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FUTURE ASYMPTOTICS AND GEODESIC COMPLETENESS
OF POLARIZED T 2-SYMMETRIC SPACETIMES

PHILIPPE G. LEFLOCH AND JACQUES SMULEVICI

We investigate the late-time asymptotics of future-expanding, polarized vacuum Einstein spacetimes with
T 2-symmetry on T 3, which, by definition, admit two spacelike Killing fields. Our main result is the
existence of a stable asymptotic regime within this class; that is, we provide here a full description of
the late-time asymptotics of the solutions to the Einstein equations when the initial data set is close to
the asymptotic regime. Our proof is based on several energy functionals with lower-order corrections (as
is standard for such problems) and the derivation of a simplified model that we exhibit here. Roughly
speaking, the Einstein equations in the symmetry class under consideration consist of a system of wave
equations coupled to constraint equations plus a system of ordinary differential equations. The unknowns
involved in the system of ordinary equations are blowing up in the future timelike directions. One of
our main contributions is the derivation of novel effective equations for suitably renormalized unknowns.
Interestingly, this renormalization is not performed with respect to a fixed background, but does involve
the energy of the coupled system of wave equations. In addition, we construct an open set of initial data
that are arbitrarily close to the expected asymptotic behavior. We emphasize that, in comparison, the class
of Gowdy spacetimes exhibits a very different dynamical behavior to the one we uncover in the present
work for general polarized T 2-symmetric spacetimes. Furthermore, all the conclusions of this paper are
valid within the framework of weakly T 2-symmetric spacetimes previously introduced by the authors.

1. Introduction

This is the third of a series of papers [LeFloch and Smulevici 2015; 2016] devoted to the study of
weakly regular, T 2-symmetric, vacuum spacetimes. There has been extensive work on the mathematical
analysis of T 2-symmetric spacetimes with high regularity and we refer for instance to the introduction of
[Smulevici 2011] for related literature. Our motivation in studying these spacetimes is two-fold. First
of all, given the high degree of symmetry, one can study these solutions under much weaker regularity
than in the general case. In [LeFloch and Smulevici 2015], we introduced the notion of weakly regular,
T 2-symmetric, vacuum spacetime and we established a future-expanding, global existence theory in the
so-called areal coordinates — generalizing a previous result in the smooth setup [Berger et al. 1997]. Our
notion of weakly regular spacetimes extended a notion first proposed by Christodoulou [1993] (see also
[LeFloch and Sormani 2015]) for radially symmetric spacetimes and later by [LeFloch 2015; LeFloch
and Mardare 2007; LeFloch and Rendall 2011; LeFloch and Stewart 2005; LeFloch and Stewart 2011]
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for Gowdy symmetric spacetimes. See also the more recent developments in [Grubic and LeFloch 2013;
2015].

Our second motivation comes from the fact that, apart from special cases (see, for instance, [Chruściel
et al. 1990; Ringström 2004; 2009]), a complete description of the late-time asymptotics of T 2-symmetric
spacetimes has not been given yet even for smooth initial data sets. In fact, the techniques available until
now provide the existence of future developments, but are not sufficient to prove that these spacetimes
are future geodesically complete or not.

Recall that a T 2-symmetric, vacuum spacetime is a solution to the vacuum Einstein equations Ric(g)=0
arising from an initial data set which is assumed to be invariant under an action of the Lie group T 2. We
are concerned here with the study of T 2-symmetric spacetime arising from initial data given on T 3. For
such spacetimes, it is known [Chruściel 1990] that, unless the spacetime is flat (and therefore the solution
is trivial) the area of the orbits of symmetry, say R, admits a timelike gradient and, therefore, can be used
as time coordinate and leads one to define the so-called areal gauge. By convention, we can choose the
time direction so that R increases toward the future. In the present paper, we restrict attention to polarized
T 2-symmetric spacetimes, which are T 2-symmetric spacetimes for which the Killing fields generating
the T 2 symmetry can be chosen to be mutually orthogonal.

Our main result is a complete description of the future time-asymptotics of polarized, T 2-symmetric,
vacuum spacetimes, under the assumption that one starts sufficiently close to the expected asymptotic
regime. As a consequence, it follows that these spacetimes are future geodesically complete. We refer to
Theorems 7.1 and 8.1 for precise statements. These results are new even for smooth initial data, but we
also emphasize that all of our estimates are valid within the framework of weakly regular, T 2-symmetric
spacetimes introduced in [LeFloch and Smulevici 2015].

Prior to the present work, two important subclasses of T 2-symmetric solutions were studied in the
literature. First of all, when the initial data set is invariant not only by an action of T 2 on T 3 but by
the action of T 3 on itself, then the spacetime is homogeneous, i.e., admits three independent spatial
Killing fields. The Einstein equations then reduce to a set of ordinary differential equations. Second,
another subclass of solutions is the class of Gowdy spacetimes, which, by definition, are T 2-symmetric
solutions for which the family of 2-planes orthogonal to the orbits of symmetry is integrable. One of
the main differences between the Gowdy solutions and the general T 2-symmetric solutions is that the
equations in areal gauge are semilinear in the Gowdy case, while they are quasilinear in general. The
future time-asymptotics of Gowdy spacetimes were derived by Ringström [2004] (see also [Chruściel
et al. 1990] for polarized Gowdy spacetimes).

The following question thus arises. Are the asymptotics of homogeneous T 2-symmetric or Gowdy
spacetimes stable within the whole set of T 2-symmetric solutions? For homogeneous solutions, it turns
out that there are not even stable within the class of Gowdy spacetimes [Ringström 2004]. As far as
Gowdy spacetimes are concerned, the asymptotics derived in the present work show that they are not
stable within the set of T 2-symmetric solutions. For instance, according to Theorem 7.1, the norm of the
gradient of R behaves like R−2, while it decays exponentially in the Gowdy case. Of course, one question
which remains open is whether the future asymptotic behavior that we uncover here is stable, first within
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the whole class of T 2-symmetric solutions (i.e., for nonpolarized solutions) and, then, within the class of
solutions arising from arbitrary initial data defined on T 3. We observe that many of the estimates we
prove below can be generalized to the nonpolarized case.

Independently of this work, Ringström [2015] has recently obtained interesting and complementary
results on T 2-symmetric spacetimes. His main results can be summarized as follows. For any T 2-
symmetric spacetime that is nonflat and non-Gowdy, there is a certain geometric quantity1 which, if
bounded as R → +∞, implies that the solution is homogeneous. This result does not give sharp
asymptotics on the solutions, but it is a large-data result and therefore, it is so far the strongest result
available for T 2-symmetric spacetimes with arbitrary data. It implies, in particular, that the asymptotics
of non-Gowdy, nonhomogeneous solutions are quite different from the asymptotics of homogeneous or
Gowdy solutions. A second set of results proved in [Ringström 2015] concerns polarized T 2-symmetric
under a smallness assumption (which is slightly different from the initial data assumption that we make
here). A partial set of asymptotics is then obtained therein, while, in the present work, we derive a full set
of late-time asymptotics; it is interesting to point out that the methods of proof appear to be quite different.

The rest of this paper is organized as follows. In the following section, we introduce standard material
on T 2-symmetric and polarized solutions, which we will use throughout. In particular, we recall the
global existence of areal foliation for weakly regular initial data established in [LeFloch and Smulevici
2015]. Apart from this result, this paper is essentially self-contained. We conclude the preliminary section
by presenting the general strategy that we will use in order to derive the asymptotics. In Section 3, we
derive some formulas for the evolution of certain mean values and we also provide some estimates about
the commutator associated with the time derivative operator and the spatial average operator. Section 4 is
devoted to the analysis of the corrected energy. In Section 5, we introduce several renormalized unknowns,
derive a system of evolution equations for them and provide estimates on various error terms arising in
the analysis. In Section 6, we introduce and close a small bootstrap argument, linking all the previous
estimates together. In Sections 7 and 8, we present and give the proofs of the main results of this paper,
concerning the full set of asymptotics and the geodesic completeness of these spacetimes, respectively.
Finally, in Section 9, we construct an open set of initial data satisfying the assumptions of Theorem 7.1.

2. Preliminaries on T 2-symmetric polarized solutions

2A. Einstein equations in areal coordinates. Let (M, g) be a weakly regular, T 2-symmetric spacetime,
understood in the sense introduced in [LeFloch and Smulevici 2015]. From the existence theory therein,
we know that if R :M→ R denotes the area of the orbits of the symmetry group then its gradient vector
field ∇R is timelike (and future oriented thanks to the standard normalization adopted in [LeFloch and
Smulevici 2015]) and, consequently, the area can be used as a time coordinate. In these areal coordinates,
the variable R exhausts the interval [R0,+∞), where R0 > 0 is the (assumed) constant value of the area
on the initial slice and the metric takes the form

g = e2(η−U )(−d R2
+ a−2 dθ2)+ e2U (dx + A dy+ (G+ AH) dθ)2+ e−2U R2(dy+ H dθ)2. (2-1)

1In the notation of this paper, it coincides with the quantity P introduced in (2-19).
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Here, the independent variables x , y and θ belong to S1 (the 1-dimensional torus or circle) and the
metric coefficients U , A, η, a, G and H are functions of (R, θ), only. We will, for convenience in the
presentation, identify S1 with the interval [0, 2π ] and functions defined on S1 with 2π -periodic functions.
The vector fields ∂x and ∂y are Killing fields for the above metric and so are any linear combinations of
∂x and ∂y .

We are interested here in polarized T 2-symmetric spacetimes, defined as follows.

Definition 2.1. A T 2-symmetric spacetime is said to be polarized if one can choose linear combinations
X and Y of the vector fields ∂x and ∂y generating the T 2 symmetry such that g(X, Y )= 0.

