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We study the regularity of the free boundary at its intersection with the line fx1 D 0g in the obstacle
problem

4uD jx1j�fu>0g in D;

where D � R2 is a bounded domain such that D\fx1 D 0g 6D∅.
We obtain a uniform C 1;1 bound on cubic blowups; we find all homogeneous global solutions; we

prove the uniqueness of the blowup limit; we prove the convergence of the free boundary to the free
boundary of the blowup limit; at the points with lowest Weiss balanced energy, we prove the convergence
of the normal of the free boundary to the normal of the free boundary of the blowup limit and that locally
the free boundary is a graph; and, finally, for a particular case we prove that the free boundary is not C 1;˛

regular near to a degenerate point for any 0< ˛ < 1.

1. Introduction

Let D � R2 be a bounded domain such that D\fx1 D 0g 6D∅. Let g 2H 1.D/ such that g � 0 on @D.
Let u 2H 1.D/ be the unique minimiser of the functionalZ

D

.jruj2C 2jx1ju/ dx (1-1)

in the admissible set of functions

fu� 0 a.e. in D and uD g on @Dg:

For the existence and uniqueness of the minimiser u one may refer to [Kinderlehrer and Stampacchia
1980].

It is known (see [Petrosyan et al. 2012]) that u 2 C
1;1
loc .D/ and

4uD jx1j�fu>0g in D (1-2)

in the sense of distributions.
Let us denote by � the noncoincidence set and by � the free boundary, i.e.,

�D fx 2D j u.x/ > 0g and � DD\ @�:

Let us consider two examples. Set D D .�1; 1/2. For the first example we take g.x/D 1
16
.x1Cx2/

C

and for the second example we take g.x/D xC
1
.c� jx2j/

C, where c � 0:42559. The noncoincidence set
and the free boundary are depicted in Figure 1 for both examples.
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(a) g.x/D 1
16
.x1Cx2/

C. (b) g.x/D xC
1
.c � jx2j/

C with c � 0:42559.

Figure 1. � and � in the examples.

In the case of the nondegenerate obstacle problem, i.e., when instead of jx1j we have f satisfying
f � c in D for some c > 0, the Lipschitz and C 1 regularity of the free boundary was proved for the first
time in [Caffarelli 1977]. A good reference for nondegenerate obstacle problems is [Caffarelli 1998] and
a good reference for obstacle-type problems is [Petrosyan et al. 2012].

In [Yeressian 2015], for a class of degenerate obstacle problems the optimal nondegeneracy of the
solution is obtained. The proof of the optimal nondegeneracy is based on specially constructed comparison
functions using harmonic polynomials. In this paper the nondegeneracy result in [Yeressian 2015] will be
used numerous times.

Our approach to prove the regularity of the free boundaries is based on some directional monotonicity
properties satisfied by the solutions. This method is based on the proof of C 1 regularity in [Petrosyan
et al. 2012] and is closely related to [Alt 1977].

We use Hopf’s lemma to prove the irregularity of the free boundary in a particular case which
corresponds to the free boundary near to the origin in the example depicted in Figure 1(b). A related
irregularity result has been proved in [Shahgholian et al. 2007], where the authors considered a two-phase
membrane problem and in higher dimensions they proved that the free boundary is, in a neighbourhood
of each branch point, the union of two C 1-graphs, but in general these graphs are not C 1;Dini (C 1;Dini

includes all C 1;˛ for 0< ˛ < 1).
Studying obstacle problems with a degenerate force term reveals rather unexpected behaviour of the

solution, such as the fact that the free boundary usually forms a certain angle at its intersections with the
line fx1 D 0g, where the force term is degenerate.

In the problem of the free boundary near contact points with the fixed boundary — see [Shahgholian
and Uraltseva 2003] — where the solution satisfies a homogeneous Dirichlet boundary condition, a similar
strong influence of the data of the problem on the structure of the free boundary has been observed.

Varvaruca and Weiss [2011; 2012; 2014] have studied 2-dimensional or axisymmetric, 3-dimensional,
inviscid, incompressible fluids acted on by gravity and with a free surface. These problems are in the class
of Bernoulli free boundary problems, but the degeneracies in the force terms give rise to similar situations
as encountered in this paper and has been a motivation for considering the problem in this paper.
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This paper is structured as follows. In Section 2, the main results of this paper are presented. In
Section 3, we prove uniform C 1;1 bounds on cubic blowups. In Section 4, using the Weiss balanced
energy we prove the homogeneity of the blowup limits. In Section 5, we classify all possible homogeneous
global solutions. In Section 6, using the fact that possible blowup limits form a discrete set we prove the
uniqueness of the blowup limits. In Section 7, using a lower bound for homogeneous global solutions
and the optimal nondegeneracy result in [Yeressian 2015] we prove the convergence of the free boundary
to the free boundary of the blowup limit. In Section 8, we prove the convergence of the normal of the
free boundary to the normal of the free boundary of the blowup limit at regular points. In Section 9, we
prove that in a neighbourhood of a regular point the free boundary can be given as a graph. In Section 10,
we prove that under some assumptions the free boundary near to a degenerate point is either flat or not
C 1;˛ for any 0< ˛ < 1. In Section 11, we conclude this paper with a discussion about further directions
of research on obstacle problems with degenerate forces.

2. Main results

Let us define a cubic blowup of u as follows:

Definition 1. Let Br0
�D, then we define, for 0< r < r0,

ur .x/D
u.rx/

r3
for x 2 B1

and call ur the (cubic) blowup of u at 0.

In the following theorem we prove that for r > 0 the family ur is uniformly bounded in C 1;1.B1/.

Theorem 2 (uniform C 1;1 bounds on blowups). There exists a C > 0 such that, if u is a solution in D,
r0 > 0, Br0

�D and 0 2 � , then we have the estimate

kurkC 1;1.B1/
� C (2-1)

for 0< r < 1
6
r0.

The proof of this theorem is based on the optimal growth result proved in [Yeressian 2015].
From the uniform bound (2-1) it follows that, for any sequence rj such that rj ! 0, there exists a

subsequence rjk
and v 2 C 1;1.B1/ such that ujk

! v in C 1.B1/.
Let us consider for u 2H 1.Br / the Weiss balanced energy

W .r;u/D
1

r6

Z
Br

.jruj2C 2jx1ju/ dx�
3

r7

Z
@Br

u2 d�.x/: (2-2)

The Weiss balanced energy [1998; 1999] was introduced to study the free boundary in the nondegenerate
obstacle problem. The energy in (2-2) has been adapted to the first-order homogeneity of the force term jx1j.
For the Weiss balanced energy for different homogeneities, one may refer to [Petrosyan et al. 2012].

As we will see, for u a solution in D with 0 2 D, by a monotonicity result for the Weiss balanced
energy, the right limit W .C0;u/ exists but might be �1. If 0 2 � then W .C0;u/ > �1.
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fuhs.x/ > 0g fuhs.�x1;x2/ > 0g fuhs.x/Cuhs.�x1;x2/ > 0g

fuw.x/ > 0g fuw.x1;�x2/ > 0g fuw.x/Cuw.x1;�x2/ > 0g

Figure 2. The only possible noncoincidence sets of nontrivial homogeneous global solutions.

Definition 3. Let u be a solution in D, 0 2D and 0 2 � . Then we call v 2 C 1;1.B1/ a blowup limit if
there exists rj ! 0 such that urj ! v in C 1.B1/.

Using the Weiss balanced energy, if v is a blowup limit at 0 then v is a third-order homogeneous global
solution and W .C0;u/DW .1; v/.

So we are led to find all the solutions of the obstacle problem�
4uD jx1j�fu>0g in R2;

u third-order homogeneous.
(2-3)

Clearly uD 0 is a trivial solution of (2-3).
Let us define

uhs.x/D
1
6
.xC

1
/3 and uw.x/D

�
1
6
jx1j

3
C

1
12

x3
2 �

1
4
x2

1x2

�
�fx2>jx1jg

: (2-4)

Theorem 4 (classification of homogeneous global solutions). The only nontrivial solutions of (2-3) are
uw, uw.x1;�x2/, uwCuw.x1;�x2/, uhs , uhs.�x1;x2/ and uhsCuhs.�x1;x2/.

To prove Theorem 4 we first find all the solutions of the corresponding no-sign obstacle problem and
then among these solutions we find the nonnegative ones.

All possible noncoincidence sets of nontrivial homogeneous global solutions, i.e., the noncoincidence
sets of the nontrivial solutions of (2-3), are depicted in Figure 2.

It is easy to see that W .1;uw/ D W .1;uw.x1;�x2//, W .1;uw C uw.x1;�x2// D 2W .1;uw/,
W .1;uhs/DW .1;uhs.�x1;x2//, W .1;uhsCuhs.�x1;x2//D 2W .1;uhs/ and, by direct computation,
we see that 0<W .1;uw/ and

2W .1;uw/ <W .1;uhs/:
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So we have the following four possible energy levels together with the order between them:

W .1;uw/ < 2W .1;uw/ <W .1;uhs/ < 2W .1;uhs/:

Let us define, for y 2 � \fx1 D 0g and r > 0,

W .r;y;u/DW .r;u. � Cy//: (2-5)

Based on the four possible values of W .C0;x;u/ (the value 0 is excluded by the nondegeneracy)
for x 2 � \fx1 D 0g, the points of � \fx1 D 0g get classified in four types.

Definition 5. We call y 2 � \fx1 D 0g a degenerate free boundary point if there exists rj ! 0 such that
u. � Cy/rj ! uhs or u. � Cy/rj .x/! uhs.�x1;x2/ in C 1.B1/.

We use this name for points where a blowup limit is uhs or uhs.�x1;x2/ by following the naming for
similar points in the problem studied in [Varvaruca and Weiss 2011].

In the example depicted in Figure 1(b), the origin is a degenerate free boundary point with uhs as a
blowup limit.

By our uniform bounds on the blowups it follows that 0 is degenerate if and only if W .C0;u/ D

W .1;uhs/.

Definition 6. We call y 2 � \ fx1 D 0g a regular free boundary point if there exists rj ! 0 such that
u. � Cy/rj ! uw or u. � Cy/rj .x/! uw.x1;�x2/ in C 1.B1/.

In the example depicted in Figure 1(a) a point close to the origin is a regular free boundary point with
uw as a blowup limit.

By our uniform bounds on the blowups it follows that 0 is regular if and only if W .C0;u/DW .1;uw/,
i.e., it has the lowest Weiss balanced energy.

Theorem 7 (uniqueness of blowup limits). If u is a solution in D, 0 2D and 0 2 � then the blowup limit
at the origin is unique.

Let us define, for ı > 0 and k D 0, 1,

�k.ı/D sup
0<r�ı

kur �u0kC k.B1/
; (2-6)

where u0 is the unique blowup limit.

Theorem 8 (convergence of the free boundary). There exists C1> 0 and C2> 0 such that if u is a solution
in D, 0 2D and 0 2 � then, for x 2 � close enough to the origin, if W .C0;u/ 2 fW .1;uw/; 2W .1;uw/g

then we have

d.x; �u0
/� C1

�
�0.C2jxj/

�1=2
jxj; (2-7)

where �u0
is the free boundary of the unique blowup limit, and, if W .C0;u/ 2 fW .1;uhs/; 2W .1;uhs/g,

then

jx1j � C1

�
�0.C2jxj/

�1=3
jxj: (2-8)
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The proof of this theorem is based on a lower bound for the nontrivial homogeneous global solutions
and the nondegeneracy result proved in [Yeressian 2015].

From Theorem 8, it follows that all points of �\fx1D 0g\fW .C0;x;u/2 fW .1;uw/; 2W .1;uw/gg

are isolated points of � \fx1 D 0g (in the topology of fx1 D 0g), in particular.

