∣∣ dθ d R ≤
∫ R

R0

C R−1 RE ≤ C, (7-15)

in view of (7-5). This implies that (ln a)θ (R, θ) converges in L1(S1) as R → +∞ to some function
R(θ) ∈ L1(S1) and, moreover, we have the estimate

‖(ln a)θ −R‖L1(S1) = O(R−1/2),

by using (7-15).
Integrating over [θ, θ ′], we get

a(R, θ)
a(R, θ ′)

= exp
(∫ θ

θ ′
R(θ ′′) dθ ′′+ O(R−1/2)

)
.

Integrating again in the θ ′ variable, we get∣∣∣∣a(R, θ)P− ∫
S1

e
∫ θ
θ ′

R(θ ′′) dθ ′′ dθ ′
∣∣∣∣≤ C

(
exp (O(R−1/2))− 1

)
= O(R−1/2).

For (7-11), it is sufficient to note that, with the knowledge of the asymptotic behavior of a and η,
and (2-8), we can integrate HR directly and then compute the integral up to some error.

The property (7-9) is an easy consequence of (7-8), (7-3) and (7-5). For (7-10), we observe that∣∣∣∣ d
d R

∫ 2π

0
U dθ

∣∣∣∣= ∣∣∣∣∫ 2π

0
UR dθ

∣∣∣∣≤ (2π)1/2(∫ 2π

0
U 2

R dθ
)1

2

and (∫ 2π

0
U 2

R dθ
)
(R)=

(∫ 2π

0
a−1aU 2

R dθ
)
(R)≤ sup

[0,2π ]
a(R, θ)

∫ 2π

0
a−1U 2

R dθ

≤

(
1
P
+ o(a)

)
1

L(θ)

∫ 2π

0
a−1U 2

R dθ

≤
C
R2
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for some C > 0. Here we have used (7-8) together with the fact L is bounded away from zero uniformly,
as well as (7-3) and (7-5).

This implies that ∣∣∣∣ d
d R

∫ 2π

0
U dθ

∣∣∣∣≤ C
R

and, by integration and (7-9), we obtain the rough bound on U ,

|U | ≤ C ln R.

Applying now the commutator estimate from Lemma 3.2, we have that∣∣∣∣ d
d R
〈Ũ 〉− 〈ŨR〉

∣∣∣∣≤ πK 2

R3 〈|Ũ |〉‖(e
2η)θ‖L1(S1). (7-16)

From the above rough bound on U , we have∣∣〈|Ũ |〉∣∣≤ C ln R.

Moreover, one can estimate ‖(e2η)θ‖L1(S1) as before to get

‖(e2η)θ‖L1(S1) ≤ C R3/2.

Thus, the right-hand side of (7-16) is integrable in R. Since, moreover,

〈ŨR〉 =
1
P

∫ 2π

0
URa−1(R, θ) dθ =

R0

P R

∫ 2π

0
URa−1(R0, θ) dθ

using the conservation law in Lemma 3.3, it follows that 〈ŨR〉 and, therefore, d〈Ũ 〉/d R are integrable.
By having checked the convergence of all the integrals involved in our analysis, this completes the proof
of (7-10) and, thus, of Theorem 7.1. �

8. Future geodesic completeness

In this section, we complete the proof of the geodesic completeness property under the smallness
assumption (6-1)–(6-5). There are only small modifications in comparison to the proof already presented
by the authors in [LeFloch and Smulevici 2016] for weakly regular Gowdy spacetimes. One of difficulties
(observed and solved in [loc. cit.]) is that, with limited control of the Christoffel symbols in the L1 or L2

norms (in space) only, the local existence of geodesics is not guaranteed by the standard Cauchy–Lipschitz
theorem. Instead, we first established that the Christoffel symbols admit traces along timelike curves and
we relied on a compactness argument à la Arzelá–Ascoli in order to establish the existence of geodesics.
This part of the analysis can be repeated here almost identically in our T 2 setting, by using the estimates
in [LeFloch and Smulevici 2015] for the compactness argument. (This compactness is required in the
proof of existence of traces, as explained in Proposition 3.5 of [LeFloch and Smulevici 2016]). We do
not repeat these arguments here and directly assume the existence of geodesics (which, for instance, is
immediate in the smooth case).
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Theorem 8.1 (future geodesic completeness). Let (M, g) be a nonflat, polarized, T 2-symmetric, vacuum
spacetime with weak regularity whose initial data set satisfies the conditions (6-1)–(6-5). Then all future
timelike geodesics are future complete.

Proof. For simplicity in the presentation, we focus on the smooth case. Let ξ be a future maximal timelike
geodesic defined on an interval [s0, s1). We have g(ξ̇ , ξ̇ ) < 0 and

ξ̈α +0αβγ ξ̇
β ξ̇γ = 0. (8-1)

Following [LeFloch and Smulevici 2016], we observe that, since X and Y are Killing fields, JX = g(ξ̇ , X)
and JY = g(ξ̇ , Y ) are constant along ξ , so that JX = e2U (ξ̇ X

+G ξ̇ θ ) and JY = e−2U R2(ξ̇Y
+ H ξ̇ θ ) are

constants along ξ . We use the same strategy as in [ibid., Section 4]. First, by standard arguments (see [ibid.,
Lemma 4.10]), it follows that R(ξ(s))→+∞ as s→ s1. Then, since R(ξ(s))− R(ξ(s0))=

∫ s
s0
ξ̇ R ds, it

follows that any bound of the form ξ̇ R < C R p for p < 1 implies that s1 = +∞. Note also that, since
R(ξ(s))→+∞, given any R′ > 0 we may assume, without loss of generality, that R(ξ(s0))≥ R′.

We now analyze the structure of the equation satisfied by ξ̇ R ,

ξ̈ R
+0R

βγ ξ̇
β ξ̇γ = 0. (8-2)

The term 0R
βγ ξ̇

β ξ̇γ = 0 is decomposed in the form

0R
βγ ξ̇

β ξ̇ γ = 0R
R R ξ̇

R ξ̇ R
+0R

θθ ξ̇
θ ξ̇ θ + 20R

Rθ ξ̇
R ξ̇ θ + 20R

θa ξ̇
θ ξ̇a
+0R

abξ̇
a ξ̇ b,

where {a, b} = {X, Y }. Recall now that

0R
R R = ηR −UR, (8-3)

0R
θθ =

ηR −UR

a2 −
aR

a3 + e2U URG2e−2(η−U )
+ (e−2U R2 H 2)R

e−2(η−U )

2
, (8-4)

0R
Rθ = ηθ −Uθ . (8-5)

Observe also that

ηR −UR = R
((

UR −
1

2R

)2

+ a2U 2
θ

)
−

1
4R
−

K 2

4R3 e2η,

while
ηθ −Uθ = 2R

(
UR −

1
2R

)
Uθ .

As a consequence, it follows that the following quadratic form inequality holds:

(ηR −UR)(d R2
+ a−2 dθ2)+ 2(ηθ −Uθ ) d R dθ +

(
1

4R
+

K 2

4R3 e2η
)
(d R2

+ a−2 dθ2)≥ 0. (8-6)

Returning now to (8-2), this leads us to

ξ̈ R
≤

(
1

4R
+

K 2

4R3 e2η
)
((ξ̇ R)2+ a−2(ξ̇ θ )2)+

aR

a3 (ξ̇
θ )2

−

(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
e−2(η−U )

2

)
(ξ̇ θ )2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b.
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Note that the term containing aR/a3 has the right sign and can absorb the term K 2e2η(ξ̇ θ )2/(4R3). Using
moreover the estimate (7-7) and the fact that |a−1ξ̇ θ | ≤ ξ̇ R , for all ε > 0 we may assume that Rξ(s0) is
sufficiently large that

ξ̈ R
≤

(
3+ ε
4R

)
(ξ̇ R)2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b
−

(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
e−2(η−U )

2

)
(ξ̇ θ )2.

Recalling now that d R/ds = ξ̇ R , the last inequality can be rewritten as

d
ds
(R−3/4−ε ξ̇ R)

≤ R−3/4−ε(
−
(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
1
2 e−2(η−U ))(ξ̇ θ )2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b). (8-7)

For the three terms in the right-hand side, recall that

0R
Xθ = e−2ηe4U URG,

0R
Y θ =

1
2 e−2(η−U )(e−2U R2 H)R,

0R
X X = e−2ηe4U UR,

0R
XY = 0,

0R
Y Y =

1
2 e−2(η−U )(e−2U R2)R.

These terms can be combined with the terms containing H 2 and G2 above arising from 0R
θθ as follows:

0R
X X (ξ̇

X )2+ 20R
θX ξ̇

θ ξ̇ X
+ e2U URG2e−2(η−U )(ξ̇ θ )2 = e−2(η−U )e2U UR(ξ̇

X
+G ξ̇ θ )2 = e−2ηUR J 2

X

and

0R
Y Y (ξ̇

Y )2+ 20R
θY ξ̇

θ ξ̇Y
+ (e−2U R2 H 2)R

1
2 e−2(η−U )(ξ̇ θ )2

=
1
2 e−2(η−U )((e−2U R2)R(ξ̇

Y
+ H ξ̇ θ )2+ e−2U R22H HR(ξ̇

θ )2+ 2e−2U HR R2ξ̇ θ ξ̇Y )
=

1
2 e−2(η−U )((e−2U R2)R R−4e4U J 2

Y + 2HR ξ̇
θ J Y ).

Now let µ= η−U + 1
4 ln R− 1

2 ln a. Note that

µR = R
((

UR −
1

2R

)2

+ a2U 2
θ

)
≥ 0.

Then, using that U is uniformly bounded and (7-7), we easily have the estimates

|e−2ηUR J 2
X | ≤ C R−2

(
R−1/2µ

1/2
R +

1
R

)
, (8-8)∣∣∣∣e−2(η−U )

2
(e−2U R2)R R−4e4U J 2

Y

∣∣∣∣≤ C R−4
(

R−1/2µ
1/2
R +

1
R

)
, (8-9)

for some constant C > 0. Moreover, in view of (2-8), (7-7) and the estimate |ξ̇ θ | ≤ aξ̇ R ,

|e−2(η−U )HR ξ̇
θ J Y
| ≤ C

ξ̇ R

R3 .
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Returning to (8-7), we obtain

d
ds
(R−3/4−ε ξ̇ R)≤ C R−13/4−ε(µ

1/2
R + R−1/2)+C

ξ̇ R

R3 .

The second term in the right-hand side is integrable since ξ̇ R
= d Rξ(s)/ds. Moreover, R−13/4−εR−1/2 is

decreasing in R and, therefore, integrable on any bounded interval [s0, s1]. Thus, it remains only to show
that R−13/4−εµ

1/2
R is integrable.

Let M2
=−g(ξ̇ , ξ̇ ). Then we have

a−2
(
ξ̇ θ

ξ̇ R

)2

≤ 1−
M2e−2(η−U )

(ξ̇ R)2
.

Let χ = M2e−2(η−U )/(ξ̇ R)2 ≤ 1 and let ρ = η−U . Then we find3

dρ
ds
+

1
4

d
ds
(ln R)−

aR

2a
ξ̇ R
≥ (1− (1−χ)1/2)µR ξ̇

R
≥

1
2
χµR ξ̇

R. (8-10)

In particular, dρ/ds+ 1
4 d(ln R)/ds− (aR/(2a))ξ̇ R

≥ 0. As a consequence, we have

µR ≤ 2
(

dρ
ds
+

1
4

d
ds
(ln R)−

aR

2a
ξ̇ R
)

M−2e2ρ ξ̇ R.

Now, recall from (7-7) that

−
aR

2a
=

1
4R
+ O(R−5/4).

In particular, there exists some R2 > 0 such that, for all s with R(ξ(s)) > R2,

−
aR

2a
≤

1+ ε
4R

,

and we can assume that R(ξ(s0))≥ R2. Thus, we have

µR ≤ 2
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
M−2e2ρ ξ̇ R,

where the quantity in the parentheses is positive.
Thus, we conclude that

µ
1/2
R ≤

√
2M−1

(
dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)1
2

eρ(ξ̇ R)1/2 ≤ C
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ
+C ξ̇ R.

It follows that

R−13/4−εµ
1/2
R ≤ C R−13/4−ε

(
dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ
+C R−13/4−ε ξ̇ R,

3We would like here to consider dµ/ds, however, this would introduce the quantity aθ , for which we do not directly have an
evolution equation.
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where the last term is clearly integrable since ξ̇ R
= d R(ξ(s))/ds and 13

4 − ε > 1. Finally, using (7-7) and
an integration by parts to estimate the term containing dρ/ds, we have, for any s ∈ [s0, s1)∫ s

s0

R−13/4−ε
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ ds

=

∫ s

s0

R−13/4−ε 1
2

de2ρ

ds
ds+

∫ s

s0

R−13/4−ε 1+ ε
2

2
d
ds
(ln R)e2ρ ds

≤ Ce2ρR−13/4−ε
+C

∫ s

s0

R−17/4−ε ξ̇ Re2ρ ds+C
∫ s

s0

R−9/4ξ̇ R ds ≤ C.

Thus, we have shown that d(R−3/4−ε ξ̇ R)/ds is integrable and, therefore, that ξ̇ R
≤ C R3/4+ε for

some C > 0. This completes the proof of Theorem 8.1. �

9. Existence of initial data sets close to the asymptotic regime

In this section, we prove the following result:

Proposition 9.1 (existence of a class of initial data sets). Fix C1 > 0 and A ∈ [0,+∞). For any ε > 0,
there exists R0 > 0, (U0,U1) ∈ H 1(S1) × L2(S1), a0 > 0 ∈ W 2,1(S1) and η0 ∈ W 1,1(S1) such that
(U0,U1, a0, η0) satisfies the constraint equation (2-7), that is,

∂θ (η0)= 2R0U1 ∂θ (U0), (9-1)

and such that the conditions (6-1)–(6-5) are all satisfied with U (R0, θ) = U0(θ), UR(R0, θ) = U1(θ),
η(R0, θ) = η0(θ) and a(R0, θ) = a0(θ). As a consequence, there exists an nonempty set of initial
data satisfying (6-1)–(6-5) which is open in the natural topology associated with the initial data on
H 1(S1)× L2(S1)×W 2,1(S1)×W 1,1(S1).

While our construction requires us to choose a sufficiently large R0 (depending on ε), the ε satisfying
the assumption of Theorem 7.1 depends only on a lower bound on R0. Hence, the data constructed above
satisfy the requirements of Theorem 7.1 provided R0 is chosen sufficiently large.

Proof. Let C1 > 0 and A ∈ [0,+∞) be fixed. We define a0 to be

a0 =
2π

pR1/2
0

,

where p > 0 is a constant. Thus the associated term P reads P = pR1/2
0 . We then define U1 as

U1 =±
A1/2

pR3/2
0

,

so that (
R0

∫ 2π

0
U1a−1

0 dθ
)2

=A.

Consider now any nonconstant U0 ∈ H 1(S1). We will impose several conditions on U0.
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Let E =
∫

S1(a−1
0 U 2

1 + a0(U0)
2
θ ) dθ be the energy associated with our initial data set. Note that the

energy correction4 0U
= (1/R0)

∫
S1(U0−<U0 >)U1a−1

0 d R equals 0 since U1a−1
0 is constant.

Let F=PE and G=P(E +0U ) be the rescaled energy and the rescaled corrected energy associated
with U0, U1 and a0. Note that G= F since 0U

= 0, so that (5-25) trivially holds. Observe that

F=P

∫ 2π

0
(a−1

0 U 2
1 + a0(U0)

2
θ ) dθ =

A

R2
0
+ 2π

∫ 2π

0
(U0)

2
θ dθ.

Suppose now that
∫ 2π

0 (U0)
2
θ dθ = C1/(2πR0), where C1 > 0. Then we have

F=
A

R2
0
+

C1

R0
.

In order to satisfy (6-2), we now fix p in terms of C1 by setting

p =
(

2C1

5

)1
2

.

Then we compute

|c1| =

∣∣∣∣ 2
√

5
−

P

R0G1/2

∣∣∣∣= ∣∣∣∣ 2
√

5
−

P

R0F1/2

∣∣∣∣.
On the other hand, we have

P

R0F1/2 =
pR1/2

0

R0(A/R2
0 +C1/R0)1/2

=
2
√

5

(
1+

A

R0C1

)−1

.

This shows that (6-2) is satisfied provided that A/(R0C1) is sufficiently small, which we can always
ensure by choosing R0 sufficiently large compared to A/C1.

One can then easily check that (6-1) and (6-5) hold true provided R0 is sufficiently large. It remains to
define η0 so that (6-3) and the constraint equation (9-1) is satisfied.

For (6-3), we only need to ensure that
∣∣Q/R3

0F1/2
−

1
√

5

∣∣≤ ε. Recall that Q=
∫ 2π

0
1
2 K 2e2η0a−1

0 dθ . By
fixing η0(θ = 0) we can certainly ensure that

K 2

2
e2η0(0)a−1

0 =
1

2π
√

5
R3

0F1/2.

Now we define η0 for all other values of θ , so that (9-1) is satisfied:

η0(θ)= η0(0)+ 2R0

∫ θ

0
U1(U0)θ dθ = η0(0)+ 2R0U1(U0(θ)−U0(0)).

From the above, we see that η0 ∈W 1,1(S1) (and in fact it is in H 1(S1)) and that

|η0(0)− η0(θ)| ≤

∫ 2π

0
|ηθ | dθ ≤ R0

F

P
≤

1

pR1/2
0

R0

(
A

R2
0
+

C1

R0

)
≤ ε2,

4We would like to thank an anonymous referee for pointing out this nice simplification.
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again by choosing R0 sufficiently large, depending only on C1 and A. We then check that∣∣∣∣ Q

R3
0F1/2

−
1
√

5

∣∣∣∣= 1
R3

0F1/2

∣∣∣∣Q− 2π
K 2

2
e2η0(0)a−1

0

∣∣∣∣
≤

1
R3

0F1/2

K 2

2
e2η0(0)a−1

0

∫ 2π

0
|e2(η0(θ)−η0(0))− 1| dθ ≤ Cε2

≤ ε

provided ε is sufficiently small. �
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OBSTACLE PROBLEM WITH A DEGENERATE FORCE TERM

KAREN YERESSIAN

We study the regularity of the free boundary at its intersection with the line fx1 D 0g in the obstacle
problem

4uD jx1j�fu>0g in D;

where D � R2 is a bounded domain such that D\fx1 D 0g 6D∅.
We obtain a uniform C 1;1 bound on cubic blowups; we find all homogeneous global solutions; we

prove the uniqueness of the blowup limit; we prove the convergence of the free boundary to the free
boundary of the blowup limit; at the points with lowest Weiss balanced energy, we prove the convergence
of the normal of the free boundary to the normal of the free boundary of the blowup limit and that locally
the free boundary is a graph; and, finally, for a particular case we prove that the free boundary is not C 1;˛

regular near to a degenerate point for any 0< ˛ < 1.

1. Introduction

Let D � R2 be a bounded domain such that D\fx1 D 0g 6D∅. Let g 2H 1.D/ such that g � 0 on @D.
Let u 2H 1.D/ be the unique minimiser of the functionalZ

D

.jruj2C 2jx1ju/ dx (1-1)

in the admissible set of functions

fu� 0 a.e. in D and uD g on @Dg:

For the existence and uniqueness of the minimiser u one may refer to [Kinderlehrer and Stampacchia
1980].

It is known (see [Petrosyan et al. 2012]) that u 2 C
1;1
loc .D/ and

4uD jx1j�fu>0g in D (1-2)

in the sense of distributions.
Let us denote by � the noncoincidence set and by � the free boundary, i.e.,

�D fx 2D j u.x/ > 0g and � DD\ @�:

Let us consider two examples. Set D D .�1; 1/2. For the first example we take g.x/D 1
16
.x1Cx2/

C

and for the second example we take g.x/D xC
1
.c� jx2j/

C, where c � 0:42559. The noncoincidence set
and the free boundary are depicted in Figure 1 for both examples.

MSC2010: primary 35R35; secondary 35J60.
Keywords: free boundary, obstacle problem, degenerate, blowup, regularity.

397

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2016.9-2
http://dx.doi.org/10.2140/apde.2016.9.397
http://msp.org


398 KAREN YERESSIAN

x1

x2

1−1

1

−1

Γ Ω

x1

x2

1−1

1

−1

Γ

Ω

(a) g.x/D 1
16
.x1Cx2/

C. (b) g.x/D xC
1
.c � jx2j/

C with c � 0:42559.

Figure 1. � and � in the examples.

In the case of the nondegenerate obstacle problem, i.e., when instead of jx1j we have f satisfying
f � c in D for some c > 0, the Lipschitz and C 1 regularity of the free boundary was proved for the first
time in [Caffarelli 1977]. A good reference for nondegenerate obstacle problems is [Caffarelli 1998] and
a good reference for obstacle-type problems is [Petrosyan et al. 2012].

In [Yeressian 2015], for a class of degenerate obstacle problems the optimal nondegeneracy of the
solution is obtained. The proof of the optimal nondegeneracy is based on specially constructed comparison
functions using harmonic polynomials. In this paper the nondegeneracy result in [Yeressian 2015] will be
used numerous times.

Our approach to prove the regularity of the free boundaries is based on some directional monotonicity
properties satisfied by the solutions. This method is based on the proof of C 1 regularity in [Petrosyan
et al. 2012] and is closely related to [Alt 1977].

We use Hopf’s lemma to prove the irregularity of the free boundary in a particular case which
corresponds to the free boundary near to the origin in the example depicted in Figure 1(b). A related
irregularity result has been proved in [Shahgholian et al. 2007], where the authors considered a two-phase
membrane problem and in higher dimensions they proved that the free boundary is, in a neighbourhood
of each branch point, the union of two C 1-graphs, but in general these graphs are not C 1;Dini (C 1;Dini

includes all C 1;˛ for 0< ˛ < 1).
Studying obstacle problems with a degenerate force term reveals rather unexpected behaviour of the

solution, such as the fact that the free boundary usually forms a certain angle at its intersections with the
line fx1 D 0g, where the force term is degenerate.

In the problem of the free boundary near contact points with the fixed boundary — see [Shahgholian
and Uraltseva 2003] — where the solution satisfies a homogeneous Dirichlet boundary condition, a similar
strong influence of the data of the problem on the structure of the free boundary has been observed.

Varvaruca and Weiss [2011; 2012; 2014] have studied 2-dimensional or axisymmetric, 3-dimensional,
inviscid, incompressible fluids acted on by gravity and with a free surface. These problems are in the class
of Bernoulli free boundary problems, but the degeneracies in the force terms give rise to similar situations
as encountered in this paper and has been a motivation for considering the problem in this paper.
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This paper is structured as follows. In Section 2, the main results of this paper are presented. In
Section 3, we prove uniform C 1;1 bounds on cubic blowups. In Section 4, using the Weiss balanced
energy we prove the homogeneity of the blowup limits. In Section 5, we classify all possible homogeneous
global solutions. In Section 6, using the fact that possible blowup limits form a discrete set we prove the
uniqueness of the blowup limits. In Section 7, using a lower bound for homogeneous global solutions
and the optimal nondegeneracy result in [Yeressian 2015] we prove the convergence of the free boundary
to the free boundary of the blowup limit. In Section 8, we prove the convergence of the normal of the
free boundary to the normal of the free boundary of the blowup limit at regular points. In Section 9, we
prove that in a neighbourhood of a regular point the free boundary can be given as a graph. In Section 10,
we prove that under some assumptions the free boundary near to a degenerate point is either flat or not
C 1;˛ for any 0< ˛ < 1. In Section 11, we conclude this paper with a discussion about further directions
of research on obstacle problems with degenerate forces.

2. Main results

Let us define a cubic blowup of u as follows:

Definition 1. Let Br0
�D, then we define, for 0< r < r0,

ur .x/D
u.rx/

r3
for x 2 B1

and call ur the (cubic) blowup of u at 0.

In the following theorem we prove that for r > 0 the family ur is uniformly bounded in C 1;1.B1/.

Theorem 2 (uniform C 1;1 bounds on blowups). There exists a C > 0 such that, if u is a solution in D,
r0 > 0, Br0

�D and 0 2 � , then we have the estimate

kurkC 1;1.B1/
� C (2-1)

for 0< r < 1
6
r0.

The proof of this theorem is based on the optimal growth result proved in [Yeressian 2015].
From the uniform bound (2-1) it follows that, for any sequence rj such that rj ! 0, there exists a

subsequence rjk
and v 2 C 1;1.B1/ such that ujk

! v in C 1.B1/.
Let us consider for u 2H 1.Br / the Weiss balanced energy

W .r;u/D
1

r6

Z
Br

.jruj2C 2jx1ju/ dx�
3

r7

Z
@Br

u2 d�.x/: (2-2)

The Weiss balanced energy [1998; 1999] was introduced to study the free boundary in the nondegenerate
obstacle problem. The energy in (2-2) has been adapted to the first-order homogeneity of the force term jx1j.
For the Weiss balanced energy for different homogeneities, one may refer to [Petrosyan et al. 2012].

As we will see, for u a solution in D with 0 2 D, by a monotonicity result for the Weiss balanced
energy, the right limit W .C0;u/ exists but might be �1. If 0 2 � then W .C0;u/ > �1.
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fuhs.x/ > 0g fuhs.�x1;x2/ > 0g fuhs.x/Cuhs.�x1;x2/ > 0g

fuw.x/ > 0g fuw.x1;�x2/ > 0g fuw.x/Cuw.x1;�x2/ > 0g

Figure 2. The only possible noncoincidence sets of nontrivial homogeneous global solutions.

Definition 3. Let u be a solution in D, 0 2D and 0 2 � . Then we call v 2 C 1;1.B1/ a blowup limit if
there exists rj ! 0 such that urj ! v in C 1.B1/.

Using the Weiss balanced energy, if v is a blowup limit at 0 then v is a third-order homogeneous global
solution and W .C0;u/DW .1; v/.

So we are led to find all the solutions of the obstacle problem�
4uD jx1j�fu>0g in R2;

u third-order homogeneous.
(2-3)

Clearly uD 0 is a trivial solution of (2-3).
Let us define

uhs.x/D
1
6
.xC

1
/3 and uw.x/D

�
1
6
jx1j

3
C

1
12

x3
2 �

1
4
x2

1x2

�
�fx2>jx1jg

: (2-4)

Theorem 4 (classification of homogeneous global solutions). The only nontrivial solutions of (2-3) are
uw, uw.x1;�x2/, uwCuw.x1;�x2/, uhs , uhs.�x1;x2/ and uhsCuhs.�x1;x2/.

To prove Theorem 4 we first find all the solutions of the corresponding no-sign obstacle problem and
then among these solutions we find the nonnegative ones.

All possible noncoincidence sets of nontrivial homogeneous global solutions, i.e., the noncoincidence
sets of the nontrivial solutions of (2-3), are depicted in Figure 2.

It is easy to see that W .1;uw/ D W .1;uw.x1;�x2//, W .1;uw C uw.x1;�x2// D 2W .1;uw/,
W .1;uhs/DW .1;uhs.�x1;x2//, W .1;uhsCuhs.�x1;x2//D 2W .1;uhs/ and, by direct computation,
we see that 0<W .1;uw/ and

2W .1;uw/ <W .1;uhs/:
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So we have the following four possible energy levels together with the order between them:

W .1;uw/ < 2W .1;uw/ <W .1;uhs/ < 2W .1;uhs/:

Let us define, for y 2 � \fx1 D 0g and r > 0,

W .r;y;u/DW .r;u. � Cy//: (2-5)

Based on the four possible values of W .C0;x;u/ (the value 0 is excluded by the nondegeneracy)
for x 2 � \fx1 D 0g, the points of � \fx1 D 0g get classified in four types.

Definition 5. We call y 2 � \fx1 D 0g a degenerate free boundary point if there exists rj ! 0 such that
u. � Cy/rj ! uhs or u. � Cy/rj .x/! uhs.�x1;x2/ in C 1.B1/.

We use this name for points where a blowup limit is uhs or uhs.�x1;x2/ by following the naming for
similar points in the problem studied in [Varvaruca and Weiss 2011].

In the example depicted in Figure 1(b), the origin is a degenerate free boundary point with uhs as a
blowup limit.

By our uniform bounds on the blowups it follows that 0 is degenerate if and only if W .C0;u/ D

W .1;uhs/.

Definition 6. We call y 2 � \ fx1 D 0g a regular free boundary point if there exists rj ! 0 such that
u. � Cy/rj ! uw or u. � Cy/rj .x/! uw.x1;�x2/ in C 1.B1/.

In the example depicted in Figure 1(a) a point close to the origin is a regular free boundary point with
uw as a blowup limit.

By our uniform bounds on the blowups it follows that 0 is regular if and only if W .C0;u/DW .1;uw/,
i.e., it has the lowest Weiss balanced energy.

Theorem 7 (uniqueness of blowup limits). If u is a solution in D, 0 2D and 0 2 � then the blowup limit
at the origin is unique.

Let us define, for ı > 0 and k D 0, 1,

�k.ı/D sup
0<r�ı

kur �u0kC k.B1/
; (2-6)

where u0 is the unique blowup limit.

Theorem 8 (convergence of the free boundary). There exists C1> 0 and C2> 0 such that if u is a solution
in D, 0 2D and 0 2 � then, for x 2 � close enough to the origin, if W .C0;u/ 2 fW .1;uw/; 2W .1;uw/g

then we have

d.x; �u0
/� C1

�
�0.C2jxj/

�1=2
jxj; (2-7)

where �u0
is the free boundary of the unique blowup limit, and, if W .C0;u/ 2 fW .1;uhs/; 2W .1;uhs/g,

then

jx1j � C1

�
�0.C2jxj/

�1=3
jxj: (2-8)
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The proof of this theorem is based on a lower bound for the nontrivial homogeneous global solutions
and the nondegeneracy result proved in [Yeressian 2015].

From Theorem 8, it follows that all points of �\fx1D 0g\fW .C0;x;u/2 fW .1;uw/; 2W .1;uw/gg

are isolated points of � \fx1 D 0g (in the topology of fx1 D 0g), in particular.

Theorem 9 (convergence of normals and the free boundary as a graph at regular points). There exists
C1 > 0 and C2 > 0 such that if u is a solution in D, 0 2D and 0 2 � is a regular free boundary point
with blowup limit uw then there exists � > 0 and

 2 C
�
�

1
4
�; 1

4
�
�
\C 1

��
�

1
4
�; 1

4
�
�
nf0g

�
such that

� \
˚
jx1j<

1
4
�
	
\B� D

˚
.x1;  .x1//

ˇ̌
x1 2

�
�

1
4
�; 1

4
�
�	
;ˇ̌

 .x1/� jx1j
ˇ̌
� C1

�
�0.C2jx1j/

�1=2
jx1j for x1 2

�
�

1
4
�; 1

4
�
�
;ˇ̌̌̌

 0.x1/�
x1

jx1j

ˇ̌̌̌
� C1

�
�1.C2jx1j/

�1=2 for x1 2
�
�

1
4
�; 1

4
�
�
nf0g:

The proof of this theorem is mainly based on a directional monotonicity result proved in Lemma 37.
There we prove that @�u� 0 in Br .x/ for x 2�\fx1> 0g\@B1=4 if, for a given � 2 @B1 with � ��w > 0,
r is small enough and u is close enough to uw in C 1.B1/. The vector �w is the normal to the free
boundary of uw in the half-plane fx1 > 0g, pointing into the noncoincidence set of uw . This directional
monotonicity result establishes the convergence of the normal of the free boundary to the normal of the
free boundary of the blowup limit.

As we will see, from Theorem 9 it follows that, in the case when the origin is a regular point but with
uw.x1;�x2/ as blowup limit, and in the case when W .C0;u/D 2W .1;uw/, the free boundary is a graph
or the union of two graphs, respectively.

In the following theorem, in particular cases we show that the free boundary near to a degenerate point
is not C 1;˛ smooth.

Theorem 10 (an irregularity result at degenerate points). Let u be a solution in D with 0 2 D. Sup-
pose also that there exists ı > 0 such that Bı � D, @x2

u � 0 in Bı \ fx1 > 0;x2 > 0g, there exists
� 2 C

��
0; 1

2
ı
��
\C 1

��
0; 1

2
ı
��

such that �.0/D �0.C0/D 0, � � 0 in
�
0; 1

2
ı
�
, � is convex and

�\Bı \
˚
x1 > 0; 0< x2 <

1
2
ı
	
D Bı \

˚
0< x2 <

1
2
ı; �.x2/ < x1

	
:

Then either �D 0 and uD uhs in�\Bı\
˚
x1 > 0; 0< x2 <

1
2
ı
	

or the free boundary part �\fx1 > 0g

is not C 1;˛ regular at 0 for any 0< ˛ < 1.

Let us note that the conditions in this theorem correspond to the example depicted in Figure 1(b).
The proof of this theorem relies on considering the nonnegative function v D �@x2

u and using the
quantitative Hopf lemma (see [Han and Lin 2011]).
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3. Uniform bounds on blowups

The following theorem is a consequence of the Harnack inequality and is a special case of the optimal
growth theorem in [Yeressian 2015].

Theorem 11. There exists a C > 0 such that if Br .y/�D then we have

u.x/� C.u.y/C r2.r Cjy1j// for x 2 Br=2.y/:

Based on this optimal growth estimate, in the following theorem we prove an estimate on the growth
of the solution near the free boundary.

Lemma 12. There exists a C > 0 such that if u is a solution in D, y 2�, d D d.y; �/ and B5d .y/�D

then

u.x/� Cd2.d Cjy1j/ for x 2 Bd .y/: (3-1)

Proof. Let z 2 � be such that d D jy � zj. We have, for r D 4d ,

Br .z/D B4d .z/� B4dCjy�zj.y/D B5d .y/�D:

By Theorem 11 we have that, because z 2 � and Br .z/�D,

u.x/� C1r2.r Cjz1j/ for x 2 Br=2.z/: (3-2)

We have

Bd .y/� BdCjy�zj.z/D B2d .z/D Br=2.z/: (3-3)

By (3-2) and (3-3) we obtain

u.x/� C1r2.rCjz1j/D C1.4d/2.4dCjz1j/� C2d2.dCjz1j/

� C2d2.dCjz1�y1jCjy1j/

� C2d2.2dCjy1j/� C3d2.dCjy1j/ for x 2 Bd .y/;

which proves the lemma. �

Let us define

 .t/D 1
6
jt j3 for t 2 R (3-4)

and, for t0 2 R,

wt0
.t/D  .t/� .t0/� 

0.t0/.t � t0/ for t 2 R:

Then there exists C > 0 such that for t , t0 2 R we have

wt0
.t/� C jt � t0j

2.jt0jC jt � t0j/: (3-5)

Proof of Theorem 2. We have

kurkL1.B1/ D
1

r3
kukL1.Br /; krurkL1.B1/ D

1

r2
krukL1.Br /; Œrur �C 0;1.B1/

D
1

r
Œru�C 0;1.Br /

:
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So, if we prove that for some C > 0 we have

kukL1.Br / � C r3; (3-6)

krukL1.Br / � C r2; (3-7)

Œru�C 0;1.Br /
� C r; (3-8)

then the lemma is proved.
There exists C > 0 such that for v a harmonic function in B1 we have

jrv.0/j � CkvkL1.B1/ and Œrv�C 0;1.B1=2/
� CkvkL1.B1/:

By scaling we obtain that for v harmonic in B� we have

jrv.0/j �
C

�
kvkL1.B�/ (3-9)

Œrv�C 0;1.B�=2/
�

C

�2
kvkL1.B�/: (3-10)

For x 2� let d D d.x; �/; then we have

B5d .x/� B5dCjxj � B5jxjCjxj D B6jxj;

so if x 2 B.1=6/r0
then B5d .x/�D.

Now, by Lemma 12, we obtain that for x 2 B.1=6/r0
we have

kukL1.Bd .x// � Cd2.d Cjx1j/: (3-11)

Let 0< r < 1
6
r0.