For a polarized spacetime, it follows that the metric can be rewritten (possibly after a change of the
coordinates x and y) as

g = e2(η−U )(−d R2
+ a−2 dθ2)+ e2U (dx +G dθ)2+ e−2U R2(dy+ H dθ)2. (2-2)

Now, the Einstein equations for T 2-symmetric spacetimes written in areal coordinates have been
derived in [Berger et al. 1997] for smooth solutions (see also [Chruściel 1990] for the existence of areal
time). In [LeFloch and Smulevici 2015], we introduced the weak version of the Einstein equations for
weakly regular, T 2-symmetric spacetimes and we proved that, using areal coordinates, we could still
reduce the Einstein equations to those obtained in [Berger et al. 1997]. In the polarized case, we are thus
left with the following system of partial differential equations:

(1) Three evolution equations for the metric coefficients U , η and a:

(Ra−1UR)R − (RaUθ )θ = 0, (2-3)

(a−1ηR)R − (aηθ )θ =�η−
1

R3/2 (R
3/2(a−1)R)R, (2-4)

(2 ln a)R =−
K 2

R3 e2η, (2-5)

where K is a real constant and �η := −a−1U 2
R + aU 2

θ .

(2) Two constraint equations for the metric coefficient η:

ηR +
K 2

4R3 e2η
= a RE, (2-6)

ηθ = RF, (2-7)

where E := a−1U 2
R + aU 2

θ and F := 2URUθ .

(3) Two equations for the twists:

G R = 0 and HR =
K
R3 a−1e2η. (2-8)

Here, K is the twist constant and K = 0 corresponds geometrically to the integrability of the family of
2-planes orthogonal to ∂x and ∂y . The special solutions with K = 0 are called Gowdy spacetimes (with
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T 3 topology). Since the dynamics of Gowdy spacetimes are well known [Ringström 2004], we focus
here exclusively on the case K 6= 0.

Note that the metric functions G and H do not appear in the equations apart from (2-8). These latter
equations can simply be integrated in R, once enough information on their right-hand sides is obtained.
They will therefore be ignored in most parts of this paper. Note also that (2-4) is actually a redundant
equation, i.e., can be deduced from the other equations.2

Finally, observe that the identity (
e2η

a

)
R
= 2REe2η (2-9)

will be useful later in this paper; it can be easily derived from the Einstein equations (2-5) and (2-6).

2B. Global existence in areal coordinates. In [LeFloch and Smulevici 2015], we proved local and
global existence results for general T 2-symmetric spacetimes in areal coordinates. In the specific case of
polarized, T 2-symmetric spacetimes, these results imply the following conclusion:

Theorem 2.2 (global existence theory in areal coordinates). Fix any constants K , R0 > 0. Consider any
initial data (U0,U1) ∈ H 1(S1)× L2(S1), a0 ∈ W 2,1(S1) and η0 ∈ W 1,1(S1) such that a0 > 0. Suppose
moreover that the constraint equation (2-7) is satisfied initially, i.e.,

∂θ (η0)= 2R0U1 ∂θ (U0). (2-10)

Let C be the class of functions (U, η, a) such that

U ∈ C1([R0,+∞), L2(S1))∩C0([R0,+∞); H 1(S1)),

η ∈ C0([R0,+∞);W 1,1(S1)),

a ∈ C0([R0,+∞);W 2,1(S1)).

Then there exists a unique solution (U, η, a) ∈ C of the Einstein equations (2-3)–(2-7) which assumes the
given initial data at R = R0, in the sense

U (R0)=U0, UR(R0)=U1, η(R0)= η0, a(R0)= a0.

Moreover, on any compact time interval, the solution can be uniformly approximated by smooth solutions
in the norm associated with C.

Since all of our estimates here will be compatible with the density property stated at the end of the
above theorem, it is sufficient to perform our analysis by assuming our initial data to be smooth.

2More precisely, (2-4) can be obtained by multiplying (2-6) and (2-7) by a−1 and a, respectively, differentiating the resulting
equations in R and θ and taking their differences before replacing second derivatives of U and first derivatives of a using the
evolution equations.
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2C. Energy functionals. Important control on the metric coefficients, mostly on their first-order deriva-
tives, is obtained by analyzing the energy functionals

E (R) :=
∫

S1
E(R, θ) dθ, E = a−1U 2

R + a U 2
θ , (2-11)

and

EK (R) :=
∫

S1
EK (R, θ) dθ, EK := E +

K 2

4R4 a−1e2η. (2-12)

Using the Einstein equations (2-3)–(2-7), it follows that both functionals are nonincreasing in time, with

d
d R

E (R)=−
K 2

2R3

∫
S1

Ee2η dθ −
2
R

∫
S1

a−1(UR)
2 dθ,

d
d R

EK (R)=−
K 2

R5

∫
S1

a−1e2η dθ −
2
R

∫
S1

a−1(UR)
2 dθ.

(2-13)

As a direct consequence, we have the following result:

Lemma 2.3 (uniform energy bounds for T 2-symmetric spacetimes). The following uniform bounds hold:

sup
R∈[R0,+∞)

E (R)≤ E (R0) and sup
R∈[R0,+∞)

EK (R)≤ EK (R0), (2-14)

as well as the spacetime bounds∫
+∞

R0

∫
S1
(a−1cU

0 (UR)
2
+ acU

1 (Uθ )
2) d R dθ ≤ E (R0), (2-15)∫

+∞

R0

K 2

R5

∫
S1

e2η a−1 d R dθ ≤ EK (R0), (2-16)

with

cU
0 :=

2
R
+

K 2

2R3 e2η and cU
1 :=

K 2

2R3 e2η.

2D. Heuristics and general strategy. To understand the asymptotic behavior of the solutions to wave
equations such as (2-3), it is important to note that, while for the flat wave operator in 1+ 1 dimensions
there is no decay of solutions, the R-weights present in (2-3) reflect some expansion of our spacetime
and that, in general, waves decay on expanding spacetimes.

The general strategy to capture this decay is to first observe that the global energy dissipation
bound (2-15) associated with the energy functional E (R) gives an integrated energy decay estimate
but with weaker weights for Uθ than for UR (see the missing 2/R in cU

1 compared to cU
0 ). To match the

weights between UR and Uθ , we will work instead with the modified energy functional

Ê (R) := E (R)+G U (R) (2-17)

with

G U
:=

1
R

∫
S1
(U −〈U 〉)URa−1 dθ,
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in which the average 〈 f 〉 of a function f = f (θ) is not defined with respect to the flat measure dθ but
with respect to a weighted measure a−1 dθ , i.e.,

〈 f 〉 :=

∫
S1 f a−1 dθ∫
S1 a−1 dθ

. (2-18)

Our strategy is then to “trade” a time derivative for a space derivative. This method of proof was previously
used in [Ringström 2004; Choquet-Bruhat and Moncrief 2001; Choquet-Bruhat 2003].

The following notation will be useful. We introduce the length P of the circle S1 with respect to the
measure a−1 dθ , that is,

P(R) :=
∫ 2π

0
a−1 dθ, (2-19)

which we refer to as the perimeter. The geometric interpretation of this quantity is that the principal
symbol of the wave operator appearing in the wave equation (2-3) for U is that of the 2-dimensional
metric

ds2
=−d R2

+ a−2 dθ2.

Thus, P is the volume of the constant-R slice for this metric.
Naively, one may expect the following behavior as R→+∞. In view of the energy identity (2-13)

satisfied by E and focusing on the second integral term, one may expect that

d
d R

E ≤−
2
R

E (modulo higher-order terms),

so that E should decay like 1/R2. This behavior is indeed correct for spatially homogeneous spacetimes,
as can be checked directly. However, for nonspatially homogeneous solutions, a space derivative must be
recovered from a time derivative, using the corrected energy Ê defined in (2-17), as we already explained
above. This would lead to a rate of decay determined by

d
d R

Ê (R)≤−
1
R

Ê (R) (modulo higher-order terms),

so that Ê should decay like 1/R. If one can then check that the correction term in Ê is of order o(1/R),
it should follow that E (R) is of order 1/R. This is indeed the rate of decay established by Ringström
[2004] for (sufficiently regular) Gowdy spacetimes.

For the more general class of spacetimes under consideration in the present paper, and due to the
variation of the metric coefficients a and η, the behavior E ∼ 1/R is not consistent with the field equations,
as we now check formally. At this stage of the discussion, we are working under the (later invalidated,
below) assumption that the first term in (2-13) is negligible, say specifically

‖e2η
‖L∞(S1)

2R3 .
1

R1+ε , ε > 0. (2-20)

From (2-5) we would deduce

(ln a)R =−K 2 e2η

2R3 ∈ L1
R,
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hence the coefficient a would then admit a finite limit as R→+∞. Next, in view of

ηR =−
K 2

2
e2η

2R3 + a RE,

in which
∫

S1 RE dθ is bounded thanks to our energy assumption, it would then follow that
∫

S1 ηR behaves
like 1 and thus

∫
S1
η ∼ R (modulo a multiplicative constant). In turn, this invalidates our original

assumption (2-20).
This means that the first term in (2-13) should not be neglected and that it contributes significantly to

the energy decay. We will prove that, modulo an error term due to the spatial variation of η, this term can
be rewritten as −(PR/P)E , where P is the perimeter defined by (2-19).

Taking this into account, it follows, assuming that all the error terms can be controlled, that the rescaled
energy

F :=PÊ (2-21)

should decay like 1/R and, in other words, the energy Ê should decay like 1/P R. This brings more
decay into our analysis, provided the perimeter P is growing as R→+∞— as we will actually show
later. Indeed, we will establish that the perimeter and metric coefficients have the asymptotic behavior
(possibly up to multiplicative constants)

P(R)∼ R1/2, PR(R)∼ R−1/2, e2η
∼ R2, a ∼ R−1/2. (2-22)

For the energy, we will therefore have E ∼ R−3/2. Surprisingly, all the multiplicative constants in the
above asymptotic behavior are linked to each other. For instance, we will show that R2P−1E → 5

4
as R→+∞. One of the main difficulties lies in fact in trying to understand these relations. Thus, our
work really consists of three ingredients:

(1) A version of the corrected energy functionals adapted to polarized, T 2-symmetric spacetimes
(Sections 3 and 4).