Theorem 9 (convergence of normals and the free boundary as a graph at regular points). There exists
C1 > 0 and C2 > 0 such that if u is a solution in D, 0 2D and 0 2 � is a regular free boundary point
with blowup limit uw then there exists � > 0 and

 2 C
�
�

1
4
�; 1

4
�
�
\C 1

��
�

1
4
�; 1

4
�
�
nf0g

�
such that

� \
˚
jx1j<

1
4
�
	
\B� D

˚
.x1;  .x1//

ˇ̌
x1 2

�
�

1
4
�; 1

4
�
�	
;ˇ̌

 .x1/� jx1j
ˇ̌
� C1

�
�0.C2jx1j/

�1=2
jx1j for x1 2

�
�

1
4
�; 1

4
�
�
;ˇ̌̌̌

 0.x1/�
x1

jx1j

ˇ̌̌̌
� C1

�
�1.C2jx1j/

�1=2 for x1 2
�
�

1
4
�; 1

4
�
�
nf0g:

The proof of this theorem is mainly based on a directional monotonicity result proved in Lemma 37.
There we prove that @�u� 0 in Br .x/ for x 2�\fx1> 0g\@B1=4 if, for a given � 2 @B1 with � ��w > 0,
r is small enough and u is close enough to uw in C 1.B1/. The vector �w is the normal to the free
boundary of uw in the half-plane fx1 > 0g, pointing into the noncoincidence set of uw . This directional
monotonicity result establishes the convergence of the normal of the free boundary to the normal of the
free boundary of the blowup limit.

As we will see, from Theorem 9 it follows that, in the case when the origin is a regular point but with
uw.x1;�x2/ as blowup limit, and in the case when W .C0;u/D 2W .1;uw/, the free boundary is a graph
or the union of two graphs, respectively.

In the following theorem, in particular cases we show that the free boundary near to a degenerate point
is not C 1;˛ smooth.

Theorem 10 (an irregularity result at degenerate points). Let u be a solution in D with 0 2 D. Sup-
pose also that there exists ı > 0 such that Bı � D, @x2

u � 0 in Bı \ fx1 > 0;x2 > 0g, there exists
� 2 C

��
0; 1

2
ı
��
\C 1

��
0; 1

2
ı
��

such that �.0/D �0.C0/D 0, � � 0 in
�
0; 1

2
ı
�
, � is convex and

�\Bı \
˚
x1 > 0; 0< x2 <

1
2
ı
	
D Bı \

˚
0< x2 <

1
2
ı; �.x2/ < x1

	
:

Then either �D 0 and uD uhs in�\Bı\
˚
x1 > 0; 0< x2 <

1
2
ı
	

or the free boundary part �\fx1 > 0g

is not C 1;˛ regular at 0 for any 0< ˛ < 1.

Let us note that the conditions in this theorem correspond to the example depicted in Figure 1(b).
The proof of this theorem relies on considering the nonnegative function v D �@x2

u and using the
quantitative Hopf lemma (see [Han and Lin 2011]).



OBSTACLE PROBLEM WITH A DEGENERATE FORCE TERM 403

3. Uniform bounds on blowups

The following theorem is a consequence of the Harnack inequality and is a special case of the optimal
growth theorem in [Yeressian 2015].

Theorem 11. There exists a C > 0 such that if Br .y/�D then we have

u.x/� C.u.y/C r2.r Cjy1j// for x 2 Br=2.y/:

Based on this optimal growth estimate, in the following theorem we prove an estimate on the growth
of the solution near the free boundary.

Lemma 12. There exists a C > 0 such that if u is a solution in D, y 2�, d D d.y; �/ and B5d .y/�D

then

u.x/� Cd2.d Cjy1j/ for x 2 Bd .y/: (3-1)

Proof. Let z 2 � be such that d D jy � zj. We have, for r D 4d ,

Br .z/D B4d .z/� B4dCjy�zj.y/D B5d .y/�D:

By Theorem 11 we have that, because z 2 � and Br .z/�D,

u.x/� C1r2.r Cjz1j/ for x 2 Br=2.z/: (3-2)

We have

Bd .y/� BdCjy�zj.z/D B2d .z/D Br=2.z/: (3-3)

By (3-2) and (3-3) we obtain

u.x/� C1r2.rCjz1j/D C1.4d/2.4dCjz1j/� C2d2.dCjz1j/

� C2d2.dCjz1�y1jCjy1j/

� C2d2.2dCjy1j/� C3d2.dCjy1j/ for x 2 Bd .y/;

which proves the lemma. �

Let us define

 .t/D 1
6
jt j3 for t 2 R (3-4)

and, for t0 2 R,

wt0
.t/D  .t/� .t0/� 

0.t0/.t � t0/ for t 2 R:

Then there exists C > 0 such that for t , t0 2 R we have

wt0
.t/� C jt � t0j

2.jt0jC jt � t0j/: (3-5)

Proof of Theorem 2. We have

kurkL1.B1/ D
1

r3
kukL1.Br /; krurkL1.B1/ D

1

r2
krukL1.Br /; Œrur �C 0;1.B1/

D
1

r
Œru�C 0;1.Br /

:
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So, if we prove that for some C > 0 we have

kukL1.Br / � C r3; (3-6)

krukL1.Br / � C r2; (3-7)

Œru�C 0;1.Br /
� C r; (3-8)

then the lemma is proved.
There exists C > 0 such that for v a harmonic function in B1 we have

jrv.0/j � CkvkL1.B1/ and Œrv�C 0;1.B1=2/
� CkvkL1.B1/:

By scaling we obtain that for v harmonic in B� we have

jrv.0/j �
C

�
kvkL1.B�/ (3-9)

Œrv�C 0;1.B�=2/
�

C

�2
kvkL1.B�/: (3-10)

For x 2� let d D d.x; �/; then we have

B5d .x/� B5dCjxj � B5jxjCjxj D B6jxj;

so if x 2 B.1=6/r0
then B5d .x/�D.

Now, by Lemma 12, we obtain that for x 2 B.1=6/r0
we have

kukL1.Bd .x// � Cd2.d Cjx1j/: (3-11)

Let 0< r < 1
6
r0.

To prove (3-6), we compute, for x 2 Br ,

ju.x/j � kukL1.Bd .x// � Cd2.d Cjx1j/� C jxj2.jxjC jx1j/D 2C jxj3 � 2C r3:

To prove (3-7), using w0x1
.x1/D 0, (3-9), (3-11) and (3-5), we compute, for x 2 Br ,

jru.x/j D jr.u�wx1
/.x/j �

C1

d
ku�wx1

kL1.Bd .x//

�
C1

d
kukL1.Bd .x//C

C1

d
kwx1

kL1.Bd .x//

� C2d.d Cjx1j/CC3d.d Cjx1j/D C4d.d Cjx1j/: (3-12)

From (3-12) it follows that
jru.x/j � 2C4jxj

2
� 2C4r2: (3-13)

It remains to prove (3-8). We should show that

jru.x/�ru.y/j � C r jx�yj for all x;y 2 Br :

Fix x, y 2 Br . In the case Bjx�yj

�
1
2
.x C y/

�
� � let us denote z D 1

2
.x C y/. We have d D

d.z; �/� jx�yj.
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By (3-10) and (3-11), we compute

jru.x/�ru.y/j

jx�yj
� Œru�C 0;1.Bjx�yj=2.z//

� Œru�C 0;1.Bd=2.z//

� Œr.u�wz1
/�C 0;1.Bd=2.z//

C Œw0z1
�C 0;1.Bd=2.z//

�
C1

d2
ku�wz1

kL1.Bd .z//C Œwz1
�C 2.Bd=2.z//

�
C1

d2
kukL1.Bd .z//C

C1

d2
kwz1
kL1.Bd .z//C Œ �C 2.Bd=2.z//

�
C1

d2
C2d2.d Cjz1j/C

C1

d2
C3d2.d Cjz1j/CC4.d Cjz1j/

D C5.d Cjz1j/

� 2C5r:

In the case Bjx�yj

�
1
2
.xCy/

�
\�c 6D∅, by (3-12) we compute

jru.x/�ru.y/j � jru.x/jC jru.y/j

� Cd.x; �/.d.x; �/Cjx1j/CCd.y; �/.d.y; �/Cjy1j/

�
3
2
C jx�yj.d.x; �/Cjx1j/C

3
2
C jx�yj.d.y; �/Cjy1j/

� C1r jx�yj

and this finishes the proof of the theorem. �

4. Homogeneity of blowup limits

Most of the results in this section are well known; one may refer to [Petrosyan et al. 2012; Weiss 1998;
1999]. But for the sake of completeness we include the proofs.

The Weiss balanced energy W .r;u/ is defined in (2-2).

Lemma 13. For r , s > 0 and u 2H 1.Brs/, we have W .rs;u/DW .s;ur /.
For u 2H 1.Br0

/, W .r;u/ as a function of 0< r < r0 is locally bounded and absolutely continuous.
For u a solution in Br0

and 0< r < r0, we have

d

dr
W .r;u/D 2r

Z
@B1

.@r ur /
2 d�.x/: (4-1)

For u a third-order homogeneous solution in B1, we have

W .1;u/D

Z
B1

jx1ju dx: (4-2)
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Proof. Let r , s > 0 and u 2H 1.Brs/. We compute

W .rs;u/D
1

.rs/6

Z
Br s

.jruj2C 2jx1ju/ dx�
3

.rs/7

Z
@Br s

u2 d�.x/

D
1

s6

1

r4

Z
Bs

�
jru.rx/j2C 2r jx1ju.rx/

�
dx�

3

s7

1

r6

Z
@Bs

u2.rx/ d�.x/

D
1

s6

Z
Bs

�
jrur .x/j

2
C 2jx1jur

�
dx�

3

s7

Z
@Bs

u2
r d�.x/DW .s;ur /;

which proves the first claim.
Let u 2H 1.Br0

/; then, for 0< r < r0, by direct computation using polar coordinates we haveZ
@Br

u2 d�.x/D�2r

Z
Br0
nBr

1

jxj2
u.x/ru.x/ �x dxC

r

r0

Z
@Br0

u2.x/ d�.x/: (4-3)

The equation (4-3) together with the fact that if f 2 L1
loc.R

2/ then
R

Br
f dx as a function of r is

bounded and absolutely continuous proves the second claim.
Let u be a solution in Br0

, then we have (see [Petrosyan et al. 2012]) u 2 C
1;1
loc .Br0

/. Let 0< r < r0,
then we compute

1

2

d

dr
W .r;u/

D
1

2

d

dr
W .1;ur /

D
1

2

�Z
B1

�
2rur .x/ � r@r ur .x/C 2jx1j@r ur

�
dx� 6

Z
@B1

ur@r ur d�.x/

�
D

Z
B1

�
rur .x/ � r@r ur .x/Cjx1j@r ur

�
dx� 3

Z
@B1

ur@r ur d�.x/

D

Z
B1

�
�4ur .x/@r ur .x/Cjx1j@r ur

�
dxC

Z
@B1

@�ur .x/@r ur .x/ d�.x/� 3

Z
@B1

ur@r ur d�.x/

D

Z
@B1

�
@�ur .x/� 3ur

�
@r ur d�.x/:

It is easy to see that on @B1 we have

@�ur .x/� 3ur D r @r ur ;

which proves the third claim.
Let u be a solution in B1. We compute

W .1;u/D

Z
B1

�
jru.x/j2C 2jx1ju

�
dx� 3

Z
@B1

u2 d�.x/

D

Z
B1

.�4u.x//u.x/ dxC

Z
@B1

@�u.x/u.x/ d�.x/C

Z
B1

2jx1ju dx� 3

Z
@B1

u2 d�.x/

D

Z
@B1

@�u.x/u.x/ d�.x/C

Z
B1

jx1ju dx� 3

Z
@B1

u2 d�.x/
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D

Z
B1

jx1ju dxC

Z
@B1

.@�u� 3u/u d�.x/:

For a third-order homogeneous function we have @�uD 3u; thus the last integral is null and this proves
the last claim. �

If u is a solution in Br0
for some r0 > 0 then, by (4-1), W .r;u/ is nondecreasing in 0< r < r0; thus

the limit limr!0;r>0 W .r;u/DW .C0;u/ exists but might be �1. If 0 2 � then by Theorem 2 we have
kurkL1.B1/ � C for small enough 0< r and from this it follows that

�
1

r7

Z
@Br

u2 d�.x/D�

Z
@B1

u2
r d�.x/� �c1I

thus W .r;u/� �3c1 and W .C0;u/� �3c1 > �1.
For y 2 � \fx1 D 0g and r > 0, W .r;y;u/ is defined in (2-5).

Lemma 14. W .C0;x;u/ is an upper-semicontinuous function of x 2 � \fx1 D 0g.

