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LOCAL ANALYTIC REGULARITY
IN THE LINEARIZED CALDERÓN PROBLEM

JOHANNES SJÖSTRAND AND GUNTHER UHLMANN

We show that the linearized local Dirichlet-to-Neumann map at a real-analytic potential for measurements
made at an analytic open subset of the boundary is injective.
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1. Introduction

In this paper, we consider the linearized Calderón problem with local partial data and related problems.
We first briefly review Calderón’s problem including the case of partial data. For a more complete review,
see [Uhlmann 2009].

Calderón’s problem is, roughly speaking, the question of whether one can determine the electrical
conductivity of a medium by making voltage and current measurements at the boundary of the medium.
This inverse method is also called electrical impedance tomography. We describe the problem more
precisely below.

Let�⊆Rn be a bounded domain with smooth boundary. The electrical conductivity of� is represented
by a bounded and positive function γ (x). In the absence of sinks or sources of current, the equation for
the potential is given by

∇ · (γ∇u)= 0 in � (1-1)

since, by Ohm’s law, γ∇u represents the current flux. Given a potential f ∈ H 1/2(∂�) on the boundary,
the induced potential u ∈ H 1(�) solves the Dirichlet problem

∇ · (γ∇u)= 0 in �,

u|∂� = f.
(1-2)

Sjöstrand was partly supported by ANR 2011. Uhlmann was partly supported by the NSF and a Simon Fellowship.
MSC2010: 35R30.
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The Dirichlet-to-Neumann (DN) map, or voltage-to-current map, is given by

3γ ( f )=
(
γ
∂u
∂ν

)∣∣∣∣
∂�

, (1-3)

where ν denotes the unit outer normal to ∂�. The inverse problem is to determine γ knowing 3γ .
The local Calderón problem, or the Calderón problem with partial data, is the question of whether

one can determine the conductivity by measuring the DN map on subsets of the boundary for voltages
supported in subsets of the boundary. In this paper, we consider the case when the support of the voltages
and the induced current fluxes are measured in the same open subset 0. More conditions on this open set
will be stated later. If γ ∈C∞(�), the DN map is a classical pseudodifferential operator of order 1. It was
shown in [Sylvester and Uhlmann 1986] that its full symbol computed in boundary normal coordinates
near a point of 0 determines the Taylor series of γ at the point giving another proof of the result of Kohn
and Vogelius [1984]. In particular, this shows that real-analytic conductivities can be determined by
the local DN map. This result was generalized in [Lee and Uhlmann 1989] to the case of anisotropic
conductivities using a factorization method related to the methods of this paper. Interior determination
was shown in dimension n ≥ 3 for C2 conductivities [Sylvester and Uhlmann 1987]. This was extended
to C1 conductivities in [Haberman and Tataru 2013]. In two dimensions, uniqueness was proven for C2

conductivities in [Nachman 1996] and for merely L∞ conductivities in [Astala and Päivärinta 2006]. The
case of partial data in dimension n ≥ 3 was considered in [Bukhgeim and Uhlmann 2002; Kenig et al.
2007; Isakov 2007; Kenig and Salo 2013; Imanuvilov and Yamamoto 2013]. The two-dimensional case
was solved in [Imanuvilov et al. 2010]. See [Kenig and Salo 2014] for a review. However, it is not known
at the present whether one can uniquely determine the conductivity if one measures the DN map on an
arbitrarily open subset of the boundary applied to functions supported in the same set. We refer to these
types of measurements as the local DN map.

The map γ →3γ is not linear. In this paper, we consider the linearization of the partial-data problem
at a real-analytic conductivity for real-analytic 0. We prove that the linearized map is injective. In fact,
we prove a more general statement (see Theorem 1.6)

As in many works on Calderón’s problem, one can reduce the problem to a similar one for the
Schrödinger equation (see for instance [Uhlmann 2009]). This result uses that one can determine from
the DN map the conductivity and the normal derivative of the conductivity. This result is only valid for
the local DN map. One can then consider the more general problem of determining a potential from the
corresponding DN map. The same is valid for the case of partial data and the linearization. It was shown in
[Dos Santos Ferreira et al. 2009] that the linearization of the local DN map at the 0 potential is injective. We
consider the linearization of the local DN map at any real-analytic potential assuming that the local DN map
is measured on an open real-analytic set. We now describe more precisely our results in this setting.

Consider the Schrödinger operator P = 1− V on the open set � b Rn , where the boundary ∂� is
smooth (and later assumed to be analytic in the most interesting region). Assume that 0 is not in the
spectrum of the Dirichlet realization of P . Let G and K denote the corresponding Green and Poisson
operators. Let γ :C∞(�)→C∞(∂�) be the restriction operator and ν the exterior normal. If x0 ∈ ∂�, we
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can choose local coordinates y = (y1, . . . , yn), centered at x0 so that � is given by yn > 0 and ν =−∂yn .
If ∂� is analytic near x0, we can choose the coordinates to be analytic.

The Dirichlet-to-Neumann (DN) operator is

3= γ ∂ν(x, ∂x)K . (1-4)

Consider a smooth deformation of smooth real-valued potentials

neigh(0,R) 3 t 7→ Pt =1− Vt ,

Vt(x)= V (t, x) ∈ C∞(neigh(0,R)×�;R).
(1-5)

Let G t and Kt be the Green and Poisson kernels for Pt so that(
Pt

γ

)
: C∞(�)→ C∞(�)×C∞(∂�)

has the inverse (
G t Kt

)
.

Then, denoting t-derivatives by dots,(
Ġ t K̇t

)
=−

(
G t Kt

) (Ṗt

0

) (
G t Kt

)
=−

(
G t Ṗt G t G t Ṗt Kt

)
;

that is,
Ġ =−G ṖG, K̇ =−G Ṗ K , (1-6)

and consequently,
3̇=−γ ∂νG Ṗ K . (1-7)

Using the Green formula, we see that
γ ∂νG = K t, (1-8)

where K t denotes the transposed operator.
In fact, write the Green formula,∫

�

((Pu1)u2− u1 Pu2) dx =
∫
∂�

(∂νu1u2− u1∂νu2)S(dx),

put u1 = Gv and u2 = Kw for v ∈ C∞(�) and w ∈ C∞(∂�),∫
�

vKw =
∫
∂�

(γ ∂νGv)wS(dx),

and (1-8) follows.
Equation (1-7) becomes

3̇=−K t Ṗ K = K tV̇ K . (1-9)

The linearized Calderón problem is: if Vt = V + tq, determine q from 3̇t=0. The corresponding
partial-data problem is to recover q or some information about q from local information about 3̇t=0.
From now on, we restrict the attention to t = 0. In this paper, we shall study the following linearized
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baby problem. Assume that V and ∂� are analytic near some point x0 ∈ ∂�. We also assume that V
is smooth. If 3̇ (for t = 0) is an analytic pseudodifferential operator near x0, can we conclude that q is
analytic near x0? Here,

3̇= K tq K , (1-10)

and we shall view the right-hand side as a Fourier integral operator acting on q .
Actually this problem is overdetermined in the sense that the symbol of a pseudodifferential operator

on the boundary is a function of 2(n− 1) variables while q is a function on n variables and 2(n− 1)≥ n
for n ≥ 2 with equality precisely for n = 2. In order to have a nonoverdetermined problem, we shall only
consider the symbol σ3̇(y

′, η′) of 3̇ along a half-ray in η′; i.e., we look at σ3̇(y
′, tη′0) for some fixed

η′0 6= 0 and for some local coordinates as above. Assuming this restricted symbol to be a classical analytic
symbol near y′ = 0 and the potential V = V0 to be analytic near y = 0 (i.e., near x0), we shall show that
q is real-analytic up to the boundary near x0 (corresponding to y = 0).

In order to formulate the result more precisely, we first make some remarks about the analytic singular
support of the Schwartz kernels of K and K tq K and then we recall the notion of classical analytic
pseudodifferential operators. Assume that W ⊂ Rn is an open neighborhood of x0 ∈ ∂O and that

∂� and V are analytic in W . (1-11)

For simplicity, we shall use the same symbol to denote operators and their Schwartz kernels. Then:

Lemma 1.1. The Schwartz kernel K (x, y′) is analytic with respect to y′, locally uniformly on the set

{(x, y′) ∈�× (∂�∩W ) : x 6= y′}.

Proof. Using (1-8), we can write K (x, y′)= γ ∂νu(y′), where u = G(x, · ) solves the Dirichlet problem

(1− V )u = δ( · − x), γ u = 0,

and from analytic regularity for elliptic boundary-value problems, we get the lemma. (When x ∈ ∂�, we
view G(x, y) away from y = x as the limit of G(x j , y) when � 3 x j → x .) �

Lemma 1.2. The Schwartz kernel (K tq K )(x ′, y′) is analytic on the set

{(x ′, y′) ∈ (∂�∩W )2 : x ′ 6= y′}. (1-12)

Proof. Let (x ′0, y′0) belong to the set (1-12). After decomposing q into a sum of two terms, we may assume
that x ′0 /∈ supp(q) or that y′0 /∈ supp(q). In the first case, it follows from Lemma 1.1 that (K tq K )(x ′, y′) is
analytic in x ′ uniformly for (x ′, y′) in a neighborhood of (x ′0, y′0), and since the kernel is symmetric, we
can exchange the roles of x ′ and y′ and conclude that (K tq K )(x ′, y′) is analytic in y′ uniformly for (x ′, y′)
in a neighborhood of (x ′0, y′0). In the second case, we have the same conclusion about analyticity in x ′ and
in y′ separately. It then follows that (K q K )(x ′, y′) is analytic near (x ′0, y′0) (by using the Fourier–Bros–
Iagolnitzer (FBI) definition of the analytic wave-front set and which can also (most likely) be deduced from
a classical result on logarithmic convexity of Reinhardt domains [Hörmander 1990, Theorem 2.4.6]). �
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Remark 1.3. By the same proof, K tq K (x ′, y′) is analytic near

{(x ′, x ′) ∈ (∂�∩W )2 : (x ′, 0) /∈ supp q}.

We next define the notion of a symbol up to exponentially small contributions. For that purpose, we
assume that X is an analytic manifold and consider an operator

A : C∞0 (X)→ C∞(X) (1-13)

that is also continuous
E ′(X)→ D′(X). (1-14)

Assume (as we have verified for K tq K with n replaced by n−1 and with X = ∂�∩W ) that the distribution
kernel A(x, y) is analytic away from the diagonal. After restricting to a local analytic coordinate chart,
we may assume that X ⊂ Rn is an open set. The symbol of A is formally given on T ∗X by

σA(x, ξ)= e−i x ·ξ A(ei( · )·ξ )=

∫
e−i(x−y)·ξ A(x, y) dy.

In the usual case of C∞-theory, we give a meaning to this symbol up to O(〈ξ〉−∞) by introducing a
cutoff χ(x, y) ∈ C∞(X × X) that is properly supported and equal to 1 near the diagonal. In the analytic
category, we would like to have an exponentially small indeterminacy, and the use of special cutoffs
becoming more complicated, we prefer to make a contour deformation.

For x in a compact subset of X , let r > 0 be small enough and define for ξ 6= 0

σA(x, ξ)=
∫

x+0r,ξ

ei(y−x)·ξ A(x, y) dy, (1-15)

where

0r,ξ : B(0, r) 3 t 7→ t + iχ
( t

r

)
r
ξ

|ξ |
∈ Cn

and χ ∈ C∞(B(0, 1); [0, 1]) is a radial function that vanishes on B(0, 1
2) and is equal to 1 near ∂B(0, 1).

Thus, the contour x+0r,ξ coincides with Rn near y = x and becomes complex for t close to the boundary
of B(0, r). Notice that along this contour

|ei(y−x)·ξ
| = e−χ(t/r)r |ξ |

is bounded by 1 and for t close to ∂B(0, r) it is exponentially decaying in |ξ |. Thus, from Stokes’ formula,
it is clear that σA(x, ξ) will change only by an exponentially small term if we modify r . More generally,
for (x, ξ) in a conic neighborhood of a fixed point (x0, ξ0) ∈ X × Sn−1, we change σA(x, ξ) only by an
exponentially small term if we replace the contour in (1-15) by x0+0r,ξ0 , and we then get a function that
has a holomorphic extension to a conic neighborhood of (x0, ξ0) in Cn

× (Cn
\ {0}).

Remark 1.4. Instead of using contour deformation to define σA, we can use an almost-analytic cutoff in
the following way. Choose C > 0 so that

1=
∫

Ch−n/2e−(y−t)2/2h dt,
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and put
et(y)= χ̃(y− t)Ch−n/2e−(y−t)2/2h,

where χ̃ ∈ C∞0 (R
n) is equal to 1 near 0 and has its support in a small neighborhood of that point. Then if

χ̂ is another cutoff of the same type, we see by contour deformation that

σA(x, ξ)= e−i x ·ξ A
(∫

χ̂(t)et e( · )·ξ
)

up to an exponentially decreasing term.

Definition 1.5. We say that A is a classical analytic pseudodifferential operator of order m ∈ R if σA is a
classical analytic symbol (cl.a.s.) of order m on X ×Rn in the following sense.

There exist holomorphic functions pm− j (x, ξ) on a fixed complex conic neighborhood V of X × Ṙn

such that

pk(x, ξ) is positively homogeneous of degree k in ξ, (1-16)

for all K b V ∩ {(x,ξ) : |ξ | = 1}, there exists C = CK such that |pm− j (x,ξ)| ≤ C j+1 j j on K , (1-17)

for all K b X and every C1 > 0 large enough, there exists C2 > 0

such that
∣∣∣∣σA(x, ξ)−

∑
0≤ j≤|ξ |/C1

pm− j (x, ξ)
∣∣∣∣≤ C2e−|ξ |/C2 with (x, ξ) ∈ K ×Rn and |ξ | ≥ 1. (1-18)

The formal sum
∑
∞

0 pm− j (x, ξ) is called a formal cl.a.s. when (1-16) and (1-17) hold. We define cl.a.s.
and formal cl.a.s. on open conic subsets of X × Ṙn and on other similar sets by the obvious modifications
of the above definitions. If p(x, ξ) is a cl.a.s. on X ×Rn and if ξ0 ∈ Ṙn , then

q(x, τ ) := p(x, τξ0)

is a cl.a.s. on X ×R+.

The main result of this work is:

Theorem 1.6. Let x0 ∈ ∂�, and assume that ∂� and V are analytic near that point. Let q ∈ L∞(�).
Choose local analytic coordinates y′= (y1, . . . , yn−1) on neigh(x0, ∂�), centered at x0, so that the symbol
σ3̇(y

′, η′) becomes well defined up to an exponentially small term on neigh(0)× Ṙn−1. Let η′0 ∈ Ṙn−1.
If σ3̇(y

′, τη′0) is a cl.a.s. on neigh(0,Rn−1)×R+, then q is analytic up to the boundary in a neighbor-
hood of x0.

We also have the converse statement.

We have a simpler direct result.

Proposition 1.7. Let x0, ∂�, and V be as in Theorem 1.6, and choose analytic coordinates as done there.
If q ∈ L∞(�) is analytic up to the boundary near x0, then 3̇ is an analytic pseudodifferential operator
near y′ = 0.

We get the following immediate consequence.
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Corollary 1.8. Under the conditions of the previous theorem, the map

q→ 3̇

is injective.

This follows from the previous result since q must be analytic on W and, if the Taylor series of q
vanishes on W , then q = 0 on the set where q is analytic.

Most of the paper will be devoted to the proof of Theorem 1.6, and in Section 7, we will prove
Proposition 1.7.

2. Heuristics and some remarks about the Laplace transform

Let us first explain heuristically why some kind of Laplace transform will appear. Assume that x0 ∈ ∂�

and that V and ∂� are analytic near that point. Choose local analytic coordinates

y = (y1, . . . , yn−1, yn)= (y′, yn)

centered at x0 such that the set � coincides near x0 (i.e., y= 0) with the half-space Rn
+
= {y ∈Rn

: yn > 0}.
Assume also (for this heuristic discussion) that we know that q(y)= q(y′, yn) is analytic in y′ and that
the original Laplace operator remains the standard Laplace operator also in the y coordinates. Then up to
a smoothing operator, the Poisson operator is of the form

K u(y)=
1

(2π)n−1

∫
ei(y′−w′)·η′−yn |η

′
|a(y, η′)u(w′) dw′ dη′,

where the symbol a is equal to 1 to leading order. We can view K , q, and K t as pseudodifferential
operators in y′ with operator-valued symbols. K has the operator-valued symbol

K (y′, η′) : C 3 z 7→ ze−yn |η
′
|a(y, η′) ∈ L2([0,+∞[yn ). (2-1)

The symbol of multiplication with q is independent of η′ and equals multiplication with q(y′, · ). The
symbol of K t is

K t(y′, η′) : L2([0,+∞[yn ) 3 f (yn) 7→

∫
∞

0
e−yn |η

′
|a(y,−η′) f (yn) dyn ∈ C. (2-2)

For simplicity, we set a = 1 in the following discussion. To leading order, the symbol of 3̇ is

σ3̇(y
′, η′)=

∫
∞

0
e−2yn |η

′
|q(y′, yn) dyn = (Lq(y′, · ))(2|η′|), (2-3)

where

L f (τ )=
∫
∞

0
e−tτ f (t) dt

is the Laplace transform.
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Now we fix η′0 ∈ Ṙn−1 and assume that σ3̇(y
′, τη′0) is a cl.a.s. on neigh(0,Rn−1)×R+:

σ3̇(y
′, τη′0)∼

∞∑
1

nk(y′, τ ), (2-4)

where nk is analytic in y′ in a fixed complex neighborhood of 0, (positively) homogeneous of degree −k
in τ , and satisfies

|nk(y′, τ )| ≤ Ck+1kk
|τ |−k . (2-5)

More precisely for C > 0 large enough, there exists C̃ > 0 such that∣∣∣∣σ3̇(y′, τη′0)− [|η
′
|/C]∑
1

nk(y′, τ )
∣∣∣∣≤ C̃ exp(−τ/C̃) (2-6)

on the real domain.
From (2-3), we also have∣∣∣∣(Lq(y′, · ))(2|η′0|τ)−

[|η′|/C]∑
1

nk(y′, τ )
∣∣∣∣≤ exp(−τ/C̃) (2-7)

for y′ ∈ neigh(0,Rn−1) and τ ≥ 1. In this heuristic discussion, we assume that (2-7) extends to y′ ∈
neigh(0,Cn−1). It then follows that q(y′, yn) is analytic for yn in a neighborhood of 0, from the following
certainly classic result about Borel transforms.

Proposition 2.1. Let q ∈ L∞([0, 1]), and assume that for some C, C̃ > 0∣∣∣∣Lq(τ )−
[τ/C]∑

0

qkτ
−(k+1)

∣∣∣∣≤ e−τ/C̃ , τ > 0, (2-8)

|qk | ≤ C̃k+1kk . (2-9)

Then q is analytic in a neighborhood of t = 0. The converse also holds.

Proof. We shall first show the converse statement, namely that, if q is analytic near t = 0, then (2-8)
and (2-9) hold. We start by computing the Laplace transform of powers of t .

For τ > 0, a > 0, and k ∈ N, ∫
∞

0
e−tτ tk dt =

k!
τ k+1 . (2-10)

In fact, the integral to the left is equal to

(−∂τ )
k
(∫

∞

0
e−tτdt

)
= (−∂τ )

k
(1
τ

)
.

Next, for a > 0, we look at

1
k!

∫ a

0
e−tτ tk dt =

1
τ k+1

(
1−

τ k+1

k!

∫
∞

a
e−tτ tk dt

)
=

1
τ k+1

(
1−

∫
∞

aτ
e−s sk

k!
ds
)
. (2-11)
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First let τ ∈ ]0,∞[ be large. For 0< θ < 1 to be optimally chosen, we write for s ≥ 0

sk

k!
e−s
= θ−k (θs)k

k!
e−θs︸ ︷︷ ︸
≤1

e−(1−θ)s ≤ θ−ke−(1−θ)s .

Thus, ∫
∞

aτ
e−s sk

k!
ds = θ−k

∫
∞

aτ
e−(1−θ)s ds =

θ−ke−(1−θ)aτ

1− θ
. (2-12)

We will estimate this for k ≤ aτ/O(1). Under the a priori assumption that θ ≤ 1− 1/O(1), we look for θ
that minimizes the numerator

θ−ke−(1−θ)aτ = e−[(1−θ)aτ+k ln θ ].

Setting the derivative of the exponent equal to 0, we are led to the choice θ = k/(aτ). Assume that

k
aτ
≤ θ0 < 1. (2-13)

Then,

(1− θ)aτ + k ln θ = aτ
(

1− k
aτ
+

k
aτ

ln k
aτ

)
= aτ

(
1− f

( k
aτ

))
,

where

f (x)= x + x ln
1
x
, 0≤ x ≤ 1.

Clearly f (0)= 0 and f (1)= 1, and for 0< x < 1, we have f ′(x)= ln(1/x)> 0, so f is strictly increasing
on [0, 1]. In view of (2-13),

(1− θ)aτ + k ln θ ≥ aτ(1− f (θ0)),

and (2-12) gives ∫
∞

aτ
e−s sk

k!
ds ≤

e−aτ(1− f (θ0))

1− θ0
. (2-14)

Using this in (2-11), we get

1
k!

∫ a

0
e−tτ tk dt =

1
τ k+1 (1+O(1)e−aτ/C(θ0)) for

k
aτ
≤ θ0 < 1, where C(θ0) > 0. (2-15)

Now, assume that q ∈ C([0, 1]) is analytic near t = 0. Then for t ∈ [0, 2a], 0< a� 1, we have

q(t)=
∞∑
0

q(k)(0)
k!

tk,

where
|q(k)(0)|

k!
≤ C̃

1
(2a)k

, (2-16)

so ∣∣∣∣q(t)− [τ/C]∑
0

q(k)(0)
k!

tk
∣∣∣∣≤ C̃e−τ/C̃ , 0≤ t ≤ a.
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Hence,

Lq =
[τ/C]∑

0

q(k)(0)
τ k+1 +O(e−τ/C̃)+L(1[a,1]q)(τ )︸ ︷︷ ︸

=O(e−τ/C̃ )

and we obtain (2-8) with qk = q(k)(0) while (2-9) follows from (2-16).
We now prove the direct statement in the proposition, so we take q ∈ L∞([0, 1]) satisfying (2-8)

and (2-9). For a > 0 small, put

q̃(t)= q(t)− 1[0,a](t)
∞∑
0

qk

k!
tk .

The proof of the converse part shows that

|Lq̃(τ )| ≤ e−τ/C̃ , (2-17)

where C̃ is a new positive constant, and it suffices to show that

q̃ vanishes in a neighborhood of 0. (2-18)

We notice that Lq̃ is a bounded holomorphic function in the right half-plane. We can therefore apply
the Phragmén–Lindelöf theorem in each sector arg τ ∈ [0, π2 ] and arg τ ∈ [−π2 , 0] to the holomorphic
function

eτ/C̃Lq̃(τ )

and conclude that this function is bounded in the right half-plane:

|Lq̃(τ )| ≤O(1)e−<τ/C̃ , <τ ≥ 0. (2-19)

Now, Lq̃(iσ)= F q̃(σ ), where F denotes the Fourier transform, and the Paley–Wiener theorem allows us
to conclude that supp q̃ ⊂ [1/C̃, 1]. �

3. The Fourier integral operator q 7→ σ3̇

Assume that ∂� and V are analytic near the boundary point x0. Let y′ = (y1, . . . , yn−1) be local analytic
coordinates on ∂�, centered at x0. Then we can extend y′ to analytic coordinates y= (y1, . . . , yn−1, yn)=

(y′, yn) in a full neighborhood of x0, where y′ is an extension of the given coordinates on the boundary
and such that � is given (near x0) by yn > 0 and

−P = D2
yn
+ R(y, Dy′), (3-1)

where R is a second-order elliptic differential operator in y′ with positive principal symbol r(y, η′). (Here
we neglect a contribution f (y)∂yn , which can be eliminated by conjugation.) Then there is a neighborhood
W ⊂ Rn of y = 0 and a cl.a.s. a(y, ξ ′) on W ×Rn−1 of order 0 such that

K u(y)=
1

(2π)n−1

∫∫
ei(φ(y,ξ ′)−ỹ′·ξ ′)a(y, ξ ′)u(ỹ′) d ỹ′ dξ ′+ Kau(y) (3-2)
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for y ∈ W and u ∈ C∞0 (W ∩ ∂�). The distribution kernel of Ka is analytic on W × (W ∩ ∂�), and we
choose a realization of a that is analytic in y. Here φ is the solution of the Hamilton–Jacobi problem

(∂ynφ)
2
+ r(y, φ′y′)= 0, =∂ynφ > 0,

φ(y′, 0, ξ ′)= y′ · ξ ′.
(3-3)

This means that we choose φ to be the solution of

∂ynφ− ir(y, φ′y′)
1/2
= 0 (3-4)

with the natural branch of r1/2 with a cut along the real negative axis.
To see this, recall (by the analytic Wentzel–Kramers–Brillouin (WKB) method [Sjöstrand 1982,

Chapter 9]) that we can construct the first term Kfopu in the right-hand side of (3-2) such that P Kfop

has analytic distribution kernel and γ Kfop = 1. It then follows from local analytic regularity in elliptic
boundary-value problems that the remainder operator Ka has analytic distribution kernel.

We notice that
K (ei x ′·ξ ′)= eiφ(y,ξ ′)a(y, ξ ′)+O(e−|ξ

′
|/C) (3-5)

since the first term to the right solves the problem

Pu = 0, u|yn=0 = eiy′·ξ ′,

with an exponentially small error in the first equation. K is a real operator, so K (ei x ′·(−ξ ′))= K (ei x ′·ξ ′).
It follows that

φ(y,−ξ ′)=−φ(y, ξ ′), a(y,−ξ ′)= a(y, ξ ′) (3-6)

without any error in the last equation when viewing a as a formal cl.a.s. Notice also that, since K is real,
K t
= K ∗.
We shall now view 3̇= K tq K = K ∗q K as a pseudodifferential operator in the classical quantization.

In this section, we proceed formally in order to study the associated geometry. A more efficient analytic
description will be given later for the left composition with an FBI transform in x ′. The symbol becomes

σ3̇(x
′, ξ ′)= e−i x ′·ξ ′Ṅ (ei( · )·ξ ′)= (2π)1−n

∫∫
ei(x ′·(η′−ξ ′)−φ∗(y,η′)+φ(y,ξ ′))a∗(y, η′)a(y, ξ ′)q(y) dy dη′,

where in general we write f ∗(z)= f (z) for the holomorphic extension of the complex conjugate of a
function f .

Actually, rather than letting ξ ′ tend to∞, we replace ξ ′ with ξ ′/h, where the new ξ ′ is of length � 1
and h→ 0. This amounts to viewing Ṅ as a semiclassical pseudodifferential operator with semiclassical
symbol σ3̇(x

′, ξ ′; h)= σ3̇(x
′, ξ ′/h). Thus,

σ3̇(x
′, ξ ′; h)= e−i x ′·ξ ′/hṄ (ei( · )·ξ ′/h)

= (2πh)1−n
∫∫

e(i/h)(x ′·(η′−ξ ′)−φ∗(y,η′)+φ(y,ξ ′))a∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′,

where a(y, ξ ′; h)= a(y, ξ ′/h) and similarly for a∗.
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We have

φ(y, ξ ′)= y′ · ξ ′+ψ(y, ξ ′), φ∗(y, η′)= y′ · η′+ψ∗(y, η′), (3-7)

where

=ψ,=ψ∗ � yn, <ψ,<ψ∗ =O(y2
n) (3-8)

uniformly on every compact set that does not intersect the zero section. Equation (3-6) tells us that <ψ is
odd and =ψ is even with respect to the fiber variables ξ ′ (and also positively homogeneous of degree 1 of
course). Using (3-7) in the formula for the symbol of 3̇, we get

σ3̇(x
′, ξ ′; h)= (2πh)1−n

∫∫
e(i/h)8M (x ′,ξ ′,y,η′)a∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′

=: Mq(x ′, ξ ′; h), (3-9)

where

8M(x ′, ξ ′, y, η′)= (x ′− y′) · (η′− ξ ′)+ψ(y, ξ ′)−ψ∗(y, η′) (3-10)

and η′ are the fiber variables. We shall see that this is a nondegenerate phase function in the sense of
Hörmander [1971] except for the fact that 8M is not homogeneous in η′ alone, so q 7→ Mhq(x ′, ξ ′) :=
Mq(x ′, ξ ′; h) is a semiclassical Fourier integral operator, at least formally.

We fix a vector ξ ′0 ∈ Ṙn−1 and consider 8M in a neighborhood of (x ′, y, ξ ′, η′) = (0, 0, ξ ′0, ξ
′

0) ∈

C4(n−1)+1
= C4n−3. The critical set C8M of the phase 8M is given by ∂η′8M = 0, which means that

x ′− y′− ∂η′ψ∗(y, η′)= 0 or equivalently

x ′ = y′+ ∂η′ψ∗(y, η′). (3-11)

This is a smooth submanifold of codimension n − 1 in C4n−3 that is parametrized by (y, η′, ξ ′) ∈
neigh((0, ξ ′0, ξ

′

0),C3n−2). We also see that8M is a nondegenerate phase function in the sense that d∂η′18M ,

. . . , d∂η′n−1
8M are linearly independent on C8M . Using the above parametrization, we express the graph

of the corresponding canonical relation κ : C2n
y,y∗→ C

4(n−1)
x ′,ξ ′,x ′∗,ξ ′∗ (where we notice that 4(n−1)≥ 2n with

equality for n = 2 and strict inequality for n ≥ 3):

graph(κ)= {(x ′, ξ ′, ∂x ′8M , ∂ξ ′8M ; y,−∂y8M) : (x ′, ξ ′, y, η′) ∈ C8M }

=
{(

y′+ ∂η′ψ∗(y, η′), ξ ′, η′− ξ ′, ∂ξ ′ψ(y, ξ ′)− ∂η′ψ∗(y, η′);

y,−∂y′ψ(y, ξ ′)+ ∂y′ψ
∗(y, η′)+ η′− ξ ′,−∂ynψ(y, ξ

′)+ ∂ynψ
∗(y, η′)

)}
. (3-12)

The restriction to yn = 0 of this graph is the set of points

(y′, ξ ′, η′− ξ ′, 0; y′, 0, η′− ξ ′,−∂ynψ(y
′, 0, ξ ′)+ ∂ynψ

∗(y′, 0, η′)). (3-13)

It contains the point

(0, ξ ′0, 0, 0; 0, 0,−2∂ynψ(0, ξ
′

0))= (0, ξ
′

0, 0, 0; 0, 0,−2ir(0, ξ ′0)
1/2). (3-14)
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The tangent space at a point where yn = 0 is given by{(
δy′ +ψ

∗′′

η′,yn
δyn , δξ ′, δη′ − δξ ′, (ψ

′′

ξ ′,yn
(y, ξ ′)−ψ∗′′η′,yn

(y, η′))δyn ;

δy, (−ψ
′′

y′,yn
(y, ξ ′)+ψ∗′′y′,yn

(y, η′))δyn + δη′ − δξ ′,

(−ψ ′′yn,y(y, ξ
′)+ψ∗

′′

yn,y(y, η
′))δy + (−ψ

′′

yn,ξ ′
δξ ′ +ψ

∗′′

yn,η′
δη′)

)}
. (3-15)

From (3-15), we see that, at every point of graph(κ) with yn = 0 and with η′ ≈ ξ ′,

(1) the projection graph(κ)→ C2n
y,y∗ has surjective differential and

(2) the projection graph(κ)→ C
4(n−1)
x ′,ξ ′,x ′∗,ξ ′∗ has injective differential.

In fact, since κ is a canonical relation, (1) and (2) are pointwise equivalent, so it suffices to verify (2). In
other words, we have to show that, if

0= δy′ +ψ
∗′′

η′,yn
δyn ,

0= δξ ′,

0= δη′ − δξ ′,

0= (ψ ′′ξ ′,yn
(y, ξ ′)−ψ∗′′η′,yn

(y, η′))δyn ,

(3-16)

then δy′ = 0, δyn = 0, δξ ′ = 0, and δη′ = 0.
When yn = 0, we have ψ∗ =−ψ , and when in addition η′ ≈ ξ ′, we see that the (n− 1)× 1 matrix in

the fourth equation is nonvanishing, so this equation implies that δyn = 0. Then the first equation gives
δy′ = 0, and from the second and third equations, we get δξ ′ = 0 and δη′ = 0 and we have verified (2).

As an exercise, let us determine the image under κ of the complexified conormal bundle of the boundary,
given by yn = 0 and y∗′ = 0. From (3-13), we see that this image is the set of all points

(x ′, ξ ′, 0, 0). (3-17)

The subset of real points in (3-17) is the image of the set of points (y′, 0, 0, y∗n ) such that y′ is real and
y∗n ∈ −iR+.

Now restrict (x ′, ξ ′) to the set of (x ′, tη′0) with x ′ ∈Cn−1 and t ∈C, where 0 6= η′0 ∈Rn−1. This means
that we restrict the symbol of Ṅ to the radial direction ξ ′ ∈ Cη′0 and consider

σ3̇(x
′, tη′0; h)= Mq(x ′, tη′0; h)=: Mnewq(x ′, t; h)

= (2πh)1−n
∫∫

ei8Mnew (x
′,t,y,η′)/ha∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′, (3-18)

where

8Mnew(x
′, t, y; η′)=8M(x ′, tη′0, y; η′)= ψ(y, tη′0)−ψ

∗(y, η′)+ (x ′− y′) · (η′− tη′0). (3-19)
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We will soon drop the subscripts “new” when no confusion is possible. This is again a nondegenerate
phase function. The new canonical relation κnew : C2n

y,y∗→ C2n
x ′,t,x ′∗,t∗ has the graph

graph(κnew)=
{(

y′+ ∂η′ψ∗(y, η′), t, η′− tη′0, η
′

0 · ∂ξ ′ψ(y, tη′0)− η
′

0 · ∂ξ ′ψ
∗(y, η′);

y,−∂y′ψ(y, tη′0)+ ∂y′ψ
∗(y, η′)+ η′− tη′0,−∂ynψ(y, tη′0)+ ∂ynψ

∗(y, η′)
)}
. (3-20)

This graph is conic with respect to the dilations

R+ 3 λ 7→ (x ′, λt, λx ′∗, t∗; y, λy∗).

The restriction of the graph to yn = 0 is

{(y′, t, η′− tη′0, 0; y′, 0, η′− tη′0,−∂ynψ(y
′, 0, tη′0)+ ∂ynψ

∗(y′, 0, η′))},

where

∂ynψ(y
′, 0, ξ ′)= ir(y′, 0, ξ ′)1/2, ∂ynψ

∗(y′, 0, ξ ′)=−ir(y′, 0, ξ ′)1/2,

so the restriction is

{(y′, t, η′− tη′0, 0; y′, 0, η′− tη′0,−i(r1/2(y′, 0, tη′0)+ r1/2(y′, 0, η′)))}. (3-21)

If we take η = tη′0 and use that r1/2 is homogeneous of degree 1 in the fiber variables, we get

{(y′, t, 0, 0; y′, 0, 0,−2i tr1/2(y′, 0, η′0))}. (3-22)

This is the graph of a diffeomorphism

neigh(0, ∂�)× (−iR+y∗n
)→ neigh(0; ∂�)×R+t .

The tangent space at a point where yn = 0 is given by{(
δy′ + (ψ

∗)′′η′,yn
δyn , δt , δη′ − δtη

′

0, η
′

0 · (ψ
′′

ξ ′,yn
− (ψ∗)′′η′,yn

)δyn ;

δy, (−ψ
′′

y′,yn
+ (ψ∗)′′y′,yn

)δyn + δη′ − δtη
′

0, (−ψ
′′

yn,y + (ψ
∗)′′yn,y)δy −ψ

′′

yn,ξ ′
δtη
′

0+ (ψ
∗)′′yn,η′

δη′
)}
. (3-23)

The projection onto the first component is injective as can be seen exactly as in the proof of the property (2)
stated after (3-15). Now κnew is a canonical relation between spaces of the same dimension, so we conclude
that κnew is a canonical transformation or more precisely near each point of its graph. Combining this
with the observation right after (3-22), we get:

Proposition 3.1. Equation (3-20) is the graph of a bijective canonical transformation

κnew : neigh((0; 0,−i),Cn
y ×Cn

y∗)→ neigh((0, 1; 0),Cn
x ′,t ×Cn

x ′∗,t∗).

The neighborhoods can be taken to be conic with respect to the actions R+ 3 λ 7→ (y, λy∗) and R+ 3 λ 7→

(x, λt, λx ′∗, t∗), and κnew intertwines the two actions (so κnew is positively homogeneous of degree 1 with
y∗ as the fiber variables on the departure side and with t and x ′∗ as the fiber variables on the arrival side).



LOCAL ANALYTIC REGULARITY IN THE LINEARIZED CALDERÓN PROBLEM 529

Basically, the same exercise as the one leading to (3-17) shows that the image under κnew of the
complexified conormal bundle, given by yn = 0 and (y∗)′ = 0, is the zero section

{(x ′, t : (x ′∗, t∗)= 0)}. (3-24)

Consider the image of T ∗∂�× iR−y∗n
= {(y, y∗) : y′, (y∗)′ ∈ Rn−1, yn = 0, y∗n ∈ iR−} under κnew. On

that image,

x ′ = y′ ∈ Rn−1,

η′− tη′0 ∈ Rn−1,

t∗ = η′0 · ∂ξ ′ψ(y, tη′0)− η
′

0 · ∂ξ ′ψ
∗(y, η′)= 0.

If we restrict the attention to t ∈ R+ so that η′ = (y∗)′+ tη′0 ∈ Rn−1, we see that

y∗n =−∂ynψ(y
′, 0, tη′0)+ ∂ynψ(y

′, 0, η′) ∈ iR−.

Thus, the image contains locally

{(x ′, t, (x∗)′, 0) : x ′, (x∗)′ ∈ Rn−1, t ∈ R+},

which has the right dimension 2(n− 1)+ 1
Similarly, the image of T ∗∂�× neigh(iR−y∗n

,Cy∗n ) is obtained by dropping the reality condition on t
but keeping that on η′− tη′0, and we get

κnew(T ∗∂�× neigh(iR−y∗n
,Cy∗n ))= {(x

′, t, x ′∗, 0) : x ′, (x∗)′ ∈ Rn−1, t ∈ neigh(R+,C)}. (3-25)

4. Some function spaces and their FBI transforms

We continue to work locally near a point x0 where the boundary is analytic, and we use analytic coordinates
y centered at x0 as specified in the beginning of Section 3.

We start by defining some piecewise-smooth I-Lagrangian manifolds, some of which will be associated
with function spaces below.

• The cotangent space T ∗� that we identify with (neigh(0)∩Rn
+
)×Rn .

• The real conormal bundle N ∗∂�⊂ T ∗Rn . In the local coordinates y,

N ∗∂�= {(y, η) ∈ R2n
: yn = 0, η′ = 0}.

It will sometimes be convenient to write N ∗∂�= ∂�×R∗, where of course the second expression
appeals to the use of special coordinates as above. More invariantly, N ∗∂� is the inverse image of
the zero-section in T ∗∂� for the natural projection map πT ∗∂� : T ∗∂�Rn

→ T ∗∂�.

We will also need some complex sets.

• The complexified zero-section in the complexification T̃ ∗Rn = Cn
y ×Cn

η defined to be

neigh(0,Cn)×{η = 0} ⊂ Cn
y ×Cn

η.

We denote it by Cn
y × 0η for short.



530 JOHANNES SJÖSTRAND AND GUNTHER UHLMANN

• The complexification Ñ ∗∂� of N ∗∂� defined to be

{(y, η) ∈ Cn
y ×Cn

η : y ∈ neigh(0,Cn), yn = 0, η′ = 0}.

• The space π−1(T ∗∂�), where π : T ∗∂�Rn
⊗C→ T ∗∂�⊗C is the natural projection and ⊗C indicates

fiberwise complexification. In special coordinates, it is {(y, η) : (y′, η′) ∈ R2(n−1), yn = 0, ηn ∈ C}.
We will denote it by T ∗∂�×C or T ∗∂�×Cηn for simplicity. It contains the subset T ∗∂�×C−ηn

(easy to define invariantly), where C− is the open lower half-plane. Notice that

T ∗∂�× ∂C− = T ∗∂�×R= T ∗∂�Rn.

• The piecewise-smooth (Lipschitz) manifold

F = T ∗�∪ (T ∗∂�×C−ηn
).

Notice that the two components to the right have T ∗∂�Rn as their common boundary.

• The piecewise-smooth (Lipschitz) manifold (Cn
y × 0η)∪ Ñ ∗∂�, where the two constituents contain

∂̃�× 0η. Here ∂̃� denotes a complexification of the boundary (near x0).

Let

T u(z; h)= Ch−3n/4
∫

Rn
e(i/h)φ(z,y)u(y) dy, z ∈ Cn, (4-1)

be a standard FBI transform [Sjöstrand 1982], sending distributions with compact support on Rn to
holomorphic functions on (in general some subdomains of) Cn . For simplicity, we let φ be a holomorphic
quadratic form so that T can also be viewed as a generalized Bargmann transform and a metaplectic
Fourier integral operator (see for instance [Sjöstrand 1990]). We work under the standard assumptions

=φ′′y,y > 0, detφ′′z,y 6= 0. (4-2)

We let C > 0 be the unique positive constant for which T : L2(R2)→ H80(C
n) is unitary, where

80(z)= sup
y∈Rn
−=φ(z, y)=−=φ(z, y(z)) (4-3)

is a strictly plurisubharmonic (real) quadratic form on Cn and H80 is the complex Hilbert space
Hol(Cn)∩ L2(e−280/h L(dz)) with L(dz) denoting the Lebesgue measure on Cn

' R2n . Let

κT : C
2n
3 (y,−φ′y(z, y)) 7→ (z, φ′z(z, y)) ∈ C2n (4-4)

be the complex (linear) canonical transformation associated to T , and let

380 =

{(
z,

2
i
∂80

∂z
(z)
)
: z ∈ Cn

}
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be the R-symplectic1 and I-Lagrangian2 manifold of C2n , actually a real-linear subspace since φ is
quadratic. Then we know that

380 = κT (R
2n). (4-5)

More explicitly,

κ−1
T

(
z,

2
i
∂80

∂z

)
= (y(z), η(z)) ∈ R2n, (4-6)

where y(z) appeared in (4-3).
Let

8ext
1 (z)= sup

y∈∂Rn
+

−=φ(z, y)=−=φ(z, ỹ(z)), (4-7)

where ỹ(z) = (ỹ′(z), 0) and ỹ′(z) is the unique point of maximum in Rn−1 of y′ 7→ −=φ(z, y′, 0). If
supp u ⊂ {y ∈ Rn

: yn ≥ 0}, then T u ∈ H loc
81

, where

81(z)= sup
y∈Rn

+

−=φ(z, y)=
{
80(z) if yn(z)≥ 0,
8ext

1 (z) if yn(z)≤ 0.
(4-8)

Notice that

• −=∂ynφ(z, ỹ(z))≥ 0 in the first case and

• −=∂ynφ(z, ỹ(z))≤ 0 in the second case.

Notice that
2
i
∂81

∂z
(z)=

2
i

(
∂

∂z
(−=φ)

)
(z, ỹ(z))= φ′z(z, ỹ(z))

and η̃(z)=−φ′y(z, ỹ(z)) satisfies η̃′(z) ∈ Rn−1. When 81(z)=8ext
1 (z),

η̃′(z) ∈ Rn−1, =η̃n(z)≤ 0. (4-9)

This means that
38ext

1
= κT (T ∗∂�×C∗ηn

)

and that
381 = κT (F), (4-10)

where F was defined above:

F = T ∗(�)∪ {(y′, 0; η′, ηn) : (y′, η′) ∈ T ∗∂�, =ηn ≤ 0}. (4-11)

It is a Lipschitz manifold. The second component is a union of complex half-lines; consequently in the
region where 81 <80, 381 is a union of complex half-lines. If we project these lines to the complex
z-space, we get a foliation of Cn

z into complex half-lines and the restriction of 81 to each of these is
harmonic.