(2) A derivation and analysis of a dynamical system to understand the interplay between P and the
energy functionals (Section 5).

(3) Estimates on all the error terms involved in the above two steps and the interplay between all the
previous estimates. Since all the estimates involved in the above estimates depend on each other, we
use a small bootstrap argument to obtain closure (Section 6).

Once these elements have been obtained, deriving the asymptotics of the solutions consists mostly
in revisiting the previous estimates in the proper order (see Section 7). Finally, we prove the geo-
desic completeness by using the approach already developed in [LeFloch and Smulevici 2016] (see
Section 8).
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3. Evolution of the mean values

3A. The length variable. In addition to the perimeter P(R) introduced in (2-19), the metric coefficient a
also determines a length function

ϑ(θ, R) :=
∫ θ

0
a−1 dθ, θ ∈ S1, (3-1)

and its inverse 2=2(ϑ, R) (for each fixed R). In other words, we set 2(ϑ(θ, R), R)= θ for all θ ∈ S1,
so that

2(ϑ, R)=
∫ ϑ

0
a(2(ϑ ′, R), R) dϑ ′, 2(P(R), R)= 2π. (3-2)

Using the change of variable determined by the length function, we can parameterize any function
f = f (R, θ) into f̃ = f̃ (R, ϑ), defined by

f̃ (R, ϑ) := f (R,2(ϑ, R)). (3-3)

This is nothing but a change of coordinates from (R, θ) to (R, ϑ), but we insist on keeping the “tilde
notation” in order to avoid confusion (when taking averages and R-derivatives).

The average of any L1(S1) function f is now naturally computed with respect to the measure dϑ , that
is,

〈 f̃ (R)〉 :=
1

P(R)

∫ P(R)

0
f̃ (R) dϑ.=

1
P(R)

∫ 2π

0
f (R)a(R)−1 dθ = 〈 f (R)〉, (3-4)

which, as stated, obviously coincides with 〈 f (R)〉 as defined by (2-18). Note that the periodicity property
is preserved in the new variable, that is,

f̃ (R, ϑ +P(R))= f̃ (R, ϑ)

for all relevant values of R and ϑ .
Using the above notation, we can for instance rewrite the correction G U introduced in (2-17) in the

form

G U (R) :=
1
R

∫ P(R)

0

(
Ũ (R)−〈Ũ (R)〉

)
ŨR(R) dϑ. (3-5)

This form has some advantages when differentiating with respect to R, since it directly involves the
perimeter and its derivative, which have a geometric meaning.

3B. Derivatives of the mean values. We will be taking time derivatives of the above quantities but,
since the time-derivative operator and the spatial averaging operator do not commute, an analysis of the
corresponding “commutator” will be required. The following properties will be used throughout the rest
of this article.
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Lemma 3.1 (general identities for the mean values). For any (sufficiently regular) function f = f (R, θ),
one has

d
d R
〈 f̃ 〉 = 〈 f̃R〉+

K 2

2R3 〈 f̃ e2η〉−
PR

P
〈 f̃ 〉,

d
d R

(P〈 f̃ 〉)=P〈 f̃R〉+P
K 2

2R3 〈 f̃ e2η〉,

in which f̃ is defined by (3-3).

Proof. From the definition

〈 f̃ 〉 =
1
P

∫ P

0
f̃ dϑ =

1
P

∫ 2π

0
f (R, θ)a−1 dθ,

we deduce that
d

d R
〈 f̃ 〉 = 〈 f̃R〉+

1
P

∫ 2π

0
f (a−1)R dθ −

PR

P
〈 f̃ 〉

= 〈 f̃R〉+
1
P

∫ 2π

0
f

K 2e2η

2R3 a−1 dθ −
PR

P
〈 f̃ 〉

= 〈 f̃R〉+
K 2

2R3 〈 f̃ e2η〉−
PR

P
〈 f̃ 〉,

which leads us to the two identities stated in the lemma. �

The above lemma allows us to derive the following estimate:

Lemma 3.2 (commutator estimate). The commutator associated with the time-differentiation and averag-
ing operators satisfies, for all functions f ,∣∣∣∣ d

d R
〈 f̃ 〉− 〈 f̃R〉

∣∣∣∣≤ πK 2

R3 〈| f̃ |〉‖(e
2η)θ‖L1(S1).

Proof. From the above lemma, the expression of PR and the evolution equation satisfied by a, we deduce∣∣∣∣ d
d R
〈 f̃ 〉− 〈 f̃R〉

∣∣∣∣≤ K 2

2R3P2

∫ 2π

0
| f |a−1(R, θ)

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2ηa−1(R, θ ′) dθ ′

∣∣∣∣ dθ

≤
πK 2

R3P
〈| f̃ |〉 sup

θ∈S1

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2η(R, θ ′)a−1(R, θ ′) dθ ′

∣∣∣∣
with

sup
θ∈S1

∣∣∣∣e2η(R, θ)P −
∫ 2π

0
e2η(R, θ ′)a−1(R, θ ′) dθ ′

∣∣∣∣≤P
(
sup
S1

e2η
−min

S1
e2η)
≤P‖(e2η)θ‖L1(S1). �

The following conserved quantity will also be useful in our analysis. It follows simply after a global
integration in space of the wave equation (2-3) and an integration in R on [R1, R].

Lemma 3.3. For all R ≥ R1, the following conservation law holds:

RP〈ŨR〉 = R1P(R1)〈ŨR〉(R1).
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4. Evolution of the modified energy functional

4A. Evolution of correction terms. Using Lemma 3.1, we can compute the time derivative of the
corrector G U in (3-5); indeed:

d
d R

G U
=−

1
R

G U
+

1
R

(∫ 2π

0
(U −〈Ũ 〉)URa−1 dθ

)
R

=−
1
R

G U
+

1
R

∫ 2π

0
U 2

Ra−1 dθ +
1
R

∫ P

0

(
−〈ŨR〉−

K 2

2R3 〈Ũe2η〉+
PR

P
〈Ũ 〉

)
ŨR dϑ

+
1
R

∫ 2π

0
(U −〈Ũ 〉)(URa−1)R dθ,

so that, by using the field equation (2-3) satisfied by U ,

d
d R

G U
=−

1
R

G U
+

1
R

∫ P

0
Ũ 2

R dϑ −
P

R
(〈ŨR〉)

2
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉

+
PR

R
〈Ũ 〉〈ŨR〉+

1
R

∫ 2π

0
(U −〈Ũ 〉)

(
−

URa−1

R
+ (aUθ )θ

)
dθ.

Integrating by parts the last term, we obtain

−
2
R

G U
+

1
R

∫ P

0
Ũ 2

R dϑ −
1
R

∫ P

0
Ũ 2
ϑ dϑ −

P

R
(〈ŨR〉)

2
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉+
PR

R
〈Ũ 〉〈ŨR〉.

After reorganizing some of the terms, this leads us to

d
d R

G U
=−

1
R

∫ P

0
Ũ 2
ϑ dϑ +

1
R

∫ P

0
Ũ 2

R dϑ −
1
R

G U
−

PR

P
G U
+�G U , (4-1)

with

�G U =
PR

P
G U
−

P

R
(〈ŨR〉)

2
−

1
R

G U
−

K 2

2R4 P〈ŨR〉〈Ũe2η〉+
PR

R
〈Ũ 〉〈ŨR〉. (4-2)

The term �G U will be shown to be an “error term”, while the remaining terms in the right-hand side
of (4-1) will contribute to the derivation of a sharp energy decay estimate. In (4-1) and (4-2), we have
added and subtracted the term (PR/P)G U , as this will simplify some of our estimates.

4B. Evolution of the corrected energy. Summing together the contributions of the energy and the
correction G U , we find

d
d R

(E +G U )=−
K 2

2R3

∫ 2π

0
Ee2η dθ −

2
R

∫
S1
(a−1U 2

R) dθ

+
1
R

∫ 2π

0
a−1U 2

R dθ −
1
R

∫ P

0
Ũ 2
ϑ dϑ −

PR

P
G U
−

1
R

G U
+�G U

=−
PR

P
(E +G U )−

1
R
(E +G U )+�E +�G U , (4-3)
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where the error terms are �G U , defined by (4-2), and

�E =
PR

P
E −

K 2

2R3

∫ 2π

0
Ee2η dθ.

4C. Estimate for the energy correction. We will need the following 1-dimensional Poincaré (or Wirtinger)
inequality: for any a > 0, if f is an a-periodic function in H 1(0, a) and has mean value 0 on this interval,
then ∫

[0,a]
f 2
≤

a2

4π2

∫
[0,a]

f ′ 2. (4-4)

This is easily checked by, for instance, using a Fourier decomposition of f . Using the above notation, we
have the following lemma:

Lemma 4.1 (estimate of the G U correction of the energy). We have

|G U (R)| ≤
P(R)
4πR

E (R).

Proof. We apply the inequality ab≤ 1
2(a

2
+b2) to the integrand of RG U , but we insert weights of P/(2π)

so as to obtain

|RG U
| ≤

P

4π

∫ P

0
Ũ 2

R dϑ+
2π
2P

∫ P

0
(Ũ−〈Ũ 〉)2 dϑ ≤

P

4π

∫ 2π

0
U 2

Ra−1 dθ+
P

4π

∫ P

0
Ũ 2
ϑ dϑ =

P

4π
E . �

4D. Estimates for the error terms. In this section, we estimate all the error arising in the corrected
energy formula (4-3).