Proof. For x 2 � \fx1 D 0g, by the monotonicity of W .r;x;u/ as a function of r > 0 and its continuity
as a function of x it follows that W .C0;x;u/ D limr!0;r>0 W .r;x;u/ is upper-semicontinuous in
� \fx1 D 0g. �

Assume v is a third-order homogeneous function in B1, i.e., v.0/D 0 and v.x/D v.x=.2jxj//.2jxj/3

for all x 2 B1nf0g. Then we might extend v as a third-order homogeneous function in R2 as v.x/ D
v.x=.2jxj//.2jxj/3 for all x 2Bc

1
. Let us note that the term on the right-hand side is well defined because

for x 2 Bc
1

we have x=.2jxj/ 2 B1. From this definition of extension it follows that v.rx/D r3v.x/ for
all x 2 R2 and r � 0.

The following theorem is a special case of the main theorem in [Yeressian 2015].

Theorem 15. There exists a c > 0 such that if u is a solution in D, y 2� and Br .y/bD then we have

sup
�\@Br .y/

u� u.y/C cr2.r Cjy1j/:

A blowup limit is defined in Definition 3.

Lemma 16. Let v be a blowup limit. Then v is a third-order nontrivial homogeneous solution in B1, the
third-order homogeneous extension of v in R2 is a global solution, and W .C0;u/DW .r; v/ for r > 0.

Proof. Assume v 2 C 1;1.B1/ is a blowup limit and urj ! v in C 1.B1/.
From urj � 0 in B1 it follows that v � 0 in B1. By the convergence urj ! v in C 1.B1/ it follows

that 4urj !4v in H�1.B1/ and in particular as distributions. Also �furj
>0g! �fv>0g in L1.B1/ and

thus jx1j�furj
>0g! jx1j�fv>0g as distributions. Now (1-2) holds for urj in B1, so passing to the limit

as j !1 we obtain that v satisfies (1-2) in B1. This together with v � 0 in B1 proves that v is a solution
to the obstacle problem in B1.

For 0< s < 1 we compute

W .C0;u/D lim
j!1

W .srj ;u/D lim
j!1

W .s;urj /DW .s; v/: (4-4)
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Thus W .s; v/ is independent of 0< s < 1.
Now, by (4-1), we obtain that for 0< s < 1

0D
d

ds
W .s; v/D 2s

Z
@B1

.@svs/
2 d�.x/:

From here it follows that rv �x� 3v D 0 in B1 and hence v is third-order homogeneous in B1.
Now let us prove that v is not 0 in B1, i.e., v is nontrivial.
Let ı > 0 and Bı �D. Let 0< r < ı and y 2 Br=2\�; then we have

Br=4.y/� Br=4Cjyj � Br=4Cr=2 D B3r=4 bD;

thus by Theorem 15 we have

sup
@Br=4.y/

u� u.y/C c
�

1
4
r
�3
:

We compute

@Br=4.y/� Br=2.y/� Br=2Cjyj � Br ;

so we have

sup
Br

u� sup
@Br=4.y/

u� u.y/C c
�

1
4
r
�3
�

1
43 cr3

and thus

sup
B1

ur �
1
43 c:

From this inequality, taking r D rj ! 0, we obtain that v is not identically 0 in B1.
Let us again denote by v the extension of v in R2. Then it is easy to see that, because v is a solution

in B1 and v.rx/D r3v.x/ for x 2 R2 and r � 0, v is a solution in R2, i.e., a global solution.
By third-order homogeneity of v we have W .r; v/DW

�
1
2
; v
�

for r > 0 and this together with (4-4)
proves the last claim of the lemma. �

5. Homogeneous global solutions

In this section we classify all possible solutions of the problem (2-3). The solutions of (2-3) form the
subset of nonnegative solutions of the following no-sign obstacle problem (see [Petrosyan et al. 2012] for
more on no-sign obstacle problems)8<:

4uD jx1j��.u/ in R2;

�.u/D fuD jruj D 0gc ;

u third-order homogeneous.
(5-1)

We first classify the nontrivial solutions of (5-1) and then find the subset of nonnegative and nontrivial
solutions of (5-1), and thus obtain the classification of the nontrivial solutions of the problem (2-3).

In the rest of this section we always assume that u 6D 0 in R2, i.e., we discuss only the nontrivial
solutions, so � 6D∅.



OBSTACLE PROBLEM WITH A DEGENERATE FORCE TERM 409

In both problems, by homogeneity, the set � is an open cone in R2nf0g, i.e., for x 2� and r > 0 we
have rx 2�.

Either � is equal to R2nf0g or it is at most a countable union of disjoint connected open cones
in R2nf0g.

To classify the solutions in both problems we first establish if there exists a solution with �D R2nf0g.
Then we find all the connected cones � not equal to R2nf0g for which there exists a corresponding
solution.

Let us define
U.�/D u.ei� /� 1

3
i @�u.ei� /:

Lemma 17. If u is a third-order homogeneous function in a connected open cone � � R2 such that
4uD jx1j then there exists a 2 C such that

U.�/D 1
6
jcos � j cos.�/ei�

Cxae3i� (5-2)

for all ei� 2� (in the rest of this section we identify R2 with the complex plane C).

Proof. Let us write v.x/D u.x/� .x1/ with  as defined in (3-4); then v is a third-order homogeneous
harmonic function in the connected open cone �� R2. Thus there exists a 2 C such that

v.x/D<.xa.x1C ix2/
3/ for all x 2�:

So we have
u.ei� /D 1

6
jcos � j3C<.xae3i� / (5-3)

for all ei� 2�.
Differentiating (5-3) with respect to � we obtain the desired equation. �

By the homogeneity of u it follows that˚
x 2�

ˇ̌
u.x/D jru.x/j D 0

	
D frei�

2� j U.�/D 0; r > 0g:

If � D R2nf0g then, for u to be a solution to (5-1), U should be a periodic function with period
2� such that U.�/ 6D 0 for all � 2 R and if, in addition, u is a solution to (2-3) then we should have
<U.�/ > 0 for all � 2 R.

In the case that � is an open connected cone not equal to R2nf0g, there exist �1, �2 2 R such that
�1 < �2 � �1 C 2� and � D frei� j r > 0; �1 < � < �2g. In this case, if u is a solution to (5-1)
with �D�.u/, then U should satisfy U.�1/DU.�2/D 0 and U.�/ 6D 0 for �1 < � < �2. If, in addition,
u is a solution to (2-3) then we should have <U.�/ > 0 for �1 < � < �2.

Let us define
V .�/D jcos � j cos.�/e2i� : (5-4)

It follows that
6e3i�U .�/D V .�/C 6a: (5-5)

Lemma 18. The function u is a solution of (5-1) with �D R2nf0g if and only if �6a 62 V .R/.
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1−1

i

−i

Figure 3. The set V .R/.

Proof. The function u is a solution of (5-1) with�DR2nf0g if and only if U is 2�-periodic and U.�/ 6D 0

for all � 2 R.
From (5-2) it follows that U is 2�-periodic and, by (5-5), it is clear that U.�/ 6D 0 for all � 2 R if and

only if �6a 62 V .R/. �
From the definition of V in (5-4) it is clear that Bc

1
� .V .R//c , so by Lemma 18 it follows that there

are many solutions of (5-1) with �D R2nf0g.
Let us note that for a connected cone specified by �1 and �2, the solution with such a cone is unique.

This follows from the fact that, because U.�1/D 0, by (5-2) a is uniquely obtained and for this value
of a the solution u is uniquely given by (5-3). Based on this observation, in the following we do not
distinguish between a connected cone and the corresponding solution.

Lemma 19. The function u is a solution of (5-1) with a connected open cone � 6D R2nf0g if and only if
one of the following cases hold:

(i) �1 62 Z� C
˚
�
4
; �

2
; 3�

4

	
and �2 D �1C 2� .

(ii) �1 2 Z� C �
2

and �2 D �1C� .

(iii) �1 2 Z� C �
4

and �2 D �1C
�
2

.

(iv) �1 2 Z� C 3�
4

and �2 D �1C
3�
2

.

Proof. Let us remember that we should have �1, �2 2 R, �1 < �2 � �1C 2� , U.�1/D U.�2/D 0 and
U.�/ 6D 0 for �1 < � < �2. It is possible to find all such �1 and �2 by algebraic computations, but for
ease of presentation we resort to geometric arguments.

By (5-5), U.�/D 0 if and only if �6aD V .�/, hence we should have �1, �2 2 R, �1 < �2 � �1C 2� ,
V .�1/D V .�2/ and V .�/ 6D V .�1/ for �1 < � < �2. Thus we should find the smallest closed loops in the
range graph of V. The range graph of V, i.e., the set V .R/ is depicted in Figure 3.

Then we have the following four cases:

(i) �6a D V .�1/ 2 V .R/n
˚
0;˙ i

2

	
with �1 2 Rn

�
Z� C

˚
�
4
; �

2
; 3�

4

	�
and the smallest loop is when

�2 D �1C 2� .

(ii) �6aD V .�1/D 0 with �1 2 Z� C �
2

and the smallest loop is when �2 D �1C� .
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(iii) �6aD V .�1/ 2
˚
˙

i
2

	
with �1 2 Z� C �

4
and the smallest loop is when �2 D �1C

�
2

.

(iv) �6aD V .�1/ 2
˚
˙

i
2

	
with �1 2 Z� C 3�

4
and the smallest loop is when �2 D �1C

3�
2

. �

There is some redundancy in the solutions specified in the previous lemma. In the following lemma
we prove that if for two solutions the corresponding connected cones are rotations of each other by a
multiple of � then the corresponding solutions are also rotated by the same angle.

Lemma 20. Let a, a0 2 C and let U , U 0 be the corresponding functions. If n 2 Z and �0 2 R are such
that U 0.�0C n�/D U.�0/ then U 0.� C n�/D U.�/ for all � 2 R.

Proof. For any n 2 Z and � 2 R we have

U 0.� C n�/D a0e3i.�Cn�/
C

1
6
jcos.� C n�/j cos.� C n�/ei.�Cn�/

D .�1/na0e3i�
C

1
6
jcos � j cos.�/ei�

D ..�1/na0�xa/e3i�
CU.�/;

from which the lemma follows because if U 0.�0Cn�/DU.�0/ for some �0 then .�1/na0�xaD 0, from
which in turn it follows that U 0.� C n�/D U.�/ for all � . �

Corollary 21. Let u and u0 be solutions of (5-1) with �.u/D frei� j �1 < � < �2; r > 0g and �.u0/D
frei� j � 0

1
< � < � 0

2
; r > 0g, where �1 < �2 � �1C 2� and � 0

1
< � 0

2
� � 0

1
C 2� . If there exists n 2 Z such

that � 0
1
D �1C n� and � 0

2
D �2C n� , then u0.ei.�Cn�//D u.ei� / for �1 < � < �2.

Proof. Let U.�/ correspond to u.x/ and U 0.�/ to u0.x/. Then U.�1/ D 0 and U 0.� 0
1
/ D 0. Thus

U.�1/D U 0.� 0
1
/D U 0.�1C n�/. Now by Lemma 20 the corollary is proved. �

By this corollary we are able to remove some of the redundancies in Lemma 19, as stated in the
following corollary:

Corollary 22. The function u is a solution of (5-1) with a connected open cone � 6D R2nf0g if and only
if one of the following cases hold:

(i) �1 2 Œ0; 2�/n
˚
�
4
; �

2
; 3�

4
; 5�

4
; 3�

2
; 7�

4

	
and �2 D �1 C 2�: the solutions corresponding to �1 in

Œ�; 2�/n
˚

5�
4
; 3�

2
; 7�

4

	
are equal to the solutions corresponding to �1 2 Œ0; �/n

˚
�
4
; �

2
; 3�

4

	
rotated

by � , respectively.

(ii) �1 2 f
�
2
; 3�

2
g and �2 D �1 C �: the solution corresponding to �1 D

3�
2

is equal to the solution
corresponding to �1 D

�
2

rotated by � ,

(iii) �1 2 f
�
4
; 5�

4
g and �2 D �1 C

�
2

: the solution corresponding to �1 D
5�
4

is equal to the solution
corresponding to �1 D

�
4

rotated by � .

(iv) �1 2 f
3�
4
; 7�

4
g and �2 D �1C

3�
2

: the solution corresponding to �1 D
7�
4

is equal to the solution
corresponding to �1 D

3�
4

rotated by � .

By Lemma 18 we have obtained the solutions of (5-1) with �D R2nf0g and by Corollary 22 we have
obtained all the solutions of (5-1) with a connected open cone � 6D R2nf0g. Now we turn to finding the
nonnegative solutions among these solutions.

To check the nonnegativity of a solution u, in the following lemma we write u.ei� / in a closed form.