1i.e., symplectic with respect to <σ , where σ = dζ ∧ dz is the complex symplectic form
2i.e., Lagrangian with respect to =σ
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We introduce the real hyperplane
H = πzκT (T ∗∂�Rn),

which is the common boundary of the two half-spaces

H+ = πzκT (T ∗�),

H− = πzκT ({(y′, 0; η) : (y′, η′) ∈ T ∗∂�, =ηn < 0}).

Here, πz : C
n
z ×Cn

ζ → Cn is the natural projection. We have

80−81

{
= 0 in H+,
� dist(z, H)2 in H−.

(4-12)

Similarly, recall the definition of the complexified normal bundle Ñ ∗∂� at the beginning of this section.
It is a C-Lagrangian manifold.3 We have κT (Ñ ∗∂�)=383 , where 83 is pluriharmonic:

83(z)= vcy′∈Cn−1(−=φ(z, y′, 0)).

Similarly κT (C
n
y × 0η) (with the notation from the beginning of this section) is of the form 384 , where

84(z)= vcy∈Cn (−=φ(z, y)).

The complex zero-section Cy×0η and T ∗Rn intersect transversally along the real zero-section Rn
y×0η.

Correspondingly, we check that

80(z)−84(z)� dist(z, πz ◦ κT (R
n
× 0η))2. (4-13)

Similarly,
8ext

1 (z)−83(z)� dist(z, πz ◦ κT ((∂�× 0)×C∗ηn
))2, (4-14)

where ∂�× 0 denotes the zero-section in T ∗∂�, so that

(∂�× 0)×C∗ηn
= N ∗∂�⊗C

is the fiberwise complexification of N ∗∂�. (Here we work locally near y = 0.)
Let u be real-analytic in a neighborhood of �, and consider

v(z)= T (1�u)(z), (4-15)

where we restrict our attention to z∈Cn such that the critical point y84(z) in the definition of84(z) belongs
to a small complex neighborhood of � or equivalently to z ∈ Cn in a small neighborhood of κT (�× 0η).
By the method of steepest descent, we see that v ∈ H loc

85
, where first of all 85 ≤81 and further

85(z)=84(z) when both
{
<y84(z) ∈�,
|=y84(z)| � dist(<y84(z), ∂�),

(4-16)

85(z)=83(z) when both
{
<y84(z) /∈�,
|=y84(z)| � dist(<y84(z), ∂�).

(4-17)

3i.e., a holomorphic manifold that is Lagrangian for the complex symplectic form σ
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Actually, in the last case, we can relax the condition that y84(z) belongs to a small (u-dependent)
neighborhood of �. The appropriate restriction is then that the critical point y83(z) ∈ ∂̃� in the definition
of 83 belongs to a small (u-dependent) neighborhood of ∂�.

5. Expressing M with the help of FBI transforms

From now on, we work with Mnew, 8Mnew , and κnew and we drop the corresponding subscript “new”.
Then from (3-18),

Mq(x ′, t)=
1

(2πh)n−1

∫∫
e(i/h)8M (x ′,t,y,η′)a∗(y, η′; h)a(y, tη′0; h)q(y) dy dη′ (5-1)

with 8M given in (3-19).
We want to express Mq with the help of T q, where T is as in (4-1), and we start by recalling some

general facts about metaplectic Fourier integral operators of this form, following [Sjöstrand 1982] for the
local theory and [Sjöstrand 1990] for the simplified global theory in the metaplectic framework (i.e., all
phases are quadratic and all amplitudes are constant). To start with, we weaken the assumptions on the
quadratic phase in T and assume only that φ(x, y) is a holomorphic quadratic form on Cn

×Cn satisfying
the second part of (4-2):

detφ′′x,y(x, y) 6= 0. (5-2)

To T we can still associate a linear canonical transformation κT as in (4-4). Let 81 and 82 be plurisub-
harmonic quadratic forms on Cn related by

382 = κT (381). (5-3)

Then we can define T : H81 → H82 as a bounded operator as in (4-1) with the modification that Rn

should be replaced by a so-called good contour, which is an affine subspace of Cn of real dimension n,
passing through the nondegenerate critical point yc(x) the function

y 7→ −=φ(x, y)+81(y) (5-4)

and along which this function is 82(x)− (� |y− yc(x)|2). (Actually in this situation, it would have been
better to replace the power h−3n/4 by h−n/2 since we would then get a uniform bound on the norm.)

Remark 5.1. Recall also that, if only 81 is given as above, the existence of a quadratic form 82 as in
(5-3) is equivalent to the fact that (5-4) has a nondegenerate critical point and the plurisubharmonicity
of 82 is equivalent to the fact that the signature of the critical point is (n,−n) (which represents the
maximal number of negative eigenvalues of the Hessian of a plurisubharmonic quadratic form). This in
turn is equivalent to the existence of an affine good contour as above.

In this situation, T : H81 → H82 is bijective with the inverse

Sv(y)= T−1v(y)= C̃h−n/4
∫

e−(i/h)φ(z,y)v(z) dz, (5-5)
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which can be realized the same way with a good contour, and here the constant C̃ does not depend on the
choice of 8 j , j = 1, 2.

Remark 5.2. Let us introduce the formal adjoints of T and S,

T tv(y)= Ch−3n/4
∫

Rn
e(i/h)φ(z,y)v(x) dx, y ∈ Cn,

Stu(x)= C̃h−n/4
∫

e−(i/h)φ(x,y)u(y) dy.

Let 91 and 92 be plurisubharmonic quadratic forms such that κSt(391) = 392 . Then as above,
T t
: H92 → H91 and St

: H91 → H92 are bijective and St
= const(T t)−1. We claim that St is the

inverse of T t. In fact, this statement is independent of the choice of 8 j and 9 j as above, and we can
choose them to be pluriharmonic in such a way that 38 j intersects 3−9 j transversally for one value of j
and then automatically for the other value. Then for j = 1, 2, we can define

〈u | v〉 =
∫
γ j

u(x)v(x) dx

for u ∈ H8 j and v ∈ H9 j (or rather for functions that are O(e8 j/h) and e9 j/h , respectively — the space
of such functions is of dimension 1, which suffices for our purposes) if we let γ j be a good contour
for 8 j +9 j . For u =O(e82/h) and v =O(e92/h) nonzero,

0 6= 〈u | v〉 = 〈T Su | v〉 = 〈Su | T tv〉 = 〈u | StT tv〉,

and knowing already that StT t is a multiple of the identity, we see that it has to be equal to the identity.

Now return to the discussion of an FBI transform T whose phase satisfies (4-2). When letting T act on
suitable H8-spaces, it has the inverse S in (5-5). However, if we let T act on L2(Rn) so that T u ∈ H80

(with 380 = κT (R
2n)), the best possible contour in (5-5) is

0(y)= {z ∈ Cn
: y(z)= y}.

This follows from the property

80(z)+=φ(z, y)� dist(z, 0(y))2 � |y(z)− y|2, (5-6)

so 80(z)+=φ(z, y)= 0 on 0(y) and e−(i/h)φ(z,y)+(1/h)80(z) is bounded there. This is not sufficient for a
straightforward definition of Sv(y), v ∈ H80 , since we would need some extra exponential decay along
the contour near infinity, but it does suffice to give a precise meaning up to exponentially small errors of
the formula

T̃ u = (T̃ S)T u (5-7)

in a local situation, where T̃ : L2
→ H8̃0

is a second FBI transform and where T̃ S : H80 → H8̃0
is

defined by means of a good contour.
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Proposition 5.3. Let (y0, η0) ∈ R2n , (z0, ζ0) = κT (y0, η0), and (w0, ω0) = κT̃ (y0, η0). We realize T u
and T̃ u (T̃ Su modulo exponentially small terms) in H80,z0 and H8̃0,w0

(and H8̃0,w0
) by choosing good

contours restricted to neighborhoods of y0 and y0 (and z0), respectively. Then (5-7) holds (modulo an
exponentially small error) in H8̃0,w0

. Here u ∈ D′(Rn) is either independent of h or of temperate growth
in D′(Rn) as a function of h.

Proof. The left-hand side of (5-7) is

const h−3n/4−n
∫∫∫

e(i/h)(φ̃(w,x)−φ(z,x)+φ(z,y))u(y) dy dz dx,

and all good contours being homotopic, we can write it as

C̃h−3n/4
∫ (

const h−n
∫∫

e(i/h)(−φ(z,x)+φ(z,y))e(i/h)φ̃(w,x) dx dz
)

u(y) dy.

The expression in the big parentheses is nothing but T tSt(e(i/h)φ̃(w,· ))(y), which by Remark 5.2 is equal
to e(i/h)φ̃(w,y), and (5-7) follows. (In the proof, we have chosen not to spell out the various exponentially
small errors due to the fact that the integration contours are confined to various small neighborhoods of
certain points.) �

We now return to the operator M in (5-1). Choose adapted analytic coordinates centered at x0 as
in the beginning of Section 3. In that section (see (3-25)), we have seen that there is a well defined
canonical transformation κM from a neighborhood of (0, 0,−i) ∈ C2n

y,η to a neighborhood of (0, 1, 0, 0)
in Cn−1

x ′ ×Ct ×Cn−1
x ′∗ ×Ct∗ mapping T ∗∂�× iR− to Rn−1

x ′ ×Rt ×Rn−1
x ′∗ ×{t

∗
= 0}. This means that we

have a microlocal description of Mq near (0, 1, 0, 0) and not a local one near x ′ = 0 and t = 0. We shall
therefore microlocalize in (x ′, x ′∗) by means of an FBI transform in the x ′ variables.

Let

T̂ u(w′)= Ĉh(1−n)/2
∫

Rn−1
e(i/h)φ̂(w′,x ′)u(x ′) dx ′, w′ ∈ Cn−1, (5-8)

be a second FBI transform as in (4-1) though acting on n− 1 variables and with a different normalization.
Assume (for concreteness) that

κT̂ (C
n−1
x ′ ×{0})= Cn−1

w′ ×{0}. (5-9)

Then
κT̂ (T

∗Rn−1)=38̂0
, (5-10)

where 8̂0 is a strictly plurisubharmonic quadratic form. In view of (5-9) and the fact that the zero-section
Cn−1

×{0} is strictly positive with respect to the real phase space, we also know that

8̂0(w
′)� |w′|2 (5-11)

or equivalently that the quadratic form 8̂0 is strictly convex.
By slight abuse of notation, we also let T̂ act (as T̂ ⊕ 0) on functions of n variables by

T̂ (u)(w′, t)= (T̂ u( · , t))(w′).
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The presence of T̂ leads to a formula for T̂ M that is simpler than the one for M in (5-1):

T̂ Mq(w′, t)= T̂
(
e−(i/h)( · )·tη′0 K tq K

(
e(i/h)( · )·tη′0

))
(w′)

= Ĉh(1−n)/2
∫∫∫

e(i/h)(φ̂(w′,x̃ ′)−x̃ ′·tη′0)K (y, x̃ ′)q(y)K (y, x ′)e(i/h)x ′·tη′0 dx ′ dy dx̃ ′

=

∫
K
(
e(i/h)(φ̂(w′,· )−( · )·tη′0)

)
(y)q(y)K

(
e(i/h)( · )·tη′0

)
(y) dy.

Up to exponentially small errors, we have (see (3-5))

K
(
e(i/h)( · )·tη′0

)
(y)= e(i/h)φ(y,tη′0)a(y, tη′0; h)

and
K
(
e(i/h)φ̂(w′,· ))(y)= e(i/h)ψ̃(w′,tη′0,y)b(w′, y, tη′0; h),

where b is an elliptic analytic symbol of order 0 and ψ is the solution of the eikonal equation in y

∂yn ψ̃ = ir(y, ∂y′ψ)
1/2, ψ̃ |yn=0 = φ̂(w

′, y′)− y′ · tη′0.

Thus, up to exponentially small errors, we get for q ∈ L∞(�)

T̂ Mq(w′, t)=
∫

e(i/h)ψ(w′,t,y)c(w′, t, y; h)q(y) dy, (w′, t) ∈ neigh((0, 1),Cn−1
×C), (5-12)

where c is an elliptic analytic symbol of order 0 and

ψ(w′, t, y)= ψ̃(w′, t, y)+φ(y, tη′0)

satisfies

ψ |yn=0 = φ̂(w
′, y′), (5-13)

∂ynψ |yn=0 = i
(
r(y′, 0, ∂y′ φ̂(w

′, y′)− tη′0)
1/2
+ r(y′, 0, tη′0)

1/2). (5-14)

Assume for simplicity that r(0, 0, η′0)=
1
4 . Then, at the point (w′ = 0, t = 1, y = 0),

(∂w′ψ, ∂tψ,−∂y′ψ,−∂ynψ)= (0, 0, 0,−i),

so κT̂ M(0, 0,−i)= (0, 1, 0, 0).4 Also, κT̂ M = κT̂ ◦ κM and

κM(0, 0,−i)= (0, 1, 0, 0),

κT̂ (0, 1, 0, 0)= (0, 1, 0, 0).
Recall from (3-25) that

κM : neigh((0; 0,−i), T ∗∂�×C−y∗n
)→ neigh

(
(0, 1; 0, 0),Rn−1

x ′ ×Ct ×Rn−1
x ′∗ ×{t

∗
= 0}

)
,

so
κT̂ M : neigh((0, 0,−i), T ∗∂�×C−y∗n

)→ neigh((0, 1, 0, 0),38̂0⊕0).

4We can verify directly that det ∂w′,t∂yψ 6= 0.
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On the other hand, we have seen in Section 4 that κT (F)=381 and that the part T ∗∂�×C−y∗n
of F is

mapped to 38ext
1

. More locally,

κT : neigh((0, 0,−i), T ∗∂�×C−y∗n
)→ neigh(κT (0, 0,−i),38ext

1
)

κS : neigh(κT (0, 0,−i),38ext
1
)→ neigh((0, 0,−i), T ∗∂�×C−y∗n

).

Using also (3-25), we get

κT̂ M S : neigh(πzκT (0, 0,−i),38ext
1
)→ neigh((0, 1, 0, 0),38̂0⊕0). (5-15)

We then also know that
8̂0(w

′)= vcy,z(−=ψ(w
′, t, y)+=φT (z, y)).

This means that the formal composition

T̂ M Sv(w′, t)= C̃h−n/4
∫∫

e(i/h)(ψ(w′,t,y)−φT (z,y))c(w′, t, y; h)v(z) dz dy (5-16)

gives a well defined operator

T̂ M S : H8ext
1 ,πzκT (0,0,−i)→ H8̂0⊕0,(0,1) (5-17)

that can be realized with the help of a good contour.
We shall next show that

T̂ Mu = (T̂ M S)T u in H8̂0⊕0,(0,1) (5-18)

when u is supported in {yn ≥ 0}. The proof is the same as the one for (5-7). The right-hand side in (5-18)
is equal to

const h−n
∫∫∫

e(i/h)(ψ(w′,t,x)−φT (z,x)+φT (z,y))c(w′, t, x; h)u(y) dy dz dx,

where the y-integration is over Rn
+

, and we may assume without loss of generality that u has its support
in a small neighborhood of y = 0. The dz dx integration is, to start with, over the good contour in (5-16).
This last integration can be viewed as T tSt acting on e(i/h)ψ(w′,t,· )c(w′, t, · ; h), and here T tSt is the
identity operator that can be realized with a good contour, so we get

(T̂ M S)T u(w′, t)=
∫

e(i/h)ψ(w′,t,x)c(w′, t, x; h)u(x) dx = T̂ Mu(w′, t),

and we have verified (5-18).
Above, we have established (5-17) as the quantum version of (5-15). It follows by an easy adaptation

of the exercise leading to (3-17) that

κM(neigh((0, 0,−i),Cn−1
×{0}×C−ηn

))= neigh((0, 0, 1, 0),Cn−1
x ′ ×{x

′∗
= 0}×Ct×{t∗= 0}), (5-19)

and hence,
κT̂ M S(neigh(κT (0, 0,−i),383))= neigh((0, 0, 1, 0),30⊕0). (5-20)
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The quantum version of (5-20) is

T̂ M S : H loc
83,πz(neigh(κT (0,0,−i)))→ H loc

0⊕0,(0,1). (5-21)

We also know that T̂ M S is an elliptic Fourier integral operator. Consequently, (5-17) and (5-21) have
continuous inverses. We also have the following result.

Proposition 5.4. If u ∈ H loc
81,πz(neigh(κT (0,0,−i))) and T̂ M Su ∈ H loc

0⊕0,(0,1), then u ∈ H loc
83,πz(neigh(κT (0,0,−i))).

6. End of the proof of the main result

We will work with FBI and Laplace transforms of functions that are independent of h or that have some
special h-dependence. Consider a formal Fourier integral operator u 7→ T u, given by

T u(x; h)= Chα
∫

e(i/h)φ(x,y)u(y) dy, (6-1)

where φ = φT is a quadratic form on C2n
x,y satisfying

detφ′′xy 6= 0 (6-2)

and hence generating a canonical transformation that will be used below.

Proposition 6.1. If u is independent of h,(
h Dh +

1
h

Pα(x, h D; h)
)

T u = 0, (6-3)

where

Pα = p(x, h D)+ ih
(
α+ 1

2 tr(φ′′xxφ
′′

yx
−1
φ′′yyφ

′′

xy
−1
)
)
, (6-4)

p(x, ξ)= 1
2φ
′′

xx x · x + x · (ξ −φ′′xx x)+ 1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1
(ξ −φ′′xx x) · (ξ −φ′′xx x)

=−
1
2φ
′′

xx x · x + 1
2φ
′′

xxφ
′′

yx
−1
φ′′yyφ

′′

xy
−1
φ′′xx x · x

+ x · ξ −φ′′yx
−1
φ′′yyφ

′′

xy
−1
φ′′xx x · ξ + 1

2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1
ξ · ξ. (6-5)

Proof. We have

h Dh
(
e(i/h)φ(x,y))

=−
1
h

e(i/h)φ(x,y),

h Dh(hα)=
α

i
hα,

h DhT u(x; h)=−
1
h

hα
∫

e(i/h)φ(x,y)(ihα+φ(x, y))u(y) dy.

Try to write φ(x, y)= p(x, φ′x(x, y)) for a suitable quadratic form p(x, ξ) (that will turn out to be the
one given in (6-5)). We have

φ(x, y)= 1
2φ
′′

xx x · x +φ′′xy y · x + 1
2φ
′′

yy y · y, (6-6)

φ′x = φ
′′

xx x +φ′′xy y, i.e., y = φ′′xy
−1
(φ′x −φ

′′

xx x), (6-7)
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and using the last relation from (6-7) in (6-6), we get

φ(x, y)= 1
2φ
′′

xx x · x +φ′′yx x ·φ′′xy
−1
(φ′x −φ

′′

xx x)+ 1
2φ
′′

yyφ
′′

xy
−1
(φ′x −φ

′′

xx x) ·φ′′xy
−1
(φ′x −φ

′′

xx x), (6-8)

where the φ′′yx and φ′′xy
−1 in the second term cancel and we get p(x, φ′x) with p as in (6-5).

To verify (6-4), it suffices to notice that

e−(i/h)φ(x,y) p(x, h Dx)
(
e(i/h)φ(x,y))

− p(x, φ′x)=
1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1h Dx · (φ

′

x)

=
1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1h Dx · (φ

′′

xx x)

=
h
2i
φ′′xxφ

′′

yx
−1
φ′′yyφ

′′

xy
−1
∂x · x

=
h
2i

tr
(
φ′′xxφ

′′

yx
−1
φ′′yyφ

′′

xy
−1)
. �

Remark 6.2. Let κT : (y,−φ′y(x, y)) 7→ (x, φ′x(x, y)) be the canonical transformation associated to T ,
which can also be written

κT : (y,−(φ′′yx x +φ′′yy y)) 7→ (x, φ′′xx x +φ′′xy y)

or still κT : (y, η) 7→ (x, ξ), where

x =−φ′′yx
−1
(η+φ′′yy y),

ξ = (φ′′xy −φ
′′

xxφ
′′

yx
−1
φ′′yy)y−φ

′′

xxφ
′′

yx
−1
η.

We see that the following three statements are equivalent.

• κT maps the Lagrangian space η = 0 to ξ = 0.

• φ′′xy −φ
′′
xxφ
′′
yx
−1
φ′′yy = 0.

• p(x, 0)= 0 and p′ξ (x, 0) for all x .

Example 6.3. Consider

T̂Lu(x; h)= Ch(1−n)/2
∫

e(i/h)(φ(x ′,y′)+i xn yn)u(y) dy, φ = φT̂ .

If P ′(x ′, h Dx ′; h) is the operator associated to T̂ in n− 1 variables, we get when u is independent of h(
h Dh +

1
h
(P ′(x ′, h Dx ′; h)+ xnh Dxn )

)
T̂Lu = 0. (6-9)

Similarly (though not a direct consequence of Proposition 6.1 but rather of its method of proof), we have
for L alone that (

h Dh +
1
h

xnh Dxn

)
Lu = 0. (6-10)

Example 6.4. Let T be as above, and assume that we are in the situation of Remark 6.2 so that p(x, 0)= 0
and p′ξ (x, 0)= 0. Then

p(x, h D)= bh D · h D,
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where b is a constant symmetric matrix. Then

Pα = p(x, h D)+ ih(α+ f0), f0 =
n
2
,

and (6-3) reads
(h Dh + (hbD · D+ i(α+ f0)))T u = 0. (6-11)

If T u =
∑
∞

m hkvk ∈ H0 and u is independent of h, we can plug this expression into (6-11) and get the
sequence of equations (

m
i
+ i(α+ f0)

)
vm = 0,(

m+ 1
i
+ i(α+ f0)

)
vm+1+ bD · Dvm = 0,(

m+ 2
i
+ i(α+ f0)

)
vm+2+ bD · Dvm+1 = 0,
...

so unless v ≡ 0, we get m = α+ f0. We can choose vm ∈ H0 arbitrarily, and vm+1, vm+2, . . . are then
uniquely determined.

Now, consider the situation in Theorem 1.6 and let q ∈ L∞(�) be independent of h and such that
σ3̇(y

′, tη′0) is a cl.a.s. on neigh({0}×R+,Rn−1
×R+) of order −1 (see (2-4)):

σ3̇(y
′, tη′0)∼

∞∑
1

nk(y′, t), (6-12)

where nk(y′, t) is homogeneous of degree −k in t .

|nk(y′, t)| ≤ Ck+1kk
|t |−k, y′ ∈ neigh(0,Cn−1). (6-13)

For the moment, we shall only work with formal cl.a.s. and neglect remainders in the asymptotic expansions.
The semiclassical symbol of 3̇ is then

σ3̇(y
′, tη′0/h)∼

∞∑
1

nk(y′, t/h)=
∞∑
1

hhnk(y′, t), (y′, t) ∈ neigh((0, 1),Rn−1
×R+). (6-14)

Recall that σ3̇(y
′, tη′0/h) = Mq(y′, t; h). From (6-14), we infer that T̂ Mq is a cl.a.s. near w′ = 0

and t = 1:

T̂ Mq ∼
∞∑
1

hkmk(w
′, t). (6-15)

Formally,
T̂ M = (T̂ ML−1)L. (6-16)

The canonical transformation κL is given by

(y, η) 7→ (y′, iηn, η
′, iyn).
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It maps the complex manifold η′=0 and yn=0 to the manifold {(z, 0)} and the point (0; 0,−i) to (0, 1; 0),
so κL−1 = κ−1

L maps ζ = 0 to η′ = 0 and yn = 0. We noticed in (3-24) (see (3-22)) that κM takes the
complexified conormal bundle to the zero-section, and it maps the point (0; 0,−i) to (0, 1; 0). Thus,
κML−1 maps the zero-section ζ = 0 to the zero-section and in particular (0, 1; 0) to (0, 1; 0). (We may
notice that this is global in the sense that we can extend zn to an annulus, and we then get t in an annulus.)
Since κT̂ maps the zero-section to the zero-section, we have the same facts for κT̂ M .

From the above, it is clear that T̂ ML−1 maps formal cl.a.s. to formal cl.a.s.
Recalling (6-14) for σ3̇(y

′, tη′0/h)=Mq(y′, t; h) and using that T̂ ML−1 is an elliptic Fourier integral
operator whose canonical transformation maps the zero-section to the zero-section, we see that there
exists a unique formal cl.a.s.

v ∼

∞∑
1

vk(z′, zn)hk, z ∈ neigh((0, 1),Cn), (6-17)

such that in the sense of formal stationary phase

T̂ Mq = T̂ ML−1v. (6-18)

Now q is independent of h, so Mq satisfies a compatibility equation of the form(
h Dh +

1
h

PT̂ M

)
Mq = 0. (6-19)

This gives rise to a similar compatibility condition for v(
h Dh +

1
h

PLM−1 T̂−1 T̂ M

)
v = 0

or simply (
h Dh +

1
h

PL

)
v = 0,

which is the same as (6-10):
(h∂h + zn∂zn )v = 0. (6-20)

Application of this to (6-17) gives
(k+ zn∂zn )vk = 0, (6-21)

i.e.,
vk(z)= qk(z′)z−k

n , |qk(z′)| ≤ Ck+1kk . (6-22)

Thus,

v ∼

∞∑
1

qk(z′)
(

h
zn

)k

=

∞∑
0

qk+1(z′)
(

h
zn

)k+1

,

and we see as in Section 2 that

v ∼ Lq̃(z; h), q̃(y)= 1[0,a](yn)

∞∑
0

qk+1(y′)
k!

yk
n , (6-23)

with a > 0 small enough to assure the convergence of the power series.



542 JOHANNES SJÖSTRAND AND GUNTHER UHLMANN

More precisely (and now we end the limitation to formal symbols), as in (5-18) and (5-7), we check that

T̂ Mq̃ ≡ (T̂ ML−1)Lq̃ in H0,(0,1) (6-24)

(up to an exponentially small error). By the construction of q̃ , the right-hand side is ≡ T̂ Mq in the same
space.

Put r = q − q̃ . Then

T̂ Mr ≡ 0 in H0,(0,1). (6-25)

Now, we replace L with T and consider in light of (5-18)

(T̂ M S)T r ≡ 0 in H0,(0,1), (6-26)

which implies that T r ∈ H81 satisfies

T r ≡ 0 in H8ext
1 ,πzκT (0;0,−i). (6-27)

As we saw in Section 4, 381 contains the closure 0 of the complex curve

0 = κT ({(0; 0, ηn) : =ηn < 0}),

and κT ((0; 0,−i)) ∈ 0. Consequently, 81|πz0 is harmonic and (6-27) and the maximum principle imply
that

T r ≡ 0 in H81 on πz(0). (6-28)

In particular,

T r ≡ 0 in H81,0 (6-29)

and a fortiori

T r ≡ 0 in H80,0. (6-30)

This implies that r = 0 near y = 0. Hence, q = q̃ near y = 0, which gives the theorem.

7. Proof of Proposition 1.7

We choose local coordinates y= (y′, yn) as in the beginning of Section 2. As in Proposition 1.7, we assume
that q is analytic in a neighborhood of 0. We adopt the alternative definition of symbols in Remark 1.4.
It will also be convenient to consider the semiclassical symbol of 3̇, σ3̇(y

′, η′; h)= σ3̇(y
′, η′/h). For

y′ ∈ neigh(0,Rn−1),

σ3̇(y
′, η′; h)=−∂yn Gq K

(∫
χ(t ′)et ′( · ; h)ei( · )·η′/h dt ′

)
(y′, 0)e−iy′·η′/h, (7-1)

where χ and et were defined in Remark 1.4 with n there replaced by n− 1. By analytic WKB (as we
already used), we have up to an exponentially small error

K (et ′( · ; h)ei( · )·η′/h)= Ch(1−n)/2a(y, η′; h)eiφ(y,t,η′)/h, (7-2)
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where φ is the solution of the eikonal problem

∂ynφ = ir(y, ∂y′φ)
1/2, φ|yn=0 = y′ · η′+

i
2
(y′− t)2 (7-3)

and a is an cl.a.s. of order 0 obtained from solving a sequence of transport equations with the “initial”
condition a(y′, 0, η′; h)= 1.

Using again the analytic WKB method, we can find a cl.a.s. b of order 0 in h that solves the following
inhomogeneous problem up to exponentially small errors:{

(h21− h2V )
(
h(3−n)/2b(y, t, η′; h)e(i/h)φ(y,t,η′))

= Ch(5−n)/2ae(i/h)φ,

b(y′, 0, t, η′; h)= 0.

Then up to exponentially small errors,

Gq K (et( · ; h)ei( · )·η′/h)≡ h(3−n)/2b(y, t, η′; h)e(i/h)φ(y,t,η′)

and similarly for the gradients, so

−(∂yn )yn=0Gq K (et( · ; h)ei( · )·η′/h)≡−h(3−n)/2(∂yn b)(y′, 0, t, η′; h)e(i/h)(y′·η′+(i/2)(y′−t ′)2).

Multiplying with χ(t ′) and integrating in t ′, we see that σ3̇(y
′, η′; h) is a cl.a.s. in the semiclassical sense,

and this implies that σ3̇(y
′, η) is a cl.a.s.
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DISPERSIVE ESTIMATES FOR THE SCHRÖDINGER OPERATOR
ON STEP-2 STRATIFIED LIE GROUPS

HAJER BAHOURI, CLOTILDE FERMANIAN-KAMMERER AND ISABELLE GALLAGHER

The present paper is dedicated to the proof of dispersive estimates on stratified Lie groups of step 2 for
the linear Schrödinger equation involving a sublaplacian. It turns out that the propagator behaves like
a wave operator on a space of the same dimension p as the center of the group, and like a Schrödinger
operator on a space of the same dimension k as the radical of the canonical skew-symmetric form, which
suggests a decay rate |t |−(k+p−1)/2. We identify a property of the canonical skew-symmetric form under
which we establish optimal dispersive estimates with this rate. The relevance of this property is discussed
through several examples.

1. Introduction

1A. Dispersive inequalities. Dispersive inequalities for evolution equations (such as the Schrödinger
and wave equations) play a decisive role in the study of semilinear and quasilinear problems which
appear in numerous physical applications. Proving dispersion amounts to establishing a decay estimate
for the L∞ norm of the solutions of these equations at time t in terms of some negative power of t and
the L1 norm of the data. In many cases, the main step in the proof of this decay in time relies on the
application of a stationary phase theorem on an (approximate) representation of the solution. Combined
with an abstract functional analysis argument known as the TT∗-argument, dispersion phenomena yield a
range of estimates involving spacetime Lebesgue norms. Those inequalities, called Strichartz estimates,
have proved to be powerful in the study of nonlinear equations (for instance, one can consult [Bahouri
et al. 2011] and the references therein).

In the Rd framework, dispersive inequalities have a long history, beginning with [Brenner 1975; Pecher
1976; Segal 1976; Strichartz 1977]. They were subsequently developed by various authors, starting with
[Ginibre and Velo 1995] (for a detailed bibliography, we refer to [Keel and Tao 1998; Tao 2006] and the
references therein). Bahouri et al. [2000] generalize the dispersive estimates for the wave equation to the
Heisenberg group Hd with an optimal rate of decay of order |t |−1/2 (regardless of the dimension d) and
prove that no dispersion occurs for the Schrödinger equation. Del Hierro [2005] proved optimal results
for the time behavior of the Schrödinger and wave equations on H-type groups: if p is the dimension of
the center of the H-type group, Del Hierro establishes sharp dispersive inequalities for the wave equation
solution (with a decay rate of |t |−p/2) as well as for the Schrödinger equation solution (with a |t |−(p−1)/2

MSC2010: 35B40.
Keywords: step-2 stratified Lie groups, Schrödinger equation, dispersive estimates, sublaplacian.
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decay). Compared with the Rd framework, there is an exchange in the rates of decay between the wave
and the Schrödinger equations.

Strichartz estimates in other settings have been obtained in a number of works. One can first cite
various results dealing with variable coefficient operators (see for instance [Kapitanski 1989; Smith 1998])
or studies concerning domains, such as [Burq et al. 2008; Ivanovici et al. 2014; Smith and Sogge 1995].
One can also refer to the result concerning the full laplacian on the Heisenberg group [Furioli et al. 2007],
works in the framework of the real hyperbolic spaces [Anker and Pierfelice 2009; Banica 2007; Tataru
2001], or in the framework of compact and noncompact manifolds [Anton 2008; Banica and Duyckaerts
2007; Burq et al. 2004]; finally, one can mention the quasilinear framework studied in [Bahouri and
Chemin 1999; 2003; Klainerman and Rodnianski 2005; Smith and Tataru 2005] and the references therein.

In this paper our goal is to establish optimal dispersive estimates for the solutions of the Schrödinger
equation on step-2 stratified Lie groups. We shall emphasize in particular the key role played by the
canonical skew-symmetric form in determining the rate of decay of the solutions. It turns out that the
Schrödinger propagator on G behaves like a wave operator on a space of the same dimension as the center
of G, and like a Schrödinger operator on a space of the same dimension as the radical of the canonical
skew-symmetric form associated with the dual of the center. This unusual behavior of the Schrödinger
propagator in the case of Lie algebras whose canonical skew-symmetric form is degenerate (known as
Lie algebras which are not MW; see [Moore and Wolf 1973; Müller and Ricci 1996], for example) makes
the analysis of the explicit representations of the solutions tricky and gives rise to uncommon dispersive
estimates. It will also appear from our analysis that the optimal rate of decay is not always in accordance
with the dimension of the center: we shall exhibit examples of step-2 stratified Lie groups with center of
any dimension for which no dispersion occurs for the Schrödinger equation. We shall actually highlight
that the optimal rate of decay in the dispersive estimates for solutions to the Schrödinger equation is,
rather, related to the properties of the canonical skew-symmetric form.

1B. Stratified Lie groups. Let us recall here some basic facts about stratified Lie groups (see [Corwin
and Greenleaf 1990; Folland 1989; Folland and Stein 1982; Stein and Weiss 1971] and the references
therein for further details). A connected, simply connected, nilpotent Lie group G is called stratified if
its left-invariant Lie algebra g (assumed to be real-valued and of finite dimension n) is endowed with a
vector space decomposition

g=
⊕

1≤k≤∞

gk,

where all but finitely many of the gk are {0}, such that [g1, gk] = gk+1. If there are p nonzero gk then the
group is said to be of step p. Via the exponential map

exp : g→ G,

which is in that case a diffeomorphism from g to G, one identifies G and g. It turns out that, under this
identification, the group law on G (which is generally not commutative) provided by the Campbell–Baker–
Hausdorff formula, (x, y) 7→ x · y, is a polynomial map. In the following we shall denote by z the center
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of G, which is simply the last nonzero gk , and write

G = v⊕ z, (1-1)

where v is any subspace of G complementary to z.
The group G is endowed with a smooth left-invariant measure µ(x), the Haar measure, induced by the

Lebesgue measure on g, which satisfies the fundamental translation invariance property∫
G

f (y) dµ(y)=
∫

G
f (x · y) dµ(y) for all f ∈ L1(G, dµ), x ∈ G.

Note that the convolution of two functions f and g on G is given by

f ∗ g(x) :=
∫

G
f (x · y−1)g(y) dµ(y)=

∫
G

f (y)g(y−1
· x) dµ(y) (1-2)

and as in the euclidean case we define Lebesgue spaces by

‖ f ‖L p(G) :=

(∫
G
| f (y)|pdµ(y)

)1
p

for p ∈ [1,∞[ with the standard modification when p =∞.
Since G is stratified, there is a natural family of dilations on g defined for t > 0 as follows: if X

belongs to g, we can decompose X as X =
∑

Xk with Xk ∈ gk , and then

δt X :=
∑

tk Xk .

This allows us to define the dilation δt on the Lie group G via the identification by the exponential map:

g

exp
��

δt
// g

exp
��

G
exp ◦ δt◦ exp−1

// G

To avoid heaviness, we shall still denote by δt the map exp ◦ δt ◦ exp−1.
Observe that the action of the left-invariant vector fields Xk for Xk belonging to gk changes the

homogeneity in the following way:

Xk( f ◦ δt)= tk Xk( f ) ◦ δt ,

where by definition Xk( f )(y) := d f (y ·exp(s Xk))/ds|s=0 and the Jacobian of the dilation δt is t Q , where
Q :=

∑
1≤k≤∞ k dim gk is called the homogeneous dimension of G:∫

G
f (δt y) dµ(y)= t−Q

∫
G

f (y) dµ(y). (1-3)

Let us also point out that there is a natural norm ρ on G, which is homogeneous in the sense that it
respects dilations: x 7→ ρ(x) for x ∈ G satisfies

ρ(x−1)= ρ(x), ρ(δt x)= tρ(x) for all x ∈ G; ρ(x)= 0 ⇐⇒ x = 0.
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We can define the Schwartz space S(G) as the set of smooth functions on G such that x 7→ ρ p(x)Xα f (x)
belongs to L∞(G) for all α in Nd and p in N, where Xα denotes a product of |α| left-invariant vector
fields. The Schwartz space S(G) has properties very similar to those of the Schwartz space S(Rd),
particularly density in Lebesgue spaces.

1C. The Fourier transform. The group G being noncommutative, its Fourier transform is defined by
means of irreducible unitary representations. We devote this section to the introduction of the basic
concepts that will be needed in the sequel. From now on, we assume that G is a step-2 stratified Lie
group, meaning z= g2, and we let v= g1 in (1-1). We choose a scalar product on g such that v and z are
orthogonal.

1C1. Irreducible unitary representations. Let us fix some notation, borrowed from [Ciatti et al. 2005]
(see also [Corwin and Greenleaf 1990] or [Müller and Ricci 1996]). For any λ ∈ z? (the dual of the
center z) we define a skew-symmetric bilinear form on v by

B(λ)(U, V ) := λ([U, V ]) for all U, V ∈ v. (1-4)

One can find a Zariski-open subset 3 of z? such that the number of distinct eigenvalues of B(λ) is
maximum. We denote by k the dimension of the radical rλ of B(λ). Since B(λ) is skew-symmetric, the
dimension of the orthogonal complement of rλ in v is an even number, which we shall denote by 2d.
Therefore, there exists an orthonormal basis

(P1(λ), . . . , Pd(λ), Q1(λ), . . . , Qd(λ), R1(λ), . . . , Rk(λ))

such that the matrix of B(λ) takes the form

0 · · · 0 η1(λ) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...
. . .

...

0 · · · 0 0 · · · ηd(λ) 0 · · · 0
−η1(λ) · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...
. . .

...

0 · · · −ηd(λ) 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...
. . .

...

0 · · · 0 0 · · · 0 0 · · · 0


,

where each η j (λ) > 0 is smooth and homogeneous of degree 1 in λ= (λ1, . . . , λp) and the basis vectors
are chosen to depend smoothly on λ in 3. Decomposing v as

v= pλ+ qλ+ rλ

with

pλ := Span(P1(λ), . . . , Pd(λ)), qλ := Span(Q1(λ), . . . , Qd(λ)), rλ := Span(R1(λ), . . . , Rk(λ)),
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any element V ∈ v will be written in the following as P + Q + R with P ∈ pλ, Q ∈ qλ and R ∈ rλ.
We then introduce irreducible unitary representations of G on L2(pλ)

uλ,νX φ(ξ) := e−iν(R)−iλ(Z+[ξ+P/2,Q])φ(P + ξ), λ ∈ z∗, ν ∈ r∗λ, (1-5)

for any x = exp(X) ∈ G with X = X (λ, x) := (P(λ, x), Q(λ, x), R(λ, x), Z(x)) and φ ∈ L2(pλ). In
order to shorten notation, we shall omit the dependence on (λ, x) whenever there is no risk of confusion.

1C2. The Fourier transform. In contrast with the euclidean case, the Fourier transform is defined on the
bundle r(3) above 3 whose fiber above λ ∈3 is r∗λ ∼ Rk . It is valued in the space of bounded operators
on L2(pλ). More precisely, the Fourier transform of a function f in L1(G) is defined as follows: for
any (λ, ν) ∈ r(3),

F( f )(λ, ν) :=
∫

G
f (x)uλ,νX (λ,x) dµ(x).

Note that, for any (λ, ν), the map uλ,νX (λ,x) is a group homomorphism from G into the group U (L2(pλ)) of
unitary operators of L2(pλ), so functions f of L1(G) have a Fourier transform (F( f )(λ, ν))λ,ν that is a
bounded family of bounded operators on L2(pλ). One may check that the Fourier transform exchanges
convolution, whose definition is recalled in (1-2), and composition:

F( f ? g)(λ, ν)= F( f )(λ, ν) ◦F(g)(λ, ν). (1-6)

Further, the Fourier transform can be extended to an isometry from L2(G) onto the Hilbert space of
two-parameter families A = {A(λ, ν)}(λ,ν)∈r(3) of operators on L2(pλ) which are Hilbert–Schmidt for
almost every (λ, ν) ∈ r(3), with ‖A(λ, ν)‖HS(L2(pλ)) measurable and with norm

‖A‖ :=
(∫

λ∈3

∫
ν∈r∗λ

‖A(λ, ν)‖2HS(L2(pλ))
|Pf(λ)| dν dλ

)1
2

<∞,

where |Pf(λ)| :=
∏d

j=1 η j (λ) is the Pfaffian of B(λ). We have the following Fourier–Plancherel formula:
there exists a constant κ > 0 such that∫

G
| f (x)|2 dx = κ

∫
λ∈3

∫
ν∈r∗λ

‖F( f )(λ, ν)‖2HS(L2(pλ))
|Pf(λ)| dν dλ. (1-7)

Finally, we have an inversion formula as stated in the following proposition, proved in the Appendix.

Proposition 1.1. There exists κ > 0 such that, for f ∈S(G) and almost all x ∈G, the following inversion
formula holds:

f (x)= κ
∫
λ∈3

∫
ν∈r∗λ

tr
(
(uλ,νX (λ,x))

?F f (λ, ν)
)
|Pf(λ)| dν dλ. (1-8)

1C3. The sublaplacian. Let (V1, . . . , Vm) be an orthonormal basis of g1. The sublaplacian on G is
defined by

1G :=

m∑
j=1

V 2
j . (1-9)
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It is a self-adjoint operator which is independent of the orthonormal basis (V1, . . . , Vm), and homogeneous
of degree 2 with respect to the dilations in the sense that

δ−1
t 1Gδt = t21G .

To write its expression in Fourier space, we consider the basis of Hermite functions (hn)n∈N, normalized
in L2(R) and satisfying, for all real numbers ξ ,

h′′n(ξ)− ξ
2hn(ξ)=−(2n+ 1)hn(ξ).

Then, for any multi-index α ∈ Nd , we define the functions hα,η(λ) by

hα,η(λ)(4) :=
d∏

j=1

hα j ,η j (λ)(ξ j ) for all 4= (ξ1, . . . , ξd) ∈ Rd ,

hn,β(ξ) := β
1/4hn(β

1/2ξ) for all (n, β) ∈ N×R+, ξ ∈ R.

(1-10)

The sublaplacian 1G defined in (1-9) satisfies

F(−1G f )(λ, ν)= F( f )(λ, ν)(H(λ)+ |ν|2), (1-11)

where |ν| denotes the euclidean norm of the vector ν in Rk and H(λ) is the diagonal operator defined on
L2(Rd) by

H(λ)hα,η(λ) =
d∑

j=1

(2α j + 1)η j (λ)hα,η(λ).