Lemma 4.2 (estimate for the |�E | error term). We have

|�E | ≤ E
K 2

2R3

∫ 2π

0
2REe2η

= E
K 2

2R3

∫ 2π

0

(
e2η

a

)
R
.

Proof. Recall that
PR

P
=

K 2

2R3

∫ 2π

0
e2ηa−1 dθ

(∫ 2π

0
a−1 dθ

)−1

,

so that∣∣∣∣− K 2

2R3

∫ 2π

0
Ee2η dθ +

PR

P
E

∣∣∣∣≤ K 2

2R3P

∫ 2π

0
E(R, θ) dθ

∫ 2π

0
a−1(R, θ ′)|e2η(R, θ ′)− e2η(R, θ)| dθ ′

≤ E
K 2

2R3

∫ 2π

0
|2ηθ |e2η dθ

≤ E
K 2

2R3

∫ 2π

0
2REe2η dθ = E

K 2

2R3

∫ 2π

0

(
e2η

a

)
R

dθ,

where we have used the constraint equation (2-7) for ηθ and the identity (2-9). �
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Next, we analyze the error term �G U . It is convenient to split it into three components as follows:
�G U = I1+ I2+ I3, where I1, I2 and I3 are defined as

I1 =−
1
R

G U ,

I2 =
PR

P
G U
+

PR

R
〈Ũ 〉〈ŨR〉−

K 2

2R4 P〈ŨR〉〈Ũe2η〉,

I3 =−
P

R
(〈ŨR〉)

2.

Lemma 4.3. The following estimates hold:

|I1| ≤
P(R)
4πR2 E (R),

|I2| ≤
PR

R
E ,

|I3| ≤
A

R3P(R)
,

where A is a nonnegative constant determined by the initial data:

A= R2
1P(R1)

2(〈ŨR〉)
2(R1).

Proof. The estimates on I1 and I3 follow immediately from Lemmas 4.1 and 3.3, respectively. We then
estimate I2 as follows. Note first that

I2 =
PR

P
G U
+

PR

R
〈Ũ 〉〈ŨR〉−

K 2

2R4 P〈ŨR〉〈Ũe2η〉

=
K 2

2R4P

∫ 2π

0
UR(R, θ ′)a−1(R, θ ′)

(∫ 2π

0
e2η(R, θ)a−1(R, θ)[U (R, θ ′)−U (R, θ)] dθ

)
dθ ′;

hence,

|I2| ≤
K 2

2R4P

∫ P

0
|ŨR| dϑ

∫ P

0
e2η̃ dϑ

∫ P

0
|Ũϑ | dϑ ≤

PR

RP
(E 1/2P1/2)2 ≤

PR

R
E . �

4E. Combining the estimates for the corrected energy. Collecting all the estimates for the error terms
above and noting that I3 has a sign, we obtain the estimate

d
d R

(E +G U )+

(
1
R
+

PR

P

)
(E +G U )≤

P

4πR2 E +
PR

R
E + E

K 2

2R3

∫ 2π

0

(
e2η

a

)
R
,

from which it follows that

RP(E +G U )(R)

≤ R0P(E +G U )(R0)+

∫ R

R0

P2E

4πR′
d R′+

∫ R

R0

PRPE d R′+
∫ R

R0

PE
K 2

2R′2

∫ 2π

0

(
e2η

a

)
R

dθ d R′.
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Similarly, we can obtain

d
d R

(RP(E +G U ))≥−
A

R2 −
P2

4πR
E +PPRE +PE

K 2

2R2

∫ 2π

0

(
e2η

a

)
R
, (4-5)

leading to

RP(E +G U )(R)≥ R0P(E +G U )(R0)−

∫ R

R0

P2E

4πR′
d R′

−

∫ R

R0

PRPE d R′−
∫ R

R0

PE
K 2

2R′2

∫ 2π

0

(
e2η

a

)
R

dθ d R′−
∫ R

R0

A

R′ 2
d R′,

where A is the constant in Lemma 4.3.

5. A dynamical system for the renormalized unknowns

5A. The dynamical system. In the previous section, we have obtained differential inequalities for the
quantity P(E +G U ), with error terms depending mostly on E and P . In this section, we will try to obtain
effective equations in order to control the asymptotic behavior of P. For convenience, we introduce the
notation

F :=PE and G :=P(E +G U ).

We have thus seen that G satisfies “good” differential inequalities while it is ultimately F that we want to
control, as it is a manifestly coercive quantity (contrary to G). We will rely on the guess that the function G

decays like 1/R, but we will not use yet the differential inequalities derived for G in the previous section.
In fact, G will appear here only in the form RG′/G.

The system of ODEs: spatial integration and first error terms. Let Q=
∫

S1
1
2 K 2e2ηa−1 dθ . After integra-

tion in the spatial variable of the Einstein equations (2-5)–(2-6), we obtain

PR =
Q

R3 , (5-1)

QR = 2RFQP−2
+�Q, (5-2)

where �Q is given by

�Q = 2R
(∫

S1

K 2

2
Ee2η
−P−1E Q

)
.

As in Lemma 4.2, �Q satisfies the estimate

|�Q| ≤ RK 2E

∫ 2π

0

(
e2η

a

)
R

dθ = 2RE QR. (5-3)

Renormalization. According to our previous discussion, we expect P to blow-up in the limit. One can
check heuristically that “P growing like R1/2” and “Q growing like R5/2” seem the only possibilities
(as powers of R) compatible with the equations, under the assumption that PE behaves like R−1 (see
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the discussion at the end of Section 2D). Thus, one may try to introduce variables c̃ = P R−1/2 and
d̃ = QR−5/2 and prove that c̃ and d̃ converge to some finite values. Using (5-2), the equation for d̃ is then

d̃R =
d̃
R

(
2R2FP−2

−
5
2

)
+�Q.

From this equation and the coupled equation for c̃, it is not clear whether c̃ and d̃ converge. However,
assuming �Q to be a negligible term, it suggests that 2RFP−2

→
5
2 as R → +∞. Equivalently, it

suggests that P/RF1/2
→

2
√

5
. Similarly, one can guess that Q/(R3F1/2)→ 1

√
5
. We thus introduce a

new set of variables c and d , replacing P and Q, based on these considerations.
However, since it is actually G that satisfies “good” differential inequalities, we define c and d as

c :=
P

R
√

G
, (5-4)

d :=
Q

R3
√

G
, (5-5)

where we recall that G=P(E +G U ). Once again, we emphasize that, while G behaves asymptotically
as F, it is important to use this normalization rather than the one based on F, since the normalization
procedure will introduce a derivative of G in the equation and it is this derivative (rather than that of F)
that we can control directly.

Note that, while F is manifestly nonnegative, this is not the case for G. In the rest of this section, we
will assume that G > 0, which ensures that all the computations below (as well as the definitions of c
and d) make sense. In the next section, a lower bound on G using a bootstrap argument will be recovered.

An easy computation shows that (c, d) satisfies

c′ =
d
R
−

c
R
−

c
2

G′

G
, (5-6)

d ′ =
F

G

2dc−2

R
−

3
R

d −
d
2

G′

G
+

�Q

R3
√

G
. (5-7)

To find the correct limits for (c, d), let us first consider, the ordinary differential system

c′ =
d
R
−

c
R
+

c
2R
,

d ′ =
2dc−2

R
−

3
R

d +
d

2R
,

(5-8)

which is obtained from the previous one by replacing F/G by 1, dropping the error term �Q/(R3
√

G)

and replacing −G′/G by 1/R.
Looking now for a static point (c∞, d∞) of the above system, we find that there is only one solution:

c∞ = 2
√

5
and d∞ = 1

√
5
. Thus, let us introduce c1 and d1 by

c1 = c−
2
√

5
and d1 = d −

1
√

5
. (5-9)
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We finally deduce the equations satisfied by c1 and d1 from the equations (5-6)–(5-7); that is,

c′1 =
d1+

1
√

5

R
−

2
√

5
+ c1

R
−

2
√

5
+ c1

2
G′

G
, (5-10)

d ′1 =
F

G

2
R

d1+
1
√

5( 2
√

5
+ c1

)2 −
3
R

(
d1+

1
√

5

)
−

(
d1+

1
√

5

)
G′

2G
+

�Q

R3
√

G
. (5-11)

Looking first at (5-10), we rewrite it in the form

c′1 =
1
R

d1−
1
2

c1

R
−

c1

2R

(
1+ R

G′

G

)
−

1

R
√

5

(
1+ R

G′

G

)
.

From (5-11), elementary calculations (keeping in mind the linearization of the system) lead us to

d ′1 =−
5

2R
c1+

d1

R

(
−

1
2
−

G′

2G
R
)
−

1
R

1

2
√

5

(
1+

RG′

G

)

+
1

R
(
c1+

2
√

5

)2 f (d1, c1)+
2
R

(
F

G
− 1

) d1+
1
√

5( 2
√

5
+ c1

)2 +
�Q

R3
√

G
,

where f (c1, d1) is a polynomial in c1 and d1 with vanishing linear part (the first terms are quadratic in c1

and d1). Thus, we have

d ′1 =−
5

2R
c1+�

d
lin+�

d
1 +�

d
2 +�

d
3 +�

d
4 , (5-12)

c′1 =
d1

R
−

c1

2R
+�c

lin+�
c
1, (5-13)

where the terms �c,d
i contain all the error terms, i.e.,

�d
lin =−

d1

2R

(
1+

G′

G
R
)
, (5-14)

�d
1 =−

1
R

1

2
√

5

(
1+

RG′

G

)
, (5-15)

�d
2 =

1

R
(
c1+

2
√

5

)2 f (d1, c1), (5-16)

�d
3 =

2
R

(
F

G
− 1

) d1+
1
√

5( 2
√

5
+ c1

)2 , (5-17)

�d
4 =

�Q

R3
√

G
, (5-18)

�c
lin =−

c1

2R

(
1+

RG′

G

)
, (5-19)

�c
1 =−

1

R
√

5

(
1+ R

G′

G

)
. (5-20)
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Setting now u :=
( c1

d1

)
, we rewrite the system under consideration as

u′ =
1
R

((
−

1
2 1
−

5
2 0

)
−

1
2

(
1+

G′R
G

)
I2

)
u+ω,

where ω contains all the terms �c,d
i apart from �d

lin and �c
lin and I2 is the identity matrix. Consider the

matrix

A =
(
−

1
2 1
−

5
2 0

)
and also let

B =−1
2

(
1+

G′R
G

)
I2.