To prove (3-6), we compute, for x 2 Br ,

ju.x/j � kukL1.Bd .x// � Cd2.d Cjx1j/� C jxj2.jxjC jx1j/D 2C jxj3 � 2C r3:

To prove (3-7), using w0x1
.x1/D 0, (3-9), (3-11) and (3-5), we compute, for x 2 Br ,

jru.x/j D jr.u�wx1
/.x/j �

C1

d
ku�wx1

kL1.Bd .x//

�
C1

d
kukL1.Bd .x//C

C1

d
kwx1

kL1.Bd .x//

� C2d.d Cjx1j/CC3d.d Cjx1j/D C4d.d Cjx1j/: (3-12)

From (3-12) it follows that
jru.x/j � 2C4jxj

2
� 2C4r2: (3-13)

It remains to prove (3-8). We should show that

jru.x/�ru.y/j � C r jx�yj for all x;y 2 Br :

Fix x, y 2 Br . In the case Bjx�yj

�
1
2
.x C y/

�
� � let us denote z D 1

2
.x C y/. We have d D

d.z; �/� jx�yj.
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By (3-10) and (3-11), we compute

jru.x/�ru.y/j

jx�yj
� Œru�C 0;1.Bjx�yj=2.z//

� Œru�C 0;1.Bd=2.z//

� Œr.u�wz1
/�C 0;1.Bd=2.z//

C Œw0z1
�C 0;1.Bd=2.z//

�
C1

d2
ku�wz1

kL1.Bd .z//C Œwz1
�C 2.Bd=2.z//

�
C1

d2
kukL1.Bd .z//C

C1

d2
kwz1
kL1.Bd .z//C Œ �C 2.Bd=2.z//

�
C1

d2
C2d2.d Cjz1j/C

C1

d2
C3d2.d Cjz1j/CC4.d Cjz1j/

D C5.d Cjz1j/

� 2C5r:

In the case Bjx�yj

�
1
2
.xCy/

�
\�c 6D∅, by (3-12) we compute

jru.x/�ru.y/j � jru.x/jC jru.y/j

� Cd.x; �/.d.x; �/Cjx1j/CCd.y; �/.d.y; �/Cjy1j/

�
3
2
C jx�yj.d.x; �/Cjx1j/C

3
2
C jx�yj.d.y; �/Cjy1j/

� C1r jx�yj

and this finishes the proof of the theorem. �

4. Homogeneity of blowup limits

Most of the results in this section are well known; one may refer to [Petrosyan et al. 2012; Weiss 1998;
1999]. But for the sake of completeness we include the proofs.

The Weiss balanced energy W .r;u/ is defined in (2-2).

Lemma 13. For r , s > 0 and u 2H 1.Brs/, we have W .rs;u/DW .s;ur /.
For u 2H 1.Br0

/, W .r;u/ as a function of 0< r < r0 is locally bounded and absolutely continuous.
For u a solution in Br0

and 0< r < r0, we have

d

dr
W .r;u/D 2r

Z
@B1

.@r ur /
2 d�.x/: (4-1)

For u a third-order homogeneous solution in B1, we have

W .1;u/D

Z
B1

jx1ju dx: (4-2)
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Proof. Let r , s > 0 and u 2H 1.Brs/. We compute

W .rs;u/D
1

.rs/6

Z
Br s

.jruj2C 2jx1ju/ dx�
3

.rs/7

Z
@Br s

u2 d�.x/

D
1

s6

1

r4

Z
Bs

�
jru.rx/j2C 2r jx1ju.rx/

�
dx�

3

s7

1

r6

Z
@Bs

u2.rx/ d�.x/

D
1

s6

Z
Bs

�
jrur .x/j

2
C 2jx1jur

�
dx�

3

s7

Z
@Bs

u2
r d�.x/DW .s;ur /;

which proves the first claim.
Let u 2H 1.Br0

/; then, for 0< r < r0, by direct computation using polar coordinates we haveZ
@Br

u2 d�.x/D�2r

Z
Br0
nBr

1

jxj2
u.x/ru.x/ �x dxC

r

r0

Z
@Br0

u2.x/ d�.x/: (4-3)

The equation (4-3) together with the fact that if f 2 L1
loc.R

2/ then
R

Br
f dx as a function of r is

bounded and absolutely continuous proves the second claim.
Let u be a solution in Br0

, then we have (see [Petrosyan et al. 2012]) u 2 C
1;1
loc .Br0

/. Let 0< r < r0,
then we compute

1

2

d

dr
W .r;u/

D
1

2

d

dr
W .1;ur /

D
1

2

�Z
B1

�
2rur .x/ � r@r ur .x/C 2jx1j@r ur

�
dx� 6

Z
@B1

ur@r ur d�.x/

�
D

Z
B1

�
rur .x/ � r@r ur .x/Cjx1j@r ur

�
dx� 3

Z
@B1

ur@r ur d�.x/

D

Z
B1

�
�4ur .x/@r ur .x/Cjx1j@r ur

�
dxC

Z
@B1

@�ur .x/@r ur .x/ d�.x/� 3

Z
@B1

ur@r ur d�.x/

D

Z
@B1

�
@�ur .x/� 3ur

�
@r ur d�.x/:

It is easy to see that on @B1 we have

@�ur .x/� 3ur D r @r ur ;

which proves the third claim.
Let u be a solution in B1. We compute

W .1;u/D

Z
B1

�
jru.x/j2C 2jx1ju

�
dx� 3

Z
@B1

u2 d�.x/

D

Z
B1

.�4u.x//u.x/ dxC

Z
@B1

@�u.x/u.x/ d�.x/C

Z
B1

2jx1ju dx� 3

Z
@B1

u2 d�.x/

D

Z
@B1

@�u.x/u.x/ d�.x/C

Z
B1

jx1ju dx� 3

Z
@B1

u2 d�.x/
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D

Z
B1

jx1ju dxC

Z
@B1

.@�u� 3u/u d�.x/:

For a third-order homogeneous function we have @�uD 3u; thus the last integral is null and this proves
the last claim. �

If u is a solution in Br0
for some r0 > 0 then, by (4-1), W .r;u/ is nondecreasing in 0< r < r0; thus

the limit limr!0;r>0 W .r;u/DW .C0;u/ exists but might be �1. If 0 2 � then by Theorem 2 we have
kurkL1.B1/ � C for small enough 0< r and from this it follows that

�
1

r7

Z
@Br

u2 d�.x/D�

Z
@B1

u2
r d�.x/� �c1I

thus W .r;u/� �3c1 and W .C0;u/� �3c1 > �1.
For y 2 � \fx1 D 0g and r > 0, W .r;y;u/ is defined in (2-5).

Lemma 14. W .C0;x;u/ is an upper-semicontinuous function of x 2 � \fx1 D 0g.

Proof. For x 2 � \fx1 D 0g, by the monotonicity of W .r;x;u/ as a function of r > 0 and its continuity
as a function of x it follows that W .C0;x;u/ D limr!0;r>0 W .r;x;u/ is upper-semicontinuous in
� \fx1 D 0g. �

Assume v is a third-order homogeneous function in B1, i.e., v.0/D 0 and v.x/D v.x=.2jxj//.2jxj/3

for all x 2 B1nf0g. Then we might extend v as a third-order homogeneous function in R2 as v.x/ D
v.x=.2jxj//.2jxj/3 for all x 2Bc

1
. Let us note that the term on the right-hand side is well defined because

for x 2 Bc
1

we have x=.2jxj/ 2 B1. From this definition of extension it follows that v.rx/D r3v.x/ for
all x 2 R2 and r � 0.

The following theorem is a special case of the main theorem in [Yeressian 2015].

Theorem 15. There exists a c > 0 such that if u is a solution in D, y 2� and Br .y/bD then we have

sup
�\@Br .y/

u� u.y/C cr2.r Cjy1j/:

A blowup limit is defined in Definition 3.

Lemma 16. Let v be a blowup limit. Then v is a third-order nontrivial homogeneous solution in B1, the
third-order homogeneous extension of v in R2 is a global solution, and W .C0;u/DW .r; v/ for r > 0.

Proof. Assume v 2 C 1;1.B1/ is a blowup limit and urj ! v in C 1.B1/.
From urj � 0 in B1 it follows that v � 0 in B1. By the convergence urj ! v in C 1.B1/ it follows

that 4urj !4v in H�1.B1/ and in particular as distributions. Also �furj
>0g! �fv>0g in L1.B1/ and

thus jx1j�furj
>0g! jx1j�fv>0g as distributions. Now (1-2) holds for urj in B1, so passing to the limit

as j !1 we obtain that v satisfies (1-2) in B1. This together with v � 0 in B1 proves that v is a solution
to the obstacle problem in B1.

For 0< s < 1 we compute

W .C0;u/D lim
j!1

W .srj ;u/D lim
j!1

W .s;urj /DW .s; v/: (4-4)
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Thus W .s; v/ is independent of 0< s < 1.
Now, by (4-1), we obtain that for 0< s < 1

0D
d

ds
W .s; v/D 2s

Z
@B1

.@svs/
2 d�.x/:

From here it follows that rv �x� 3v D 0 in B1 and hence v is third-order homogeneous in B1.
Now let us prove that v is not 0 in B1, i.e., v is nontrivial.
Let ı > 0 and Bı �D. Let 0< r < ı and y 2 Br=2\�; then we have

Br=4.y/� Br=4Cjyj � Br=4Cr=2 D B3r=4 bD;

thus by Theorem 15 we have

sup
@Br=4.y/

u� u.y/C c
�

1
4
r
�3
:

We compute

@Br=4.y/� Br=2.y/� Br=2Cjyj � Br ;

so we have

sup
Br

u� sup
@Br=4.y/

u� u.y/C c
�

1
4
r
�3
�

1
43 cr3

and thus

sup
B1

ur �
1
43 c:

From this inequality, taking r D rj ! 0, we obtain that v is not identically 0 in B1.
Let us again denote by v the extension of v in R2. Then it is easy to see that, because v is a solution

in B1 and v.rx/D r3v.x/ for x 2 R2 and r � 0, v is a solution in R2, i.e., a global solution.
By third-order homogeneity of v we have W .r; v/DW

�
1
2
; v
�

for r > 0 and this together with (4-4)
proves the last claim of the lemma. �

5. Homogeneous global solutions

In this section we classify all possible solutions of the problem (2-3). The solutions of (2-3) form the
subset of nonnegative solutions of the following no-sign obstacle problem (see [Petrosyan et al. 2012] for
more on no-sign obstacle problems)8<:

4uD jx1j��.u/ in R2;

�.u/D fuD jruj D 0gc ;

u third-order homogeneous.
(5-1)

We first classify the nontrivial solutions of (5-1) and then find the subset of nonnegative and nontrivial
solutions of (5-1), and thus obtain the classification of the nontrivial solutions of the problem (2-3).

In the rest of this section we always assume that u 6D 0 in R2, i.e., we discuss only the nontrivial
solutions, so � 6D∅.



OBSTACLE PROBLEM WITH A DEGENERATE FORCE TERM 409

In both problems, by homogeneity, the set � is an open cone in R2nf0g, i.e., for x 2� and r > 0 we
have rx 2�.

Either � is equal to R2nf0g or it is at most a countable union of disjoint connected open cones
in R2nf0g.

To classify the solutions in both problems we first establish if there exists a solution with �D R2nf0g.
Then we find all the connected cones � not equal to R2nf0g for which there exists a corresponding
solution.

Let us define
U.�/D u.ei� /� 1

3
i @�u.ei� /:

Lemma 17. If u is a third-order homogeneous function in a connected open cone � � R2 such that
4uD jx1j then there exists a 2 C such that

U.�/D 1
6
jcos � j cos.�/ei�

Cxae3i� (5-2)

for all ei� 2� (in the rest of this section we identify R2 with the complex plane C).

Proof. Let us write v.x/D u.x/� .x1/ with  as defined in (3-4); then v is a third-order homogeneous
harmonic function in the connected open cone �� R2. Thus there exists a 2 C such that

v.x/D<.xa.x1C ix2/
3/ for all x 2�:

So we have
u.ei� /D 1

6
jcos � j3C<.xae3i� / (5-3)

for all ei� 2�.
Differentiating (5-3) with respect to � we obtain the desired equation. �

By the homogeneity of u it follows that˚
x 2�

ˇ̌
u.x/D jru.x/j D 0

	
D frei�

2� j U.�/D 0; r > 0g:

If � D R2nf0g then, for u to be a solution to (5-1), U should be a periodic function with period
2� such that U.�/ 6D 0 for all � 2 R and if, in addition, u is a solution to (2-3) then we should have
<U.�/ > 0 for all � 2 R.

In the case that � is an open connected cone not equal to R2nf0g, there exist �1, �2 2 R such that
�1 < �2 � �1 C 2� and � D frei� j r > 0; �1 < � < �2g. In this case, if u is a solution to (5-1)
with �D�.u/, then U should satisfy U.�1/DU.�2/D 0 and U.�/ 6D 0 for �1 < � < �2. If, in addition,
u is a solution to (2-3) then we should have <U.�/ > 0 for �1 < � < �2.

Let us define
V .�/D jcos � j cos.�/e2i� : (5-4)

It follows that
6e3i�U .�/D V .�/C 6a: (5-5)

Lemma 18. The function u is a solution of (5-1) with �D R2nf0g if and only if �6a 62 V .R/.
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1−1

i

−i

Figure 3. The set V .R/.

Proof. The function u is a solution of (5-1) with�DR2nf0g if and only if U is 2�-periodic and U.�/ 6D 0

for all � 2 R.
From (5-2) it follows that U is 2�-periodic and, by (5-5), it is clear that U.�/ 6D 0 for all � 2 R if and

only if �6a 62 V .R/. �
From the definition of V in (5-4) it is clear that Bc

1
� .V .R//c , so by Lemma 18 it follows that there

are many solutions of (5-1) with �D R2nf0g.
Let us note that for a connected cone specified by �1 and �2, the solution with such a cone is unique.

This follows from the fact that, because U.�1/D 0, by (5-2) a is uniquely obtained and for this value
of a the solution u is uniquely given by (5-3). Based on this observation, in the following we do not
distinguish between a connected cone and the corresponding solution.

Lemma 19. The function u is a solution of (5-1) with a connected open cone � 6D R2nf0g if and only if
one of the following cases hold:

(i) �1 62 Z� C
˚
�
4
; �

2
; 3�

4

	
and �2 D �1C 2� .

(ii) �1 2 Z� C �
2

and �2 D �1C� .

(iii) �1 2 Z� C �
4

and �2 D �1C
�
2

.

(iv) �1 2 Z� C 3�
4

and �2 D �1C
3�
2

.

Proof. Let us remember that we should have �1, �2 2 R, �1 < �2 � �1C 2� , U.�1/D U.�2/D 0 and
U.�/ 6D 0 for �1 < � < �2. It is possible to find all such �1 and �2 by algebraic computations, but for
ease of presentation we resort to geometric arguments.

By (5-5), U.�/D 0 if and only if �6aD V .�/, hence we should have �1, �2 2 R, �1 < �2 � �1C 2� ,
V .�1/D V .�2/ and V .�/ 6D V .�1/ for �1 < � < �2. Thus we should find the smallest closed loops in the
range graph of V. The range graph of V, i.e., the set V .R/ is depicted in Figure 3.

Then we have the following four cases:

(i) �6a D V .�1/ 2 V .R/n
˚
0;˙ i

2

	
with �1 2 Rn

�
Z� C

˚
�
4
; �

2
; 3�

4

	�
and the smallest loop is when

�2 D �1C 2� .

(ii) �6aD V .�1/D 0 with �1 2 Z� C �
2

and the smallest loop is when �2 D �1C� .
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(iii) �6aD V .�1/ 2
˚
˙

i
2

	
with �1 2 Z� C �

4
and the smallest loop is when �2 D �1C

�
2

.

(iv) �6aD V .�1/ 2
˚
˙

i
2

	
with �1 2 Z� C 3�

4
and the smallest loop is when �2 D �1C

3�
2

. �

There is some redundancy in the solutions specified in the previous lemma. In the following lemma
we prove that if for two solutions the corresponding connected cones are rotations of each other by a
multiple of � then the corresponding solutions are also rotated by the same angle.

Lemma 20. Let a, a0 2 C and let U , U 0 be the corresponding functions. If n 2 Z and �0 2 R are such
that U 0.�0C n�/D U.�0/ then U 0.� C n�/D U.�/ for all � 2 R.

Proof. For any n 2 Z and � 2 R we have

U 0.� C n�/D a0e3i.�Cn�/
C

1
6
jcos.� C n�/j cos.� C n�/ei.�Cn�/

D .�1/na0e3i�
C

1
6
jcos � j cos.�/ei�

D ..�1/na0�xa/e3i�
CU.�/;

from which the lemma follows because if U 0.�0Cn�/DU.�0/ for some �0 then .�1/na0�xaD 0, from
which in turn it follows that U 0.� C n�/D U.�/ for all � . �

Corollary 21. Let u and u0 be solutions of (5-1) with �.u/D frei� j �1 < � < �2; r > 0g and �.u0/D
frei� j � 0

1
< � < � 0

2
; r > 0g, where �1 < �2 � �1C 2� and � 0

1
< � 0

2
� � 0

1
C 2� . If there exists n 2 Z such

that � 0
1
D �1C n� and � 0

2
D �2C n� , then u0.ei.�Cn�//D u.ei� / for �1 < � < �2.

Proof. Let U.�/ correspond to u.x/ and U 0.�/ to u0.x/. Then U.�1/ D 0 and U 0.� 0
1
/ D 0. Thus

U.�1/D U 0.� 0
1
/D U 0.�1C n�/. Now by Lemma 20 the corollary is proved. �

By this corollary we are able to remove some of the redundancies in Lemma 19, as stated in the
following corollary:

Corollary 22. The function u is a solution of (5-1) with a connected open cone � 6D R2nf0g if and only
if one of the following cases hold:

(i) �1 2 Œ0; 2�/n
˚
�
4
; �

2
; 3�

4
; 5�

4
; 3�

2
; 7�

4

	
and �2 D �1 C 2�: the solutions corresponding to �1 in

Œ�; 2�/n
˚

5�
4
; 3�

2
; 7�

4

	
are equal to the solutions corresponding to �1 2 Œ0; �/n

˚
�
4
; �

2
; 3�

4

	
rotated

by � , respectively.

(ii) �1 2 f
�
2
; 3�

2
g and �2 D �1 C �: the solution corresponding to �1 D

3�
2

is equal to the solution
corresponding to �1 D

�
2

rotated by � ,

(iii) �1 2 f
�
4
; 5�

4
g and �2 D �1 C

�
2

: the solution corresponding to �1 D
5�
4

is equal to the solution
corresponding to �1 D

�
4

rotated by � .

(iv) �1 2 f
3�
4
; 7�

4
g and �2 D �1C

3�
2

: the solution corresponding to �1 D
7�
4

is equal to the solution
corresponding to �1 D

3�
4

rotated by � .

By Lemma 18 we have obtained the solutions of (5-1) with �D R2nf0g and by Corollary 22 we have
obtained all the solutions of (5-1) with a connected open cone � 6D R2nf0g. Now we turn to finding the
nonnegative solutions among these solutions.

To check the nonnegativity of a solution u, in the following lemma we write u.ei� / in a closed form.
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Lemma 23. Let �1<�2� �1C2� and let u be a solution to (5-1) in the cone corresponding to �1 and �2.
Then we have

6u.ei� /D jcos � j3� jcos �1j cos.�1/ cos.3� � 2�1/: (5-6)

Proof. Because U.�1/D 0, by (5-5) we have 6xaD�V .�1/.
Now, by (5-3) we compute

6u.ei� /D jcos � j3C<.6xae3i� /D jcos � j3�<.V .�1/e
3i� /

D jcos � j3�<.jcos �1j cos.�1/e
�2i�1e3i� /

D jcos � j3�<.jcos �1j cos.�1/e
.3��2�1/i/

D jcos � j3� jcos �1j cos.�1/<.e
.3��2�1/i/

D jcos � j3� jcos �1j cos.�1/ cos.3� � 2�1/;

which proves (5-6). �

Lemma 24. There exists no solution to the problem (2-3) with �D fu> 0g D R2nf0g.

Proof. On the line segments fx1 D 0gnf0g, i.e., for � D˙�
2

, we have

6u.e˙i�=2/D
ˇ̌
cos
�
˙
�
2

�ˇ̌3
� jcos �1j cos.�1/ cos

�
˙

3�
2
� 2�1

�
D�jcos �1j cos.�1/ cos

�
˙

3�
2
� 2�1

�
D˙jcos �1j cos.�1/ sin.2�1/: (5-7)

If jcos �1j cos.�1/ sin.2�1/D0 then u.e˙i �
2 /D0, which is in contradiction with�Dfu>0gDR2nf0g.

If jcos �1j cos.�1/ sin.2�1/ 6D 0 then we can choose � D �
2

or � D��
2

and obtain u.ei� / < 0, which is
again in contradiction with �D fu> 0g D R2nf0g. �

Lemma 25. The function u is a solution of (2-3) with a connected open cone � 6D R2nf0g if and only if
one of the following cases hold:

(i) �1 2
˚
�
2
; 3�

2

	
and �2 D �1 C �: the solution corresponding to �1 D

3�
2

is equal to the solution
corresponding to �1 D

�
2

rotated by � .

(ii) �1 2
˚
�
4
; 5�

4

	
and �2 D �1 C

�
2

: the solution corresponding to �1 D
5�
4

is equal to the solution
corresponding to �1 D

�
4

rotated by � .

Proof. We first show that the solutions given in parts (i) and (iv) of Corollary 22 are not nonnegative and
then we show that the solutions given in parts (ii) and (iii) are nonnegative.

To prove the failure of nonnegativity of solutions given in part (i) of Corollary 22 we need only to
consider �1 2 Œ0; �/n

˚
�
4
; �

2
; 3�

4

	
with �2D �1C2� and, to prove the failure of nonnegativity of solutions

given in part (iv), we need only to consider �1 D
3�
4

with �2 D �1C
3�
2

.
For all these cases let us consider � D 3�

2
, then �1 < � < �2 and, by a similar computation as in (5-7),

we obtain that
6u.e3�i=2/D�jcos �1j cos.�1/ sin.2�1/:
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Because for �1 2 Œ0; �/ we have

jcos �1j cos.�1/ sin.2�1/D 2jcos �1j cos2.�1/ sin �1 � 0;

this proves that the respective solutions take a nonpositive value at � D 3�
2

. If u.e3�i=2/ < 0 then u is
not nonnegative. If u.e3�i=2/D 0 and u was nonnegative then we would have @�u.e3�i=2/D 0, which is
in contradiction with the connectedness of �.

To prove that the solutions given in Corollary 22(ii) are solutions of (2-3), we need only to consider
the case when �1 D

�
2

and �2 D �1C� . We compute

6u.ei� /D jcos � j3�
ˇ̌
cos �

2

ˇ̌
cos
�
�
2

�
cos
�
3� � 2

�
�
2

��
D jcos � j3 (5-8)

and, because jcos � j> 0 for �
2
< � < 3�

2
, we obtain that u is a solution of (2-3).

To prove that the solutions given in Corollary 22(iii) are solutions of (2-3), we need only to consider
the case when �1 D

�
4

and �2 D �1C
�
2

. We compute

6u.ei� /Djcos � j3�
ˇ̌
cos �

4

ˇ̌
cos
�
�
4

�
cos
�
3���

2

�
Djcos � j3�1

2
cos
�
3���

2

�
Djcos � j3�1

2
sin.3�/: (5-9)

Let � D �
2
C  for ��

4
<  < �

4
; then

6u.ei.�=2C//D
ˇ̌
cos
�
�
2
C 

�ˇ̌3
�

1
2

sin
�
3
�
�
2
C 

��
D jsin  j3C 1

2
cos.3 /:

It follows that 6u.ei.�=2C//D 6u.ei.�=2�//, so we need only to consider 0�  < �
4

. For 0�  < �
4

we have sin  � 0, thus

6u.ei.�=2C//D sin3  C 1
2

cos.3 /D 1
2

cos3. /.tan  � 1/2.2 tan  C 1/ > 0I

therefore we obtain that u is a solution of (2-3). �

Lemma 26. In the original variable x 2 R2, the only solutions of (2-3) with a connected open cone
� 6D R2nf0g are the following four solutions together with their noncoincidence cone � and their free
boundary �:

u.x/D uhs.x/; �D fx1 > 0g; � D fx1 D 0gI

u.x/D uhs.�x1;x2/; �D fx1 < 0g; � D fx1 D 0gI

u.x/D uw.x/; �D fx2 > jx1jg; � D fx2 D jx1jgI

u.x/D uw.x1;�x2/; �D fx2 < �jx1jg; � D fx2 D�jx1jg:

Proof. We compute the solutions given in Lemma 25 in the original variable.
For solutions given in Lemma 25(i), we only consider the case when �1 D

�
2

and �2 D �1C� . We
have ˚

x D rei�
ˇ̌
r > 0; �

2
< � < 3�

2

	
D fx1 < 0g:

Now, for x D rei� 2 fx1 < 0g, using the computation in (5-8) we compute

6u.x/D 6u.rei� /D 6r3u.ei� /D r3
jcos � j3 D r3

jx1=r j3 D jx1j
3
D .x�1 /

3:
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For solutions given in Lemma 25(ii) we only consider the case when �1 D
�
4

and �2 D �1C
�
2

. We
have ˚

x D rei�
ˇ̌
r > 0; �

4
< � < 3�

4

	
D fx2 > jx1jg:

Now, for x D rei� 2 fx2 > jx1jg, using the computation in (5-9) we compute

6u.x/D 6u.rei� /D 6r3u.ei� /D r3
�
jcos � j3� 1

2
sin.3�/

�
D r3

�
jcos � j3� 1

2
.3 cos2.�/ sin � � sin3 �/

�
D r3

�
jx1=r j3� 1

2

�
3.x1=r/2x2=r � .x2=r/3

��
D jx1j

3
�

1
2
.3x2

1x2�x3
2/;

which completes the proof of the lemma. �

Proof of Theorem 4. By Lemma 24 there exists no solution to the problem (2-3) with�Dfu>0gDR2nf0g.
So we are left only with solutions whose noncoincidence open cone � is a countable union of disjoint

connected open cones. But, considering the only possible connected open cones as noncoincidence sets
enumerated in Lemma 26, we come to the conclusion that, except for the solutions with connected cones,
there exist two additional solutions, uwCuw.x1;�x2/ and uhsCuhs.�x1;x2/, each a combination of
two solutions with connected open cones. �

Lemma 27. We have
W .1;uhs/D

�
96

and W .1;uw/D
1

192

�
� � 8

3

�
:

Proof. For any solution of (2-3) with connected open cone, we have, using (4-2),

W .1;u/D

Z
B1

jx1ju dx D

Z 1

0

Z
@Br

jx1ju d�.x/ dr D

Z 1

0

Z
@B1

jry1ju.ry/r d�.y/ dr

D

Z 1

0

r5 dr

Z
@B1

jy1ju.y/ d�.y/

D
1

6

Z �2

�1

jcos � ju.ei� / d�:

For the half-space solution uhs , we compute, using (5-8),

W .1;uhs/D
1

36

Z 3�=2

�=2

jcos � j4 d� D
1

18

Z �=2

0

cos4 � d� D
�

96
:

For the wedge solution uw, we compute, using (5-9),

W .1;uw/D
1

36

Z 3�=4

�=4

�
jcos � j4� 1

2
jcos � j sin.3�/

�
d�

D
1

18

Z �=2

�=4

cos4 � d� �
1

36

Z �=2

�=4

cos.�/ sin.3�/ d� D 1
192

�
� � 8

3

�
;

which completes the proof of the lemma. �
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Corollary 28. We have

0<W .1;uw/DW .1;uw.x1;�x2// <W .1;uwCuw.x1;�x2//D 2W .1;uw/

<W .1;uhs/DW .1;uhs.�x1;x2// <W .1;uhsCuhs.�x1;x2//D 2W .1;uhs/:

Proof. The only inequality that is not clear is the inequality 2W .1;uw/ <W .1;uhs/. But this is verified
by the explicit values computed in the previous lemma. �

Corollary 29. The set �\fx1D 0g might be decomposed into four disjoint sets according to four possible
values of the Weiss balanced energy. The closure of the set of points with a given energy w is a subset of
the set of points with energy larger than or equal to w.

Proof. Let y 2 �\fx1D 0g; then, by the translation u.xCy/, we might assume that y D 0. Let 0< ı be
such that Bı �D. Let us consider the family ur for 0< r < 1

6
ı. By Theorem 2 this family is uniformly

bounded in C 1;1.B1/. Thus there exists rj ! 0 and v 2 C 1;1.B1/ such that urj ! v in C 1.B1/. By
Lemma 16, v is a nontrivial homogeneous global solution and W .C0;u/DW .1; v/. The possible values
of W .1; v/ are only of the four values given in the previous corollary and this shows that the free boundary
points � \fx1 D 0g divide into four disjoint sets depending on the Weiss balanced energy of the blowups
at that point.

The last claim follows from the upper semicontinuity of W .C0;x;u/ stated in Lemma 14. �

For example, from Corollary 29 it follows that the set � \fx1 D 0g\ fW .C0;x;u/D 2W .1;uhs/g is
closed. Actually, at the end of Section 7 we will show that all points of � \fx1 D 0g\ fW .C0;x;u/ in
fW .1;uw/; 2W .1;uw/gg are isolated points of � \fx1 D 0g.

In the following lemma we obtain a lower bound for the homogeneous global solutions, which will be
used in Lemma 32.

Lemma 30. There exists a c > 0 such that for all homogeneous global solutions u we have

u.x/� cd2.x; fuD 0g/
�
d.x; fuD 0g/Cjx1j

�
for x 2 R2: (5-10)

Proof. It is easy to see that we need to prove (5-10) for the cases when uD uw or uD uhs .
In the case u D uhs , for x1 � 0 both sides of the inequality (5-10) are 0. For x1 > 0 we have

d.x; fuhs D 0g/D x1, hence

uhs.x/D
1
6
x3

1 D
1
6
d2.x; fuhs D 0g/

�
1
2
d.x; fuhs D 0g/C 1

2
x1

�
D

1
12

d2.x; fuhs D 0g/
�
d.x; fuhs D 0g/Cx1

�
and this proves (5-10) for uD uhs .

In the case uDuw , for x2< jx1j both sides of the inequality are 0. Also, by the symmetry uw.x1;x2/D

uw.�x1;x2/ we need only to consider the case x2 > x1 > 0.



416 KAREN YERESSIAN

For x2> x1> 0 it is easy to see that d.x; fuw D 0g/D 1p
2
.x2�x1/, thus for x2> x1> 0 we compute

uw.x/D
1
6
x3

1 C
1

12
x3

2 �
1
4
x2

1x2 D
1

12
.x2�x1/

2.2x1Cx2/

D
1

12

�p
2d.x; fuw D 0g/

�2�
3x1C

p
2d.x; fuw D 0g/

�
�

1
6

p
2d2.x; fuw D 0g/

�
d.x; fuw D 0g/Cx1

�
;

which proves the desired inequality. �

In the next lemma we prove directional monotonicity type inequalities, which will be used in Lemma 37.

Lemma 31. There exists a C > 0 such that a@�uw � uw � 0 in B1 \ f.1C �/x1 > x2 > x1 > 0g if
� D ei.3�=4C/, � > 0, ��

2
<  < �

2
and C.1=aC 1/� � cos  .

Proof. For x2 > x1 > 0 we have

uw.x/D
1
6
x3

1 C
1

12
x3

2 �
1
4
x2

1x2 D
1

12
.x2�x1/

2.2x1Cx2/;

@x1
uw.x/D

1
2
x2

1 �
1
2
x1x2 D�

1
2
.x2�x1/x1;

@x2
uw.x/D

1
4
x2

2 �
1
4
x2

1 D
1
4
.x2�x1/.x1Cx2/:

Thus we may compute, for x2 > x1 > 0,

a@�uw.x/�uw.x/D a
�
�1

�
�

1
2
.x2�x1/x1

�
C �2

�
1
4
.x2�x1/.x1Cx2/

��
�

1
12
.x2�x1/

2.2x1Cx2/

D
1
2
.x2�x1/

�
a
�
��1x1C �2

�
1
2
.x1Cx2/

��
�

1
6
.x2�x1/.2x1Cx2/

�
: (5-11)

Thus, to have a@�uw.x/�uw.x/� 0 for x 2 R2 satisfying x2 > x1 > 0 we should have

a
�
��1x1C �2

�
1
2
.x1Cx2/

��
�

1
6
.x2�x1/.2x1Cx2/

and, rearranging this further, we get the equivalent inequality

�2� �1 �
1

2x1
.x2�x1/

�
1

3a
.2x1Cx2/� �2

�
:

Now, for x 2B1 we have the bounds x1 < 1 and x2 < 1. Also, if 0< x1 < x2 then x2�x1 > 0. So it
is sufficient to have the inequality

�2� �1 �
1

2x1
.x2�x1/

�
1

a
� �2

�
: (5-12)

By 0< x1 < x2 < .1C�/x1 we have 0< .x2�x1/=x1 < �. Thus, if 1=a��2 > 0 then we should have

�2� �1 �
�

2

�
1

a
� �2

�
and if 1=a� �2 � 0 then we should have �2� �1 � 0. Because �2 � �1, for both cases it is sufficient to
have

�2� �1 �
�

2

�
1

a
C 1

�
: (5-13)

We compute
�2� �1 D sin

�
3�
4
C 

�
� cos

�
3�
4
C 

�
D
p

2 cos : (5-14)
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From (5-13) and (5-14) it follows that it is sufficient to have

cos  �
p

2

4

�
1

a
C 1

�
�

and, taking C �
p

2
4

, the second part is also proved. �

6. Uniqueness of blowup limits

Proof of Theorem 7. By Lemma 16 a blowup limit at the origin is a third-order homogeneous global
solution.

By Theorem 4 we have six nontrivial homogeneous global solutions. Let us enumerate them by ui for
i D 1; : : : ; 6.

Assume by contradiction that there exist rj ! 0 and Qrj ! 0 such that urj ! u1 and uQrj ! u2

in C 1.B1/.
There exists � > 0 such that kui �u1kC.B1/ > � for i D 2; : : : ; 6.
Let us write f .r/D kur �u1kC.B1/.
Because u is uniformly continuous in a neighbourhood of 0 we have that f .r/ is continuous for small

enough r > 0. We have also f .rj /! 0 and f . Qrj /!ku2�u1kC.B1/ > �. Thus there exists Orj ! 0 such
that f . Orj /D 1

2
�.

By Theorem 2, u Orj is uniformly bounded in C 1;1.B1/ for large j . Thus there exists a subsequence jk

such that u Orjk
converges in C 1. By Lemma 16 the limit of u Orjk

is a third-order nontrivial homogeneous
global solution. This is in contradiction with f . Orjk

/D 1
2
� and the choice of �. �

7. Convergence of the free boundary to the free boundary of the blowup limit

In the following lemma, roughly speaking, we prove two inclusions. First, if u is close to a nontrivial
homogeneous global solution u0 then, for x far from fu0 D 0g, we have u.x/ > 0. Second, if u is close
to a solution u0 then, for x far from fu0 > 0g, we have x 2 fuD 0gı.

Lemma 32. There exists c > 0 such that if u0 is a nontrivial homogeneous global solution and u is a
solution in B1, then we have˚

x 2 B1

ˇ̌
cd2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fu> 0gI (7-1)

here fu0 D 0g D fx 2 R2 j u0.x/D 0g and fu> 0g D fx 2 B1 j u.x/ > 0g.
If u0 and u are solutions in B1 and

ku�u0kL1.B1/ < c;

then ˚
x 2 B1=2

ˇ̌
cd2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gıI (7-2)

here fu0 D 0g D fx 2 B1 j u0.x/D 0g and fuD 0g D fx 2 B1 j u.x/D 0g.
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Proof. Assume u0 is a nontrivial homogeneous global solution and u is a solution in B1. Using Lemma 30
for x 2 B1 we compute

u.x/D u0.x/Cu.x/�u0.x/� u0.x/�ku�u0kL1.B1/

� c1d2.x; fu0 D 0g/
�
d.x; fu0 D 0g/Cjx1j

�
�ku�u0kL1.B1/I

here c1 is the constant in Lemma 30. So, if

ku�u0kL1.B1/ <
1
2
c1d2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
then

u.x/ > 1
2
c1d2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
and this proves (7-1) with 0< c � 1

2
c1.