In the following we shall denote the “frequencies” associated with P2
j (λ)+ Q2

j (λ) by

ζ j (α, λ) := (2α j + 1)η j (λ), (α, λ) ∈ Nd
×3, (1-12)

and those associated with H(λ) by

ζ(α, λ) :=

d∑
j=1

ζ j (α, λ), (α, λ) ∈ Nd
×3. (1-13)

Note that 1G is directly related to the harmonic oscillator via H(λ) since eigenfunctions associated with
the eigenvalues ζ(α, λ) are the products of 1-dimensional Hermite functions. Also observe that ζ(α, λ) is
smooth and homogeneous of degree 1 in λ= (λ1, . . . , λp). Moreover, ζ(α, λ)= 0 if and only if B(λ)= 0,
or equivalently, by (1-4), λ= 0.

Notice also that there is a difference in homogeneity in the variables λ and ν. Namely, in the variable ν,
the sublaplacian acts as in the euclidean case (homogeneity 2) while in λ, it has the homogeneity 1 of a
wave operator.

Finally, for any smooth function 8, we define the operator 8(−1G) by the formula

F(8(−1G) f )(λ, ν) :=8(H(λ)+ |ν|2)F( f )(λ, ν), (1-14)
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which also reads

F(8(−1G) f )(λ, ν)hα,η(λ) :=8(|ν|2+ ζ(α, λ))F( f )(λ, ν)hα,η(λ)

for all (λ, ν) ∈ r(3) and α ∈ Nd .

1C4. Strict spectral localization. Let us introduce the following notion of spectral localization, which
we shall call strict spectral localization and which will be very useful in the following.

Definition 1.2. A function f belonging to L1(G) is said to be strictly spectrally localized in a set C⊂ R

if there exists a smooth function θ , compactly supported in C, such that, for all 1≤ j ≤ d ,

F( f )(λ, ν)= F( f )(λ, ν)θ((P2
j + Q2

j )(λ)) for all (λ, ν) ∈ r(3). (1-15)

Remark 1.3. One could expect the notion of spectral localization to relate to the laplacian instead of
each individual vector field P2

j + Q2
j , assuming rather the less restrictive condition

F( f )(λ, ν)= F( f )(λ, ν)θ(H(λ)) for all (λ, ν) ∈ r(3).

The choice we make here is more restrictive due to the anisotropic context (namely the fact that η j (λ)

depends on j ); in the case of the Heisenberg group or, more generally, H-type groups, the notion of “strict
spectral localization” in a ring C of Rp actually coincides with the more usual definition of “spectral
localization” since, as recalled in the next subsection, η j (λ) = 4|λ| (for a complete presentation and
more details on spectrally localized functions, we refer the reader to [Bahouri and Gallagher 2001;
Bahouri et al. 2012a; 2012b]). Assumption (1-15) guarantees a lower bound, which roughly states that
for F( f )(λ, ν)hα,λ to be nonzero we must have

(2α j + 1)η j (λ)≥ c > 0 for all j ∈ {1, . . . , d}, (1-16)

hence each η j must be bounded away from zero, rather than the sum over j . These lower bounds are
important ingredients of the proof (see Section 3C).

1D. Examples. Let us give a few examples of well-known stratified Lie groups with a step-2 stratification.
Note that nilpotent Lie groups which are connected, simply connected and whose Lie algebra admits a
step-2 stratification are called Carnot groups.

1D1. The Heisenberg group. The Heisenberg group Hd is defined as the space R2d+1 whose elements
can be written w = (x, y, s) with (x, y) ∈ Rd

×Rd , endowed with the product law

(x, y, s) · (x ′, y′, s ′)= (x + x ′, y+ y′, s+ s ′− 2(x | y′)+ 2(y | x ′)),

where ( · | · ) denotes the euclidean scalar product on Rd . In that case the center consists of the points of
the form (0, 0, s) and is of dimension 1. The Lie algebra of left-invariant vector fields is generated by

X j := ∂x j + 2y j∂s, Y j := ∂y j − 2x j∂s for 1≤ j ≤ d; S := ∂s =
1
4 [Y j , X j ].

The canonical skew-symmetric form B(λ)(U, V ) defined in (1-4) associated with the frequencies
λ ∈ R∗ is proportional to λ, since [U, V ] is proportional to ∂s . Its radical reduces to {0} with 3 = R∗,
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and |η j (λ)| = 4|λ| for all j ∈ {1, . . . , d}. Note in particular that strict spectral localization and spectral
localization are equivalent.

1D2. H-type groups. These groups are canonically isomorphic to Rm+p and are a multidimensional
version of the Heisenberg group. The group law is of the form

(x (1), x (2))·(y(1), y(2)) :=
( x (1)j +y(1)j , j = 1, . . . ,m

x (2)k +y(2)k +
1
2〈x

(1),U (k)y(1)〉, k = 1, . . . , p

)
,

where U ( j) are m×m linearly independent, orthogonal, skew-symmetric matrices satisfying the property

U (r)U (s)
+U (s)U (r)

= 0

for every r , s ∈ {1, . . . , p} with r 6= s. In that case the center is of dimension p and may be identified
with Rp, and the radical of the canonical skew-symmetric form associated with the frequencies λ is
again {0}. For example, the Iwasawa subgroup of semisimple Lie groups of split rank 1 (see [Korányi
1985]) is of this type. On H-type groups, m is an even number, which we denote by 2l, and the Lie algebra
of left-invariant vector fields is spanned by the following vector fields, where we have written z = (x, y)
in Rl
×Rl : for j = 1, . . . , l and k = 1, . . . , p,

X j := ∂x j +
1
2

p∑
k=1

2l∑
l=1

zlU
(k)
l, j ∂sk , Y j := ∂y j +

1
2

p∑
k=1

2l∑
l=1

zlU
(k)
l, j+l∂sk and ∂sk .

In that case, we have 3= Rp
\ {0} with η j (λ)=

√

λ2
1+ · · ·+ λ

2
p for all j ∈ {1, . . . , l} (here, again, strict

spectral localization and spectral localization are equivalent).

1D3. Diamond groups. These groups, which occur in crystal theory (for more details, consult [Ludwig
1995; Poguntke 1999]), are of the type 6nHd , where 6 is a connected Lie group acting smoothly on Hd .
One can find examples for which the radical of the canonical skew-symmetric is of any dimension k,
0≤ k ≤ d . For example, one can take for 6 the k-dimensional torus, acting on Hd by

θ(w) := (θ · z, s) := (eiθ1 z1, . . . , eiθk zk, zk+1, . . . , zd , s), w = (z, s),

where the element θ = (θ1, . . . , θk) corresponds to the element (eiθ1, . . . , eiθk ) of Tk . Then the product
law on G = Tk nHd is given by

(θ, w) · (θ ′, w′)=
(
θ + θ ′, w.(θ(w′))

)
,

where w.(θ(w′)) denotes the Heisenberg product of w by θ(w′). As a consequence, the center of G
is of dimension 1, since it consists of the points of the form (0, 0, s) for s ∈ R. Let us choose for
simplicity k = d = 1; the algebra of left-invariant vector fields is generated by the vector fields ∂θ , ∂s ,
0θ,x and 0θ,y , where

0θ,x = cos θ∂x + sin θ∂y + 2(y cos θ − x sin θ)∂s,

0θ,y =− sin θ∂x + cos θ∂y − 2(y sin θ + x cos θ)∂s .
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It is not difficult to check that the radical of B(λ) is of dimension 1. In the general case, where k ≤ d , the
algebra of left-invariant vector fields is generated by the vector fields ∂s , the 2(d − k) vectors

Xl = ∂xl + 2yl∂s and Yl = ∂yl − 2xl∂s,

and the 3k vectors defined for 1≤ j ≤ k by ∂θ j , 0θ j ,x j and 0θ j ,y j , where

0θ j ,x j = cos θ j∂x j + sin θ j∂y j + 2(y j cos θ j − x j sin θ j )∂s,

0θ j ,y j =− sin θ j∂x j + cos θ j∂y j − 2(y j sin θ j + x j cos θ j )∂s,

and this provides an example with a radical of dimension k.

1D4. The tensor product of Heisenberg groups. Consider Hd1 ⊗Hd2 , the set of elements (w1, w2)

in Hd1 ⊗Hd2 that can be written as (w1, w2) = (x1, y1, s1, x2, y2, s2) in R2d1+1
× R2d2+1, equipped

with the product law

(w1, w2) · (w
′

1, w
′

2)= (w1 ·w
′

1, w2 ·w
′

2),

where w1 ·w
′

1 and w2 ·w
′

2 denote the product in Hd1 and Hd2 , respectively. Clearly Hd1 ⊗Hd2 is a step-2
stratified Lie group with center of dimension 2 and radical index null. Moreover, for λ = (λ1, λ2) in
the dual of the center, the canonical skew bilinear form B(λ) has radical {0} with 3 = R∗ ×R∗, and
one has η1(λ) = 4|λ1| and η2(λ) = 4|λ2|. In that case, strict spectral localization is a more restrictive
condition than spectral localization. Indeed, if f is spectrally localized, one has λ1 6= 0 or λ2 6= 0 on the
support of F( f )(λ), while one has λ1 6= 0 and λ2 6= 0 on the support of F( f )(λ) if f is strictly spectrally
localized.

1D5. Tensor product of H-type groups. The group Rm1+p1 ⊗ Rm2+p2 is easily verified to be a step-2
stratified Lie group with center of dimension p1+ p2, radical index null and a skew bilinear form B(λ)
defined on Rm1+m2 with m1 = 2l1 and m2 = 2l2. The Zariski-open set associated with B is given
by 3= (Rp1 \ {0})× (Rp2 \ {0}) and, for λ= (λ1, . . . , λp1+p2), we have

η j (λ)=
√
λ2

1+ · · ·+ λ
2
p1

for all j ∈ {1, . . . , l1},

η j (λ)=
√
λ2

p1+1+ · · ·+ λ
2
p1+p2

for all j ∈ {l1+ 1, . . . , l1+ l2}.
(1-17)

1E. Main results. The purpose of this paper is to establish optimal dispersive inequalities for the linear
Schrödinger equation on step-2 stratified Lie groups associated with the sublaplacian. In view of (1-11)
and the fact that the “frequencies” ζ(α, λ) associated with H(λ) given by (1-13) are homogeneous of
degree 1 in λ, the Schrödinger operator on G behaves like a wave operator on a space of the same
dimension p as the center of G, and like a Schrödinger operator on a space of the same dimension k as the
radical of the canonical skew-symmetric form. By comparison with the classical dispersive estimates, the
expected result would be a dispersion phenomenon with an optimal rate of decay of order |t |−(k+p−1)/2.
However, as will be seen through various examples, this anticipated rate is not always achieved. To reach
this maximum rate of dispersion, we require a condition on ζ(α, λ).
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Assumption 1.4. For each multi-index α in Nd , the Hessian matrix of the map λ 7→ ζ(α, λ) satisfies

rank D2
λζ(α, λ)= p− 1,

where p is the dimension of the center of G.

Remark 1.5. As was observed in Section 1C3, ζ(α, λ) is a smooth function, homogeneous of degree 1
on 3. By homogeneity arguments, one therefore has D2

λζ(α, λ)λ= 0. It follows that

rank D2
λζ(α, λ)≤ p− 1

always; hence, Assumption 1.4 may be understood as a maximal rank property.

Let us now present the dispersive inequality for the Schrödinger equation. Recall that the linear
Schrödinger equation is as follows on G:{

(i∂t −1G) f = 0,
f |t=0 = f0,

(1-18)

where the function f with complex values depends on (t, x) ∈ R×G.

Theorem 1. Let G be a step-2 stratified Lie group with center of dimension p with 1≤ p < n and radical
index k. Assume that Assumption 1.4 holds. A constant C exists such that, if f0 belongs to L1(G) and is
strictly spectrally localized in a ring of R in the sense of Definition 1.2, then the associate solution f to
the Schrödinger equation (1-18) satisfies

‖ f (t, · )‖L∞(G) ≤
C

|t |k/2(1+ |t |(p−1)/2)
‖ f0‖L1(G) (1-19)

for all t 6= 0 and the result is sharp in time.

The fact that a spectral localization is required in order to obtain the dispersive estimates is not
surprising. Indeed, recall that in the Rd case, for instance, the dispersive estimate for the Schrödinger
equation derives immediately (without any spectral localization assumption) from the fact that the solution
u(t) to the free Schrödinger equation on Rd with Cauchy data u0 is, for t 6= 0,

u(t, · )= u0 ∗
1

(−2iπ t)d/2
e−i | · |2/(4t),

where ∗ denotes the convolution product in Rd (for a detailed proof of this fact, see for instance [Bahouri
et al. 2011, Proposition 8.3]). However, proving dispersive estimates for the wave equation in Rd requires
more elaborate techniques (including oscillating integrals), which involve an assumption of spectral
localization in a ring. In the case of a step-2 stratified Lie group G, the main difficulty arises from the
complexity of the expression of a Schrödinger propagator that mixes a wave operator behavior with that
of a Schrödinger operator. This explains, on the one hand, the decay rate in the estimate (1-19) and on
the other hand the hypothesis of strict spectral localization.

Let us now discuss Assumption 1.4. As mentioned above, there is no dispersion phenomenon for the
Schrödinger equation on the Heisenberg group Hd (see [Bahouri et al. 2000]). Actually the same holds
for the tensor product of Heisenberg groups Hd1 ⊗Hd2 whose center is of dimension p = 2 and radical
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index null, and more generally for the case of step-2 stratified Lie groups, decomposable on nontrivial
step-2 stratified Lie groups; indeed, we derive from Theorem 1 the following corollary:

Corollary 1.6. Let G =
⊗

1≤m≤r Gm be a decomposable, step-2 stratified Lie group where the groups Gm

are nontrivial step-2 stratified Lie groups satisfying Assumption 1.4, of radical index km and with centers
of dimension pm . Then the dispersive estimate holds with rate |t |−q :

q := 1
2

∑
1≤m≤r

(km + pm − 1)= 1
2
(k+ p− r),

where p is the dimension of the center of G and k its radical index. Further, this rate is optimal.

Corollary 1.6 is a direct consequence of Theorem 1 and the simple observation that1G =
⊗

1≤m≤r 1Gm .
This result applies, for example, to the tensor product of Heisenberg groups, for which there is no
dispersion, and to the tensor product of H-type groups Rm1+p1 ⊗Rm2+p2 , for which the dispersion rate is
t−(p1+p2−2)/2 (see [Del Hierro 2005]). Corollary 1.6 therefore shows that it can happen that the “best”
rate of decay |t |−(k+p−1)/2 is not reached, in particular for decomposable Lie groups. This suggests that
Assumption 1.4 could be related with decomposability.

More generally, a large class of groups which do not satisfy the Assumption 1.4 is given by step-2
stratified Lie groups G for which ζ(0, λ) is a linear form on each connected component of the Zariski-open
subset 3. Of course, the Heisenberg group and any tensor product of Heisenberg groups is of that type.
We then have the following result, which illustrates that there exist examples of groups without any
dispersion and which do not satisfy Assumption 1.4.

Proposition 1.7. Consider a step-2 stratified Lie group G whose radical index is null and for which ζ(0, λ)
is a linear form on each connected component of the Zariski-open subset 3. Then there exists f0 ∈ S(G),
x ∈ G and c0 > 0 such that

|e−i t1G f0(x)| ≥ c0 for all t ∈ R+.

Finally, we point out that the dispersive estimate given in Theorem 1 can be regarded as a first step
towards spacetime estimates of Strichartz type. However, due to the strict spectral localization assumption,
the Besov spaces that should appear in the study (after summation over frequency bands) are naturally
anisotropic; thus, proving such estimates is likely to be very technical, and is postponed to future works.

1F. Strategy of the proof of Theorem 1. In the statement of Theorem 1, there are two different results:
the dispersive estimate in itself on the one hand, and its optimality on the other. Our strategy of proof
is closely related to the method developed in [Bahouri et al. 2000; Del Hierro 2005], with additional,
nonnegligible technicalities.

In the situation of [Bahouri et al. 2000], where the Heisenberg group Hd is considered, the authors
prove that there is no dispersion by exhibiting explicitly Cauchy data f0 for which the solution f (t, · ) to
the Schrödinger equation (1-18) satisfies

‖ f (t, · )‖Lq (Hd ) = ‖ f0‖Lq (Hd ) for all q ∈ [1,∞]. (1-20)
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More precisely, they take advantage of the fact that the Kohn laplacian 1Hd can be recast in the form

1Hd = 4
d∑

j=1

(Z j Z j + i∂s), (1-21)

where
{

Z1, Z1, . . . , Zd , Zd , ∂s
}

is the canonical basis of the Lie algebra of left-invariant vector fields
on Hd (see [Bahouri et al. 2012a] and the references therein for more details). This implies that, for
a nonzero function f0 belonging to Ker

(∑d
j=1 Z j Z j

)
, the solution of the Schrödinger equation on the

Heisenberg group f (t)= e−i t1
Hd f0 actually solves the transport equation

f (z, s, t)= e4dt∂s f0(z, s)= f0(z, s+ 4dt)

and hence satisfies (1-20). The arguments used in [Del Hierro 2005] for general H-type groups are similar
to the ones developed in [Bahouri et al. 2000]: the dispersive estimate is obtained using an explicit formula
for the solution, coming from Fourier analysis, combined with a stationary phase theorem. The Cauchy
data used to prove the optimality is again in the kernel of an adequate operator, by a decomposition
similar to (1-21).

As in [Bahouri et al. 2000; Del Hierro 2005], the first step of the proof of Theorem 1 consists in writing
an explicit formula for the solution of the equation by use of the Fourier transform. Let us point out
that, in the setting of [Bahouri et al. 2000; Del Hierro 2005], irreducible representations are isotropic
with respect to the dual of the center of the group; this isotropy allows us to reduce to a one-dimensional
framework and deduce the dispersive effect from a careful use of a stationary phase argument of [Stein
1986]. As we have already seen in Section 1C1, the irreducible representations are no longer isotropic
in the general case of stratified Lie groups, and thus we adopt a more technical approach, making use of
Schrödinger representation and taking advantage of some properties of Hermite functions appearing in the
explicit representation of the solutions derived by Fourier analysis (see Section 3C). The optimality of the
inequality is obtained as in [Bahouri et al. 2000; Del Hierro 2005], by an adequate choice of the initial data.

1G. Organization of the paper. The article is organized as follows. In Section 2, we write an explicit
formulation of the solutions of the Schrödinger equation. Then, Section 3 is devoted to the proof of
Theorem 1, and in Section 4 we discuss the optimality of the result and prove Proposition 1.7.

Finally, we mention that the letter C will be used to denote a universal constant which may vary from
line to line. We also use A . B to denote an estimate of the form A ≤ C B for some constant C .

2. Explicit representation of the solutions

2A. The convolution kernel. Let f0 belong to S(G) and let us consider f (t, · ), the solution to the free
Schrödinger equation (1-18). In view of (1-11), we have

F( f (t, · ))(λ, ν)= F( f0)(λ, ν)ei t |ν|2+i t H(λ),

which implies easily (arguing as in the Appendix) that f (t, · ) belongs to S(G). Assuming that f0 is
strictly spectrally localized in the sense of Definition 1.2, there exists a smooth function θ compactly
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supported in a ring C of R such that if we define

2(λ) :=

d∏
j=1

θ((P2
j + Q2

j )(λ))

then

F( f (t, · ))(λ, ν)= F( f0)(λ, ν)2(λ)ei t |ν|2+i t H(λ).

Therefore, by the inverse Fourier transform (1-8), we deduce that the function f (t, · ) may be decomposed
in the following way:

f (t, x)= κ
∫
λ∈3

∫
ν∈r∗λ

tr
(
(uλ,νX (λ,x))

?F( f0)(λ, ν)2(λ)ei t |ν|2+i t H(λ))
|Pf(λ)| dν dλ. (2-1)

We set, for X ∈ Rn ,

kt(X) := κ
∫
λ∈3

∫
ν∈r∗λ

tr
(
uλ,νX 2(λ)ei t |ν|2+i t H(λ))

|Pf(λ)| dν dλ. (2-2)

The function kt plays the role of a convolution kernel in the variables of the Lie algebra and we have the
following result:

Proposition 2.1. If the function kt defined in (2-2) satisfies

‖kt‖L∞(Rn) ≤
C

|t |k/2(1+ |t |(p−1)/2)
for all t ∈ R, (2-3)

then Theorem 1 holds.

Proof. We write, according to (2-1),

f (t, x)= κ
∫
λ∈3

∫
ν∈r∗λ

∫
y∈G

tr
(
(uλ,νX (λ,x))

∗uλ,νX (λ,y)2(λ)e
i t |ν|2+i t H(λ)) f0(y)|Pf(λ)| dν dλ dµ(y)

= κ

∫
λ∈3

∫
ν∈r∗λ

∫
y∈G

tr
(
uλ,νX (λ,y)2(λ)e

i t |ν|2+i t H(λ)) f0(x · y)|Pf(λ)| dν dλ dµ(y).

Note that we have used the property that the map X 7→ uλ,νX is a unitary representation, and the invariance
of the Haar measure by translations.

Now we use the exponential law y 7→Y = (P(λ, y), Q(λ, y), Z , R(λ, y)) and the fact that dµ(y)=dY ,
the Lebesgue measure; then we perform a linear orthonormal change of variables

(P(λ, y), Q(λ, y), R(λ, y)) 7→ (P̃, Q̃, R̃),

so that dµ(y)= dY = d P̃ d Q̃ d Z d R̃ and we write

f (t, x)= κ
∫
λ∈3

∫
ν∈r∗λ

∫
(P̃,Q̃,Z ,R̃)∈Rn

tr
(
uλ,ν
(P̃,Q̃,Z ,R̃)

2(λ)ei t |ν|2+i t H(λ))
× f0(x · exp(P̃, Q̃, Z , R̃))|Pf(λ)| dν dλ d P̃ d Q̃ d Z d R̃.
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Thanks to the Fubini theorem and Young inequalities, we can write (dropping the tilde on the variables)

| f (t, x)| =
∣∣∣∣∫
(P,Q,Z ,R)∈Rn

kt(P, Q, Z , R) f0(x · exp(P, Q, Z , R)) d P d Q d R d Z
∣∣∣∣

≤ ‖kt‖L∞(G)

∣∣∣∣∫
(P,Q,Z ,R)∈Rn

f0(x · exp(P, Q, Z , R)) d P d Q d R d Z
∣∣∣∣

≤ ‖kt‖L∞(G)‖ f0‖L1(G).

Proposition 2.1 is proved. �

In the next subsections, we make preliminary work by transforming the expression of kt and reducing
the proof to statements equivalent to (2-3).

2B. Transformation of kt : expression in terms of Hermite functions. Decomposing the operator H(λ)
in the basis of Hermite functions, and recalling notation (1-12) replaces (2-2) with

kt(X)= κ
∑
α∈Nd

∫
3

∫
ν∈r∗λ

ei t |ν|2+i tζ(α,λ)
d∏

j=1

θ(ζ j (α, λ))
(
uλ,νX hα,η(λ)

∣∣ hα,η(λ)
)
|Pf(λ)| dν dλ, X ∈ Rn.

Using the explicit form of uλ,νX recalled in (1-5), we find the following result:

Lemma 2.2. There is a constant κ̃ and a smooth function F such that, with the above notation, we have,
for t 6= 0,

kt(P, Q, t Z , R)=
κ̃e−i |R|2/(4t)

tk/2

∑
α∈Nd

∫
3

ei t8α(Z ,λ)Gα(P, Q, η(λ))|Pf(λ)|F(λ) dλ,

where the phase 8α is given by

8α(Z , λ) := ζ(α, λ)− λ(Z)

with notation (1-13) and the function Gα is given by the following formula, for all (P, Q, η) ∈ R3d :

Gα(P, Q, η) :=
d∏

j=1

θ((2α j + 1)η j )gα j (
√
η j Pj ,

√
η j Q j ), (2-4)

while, for each (ξ1, ξ2, n) in R2
×N, using the notation (1-10),

gn(ξ1, ξ2) := e−iξ1ξ2/2
∫

R

e−iξ2ξhn(ξ1+ ξ)hn(ξ) dξ. (2-5)

Notice that (gn)n∈N is uniformly bounded in R2 thanks to the Cauchy–Schwarz inequality and the fact
that ‖hn‖L2(R) = 1, and hence the same holds for (Gα)α∈Nd (in R3d ).

Proof. We begin by observing that, for X = (P, Q, R, Z),

I := (uλ,νX hα,η(λ) | hα,η(λ))= e−iν(R)−iλ(Z)
∫

Rd
e−iλ([ξ+P/2,Q])hα,η(λ)(P + ξ)hα,η(λ)(ξ)dξ,
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with, in view of (1-4),

λ
([
ξ + 1

2 P, Q
])
= B(λ)

(
ξ + 1

2 P, Q
)
=

∑
1≤ j≤d

η j (λ)Q j
(
ξ j +

1
2 Pj

)
.

As a consequence,

I = e−iν(R)−iλ(Z)
∏

1≤ j≤d

∫
R

e−iη j (λ)(ξ j+Pj/2)Q j hα j ,η j (λ)(Pj + ξ j )hα j ,η j (λ)(ξ j )dξ j .

The change of variables ξ̃ j =
√

η j (λ)ξ j gives, dropping the tilde for simplicity,

I = e−iν(R)−iλ(Z)
∏

1≤ j≤d

∫
R

e−i
√
η j (λ)Q j (ξ j+

√
η j (λ)Pj/2)hα j (ξ j +

√
η j (λ)Pj )hα j (ξ j ) dξ j ,

which implies that

kt(P, Q, t Z , R)= κ
∑
α∈Nd

∫
r(3)

e−i tλ(Z)−iν(R)ei tζ(α,λ)+i t |ν|2 Gα(P, Q, η(λ))|Pf(λ)| dν dλ.

It is well known (see for instance Proposition 1.28 in [Bahouri et al. 2011]) that, for t 6= 0,∫
Rk

e−i(ν|R)+i t |ν|2 dν =
( iπ

t

)k
2 e−i |R|2/(4t), (2-6)

where ( · | · ) denotes the euclidean scalar product on Rk. This implies that, for t 6= 0,

|kt(P, Q, t Z , R)|.
1
|t |k/2

∣∣∣∣∑
α∈Nd

∫
3

ei t8α(Z ,λ)Gα(P, Q, η(λ))|Pf(λ)|F(λ) dλ
∣∣∣∣,

with F the Jacobian of the change of variables f : r∗λ→ Rk , which is a smooth function. Lemma 2.2 is
proved. �

2C. Transformation of the kernel kt : change of variable. We are then reduced to establishing that the
kernel k̃t(P, Q, t Z), defined by

k̃t(P, Q, t Z) :=
∑
α∈Nd

∫
3

ei t8α(Z ,λ)Gα(P, Q, η(λ))|Pf(λ)|F(λ) dλ,

satisfies

‖k̃t‖L∞(G) ≤
C

1+ |t |(p−1)/2 for all t ∈ R. (2-7)

To this end, let us define m := |α| =
∑d

j=1 α j and, when m 6= 0, let us set γ :=mλ ∈Rp. By construction
of η(λ) (which is homogeneous of degree 1), we have

η(λ)= η̃m(γ ) :=
1
m
η(γ ) for all m 6= 0. (2-8)
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Let us check that if λ lies in the support of θ(ζ j (α, · )), then γ lies in a fixed ring C of Rp, independent
of α. On the one hand we note that there is a constant C > 0 such that, on the support of θ(ζ j (α, λ)), the
variable γ must satisfy

(2α j + 1)η j (γ )≤ Cm for all m 6= 0 (2-9)

for all α ∈Nd such that |α| = m. Since, for each j , we know that η j (γ ) is positive and homogeneous of
degree 1, we infer that the function η j (γ ) goes to infinity with |γ |, so (2-9) implies that γ must remain
bounded on the support of θ(ζ j (α, λ)). Moreover, thanks to (2-9) again, it is clear that the bound may be
made uniform in m.

Now let us prove that γ may be bounded from below uniformly. We know that there is a positive
constant c such that, for λ in the support of θ(ζ j (α, λ)), we have

ζ j (α, γ )≥ cm for all m 6= 0. (2-10)

Writing γ = |γ |γ̂ with γ̂ on the unit sphere of Rp, we find

|γ | ≥
cm

ζ j (α, γ̂ )
.

Defining
C j := max

|γ̂ |=1
η j (γ̂ ) <∞,

it is easy to deduce that if (2-10) is satisfied then

|γ | ≥
cm

(2m+ d)max1≤ j≤d C j
,

hence γ lies in a fixed ring of Rp, independent of α 6= 0. This fact will turn out to be important to perform
the stationary phase argument.

Then we can rewrite the expression of k̃t(P, Q, t Z) in terms of the variable γ , which, in view of the
homogeneity of the Pfaffian, produces the formula

k̃t(P, Q, t Z)=
∫
3

ei t80(Z ,λ)G0(P, Q, η(λ))|Pf(λ)|F(λ) dλ

+

∑
m∈N∗

∑
α∈Nd

|α|=m

m−p−d
∫

ei t8α(Z ,γ /m)Gα(P, Q, η̃m(γ ))|Pf(γ )|F(γ /m) dγ.

Note that the series in m is convergent, since the sum over |α| = m contributes a power md−1, whence a
series of m−p−1, which is convergent since p ≥ 1. Since the functions Gα are uniformly bounded with
respect to α ∈ Nd and F is smooth, there is a positive constant C such that

‖k̃t‖L∞(G) ≤ C for all t ∈ R.

In order to establish the dispersive estimate, it suffices then to prove that

‖k̃t‖L∞(G) ≤
C

|t |(p−1)/2 for all t 6= 0. (2-11)
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3. End of the proof of the dispersive estimate

In order to prove (2-11), we decompose k̃t into two parts, writing

k̃t(P, Q, t Z)= k1
t (P, Q, t Z)+ k2

t (P, Q, t Z),

with, for a constant c0 to be fixed later on independently of m,

k1
t (P, Q, t Z) :=

∫
|∇λ80(Z ,λ)|≤c0

ei t80(Z ,λ)G0(P, Q, η(λ))|Pf(λ)|F(λ) dλ

+

∑
m∈N∗

∑
α∈Nd

|α|=m

m−p−d
∫
|∇γ (8α(Z ,γ /m))|≤c0

ei t8α(Z ,γ /m)Gα(P, Q, η̃m(γ ))

× F(γ /m)|Pf(γ )| dγ. (3-1)

In the following subsections, we successively show (2-11) for k1
t and k2

t .

3A. Stationary phase argument for k1
t . To establish the estimate (2-11), let us first concentrate on k1

t .
As usual in this type of problem, we define, for each integral of the series defining k1

t , a vector field that
commutes with the phase, prove an estimate for each term and, finally, check the convergence of the
series. More precisely, in the case when α 6= 0 and t > 0 (the case t < 0 is dealt with exactly in the same
manner), we consider the first-order operator

L1
α :=

Id−i∇γ (8α(Z , γ /m)) · ∇γ
1+ t |∇γ (8α(Z , γ /m))|2

.

Clearly we have

L1
αei t8α(Z ,γ /m)

= ei t8α(Z ,γ /m).

Let us accept the next lemma for the time being.

Lemma 3.1. For any integer N , there is a smooth function θN , compactly supported on a ring of Rp, and
a positive constant CN such that, defining

ψα(γ ) := Gα(P, Q, η̃m(γ ))F(γ /m)|Pf(γ )| (3-2)

and recalling (2-8), we have

|( tL1
α)

Nψα(γ )| ≤ CN m NθN (γ )
(
1+

∣∣t1/2
∇γ (8α(Z , γ /m))

∣∣2)−N
.

Returning to k1
t , let us define (recalling that γ belongs to a fixed ring C)

Cα(Z) :=
{
γ ∈ C

∣∣ |∇γ (8α(Z , γ /m))| ≤ c0
}

and let us write, for any integer N and α 6= 0 (which we assume to be the case for the rest of the
computations),

Iα(Z) :=
∫

Cα(Z)
ei t8α(Z ,γ /m)ψα(γ ) dγ =

∫
Cα(Z)

ei t8α(Z ,γ /m)( tL1
α)

Nψα(γ ) dγ, (3-3)
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where ψα(γ ) has been defined in (3-2). Then, by Lemma 3.1, we find that for each integer N there is a
constant CN such that

|Iα(Z)| ≤ CN m N
∫

Cα(Z)
θN (γ )

(
1+ t

∣∣∇γ (8α(Z , γ /m))
∣∣2)−N dγ. (3-4)

Then the end of the proof relies on three steps:

(1) a careful analysis of the properties of the support of the integral,

(2) a change of variables which leads to the estimate in t−(p−1)/2,

(3) a control on m in order to prove the convergence of the sum over m.

Before entering into details for each step, let us observe that, by definition, we have

8α

(
Z , γ

m

)
=

1
m
(ζ(α, γ )− γ (Z)),

with γ (Z)= (Aγ | Z)= (γ | t AZ) for some invertible matrix A. Performing a change of variables in γ
if necessary, we can assume without loss of generality that A = Id. Thus we write

∇γ

(
8α

(
Z , γ

m

))
=

1
m
(∇γ ζ(α, γ )− Z). (3-5)

3A1. Analysis of the support of the integral defining Iα(Z). Let us prove the following result:

Proposition 3.2. One can choose the constant c0 in (3-1) small enough such that, if γ belongs to Cα(Z),
then γ · Z 6= 0.

Proof. We write

γ · Z = γ · ∇γ ζ(α, γ )+ γ · (Z −∇γ ζ(α, γ ))

and, observing that, thanks to homogeneity arguments, γ · ∇γ ζ(α, γ ) = ζ(α, γ ), we deduce that, for
any γ ∈ Cα(Z),

|γ · Z | ≥ |ζ(α, γ )| − |γ ||Z −∇γ ζ(α, γ )|.

Since, as argued above, γ belongs to a fixed ring and ζ(α, λ) = 0 if and only if λ = 0 (as noticed in
Section 1C3), there is a positive constant c such that, for any γ ∈ Cα(Z),

|ζ(α, γ )| ≥ mc,

which implies, in view of the definition of Cα(Z), that there is a positive constant c̃ depending only on
the ring C such that

|γ · Z | ≥ mc−mc0c̃.

This ensures the desired result, by choosing the constant c0 in the definition of k1
t smaller than c/c̃.

Proposition 3.2 is proved. �
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3A2. A change of variables: the diffeomorphism H. We can assume without loss of generality (if not
then the integral is zero) that Cα(Z) is not empty and, in view of Proposition 3.2, we can write for
any γ ∈ Cα(Z) the orthogonal decomposition (since Z 6= 0)

1
m
∇γ ζ(α, γ )= 0̃1 Ẑ1+ 0̃

′, with 0̃1 :=

( 1
m
∇γ ζ(α, γ )

∣∣∣ Ẑ
)

and Ẑ1 :=
Z
|Z |

. (3-6)

Since 0̃′ is orthogonal to the vector Z , we infer that

|∇γ (8α(Z , γ /m))| = 1
m
|Z −∇γ ζ(α, γ )| ≥ |0̃′|. (3-7)

Let us consider an orthonormal basis (Ẑ1, . . . , Ẑ p) in Rp. Thanks to Proposition 3.2, we have γ · Ẑ1 6= 0
on the support of the integral defining Iα(Z). Obviously, the vector 0̃′ defined by (3-6) belongs to the
vector space generated by (Ẑ2, . . . , Ẑ p). To investigate the integral Iα(Z) defined in (3-3), let us consider
the map H : γ 7→ γ̃ ′ defined by

γ 7→H(γ ) := (γ · Ẑ1)Ẑ1+

p∑
k=2

(0̃′ · Ẑk)Ẑk =:

p∑
k=1

γ̃ ′k Ẑk for γ ∈ Cα(Z). (3-8)

Proposition 3.3. The map H realizes a diffeomorphism from Cα(Z) into a fixed compact set of Rp.

Proof. It is clear that the smooth function H maps Cα(Z) into a fixed compact set K of Rp and that

γ̃ ′1 = γ · Ẑ1 and γ̃ ′k =
1
m
∇γ ζ(α, γ ) · Ẑk for 2≤ k ≤ p.

Now let us prove that, thanks to Assumption 1.4, the map H constitutes a diffeomorphism. Indeed, by
straightforward computations we find that DH, the differential of H, satisfies

〈DH(γ )Ẑ1, Ẑ1〉 = 1,

〈DH(γ )Ẑ1, Ẑk〉 =

〈 1
m

D2
γ ζ(α, γ )Ẑ1, Ẑk

〉
for 2≤ k ≤ p,

〈DH(γ )Ẑ j , Ẑk〉 =

〈 1
m

D2
γ ζ(α, γ )Ẑ j , Ẑk

〉
for 2≤ j, k ≤ p,

〈DH(γ )Ẑ j , Ẑ1〉 = 0 for 2≤ j ≤ p.

Proving that H is a diffeomorphism amounts to showing that, for any γ ∈ Cα(Z), the kernel of DH(γ )

reduces to {0}. In view of the above formulas, if V =
∑p

j=1 V j Ẑ j belongs to the kernel of DH(γ )

then V1 = V · Ẑ1 = 0 and D2
γ ζ(α, γ )V · Ẑk = 0 for 2≤ k ≤ p. Thus we can write D2

γ ζ(α, γ )V = τ Ẑ1 for
some τ ∈R. Since the function ζ(α, · ) is homogeneous of degree 1, we have D2

γ ζ(α, γ )γ = 0. We deduce
that

0= D2
γ ζ(α, γ )γ · V = γ · D

2
γ ζ(α, γ )V = τγ · Ẑ1.

Since γ · Ẑ1 6= 0 for all γ ∈Cα(Z), we find that τ = 0 and therefore D2
γ ζ(α, γ )V = 0. But Assumption 1.4

states that the Hessian D2
γ ζ(α, γ ) is of rank p− 1, so we conclude that V is collinear to γ . But we have

seen that V · Ẑ1 = 0, which contradicts the fact that γ · Ẑ1 6= 0. This entails that V is null and ends the
proof of the proposition. �
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We can therefore perform the change of variables defined by (3-8) in the right-hand side of (3-4), to
obtain

|Iα(Z)| ≤ CN m N
∫

K

1
(1+ t |γ̃ ′|2)N dγ̃ ′ dγ̃1.

3A3. End of the proof: convergence of the series. Choosing N = p − 1 implies, by the change of
variables γ ] = t1/2γ̃ ′, that there is a constant C such that

|Iα(Z)| ≤ C |t |−(p−1)/2m p−1,

which gives rise to ∣∣∣∣∫
Cα(Z)

ei t8α(Z ,γ /m)ψα(γ ) dγ
∣∣∣∣≤ C |t |−(p−1)/2m p−1.

We get in exactly the same way that∣∣∣∣∫
|∇λ80(Z ,λ)|≤c0

ei t80(Z ,λ)G0(P, Q, η(λ))|Pf(λ)|F(λ) dλ
∣∣∣∣≤ C |t |−(p−1)/2.

Finally, returning to the kernel k1
t defined in (3-1), we get

|k1
t (P, Q, t Z)| ≤ C |t |−(p−1)/2

+C |t |−(p−1)/2
∑

m∈N∗

md−1m−d−pm p−1
≤ C |t |−(p−1)/2,

since the series over m is convergent. The dispersive estimate is thus proved for k1
t .

3B. Stationary phase argument for k2
t . We now prove (2-11) for k2

t , which is easier since the gradient
of the phase is bounded from below. We claim that there is a constant C such that

|k2
t (P, Q, t Z)| ≤

C
t (p−1)/2 · (3-9)

This can be achieved as above by means of adequate integrations by parts. Indeed, in the case when α 6= 0,
consider the first-order operator

L2
α := −i

∇γ (8α(Z , γ /m)) · ∇γ
|∇γ (8α(Z , γ /m))|2

.

Note that, when α = 0, the arguments are the same without performing the change of variable λ= γ /m.
The operator L2

α obviously satisfies

L2
αei t8α(Z ,γ /m)

= tei t8α(Z ,γ /m)
;

hence, by repeated integrations by parts, we get

Jα(P, Q, t Z) :=
∫
|∇γ (8α(Z ,γ /m))|≥c0

ei t8α(Z ,γ /m)ψα(γ ) dγ

=
1

t N

∫
|∇γ (8α(Z ,γ /m))|≥c0

ei t8α(Z ,γ /m)( tL2
α)

Nψα(γ ) dλ.

Let us accept the following lemma for a while:
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Lemma 3.4. For any integer N , there is a smooth function θN compactly supported on a compact set
of Rp such that

|( tL2
α)

Nψα(γ )| ≤
θN (γ )m N

|∇γ (8α(Z , γ /m))|N
.

One then observes that, if γ is in the support of the integral defining k2
t , the lemma implies

|( tL2
α)

Nψα(γ )| ≤
θN (γ )

cN
0

m N .

This estimate ensures the result as in Section 3A by taking N = p− 1.

3C. Proofs of Lemmas 3.1 and 3.4. Lemma 3.1 is an obvious consequence of the following Lemma 3.5,
taking (a, b)≡ (0, 0). We omit the proof of Lemma 3.4, which consists in a straightforward modification
of the arguments developed below.

Lemma 3.5. For any integer N , one can write

( tL1
α)

Nψα(γ )= fN ,m
(
γ, t1/2

∇γ (8α(Z , γ /m))
)
,

with |α| = m, and where fN ,m is a smooth function supported on C×Rp with C a fixed ring of Rp, such
that for any pair (a, b) ∈ Np

×Np, there is a constant C (independent of m) such that

|∇
a
γ∇

b
2 fN ,m(γ,2)| ≤ Cm N+|a|(1+ |2|2)−N−|b|/2.

Proof of Lemma 3.5. Let us prove the result by induction over N . We start with the case when N
is equal to zero. Notice that in that case the function f0,m(γ,2) = ψα(γ ) does not depend on the
quantity 2= t1/2

∇γ (8α(Z , γ /m)), so we need to check that, for any a ∈ Np, there is a constant C such
that

|∇
a
γψα(γ )| ≤ Cm|a| (3-10)

when |α| = m. The case when a = 0 is obvious thanks to the uniform bound on Gα. To deal with the
case |a| ≥ 1, we state the following technical result, which will be proved at the end of this section.

Lemma 3.6. For any integer k, there is a constant C such that the following bound holds for the
functions gn , n ∈ N, defined in (2-5):

|(ξ1∂ξ1 + ξ2∂ξ2)
k gn(ξ1, ξ2)| ≤ Cnk for all (ξ1, ξ2) ∈ R2.

Let us now compute ∇a
γψα(γ ). Recall that, according to (3-2),

ψα(γ )= Gα(P, Q, η̃m(γ ))F
(
γ

m

)
|Pf(γ )| = F

(
γ

m

) d∏
j=1

ψα, j (γ ),

where

ψα, j (γ ) := η j (γ )θ̃((2α j + 1)η̃ j,m(γ ))gα j (
√
η̃ j,m(γ )Pj ,

√
η̃ j,m(γ )Q j ), η̃ j,m(γ ) :=

1
m
η j (γ ).
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We compute

∇
a
γψα, j (γ )=

∑
b∈Np

0≤|b|≤|a|

(b
a

)
∇

b
γ

(
θ((2α j + 1)η̃ j,m(γ ))

)
∇

a−b
γ

(
η j (γ )gα j (

√
η̃ j,m(γ )Pj ,

√
η̃ j,m(γ )Q j )

)
.

Let us assume first that |a− b| = 1. Then we write, for some 1≤ l ≤ p,

∂γl

(
η j (γ )gα j (

√
η̃ j,m(γ )Pj ,

√
η̃ j,m(γ )Q j )

)
= ∂γlη j (γ )gα j (

√
η̃ j,m(γ )Pj ,

√
η̃ j,m(γ )Q j )

+ η j (γ )
∂γl η̃ j,m(γ )

2η̃ j,m(γ )
× ((ξ1∂ξ1 + ξ2∂ξ2)gα j )(

√
η̃ j,m(γ )Pj ,

√
η̃ j,m(γ )Q j ).