Then, we find

u = exp
∫ R

R0

A+ B
R′

d R′ u(R0)+

∫ R

R0

[
exp

∫ R

R′

A+ B
R′′

d R′′
]
ω(R′) d R′. (5-21)

Note next that

exp
∫ R

R0

A+ B
R′

d R′ = exp
∫ R

R0

A
R′

d R′ exp
∫ R

R0

B
R′

d R′ = exp
∫ R

R0

A
R′

d R′
(

R0G(R0)

RG(R)

)1
2

and that the eigenvalues of A are λ± =− 1
4 ±

i
√

39
4 . Hence,∥∥∥∥exp

∫ R

R0

A
R′

d R′
∥∥∥∥≤ CA

(
R0

R

)1
4

for some constant CA > 0 depending on the matrix A and we have the following result:

Proposition 5.1. Provided the corrected energy G is positive for all R ∈ [R0, R1], one has, for all
R ∈ [R0, R1],

|u(R)| ≤ CA

(
R0

R

)1
4
(

R0G(R0)

RG(R)

)1
2

|u(R0)| +

∫ R

R0

CA

(
R′

R

)1
4
(

R′G(R′)
RG(R)

)1
2

|ω(R′)| d R′, (5-22)

where

|ω| ≤ C(|�d
1 | + |�

d
2 | + |�

d
3 | + |�

d
4 | + |�

c
1|).

It remains to combine the above inequality with our differential inequalities for G and estimates on the
error terms.

5B. Source terms of the dynamical system. We now combine our results in the latter two sections and
we estimate the source terms of the dynamical system. We will assume here that G is strictly positive, a
property that we shall retrieve below in a bootstrap argument.
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Estimate for |�Q/(R3
√

G)|. Since we have

Q= d R3
√

G and QR = dR R3
√

G+ 3 d R2
√

G+ d
R3

2
G′
√

G
,

it follows that ∣∣∣∣ �Q

R3
√

G

∣∣∣∣≤ 2E R dR + 6RE
d
R
+ RE d

G′

G
.

Observe that, while some terms in the right-hand side have no sign, their sum does (because QR is
positive).

Estimating RG′/G+ 1. From the corrected energy estimate, we get∣∣∣∣G′

P
+

G

P R

∣∣∣∣≤ P

4πR2 E +
A

R3P(R)
+ E

K 2

2R3

(∫
S1

e2η

a

)
R
+

PR

R
E ;

hence,∣∣∣∣ RG′

G
+1
∣∣∣∣≤ P

4πR
F

G
+

A

GR2 +
F

G

K 2

2R2

(∫
S1

e2η

a

)
R
+

F

G
PR ≤

A

GR2 +
F

G

QR

R2 +
F

G

√
G

4π
c+

F

G

√
Gd. (5-23)

Estimates for �i
1. It follows from the estimate (5-23) and the definition of �c

1 and �d
1 that there exists a

constant C > 0 such that, for i = d, c,

|�i
1| ≤

C
R

(
A

GR2 +
F

G

QR

R2 +
F

G

√
G

4π
c+

F

G

√
Gd
)
. (5-24)

Estimates for FG−1 and �d
3 . Using Lemma 4.1, we have∣∣∣∣FG − 1

∣∣∣∣= ∣∣∣∣F−G

G

∣∣∣∣= ∣∣∣∣PG U

G

∣∣∣∣≤ 1
4πR

P2E

G
≤

P

4πR
F

G
. (5-25)

As a consequence, provided that c1 is sufficiently small — so that 2
√

5
+ c1 is bounded from below by,

say, 1
√

5
— we find

|�d
3 | ≤ C(|d1| + 1)

P

4πR2

F

G
(5-26)

for some constant C > 0.
Note that at this point, we have estimates on all the error terms arising in (5-14)–(5-20), apart from �d

2
which will be estimated directly in the next section (using a smallness assumption on c, d).

Estimates on G. After integration of the corrected energy estimate, we find

|RG− R0G(R0)| ≤A

(
1
R0
−

1
R

)
+

∫ R

R0

(
P

4πR′
F+

FQR

R′ 2
+

FQ

R′ 3

)
d R′. (5-27)

The last term can be rewritten in terms of PR , giving

|RG− R0G(R0)| ≤A

(
1
R0
−

1
R

)
+

∫ R

R0

(
P

4πR′
F+

FQR

R′ 2
+FPR

)
d R′. (5-28)
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6. Small data theory

6A. Assumption on the initial data. We now restrict ourselves to small data in the following sense. Fix
C1 > 0, A ∈ [0,+∞) and R0 > 0, as well as some ε > 0. Consider the class of initial data satisfying

R0G(R0)−
A

R0
≥ C1 > 0, (6-1)

|c1|(R0)≤ ε, (6-2)

|d1|(R0)≤ ε, (6-3)∣∣∣∣FG − 1
∣∣∣∣(R0)≤ 1, (6-4)

G(R0)+
A

R2
0
≤ ε, (6-5)

where A= R2
0

(∫
S1 a−1UR

)2
(R0).

Note that the first assumption implies in particular that G> 0. The second and third assumptions imply
that P and PR are close to their expected asymptotic behavior (which depends on E , hence the need
for normalized quantities). The fourth condition implies that the correction term G U is “not too large”
compared to the energy E . The last inequality means that the (rescaled) energy is small.

Let Rb be the largest time R such that the following bootstrap assumptions are valid in B := [R0, Rb).
For all R ∈B, we have

|c1|(R) < ε1/4, (6-6)

|d1|(R) < ε1/4, (6-7)∣∣∣∣FG − 1
∣∣∣∣(R) < 2, (6-8)

0< G(R0) <

(
R0G(R0)+

A

R0

)
2
R
. (6-9)

The set B is clearly open in [R0,+∞). Moreover, B is nonempty, by the smallness assumptions.
As an immediate consequence of (6-6) and (6-7), if ε is sufficiently small then we have, in B,

1
c2 (R0)=

1(
c1+

2
√

5

)2 (R0)≤ 2, (6-10)

|c| =
∣∣∣∣ 2
√

5
+ c1

∣∣∣∣≤ 1, (6-11)

|d| =
∣∣∣∣ 1
√

5
+ d1

∣∣∣∣≤ 1. (6-12)

Furthermore, from (6-9) and (6-5), we have immediately, in B,

G≤ 2
R0

R

(
G(R0)+

A

R2
0

)
≤ 2ε

R0

R
≤ 2ε. (6-13)
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We now consider C1 and A as fixed in (6-1). We will show that there exists an ε0 > 0 and a constant
r > 0 such that, for all 0< ε < ε0 and R0 > r , the set B is closed; this will be done by “improving” each
of the bootstrap assumptions (6-6)–(6-9). Moreover, ε0 will depend only on a lower bound for r (as well
as A and C1).

6B. Improving the assumption on FG−1. In view of the estimate (5-25), we have∣∣∣∣FG − 1
∣∣∣∣≤ 3

cG1/2

4π
≤

3
√

2
4π

ε1/2, (6-14)

by using the bootstrap assumptions (6-8) and (6-11), and using (6-13). This improves (6-8).
Throughout, the letter C will be used to denote numerical constants that are independent of ε and R0

and may change at each occurrence. Thus, the above estimate reads∣∣∣∣FG − 1
∣∣∣∣≤ Cε1/2.

Improving the G assumption. From the corrected energy estimate (5-28), we have

RG≤ R0G(R0)+
A

R0
+

∫ R

R0

R′G
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)
d R′;

hence,

G≤
D0

R
exp

∫ R

R0

(1+Cε1/2)

[
P

4πR′ 2
+

(
QR R′ −3

+
PR

R′

)]
,

where D0 = R0G(R0)+A/R0 and we have used the improved inequality (6-14).
The integral

∫ R
R0
(P/(4πR′ 2)) d R′ can be estimated using (6-13):∫ R

R0

P

4πR′ 2
d R′ =

∫ R

R0

cR′G1/2

4πR′ 2
d R′ ≤

∫ R

R0

Cε1/2 R1/2
0

4πR′ 3/2
d R′ ≤ Cε1/2

for some fixed numerical constant C > 0.
For the other integrals, we integrate by parts:∫ R

R0

(
QR

R′ 3
+

PR

R′

)
d R′ ≤

Q

R3 +
P

R
+

∫ R

R0

[
3Q

R′ 4
+

P

R′ 2

]
d R′

≤ (c+ d)G1/2
+

∫ R

R0

3d + c
R′

G1/2(R′) d R′

≤ Cε1/2
+C

∫ R

R0

R1/2
0

R′ 3/2
ε1/2 d R′

≤ Cε1/2.

Combining this result with the previous estimate, we have thus obtained

RG≤ D0 exp((1+Cε1/2)Cε1/2) < 3
2 D0 (6-15)

providing that ε is small enough. This improves (6-9).
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A lower bound on G. We derive here a lower bound on RG. From the corrected energy inequality in
differential form (4-5) and the estimates on the error term, we have

d
d R

(RG)≥−
A

R2 − RG

[
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)]
. (6-16)

Let

�′ =
F

G

(
P

4πR′ 2
+

QR

R′ 3
+

PR

R′

)
.