Assume u0 and u are solutions in B1. By Theorem 15 there exists c2> 0 such that, if y 2B1, u.y/ > 0

and Br .y/b B1, then we have

sup
fu>0g\@Br .y/

u� u.y/C c2r2.r Cjy1j/:

Thus, if y 2 B1, u.y/ > 0, Br .y/b fu0 D 0g\B1 and c2r2.r C jy1j/ > ku�u0kL1.B1/, then we
have

0D sup
fu>0g\@Br .y/

u0 D sup
fu>0g\@Br .y/

.u� .u�u0//

� sup
fu>0g\@Br .y/

u�ku�u0kL1.B1/

� u.y/C c2r2.r Cjy1j/�ku�u0kL1.B1/

� c2r2.r Cjy1j/�ku�u0kL1.B1/I

a contradiction. Thus, if y 2 B1, Br .y/ b fu0 D 0g \ B1 and c2r2.r C jy1j/ > ku � u0kL1.B1/,
then u.y/D 0.

For y 2 .fu0 D 0g\B1/
ı, setting r D 1

2
d
�
y; .fu0 D 0g\B1/

c
�

it follows that if

1
4
c2d2

�
y; .fu0 D 0g\B1/

c
��

1
2
d
�
y; .fu0 D 0g\B1/

c
�
Cjy1j

�
> ku�u0kL1.B1/

then u.y/D 0. This proves that˚
x 2B1

ˇ̌
1
8
c2d2

�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0g:

By the continuity of d
�
x; .fu0 D 0g\B1/

c
�

as a function of x it follows that˚
x 2 B1

ˇ̌
1
8
c2d2

�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gı: (7-3)

Let x 2 B1=2; then we compute

d
�
x; .fu0D0g\B1/

c
�
Dd.x; fu0>0g[Bc

1/Dmin
�
d.x; fu0>0g/; d.x;Bc

1/
�
�min

�
d.x; fu0>0g/; 1

2

�
;
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so we have

d2
�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
Dmin

�
d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
;
�

1
2

�2�1
2
Cjx1j

��
�min

�
d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
; 1

8

�
: (7-4)

So, by (7-3) and (7-4), if

ku�u0kL1.B1/ <
1

64
c2

then ˚
x 2 B1=2

ˇ̌
1
8
c2d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gı (7-5)

and, by choosing 0< c � 1
64

c2, this finishes the proof of the lemma. �

By the inclusions proved in the previous lemma, in the following lemma we show that for u a solution
and u0 a nontrivial homogeneous global solution, if u is close enough to u0 then the free boundary of u

is in a quantitatively specified neighbourhood of the free boundary of u0.

Lemma 33. There exists c > 0 such that, if u is a solution in B1 and u0 is a nontrivial homogeneous
global solution, then if

ku�u0kL1.B1/ < c (7-6)

we have

� \B1=2 �
˚
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� ku�u0kL1.B1/

	
:

Proof. If uD u0 in B1 then the claim is obvious, so we assume that u0 6D u in B1.
Assume there exists x 2 � \B1=2 such that

cd2.x; �u0
/.d.x; �u0

/Cjx1j/ > ku�u0kL1.B1/I

here c > 0 is as in Lemma 32.
Then, because

d.x; �u0
/Dmax

�
d.x; fu0 D 0g/; d.x; fu0 > 0g/

�
;

we should have either

cd2.x; fu0 D 0g/
�
d.x; fu0 D 0g/Cjx1j

�
> ku�u0kL1.B1/ (7-7)

or

cd2.x; fu0 > 0g/
�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/: (7-8)

In the case when (7-7) holds then, by (7-1), we obtain that u.x/ > 0, which is in contradiction
with x 2 � .

In the case when (7-8) holds then, because also (7-6) holds by (7-2), we obtain that x 2 fu D 0gı,
which is in contradiction with x 2 � and this finishes the proof of the lemma. �
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Lemma 34. There exists c > 0 such that if u0 is a nontrivial homogeneous global solution, u is a solution
in D, 0 2D and 0 2 � then, for x 2 � such that B4jxj �D and

ku4jxj�u0kL1.B1/ < c;

we have
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� jxj

3
ku4jxj�u0kL1.B1/:

Proof. Let c be as in Lemma 32.
Let r > 0 and assume

kur �u0kL1.B1/ < cI

then, by Lemma 33, we have

�ur
\B1=2 �

˚
cd2.y; �u0

/.d.y; �u0
/Cjy1j/� kur �u0kL1.B1/

	
:

Then, because �u0
is a cone and �u\Br=2 D r.�ur

\B1=2/, we obtain

�u\Br=2 �
˚
ry 2 Br=2

ˇ̌
cd2.y; �u0

/
�
d.y; �u0

/Cjy1j
�
� kur �u0kL1.B1/

	
D

n
x 2 Br=2

ˇ̌̌
cd2

�
x

r
; �u0

��
d
�

x

r
; �u0

�
C

ˇ̌̌
x1

r

ˇ̌̌�
� kur �u0kL1.B1/

o
D
˚
x 2 Br=2

ˇ̌
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� r3

kur �u0kL1.B1/

	
:

For those x 2 �u such that B4jxj �D, we may consider r D 4jxj.
So, if

ku4jxj�u0kL1.B1/ < c

then, because x 2 �u\B2jxj, we have

cd2.x; �u0
/
�
d.x; �u0

/Cjx1j
�
� 43
jxj3ku4jxj�u0kL1.B1/: �

Proof of Theorem 8. Let us consider the case W .C0;u/DW .1;uw/ with the blowup limit uw . Then for
x 2 fx1 > 0; x2 > �x1g we have d.x; �uw /D

p
2

2
jx2�x1j and, for x 2 fx1 > 0; x2 � �x1g, we have

d.x; �uw /D jxj �
p

2
2
jx2�x1j. Thus we compute, for x1 > 0,

d.x; �uw /Cjx1j �
1
2

p
2jx2�x1jC jx1j � c1jxj: (7-9)

By symmetry we obtain the same inequality for x1 < 0.
Now, by Lemma 34 we obtain the inequality (2-7). For the remaining cases, when W .C0;u/ is in

fW .1;uw/; 2W .1;uw/g, we can compute similarly.
In the cases when W .C0;u/2fW .1;uhs/; 2W .1;uhs/g we have �u0

Dfx1D 0g and d.x; �u0
/Djx1j,

so (2-8) follows immediately from Lemma 34. �

Corollary 35. Let u be a solution in D; then the points of

� \fx1 D 0g\
˚
W .C0;x;u/ 2 fW .1;uw/; 2W .1;uw/g

	
are isolated points of � \fx1 D 0g (in the topology of fx1 D 0g).
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Proof. Assume W .C0;u/ 2 fW .1;uw/; 2W .1;uw/g; then, by (2-7), the free boundary should converge
to the free boundary of the blowup limit tangentially. But this is not the case if the origin is not an isolated
point of � \fx1 D 0g. �

8. Convergence of the normal of the free boundary to the normal of the free boundary
of the blowup limit at regular points

In the following lemma we prove a nondegeneracy type result for u� a@�u far from the degeneracy
line fx1 D 0g.

Lemma 36. If u is a solution in D, y 2�, Br .y/bD\
˚
x1 �

1
16

	
and u.y/� 1

32
@�u.y/ > 0, then we

have
1

128
r2
� sup
�\@Br .y/

.u� a@�u/:

Proof. Let y and r be as in the statement of the theorem.
We define, for a> 0 and c > 0,

h.x/D u.x/� a@�u.x/� .u.y/� a@�u.y//� cjx�yj2:

We compute

4h.x/D jx1j � a�1x1=jx1j � 4c � 1
16
� a� 4c in �\

˚
x1 �

1
16

	
;

so if we choose aD 1
32

and c D 1
128

then we have

4h� 0 in �\
˚
x1 �

1
16

	
: (8-1)

Also we have
h.y/D 0: (8-2)

For x 2 � we have u.x/� 1
32
@�u.x/D 0, thus if u.y/� 1

32
@�u.y/ > 0 then we have

h.x/D�
�
u.y/� 1

32
@�u.y/

�
�

1
128
jx�yj2 < 0 on �: (8-3)

Because Br .y/ �
˚
x1 �

1
16

	
, by (8-1) we have that h is subharmonic in the domain � \ Br .y/.

Applying the maximum principle for the domain �\Br .y/ and the subharmonic function h, we have

h.y/� sup
@.�\Br .y//

h: (8-4)

By (8-2) and (8-4), we obtain
0� sup

@.�\Br .y//

h: (8-5)

Because
@.�\Br .y//D .@�\Br .y//[ .�\ @Br .y//;

by (8-3) and (8-5) we obtain
0� sup

�\@Br .y/

h: (8-6)
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By the definition of h, from (8-6) we get the inequality

u.y/� 1
32
@�u.y/C

1
128

r2
� sup
�\@Br .y/

�
u� 1

32
@�u

�
(8-7)

and this proves the lemma. �

Let �w be the normal to �uw \fx1 > 0g pointing into fuw > 0g, i.e.,

�w D
1p
2
.�1; 1/:

In the following lemma we prove a crucial directional monotonicity result, which will be used in the
proof of the convergence of normals.

Lemma 37. There exists c > 0 such that, if u is a solution in B1, xu 2 �u\ @B1=4\fx1 > 0g, � 2 @B1

and r > 0 are such that
ku�uwk

1=2

C 1.B1/
C r � c� � �w;

then
1

32
@�u�u� 0 in �\Br .xu/:

Proof. We have

fxuwg D �uw \ @B1=4\fx1 > 0g; where xuw D

p
2

8
.1; 1/:

Step 1. In this step we show that there exists C1 > 0 such that

jxu�xuw j � C1ku�uwk
1=2

L1.B1/
: (8-8)

By Lemma 33 there exists c > 0 such that if ku�uwkL1.B1/ < c then

�u\B1=2 �
˚
c.d.x; �uw //

2.d.x; �uw /Cjx1j/� ku�uwkL1.B1/

	
: (8-9)

We have xu 2 �u\ @B1=4\fx1 > 0g; thus, by (8-9),

c.d.xu; �uw //
2.d.xu; �uw /Cjxu;1j/� ku�uwkL1.B1/: (8-10)

As in (7-9) there exists c1 > 0 such that

d.xu; �uw /Cjxu;1j � c1jxuj D
1
4
c1: (8-11)

Also, because xu 2 @B1=4\fx1 > 0g there exists C2 > 0 such that

jxu�xuw j � C2d.xu; �uw /: (8-12)

Now, by (8-10), (8-11) and (8-12), it follows that there exists C3 > 0 such that

jxu�xuw j � C3ku�uwk
1=2

L1.B1/
: (8-13)

Step 2. In this step we show that there exists ı > 0 such that if

ku�uwkL1.B1/ < ı and 0< r < 1
48
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then, for x 2�\B1=48.xu/, if u.x/� 1
32
@�u.x/ > 0 we have

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
:

By Step 1, if
C3ku�uwk

1=2

L1.B1/
< 1

48

then jxu�xuw j<
1

48
. Thus xu;1 > xuw;1�

1
48

and

B1=48.xu/�
˚
x1 > xuw;1�

1
48
�

1
48

	
D fx1 > xuw;1�

1
24
g

and, for x 2 B1=48.xu/, we have

B1=48.x/�
˚
x1>xuw;1�

1
24
�

1
48

	
D
˚
x1>xuw;1�

1
16

	
D
˚
x1>

p
2

8
�

1
16

	
�fx1>

1
8
�

1
16
gD

˚
x1>

1
16

	
:

Now, by Lemma 36, if
0< r < 1

48
;

x 2�\B1=48.xu/ and u.x/� 1
32
@�u.x/ > 0, then we have

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
:

Step 3. In this step we show that there exists C4> 0 such that 1
32
@�uw�uw � 0 in B�.xuw / if 0<�< 1

16
,

� 2 @B1 and C4�� � � �w.
Assume x 2 B�.xuw / with 0< � < 1

16
. Then

x1 > xuw;1� � > xuw;1�
1

16
D

p
2

8
�

1
16
> 1

8
�

1
16
D

1
16

and
x2

x1

D 1C
x2�x1

x1

� 1C
jx2�x1j

x1

< 1C 16jx2�x1j D 1C 16
p

2d.x; fx2 D x1g/

� 1C 16
p

2jx�xuw j � 1C 16
p

2�I

hence by Lemma 31 we have 1
32
@�uw.x/�uw.x/� 0 if � 2 @B1 and

C
�

1
1=32
C 1

�
.16
p

2�/� � � �w

with C > 0 as in Lemma 31.

Step 4. In this step we show that there exists ı1 > 0 and C5 > 0 such that, if

ku�uwkL1.B1/ < ı1; 0< r < 1
48
; 0< r1 <

1
48
; (8-14)

� 2 @B1; C4.r C r1CC3ku�uwk
1=2

L1.B1/
/� � � �w; (8-15)

C5ku�uwk
1=2

C 1.B1/
< r; (8-16)

then
u� 1

32
@�u� 0 in �\Br1

.xu/: (8-17)



424 KAREN YERESSIAN

By Step 1 there exists 0< ı1 < ı such that if

ku�uwkL1.B1/ < ı1 (8-18)

then
jxu�xuw j<

1
48
: (8-19)

Let
0< r < 1

48
and 0< r1 <

1
48
: (8-20)

Assume now that both (8-18) and (8-20) hold.
We define

�D r C r1Cjxu�xuw jI

then by (8-19) and (8-20) we have
0< � < 1

16
: (8-21)

By Step 2 for x 2�\Br1
.xu/, if u.x/� 1

32
@�u.x/ > 0 then

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
: (8-22)

By (8-21) and Step 3 we have 1
32
@�uw �uw � 0 in B�.xuw / if

� 2 @B1 and C4�� � � �w: (8-23)

Assume now that (8-23) holds.
We have

Br .x/� BrCjx�xuj.xu/� BrCjx�xujCjxu�xuw j
.xuw /� BrCr1Cjxu�xuw j

.xuw /� B�.xuw /:

We compute

sup
�\@Br .x/

�
u� 1

32
@�u

�
� sup
�\@Br .x/

�
uw �

1
32
@�uw

�
C sup
�\@Br .x/

�
u� 1

32
@�u�

�
uw �

1
32
@�uw

��
� C6ku�uwkC 1.B1/

:

Therefore, by (8-22), if
1

128
r2 > C6ku�uwkC 1.B1/

then
u� 1

32
@�u� 0 in �\Br1

.xu/:

Step 5. In this step we finish the proof of the lemma.
Choosing

r D 2C5ku�uwk
1=2

C 1.B1/
;

(8-16) holds. Noticing that � � �w � 1 we obtain that, by choosing c > 0 small enough, if

� 2 @B1; ku�uwk
1=2

C 1.B1/
C r1 � c� � �w
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holds then (8-14) and (8-15) hold and thus, by Step 4, (8-17) holds and this proves the lemma. �

For 0� ı < 1 let us define the open cone

Cı D fx 2 R2
j x � �w > ıjxjg:

Corollary 38. If u is a solution in B1, x 2 � \ @B1=4\fx1 > 0g, 0< ı < 1 and r > 0 are such that

ku�uwk
1=2

C 1.B1/
C r � cı

with c > 0 as in Lemma 37, then

Br .x/\ .xCCı/� fu> 0g and Br .x/\ .x�Cı/� fuD 0g: (8-24)

Proof. By Lemma 37 and the definition of Cı we have that, for all � 2 Cı,

@�u� 0 in Br .xu/: (8-25)

From (8-30), because u� 0,

z 2 Br .x/ and u.z/D 0 D) Br .x/\ .z�Cı/� fuD 0g: (8-26)

In particular, because u.x/D 0 we have

Br .x/\ .x�Cı/� fuD 0g:

Now assume there exists y 2 Br .x/\ .xCCı/ such that u.y/D 0. By (8-26) we have that uD 0 in
Br .x/\.y�Cı/. From y 2xCCı it follows that x 2y�Cı , thus x is in the interior of Br .x/\.y�Cı/,
where we have shown that uD 0 and this contradicts x 2 � . �

It is easy to see that, for the cone C 0
ı

conjugate to the cone Cı, we have

C 0ı D fx 2 R2
j x �y � 0 for all y 2 Cıg D Cp

1�ı2
: (8-27)

Theorem 39. There exists C1 > 0 such that, if u is a solution in D, 0 2D and 0 2 � is a regular point
with blowup limit uw , then there exists � > 0 such that all points of �\fx1> 0g\B� are usual (for x1> 0

the force term is nondegenerate) regular free boundary points and

jn.x/� �wj � C1ku4jxj�uwk
1=2

C 1.B1/
(8-28)

for x 2 � \fx1 > 0g\B�, where n.x/ is the normal to � at x, pointing into �.

Proof. If there exists r > 0 such that uD uw in Br then the claim of the theorem holds trivially. So we
might assume that for all r > 0 we have u 6D uw in Br .

Let x 2 � \ fx1 > 0g \B1. By the uniqueness of the blowup limit and Theorem 2 we have that
u4jxj! uw in C 1.B1/ as x! 0. Thus there exists � > 0 such that for jxj< � we have

ku4jxj�uwkC 1.B1/
<
�

c

2

�2
(8-29)

with c > 0 as in Lemma 37.
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Let y D 1
4
x=jxj. Then y 2 �u4jxj

\ @B1=4\fx1 > 0g. By (8-29), if we choose

ı D
2

c
ku4jxj�uwk

1=2

C 1.B1/
(8-30)

then 0< ı < 1.
Also let us set

r D ku4jxj�uwk
1=2

C 1.B1/
: (8-31)

Then, by (8-30) and (8-31) we have

ku4jxj�uwk
1=2

C 1.B1/
C r D cı (8-32)

and consequently, by Corollary 38, we have

Br .y/\ .yCCı/� fu4jxj > 0g and Br .y/\ .y �Cı/� fu4jxj D 0g: (8-33)

From (8-33) it follows that

B4jxjr .x/\ .xCCı/� fu> 0g and B4jxjr .x/\ .x�Cı/� fuD 0g: (8-34)

Now, if x is a singular free boundary point then the blowup limit is a nonzero homogeneous quadratic
polynomial. But, by (8-34), this polynomial should be equal to 0 in �Cı , which brings us to contradiction.
Thus all points of � \fx1 > 0g\B� are regular points.

Now assume jxj< �; then, because x is a regular point, � has a normal at this point. Let n.x/ be the
normal to � pointing into �. From (8-34) it follows that n.x/ 2 C 0

ı
. Now, by (8-27), we have

n.x/ 2 Cp
1�ı2

;

so
n.x/ � �w �

p
1� ı2:

We compute

jn.x/� �wj
2
D 2� 2n.x/ � �w � 2� 2

p
1� ı2

D
2ı2

1C
p

1� ı2
� 2ı2 (8-35)

and (8-28) follows from (8-30) and (8-35). �

9. Free boundary as a graph near regular points

The following two lemmas will be used in Lemma 42.

Lemma 40. If u is a solution in D, 0 2D and 0 2 � is a regular free boundary point with blowup limit
uw, then there exists an � > 0 such that u.0; t/ > 0 for 0< t < � and .0; t/ 2 fuD 0gı for �� < t < 0.

Proof. Let x D .0; t/ 2 B�, 0< t < �, then we compute

d2
�

1
2
x=jxj; fuw D 0g

��
d
�

1
2
x=jxj; fuw D 0g

�
C
ˇ̌

1
2
x1=jxj

ˇ̌�
D d3

�
1
2
x=jxj; fuw D 0g

�
D d3

�
1
2
e2; fuw D 0g

�
D
�p

2
4

�3
: (9-1)
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For small enough �, if jxj< � then

ku2jxj�uwkL1.B1/ < c
�p

2
4

�3 (9-2)

with c as in Lemma 32. Thus, by (9-1), (9-2) and (7-1), we have u2jxj

�
1
2
x=jxj

�
> 0, so u.x/ > 0.

Let x D .0; t/ 2 B�, �� < t < 0, then we compute

d2
�

1
4
x=jxj; fuw > 0g

��
d
�

1
4
x=jxj; fuw > 0g

�
C
ˇ̌

1
4
x1=jxj

ˇ̌�
D d3

�
1
4
x=jxj; fuw > 0g

�
D d3

�
�

1
4
e2; fuw > 0g

�
D

1
43 :

(9-3)

For small enough �, if jxj< � then

ku4jxj�uwkL1.B1/ <
1
43 c: (9-4)

Thus, by (9-3), (9-4) and (7-2), we have x=.4jxj/ 2 fu4jxj D 0gı, so x 2 fuD 0gı. �

Lemma 41. If u is a solution in D, 0 2 D and 0 2 � is a regular free boundary point with blowup
limit uw, then there exists an � > 0 such that for every 0 < x1 <

1
4
� there exists a unique x2 such that

x D .x1;x2/ 2 � \B� and, for .x1; t/ 2 B�, we have u.x1; t/ > 0 if t > x2 and .x1; t/ 2 fu D 0gı

if t < x2.

Proof. First we show that there exists � > 0 such that for all 0 < x1 <
1
4
� there exists x2 such that

.x1;x2/ 2 � \B�.
Let � > 0, to be chosen later. Let 0< x1 <

1
4
�; then we computeˇ̌�

x1;
3
4
�
�ˇ̌2

<
�

1
4
�
�2
C
�

3
4
�
�2
D

10
16
�2 < �2

I

thus
�
x1;

3
4
�
�
2 B�. We compute

d
��

x1=�;
3
4

�
; fuw D 0g

�
D

p
2

2

�
3
4
�x1=�

�
�

p
2

2

�
3
4
�

1
4

�
D

p
2

4

and

d2
��

x1=�;
3
4

�
; fuw D 0g

��
d
��

x1=�;
3
4

�
; fuw D 0g

�
Cjx1=�j

�
� d3

��
x1=�;

3
4

�
; fuw D 0g

�
�
�p

2
4

�3
:

Thus, if � is small enough that

ku� �uwkL1.B1/ < c
�p

2
4

�3
with c as in Lemma 32, then by (7-1) we obtain that

u�
�
x1=�;

3
4

�
> 0

and therefore
u
�
x1;

3
4
�
�
> 0: (9-5)

Let 0< x1 <
1
4
�; then we computeˇ̌�

x1;�
1
4
�
�ˇ̌2

<
�

1
4
�
�2
C
�

1
4
�
�2
D
�p

2
4
�
�2
<
�

1
2
�
�2
;
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thus
�
x1;�

1
4
�
�
2 B�=2 � B�.

We compute
d
��

x1=�;�
1
4

�
; fuw > 0g

�
�

1
4

and
d2
��

x1=�;�
1
4

�
; fuw > 0g

��
d
��

x1=�;�
1
4

�
; fuw > 0g

�
Cjx1=�j

�
�

1
43 :

Thus, if � is small enough that
ku� �uwkL1.B1/ <

1
43 c;

then by (7-2) we obtain that �
x1=�;�

1
4

�
2 fu� D 0gı

and therefore �
x1;�

1
4
�
�
2 fuD 0gı: (9-6)

From (9-5), (9-6) and the continuity of u it follows that there exists �1
4
� < x2 <

3
4
� such that

.x1;x2/ 2 � . This finishes the proof of the existence of x2.
By Corollary 38 there exists c > 0 such that, if y 2 �u\fy1 > 0g and

ku4jyj�uwkC 1.B1/
�
�

1
4
c
�2
;

then
Bcjyj.y/\ .yCC1=2/� fu> 0g and Bcjyj.y/\ .y �C1=2/� fuD 0g: (9-7)

Now let � be small enough that �1.4�/�
�

1
4
c
�2. Then (9-7) holds for y 2 �u\B� \fy1 > 0g.

Because x D .x1;x2/ 2 �u\B� \fx1 > 0g, by (9-7) we have

Bcjxj.x/\ .xCC1=2/� fu> 0g and Bcjxj.x/\ .x�C1=2/� fuD 0g: (9-8)

Assume there exists .x1; t/ 2 B� such that t > x2 and u.t;x2/D 0. Let t� be the infimum of such t ,
i.e.,

t� D infft > x2 j .x1; t/ 2 B� and u.t;x2/D 0g:

From the first inclusion in (9-8) we have that t� > x2. Thus for x2 < s < t� we have u.x1; s/ > 0,
therefore .x1; t

�/ is on the boundary of fu > 0g. We obtain that .x1; t
�/ 2 �u. But now, because

.x1; t
�/ 2 �u \ B� \ fx1 > 0g, by the second inclusion in (9-7) at the point .x1; t

�/ we come to a
contradiction.

Now assume that there exists .x1; t/ 2 B� such that t < x2 and .t;x2/ 2 fu> 0g. Let t� be the
supremum of such t , i.e.,

t� D supft < x2 j .x1; t/ 2 B� \fu> 0gg:

From the second inclusion in (9-8) we have that t�<x2. Thus for t�< s<x2 we have .x1; s/2fuD0gı,
therefore .x1; t

�/ 2 �u. But now, because .x1; t
�/ 2 �u\B� \fx1 > 0g, by the first inclusion in (9-7) at

the point .x1; t
�/ we come to a contradiction. �

In the following lemma we prove that near to regular points the free boundary is a continuous graph.
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Lemma 42. If u is a solution in D, 0 2 D and 0 2 � is a regular free boundary point with blowup
limit uw , then there exists an � > 0 and  2 C

��
0; 1

4
�
��

such that  .0/D 0, we have .x1;  .x1// 2B� for
0< x1 <

1
4
�, and

fuD 0g\B� \
˚
0� x1 <

1
4
�
	
D
˚
x 2 B�

ˇ̌
0� x1 <

1
4
�; x2 �  .x1/

	
: (9-9)

Proof. By Lemma 41 there exists an � > 0 such that, for every 0< x1 <
1
4
�, there exists a unique x2 such

that x D .x1;x2/ 2 � \B�; let us define  .x1/D x2. Let us also define  .0/D 0.
Then, by Lemmas 40 and 41, we have (9-9).
Now let us show that  is continuous. Assume there exists 0� y < 1

4
� such that  is discontinuous

at y. Then there exists xj ! y such that  .xj /! z and either z > .y/ or z < .y/.
In the case z > .y/ we have u.y; z/ > 0, which is in contradiction with u.xj ;  .xj //D 0 and the

continuity of u.
In the case z < .y/ we have .y; z/ 2 fuD 0gı, which is in contradiction with .xj ;  .xj // 2 � . �

In the following lemma we formulate the convergence of the free boundary in terms of the function  .

Lemma 43. There exists C1 > 0 and C2 > 0 such that, if u is a solution in D, 0 2 D and 0 2 � is a
regular free boundary point with blowup limit uw, then, with � > 0 and  as in Lemma 42, we have

j .x1/�x1j � C1

�
�0.C2jx1j/

�1=2
jx1j for 0< x1 <

1
4
�;

where �0 is as defined in (2-6).

Proof. By Theorem 8 we have

d.x; �uw /� C1

�
�0.C2jxj/

�1=2
jxj:

For x1 > 0 we estimate
d.x; �uw /�

p
2

2
jx2�x1jI

thus

j .x1/�x1j � C3

�
�0.C2jxj/

�1=2
jxj � C4

�
�0.C2jxj/

�1=2�
j .x1/jC jx1j

�
� C4

�
�0.C2jxj/

�1=2�
j .x1/�x1jC 2jx1j

�
: (9-10)

By the continuity of  at 0 we have that  .x1/! .0/D0 as x1!0. Hence jxj�C5

�
j .x1/jCjx1j

�
!0

as x1! 0. From this convergence we obtain �0.C2jxj/! 0 as x1! 0.
Thus, from (9-10) it follows that

j .x1/�x1j � C6

�
�0.C2jxj/

�1=2
jx1j: (9-11)

In turn, from (9-11) it follows that

jxj � C5

�
j .x1/jC jx1j

�
� C5

�
j .x1/�x1jC 2jx1j

�
� C5

�
C6

�
�0.C2jxj/

�1=2
jx1jC 2jx1j

�
D C5

�
C6

�
�0.C2jxj/

�1=2
C 2

�
jx1j

� C7jx1j: (9-12)
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Now, by (9-11) and (9-12) the lemma is proved. �
In the following lemma we formulate the convergence of the normals in terms of the function  .

Lemma 44. There exists C1 > 0 and C2 > 0 such that, if u is a solution in D, 0 2 D and 0 2 � is a
regular free boundary point with blowup limit uw, and � > 0 and  are as in Lemma 42, then we have
 2 C 1

�
0; 1

4
�
�

and

j 0.x1/� 1j � C1

�
�1.C2jx1j/

�1=2
;

where �1 is as defined in (2-6).

Proof. By Theorem 39, for small enough � > 0 all points of � \fx1 > 0g\B� are usual regular points.
Let 0< x1 <

1
4
�. Hence (see [Petrosyan et al. 2012]) � is a C 1 curve in a neighbourhood of .x1;  .x1//.

From (8-28) it follows that for small enough � and jxj < � we have n.x/ 62 f�e1; e1g. It follows that
 0.x1/ exists and

n.x/D
.� 0.x1/; 1/p
1C . 0.x1//2

:

From here it follows that there exists C > 0 such that for n.x/ close enough to �w we have

j 0.x1/� 1j � C jn.x/� �wj: (9-13)

Now, by (8-28) and (9-13) we obtain

j 0.x1/� 1j � C2ku4jxj�uwk
1=2

C 1.B1/
: (9-14)

By (9-12) together with the definition of �1 and (9-14), the lemma is proved. �
Proof of Theorem 9. This follows from Lemmas 42, 43 and 44 and the symmetry of the problem with
respect to the line fx1 D 0g. �

In the case when 0 is a regular point but with uw.x1;�x2/ as the blowup limit, we consider the even
reflection Qu.x1;x2/ D u.x1;�x2/, apply Theorem 9 to Qu and obtain that the free boundary of u is a
graph with properties as in Theorem 9 but reflected with respect to the line fx2 D 0g.

By the following two lemmas we prove that if W .C0;u/D 2W .1;uw/ then u might be decomposed
into the sum of two functions each having 0 as a regular point.

Lemma 45. If u is a solution in D, 0 2D, 0 2 � and W .C0;u/D 2W .1;uw/, then there exists an � > 0

such that u.x1; 0/D 0 for jx1j< �.

Proof. Let u0 D uwCuw.x1;�x2/. We have

d
�
˙

1
4
e1; fu0 > 0g

�
D

p
2

8
:

We compute

d2
�
˙

1
4
e1; fu0 > 0g

��
d
�
˙

1
4
e1; fu0 > 0g

�
C

1
4

�
D
�p

2
8

�2�p2
8
C

1
4

�
:

Now, if jx1j> 0 is small enough that

ku4jx1j
�u0kL1.B1/ < c

�p
2

8

�2�p2
8
C

1
4

�
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with c as in Lemma 32 then, by (7-2), we have u4jx1j

�
˙

1
4
e1

�
D 0. Thus u.x1; 0/D 0. �

Lemma 46. If u is a solution in D, 0 2D, 0 2 � and W .C0;u/D 2W .1;uw/, then there exists an � > 0

such that uCD �fx2>0gu and u�D �fx2<0gu are solutions in B� . We have W .C0;u˙/DW .1;uw/, the
blowup limit of uC is uw and the blowup limit of u� is uw.x1;�x2/.

Proof. By Lemma 45 there exists an � > 0 such that u.x1; 0/D 0 for jx1j< �.
Because u� 0, u 2 C 1

loc.D/ and u.x1; 0/D 0 for jx1j< �, it follows that ru.x1; 0/D 0 for jx1j< �.
From this it follows that uC and u� are solutions in B� . We have ur .x/!uwCuw.x1;�x2/ in C 1.B1/

as r ! 0. Thus �fx2>0gur ! uw in C 1.B1/ and uC;r .x/ D r�3�fx2>0g.rx/u.rx/ D �fx2>0gur .x/;
hence uC;r .x/! uw in C 1.B1/ and

W .C0;uC/D lim
r!C0

W .r;uC/D lim
r!C0

W .1;uC;r /DW .1;uw/:

We argue similarly for u�. �

In the case W .C0;u/D 2W .1;uw/, by Lemma 46 and Theorem 9 it follows that the free boundary
near to 0 is the union of two graphs, one graph as in Theorem 9 and the other a graph with properties as
in Theorem 9 but reflected with respect to the line fx2 D 0g.

10. An irregularity result for the free boundary near degenerate points

Lemma 47. Let u be a solution in D with 0 2D. Suppose also that there exists ı > 0 such that Bı �D,
@x2

u � 0 in Bı \ fx1 > 0; x2 > 0g, � \Bı \ fx1 D 0; x2 > 0g 6D ∅ and Bı \ fx1 > 0; x2 > 0g ��;
then uD uhs in Bı \fx1 > 0; x2 > 0g.

Proof. For ease of notation let us write v D �@x2
u. We have that v is harmonic in � and v � 0 in

Bı \fx1 > 0; x2 > 0g.
Assume y 2�\Bı\fx1D 0; x2> 0g, then by the optimal growth (Theorem 11) we have @x1

v.y/D 0.
For small enough r > 0 we have Br .re1C y/ � �. Now, because v is nonnegative and harmonic in
Br .re1Cy/ and @x1

v.y/D 0, by Hopf’s lemma we conclude that v D 0 in Br .re1Cx/. Because v is
harmonic in � we obtain that vD 0 in Bı\fx1> 0; x2> 0g. Hence uD u.x1/ in Bı\fx1> 0; x2> 0g.
By this and the assumption � \Bı \fx1 D 0; x2 > 0g 6D∅ the claim follows. �

Lemma 48. Let u be a solution in D with 0 2 D. Suppose also that there exists ı > 0 such that
Bı � D, @x2

u � 0 in Bı \ fx1 > 0; x2 > 0g, and there exists � 2 C
��

0; 1
2
ı
��
\C 1

��
0; 1

2
ı
��

such that
�.0/D �0.C0/D 0, � > 0 in

�
0; 1

2
ı
�
, � is convex and

�\Bı \
˚
x1 > 0; 0< x2 <

1
2
ı
	
D Bı \

˚
0< x2 <

1
2
ı; �.x2/ < x1

	
I (10-1)

then for every q > 1 there exist c > 0 and t0 > 0 such that

�.t/� ctq and �0.t/� ctq�1 for 0< t < t0: (10-2)

Proof. Again, for ease of notation let us write v D�@x2
u. The proof is divided into multiple steps.
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Step 1. In this step we show that v > 0 in Bı \
˚
0< x2 <

1
2
ı; �.x2/ < x1

	
.

If there is x 2 Bı \
˚
0< x2 <

1
2
ı; �.x2/ < x1

	
such that v.x/D 0 then, because v is harmonic and

nonnegative in Bı\
˚
0< x2<

1
2
ı; �.x2/ < x1

	
, it follows that vD 0 in Bı\

˚
0< x2<

1
2
ı; �.x2/ < x1

	
,

but then because u.�.t/; t/D 0 for 0< t < 1
2
ı we come to contradiction with (10-1).

Step 2. In this step we show that for each q > 1 and � >
�
tan.�=.2q//

��1 there exist c1 > 0 (depending
on u) and t1 > 0 such that

v.xt /� c1t2q for 0< t < t1; (10-3)

where
xt D .�t; t/ 2�:

Let q > 1 and
˛q D

�

2q
:

Because �0.C0/D 0 there exists tq > 0 such that �.t/ < t=tan˛q for 0< t < tq .
Let us denote

rq D
tq

tan˛q
:

It follows that
�q D fx D rei�

j 0< r < rq; 0< � < ˛qg ��:

Let us define the function

vq.x/D r2q sin.2q�/ for x D rei�
2�q:

We have
@
�

1
2
�q

�
D Sq [Aq;

where
Sq D

˚
x D rei�

ˇ̌
0� r < 1

2
rq; � 2 f0; ˛qg

	
and

Aq D
˚
x D rei�

ˇ̌
r D 1

2
rq; 0� � � ˛q

	
:

Let aD 1
2
rqe1 and bD 1

2
rqei˛q be the endpoints of the arc Aq . We have b 2�, hence v.b/ > 0. Either

v.a/ > 0 or v.a/D 0 and, by Hopf’s lemma, we have @x2
v.a/ > 0. Also we have v > 0 on Aqnfa; bg.