412 KAREN YERESSIAN

Lemma 23. Let �1<�2� �1C2� and let u be a solution to (5-1) in the cone corresponding to �1 and �2.
Then we have

6u.ei� /D jcos � j3� jcos �1j cos.�1/ cos.3� � 2�1/: (5-6)

Proof. Because U.�1/D 0, by (5-5) we have 6xaD�V .�1/.
Now, by (5-3) we compute

6u.ei� /D jcos � j3C<.6xae3i� /D jcos � j3�<.V .�1/e
3i� /

D jcos � j3�<.jcos �1j cos.�1/e
�2i�1e3i� /

D jcos � j3�<.jcos �1j cos.�1/e
.3��2�1/i/

D jcos � j3� jcos �1j cos.�1/<.e
.3��2�1/i/

D jcos � j3� jcos �1j cos.�1/ cos.3� � 2�1/;

which proves (5-6). �

Lemma 24. There exists no solution to the problem (2-3) with �D fu> 0g D R2nf0g.

Proof. On the line segments fx1 D 0gnf0g, i.e., for � D˙�
2

, we have

6u.e˙i�=2/D
ˇ̌
cos
�
˙
�
2

�ˇ̌3
� jcos �1j cos.�1/ cos

�
˙

3�
2
� 2�1

�
D�jcos �1j cos.�1/ cos

�
˙

3�
2
� 2�1

�
D˙jcos �1j cos.�1/ sin.2�1/: (5-7)

If jcos �1j cos.�1/ sin.2�1/D0 then u.e˙i �
2 /D0, which is in contradiction with�Dfu>0gDR2nf0g.

If jcos �1j cos.�1/ sin.2�1/ 6D 0 then we can choose � D �
2

or � D��
2

and obtain u.ei� / < 0, which is
again in contradiction with �D fu> 0g D R2nf0g. �

Lemma 25. The function u is a solution of (2-3) with a connected open cone � 6D R2nf0g if and only if
one of the following cases hold:

(i) �1 2
˚
�
2
; 3�

2

	
and �2 D �1 C �: the solution corresponding to �1 D

3�
2

is equal to the solution
corresponding to �1 D

�
2

rotated by � .

(ii) �1 2
˚
�
4
; 5�

4

	
and �2 D �1 C

�
2

: the solution corresponding to �1 D
5�
4

is equal to the solution
corresponding to �1 D

�
4

rotated by � .

Proof. We first show that the solutions given in parts (i) and (iv) of Corollary 22 are not nonnegative and
then we show that the solutions given in parts (ii) and (iii) are nonnegative.

To prove the failure of nonnegativity of solutions given in part (i) of Corollary 22 we need only to
consider �1 2 Œ0; �/n

˚
�
4
; �

2
; 3�

4

	
with �2D �1C2� and, to prove the failure of nonnegativity of solutions

given in part (iv), we need only to consider �1 D
3�
4

with �2 D �1C
3�
2

.
For all these cases let us consider � D 3�

2
, then �1 < � < �2 and, by a similar computation as in (5-7),

we obtain that
6u.e3�i=2/D�jcos �1j cos.�1/ sin.2�1/:
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Because for �1 2 Œ0; �/ we have

jcos �1j cos.�1/ sin.2�1/D 2jcos �1j cos2.�1/ sin �1 � 0;

this proves that the respective solutions take a nonpositive value at � D 3�
2

. If u.e3�i=2/ < 0 then u is
not nonnegative. If u.e3�i=2/D 0 and u was nonnegative then we would have @�u.e3�i=2/D 0, which is
in contradiction with the connectedness of �.

To prove that the solutions given in Corollary 22(ii) are solutions of (2-3), we need only to consider
the case when �1 D

�
2

and �2 D �1C� . We compute

6u.ei� /D jcos � j3�
ˇ̌
cos �

2

ˇ̌
cos
�
�
2

�
cos
�
3� � 2

�
�
2

��
D jcos � j3 (5-8)

and, because jcos � j> 0 for �
2
< � < 3�

2
, we obtain that u is a solution of (2-3).

To prove that the solutions given in Corollary 22(iii) are solutions of (2-3), we need only to consider
the case when �1 D

�
4

and �2 D �1C
�
2

. We compute

6u.ei� /Djcos � j3�
ˇ̌
cos �

4

ˇ̌
cos
�
�
4

�
cos
�
3���

2

�
Djcos � j3�1

2
cos
�
3���

2

�
Djcos � j3�1

2
sin.3�/: (5-9)

Let � D �
2
C  for ��

4
<  < �

4
; then

6u.ei.�=2C//D
ˇ̌
cos
�
�
2
C 

�ˇ̌3
�

1
2

sin
�
3
�
�
2
C 

��
D jsin  j3C 1

2
cos.3 /:

It follows that 6u.ei.�=2C//D 6u.ei.�=2�//, so we need only to consider 0�  < �
4

. For 0�  < �
4

we have sin  � 0, thus

6u.ei.�=2C//D sin3  C 1
2

cos.3 /D 1
2

cos3. /.tan  � 1/2.2 tan  C 1/ > 0I

therefore we obtain that u is a solution of (2-3). �

Lemma 26. In the original variable x 2 R2, the only solutions of (2-3) with a connected open cone
� 6D R2nf0g are the following four solutions together with their noncoincidence cone � and their free
boundary �:

u.x/D uhs.x/; �D fx1 > 0g; � D fx1 D 0gI

u.x/D uhs.�x1;x2/; �D fx1 < 0g; � D fx1 D 0gI

u.x/D uw.x/; �D fx2 > jx1jg; � D fx2 D jx1jgI

u.x/D uw.x1;�x2/; �D fx2 < �jx1jg; � D fx2 D�jx1jg:

Proof. We compute the solutions given in Lemma 25 in the original variable.
For solutions given in Lemma 25(i), we only consider the case when �1 D

�
2

and �2 D �1C� . We
have ˚

x D rei�
ˇ̌
r > 0; �

2
< � < 3�

2

	
D fx1 < 0g:

Now, for x D rei� 2 fx1 < 0g, using the computation in (5-8) we compute

6u.x/D 6u.rei� /D 6r3u.ei� /D r3
jcos � j3 D r3

jx1=r j3 D jx1j
3
D .x�1 /

3:
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For solutions given in Lemma 25(ii) we only consider the case when �1 D
�
4

and �2 D �1C
�
2

. We
have ˚

x D rei�
ˇ̌
r > 0; �

4
< � < 3�

4

	
D fx2 > jx1jg:

Now, for x D rei� 2 fx2 > jx1jg, using the computation in (5-9) we compute

6u.x/D 6u.rei� /D 6r3u.ei� /D r3
�
jcos � j3� 1

2
sin.3�/

�
D r3

�
jcos � j3� 1

2
.3 cos2.�/ sin � � sin3 �/

�
D r3

�
jx1=r j3� 1

2

�
3.x1=r/2x2=r � .x2=r/3

��
D jx1j

3
�

1
2
.3x2

1x2�x3
2/;

which completes the proof of the lemma. �

Proof of Theorem 4. By Lemma 24 there exists no solution to the problem (2-3) with�Dfu>0gDR2nf0g.
So we are left only with solutions whose noncoincidence open cone � is a countable union of disjoint

connected open cones. But, considering the only possible connected open cones as noncoincidence sets
enumerated in Lemma 26, we come to the conclusion that, except for the solutions with connected cones,
there exist two additional solutions, uwCuw.x1;�x2/ and uhsCuhs.�x1;x2/, each a combination of
two solutions with connected open cones. �

Lemma 27. We have
W .1;uhs/D

�
96

and W .1;uw/D
1

192

�
� � 8

3

�
:

Proof. For any solution of (2-3) with connected open cone, we have, using (4-2),

W .1;u/D

Z
B1

jx1ju dx D

Z 1

0

Z
@Br

jx1ju d�.x/ dr D

Z 1

0

Z
@B1

jry1ju.ry/r d�.y/ dr

D

Z 1

0

r5 dr

Z
@B1

jy1ju.y/ d�.y/

D
1

6

Z �2

�1

jcos � ju.ei� / d�:

For the half-space solution uhs , we compute, using (5-8),

W .1;uhs/D
1

36

Z 3�=2

�=2

jcos � j4 d� D
1

18

Z �=2

0

cos4 � d� D
�

96
:

For the wedge solution uw, we compute, using (5-9),

W .1;uw/D
1

36

Z 3�=4

�=4

�
jcos � j4� 1

2
jcos � j sin.3�/

�
d�

D
1

18

Z �=2

�=4

cos4 � d� �
1

36

Z �=2

�=4

cos.�/ sin.3�/ d� D 1
192

�
� � 8

3

�
;

which completes the proof of the lemma. �
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Corollary 28. We have

0<W .1;uw/DW .1;uw.x1;�x2// <W .1;uwCuw.x1;�x2//D 2W .1;uw/

<W .1;uhs/DW .1;uhs.�x1;x2// <W .1;uhsCuhs.�x1;x2//D 2W .1;uhs/:

Proof. The only inequality that is not clear is the inequality 2W .1;uw/ <W .1;uhs/. But this is verified
by the explicit values computed in the previous lemma. �

Corollary 29. The set �\fx1D 0g might be decomposed into four disjoint sets according to four possible
values of the Weiss balanced energy. The closure of the set of points with a given energy w is a subset of
the set of points with energy larger than or equal to w.

Proof. Let y 2 �\fx1D 0g; then, by the translation u.xCy/, we might assume that y D 0. Let 0< ı be
such that Bı �D. Let us consider the family ur for 0< r < 1

6
ı. By Theorem 2 this family is uniformly

bounded in C 1;1.B1/. Thus there exists rj ! 0 and v 2 C 1;1.B1/ such that urj ! v in C 1.B1/. By
Lemma 16, v is a nontrivial homogeneous global solution and W .C0;u/DW .1; v/. The possible values
of W .1; v/ are only of the four values given in the previous corollary and this shows that the free boundary
points � \fx1 D 0g divide into four disjoint sets depending on the Weiss balanced energy of the blowups
at that point.

The last claim follows from the upper semicontinuity of W .C0;x;u/ stated in Lemma 14. �

For example, from Corollary 29 it follows that the set � \fx1 D 0g\ fW .C0;x;u/D 2W .1;uhs/g is
closed. Actually, at the end of Section 7 we will show that all points of � \fx1 D 0g\ fW .C0;x;u/ in
fW .1;uw/; 2W .1;uw/gg are isolated points of � \fx1 D 0g.

In the following lemma we obtain a lower bound for the homogeneous global solutions, which will be
used in Lemma 32.

Lemma 30. There exists a c > 0 such that for all homogeneous global solutions u we have

u.x/� cd2.x; fuD 0g/
�
d.x; fuD 0g/Cjx1j

�
for x 2 R2: (5-10)

Proof. It is easy to see that we need to prove (5-10) for the cases when uD uw or uD uhs .
In the case u D uhs , for x1 � 0 both sides of the inequality (5-10) are 0. For x1 > 0 we have

d.x; fuhs D 0g/D x1, hence

uhs.x/D
1
6
x3

1 D
1
6
d2.x; fuhs D 0g/

�
1
2
d.x; fuhs D 0g/C 1

2
x1

�
D

1
12

d2.x; fuhs D 0g/
�
d.x; fuhs D 0g/Cx1

�
and this proves (5-10) for uD uhs .

In the case uDuw , for x2< jx1j both sides of the inequality are 0. Also, by the symmetry uw.x1;x2/D

uw.�x1;x2/ we need only to consider the case x2 > x1 > 0.
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For x2> x1> 0 it is easy to see that d.x; fuw D 0g/D 1p
2
.x2�x1/, thus for x2> x1> 0 we compute

uw.x/D
1
6
x3

1 C
1

12
x3

2 �
1
4
x2

1x2 D
1

12
.x2�x1/

2.2x1Cx2/

D
1

12

�p
2d.x; fuw D 0g/

�2�
3x1C

p
2d.x; fuw D 0g/

�
�

1
6

p
2d2.x; fuw D 0g/

�
d.x; fuw D 0g/Cx1

�
;

which proves the desired inequality. �

In the next lemma we prove directional monotonicity type inequalities, which will be used in Lemma 37.

Lemma 31. There exists a C > 0 such that a@�uw � uw � 0 in B1 \ f.1C �/x1 > x2 > x1 > 0g if
� D ei.3�=4C/, � > 0, ��

2
<  < �

2
and C.1=aC 1/� � cos  .