The estimates of the previous sections have shown that∫ R

R0

�′ d R′ ≤ Cε1/2.

We can rewrite (6-16) as
d

d R
(RG)≥−

A

R2 − RG�′,

leading to

d
d R

(
RG exp

∫ R

R0

�′ d R′
)
≥−

A

R2 exp
∫ R

R0

�′ d R′

=
d

d R

(
A

R

)
exp

∫ R

R0

�′ d R′,

=
d

d R

(
A

R
exp

∫ R

R0

�′ d R′
)
−

A

R
�′ exp

∫ R

R0

�′ d R′.

Thus,
d

d R

[(
RG−

A

R

)
exp

∫ R

R0

�′ d R′
]
≥−

A

R
�′ exp

∫ R

R0

�′ d R′,

which leads after integration to

RG−
A

R
≥

(
R0G(R0)−

A

R0

)
(1−Cε1/2)−

A

R0
Cε1/2

= C1(1−Cε1/2)−
A

R0
Cε1/2

≥
C1

2
(6-17)

provided that ε is sufficiently small, depending on A, C1 and a lower bound on R0.
Since A ≥ 0, we have thus obtained RG ≥ 1

2C1. In particular, we have improved the lower bound
bootstrap inequality for G.

Remark 6.1. Instead of starting from the corrected energy inequality in differential form, one could use
here the estimate (5-28) as well as the estimates of the previous section to estimate the term containing G

in the error term. This would lead to an estimate of the form

RG≥ C1− D0Cε1/2

and would therefore require ε to be small compared to D0. The above method has the advantage of not
constraining ε any further.
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Improving the c1 and d1 assumptions. Using the lower bound on G just obtained, the bootstrap assumption
(6-9), the initial data assumptions (6-2) and (6-3) and the fact that R′/R ≤ 1 if R′ ∈ [R0, R], it follows
from (5-22) that

|u| ≤
(

CA D0

C1

)1
2

ε+C
(

4D0

C1

)1
2
∫ R

R0

(|�c
1|+|�

d
1 |+|�

d
4 |) d R′+C

(
4D0

C1

)1
2
∫ R

R0

(
R′

R

) 1
4

(|�d
2 |+|�

d
3 |) d R′.

(6-18)
We now estimate all the error terms in ω. First, we have

|�c
1, �

d
1 | ≤

C
R

∣∣∣∣1+ R
G′

G

∣∣∣∣≤ C
R

(
2

C1

A

R
+C

QR

R2 +CG1/2
)
, (6-19)

using (5-23), (5-24) and (6-8). The first term in the parentheses in the right-hand side of the last inequality
will contribute to (6-18) as(

4D0

C1

)1
2
∫ R

R0

2
C1

A

R′ 2
d R′ ≤ C

A

C3/2
1

D1/2
0 R−1

0 ≤ C
A

C3/2
1 R1/2

0

(D0 R−1
0 )1/2 ≤ C(C1, R0,A)ε1/2,

by using the smallness assumption (6-5). The second term can be estimated using an integration by parts,
leading to the estimate

C
(

D0

C1

)1
2
∫ R

R0

QR

R′ 3
d R′ ≤ C

(
D0

C1

)1
2

ε1/2.

Since D0/C1 = 1− 2A/(C1 R0), we thus obtain

C
(

D0

C1

)1
2
∫ R

R0

QR

R′ 3
d R′ ≤ Cε1/2,

by choosing ε sufficiently small, depending only on a lower bound on C1 and A and a lower bound on R0.
The last term in (6-19) can be estimated using (6-13) leading to∫ R

R0

G1/2

R′
d R′ ≤ Cε1/2.

The estimates for �d
2 and �d

3 are straightforward using the bootstrap assumptions

|�d
2 | ≤

C
R
ε1/2 and |�d

3 | ≤
C
R
ε1/2.

For �d
4 , we note that, in view of (5-18) and (5-3), we have

|�d
4 | ≤

2RE QR

R3
√

G
.

Then, we note that

E =
F

P
=

F

cRG1/2 ;

hence,

E G−1/2
=

1
cR

(
F

G

)
.
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Using the bootstrap assumptions, this leads to

|�d
4 | ≤

1
c

F

G

2QR

R3 ≤ CQR R−3, (6-20)

where we have used that QR ≥ 0 in the last estimate. Its integral can then be estimated by integration by
parts, as we have already done previously.

Combining all these estimates leads us to

|u| ≤ C
(

2D0

C1

)1
2

ε+C(C1, R0,A)ε1/2
≤ C(A, R0,C1)ε

1/2,

which improves (6-6) and (6-7). In conclusion, we have improved all of the bootstrap inequalities and it
follows that

B= [R0,+∞).

7. The asymptotic regime

In this section, we state and prove our main result.

Theorem 7.1 (late-time asymptotics of T 2-symmetric polarized vacuum spacetimes). Let A≥ 0 and let
C1 > 0 and r > 0 be fixed constants. Then there exists an ε0 such that, if 0 ≤ ε ≤ ε0 and R0 ≥ r then,
for any initial data set satisfying the smallness conditions (6-1)–(6-5), the associated solution has the
following asymptotic behavior: for all times R ≥ R0 and all θ ∈ S1,

|u|(R, θ)= O(R−1/4), (7-1)

|RG(R)−C∞| = O(R−1/2), (7-2)∣∣∣∣P(R)−
2
√

5
C1/2
∞

R1/2
∣∣∣∣= O(R1/4), (7-3)∣∣∣∣Q(R)− 1

√
5

C1/2
∞

R5/2
∣∣∣∣= O(R9/4), (7-4)∣∣∣∣E (R)−

√
5C1/2
∞

2R3/2

∣∣∣∣= O(R−7/4), (7-5)∣∣∣∣ 1
2π

∫
S1
η(R, θ ′) dθ ′− η(R, θ)

∣∣∣∣= O(R−1/2), (7-6)

|K 2e2η(R, θ)− R2
| = O(R7/4), (7-7)

|a−1(R, θ)P−1(R)−L(θ)| = O(R−1/2), (7-8)∣∣∣∣ 1
2π

∫
S1

U (R, θ) dθ −U (R, θ)
∣∣∣∣= O(R−1/2), (7-9)

|U (R, θ)−CU | = O(R−1/2), (7-10)∣∣∣∣H(R, θ)− 4

K
√

5
C1/2
∞

R1/2L(θ)

∣∣∣∣= O(R1/4), (7-11)
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where C∞ > 0 and CU are constants depending on the solution and L(θ) is a W 1,1(S1) strictly positive
function.

Proof. Most of the above estimates are simply obtained by revisiting the proof in the previous section and
checking that the error terms are now integrable.

For instance, in order to prove (7-1), note that, from (5-22) and the estimates of Section 6, we have

|u| ≤ C R−1/4
(

1+
∫ R

R0

R′1/4|ω(R′)| d R′
)
. (7-12)

From (6-19) and (6-20), one can easily see that the contributions of �c
1, �d

1 and �d
4 are integrable in R.

For instance, using an integration by parts,∫ R

R0

QR

R′ 3−1/4 ≤ C
Q

R3−1/4 +C
∫ R

R0

Q

R′ 4−1/4 d R′,

≤ C
Q

R3G1/2 (RG)1/2 R−1/4
+C

∫ R

R0

Q

R′ 3G1/2 (R
′G)1/2 R′−5/4 d R′,

≤ C R−1/4
+C

∫ R

R0

R′ −5/4 d R′

≤ C.

For �d
3 , it follows from (5-26) and the estimates of the previous section that |�d

3 | ≤ C R−3/2. Thus, its
contribution to the integral of (7-12) is integrable. Since, moreover, |�d

2 | ≤ (C/R)|u|2, (7-12) has now
been reduced to

|u| ≤ C R−1/4
(

1+
∫ R

R0

R′−3/4
|u|2(R′) d R′

)
. (7-13)

Since we already know from the estimates of the previous section that |u| ≤ Cε1/2, an application of
Gronwall’s lemma gives us the weak bound

R1/4
|u| ≤ C Rε

1/2
.

It then follows that R−3/4
|u|2 ≤ C R−5/4+ε and thus, for ε sufficiently small, (7-13) now implies the

desired estimate (7-1).
Similarly, to prove (7-2), first note that d(RG)/d R is integrable, using the estimates of Section 6

and (5-23). Thus, there exists a constant C∞ such that RG→ C∞ as R→+∞. Since RG is uniformly
bounded from below in view of (6-17), we have C∞ > 0. To get the rate of convergence, it then suffices
to write RG−C∞ =

∫
∞

R (d(R′G)/d R) d R′ and to estimate the integral as before.
Then, (7-3), (7-4) and (7-5) follow from the definitions of P, Q and E .
For (7-6), using (2-7), the simple estimate F ≤ E and (7-5), we have, for all R ≥ R0 and θ ∈ S1,∣∣∣∣ 1

2π

∫
S1
η(R, θ ′) dθ ′− η(R, θ)

∣∣∣∣≤ ∫
S1
|ηθ |(R, θ ′) dθ ′ ≤

∫
S1

RF dθ ′ ≤
∫

S1
RE ≤ C R−1/2
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for some C > 0. For (7-7), we use (7-6), (7-3) and (7-4) as well as

P 1
2 K 2e2η(R, θ)=

∫
S1

a−1(R, θ ′) 1
2 K 2e2(η(R,θ)−η(R,θ ′)+η(R,θ ′)) dθ ′

=

∫
S1

a−1(R, θ ′) 1
2 K 2e2(η(R,θ ′)+O(R−1/2)) dθ ′

= Q(1+ O(R−1/2)).