Thus there exists � > 0 such that
�vq � v on Aq: (10-4)

We have vq D 0 and v � 0 on Sq , thus

�vq � v on Sq: (10-5)

Putting (10-4) and (10-5) together we have

�vq � v on @
�

1
2
�q

�
:
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Now, by the maximum principle, we obtain that

�vq � v in 1
2
�q: (10-6)

We compute jxt j D
p

1C �2t , so for

0< t <
1

2

rqp
1C �2

we have jxt j<
1
2
rq; also we compute

xt;2

xt;1

D
1

�
< tan˛q;

thus we have

xt 2
1

2
�q for 0< t <

1

2

rqp
1C �2

: (10-7)

Now, by (10-6) and (10-7) we have

v.xt /� �vq.xt /D �jxt j
2q sin

�
2q arctan 1

�

�
D c1t2q for 0< t <

1

2

rqp
1C �2

;

where

c1 D �.1C �
2/q sin

�
2q arctan 1

�

�
> 0:

Step 3. In this step we show that there exists c2 > 0 (independent of u) and t2 > 0 such that if

0< t < t2 and � < 1

then there exists yt D .�.yt;2/;yt;2/ 2 � with 0< yt;2 < tq such that

dt D jyt �xt j D d.�;xt /

and

@n.yt /v.yt /�
c2

dt
v.xt /: (10-8)

Here n.y/ is the normal to � at y, pointing into �.
Let

…q D f0< x1 < rq; 0< x2 < tqgI

then we have

�q D � \…q D f.�.t/; t/ j 0< t < tqg:

One may see that

d.xt ; @…q/Dmin
˚
�t; rq � �t; t; tq � t

	
D �t (10-9)

if

t <min
�

rq

2�
;

tq

1C �

�
and � < 1:
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Because � > .tan˛q/
�1 and 0 < t < tq , we have that �.t/ < t=tan˛q < �t . Also we have �.t/ > 0,

thus
d.xt ; .�.t/; t//D �t � �.t/ < �t:

Now, because .�.t/; t/ 2 �q we have

d.xt ; �/ < �t: (10-10)

By (10-9) and (10-10) there exists yt 2 �q such that

dt D jyt �xt j D d.�;xt /: (10-11)

Because
d.xt ; @…q/D �t > d.�;xt /D dt ;

we have
Bdt

.xt /�…q ��:

Because yt 2 @Bdt
.xt /, by the quantitative Hopf lemma (see [Han and Lin 2011]) there exists c2 > 0

(independent of u and t ) such that (10-8) holds.

Step 4. In this step we show that

@n.y/v.y/D�n2.y/y1 for y 2 �q: (10-12)

By the equation 4uD jx1j�fu>0g and the smoothness of the free boundary �q , i.e., smoothness of �,
it follows that in a neighbourhood of y 2 �q we have

4v D�n2jx1jH
1x�: (10-13)

From (10-1) and (10-13), the equation (10-12) follows.

Step 5. In this step we show that for 0< t < t2 we have

yt;2 < .1C �/t: (10-14)

We have

n.y/D
.1;��0.y2//p
1C .�0.y2//2

for y 2 �q (10-15)

and
yt D xt � dtn.yt /:

Thus

yt;2 D t C dt
�0.yt;2/

p
1C .�0.yt;2//

2

and
yt;2 � t C dt < t C �t D .1C �/t:

Step 6. In this step we show that there exists c3 > 0 and t3 > 0 such that

�.yt;2/�
0.yt;2/� c3t2q�1 for 0< t < t3: (10-16)
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Set t3 Dmin.t1; t2/. From (10-3), (10-8) and (10-12) it follows that

�n2.yt /yt;1 D @n.yt /v.yt /�
c2

dt
v.xt /�

c2

dt
c1t2q for 0< t < t3: (10-17)

From (10-17), (10-15), (10-10) and (10-11) we get

�.yt;2/�
0.yt;2/D �

0.yt;2/yt;1 �
�0.yt;2/

p
1C .�0.yt;2//

2
yt;1

D�n2.yt /yt;1 �
c2

dt
c1t2q

�
1

�
c1c2t2q�1

D c3t2q�1:

Step 7. In this step, using the convexity of � we finish the proof of the lemma.
By the convexity of �, the function ��0 is nondecreasing; hence, by (10-14) and (10-16), we have

�..1C �/t/�0..1C �/t/� �.yt;2/�
0.yt;2/� c3t2q�1 for 0< t < t3:

Letting � D .1C �/t we have that

�.�/�0.�/� c3

�
�

1C�

�2q�1
D c4�

2q�1 for 0< � < .1C �/t3 D �0:

It follows that

.�2/0.�/� 2c4�
2q�1 for 0< � < �0

and by integration we obtain

�.�/� c5�
q for 0< � < �0:

From the convexity of � it follows that ��0.�/� �.�/; hence

�0.�/� c5�
q�1 for 0< � < �0

and this completes the proof of the lemma. �

Proof of Theorem 10. By Lemmas 47 and 48 we have that either � D 0 in
�
0; 1

2
ı
�

and u D uhs in
�\Bı \fx1 > 0; x2 > 0g or, for all q > 1, there exist c > 0 and t0 > 0 such that (10-2) holds.

In the latter case, if � is C 1;˛ regular for some 0 < ˛ < 1 at the origin, then there exists C > 0 and
ı1 > 0 such that

j�0.x2/� �
0.C0/j � C jx2j

˛ for 0< x2 < ı1:

But, because �0.C0/D 0 and �0.x2/� 0, we should have

�0.x2/� Cx˛2 for 0< x2 < ı1:

This contradicts with (10-2) if we take 1< q < 1C˛. �
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11. Further directions

The problem considered in this paper might be thought of as a prototype of free boundary problems,
especially the obstacle problem, with a degenerate force term. There are many open questions in these
problems and we are working to complete some works on these questions.

Some further directions are as follows:

(1) Higher dimension. It is interesting to consider the same problem in higher dimensions with possibly
different dimensions for the set where the force term vanishes. In [Yeressian 2015] the key nondegeneracy
result is proved for such higher-dimensional problems when the force term vanishes on a linear subspace.

(2) More general force terms. Partial results show that, when the force term is of the form jx1j
˛ for ˛ > 0,

the number of homogeneous global solutions — and together with it the possible Weiss balanced energy
levels — grows linearly with ˛ > 0. Again in [Yeressian 2015] the key nondegeneracy result is proved
for such general force terms. Many results in this paper could be written for such more general forces,
but to have a reasonable bound on the size of the paper we have opted to consider the case ˛ D 1 only.

(3) Degenerate free boundary points and points where W .C0;x;u/ D 2W .1;uhs/. We know that at
these points the free boundary converges tangentially to the line fx1 D 0g and we know some topological
structure of the set of these points based on the upper semicontinuity of the Weiss balanced energy.
Also, in a particular case we have proved an irregularity result for the free boundary at such points. It is
interesting to study the structure of the free boundary near to such points in more detail.

(4) Uniform results. For the nondegenerate obstacle problems there are many results which hold uniformly
for a class of problems; see [Petrosyan et al. 2012]. But in this paper we have only considered a single
solution alone.

(5) Parabolic problem. The problem considered in this paper has a parabolic analogue. It is interesting to
know the exact influence of the degeneracy of the force term in the parabolic problems.
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A COUNTEREXAMPLE TO THE HOPF–OLEINIK LEMMA (ELLIPTIC CASE)

DARYA E. APUSHKINSKAYA AND ALEXANDER I. NAZAROV

Dedicated to Professor M.V. Safonov

We construct a new counterexample to the Hopf–Oleinik boundary point lemma. It shows that for convex
domains, the C 1;Dini assumption on @� is the necessary and sufficient condition providing the estimates
of Hopf–Oleinik type.

1. Introduction

The influence of the properties of a domain on the behavior of a solution is one of the most important
topics in the qualitative analysis of partial differential equations.

The significant result in this field is the Hopf–Oleinik lemma, known also as the “boundary point
principle”. This celebrated lemma states:

Lemma. Let u be a nonconstant solution to a second-order homogeneous uniformly elliptic nondivergence
equation with bounded measurable coefficients, and let u attend its extremum at a point x0 located on the
boundary of a domain �� Rn. Then .@u=@n/.x0/ is necessarily nonzero provided that @� satisfies the
proper assumptions at x0.

This result was established in a pioneering paper of S. Zaremba [1910] for the Laplace equation in
a 3-dimensional domain � having an interior touching ball at x0 and generalized by G. Giraud [1932;
1933] to equations with Hölder-continuous leading coefficients and continuous lower-order coefficients in
domains � belonging to the class C 1;˛ with ˛ 2 .0; 1/.

Notice that a related assertion about the negativity on @� of the normal derivative of the Green’s
function corresponding to the Dirichlet problem for the Laplace operator was proved much earlier for
2-dimensional smooth domains by C. Neumann [1888] (see also [Korn 1901]). The result of [Neumann
1888] was extended for operators with lower-order coefficients by L. Lichtenstein [1924]. The same
version of the boundary point principle for the Laplacian and 3-dimensional domains satisfying a more
flexible interior paraboloid condition was obtained by M. V. Keldysch and M. A. Lavrent’ev [1937].

A crucial step in studying the boundary point principle was made by E. Hopf [1952] and O. A. Oleı̆nik
[1952], who simultaneously and independently proved the statement for the general elliptic equations
with bounded coefficients and domains satisfying an interior ball condition at x0.

Later the efforts of many mathematicians were focused on the generalization of the boundary point
principle in several directions (for the details, we refer the reader to [Alvarado et al. 2011; Alvarado

MSC2010: 35J15, 35B45.
Keywords: elliptic equations, Hopf–Oleinik lemma, Dini continuity, counterexample.
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2011] and references therein). Among these directions are the extension of the class of operators and the
class of solutions, as well as the weakening of assumptions on the boundary.

The widening of the class of operators to singular/degenerate ones was made in the papers [Kamynin and
Himčenko 1975; 1977; Alvarado et al. 2011], while the uniform elliptic operators with unbounded lower-
order coefficients were studied in [Safonov 2010; Nazarov 2012] (see also [Nazarov and Uraltseva 2009]).
We mention also the publications [Tolksdorf 1983; Mikayelyan and Shahgholian 2015], where the boundary
point principle was established for a class of degenerate quasilinear operators including the p-Laplacian.

We note that before 2010, all the results were formulated for classical solutions, i.e., u 2 C 2.�/. The
class of solutions was expanded in [Safonov 2010] to strong generalized solutions with Sobolev’s second-
order derivatives. The latter requirement seems to be natural in the study of nondivergent elliptic equations.

The reduction of the assumptions on the boundary of� up to C 1;Dini-regularity was realized for various
elliptic operators in the papers [Widman 1967; Himčenko 1970; Lieberman 1985] (see also [Safonov
2008]). A weakened form of the Hopf–Oleinik lemma (the existence of a boundary point x1 in any
neighborhood of x0 and a direction ` such that .@u=@`/.x1/¤ 0) was proved in [Nadirashvili 1983] for
a much wider class of domains including all Lipschitz ones. We mention also the paper [Sweers 1997],
where the behavior of superharmonic functions near the boundary of a 2-dimensional domain with corners
is described in terms of the main eigenfunction of the Dirichlet Laplacian.

The sharpness of some requirements was confirmed by corresponding counterexamples constructed in
[Widman 1967; Himčenko 1970; Kamynin and Himčenko 1975; Safonov 2008; Alvarado et al. 2011;
Nazarov 2012]. In particular, the counterexamples from [Widman 1967; Himčenko 1970; Safonov 2008]
show that the Hopf–Oleinik result fails for domains lying entirely in non-Dini paraboloids.

The main result of our paper is a new counterexample (see Theorem 4.2) showing the sharpness of the
Dini condition for the boundary of �. The simplest version of this counterexample can be formulated as
follows:

Counterexample. Let � be a convex domain in Rn, let @� in a neighborhood of the origin be described
by the equation xn D F.x0/ with F > 0 and F.0/D 0, and let u 2W 2

n;loc.�/\C.�/ be a solution of the
uniformly elliptic equation

�aij .x/DiDj uD 0 in �:

Suppose also that uj@� vanishes at a neighborhood of the origin. If , in addition, the function

ı.r/D sup
jx0j6r

F.x0/

jx0j

is not Dini-continuous at zero, then .@u=@n/.0/D 0.

Thus, it turns out that for convex domains, the Dini-continuity assumption on ı.r/ is necessary and
sufficient for the validity of the boundary point principle. We emphasize that in our counterexample the
Dini condition fails for the supremum of F.x0/=jx0j, while in all the previous results of this kind, it fails
for the infimum of F.x0/=jx0j. In other words, we show that violating the Dini condition just in one
direction causes the failure of the Hopf–Oleinik lemma.
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Notation and conventions. Throughout the paper we use the following notation:

� x D .x0;xn/D .x1; : : : ;xn�1;xn/ is a point in Rn.

� Rn
C D fx 2 Rn W xn > 0g.

� jxj; jx0j are the Euclidean norms in the corresponding spaces.

� �E denotes the characteristic function of the set E � Rn.

� � is a bounded domain in Rn with boundary @�.

� Pr;h. Nx
0/D fx 2 Rn W jx0� Nx0j< r; 0< xn < hg and Pr . Nx

0/D Pr;r . Nx
0/.

� Pr;h D Pr;h.0/ and Pr D Pr .0/.

� Br .x
0/ is the open ball in Rn with center x0 and radius r ; Br D Br .0/.

� For r1 < r2, we define the annulus B.x0; r1; r2/D Br2
.x0/ nBr1

.x0/.

� vC Dmaxfv; 0g and v� Dmaxf�v; 0g.

� k � k1;� denotes the norm in L1.�/.

� We adopt the convention that the indices i and j run from 1 to n. We also adopt the convention
regarding summation with respect to repeated indices.

� Di denotes the operator of (weak) differentiation with respect to xi .

� D D .D0;Dn/D .D1; : : : ;Dn�1;Dn/.

� L is a linear uniformly elliptic operator with measurable coefficients

Lu��aij .x/DiDj uC bi.x/Diu; �In � .a
ij .x//� ��1In; (1)

where In is the n� n identity matrix. We define b.x/D .b1.x/; : : : ; bn.x//.

� We use the letters C and N (with or without indices) to denote various constants. To indicate that,
say, C depends on some parameters, we list them in parentheses: C. � � � /.

Definition 1.1. We say that a function � W Œ0; 1�! RC belongs to the class D1 if

� � is increasing, �.0/D 0, and �.1/D 1;

� �.t/=t is summable and decreasing.

Remark 1.2. Our assumption about the decay of �.t/=t is not restrictive. Indeed, for any increasing
function � W Œ0; 1�! RC satisfying �.0/D 0 and �.1/D 1 and having summable �.t/=t , we can define

Q�.t/D t sup
�2Œt;1�

�.�/

�
; t 2 .0; 1/:

It is easy to see that Q� 2 D1, Q�.t/=t decreases and �.t/6 Q�.t/ for all t 2 .0; 1�.

Definition 1.3. Let a function � belong to the class D1. We define the function J� as

J� .s/ WD
sZ

0

�.�/

�
d�: (2)



442 DARYA E. APUSHKINSKAYA AND ALEXANDER I. NAZAROV

Remark 1.4. The decreasing of �.t/=t implies

�.t/6 J� .t/ 8t 2 Œ0; 1�: (3)

In addition, for t 6 t0 6 1, we have

�.t=t0/D
�.t=t0/

t=t0
� t=t0 6

�.t/

t
� t=t0 D

�.t/

t0
; (4)

and, similarly,

J� .t=t0/6
J� .t/

t0
: (5)

Definition 1.5. We say that a function � satisfies the Dini condition at zero if

j�.r/j6 C�.r/;

and � belongs to the class D1.

2. Preliminaries

Properties of �. Let � be a bounded domain in Rn. Without loss of generality, we may assume 0 2 @�.
Suppose that � is locally convex in a neighborhood of the origin. Without restriction, the latter means

that for some 0<R0 6 1, we have

PR0
\�D

˚
.x0;xn/ 2 Rn

W jx0j6R0; F.x0/ < xn <R0

	
;

where F is a convex nonnegative function satisfying F.0/D 0.
For r 2 .0;R0/, we define the functions ı D ı.r/ and ı1 D ı1.r/ by the formulas

ı.r/ WD max
jx0j6r

F.x0/

jx0j
; ı1.r/ WD max

jx0j6r
jrF.x0/j: (6)

Lemma 2.1. The following statements hold:

(a) ı1.r/! 0 as r ! 0 if and only if ı.r/! 0 as r ! 0.

(b) ı1.r/ satisfies the Dini condition at zero if and only if ı.r/ satisfies the Dini condition at zero.

Proof. By the convexity of F , we have for any x0 and z0, the estimate

F.z0/> F.x0/CrF.x0/ � .z0�x0/: (7)

Therefore,

jrF.x0/j> rF.x0/ �
x0

jx0j
> F.x0/

jx0j
;

and, consequently,
ı1.r/> ı.r/: (8)

On the other hand, for any r < 1
2
R0, we can find a point x0� such that

jrF.x0�/j D ı1.r/:
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Choosing

z0 D x0�C r
rF.x0�/

jrF.x0�/j
;

we easily deduce from (7) the inequalities

jz0j6 2r and F.z0/> rı1.r/;

which provide
ı.2r/> ı.jz0j/> 1

2
ı1.r/: (9)

Combining (8) and (9), we conclude that statement (a) is obvious and the integrals

R0Z
0

ı.r/

r
dr and

R0Z
0

ı1.r/

r
dr

converge simultaneously. �
If ı.r/ does not converge to zero as r ! 0, we can easily see that the domain � is contained in a

dihedral wedge with the angle less than � and the edge going through the origin. For this case, the
statement of Theorem 4.2 is proved already in [Apushkinskaya and Nazarov 2000, Theorem 4.3]. For
this reason, we will assume throughout this paper that

ı.r/! 0 as r ! 0: (10)

In view of (10), it is evident that ı and ı1 are moduli of continuity at the origin of the functions
F.x0/=jx0j and jrF.x0/j, respectively.

Properties of X .�/. Let X .�/ be a function space with the norm k �kX ;�. For �1 ��, we will assume

kf kX ;�1
D kf ���1

kX ;�:

We suppose that X .�/ has the following properties:

(i) For an arbitrary measurable function g defined in � and any function f 2 X .�/, the inequality
jg.x/j6 jf .x/j implies g 2 X .�/ and kgkX ;� 6 kf kX ;�.

(ii) For fk 2 X .�/, the convergence fk & 0 a.e. in � implies kfkkX ;�! 0.

Using the terminology of the classic monograph of Kantorovich and Akilov [1982], we may say
that X .�/ is the ideal functional space with order continuous monotone norm (see [Kantorovich and
Akilov 1982, §3, Chapter IV, Part I] for more details).

We will also assume that

(iii) Xloc.�/ contains the Orlicz space Lˆ;loc.�/ with ˆ.�/D e� � � � 1.

Finally, the basic assumption about X .�/ is the Aleksandrov-type maximum principle. Namely,
we denote by W2

X ;loc.�/ the set of the functions u satisfying D.Du/ 2 Xloc.�/, and suppose that
if u 2W2

X ;loc.�/\ C.�/, uj@� � 0, and jbj 2 X .�/ then

u6N0.n; �; kbkX ;�/ � diam.�/ � k.Lu/CkX ;fu>0g: (11)
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Remark 2.2. It is well known from [Aleksandrov 1960; 1963; Bakel0man 1961] (see also the survey
[Nazarov 2005] for further references) that Ln.�/ has property (11). It is also evident that properties
(i)–(iii) are satisfied in Ln.�/. Therefore, Ln.�/ can be treated as a “basic” example of X .�/. As other
examples of the space X .�/, we mention some Lebesgue weighted spaces with power weights (see
[Nazarov 2001]).

Remark 2.3. Unlike the natural properties (i)–(ii), assumption (iii) is a rather “technical” one. With-
out (iii), our arguments from the proof of Step 3 in Theorem 4.1 are not applicable to the approximating
operator L". So, we cannot withdraw (iii) in abstract setting. However, in all known examples of X .�/,
property (iii) is satisfied.

Remark 2.4. Some of the statements that will be referred to in the sequel were proved earlier just for the
case X .�/DLn.�/. However, if all the arguments are based only on the Aleksandrov-type maximum
principle, these statements remain valid for an arbitrary considered space X .�/. In such cases, we will
refer to this remark without any further explanation.

We also need the following convergence lemmas.

Lemma 2.5. Let ffj g be a sequence of measurable functions on �, and let f 2 X .�/. Suppose also that
fj ! 0 in measure on �, and jfj .x/j6 jf .x/j.

Then
kfjkX ;�! 0 as j !1: (12)

Proof. We argue by a contradiction. Suppose (12) fails. Then there exists a subsequence ffjk
g satisfying

kfjk
kX ;� > " > 0 8k 2 N: (13)

Due to the Riesz theorem, there exists also a subsubsequence ffjkl
g such that

fjkl
! 0 a.e. in �:

For simplicity of notation, we renumber the latter subsequence ffjkl
g and denote its elements again by fj .

Setting Qfk WD supj>k jfj j, we can easily see that Qfk & 0 a.e. in �. Now, taking into account
properties (i) and (ii) of the space X .�/, we immediately get a contradiction with inequalities (13). �

Lemma 2.6. Let f 2 X .�/, and let �.�/ WD sup
x2�

kf kX ;B�.x/\�.

Then
�.�/! 0 as �! 0:

Proof. For every � > 0, there exists a point x� D x�.�/ 2� such that

kf kX ;B�.x�/\� >
1
2
�.�/:

Next, for the sequence f� WD f ��B�.x�/, it is evident that jf�j ! 0 in measure on �. An application
of Lemma 2.5 finishes the proof. �

Remark 2.7. We call�.�/WDsupx2� kf kXB�.x/\� the modulus of continuity of the function f in X .�/.
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Lemma 2.8. Let D.Du/ 2 X .�/, let L be defined by (1), and let Lu 2 X .�/. There exists the family of
operators

L" D�aij
" .x/DiDj C bi

".x/Di

with smooth coefficients a
ij
" and bounded coefficients bi

" satisfying

�In � .a
ij
" .x//� �

�1In; x 2�; (14)

jbi
".x/j6 jbi.x/j; x 2�; (15)

k.L�L"/ukX ;�! 0 as "! 0: (16)

Proof. We start with the extension of aij on the whole Rn by the identity matrix and denote by a
ij
"

the standard mollification of extended functions aij . By construction, the coefficients a
ij
" are smooth

functions converging as "! 0 to aij a.e. in �. Moreover, it is clear that inequalities (14) are true.
Further, we set

Qbi
".x/ WDminfjbi.x/j; "�1

g � sign bi.x/: (17)

In view of (17), it is evident that Qbi
"Diu converges as "! 0 to biDiu a.e. in �. We claim that it is

possible to change Qbi
" such that the “corrected coefficients” bi

" satisfy

jbi
"Diuj6 jbiDiuj in �: (18)

Indeed, if j Qbi
"Diuj 6 jbiDiuj in � then (18) holds with bi

" �
Qbi
". Otherwise, consider a point x0 2 �,

where j Qbi
".x

0/Diu.x
0/j> jbi.x0/Diu.x

0/j.

(a) Let Qbi
".x

0/Diu.x
0/ > bi.x0/Diu.x

0/ > 0. In this case, we decrease all the coefficients Qbi
".x

0/

corresponding to the positive summands such that the sums bi
"Diu and biDiu become equal.

(b) Let Qbi
".x

0/Diu.x
0/ < bi.x0/Diu.x

0/ 6 0. In this case, we decrease all the coefficients Qbi
".x

0/

corresponding to the negative summands such that the sums bi
"Diu and biDiu become equal.

(c) Finally, let Qbi
".x

0/Diu.x
0/ and bi.x0/Diu.x

0/ have different signs. In this case, we apply to
�bi

".x
0/ the arguments from case (a) or from case (b), respectively.

Due to construction, the “corrected sum” bi
"Diu also converges as "! 0 to biDiu a.e. in �, and the

pointwise inequalities (15) hold true.
Finally, taking into account (18) and applying Lemma 2.5, we get (16). �

3. Gradient estimates near the boundary

Lemma 3.1. Let N � Rn
C be an open set, let  D �=

p
n� 1, let � > 0, and let

…� D
˚
y 2 Rn

W jyi j< � for i D 1; : : : ; n� 1I 0< yn < �
	
:

We assume that jbj 2 X .N / and a function v satisfies the conditions

v 2W2
X ;loc.N /; v > 0 in …�; v > k D constant> 0 on @N \…�:
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Then
v > C1k �C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…� in N \B�

4
.z/;

where zD .0; : : : ; 0; 1
2
�/, while C1D

1
16
.1� 2/, C2DC2.n; �; kbkX ;N /, and C3 D C3.n; �; kbkX ;N /.

Proof. The proof is similar in spirit to [Apushkinskaya and Ural0tseva 1995, Lemma 1].
Consider the barrier function

 .y/D k

��
1�

yn

�

�2

�
jy0j2

�2

�
:

An elementary computation gives

L 6 k

�
2.n� 1/

�2
��1
�

2

 2�2
�

�
CjbjjD j6N1.n; �/jbj

k

�
in…�:

Moreover, setting

S1 D fy 2 @.N \…�/ W jyi j D � for some i D 1; : : : ; n� 1g;

S2 D fy 2 @.N \…�/ W yn D �g;

we have
 
ˇ̌
S1[S2

6 06 v;

 
ˇ̌
@N\…�

6 k 6 v
ˇ̌
@N\…�

:

Applying inequality (11) in N \…� to the difference  � v, we obtain

 � v 6N0 � diam.…�/ � k.L �Lv/CkX ;N\…� in N \…�;

and, consequently,

v > k

��
1�

3
4
�

�

�2

�
 2�2

16�2

�
�C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…�

D
1

16
.1�  2/k �C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…� in N \B�

4
.z/: �

Our next statement is a version of [Nazarov 2012, Theorem 2.3].

Lemma 3.2. Let v 2 W2
X ;loc.�/\ C.�/, let vj@� D 0, and let jbj 2 X .�/. Suppose also that for all

� 6 �� 6 1, the inequalities

kbn
kX ;P�\� 6B�.�=��/; k.Lv/CkX ;P�\� 6 F�.�=��/

hold true. Here B and F are some positive constants, while the function � belongs to D1.
Then

sup
0<xn<�

v.0;xn/

xn
6 C4

�
��1 sup

P�\�
vCFJ� .�=��/

�
8� 6 ��: (19)

Here the constant C4 depends on n, �, B, � , and on the moduli of continuity of jb0j in X .P��\�/,
whereas J� is a function defined by formula (2).
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Remark 3.3. We recall that 0 2 @�.

Proof. First, we assume that � 6 N�, where N� 6 �� will be fixed later. Following [Nazarov 2012], we
introduce the sequence of cylinders P�k ;hk

, with k > 0, where �k D 2�k� and hk D �k�k , while the
sequence �k # 0 will be chosen later.

We set wk D v�Mkxn, where the quantities Mk , with k > 1, are defined as

Mk D sup
P�k ;hk�1

\�

v.x/

max fxn; hkg
> sup
fP�k ;hk�1

nP�k ;hk
g\�

v.x/

xn
:

It is easy to see that wk 6 0 on @�\P�k ;hk
, while the definition of Mk gives wk 6 0 on the top of the

cylinder P�k ;hk
.

Let x0 2 P�k�hk ;hk
\�. Taking into account Remark 2.4, we apply the so-called “boundary growth

lemma” (see, for instance, [Ladyzhenskaya and Ural0tseva 1985, Lemma 2.50], [Safonov 2010, Lemma 2.6]
or [Nazarov 2012, Lemma 2.2]) to the (positive) function Mkhk � wk in Phk

.x00/\�. It gives for
x 2 Phk=2;hk

.x00/\�,

Mkhk �wk.x/>Mkhk

�
# �N2kbkX ;P�k

\�

�
�N3hkk.Lwk/CkX ;Phk

.x00/\�; (20)

where # D #.n; �; �;B/ 2 .0; 1/ and the positive constant N2 depends on the same parameters as # ,
whereas the positive constant N3 is completely defined by the values of n, � and B. We suppose that N� is
so small that the quantity in the square brackets is greater than #=2. Further, direct calculation shows that
the assumptions of our lemma imply

k.Lwk/CkX ;Phk
.x00/\� 6 k.Lv/CkX ;Phk

.x00/\�CMkkb
n
kX ;Phk

.x00/\�

6 .FCMkB/�.�k=��/:

Substituting the last inequality into (20) and taking the supremum with respect to x0, we obtain

sup
P�k�hk ;hk

\�

wk 6Mkhk

�
1�#=2CN2B�.�k=��/

�
CN3hkF�.�k=��/:

Repeating previous arguments provides for all integers m6 �k=hk the inequalities

sup
P�k�mhk ;hk

\�

wk 6Mkhk

�
.1�#=2/mCN2B

�.�k=��/

#=2

�
CN3hkF

�.�k=��/

#=2
:

Setting mD b�kC1=hkc, we arrive at

sup
P�kC1;hk

\�

wk 6
Mkhk

1�#=2

�
exp

�
��
�kC1

hk

�
CN2B

�.�k=��/

#=2

�
CN3hkF

�.�k=��/

.1�#=2/#=2
;

where �D� ln .1�#=2/ > 0.
Therefore, for x 2 P�kC1;hk

\�,

wk.x/

max fxn; hkC1g
6Mkk CN3F

�.�k=��/

.1�#=2/#=2
�

2�k

�kC1

; (21)
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where

k D
1

1�#=2

2�k

�kC1

�

�
exp

�
�
�

2�k

�
CN2B

�.�k=��/

#=2

�
:

Estimate (21) implies

MkC1 6Mk.1C k/CN3F
�.�k=��/

.1�#=2/#=2
�

2�k

�kC1

6M1 �

kY
jD1

.1C j /C 2N3F �

kX
jD1

�.�j=��/
�j

�jC1

�

k�1Y
lDj

.1C l/:

We set �kD1=.kCk0/ and choose k0 so large and N�=�� so small that 16 1
2

. Note that k0Dk0.n; �; �;B/,
whereas N�=�� depends on the same parameters as k0 and, in addition, on the moduli of continuity of jb0j
in X .P�� \�/.

Now we observe that the first term in k forms a convergent series. The same is true for the second
term, since

1X
kD1

�.2�k�=��/�

1Z
0

�.2�s�=��/ ds � J� .�=��/:

Therefore, the infinite product …D
Q

k.1C k/ also converges, and we obtain for k > 1, the inequality

Mk 6… �
�

M1C 2N3F �

kX
jD1

�.�j=��/
�j

�jC1

�
6… �

�
M1CN4.n; �; �;B/FJ� .�=��/

�
: (22)

Thus, all Mk are bounded. It remains only to note that

M1 6
1

h1
sup

P�=2\�

v: (23)

Combining (22) and (23), we arrive at

sup
0<xn<�=2

v.0;xn/

xn
6N5.n; �; �;B/

�
��1 sup

P�=2\�

vCFJ� .�=��/
�
: (24)

Further, it is easy to find a majorant for v.0;xn/=xn for any xn 2 Œ�=2; �/ since

sup
�=26xn<�

v.0;xn/

xn
6 2��1 sup

�=26xn<�

v.0;xn/6 2��1 sup
P�\�

v: (25)

Combining (24) and (25) implies (19) with C4 Dmax fN5; 2g for � 6 N�.
Now, we consider � > N�. If xn < N� then the estimate

v.0;xn/

xn
6 2N5

�
N��1 sup

P�\�
vCFJ� .�=��/

�
(26)

follows from the above arguments. Otherwise, i.e., for xn > N�, inequality (26) is especially true. Thus,
for � > N�, we again arrive at (19) with C4 Dmax fN5; 2g N�

�1. �



A COUNTEREXAMPLE TO THE HOPF–OLEINIK LEMMA (ELLIPTIC CASE) 449

4. Main results

Recall that � satisfies the assumptions on page 442. Throughout this section, we shall suppose that L is
defined by (1), jbj 2 X .�/, and a function u satisfies the assumptions

u 2W2
X ;loc.�/\ C.�/; LuD 0 in �; uj@�\PR0

D 0: (27)

Theorem 4.1. Let the inequality

sup
x2PR0=2

kbn
kX ;P�.x0/\� 6B�.�=R0/

hold true for all � 6 1
2
R0. Here B is a positive constant, and a function � 2 D1 satisfies

J� .t/D o.ı.t// as t ! 0: (28)

Then, there exists a sufficiently small positive number R0 completely defined by n, �, R0, B, by the
functions � , ı, and by the moduli of continuity of jb0j in X .�/ such that for any r 2

�
0; 1

2
R0

�
, we have

osc
�\Pr=4

u.x/

xn
6 .1� ~ı.r// osc

�\P2r

u.x/

xn
: (29)

Here the constant ~ 2 .0; 1/ is completely determined by n, �.

Proof. The proof will be divided into 3 steps.

Step 1: Our arguments are adapted from [Apushkinskaya and Ural0tseva 1995, Lemma 2; Ural0tseva
1996, Lemma 3]. Let us denote

m˙ D sup
�\P2r

˙
u.x/

xn
; ! DmCCm� D osc

�\P2r

u.x/

xn
:

Since uj@� D 0, we have m˙ > 0. Therefore, at least one of the numbers m˙ is not less than 1
2
!, and

both of the numbers m˙ are less than !.
Let mC > 1

2
! for definiteness. Then we consider the nonnegative function v.x/ D mCxn � u.x/

in �\P2r ; if m� > 1
2
! then we consider the function v.x/Dm�xnCu.x/.

Due to the definition of ı, for any sufficiently small r > 0, we can find a point x� 2 @Pr \ @� such
that x�n D rı.r/. Without loss of generality, we may assume that x�

1
D r and x�� D 0 for � D 2; : : : ; n�1.

Next we assign to x� a local orthogonal coordinate system y1; : : : ;yn such that

(a) the y1-axis is directed along the projection of the vector .x�
1
; : : : ;x�

n�1
/ onto a tangential hyperplane

to @� at x�;

(b) the y2-, : : : , yn�1-axes are parallel to the x2-, : : : , xn�1-axes, respectively;

(c) the yn-axis is directed inside �.

Due to the extremal property of x�, the axes y1; : : : ;yn�1 lie in the supporting hyperplane to @�
at x�. Moreover, if x� is a smooth point of @� then yn is directed along the inward normal to @�.
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ϕ

rδ(r)

B   (z  )0
0ρ

γr/2
r/2

r

x*

r x1

xn

yn

y
1

ϕΩ

∂Ω

Π

Figure 1. Schematic view of … and B�0
.z0/.

Setting  D �=
p

n� 1, we consider in y-coordinates the cylinder

… WD
˚
y 2 Rn

W
ˇ̌
y1�

1
2
r
ˇ̌
< 1

2
r; jy� j<

1
2
r; 0< yn <

1
2
 r
	
;

and the ball B�0
.z0/ with �0 D

1
8
 r and z0 D

�
1
2
r; 0; : : : ; 0; 1

4
 r
�
.

It should be emphasized that from now on, all considerations will be carried out in x-coordinates.
We claim that

B�0
.z0/��: (30)

Indeed, assume that (30) fails. Then there is a point Ox 2 B�0
.z0/ satisfying (in x-coordinates) the

inequalities
F. Ox0/> Oxn > z0

n � �0: (31)

Since Ox 2 B�0
.z0/, it is clear that j Ox0j6 2r and

F. Ox0/6 2rı.2r/:

On the other hand, denoting by ' the angle between the xn- and yn-axes (see Figure 1), we conclude that

z0
n � �0 D rı.r/C 1

2
r sin'C 1

4
 r cos' � 1

8
 r > 1

8
 r.2 cos' � 1/:

Thus (31) is transformed into
 .2 cos' � 1/6 16ı.2r/: (32)

In view of (10) and Lemma 2.1, one can choose R0 so small that ı1.R0/ 6 3
4

. It guarantees for all
r 6 1

2
R0, the inequalities

cos' D
1p

1C tan2 '
> 1p

1C ı2
1
.r/
> 1p

1C ı2
1
.R0/

> 4

5
: (33)

Now, combining (33) and (32), we get a contradiction with relation (10) provided ı.R0/ is small enough.
The proof of (30) is complete.
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Step 2: With (30) at hand, we observe that

inffxn W x 2�\…g> rı.r/:

On the other hand, the condition uD 0 for x 2 @�\… gives the estimate

v DmCxn > 1
2
!xn on @�\…:

Hence,
v > 1

2
!rı.r/DW k0 on @�\…: (34)

So, we can apply Lemma 3.1 to the function v in cylinder …. This gives the estimate

inf
B�0

.z0/
v >

�
k0

�
C1�C2kbkX ;�\P2r

�
�C3!rkbn

kX ;�\P2r

�
C
;

where C1, C2 and C3 are the constants from Lemma 3.1. Decreasing R0, if necessary, we may assume
that kbkX ;�\PR0

6 C1=.2C2/. Thus, we arrive at

inf
B�0

.z0/
v >

�
k0

1
2
C1�C3!rkbnkX ;�\P2r

�
C
DW k1: (35)

Consider now an arbitrary point QzD .Qz0; 1
4
rC 1

8
�0/ such that jQz0j6 1

4
r . Observe also that B�0

.Qz/��,
otherwise we get a contradiction with the definition of ı.r/.