Proof. For x2 > x1 > 0 we have

uw.x/D
1
6
x3

1 C
1

12
x3

2 �
1
4
x2

1x2 D
1

12
.x2�x1/

2.2x1Cx2/;

@x1
uw.x/D

1
2
x2

1 �
1
2
x1x2 D�

1
2
.x2�x1/x1;

@x2
uw.x/D

1
4
x2

2 �
1
4
x2

1 D
1
4
.x2�x1/.x1Cx2/:

Thus we may compute, for x2 > x1 > 0,

a@�uw.x/�uw.x/D a
�
�1

�
�

1
2
.x2�x1/x1

�
C �2

�
1
4
.x2�x1/.x1Cx2/

��
�

1
12
.x2�x1/

2.2x1Cx2/

D
1
2
.x2�x1/

�
a
�
��1x1C �2

�
1
2
.x1Cx2/

��
�

1
6
.x2�x1/.2x1Cx2/

�
: (5-11)

Thus, to have a@�uw.x/�uw.x/� 0 for x 2 R2 satisfying x2 > x1 > 0 we should have

a
�
��1x1C �2

�
1
2
.x1Cx2/

��
�

1
6
.x2�x1/.2x1Cx2/

and, rearranging this further, we get the equivalent inequality

�2� �1 �
1

2x1
.x2�x1/

�
1

3a
.2x1Cx2/� �2

�
:

Now, for x 2B1 we have the bounds x1 < 1 and x2 < 1. Also, if 0< x1 < x2 then x2�x1 > 0. So it
is sufficient to have the inequality

�2� �1 �
1

2x1
.x2�x1/

�
1

a
� �2

�
: (5-12)

By 0< x1 < x2 < .1C�/x1 we have 0< .x2�x1/=x1 < �. Thus, if 1=a��2 > 0 then we should have

�2� �1 �
�

2

�
1

a
� �2

�
and if 1=a� �2 � 0 then we should have �2� �1 � 0. Because �2 � �1, for both cases it is sufficient to
have

�2� �1 �
�

2

�
1

a
C 1

�
: (5-13)

We compute
�2� �1 D sin

�
3�
4
C 

�
� cos

�
3�
4
C 

�
D
p

2 cos : (5-14)
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From (5-13) and (5-14) it follows that it is sufficient to have

cos  �
p

2

4

�
1

a
C 1

�
�

and, taking C �
p

2
4

, the second part is also proved. �

6. Uniqueness of blowup limits

Proof of Theorem 7. By Lemma 16 a blowup limit at the origin is a third-order homogeneous global
solution.

By Theorem 4 we have six nontrivial homogeneous global solutions. Let us enumerate them by ui for
i D 1; : : : ; 6.

Assume by contradiction that there exist rj ! 0 and Qrj ! 0 such that urj ! u1 and uQrj ! u2

in C 1.B1/.
There exists � > 0 such that kui �u1kC.B1/ > � for i D 2; : : : ; 6.
Let us write f .r/D kur �u1kC.B1/.
Because u is uniformly continuous in a neighbourhood of 0 we have that f .r/ is continuous for small

enough r > 0. We have also f .rj /! 0 and f . Qrj /!ku2�u1kC.B1/ > �. Thus there exists Orj ! 0 such
that f . Orj /D 1

2
�.

By Theorem 2, u Orj is uniformly bounded in C 1;1.B1/ for large j . Thus there exists a subsequence jk

such that u Orjk
converges in C 1. By Lemma 16 the limit of u Orjk

is a third-order nontrivial homogeneous
global solution. This is in contradiction with f . Orjk

/D 1
2
� and the choice of �. �

7. Convergence of the free boundary to the free boundary of the blowup limit

In the following lemma, roughly speaking, we prove two inclusions. First, if u is close to a nontrivial
homogeneous global solution u0 then, for x far from fu0 D 0g, we have u.x/ > 0. Second, if u is close
to a solution u0 then, for x far from fu0 > 0g, we have x 2 fuD 0gı.

Lemma 32. There exists c > 0 such that if u0 is a nontrivial homogeneous global solution and u is a
solution in B1, then we have˚

x 2 B1

ˇ̌
cd2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fu> 0gI (7-1)

here fu0 D 0g D fx 2 R2 j u0.x/D 0g and fu> 0g D fx 2 B1 j u.x/ > 0g.
If u0 and u are solutions in B1 and

ku�u0kL1.B1/ < c;

then ˚
x 2 B1=2

ˇ̌
cd2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gıI (7-2)

here fu0 D 0g D fx 2 B1 j u0.x/D 0g and fuD 0g D fx 2 B1 j u.x/D 0g.
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Proof. Assume u0 is a nontrivial homogeneous global solution and u is a solution in B1. Using Lemma 30
for x 2 B1 we compute

u.x/D u0.x/Cu.x/�u0.x/� u0.x/�ku�u0kL1.B1/

� c1d2.x; fu0 D 0g/
�
d.x; fu0 D 0g/Cjx1j

�
�ku�u0kL1.B1/I

here c1 is the constant in Lemma 30. So, if

ku�u0kL1.B1/ <
1
2
c1d2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
then

u.x/ > 1
2
c1d2.x; fu0 D 0g/

�
d.x; fu0 D 0g/Cjx1j

�
and this proves (7-1) with 0< c � 1

2
c1.

Assume u0 and u are solutions in B1. By Theorem 15 there exists c2> 0 such that, if y 2B1, u.y/ > 0

and Br .y/b B1, then we have

sup
fu>0g\@Br .y/

u� u.y/C c2r2.r Cjy1j/:

Thus, if y 2 B1, u.y/ > 0, Br .y/b fu0 D 0g\B1 and c2r2.r C jy1j/ > ku�u0kL1.B1/, then we
have

0D sup
fu>0g\@Br .y/

u0 D sup
fu>0g\@Br .y/

.u� .u�u0//

� sup
fu>0g\@Br .y/

u�ku�u0kL1.B1/

� u.y/C c2r2.r Cjy1j/�ku�u0kL1.B1/

� c2r2.r Cjy1j/�ku�u0kL1.B1/I

a contradiction. Thus, if y 2 B1, Br .y/ b fu0 D 0g \ B1 and c2r2.r C jy1j/ > ku � u0kL1.B1/,
then u.y/D 0.

For y 2 .fu0 D 0g\B1/
ı, setting r D 1

2
d
�
y; .fu0 D 0g\B1/

c
�

it follows that if

1
4
c2d2

�
y; .fu0 D 0g\B1/

c
��

1
2
d
�
y; .fu0 D 0g\B1/

c
�
Cjy1j

�
> ku�u0kL1.B1/

then u.y/D 0. This proves that˚
x 2B1

ˇ̌
1
8
c2d2

�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0g:

By the continuity of d
�
x; .fu0 D 0g\B1/

c
�

as a function of x it follows that˚
x 2 B1

ˇ̌
1
8
c2d2

�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gı: (7-3)

Let x 2 B1=2; then we compute

d
�
x; .fu0D0g\B1/

c
�
Dd.x; fu0>0g[Bc

1/Dmin
�
d.x; fu0>0g/; d.x;Bc

1/
�
�min

�
d.x; fu0>0g/; 1

2

�
;
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so we have

d2
�
x; .fu0 D 0g\B1/

c
��

d
�
x; .fu0 D 0g\B1/

c
�
Cjx1j

�
Dmin

�
d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
;
�

1
2

�2�1
2
Cjx1j

��
�min

�
d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
; 1

8

�
: (7-4)

So, by (7-3) and (7-4), if

ku�u0kL1.B1/ <
1

64
c2

then ˚
x 2 B1=2

ˇ̌
1
8
c2d2.x; fu0 > 0g/

�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/

	
� fuD 0gı (7-5)

and, by choosing 0< c � 1
64

c2, this finishes the proof of the lemma. �

By the inclusions proved in the previous lemma, in the following lemma we show that for u a solution
and u0 a nontrivial homogeneous global solution, if u is close enough to u0 then the free boundary of u

is in a quantitatively specified neighbourhood of the free boundary of u0.

Lemma 33. There exists c > 0 such that, if u is a solution in B1 and u0 is a nontrivial homogeneous
global solution, then if

ku�u0kL1.B1/ < c (7-6)

we have

� \B1=2 �
˚
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� ku�u0kL1.B1/

	
:

Proof. If uD u0 in B1 then the claim is obvious, so we assume that u0 6D u in B1.
Assume there exists x 2 � \B1=2 such that

cd2.x; �u0
/.d.x; �u0

/Cjx1j/ > ku�u0kL1.B1/I

here c > 0 is as in Lemma 32.
Then, because

d.x; �u0
/Dmax

�
d.x; fu0 D 0g/; d.x; fu0 > 0g/

�
;

we should have either

cd2.x; fu0 D 0g/
�
d.x; fu0 D 0g/Cjx1j

�
> ku�u0kL1.B1/ (7-7)

or

cd2.x; fu0 > 0g/
�
d.x; fu0 > 0g/Cjx1j

�
> ku�u0kL1.B1/: (7-8)

In the case when (7-7) holds then, by (7-1), we obtain that u.x/ > 0, which is in contradiction
with x 2 � .

In the case when (7-8) holds then, because also (7-6) holds by (7-2), we obtain that x 2 fu D 0gı,
which is in contradiction with x 2 � and this finishes the proof of the lemma. �
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Lemma 34. There exists c > 0 such that if u0 is a nontrivial homogeneous global solution, u is a solution
in D, 0 2D and 0 2 � then, for x 2 � such that B4jxj �D and

ku4jxj�u0kL1.B1/ < c;

we have
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� jxj

3
ku4jxj�u0kL1.B1/:

Proof. Let c be as in Lemma 32.
Let r > 0 and assume

kur �u0kL1.B1/ < cI

then, by Lemma 33, we have

�ur
\B1=2 �

˚
cd2.y; �u0

/.d.y; �u0
/Cjy1j/� kur �u0kL1.B1/

	
:

Then, because �u0
is a cone and �u\Br=2 D r.�ur

\B1=2/, we obtain

�u\Br=2 �
˚
ry 2 Br=2

ˇ̌
cd2.y; �u0

/
�
d.y; �u0

/Cjy1j
�
� kur �u0kL1.B1/

	
D

n
x 2 Br=2

ˇ̌̌
cd2

�
x

r
; �u0

��
d
�

x

r
; �u0

�
C

ˇ̌̌
x1

r

ˇ̌̌�
� kur �u0kL1.B1/

o
D
˚
x 2 Br=2

ˇ̌
cd2.x; �u0

/.d.x; �u0
/Cjx1j/� r3

kur �u0kL1.B1/

	
:

For those x 2 �u such that B4jxj �D, we may consider r D 4jxj.
So, if

ku4jxj�u0kL1.B1/ < c

then, because x 2 �u\B2jxj, we have

cd2.x; �u0
/
�
d.x; �u0

/Cjx1j
�
� 43
jxj3ku4jxj�u0kL1.B1/: �

Proof of Theorem 8. Let us consider the case W .C0;u/DW .1;uw/ with the blowup limit uw . Then for
x 2 fx1 > 0; x2 > �x1g we have d.x; �uw /D

p
2

2
jx2�x1j and, for x 2 fx1 > 0; x2 � �x1g, we have

d.x; �uw /D jxj �
p

2
2
jx2�x1j. Thus we compute, for x1 > 0,

d.x; �uw /Cjx1j �
1
2

p
2jx2�x1jC jx1j � c1jxj: (7-9)

By symmetry we obtain the same inequality for x1 < 0.
Now, by Lemma 34 we obtain the inequality (2-7). For the remaining cases, when W .C0;u/ is in

fW .1;uw/; 2W .1;uw/g, we can compute similarly.
In the cases when W .C0;u/2fW .1;uhs/; 2W .1;uhs/g we have �u0

Dfx1D 0g and d.x; �u0
/Djx1j,

so (2-8) follows immediately from Lemma 34. �

Corollary 35. Let u be a solution in D; then the points of

� \fx1 D 0g\
˚
W .C0;x;u/ 2 fW .1;uw/; 2W .1;uw/g

	
are isolated points of � \fx1 D 0g (in the topology of fx1 D 0g).
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Proof. Assume W .C0;u/ 2 fW .1;uw/; 2W .1;uw/g; then, by (2-7), the free boundary should converge
to the free boundary of the blowup limit tangentially. But this is not the case if the origin is not an isolated
point of � \fx1 D 0g. �

8. Convergence of the normal of the free boundary to the normal of the free boundary
of the blowup limit at regular points

In the following lemma we prove a nondegeneracy type result for u� a@�u far from the degeneracy
line fx1 D 0g.