Next we use the fact that there is a constant C such that, on the support of θ((2α j + 1)η̃ j,m(γ )),

η̃ j,m(γ )≥
1

Cm
and |∂γl η̃ j,m(γ )| ≤

C
m
,

so applying Lemma 3.6 gives

|∇γψα, j (γ )|. α j .

Recalling that α j ≤ m and that ψα, j is uniformly bounded for all j ∈ {1, . . . , d}, this easily achieves the
proof of the estimate (3-10) in the case |a| = 1 by taking the product over j . Once we have noticed that

α
a1
1 · · ·α

ad
d . (α1+ · · ·+αd)

a1+···+ad ,

the general case (when |a|> 1) is dealt with identically; we omit the details.
Finally let us proceed with the induction: assume that for some integer N one can write

( tL1
α)

N−1ψα(γ )= fN−1,m
(
γ, t1/2

∇γ (8α(Z , γ /m))
)
,

where fN−1,m is a smooth function supported on C×Rp, such that for any pair (a, b) ∈Np
×Np there is

a constant C (independent of m) such that

|∇
a
γ∇

b
2 fN−1,m(γ,2)| ≤ Cm N−1+|a|(1+ |2|2)−(N−1)−|b|/2. (3-11)

We compute, for any function 9(γ ),

tL1
α9(γ )= i

∇γ (8α(Z , γ /m)) · ∇γ9(γ )
1+ t |∇γ (8α(Z , γ /m))|2

+
1+ i1(8α(Z , γ /m))

1+ t |∇γ (8α(Z , γ /m))|2
9(γ )

− 2i t
∑

1≤ j,k≤p

∂γ j ∂γk (8α(Z , γ /m))∂γ j (8α(Z , γ /m))∂γk (8α(Z , γ /m))(
1+ t |∇γ (8α(Z , γ /m))|2

)2 9(γ ).
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We apply that formula to 9 := fN−1
(
γ, t1/2

∇γ (8α(Z , γ /m))
)

and, estimating each of the three terms
separately, we find (using the fact that m ≥ 1)∣∣ tL1

α

(
fN−1

(
γ, t1/2

∇γ (8α(Z , γ /m))
))∣∣

≤ C
(
1+t |∇γ (8α(Z , γ /m))|2

)−1m N−1+1(1+t |∇γ (8α(Z , γ /m))|2
)−(N−1)

+C
(
1+t |∇γ (8α(Z , γ /m))|2

)−1m N−1(1+t |∇γ (8α(Z , γ /m))|2
)−(N−1)

+Ct |∇γ (8α(Z , γ /m))|2
(
1+t |∇γ (8α(Z , γ /m))|2

)−2m N−1(1+t |∇γ (8α(Z , γ /m))|2
)−(N−1)

thanks to the induction assumption (3-11) along with (3-10) and the fact that, on Cα(Z), all the derivatives
of the function ∇γ (8α(Z , γ /m)) are uniformly bounded with respect to α and Z . A similar argument
allows us to control derivatives in γ and 2, so Lemma 3.5 is proved. �

Proof of Lemma 3.6. By definition of gn and using the change of variable

ξ 7→ ξ − 1
2ξ1

we recover the Wigner-type formula

gn(ξ1, ξ2)=

∫
R

e−iξ2ξhn
(
ξ + 1

2ξ1
)
hn
(
ξ − 1

2ξ1
)

dξ.

Then an easy computation shows that, for all k,

|(ξ1∂ξ1 + ξ2∂ξ2)
k gn(ξ1, ξ2)| ≤

∫
R

∣∣(ξ1∂ξ1 + ξ∂ξ + 1)k
(
hn
(
ξ + 1

2ξ1
)
hn
(
ξ − 1

2ξ1
))∣∣ dξ.

By the Cauchy–Schwarz inequality (and a change of variables to transform ξ+ 1
2ξ1 and ξ− 1

2ξ1 into (ξ, ξ ′)),
it remains therefore to check that, for all k,

‖(ξ∂ξ )
khn‖L2(R) ≤ Cknk .

This again reduces to checking that

‖ξ 2khn‖L2(R)+‖h
(2k)
n ‖L2(R) ≤ Cknk . (3-12)

This estimate is a consequence of the identification of the domain of
√

H ,

D(
√

H)= {u ∈ L2(R) | ξu, u′ ∈ L2(R)},

which classically extends to powers of
√

H as

D(H p/2)= {u ∈ L2(R) | ξ p−lu(l) ∈ L2(R), 0≤ l ≤ p}.

Then (3-12) is finally obtained by applying this to p= 2k, recalling that H khn = (2n+1)khn . The lemma
is proved. �
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4. Optimality of the dispersive estimates

In this section, we first end the proof of Theorem 1 by proving the optimality of the dispersive estimates
for groups satisfying Assumption 1.4. Then we prove Proposition 1.7.

4A. Optimality for groups satisfying Assumption 1.4. Let us now end the proof of Theorem 1 by
establishing the optimality of the dispersive estimate (1-19). We use the fact that there always exists λ∗ ∈3
such that

∇λζ(0, λ∗) 6= 0, (4-1)

where the function ζ is as defined in (1-12). Indeed, if not, the map λ 7→ ζ(0, λ) would be constant, which
is in contradiction with the fact that ζ is homogeneous of degree 1. We prove the following proposition,
which yields the optimality of the dispersive estimate of Theorem 1.

Proposition 4.1. Let λ∗ ∈ 3 satisfying (4-1). There is a function g ∈ D(Rp) compactly supported in a
connected open neighborhood of λ∗ in 3 such that, for the initial data f0 defined by

F( f0)(λ, ν)hα,η(λ) =
{

0 if α 6= 0,
g(λ)h0,η(λ) if α = 0,

for all (λ, ν) ∈ r(3), (4-2)

there exists c0 > 0 and x ∈ G such that

|e−i t1G f0(x)| ≥ c0|t |−(k+p−1)/2.

Proof. Let g be any smooth, compactly supported function over Rp, and define f0 by (4-2). For any point
x = eX

∈ G in the form X = (P = 0, Q = 0, Z , R), the inversion formula gives

e−i t1G f0(x)= κ
∫
λ∈3

∫
ν∈r∗λ

ei t |ν|2+i tζ(0,λ)−iλ(Z)−iν(R)g(λ)|Pf(λ)| dν dλ.

To simplify notations, we set ζ0(λ) := ζ(0, λ). Setting Z = t Z∗ with Z∗ := ∇λζ(0, λ∗) 6= 0, we get, as
in (2-6),

|e−i t1G f0(x)| = c1|t |−k/2
∣∣∣∣∫
λ∈Rp

ei t (λ·Z∗−ζ0(λ))g(λ)|Pf(λ)| dλ
∣∣∣∣

for some constant c1 > 0. Without loss of generality, we can assume

λ∗ = (1, 0, . . . , 0)

(if not, we perform a change of variables λ 7→�λ, where � is a fixed orthogonal matrix), and we now
shall perform a stationary phase in the variable λ′, where we have written λ= (λ1, λ

′). For any fixed λ1,
the phase

8λ1(λ
′, Z) := Z · λ− ζ0(λ)

has a stationary point λ′ if and only if Z ′ =∇λ′ζ0(λ) (with the same notation Z = (Z1, Z ′)). We observe
that the homogeneity of the function ζ0 and the definition of Z∗ imply that

Z∗ =∇λζ0(1, 0, . . . , 0)=∇λζ0(λ1, 0, . . . , 0) for all λ1 ∈ R;
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hence, if λ′ = 0, then the phase 8λ1(0, Z∗) has a stationary point.
From now on we choose g supported near those stationary points (λ1, 0) and vanishing in the neigh-

borhood of any other stationary point.
Let us now study the Hessian of 8λ1 in λ′ = 0. Again because of the homogeneity of the function ζ0,

we have

[Hess ζ0(λ)]λ= 0 for all λ ∈ Rp.

In particular, for all λ1 6= 0, Hess ζ0(λ1, 0, . . . , 0)(λ1, 0, . . . , 0)= 0 and the matrix Hess ζ0(λ1, 0, . . . , 0)
in the canonical basis is of the form

Hess ζ0(λ1, 0, . . . , 0)=
(

0 0
0 Hessλ′,λ′ ζ0(λ1, 0, . . . , 0)

)
.

Using that Hess ζ0(λ1, 0, . . . , 0) is of rank p − 1, we deduce that Hessλ′,λ′ ζ0(λ1, 0, . . . , 0) is also of
rank p− 1 and we conclude by the stationary phase theorem [Stein 1993, Chapter VIII.2], choosing g so
that the remaining integral in λ1 does not vanish. �

4B. Proof of Proposition 1.7. Assume that G is a step-2 stratified Lie group whose radical index is null
and for which ζ(0, λ) is a linear form on each connected component of the Zariski-open subset 3. Let g
be a smooth nonnegative function supported in one of the connected components of 3 and define f0 by

F( f0)(λ)hα,η(λ) = 0 for α 6= 0 and F( f0)(λ)h0,η(λ) = g(λ)h0,η(λ).

By the inverse Fourier formula, if x = eX
∈ G is such that X = (P = 0, Q = 0, t Z), then we have

e−i t1G (x)= κ
∫

e−i tλ(Z)ei tζ(0,λ)g(λ)|Pf(λ)| dλ.

Since ζ(0, λ) is a linear form on each connected component of 3, there exists Z0 in z such that

−λ(Z0)+ ζ(0, λ)= 0 for all λ ∈ z∗ ∩ supp g.

As a consequence, choosing Z = Z0, we obtain

e−i t1G (x)= κ
∫

g(λ)|Pf(λ)| dλ 6= 0,

which ends the proof of the result.

Appendix: On the inversion formula in Schwartz space

This section is dedicated to the proof of the inversion formula in the Schwartz space S(G) (Proposition 1.1).

Proof. We first observe that, to establish (1-8), it suffices to prove that

f (0)= κ
∫
λ∈3

∫
ν∈r∗λ

tr(F( f )(λ, ν))|Pf(λ)| dν dλ. (A-1)
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Indeed, introducing the auxiliary function g defined by g(x ′) := f (x · x ′), which obviously belongs
to S(G) and satisfies F(g)(λ, ν)= uλ,νX (λ,x−1)

◦F( f )(λ, ν), and assuming (A-1) holds, we get

f (x)= g(0)= κ
∫
λ∈3

∫
ν∈r∗λ

tr(F(g)(λ, ν))|Pf(λ)| dν dλ

= κ

∫
λ∈3

∫
ν∈r∗λ

tr(uλ,νX (λ,x−1)
F( f )(λ, ν))|Pf(λ)| dν dλ,

which is the desired result.
Let us now focus on (A-1). In order to compute the right-hand side of (A-1), we introduce

A :=
∫
λ∈3

∫
ν∈r∗λ

tr(F( f )(λ, ν))|Pf(λ)| dν dλ

=

∫
λ∈3

∫
ν∈r∗λ

∫
x∈G

∑
α∈Nd

(
uλ,νX (λ,x)hα,η(λ)

∣∣ hα,η(λ)
)
|Pf(λ)| f (x)dµ(x) dν dλ,

with the notation of Section 1C. In order to carry on the calculations, we need to resort to a Fubini
argument, which comes from the identity∑

α∈Nd

∫
λ∈3

∫
ν∈r∗λ

‖F( f )(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ <∞. (A-2)

We postpone the proof of (A-2) to the end of this section. Thanks to (A-2), the order of integration does
not matter and we can transform the expression of A: we use the fact that, for any α ∈ Nd ,

(uλ,νX (λ,x)hα,η(λ) | hα,η(λ))= e−iν(R)−iλ(Z)
∫

Rd
e−i

∑
j η j (λ)(ξ j+Pj/2)Q j hα,η(λ)(P + ξ)hα,η(λ)(ξ)dξ,

where we have identified pλ with Rd, and this gives rise to

A =
∫
λ∈3

∫
ν∈r∗λ

∫
x∈G

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−i
∑

j η j (λ)(ξ j+Pj/2)Q j

× hα,η(λ)(P + ξ)hα,η(λ)(ξ)|Pf(λ)| f (x) dµ(x) dξ dν dλ,

where we recall that

hα,η(λ)(ξ)=
d∏

j=1

hα j ,η j (λ)(ξ j ) with hα j ,η j (λ)(ξ j )= η j (λ)
1/4hα j (

√
η j (λ)ξ j ).

Performing the change of variables

ξ̃ j =
√
η j (λ)ξ j , P̃j =

√
η j (λ)Pj , Q̃ j =

√
η j (λ)Q j

for j ∈ {1, . . . , d}, we obtain, dropping the tilde on the variables,

A =
∫
λ∈3

∫
ν∈r∗λ

∫
(P,Q,R,Z)∈Rn

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−i
∑

l (ξl+Pl/2)·Ql

d∏
j=1

hα j (Pj + ξ j )hα j (ξ j )

× f (η−1/2(λ)P, η−1/2(λ)Q, R, Z) d P d Q d R d Z dξ dν dλ,



DISPERSIVE ESTIMATES FOR THE SCHRÖDINGER OPERATOR ON STEP-2 STRATIFIED LIE GROUPS 571

with η−1/2(λ)P := (η−1/2
1 (λ)P1, . . . , η

−1/2
d (λ)Pd) and similarly for Q.

Then using the change of variables ξ ′j = ξ j + Pj for j ∈ {1, . . . , d} gives

A =
∫
λ∈3

∫
ν∈r∗λ

∫
(ξ ′,Q,R,Z)∈Rn

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−(i/2)
∑

l (ξl+ξ
′

l )·Ql

d∏
j=1

hα j (ξ
′

j )hα j (ξ j )

× f (η−1/2(λ) (ξ ′− ξ), η−1/2(λ) Q, R, Z) dξ ′ d Q d R d Z dξ dν dλ .

Because (hα)α∈Nd is a Hilbert basis of L2(Rd), we have, for all φ ∈ L2(Rd),

φ(ξ)=
∑
α∈Nd

∫
ξ ′∈Rd

φ(ξ ′)hα(ξ ′) dξ ′ hα(ξ),

which leads to

A =
∫
λ∈3

∫
ν∈r∗λ

∫
(Q,R,Z)∈Rd+k+p

∫
ξ∈Rd

e−iν(R)−iλ(Z)e−iξ ·Q f (0, η−1/2(λ)Q, R, Z) d Q d R d Z dξ dν dλ.

Applying the Fourier inversion formula successively on Rd , Rk and Rp (and identifying r(3)with Rp
×Rk),

we conclude that there exists a constant κ > 0 such that

A = κ f (0),

which ends the proof of (A-1).
Let us conclude the proof by showing (A-2). We choose a nonnegative integer M . From the obvious

fact that the function (Id−1G)
M f also belongs to S(G) (hence to L1(G)), we get, in view of (1-11),

F( f )(λ, ν)hα,η(λ) = (1+ |ν|2+ ζ(α, λ))−M F((Id−1G)
M f )(λ, ν)hα,η(λ).

In view of the definition of the Fourier transform on the group G, we thus have

‖F( f )(λ, ν)hα,η(λ)‖2L2(pλ)

= (1+ |ν|2+ ζ(α, λ))−2M

×

∫
pλ

(∫
G
(Id−1G)

M f (x)uλ,νX (λ,x)hα,η(λ)(ξ) dµ(x)
)(∫

G
(Id−1G)M f (x ′)uλ,νX (λ,x ′)hα,η(λ)(ξ) dµ(x ′)

)
dξ.

Now, by Fubini’s theorem, we get

‖F( f )(λ, ν)hα,η(λ)‖2L2(pλ)

= (1+ |ν|2+ ζ(α, λ))−2M

×

∫
G

∫
G
(Id−1G)

M f (x)(Id−1G)M f (x ′)
(
uλ,νX (λ,x)hα,η(λ)

∣∣ uλ,νX (λ,x ′)hα,η(λ)
)

L2(pλ)
dµ(x) dµ(x ′).

Since the operators uλ,νX (λ,x) and uλ,νX (λ,x ′) are unitary on pλ and the family (hα,η(λ))α∈Nd is a Hilbert basis
of pλ, we deduce that

‖F( f )(λ, ν)hα,η(λ)‖L2(pλ) ≤ (1+ |ν|
2
+ ζ(α, λ))−M

‖(Id−1G)
M f ‖L1(G).
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Because

Card
(
{α ∈ Nd

| |α| = m}
)
=

(m+d−1
m

)
≤ C(m+ 1)d−1,

this ensures that∑
α∈Nd

∫
λ∈3

∫
ν∈r∗λ

‖F( f )(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ

. ‖(Id−1G)
M f ‖L1(G)

∑
m

(m+ 1)d−1
∫
λ∈3

∫
ν∈r∗λ

(1+ |ν|2+ ζ(α, λ))−M
|Pf(λ)| dν dλ.

Hence, taking M = M1+M2 with M2 >
1
2 k implies that∑

α∈Nd

∫
λ∈3

∫
ν∈r∗λ

‖F( f )(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ

. ‖(Id−1G)
M f ‖L1(G)

∑
m

(m+ 1)d−1
∫
λ∈3

(1+ ζ(α, λ))−M1 |Pf(λ)| dλ.

Noticing that ζ(α, λ) = 0 if and only if λ = 0 and using the homogeneity of degree 1 of ζ yields that
there exists c > 0 such that ζ(α, λ)≥ cm|λ|. Therefore, we can end the proof of (A-2) by choosing M1

large enough and performing the change of variable µ= mλ in each term of the above series.
Proposition 1.1 is proved. �
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OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN WEIGHTS

PABLO ANGULO-ARDOY, DANIEL FARACO, LUIS GUIJARRO AND ALBERTO RUIZ

We give a necessary condition for a Riemannian manifold to admit limiting Carleman weights in terms of
its Weyl tensor (in dimensions 4 and higher), or its Cotton–York tensor in dimension 3. As an application,
we provide explicit examples of manifolds without limiting Carleman weights and show that the set of
such metrics on a given manifold contains an open and dense set.

1. Introduction

The inverse problem posed by Calderón asks for the determination of the conductivity of a medium by
making voltage-to-current measurements in the boundary. The problem in the current form started with
the seminal work of Calderón [1980] and research on it has been very intense. An outstanding problem is
the case of anisotropic conductivities. At least in dimension n > 3, the right formalism seems to be the
language of differential geometry. Namely for (M, g), a Riemannian manifold with boundary, and 4g,
the corresponding Laplace–Beltrami operator, does the Dirichlet-to-Neumann map determine the metric g
up to a gauge transformation? The problem seemed out of reach, apart from the real analytic class (see
[Kohn and Vogelius 1984; 1985]). However, a recent breakthrough in [Dos Santos Ferreira et al. 2009]
allows one to solve several inverse problems in the Riemannian setting for a larger class of Riemannian
manifolds. We refer to [Dos Santos Ferreira et al. 2009; 2013b; Salo 2013] for detailed accounts of these
results, and recall the following theorem as an illustration. For reconstruction, see [Kenig et al. 2011] and
for stability, see [Caro and Salo 2014].

Theorem 1.1 [Dos Santos Ferreira et al. 2009, Theorem 1.7; 2013a, Theorem 1.1]. Let (M, g) be
an admissible Riemannian manifold of dimension n > 3 with boundary and q1, q2 be two potentials
in Ln/2(M). Assume that 0 is not a Dirichlet eigenvalue for the corresponding Schrödinger operator
Lqi =−4g + qi . If 3q1 =3q2 , then q1 = q2.

A precise definition of admissibility is given in [Dos Santos Ferreira et al. 2009, Definition 1.5], but a
necessary condition in that paper for a manifold (M, g) to be so was the existence of a so-called limiting
Carleman weight (LCW for short). It turns out that this is a conformally invariant notion, as the following
theorem shows:

The authors were supported by research grants MTM2011-22612, MTM2011-28198, MTM2014-57769-1-P and MTM2014-
57769-3-P from the Ministerio de Ciencia e Innovación (MCINN), by MINECO: ICMAT Severo Ochoa project SEV-2011-0087,
and by the ERC 301179.
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Keywords: Calderón problem, limiting Carleman weights, conformal geometry, Cotton–York tensor, Weyl tensor, conformal to a
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Theorem 1.2 [Dos Santos Ferreira et al. 2009, Theorem 1.2]. If (M, g) is an open manifold having a
limiting Carleman weight, then some conformal multiple of the metric g, called g̃ ∈ [g], admits a parallel
unit vector field. For simply connected manifolds, the converse is true.

Recall that a vector field X is parallel if ∇X = 0 and that in a simply connected manifold, X is parallel if
and only if it is a Killing field (e.g., LX g=0) and also a gradient field. It was proven in [Dos Santos Ferreira
et al. 2009] that if g̃ admits a parallel vector field X , there exist local coordinates such that X = ∂1 and

g̃(x1, x ′)=
(

1 0
0 g0(x ′)

)
and hence g(x)= e2 f (x)

(
1 0
0 g0(x ′)

)
.

In other words, around each point, g̃ = e⊕ g0, where g0 is the metric of an (n−1)-manifold and e is the
euclidean metric in R.

Here we concentrate on the local existence of limiting Carleman weights for a given metric g. Thus we
can consider the manifolds as being simply connected, and the existence of limiting Carleman weights is
therefore equivalent to having parallel vector fields after a conformal change of the metric. This character-
ization is very elegant but it has the drawback that it requires information about the whole conformal class
of g. It would be desirable to have a criterion that depends on the metric g itself in an invariant manner.
It seems natural to look at this question in terms of the Weyl curvature tensor, which as a (1, 3)-tensor is a
conformal invariant. In dimension n> 4, being conformally flat is equivalent to the Weyl tensor being zero.

For the case of parallel vector fields, we prove:

Theorem 1.3. Let (M, g) be a Riemannian manifold of dimension n > 4. Assume that a metric g̃ ∈ [g]
admits a parallel vector field. Then for any p ∈ M , there is a tangent vector v ∈ Tp M such that the
Weyl tensor of any metric in [g] satisfies Wp(v ∧ v

⊥) ⊂ v ∧ v⊥. In particular, for any p ∈ M , we have
Wp ∈ S2(32(T ∗p M)) has at least n− 1 linearly independent eigenvectors that are simple.

Recall that an element of 32
p(M) is simple if it is equal to v∧w for v,w ∈ Tp M . In the above theorem,

we are considering Wp as a curvature operator as defined, for instance, in [Besse 1987] and given a vector
v ∈ Tp M , we define v⊥ ∈ Tp M to be its orthogonal complement, that is, v⊕ v⊥ = Tp M . An algebraic
Weyl operator (Weyl tensor) in a euclidean vector space V is a symmetric operator on the space 32V that
satisfies the Bianchi and the Ricci conditions (see Section 2, equations (3) and (4) for the definitions). To
facilitate the reading, we include a brief overview of curvature operators in Section 2. We also give a
special name to algebraic Weyl operators satisfying the condition in the above theorem.

Definition 1.4. Let W be a Weyl tensor. We say that W satisfies the eigenflag condition if and only if
there is a vector v ∈ V such that W (v∧ v⊥)⊂ v∧ v⊥.

The following is an easy corollary of Theorem 1.3.

Corollary 1.5. Let (M, g) be a 4-dimensional Riemannian manifold such that some g̃ ∈ [g] admits a
parallel vector field. Then all the eigenvectors of the Weyl operator of g are simple.

The theorem gives a simple algebraic condition to decide whether a given Riemannian manifold can
admit a parallel vector field after a conformal change. Hence our theorem yields a quick way to decide
that a given metric does not admit limiting Carleman weights; we illustrate this in Section 4 by showing
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that any manifold locally isometric to CP2 with its Fubini–Study metric does not fall into this class.
However, the metric is analytic so Calderón’s problem can be solved by unique continuation from the
boundary, at least for analytic potentials.

Notice that conformal geometry in dimensions n = 2 and n = 3 is characterized differently. In
dimension n= 2, every manifold is conformally flat due to the existence of isothermal coordinates. Dimen-
sion n=3 is also special as conformal flatness is characterized by the vanishing of the Cotton tensor. Notice
that in the presence of conformal flatness, direct proofs are available as long as the conformal parametriza-
tion is invertible. In analogy with higher dimensions, the existence of conformally parallel vector fields (and
thus the existence of limiting Carleman weights) can be read algebraically from the Cotton–York tensor.

Theorem 1.6. Let n = 3. If a metric g̃ ∈ [g] admits a parallel vector field then, for any p ∈ M , there is a
tangent vector v ∈ Tp M such that

CYp(v, v)= CYp(w1, w2)= 0

for any pair of vectors w1, w2 ∈ v
⊥.

In the above theorem, the Cotton–York tensor CY is understood as a (0, 2)-tensor. The characterization
can be read easily from the matrix representation of the Cotton–York tensor in any basis.

Corollary 1.7. The above condition is equivalent to det(CYp)= 0.

Finally, we end our study of the 3-dimensional case using Theorem 1.6 and Corollary 1.7 to determine
which of the eight Thurston geometries admit limiting Carleman weights. The motivation for such a
question spurs from the geometrization theorem, since any closed oriented 3-dimensional manifold arises
as union of pieces admitting one of these eight geometries.

Theorem 1.8. Among the eight Thurston geometries, only the Nil and S̃L2(R)-geometries do not admit
limiting Carleman weights. The others are admissible in the sense of [Dos Santos Ferreira et al. 2009].

In the last section, we show that the set of metrics not admitting LCWs contains an open and dense
subset of the space of all the metrics. A precise statement is contained in the next result:

Theorem 1.9. Let U be an open submanifold of some compact manifold M without boundary having
dimension n > 3. The set of Riemannian metrics on M for which no limiting Carleman weight exists on U
contains an open and dense subset of the set of all metrics, endowed with the C3-topology for n = 3, and
the C2-topology for n > 4.

Remark 1.10. If a Riemannian metric on U admits an LCW, then Theorem 1.3 shows that its Weyl
tensor satisfies the eigenflag condition at every point of U . We make use of that fact in our proof of
Theorem 1.9, fixing a point p0, and proving that the set of metrics whose Weyl tensor at p0 does not
satisfy the eigenflag condition is open and dense.

The proof of Theorem 1.9 gives indeed a constructive method for building explicit metrics that do not
admit an LCW near any given Riemannian metric by adding a “bump” at a certain point. In Section 4 and
the subsection beginning on page 584, we show explicit examples of classical homogeneous manifolds
that do not admit local LCWs at any point of U .
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In the companion paper [Angulo-Ardoy 2015], it is shown that the set of Riemannian metrics on U that
do not admit a locally defined LCW at any point is also open and dense. This generalizes [Liimatainen
and Salo 2012, Corollary 1.3], where it is proven that this set is residual.

2. Tensors in conformal geometry

The proof relies on the decomposition of the curvature tensor and its behaviour under conformal transfor-
mations. We denote by R, S and Ric the (0, 4)-curvature, Schouten and Ricci tensors respectively, and
by s the scalar curvature. Recall

S = 1
n−2

(
Ric− 1

2(n−1)
sg
)
, (1)

R =W + S ? g, (2)

where ? is the Kulkarni–Nomizu product of two symmetric 2-tensors, which is defined by

(α?β)i jkl = αikβ jl +βikα jl −αilβ jk −α jkβil,

and R and W are understood as (0, 4)-tensors.
In the proof of Theorem 1.3, we consider W as an algebraic curvature operator; for a fuller treatment of

such objects, we refer the reader to [Besse 1987], but for completeness we include here a short description.
Consider the curvature at a point p as a (0, 4)-tensor; its symmetries allow us to consider it as a symmetric
linear endomorphism ρp of the space of bivectors 32(T ∗p M), that is, ρp ∈ S2(32(T ∗p M)). Now the first
Bianchi identity induces a projector onto the 4-forms, considered as symmetric endomorphisms of the
space of bivectors:

b(R)(x, y, z, t)= 1
3

(
R(x, y, z, t)+ R(y, z, x, t)+ R(z, x, y, t)

)
, (3)

so that S2(32(T ∗p M))= ker(b)⊕ Im(b), where the elements of ker(b) are called the algebraic curvature
operators. It turns out the Weyl tensors are curvature operators in the kernel of the Ricci contraction.
That is, if we define r : S2(32(T ∗p M))→ S2(T ∗p (M)) by

r(R)(x, y)= Tr
[
R(x, · , y, · )

]
(4)

then
W(Tp M)= ker(b)∩ ker(r).

We would like to remark on one property of the space of Weyl tensors. Any rotation ρ ∈ SO(V )
induces a rotation B(ρ) on the space of bivectors, where B(ρ)(v∧w)= ρ(v)∧ρ(w). The space of Weyl
tensors is invariant under all such rotations (see [Besse 1987, 1.114]):

Wp ∈W(Tp M) ⇐⇒ B(ρ) ◦Wp ◦ B(ρ)t ∈W(Tp M). (5)

In our formulation of Theorem 1.3, we used the isomorphism induced by g between 32(T ∗p M) and
32(Tp M) to consider Wp as a symmetric endomorphism of the latter space. Thus, given a simple bivector
x ∧ y ∈32(Tp M), we have that Wp(x ∧ y) is the only bivector (not necessarily simple) such that〈

Wp(x ∧ y), z ∧ t
〉
=
〈
Wp(x, y)z, t

〉
for any z, t ∈ Tp M , where the Wp in the right-hand side is considered as a (1, 3)-tensor.
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When dealing with a 4-dimensional manifold M , we make use of the Hodge operator (or, more
precisely, of its equivalent in bivectors). This is a linear map ∗ :32

p M→32
p M defined as

〈∗ω, τ 〉 = 〈ω∧ τ, e1 ∧ e2 ∧ e3 ∧ e4〉

for an oriented orthonormal basis {ei } of Tp M . Since ∗ is self-adjoint and (∗)2ω = ω for any bivector,
there is a splitting

32
p =3

+
⊕3−

into eigenspaces with eigenvalues 1 and −1 respectively. Each eigenspace has dimension 3: 3+ is
spanned by the bivectors e1∧e2+e3∧e4, e1∧e3+e4∧e2 and e1∧e4+e2∧e3 and 3− by the bivectors
e1∧e2−e3∧e4, e1∧e3−e4∧e2 and e1∧e4−e2∧e3.

This gives a corresponding splitting for algebraic curvature operators R:

R =
( s

12 Id+W+ Z
Z t s

12 Id+W−

)
, (6)

where W =W+⊕W− and Z =
(
Ric− s

4 g
)
? g (see [Besse 1987, 1.126–1.128]).

Another important tensor in conformal geometry is the Cotton tensor. It is a (0, 3)-tensor defined as

Ci jk = (∇i S) jk − (∇ j S)ik, (7)

where the notation (∇a S)bc stands for (∇∂a S)(∂b, ∂c), so that

(∇a S)bc = ∂a(S(∂b, ∂c))− S(∇a∂b, ∂c)− S(∂b,∇a∂c).

The Cotton tensor has the symmetries

Ci jk =−C j ik,

Ci jk +C jki +Cki j = 0,

gi j Ci jk = 0,

gikCi jk = 0.

(8)

The first three are straightforward, and the last follows from the second Bianchi identity (see [York 1971]).
If the metric is changed within its conformal class to g̃ = e2 f g, the (1, 3)-Weyl tensor is unchanged,

the (0, 4)-Weyl tensor changes as W̃ = e2 f W , and the Cotton tensor changes as

C̃(x, y, z)= C(x, y, z)−W (x, y, z,∇ f ).

Indeed, conformal flatness is characterized, at any dimension n> 3, by the vanishing of both the Cotton
and Weyl tensors at all points (see, for example, [Hertrich-Jeromin 2003, p. 5] for the classical proof and
[Liimatainen and Salo 2015] for less regular metrics).

For n > 4, the Cotton tensor is the divergence of the Weyl tensor:

Proposition 2.1. If n > 3, then (∇l W )li jk = (n− 3)Ci jk .

Thus the Cotton tensor vanishes if the Weyl tensor vanishes.
In dimension n = 3, the Weyl tensor always vanishes, and conformal flatness has to be read directly

from the Cotton tensor. This is conformally invariant, and it is equivalent to the so-called Cotton–York



580 PABLO ANGULO-ARDOY, DANIEL FARACO, LUIS GUIJARRO AND ALBERTO RUIZ

tensor. This new tensor is defined by considering the Cotton tensor as a map C p : Tp M→ 32(T ∗p M)
(thanks to the antisymmetry of C with respect to its first two entries) and composing with the Hodge star
operator ∗ :32(T ∗p M)→ T ∗p M . This gives a (0, 2)-tensor that turns out to be symmetric and trace-free,
but not conformally invariant. The Cotton–York tensor also appears in the literature as a (1, 1)-tensor
after raising one index.

In a patch with coordinates x1, x2, x3, the Hodge star has the expression

∗(dx i
∧ dx j )=

∑
glk

εi jl
√

det(g)
dxk,

where εi jl is the signature of the permutation (i, j, l) (it takes the values 0, 1 and −1). So from

C =
∑

Ci jkdx i
⊗ dx j

⊗ dxk
=

1
2

∑
Ci jk(dx i

∧ dx j )⊗ dxk,

the following expression for the (0, 2)-version of the Cotton–York tensor follows:

CYi j =
1
2Ckli g jm

εklm
√

det g
= g jm(∇k S)li

εklm
√

det g
. (9)

It follows from (8) that this tensor is symmetric and its trace is zero:

CYi j = CY j i ,

gi j CYi j = CY i
i = 0.

Remark 2.2. The reader may notice, looking at (9), that the Cotton–York tensor is not conformally
invariant. However, if the metric g is replaced by λg, the Cotton–York tensor is scaled by λ−1/2 so,
in particular, the determinant of the tensor is zero if and only if it is zero for any conformal metric.
The (1, 1)-version of the Cotton–York tensor is not conformally invariant either. We remark that our
computation of the scaling factor differs from the one found in the literature [York 1971].

3. Proof of Theorem 1.3

The (1, 3)-Weyl tensor is invariant under conformal changes of the metric. Thus, thanks to Theorem 1.2,
we can assume that g admits a parallel vector field X . As in [Dos Santos Ferreira et al. 2009], we notice
that in the appropriate semigeodesic coordinates, X = e1 and the metric is written as

g̃(x1, x ′)=
(

1 0
0 g0(x ′)

)
.

For any set of coordinates, e1 is parallel if and only if R1i jk = 0 (the sufficiency follows from Frobenius’
theorem). Moreover, notice that g1 j = 0 for all j > 2. Thus, by the formula of the Schouten tensor, it
holds that in these coordinates, S1 j = 0 for all j > 2. Now for j, k, l > 2,

(S ? g)1 jkl = S1k g jl + S jl g1k − S1l g jk − S jk g1l = 0,

and by the decomposition of the curvature tensor,

W1 jkl = R1 jkl − (S ? g)1 jkl = 0.
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Recall that W acts on bivectors by

W (ei ∧ e j )=
∑
k,l

Wi jklek ∧ el .

Given p ∈ M , let v = X p = e1; thus g1 j = δ1 j ; in these coordinates, e1 ∧ e⊥1 is invariant. In other
words, for every j, k, l 6= 1, 〈

W (e1 ∧ e j ), ek ∧ el
〉
= 0=W1 jkl .

Therefore W (v ∧ v⊥) ⊂ v ∧ v⊥, and the first part of Theorem 1.3 is proved. Finally, v ∧ v⊥ is an
(n−1)-dimensional subspace of simple bivectors; thus it contains n − 1 linearly independent simple
eigenbivectors of W .

Proof of Corollary 1.5. Let v ∈ Tp M be the vector given by Theorem 1.3. Since 32(v⊥) is orthogonal
to v ∧ v⊥, and v ∧ v⊥ is invariant by W , we know that W also leaves 32(v⊥) invariant. But v⊥ being
3-dimensional implies that every element of 32(v⊥) is simple, finishing the proof. �

4. Examples of manifolds without LCWs

This section provides explicit examples of Riemannian manifolds without any LCWs. Namely, this:

Theorem 4.1. Let CP2 be the complex projective space with its Fubini–Study metric gcan. Then any
subdomain �⊂ CP2 with boundary does not admit an LCW.

Proof. Since CP2 is 4-dimensional, we will make use of the decomposition

32
pCP2

=3+⊕3−

induced by the Hodge operator ∗ :32
pCP2

→32
pCP2 as was explained in Section 2.

Use J : TpCP2
→ TpCP2 to denote the canonical complex structure of CP2 and let {ei } be an

orthonormal basis of TpCP2, with e2 = Je1, e4 = Je3. A basis of 32
pCP2 is given by

φ1 = e1 ∧ e2+ e3 ∧ e4, φ2 = e1 ∧ e3− e2 ∧ e4, φ3 = e1 ∧ e4+ e2 ∧ e3 (10)

for its self-dual component, and

ψ1 = e1 ∧ e2− e3 ∧ e4, ψ2 = e1 ∧ e3+ e2 ∧ e4, ψ3 = e1 ∧ e4− e2 ∧ e3 (11)

for its anti-self-dual part.
The curvature of CP2 is computed in several texts in Riemannian geometry; we give a quick overview

here, but see [do Carmo 1992, p. 189] for more details. Viewing S5 as the unit sphere in C3, and CP2 as the
basis of a Riemannian submersion under the action of S1 on S5 given by z · (z1, z2, z3)= (zz1, zz2, zz3),
the sectional curvature of a 2-plane in CP2 is

K (X, Y )= 1+ 3 cos2 φ,

where X, Y is an orthonormal basis of the plane in CP2, and cosφ is the hermitian product 〈X , iY 〉 of the
horizontal lifts X , Y of X , Y respectively to S5. From here it is easy to see that the sectional curvatures
of CP2 take values between 1 and 4. Since norms of horizontal lifts agree with those of the vectors in
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the base, 06 〈X , iY 〉6 1. Therefore K (X, Y )= 1 only when 〈X , iY 〉 = 0; since the complex structure
of CP2 is induced by that of C3, this happens only when the plane σ = {X, Y } satisfies Jσ ⊥ σ . On the
other hand, a 2-plane σ will have K (σ )= 4 if and only if σ is complex, i.e, Jσ = σ .

To recover the full curvature operator from the sectional curvature, either use an explicit formula for the
terms of the curvature in terms of the sectional curvatures, as the one in [Cheeger and Ebin 1975, p. 16], or
continue using O’Neill’s formula for the curvature terms 〈R(x, y)z, w〉 in CP2 in terms of the correspond-
ing curvature terms in S5 and O’Neill’s A-tensor, as in [do Carmo 1992, p. 187, Exercise 10(a)]. The reader
will also find [Sakai 1996, pp. 76–77] useful, which, in spite of defining the curvature tensor differently,
makes explicit the relation between the complex structure of CP2 and the submersion S5

→ CP2.
The only nonvanishing components of the curvature tensor are then

〈R(e1, e2)e1, e2〉 = 〈R(e3, e4)e3, e4〉 = 4,

〈R(e1, e3)e1, e3〉 = 〈R(e1, e4)e1, e4〉 = 〈R(e2, e3)e2, e3〉 = 〈R(e2, e4)e2, e4〉 = 1

for the sectional curvatures and

〈R(e1, e2)e3, e4〉 = 2, 〈R(e1, e3)e2, e4〉 = 1, 〈R(e1, e4)e2, e3〉 = −1

for the mixed terms.
In the space of bivectors and with the φi , ψi as above, the curvature operator Rp satisfies

Rp(φ1)= 6φ1, Rp(φ2) = 0, Rp(φ3) = 0,

Rp(ψ1)= 2ψ1, Rp(ψ2)= 2ψ2, Rp(ψ3)= 2ψ3.

Thus the curvature operator Rp of gcan is written as

Rp =

(
6E 0
0 2I

)
,

where I is the 3× 3 identity matrix, and E is the matrix

E =

1 0 0
0 0 0
0 0 0

 .
A simple computation, using (6), yields

W+p =

4 0 0
0 −2 0
0 0 −2

 , W−p = 0.

Observe that every eigenvector of Wp belongs to either3+ or3−, which contain no simple eigenvectors.
Hence no eigenvector of Wp is simple, which, by Corollary 1.5, implies that no subdomain of (CP2, g f s)

admits an LCW. �

Similar arguments can be used in higher dimensions to rule out domains in CPn or other suitable
symmetric spaces.
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5. The 3-dimensional case

Restrictions on the Cotton–York tensor.

Proof of Theorem 1.6. Since Theorem 1.6 is formulated at some fixed point p ∈ M , we can assume that
everything is local. Recall that in semigeodesic coordinates, the metric is independent of x1, and that

g1 j = 0= S1 j = S j1 = 0

if j 6= 1. It follows also that
0= 0k

1 j = 0
k
j1 = 0

1
jk .

These identities simplify the expression of the Cotton–York tensor: if either i , l or k is equal to 1, then

(∇k S)li = ∂k(Sli ).

Now for i 6= 1 6= j , we notice that m 6= 1 for each nonzero term in the sum:

CYi j = g jm(∇k S)li
εklm
√

det g
.

Thus for εklm
6= 0, necessarily k or l are equal to 1, and hence

CYi j = g jm∂k Sli
εklm
√

det g
= 0

using that ∂1Sli = 0= S1i for i 6= 1.
Similarly, √

det gC11 = g1m∂k Sl1ε
klm
= ∂k Sl1ε

kl1
= 0.

These equations yield that v = ∂/∂x1 is the vector required in Theorem 1.6. �

In fact, since the Cotton tensor is invariant after conformal changes of the metric, we can assume
that M is isometric to R×6, where 6 is a surface. Taking coordinates (x1, x2, x3), with t = x1 and
(x2, x3) isothermal coordinates of 6, the metric reads as g = dx2

1 + e f (dx2
2 + dx2

3) for some function
f (x2, x3) on 6. In these coordinates, a simple expression of the full Cotton–York tensor is available.
Namely, the Ricci tensor takes the values

Ric1i = 0, Ric22 = Ric33 =−
1
2(1 f ), Ric23 = 0,

the scalar curvature is
s =−(1 f )e− f ,

the Schouten tensor equals

Ric11 =
1
4(1 f )e− f , Ric22 = Ric33 =−

1
4(1 f ), Ric12 = Ric13 = Ric23 = 0,

and a further calculation using formula (9) yields the following explicit formula for the Cotton–York
tensor:

CY12 = CY21 =−
1
4

(
1 f ∂3 f − ∂3(1 f )

)
e− f ,

CY13 = CY31 =
1
4

(
1 f ∂2 f − ∂2(1 f )

)
e− f .
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The Cotton–York tensor of the product of R with a surface 6 in isothermal coordinates can also be
expressed as

CY = 1
2 dx1 · (∗ds),

where · is the symmetric product of forms, s is the scalar curvature of the surface, and ∗ is the Hodge star
operator of the surface, which sends the 1-form ds to an orthogonal 1-form on 6.

Proof of Corollary 1.7. Corollary 1.7 follows from this lemma:

Lemma 5.1. Let V be a 3-dimensional euclidean space, and A : V → V be a symmetric endomorphism.
Then there exists a 2-dimensional subspace P such that for any v1, v2 ∈ P , w ∈ P⊥, we have

〈Av1, v2〉 = 〈Aw,w〉 = 0 (12)

if and only if det(A)= Tr(A)= 0.

Proof. The “only if” part is clear: Let e1, e2 ∈ P and e3 ∈ P⊥ form an orthonormal basis. The expression
of A in these coordinates is

A =

0 0 a
0 0 b
a b 0

 .
Thus the conditions on the determinant and the trace of A are obvious.

For the converse, first notice that since it is symmetric, we can diagonalize A. Our conditions imply
the existence of λ1 ∈ R and an orthonormal basis v1, v2, v3 such that

A =

λ1 0 0
0 −λ1 0
0 0 0

 .
The desired plane P is the span of {v1+ v2, v3}. Namely for t1, t2 ∈ R,〈

A
(
t1(v1+ v2)+ t2v3

)
, t1(v1+ v2)+ t2v3

〉
= λ1t1

〈
v1− v2, t1(v1+ v2)+ t2v3

〉
= 0,

and similarly 〈
A(v1− v2), v1− v2

〉
= λ1

〈
v1+ v2, v1− v2

〉
= 0. �

Remark 5.2. The matrix expressions of the (1, 1)- and the (0, 2)-versions of the Cotton–York tensor are
different at any point where the matrix for the metric is not the identity. However, the determinant will
vanish for one of them if and only if it does for the other.