We claim that
inf

B�0=8.Qz/
v >

�
k0
zC1�

zC2!rkbn
kX ;�\P2r

�
C
; (36)

where zC1 D
zC1.n; �/, whereas zC2 is determined completely by n, �, and kbkX ;�. Indeed, due to the

convexity of �, for l running from 1 to a finite number NDN.n; �/ chosen so that

4

3�0
jz0
� Qzj6N6 2

�0
jz0
� Qzj; (37)

and for points zŒl� WD z0� .l=N/.z0� Qz/, we have B�0
.zŒl�/��. It should be emphasized that the lower

and the upper bounds in (37) do not depend on r .
In view of (35), we can compare in B.zŒ1�; 1

8
�0; �0/ the function v with the standard barrier function

w.x/D k1

jx� zŒ1�j�s � ��s
0�

1
8
�0

��s
� ��s

0

:

If s D n��2 then elementary calculation guarantees the estimates

Lw 6 jbjjDwj6 c.n; �/k1jbj�
�1
0 in B.zŒ1�; 1

8
�0; �0/;

w.x/D k1 6 v.x/ on the sphere jx� zŒ1�j D 1
8
�0;

w.x/D 06 v.x/ on the sphere jx� zŒ1�j D �0:

Applying the maximum principle (11) in B
�
zŒ1�; 1

8
�0; �0

�
to the difference w� v gives us the inequality

v.x/>
�
k1

�
w.x/� 2cN0kbkX ;�\P2r

�
�N0

1
4
 r!kbnkX ;�\P2r

�
C
:
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Since B�0=8.z
Œ2�/� B

�
zŒ1�; 1

8
�0;

7
8
�0

�
, the evident bound w > �.n; �/ holds true in B�0=8.z

Œ2�/.
Decreasing R0, if necessary, we ensure that kbkX ;�\PR0

6 .4cN0/
�1� . This implies

inf
B�0=8.zŒ2�/

v.x/>
�

1
2
k1� �N0

1
4
 r!kbnkX ;�\P2r

�
C
DW k2:

Repeating this procedure for B
�
zŒl�; 1

8
�0; �0

�
and l D 2; : : : ;N, we arrive at (36) with zC1D

�
1
2
�
�N and

zC2 DN0
1
4
 �

1�
�

1
2
�
�N

1� 1
2
�

:

Furthermore, it is clear that�
k0
zC1�

zC2r!kbn
kX ;�\P2r

�
C
> !r

�
1
2
zC1ı.r/� zC2B�.r=R0/

�
C
;

while inequalities (3) and (4) guarantee that

�.r=R0/6
J� .r/
R0

:

Decreasing R0 again and taking into account the assumption (28) and the above inequalities, we can
transform (36) into the form

inf
B�0=8.Qz/

v > 1
4
zC1!rı.r/DW Qk: (38)

Step 3: Now, we take a small � > 0, define the set

A� WD B
�
Qz; 1

8
�0; Qzn

�
\�\

˚
x 2 PR0

W F.x0/C � < xn <R0

	
and introduce in A� the barrier function

W .x/D � Qk
jx� Qzj�s � .Qzn/

�s�
1
8
�0

��s
� .Qzn/�s

;

where s D n��2 and 0< �6 1.
Notice that D.Du/ 2 X .A�/. Using Lemma 2.8, we construct the family of operators L" satisfying

kL"ukX ;A� ! 0 as "! 0.
Arguing in the spirit of the proof of Lemma 4.2 [Ladyzhenskaya and Ural0tseva 1988], we define v1.x/

and v2.x/ as solutions of the problems�
L"v1 D bi

"DiW in A�;
v1 D v on @A�;

�
L"v2 D bi

"DiW � bn
"mC in A�;

v2 D 0 on @A�:

It is well known (see, for instance, [Krylov 2008, Chapter 6]) that D.Dv1/ and D.Dv2/ belong to
the space BMOloc.A�/. Moreover, the John–Nirenberg theorem [1961] (see also [Duoandikoetxea 2001,
§4, Chapter 6]) implies that D.Dvi/, with i D 1; 2, belong to the Orlicz space Lˆ;loc.A�/ with ˆ.�/D
e����1. So, taking into account the property (iii), we may conclude that vi 2W2

X ;loc.A�/, with i D 1; 2.
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Furthermore, in view of (38) and by direct calculation, we have the inequalities

L"W 6 bi
"DiW in A�;

W .x/D � Qk 6 v.x/D v1.x/ on the sphere jx� Qzj D 1
8
�0;

W .x/D 06 v.x/D v1.x/ on @A� \fx 2 Rn
W jx� Qzj D Qzng:

On the rest of @A�, we have xn D F.x0/C � and, consequently, distfx; @�g6 �. Since u 2 C.�/, the
latter inequality implies the estimate u6H.�/ there, and therefore,

v1.x/D v.x/DmCxn�u> 1
2
!xn�H.�/;

where H is a nonnegative function tending to zero as �! 0.
In addition, it is easy to verify that

W .x/6 �N6.n; �/ zC1!ı.r/xn in B
�
Qz; 1

8
�0; Qzn

�
:

Choosing �Dminf1; .2N6
zC1/
�1g, we get

v1.x/>W .x/�H.�/ on @A�:

The maximum principle (11) applied to the difference W �H.�/� v1 in A� provides the inequality

v1.x/>W .x/�H.�/> �N7.n; �/ zC1!ı.r/.Qzn� jx� Qzj/�H.�/:

It follows from the last inequality with x D .Qz0;xn/ 2� and 0< xn 6 Qzn�
1
8
�0 D

1
4
r that

v1.Qz
0;xn/>N8.n; �/ ! ı.r/xn�H.�/: (39)

Next, we look for a majorant for v2. With this aim in view, we extend the coefficients a
ij
" continuously

and the coefficients bi
" by zero to the whole annulus B

�
Qz; 1

8
�0; Qzn

�
, and denote by Qv2.x/ the solution of

the problem

L" Qv2 D

�
.L"v2/C in A�;
0 in B

�
Qz; 1

8
�0; Qzn

�
nA�;

Qv2 D 0 on @B
�
Qz; 1

8
�0; Qzn

�
:

The maximum principle guarantees
v2 6 Qv2 in A�: (40)

Direct computations show that for � 6 1
4
r the barrier function W satisfies in the set

E� WD P�.Qz0; 0/\B
�
Qz; 1

8
�0; Qzn

�
the following inequalities

jDnW j6 jDW j6N9.n; �/ �
Qk

r
6N9 ! ı.r/;

jD0W j6N9�
Qk�

r2
6N9 !

ı.r/�

r
:
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So, in view of (15) and (10), we have for all � 6 1
4
r , the bounds

k.L" Qv2/CkX ;E� 6 kbn
kX ;E�

�
mCCkDnW k1;E�

�
Ckb0kX ;E�kD

0W k1;E�

6N10.n; �/ !

�
B�

�
�

R0

�
C
ı.r/

r
�kb0kX ;A�

�
:

Since the function � 7!
�
B�.�=R0/C .ı.r/=r/�kb0kX ;A�

�
satisfies the Dini condition at zero, there

exist the uniquely defined function �1 2 D1 and a constant B1 such that

B�

�
�

R0

�
C
ı.r/

r
�kb0kX ;A� DB1�1

�
4�

r

�
:

Thus, we may apply Lemma 3.2 to the function Qv2. It gives for �D 1
4
r the estimate

sup
0<xn<r=4

Qv2.Qz
0;xn/

xn
6 C4

��
1
4
r
��1 sup

Er=4

Qv2CN10!B1J�1
.1/
�
: (41)

It is easy to see that

B1J�1
.1/DBJ�

�
r

4R0

�
C

1
4
ı.r/kb0kX ;A� :

Furthermore, applying (11) to Qv2 and to the operator L" in B
�
Qz; 1

8
�0; Qzn

�
, we obtain

sup
Er=4

Qv2 6 sup
B.Qz;�0=8;Qzn/

Qv2 6N11.n; �; kbkX ;�/ !r
�
B�

�
r

R0

�
C ı.r/kb0kX ;A�

�
:

Substitution of the above estimates in (41) and consideration of (3) provide

sup
0<xn<r=4

Qv2.Qz
0;xn/

xn
6N12 !

�
BJ�

�
r

R0

�
C ı.r/kb0kX ;A�

�
; (42)

where the constant N12 depends only on n, � and kbkX ;�.
Taking into account the inequality (5), the assumption (28), and the evident relation kb0kX ;A D o.1/

as r ! 0, we decrease R0 such that the property

BJ�
�

r

R0

�
C ı.r/kb0kX ;A� 6

N8

2N12

ı.r/ (43)

holds true for all r 6R0.
Finally, combining (39)–(40) with (42)–(43), we arrive at the estimate

v1.Qz
0;xn/� v2.Qz

0;xn/> 1
2
N8!ı.r/xn�H.�/ (44)

for r 6R0 and x D .Qz0;xn/ 2� with xn 2
�
F.Qz0/C �; 1

4
r
�
.

Considering in A� the function v3.x/D v.x/� v1.x/C v2.x/, one can easily see that

L"v3 D�L"u! 0 in X .A�/ as "! 0:
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In addition, v3 D 0 on @A�. Applying the maximum principle (11) to ˙v3 and to the operator L", we
obtain that the difference v1.x/� v2.x/ converges to v.x/ uniformly in A�. Therefore, passing in (44)
first to the limit as "! 0 and then as �! 0, we get

v.x/

xn
> 1

2
N8!ı.r/ (45)

for r 6R0 and x D .Qz0;xn/ 2� with xn 2 ŒF.Qz
0/; 1

4
r �.

Since Qz0 can be chosen arbitrarily with only jQz0j6 1
4
r , the estimate (45) gives (29) with ~ D 1

2
N8. �

Theorem 4.2 (main theorem). Let the assumptions of Theorem 4.1 hold, and suppose

ı.r/D max
jx0j6r

F.x0/

jx0j

does not satisfy the Dini condition at zero.
Then for any function u satisfying (27), the equality

@u

@n
.0/D 0

holds true.

Proof. Consider the sequence rk D 8�kR0, with k > 0, where R0 is the constant from Theorem 4.1.
Applying Theorem 4.1 to u guarantees for k > 0 the inequalities

osc
�\PrkC1

u.x/

xn
6
�
1� ~ı

�
1
2
rk

��
osc

�\Prk

u.x/

xn
6 osc
�\PR0

u.x/

xn
�

kY
jD0

�
1� ~ı

�
1
2
rj
��
:

Since
1X

jD0

ln
�
1� ~ı

�
1
2
rj
��
��

1X
jD0

ı
�

1
2
rj
�
��

r0Z
0

ı.r/

r
dr D�1;

we have
kY

jD0

�
1� ~ı

�
1
2
rj
��
! 0 as k!1:

We recall also that Lemma 3.2 implies the finiteness of the quantity osc
�\PR0

.u.x/=xn/.

Thus, taking into account that uj@�\PR0
D 0, we getˇ̌̌̌

@u

@n
.0/

ˇ̌̌̌
D

ˇ̌̌̌
lim

xn!0

u.0;xn/

xn

ˇ̌̌̌
6 lim

k!1

ˇ̌̌̌
osc

�\Prk

u.x/

xn

ˇ̌̌̌
D 0: �
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GROUND STATES OF LARGE BOSONIC SYSTEMS:
THE GROSS–PITAEVSKII LIMIT REVISITED

PHAN THÀNH NAM, NICOLAS ROUGERIE AND ROBERT SEIRINGER

We study the ground state of a dilute Bose gas in a scaling limit where the Gross–Pitaevskii functional
emerges. This is a repulsive nonlinear Schrödinger functional whose quartic term is proportional to
the scattering length of the interparticle interaction potential. We propose a new derivation of this limit
problem, with a method that bypasses some of the technical difficulties that previous derivations had to
face. The new method is based on a combination of Dyson’s lemma, the quantum de Finetti theorem and
a second moment estimate for ground states of the effective Dyson Hamiltonian. It applies equally well to
the case where magnetic fields or rotation are present.
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1. Introduction

The rigorous derivation of effective nonlinear theories from many-body quantum mechanics has been
studied extensively in recent years, motivated in part by experiments in cold atom physics. For bosons,
the emergence of the limit theories can be interpreted as due to most of the particles occupying the same
quantum state: this is the Bose–Einstein condensation phenomenon, observed first in dilute alkali vapors
some twenty years ago.

The parameter regime most relevant for the description of the actual physical setup is the Gross–
Pitaevskii limit. It is also the most mathematically demanding regime considered in the literature so far;
see [Lieb and Yngvason 1998; Lieb et al. 2000; Lieb and Seiringer 2002; 2006] for the derivation of
equilibrium states and [Erdős et al. 2009; 2010; Benedikter et al. 2015; Pickl 2015] for dynamics (more
extensive lists of references may be found in [Lieb et al. 2005b; Rougerie 2015; Benedikter et al. 2016]).
The main reason for this sophistication is the fact that interparticle correlations due to two-body scattering
play a leading-order role in this regime. The goal of this paper is to present a method for the derivation
of Gross–Pitaevskii theory at the level of the ground state that is conceptually and technically simpler

MSC2010: 35Q40, 81V70.
Keywords: many-body quantum mechanics, mean-field limits, Bose–Einstein condensates.
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than existing proofs, in particular that of [Lieb and Seiringer 2006], which was so far the only method
applicable when an external magnetic field is present.

Our setting is as follows: we considerN interacting bosons in the three-dimensional space R3, described
by the many-body Schrödinger Hamiltonian

HN D

NX
jD1

hj C
X

16j<k6N

wN .xj � xk/ (1-1)

acting on the space HN D
NN

symL
2.R3/ of permutation-symmetric square integrable functions. The

one-body operator is given by
h WD .�ir CA.x//2CV.x/;

with a magnetic (or a rotation) field A satisfying

A 2 L3loc.R
3;R3/; lim

jxj!1
jA.x/je�bjxj D 0; (1-2)

for some constant b > 0 and an external potential V satisfying

06 V 2 L1loc.R
3/; lim

jxj!1
V.x/DC1: (1-3)

We thus consider nonrelativistic particles in a trapping potential, possibly under the influence of an
effective magnetic field, which might be due to rotation of the sample or the interaction with optical fields.

The particles interact pairwise via a repulsive potential wN given by

wN .x/DN
2w.Nx/; (1-4)

where w is a fixed function which is nonnegative, radial and of finite range, i.e., 1.jxj>R0/w.x/� 0
for some constant R0 > 0. Different scalings of the interaction potential of the form

wˇ;N .x/D
1

N
N 3ˇw.N ˇx/; (1-5)

with 06 ˇ 6 1, have been considered in the literature. The N�1 prefactor makes the interaction energy
in (1-1) of the same order as the one-particle energy. Indeed, if ˇ > 0, then

N 3ˇw.N ˇx/
N!1
���!

�Z
w

�
ı0 (1-6)

weakly and thus the interaction potential wˇ;N should be thought of as leading to a bounded interaction
energy per pair of particles. Generally speaking, the larger the parameter ˇ, the faster the potential
converges to a point interaction, and thus the harder the analysis. Note that the cases ˇ < 1

3
and ˇ > 1

3

correspond to two physically rather different scenarios: in the former, the range of the potential is much
larger than the typical interparticle distance N�1=3, and we should expect many weak collisions; while in
the latter, we rather have very few but very strong collisions. In this paper, we consider the most interesting
case ˇ D 1, where the naive approximation (1-6) does not capture the leading-order behavior of the
physical system. In fact, the strong correlations at short distances O.N�1/ yield a nonlinear correction,
which essentially amounts to replacing the coupling constant

R
w by .8�/� .the scattering length of w).
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Let us quickly recall the definition of the scattering length; a more complete discussion can be found
in [Lieb et al. 2005b, Appendix C]. Under our assumption on w, the zero-energy scattering equation

.�2�Cw.x//f .x/; lim
jxj!1

f .x/D 1;

has a unique solution and it satisfies

f .x/D 1�
a

jxj
8jxj>R0

for some constant a > 0 which is called the scattering length of w. In particular, if w is the potential
for hard spheres, namely w.x/�C1 when jxj<R0 and w.x/� 0 when jxj>R0, then the scattering
length of w is exactly R0. In a dilute gas, the scattering length can be interpreted as an effective range of
the interaction: a quantum particle far from the others is felt by them as a hard sphere of radius a. A
useful variational characterization of a is

8�aD inf
�Z

R3

2jrf j2Cwjf j2; lim
jxj!1

f .x/D 1

�
: (1-7)

Consequently, 8�a is smaller than
R
w (the strict inequality can be seen by taking the trial function

1��g with g 2 C 2c .R
3;R/ satisfying g.x/� 1 when jxj<R0, and � > 0 sufficiently small). Moreover,

a simple scaling shows that the scattering length of wN DN 2w.N � / is a=N .
We are going to prove that the ground-state energy and ground states of HN converge to those of the

Gross–Pitaevskii functional

EGP.u/ WD hu; huiC 4�a

Z
R3

ju.x/j4 dx (1-8)

in a suitable sense. Note that the occurrence of the scattering length in (1-8) is subtle: this functional is
not obtained by testing HN with factorized states of the form u˝N (which would lead to a functional
with 4�a replaced by 1

2

R
w). Taking into account the short-range correlation structure which gives rise

to (1-8) is the main difficulty in the proof of the following theorem, which is our main result.

Theorem 1.1 (Derivation of the Gross–Pitaevskii functional).
Under conditions (1-2), (1-3) and (1-4), we have

lim
N!1

inf
k‰kHND1

h‰;HN‰i

N
D inf
kuk

L2.R3/
D1

EGP.u/DW eGP: (1-9)

Moreover, if ‰N is an approximate ground state for HN , namely

lim
N!1

h‰N ;HN‰N i

N
D eGP;

then there exists a subsequence‰N`
and a Borel probability measure � supported on the set of minimizers

of EGP.u/ such that

lim
`!1

Tr
ˇ̌̌̌

.k/
‰N`

�

Z
ju˝kihu˝kj d�.u/

ˇ̌̌̌
D 0 8k 2 N; (1-10)
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where  .k/‰N
D TrkC1!N j‰N ih‰N j is the k-particle reduced density matrix of ‰N . In particular,

if EGP.u/ subject to kukL2 D 1 has a unique minimizer u0 (up to a complex phase), then there is complete
Bose–Einstein condensation

lim
N!1

Tr
ˇ̌

.k/
‰N
� ju˝k0 ihu

˝k
0 j

ˇ̌
D 0 8k 2 N: (1-11)

The energy upper bound in (1-9) was proved in [Lieb et al. 2000; Seiringer 2003] (see also [Benedikter
et al. 2016, Appendix A] for an alternative approach). The energy lower bound in (1-9) and the convergence
of one-particle density matrices were proved in [Lieb and Seiringer 2006]. The simpler caseA�0 has been
treated before in [Lieb et al. 2000] (ground-state energy) and [Lieb and Seiringer 2002] (condensation). In
this case, the uniqueness of the Gross–Pitaevskii minimizer u0 follows from a simple convexity argument.
The result in Theorem 1.1 is thus not new, but the existing proofs are fairly difficult, in particular that of
[Lieb and Seiringer 2006] which deals with the case A 6� 0.

In the present paper, we will provide alternative proofs of the energy lower bound and the convergence
of states using the quantum de Finetti theorem in the same spirit as in [Lewin et al. 2014; 2015a]. Our
proofs are conceptually and technically simpler than those provided in [Lieb and Seiringer 2006]. The
overall strategy will be explained in the next section.

Our result covers the case of a rotating gas where the minimizers of the Gross–Pitaevskii functional
can develop quantized vortices. This corresponds to taking A.x/ D �^ x, with � being the angular
velocity vector. In this case, V should be interpreted as the trapping potential minus 1

2
.�^ x/2. The

assumption V.x/!1 as jxj !1 is to ensure that all particles are confined to the system. Here our
conditions on A and V are slightly more general than those of [Lieb and Seiringer 2006], where A is
assumed to grow at most polynomially and V is assumed to grow at least logarithmically.

The finite range assumption on w is not a serious restriction because we can always restrict the
support of w to a finite ball without changing the scattering length significantly. In fact, it is sufficient
to assume that w is integrable at infinity, in which case the scattering length is well-defined. We
can also work with a more general interaction wN > 0 (with scattering length aN ) rather than the
specific choice (1-4), as long as its range goes to zero and limN!1NaN exists; then the result in
Theorem 1.1 still holds with a replaced by limN!1NaN . In particular, if wN is chosen as in (1-6) for
some 0 < ˇ < 1, then NaN ! .8�/�1

R
w. The critical case ˇ D 1 considered in this paper is much

more interesting because in the limit, the true scattering length appears instead of its first-order Born
approximation .8�/�1

R
w.

2. Overall strategy

In this section we give an outline of the proofs of our main results, in order to better emphasize the key
new points for the energy lower bound and the convergence of states.

We shall use the following notation: Let � W R3! R be a radial smooth Heaviside-like function; i.e.,

06 � 6 1; �.x/� 0 for jxj6 1 and �.x/� 1 for jxj> 2:
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Let U W R3! R be a radial smooth function supported on the annulus 1
2
6 jxj6 1 such that

U.x/> 0 and
Z

R3

U D 4�a:

For every R > 0, define

�R.x/D �
�
x

R

�
; UR.x/D

1

R3
U
�
x

R

�
:

The smooth cut-off function �R will be used to perform cut-offs in both space and momentum variables,
the latter being always denoted by

p D�ir:

The potential UR will be used to replace the original one. The important points will be that the integral
of UR yields the correct physical scattering length, and that we will have some freedom in choosing the
range R of UR.

Step 1 (Dyson’s lemma). The main difficulty in dealing with the Gross–Pitaevskii limit is that an
ansatz u˝N does not give the correct energy asymptotics. In this regime, correlations between particles
do matter, and one should rather think of an ansatz of the form

NY
iD1

u.xi /
Y

16i<j6N

f .xi � xi /; (2-1)

or a close variant, where f is linked to the two-body scattering process. We shall follow the approach of
[Lieb and Seiringer 2006], relying on a generalization of an idea due to Dyson [1957]. The following
lemma, proved in [Lieb et al. 2005a], allows us to bound our Hamiltonian from below by an effective one
which is much less singular, but still encodes the scattering length of the original interaction potential.

Lemma 2.1 (Generalized Dyson lemma).
For all s > 0, 1 > " > 0 and R > 2R0=N , we have

HN >
NX
jD1

�
hj � .1� "/p

2
j �s.pj /

�
C
.1� "/2

N
WN �C

N 2R2s5

"
; (2-2)

where

WN WD

NX
i¤j

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/: (2-3)

Here and in the sequel, C stands for a generic positive constant.

Proof. Recall that the scattering length of wN is a=N . Therefore, from equation (50) and the first estimate
in (52) in [Lieb et al. 2005a], with .v; a; �; s/ replaced by .wN ; a=N; �s; s�1/, one has

p2�s.p/C
1

2

N�1X
jD1

wN .x�yj />
1�"

N

N�1X
jD1

UR.x�yj /�
CaR2s5

"

on L2.R3/ for all given points yj satisfying minj¤k jyj �ykj> 2R. Since the left side is nonnegative,
we can relax the condition minj¤k jyj �ykj> 2R by multiplying the right side by

Q
k¤j �2R.yj �yk/.
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Thus for every i D 1; 2; : : : ; N ,

p2i �s.pi /C
1

2

NX
j¤i

wN .xi � xj />
1�"

N

X
j¤i

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/�
CaR2s5

"
:

Multiplying both sides by 1� " and summing over i , we obtain (2-2). �

Clarification. The reader should keep in mind that we will choose RDR.N/! 0 (actually N�1=2�
R�N�2=3), then s!1 and "! 0.

The main point of Dyson’s lemma is that we can replace the hard interaction potential wN by a softer
one UR which encodes the scattering length conveniently as

R
UR D 4�a. The price we have to pay for

this advantage is twofold, however: first, we have to use all the high-momentum part of the kinetic energy
(note that �s.p/D 1 when p > 2s); and second, the new potential UR.xi � xj / comes with the cut-offQ
k¤i;j �.xj � xk/. Together they really describe a “nearest neighbor” potential instead of an ordinary

two-body potential. While the first problem is not too annoying, as the low part of the momentum is
sufficient to recover the full energy in the limit, the second problem is much more serious.

Step 2 (Second moment estimate). The lower bound (2-2) leads us to consider the effective Hamiltonian

zHN WD

NX
jD1

Qhj C
.1� "/2

N
WN ; (2-4)

where
Qh WD h� .1� "/p2�s.p/� �";s; �";s WD inf �

�
h� .1� "/p2�s.p/� 1

�
: (2-5)

Here we use the freedom to add and remove the constant N�";s to the Hamiltonian to reduce to the
case Qh> 1. In order to ensure that �";s is finite, we need the extra condition

lim
jxj!1

jA.x/j2

V.x/
D 0; (2-6)

which can be removed at a later stage, as we shall explain below.
We will now seek a lower bound to the ground-state energy of (2-4). The philosophy, as in the previous

work [Lieb and Seiringer 2006], is that if ‰N is the ground state of the original Hamiltonian, then roughly

‰N � z‰N
Y

16i<j6N

f .xi � xi /;

where f encodes the two-body scattering process and z‰N is a ground state for (2-4). Thus the Dyson
lemma allows to extract the short-range correlation structure, and we now want to justify that z‰N can be
approximated by a tensor power u˝N ; that is, we want to justify the mean-field approximation at the
level of the ground state of (2-4).

There are two key difficulties left:

� The effective Hamiltonian is genuinely many-body. It can be bounded below by a three-body
Hamiltonian, but obviously one will ultimately have to show that the three-body contribution can
be neglected.
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� To recover the correct energy in the limit, we need to take R � N�1=3 in order to be able to
neglect the three-body contribution in the effective Hamiltonian. We thus still have to deal with the
mean-field approximation in the “rare but strong collisions” limit. In other words, even though the
effective Hamiltonian is much less singular than the original one, we do not have the freedom to
reduce the singularity as much as we would like.

It is in treating these two difficulties that our new method significantly departs from the previous works
[Lewin et al. 2015a; Lieb and Seiringer 2006]. We shall rely on a strong a priori estimate for ground
states of (2-4). In Lemma 3.1, we assume (2-6) and show that (provided R�N�2=3, which is sufficient
for our purpose)

. zHN /
2 > 1

3

� NX
jD1

Qhj

�2
: (2-7)

Note that a bound of this kind is not available for the original HN due to the singularity of its interaction
potential. In particular, (2-7) implies that every ground state z‰N of zHN satisfies the strong a priori estimate

h z‰N ; Qh1 Qh2 z‰N i6 C";s: (2-8)

This second moment estimate is the key point in our analysis in the next steps. It is reminiscent of similar
estimates used in the literature for the time-dependent problem [Erdős et al. 2007; 2009; 2010; Erdős
and Yau 2001].

Notation. We always denote by C" (or C";s) a (generic) constant independent of s, N and R (or inde-
pendent of N and R, respectively).

Step 3 (Three-body estimate). Next we have to remove the cut-offY
k¤i;j

�.xj � xk/

in WN to obtain a lower bound in terms of a two-body Hamiltonian. Using the elementary inequality (see
[Lieb and Seiringer 2006, equation (22)])Y

kWk¤i;j

�2R.xj � xk/> 1�
X

kWk¤i;j

.1� �2R.xj � xk//;

we have

WN >
NX
i¤j

UR.xi � xj /�
X

k¤i¤j¤k

UR.xi � xj /.1� �2R.xj � xk//; (2-9)

and we thus have only a three-body term to estimate. Since the summand in this term is zero except
when jxi �xj j6R and jxj �xkj6 4R, the last sum of (2-9) can be removed if the probability of having
three or more particles in a region of diameter O.R/ is small enough. This should be the case if R is
much smaller than N�1=3, the average distance between particles, but it is rather difficult to confirm this
intuition rigorously.
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In [Lieb and Seiringer 2006], a three-body estimate was established using a subtle argument based on
path integrals (the Trotter product formula). In this paper, we will follow a different, simpler approach.
Instead of working directly with a ground state of HN as in [Lieb and Seiringer 2006], we will consider
a ground state z‰N of the effective Hamiltonian zHN . Thanks to the second moment estimate (2-7), we
can show that (see Lemma 3.4)

NX
kD3

˝
z‰N ; UR.x1� x2/�2R.x2� xk/z‰N

˛
6 C";sNR2: (2-10)

The right side of (2-10) is small with our choice N�1=2�R.

Step 4 (Mean-field approximation). With the cut-off in WN removed, zHN turns into the two-body
Hamiltonian

KN WD

NX
jD1

Qhj C
.1� "/2

N

X
i¤j

UR.xi � xj /

for which we can validate the mean-field approximation. This is the simplest approximation for Bose gases
where one restricts the many-body wave functions to the pure tensor products u˝N . Since UR converges
to the delta-interaction with mass

R
UR D 4�a, we formally obtain the following approximation for the

ground-state energy

eNL."; s/ WD inf
kuk

L2D1

�
hu; QhuiC .1� "/24�a

Z
juj4

�
:

In Section 4A, we will show that

lim
N!1

inf �.KN /
N

D eNL."; s/: (2-11)

A similar result was proved in [Lieb and Seiringer 2006] using a coherent state method, which is a
generalization of the c-number substitution in [Lieb et al. 2005c]. In the present paper, we will provide
an alternative proof of (2-11) using the quantum de Finetti theorem of Størmer [1969] and Hudson and
Moody [1976]. We note that this theorem has proved useful also in the derivation of the Gross–Pitaevskii
equation in the dynamical case; see [Chen et al. 2015]. The following formulation is taken from [Lewin
et al. 2014, Corollary 2.4] (see [Rougerie 2015] for a general discussion and more references):

Theorem 2.2 (Quantum de Finetti).
Let K be an arbitrary separable Hilbert space and let ‰N 2

NN
symK with k‰N k D 1. Assume that the

sequence of one-particle density matrices  .1/‰N
converges strongly in trace class when N !1. Then, up

to a subsequence, there exists a (unique) Borel probability measure � on the unit sphere SK, invariant
under the group action of S1, such that

lim
N!1

Tr
ˇ̌̌̌

.k/
‰N
�

Z
ju˝kihu˝kj d�.u/

ˇ̌̌̌
D 0 8k 2 N: (2-12)

This theorem validates the mean-field approximation for a large class of trapped Bose gases, in particular
(see [Lewin et al. 2014] and references therein) when the strength of the interaction is proportional to the
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inverse of the particle number, case ˇ D 0 in (1-6). However, when the interaction becomes stronger, the
mean-field approximation is harder to justify. The convergence (2-11) with R�N�2=15 was proved in
[Lewin et al. 2015a] by using a quantitative version of Theorem 2.2 valid for finite-dimensional spaces
[Christandl et al. 2007; Chiribella 2011; Lewin et al. 2015b]. However, this range of R is too small for
our purpose because we are forced to choose R�N�1=2 in the previous steps.

In this paper, thanks to the strong a priori estimate (2-8), we are able to prove (2-11) for the larger
range R�N�2=3. As in [Lewin et al. 2015a; Lieb and Seiringer 2006], we localize the problem onto
energy levels of the one-body Hamiltonian Qh lying below a chosen cut-off ƒ. At fixed ƒ, it turns out that
the projected Hamiltonian is bounded proportionally to N . We are thus in a usual mean-field scaling if
we are allowed to take N !1 first, and then ƒ!1 later. Taking limits in this order demands a very
strong control on the localization error made by projecting the Hamiltonian, however. This control is
provided again by the moment estimate (2-8).

Combining the arguments in Steps 1–4, we can pass to the limit N !1; then s!1 and "! 0

to obtain the energy convergence (1-9) under the extra condition (2-6). In Section 4B, we remove this
technical assumption using a concavity argument from [Lieb and Seiringer 2006] and a binding inequality
which goes back to an idea in [Lieb 1984].

Step 5 (Convergence of ground states). In Section 4C, we prove the convergence of (approximate)
ground states using the convergence of the ground state energy of a perturbed Hamiltonian and the
Feynman–Hellmann principle. A similar approach was used in [Lieb and Seiringer 2006] to prove the
convergence of the 1-particle density matrix. However, the quantum de Finetti theorem helps us to avoid
the complicated convex analysis in [Lieb and Seiringer 2006], simplifying the proof significantly and
giving access to higher-order density matrices.

3. Second moment estimate

In this section, we consider the effective Hamiltonian obtained after applying the generalized Dyson
lemma to the original problem, namely

zHN D

NX
jD1

Qhj C
.1� "/2

N
WN ;

where Qh andWN are defined in (2-5) and (2-3), respectively. We will work under the extra assumption (2-6).
Since A 2 L3loc.R

3;R3/ and V grows faster than jAj2 at infinity, for every " > 0, we have�
V

2
� 2"�1jAj2

�
�
2 L3=2.R3/;

and hence �
"

4

�
p2C

V

2
� 2"�1jAj2 > �C":

In combination with the Cauchy–Schwarz inequality, we get

h� .1� "/p2�s.p/>
"

2
p2� 2"�1jAj2CV > "

4
p2C

V

2
�C":
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Therefore, inf �.h/� 1> �";s > �C" and

Qh> C".��CV C 1/: (3-1)

The key estimate in this section is the following:

Lemma 3.1 (Second moment estimate).
Assume that (2-6) holds. For every 1 > " > 0 and s > 0, if

RDR.N/�N�2=3

when N !1, then for N large enough, we have the operator bound

. zHN /
2 > 1

3

� NX
jD1

Qhj

�2
: (3-2)

We will show in Section 3C that a convenient lower bound to Dyson’s potential WN in terms of truly
two-body operators follows from Lemma 3.1.

Before proving Lemma 3.1 in Section 3B, we first collect some useful inequalities on a generic
translation-invariant interaction operator W.x�y/ that will be used throughout the paper.

3A. Operator inequalities for interaction potentials. We state several useful inequalities in the following
lemma. In fact, (3-3) is well-known, and (3-4) with ı D 0 was proved earlier in [Erdős and Yau 2001,
Lemma 5.3]. In the sequel, we will crucially rely on the improvement to ı > 0, and on (3-5), which seem
to be new.

Lemma 3.2 (Inequalities for a repulsive interaction potential).
For every 06W 2 L1\L2.R3/, the multiplication operator W.x�y/ on L2..R3/2/ satisfies

06W.x�y/6 CkW kL3=2.R3/.��x/; (3-3)
and, for any 06 ı < 1

4
,

06W.x�y/6 CıkW kL1.R3/.1��x/
1�ı.1��y/

1�ı : (3-4)

Moreover, for all 1 > " > 0, s > 0, A 2 L3loc.R
3;R3/ and 06 V 2 L1loc.R

3/,

QhxW.x�y/CW.x�y/ Qhx > �C
�
kW kL2 C .1C s2/kW kL3=2

�
.1��x/.1��y/: (3-5)

Proof of Lemma 3.2. We will prove this in several steps.