Lemma 36. If u is a solution in D, y 2�, Br .y/bD\
˚
x1 �

1
16

	
and u.y/� 1

32
@�u.y/ > 0, then we

have
1

128
r2
� sup
�\@Br .y/

.u� a@�u/:

Proof. Let y and r be as in the statement of the theorem.
We define, for a> 0 and c > 0,

h.x/D u.x/� a@�u.x/� .u.y/� a@�u.y//� cjx�yj2:

We compute

4h.x/D jx1j � a�1x1=jx1j � 4c � 1
16
� a� 4c in �\

˚
x1 �

1
16

	
;

so if we choose aD 1
32

and c D 1
128

then we have

4h� 0 in �\
˚
x1 �

1
16

	
: (8-1)

Also we have
h.y/D 0: (8-2)

For x 2 � we have u.x/� 1
32
@�u.x/D 0, thus if u.y/� 1

32
@�u.y/ > 0 then we have

h.x/D�
�
u.y/� 1

32
@�u.y/

�
�

1
128
jx�yj2 < 0 on �: (8-3)

Because Br .y/ �
˚
x1 �

1
16

	
, by (8-1) we have that h is subharmonic in the domain � \ Br .y/.

Applying the maximum principle for the domain �\Br .y/ and the subharmonic function h, we have

h.y/� sup
@.�\Br .y//

h: (8-4)

By (8-2) and (8-4), we obtain
0� sup

@.�\Br .y//

h: (8-5)

Because
@.�\Br .y//D .@�\Br .y//[ .�\ @Br .y//;

by (8-3) and (8-5) we obtain
0� sup

�\@Br .y/

h: (8-6)
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By the definition of h, from (8-6) we get the inequality

u.y/� 1
32
@�u.y/C

1
128

r2
� sup
�\@Br .y/

�
u� 1

32
@�u

�
(8-7)

and this proves the lemma. �

Let �w be the normal to �uw \fx1 > 0g pointing into fuw > 0g, i.e.,

�w D
1p
2
.�1; 1/:

In the following lemma we prove a crucial directional monotonicity result, which will be used in the
proof of the convergence of normals.

Lemma 37. There exists c > 0 such that, if u is a solution in B1, xu 2 �u\ @B1=4\fx1 > 0g, � 2 @B1

and r > 0 are such that
ku�uwk

1=2

C 1.B1/
C r � c� � �w;

then
1

32
@�u�u� 0 in �\Br .xu/:

Proof. We have

fxuwg D �uw \ @B1=4\fx1 > 0g; where xuw D

p
2

8
.1; 1/:

Step 1. In this step we show that there exists C1 > 0 such that

jxu�xuw j � C1ku�uwk
1=2

L1.B1/
: (8-8)

By Lemma 33 there exists c > 0 such that if ku�uwkL1.B1/ < c then

�u\B1=2 �
˚
c.d.x; �uw //

2.d.x; �uw /Cjx1j/� ku�uwkL1.B1/

	
: (8-9)

We have xu 2 �u\ @B1=4\fx1 > 0g; thus, by (8-9),

c.d.xu; �uw //
2.d.xu; �uw /Cjxu;1j/� ku�uwkL1.B1/: (8-10)

As in (7-9) there exists c1 > 0 such that

d.xu; �uw /Cjxu;1j � c1jxuj D
1
4
c1: (8-11)

Also, because xu 2 @B1=4\fx1 > 0g there exists C2 > 0 such that

jxu�xuw j � C2d.xu; �uw /: (8-12)

Now, by (8-10), (8-11) and (8-12), it follows that there exists C3 > 0 such that

jxu�xuw j � C3ku�uwk
1=2

L1.B1/
: (8-13)

Step 2. In this step we show that there exists ı > 0 such that if

ku�uwkL1.B1/ < ı and 0< r < 1
48



OBSTACLE PROBLEM WITH A DEGENERATE FORCE TERM 423

then, for x 2�\B1=48.xu/, if u.x/� 1
32
@�u.x/ > 0 we have

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
:

By Step 1, if
C3ku�uwk

1=2

L1.B1/
< 1

48

then jxu�xuw j<
1

48
. Thus xu;1 > xuw;1�

1
48

and

B1=48.xu/�
˚
x1 > xuw;1�

1
48
�

1
48

	
D fx1 > xuw;1�

1
24
g

and, for x 2 B1=48.xu/, we have

B1=48.x/�
˚
x1>xuw;1�

1
24
�

1
48

	
D
˚
x1>xuw;1�

1
16

	
D
˚
x1>

p
2

8
�

1
16

	
�fx1>

1
8
�

1
16
gD

˚
x1>

1
16

	
:

Now, by Lemma 36, if
0< r < 1

48
;

x 2�\B1=48.xu/ and u.x/� 1
32
@�u.x/ > 0, then we have

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
:

Step 3. In this step we show that there exists C4> 0 such that 1
32
@�uw�uw � 0 in B�.xuw / if 0<�< 1

16
,

� 2 @B1 and C4�� � � �w.
Assume x 2 B�.xuw / with 0< � < 1

16
. Then

x1 > xuw;1� � > xuw;1�
1

16
D

p
2

8
�

1
16
> 1

8
�

1
16
D

1
16

and
x2

x1

D 1C
x2�x1

x1

� 1C
jx2�x1j

x1

< 1C 16jx2�x1j D 1C 16
p

2d.x; fx2 D x1g/

� 1C 16
p

2jx�xuw j � 1C 16
p

2�I

hence by Lemma 31 we have 1
32
@�uw.x/�uw.x/� 0 if � 2 @B1 and

C
�

1
1=32
C 1

�
.16
p

2�/� � � �w

with C > 0 as in Lemma 31.

Step 4. In this step we show that there exists ı1 > 0 and C5 > 0 such that, if

ku�uwkL1.B1/ < ı1; 0< r < 1
48
; 0< r1 <

1
48
; (8-14)

� 2 @B1; C4.r C r1CC3ku�uwk
1=2

L1.B1/
/� � � �w; (8-15)

C5ku�uwk
1=2

C 1.B1/
< r; (8-16)

then
u� 1

32
@�u� 0 in �\Br1

.xu/: (8-17)
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By Step 1 there exists 0< ı1 < ı such that if

ku�uwkL1.B1/ < ı1 (8-18)

then
jxu�xuw j<

1
48
: (8-19)

Let
0< r < 1

48
and 0< r1 <

1
48
: (8-20)

Assume now that both (8-18) and (8-20) hold.
We define

�D r C r1Cjxu�xuw jI

then by (8-19) and (8-20) we have
0< � < 1

16
: (8-21)

By Step 2 for x 2�\Br1
.xu/, if u.x/� 1

32
@�u.x/ > 0 then

1
128

r2
� sup
�\@Br .x/

�
u� 1

32
@�u

�
: (8-22)

By (8-21) and Step 3 we have 1
32
@�uw �uw � 0 in B�.xuw / if

� 2 @B1 and C4�� � � �w: (8-23)

Assume now that (8-23) holds.
We have

Br .x/� BrCjx�xuj.xu/� BrCjx�xujCjxu�xuw j
.xuw /� BrCr1Cjxu�xuw j

.xuw /� B�.xuw /:

We compute

sup
�\@Br .x/

�
u� 1

32
@�u

�
� sup
�\@Br .x/

�
uw �

1
32
@�uw

�
C sup
�\@Br .x/

�
u� 1

32
@�u�

�
uw �

1
32
@�uw

��
� C6ku�uwkC 1.B1/

:

Therefore, by (8-22), if
1

128
r2 > C6ku�uwkC 1.B1/

then
u� 1

32
@�u� 0 in �\Br1

.xu/:

Step 5. In this step we finish the proof of the lemma.
Choosing

r D 2C5ku�uwk
1=2

C 1.B1/
;

(8-16) holds. Noticing that � � �w � 1 we obtain that, by choosing c > 0 small enough, if

� 2 @B1; ku�uwk
1=2

C 1.B1/
C r1 � c� � �w
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holds then (8-14) and (8-15) hold and thus, by Step 4, (8-17) holds and this proves the lemma. �

For 0� ı < 1 let us define the open cone

Cı D fx 2 R2
j x � �w > ıjxjg:

Corollary 38. If u is a solution in B1, x 2 � \ @B1=4\fx1 > 0g, 0< ı < 1 and r > 0 are such that

ku�uwk
1=2

C 1.B1/
C r � cı

with c > 0 as in Lemma 37, then

Br .x/\ .xCCı/� fu> 0g and Br .x/\ .x�Cı/� fuD 0g: (8-24)

Proof. By Lemma 37 and the definition of Cı we have that, for all � 2 Cı,

@�u� 0 in Br .xu/: (8-25)

From (8-30), because u� 0,

z 2 Br .x/ and u.z/D 0 D) Br .x/\ .z�Cı/� fuD 0g: (8-26)

In particular, because u.x/D 0 we have

Br .x/\ .x�Cı/� fuD 0g:

Now assume there exists y 2 Br .x/\ .xCCı/ such that u.y/D 0. By (8-26) we have that uD 0 in
Br .x/\.y�Cı/. From y 2xCCı it follows that x 2y�Cı , thus x is in the interior of Br .x/\.y�Cı/,
where we have shown that uD 0 and this contradicts x 2 � . �

It is easy to see that, for the cone C 0
ı

conjugate to the cone Cı, we have

C 0ı D fx 2 R2
j x �y � 0 for all y 2 Cıg D Cp

1�ı2
: (8-27)

Theorem 39. There exists C1 > 0 such that, if u is a solution in D, 0 2D and 0 2 � is a regular point
with blowup limit uw , then there exists � > 0 such that all points of �\fx1> 0g\B� are usual (for x1> 0

the force term is nondegenerate) regular free boundary points and

jn.x/� �wj � C1ku4jxj�uwk
1=2

C 1.B1/
(8-28)

for x 2 � \fx1 > 0g\B�, where n.x/ is the normal to � at x, pointing into �.

Proof. If there exists r > 0 such that uD uw in Br then the claim of the theorem holds trivially. So we
might assume that for all r > 0 we have u 6D uw in Br .

Let x 2 � \ fx1 > 0g \B1. By the uniqueness of the blowup limit and Theorem 2 we have that
u4jxj! uw in C 1.B1/ as x! 0. Thus there exists � > 0 such that for jxj< � we have

ku4jxj�uwkC 1.B1/
<
�

c

2

�2
(8-29)

with c > 0 as in Lemma 37.
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Let y D 1
4
x=jxj. Then y 2 �u4jxj

\ @B1=4\fx1 > 0g. By (8-29), if we choose

ı D
2

c
ku4jxj�uwk

1=2

C 1.B1/
(8-30)

then 0< ı < 1.
Also let us set

r D ku4jxj�uwk
1=2

C 1.B1/
: (8-31)

Then, by (8-30) and (8-31) we have

ku4jxj�uwk
1=2

C 1.B1/
C r D cı (8-32)

and consequently, by Corollary 38, we have

Br .y/\ .yCCı/� fu4jxj > 0g and Br .y/\ .y �Cı/� fu4jxj D 0g: (8-33)

From (8-33) it follows that

B4jxjr .x/\ .xCCı/� fu> 0g and B4jxjr .x/\ .x�Cı/� fuD 0g: (8-34)

Now, if x is a singular free boundary point then the blowup limit is a nonzero homogeneous quadratic
polynomial. But, by (8-34), this polynomial should be equal to 0 in �Cı , which brings us to contradiction.
Thus all points of � \fx1 > 0g\B� are regular points.

Now assume jxj< �; then, because x is a regular point, � has a normal at this point. Let n.x/ be the
normal to � pointing into �. From (8-34) it follows that n.x/ 2 C 0

ı
. Now, by (8-27), we have

n.x/ 2 Cp
1�ı2

;

so
n.x/ � �w �

p
1� ı2:

We compute

jn.x/� �wj
2
D 2� 2n.x/ � �w � 2� 2

p
1� ı2

D
2ı2

1C
p

1� ı2
� 2ı2 (8-35)

and (8-28) follows from (8-30) and (8-35). �

9. Free boundary as a graph near regular points

The following two lemmas will be used in Lemma 42.