For (7-8), we first differentiate (2-5) in θ ; that is,

(2 ln a)Rθ =−
K 2

R3 e2η2ηθ . (7-14)

Note that the right-hand side is integrable in L([R0,+∞)× S1) since∫
∞

R0

∫
S1

∣∣∣∣K 2

R3 e2η2ηθ

∣∣∣∣ dθ d R ≤
∫ R

R0

C R−1 RE ≤ C, (7-15)

in view of (7-5). This implies that (ln a)θ (R, θ) converges in L1(S1) as R → +∞ to some function
R(θ) ∈ L1(S1) and, moreover, we have the estimate

‖(ln a)θ −R‖L1(S1) = O(R−1/2),

by using (7-15).
Integrating over [θ, θ ′], we get

a(R, θ)
a(R, θ ′)

= exp
(∫ θ

θ ′
R(θ ′′) dθ ′′+ O(R−1/2)

)
.

Integrating again in the θ ′ variable, we get∣∣∣∣a(R, θ)P− ∫
S1

e
∫ θ
θ ′

R(θ ′′) dθ ′′ dθ ′
∣∣∣∣≤ C

(
exp (O(R−1/2))− 1

)
= O(R−1/2).

For (7-11), it is sufficient to note that, with the knowledge of the asymptotic behavior of a and η,
and (2-8), we can integrate HR directly and then compute the integral up to some error.

The property (7-9) is an easy consequence of (7-8), (7-3) and (7-5). For (7-10), we observe that∣∣∣∣ d
d R

∫ 2π

0
U dθ

∣∣∣∣= ∣∣∣∣∫ 2π

0
UR dθ

∣∣∣∣≤ (2π)1/2(∫ 2π

0
U 2

R dθ
)1

2

and (∫ 2π

0
U 2

R dθ
)
(R)=

(∫ 2π

0
a−1aU 2

R dθ
)
(R)≤ sup

[0,2π ]
a(R, θ)

∫ 2π

0
a−1U 2

R dθ

≤

(
1
P
+ o(a)

)
1

L(θ)

∫ 2π

0
a−1U 2

R dθ

≤
C
R2
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for some C > 0. Here we have used (7-8) together with the fact L is bounded away from zero uniformly,
as well as (7-3) and (7-5).

This implies that ∣∣∣∣ d
d R

∫ 2π

0
U dθ

∣∣∣∣≤ C
R

and, by integration and (7-9), we obtain the rough bound on U ,

|U | ≤ C ln R.

Applying now the commutator estimate from Lemma 3.2, we have that∣∣∣∣ d
d R
〈Ũ 〉− 〈ŨR〉

∣∣∣∣≤ πK 2

R3 〈|Ũ |〉‖(e
2η)θ‖L1(S1). (7-16)

From the above rough bound on U , we have∣∣〈|Ũ |〉∣∣≤ C ln R.

Moreover, one can estimate ‖(e2η)θ‖L1(S1) as before to get

‖(e2η)θ‖L1(S1) ≤ C R3/2.

Thus, the right-hand side of (7-16) is integrable in R. Since, moreover,

〈ŨR〉 =
1
P

∫ 2π

0
URa−1(R, θ) dθ =

R0

P R

∫ 2π

0
URa−1(R0, θ) dθ

using the conservation law in Lemma 3.3, it follows that 〈ŨR〉 and, therefore, d〈Ũ 〉/d R are integrable.
By having checked the convergence of all the integrals involved in our analysis, this completes the proof
of (7-10) and, thus, of Theorem 7.1. �

8. Future geodesic completeness

In this section, we complete the proof of the geodesic completeness property under the smallness
assumption (6-1)–(6-5). There are only small modifications in comparison to the proof already presented
by the authors in [LeFloch and Smulevici 2016] for weakly regular Gowdy spacetimes. One of difficulties
(observed and solved in [loc. cit.]) is that, with limited control of the Christoffel symbols in the L1 or L2

norms (in space) only, the local existence of geodesics is not guaranteed by the standard Cauchy–Lipschitz
theorem. Instead, we first established that the Christoffel symbols admit traces along timelike curves and
we relied on a compactness argument à la Arzelá–Ascoli in order to establish the existence of geodesics.
This part of the analysis can be repeated here almost identically in our T 2 setting, by using the estimates
in [LeFloch and Smulevici 2015] for the compactness argument. (This compactness is required in the
proof of existence of traces, as explained in Proposition 3.5 of [LeFloch and Smulevici 2016]). We do
not repeat these arguments here and directly assume the existence of geodesics (which, for instance, is
immediate in the smooth case).
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Theorem 8.1 (future geodesic completeness). Let (M, g) be a nonflat, polarized, T 2-symmetric, vacuum
spacetime with weak regularity whose initial data set satisfies the conditions (6-1)–(6-5). Then all future
timelike geodesics are future complete.

Proof. For simplicity in the presentation, we focus on the smooth case. Let ξ be a future maximal timelike
geodesic defined on an interval [s0, s1). We have g(ξ̇ , ξ̇ ) < 0 and

ξ̈α +0αβγ ξ̇
β ξ̇γ = 0. (8-1)

Following [LeFloch and Smulevici 2016], we observe that, since X and Y are Killing fields, JX = g(ξ̇ , X)
and JY = g(ξ̇ , Y ) are constant along ξ , so that JX = e2U (ξ̇ X

+G ξ̇ θ ) and JY = e−2U R2(ξ̇Y
+ H ξ̇ θ ) are

constants along ξ . We use the same strategy as in [ibid., Section 4]. First, by standard arguments (see [ibid.,
Lemma 4.10]), it follows that R(ξ(s))→+∞ as s→ s1. Then, since R(ξ(s))− R(ξ(s0))=

∫ s
s0
ξ̇ R ds, it

follows that any bound of the form ξ̇ R < C R p for p < 1 implies that s1 = +∞. Note also that, since
R(ξ(s))→+∞, given any R′ > 0 we may assume, without loss of generality, that R(ξ(s0))≥ R′.

We now analyze the structure of the equation satisfied by ξ̇ R ,

ξ̈ R
+0R

βγ ξ̇
β ξ̇γ = 0. (8-2)

The term 0R
βγ ξ̇

β ξ̇γ = 0 is decomposed in the form

0R
βγ ξ̇

β ξ̇ γ = 0R
R R ξ̇

R ξ̇ R
+0R

θθ ξ̇
θ ξ̇ θ + 20R

Rθ ξ̇
R ξ̇ θ + 20R

θa ξ̇
θ ξ̇a
+0R

abξ̇
a ξ̇ b,

where {a, b} = {X, Y }. Recall now that

0R
R R = ηR −UR, (8-3)

0R
θθ =

ηR −UR

a2 −
aR

a3 + e2U URG2e−2(η−U )
+ (e−2U R2 H 2)R

e−2(η−U )

2
, (8-4)

0R
Rθ = ηθ −Uθ . (8-5)

Observe also that

ηR −UR = R
((

UR −
1

2R

)2

+ a2U 2
θ

)
−

1
4R
−

K 2

4R3 e2η,

while
ηθ −Uθ = 2R

(
UR −

1
2R

)
Uθ .

As a consequence, it follows that the following quadratic form inequality holds:

(ηR −UR)(d R2
+ a−2 dθ2)+ 2(ηθ −Uθ ) d R dθ +

(
1

4R
+

K 2

4R3 e2η
)
(d R2

+ a−2 dθ2)≥ 0. (8-6)

Returning now to (8-2), this leads us to

ξ̈ R
≤

(
1

4R
+

K 2

4R3 e2η
)
((ξ̇ R)2+ a−2(ξ̇ θ )2)+

aR

a3 (ξ̇
θ )2

−

(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
e−2(η−U )

2

)
(ξ̇ θ )2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b.
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Note that the term containing aR/a3 has the right sign and can absorb the term K 2e2η(ξ̇ θ )2/(4R3). Using
moreover the estimate (7-7) and the fact that |a−1ξ̇ θ | ≤ ξ̇ R , for all ε > 0 we may assume that Rξ(s0) is
sufficiently large that

ξ̈ R
≤

(
3+ ε
4R

)
(ξ̇ R)2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b
−

(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
e−2(η−U )

2

)
(ξ̇ θ )2.

Recalling now that d R/ds = ξ̇ R , the last inequality can be rewritten as

d
ds
(R−3/4−ε ξ̇ R)

≤ R−3/4−ε(
−
(
e2U URG2e−2(η−U )

+ (e−2U R2 H 2)R
1
2 e−2(η−U ))(ξ̇ θ )2− 20R

θa ξ̇
θ ξ̇a
−0R

abξ̇
a ξ̇ b). (8-7)

For the three terms in the right-hand side, recall that

0R
Xθ = e−2ηe4U URG,

0R
Y θ =

1
2 e−2(η−U )(e−2U R2 H)R,

0R
X X = e−2ηe4U UR,

0R
XY = 0,

0R
Y Y =

1
2 e−2(η−U )(e−2U R2)R.

These terms can be combined with the terms containing H 2 and G2 above arising from 0R
θθ as follows:

0R
X X (ξ̇

X )2+ 20R
θX ξ̇

θ ξ̇ X
+ e2U URG2e−2(η−U )(ξ̇ θ )2 = e−2(η−U )e2U UR(ξ̇

X
+G ξ̇ θ )2 = e−2ηUR J 2

X

and

0R
Y Y (ξ̇

Y )2+ 20R
θY ξ̇

θ ξ̇Y
+ (e−2U R2 H 2)R

1
2 e−2(η−U )(ξ̇ θ )2

=
1
2 e−2(η−U )((e−2U R2)R(ξ̇

Y
+ H ξ̇ θ )2+ e−2U R22H HR(ξ̇

θ )2+ 2e−2U HR R2ξ̇ θ ξ̇Y )
=

1
2 e−2(η−U )((e−2U R2)R R−4e4U J 2

Y + 2HR ξ̇
θ J Y ).

Now let µ= η−U + 1
4 ln R− 1

2 ln a. Note that

µR = R
((

UR −
1

2R

)2

+ a2U 2
θ

)
≥ 0.