Proof of (3-3). From Hölder’s and Sobolev’s inequalities, we have

hf;W.x�y/f i D

“
W.x�y/jf .x; y/j2 dx dy

6
Z �Z

W.x�y/3=2 dx

�2=3�Z
jf .x; y/j6 dx

�1=3
dy

6 CkW kL3=2.R3/

Z �Z
jrxf .x; y/j

2 dx

�
dy

for every function f 2H 1..R3/2/. Therefore, (3-3) follows immediately.
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Proof of (3-4). The estimate (3-4) with ı D 0 was first derived in [Erdős and Yau 2001]. The following
proof is adapted from the proof (again for ı D 0) in [Lieb and Seiringer 2006]. Note that for every
operator K, we have K�K 6 1 if and only if KK� 6 1. Therefore, (3-4) is equivalent top

W.x�y/.1��x/
ı�1.1��y/

ı�1
p
W.x�y/6 CıkW kL1 : (3-6)

Let G be the Green function of .1��/ı�1 whose Fourier transform is given by

yG.k/ WD

Z
R3

e�2�ix�kG.x/ dx D
1

.1C 4�2jkj2/1�ı
:

For every function f 2 L2..R3/2/, one has

hf;
p
W.x�y/.1��x/

ı�1.1��y/
ı�1

p
W.x�y/f i

D

Z
f .x; y/

p
W.x�y/G.x� x0/G.y �y0/

p
W.x0�y0/f .x0; y0/ dx dy dx0 dy0

6
Z
W.x�y/jG.x� x0/j2 jf .x0; y0/j2CW.x0�y0/jG.y �y0/j2 jf .x; y/j2

2

D CıkW kL1hf; f i;

where

Cı WD

Z
jGj2 D

Z
j yGj2 D

Z
R3

dk

.1C 4�2jkj2/2.1�ı/
;

which is finite for all 06 ı < 1
4

. Thus (3-6), and hence (3-4), holds true.

Simpler version of (3-5). We are going to deduce (3-5) from the inequality

.��x/W.x�y/CW.x�y/.��x/> �C
�
kW kL3=2 CkW kL2

�
.1��x/.1��y/: (3-7)

By an approximation argument, one can assume that W is smooth. For every f 2 H 2.R3 � R3/, a
straightforward calculation using integration by parts, and the identity rx.W.x�y//D�ry.W.x�y//
gives us˝

f;
�
.��x/W.x�y/CW.x�y/.��x/

�
f
˛

D 2<

“
rxf .x; y/rx.W.x�y/f .x; y// dx dy

D 2

“
jrxf .x; y/j

2W.x�y/C 2<

“
rxf .x; y/rx.W.x�y//f .x; y/ dx dy

> �2<
“
rxf .x; y/ry.W.x�y//f .x; y/ dx dy

D 2<

“
ry

�
.rxf .x; y//f .x; y/

�
W.x�y/ dx dy

D 2<

“ �
rxf .x; y/ryf .x; y/Cry.rxf .x; y//f .x; y/

�
W.x�y/ dx dy:
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Using Cauchy–Schwarz and Sobolev’s inequality (3-3), we getˇ̌̌̌“
rxf .x; y/ryf .x; y/W.x�y/ dx dy

ˇ̌̌̌
6
“
jrxf .x; y/j

2Cjryf .x; y/j
2

2
jW.x�y/j dx dy

6 CkW kL3=2hf; .��x/.��y/f i:

Moreover, by the Cauchy–Schwarz inequality again and (3-4) (with ı D 0 and W replaced by W 2),ˇ̌̌ “ �
ryrxf .x; y/

�
f .x; y/W.x�y/ dx dy

ˇ̌̌
6
�“

jryrxf .x; y/j
2 dx dy

�1=2�“
jf .x; y/j2 jW.x�y/j2 dx dy

�1=2
6 CkW kL2hf; .1��x/.1��y/f i:

Thus we obtain˝
f;
�
.��x/W.x�y/CW.x�y/.��x/

�
f
˛
> �C.kW kL3=2 CkW kL2/hf; .1��x/.1��y/f i

for all f 2H 2.R3 �R3/. This proves (3-7).

Proof of (3-5). From the commutator relation

pxW.x�y/DW.x�y/pxC .�irxW /.x�y/;

we find that�
pxA.x/CA.x/pxCjA.x/j

2
�
W.x�y/CW.x�y/

�
pxA.x/CA.x/pxCjA.x/j

2
�

D 2
�
pxW.x�y/A.x/CA.x/W.x�y/pxCjA.x/j

2W.x�y/
�

D 2.pxCA.x//W.x�y/.pxCA.x//� 2pxW.x�y/px :

Using
.pxCA.x//W.x�y/.pxCA.x//> 0

and estimating pxW.x�y/px by Sobolev’s inequality (3-3), we get�
pxA.x/CA.x/pxCjA.x/j

2
�
W.x�y/CW.x�y/

�
pxA.x/CA.x/pxCjA.x/j

2
�

> �CkW kL3=2.��x/.��y/: (3-8)

Finally, by (3-3) again and the Cauchy–Schwarz inequality for operators

˙.XY CY �X�/6 ıXX�C ı�1Y �Y 8ı > 0; (3-9)
we obtain

p2x.1� �s.px//W.x�y/CW.x�y/p
2
x.1� �s.px//

> �ıp2x.1� �s.px//W.x�y/p
2
x.1� �s.px//C ı

�1W.x�y/

> �CkW kL3=2

�
ıp4x.1� �s.px//

2
C ı�1

�
.��x/

for all ı > 0. Using 1� �s.p/6 1.jpj6 2s/ and choosing ı � s�2 gives

p2x.1� �s.px//W.x�y/CW.x�y/p
2
x.1� �s.px//> �Cs

2
kW kL3=2.��x/: (3-10)

From (3-7), (3-8) and (3-10), the bound (3-5) follows. �
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3B. Proof of Lemma 3.1. Before completing the proof of Lemma 3.1, we make a remark on the simpler
case with the Dyson potential WN replaced by a truly two-body interaction.

Remark 3.3 (Second moment estimate with two-body interactions).
Consider the model case

KN WD

NX
jD1

Qhj C
.1� "/2

N

X
i¤j

UR.xi � xj /:

By expanding K2N and using the fact that Qhi > 0 commutes with UR.xj �xk/> 0 when i ¤ j and i ¤ k,
and then using (3-5) to estimate terms of the form

QhiUR.xi � xj /CU.xi � xj / Qhi ;

we obtain
K2N >

1

3

X
16i¤j6N

Qhi Qhj (3-11)

provided that R D R.N/� N�2=3. A similar estimate also holds when Qh is replaced by the original
kinetic operator h.

We stress once again that we do not expect (3-11) to hold for our original Hamiltonian HN , which is
in the more singular regime R �N�1. We thus need to work with the Dyson Hamiltonian, and its rather
intricate nature makes the actual proof of Lemma 3.1 more difficult than the one we have sketched for
(3-11). We now proceed with this proof.

Proof of Lemma 3.1. We have

. zHN /
2
�

� NX
jD1

Qhj

�2
D
.1� "/2

N

NX
`D1

. Qh`WN CWN Qh`/C
.1� "/4

N 2
W 2
N : (3-12)

As in Remark 3.3, the goal is to bound Qh1WN CWN Qh1 from below. We first decompose the interaction
operator as

WN DWaCWb;

where
Wa D

X
12fi;j g

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/;

Wb D
X
i;j>2

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/:

Estimate of Wa. By the Cauchy–Schwarz inequality (3-9), we get

˙. Qh1WaCWa Qh1/6N�1 Qh1Wa Qh1CNWa: (3-13)

Let us show that
Wa 6

C

R3
: (3-14)
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Indeed, for every given .x1; x2; : : : ; xN / 2 .R3/N , the product

UR.x1� xj /
Y
k¤1;j

�2R.xj � xk/

is bounded by kURkL1 6 CR�3 and it is zero except in the case

jx1� xj j<R < 2R < min
k¤1;j

jxj � xkj:

By the triangle inequality, the latter condition implies that

jx1� xj j<R < min
k¤1;j

jx1� xkj;

and it is satisfied by at most one index j ¤ 1. Therefore,X
j>2

UR.x1� xj /
Y
k¤1;j

�2R.xj � xk/6
C

R3
:

Similarly, we have X
i>2

UR.xi � x1/
Y
k¤1;i

�2R.x1� xk/6
C

R3
;

and hence (3-14) holds true. From (3-13) and (3-14), we obtain

˙. Qh1WaCWa Qh1/6
C

NR3
. Qh1/

2
C 2N

X
12fi;j g

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/: (3-15)

Here we do not need to estimate the second term on the right side of (3-15) because this term is part
of WN , which will be controlled by W 2

N in zH 2
N .

Estimate of Wb . We need a further decomposition

Wb D
X
i;j>2

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/DWc �Wd ;

where
Wc WD

X
i;j>2

UR.xi � xj /
Y

k¤1;i;j

�2R.xj � xk/;

Wd WD
X
i;j>2

UR.xi � xj /
�
1� �2R.xj � x1/

� Y
k¤1;i;j

�2R.xj � xk/:

Note that
Wc > 0; Wd > 0 and Qh1Wc DWc Qh1 > 0:

On the other hand, by the Cauchy–Schwarz inequality (3-9) again,

˙. Qh1Wd CWd Qh1/6 ı Qh1Wd Qh1C ı�1Wd : (3-16)

We have two different ways to bound Wd . First, by (3-3) and (3-1),�
1� �2R.xj � x1/

�
6 Ck1� �2RkL3=2.1��1/6 C"R2 Qh1:
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Since here i; j > 2, both sides of the latter estimate commute with

UR.xi � xj /
Y

k¤1;i;j

�2R.xj � xk/;

and we deduce that�
1� �2R.xj � x1/

�
UR.xi � xj /

Y
k¤1;i;j

�2R.xj � xk/6 C"R2 Qh1UR.xi � xj /
Y

k¤1;i;j

�2R.xj � xk/:

Taking the sum over i; j > 2, we obtain

Wd 6 C"R2 Qh1Wc : (3-17)

Second, let us show that
Wd 6

C

R3
: (3-18)

Indeed, for every given .x1; x2; : : : ; xN / 2 .R3/N , the product

UR.xi � xj /
�
1� �2R.xj � x1/

� Y
k¤1;i;j

�2R.xj � xk/

is zero except in the case

jxi � xj j<R; jxj � x1j< 4R; min
k¤1;i;j

jxj � xkj> 2R: (3-19)

By the triangle inequality, (3-19) implies that the ball B.x1; 5R/ contains B
�
xi ;

1
2
R
�
, B
�
xj ;

1
2
R
�
, and

the balls B
�
xi ;

1
2
R
�
, B
�
xj ;

1
2
R
�

do not intersect with B
�
xk;

1
2
R
�

for all k ¤ 1; i; j . Since B.x1; 5R/
can contain only a finite number of disjoint balls of radius 1

2
R, we see that there are only a finite number

of pairs .i; j / satisfying (3-19). Thus we can conclude that

Wd 6 CkURkL1 6 CR�3:

From (3-16), (3-17) and (3-18), we obtain

Qh1WbCWb Qh1 D Qh1Wd CWd Qh1C 2 Qh1Wc > �
Cı

R3
. Qh1/

2
C

�
2�

C"R
2

ı

�
Qh1Wc :

Choosing ı �R2, we get
Qh1WbCWb Qh1 > �

C"

R
. Qh1/

2: (3-20)

Conclusion. From (3-15) and (3-20), we get

Qh1WN CWN Qh1 > �
�
C

NR3
C
C"

R

�
. Qh1/

2
� 2N

X
12fi;j g

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/:

Summing the similar estimates with 1 replaced by ` and using

NX
`D1

X
`2fi;j g

UR.xi � xj /
Y
k¤i;j

�2R.xj � xk/D 2WN ;
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we find that
NX
`D1

. Qh`WN CWN Qh`/> �
�
C

NR3
C
C"

R

� NX
`D1

. Qh`/
2
� 2NWN :

Therefore, coming back to (3-12), we conclude that (completing a square in the last inequality)

. zHN /
2
�

� NX
jD1

Qhj

�2
D
.1� "/2

N

NX
`D1

�
Qh`WN CWN Qh`

�
C
.1� "/4

N 2
W 2
N

> �
�

C

N 2R3
C
C"

NR

� NX
`D1

. Qh`/
2
� 2.1� "/2WN C

.1� "/4

N 2
W 2
N

> �
�

C

N 2R3
C
C"

NR

� NX
`D1

. Qh`/
2
�N 2:

When R�N�2=3, we have
C

N 2R3
C
C"

NR
� 1;

and hence

. zHN /
2 > 2

X
16i<j6N

Qhi Qhj C .1� o.1//

NX
`D1

. Qh`/
2
�N 2;

which yields the result, recalling that in our convention, Qh> 1. �

3C. Three-body estimate. A first consequence of the second moment estimate in Lemma 3.1 is that we
can conveniently bound Dyson’s Hamiltonian from below by a two-body Hamiltonian. This is done
by first using a simple bound in terms of a three-body Hamiltonian, and then bounding the unwanted
three-body part.

Lemma 3.4 (Three-body estimate).
Assume the extra condition (2-6) holds. For every 1 > " > 0 and s > 0, if RDR.N/�N�2=3, thenX

i¤j

UR.xi � xj /
X
k¤i;j

.1� �2R.xj � xk//6 C";s
R2

N
. zHN /

4: (3-21)

Consequently,

zHN >
NX
jD1

Qhj C
.1� "/2

N

X
i¤j

UR.xi � xj /�C";s
R2

N 2
. zHN /

4: (3-22)

Note the error term involving . zHN /4, which is well under control since we are interested in its
expectation value in a ground state.

Proof. By (3-3) and (3-1), we have

.1� �2R.x2� xk//6 C";sR2 Qhk for k > 3:
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Since UR.x1� x2/ commutes with both sides, we get

UR.x1�x2/
X
k>3

.1��2R.x2�xk//6C";sR2UR.x1�x2/
X
k>3

Qh3

D
1
2
C";sR

2
�
zHN� Qh1� Qh2�.1�"/

2N�1WN
�
UR.x1�x2/

C
1
2
C";sR

2UR.x1�x2/
�
zHN� Qh1� Qh2�.1�"/

2N�1WN
�

6 1
2
C";sR

2
�
zHNUR.x1�x2/CUR.x1�x2/ zHN

�
C
1
2
C";sR

2
2X

jD1

�
QhjUR.x1�x2/CUR.x1�x2/ Qhj

�
: (3-23)

In the last estimate, we have used WN > 0. Thanks to (3-5) and (3-1), we get for all j D 1; 2,

QhjUR.x1� x2/CUR.x1� x2/hj > �C";sR�3=2.1��1/.1��2/> �C";sR�3=2 Qh1 Qh2: (3-24)

On the other hand, by the Cauchy–Schwarz inequality (3-9) and (3-4) (with ı D 0 and W D UR),

zHNUR.x1� x2/CUR.x1� x2/ zHN 6 ı zHNUR.x1� x2/ zHN C ı�1UR.x1� x2/

6 C";sı zHN Qh1 Qh2 zHN CC";sı�1 Qh1 Qh2 (3-25)

for all ı > 0. Choosing ı DN�1 and using R�3=2 6N , we deduce from (3-23), (3-24) and (3-25) that

UR.x1� x2/
X
k>3

.1� �2R.x2� xk//6 C";sR2
�
N�1 zHN Qh1 Qh2 zHN CN Qh1 Qh2

�
:

By symmetrization with respect to the indices, we find thatX
i¤j

UR.x1� x2/
X
k¤i;j

.1� �2R.xj � xk//6 C";sR2
�
N�1 zHN

X
i¤j

Qhi Qhj zHN CN
X
i¤j

Qhi Qhj

�
:

Combining with the second moment estimate (3-2), we obtain (3-21). From the three-body estimate (3-21)
and the elementary inequality (2-9), the operator bound (3-22) follows. �

4. Energy lower bound and convergence of states

4A. Mean-field approximation. We are now reduced to justifying the mean-field approximation for a
new Hamiltonian with the two-body interaction UR.x�y/, which converges to a Dirac delta much slower
than the original one. The analysis in this section provides an alternative to the coherent states method
of [Lieb and Seiringer 2006].

Proposition 4.1 (Mean-field approximation).
Assume that (2-6) holds. For every 1 > " > 0 and s > 0, if

N�1=2�RDR.N/�N�2=3
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then

lim
N!1

inf �. zHN /
N

D inf
kuk

L2D1

�
hu; QhuiC .1� "/24�a

Z
juj4

�
DW eNL."; s/: (4-1)

Proof. The upper bound in (4-1) can be obtained easily using trial states of the form u˝N . For the lower
bound, let us consider a ground state z‰N of zHN (which exists because Qh has compact resolvent). Using
the ground-state equation, we find that

h z‰N ; . zHN /
k z‰N i D .inf �. zHN //k 6 .C";sN/k (4-2)

for all k 2 N. In particular, the second moment estimate (3-2) implies that

h z‰N ; Qh1 Qh2 z‰N i6 C";s; (4-3)

and the operator estimate (3-22) implies that

lim inf
N!1

h z‰N ; zHN z‰N i

N
> lim inf
N!1

�
Tr. Qh .1/

z‰N

/C .1� "/2 Tr.UR
.2/

z‰N

/
�
: (4-4)

Here  .k/
z‰N

is the k-particle density matrix of z‰N and UR is understood as the multiplication operator
UR.x � y/ on H2. Since Tr. Qh .1/

z‰N

/ is bounded uniformly in N and Qh has compact resolvent, up to
a subsequence we can assume that  .1/

z‰N

converges strongly in trace class. By the quantum de Finetti
theorem, Theorem 2.2, up to a subsequence we can find a Borel probability measure Q� on the unit
sphere SH such that

lim
N!1

Tr
ˇ̌̌̌

.k/

z‰N

�

Z
ju˝kihu˝kj d Q�.u/

ˇ̌̌̌
D 0 8k 2 N: (4-5)

We will show that

lim inf
N!1

�
Tr. Qh .1/

z‰N

/C .1� "/2 Tr.UR
.2/

z‰N

/
�
>
Z �
hu; QhuiC .1� "/24�a

Z
juj4

�
d Q�.u/; (4-6)

and then the lower bound in (4-1) follows immediately. Since Qh is positive and independent of N ,
(4-5) and Fatou’s lemma imply

lim inf
N!1

Tr. Qh .1/
z‰N

/>
Z
hu; Qhui d Q�.u/: (4-7)

It remains to prove

lim inf
N!1

Tr.UR
.2/

z‰N

/> 4�a
Z
kuk4

L4 d Q�.u/: (4-8)

Note that (4-8) does not follow from (4-5) and Fatou’s lemma easily because UR depends on RDR.N/.
We need to replace UR by an operator bounded independently of N . Since Qh has compact resolvent, for
every ƒ> 1, the projection

Pƒ WD 1. Qh6ƒ/

has finite rank. Let us denote
… WD 1H2 �P˝2ƒ :
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Since UR > 0, we can apply the Cauchy–Schwarz inequality (3-9) with

X D P˝2ƒ U
1=2
R and Y D U

1=2
R …

to obtain
UR D .P

˝2
ƒ C…/UR.P

˝2
ƒ C…/

D P˝2ƒ URP
˝2
ƒ C…UR…CP

˝2
ƒ UR…C…URP

˝2
ƒ

> P˝2ƒ URP
˝2
ƒ � ı�1…UR…� ıP

˝2
ƒ URP

˝2
ƒ

for all ı > 0. Using the operator bound (3-4) and the fact that the 4
5

-th power is operator monotone [Bhatia
1997], we have

UR.x1� x2/6 CkURkL1.1��1/
4=5.1��2/

4=5 6 C";s. Qh1/4=5. Qh2/4=5: (4-9)

Therefore,
P˝2ƒ URP

˝2
ƒ 6 C";s Qh1 Qh2 and …UR…6 C";sƒ�1=5 Qh1 Qh2:

Here in the second estimate, we have used 1H � Pƒ 6 ƒ�1=5. Qh/1=5, which is a consequence of the
definition of Pƒ. Thus

UR �P
˝2
ƒ URP

˝2
ƒ > �C";s.ı

�1
C ıƒ�1=5/ Qh1 Qh2:

If we choose ı Dƒ�1=10 and take the trace against  .2/
z‰N

, then by the a priori estimate (4-3), we find

Tr.UR
.2/

z‰N

/�Tr
�
P˝2ƒ URP

˝2
ƒ 

.2/

z‰N

�
> �C";sƒ�1=10: (4-10)

On the other hand, from (4-9) and the definition of Pƒ, it follows that the operator norm kP˝2ƒ URP
˝2
ƒ k

is bounded uniformly in N for fixed ƒ. Therefore, the strong convergence (4-5) implies that

lim
N!1

�
Tr
�
P˝2ƒ URP

˝2
ƒ 

.2/

z‰N

�
�

Z ˝
.Pƒu/

˝2; UR.Pƒu/
˝2
˛
d Q�.u/

�
D 0: (4-11)

Since the left side of (4-7) is finite, every function u in the support of d Q� belongs to the quadratic
form domain Q. Qh/ of Qh, and hence Pƒu! u strongly in Q. Qh/. Using the continuous embeddings
Q. Qh/�H 1 � L4, we get

lim
ƒ!1

lim
R!0

˝
.Pƒu/

˝2; UR.Pƒu/
˝2
˛
D lim
ƒ!1

kPƒuk
4
L4 D kuk

4
L4 :

By Fatou’s lemma,

lim inf
ƒ!1

lim inf
N!1

Z ˝
.Pƒu/

˝2; UR.Pƒu/
˝2
˛
d Q�.u/> 4�a

Z
kuk4

L4 d Q�.u/: (4-12)

The desired convergence (4-8) follows from (4-10), (4-11) and (4-12). �

Remark 4.2 (Mean-field approximation with two-body interactions).
From the preceding proposition, we obtain easily the convergence (2-11) mentioned in Section 2 because
zHN 6KN . In fact, KN satisfies the second moment estimate (3-11) (see Remark 3.3), and hence (2-11)

can be proved directly. In particular, the method can be used to derive the energy asymptotics when the
interaction potential is given by (1-5); for ˇ < 2

3
, Step 1 (and thus also Step 3) in the proof are not needed.
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One can also obtain some explicit error estimate in Proposition 4.1 and (2-11) by using a quantitative
version of the quantum de Finetti theorem as in [Lewin et al. 2015a, Lemma 3.4].

4B. Convergence of ground-state energy. We now conclude the proof of the convergence of the ground-
state energy. There are two things left to do: remove the high momentum cut-off in the final effective
functional, and relax the additional assumption (2-6).

Proof of energy convergence (1-9). The upper bound in (1-9) was proved in [Seiringer 2003]. The proof
of the lower bound is divided into three steps.

Step 1. We start with the simple case when the extra condition (2-6) holds true. Recall that we are choosing

N�1=2�RDR.N/�N�2=3:

From Lemma 2.1 and Proposition 4.1, it follows that for every 1 > " > 0 and s > 0,

lim inf
N!1

inf �.HN /
N

> lim inf
N!1

�
inf �. zHN /

N
C �";s

�
D eNL."; s/C �";s:

Thus to obtain the lower bound in (1-9), it remains to show that

lim
"!0

lim
s!1

.eNL."; s/C �";s/D eGP: (4-13)

The upper bound in (4-13) is trivial as ENL.u/C �";s 6 EGP.u/. The lower bound in (4-13) can be done
by a standard compactness argument provided in [Lieb and Seiringer 2006]. We recall this here for the
reader’s convenience. Let u";s be a ground state for eNL."; s/, namely

eNL."; s/D hu";s; Qhu";siC .1� "/
24�a

Z
ju";sj

4:

From (3-1), it follows that hu";s; .��CV /u";si is bounded uniformly in s. Since ��CV has compact
resolvent, for every given " > 0, there exists a subsequence sj !1 such that u";sj converges strongly
in L2 and pointwise (in both p-space and x-space) to a function u". By Fatou’s lemma, we have

lim inf
j!1

Z
ju";sj .x/j

4 dx >
Z
ju".x/j

4 dx;

lim inf
j!1

Z
p2.1� �sj .p//j Ou";sj .p/j

2 dp >
Z
p2j Ou".p/j

2 dp:

Next, using (2-6) as before, we have

"p2CpACApCjAj2CV CC" > 0

for some C" > 0. Using Fatou’s lemma again and the strong convergence in L2, we deduce

lim inf
j!1

˝
u";sj ;

�
"p2CpACApCjAj2CV C �";s

�
u";sj

˛
>
˝
u";

�
"p2CpACApCjAj2CV

�
u"
˛
:

Combining these estimates, we get

lim inf
j!1

.eNL."; sj /C �";sj /> hu"; hu"iC .1� "/
24�a

Z
ju"j

4 > .1� "/2eGP:

Taking "! 0, we obtain the lower bound in (4-13).
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Step 2. From now on we do not assume (2-6). Let us introduce the Hamiltonian

HM;N WD

MX
jD1

hj C
X

16i<j6M

wN .xi � xj /

and denote by E.M;N/ its (bosonic) ground-state energy. In this step, we will prove the lower bound
in (1-9) using the additional assumption

E.N;N /�E.N � 1;N /6 C: (4-14)

We will find a function f W R3! RC growing faster than jAj, namely

lim
jxj!1

jA.x/j

f .x/
D 0; (4-15)

such that for a ground state ‰N for HN , we have

h‰N ; f
2.x1/‰N i6 C: (4-16)

Once this is achieved, we get

inf �.HN /
N

>
inf �

�
HN C �

PN
jD1 f

2.xj /
�

N
�C�

for every � > 0. Since the growth condition (2-6) holds true with V replaced by V C �f 2, we can apply
the result in Step 1 to the Hamiltonian

HN C �

NX
jD1

f 2.xj /

for every given � > 0. Then the lower bound in (1-9) follows by taking �! 0.
Now we find such a function f . We will establish a simple binding inequality using an idea in [Lieb

1984]. From the ground-state equation HN;N‰N DE.N;N /‰N , it follows that

E.N;N /h‰N ; f
2.xN /‰N i D <h‰N ; f

2.xN /HN;N‰N i: (4-17)

By the variational principle and (4-14), we have

HN;N � hN >HN�1;N >E.N � 1;N />E.N;N /�C:

Note that f 2.xN / commutes with all terms in the latter inequality. If f is bounded and sufficiently
regular, we have the IMS-type formula

1
2
.f 2hC hf 2/D f hf � jrf j2 > Vf 2� jrf j2; (4-18)

and we deduce from (4-17) that˝
‰N ;

�
V.xN /f

2.xN /� jrf .xN /j
2
�Cf 2.xN /

�
‰N

˛
6 0: (4-19)
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Note that if we choose f .x/Debjxj for some constant b>0, then (4-15) follows from the assumption (1-2).
Moreover, heuristically, (4-16) follows from (4-19) as Vf 2 grows faster than jrf j2CCf 2. To make
this idea rigorous, let us apply (4-19) with f .x/ replaced by

gr.x/D exp
�
b
�
r �

ˇ̌
jxj � r

ˇ̌�
C

�
:

Note that gr.x/D ebjxj when jxj6 r and gr.x/D 1 when jxj> 2r . We can thus apply (4-18) to gr .
Moreover,

Vg2r � jrgr j
2
�Cg2r > .V � b

2
�C/g2r

> g2r � .b
2
CC C 1/g2r 1.V 6 b2CC C 1/

> g2r �C0

for some constantC0 independent of r >0. Here we have used the fact that g2r 1.V 6b2CCC1/ is bounded
independently of r > 0, which follows from the assumption limjxj!1 V.x/DC1. Thus (4-19) gives us

h‰N ; gr.xN /‰N i6 C0

for all r > 0. Taking r!1, we obtain (4-16) with f .x/D ebjxj.

Step 3. Now we explain how to remove the additional assumption (4-14). This can be done by following
the strategy in [Lieb and Seiringer 2006], which we recall quickly below for the reader’s convenience.

By choosing trial states u˝N , we get the upper bound

E.N;N /6 C0N

for some constantC0>2eGP. For everyN 2N, we denote byM DM.N/ the largest integer6N such that

E.M.N/;N /�E.M.N/� 1;N /6 C0: (4-20)

Then by the choice of M.N/, we obtain

E.N;N /�E.M.N/;N /> .N �M.N//C0: (4-21)

We can find a subsequence Nj ! 1 such that M.Nj /=Nj ! � 2 Œ0; 1�. Since (4-20) holds with
M DM.Nj /, we can apply the result in Step 2 with w replaced by �w and find that

lim inf
j!1

E.M.Nj /; Nj /

Mj
> eGP.�a/> �eGP.a/: (4-22)

Here eGP.�a/ is the Gross–Pitaevskii energy with a replaced by �a and the last inequality in (4-22) is
obtained by simply ignoring part of the one-body energy in the corresponding Gross–Pitaevskii functional.
From (4-21) and (4-22), it follows that

eGP.a/> lim inf
j!1

E.Nj ; Nj /

Nj
> lim inf

j!1

�
E.M.Nj /; Nj /

Nj
CC0

Nj �M.Nj /

Nj

�
> �2eGP.a/CC0.1��/:

Since
eGP.a/6 �2eGP.a/C 2.1��/eGP.a/
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and C0 > 2eGP.a/, we must have �D 1. Thus M.N/=N ! 1 for the whole sequence and

lim inf
N!1

E.N;N /

N
D lim inf

j!1

E.Nj ; Nj /

Nj
> eGP.a/:

This completes the proof of the energy convergence (1-9). �

4C. Convergence of density matrices. Now we prove the convergence of ground states in (1-10) by
means of the Feynman–Hellmann principle. For v 2 L2.R3/ and ` 2 N, we will perturb HN by

Sv;` WD
`Š

N `�1

X
16i1<���<i`6N

jv˝`ihv˝`ji1;:::;i` :

Here jv˝`ihv˝`ji1;:::;i` denotes the operator jv˝`ihv˝`j acting on the `-body Hilbert space of the i1-th,. . . ,
i`-th variables. We have the following extension of (1-9).

Lemma 4.3 (Energy lower bound for perturbed Hamiltonians).
We assume (1-2), (1-3) and (1-4). For every v 2 L2.R3/ and ` 2 N, we have

lim inf
N!1

inf �.HN �Sv;`/
N

> inf
kuk

L2D1
.EGP.u/� jhv; uij

2`/: (4-23)

Proof. We first work under the extra condition (2-6), and then explain how to remove it at the end. Let
1 > " > 0 and s > 0 and

N�1=2�RDR.N/�N�2=3:

Recall that from (2-2), we have

HN �Sv;` > zHN �Sv;`CN�";s �C";sNR2: (4-24)

Let ˆN be a ground state for zHN �Sv;`. Since kSv;`k=N is bounded uniformly in N , (4-2) still holds
true with z‰N replaced by ˆN , namely

hˆN ; . zHN /
kˆN i6 .C";sN/k (4-25)

for all k 2 N. Combining (4-25) with the three-body estimate in Lemma 3.4, we get the following
analogue of (4-4):

lim inf
N!1

inf �. zHN �Sv;`/
N

D lim inf
N!1

hˆN ; . zHN �Sv;`/ˆN i

N

> lim inf
N!1

�
Tr. Qh .1/

z‰N

/C .1� "/2 Tr.UR
.2/

z‰N

/�Tr
�
jv˝`ihv˝`j

.`/
ˆN

��
:

(4-26)

Moreover, (4-25) and the second moment estimate (3-2) imply the a priori estimate hˆN ; Qh1 Qh2‰N i6C";s .
Therefore, we can estimate the right side of (4-26) by proceeding exactly as in the proof of Proposition 4.1.
More precisely, by the quantum de Finetti theorem, Theorem 2.2, we can find a Borel probability
measure �ˆ on the unit sphere SH such that, up to a subsequence,

lim
N!1

Tr
ˇ̌̌̌

.k/
ˆN
�

Z
ju˝kihu˝kj d�ˆ.u/

ˇ̌̌̌
D 0 8k 2 N:
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Using (4-6) with z‰N replaced by ˆN and employing the fact that jv˝`ihv˝`j is bounded, we obtain

lim inf
N!1

�
Tr. Qh .1/

z‰N

/C .1� "/2 Tr.UR
.2/

z‰N

/�Tr
�
jv˝`ihv˝`j

.`/
ˆN

��
>
Z �
hu; QhuiC .1� "/24�a

Z
juj4� jhv; uij2`

�
d�ˆ.u/: (4-27)

From (4-24), (4-26) and (4-27), it follows that

lim inf
N!1

inf �.HN �Sv;`/
N

> inf
kuk

L2D1

�
hu; QhuiC .1� "/24�a

Z
juj4� jhv; uij2`

�
C �";s:

The lower bound (4-23) follows by passing to the limits s! 0 and then "! 0 as in the proof of (4-13).
To remove the assumption (2-6), we may use the argument in Section 4B. The only extra difficulty

is that when dealing with the analogue of (4-17) with HN;N replaced by HN;N �Sv;`, we have to take
care of the operator f 2jvihvj D jf 2vihvj, which may be unbounded as f .x/D ebjxj with b > 0 and v is
merely in L2.R3/. However, we can still proceed with all functions v in L2.R3/ which have compact
support. Then after obtaining the lower bound (4-23) with those nice functions v, we can extend the
lower bound to all functions v in L2.R3/ by a standard density argument. �

Now we are able to prove the convergence of density matrices.

Proof of state convergence (1-10). Let ‰N be an approximate ground state for HN as in Theorem 1.1. For
every v 2 L2.R3/ and ` 2N, from the upper bound in (1-9) and the lower bound in Lemma 4.3, we have

lim sup
N!1

Tr
�
jv˝`ihv˝`j

.`/
‰N

�
D lim sup

N!1

�
h‰N ;HN‰N i

N
�
h‰N ; .HN �Sv;`/‰N i

N

�
6 lim sup

N!1

�
inf �.HN /

N
�

inf �.HN �Sv;`/
N

�
6 eGP� inf

kuk
L2D1

.EGP.u/� jhv; uij
2`/:

Here v is not necessarily normalized. Therefore, we can replace v by �1=.2`/v with � > 0 and obtain

lim sup
N!1

Tr
�
jv˝`ihv˝`j

.`/
‰N

�
6 1
�

�
eGP� inf

kuk
L2D1

.EGP.u/��jhv; uij
2`/
�
: (4-28)

With given v and `, for every � > 0, let u� be a (normalized) minimizer for u 7! EGP.u/��jhv; uij
2`.

Since hu�; hu�i is bounded and h has compact resolvent, there exists a subsequence �j ! 0 such that u�j

converges to u0 in L2. By Fatou’s lemma, u0 is a minimizer of EGP.u/. Moreover,

lim sup
j!1

1

�j

�
eGP� inf

kuk
L2D1

.EGP.u/��j jhv; uij
2`/
�

6 lim sup
j!1

1

�j

�
EGP.u�j

/� .EGP.u�j
/��j jhv; u�j

ij
2`/
�
D jhv; u0ij

2`: (4-29)
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From (4-28) and (4-29), we conclude that for every v 2 L2.R3/ and ` 2 N,

lim sup
N!1

Tr
�
jv˝`ihv˝`j

.`/
‰N

�
6 sup
u2MGP

jhv; uij2`; (4-30)

where MGP is the set of minimizers of EGP.u/.
Note that also in [Lieb and Seiringer 2006], the upper bound (4-30) with ` D 1 was proved, and

from it, the convergence of the one-particle density matrices was deduced using an abstract argument of
convex analysis. In the following, we will provide a simpler way to conclude the convergence of density
matrices from (4-30), using the quantum de Finetti theorem. Indeed, by Theorem 2.2 as before, up to
a subsequence of ‰N , there exists a Borel probability measure � on the unit sphere SH such that

lim
N!1

Tr
ˇ̌̌̌

.k/
‰N
�

Z
ju˝kihu˝kj d�.u/

ˇ̌̌̌
D 0 8k 2 N: (4-31)

We will show that � is supported on MGP. From (4-30) and (4-31), we getZ
jhv; uij2k d�.u/6 sup

u2MGP

jhv; uij2k 8v 2 L2.R3/; k 2 N: (4-32)

We assume for contradiction that there exists v0 in the support of � and v0 …MGP. We claim that
we could then find ı 2 .0; 1

2
/ such that

jhv; uij6 1� 3ı2 8u 2MGP; 8v 2 B; (4-33)

where B is the set of all points in the support of � within an L2-distance less than ı from v0. Indeed,
if that were not the case, we would have two sequences strongly converging in L2,

vn! v0; un! u0 2MGP;

with kun� vnk! 0, and thus v0 2MGP. Here we have used that MGP is a compact subset of L2.R3/.
On the other hand, by the triangle inequality,

jhv; uij>
kuk2Ckvk2�ku� vk2

2
> 1� 2ı2 8u; v 2 B: (4-34)

Combining (4-32), (4-33) and (4-34), we find that

.�.B//2.1� 2ı2/2k 6
Z
B

Z
B

jhv; uij2k d�.u/ d�.v/

6
Z
B

sup
u2MGP

jhv; uij2k d�.v/6 �.B/.1� 3ı2/2k (4-35)

for all k 2 N, and hence, taking k!1, we have �.B/ D 0. This, however, is a contradiction to the
fact that v0 belongs to the support of � and � is a Borel measure. Thus we conclude that � is supported
on MGP and the proof is complete. �
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NONTRANSVERSAL INTERSECTION OF FREE AND FIXED BOUNDARIES FOR
FULLY NONLINEAR ELLIPTIC OPERATORS IN TWO DIMENSIONS

EMANUEL INDREI AND ANDREAS MINNE

In the study of classical obstacle problems, it is well known that in many configurations, the free boundary
intersects the fixed boundary tangentially. The arguments involved in producing results of this type
rely on the linear structure of the operator. In this paper, we employ a different approach and prove
tangential touch of free and fixed boundaries in two dimensions for fully nonlinear elliptic operators.
Along the way, several n-dimensional results of independent interest are obtained, such as BMO-estimates,
C 1;1-regularity up to the fixed boundary, and a description of the behavior of blow-up solutions.