Lemma 40. If u is a solution in D, 0 2D and 0 2 � is a regular free boundary point with blowup limit
uw, then there exists an � > 0 such that u.0; t/ > 0 for 0< t < � and .0; t/ 2 fuD 0gı for �� < t < 0.

Proof. Let x D .0; t/ 2 B�, 0< t < �, then we compute

d2
�

1
2
x=jxj; fuw D 0g

��
d
�

1
2
x=jxj; fuw D 0g

�
C
ˇ̌

1
2
x1=jxj

ˇ̌�
D d3

�
1
2
x=jxj; fuw D 0g

�
D d3

�
1
2
e2; fuw D 0g

�
D
�p

2
4

�3
: (9-1)
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For small enough �, if jxj< � then

ku2jxj�uwkL1.B1/ < c
�p

2
4

�3 (9-2)

with c as in Lemma 32. Thus, by (9-1), (9-2) and (7-1), we have u2jxj

�
1
2
x=jxj

�
> 0, so u.x/ > 0.

Let x D .0; t/ 2 B�, �� < t < 0, then we compute

d2
�

1
4
x=jxj; fuw > 0g

��
d
�

1
4
x=jxj; fuw > 0g

�
C
ˇ̌

1
4
x1=jxj

ˇ̌�
D d3

�
1
4
x=jxj; fuw > 0g

�
D d3

�
�

1
4
e2; fuw > 0g

�
D

1
43 :

(9-3)

For small enough �, if jxj< � then

ku4jxj�uwkL1.B1/ <
1
43 c: (9-4)

Thus, by (9-3), (9-4) and (7-2), we have x=.4jxj/ 2 fu4jxj D 0gı, so x 2 fuD 0gı. �

Lemma 41. If u is a solution in D, 0 2 D and 0 2 � is a regular free boundary point with blowup
limit uw, then there exists an � > 0 such that for every 0 < x1 <

1
4
� there exists a unique x2 such that

x D .x1;x2/ 2 � \B� and, for .x1; t/ 2 B�, we have u.x1; t/ > 0 if t > x2 and .x1; t/ 2 fu D 0gı

if t < x2.

Proof. First we show that there exists � > 0 such that for all 0 < x1 <
1
4
� there exists x2 such that

.x1;x2/ 2 � \B�.
Let � > 0, to be chosen later. Let 0< x1 <

1
4
�; then we computeˇ̌�

x1;
3
4
�
�ˇ̌2

<
�

1
4
�
�2
C
�

3
4
�
�2
D

10
16
�2 < �2

I

thus
�
x1;

3
4
�
�
2 B�. We compute

d
��

x1=�;
3
4

�
; fuw D 0g

�
D

p
2

2

�
3
4
�x1=�

�
�

p
2

2

�
3
4
�

1
4

�
D

p
2

4

and

d2
��

x1=�;
3
4

�
; fuw D 0g

��
d
��

x1=�;
3
4

�
; fuw D 0g

�
Cjx1=�j

�
� d3

��
x1=�;

3
4

�
; fuw D 0g

�
�
�p

2
4

�3
:

Thus, if � is small enough that

ku� �uwkL1.B1/ < c
�p

2
4

�3
with c as in Lemma 32, then by (7-1) we obtain that

u�
�
x1=�;

3
4

�
> 0

and therefore
u
�
x1;

3
4
�
�
> 0: (9-5)

Let 0< x1 <
1
4
�; then we computeˇ̌�

x1;�
1
4
�
�ˇ̌2

<
�

1
4
�
�2
C
�

1
4
�
�2
D
�p

2
4
�
�2
<
�

1
2
�
�2
;
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thus
�
x1;�

1
4
�
�
2 B�=2 � B�.

We compute
d
��

x1=�;�
1
4

�
; fuw > 0g

�
�

1
4

and
d2
��

x1=�;�
1
4

�
; fuw > 0g

��
d
��

x1=�;�
1
4

�
; fuw > 0g

�
Cjx1=�j

�
�

1
43 :

Thus, if � is small enough that
ku� �uwkL1.B1/ <

1
43 c;

then by (7-2) we obtain that �
x1=�;�

1
4

�
2 fu� D 0gı

and therefore �
x1;�

1
4
�
�
2 fuD 0gı: (9-6)

From (9-5), (9-6) and the continuity of u it follows that there exists �1
4
� < x2 <

3
4
� such that

.x1;x2/ 2 � . This finishes the proof of the existence of x2.
By Corollary 38 there exists c > 0 such that, if y 2 �u\fy1 > 0g and

ku4jyj�uwkC 1.B1/
�
�

1
4
c
�2
;

then
Bcjyj.y/\ .yCC1=2/� fu> 0g and Bcjyj.y/\ .y �C1=2/� fuD 0g: (9-7)

Now let � be small enough that �1.4�/�
�

1
4
c
�2. Then (9-7) holds for y 2 �u\B� \fy1 > 0g.

Because x D .x1;x2/ 2 �u\B� \fx1 > 0g, by (9-7) we have

Bcjxj.x/\ .xCC1=2/� fu> 0g and Bcjxj.x/\ .x�C1=2/� fuD 0g: (9-8)

Assume there exists .x1; t/ 2 B� such that t > x2 and u.t;x2/D 0. Let t� be the infimum of such t ,
i.e.,

t� D infft > x2 j .x1; t/ 2 B� and u.t;x2/D 0g:

From the first inclusion in (9-8) we have that t� > x2. Thus for x2 < s < t� we have u.x1; s/ > 0,
therefore .x1; t

�/ is on the boundary of fu > 0g. We obtain that .x1; t
�/ 2 �u. But now, because

.x1; t
�/ 2 �u \ B� \ fx1 > 0g, by the second inclusion in (9-7) at the point .x1; t

�/ we come to a
contradiction.

Now assume that there exists .x1; t/ 2 B� such that t < x2 and .t;x2/ 2 fu> 0g. Let t� be the
supremum of such t , i.e.,

t� D supft < x2 j .x1; t/ 2 B� \fu> 0gg:

From the second inclusion in (9-8) we have that t�<x2. Thus for t�< s<x2 we have .x1; s/2fuD0gı,
therefore .x1; t

�/ 2 �u. But now, because .x1; t
�/ 2 �u\B� \fx1 > 0g, by the first inclusion in (9-7) at

the point .x1; t
�/ we come to a contradiction. �

In the following lemma we prove that near to regular points the free boundary is a continuous graph.
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Lemma 42. If u is a solution in D, 0 2 D and 0 2 � is a regular free boundary point with blowup
limit uw , then there exists an � > 0 and  2 C

��
0; 1

4
�
��

such that  .0/D 0, we have .x1;  .x1// 2B� for
0< x1 <

1
4
�, and

fuD 0g\B� \
˚
0� x1 <

1
4
�
	
D
˚
x 2 B�

ˇ̌
0� x1 <

1
4
�; x2 �  .x1/

	
: (9-9)

Proof. By Lemma 41 there exists an � > 0 such that, for every 0< x1 <
1
4
�, there exists a unique x2 such

that x D .x1;x2/ 2 � \B�; let us define  .x1/D x2. Let us also define  .0/D 0.
Then, by Lemmas 40 and 41, we have (9-9).
Now let us show that  is continuous. Assume there exists 0� y < 1

4
� such that  is discontinuous

at y. Then there exists xj ! y such that  .xj /! z and either z > .y/ or z < .y/.
In the case z > .y/ we have u.y; z/ > 0, which is in contradiction with u.xj ;  .xj //D 0 and the

continuity of u.
In the case z < .y/ we have .y; z/ 2 fuD 0gı, which is in contradiction with .xj ;  .xj // 2 � . �

In the following lemma we formulate the convergence of the free boundary in terms of the function  .

Lemma 43. There exists C1 > 0 and C2 > 0 such that, if u is a solution in D, 0 2 D and 0 2 � is a
regular free boundary point with blowup limit uw, then, with � > 0 and  as in Lemma 42, we have

j .x1/�x1j � C1

�
�0.C2jx1j/

�1=2
jx1j for 0< x1 <

1
4
�;

where �0 is as defined in (2-6).

Proof. By Theorem 8 we have

d.x; �uw /� C1

�
�0.C2jxj/

�1=2
jxj:

For x1 > 0 we estimate
d.x; �uw /�

p
2

2
jx2�x1jI

thus

j .x1/�x1j � C3

�
�0.C2jxj/

�1=2
jxj � C4

�
�0.C2jxj/

�1=2�
j .x1/jC jx1j

�
� C4

�
�0.C2jxj/

�1=2�
j .x1/�x1jC 2jx1j

�
: (9-10)

By the continuity of  at 0 we have that  .x1/! .0/D0 as x1!0. Hence jxj�C5

�
j .x1/jCjx1j

�
!0

as x1! 0. From this convergence we obtain �0.C2jxj/! 0 as x1! 0.
Thus, from (9-10) it follows that

j .x1/�x1j � C6

�
�0.C2jxj/

�1=2
jx1j: (9-11)

In turn, from (9-11) it follows that

jxj � C5

�
j .x1/jC jx1j

�
� C5

�
j .x1/�x1jC 2jx1j

�
� C5

�
C6

�
�0.C2jxj/

�1=2
jx1jC 2jx1j

�
D C5

�
C6

�
�0.C2jxj/

�1=2
C 2

�
jx1j

� C7jx1j: (9-12)



430 KAREN YERESSIAN

Now, by (9-11) and (9-12) the lemma is proved. �
In the following lemma we formulate the convergence of the normals in terms of the function  .

Lemma 44. There exists C1 > 0 and C2 > 0 such that, if u is a solution in D, 0 2 D and 0 2 � is a
regular free boundary point with blowup limit uw, and � > 0 and  are as in Lemma 42, then we have
 2 C 1

�
0; 1

4
�
�

and

j 0.x1/� 1j � C1

�
�1.C2jx1j/

�1=2
;

where �1 is as defined in (2-6).

Proof. By Theorem 39, for small enough � > 0 all points of � \fx1 > 0g\B� are usual regular points.
Let 0< x1 <

1
4
�. Hence (see [Petrosyan et al. 2012]) � is a C 1 curve in a neighbourhood of .x1;  .x1//.

From (8-28) it follows that for small enough � and jxj < � we have n.x/ 62 f�e1; e1g. It follows that
 0.x1/ exists and

n.x/D
.� 0.x1/; 1/p
1C . 0.x1//2

:

From here it follows that there exists C > 0 such that for n.x/ close enough to �w we have

j 0.x1/� 1j � C jn.x/� �wj: (9-13)

Now, by (8-28) and (9-13) we obtain

j 0.x1/� 1j � C2ku4jxj�uwk
1=2

C 1.B1/
: (9-14)

By (9-12) together with the definition of �1 and (9-14), the lemma is proved. �
Proof of Theorem 9. This follows from Lemmas 42, 43 and 44 and the symmetry of the problem with
respect to the line fx1 D 0g. �

In the case when 0 is a regular point but with uw.x1;�x2/ as the blowup limit, we consider the even
reflection Qu.x1;x2/ D u.x1;�x2/, apply Theorem 9 to Qu and obtain that the free boundary of u is a
graph with properties as in Theorem 9 but reflected with respect to the line fx2 D 0g.

By the following two lemmas we prove that if W .C0;u/D 2W .1;uw/ then u might be decomposed
into the sum of two functions each having 0 as a regular point.

Lemma 45. If u is a solution in D, 0 2D, 0 2 � and W .C0;u/D 2W .1;uw/, then there exists an � > 0

such that u.x1; 0/D 0 for jx1j< �.

Proof. Let u0 D uwCuw.x1;�x2/. We have

d
�
˙

1
4
e1; fu0 > 0g

�
D

p
2

8
:

We compute

d2
�
˙

1
4
e1; fu0 > 0g

��
d
�
˙

1
4
e1; fu0 > 0g

�
C

1
4

�
D
�p

2
8

�2�p2
8
C

1
4

�
:

Now, if jx1j> 0 is small enough that

ku4jx1j
�u0kL1.B1/ < c

�p
2

8

�2�p2
8
C

1
4

�
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with c as in Lemma 32 then, by (7-2), we have u4jx1j

�
˙

1
4
e1

�
D 0. Thus u.x1; 0/D 0. �

Lemma 46. If u is a solution in D, 0 2D, 0 2 � and W .C0;u/D 2W .1;uw/, then there exists an � > 0

such that uCD �fx2>0gu and u�D �fx2<0gu are solutions in B� . We have W .C0;u˙/DW .1;uw/, the
blowup limit of uC is uw and the blowup limit of u� is uw.x1;�x2/.