LCWs in the Thurston geometries. The rest of this section deals with the existence of LCWs among
the eight Thurston geometries. A good reference for their definition and properties is the classical paper
[Scott 1983]. We begin with the following six geometries:

• S3, E3,H3: These three geometries are conformally flat, and consequently admit multiple LCWs.

• S2
×R,H2

×R: This case is obvious, with the LCW lying along the R-direction.
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• Sol: Recall that Sol can be seen as R3 with a metric given in the standard coordinates (x, y, z) by

g = e2zdx2
+ e−2zdy2

+ dz2.

The metric ḡ = e−2z
· g splits along ∂x , and therefore g has an LCW.

The last two geometries have a different behaviour.

Theorem 5.3. S̃L2(R) and Nil do not admit LCWs.

Proof. We start by recalling the properties we will need.

• S̃L2(R): Since our study is local, we will work directly in SL2(R). Being a Lie group, SL2(R) has a
left-invariant metric defined by declaring the three matrices

e1 =

(
0 1
−1 0

)
, e2 =

(
1
2 0
0 −1

2

)
, e3 =

(
0 1
0 0

)
as an orthonormal basis of TI SL2(R). We will use E1, E2, E3 to denote the left-invariant vector fields
in S̃L2(R) agreeing with e1, e2, e3 at the identity.

To write the metric in coordinates, we will use the Iwasawa decomposition that writes any element
in SL2(R) as an ordered product of three matrices of the form(

cos θ sin θ
− sin θ cos θ

)
,

(
et/2 0
0 e−t/2

)
,

(
1 s
0 1

)
.

It is easy to see that we can take θ , t and s as coordinates in a suitable neighbourhood of the identity
matrix I , with ∂θ , ∂t and ∂s agreeing with E1, E2 and E3 at I , but not away from it. In fact, in these coor-
dinates, a tedious calculation shows that the coefficients for the above-mentioned left-invariant metric are

gθθ = (4s2
+ 1)e2t

+
(
(s2
− 1)et

+ e−t)2
, gθs = (s2

− 1)et
+ e−t ,

gθ t =
(
(s2
− 1)et

+ e−t)s+ 2set , gt t = s2
+ 1, gts = s, gss = 1.

(13)

To see this, write the orthonormal basis {Ei } in terms of ∂θ , ∂t , ∂s .

Once we have an expression for the metric tensor in coordinates, computing the determinant of the
Cotton–York tensor is a matter of following the definitions with a lot of care. The Ricci tensor is

Ricθθ =−8s2e2t ,

Ricθ t = Rictθ =−4set ,

Rict t =−2,

the scalar curvature is s =−2, the Schouten tensor is

Sθθ =−8s2e2t
+

1
2(4s2

+ 1)e2t
+

1
2

(
(s2
− 1)et

+ e−t)2
,

Sθ t =
( 1

2 s3
−

7
2 s
)
et
+

1
2 e−t s, Sθs =

1
2(s

2
− 1)et

+
1
2 e−t ,

St t =−
3
2 +

1
2 s2, Sts =

1
2 s, Sss =

1
2 .

(14)
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The Cotton–York tensor of S̃L2(R) can be computed from these equations and formula (9), yielding

CYθθ = 4s4e2t
− 28s2e(2t)

+ 8s2
+ 8e2t

+ 4e(−2t)
− 12,

CYθ t = 4s3et
+ 4se−t

− 14set , CYθs = 4s2et
+ 4e−t

− 6et ,

CYt t = 4s2
− 4, CYts = 4s, CYss = 4.

(15)

When s = t = 0, this yields

CY(θ,0,0) =

 0 0 −2
0 −4 0
−2 0 4

 ,
with nonzero determinant. Since the metric is left-invariant, the same happens at any other point.

• Nil: This is the space of triangular matrices of the form
1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 ,
with the natural left-invariant metric. This turns out to be just R3 with the metric

g = dx2
+ dy2

+ (dz− x dy)2.

Once again, we apply the standard formulas, and find the Ricci tensor

Ric=

−
1
2 0 0

0 1
2 x2
−

1
2 −

1
2 x

0 −
1
2 x 1

2

 ,
the scalar curvature s =− 1

2 , the Schouten tensor,

S =

−
3
8 0 0

0 5
8 x2
−

3
8 −

5
8 x

0 −
5
8 x 5

8

 ,
and the Cotton–York tensor

CY =


1
2 0 0

0 −x2
+

1
2 x

0 x −1

 .
The determinant of CY is −1

4 , and there are no local LCWs in this space. �

6. Proof of Theorem 1.9 in dimensions n> 4

We divide the proof into two parts. First, we examine the set of algebraic Weyl operators satisfying the
eigenflag condition. We prove that this set is semialgebraic (and, in fact, algebraic in dimension 4), and
compute its codimension explicitly. Then, we see how to use this to approximate any metric by metrics
whose Weyl tensor at a given point p0 does not satisfy the eigenflag condition.
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The algebraic part is contained in the following theorem.

Theorem 6.1. The set EW of Weyl tensors that satisfy the eigenflag condition is a semialgebraic subset of
the space of Weyl tensors with codimension

1
3 n3
− n2
−

4
3 n+ 2.

In particular, the codimension is 2 for n = 4 and 12 for n = 5.

Remark 6.2. A semialgebraic subset of Rn is defined by equations and inequalities involving polynomials.
We will need the Tarski–Seidenberg theorem, which states that the image of a semialgebraic set by a map
given by polynomials is a semialgebraic set (see [Bochnak et al. 1998, Proposition 2.2.7]). At present,
we do not know whether the set of Weyl tensors satisfying the eigenflag condition is an algebraic set;
nonetheless, this will not be necessary for the purposes of this paper.

Dimension 4. Before proving Theorem 6.1, we recall the special structure of the Weyl operator in
dimension 4. The curvature tensor in dimension 4 has the following decomposition induced by the Hodge
operator ? (see Section 2):

R =

(
s

12 Id+W+ Z
Z t s

12 Id+W−

)
,

where W+ (resp. W−) is any symmetric traceless operator on the 3-dimensional space 3+ (resp. 3−).
Reciprocally, any such operators appear as W+ and W− for some curvature operator.

Clearly there are no simple bivectors in 3+ or 3−. The Weyl operator can have simple eigenvectors
only when W+ and W− share some eigenvalue since in that case W could have some eigenspace that
would not be contained in 3+ or 3−.

In particular, if all the eigenvalues of W are different, all eigenvectors of W will be nonsimple. This
gives the following argument for the density of Weyl operators in dimension 4 that do not satisfy the
eigenflag condition.

Let W0 =W+0 ⊕W−0 be a Weyl operator in EW . We define a sequence of Weyl operators W j having
the same eigenvectors of W0 and such that the corresponding eigenvalues of W j converge to those of W0.
It is clear that we can choose the six eigenvalues of W j to be different (thus assuring that W j /∈ EW) and
also such that the three eigenvalues of either W+j or W−j add up to zero; this assures us that W j is a Weyl
operator, thus proving density of the complement of EW .

Notice that this automatically implies the openness and denseness of the complement of EW . Now we
turn to the proof of Theorem 6.1.

Proof of Theorem 6.1 for n = 4. Let W = W+ ⊕ W− be a Weyl operator satisfying the eigenflag
condition. Since W ∈ EW , there is some v ∈ V such that W (v ∧ v⊥) ⊂ v ∧ v⊥. This also implies that
32(v⊥)= (v∧ v⊥)⊥ is an eigenspace of W .

We can perform a rotation in V so that e1 = v and e1∧e2, e1∧e3 and e1∧e4 are eigenvectors of the
Weyl operator with corresponding eigenvalues λ12, λ13 and λ14. Notice that the induced rotation in 32(V )
leaves 3+ and 3− invariant.
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We now compute W (e3 ∧ e4): By the eigenflag condition,

W (e3 ∧ e4) ∈ 〈e2 ∧ e3, e2 ∧ e4, e3 ∧ e4〉.

By the choice of basis,

W (e1 ∧ e2+ e3 ∧ e4)= λ12 e1 ∧ e2+W (e3 ∧ e4)

must lie in 3+. From λ12(e1 ∧ e2+ e3 ∧ e4) ∈3
+, it follows that

W (e1 ∧ e2+ e3 ∧ e4)− λ12(e1 ∧ e2+ e3 ∧ e4) ∈ 〈e2 ∧ e3, e2 ∧ e4, e3 ∧ e4〉 ∩3
+
= {0}.

Hence W (e3 ∧ e4)= λ12e3 ∧ e4. Similarly, W (e2 ∧ e4)= λ13e2 ∧ e4 and W (e2 ∧ e3)= λ14e2 ∧ e3.
Thus in the basis of 32(V ) as given in (10) and (11), W is written as

λ12

λ13

λ14

λ12

λ13

λ14


,

and since both W+ and W− are traceless, λ12+ λ13+ λ14 = 0.
The dimension of the space of Weyl tensors in dimension 4 is 10. Let us now compute the dimension

of EW . By the above, the map
8 : SO(V )×R2

→ EW,

sending (ρ, λ12, λ13) to

B(ρ) ·



λ12

λ13

−λ12− λ13

λ12

λ13

−λ12− λ13


· B(ρ)t ,

is surjective, where B(ρ) is the rotation on 32(V ) induced by ρ.
This means that EW is the image of an algebraic set by an algebraic map, so it is a semialgebraic

subset of W by the Tarski–Seidenberg theorem [Bochnak et al. 1998, Proposition 2.2.7]. The map is
singular only if two of the three numbers λ12, λ13 and λ14 = −λ12 − λ13 coincide, or if all of them
vanish. This implies that the map 8 is locally injective in an open set, and thus the dimension of EW is
dim SO(V )+ 2= 8. �

Remark 6.3. As mentioned before, we do not know whether EW is an algebraic set. However, in
dimension 4, we have shown that operators in EW have at least one double eigenvalue. It follows that EW
is contained in a proper algebraic set.
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Theorem 6.4. In dimension 4, the set of Weyl tensors having different eigenvalues and nonsimple eigen-
vectors is the complement of a proper algebraic set.

Proof. The set of algebraic operators with at least one multiple eigenvalue is an algebraic set given by the
equations

1t(det(tW − I ))= 0,

where 1t is the discriminant of a polynomial in t . The discriminant of the characteristic polynomial
of W vanishes exactly when the characteristic polynomial has nonsimple roots, which happens when the
operator has eigenspaces of dimension greater than 1. �

Weyl tensors with the eigenflag condition in dimensions n> 5.

Proof of Theorem 6.1 for n > 5. As in dimension 4, we will find an algebraic map from a space of
dimension smaller than dimW whose image is exactly EW and use [Bochnak et al. 1998, Proposition 2.2.7]
to show that EW is semialgebraic.

Let W be an algebraic Weyl operator with the eigenflag condition on the vector space V . We will build
an orthonormal basis of V such that W is written conveniently.

By hypothesis, there is vector v such that W (v ∧ v⊥) ⊂ v ∧ v⊥. The operator W |v∧v⊥ is symmetric
and diagonalizes in an orthonormal basis of bivectors contained in v∧ v⊥. All such eigenvectors are of
the form v∧w, and two such bivectors v∧w1 and v∧w2 are orthogonal if and only if w1 is orthogonal
to w2. We let {e1 = v, e2, . . . , en} be an orthonormal basis of v∧ v⊥ such that W |v∧v⊥ is diagonal in the
basis e1 ∧ ek , with eigenvalue λk .

Then, in this basis,

W =


λ2

. . .
λn

W2

 .
In other words,

W =
∑

λke1k � e1k +W2,

where W2 is a symmetric operator on the vector space 32(v⊥) and eab � ecd denotes the symmetric
endomorphism of32V sending ea∧eb to ec∧ed and vice versa; notice that we will use the same� notation
to indicate also the symmetric product in V ; it will be clear from the context which situation applies.

Notice that

b(W )= 0, b(e1k � e1k)= 0,

where b is the Bianchi projector defined as in (3); we obtain that W2 is a curvature operator. It may not
be a Weyl operator, because for the Ricci projector r introduced in (4),

r(e1k � e1k)= e1� e1+ ek � ek . (16)
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Nonetheless, we can deduce that
∑n

k=2 λk = 0 because

0= 〈r(W ), e1� e1〉 =

n∑
k=2

λk
〈
r(e1k � e1k), e1� e1

〉
+〈r(W2), e1� e1〉, (17)

and 〈r(W2), e1�e1〉=0 because W2 is an operator on the orthogonal complement of e1. Together with (16),

r(W2)=−

n∑
k=2

λk r(e1k � e1k)=−

( n∑
k=2

λkek � ek

)
.

In other words, W2 ∈ ker(b) ∩ r−1
(
−
∑n

k=2 λkek � ek
)
. We denote this (affine) space by R({λk}); its

dimension will agree with the dimension of W(v⊥)= ker(b)∩ ker(r).
Hence if W ∈ EW , there exist an element ρ ∈ SO(V ), numbers λ2, . . . , λn with

∑
k λk = 0, and a

curvature operator W2 ∈R({λk}) such that

W = B(ρ) ·

∑ λke1k � e1k +


0
. . .

0
W2


 · B(ρ)t , (18)

where remember that B(ρ) is the map in bivectors induced by ρ. Let

S=

{
(λk)k=2,...,n :

∑
λk = 0

}
,

and define a map
8 : SO(V )×S×R({λk})→W

by the above formula (18).
We know that ∑

λke1k � e1k +

0 . . .
0

W2


is a Weyl tensor because it lies in the kernel of b and r , and conjugating by B(ρ) produces another Weyl
tensor by equation (5). It follows that 8(ρ, {λk},W2) is always a Weyl tensor, and it is clear that it has
the eigenflag property. Thus 8 is surjective onto EW .

We will now compute the dimension of EW . The dimension of the space of curvature operators is

dimRn = dim S2(32V )− dim(34V )= 1
12 n4
−

1
12 n2.

The dimension of the space of Weyl operators is

dimWn = dimRn − dim S2(V )= 1
12 n4
−

7
12 n2
−

1
2 .

The dimension of SO(V )×S×R({λk}) is thus the sum of

dim SO(V )=
(n

2

)
, dim S= n− 2, dimR({λk})=

1
12(n− 1)4− 7

12(n− 1)2− 1
2 .
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However, the dimension of SO(V )×S×R({λk}) could be strictly greater than that of EW . In order
to prove that this is not the case, we show that 8 is finite-to-one when restricted to a nontrivial open
subset A of SO(V )×S×R({λk}).

Let w be the projection from the curvature operators onto the Weyl tensors. Then A is the set of triples
(ρ, {λk}, R) such that

• all λk for k = 2, . . . , n are different,

• the Weyl tensor w(R) does not satisfy the eigenflag condition.

It is clear that A is open. In order to see that it is not empty, we use induction to find a Weyl tensor W2 on
the space ∂⊥1 that does not satisfy the eigenflag condition. The base case for the induction is dimension 4,
which was done in the previous section. We fix arbitrary {λk} whose sum is 0, and choose any rotation ρ.
Let R0 be any operator in R({λk}). Then R1 = R0+W2−w(R0) is a curvature operator in the affine
space R({λk}) whose projection w(R1) to the space of Weyl tensors is W2.

For W ∈8(A), let us compute its preimages (ρ, {λk}, Rn−1) in A. The direction v1 is a direction with
the eigenflag property, and by the hypothesis, it is unique up to sign. The numbers λk for k = 2, . . . , n are
the unique eigenvalues of W |v1∧v

⊥

1
, up to change of order. The vk are unit-vectors in v⊥1 such that v1∧vk are

eigenvectors of W |v1∧v
⊥

1
corresponding to the eigenvalues λk , and they are unique up to a change of sign.

The basis vk determines ρ uniquely and Rn−1 is the unique remainder B(ρ)t ◦W ◦ B(ρ)−
∑
λke1k� e1k .

It follows that 8−1(W ) is finite for any W , and dim(EW) agrees with dim
(
SO(V )×S×R({λk})

)
. Thus

using the above formulae, we obtain that the codimension of EW inside W is

1
3 n3
− n2
−

4
3 n+ 2. �

Proof of Theorem 1.9 for n = dim M > 4. We start with a precise statement of a folklore lemma in
Riemannian geometry.

Lemma 6.5. Let M be a Riemannian manifold with metric g and p any point in M , with R(p) the
curvature of the metric g at p.

Then for any algebraic curvature operator R0 close enough to R(p), there exists a metric g′ that agrees
with g outside a neighbourhood of p and such that the curvature of g′ at p is R0.

Furthermore, we can choose g′ such that

‖g′− g‖C2 6 C‖R0
− R(p)‖,

with a constant C independent of R0.

Remark 6.6. The norm appearing in the left-hand side in the above inequality is computed in a fixed set
of coordinates of p.

Proof. We use the following formula for the computation of the Riemannian curvature in terms of partial
derivatives of g and the Christoffel symbols:

Rik`m =
1
2

(
∂2gim

∂xk∂x`
+

∂2gk`

∂x i∂xm −
∂2gi`

∂xk∂xm −
∂2gkm

∂x i∂x`

)
+ gnp

(
0n

k`0
p
im −0

n
km0

p
i`

)
. (19)
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Take normal coordinates for the metric g at p. In these coordinates, the Christoffel symbols at p vanish.
In these coordinates, choose a smooth function ϕ with value 1 near p and value 0 in the complement

of the domain of the coordinates. Define a new metric as

g′i j = gi j −
1
4

∑
k,h

R∗ih jk xh xkϕ(x)

in the coordinate patch, and by g outside of it, where R∗ = R0
− R(p). If R∗ is small enough, g′ will

still be positive definite. The Christoffel symbols are given by

0m
i j =

1
2

gmk
(
∂

∂x j gki +
∂

∂x i gk j −
∂

∂xk gi j

)
.

Thus, since the Christoffel symbols of g vanish, and we have added a quadratic perturbation to g, the
Christoffel symbols of g′ also vanish. We compute the curvature of g′ at p using (19):

R′(p)iklm = R(p)iklm −
1
4

(
R∗ikml + R∗kilm − R∗iklm − R∗kiml

)
= R(p)iklm + R∗iklm = R0

iklm . (20)

The C2-norm of g′− g is bounded by C‖R∗‖, with a constant C independent of R∗. �

Proof of Theorem 1.9 for dim M > 4. Let U ⊂ M for a compact manifold M . Denote by O the set of
Riemannian metrics on M for which there is at least one point p ∈U such that the Weyl tensor Wp of g
at p does not satisfy the eigenflag condition. By Theorem 1.3, O is contained in the set of metrics that do
not admit an LCW on U .

Since the complement of EW is open, and the map that assigns its Weyl tensor to a Riemannian metric
is continuous under C2-deformations of the metric, O is open.

For density, fix an arbitrary point p0 ∈ U and consider a metric g such that W (g)p0 ∈ EW . By
Theorem 6.1, we can find a Weyl tensor W̃ 6∈ EW such that ‖W̃ −W (g)p0‖< ε.

We choose R0 = R(g)p0 −W (g)p0 + W̃ and apply Lemma 6.5 to get a new metric g′ that satisfies
‖g′−g‖C2 6C‖W̃−W (g)p0‖<Cε. The Weyl tensor of g′ at p0 is W̃ 6∈ EW; thus g′ is not in O. Since ε
is arbitrary, denseness of O follows. �

Proof of Theorem 1.9 for n = dim M = 3. In this section, we use the Cotton tensor instead of the Weyl
tensor.

The space of algebraic Cotton–York tensors at p ∈ M consists of simply the symmetric, traceless
operators on the euclidean space Tp M . It is obvious that the set of Cotton–York tensors with zero
determinant is a proper algebraic subset of the set of all such tensors.

The following result is the equivalent of Lemma 6.5 for the Cotton tensor:

Lemma 6.7. Let M be a Riemannian manifold with metric g and p any point in M.
Then for any algebraic Cotton–York tensor CY 0 close enough to CYp, we can find a metric g′ that

agrees with g outside a neighbourhood of p so that the Cotton–York tensor of g′ at p is CY 0.
Furthermore, we can find the metric g′ in such a way that the C3-norm of |g− g′| is bounded by a

multiple of the norm of CY 0
−CYp.



OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN WEIGHTS 593

Proof. Our first goal is to find a formula that expresses the Cotton tensor at p in terms of the metric tensor
and its derivatives. Take normal coordinates at p, so that gp is the identity matrix, and the Christoffel
symbols vanish at p. We start with the formula (19) for the curvature tensor and take derivatives.

We compute first the Schouten tensor in a neighbourhood of p:

Sab =
1
2

(
δiaδlb−

1
4 gabgil)gkm

(
∂2gim

∂xk∂x`
+

∂2gk`

∂x i∂xm −
∂2gi`

∂xk∂xm −
∂2gkm

∂x i∂x`

)
+ Q(0), (21)

where Q(0) consists of terms like 0n
k`0

p
im .

The covariant derivative ∇n Sab(p)= (∂/∂xn)Sab(p) at p is

∇n Sab(p)=
1
2
∂

∂xn

(
∂2gak

∂xk∂xb +
∂2gkb

∂xa∂xk −
∂2gab

∂xk∂xk −
∂2gkk

∂xa∂xb

)
−

1
4
∂

∂xn

(
∂2gik

∂xk∂x i −
∂2gkk

∂x i∂x i

)
δab. (22)

The derivatives of Q(0) vanish because one Christoffel symbol will remain in the final computation, and
it evaluates to 0 at p.

The Cotton tensor at p is

Cnab(p)

=
1
2
∂

∂xn

(
∂2gak

∂xk∂xb+
∂2gkb

∂xa∂xk−
∂2gab

∂xk∂xk−
∂2gkk

∂xa∂xb

)
−

1
2
∂

∂xa

(
∂2gnk

∂xk∂xb+
∂2gkb

∂xn∂xk−
∂2gnb

∂xk∂xk−
∂2gkk

∂xn∂xb

)
−

1
4
∂

∂xn

(
∂2gik

∂xk∂x i−
∂2gkk

∂x i∂x i

)
+δab

1
4
∂

∂xa

(
∂2gik

∂xk∂x i−
∂2gkk

∂x i∂x i

)
δnb

=
1
2

(
∂3gak

∂xk∂xn∂xb−
∂3gnk

∂xk∂xa∂xb−
∂3gab

∂xk∂xn∂xk+
∂3gnb

∂xk∂xa∂xk

)
−

1
4

(
∂3gik

∂xk∂x i∂xn−
∂2gkk

∂x i∂x i∂xn

)
δab

+
1
4

(
∂3gik

∂xk∂x i∂xa−
∂2gkk

∂x i∂x i∂xa

)
δnb. (23)

If the Aklm
i j are small enough real numbers, symmetric under permutations of i, j and also under permuta-

tions of k, l,m (there are 60 different such terms), then

g′i j = gi j +
∑

Aklm
i j xk x l xm

defines a new metric g′.
The new Cotton tensor at 0 is

C ′nab(p)= Cnab(p)+ 1
2(A

knb
ka − Akab

kn − Akkn
ab + Akka

nb )−
1
4(A

kin
ki − Ai in

kk )δab+
1
4(A

kia
ki − Ai ia

kk )δnb. (24)

We define A to be the real vector space of dimension 60 whose coordinates are indexed by the tuples
({i, j}, {k, l,m}). The formula

Amlk
i j

L
−→

1
2(A

knb
ka − Akab

kn − Akkn
ab + Akka

nb )−
1
4(A

kin
ki − Ai in

kk )δab+
1
4(A

kia
ki − Ai ia

kk )δnb
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defines a linear map L : A→ Cp into the space of algebraic Cotton tensors (the (0, 3)-tensors with the
symmetries (8)). It follows from (24) that the image of L consists of Cotton tensors, but it is a nice
exercise to check it directly.

In order to show that we can prescribe the Cotton tensor at p, we just need to check that L is surjective.
The map from the Cotton tensors to the Cotton–York tensors is a linear isomorphism, so we only need to
check that the image of the above linear map has dimension 5. Let L(eklm

i j ) be the image by L of the
basis vector eklm

i j ∈ A, with Akml
i j = 1 and the other entries equal to 0. The reader may check, for instance,

that L(e122
11 ), L(e123

11 ), L(e222
11 ), L(e223

11 ) and L(e223
12 ) are linearly independent. �

Proof of Theorem 1.9 for dim M = 3. Let U ⊂ M for a compact manifold M . This time, O is the set
of Riemannian metrics on M for which there is at least one point p ∈ U such that the Cotton–York
tensor CYp of g at p has nonzero determinant. By Theorem 1.6, O is contained in the set of metrics that
do not admit an LCW on U .

Since the map that assigns its Cotton tensor to a Riemannian metric is continuous under C3-deformations
of the metric, O is open in the C3-topology.

For density, let ε > 0, fix an arbitrary point p0 ∈ U and consider a metric g such that its Cotton–
York tensor CY (g)p0 at p0 has zero determinant. Choose a symmetric traceless tensor with nonzero
determinant CY 0 and such that ‖CY 0

−CY (g)p0‖< ε.
We apply Lemma 6.5 to get a new metric g′ that satisfies ‖g′− g‖C3 6 C‖CY 0

−CY (g)p0‖< Cε and
whose Cotton–York tensor at p0 is CY 0. It follows that g′ is not in O, and since ε is arbitrary, we deduce
that O is dense. �
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FINITE CHAINS INSIDE THIN SUBSETS OF Rd

MICHAEL BENNETT, ALEXANDER IOSEVICH AND KRYSTAL TAYLOR

In a recent paper, Chan, Łaba, and Pramanik investigated geometric configurations inside thin subsets
of Euclidean space possessing measures with Fourier decay properties. In this paper we ask which
configurations can be found inside thin sets of a given Hausdorff dimension without any additional
assumptions on the structure. We prove that if the Hausdorff dimension of E ⊂ Rd , d ≥ 2, is greater
than 1

2 (d + 1) then, for each k ∈ Z+, there exists a nonempty interval I such that, given any sequence
{t1, t2, . . . , tk : t j ∈ I }, there exists a sequence of distinct points {x j

}
k+1
j=1 such that x j

∈ E and |x i+1
−x i
|= t j

for 1≤ i ≤ k. In other words, E contains vertices of a chain of arbitrary length with prescribed gaps.

1. Introduction

The problem of determining which geometric configurations one can find inside various subsets of
Euclidean space is a classical subject. The basic problem is to understand how large a subset of Euclidean
space must be to be sure that it contains the vertices of a congruent and possibly scaled copy of a given
polyhedron or another geometric shape. In the case of a finite set, “large” refers to the number of points,
while in infinite sets it refers to the Hausdorff dimension or Lebesgue density. The resulting class of
problems has been attacked by a variety of authors using combinatorial, number theoretic, ergodic, and
Fourier analytic techniques, creating a rich set of ideas and interactions.

We begin with a comprehensive result due to Tamar Ziegler [2006], which generalizes an earlier result
due to Furstenberg, Katznelson and Weiss [Furstenberg et al. 1990]. See also [Bourgain 1986].

Theorem 1.1 [Ziegler 2006]. Let E ⊂ Rd be of positive upper Lebesgue density, in the sense that

lim sup
R→∞

Ld
{E ∩ [−R, R]d}

(2R)d
> 0,

where Ld denotes the d-dimensional Lebesgue measure. Let Eδ denote the δ-neighborhood of E. Let
V = {0, v1, v2, . . . , vk−1

} ⊂ Rd , where k ≥ 2 is a positive integer. Then there exists l0 > 0 such that, for
any l > l0 and any δ > 0, there exists {x1, . . . , xk

} ⊂ Eδ congruent to lV = {0, lv1, . . . , lvk−1
}.

In particular, this result shows that we can recover every simplex similarity type and sufficiently large
scaling inside a subset of Rd of positive upper Lebesgue density. It is reasonable to wonder whether the
assumptions of Theorem 1.1 can be weakened, but the following result, due to Maga [2010], shows that

This work was partially supported by the NSF Grant DMS10-4504 and the NSA Grant H98230-15-1-0319.
MSC2010: primary 28A75, 42B10; secondary 53C10.
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the conclusion may fail even if we replace the upper Lebesgue density condition with the assumption that
the set is of dimension d .

Theorem 1.2 [Maga 2010]. For any d ≥ 2 there exists a full-dimensional compact set A ⊂ Rd such that
A does not contain the vertices of any parallelogram. If d = 2 then, given any triple of points x1, x2, x3,
x j
∈ A, there exists a full-dimensional compact set A ⊂ R2 such that A does not contain the vertices of

any triangle similar to 4x1x2x3.

In view of Maga’s result, it is reasonable to ask whether interesting point configurations can be found
inside thin sets under additional structural hypotheses. This question was recently addressed by Chan,
Łaba, and Pramanik [Chan et al. 2013]. Before stating their result, we provide two relevant definitions.

Definition 1.3. Fix integers n ≥ 2, p ≥ 3 and m = n
⌈ 1

2(p+ 1)
⌉
. Suppose B1, . . . , Bp are n× (m− n)

matrices.

(a) We say that E contains a p-point B-configuration if there exist vectors z ∈ Rn and w ∈ Rm−n
\E0

such that
{z+ B jw}

p
j=1 ⊂ E .

(b) Moreover, given any finite collection of subspaces V1, . . . , Vq ⊂ Rm−n with dim(Vi ) < m− n, we
say that E contains a nontrivial p-point B-configuration with respect to (V1, . . . , Vq) if there exist
vectors z ∈ Rn and w ∈ Rm−n

\
⋃q

i=1 Vi such that

{z+ B jw}
p
j=1 ⊂ E .

Definition 1.4. Fix integers n≥ 2, p≥ 3 and m = n
⌈1

2(p+1)
⌉

. We say that a set of n×(m−n) matrices
{B1, . . . , Bp} is nondegenerate if

rank

 Bi2 − Bi1
...

Bim/n − Bi1

= m− n

for any distinct indices i1, . . . , im/n ∈ {1, . . . , p}.

Theorem 1.5 [Chan et al. 2013]. Fix integers n ≥ 2, p ≥ 3 and m = n
⌈1

2(p+1)
⌉

. Let {B1, . . . , Bp} be a
collection of n× (m− n) nondegenerate matrices in the sense of Definition 1.4. Then, for any constant C ,
there exists a positive number ε0 = ε0(C, n, p, B1, . . . , Bp)� 1 with the following property: Suppose the
set E ⊂ Rn with |E | = 0 supports a positive, finite Radon measure µ with two conditions:

(a) Ball condition: supx∈E, 0<r<1 µ(B(x, r))/r
α
≤ C if n− ε0 < α < n.

(b) Fourier decay: supξ∈Rn |µ̂(ξ)|(1+ |ξ |)β/2 ≤ C.

Then:

(i) E contains a p-point B-configuration in the sense of Definition 1.3(a).

(ii) Moreover, for any finite collection of subspaces V1, . . . , Vq ⊂Rm−n with dim(Vi )<m−n, E contains
a nontrivial p-point B-configuration with respect to (V1, . . . , Vq) in the sense of Definition 1.3(b).
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x1

x2

x3

x4

Figure 1. A 3-chain.

One can check that the Chan-Łaba–Pramanik result covers some geometric configurations but not
others. For example, their nondegeneracy condition allows them to consider triangles in the plane, but not
simplexes in R3 where three faces meet at one of the vertices at right angles, forming a three-dimensional
corner. Most relevant to this paper is the fact that the conditions under which Theorem 1.5 holds are
satisfied for chains (see Definition 1.6 below), but the conclusion requires decay properties for the Fourier
transform of a measure supported on the underlying set. We shall see that, in the case of chains, such
an assumption is not needed and the existence of a wide variety of chains can be established under an
explicit dimensional condition alone.

Focus of this article. We establish that a set of sufficiently large Hausdorff dimension, with no additional
assumptions, contains an arbitrarily long chain with vertices in the set and preassigned admissible gaps.

Definition 1.6 (see Figure 1). A k-chain in E ⊂ Rd with gaps {ti }ki=1 is a sequence

{x1, x2, . . . , xk+1
: x j
∈ E, |x i+1

− x i
| = ti , 1≤ i ≤ k}.

We say that the chain is nondegenerate if all the x j are distinct.

Our main result is the following:

Theorem 1.7. Suppose that the Hausdorff dimension of a compact set E ⊂ Rd , d ≥ 2, is greater
than 1

2(d + 1). Then, for any k ≥ 1, there exists an open interval Ĩ such that for any {ti }ki=1 ⊂ Ĩ there
exists a nondegenerate k-chain in E with gaps {ti }ki=1.

In the course of establishing Theorem 1.7 we shall prove the following result, which is interesting in its
own right and has a number of consequences for Falconer-type problems. See [Falconer 1985; Erdog̃an
2005; Wolff 1999] for the background and the latest results pertaining to the Falconer distance problem.

Theorem 1.8. Suppose that µ is a compactly supported, nonnegative Borel measure such that

µ(B(x, r))≤ Cr sµ (1-1)

for some sµ ∈
( 1

2(d + 1), d
]
, where B(x, r) is the ball of radius r > 0 centered at x ∈ Rd . Then, for any

t1, . . . , tk > 0 and ε > 0,

µ×µ× · · ·×µ
{
(x1, x2, . . . , xk+1) : ti − ε ≤ |x i+1

− x i
| ≤ ti + ε, i = 1, 2, . . . , k

}
≤ Cεk . (1-2)

Corollary 1.9. Given a compact set E ⊂ Rd , d ≥ 2, k ≥ 1, define

1k(E)= {|x1
− x2
|, |x2

− x3
|, . . . , |xk

− xk+1
| : x j

∈ E}.
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Suppose that the Hausdorff dimension of E is greater than 1
2(d + 1). Then

Lk(1k(E)) > 0.

Remark 1.10. Suppose that E ⊂Rd has Hausdorff dimension s > 1
2(d+1) and is Ahlfors–David regular,

i.e., there exists C > 0 such that, for every x ∈ E ,

C−1r s
≤ µ(B(x, r))≤ Cr s

(where µ is the restriction of the s-dimensional Hausdorff measure to E). Then, using the techniques in
[Eswarathasan et al. 2011] along with Theorem 1.8, one can show that, for any sequence of positive real
numbers t1, t2, . . . , tk , the upper Minkowski dimension of

{(x1, x2, . . . , xk+1) ∈ Ek+1
: |x j+1

− x j
| = t j , 1≤ j ≤ k}

does not exceed (k+ 1) dimH(E)− k.

2. Proof of Theorem 1.7 and Theorem 1.8

The strategy for this section is as follows:
We begin by dividing both sides of (1-2) by εk . The left side becomes

ε−kµ× · · ·×µ
{
(x1, . . . , xk+1) : ti − ε ≤ |x i+1

− x i
| ≤ ti + ε, i = 1, 2, . . . , k

}
, (2-1)

which can be interpreted as the density of ε-approximate chains in E × · · ·× E .
Theorem 1.8 gives an upper bound on this expression that is independent of ε. This is accomplished

using an inductive argument on the chain length coupled with repeated application of an earlier result from
[Iosevich et al. 2014], in which the authors establish L2(µ) mapping properties of certain convolution
operators. This upper bound is important in the final section, where we define a measure on the set of
chains.

Next, we acquire a lower bound on (2-1). This result was already established in the case k = 1 in
[Iosevich et al. 2012], where the authors show that the density of ε-approximate 1-chains with gap size t is
bounded below, independent of ε, for all t in a nonempty open interval I . Using a pigeonholing argument,
we extend the result in [Iosevich et al. 2012] to obtain a lower bound on (2-1) in the case that every gap
is of equal size t for some t ∈ I . To obtain a lower bound on chains with variable gap size, we show
that the density of ε-approximate k-chains is continuous as a function of gap sizes. Furthermore, we use
the lower bound on chains with constant gaps to prove that this continuous function is not identically
zero. We conclude that the density of ε-approximate k-chains is bounded below, independent of ε and
independent of the gap sizes, as long as all gap sizes fall within some interval Ĩ around t .

In the final section, we address the issue of nondegeneracy. To this end, we reinterpret the density of
ε-approximate k-chains as a measure supported in Ek+1 and show that it converges to a new measure, 3k

Et ,
as ε ↓ 0. This new measure is shown to be supported on “exact” k-chains (ε = 0) with admissible gaps.
We next show that the measure of the set of degenerate chains is 0, and we conclude that the mass of 3k

Et
is contained in nondegenerate k-chains.
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We shall repeatedly use the following result, due to Iosevich, Sawyer, Taylor and Uriarte-Tuero:

Theorem 2.1 [Iosevich et al. 2014]. Let Tλ f (x)= λ ∗ ( f µ)(x), where λ and µ are compactly supported,
nonnegative Borel measures on Rd . Suppose that µ satisfies (1-1) and, for some α > 0,

|λ̂(ξ)| ≤ C |ξ |−α.

Suppose that ν is a compactly supported Borel measure supported on Rd satisfying (1-1) with sµ replaced
by sν and suppose that α > d − s, where s = 1

2(sµ+ sν). Then

‖Tλ f ‖L2(ν) ≤ c‖ f ‖L2(µ).

In this article, we will use Theorem 2.1 with λ = σ , the surface measure on a (d−1)-dimensional
sphere in Rd . It is known — see [Stein 1993] — that

σ̂ (ξ)= O(|ξ |−(d−1)/2).

Since the proof of Theorem 2.1 is short, we give the argument below for the sake of keeping the
presentation as self-contained as possible. It is enough to show that

〈Tλε f, gν〉 ≤ C‖ f ‖L2(µ) · ‖g‖L2(ν).

The left-hand side equals ∫
λ̂ε(ξ) f̂ µ(ξ)ĝν(ξ) dξ.

By the assumptions of Theorem 2.1, the modulus of this quantity is bounded by

C
∫
|ξ |−α| f̂ µ(ξ)||ĝν(ξ)| dξ

and applying Cauchy–Schwarz bounds this quantity by

C
(∫
| f̂ µ(ξ)|2|ξ |−αµ dξ

)1
2

·

(∫
|ĝν(ξ)|2|ξ |−αν dξ

)1
2

(2-2)

for any αµ, αν > 0 such that α = 1
2(αµ+αν).

By Lemma 2.5 below, the quantity (2-2) is bounded by C‖ f ‖L2(µ) · ‖g‖L2(ν) after choosing, as we
may, αµ > d − sµ and αν > d − sν . This completes the proof of Theorem 2.1.

Proof of Theorem 1.8 and Corollary 1.9. Let ε > 0. Divide both sides of (1-2) by εk and note that it
suffices to establish the estimate

Cε
k (µ)=

∫ ( k∏
i=1

σ εti (x
i+1
− x i ) dµ(x i )

)
dµ(xk+1)≤ ck, (2-3)

where c is independent of ε and t1, . . . , tk > 0. Here σ εr (x)= σr ∗ ρε(x), with σr the Lebesgue measure
on the sphere of radius r , ρ a smooth cut-off function with

∫
ρ = 1 and ρε(x)= ε−dρ(x/ε). Assume in

addition that ρ is nonnegative and that ρ(x)= ρ(−x).
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Let σ denote the Lebesgue measure on the (d−1)-dimensional sphere in Rd . Set T ε
j = T ε

σt j
, where

T ε
σt j

f (x)= σt j ∗ ( f µ)(x) was introduced in Theorem 2.1. Define

f εk (x)= T ε
k ◦ · · · ◦ T ε

1 (1)(x) (2-4)

and

f ε0 (x)= 1.

It is important to note that fk(x) depends implicitly on the choices of t1, . . . , tk > 0, and this choice will
be made explicit throughout.

Observe that

f εk+1 = T ε
k+1 f εk . (2-5)

Rewriting the left-hand side of (2-3), it suffices to show

Cε
k (µ)=

∫
f εk (x) dµ(x)≤ ck . (2-6)

Using Cauchy–Schwarz (and keeping in mind that
∫

dµ(x)= 1), we bound the left-hand side of (2-6)
by

Cε
k (µ)=

∫
f εk (x) dµ(x)≤ ‖ f εk ‖L2(µ). (2-7)

We now use induction on k to show that

‖ f εk ‖L2(µ) ≤ ck, (2-8)

where c is the constant obtained in Theorem 2.1. For the base case, k=0, we have ‖ f ε0 ‖L2(µ)=
∫

dµ(x)=1.
Next, we assume inductively that ‖ f εk ‖L2(µ) ≤ ck .

We now show that, for any tk+1 > 0,

‖ f εk+1‖L2(µ) ≤ ck+1.

First, use (2-5) to write

‖ f εk+1‖L2(µ) = ‖T
ε

k+1 f εk ‖L2(µ).

Next, use Theorem 2.1 with λ = σ , the Lebesgue measure on the sphere, and α = 1
2(d − 1) (see the

comment immediately following Theorem 2.1 to justify this choice of α) to show that

‖T ε
k+1 f εk ‖L2(µ) ≤ c‖ f εk ‖L2(µ)

whenever sµ > d −α = 1
2(d + 1).

We complete the proof by applying the inductive hypothesis. This completes the verification of (2-8).
We now recover Corollary 1.9. Let sµ ∈

( 1
2(d+ 1), dim(E)

)
, and choose a probability measure µ with

support contained in E which satisfies (1-1); the existence of such a measure is provided by Frostman’s
lemma (see [Falconer 1986], [Wolff 2003] or [Mattila 1995]).
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Cover 1k(E) with cubes of the form ⋃
i

d∏
j=1

(ti j , ti j + εi ),

where
∏

denotes the Cartesian product. We have

1= µ× · · ·×µ(Ek+1)≤
∑

i

µ× · · ·×µ
{
(x1, . . . , xk+1) : ti j − ε ≤ |x j+1

− x j
| ≤ ti j + εi , 1≤ j ≤ k

}
.

By Theorem 1.8, the expression above is bounded by

C
∑

i

εk
i (2-9)

and we conclude that (2-9) is bounded from below by 1/C > 0. It follows that 1k(E) cannot have
measure 0 and the proof of Corollary 1.9 is complete.

We now continue with the proof of Theorem 1.7.

Lower bound on Cε
k(µ). Let sµ ∈

( 1
2(d+1), dim(E)

)
, and choose a probability measure µ with support

contained in E which satisfies (1-1).
We now establish the existence of a nonempty open interval Ĩ such that

lim inf
ε→0

Cε
k (µ) > 0, (2-10)

where each ti belongs to Ĩ and Cε
k (µ) is as in (2-3).

Note that this positive lower bound alone establishes the existence of vertices x1, . . . , xk+1
∈ E such

that |x i+1
− x i
| = ti for each i ∈ {1, . . . , k} (this follows, for instance, by Cantor’s intersection theorem

and the compactness of the set E). Extra effort is made in the next section in order to guarantee that we
may take x1, . . . , xk+1 distinct.

We first prove the estimate (2-10) in the case that all gaps are equal. This is accomplished using a
pigeonholing argument on chains of length one. We then provide a continuity argument to show that the
estimate holds for variable gap values ti belonging to a nonempty open interval Ĩ . The second argument
relies on the first precisely at the point when we show that the said continuous function is not identically
equal to zero.

Lower bound for constant gaps. The proof of the estimate (2-10) in the case k=1 was already established
in [Iosevich et al. 2012] provided that µ satisfies the ball condition in (1-1) with 1

2(d+1)< sµ< dimH(E).
The existence of such measures is established by Frostman’s lemma (see, e.g., [Falconer 1986], [Wolff
2003] or [Mattila 1995]).

More specifically, it is demonstrated in [Iosevich et al. 2012] that there exists c(1) > 0, ε0 > 0 and a
nonempty open interval I ⊂ (0, diameter(E)) such that, if t ∈ I and 0< ε < ε0, then

Cε
1 =

∫
σ εt ∗µ(x) dµ(x) > 2c(1).
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To establish the estimate (2-10) for longer chains, we rely on the following lemmas:

Lemma 2.2. Set
G t,ε(1)= {x ∈ E : σ εt ∗µ(x) > c(1)}.