1. Introduction

Optimal interior regularity results have recently been obtained for solutions to fully nonlinear free boundary
problems [Figalli and Shahgholian 2014; Indrei and Minne 2015] via methods inspired by [Andersson
et al. 2013]. Under further thickness assumptions, these results imply C 1-regularity of the free boundary.
However, a description of the dynamics on how the free boundaries intersect the fixed boundary has
remained an open problem for at least a decade in the fully nonlinear setting (although partial results
have been obtained in [Matevosyan and Markowich 2004] under strong density and growth assumptions
involving the solutions and a homogeneity assumption on the operator). On the other hand, extensive
work has been carried out to investigate this question for the classical problem8̂<̂

:
�uD �u>0 in BC1 ;

u� 0 in BC1 ;

uD 0 on fxn D 0g

and its variations [Apushkinskaya and Uraltseva 1995; Shahgholian and Uraltseva 2003; Matevosyan
2005; Andersson et al. 2006; Andersson 2007]. The conclusions have varied as a function of the boundary
data, but in the homogeneous case, it has been shown that the free boundary touches the fixed boundary
tangentially. Dynamics of this type have also been the object of study in the classical dam problem
[Caffarelli and Gilardi 1980; Alt and Gilardi 1982], which is a mathematical model describing the filtration
of water through a porous medium split into wet and dry parts via a free boundary.

The methods utilized in establishing the above-mentioned results strongly rely on the linear structure of
the operator, e.g., in arguments involving Green’s functions and monotonicity formulas. In particular, the
Alt–Caffarelli–Friedman and Weiss monotonicity formulas are frequently applied — tools only available

MSC2010: primary 35JXX, 35QXX; secondary 49SXX.
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in the setting of linear operators in divergence form; see [Petrosyan et al. 2012, Chapter 8]. Thus the
tangential touch problem for fully nonlinear operators requires a different approach.

In this article, we prove nontransversal intersection of free and fixed boundaries in two dimensions for
the problem �

F.D2u/D �� a.e. in BC1 ;
uD 0 on B 01;

where � D
�
fu ¤ 0g [ fru ¤ 0g

�
\ fx2 > 0g � R2

C
and the free boundary is R2

C
\ @�. The starting

point of our method is to first consider functions u 2W 2;n.BC1 / satisfying8̂<̂
:
F.D2u/D 1 a.e. in BC1 \�;

jD2uj �K a.e. in BC1 n�;

uD 0 on B 01;

(1)

where �� BC1 is an (unknown) open set, K > 0, F is C 1 and satisfies standard structural assumptions
(see Section 3).

Since by assumption D2u is bounded in the complement of �, it follows that F.D2u/ is bounded
in BC1 and u is a strong Ln-solution to a fully nonlinear elliptic equation with bounded right-hand side
[Caffarelli et al. 1996]. Under our structural assumptions on F , we have that Ln-solutions are also
viscosity solutions, and it follows that u 2W 2;p

loc .BC1 / for all p <1 [Petrosyan et al. 2012]. If u � 0
and �D fu¤ 0g, then since D2uD 0 a.e. in the set fuD 0g, the Hessian condition in (1) is trivially
satisfied; thus, (1) encodes the classical obstacle problem and likewise the equations F.D2u/D �u¤0,
F.D2u/D �ru¤0, and F.D2u/D �fru¤0g[fu¤0g via the appropriate selection of �.

A heuristic description of our strategy is as follows: We consider

M WD lim sup
jxj!0

1

xn
sup

e2Sn�2\e?n

@eu.x/:

By extending interior C 1;1-results (see Section 3), it follows that M is finite, and we extract infor-
mation on the nature of blow-up solutions by considering possible values for M . In particular, if
fru¤ 0g\ fxn > 0g �� and the origin is a contact point, we show that either all blow-ups are of the
form bx2n if M D 0, or there is a sequence producing a blow-up having the form ax1xnC bx

2
n if M ¤ 0

(Theorem 2.1).
We then show that in R2

C
, if �D

�
fu¤ 0g [ fru¤ 0g

�
\ fx2 > 0g and ax1xnC bx2n is a blow-up

solution, then @.Intfu D 0g/ stays away from the origin (Lemma 2.2) and this enables us to prove
that blow-ups at the origin are unique (Theorem 2.4). Thereafter, a standard argument readily yields
nontransversal intersection of the free and fixed boundaries at contact points (Theorem 2.5).

The rest of the paper is organized as follows: in the remainder of this section, we set up the problem
and discuss relevant notation; Section 2 is the core of the paper where we rigorously develop the heuristics
described above; Section 3 is devoted to the C 1;1-regularity up to the boundary of solutions, which
follows as in [Indrei and Minne 2015] once a suitable BMO result is established. The results of Section 3
are used in Section 2. We have chosen to reverse the logical ordering of these sections in order to make
the tangential touch section more accessible.
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Setup and notation. We study fully nonlinear elliptic partial differential equations of the form8̂<̂
:
F.D2u; x/D f .x/ a.e. in BC1 \�;

jD2uj �K a.e. in BC1 n�;

uD 0 on B 01;

(2)

where u W BC1 ! R is assumed to be in W 2;n.BC1 /, �� B
C
1 is an open set, B1.x/Dfx 2Rn W jxj<1g,

BCr .x/DBr.x/\fxn>0g, B
0
r.x/DBr.x/\fxnD 0g, and Br DBr.0/.

Furthermore, F is assumed to satisfy the following structural conditions:

(H1) F.0; x/� 0.

(H2) F is uniformly elliptic with ellipticity constants �0, �1 > 0 such that

P�.M �N/� F.M; x/�F.N; x/� PC.M �N/ 8x 2 BC1 ;

where M and N are symmetric matrices and P˙ are the Pucci operators

P�.M/ WD inf
�0 Id�N��1 Id

TrNM and PC.M/ WD sup
�0 Id�N��1 Id

TrNM:

(H3) F. � ; x/ is concave or convex for all x 2 BC1 .

(H4) jF.M; x/�F.M; y/j � C.jM jC 1/jx�yj N̨

for some N̨ 2 .0; 1� and x, y 2 BC1 .

Moreover, let

ˇ.x; x0/ WD sup
M2S

jF.M; x/�F.M; x0/j

jM jC 1
;

where S is the space of n�n symmetric real valued matrices.
Points in Rn are generally denoted by x, x0, y etc., while subscripts are used for components, i.e.,

xD .x1; : : : ; xn/, scalar sequences, and functions. The notation x0 is used for .n�1/-dimensional vectors.
Similarly, r and r 0 will be used, respectively, for the gradient and the gradient with respect to the first
n� 1 variables. We will also use the following:

RnC is the upper half space fx 2 Rn W xn > 0gI

� is an open set in RnCI

� is the set RnC\ @�I

�i is the set RnC\ @ IntfuD 0gI

Br.x
0/ is the open ball fx 2 Rn W jx� x0j< rgI

BCr .x
0/ is the truncated open ball fx 2 Rn W jx� x0j< r; xn > 0gI

@BCr .x
0/ is the topological boundary of BCr .x

0/ in RnI
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B 0r is the ball fx0 2 Rn�1 W jx0j< rgI

Sn�1 is the .n�1/-sphere fx 2 Rn W jxj D 1gI

e? is the vector space orthogonal to e 2 Sn�1I

C k;˛.�/ denotes the usual Hölder space;

C
k;˛
loc .�/ denotes the local Hölder space;

W k;p.�/ denotes the usual Sobolev space.

The term “blow-ups of u at x0” will be used for limits of the form

lim
j!1

u.x0C rjx/

r2j
;

where rj is a sequence such that rj ! 0C as j !1, and IntfuD 0gD fuD 0gı means the interior of the
set fuD 0g WD fx 2Rn

C
W u.x/D 0g. Finally, S. / denotes the space of viscosity solutions corresponding

to  and the ellipticity constants �0 and �1 in (H2); see [Caffarelli and Cabré 1995].

2. Main result

Our first result gives a natural dichotomy of blow-ups of solutions to (1) in any dimension.1

Theorem 2.1 (blow-up alternative). Let u be a solution to (1) and suppose fru¤ 0g \ fxn > 0g ��,
0 2 fu¤ 0g, and ru.0/D 0. Then exactly one of the following holds:

(i) All blow-ups of u at the origin are of the form u0.x/D bx
2
n for some unique b > 0.

(ii) There exists a blow-up of u at the origin of the form

u0.x/D ax1xnC bx
2
n

for a¤ 0, b 2 R.

Proof. Firstly, since u.x0; 0/ D 0, it follows that @xiu.x
0; 0/ D 0 for all i 2 f1; : : : ; n � 1g. By

C 1;1-regularity (Theorem 3.1), there is a constant C > 0 such thatˇ̌̌
1

xn
@xiu.x

0; xn/
ˇ̌̌
D

ˇ̌̌
1

xn

�
@xiu.x

0; xn/� @xiu.x
0; 0/

�ˇ̌̌
� C; xn > 0:

Define
M WD lim sup

jxj!0
xn>0

1

xn
sup

e2Sn�2\e?n

@eu.x/:

In particular, 0�M �C <1 and there exists a sequence xj ! 0 with xjn >0 and directions exj 2Sn�2

such that
lim
j!1

1

x
j
n

@e
xj
u.xj /DM:

1Regularity results from Section 3 will be utilized in the proof of Theorem 2.1.
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Moreover, there exists e 2 Sn�2 such that (up to a subsequence) exj ! e. Next noteˇ̌̌̌
1

x
j
n

r
0u.xj / � e�M

ˇ̌̌̌
�

ˇ̌̌̌
1

x
j
n

r
0u.xj / � .e� exj /

ˇ̌̌̌
C

ˇ̌̌̌
1

x
j
n

r
0u.xj / � exj �M

ˇ̌̌̌
� C je� exj jC

ˇ̌̌̌
1

x
j
n

r
0u.xj / � exj �M

ˇ̌̌̌
! 0

as j !1. Thus, up to a rotation,

lim
j!1

1

x
j
n

@x1u.x
j /DM:

Thanks to uniform boundedness, consider a sequence fsj g such that sj ! 0C and the corresponding
blow-up procedure so that

uj .x/ WD
u.sjx/

s2j
! u0.x/

in C 1;˛loc .R
n
C
/ for any ˛ 2 Œ0; 1/, and u0 satisfies8̂<̂

:
F.D2u0/D 1 a.e. in Rn

C
\�0;

jru0j D 0 in Rn
C
n�0;

uD 0 on Rn�1
C

;

(3)

where �0 D fru0 ¤ 0g\ fxn > 0g (via nondegeneracy). The definition of M implies

M � lim
j

ˇ̌̌̌
@xiu.sjx/

sjxn

ˇ̌̌̌
D lim

j

ˇ̌̌̌
@xiuj .x/

xn

ˇ̌̌̌
D

ˇ̌̌̌
@xiu0.x/

xn

ˇ̌̌̌
(4)

for all i 2 f1; : : : ; n� 1g. In particular, let v D @x1u0 so that in Rn
C

,

jv.x/j �Mxn: (5)

If M D 0, then (4) implies @xiu0 D 0 for all i 2 f1; : : : ; n� 1g so that u0.x/D u0.xn/. However, since
u0.0/Djru0.0/jD 0, 02 fu0¤ 0g and u0 satisfies (3), the uniform ellipticity of F readily implies

u0.x/D bx
2
n

for some unique b > 0. This shows that if M D 0, then any blow-up at the origin is of the form in (i).
Now suppose M > 0. In order to prove (ii), we cook up a specific blow-up: let rj WD jxj j (recall

that fxj g is the sequence achieving the lim sup in the definition of M ) so that as before

uj .x/ WD
u.rjx/

r2j
! u0.x/

in C 1;˛loc .R
n
C
/ for any ˛ 2 Œ0; 1/, and u0 satisfies (3), (4), and (5). Set yj D xj =rj 2Sn�1\fxn > 0g, and

note that along a subsequence, yj ! y 2Sn�1\fxn � 0g. Moreover, by the choice of the sequence fxj g
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and the C 1;˛-convergence of uj to u0, if yn > 0, then

lim
j

v.yj /

y
j
n

D lim
j

@x1uj .y
j /

y
j
n

D lim
j

@x1u.x
j /

x
j
n

DM;

so that

v.y/DMyn; (6)

and note that (6) also holds if yn D 0. We consider several possibilities, keeping in mind that M > 0.

Case 1: If y 2�0, then by differentiating (3), we get the elliptic equation

aij @ij .v.x/�Mxn/D 0

for some measurable aij , and by (5), (6), and the maximum principle, it follows that v.x/ D Mxn

in the connected component of �0 containing y, say �y0 . If there exists x 2 @�y0 \ fxn > 0g, then
MxnD v.x/D 0, so we must have M D 0, a contradiction. Thus, v.x/DMxn in Rn

C
and by integrating,

u0.x/DMx1xnC h.x2; : : : ; xn/:

Now, the C 2;˛-estimate up to the boundary given by the Krylov–Safonov theorem (see, e.g., Theorem 3.3)
applied to u0.Rx/=R2 yields

jD2u0.x/�D
2u0.y/j

jx�yj˛
�
C

R˛
; x ¤ y 2 BCR ;

and taking R!1 implies that D2u0 is a constant matrix, and thus h is a second-order polynomial.
Since u0 vanishes on fxn D 0g, it follows that

h.x2; : : : ; xn/D xn
X
i¤n

˛ixi C bx
2
n;

and so up to a rotation,

u0.x/D ax1xnC bx
2
n;

with a or b ¤ 0.

Case 2: If y 2 @�0\fxn > 0g, then Myn D v.y/D 0, a contradiction.

Case 3: If y 2 �c0, then for all but finitely many j , we have yj 2 �c0 and since fru0 ¤ 0g � �0, it
follows that v.yj /D 0 if j �N for some N 2 N. However, yjn > 0 and so

0D lim
j

v.yj /

y
j
n

DM;

a contradiction.

Case 4: If y 2 @�0\fxn D 0g, by differentiating (3) in �0, it can be seen that for r > 0 (to be picked
later), v satisfies

Lv D 0 in Br.y/C\�0;
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where LDFij .D2u0/@ij is elliptic. Since u0 2C 1;1.BCr .y//, it follows that the Fij .D2u0/ are bounded
and measurable on BCr .y/.

We know that Mxn�v.x/� 0 in Rn
C

, and if equality holds everywhere, u0.x/D ax1xnCbx2n just as
in Case 1. If there is a point z where strict inequality holds, that is, Mzn�v.z/> 0, then we can choose
a ball BCr .y/ so that, by continuity of v, we have v.x/<Mxn in a neighborhood Bs.z/, where z is a
boundary point of BCr .y/. Note that this strict inequality necessarily occurs on @BCr .y/\fxn>0g since
both v andMxn are zero on the hyperplane fxnD0g. Now choose a smooth nonnegative (but not identically
zero) function � supported on Bs.z/ small enough such that Mxn��.x/� v.x/ and Mxn��.x/> 0

in Rn
C

(this can be done since Bs.z/ is some distance away from the hyperplane fxnD 0g). Then if�
Lw D 0 in BCr .y/;
w DMxn�� on @BCr .y/;

we have that w > 0 in BCr .y/ by the strong maximum principle since Mxn � �.x/ > 0. In particular,
w > v D 0 on @�, and since v � w on @BCr .y/, the strong maximum principle again gives w > v in
BCr .y/\�. Note also by linearity that w DMxn� h, where h solves�

LhD 0 in BCr .y/;
hD � on @BCr .y/:

Once more, the strong maximum principle shows that h > 0 in BCr .y/, so the boundary Harnack
comparison principle implies that cxn � h.x/ in BC

r=2
.y/, where c > 0 depends on ellipticity constants

and �. With this,

M D lim
j!1

v.yj /

y
j
n

� lim sup
xn!0

C

x2B
C

r=4
.y/

w.x/

xn
� lim

xn!0
C

x2B
C

r=4
.y/

Mxn� cxn

xn
DM � c;

a contradiction. �

The next lemma shows that in two dimensions, if (ii) in Theorem 2.1 occurs, then �iDRn
C
\@ IntfuD0g

stays away from the origin.

Lemma 2.2. Let u be a solution to (1) with �D
�
fu¤ 0g[ fru¤ 0g

�
\fx2 > 0g � R2

C
. If there exists

frj g � RC such that rj ! 0 as j !1 and

uj .x/ WD
u.rjx/

r2j
! u0.x/D ax1x2C bx

2
2

in C 1;˛loc .R
n
C
/ as j !1 for a¤ 0, b 2 R, then there exists ı 2 .0; 1/ such that BC

ı
\�i D∅.

Proof. We may assume a > 0. Set vj WD @1uj and let R > 2, � 2
�
0; 1
4

�
, and ı 2

�
0; 1
4

�
. Then select

j0 D j0.R; �; ı/ > 0 such that for all j � j0,

jruj .x/j> 0; x 2 BCR nB
C

ı
; (7)

vj .x/ > 0; x 2 BCR \fx2 � �g (8)
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(the two-dimensional setting is crucial for (7)). Consider z 2 @B1\fx2 D 0g and note that

BC
3=4
.z/� BCR nB

C

ı
:

Thanks to (7), uj satisfies F.D2uj /D 1 in BC
3=4
.z/ for all j � j0. C 2;˛-estimates up to the boundary

(see Theorem 3.3) imply

sup
j

kuj kC2;˛
�
B
C

3=4
.z/
� <1:

Thus, along a subsequence, vj ! ax2 DW v in C 0;1 (C 2;˛ is compactly contained in C 1;1) and so

cj WD sup
x;y2B

C

3=4
.z/

x¤y

j.vj .x/� vj .y//� .v.x/� v.y//j

jx�yj
! 0:

In particular, since vj .x1; 0/D v.x1; 0/D 0, it follows that

jvj .x/� ax2j

x2
� cj ;

and so

vj .x/� .a� cj /x2:

Now we select j large such that vj .x/ � 0 on @B1. Note that Lvj D 0 in BC1 \�.uj /, where L is an
elliptic second-order operator obtained by differentiating (1). Indeed, uj satisfies(

F.D2uj /D 1 a.e. in BC
1=rj
\�.uj /;

uj D 0 on B 0
1=rj

;

where �.uj / is the dilated set �=rj , and without loss we may assume rj < 1
2

.
Since vj vanishes on @�.uj / and is nonnegative on @BC1 , the maximum principle implies vj > 0 in

BC1 \�.uj / (note that vj is not identically zero by (8)). If �i .uj /\BCı ¤∅, consider a ball N in the
interior of fuj D 0g\BCı . For t 2 R, let Nt DN C te1. Note that by taking t negative, we can move Nt
to the left so that eventually Nt � BC1 nB

C

ı
. Consider the strip S D

S
t2RNt . The next claim is that

there exists a ball in the set .S \BC1 / nB
C

ı
such that uj ¤ 0 in this ball: if not, then for each point

z 2 .S \BC1 /nB
C

ı
, there exists a sequence fzkg � fuj D 0g such that zk! z; by continuity, uj .z/D 0,

so uj D 0 in .S \BC1 /nB
C

ı
, and therefore the gradient also vanishes there, a contradiction to (7). Denote

the ball by E � �.uj / and note that uj < 0 on E since for each z 2 E, there exists tz > 0 such that
zC e1tz 2 fuj D 0g and vj > 0 in BC1 \�.uj /. Thus, E ��.uj /\fuj < 0g. Now move E to the right
until the first time it touches fuj D 0g, and let y be the contact point.

If ruj .y/ D 0, we immediately obtain a contradiction via Hopf’s lemma. Thus we may assume
ruj .y/ ¤ 0, which implies y 2 �.uj /, whence vj .y/ > 0 (recall that vj > 0 in �.uj /). By conti-
nuity, vj > 0 in Br.y/ for some r > 0, so in particular vj .y C te1/ > 0 for all t > 0 small. Since
fyC te1 W t 2 .0; r/g ��.uj /, we know t� WD supft > 0 WyCte1 2�.uj /g is positive. Note that yCte1
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will eventually enter N as t gets larger. However,

uj .yC t�e1/�uj .y/D

Z t�

0

vj .yC se1/ ds > 0;

and this implies 0D uj .yC t�e1/ > uj .y/D 0, a contradiction. Thus �i .uj /\BCı D∅ and the result
follows. �

Before proving uniqueness of blow-ups and tangential touch, we require one more lemma.

Lemma 2.3. Let u be a solution to (1) with � D
�
fu ¤ 0g [ fru ¤ 0g

�
\ fxn > 0g. If s 2 .0; 1� and

.BCs n�/
ı D∅, then jBCs n�j D 0.

Proof. Since u 2W 2;n.BC1 /, it follows that D2uD 0 a.e. on BCs n�. Let Z WD fD2uD 0g\ .BCs n�/
and note that jZj D jBCs n�j. Thus if Z � .BCs n�/

ı, then the result follows. Let x0 2Z and suppose
x0 … .BCs n�/

ı. Then consider a sequence of points xj ! x0 such that u.xj /¤ 0 and let rj WD jx0�xj j.
Nondegeneracy (see, e.g., [Indrei and Minne 2015, Lemma 3.1]) implies that for j large,

sup
@Brj .x

0/

u

r2j
� c > 0;

or in other words,

sup
@B1.0/

u.x0C rjx/

r2j
� c > 0:

Now for each j large enough, let yj 2 @B1.0/ be the element achieving the supremum in the previous
expression; note that since

u.x0/D jru.x0/j D jD2u.x0/j D 0;

we have
u.x0C rjy

j /D o.r2j /;

a contradiction. �

Theorem 2.1, Lemma 2.2, and Lemma 2.3 imply uniqueness of blow-ups in two dimensions.

Theorem 2.4 (uniqueness of blow-ups). Let u be a solution to (1) with � D
�
fu ¤ 0g [ fru ¤ 0g

�
\

fx2 > 0g � R2
C

. If 0 2 fu¤ 0g and ru.0/D 0, then all blow-up limits u0 of u at the origin are of the
form

u0.x/D ax1x2C bx
2
2 ;

where a; b 2 R with at least one of them nonzero.

Proof. We divide the proof into two cases.

Case 1: 0 2 � i . Lemma 2.2 implies the nonexistence of a blow-up u0 of u of the form

ax1x2C bx
2
2 ;

a¤ 0, b 2 R, from which it follows that (i) holds in Theorem 2.1. Note that b is uniquely determined by
the equation.
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Case 2: 0 62� i . In this case, there exists ı > 0 such that �i\BCı D∅. Since 02 fu¤ 0g (by assumption),
it follows that BC

ı
6� fuD 0gı and as �i \BCı D∅, we may conclude that fuD 0gı\BC

ı
D∅. Thus

the hypotheses of Lemma 2.3 are satisfied, and by applying the lemma, we obtain that F.D2u/ D 1
a.e. in BC

ı
. Therefore u 2 C 2;˛.BC

ı=2
/ and the blow-up limit u0 is uniquely given by

lim
r!0

u.rx/

r2
D lim
r!0

u.0/Cru.0/ � rxChrx;D2u.0/rxiC o.r2/

r2

D hx;D2u.0/xi D ax1x2C bx
2
2 :

The last equality follows from the boundary condition. Furthermore, u0 solves the same equation as u, so

F.D2u0/D F.D
2u.0//D 1

and thus a and b cannot both be zero due to (H1). �

If blow-ups are unique and of the form given above, it is rather standard to show that the free boundary
touches the fixed boundary tangentially (see, e.g., [Petrosyan et al. 2012, Chapter 8]). The proof is
included for completeness.

Theorem 2.5 (tangential touch). Let u be a solution to (1) with�D
�
fu¤0g[fru¤0g

�
\fx2>0g�R2

C
.

Then there exists a constant r0 > 0 and a modulus of continuity !u.r/ such that

�.u/\BCr0 �
˚
x W x2 � !u.jxj/jxj

	
if 0 2 �.u/, where �.u/ WD @�\R2

C
.

Proof. By Theorem 2.4, the blow-up of u at the origin is not identically zero and is given by u0.x/D
ax1x2Cbx

2
2 . In particular, �.u0/D∅. It suffices to show that for any � > 0, there exists �� D ��.u/ > 0

such that

�.u/\BC�� � B
C
��
n C�;

where C� WD fx2 > �jx1jg. Suppose not. Then there exists a solution u to (1) satisfying the hypotheses of
the theorem and � > 0 such that for all k 2 N, there exists

xk 2 �.u/\BC
1=k
\ C�:

Let rk WD jxkj and yk WD xk=rk 2 @B1\ C�. Note that along a subsequence

yk! y 2 @B1\ C�:

Define

uk.x/ WD
u.rkx/

r2
k

so that uk! u0 in C 1;˛loc .R
n
C
/ (along a subsequence). In particular, y 2 �.u0/ by nondegeneracy, which

contradicts that �.u0/D∅. �
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3. C 1;1-regularity up to the boundary

We now show BMO-estimates as well as C 1;1-regularity up to the fixed boundary of solutions to (2).

Theorem 3.1 (C 1;1-regularity). Let f 2 C ˛.BC1 / be a given function and �� BC1 a domain such that
u W BC1 ! R is a W 2;n-solution of (2). Assume F satisfies (H1)–(H4). Then there exists a constant C
depending on kuk

W 2;n.B
C

1 /
, kf k

C˛.B
C

1 /
, and universal constants such that

jD2uj � C a.e. in BC
1=2
:

There are three key tools needed to prove this theorem. The first two are C 2;˛- and W 2;p-estimates
up to the boundary for the following classical fully nonlinear problem(

F.D2u; x/D f .x/ a.e. in BC1 ;

uD 0 on B 01;
(9)

and the last involves BMO-estimates. The C 2;˛- and W 2;p-estimates are well-known [Wang 1992;
Safonov 1994; Winter 2009; Krylov 1982]. We have been unable to find a reference for the BMO-
estimates and thus provide a proof, which is an adaptation of the interior case. For convenience, we record
the following estimates; see, e.g., [Winter 2009, Theorem 4.3; Safonov 1994, Theorem 7.1]. Recall the
definition of ˇ,

ˇ.x; x0/ WD sup
M2S

jF.M; x/�F.M; x0/j

jM jC 1
:

Theorem 3.2 (W 2;p-regularity). Let u be a W 2;p-viscosity solution to (9) and f 2 Lp.BC1 / for
n� p �1. If ˇ.x0; y/ � ˇ0 in BCr .x

0/ \ BC1 for all x0 2 BC1 and 0 < r � r0, where ˇ0 and r0
are universal constants, then u 2W 2;p.BC

1=2
/ and

kuk
W 2;p.B

C

1=2
/
� C

�
kuk

L1.B
C

1 /
Ckf k

Lp.B
C

1 /

�
;

where C D C.n; �0; �1; N̨ ; C ; p/ > 0.

Theorem 3.3 (C 2;˛-regularity). Let u be a W 2;n-viscosity solution to (9) and f 2 C N̨ .BC1 /. Then if
ˇ.x0; y/� ˇ0 in BCr .x

0/\BC1 for all x0 2BC1 and 0 < r � r0, where ˇ0 and r0 are universal constants,
then u 2 C 2;˛.BC

1=2
/ and

kuk
C2;˛.B

C

1=2
/
� C

�
kuk

L1.B
C

1 /
Ckf k

C N̨ .B
C

1 /

�
;

where C D C.n; �0; �1; N̨ ; C / > 0.

The next results are technical tools utilized in the proof of the BMO-estimate (i.e., Proposition 3.6).
The first is an approximation lemma; see, e.g., [Wang 1992, Lemma 1.4].

Lemma 3.4 (approximation). Let � > 0, u 2W 2;p.BC1 .x
0//, and let v solve(

F.D2v; x0/D a in BC
1=2
.x0/;

v D u on @BC
1=2
.x0/:
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Then there exists ı > 0 and � > 0 such that if

ˇ.x; x0/ WD sup
M2S

jF.M; x/�F.M; x0/j

jM jC 1
� �

and jf .x/� aj � ı a.e. for f .x/ WD F.D2u.x/; x/ in BC1 .x
0/, then

ju� vj � � in BC
1=2
:

Lemma 3.5. Let u2W 2;n.BC1 / satisfy jF.D2u.x/; x/j � ı a.e. in BC1 for ı as in Lemma 3.4. Moreover,
assume juj � 1 and that ˇ.x; y/ satisfies (H4). Then there exists a universal constant � > 0 and
second-order polynomials Pk;x0 for any k 2 N0 and x0 2 BC

1=2
such that

jD2Pk;x0 �D
2Pk�1;x0 j � C0.n; �0; �1/;

F .D2Pk;x0 ; x
0/D 0;

ju.x/�Pk;x0.x/j � �
2k inside BC

min.�k ;1/
.x0/:

Proof. For k D 0 and k D�1, the statement is true for Pk;x0.x/� 0 by assumption (recall (H1)). If we
assume it is true up to some k, define

uk WD
u.�kxC x0/�Pk;x0.�

kxC x0/

�2k
;

Fk.M; x/ WD F
�
M CD2Pk;x0 ; �

kxC x0
�
; x 2 B1\fxn > �x

0
n=�

k
g:

Then jFk.D2uk; x/j D
ˇ̌
F
�
.D2u/.�kxC x0/; �kxC x0

�ˇ̌
� ı a.e. Also,

ˇk.x; 0/D sup
M2S

jFk.M; x/�Fk.M; 0/j

jM jC 1

D sup
M2S

ˇ̌
F
�
M CD2Pk;x0 ; �

kxC x0
�
�F

�
M CD2Pk;x0 ; x

0
�ˇ̌

jM jC 1

D sup
M2S

jF.M; �kxC x0/�F.M; x0/j

jM �D2Pk;x0 jC 1

D sup
M2S

jF.M; �kxC x0/�F.M; x0/j

jM jC 1

jM jC 1

jM �D2Pk;x0 jC 1

� ˇ.�kxC x0; x0/ sup
M2S

jM jC 1

jM �D2Pk;x0 jC 1

� C� N̨k sup
M2S

jM jC 1ˇ̌
jM j � jD2Pk;x0 j

ˇ̌
C 1

� C� N̨k
�
jD2Pk;x0 jC 1

�
;
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where the last inequality follows from a calculation of the maximum of the function

xC 1

jx� ajC 1
; x; a � 0:

However, from the induction hypothesis,

jD2Pk;x0 j �

kX
jD1

ˇ̌
D2Pj�1;x0 �D

2Pj;x0
ˇ̌
� C0k;

so
C� N̨k

�
jD2Pk;x0 jC 1

�
� C� N̨kC0k � �

if � is chosen small enough (depending only on universal constants) and � as in Lemma 3.4. Thus
jvk �ukj � � in B1=2\fx W xn > �x0n=�

kg by Lemma 3.4, where vk solves(
Fk.D

2vk; 0/D 0 in B1=2\fx W xn > �x0n=�
kg;

vk D uk on @
�
B1=2\fx W xn > �x

0
n=�

kg
�
:

Since
kvkkL1.B1=2\fxWxn>�x0n=�kg/ � kukkL1.B1=2\fxWxn>�x0n=�kg/ � 1

by the maximum principle, Theorem 3.3 gives

kvkkC2;˛.B1=4\fxWxn>�x0n=�kg/ � C0: (10)

Now define OPk;x0 as the second-order Taylor expansion of vk at the origin, and note thatFk.D2 OPk;x0 ; 0/D
Fk.D

2vk.0/; 0/D 0. Then

jvk � OPk;x0 j � C0�
2C˛ in B� \fx W xn > �x0n=�

k
g

for � < 1
4

, which gives

juk � OPk;x0 j � juk � vkjC jvk � OPk;x0 j � �CC0�
2C˛ in B� \fx W xn > �x0n=�

k
g:

For �˛ � 1
2C0

and � � 1
2
�2, we get

juk � OPk;x0 j � �
2 in B� \fx W xn > �x0n=�

k
g;

or, in other words,
ju�PkC1;x0 j � �

2.kC1/ in BC
�kC1

.x0/

for

PkC1;x0.x/ WD Pk;x0.x/C �
2k OPk;x0

�
x� x0

�k

�
:

Also, since Fk.D2 OPk;x0 ; 0/D 0, by (10) we have

F.D2PkC1;x0 ; x
0/D F

�
D2Pk;x0 CD

2 OPk;x0 ; x
0
�
D Fk.D

2 OPk;x0 ; 0/D 0;

jD2PkC1;x0 �D
2Pk;x0 j D jD

2 OPk;x0 j D jD
2vk.0/j � C0: �
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Proposition 3.6 (BMO-estimate). Let u be a solution to (9), f bounded, and Pk;x0 and � be as in
Lemma 3.5. Then

�

Z
B
C

�k=2
.x0/

jD2u.y/�D2Pk;x0 j
2
� C; x0 2 BC

1=2
;

if � is smaller than a constant that depends only on kukW 2;p.B1/
, f , C in (H4), and universal constants.

Proof. Let x0 2 BC
1=2

and define

v.x/ WD u
�
x

R

�
and G.M; x/ WD

1

R2
F
�
R2M;

x

R

�
for RDR.C ; f;K; ı/ (C as in (H4)) chosen so that jG.D2v; x/j � ı in BCR for ı as in Lemma 3.4. Note
also that

ˇG.x; y/ WD sup
M2S

jG.M; x/�G.M; y/j

jM jC 1

satisfies (H4). Then v solves8̂<̂
:
G.D2v; x/D f .x=R/=R2 a.e. in BCR \ .R�/;

jD2vj �K=R2 a.e. in BCR n.R�/;

v D 0 on B
0

R;

and there is a polynomial QPk;x0 for which G.D2 QPk;x0 ; Rx
0/D 0, and a constant Q� such that

jv.x/� QPk;x0.x/j � Q�
2k; x 2 BC

Q�k
.Rx0/;

that is,
ju.x/�Pk;x0.x/j �R

2�2k; x 2 BC
�k
.x0/;

for Pk;x0.x/ WD QPk;x0.Rx/ and �k WD Q�k=R. Note also that

F.D2Pk;x0 ; x
0/D F

�
R2D2 QPk;x0 ;

Rx0

R

�
DR2G.D2 QPk;x0 ; Rx

0/D 0:

In particular, for

uk.x/ WD
u.�kxC x0/�Pk;x0.�

kxC x0/

�2k
;

Fk.M; x/ WD F.M CD
2Pk;x0 ; �

kxC x0/;

and ˇk as in the proof of Lemma 3.5, we have jukj �R2, ˇk.x; y/� � and jFk.uk; x/j �C . Therefore
we can apply Theorem 3.2 to deduce

kukkW 2;p.B1=2\fxn��x0=�kg/
� C;

or
�

Z
B
C

�k=2
.x0/

jD2u.x/�D2Pk;x0 j
p dx � C: �
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From this it is straightforward to show that if u is a function satisfying (2), there exists a second-order
polynomial Pr;x0.x/ with F.D2Pr;x0 ; x

0/D f .x0/ such that

sup
r2.0;1=4/

�

Z
B
C
r .x0/

jD2u.y/�D2Pr;x0 j
2 dy � C;

where x0 2BC
1=2
.0/. The proof of C 1;1-regularity now follows as in [Indrei and Minne 2015] up to minor

modifications (see also [Figalli and Shahgholian 2014]). The idea is that D2Pr;x0.x/ provides a suitable
approximation to D2u.x0/ and one may consider two cases: first, if D2Pr;x0.x/ stays bounded in r ,
then one can show that D2u.x0/ is also bounded by a constant depending only on the initial ingredients;
next, if D2Pr;x0.x/ blows up in r , one can show that the set

Ar.x
0/ WD

.BCr .x
0/n�/� x0

r
D B1n

�
.�� x0/=r

�
\fy W yn > �x

0
n=rg

decays fast enough to ensure yet again a bound on D2u.x0/.
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CORRECTION TO THE ARTICLE
SCATTERING THRESHOLD FOR THE

FOCUSING NONLINEAR KLEIN–GORDON EQUATION

SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

Volume 4:3 (2011), 405–460

This article resolves some errors in the paper “Scattering threshold for the focusing nonlinear Klein–
Gordon equation”, Anal. PDE 4:3 (2011), 405–460. The errors are in the energy-critical cases in two and
higher dimensions.