Proof. By Lemma 45 there exists an � > 0 such that u.x1; 0/D 0 for jx1j< �.
Because u� 0, u 2 C 1

loc.D/ and u.x1; 0/D 0 for jx1j< �, it follows that ru.x1; 0/D 0 for jx1j< �.
From this it follows that uC and u� are solutions in B� . We have ur .x/!uwCuw.x1;�x2/ in C 1.B1/

as r ! 0. Thus �fx2>0gur ! uw in C 1.B1/ and uC;r .x/ D r�3�fx2>0g.rx/u.rx/ D �fx2>0gur .x/;
hence uC;r .x/! uw in C 1.B1/ and

W .C0;uC/D lim
r!C0

W .r;uC/D lim
r!C0

W .1;uC;r /DW .1;uw/:

We argue similarly for u�. �

In the case W .C0;u/D 2W .1;uw/, by Lemma 46 and Theorem 9 it follows that the free boundary
near to 0 is the union of two graphs, one graph as in Theorem 9 and the other a graph with properties as
in Theorem 9 but reflected with respect to the line fx2 D 0g.

10. An irregularity result for the free boundary near degenerate points

Lemma 47. Let u be a solution in D with 0 2D. Suppose also that there exists ı > 0 such that Bı �D,
@x2

u � 0 in Bı \ fx1 > 0; x2 > 0g, � \Bı \ fx1 D 0; x2 > 0g 6D ∅ and Bı \ fx1 > 0; x2 > 0g ��;
then uD uhs in Bı \fx1 > 0; x2 > 0g.

Proof. For ease of notation let us write v D �@x2
u. We have that v is harmonic in � and v � 0 in

Bı \fx1 > 0; x2 > 0g.
Assume y 2�\Bı\fx1D 0; x2> 0g, then by the optimal growth (Theorem 11) we have @x1

v.y/D 0.
For small enough r > 0 we have Br .re1C y/ � �. Now, because v is nonnegative and harmonic in
Br .re1Cy/ and @x1

v.y/D 0, by Hopf’s lemma we conclude that v D 0 in Br .re1Cx/. Because v is
harmonic in � we obtain that vD 0 in Bı\fx1> 0; x2> 0g. Hence uD u.x1/ in Bı\fx1> 0; x2> 0g.
By this and the assumption � \Bı \fx1 D 0; x2 > 0g 6D∅ the claim follows. �

Lemma 48. Let u be a solution in D with 0 2 D. Suppose also that there exists ı > 0 such that
Bı � D, @x2

u � 0 in Bı \ fx1 > 0; x2 > 0g, and there exists � 2 C
��

0; 1
2
ı
��
\C 1

��
0; 1

2
ı
��

such that
�.0/D �0.C0/D 0, � > 0 in

�
0; 1

2
ı
�
, � is convex and

�\Bı \
˚
x1 > 0; 0< x2 <

1
2
ı
	
D Bı \

˚
0< x2 <

1
2
ı; �.x2/ < x1

	
I (10-1)

then for every q > 1 there exist c > 0 and t0 > 0 such that

�.t/� ctq and �0.t/� ctq�1 for 0< t < t0: (10-2)

Proof. Again, for ease of notation let us write v D�@x2
u. The proof is divided into multiple steps.
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Step 1. In this step we show that v > 0 in Bı \
˚
0< x2 <

1
2
ı; �.x2/ < x1

	
.

If there is x 2 Bı \
˚
0< x2 <

1
2
ı; �.x2/ < x1

	
such that v.x/D 0 then, because v is harmonic and

nonnegative in Bı\
˚
0< x2<

1
2
ı; �.x2/ < x1

	
, it follows that vD 0 in Bı\

˚
0< x2<

1
2
ı; �.x2/ < x1

	
,

but then because u.�.t/; t/D 0 for 0< t < 1
2
ı we come to contradiction with (10-1).

Step 2. In this step we show that for each q > 1 and � >
�
tan.�=.2q//

��1 there exist c1 > 0 (depending
on u) and t1 > 0 such that

v.xt /� c1t2q for 0< t < t1; (10-3)

where
xt D .�t; t/ 2�:

Let q > 1 and
˛q D

�

2q
:

Because �0.C0/D 0 there exists tq > 0 such that �.t/ < t=tan˛q for 0< t < tq .
Let us denote

rq D
tq

tan˛q
:

It follows that
�q D fx D rei�

j 0< r < rq; 0< � < ˛qg ��:

Let us define the function

vq.x/D r2q sin.2q�/ for x D rei�
2�q:

We have
@
�

1
2
�q

�
D Sq [Aq;

where
Sq D

˚
x D rei�

ˇ̌
0� r < 1

2
rq; � 2 f0; ˛qg

	
and

Aq D
˚
x D rei�

ˇ̌
r D 1

2
rq; 0� � � ˛q

	
:

Let aD 1
2
rqe1 and bD 1

2
rqei˛q be the endpoints of the arc Aq . We have b 2�, hence v.b/ > 0. Either

v.a/ > 0 or v.a/D 0 and, by Hopf’s lemma, we have @x2
v.a/ > 0. Also we have v > 0 on Aqnfa; bg.

Thus there exists � > 0 such that
�vq � v on Aq: (10-4)

We have vq D 0 and v � 0 on Sq , thus

�vq � v on Sq: (10-5)

Putting (10-4) and (10-5) together we have

�vq � v on @
�

1
2
�q

�
:
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Now, by the maximum principle, we obtain that

�vq � v in 1
2
�q: (10-6)

We compute jxt j D
p

1C �2t , so for

0< t <
1

2

rqp
1C �2

we have jxt j<
1
2
rq; also we compute

xt;2

xt;1

D
1

�
< tan˛q;

thus we have

xt 2
1

2
�q for 0< t <

1

2

rqp
1C �2

: (10-7)

Now, by (10-6) and (10-7) we have

v.xt /� �vq.xt /D �jxt j
2q sin

�
2q arctan 1

�

�
D c1t2q for 0< t <

1

2

rqp
1C �2

;

where

c1 D �.1C �
2/q sin

�
2q arctan 1

�

�
> 0:

Step 3. In this step we show that there exists c2 > 0 (independent of u) and t2 > 0 such that if

0< t < t2 and � < 1

then there exists yt D .�.yt;2/;yt;2/ 2 � with 0< yt;2 < tq such that

dt D jyt �xt j D d.�;xt /

and

@n.yt /v.yt /�
c2

dt
v.xt /: (10-8)

Here n.y/ is the normal to � at y, pointing into �.
Let

…q D f0< x1 < rq; 0< x2 < tqgI

then we have

�q D � \…q D f.�.t/; t/ j 0< t < tqg:

One may see that

d.xt ; @…q/Dmin
˚
�t; rq � �t; t; tq � t

	
D �t (10-9)

if

t <min
�

rq

2�
;

tq

1C �

�
and � < 1:
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Because � > .tan˛q/
�1 and 0 < t < tq , we have that �.t/ < t=tan˛q < �t . Also we have �.t/ > 0,

thus
d.xt ; .�.t/; t//D �t � �.t/ < �t:

Now, because .�.t/; t/ 2 �q we have

d.xt ; �/ < �t: (10-10)

By (10-9) and (10-10) there exists yt 2 �q such that

dt D jyt �xt j D d.�;xt /: (10-11)

Because
d.xt ; @…q/D �t > d.�;xt /D dt ;

we have
Bdt

.xt /�…q ��:

Because yt 2 @Bdt
.xt /, by the quantitative Hopf lemma (see [Han and Lin 2011]) there exists c2 > 0

(independent of u and t ) such that (10-8) holds.

Step 4. In this step we show that

@n.y/v.y/D�n2.y/y1 for y 2 �q: (10-12)

By the equation 4uD jx1j�fu>0g and the smoothness of the free boundary �q , i.e., smoothness of �,
it follows that in a neighbourhood of y 2 �q we have

4v D�n2jx1jH
1x�: (10-13)

From (10-1) and (10-13), the equation (10-12) follows.

Step 5. In this step we show that for 0< t < t2 we have

yt;2 < .1C �/t: (10-14)

We have

n.y/D
.1;��0.y2//p
1C .�0.y2//2

for y 2 �q (10-15)

and
yt D xt � dtn.yt /:

Thus

yt;2 D t C dt
�0.yt;2/

p
1C .�0.yt;2//

2

and
yt;2 � t C dt < t C �t D .1C �/t:

Step 6. In this step we show that there exists c3 > 0 and t3 > 0 such that

�.yt;2/�
0.yt;2/� c3t2q�1 for 0< t < t3: (10-16)
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Set t3 Dmin.t1; t2/. From (10-3), (10-8) and (10-12) it follows that

�n2.yt /yt;1 D @n.yt /v.yt /�
c2

dt
v.xt /�

c2

dt
c1t2q for 0< t < t3: (10-17)

From (10-17), (10-15), (10-10) and (10-11) we get

�.yt;2/�
0.yt;2/D �

0.yt;2/yt;1 �
�0.yt;2/

p
1C .�0.yt;2//

2
yt;1

D�n2.yt /yt;1 �
c2

dt
c1t2q

�
1

�
c1c2t2q�1

D c3t2q�1:

Step 7. In this step, using the convexity of � we finish the proof of the lemma.
By the convexity of �, the function ��0 is nondecreasing; hence, by (10-14) and (10-16), we have

�..1C �/t/�0..1C �/t/� �.yt;2/�
0.yt;2/� c3t2q�1 for 0< t < t3:

Letting � D .1C �/t we have that

�.�/�0.�/� c3

�
�

1C�

�2q�1
D c4�

2q�1 for 0< � < .1C �/t3 D �0:

It follows that

.�2/0.�/� 2c4�
2q�1 for 0< � < �0

and by integration we obtain

�.�/� c5�
q for 0< � < �0:

From the convexity of � it follows that ��0.�/� �.�/; hence

�0.�/� c5�
q�1 for 0< � < �0

and this completes the proof of the lemma. �

Proof of Theorem 10. By Lemmas 47 and 48 we have that either � D 0 in
�
0; 1

2
ı
�

and u D uhs in
�\Bı \fx1 > 0; x2 > 0g or, for all q > 1, there exist c > 0 and t0 > 0 such that (10-2) holds.

In the latter case, if � is C 1;˛ regular for some 0 < ˛ < 1 at the origin, then there exists C > 0 and
ı1 > 0 such that

j�0.x2/� �
0.C0/j � C jx2j

˛ for 0< x2 < ı1:

But, because �0.C0/D 0 and �0.x2/� 0, we should have

�0.x2/� Cx˛2 for 0< x2 < ı1:

This contradicts with (10-2) if we take 1< q < 1C˛. �
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11. Further directions

The problem considered in this paper might be thought of as a prototype of free boundary problems,
especially the obstacle problem, with a degenerate force term. There are many open questions in these
problems and we are working to complete some works on these questions.

Some further directions are as follows:

(1) Higher dimension. It is interesting to consider the same problem in higher dimensions with possibly
different dimensions for the set where the force term vanishes. In [Yeressian 2015] the key nondegeneracy
result is proved for such higher-dimensional problems when the force term vanishes on a linear subspace.

(2) More general force terms. Partial results show that, when the force term is of the form jx1j
˛ for ˛ > 0,

the number of homogeneous global solutions — and together with it the possible Weiss balanced energy
levels — grows linearly with ˛ > 0. Again in [Yeressian 2015] the key nondegeneracy result is proved
for such general force terms. Many results in this paper could be written for such more general forces,
but to have a reasonable bound on the size of the paper we have opted to consider the case ˛ D 1 only.

(3) Degenerate free boundary points and points where W .C0;x;u/ D 2W .1;uhs/. We know that at
these points the free boundary converges tangentially to the line fx1 D 0g and we know some topological
structure of the set of these points based on the upper semicontinuity of the Weiss balanced energy.
Also, in a particular case we have proved an irregularity result for the free boundary at such points. It is
interesting to study the structure of the free boundary near to such points in more detail.

(4) Uniform results. For the nondegenerate obstacle problems there are many results which hold uniformly
for a class of problems; see [Petrosyan et al. 2012]. But in this paper we have only considered a single
solution alone.

(5) Parabolic problem. The problem considered in this paper has a parabolic analogue. It is interesting to
know the exact influence of the degeneracy of the force term in the parabolic problems.
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