Then, using that U is uniformly bounded and (7-7), we easily have the estimates

|e−2ηUR J 2
X | ≤ C R−2

(
R−1/2µ

1/2
R +

1
R

)
, (8-8)∣∣∣∣e−2(η−U )

2
(e−2U R2)R R−4e4U J 2

Y

∣∣∣∣≤ C R−4
(

R−1/2µ
1/2
R +

1
R

)
, (8-9)

for some constant C > 0. Moreover, in view of (2-8), (7-7) and the estimate |ξ̇ θ | ≤ aξ̇ R ,

|e−2(η−U )HR ξ̇
θ J Y
| ≤ C

ξ̇ R

R3 .
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Returning to (8-7), we obtain

d
ds
(R−3/4−ε ξ̇ R)≤ C R−13/4−ε(µ

1/2
R + R−1/2)+C

ξ̇ R

R3 .

The second term in the right-hand side is integrable since ξ̇ R
= d Rξ(s)/ds. Moreover, R−13/4−εR−1/2 is

decreasing in R and, therefore, integrable on any bounded interval [s0, s1]. Thus, it remains only to show
that R−13/4−εµ

1/2
R is integrable.

Let M2
=−g(ξ̇ , ξ̇ ). Then we have

a−2
(
ξ̇ θ

ξ̇ R

)2

≤ 1−
M2e−2(η−U )

(ξ̇ R)2
.

Let χ = M2e−2(η−U )/(ξ̇ R)2 ≤ 1 and let ρ = η−U . Then we find3

dρ
ds
+

1
4

d
ds
(ln R)−

aR

2a
ξ̇ R
≥ (1− (1−χ)1/2)µR ξ̇

R
≥

1
2
χµR ξ̇

R. (8-10)

In particular, dρ/ds+ 1
4 d(ln R)/ds− (aR/(2a))ξ̇ R

≥ 0. As a consequence, we have

µR ≤ 2
(

dρ
ds
+

1
4

d
ds
(ln R)−

aR

2a
ξ̇ R
)

M−2e2ρ ξ̇ R.

Now, recall from (7-7) that

−
aR

2a
=

1
4R
+ O(R−5/4).

In particular, there exists some R2 > 0 such that, for all s with R(ξ(s)) > R2,

−
aR

2a
≤

1+ ε
4R

,

and we can assume that R(ξ(s0))≥ R2. Thus, we have

µR ≤ 2
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
M−2e2ρ ξ̇ R,

where the quantity in the parentheses is positive.
Thus, we conclude that

µ
1/2
R ≤

√
2M−1

(
dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)1
2

eρ(ξ̇ R)1/2 ≤ C
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ
+C ξ̇ R.

It follows that

R−13/4−εµ
1/2
R ≤ C R−13/4−ε

(
dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ
+C R−13/4−ε ξ̇ R,

3We would like here to consider dµ/ds, however, this would introduce the quantity aθ , for which we do not directly have an
evolution equation.



392 PHILIPPE G. LEFLOCH AND JACQUES SMULEVICI

where the last term is clearly integrable since ξ̇ R
= d R(ξ(s))/ds and 13

4 − ε > 1. Finally, using (7-7) and
an integration by parts to estimate the term containing dρ/ds, we have, for any s ∈ [s0, s1)∫ s

s0

R−13/4−ε
(

dρ
ds
+

1+ ε
2

2
d
ds
(ln R)

)
e2ρ ds

=

∫ s

s0

R−13/4−ε 1
2

de2ρ

ds
ds+

∫ s

s0

R−13/4−ε 1+ ε
2

2
d
ds
(ln R)e2ρ ds

≤ Ce2ρR−13/4−ε
+C

∫ s

s0

R−17/4−ε ξ̇ Re2ρ ds+C
∫ s

s0

R−9/4ξ̇ R ds ≤ C.

Thus, we have shown that d(R−3/4−ε ξ̇ R)/ds is integrable and, therefore, that ξ̇ R
≤ C R3/4+ε for

some C > 0. This completes the proof of Theorem 8.1. �

9. Existence of initial data sets close to the asymptotic regime

In this section, we prove the following result:

Proposition 9.1 (existence of a class of initial data sets). Fix C1 > 0 and A ∈ [0,+∞). For any ε > 0,
there exists R0 > 0, (U0,U1) ∈ H 1(S1) × L2(S1), a0 > 0 ∈ W 2,1(S1) and η0 ∈ W 1,1(S1) such that
(U0,U1, a0, η0) satisfies the constraint equation (2-7), that is,

∂θ (η0)= 2R0U1 ∂θ (U0), (9-1)

and such that the conditions (6-1)–(6-5) are all satisfied with U (R0, θ) = U0(θ), UR(R0, θ) = U1(θ),
η(R0, θ) = η0(θ) and a(R0, θ) = a0(θ). As a consequence, there exists an nonempty set of initial
data satisfying (6-1)–(6-5) which is open in the natural topology associated with the initial data on
H 1(S1)× L2(S1)×W 2,1(S1)×W 1,1(S1).

While our construction requires us to choose a sufficiently large R0 (depending on ε), the ε satisfying
the assumption of Theorem 7.1 depends only on a lower bound on R0. Hence, the data constructed above
satisfy the requirements of Theorem 7.1 provided R0 is chosen sufficiently large.

Proof. Let C1 > 0 and A ∈ [0,+∞) be fixed. We define a0 to be

a0 =
2π

pR1/2
0

,

where p > 0 is a constant. Thus the associated term P reads P = pR1/2
0 . We then define U1 as

U1 =±
A1/2

pR3/2
0

,

so that (
R0

∫ 2π

0
U1a−1

0 dθ
)2

=A.

Consider now any nonconstant U0 ∈ H 1(S1). We will impose several conditions on U0.
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Let E =
∫

S1(a−1
0 U 2

1 + a0(U0)
2
θ ) dθ be the energy associated with our initial data set. Note that the

energy correction4 0U
= (1/R0)

∫
S1(U0−<U0 >)U1a−1

0 d R equals 0 since U1a−1
0 is constant.

Let F=PE and G=P(E +0U ) be the rescaled energy and the rescaled corrected energy associated
with U0, U1 and a0. Note that G= F since 0U

= 0, so that (5-25) trivially holds. Observe that

F=P

∫ 2π

0
(a−1

0 U 2
1 + a0(U0)

2
θ ) dθ =

A

R2
0
+ 2π

∫ 2π

0
(U0)

2
θ dθ.

Suppose now that
∫ 2π

0 (U0)
2
θ dθ = C1/(2πR0), where C1 > 0. Then we have

F=
A

R2
0
+

C1

R0
.

In order to satisfy (6-2), we now fix p in terms of C1 by setting

p =
(

2C1

5

)1
2

.

Then we compute

|c1| =

∣∣∣∣ 2
√

5
−

P

R0G1/2

∣∣∣∣= ∣∣∣∣ 2
√

5
−

P

R0F1/2

∣∣∣∣.
On the other hand, we have

P

R0F1/2 =
pR1/2

0

R0(A/R2
0 +C1/R0)1/2

=
2
√

5

(
1+

A

R0C1

)−1

.

This shows that (6-2) is satisfied provided that A/(R0C1) is sufficiently small, which we can always
ensure by choosing R0 sufficiently large compared to A/C1.

One can then easily check that (6-1) and (6-5) hold true provided R0 is sufficiently large. It remains to
define η0 so that (6-3) and the constraint equation (9-1) is satisfied.

For (6-3), we only need to ensure that
∣∣Q/R3

0F1/2
−

1
√

5

∣∣≤ ε. Recall that Q=
∫ 2π

0
1
2 K 2e2η0a−1

0 dθ . By
fixing η0(θ = 0) we can certainly ensure that

K 2

2
e2η0(0)a−1

0 =
1

2π
√

5
R3

0F1/2.

Now we define η0 for all other values of θ , so that (9-1) is satisfied:

η0(θ)= η0(0)+ 2R0

∫ θ

0
U1(U0)θ dθ = η0(0)+ 2R0U1(U0(θ)−U0(0)).

From the above, we see that η0 ∈W 1,1(S1) (and in fact it is in H 1(S1)) and that

|η0(0)− η0(θ)| ≤

∫ 2π

0
|ηθ | dθ ≤ R0

F

P
≤

1

pR1/2
0

R0

(
A

R2
0
+

C1

R0

)
≤ ε2,

4We would like to thank an anonymous referee for pointing out this nice simplification.
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again by choosing R0 sufficiently large, depending only on C1 and A. We then check that∣∣∣∣ Q

R3
0F1/2

−
1
√

5

∣∣∣∣= 1
R3

0F1/2

∣∣∣∣Q− 2π
K 2

2
e2η0(0)a−1

0

∣∣∣∣
≤

1
R3

0F1/2

K 2

2
e2η0(0)a−1

0

∫ 2π

0
|e2(η0(θ)−η0(0))− 1| dθ ≤ Cε2

≤ ε

provided ε is sufficiently small. �

Acknowledgments

The authors are very grateful to Hans Ringström for stimulating discussions on this subject and useful
comments on a first version of this paper, and are also thankful to an anonymous referee for many
constructive remarks. Part of this paper was written in the Fall Semester 2013 when LeFloch was a
visiting professor at the Mathematical Sciences Research Institute (Berkeley) thanks to the support of
the National Science Foundation under Grant No. 0932078 000. Part of this paper was written while
Smulevici was a member of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute).
The authors were also partially supported by the Agence Nationale de la Recherche through the grant
ANR SIMI-1-003-01.

References
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[Chruściel 1990] P. T. Chruściel, “On space-times with U(1)×U(1) symmetric compact Cauchy surfaces”, Ann. Physics 202:1
(1990), 100–150. MR 91h:83007 Zbl 0727.53078
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