There exists m(1) ∈ Z+ such that, if t ∈ I and 0< ε < ε0, then

µ(G t,ε(1))≥ 2−2m(1).

Lemma 2.3. Set
G t,ε( j + 1)= {x ∈ E : σ εt ∗µ| j (x) > c( j + 1)},

where j ∈ {1, . . . , (k− 1)}, µ| j (x) denotes restriction of the measure µ to the set G t,ε( j), and

c( j + 1)= 1
2 c( j)µ(G t,ε( j)).

Then there exists m( j + 1) ∈ Z+ such that if t ∈ I and 0< ε < ε0, then

µ(G t,ε( j + 1)) > 2−2m( j+1).

We postpone the proof of Lemmas 2.2 and 2.3 momentarily, and we apply these lemmas to obtain a
lower bound on Cε

k (µ).
We write

Cε
k (µ)=

∫
f εk (x) dµ(x),

where f εk was introduced in (2-4) and here t1 = · · · = tk = t .
Now

Cε
k (µ)=

∫
f εk (x) dµ(x)=

∫∫
σ εt (x − y) fk−1(y) dµ(y) dµ(x).

Integrating in x and restricting the variable y to the set G t,ε(1), we write

Cε
k (µ)≥

∫
G t,ε(1)

σ εt ∗µ(y) fk−1(y) dµ(y)≥ c(1)
∫

G t,ε(1)
fk−1(y) dµ(y)= c(1)

∫
fk−1(y) dµ1(y).

To achieve a lower bound, we iterate this process. For each j ∈ {2, . . . , k− 1} we have∫
f εk− j (x) dµ j (x)=

∫∫
σ εt (x − y) fk− j−1(y) dµ(y) dµ j (x)≥

∫
G t,ε( j+1)

σ εt ∗µ j (y) fk− j−1(y) dµ(y)

≥ c( j + 1)
∫

G t,ε( j+1)
fk− j−1(y) dµ(y)

= c( j + 1)
∫

fk− j−1(y) dµ j+1(y).

It follows that

Cε
k (µ)≥

( k−1∏
j=1

c(i)
)∫∫

σ εt (x − y) dµk−1(y) dµ(x)≥
( k∏

j=1

c(i)
)
µ(G t,ε(k)),

and we are done in light of Lemma 2.3.
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Given Lemmas 2.2 and 2.3, we have shown that, for all t ∈ I and all 0< ε < ε0, we have

lim inf
ε→0

Cε
k (µ) > 0, (2-11)

where all gap lengths t1, . . . , tk are constantly equal to t . This concludes the proof of the estimate (2-10)
in the case of constant gaps.

We now proceed to the proofs of Lemmas 2.2 and 2.3.

Proof of Lemma 2.2. We write

2c(1) <
∫
σ εt ∗µ(x) dµ(x)≤

(∫
(G t,ε(1))c

σ εt ∗µ(x) dµ(x)
)
+

(∫
G t,ε(1)

σ εt ∗µ(x) dµ(x)
)
= I + II,

where Ac denotes the complement of a set A ⊂ E .
We first observe that

I ≤ c(1).

Next we estimate II. Let m ∈ Z+ and write

G t,ε(1)= {x ∈ E : c(1) < σ εt ∗µ(x)≤ 2m
} ∪ {x ∈ E : 2m

≤ σ εt ∗µ(x)}.

Then

II =
∫
{x∈E :c(1)<σ εt ∗µ(x)≤2m}

σ εt ∗µ(x) dµ(x)+
∫
{x∈E :2m≤σ εt ∗µ(x)}

σ εt ∗µ(x) dµ(x)

≤ 2mµ(G t,ε(1))+
∑
l=m

2l+1
·µ
(
{x ∈ E : 2l

≤ σ εt ∗µ(x)≤ 2l+1
}
)
.

We use Theorem 2.1 to estimate

µ
(
{x ∈ E : 2l

≤ σ εt ∗µ(x)≤ 2l+1
}
)
≤ cd · 2−2l,

where the constant cd depends only on the ambient dimension d. Now,

II ≤ 2mµ(G t,ε(1))+ 2cd ·
∑
l=m

2l
· 2−2l . 2mµ(G t,ε(1))+ 2−m .

It follows that

2c(1)≤ I + II . c(1)+ 2mµ(G t,ε(1))+ 2−m .

Taking m ∈ Z+ large enough, we conclude that

µ(G t,ε(1))≥ 2−2m . �

Proof of Lemma 2.3. We prove the lemma by induction on j . The base case, j = 1, was established in
Lemma 2.2. Next, assume that there exists m( j) ∈ Z+ such that

2−m( j) < µ(G t,ε( j))

for all 0< ε < ε0 and t ∈ I .
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By the definition of G t,ε( j),

c( j)µ(G t,ε( j)) <
∫

G t,ε( j)
σ εt ∗µ|G t,ε( j−1)(x) dµ(x).

Set c( j + 1) = 1
2 c( j)µ(G t,ε( j)). By assumption, 2c( j + 1) = c( j)µ(G t,ε( j)) ≥ c( j)2−m( j), and in

particular this quantity is positive. Next, we obtain a bound from above:∫
G t,ε( j)

σ εt ∗µ|G t,ε( j−1)(x) dµ(x)≤
∫

G t,ε( j)
σ εt ∗µ(x) dµ(x)

=

∫
σ εt ∗µ| j (x) dµ(x)

=

(∫
(G t,ε( j+1))c

σ εt ∗µ| j (x) dµ(x)
)
+

(∫
G t,ε( j+1)

σ εt ∗µ| j (x) dµ(x)
)

= I + II.

First we observe that

I ≤ c( j + 1).

Next, we estimate II. Let m ∈ Z+ and write

G t,ε( j + 1)= {x ∈ E : c( j + 1) < σ εt ∗µ| j (x)≤ 2m
} ∪ {x ∈ E : 2m

≤ σ εt ∗µ| j (x)}.

Then

II =
∫
{x∈E :c( j+1)<σ εt ∗µ| j (x)≤2m}

σ εt ∗µ| j (x) dµ(x)+
∫
{x∈E :2m≤σ εt ∗µ(x)}

σ εt ∗µ| j (x) dµ(x)

≤ 2m
·µ(G t,ε( j + 1))+

∑
l=m

2l+1
·µ
(
{x ∈ E : 2l

≤ σ εt ∗µ| j (x)≤ 2l+1
}
)
.

We use Theorem 2.1 to estimate

µ
(
{x ∈ E : 2l

≤ σ εt ∗µ| j (x)≤ 2l+1
}
)
≤ cd · 2−2l,

where the constant cd depends only on the ambient dimension d and the choice of the measure µ. Now,

II ≤ 2mµ(G t,ε( j + 1))+ 2cd ·
∑
l=m

2l
· 2−2l . 2mµ(G t,ε( j + 1))+ 2−m .

It follows that

2c( j + 1)≤ I + II . c( j + 1)+ 2mµ(G t,ε( j + 1))+ 2−m .

Taking m ∈ Z+ large enough, we conclude that

µ(G t,ε( j + 1))≥ 2−2m . �
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Lower bound for variable gaps. We now verify (2-10) in the case of variable gap lengths. In more detail,
we show that, for all k ∈ Z+ and for values of ti in a nonempty open interval Ĩ , we have

lim inf
ε→0

∫
f εk (x) dµ(x) > 0, (2-12)

where f εk is as defined in (2-4) with 0< t1, . . . , tk ∈ Ĩ .
The following lemma captures the strategy of the proof and establishes (2-12).

Lemma 2.4. We have

Cε
k (µ)=

∫
f εk (x) dµ(x)= Mk(t1, . . . , tk)−

k∑
j=1

Rεk, j (t1, . . . , tk), (2-13)

where

Mk(t1, t2, . . . , tk)=
∫
σ̂tk (ξ) f̂k−1µ(−ξ)µ̂(ξ) dξ (2-14)

is continuous and bounded below by a positive constant (independent of ε) on Ĩ × · · ·× Ĩ for a nonempty
open interval Ĩ , and

Rεk, j (t1, t2, . . . , tk)=
∫
σ̂ (t jξ)(1− ρ̂(εξ)) f̂ j−1µ(ξ)ĝεj+1µ(−ξ) dξ = O(εα(s−(d+1)/2)) (2-15)

for some α > 0.

In proving the lemma, we utilize the notation

gεj (x)= T ε
j ◦ · · · ◦ T ε

k (1)(x) (2-16)

and

gk+1(x)= 1. (2-17)

It is important to note that g j (x) depends implicitly on the choices of t1, . . . , tk > 0, and this choice will
be made explicit throughout.

First, we demonstrate (2-13) with repeated use of Fourier inversion. We again employ a variant of the
argument in [Iosevich et al. 2012]. Write∫

f εk (x) dµ(x)=
∫∫

σ εt1(x − y)gε2(y) dµ(x) dµ(y)=
∫∫

(σt1 ∗ ρε)(x − y)gε2(y) dµ(x) dµ(y).

Using Fourier inversion and properties of the Fourier transform, this is equal to∫∫∫
e2π i(x−y)·ξ σ̂t1(ξ)ρ̂ε(ξ)g

ε
2(y) dµ(x) dµ(y) dξ.
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Simplifying further, we write∫
f εk (x) dµ(x)=

∫
σ̂t1(ξ)ρ̂(εξ)µ̂(ξ)ĝ

ε
2µ(−ξ) dξ

=

∫
σ̂t1(ξ)µ̂(ξ)ĝ

ε
2µ(−ξ) dξ +

∫
σ̂t1(ξ)(1− ρ̂(εξ))µ̂(ξ)ĝ

ε
2µ(−ξ) dξ

=

∫
σ̂t1(ξ)µ̂(ξ)ĝ

ε
2µ(−ξ) dξ + Rεk,1(t1, t2, . . . , tk).

With repeated use of Fourier inversion, we get∫
f εk (x) dµ(x)=

∫
σ̂t j (ξ) · f̂ j−1µ(−ξ) · ĝεj+1µ(ξ) dξ +

j∑
l=1

Rεk,l(t1, t2, . . . , tk)

...

=

∫
σ̂tk (ξ) · f̂k−1µ(−ξ) · µ̂(ξ) dξ +

k∑
l=1

Rεk,l(t1, t2, . . . , tk)

= Mk(t1, t2, . . . , tk)+
k∑

l=1

Rεk,l(t1, t2, . . . , tk).

We now prove that Mk(t1, t2, . . . , tk) is continuous on any compact set away from (t1, . . . , tk)= E0 and
that

Rεk, j (t1, . . . , tk)= O(εα(s−(d+1)/2)). (2-18)

Once these are established, we observe that the lower bound on constant chains established in (2-11)
combined with (2-18) implies that Mk(t1, . . . , tk) is positive when t1 = · · · = tk = t for any given t ∈ I .
Fixing any such t ∈ I , it will then follow by continuity that Mk(t1, . . . , tk) is bounded from below on
Ĩ × · · ·× Ĩ , where Ĩ is a nonempty interval.

We now use the dominated convergence theorem to verify the continuity of Mk(t1, . . . , tk) on any
compact set away from (t1, . . . , tk)= E0. Let t1, . . . , tk > 0. Using properties of the Fourier transform and
recalling the definition of f j from (2-4) and g j from (2-16), we write

Mk(t1, t2, . . . , tk)=
∫
σ̂t j (ξ) · f̂ j−1µ(−ξ) · ĝ j+1µ(ξ) dξ

for any j ∈ {1, . . . , k}.
Let h1, . . . , hk ∈ R be such that (h1, . . . , hk) ↓ 0. Let

f̃ j = Tt j+h j ◦ · · · ◦ Tt1+h1(1) and g̃ j = Tt j+h j ◦ · · · ◦ Ttk+hk (1).

We have

Mk(t1+ h1, t2+ h2, . . . , tk + hk)=

∫
σ̂t j+h j (ξ) ·

̂̃f j−1µ(−ξ) ·̂̃g j+1µ(ξ) dξ.
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The integrand goes to 0 as h j goes to 0. Now, for t j in a compact set, the expression above is bounded by

C(t j )

∫
|ξ |−(d−1)/2

|
̂̃f j−1µ(−ξ)||̂̃g j+1µ(ξ)| dξ.

To proceed, we will utilize the following calculation:

Lemma 2.5. Let µ be a compactly supported Borel measure such that µ(B(x, r)) ≤ Cr s for some
s ∈ (0, d). Suppose that α > d − s. Then, for f ∈ L2(µ),∫

| f̂ µ(ξ)|2|ξ |−α dξ ≤ C ′‖ f ‖2L2(µ)
. (2-19)

To prove Lemma 2.5, observe that∫
| f̂ µ(ξ)|2|ξ |−α dξ = C

∫∫
f (x) f (y)|x − y|−d+α dµ(x) dµ(y)= 〈T f, f 〉, (2-20)

where
T f (x)=

∫
|x − y|−d+α f (y) dµ(y)

and the inner product above is with respect to L2(µ). The positive constant C appearing in (2-20) depends
only on the ambient dimension d . Observe that∫

|x − y|−d+α dµ(y)≈
∑
j>0

2 j (d−α)
∫
|x−y|≈2− j

dµ(y)≤ C
∑
j>0

2 j (d−α−s)
≤ C ′

since α > d − s.
By symmetry,

∫
|x − y|−d+α dµ(x)≤C ′. It follows by using Schur’s test [1911] — see also Lemma 7.5

in [Wolff 2003] — that
‖T f ‖L2(µ) ≤ C ′‖ f ‖L2(µ).

This implies the conclusion of Lemma 2.5 by applying the Cauchy–Schwarz inequality to (2-20). We
note that Lemma 2.5 can also be recovered from the fractal Plancherel estimate due to R. Strichartz [1990].
See also Theorem 7.4 in [Wolff 2003], where a similar statement is proved by the same method as above.

We already established, using [Iosevich et al. 2014], that finite compositions of the operators Tl applied
to L2(µ) functions are in L2(µ). Using the Cauchy–Schwarz inequality and in light of Lemma 2.5,
Mk(t1+h1, t2+h2, . . . , tk+hk) is bounded. We proceed by applying the dominated convergence theorem.
We have

lim
h j↓0

Mk(t1+ h1, t2+ h2, . . . , tk + hk)

=

∫
σ̂t j (ξ) ·

̂̃g j−1µ(−ξ) ·
̂̃f j+1µ(ξ) dξ

=

∫
σ̂t j (ξ) · (Tt j−1+h j−1 ◦ · · · ◦ Tt1+h1(1) ·µ)̂ (−ξ) · (Tt j+1+h j+1 ◦ · · · ◦ Ttk+hk (1) ·µ)̂ (ξ) dξ.

We then rewrite the procedure, isolating σ̂t j for each j ∈ {1, . . . , k}, and repeat the process above a total
of k times.
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Bounding the remainder. Next, we wish to show that limε↓0 Rεk (t1, . . . , tk)= 0. Fix ε > 0. Recall that
Rεk (t1, . . . , tk) is equal to ∫

(1− ρ̂(εξ))σ̂ (tξ)µ̂(ξ) f̂kµ(−ξ) dξ.

We consider the integral over |ξ |< (1/ε)α and the integral over |ξ |> (1/ε)α separately, where α ∈ (0, 1)
will be determined. Assume that s > 1

2(d + 1).

Lemma 2.6. Let ρ : Rd
→ R satisfy the following properties: ρ ≥ 0, ρ(x)= ρ(−x), the support of ρ is

contained in {x : |x |< c}, and
∫
ρ = 1. Then

0≤ 1− ρ̂(ξ)≤ 2πc|ξ |.

To prove Lemma 2.6, write

ρ̂(ξ)=

∫
cos(2πx · ξ)ρ(x) dx .

We observe that cos x + |x |> 1, and conclude that the lemma follows when |x |< c. It follows that∫
|ξ |<(1/ε)α

|ρ̂(εξ)− 1||σ̂ (tξ)||µ̂(ξ)|| f̂kµ(−ξ)| dξ . ε1−α
∫
|σ̂ (tξ)||µ̂(ξ)|| f̂kµ(−ξ)| dξ . ε1−α,

where the last line is justified in the estimation of Mk(t) above.
It remains to estimate the quantity∫

|ξ |>(1/ε)α
|σ̂ (tξ)||µ̂(ξ)|| f̂kµ(−ξ)| dξ.

Proceeding as in the estimation of Mk(t) above, we bound the integral above by

Ct−(d−1)/2
∫
|ξ |>(1/ε)α

|ξ |−(d−1)/2
|µ̂(ξ)|| f̂kµ(−ξ)| dξ

and then use Cauchy–Schwarz to bound it further by

Ct−(d−1)/2
(∫
|ξ |>(1/ε)α

|ξ |−(d−1)/2
|µ̂(ξ)|2 dξ

)1
2
(∫
|ξ |>(1/ε)α

|ξ |−(d−1)/2
| f̂kµ(ξ)|

2 dξ
)1

2

.

We have already shown that the second integral is finite. The first integral is bounded by∑
j>α log2(1/ε)

2− j (d−1)/2
∫

2 j≤|ξ |<2 j+1
|µ̂(ξ)|2 dξ.

We may choose a smooth cut-off function ψ such that the inner integral is bounded by∫
|µ̂(ξ)|

2
ψ̂(2− jξ) dξ.

By Fourier inversion, this integral is equal to

2d j
∫∫

ψ(2 j (x − y)) dµ(x) dµ(y)≤ C2 j (d−s).
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Returning to the sum, we now have the estimate

C
∑

j>α log2(1/ε)

2− j (d−1)/2
· 2 j (d−s)

≤ C
∑

j>α log2(1/ε)

2 j (d+1)/2−s .

As long as s > 1
2(d + 1), this is � εα(s−(d+1)/2). Thus Rεk (t1, . . . , tk) tends to 0 with ε as long as

dimH(E) > 1
2(d + 1).

In conclusion, we have

lim
ε↓0

∫ ( k∏
j=1

σ εt j
(x i+1

− x i ) dµ(x i )

)
dµ(xk+1) > ck > 0 (2-21)

for all t j ∈ Ĩ .
To complete the proof of Theorem 1.7, it remains to verify that E contains a nondegenerate k-chain

with prescribed gaps. This is the topic of the next section.

3. Nondegeneracy

An important issue we have not yet addressed is that the chains we have found may be degenerate. As an
extreme example, consider the case where ti = 1 for all i . Then included in our chain count are chains
which simply bounce back and forth between two different points. We now take steps to ensure that we
can indeed find chains with distinct vertices.

We verified above that there exists a nonempty open interval Ĩ such that

lim
ε↓0

∫ ( k∏
j=1

σ εt j
(x i+1

− x i ) dµ(x i )

)
dµ(xk+1)

is bounded above and below for t1, . . . , tk ∈ Ĩ . The upper bound appears in (2-3) and the lower bound
appears in (2-21).

From here onward, we fix t1, . . . , tk ∈ Ĩ and set Et = (t1, . . . , tk). We now define a nonnegative Borel
measure on the set of k-chains with the gaps Et . Let 3k

Et denote a nonnegative Borel measure, defined as

3k
Et (A)= lim

ε↓0

∫
A

( k∏
j=1

σ εt j
(x i+1

− x i ) dµ(x i )

)
dµ(xk+1),

where A ⊂ E × · · ·× E , the (k+1)-fold product of the set E .
It follows that 3k

Et is a finite measure which is not identically zero:

0<3k
Et (E × · · ·× E). (3-1)

The strategy we use to demonstrate the existence of nondegenerate k-chains in E is as follows: We
first show that 3k

Et has support contained in the set of k-chains. This is accomplished by showing that
the measure has support contained in all “approximate” k-chains. We then show that the measure of the
set of degenerate chains is zero. It follows, since the 3k

Et -measure of the set of k-chains is positive and
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the 3k
Et -measure of the set of degenerate k-chains is zero, that the set of nondegenerate k-chains in E is

nonempty.
For each test entry n ∈ Z+, define the sets of (1/n)-approximate k-chains and the set of exact k-chains

as

An,k =

{
(x1, . . . , xk+1) ∈ E × · · ·× E : ti −

1
n
≤ |x i+1

− x i
| ≤ ti +

1
n

for each i = 1, . . . , k
}

and
Ak =

{
(x1, . . . , xk+1) ∈ E × · · ·× E : |x i+1

− x i
| = ti for each i = 1, . . . , k

}
.

Observe that ⋂
n

An,k = Ak .

We now observe that the support of 3k
t is contained in the set of all approximate chains. This follows

immediately from the observation that
3k
Et (A

c
n,k)= 0

for each n ∈ Z+, where Ac
n,k denotes the complement of the set An,k in E × · · ·× E .

Next, we observe that the support of 3k
Et is contained in the set of exact chains. Indeed, it follows from

the previous equation that

3k
Et

(⋃
n

Ac
n,k

)
≤

∑
n

3k
Et (A

c
n,k)= 0.

Recalling (3-1), we conclude that

0<3k
Et (E × · · ·× E)=3k

Et

(⋃
n

Ac
n,k

)
+3k

Et

(⋂
n

An,k

)
, (3-2)

and so

3k
Et (Ak)=3

k
Et

(⋂
n

An,k

)
> 0.

Since t1, . . . , tk ∈ Ĩ were chosen arbitrarily, we have shown that 3k
Et (Ak) > 0 whenever Et = (t1, . . . , tk)

and ti ∈ Ĩ .
We now verify that the set of degenerate chains has 3k

Et -measure zero.

Lemma 3.1. Let

Dk = {(x1, ..., xk+1) ∈ E × · · ·× E : x i
= x j for some i 6= j}.

Then
3k
Et (Dk)= 0.

To prove the lemma, we first investigate the quantity∫
Dk

( k∏
j=1

σ εt j
(x i+1

− x i ) dµ(x i )

)
dµ(xk+1).
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By the definition of Dk , we can bound the quantity above by

∑
1≤m<n≤k+1

∫
{(x1,...,xk+1):xm=xn}

( k∏
j=1

σ εt j
(x i+1

− x i ) dµ(x i )

)
dµ(xk+1).

We can rewrite the integral as∫
(Rd )k

∫
{x :x=xm}

( k∏
j=1

σ εt j
(x i+1

− x i )

)
dµ(xn) dµ(x1) · · · dµ(xn−1) dµ(xn+1) · · · dµ(xk+1).

Since the inside integral is taken over a region of measure 0, this whole integral must be 0. This holds for
every choice of m and n, and thus the entire sum must be 0. This completes the proof of the lemma.

In conclusion, we have shown that the set of exact k-chains has positive measure —3k
Et (Ak) > 0 — and

that the set of degenerate chains has zero measure —3k
Et (Dk)= 0. It follows that Ak 6= Dk and Ak 6=∅.

In other words, there exists a nonempty open interval Ĩ and distinct elements x1, . . . , xk+1
∈ E such that

|x i+1
− x i
| = t i for each i ∈ {1, . . . , k}.
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ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS

ALPÁR RICHÁRD MÉSZÁROS AND FILIPPO SANTAMBROGIO

In the spirit of the macroscopic crowd motion models with hard congestion (i.e., a strong density constraint
ρ≤1) introduced by Maury et al. some years ago, we analyze a variant of the same models where diffusion
of the agents is also taken into account. From the modeling point of view, this means that individuals try
to follow a given spontaneous velocity, but are subject to a Brownian diffusion, and have to adapt to a
density constraint which introduces a pressure term affecting the movement. From the point of view of
PDEs, this corresponds to a modified Fokker–Planck equation, with an additional gradient of a pressure
(only living in the saturated zone {ρ = 1}) in the drift. We prove existence and some estimates, based on
optimal transport techniques.

1. Introduction

In the past few years modeling crowd behavior has become a very active field of applied mathematics.
Beyond their importance in real life applications, these modeling problems serve as basic ideas to
understand many other phenomena coming for example from biology (cell migration, tumor growth,
pattern formations in animal populations, etc.), particle physics and economics. A first nonexhaustive list
of references for these problems is [Chalons 2007; Colombo and Rosini 2005; Coscia and Canavesio
2008; Cristiani et al. 2014; Dogbé 2008; Helbing 1992; Helbing and Molnár 1995; Hughes 2002; 2003;
Maury and Venel 2009]. A very natural question in all these models is the study of congestion: in many
practical situations, a high number of individuals could try to occupy the same spot, which could be
impossible, or lead to strong negative effects on the motion, because of natural limitations on the crowd
density.

These phenomena have been studied by using different models, which could be either “microscopic”
(based on ODEs on the motion of a high number of agents) or “macroscopic” (describing the agents via
their density and velocity, typically with Eulerian formalism). Let us concentrate on the macroscopic
models, where the density ρ plays a crucial role. These very same models can be characterized either by
“soft congestion” effects (i.e., the higher the density, the slower the motion), or by “hard congestion” (i.e.,
an abrupt threshold effect: if the density touches a certain maximal value, the motion is strongly affected,
while nothing happens for smaller values of the density). See [Maury et al. 2011] for comparison between
the different classes of models. This last class of models, due to the discontinuity in the congestion
effects, presents new mathematical difficulties, which cannot be analyzed with the usual techniques from
conservation laws (or, more generally, evolution PDEs) used for soft congestion.

MSC2010: 35K61, 49J40, 49J45.
Keywords: diffusive crowd motion model, Fokker–Planck equation, density constraint, optimal transportation.
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A very powerful tool to attack macroscopic hard congestion problems is the theory of optimal transporta-
tion (see [Villani 2003; Santambrogio 2015]), as we can see in [Maury et al. 2010; 2011; Roudneff-Chupin
2011; Santambrogio 2012a]. In this framework, the density of the agents solves a continuity equation (with
velocity field taking into account the congestion effects), and can be seen as a curve in the Wasserstein
space.

Our aim in this paper is to endow the macroscopic hard congestion models of [Maury et al. 2010;
2011; Roudneff-Chupin 2011; Santambrogio 2012a] with diffusion effects. In other words, we will study
an evolution equation where particles

• have a spontaneous velocity field ut(x) which depends on time and on their position, and is the velocity
they would follow in the absence of the other particles;

• must adapt their velocity to the existence of an incompressibility constraint which prevents the density
to go beyond a given threshold;

• are subject to some diffusion effect.

This can be considered as a model for a crowd where a part of the motion of each agent is driven
by a Brownian motion. Implementing this new element into the existing models could give a better
approximation of reality; as usual when one adds a stochastic component, this can be a (very) rough
approximation of unpredictable effects which are not already handled by the model, and this could work
well when dealing with large populations.

Anyway, we do not want to discuss here the validity of this hard congestion model and we are mainly
concerned with its mathematical analysis. In particular, we will consider existence and regularity estimates,
while we do not treat the uniqueness issue. Uniqueness is considered in [Di Marino and Mészáros 2016],
and one can observe that the insertion of diffusion dramatically simplifies the picture as far as uniqueness
is concerned.

We also underline that one of the goals of the current paper (and of the work just cited) is to better
“prepare” these hard congestion crowd motion models for a possible analysis in the framework of mean
field games (see [Lasry and Lions 2006a; 2006b; 2007], and also [Santambrogio 2012b]). These MFG
models usually involve a stochastic term, also implying regularizing effects, which are useful in the
mathematical analysis of the corresponding PDEs.

The existing first-order models in light of the work of Maury, Roudneff-Chupin and Santambrogio.
Some macroscopic models for crowd motion with density constraints and “hard congestion” effects were
studied in [Maury et al. 2010; 2011]. We briefly present them as follows:

• The density of the population in a bounded (convex) domain�⊂Rd is described by a probability measure
ρ ∈ P(�). The initial density ρ0 ∈ P(�) evolves in time, and ρt denotes its value at each time t ∈ [0, T ].

• The spontaneous velocity field of the population is a given time-dependent field, denoted by ut . It
represents the velocity that each individual would like to follow in the absence of the others. Ignoring the
density constraint, this would give rise to the continuity equation ∂tρt +∇ · (ρt ut)= 0. We observe that in
the original work [Maury et al. 2010] the vector field ut(x) was taken of the form −∇D(x) (independent
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of time and of gradient form), but we try here to be more general (see [Roudneff-Chupin 2011], where
the nongradient case is studied under some stronger regularity assumptions).

• The set of admissible densities will be denoted by K := {ρ ∈ P(�) : ρ ≤ 1}. In order to guarantee that
K is neither empty nor trivial, we suppose |�|> 1.

• The set of admissible velocity fields with respect to the density ρ is characterized by the sign of the
divergence of the velocity field on the saturated zone. We need to suppose also that all admissible velocity
fields are such that no mass exists from the domain. So formally we set

adm(ρ) :=
{
v :�→ Rd

: ∇ · v ≥ 0 on {ρ = 1} and v · n ≤ 0 on ∂�
}
.

• We consider the projection operator P in L2(Ld):

Padm(ρ)[u] ∈ argminv∈adm(ρ)

∫
�

|u− v|2 dx .

Note that we could have used the Hilbert space L2(ρ) instead of L2(Ld); this would be more natural in this
kind of evolution equation, as L2(ρ) is interpreted in a standard way as the tangent space to the Wasserstein
space W2(�). Yet, these two projections turn out to be the same in this case, as the only relevant zone
is {ρ = 1}. This is just formal, and would require more rigorous definitions (in particular of the divergence
constraint in adm(ρ); see below). Anyway, to clarify, we choose to use the L2(Ld)-projection; in this
way the vector fields are considered to be defined Lebesgue-a.e. on the whole � (and not only on {ρ > 0})
and the dependence of the projected vector field on ρ only passes through the set adm(ρ).

• Finally we solve the modified continuity equation

∂tρt +∇ · (ρt Padm(ρt )[ut ])= 0 (1-1)

for ρ, where the main point is that ρ is advected by a vector field, compatible with the constraints, which
is the closest to the spontaneous one.

The problem in solving (1-1) is that the projected field has very low regularity; it is a priori only L2

in x , and it does not depend smoothly on ρ either (since a density 1 and a density 1−ε give very different
projection operators). By the way, its divergence is not well defined either. To handle this issue we need
to redefine the set of admissible velocities by duality. Taking a test function p ∈ H 1(�), p ≥ 0 a.e., we
obtain by integration by parts the equality∫

�

v · ∇ p dx =−
∫
�

(∇ · v)p dx +
∫
∂�

pv · n dHd−1(x).

For vector fields v which do not let mass go through the boundary ∂�, we have (in an a.e. sense) v ·n = 0.
This leads to the definition

adm(ρ)=
{
v ∈ L2(�;Rd) :

∫
�

v · ∇ p dx ≤ 0 for all p ∈ H 1(�) with p ≥ 0, p(1− ρ)= 0 a.e.
}
.

(Indeed, for a smooth vector field with vanishing normal component on the boundary, this is equivalent to
imposing ∇ · v ≥ 0 on the set {ρ = 1}.)
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Now, if we set
press(ρ) := {p ∈ H 1(�) : p ≥ 0, p(1− ρ)= 0 a.e.},

we observe that, by definition, adm(ρ) and ∇ press(ρ) are two convex cones which are dual to each other
in L2(�;Rd). Hence we always have a unique orthogonal decomposition

u = v+∇ p, v ∈ adm(ρ), p ∈ press(ρ),
∫
�

v · ∇ p dx = 0. (1-2)

In this decomposition (as is the case every time we decompose on two dual convex cones), v= Padm(ρ)[u].
These will be our mathematical definitions for adm(ρ) and for the projection onto this cone.

Via this approach (introducing the new variable p and using its characterization from the previous
line), for a given desired velocity field u : [0, T ]×�→Rd , the continuity equation (1-1) can be rewritten
as a system for the pair of variables (ρ, p), namely

∂tρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 in [0, T ]×�,
ρt(ut −∇ pt) · n = 0 on [0, T ]× ∂�.

(1-3)

This system is endowed with the initial condition ρ(0, x) = ρ0(x) (for ρ0 ∈ K). As far as the spatial
boundary ∂� is concerned, we put no-flux boundary conditions to preserve the mass in �.

Note that in the above system we withdrew the condition
∫
(ut −∇ pt) ·∇ pt = 0, as it is a consequence

of the system (1-3) itself. Informally, this can be seen as follows. For an arbitrary p0 ∈ press(ρt0), we
have that t 7→

∫
�

p0ρt is maximal at t = t0 (where it is equal to
∫
�

p0). Differentiating this quantity with
respect to t at t = t0, using (1-3), we get the desired orthogonality condition at t = t0. For a rigorous
proof of this fact (which holds for a.e. t0), we refer to Proposition 4.7 in [Di Marino et al. 2016].

A diffusive counterpart. The goal of our work is to study a second-order model of crowd movements
with hard congestion effects, where beside the transport factor a nondegenerate diffusion is present as well.
The diffusion is the consequence of a randomness (a Brownian motion) in the movement of the crowd.

With the ingredients introduced so far, we modify the Fokker–Planck equation ∂tρt−1ρt+∇·(ρt ut)=0
in order to take into account the density constraint ρt ≤ 1. Assuming enough regularity for the velocity
field u, we observe that the Fokker–Planck equation is derived from a motion given by the stochastic
ODE dX t = ut(X t) dt +

√
2 dBt (where Bt is the standard d-dimensional Brownian motion), but is

macroscopically represented by the advection of the density ρt by the vector field−∇ρt/ρt+ut . Projecting
onto the set of admissible velocities raises a natural question: should we project only ut , and then apply
the diffusion, or project the whole vector field, including −∇ρt/ρt ? But this is not a real issue, since, at
least formally, ∇ρt/ρt = 0 on the saturated set {ρt = 1} and

Padm(ρt )[−∇ρt/ρt + ut ] = Padm(ρt )[−∇ρt/ρt ] + Padm(ρt )[ut ] = 0+ Padm(ρt )[ut ].

Rigorously, this corresponds to the fact that the heat kernel preserves the constraint ρ ≤ 1. As a
consequence, we consider the modified Fokker–Planck-type equation

∂tρt −1ρt +∇ · (ρt Padm(ρt )[ut ])= 0, (1-4)
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which can also be written equivalently for the variables (ρ, p) as{
∂tρt −1ρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 in [0, T ]×�.

(1-5)

As usual, these equations are complemented by no-flux boundary conditions and by an initial datum
ρ(0, x)= ρ0(x).

Roughly speaking, we can consider this equation to describe the law of a motion where each agent
solves the stochastic differential equation

dX t = (ut(X t)−∇ pt(X t)) dt +
√

2 dBt .

This last statement is just formal and there are several issues defining a stochastic ODE like this. Indeed,
the pressure variable is also an unknown, and globally depends on the law ρt of X t . Hence, if we wanted
to see this evolution as a superposition of individual motions, each agent should somehow predict the
evolution of the pressure in order to solve his own equation. This calls to mind some notions from the
stochastic control formulation of mean field games, as introduced by J.-M. Lasry and P.-L. Lions, even if
here there are no strategic issues for the players. For mean field games with density constraints, we refer
to [Cardaliaguet et al. 2015; Mészáros and Silva 2015; Santambrogio 2012b].

However, in this paper we will not consider any microscopic or individual problems, but only study
the parabolic PDE (1-5).

Structure of the paper and main results. The main goal of the paper is to provide an existence result,
with some extra estimates, for the Fokker–Planck equation (1-5) via time discretization, using the so-called
splitting method (the two main ingredients of the equation, i.e., the advection with diffusion on one
hand, and the density constraint on the other hand, are treated one after the other). In Section 2 we will
collect some preliminary results, including what we need from optimal transport and from the previous
works about density-constrained crowd motion, in particular on the projection operator onto the set K. In
Section 3 we will provide the aforementioned existence result, by a splitting scheme and some entropy
bounds; the solution will be a curve of measures in AC2([0, T ];W2(�)) (absolutely continuous curves
with square-integrable speed). In Section 4 we will make use of BV estimates to justify that the solution
just built is also Lip([0, T ];W1(�)) and satisfies a global BV bound ‖ρt‖BV≤C (provided that ρ0 ∈BV);
this requires us to combine BV estimates on the Fokker–Planck equation (which are available depending
on the regularity of the vector field u) with BV estimates on the projection operator on K (which have
been recently proven in [De Philippis et al. 2016]). Section 5 presents a short review of alternative
approaches, all discretized in time, but based either on gradient-flow techniques (the JKO scheme, see
[Jordan et al. 1998]) or on different splitting methods. Finally, in the Appendix we detail the BV estimates
on the Fokker–Planck equation (without any density constraint) that we could find; this seems to be a
delicate matter, interesting in itself, and we are not aware of the sharp assumptions on the vector field u
to guarantee the BV estimate that we need.
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2. Preliminaries

Basic definitions and general facts on optimal transport. Here we collect some tools from the theory of
optimal transportation, Wasserstein spaces, its dynamical formulation and more, which will be used later
on. We formulate our problem either in a compact convex domain �⊂Rd with smooth boundary or in the
d-dimensional flat torus � := Td (although we will not adapt all our notation to the torus case). We refer
to [Villani 2003; Santambrogio 2015] for more details. Given two probability measures µ, ν ∈ P(�) and
p ≥ 1 we define the usual Wasserstein metric by means of the Monge–Kantorovich optimal transportation
problem

Wp(µ, ν) := inf
{∫

�×�

|x − y|p dγ (x, y) : γ ∈5(µ, ν)
}1/p

,

where 5(µ, ν) := {γ ∈ P(�×�) : (π x)#γ = µ, (π
y)#γ = ν} and π x and π y denote the canonical

projections from �×� onto �. This quantity happens to be a distance on P(�) which metrizes the weak-
∗ convergence of probability measures; we denote by Wp(�) := (P(�),Wp) the space of probabilities
on � endowed with this distance.

Moreover, in the quadratic case p = 2 and under the assumption µ� Ld (the d-dimensional Lebesgue
measure on �), Y. Brenier [1987; 1991] showed that actually the optimal γ in the above problem (the
existence of which is obtained simply by the direct method of calculus of variations) is induced by a
map which is the gradient of a convex function, i.e., there exists S :�→� and ψ :�→ R convex such
that S = ∇ψ and γ := (id, S)#µ. The function ψ is obtained as ψ(x) = 1

2 |x |
2
− ϕ(x), where ϕ is the

so-called Kantorovich potential for the transport from µ to ν, and is characterized as the solution of a dual
problem that we will not develop here. In this way, the optimal transport map S can also be written as
S(x)= x −∇ϕ(x). Later, in the 1990s, R. McCann [1997] introduced a notion of interpolation between
probability measures: the curve µt := ((T − t)x + t y)#γ , for t ∈ [0, T ] (T > 0 is given), gives a constant
speed geodesic in the Wasserstein space connecting µ0 := µ and µT := ν.

Based on this notion of interpolation, J.-D. Benamou and Y. Brenier [2000] used some ideas from fluid
mechanics to give a dynamical formulation to the Monge–Kantorovich problem. They showed that

1
pT p−1 W p

p (µ, ν)= inf{Bp(E, µ) : ∂tµ+∇ · E = 0, µ0 = µ, µT = ν}.

Here Bp is a functional defined on pairs (E, µ), where E is a d-dimensional vector measure on [0, T ]×�
and µ= (µt)t is a Borel-measurable family of probability measures on �. This functional is defined to
be finite only if E = Et ⊗dt (i.e., it is induced by a measurable family of vector measures on �: we have∫
[0,T ]×� ξ(t, x) · dE(t, x)=

∫ T
0 dt

∫
�
ξ(t, x) · dEt(x) for all test functions ξ ∈ C0([0, T ] ×�;Rd)) and

in this case it is defined through

Bp(E, µ) :=


∫ T

0

∫
�

1
p
|vt |

p dµt(x) dt if Et = vt ·µt ,

+∞ otherwise.

It is well known that Bp is jointly convex and lower semicontinuous with respect to the weak-∗ convergence
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of measures (see Section 5.3.1 in [Santambrogio 2015]) and that, if ∂tµ+∇ ·E = 0, then Bp(E, µ)<+∞
implies that t 7→ µt is a curve in ACp([0, T ];Wp(�)).1 In particular it is a continuous curve and the
initial and final conditions on µ0 and µT are well defined.

Coming back to curves in Wasserstein spaces, it is well known (see [Ambrosio et al. 2008] or Section 5.3
in [Santambrogio 2015]) that for any distributional solution µt (being a continuous curve in Wp(�)) of
the continuity equation ∂tµ+∇ · E = 0 with Et = vt ·µt , we have the relations

|µ′|Wp(t)≤ ‖vt‖L p
µt

and Wp(µt , µs)≤

∫ t

s
|µ′|Wp(τ ) dτ,

where we denote by |µ′|Wp(t) the metric derivative with respect to Wp of the curve µt (see for instance
[Ambrosio and Tilli 2004] for general notions about curves in metric spaces and their metric derivative).
For curves µt that are geodesics in Wp(�) we have the equality

Wp(µ0, µ1)=

∫ 1

0
|µ′|Wp(t) dt =

∫ 1

0
‖vt‖L p

µt
dt.

The last equality is in fact the Benamou–Brenier formula with the optimal velocity field vt being the
density of the optimal Et with respect to the optimal µt . This optimal velocity field vt can be computed as
vt := (S− id) ◦ (St)

−1, where St := (1− t) id+t S is the transport in McCann’s interpolation (we assume
here that the initial measure µ0 is absolutely continuous, so that we can use transport maps instead of
plans). This expression can be obtained if we consider that in this interpolation particles move with
constant speed S(x)− x , but x represents here a Lagrangian coordinate, and not an Eulerian one: if we
want to know the velocity at time t at a given point, we have to find out first the original position of the
particle passing through that point at that time.

In the sequel we will also need the notion of entropy of a probability density, and for any probability
measure % ∈ P(�) we define it as

E(%) :=


∫
�

%(x) log %(x) dx if %� Ld ,

+∞ otherwise.

We recall that this functional is lower semicontinuous and geodesically convex in W2(�).
As we will mainly be working with absolutely continuous probability measures (with respect to

Lebesgue), we often identify measures with their densities.

Projection problems in Wasserstein spaces. Our analysis strongly relies on the projection operator PK

in the sense of W2. Here K := {ρ ∈ P(�) : ρ ≤ 1} and

PK[µ] := argminρ∈K
1
2 W 2

2 (µ, ρ).

We recall the main properties of the projection operator PK (see [Maury et al. 2010; Santambrogio 2012a;
De Philippis et al. 2016]).

1Here ACp([0, T ];Wp(�)) denotes the class of absolutely continuous curves in Wp(�) with metric derivative in L p . See
the connection with the functional Bp .
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• As long as � is compact, for any probability measure µ, the minimizer in minρ∈K 1
2 W 2

2 (µ, ρ) exists
and is unique, and the operator PK is continuous (it is even C0,1/2 for the W2 distance).

• The projection PK[µ] saturates the constraint ρ ≤ 1, in the sense that for any µ ∈ P(�) there exists a
measurable set B ⊆� such that PK[µ] = 1B +µ

ac1Bc , where µac is the absolutely continuous part of µ.

• The projection is characterized in terms of a pressure field, in the sense that ρ = PK[µ] if and only if
there exists a Lipschitz function p ≥ 0, with p(1− ρ) = 0, and such that the optimal transport map S
from ρ to µ is given by S := id−∇ϕ = id+∇ p.

• There is (as proven in [De Philippis et al. 2016]) a quantified BV estimate: if µ ∈ BV (in the sense that
it is absolutely continuous and that its density belongs to BV(�)), then PK[µ] is also BV and

TV(PK[µ], �)≤ TV(µ,�).

This last BV estimate will be crucial in Section 4, and it is important to have it in this very form (other
estimates of the form TV(PK[µ], �)≤ a TV(µ,�)+b would not be as useful as this one, as they cannot
be easily iterated).

3. Existence via a splitting-type algorithm (Main Scheme)

Similarly to the approach in [Maury et al. 2011] (see the algorithm (13) and Theorem 3.5) for a general
nongradient vector field, we will build a theoretical algorithm, after time-discretization, to produce a
solution of (1-5). Let us remark that splitting-type methods have been widely used in other contexts as
well; see for instance [Clément and Maas 2011], which deals with splitting methods for Fokker–Planck
equations and for more general gradient flows in metric and Wasserstein spaces, or [Laborde 2015],
where a splitting-like approach is used to attack PDEs which are not gradient flows but “perturbations” of
gradient flows.