1. The errors and the missing ingredient

This article resolves some errors in [Ibrahim et al. 2011]. One correction affects also [Ibrahim et al. 2014;
2015]; henceforth, we refer to these papers by their years only. The major errors are the following three,
one in [2011, Section 2] for the existence of mass-shifted ground state in the two-dimensional energy-
critical case, and two in [2011, Section 5] for the nonlinear profile decomposition in the higher-dimensional
energy-critical case:

(1) In the proof of [2011, Lemma 2.6], it is not precluded that the weak limit Q in [2011, (2-67)] is zero.
Hence the existence of Q in the case c ≤ 1 is not proved.

(2) In [2011, (5-56)], we do not have ‖
→

Vn(τn) −
→

V∞(τn)‖L2
x
→ 0 when h∞ = 0, τ∞ = ±∞ and

lim infn→∞ |τnh2
n|>0. Indeed, assuming that τnh2

n→m∈[−∞,∞] after extraction of a subsequence,
we have

‖
→

Vn(τn)−
→

V∞(τn)‖L2
x
→

{
‖(eim/(2|∇|)

− 1)ψ‖L2
x
(|m|<∞),

√
2‖ψ‖L2

x
(m =±∞).

(1-1)

(3) In the proof of [2011, Lemma 5.6], the global bound [2011, (5-96)] does not follow from the uniform
bound on finite time intervals, since the required largeness of n depends on the size of the interval I .

(1) is concerned only with a very critical case of exponential nonlinearity in two dimensions (d = 2).
More precisely, it is problematic only if

0< lim sup
|u|→∞

e−κ0|u|2 |u|2 f (u) <∞, (1-2)

MSC2010: 35B40, 35L70, 47J30, 35B44.
Keywords: nonlinear Klein–Gordon equation, scattering theory, blow-up solution, ground state, Sobolev critical exponent,

Trudinger–Moser inequality.
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where κ0 is the exponent in [2011, (1-29)]. Errors (2)–(3) are crucial only in the H 1 critical case of higher
dimensions d ≥ 3, with h∞ = 0: the concentration by scaling in the nonlinear profile, where we need to
modify the definition of the nonlinear concentrating waves and then solve the massless limit problem for
the nonlinear Klein–Gordon equation (NLKG) (see Theorem 3.1 below). In the other case, i.e., with the
subcritical or exponential nonlinearity or with h∞ = 1, we still need to take care of (3), but it is a rather
superficial change.

2. Correction for (1)

We do not know if [2011, Lemma 2.6] holds true in the very critical case (1-2). So we add the assumption

lim sup
|u|→∞

e−κ0|u|2 |u|2 f (u) ∈ {0,∞} (2-1)

in [2011, Proposition 1.2(3)] and [2011, Lemma 2.6]. The existence of Q was used in [2011] only to
characterize the threshold energy m, so the rest of the paper is not affected by it.

In [2014, (1.24)], the existence of Q is mentioned to characterize the threshold m(c). It should also be
restricted by (2-1), but the rest of [2014] does not really need Q. Removing Q, [2014, (2.3)] should be
replaced with

m ≤ H (c)
p (ϕ), (2-2)

[2014, (2.6)] should be replaced with

m ≤ J (c)(λϕ)= H (c)
p (λϕ)≤ H (c)

p (ϕ), (2-3)

and [2014, (2.7)] with

ÿ = (2+ p)‖u̇‖2L2 + 2p(H (1)
p (u)−m)= (4+ ε)‖u̇‖2L2 + (1− c)ε‖u‖2L2 + 2p(H (c)

p (u)−m)

≥
(
1+ 1

4ε
)
ẏ2/y+ (1− c)εy. (2-4)

The existence of Q is also mentioned in [2015, Theorem 5.1]. It should be also restricted by (2-1).
The rest of [2015] remains unaffected.

We still need to prove [2011, Lemma 2.6] under the new restriction (2-1). If the limit (2-1) is infinite,
then [2015, Theorem 1.5(B)] implies C?

TM(F)=∞> 1. In this case, the proof of [2011, Lemma 2.6]
remains valid. If the limit (2-1) is zero, then [2015, Theorem 1.5(B)] implies C?

TM(F) <∞. In this case,
we do not argue as in [2011], but rely on the compactness [2015, Theorem 1.5(C)]. Let ϕn ∈ H 1(R2) be a
normalized maximizing sequence for C?

TM(F), i.e.,

‖ϕn‖L2 = 1, κ0‖∇ϕn‖
2
L2 ≤ 4π, 2F(ϕn)→ C := C?

TM(F) ∈ (0,∞). (2-5)

By the standard rearrangement and the H 1 boundedness, we may assume that the ϕn are radially decreasing
and ϕn→ϕ weakly in H 1(R2) for some ϕ. By [2015, Theorem 1.5(C)], we have 2F(ϕn)→2F(ϕ)=C>0.
In particular, ϕ 6= 0. Since κ0‖∇ϕ‖

2
L2 ≤ 4π and ‖ϕ‖L2 ≤ 1 by the weak convergence, we deduce from

the definition of C?
TM(F) that ‖ϕ‖L2 = 1 and ϕ is a maximizer. Hence, for a Lagrange multiplier µ≥ 0,

f ′(ϕ)−Cϕ =−µ1ϕ. (2-6)
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That µ 6= 0 is obvious by the decay order of f ′ as ϕ→ 0. Hence µ > 0 and so κ0‖∇ϕ‖
2
L2 = 4π , since

otherwise we could increase both F(ϕ) and ‖∇ϕ‖2L2 by the L2 scaling ϕλ1,−1 with λ > 0, using the L2

supercritical condition [2011, (1-21)]. Then Q(x) := ϕ(µ−1/2x) ∈ H 2(R2) satisfies

−1Q+C Q = f ′(Q), κ0‖∇Q‖2L2 = 4π, 2F(Q)= C‖Q‖2L2 . (2-7)

Hence J (C)(Q)= 1
2‖∇Q‖2L2 = 2π/κ0. The rest of the proof of [2011, Lemma 2.6], namely the proof of

mα,β = m0,1 = 2π/κ0, remains valid.

3. Correction for (2)–(3)

For (2)–(3), we do not have to modify the main results, but need to correct the proof, including the
definition of the nonlinear profile decomposition. Henceforth, we always assume that 0 < hn → h∞,
(tn, xn) ∈ R1+d and τn =−tn/hn→ τ∞ ∈ [−∞,∞] are sequences. The main problematic case is when
the energy concentrates, namely h∞= 0, which can happen only in the energy critical case [2011, (1-28)]

d ≥ 3, f (u)=
|u|2

?

2?
, 2? =

2d
d − 2

. (3-1)

First we modify the vector notation in [2011, (4-1)]. For any real-valued function a(t, x), the complex-
valued functions →a, ⇀a and ⇁a are defined by

→a := (〈∇〉− i∂t)a,
⇀a := (〈∇〉n − i∂t)a,

⇁a := (〈∇〉∞− i∂t)a, (3-2)

where 〈∇〉∗ =
√

h2
∗
−1 as in [2011, (5-1)]. Hence a is recovered from either of them by

a = Re 〈∇〉−1→a = Re 〈∇〉−1
n

⇀a = Re 〈∇〉−1
∞

⇁a. (3-3)

Note that (⇁a, a) was denoted by (→a, â) in [2011], but it was confusing. Indeed, u(n) in [2011, (5-55)] did
not make sense if h∞ = 0, since →u(n) in [2011, (5-54)] was not in the form [2011, (4-1)]. So we replace
[2011, (5-54)] with

→u(n) = Tn
⇀

U(n)((t − tn)/hn), (3-4)

where
⇀

U(n) is defined by

⇀

Vn := ei t〈∇〉nψ,
⇀

U(n) =
⇀

Vn − i
∫ t

τ∞

ei(t−s)〈∇〉n f ′(U(n)) ds. (3-5)

Then u(n) = hnTnU(n)((t − tn)/hn) is a solution of NLKG satisfying

lim
t→τ∞
‖(
→u(n)−

→
vn)(thn + tn)‖L2

x
= 0. (3-6)

In other words, we keep NLKG in defining the profiles, even if h∞ = 0. Note that if h∞ = 1 then
⇀

U(n) =
→

U∞ and so u(n) is unchanged.
By the change of [2011, (5-54)] to (3-4), the problematic [2011, (5-56)] is replaced with

‖
→un(0)−

→u(n)(0)‖L2
x
=

∥∥∥∥∫ 0 (=τnhn+tn)

τ∞hn+tn
e−is〈∇〉 f ′(u(n)) ds

∥∥∥∥
L2

x

→ 0. (3-7)
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In order to prove the last limit as well as the global Strichartz approximation for (3), we need the
convergence in the massless limit of the H 1 critical NLKG:

Theorem 3.1. Assume [2011, (1-28)] and h∞ = 0. Let
⇁

U∞ be the solution of

⇁

V∞ := ei t |∇|ψ,
⇁

U∞ =
⇁

V∞− i
∫ t

τ∞

ei(t−s)|∇| f ′(U∞) ds. (3-8)

Let
⇀

U(n) be the solution of (3-5) and →u(n)(t) := Tn
⇀

U(n)((t− tn)/hn). Suppose that U∞ ∈ [W ]•2(J ) for some
interval J whose closure in [−∞,∞] contains τ∞. Then for any bounded subinterval I ⊂ J we have,
as n→∞,

‖
⇀

U(n)−
⇁

U∞‖L∞t∈I L2
x
+‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖u(n)‖[W ]0(J )→ 0,

‖u(n)‖([W ]2∩[M]0)(hn J+tn) ∼ ‖U∞‖([W ]•2∩[M]0)(J )+ o(1).
(3-9)

Postponing the proof of the above theorem to the next section, we continue to correct [2011, Section 5].
Equation (3-7) in the case of h∞ = 0 follows from the above estimate and τn→ τ∞ via Strichartz:∥∥∥∥∫ 0

τ∞hn+tn
e−is〈∇〉 f ′(u(n)) ds

∥∥∥∥
L2

x

. ‖ f ′(u(n))‖[W ∗(1)]2(In)
. ‖u(n)‖2

?
−1

([W ]2∩[M]0)(In)

. ‖U∞‖2
?
−1
[W ]•2∩[M]0(Jn)

+ o(1)= o(1), (3-10)

where In := (0, τ∞hn + tn)∪ (τ∞hn + tn, 0) and Jn := (τn, τ∞)∪ (τ∞, τn).
We modify the definition of ST in [2011, (5-59)–(5-60)] in the Ḣ 1 critical case [2011, (1-28)] to

ST = [W ]2, ST ∗ = [W ∗(1)]2+ L1
t L2

x , ST♦
∞
:=

{
[W ]2 (h♦

∞
= 1),

[W ]•2 (h♦
∞
= 0).

(3-11)

Indeed, [K ]2 and [K ∗(1)]2 norms are not needed in the Ḣ 1 critical case. Then we simply discard the
estimates [2011, (5-61)–(5-62)].

Next we reprove [2011, Lemma 5.5], extending it to unbounded intervals I . The above theorem implies
that we can replace [2011, (5-64)] with the stronger1

lim sup
n→∞

‖u j
(n)‖ST (R) . ‖U j

∞
‖ST j

∞(R)
(3-12)

if h j
∞= 0, while it is trivial if h j

∞= 1. The proof of [2011, (5-65)] for h j
∞= 1 did not use the boundedness

of I, so we may assume that all h j
∞ are 0. Then the above theorem implies that ‖u<k

(n)‖[W ]0(R)→0 as n→∞,
so it suffices to estimate the homogeneous norm [W ]•2(R). We have

‖u<k
(n)‖[W ]•2(R) ∼

d∑
l=1

∥∥∥∥∑
j<k

ǔ j,l
n,m

∥∥∥∥
L p

t `
2
m∈Z Lq

x

(3-13)

with (1/p, 1/q, s)=W and

ǔ j,l
n,m := 2smδl

mh j
nT j

n U j
(n)((t − t j

n )/h j
n). (3-14)

1Recall that Û j
∞ in [2011] is denoted by U j

∞ in this correction according to (3-2).
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Defining ǔ j,l
n,m,R by [2011, (5-77)], we have

‖ǔ j,l
n,m − ǔ j,l

n,m,R‖L p
t `

2
m Lq

x
. ‖2smδl

mU j
(n)‖L p

t `
2
m Lq

x (|t |+|m|+|x |>R)→ 0 as R→∞, (3-15)

which is still uniform in n since, by the above theorem, U j
(n) is approximated by U j

∞ in [W ]•2(R), which
is equivalent to the last norm without the restriction by R. Thus we obtain [2011, (5-65)] by the disjoint
support property for large n.

According to the change of u j
(n), we replace the nonlinear decomposition [2011, (5-66)] with the

simpler form

lim
n→∞

∥∥∥∥ f ′(u<k
(n))−

∑
j<k

f ′(u j
(n))

∥∥∥∥
ST ∗(I )

= 0, (3-16)

which is the same as [2011, (5-66)] if h j
∞ = 1. In that case, however, we used that I was bounded in

[2011, (5-82)]. We replace it with an interpolation between [2011, (4-84)] and

‖ f ′S(u)‖[((1−θ0)K+θ0W )∗(1)]2(I ) . ‖u‖[K ]2(I )‖u‖
p1
[K ]0(I ) . ‖u‖

p1+1
[K ]2(I ), (3-17)

where we can choose some θ0 ∈ (0, 1) since p1 > 4/d (choosing p1 close enough to 4/d if necessary).
Since Z := ((1− θ0)K + θ0W )∗(1) is an interior dual-admissible exponent, we can find some θ1 ∈ (0, 1)
such that θ1Y + (1− θ1)Z is also a dual-admissible exponent. Interpolating (3-17) with [2011, (4-84)],
we have

‖ f ′S(u)− f ′S(v)‖[θ1Y+(1−θ1)Z ]2(I ) . ‖(u, v)‖
p1+1−θ1
[K ]2(I )∩[Q]2p1 (I )

‖u− v‖θ1
[P]2(I ). (3-18)

Thus we obtain [2011, (5-66)] on any subset I in the subcritical and exponential cases. In the Ḣ 1 critical
case [2011, (1-28)], we discard u j

〈n〉 in [2011, (5-85)] and prove (3-16) directly, putting

U j
n,R(t, x) := χR(t, x)U j

(n)(t, x)×
∏{

(1−χh j,l
n R)(t − t j,l

n , x − x j,l
n )

∣∣ 1≤ l < k, hl
n R < h j

n
}
. (3-19)

It is still uniformly bounded in ([H ]•2∩[W ]
•

2)(R), and U j
n,R−χRU j

(n)→ 0 in [M]0(R) as n→∞ thanks
to the above theorem, as well as in [L]0, and also χRU j

(n)→U j
(n) as R→∞. Hence we may replace u j

(n)
in (3-16) by u j

(n),R := h j
nT j

n U j
n,R((t − t j

n )/h j
n), using [2011, (4-62)] for d ≤ 5, and a similar interpolation

argument as above for d ≥ 6; see (4-16)–(4-19) below. Then we obtain (3-16) by the disjoint support
property, in the same way as [2011, (5-94)].

With the above corrections, we now reprove [2011, Lemma 5.6]. First, [2011, (5-100)] holds for any
subset I ⊂R, by the above improvement of [2011, Lemma 5.5]. Now, thanks to the change of u j

(n), [2011,
(5-101)] is simplified to

eq(u<k
(n))= f ′(u<k

(n))−
∑
j<k

f ′(u j
(n)), (3-20)

which is vanishing by (3-16). Hence we obtain [2011, (5-103)]. We also obtain [2011, (5-104)] on R by
the same nonlinear estimates as we used above. Then, applying [2011, Lemma 4.5] on R, we obtain the
desired [2011, Lemma 5.6].
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Section 6 of [2011] is almost unchanged, except for the obvious modification in [2011, (6-6)] due to
the change of u(n), namely

→u j
(n) = T j

n
⇀

U j
(n)((t − t j

n )/h j
n), (3-21)

and the notational change in [2011, (6-7)–(6-9)] from ( EU 0
∞
, Û 0
∞
) to (

⇁

U 0
∞
,U 0
∞
) due to (3-2). Since the

case h∞ = 0 is eliminated in the proof of [2011, Lemma 6.1], the errors (2)–(3) do not affect the rest of
the paper.

4. Massless limit of scattering for the critical NLKG

It remains to prove Theorem 3.1. Throughout this section, we assume [2011, (1-28)]. The main idea is
to decompose the time interval into a bounded subinterval and neighborhoods of ±∞. On the bounded
part, we have strong convergence in the massless limit. In the neighborhoods of t =±∞, we do not have
strong convergence, but the Strichartz norms are uniformly controlled via the asymptotic free profiles.

The first ingredient concerns the uniform Strichartz bound for free waves.

Lemma 4.1. Let →vn = ei t〈∇〉Tnψ , h∞ = 0,
⇁

V∞ = ei t |∇|ψ , and let Z ∈
[
0, 1

2

]
×
[
0, 1

2

)
× [0, 1) satisfy

reg0(Z)= 1 and str0(Z)≤ 0, namely a wave-admissible Strichartz exponent except for the energy norm.
Then we have

lim sup
n→∞

‖vn‖[Z ]2(0,∞) . ‖V∞‖[Z ]•2(0,∞) and lim
n→∞
‖P<1vn‖[Z ]2(0,∞) = 0, (4-1)

where P<a denotes the smooth cut-off for the Fourier region |ξ |<2a defined by P<aϕ=ad30(ax)∗ϕ, with
30∈S(Rd) in the proof of [2011, Lemma 5.1]. If Z3=0, then we have also ‖vn‖[Z ]0(0,∞)→‖V∞‖[Z ]0(0,∞).

Proof. Let →vn(t)= Tn
⇀

Vn(t/hn). The Strichartz estimate for the Klein–Gordon and the wave equations

‖vn‖[Z ]2(0,∞) . ‖Tnψ‖L2 = ‖ψ‖L2, ‖V∞‖[Z ]•2(0,∞) . ‖ψ‖L2 (4-2)

implies that it suffices to consider ψ in a dense subset of L2(Rd). Hence we may assume that Fψ is C∞

with a compact supp Fψ 63 0. Since 0< 〈ξ〉n −〈ξ〉∞ ≤ h2
n/|ξ |,

|(ei t〈ξ〉n 〈ξ〉−1
n − ei t |ξ |

|ξ |−1)|. |t |h2
n|ξ |
−2
+ h2

n|ξ |
−3, (4-3)

and so, under the above assumption on ψ , for any s ∈ R and any sequence Sn > 0,

‖Vn − V∞‖L∞(0,Sn;H s) ≤ 〈Sn〉h2
nC(s, ψ). (4-4)

Hence, by Sobolev in x and Hölder in t ,

‖Vn − V∞‖([Z ]•2∩[Z ]0)(0,Sn) ≤ 〈Sn〉
1+Z1h2

nC(s, ψ). (4-5)

We deduce that if Sn→∞ and S1+Z1
n h2

n→ 0 then, using the (approximate) scale-invariance of [Z ]•2,

‖vn‖[Z ]2(0,hn Sn) ∼ ‖vn‖[Z ]•2(0,hn Sn)+‖P<1vn‖[Z ]0(0,hn Sn),

‖vn‖[Z ]•2(0,hn Sn) ∼ ‖Vn‖[Z ]•2(0,Sn)→‖V∞‖[Z ]•2(0,∞),

‖P<1vn‖[Z ]0(0,hn Sn) ∼ ‖h
Z3
n P<hn Vn‖[Z ]0(0,Sn)→ 0,
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and similarly, if Z3 = 0 then ‖vn‖[Z ]0(0,hn Sn) = ‖Vn‖[Z ]0(0,Sn)→‖V∞‖[Z ]0(0,∞).
Next, the dispersive decay of wave-type for the Klein–Gordon equation

‖ei t〈∇〉ϕ‖B0
q,2
. |t |−(d−1)α

‖ϕ‖Bs
q′,2
, α := 1

2 −
1
q ∈

[
0, 1

2

]
, s := (d + 1)α, (4-6)

together with the embedding Lq ′
⊂ B0

q ′,2 implies that

‖vn(t)‖Bσq,2 . |t |
−(d−1)α

‖〈∇〉
σ+s−1Tnψ‖Lq′ = |t |−(d−1)αh1−α−σ

n ‖〈∇〉
σ+s−1
n ψ‖Lq′ , (4-7)

and so, putting α = 1
2 − Z2,

‖vn‖[Z ]2(hn Sn,∞) ≤ C(ψ)h1−α−Z3
n ‖t−(d−1)α

‖
L

1/Z1
t (hn Sn,∞)

∼ C(ψ)h1−α−Z3
n (hn Sn)

Z1−(d−1)α
= C(ψ)Sα−1+Z3

n → 0, (4-8)

where we used that reg0(Z)= Z3− Z1+ dα = 1 in the last identity and

α− 1+ Z3 = reg0(Z)+ str0(Z)− 1− Z1 < 0 (4-9)

in taking the limit. Note that the above exponent is zero at the energy space Z =
(
0, 1

2 , 1
)
, which

is excluded by the assumption. The estimate in [Z ]0(hn Sn,∞) for Z3 = 0 is done in the same way.
Combining them with the above estimates on (0, hn Sn) leads to the conclusion via a density argument. �

The second ingredient is convergence or propagation of small disturbance on finite intervals, which is
uniformly controlled by the Strichartz norm of U∞.

Lemma 4.2. For any 0< M, ε <∞, there exists δ = δ(ε,M) ∈ (0, 1) with the following property. Let
h∞= 0 and let U∞ be a solution of NLW on some interval J satisfying ‖U∞‖([H ]•2∩[W ]•2)(J )≤M. Then, for
any bounded subinterval I ⊂ J with 0 ∈ I and any ϕn ∈ L2(Rd) with ‖ϕn‖L2 < δ, the unique solution Un

of

(∂2
t −1+ h2

n)Un = f ′(Un),
⇀

Un(0)=
⇁

U∞(0)+ϕn, (4-10)

exists on I for large n, satisfying

‖
⇀

Un −
⇁

U∞‖L∞t L2
x (I )+‖Un −U∞‖([W ]•2∩[M]0)(I ) < ε, (4-11)

and ‖hnTnUn((t − tn)/hn)‖[W ]0(hn I+tn) . δ for large n.

Proof. We give the detail only in the harder case d ≥ 6, where we need the exotic Strichartz norms. Let
γn :=Un −U∞ and 99K

γ n :=
⇀

Un −
⇁

U∞, then

(∂2
t −1)γn = f ′(U∞+ γn)− f ′(U∞)− h2

nUn. (4-12)

Note however that 99K
γ n is not written only by γn . It suffices to prove the following:

Claim. There exist constants θ ∈ (0, 1) and C > 1 such that if

‖U∞‖([W ]•2∩[M̃]•2p)(0,S)
≤ η, ‖

99K
γ n(0)‖L2 � 1, (4-13)



510 SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

for some 0< S <∞ and 0< η� 1, where p = 2?− 2= 4/(d − 2), then

‖
99K
γ n‖L∞t (0,S;L2

x )
+‖γn‖[W ]•2(0,S) ≤ C[‖ 99Kγ n(0)‖L2 +‖

99K
γ n(0)‖

θ
L2η

(p+1)(1−θ)
]. (4-14)

Proof of the claim. The exotic Strichartz estimate for the wave equation yields, on the time interval (0, S),

‖γn‖[Ñ ]•2
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[Y ]2 +‖h

2
nUn‖L1

t L2
x
, (4-15)

while the nonlinear estimate in the Besov space yields

‖ f ′(U∞+ γn)− f ′(U∞)‖[Y ]2 . ‖(U∞, γn)‖
p
[M]0‖γn‖[Ñ ]•2

+‖(U∞, γn)‖
p
[M̃]•2p
‖γn‖[N ]0, (4-16)

and we have ‖⇁γn(0)‖L2 . ‖ 99Kγ n(0)‖L2 + o(1). The L1
t L2

x norm is estimated by

‖h2
nUn‖L1

t L2
x
≤ ‖hn

⇀

Un‖L1
t L2

x
≤ hn S‖ 99Kγ n +

⇁

U∞‖L∞t L2
x
. (4-17)

Define W , O ∈
[
0, 1

2

]3 by

W :=W − 1
2

(
0, 1

d
, 1
)
=

( d−1
2(d+1)

,
d2
−2d−1

2d(d+1)
, 0
)
,

O :=W + pW =
(
(d+2)(d−1)
2(d+1)(d−2)

,
d3
+d2
−6d−4

2(d−2)d(d+1)
,

1
2

)
.

(4-18)

Then O is an interior dual exponent of the standard Strichartz, and so there is small θ ∈ (0, 1) such that
θY + (1− θ)O is also a dual exponent. Hence the standard Strichartz yields, for any wave-admissible
exponent Z ,

‖γn‖[Z ]•2 +‖
⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[θY+(1−θ)O]•2 +‖h

2
nUn‖L1

t L2
x
, (4-19)

where the nonlinear part is already estimated in [Y ]•2, while

‖ f ′(U∞+ γn)‖[O]•2 +‖ f ′(U∞)‖[O]•2 . η
p+1
+‖γn‖

p+1
[W ]•2

. (4-20)

Hence we have

‖γn‖[Ñ ]•2
. ‖⇁γn(0)‖L2 + A+ B,

‖γn‖[W ]•2∩[M̃]
•

2p
+‖

⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 + Aθ (η+‖γn‖[W ]•2)

(1−θ)(p+1)
+ B,

A . (η+‖γn‖[M̃]•2p
)p
‖γn‖[Ñ ]•2

,

B . Shn‖
99K
γ n‖L∞t L2

x
+ o(1).

(4-21)

Assuming that ‖γn‖[M̃]•2p
� 1 and that ‖ 99Kγ n‖L∞t L2

x
is bounded in n, we deduce from the above estimates

that
A�‖γn‖[Ñ ]•2

. ‖⇁γn(0)‖L2 + o(1), B = o(1),

‖γn‖[W ]•2∩[M̃]
•

2p
+‖

⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖

⇁
γn(0)‖θL2η

(1−θ)(p+1)
+ o(1).

(4-22)

It remains to prove the uniform bound on ‖ 99Kγ n‖L∞t L2
x
. Let V∞, Vn , vn be the free solutions defined by

⇁

V∞ := ei t |∇| ⇁U∞(0),
⇀

Vn := ei t〈∇〉n
⇀

Un(0), Evn = Tn
⇀

Vn(t/hn). (4-23)
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For any 0< Rn→ 0 such that hn/Rn→ 0, we have

‖F
99K
γ n‖L∞(0,S;L2(|ξ |>Rn)) . ‖

⇁
γn‖L∞(0,S;L2

x )
+ o(1). (4-24)

For the lower frequency, we have, by the energy inequality, Hölder and Sobolev,

‖
⇀

Un −
⇀

Vn‖L∞t Ḣ−1
x (0,S) . ‖ f ′(Un)‖L1

t Ḣ−1
x (0,S)

. S‖Un‖
p+1
L∞t Ḣ1

x (0,S)
. S(‖

⇁

U∞‖L∞t L2
x (0,S)+‖

⇁
γn‖L∞t L2

x (0,S))
p+1, (4-25)

and similarly ‖
⇁

U∞−
⇁

V∞‖L∞t Ḣ−1
x (0,S) . S‖

⇁

U∞‖
p+1
L∞t L2

x
. Since |〈ξ〉n −〈ξ〉∞| ≤ hn , we have also ‖

⇀

Vn(t)−
⇁

V∞(t)‖L2
x
. |t |hn‖

⇁

U∞(0)‖L2 + δ. Hence

‖F
99K
γ n‖L∞(0,S;L2(|ξ |<Rn))

≤ Rn‖
⇀

Un −
⇀

Vn‖L∞t Ḣ−1
x (0,S)+‖

⇀

Vn −
⇁

V∞‖L∞t L2
x (0,S)+ Rn‖

⇁

V∞−
⇁

U∞‖L∞t Ḣ−1
x (0,S)

. o(1)S‖⇁γn‖
p+1
L∞t L2

x (0,S)
+ δ+ o(1) (4-26)

Adding this to (4-24), we obtain

‖
99K
γ n‖L∞t L2

x (0,S) . ‖
⇁
γn‖L∞t L2

x (0,S)+ o(1)S‖⇁γn‖
p+1
L∞t L2

x (0,S)
+ δ+ o(1). (4-27)

Combining this with the estimates (4-22), we deduce that both 99K
γ n and ⇁

γn are bounded in L∞t L2
x(0, S). �

To prove (4-11) from this claim, we decompose I into subintervals I j such that ‖U∞‖([W ]•2∩[M̃]•2p)(I j )
≤η

for each j . Then applying the above claim iteratively to the subintervals for small δ > 0 yields (4-11),
where the bound on [M]0 is derived by interpolation and Sobolev embedding of [H ]•2 and [W ]•2.

For the estimate in [W ]0, we have, by scaling,

‖hnTnUn((t − tn)/hn)‖[W ]0(hn I+tn)

∼ h1/2
n ‖Un‖[W ]0(I ) . h1/2

n ‖Un‖[W ]•2(I )+‖P<1vn‖[W ]0(I )+ h1/2
n ‖P<hn (Un − Vn)‖[W ]0(I ), (4-28)

where
⇀

Vn := ei t〈∇〉n
⇀

Un(0) and Evn = Tn
⇀

Vn(t/hn). The first term on the right is vanishing since ‖Un‖[W ]•2(I )

is bounded as shown above. The second term is O(δ) by Lemma 4.1. The third term is bounded — using
Sobolev, Hölder and the same estimate as in (4-25) — by

|I |W1h1/2+d(1/2−W2)
n ‖Un − Vn‖L∞t L2

x (I ) . (|I |hn)
3/2−1/(d+1)(‖

⇁

U∞‖L∞t L2
x (I )+ ε)

p+1
= o(1), (4-29)

hence (4-28) is O(δ) for large n. This concludes the proof of the lemma for d ≥ 6.
The case d ≤ 5 is the same, but the nonlinear estimate is much simpler. In (4-13), [M̃]•2p is replaced

with [M]0, and by the standard Strichartz we have

‖γn‖[W ]•2∩[M]0 +‖
⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[W ∗(1)]•2 +‖h

2
nUn‖L1

t L2
x

(4-30)

and
‖ f ′(U∞+ γn)− f ′(U∞)‖[W ∗(1)]•2 . ‖(U∞, γn)‖

p
[W ]•2∩[M]0

‖γn‖[W ]•2∩[M]0

. (η+‖γn‖[W ]•2∩[M]0)
p
‖γn‖[W ]•2∩[M]0 . (4-31)
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Then, estimating ‖h2
nUn‖L1

t L2
x (0,S)

in the same way as for d ≥ 6, we obtain (4-14) without the last term.
Equation (4-28) is the same as above. �

Proof of Theorem 3.1. Let vn , Vn , V∞ be the free solutions defined by
⇀

Vn = ei t〈∇〉nψ,
⇁

V∞ = ei t |∇|ψ, Evn = TnVn((t − tn)/hn), (4-32)

and
M := ‖U∞‖[W ]•2(J ). (4-33)

First consider the case τ∞ =∞. Let 0< ε < 1 and choose S > 0 so large that

δ0 := ‖V∞‖([W ]•2∩[M]0)(S,∞) ≤ δ(ε,M), (4-34)

where δ( · , · ) is given by Lemma 4.2. Then Lemma 4.1 implies that

‖vn‖([W ]2∩[M]0)(hn S+tn,∞) . δ0 (4-35)

for large n. If δ0� 1, then the standard scattering argument for NLKG using the Strichartz norms implies
that u(n) exists on (hn S+ tn,∞), satisfying

‖
→u(n)−

→
vn‖L∞t L2

x (hn S+tn,∞)+‖u(n)− vn‖([W ]2∩[M]0)(hn S+tn,∞) . δ
2?−1
0 � δ0 (4-36)

and also, for NLW,

‖
⇁

U∞−
⇁

V∞‖L∞t L2
x (S,∞)+‖U∞− V∞‖([W ]•2∩[M]0)(S,∞) . δ

2?−1
0 � δ0. (4-37)

Thus we obtain

‖u(n)‖([W ]2∩[M]0)(hn S+tn,∞) . ‖V∞‖([W ]•2∩[M]0)(S,∞) ∼ ‖U∞‖([W ]•2∩[M]0)(S,∞) (4-38)

and, for large n,

‖
⇀

U(n)(S)−
⇀

Vn(S)‖L2
x
+‖

⇀

Vn(S)−
⇁

V∞(S)‖L2
x
+‖

⇁

V∞(S)−
⇁

U∞(S)‖L2
x
� δ0. (4-39)

The next step is to go from S to the negative time direction. If J is bounded from below, then
let S′ := inf J . Otherwise, choose S′ < S so that

‖U∞‖([W ]•2∩[M]0)(−∞,S′) < ε. (4-40)

Applying Lemma 4.2 to U∞ and U(n) backward in time from t = S, we obtain

‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (S′,S)+‖U(n)−U∞‖([W ]•2∩[M]0)(S′,S) < ε (4-41)

and ‖u(n)‖[W ]0(hn S′+tn,hn S+tn) . δ0 for large n.
If J is unbounded from below, we have still to go from S′ to −∞. The standard argument for small

data scattering of NLW for t→−∞ implies that

‖Re |∇|−1ei t |∇| ⇁U∞(S′)‖([W ]•2∩[M]0)(−∞,0) ∼ ‖U∞‖([W ]•2∩[M]0)(−∞,S′) < ε. (4-42)
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Then Lemma 4.1 applied backward in t implies, for large n,

‖Re 〈∇〉−1ei t〈∇〉Tn
⇁

U∞(S′)‖([W ]2∩[M]0)(−∞,0) . ε. (4-43)

Let wn be the solution of NLKG with →
wn(0) = Tn

⇀

U(n)(S′). Then the above estimate together with
‖
⇀

U(n)(S′)−
⇁

U∞(S′)‖L2
x
< ε and the scattering for NLKG implies

‖wn‖([W ]2∩[M]0)(−∞,0) . ε. (4-44)

Since wn = hnTnU(n)(t/hn + S′)= u(n)(t + hn S′+ tn), we deduce that

‖U(n)‖([W ]•2∩[M]0)(−∞,S
′) ∼ ‖u(n)‖([W ]•2∩[M]0)(−∞,hn S′+tn)

. ‖u(n)‖([W ]2∩[M]0)(−∞,hn S′+tn) = ‖wn‖([W ]2∩[M]0)(−∞,0) . ε. (4-45)

Thus we obtain, in the case τ∞ =∞,

‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖un‖[W ]0(hn J+tn) . ε+ δ0 (4-46)

for large n. Since ε and δ0 can be chosen as small as we wish, this implies

lim
n→∞
‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖un‖[W ]0(hn J+tn) = 0 (4-47)

and, by scaling,

‖u(n)‖([W ]2∩[M]0)(hn J+tn)∼‖U∞‖([W ]•2∩[M]0)(J )+‖u(n)‖[W ]0(hn J+tn)=‖U∞‖([W ]•2∩[M]0)(J )+o(1). (4-48)

Since S→∞ and S′→ inf J as ε, δ→+0, we also obtain

lim
n→∞
‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (I ) = 0 (4-49)

for any finite subinterval I . The case τ∞ =−∞ is the same by the time symmetry.
If τ∞ ∈ R then ‖

⇀

U(n)(τ∞)−
⇁

U∞(τ∞)‖L2
x
→ 0. Hence the same argument as we used above to go from

S to −∞ yields

0= lim
n→∞
‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (S′,τ∞) = lim

n→∞
‖U(n)−U∞‖([W ]•2∩[M]0)(inf J,τ∞) (4-50)

for any S′ ∈ (inf J, τ∞), and also on (τ∞, sup J ) by the time symmetry. Thus we obtain (4-47) and (4-49)
for any τ∞ ∈ [−∞,∞]. �
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