In this section the spontaneous velocity field is a general vector field u : [0, T ]×�→Rd (not necessarily
a gradient), which depends also on time. The only assumption we require on u is that

u ∈ L∞([0, T ]×�;Rd). (U)

We work on a time interval [0, T ] and in a bounded convex domain �⊂ Rd (the case of the flat torus is
even simpler and we will not discuss it in detail). We consider ρ0 ∈ Pac(�) to be given, which represents
the initial density of the population, and we suppose ρ0 ∈ K.

Splitting using the Fokker–Planck equation. Let us consider the following scheme.

Main Scheme. Let τ > 0 be a small time step with N := bT/τc. Let us set ρτ0 := ρ0. For every
k ∈ {1, . . . , N }, define ρτk+1 from ρτk by solving{

∂t%t −1%t +∇ · (%t ut+kτ )= 0, t ∈ ]0, τ ],
%0 = ρ

τ
k ,

(3-1)

equipped with the no-flux boundary condition (%t(∇%t−ut)·n=0 a.e. on ∂�), and setting ρτk+1= PK[ρ̃
τ
k+1],

where ρ̃τk+1 = %τ . See Figure 1 below.
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•ρτk

∂ t%
t−
1
% t+
∇
·(%

tu t+
kτ
)=

0
•

ρ̃τk+1 = %τ

id
+
τ
∇

p
τk
+

1

• ρτk+1

Figure 1. One time step.

Let us remark first that by classical results on parabolic equations (see for instance [Ladyzhenskaya et al.
1967]), since u satisfies the assumption (U), the equation (3-1) admits a unique distributional solution.

The above algorithm means to first follow the Fokker–Planck equation, ignoring the density constraint,
for a time τ , then project. In order to state and prove the convergence of the scheme, we need to define
some suitable interpolations of the discrete sequence of densities that we have just introduced.

First interpolation. We define the following curves of densities, velocities and momenta constructed with
the help of the ρτk . First set

ρτt :=

{
%2(t−kτ) if t ∈

[
kτ,

(
k+ 1

2

)
τ
[
,(

id+2((k+ 1)τ − t)∇ pτk+1

)
#ρ
τ
k+1 if t ∈

[(
k+ 1

2

)
τ, (k+ 1)τ

[
,

where %t is the solution of the Fokker–Planck equation (3-1) with initial datum ρτk and ∇ pτk+1 arises
from the projection of ρ̃τk+1, or more precisely, (id+τ∇ pτk+1) is the optimal transport from ρτk+1 to ρ̃τk+1.
What are we doing? We are fitting into a time interval of length τ the two steps of our algorithm. First
we follow the Fokker–Planck equation (3-1) at double speed, then we interpolate between the measure
we reached and its projection following the geodesic between them. This geodesic is easily described as
an image measure of ρτk+1 through McCann’s interpolation. By the construction it is clear that ρτt is a
continuous curve in P(�) for t ∈ [0, T ]. We now define a family of time-dependent vector fields through

vτt :=

−2∇%2(t−kτ)
%2(t−kτ)

+ 2ut if t ∈
[
kτ,

(
k+ 1

2

)
τ
[
,

−2∇ pτk+1 ◦
(
id+2((k+ 1)τ − t)∇ pτk+1

)−1 if t ∈
[(

k+ 1
2

)
τ, (k+ 1)τ

[
,

and, finally, we simply define the curve of momenta as Eτt := ρ
τ
t v

τ
t .

Second interpolation. We define another interpolation as follows. Set

ρ̃τt := %t−kτ if t ∈ [kτ, (k+ 1)τ [,

where %t is (again) the solution of the Fokker–Planck equation (3-1) on the time interval [0, τ ] with initial
datum ρτk . Here we do not double its speed. We define the curve of velocities

ṽτt := −
∇%t−kτ
%t−kτ

+ ut if t ∈ [kτ, (k+ 1)τ [,
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and we build the curve of momenta by Ẽτt := ρ̃
τ
t ṽ

τ
t .

Third interpolation. For each τ , we also define piecewise constant curves,

ρ̂τt := ρ
τ
k+1 if t ∈ [kτ, (k+ 1)τ [,

v̂τt := ∇ pτk+1 if t ∈ [kτ, (k+ 1)τ [,

and Êτt := ρ̂
τ
t v̂

τ
t . We remark that pτk+1(1− ρ

τ
k+1)= 0, hence the curve of momenta is just

Êτt := ∇ pτk+1 if t ∈ [kτ, (k+ 1)τ [.

Mind the differences in the construction of ρτt , ρ̃τt and ρ̂τt (and hence in the construction of vτt , ṽτt
and v̂τt , and Eτt , Ẽτt and Êτt ):

(1) The first one is continuous in time for the weak-∗ convergence, while the second and third ones are
not.

(2) In the first construction we have taken into account the projection operator explicitly, while in the
second one we see it just in an indirect manner (via the “jumps” occurring at every time of the
form t = kτ ). The third interpolation is piecewise constant, and at every time it satisfies the density
constraint.

(3) In the first interpolation the pair (ρτ , Eτ ) solves the continuity equation, while in the other two
it does not. This is not astonishing, as the continuity equation characterizes continuous curves
in W2(�).

In order to prove the convergence of the scheme above, we will obtain uniform AC2([0, T ];W2(�))

bounds for the curves ρτ . A key observation here is that the metric derivative (with respect to W2) of the
solution of the Fokker–Planck equation is comparable with the time differential of the entropy functional
along the same solution (see Lemma 3.2). Now we state the main theorem of this section.

Theorem 3.1. Let ρ0 ∈ K and u be a given desired velocity field satisfying (U). Let us consider the
interpolations introduced above. Then there exists a continuous curve t 7→ ρt ∈W2(�) for t ∈ [0, T ], and
some vector measures E, Ẽ, Ê ∈M([0, T ] ×�) such that the curves ρτ , ρ̃τ , ρ̂τ converge uniformly in
W2(�) to ρ and

Eτ ∗⇀ E, Ẽτ ∗⇀ Ẽ, Êτ ∗⇀ Ê in M([0, T ]×�)d as τ → 0.

Moreover E = Ẽ − Ê and for a.e. t ∈ [0, T ] there exist time-dependent measurable vector fields vt , ṽt , v̂t

such that

(1) E = ρv, Ẽ = ρṽ, Ê = ρv̂,

(2)
∫ T

0

(
‖vt‖

2
L2
ρt
+‖ṽt‖

2
L2
ρt
+‖v̂t‖

2
L2
ρt

)
dt <+∞,

(3) vt = ṽt − v̂t , ρt -a.e., Ẽt = ρt ut −∇ρt and v̂t =∇ pt , ρt -a.e.,
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where p ∈ L2([0, T ]; H 1(�)), p ≥ 0 and p(1− ρ) = 0 a.e. in [0, T ] ×�. As a consequence, the pair
(ρ, p) is a weak solution of the problem

∂tρt −1ρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
pt ≥ 0, ρt ≤ 1, pt(1− ρt)= 0 in [0, T ]×�,
ρt(∇ρt − ut +∇ pt) · n = 0 on [0, T ]× ∂�,
ρ(0, · )= ρ0.

(3-2)

To prove this theorem we need the following tools.

Lemma 3.2. Let us consider a solution %t of the Fokker–Planck equation on [0, T ]×� with the velocity
field u satisfying (U) and with no-flux boundary conditions on [0, T ] × ∂�. Then for any time interval
]a, b[ we have the estimate

1
2

∫ b

a

∫
�

∣∣∣∣−∇%t
%t
+ ut

∣∣∣∣2%t dx dt ≤ E(%a)− E(%b)+
1
2

∫ b

a

∫
�

|ut |
2%t dx dt. (3-3)

In particular this implies

1
2

∫ b

a
|%′t |

2
W2

dt ≤ E(%a)− E(%b)+
1
2

∫ b

a

∫
�

|ut |
2%t dx dt, (3-4)

where |%′t |W2 denotes the metric derivative of the curve t 7→ %t ∈W2(�).

Proof. To prove this inequality, we first make computations in the case where both u and % are smooth,
and % is bounded from below by a positive constant. In this case we can write

d
dt

E(%t)=

∫
�

(log %t + 1)∂t%t dx =
∫
�

log %t(1%t −∇ · (%t ut)) dx

=

∫
�

(
−
|∇%t |

2

%t
+ ut · ∇%t

)
dx,

where we use the conservation of mass (i.e.,
∫
�
∂t%t dx = 0) and the boundary conditions in the integration

by parts. We now compare this with

1
2

∫
�

∣∣∣∣−∇%t
%t
+ ut

∣∣∣∣2%t dx − 1
2

∫
�

|ut |
2%t dx =

∫
�

(
1
2
|∇%t |

2

%t
−∇%t · ut

)
dx

≤

∫
�

(
|∇%t |

2

%t
−∇%t · ut

)
dx =− d

dt
E(%t).

This provides the first part of the statement, i.e., (3-3). If we combine this with the fact that the metric
derivative of the curve t 7→ %t is always less than or equal to the L2

%t
norm of the velocity field in the

continuity equation, we also get

1
2
|%′t |

2
W2
−

1
2

∫
�

|ut |
2%t ≤−

d
dt

E(%t),

and hence (3-4).
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In order to prove the same estimates without artificial smoothness and lower bound assumptions, we
can act by approximation. We approximate the density %a by smooth and strictly positive densities %k

a

(by convolution, so that we guarantee in particular E(%k
a)→ E(%a)), and the vector field u with smooth

vector fields uk (strongly in L4([a, b] ×�), keeping the L∞ bound). If we call %k the corresponding
solution of the Fokker–Planck equation, it satisfies (3-3). This implies a uniform bound (with respect to k)
for

√
%k in L2([a, b]; H 1(�)), and hence a uniform bound on %k in L2([a, b]×�). From these bounds

and the uniqueness of the solution of the Fokker–Planck equation with L∞ drift, we deduce %k
→ %.

The semicontinuity of the left-hand side in (3-3) and of the entropy term at t = b, together with the
convergence of the entropy at t = a and the convergence

∫ b
a

∫
�
|uk
|
2%k dx dt→

∫ b
a

∫
�
|u|2% dx dt (because

we have a product of weak and strong convergence in L2), allow us to pass (3-3) to the limit. �

Corollary 3.3. From the inequality (3-4) we deduce that

E(%b)− E(%a)≤
1
2

∫ b

a

∫
�

|ut |
2%t dx dt,

and hence in particular for u satisfying (U), we have

E(%b)− E(%a)≤
1
2
‖u‖2L∞(b− a).

As a consequence, if %a ≤ 1, then we have

E(%b)≤
1
2
‖u‖2L∞(b− a).

The same estimate can be applied to the curve ρ̃τ , with a = kτ and b ∈ ]kτ, (k + 1)τ [, thus obtaining
E(ρ̃τt )≤ Cτ for every t.

Lemma 3.4. For any ρ ∈ P(�) we have E(PK[ρ])≤ E(ρ).

Proof. We can assume ρ� Ld , otherwise the claim is straightforward. As we pointed out in Section 2,
we know that there exists a measurable set B ⊆� such that

PK[ρ] = 1B + ρ1Bc .

Hence it is enough to prove that∫
B
ρ log ρ dx ≥ 0=

∫
B

PK[ρ] log PK[ρ] dx,

as the entropies on Bc coincide. As the mass of ρ and PK[ρ] are the same on all of �, and they coincide
on Bc, we have ∫

B
ρ(x) dx =

∫
B

PK[ρ] dx = |B|.

Then, by Jensen’s inequality we have

1
|B|

∫
B
ρ log ρ dx ≥

(
1
|B|

∫
B
ρ dx

)
log
(

1
|B|

∫
B
ρ dx

)
= 0.

The entropy decay follows. �
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To analyze the pressure field we need the following result.

Lemma 3.5. Let {pτ }τ>0 be a bounded sequence in L2([0, T ]; H 1(�)) and {ρτ }τ>0 a sequence of
piecewise constant curves valued in W2(�) which satisfy W2(ρ

τ (a), ρτ (b)) ≤ C
√

b− a+ τ for all
a < b ∈ [0, T ] for a fixed constant C. Suppose that

pτ ≥ 0, pτ (1− ρτ )= 0, ρτ ≤ 1,

and that

pτ ⇀ p weakly in L2([0, T ]; H 1(�)) and ρτ → ρ uniformly in W2(�).

Then p(1− ρ)= 0 a.e. in [0, T ]×�.

The proof of this result is the same as in Step 3 of Section 3.2 of [Maury et al. 2010] (see also [Roudneff-
Chupin 2011] and Lemma 4.6 in [Di Marino et al. 2016]). We omit it in order not to overburden the paper.

The reader can note the strong connection with the classical Aubin–Lions lemma [Aubin 1963], applied
to the compact injection of L2 into H−1. Indeed, from the weak convergence of pτ in L2([0, T ]; H 1(�)),
we just need to provide strong convergence of ρτ in L2([0, T ]; H−1(�)). If instead of the quasi-Hölder
assumption of the above lemma we suppose a uniform bound of {ρτ }τ in AC2([0, T ];W2(�)) (which is not
so different), then the statement really can be deduced from the Aubin–Lions lemma. Indeed, the sequence
{ρτ } is bounded in L∞([0, T ]; L2(�)) and its time derivative would be bounded in L2([0, T ]; H−1(�)).
This strongly depends on the fact that the H−1 distance can be controlled by the W2 distance as soon as
the measures have uniformly bounded densities (see [Loeper 2006; Maury et al. 2010]), a tool which is
also crucial in the proofs in [Maury et al. 2010; Roudneff-Chupin 2011; Di Marino et al. 2016]. Then, the
Aubin–Lions lemma guarantees compactness in C0([0, T ]; H−1(�)), which is more than what we need.

Lemma 3.6. Let us consider the previously defined interpolations. Then we have the following facts.

(i) For every τ > 0 and k we have

max
{
W 2

2 (ρ
τ
k , ρ̃

τ
k+1),W 2

2 (ρ
τ
k , ρ

τ
k+1)

}
≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2,

where C > 0 only depends on ‖u‖L∞ .

(ii) There exists a constant C , only depending on ρ0 and ‖u‖L∞ , such that

B2(Eτ , ρτ )≤ C, B2(Ẽτ , ρ̃τ )≤ C and B2(Êτ , ρ̂τ )≤ C.

(iii) For the curve [0, T ] 3 t 7→ ρτt we have that∫ T

0
|(ρτt )

′
|
2
W2

dt ≤ C,

for a C > 0 independent of τ . Here we denote by |(ρτt )
′
|W2 the metric derivative of the curve ρτ at t

in W2. In particular, we have a uniform Hölder bound on ρτ , namely W2(ρ
τ (a), ρτ (b))≤ C

√
b− a

for every b > a.

(iv) Eτ , Ẽτ , Êτ are uniformly bounded sequences in M([0, T ]×�)d .
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Proof. (i) First, by the triangle inequality and by the fact that ρτk+1 = PK[ρ̃
τ
k+1] we have that

W2(ρ
τ
k , ρ

τ
k+1)≤W2(ρ

τ
k , ρ̃

τ
k+1)+W2(ρ̃

τ
k+1, ρ

τ
k+1)≤ 2W2(ρ

τ
k , ρ̃

τ
k+1). (3-5)

We use (as before) the notation %t , t ∈ [0, τ ] for the solution of the Fokker–Planck equation (3-1) with
initial datum ρτk ; in particular we have %τ = ρ̃τk+1. Using Lemma 3.2 and since %0 = ρ

τ
k and %τ = ρ̃τk+1

we have by (3-4) and W2(ρ
τ
k , ρ̃

τ
k+1)≤

∫ τ
0 |%

′
t |W2 dt that

W 2
2 (ρ

τ
k , ρ̃

τ
k+1)≤

(
τ 1/2

(∫ τ

0
|%′t |

2
W2

dt
)1/2 )2

≤ 2τ(E(%0)− E(%τ ))+ τ
∫ τ

0

∫
�

|ukτ+t |
2%t dx dt

≤ 2τ(E(ρτk )− E(ρ̃τk+1))+Cτ 2
≤ 2τ(E(ρτk )− E(ρτk+1))+Cτ 2,

where C > 0 is a constant depending just on ‖u‖L∞ . We have also used the fact that E(ρτk+1)≤ E(ρ̃τk+1),
a consequence of Lemma 3.4.

Now by means of (3-5) we obtain

W 2
2 (ρ

τ
k , ρ

τ
k+1)≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2.

(ii) We use Lemma 3.2 on the intervals of type
[
kτ,

(
k+ 1

2

)
τ
[

and the fact that on each interval of type[(
k+ 1

2

)
τ, (k+ 1)τ

[
the curve ρτt is a constant speed geodesic. In particular, on these intervals we have

|(ρτ )′|W2 = ‖v
τ
t ‖L2

ρτt
= 2τ‖∇ pτk+1‖L2

ρτk+1

= 2W2(ρ
τ
k+1, ρ̃

τ
k+1).

On the other hand we also have

τ 2
‖∇ pτk+1‖

2
L2
ρτk+1

=W 2
2 (ρ

τ
k+1, ρ̃

τ
k+1)≤W 2

2 (ρ
τ
k , ρ̃

τ
k+1)≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2.

Hence we obtain∫ (k+1)τ

kτ
‖vτt ‖

2
L2(ρτt )

dt

=

∫ (k+1/2)τ

kτ

∫
�

4
∣∣∣−∇%2(t−kτ)

%2(t−kτ)
+ u2t−kτ

∣∣∣2%2(t−kτ)(x) dx dt + 4
∫ (k+1)τ

(k+1/2)τ

∫
�

|∇ pτk+1|
2ρτk+1 dx dt

≤ C(E(ρτk )− E(ρτk+1))+Cτ + 2τ‖∇ pτk+1‖
2
L2
ρτk+1

≤ C(E(ρτk )− E(ρτk+1))+Cτ.

Hence by adding up we obtain

B2(Eτ , ρτ )≤
∑

k

(
C(E(ρτk )− E(ρτk+1))+Cτ

)
= C(E(ρτ0 )− E(ρτN+1))+CT ≤ C.

The estimates on B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) are completely analogous and arise from the previous
computations.

(iii) The estimate on B2(Eτ , ρτ ) implies a bound on
∫ T

0 |(ρ
τ
t )
′
|
2
W2

dt because vτ is a velocity field for ρτ

(i.e., the pair (Eτ , ρτ ) solves the continuity equation).
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(iv) In order to estimate the total mass of E we write

|Eτ |([0, T ]×�)=
∫ T

0

∫
�

|vτt |ρ
τ
t dx dt ≤

∫ T

0

(∫
�

|vτt |
2ρτt dx

)1/2(∫
�

ρτt dx
)1/2

dt

≤
√

T
(∫ T

0

∫
�

|vτt |
2ρτt dx dt

)1/2

≤ C.

The bounds on Ẽτ and Êτ rely on the same argument. �

Proof of Theorem 3.1. We use the tools from Lemma 3.6.

Step 1. By the bounds on the metric derivative of the curves ρτt we get compactness, i.e., there exists
a curve [0, T ] 3 t 7→ ρt ∈ P(�) such that ρτ (up to subsequences) converges uniformly in [0, T ] with
respect to W2, in particular weakly-∗ in P(�) for all t ∈ [0, T ]. It is easy to see that ρ̃τ and ρ̂τ are
converging to the same curve. Indeed we have ρ̃τt = ρ

τ
s̃(t) and ρ̂τt = ρ

τ
ŝ(t) for |s̃(t)−t | ≤ τ and |ŝ(t)−t | ≤ τ ,

which implies W2(ρ
τ
t , ρ̃

τ
t ),W2(ρ

τ
t , ρ̂

τ
t )≤ Cτ 1/2. This provides the convergence to the same limit.

Step 2. By the boundedness of Eτ , Ẽτ and Êτ in M([0, T ] ×�)d , we have the existence of E, Ẽ, Ê
in M([0, T ]×�)d such that (up to a subsequence) Eτ ∗⇀ E, Ẽτ ∗⇀ Ẽ, Êτ ∗⇀ Ê as τ → 0. Now we show
that E = Ẽ − Ê . Indeed, let us show that for any test function f ∈ Lip([0, T ]×�)d we have

∣∣∣∣∫ T

0

∫
�

ft · (Eτt − (Ẽ
τ
t + Êτt ))(dx, dt)

∣∣∣∣→ 0

as τ → 0. First, for each k ∈ {0, . . . , N } we have that

∫ (k+1/2)τ

kτ

∫
�

ft · Eτt (dx, dt)=
∫ (k+1)τ

kτ

∫
�

f(t+kτ)/2 · (−∇%t−kτ + ut%t−kτ )(dx, dt)

=

∫ (k+1)τ

kτ

∫
�

ft · Ẽτt (dx, dt)+
∫ (k+1)τ

kτ

∫
�

( f(t+kτ)/2− ft) · Ẽτt (dx, dt)

and

∫ (k+1)τ

(k+1/2)τ

∫
�

ft · Eτt (dx, dt)

=

∫ (k+1)τ

kτ

∫
�

− f(t+(k+1)τ )/2 ◦
(
id+((k+ 1)τ − t)∇ pτk+1

)
· ∇ pτk+1ρ

τ
k+1(dx, dt)

=−

∫ (k+1)τ

kτ

∫
�

ft · Êτt (dx, dt)+
∫ (k+1)τ

kτ

∫
�

(
ft − f(t+(k+1)τ )/2 ◦ (id+((k+ 1)τ − t))

)
· v̂τt ρ̂

τ
t (dx, dt).
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This implies that∣∣∣∣∫ T

0

∫
�

ft · (Eτt − Ẽτt + Êτt )(dx, dt)
∣∣∣∣

≤

∑
k

∫ (k+1)τ

kτ
Lip( f )τ

∫
�

|Ẽτt |(dx, dt)+
∑

k

∫ (k+1)τ

kτ
Lip( f )τ

∫
�

(1+ |v̂τt |)|Ê
τ
t |(dx, dt)

≤ τC Lip( f )
(
|Ẽτ |([0, T ]×�)+ |Êτ |([0, T ]×�)+B2(Ê, ρ̂)

)
≤ τC Lip( f ),

for a uniform constant C > 0. Letting τ → 0, we prove the claim.

Step 3. The bounds on B2(Eτ , ρτ ), B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) pass to the limit by semicontinuity and
allow us to conclude that E , Ẽ and Ê are vector-valued Radon measures absolutely continuous with
respect to ρ. Hence there exist vt , ṽt and v̂t such that E = ρv, Ẽ = ρṽ and Ê = ρv̂.

Step 4. We now look at the equations satisfied by E, Ẽ and Ê . First we use ∂tρ
τ
+∇ · Eτ = 0, pass to

the limit as τ → 0 and get

∂tρ+∇ · E = 0.

Then, we use Ẽτ =−∇ρ̃τ + ut ρ̃
τ , pass to the limit again as τ → 0 and get

Ẽ =−∇ρ+ utρ.

To justify this limit, the only delicate point is passing to the limit the term ut ρ̃
τ , since u is only L∞,

and ρ̃τ converges weakly as measures, and we are a priori only allowed to multiply it by continuous
functions. Yet, we remark that by Corollary 3.3 we have that E(ρ̃τt )≤ Cτ for all t ∈ [0, T ]. In particular,
this provides, for each t , uniform integrability for ρ̃τt and turns the weak convergence as measures into
weak convergence in L1. This allows multiplication by ut in the weak limit.

Finally, we look at Êτ . There exists a piecewise constant (in time) function pτ (defined as pτk+1 on
every interval ]kτ, (k+ 1)τ ]) such that pτ ≥ 0, pτ (1− ρ̂τ )= 0,∫ T

0

∫
�

|∇ pτ |2(dx, dt)=
∫ T

0

∫
�

|∇ pτ |2ρ̂τ (dx, dt)=
∫ T

0

∫
�

|v̂τ |2ρ̂τ (dx, dt)≤ C (3-6)

and Êτ = ∇ pτ ρ̂τ = ∇ pτ . The bound (3-6) implies that pτ is uniformly bounded in L2(0, T ; H 1(�)).
Since for every t we have |{pτt = 0}| ≥ |{ρ̂τt < 1}| ≥ |�| − 1, we can use a suitable version of Poincaré’s
inequality, and get a uniform bound in L2([0, T ]; L2(�)) = L2([0, T ] ×�). Therefore, there exists
p ∈ L2([0, T ]×�) such that pτ ⇀ p weakly in L2 as τ → 0. In particular we have Ê =∇ p. Moreover
it is clear that p ≥ 0 and by Lemma 3.5 we obtain p(1− ρ)= 0 a.e. as well. Indeed, the assumptions of
the lemma are easily checked: we only need to estimate W2(ρ̂

τ (a), ρ̂τ (b)) for b > a, but we have

W2(ρ̂
τ (a), ρ̂τ (b))=W2(ρ

τ (kaτ), ρ
τ (kbτ))≤ C

√
kb− ka for kbτ ≤ b+ τ and ka ≥ a.
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Once we have Ê =∇ p with p(1− ρ)= 0, p ∈ L2([0, T ]; H 1(�)) and ρ ∈ L∞, we can also write

Ê =∇ p = ρ∇ p.

If we sum up our results, using E = Ẽ − Ê , we have

∂tρ−1ρ+∇ · (ρ(u−∇ p))= 0 with p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 a.e. in [0, T ]×�.

As usual, this equation is satisfied in a weak sense, with no-flux boundary conditions. �

4. Uniform Lip([0, T ];W1) and BV estimates

In this section we provide uniform estimates for the curves ρτ , ρ̃τ and ρ̂τ in the form of uniform BV (in
space) bounds on ρ̃τ (which implies the same bound for ρ̂τ ) and uniform Lipschitz bounds in time for the
W1 distance on ρτ . This means a small improvement compared to the previous section concerning time
regularity, as we have Lipschitz instead of AC2, even if we need to replace W2 with W1. It is also important
for space regularity. Indeed, from Lemma 3.2 one could deduce that the solution ρ of the Fokker–Planck
equation (1-5) satisfies

√
ρ ∈ L2([0, T ]; H 1(�)) and, using ρ ≤ 1, also ρ ∈ L2([0, T ]; H 1(�)). Yet, this

is just an integrable estimate in t , while the BV estimate of this section is uniform in the time variable.
Nevertheless there is a price to pay for this improvement: we have to assume higher regularity for

the velocity field. These uniform-in-time W1-Lipschitz bounds are based both on BV estimates for the
Fokker–Planck equation (see Lemma A.1 in the Appendix) and for the projection operator PK (see
[De Philippis et al. 2016]). The assumption on u is, essentially, that we need to control the growth of the
total variation of the solutions of the Fokker–Planck equation (3-1), and we need to iterate this bound
along time steps.

We will discuss in the Appendix the different BV estimates on the Fokker–Planck equation that we
were able to find. The desired estimate is true whenever ‖ut‖C1,1(�) is uniformly bounded and ut · n = 0
on ∂�. It seems to be an open problem to obtain similar estimates under the sole assumption that u
is Lipschitz continuous. Of course, we will also assume ρ0 ∈ BV(�). Despite these extra regularity
assumptions, we think these estimates have their own interest, exploiting some finer properties of the
solutions of the Fokker–Planck equation and of the Wasserstein projection operator.

Before entering into the details of the estimates, we want to discuss why we concentrate on BV
estimates (instead of Sobolev ones) and on W1 (instead of Wp, p > 1). The main reason is the role of the
projection operator. Indeed, even if ρ ∈W 1,p(�), we do not have in general PK[ρ] ∈W 1,p because the
projection creates some jumps at the boundary of {PK[ρ] = 1}. This prevents us from obtaining any W 1,p

estimate for p > 1. On the other hand, [De Philippis et al. 2016] exactly proves a BV estimate on PK[ρ]

and paves the way to BV bounds for our equation. Concerning the regularity in time, we observe that
the velocity field in the Fokker–Planck equation contains a term in ∇ρ/ρ. Since the metric derivative in
Wp is given by the L p norm (with respect to ρt ) of the velocity field, it is clear that estimates in Wp for
p > 1 would require spatial W 1,p estimates on the solution itself, which are impossible for p > 1 in this
splitting scheme. We stress that this does not mean that uniform W 1,p are impossible for the solution
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of (1-5); it only means that they are not uniform along the approximation used in our Main Scheme to
build such a solution.

The precise result that we prove is the following.

Theorem 4.1. Let us suppose that ‖ut‖C1,1 ≤ C and ρ0 ∈ BV(�). Then using the notations from the
Main Scheme and Theorem 3.1 one has ‖ρ̃τt ‖BV ≤ C and W1(ρ

τ
k , ρ

τ
k+1)≤ Cτ . As a consequence we also

have ρ ∈ Lip([0, T ];W1)∩ L∞([0, T ];BV(�)).

To prove this theorem we need the following lemmas.

Lemma 4.2. Suppose ‖ut‖Lip ≤ C and ut · n = 0 on ∂�. Then for the solution % of (A-1) with velocity
field v = u we have the estimate

‖%t‖L∞ ≤ ‖%0‖L∞eCt ,

where C = ‖∇ · ut‖L∞ .

Proof. Standard comparison theorems for parabolic equations allow us to prove the results once we notice
that f (t, x) := ‖%0‖L∞eCt is a supersolution of the Fokker–Planck equation, i.e.,

∂t ft ≥1 ft −∇ · ( ft ut).

Indeed, in the above equation the Laplacian term vanishes as f is constant in x , ∂t ft = C ft and
∇ · ( ft ut)= ft∇ · ut +∇ ft · ut = ft∇ · ut ≤ C ft , where C = ‖∇ · ut‖L∞ . From this inequality, and from
ρ0 ≤ f0, we deduce ρt ≤ ft for all t . �

We remark that the above lemma implies in particular that after every step in the Main Scheme we
have ρ̃τk+1 ≤ eτc

≤ 1+Cτ , where c := ‖∇ · u‖L∞ . We note the following corollary as well.

Corollary 4.3. Along the iterations of our Main Scheme, for every k we have W1(ρ̃
τ
k+1, ρ

τ
k+1)≤ τC for a

constant C > 0 independent of τ .

Proof. With the saturation property of the projection (see Section 2 or [De Philippis et al. 2016]), we
know that there exists a measurable set B ⊆� such that ρτk+1 = ρ̃

τ
k+11B +1�\B . On the other hand we

know that

W1(ρ̃
τ
k+1, ρ

τ
k+1)= sup

f ∈Lip1(�)
0≤ f≤diam(�)

∫
�

f (ρ̃τk+1− ρ
τ
k+1) dx

= sup
f ∈Lip1(�)

0≤ f≤diam(�)

∫
�\B

f (ρ̃τk+1− 1) dx ≤ τC |�| diam(�).

We use the fact that the competitors f in the dual formula can be taken to be positive and bounded by
the diameter of �, just by adding a suitable constant. This implies as well that C is dependent on c, |�|
and diam(�). �

Proof of Theorem 4.1. First we take care of the BV estimate. Lemma A.1 guarantees, for t ∈ ]kτ, (k+1)τ [,
that we have TV(ρ̃τt )≤Cτ+eCτ TV(ρτk ). Together with the BV bound on the projection that we presented
in Section 2 (taken from [De Philippis et al. 2016]), this can be iterated, providing a uniform bound
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(depending on TV(ρ0), T and supt ‖ut‖C1,1) on ‖ρ̃τt ‖BV. Passing this estimate to the limit as τ → 0 we
get ρ ∈ L∞([0, T ];BV(�)).

Then we estimate the behavior of the interpolation curve ρ̂τ in terms of W1. We estimate

W1(ρ
τ
k , ρ̃

τ
k+1)≤

∫ (k+1)τ

kτ
|(ρ̃τt )

′
|W1 dt ≤

∫ (k+1)τ

kτ

∫
�

(
|∇ρ̃τt |

ρ̃τt
+ |ut |

)
ρ̃τt dx dt

≤

∫ (k+1)τ

kτ
‖ρ̃τt ‖BV dt +Cτ ≤ Cτ.

Hence, we obtain

W1(ρ
τ
k , ρ

τ
k+1)≤W1(ρ

τ
k , ρ̃

τ
k+1)+W1(ρ̃

τ
k+1, ρ

τ
k+1)≤ τC.

This in particular means, for b > a,

W1(ρ̂
τ (a), ρ̂τ (b))≤ C(b− a+ τ).

We can pass this relation to the limit, using that, for every t , we have ρ̂τt → ρt in W2(�) (and hence also
in W1(�), since W1 ≤W2), getting

W1(ρ(a), ρ(b))≤ C(b− a),

which means that ρ is Lipschitz continuous in W1(�). �

5. Variations on a theme: some reformulations of the Main Scheme

In this section we propose some alternative approaches to study the problem (1-5). The general idea
is to discretize in time, and give a way to produce a measure ρτk+1 starting from ρτk . Observe that the
interpolations ρτ , ρ̃τ and ρ̂τ proposed in the previous sections are only technical tools to state and prove
a convergence result, and the most important point is exactly the definition of ρτk+1.

The alternative approaches proposed here explore different ideas, more difficult to implement than
the one that we presented in Section 3, and/or restricted to some particular cases (for instance when u is
a gradient). They have their own modeling interest and this is the main reason justifying their sketchy
presentation.

Variant 1: transport, diffusion then projection. We recall that the original splitting approach for the
equation without diffusion [Maury et al. 2011; Roudneff-Chupin 2011] exhibited an important difference
compared to what we did in Section 3. Indeed, in the first phase of each time step (i.e., before the projection)
the particles follow the vector field u and ρ̃τk+1 was not defined as the solution of a continuity equation with
advection velocity given by ut , but as the image of ρτk via a straight-line transport: ρ̃τk+1 := (id+τukτ )#ρ

τ
k .

One can wonder whether it is possible to follow a similar approach here.
A possible way to proceed is as follows. Take a random variable X distributed according to ρτk , and

define ρ̃τk+1 as the law of X + τukτ (X)+ Bτ , where B is a Brownian motion, independent of X . This
exactly means that every particle moves starting from its initial position X , following a displacement
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ruled by u, but adding a stochastic effect in the form of the value at time τ of a Brownian motion. We
can check that this means

ρ̃τk+1 := ητ ∗ ((id+τukτ )#ρ
τ
k ),

where ητ is a Gaussian kernel with zero mean and variance τ , i.e., ητ (x) :=
1

(4τπ)d/2
e−|x |

2/(4τ). Then
we define

ρτk+1 := PK[ρ̃k+1].

Despite the fact that this scheme is very natural and essentially not that different from the Main Scheme,
we have to be careful with the analysis. First we have to quantify somehow the distance Wp(ρ

τ
k , ρ̃

τ
k+1)

for some p ≥ 1 and show that this is of order τ in some sense. Second, we need to be careful when
performing the convolution with the heat kernel (or adding the Brownian motion, which is the same).
This requires working either in the whole space (which was not our framework) or in a periodic setting
(�= Td , the flat torus, which is quite restrictive). Otherwise, the “explicit” convolution step should be
replaced with some other construction, such as following the heat equation (with Neumann boundary
conditions) for a time τ . But this brings us back to a situation very similar to the Main Scheme, with the
additional difficulty that we do not really have estimates on (id+τukτ )#ρ

τ
k .

Variant 2: gradient flow techniques for gradient velocity fields. In this section we assume that the
velocity field of the population is given by the opposite of the gradient of a function, ut = −∇Vt . A
typical example is given when we take for V the distance function to the exit (see the discussions in
[Maury et al. 2010] about this type of question). We start from the case where V does not depend on
time, and we suppose V ∈W 1,1(�). In this particular case — beside the splitting approach — the problem
has a variational structure, hence it is possible to show the existence by the means of gradient flows in
Wasserstein spaces.

Since the celebrated paper of Jordan, Kinderlehrer and Otto [Jordan et al. 1998], we know that the
solutions of the Fokker–Planck equation (with a gradient vector field) can be obtained with the help of
the gradient flow of a perturbed entropy functional with respect to the Wasserstein distance W2. This
formulation of the Jordan–Kinderlehrer–Otto (JKO) scheme was also used in [Maury et al. 2010] for the
first-order model with density constraints. It is easy to combine the JKO scheme with density constraints
to study the second-order/diffusive model. As a slight modification of the model from [Maury et al. 2010],
we can consider the following discrete implicit Euler (or JKO) scheme. As usual, we fix a time step τ > 0,
ρτ0 = ρ0 and for all k ∈ {1, 2, . . . , bN/τc} we just need to define ρτk+1. We take

ρτk+1 = argminρ∈P(�)

{∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ)+
1

2τ
W 2

2 (ρ, ρ
τ
k )

}
, (5-1)

where IK is the indicator function of K, which is

IK(x) :=
{

0 if x ∈ K,
+∞ otherwise.
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The usual techniques from [Jordan et al. 1998; Maury et al. 2010] can be used to identify that the system
(1-5) is the gradient flow of the functional

ρ 7→ J (ρ) :=
∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ)

and that the above discrete scheme converges (up to a subsequence) to a solution of (1-5), thus proving
existence. The key estimate for compactness is

1
2τ

W 2
2 (ρ

τ
k+1, ρ

τ
k )≤ J (ρτk )− J (ρτk+1),

which can be summed up (as on the right-hand side we have a telescopic series), thus obtaining the same
bounds on B2 that we used in Section 3.

Note that whenever D2V ≥ λI , the functional ρ 7→
∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ) is λ-geodesically
convex. This allows us to use the theory in [Ambrosio et al. 2008] to prove not only existence, but
also uniqueness for this equation, and even stability (contractivity or exponential growth on the distance
between two solutions) in W2. Yet, we underline that the techniques of [Di Marino and Mészáros 2016]
also give the same result. Indeed, that article contains two parts. In the first part, the equation with density
constraints for a given velocity field u is studied, under the assumption that −u has some monotonicity
properties: (−ut(x) + ut(y)) · (x − y) ≥ λ|x − y|2 (which is the case for the gradients of λ-convex
functions). In this case standard Grönwall estimates on the W2 distance between two solutions are proved,
and it is not difficult to add diffusion to that result (as the heat kernel is already contractant in W2). In
the second part, via different techniques (mainly using the adjoint equation, and proving somehow L1

contractivity), the uniqueness result is provided for arbitrary L∞ vector fields u, but with the crucial help
of the diffusion term in the equation.

It is also possible to study a variant where V depends on time. We assume for simplicity that
V ∈ Lip([0, T ]×�) (this is a simplification; less regularity in space, such as W 1,1, could be sufficient).
In this case we define

Jt(ρ) :=

∫
�

Vt(x)ρ(x) dx + E(ρ)+ IK(ρ),

ρτk+1 = argminρ∈P(�)
{

Jkτ (ρ)+
1

2τ
W 2

2 (ρ, ρ
τ
k )
}
. (5-2)

The analysis proceeds similarly, with the only exception being that we get

1
2τ

W 2
2 (ρ

τ
k+1, ρ

τ
k )≤ Jkτ (ρ

τ
k )− Jkτ (ρ

τ
k+1),

which is no longer a telescopic series. Yet, we have Jkτ (ρ
τ
k+1)≥ J(k+1)τ (ρ

τ
k+1)+Lip(V )τ , and we can

go on with a telescopic sum plus a remainder of the order of τ . In the case where ut is the opposite of the
gradient of a λ-convex function Vt , one could consider approximation by functions which are piecewise
constant in time and use the standard theory of gradient flows.

We remark here that [Alexander et al. 2014] gave another approach for dealing with first-order crowd
motion models as limits of nonlinear-diffusion equations with gradient drift. This approach could plausibly
be used also in the case where we add a simple diffusion term to the models studied in that paper.
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Variant 3: transport then gradient flow-like step with the penalized entropy functional. We present
now a different scheme, which combines some of the previous approaches. It could formally provide a
solution of the same equation, but presents some extra difficulties.

We define now ρ̃τk+1 := (id+τukτ )#ρ
τ
k and with the help of this we define

ρτk+1 := argminρ∈K E(ρ)+ 1
2τ

W 2
2 (ρ, ρ̃

τ
k+1).

In the last optimization problem we minimize strictly convex and lower semicontinuous functionals,
and hence we have existence and uniqueness of the solution. The formal reason for this scheme being
adapted to the equation is that we perform a step of a JKO scheme in the spirit of [Jordan et al. 1998]
(without the density constraint) or of [Maury et al. 2010] (without the entropy term). This should let a
term −1ρ−∇ · (ρ∇ p) appear in the evolution equation. The term ∇ · (ρu) is due to the first step (the
definition of ρ̃τk+1). To explain a little bit more for the unexperienced reader, we consider the optimality
conditions for the above minimization problem. Following [Maury et al. 2010], we can say that ρ ∈ K is
optimal if and only if there exists a constant ` ∈ R and a Kantorovich potential ϕ for the transport from ρ

to ρτk such that

ρ =


1 on (ln ρ+ϕ/τ) < `,
0 on (ln ρ+ϕ/τ) > `,
∈ [0, 1] on (ln ρ+ϕ/τ)= `.

We then define p= (`− ln ρ−ϕ/τ)+ and we get p ∈ press(ρ). Moreover, ρ-a.e., ∇ p=−∇ρ/ρ−∇ϕ/τ .
We then use the fact that the optimal transport is of the form T = id−∇ϕ and obtain a situation as
sketched in Figure 2.

Notice that

(id+τukτ )
−1
◦ (id+τ(∇ p+∇ρ/ρ))= id−τ(u(k+1)τ −∇ p−∇ρ/ρ)+ o(τ )

provided u is regular enough. Formally we can pass to the limit τ → 0 and have

∂tρ−1ρ+∇ · (ρ(u−∇ p))= 0.

Yet, this turns out to be quite naïve, because we cannot get proper estimates on W2(ρ
τ
k , ρ

τ
k+1). Indeed, this

is mainly due to the hybrid nature of the scheme, i.e., a gradient flow for the diffusion and the projection
part on the one hand and a free transport on the other hand. The typical estimate in the JKO scheme

•ρτk

id+
τu kτ

•

ρ̃τk+1 id+τ (
∇ p+ ∇ρ

ρ
)
• ρτk+1

id−τ
(
u(k+1)τ −∇ p− ∇ρ

ρ

)
+ o(τ )

Figure 2. One time step.
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comes from the fact that one can bound W2(ρ
τ
k , ρ

τ
k+1)

2/τ with the opposite of the increment of the energy,
and that this gives rise to a telescopic sum. Yet, this is not the case whenever the base point for a new
time step is not equal to the previous minimizer. Moreover, the main difficulty here is the fact that the
energy we consider implicitly takes the value +∞, due to the constraint ρ ∈ K, and hence no estimate
is possible whenever ρ̃τk+1 /∈ K. As a possible way to overcome this difficulty, one could approximate
the discontinuous functional IK with some finite energies of the same nature (for instance power-like
entropies, even if the best choice would be an energy which is Lipschitz for the distance W2). These kinds
of difficulties are a matter of current study, in particular for mixed systems and/or multiple populations.

Appendix: BV-type estimates for the Fokker–Planck equation

Here we present some total variation (TV) decay results (in time) for the solutions of the Fokker–Planck
equation. Some are very easy, some trickier. The goal is to look at those estimates which can be easily
iterated in time and combined with the decay of the TV via the projection operator, as we did in Section 4.

Let us take a vector field v : [0,+∞[×�→ Rd (we will choose later which regularity we need) and
consider in � the problem

∂tρt −1ρt +∇ · (ρtvt)= 0 in ]0,+∞[×�,
ρt(∇ρt − vt) · n = 0 on [0,+∞[× ∂�,
ρ(0, · )= ρ0 in �,

(A-1)

for ρ0 ∈ BV(�)∩P(�).

Lemma A.1. Suppose ‖vt‖C1,1 ≤ C for all t ∈ [0,+∞[. Suppose that either �= Td , or that � is convex
and v · n = 0 on ∂�. Then we have the total variation decay estimate∫

�

|∇ρt | dx ≤ C(t − s)+ eC(t−s)
∫
�

|∇ρs | dx for all 0≤ s ≤ t , (A-2)

where C > 0 is a constant depending just on the C1,1 norm of v.

Proof. First we remark that by the regularity of v the quantity

‖v‖L∞ +‖Dv‖L∞ +‖∇(∇ · v)‖L∞

is uniformly bounded. Let us drop now the dependence on t in our notation and calculate in coordinates

d
dt

∫
�

|∇ρ| dx =
∫
�

∇ρ

|∇ρ|
· ∇(∂tρ) dx

=

∫
�

∇ρ

|∇ρ|
· ∇(1ρ−∇ · (vρ)) dx =

∫
�

∑
j

ρ j

|∇ρ|

(∑
i

ρi i j − (∇ · (vρ)) j

)
dx

=−

∫
�

∑
i, j,k

(
ρ2

i j

|∇ρ|
−
ρ jρkρkiρi j

|∇ρ|3

)
dx + B1−

∫
�

∑
j,i

ρ j

|∇ρ|
(vi

i jρ+ v
i
iρ j + v

i
jρi + v

iρi j ) dx

≤ B1+C +C
∫
�

|∇ρ| dx +
∫
�

|∇ρ||∇ · v| dx + B2 ≤ B1+ B2+C +C
∫
�

|∇ρ| dx .
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Here the Bi are the boundary terms, i.e.,

B1 :=

∫
∂�

∑
i, j

ρ j niρi j

|∇ρ|
dHd−1 and B2 := −

∫
∂�

(v · n)|∇ρ| dHd−1.

The constant C > 0 only depends on ‖v‖L∞ +‖∇ · v‖L∞ +‖∇(∇ · v)‖L∞ . We used as well the fact that

−

∫
�

∑
i, j,k

(
ρ2

i j

|∇ρ|
−
ρ jρkρkiρi j

|∇ρ|3

)
dx ≤ 0.

Now, it is clear that in the case of the torus the boundary terms B1 and B2 do not exist, hence we have
the desired conclusion by Grönwall’s lemma. In the case of the convex domain we have B2 = 0 (because
of the assumption v · n = 0) and B1 ≤ 0 because of the next lemma. �

Lemma A.2. Suppose that u : �→ Rd is a smooth vector field with u · n = 0 on ∂�, ρ is a smooth
function with ∇ρ · n = 0 on ∂� and �⊂ Rd is a smooth convex set that we write as �= {h < 0} for a
smooth convex function h with |∇h| = 1 on ∂� (so that n = ∇h on ∂�). Then we have, on the whole
boundary ∂�,

∑
i, j ui

jρ j ni
=−

∑
i, j ui hi jρ j .

In particular, we have
∑

i, j ρi jρ j ni
≤ 0.

Proof. The Neumann boundary assumption on u means u(γ (t)) · ∇h(γ (t))= 0 for every curve γ valued
in ∂� and for all t . Differentiating in t , we get∑

i, j

ui
j (γ (t))(γ

′(t)) j hi (γ (t))+
∑
i, j

ui (γ (t))hi j (γ (t))(γ ′(t)) j
= 0.

Take a point x0 ∈ ∂� and choose a curve γ with γ (t0)= x0 and γ ′(t0)=∇ρ(x0) (which is possible, since
this vector is tangent to ∂� by assumption). This gives the first part of the statement. The second part, i.e.,∑

i, j ρi jρ j ni
≤ 0, is obtained by taking u =∇ρ and using that D2h(x0) is a positive definite matrix. �

Remark A.3. If we look attentively at the proof of Lemma A.1, we can see that we did not really exploit
the regularizing effects of the diffusion term in the equation. This means that the given regularity estimate
is the same that we would have without diffusion; in this case, the density ρt is obtained from the initial
density as the image through the flow of v. Thus, the density depends on the determinant of the Jacobian
of the flow, hence on the derivatives of v. It is normal that, if we want BV bounds on ρt , we need
assumptions on two derivatives of v.

We would like to prove some form of BV estimates under weaker regularity assumptions on v, trying
to exploit the diffusion effects. In particular, we would like to treat the case where v is only C0,1. As we
will see in the following lemma, this degenerates in some sense.

Lemma A.4. Suppose that � is either the torus or a smooth convex set � = {h < 0} parametrized as
a level set of a smooth convex function h. Let vt : �→ Rd be a vector field for t ∈ [0, T ], Lipschitz
and bounded in space, uniformly in time. In the case of a convex domain, suppose v · n = 0 on ∂�. Let
H : Rd

→ R be given by H(z) :=
√
ε2+ |z|2. Now let ρt be the (sufficiently smooth) solution of the

Fokker–Planck equation with homogeneous Neumann boundary condition.



ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS 639

Then there exists a constant C > 0 (depending on v and �) such that∫
�

H(∇ρt) dx ≤
∫
�

H(∇ρ0) dx +Cεt + C
ε

∫ t

0
‖ρs‖

2
L∞ ds. (A-3)

Proof. First let us discuss some properties of H . It is smooth, its gradient is ∇H(z) = z/H(z) and it
satisfies ∇H(z) · z ≤ H(z) for all z ∈ Rd . Moreover its Hessian matrix is given by

[Hi j (z)]i, j∈{1,...,d} =

[
δi j H 2(z)− zi z j

H 3(z)

]
i, j∈{1,...,d}

=
1

H(z)
Id −

1
H 3(z)

z⊗ z ∀z ∈ Rd ,

where

δi j
=

{
1 if i = j ,
0 if i 6= j ,

is the Kronecker symbol. Note that, from this computation, the matrix D2 H ≥ 0 is bounded from above
by 1/H , and hence by ε−1. Moreover we introduce a uniform constant C > 0 such that

‖v‖2L∞ |�| + ‖∇ · v‖L∞ +‖Dv‖L∞ ≤ C.

Now to show the estimate of this lemma we calculate

d
dt

∫
�

H(∇ρt) dx =
∫
�

∇H(∇ρt) · ∂t∇ρt dx =
∫
�

∇H(∇ρt) · ∇(1ρt −∇ · (vtρt)) dx

=

∫
�

∇H(∇ρt) · ∇1ρt dx −
∫
�

∇H(∇ρt) · ∇(∇ · (vtρt)) dx

=: (I )+ (II )

Now we study each term separately and for simplicity we drop the t subscripts in the following. We start
with the case of the torus, where there is no boundary term in the integration by parts:

(I )=
∫
�

∇H(∇ρ) · ∇1ρ dx =
∫
�

∑
j,i

H j (∇ρ)ρ j i i dx =−
∫
�

∑
j,i,k

Hk j (∇ρ)ρikρ j i dx,

(II )=−
∫
�

∇H(∇ρ) · ∇(∇ · (vρ)) dx =−
∫
�

∑
i, j

H j (∇ρ)(v
iρ)i j dx

=

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
i
jρ dx +

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
iρ j dx

=: (IIa )+ (IIb ).

First look at the term (IIa ). Since the matrix H jk is positive definite, we can apply a Young inequality
for each index i and obtain

(IIa )=

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
i
jρ dx ≤ 1

2

∫
�

∑
i, j,k

H jk(∇ρ)ρkiρi j dx + 1
2

∫
�

∑
i, j,k

H jk(∇ρ)v
i
jv

i
kρ

2 dx

≤
1
2
|(I )| +C‖ρ‖2L2‖D2 H‖L∞ .
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The L2 norm in the second term will be estimated by the L∞ norm for the sake of simplicity (see
Remark A.5 below).

For the term (IIb ) we first make a pointwise computation,∑
i, j,k

H jk(∇ρ)ρkiv
iρ j =

1
H 3(∇ρ)

∑
i

(
D2

i ρ · (ε
2 Id + |∇ρ|

2 Id −∇ρ⊗∇ρ) · ∇ρ
)
vi

=
ε2

H 3(∇ρ)

∑
i

vi D2
i ρ · ∇ρ =−ε

2
∑

i

vi∂i

(
1

H(∇ρ)

)
,

where D2
i ρ denotes the i-th row in the Hessian matrix of ρ, and we use (|∇ρ|2 Id −∇ρ⊗∇ρ) · ∇ρ = 0.

Integrating by parts, we obtain

(IIb )= ε
2
∫
�

(∇ · v)
1

H(∇ρ)
dx ≤ Cε2

‖1/H‖L∞ ≤ Cε,

where we use H(z)≥ ε.
Summing up all the terms and using ‖D2 H‖ ≤ ε−1, we get

d
dt

∫
�

H(∇ρt) dx ≤−1
2
|(I )| +C‖ρt‖

2
L∞‖D

2 H‖L∞ +Cε ≤ Cε+C‖ρt‖
2
L∞ε
−1,

which proves the claim.
If we switch to the case of a smooth bounded convex domain �, we have to handle boundary terms.

These terms are ∫
∂�

∑
i, j

H j (∇ρ)ρi j ni
−

∫
∂�

∑
i, j

H j (∇ρ)ρv
i
j n

i ,

where we ignore those terms which involve nivi (i.e., the integration by parts in (IIb ), and the term
H j (∇ρ)ρ j nivi in the integration by parts of (IIa )), since we have already supposed v · n = 0. We use
here Lemma A.2, which provides∑

i, j

H j (∇ρ)ρi j ni
− ρH j (∇ρ)v

i
j n

i
=

1
H(∇ρ)

∑
i, j

(ρ jρi j ni
− ρρ jv

i
j n

i )

=−
1

H(∇ρ)

∑
i, j

(ρ j hi jρi − ρρ j hi jv
i ).

If we use the fact that the matrix D2h is positive definite and a Young inequality, we get
∑

i, j ρ j hi jρi ≥ 0
and

ρ
∑
i, j

|ρ j hi jv
i
| ≤

1
2

∑
i, j

ρ j hi jρi +
1
2

∑
i, j

ρ2v j hi jv
i ,

which implies

1
H(∇ρ)

∑
i, j

(ρ jρi j ni
− ρρ jv

i
j n

i )≤
ρ2

H(∇ρ)
‖D2h‖L∞ |v|

2
≤

C‖ρ‖2L∞
ε

.

This provides the desired estimate on the boundary term. �
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L
1 µ

L
1 PK[µ]

Figure 3. A counterexample to the decay of
∫
�

H(∇ρ), which corresponds to the total
length of the graph.

Remark A.5. In the above proof, we needed to use the L∞ norm of ρ only in the boundary term. When
there is no boundary term, the L2 norm is enough to handle the term (IIa ). In both cases, the norm of ρ
can be bounded in terms of the initial norm multiplied by eCt , where C bounds the divergence of v. On
the other hand, in the torus case, one only needs to suppose ρ0 ∈ L2 and in the convex case ρ0 ∈ L∞.
Both assumptions are satisfied in the applications to crowd motion with density constraints.

We have seen that the constants in the above inequality depend on ε and explode as ε→ 0. This
prevents us from obtaining a clean estimate on the BV norm in this context, but at least it proves that
ρ0 ∈ BV⇒ ρt ∈ BV for all t > 0 (to achieve this result, we just need to take ε = 1). Unfortunately,
the quantity which is estimated is not the BV norm, but the integral

∫
�

H(∇ρ). This is not enough for
the applications to Section 4, as it is unfortunately not true that the projection operator decreases the
value of this other functional. (Here is a simple counterexample. Consider µ = g(x) dx a BV density
on [0, 2] ⊂ R, with g defined as follows. Divide the interval [0, 2] into 2K intervals Ji of length 2r
(with 2r K = 1); call ti the center of each interval Ji (i.e., ti = i2r + r , for i = 0, . . . , 2K − 1) and set
g(x)= L +

√
r2− (x − ti )2 on each Ji with i odd, and g(x)= 0 on Ji for i even, taking L = 1−πr/4.

It is not difficult to check that the projection of µ is equal to the indicator function of the union of all the
intervals Ji with i odd, and that the value of

∫
H(∇ρ) has increased by K (2−π/2)r = 1−π/4, i.e., by

a positive constant. See Figure 3.)
If we pursue the value of the BV norm, we can provide the following estimate.

Lemma A.6. Under the assumptions of Lemma A.4, if we suppose ρ0 ∈BV(�)∩ L∞(�), then, for t ≤ T ,
we have ∫

�

|∇ρt | dx ≤
∫
�

|∇ρ0| dx +C
√

t, (A-4)

where the constant C depends on v, on T and on ‖ρ0‖L∞ .

Proof. Using the L∞ estimate of Lemma 4.2, we will assume that ‖ρt‖L∞ is bounded by a constant
(which depends on v, on T and on ‖ρ0‖L∞). Then, we can write∫

�

|∇ρt | dx ≤
∫
�

H(∇ρt) dx ≤
∫
�

H(∇ρ0) dx +Cεt + Ct
ε
≤

∫
�

(|∇ρ0| + ε) dx +Cεt + Ct
ε
.

It is sufficient to choose, for fixed t , ε =
√

t , in order to prove the claim. �
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Unfortunately, this
√

t behavior is not suitable to be iterated, and the above estimate is useless for the
sake of Section 4. The existence of an estimate (for v Lipschitz) of the form TV(ρt) ≤ TV(ρ0)+Ct ,
or TV(ρt)≤ TV(ρ0)eCt , or even f (TV(ρt))≤ f (TV(ρ0))eCt for any increasing function f : R+→ R+,
seems to be an open question.

Acknowledgements

The authors warmly acknowledge the support of the ANR project ISOTACE (ANR-12-MONU-0013)
and of the iCODE project “strategic crowds”, funded by the IDEX Université Paris-Saclay. They also
acknowledge the warm hospitality of the Fields Institute of Toronto, where a large part of the work
was accomplished during the Thematic Program on Variational Problems in Physics, Economics and
Geometry in Fall 2014. Last but not least, the two anonymous referees who read the paper very carefully
and suggested many useful improvements are warmly thanked as well.

References

[Alexander et al. 2014] D. Alexander, I. Kim, and Y. Yao, “Quasi-static evolution and congested crowd transport”, Nonlinearity
27:4 (2014), 823–858. MR 3190322 Zbl 1293.35035

[Ambrosio and Tilli 2004] L. Ambrosio and P. Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics
and its Applications 25, Oxford University Press, 2004. MR 2039660 Zbl 1080.28001

[Ambrosio et al. 2008] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability
measures, 2nd ed., Birkhäuser, Basel, 2008. MR 2401600 Zbl 1145.35001

[Aubin 1963] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris 256 (1963), 5042–5044. MR 0152860
Zbl 0195.13002

[Benamou and Brenier 2000] J.-D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge–
Kantorovich mass transfer problem”, Numer. Math. 84:3 (2000), 375–393. MR 1738163 Zbl 0968.76069

[Brenier 1987] Y. Brenier, “Décomposition polaire et réarrangement monotone des champs de vecteurs”, C. R. Acad. Sci. Paris
Sér. I Math. 305:19 (1987), 805–808. MR 923203 Zbl 0652.26017

[Brenier 1991] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl.
Math. 44:4 (1991), 375–417. MR 1100809 Zbl 0738.46011

[Cardaliaguet et al. 2015] P. Cardaliaguet, A. R. Mészáros, and F. Santambrogio, “First order mean field games with density
constraints: pressure equals price”, preprint, 2015, available at http://cvgmt.sns.it/paper/2733/.

[Chalons 2007] C. Chalons, “Numerical approximation of a macroscopic model of pedestrian flows”, SIAM J. Sci. Comput. 29:2
(2007), 539–555. MR 2306257 Zbl 1143.35339

[Clément and Maas 2011] P. Clément and J. Maas, “A Trotter product formula for gradient flows in metric spaces”, J. Evol. Equ.
11:2 (2011), 405–427. MR 2802172 Zbl 1232.49051

[Colombo and Rosini 2005] R. M. Colombo and M. D. Rosini, “Pedestrian flows and non-classical shocks”, Math. Methods
Appl. Sci. 28:13 (2005), 1553–1567. MR 2158218 Zbl 1108.90016

[Coscia and Canavesio 2008] V. Coscia and C. Canavesio, “First-order macroscopic modelling of human crowd dynamics”,
Math. Models Methods Appl. Sci. 18:suppl. (2008), 1217–1247. MR 2438214 Zbl 1171.91018

[Cristiani et al. 2014] E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of pedestrian dynamics, Modeling, Simulation
and Applications 12, Springer, Cham, 2014. MR 3308728 Zbl 1314.00081

[De Philippis et al. 2016] G. De Philippis, A. R. Mészáros, F. Santambrogio, and B. Velichkov, “BV estimates in optimal
transportation and applications”, Arch. Ration. Mech. Anal. 219:2 (2016), 829–860. MR 3437864

[Di Marino and Mészáros 2016] S. Di Marino and A. R. Mészáros, “Uniqueness issues for evolution equations with density
constraints”, preprint, 2016, available at http://cvgmt.sns.it/paper/2926/. To appear in Math. Models Methods Appl. Sci.

http://dx.doi.org/10.1088/0951-7715/27/4/823
http://msp.org/idx/mr/3190322
http://msp.org/idx/zbl/1293.35035
http://www.amazon.com/Topics-Analysis-Lecture-Mathematics-Applications-ebook/dp/B000VRLLRI
http://msp.org/idx/mr/2039660
http://msp.org/idx/zbl/1080.28001
http://dx.doi.org/10.1007/978-3-7643-8722-8
http://dx.doi.org/10.1007/978-3-7643-8722-8
http://msp.org/idx/mr/2401600
http://msp.org/idx/zbl/1145.35001
http://gallica.bnf.fr/ark:/12148/bpt6k4006n/f1164.item.r=.zoom
http://msp.org/idx/mr/0152860
http://msp.org/idx/zbl/0195.13002
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1007/s002110050002
http://msp.org/idx/mr/1738163
http://msp.org/idx/zbl/0968.76069
http://gallica.bnf.fr/ark:/12148/bpt6k62167875/f821.item.r=.zoom
http://msp.org/idx/mr/923203
http://msp.org/idx/zbl/0652.26017
http://dx.doi.org/10.1002/cpa.3160440402
http://msp.org/idx/mr/1100809
http://msp.org/idx/zbl/0738.46011
http://cvgmt.sns.it/paper/2733/
http://cvgmt.sns.it/paper/2733/
http://dx.doi.org/10.1137/050641211
http://msp.org/idx/mr/2306257
http://msp.org/idx/zbl/1143.35339
http://dx.doi.org/10.1007/s00028-010-0096-5
http://msp.org/idx/mr/2802172
http://msp.org/idx/zbl/1232.49051
http://dx.doi.org/10.1002/mma.624
http://msp.org/idx/mr/2158218
http://msp.org/idx/zbl/1108.90016
http://dx.doi.org/10.1142/S0218202508003017
http://msp.org/idx/mr/2438214
http://msp.org/idx/zbl/1171.91018
http://dx.doi.org/10.1007/978-3-319-06620-2
http://msp.org/idx/mr/3308728
http://msp.org/idx/zbl/1314.00081
http://dx.doi.org/10.1007/s00205-015-0909-3
http://dx.doi.org/10.1007/s00205-015-0909-3
http://msp.org/idx/mr/3437864
http://cvgmt.sns.it/paper/2926/
http://cvgmt.sns.it/paper/2926/


ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS 643

[Di Marino et al. 2016] S. Di Marino, B. Maury, and F. Santambrogio, “Measure sweeping processes”, J. Convex Anal. 23:2
(2016).

[Dogbé 2008] C. Dogbé, “On the numerical solutions of second order macroscopic models of pedestrian flows”, Comput. Math.
Appl. 56:7 (2008), 1884–1898. MR 2445334 Zbl 1152.65461

[Helbing 1992] D. Helbing, “A fluid-dynamic model for the movement of pedestrians”, Complex Syst. 6:5 (1992), 391–415.
MR 1211939 Zbl 0776.92016

[Helbing and Molnár 1995] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics”, Phys. Rev E 51:5 (1995),
4282–4286.

[Hughes 2002] R. L. Hughes, “A continuum theory for the flow of pedestrians”, Transp. Res. B 36:6 (2002), 507–535.

[Hughes 2003] R. L. Hughes, “The flow of human crowds”, Annu. Rev. Fluid Mech. 35 (2003), 169–182. MR 1967012
Zbl 1125.92324

[Jordan et al. 1998] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM
J. Math. Anal. 29:1 (1998), 1–17. MR 1617171 Zbl 0915.35120

[Laborde 2015] M. Laborde, “On some non linear evolution systems which are perturbations of Wasserstein gradient flows”,
preprint, 2015. To appear in Topological optimization and optimal transport in the applied sciences, edited by M. Bergounioux
et al., de Gruyter, Berlin, 2016. arXiv 1506.00126

[Ladyzhenskaya et al. 1967] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Lineĭnye i kvazilineĭnye
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ASYMPTOTIC STABILITY IN ENERGY SPACE FOR DARK SOLITONS
OF THE LANDAU–LIFSHITZ EQUATION

YAKINE BAHRI

We prove the asymptotic stability in energy space of nonzero speed solitons for the one-dimensional
Landau–Lifshitz equation with an easy-plane anisotropy

∂t m+m× (∂xx m−m3e3)= 0

for a map m = (m1,m2,m3) : R× R→ S2, where e3 = (0, 0, 1). More precisely, we show that any
solution corresponding to an initial datum close to a soliton with nonzero speed is weakly convergent
in energy space as time goes to infinity to a soliton with a possible different nonzero speed, up to the
invariances of the equation. Our analysis relies on the ideas developed by Martel and Merle for the
generalized Korteweg–de Vries equations. We use the Madelung transform to study the problem in the
hydrodynamical framework. In this framework, we rely on the orbital stability of the solitons and the
weak continuity of the flow in order to construct a limit profile. We next derive a monotonicity formula
for the momentum, which gives the localization of the limit profile. Its smoothness and exponential decay
then follow from a smoothing result for the localized solutions of the Schrödinger equations. Finally,
we prove a Liouville type theorem, which shows that only the solitons enjoy these properties in their
neighbourhoods.

1. Introduction

We consider the one-dimensional Landau–Lifshitz equation

∂t m+m× (∂xx m+ λm3e3)= 0 (LL)

for a map m= (m1,m2,m3) :R×R→S2, where e3= (0, 0, 1) and λ∈R. This equation was introduced by
Landau and Lifshitz [1935]. It describes the dynamics of magnetization in a one-dimensional ferromagnetic
material, for example in CsNiF3 or TMNC (see, e.g., [Kosevich et al. 1990; Hubert and Schäfer 1998]
and the references therein). The parameter λ accounts for the anisotropy of the material. The choices
λ > 0 and λ < 0 correspond respectively to an easy-axis and an easy-plane anisotropy. In the isotropic
case λ = 0, the equation is exactly the one-dimensional Schrödinger map equation, which has been
intensively studied (see, e.g., [Guo and Ding 2008; Jerrard and Smets 2012]). In this paper, we study the
Landau–Lifshitz equation with an easy-plane anisotropy (λ < 0). Performing, if necessary, a suitable
scaling argument on the map m, we assume from now on that λ = −1. Our main goal is to prove the
asymptotic stability for the solitons of this equation (see Theorem 1.1 below).

MSC2010: 35Q51, 35Q60, 37K40.
Keywords: asymptotic stability, solitons, Landau–Lifshitz equation, travelling waves.
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The Landau–Lifshitz equation is Hamiltonian. Its Hamiltonian, the so-called Landau–Lifshitz energy,
is given by

E(m) := 1
2

∫
R

(
|∂x m|2+m2

3
)
.

In the sequel, we restrict our attention to the Hamiltonian framework in which the solutions m to (LL)
have finite Landau–Lifshitz energy, i.e., belong to energy space

E(R) := {υ : R→ S2
| υ ′ ∈ L2(R) and υ3 ∈ L2(R)}.

A soliton with speed c is a travelling-wave solution of (LL) having the form

m(x, t) := u(x − ct).

Its profile u is a solution to the ordinary differential equation

u′′+ |u′|2u+ u2
3u− u3e3+ cu× u′ = 0. (TWE)

The solutions of this equation are explicit. When |c| ≥ 1, the only solutions with finite Landau–Lifshitz
energy are the constant vectors in S1

×{0}. In contrast, when |c|< 1, there exist nonconstant solutions
uc to (TWE), which are given by the formulae

[uc]1(x)=
c

cosh((1−c2)1/2x)
, [uc]2(x)= tanh((1− c2)1/2x), [uc]3(x)=

(1−c2)1/2

cosh((1−c2)1/2x)
,

up to the invariances of the problem, i.e., translations, rotations around the axis x3 and orthogonal
symmetries with respect to the plane x3 = 0 (see [de Laire 2014] for more details).

Our goal is to study the asymptotic behaviour for solutions of (LL) which are initially close to a soliton
in energy space. We endow E(R) with the metric structure corresponding to the distance introduced by
de Laire and Gravejat [2015],

dE( f, g) := | f̌ (0)− ǧ(0)| + ‖ f ′− g′‖L2(R)+‖ f3− g3‖L2(R),

where f = ( f1, f2, f3) and f̌ = f1 + i f2 (and similarly for g). The Cauchy problem and the orbital
stability of the travelling waves have been solved by de Laire and Gravejat [2015]. We are concerned
with the asymptotic stability of travelling waves. The following theorem is our main result.

Theorem 1.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number δc, depending only on c, such that, if

dE
(
m0, uc

)
≤ δc,

then there exist a number c∗ ∈ (−1, 1) \ {0}, and two functions b ∈ C1(R,R) and θ ∈ C1(R,R) such that

b′(t)→ c∗ and θ ′(t)→ 0

as t→+∞, and for which the map

mθ := (cos(θ)m1− sin(θ)m2, sin(θ)m1+ cos(θ)m2,m3),
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satisfies the convergences

∂x mθ(t)( · + b(t), t) ⇀ ∂x uc∗ in L2(R),

mθ(t)( · + b(t), t)→ uc∗ in L∞loc(R),

m3( · + b(t), t) ⇀ [uc∗]3 in L2(R)

as t→+∞.

Remarks. (i) Note that the case c = 0 — that is, black solitons — is excluded from the statement of
Theorem 1.1. In this case, the map ǔ0 vanishes and we cannot apply the Madelung transform and the
subsequent arguments. Orbital and asymptotic stability remain open problems for this case. Note that, to
our knowledge, there is currently no available proof of the local well-posedness of (LL) in energy space,
when u0 vanishes and so the hydrodynamical framework can no longer be used.

(ii) Here, we state a weak convergence result and not a local strong convergence one, like the results
given by Martel and Merle [2008a; 2008b] for the Korteweg–de Vries equation. In their situation, they
can use two monotonicity formulae for the L2 norm and the energy. This heuristically originates in the
property that dispersion has negative speed in the context of the Korteweg–de Vries equation. In contrast,
the possible group velocities for the dispersion of the Landau–Lifshitz equation are given by

vg(k)=±
1+2k2
√

1+k2
,

where k is the wave number. Dispersion has both negative and positive speeds. A monotonicity formula
remains for the momentum due to the existence of a gap in the possible group velocities, which satisfy
the condition |vg(k)| ≥ 1. However, there is no evidence that one can establish a monotonicity formula
for the energy.

Similar results were stated by Soffer and Weinstein [1989; 1990; 1992]. They provided the asymptotic
stability of ground states for the nonlinear Schrödinger equation with a potential in a regime for which
the nonlinear ground-state is a close continuation of the linear one. They rely on dispersive estimates
for the linearized equation around the ground state in suitable weighted spaces, and they apply a fixed
point argument. This strategy was successfully extended in particular by Buslaev, Perelman, C. Sulem
and Cuccagna to the nonlinear Schrödinger equations without potential (see, e.g., [Buslaev and Perelman
1993; 1995; Buslaev and Sulem 2003; Cuccagna 2001]) and with a potential (see, e.g., [Gang and Sigal
2007]). We refer to the detailed historical survey by Cuccagna [2003] for more details. Later, Cuccagna
[2011] proved a stronger result for the ground state satisfying the sufficient conditions for orbital stability
of M. Weinstein, for seemingly generic nonlinear Schrödinger equation which has a smooth short range
nonlinearity with the presence of a very short range and smooth linear potential. In addition, asymptotic
stability in spaces of exponentially localized perturbations was studied by Pego and Weinstein [1994]
(see also [Mizumachi 2001] for perturbations with algebraic decay).
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Our strategy for establishing the asymptotic stability result in Theorem 1.1 is reminiscent of ideas
developed by Martel and Merle [2006; 2008a; 2008b] for the Korteweg–de Vries equation, and successfully
adapted by Béthuel, Gravejat and Smets in [Béthuel et al. 2014] for the Gross–Pitaevskii equation.

The main steps of the proof are similar to the ones for the Gross–Pitaevskii equation in [Béthuel et al.
2015]. Indeed, the solitons of the Landau–Lifshitz equation share many properties with the solitons of
the Gross–Pitaevskii equation. In fact, the stereographic variable ψ defined by

ψ =
u1+iu2
1+u3

satisfies the equation

∂xxψ +
1−|ψ |2

1+|ψ |2
ψ − ic∂xψ =

2ψ
1+|ψ |2

(∂xψ)
2,

which can be seen as a perturbation of the equation for the travelling waves of the Gross–Pitaevskii
equation, namely

∂xx9 + (1− |9|2)9 − ic∂x9 = 0.

However, the analysis of the Landau–Lifshitz equation is much more difficult. Indeed, we rely on a
Hasimoto like transform in order to relate the Landau–Lifshitz equation with a nonlinear Schrödinger
equation. Doing so, we lose some regularity. We have to deal with a nonlinear equation at the L2-level
and not at the H 1-level as in the case of the Gross–Pitaevskii equation. This leads to important technical
difficulties.

Returning to the proof of Theorem 1.1, we first translate the problem into the hydrodynamical for-
mulation. Then, we prove the asymptotic stability in that framework. In fact, we begin by refining the
orbital stability. Next, we construct a limit profile, which is smooth and localized. For the proof of the
exponential decay of the limit profile, we cannot rely on the Sobolev embedding H 1 into L∞ as was done
in [Béthuel et al. 2015]. We use instead the results of Kenig, Ponce and Vega in [Kenig et al. 2003], and
the Gagliardo–Nirenberg inequality (see the proof of Proposition 2.9 for more details). We also have to
deal with the weak continuity of the flow in order to construct the limit profile. For the Gross–Pitaevskii
equation, this property relies on the uniqueness in a weaker space (see [Béthuel et al. 2015]). There is
no similar result at the L2-level. Instead, we use the Kato smoothing effect. The asymptotic stability in
the hydrodynamical variables then follows from a Liouville type theorem. It shows that the only smooth
and localized solutions in the neighbourhood of the solitons are the solitons. Finally, we deduce the
asymptotic stability in the original setting from the result in the hydrodynamical framework.

In Section 2 below, we explain the main tools and different steps for the proof. First, we introduce the
hydrodynamical framework. Then, we state the orbital stability of the solitons under a new orthogonality
condition. Next, we sketch the proof of the asymptotic stability for the hydrodynamical system and we
state the main propositions. We finally complete the proof of Theorem 1.1.

In Sections 3 to 5, we give the proofs of the results stated in Section 2. In Section 3, we deal with
the orbital stability in the hydrodynamical framework. In Section 4, we prove the localization and the
smoothness of the limit profile. In the last section, we prove a Liouville type theorem. In a separate
appendix, we show some facts used in the proofs, in particular the weak continuity of the (HLL) flow.
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2. Main steps for the proof of Theorem 1.1

The hydrodynamical framework. We introduce the map m̌ :=m1+ im2. Since m3 belongs to H 1(R), it
follows from the Sobolev embedding theorem that

|m̌(x)| = (1−m2
3(x))

1/2
→ 1

as x→±∞. As a consequence, the Landau–Lifshitz equation shares many properties with the Gross–
Pitaevskii equation (see, e.g., [Béthuel et al. 2008]). One of these properties is the existence of a
hydrodynamical framework for the Landau–Lifshitz equation. In terms of the maps m̌ and m3, this
equation may be written as {

i∂t m̌−m3∂xx m̌+ m̌∂xx m3− m̌m3 = 0,

∂t m3+ ∂x 〈i m̌, ∂x m̌〉C = 0.

When the map m̌ does not vanish, one can write it as m̌ = (1−m2
3)

1/2 exp iϕ. The hydrodynamical
variables v := m3 and w := ∂xϕ satisfy the system{

∂tv = ∂x((v
2
− 1)w),

∂tw = ∂x

(
∂xxv

1−v2 + v
(∂xv)

2

(1−v2)2
+ v(w2

− 1)
)
.

(HLL)

This system is similar to the hydrodynamical Gross–Pitaevskii equation (see, e.g., [Béthuel et al. 2015]).1

We first study the asymptotic stability in the hydrodynamical framework.
In this framework, the Landau–Lifshitz energy is expressed as

E(v) :=
∫

R

e(v) := 1
2

∫
R

(
(v′)2

1−v2 + (1− v
2)w2
+ v2

)
, (2-1)

where v := (v,w) denotes the hydrodynamical pair. The momentum P , defined by

P(v) :=
∫

R

vw, (2-2)

is also conserved by the Landau–Lifshitz flow. The momentum P and the Landau–Lifshitz energy E play
an important role in the study of the asymptotic stability of the solitons. When c 6= 0, the function ǔc

does not vanish. The hydrodynamical pair Qc := (vc, wc) is given by

vc(x)=
(1−c2)1/2

cosh((1−c2)1/2x)
and wc(x)=

cvc(x)
1−vc(x)2

=
c(1−c2)1/2 cosh((1−c2)1/2x)

sinh((1−c2)1/2x)2+c2 . (2-3)

The only invariances of (HLL) are translations and the opposite map (v,w) 7→ (−v,−w). We restrict
our attention to the translation invariances. All the analysis developed below applies when the opposite
map is also taken into account. For a ∈ R, we define

Qc,a(x) := Qc(x − a) := (vc(x − a), wc(x − a)),

1The hydrodynamical terminology originates in the fact that the hydrodynamical Gross–Pitaevskii equation is similar to the
Euler equation for an irrotational fluid (see, e.g., [Béthuel et al. 2014]).
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a nonconstant soliton with speed c. We also set

NV(R) :=
{
v= (v,w) ∈ H 1(R)× L2(R) |max

R
|v|< 1

}
.

This nonvanishing space is endowed in the sequel with the metric structure provided by the norm

‖v‖H1×L2 :=
(
‖v‖2H1 +‖w‖

2
L2

)1/2
.

Orbital stability. A perturbation of a soliton is provided by another soliton with a slightly different
speed. This property follows from the existence of a continuum of solitons with different speeds. A
solution corresponding to such a perturbation at initial time diverges from the soliton due to the different
speeds of propagation, so that the standard notion of stability does not apply to solitons. The notion of
orbital stability is tailored to deal with such situations. The orbital stability theorem below shows that a
perturbation of a soliton at initial time remains a perturbation of the soliton, up to translations, for all time.

The following theorem is a variant of the result by de Laire and Gravejat [2015] concerning sums of
solitons. It is useful for the proof of the asymptotic stability.

Theorem 2.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number αc, depending only on c, with the
following properties. Given any (v0, w0) ∈ X (R) := H 1(R)× L2(R) such that

α0 := ‖(v0, w0)− Qc,a‖X (R) ≤ αc (2-4)

for some a ∈ R, there exist a unique global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum
(v0, w0), and two maps c ∈ C1(R, (−1, 1) \ {0}) and a ∈ C1(R,R) such that the function ε defined by

ε( · , t) :=
(
v( · + a(t), t), w( · + a(t), t)

)
− Qc(t) (2-5)

satisfies the orthogonality conditions

〈ε( · , t), ∂x Qc(t)〉L2(R)2 = 〈ε( · , t), χc(t)〉L2(R)2 = 0 (2-6)

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and continuously
on c, such that

max
x∈R

v(x, t)≤ 1− σc, (2-7)

‖ε( · , t)‖X (R)+ |c(t)− c| ≤ Acα
0, (2-8)

|c′(t)| + |a′(t)− c(t)| ≤ Ac‖ε( · , t)‖X (R), (2-9)

for any t ∈ R.

Remark. In this statement, the function χc is a normalized eigenfunction associated to the unique negative
eigenvalue of the linear operator

Hc := E ′′(Qc)+ cP ′′(Qc).
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The operator Hc is self-adjoint on L2(R)× L2(R), with domain Dom(Hc) := H 2(R)× L2(R) (see (A-42)
for its explicit formula). It has a unique negative simple eigenvalue −λ̃c, and its kernel is given by

Ker(Hc)= Span(∂x Qc). (2-10)

Our statement of orbital stability relies on a different decomposition from that proposed by Grillakis,
Shatah and Strauss in [Grillakis et al. 1987]. This modification is related to the proof of asymptotic
stability. A key ingredient in the proof is the coercivity of the quadratic form Gc, which is defined in
(2-46), under a suitable orthogonality condition. In case we use the orthogonality conditions in [Grillakis
et al. 1987], the corresponding orthogonality condition for Gc is provided by the function v−1

c S∂c Qc (see
(2-40) for the definition of S), which does not belong to L2(R). In order to bypass this difficulty, we use
the second orthogonality condition in (2-6) for which the corresponding orthogonality condition for Gc

is given by the function v−1
c Sχc, which does belong to L2(R) (see the appendix for more details). This

alternative decomposition is inspired by the one used by Martel and Merle [2008a].
Concerning the proof of Theorem 2.1, we first establish an orbital stability theorem with the classical

decomposition of Grillakis, Shatah and Strauss [Grillakis et al. 1987]. This appears as a particular case of
the orbital stability theorem in [de Laire and Gravejat 2015] for sums of solitons. We next show that if
we have orbital stability for some decomposition and orthogonality conditions, then we also have it for
different decomposition and orthogonality conditions (see Section 2 for the detailed proof of Theorem 2.1).

Asymptotic stability for the hydrodynamical variables. The following theorem shows the asymptotic
stability result in the hydrodynamical framework.

Theorem 2.2. Let c ∈ (−1, 1) \ {0}. There exists a positive constant βc ≤ αc, depending only on c, with
the following properties. Given any (v0, w0) ∈ X (R) such that

‖(v0, w0)− Qc,a‖X (R) ≤ βc,

for some a ∈ R, there exist a number c∗ ∈ (−1, 1) \ {0} and a map b ∈ C1(R,R) such that the unique
global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0) satisfies(

v( · + b(t), t), w( · + b(t), t)
)
⇀ Qc∗ in X (R), (2-11)

and

b′(t)→ c∗

as t→+∞.

Theorem 2.2 establishes a convergence to some orbit of the soliton. This result is stronger than the one
given by Theorem 2.1 which only shows that the solution stays close to that orbit.

In the next subsections, we explain the main ideas of the proof, which follows the strategy developed
by Martel and Merle [2008a; 2008b] for the Korteweg–de Vries equation.
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Construction of a limit profile. Let c ∈ (−1, 1) \ {0}, and let (v0, w0) ∈ X (R) be any pair satisfying
the assumptions of Theorem 2.2. Since βc ≤ αc in the assumptions of Theorem 2.2, we deduce from
Theorem 2.1 that the unique solution (v,w) to (HLL) with initial datum (v0, w0) is global.

We take an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (2-8) and (2-9), we may
assume, up to a subsequence, that there exist a limit perturbation ε∗0 ∈ X (R) and a limit speed c∗0 ∈ [−1, 1]
such that

ε( ·, tn)=
(
v( · + a(tn), tn), w( · + a(tn), tn)

)
− Qc(tn)⇀ε∗0 in X (R), (2-12)

and
c(tn)→ c∗0 (2-13)

as n→+∞. Our main goal is to show that

ε∗0 ≡ 0

(see Corollary 2.15). For that, we establish smoothness and rigidity properties for the solution of (HLL)
with the initial datum Qc∗0 + ε

∗

0 .
First, we require the constant βc to be sufficiently small so that, when the number α0 which appears in

Theorem 2.1 satisfies α0
≤ βc, then we infer from (2-8) and (2-9) that

min{c(t)2, a′(t)2} ≥ c2

2
, max{c(t)2, a′(t)2} ≤ 1+ c2

2
, (2-14)

and

‖vc( · )− v( · + a(t), t)‖L∞(R) ≤min
{
c2

4
,

1−c2

16

}
(2-15)

for any t ∈ R. This yields, in particular, that c∗0 ∈ (−1, 1) \ {0}, and then, that Qc∗0 is well-defined and
different from the black soliton.

By (2-8), we also have
|c∗0 − c| ≤ Acβc, (2-16)

and, applying again (2-8) well as (2-12) and the weak lower semicontinuity of the norm, we also know
that the function

(v∗0 , w
∗

0) := Qc∗0 + ε
∗

0

satisfies
‖(v∗0 , w

∗

0)− Qc‖X (R) ≤ Acβc+‖Qc− Qc∗0‖X (R). (2-17)

We next impose a supplementary smallness assumption on βc so that

‖(v∗0 , w
∗

0)− Qc‖X (R) ≤ αc. (2-18)

By Theorem 2.1, there exists a unique global solution (v∗, w∗) ∈ C0(R,NV(R)) to (HLL) with initial
datum (v∗0 , w

∗

0), and two maps c∗ ∈ C1(R, (−1, 1) \ {0}) and a∗ ∈ C1(R,R) such that the function ε∗

defined by
ε∗( · , t) :=

(
v∗( · + a∗(t), t), w( · + a∗(t), t)

)
− Qc∗(t) (2-19)
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satisfies the orthogonality conditions

〈ε∗( · , t), ∂x Qc∗(t)〉L2(R)2 = 〈ε
∗( · , t), χc∗(t)〉L2(R)2 = 0, (2-20)

as well as the estimates

‖ε∗( · , t)‖X (R)+ |c∗(t)− c| + |a∗′(t)− c∗(t)| ≤ Ac‖(v
∗

0 , w
∗

0)− Qc‖X (R), (2-21)

for any t ∈ R.
We may take βc small enough such that, combining (2-16) with (2-17) and (2-21), we obtain

min{c∗(t)2, (a∗)′(t)2} ≥ c2

2
, max{c∗(t)2, (a∗)′(t)2} ≤ 1+ c2

2
, (2-22)

and ∥∥vc( · )− v∗( · + a∗(t), t)
∥∥

L∞(R) ≤min
{
c2

4
,

1−c2

16

}
, (2-23)

for any t ∈ R.
Finally, we use the weak continuity of the flow map for the Landau–Lifshitz equation. The proof relies

on Proposition A.1 and follows the lines of the proof of Proposition 1 in [Béthuel et al. 2015].

Proposition 2.3. Let t ∈ R be fixed. Then(
v( · + a(tn), tn + t), w( · + a(tn), tn + t)

)
⇀
(
v∗( · , t), w∗( · , t)

)
in X (R), (2-24)

while

a(tn + t)− a(tn)→ a∗(t) and c(tn + t)→ c∗(t) (2-25)

as n→+∞. In particular, we have

ε( · , tn + t) ⇀ ε∗( · , t) in X (R) (2-26)

as n→+∞.

Localization and smoothness of the limit profile. Our proof of the localization of the limit profile is based
on a monotonicity formula.

Consider a pair (v,w) which satisfies the conclusions of Theorem 2.1 and suppose that (2-14) and
(2-15) are true. Let R and t be two real numbers, and set

IR(t)≡ I (v,w)R (t) := 1
2

∫
R

[vw](x + a(t), t)8(x − R) dx,

where 8 is the function defined on R by

8(x) := 1
2(1+ th(νcx)), (2-27)

with νc :=
√

1− c2/8.
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Proposition 2.4. Let R ∈R, t ∈R and σ ∈ [−σc, σc], with σc :=
√

1− c2/4. Under the above assumptions,
there exists a positive number Bc, depending only on c, such that

d
dt
[IR+σ t(t)] ≥

1−c2

8

∫
R

[
(∂xv)

2
+ v2
+w2](x + a(t), t)8′(x − R− σ t) dx − Bce−2νc|R+σ t |. (2-28)

In particular, we have
IR(t1)≥ IR(t0)− Bce−2νc|R| (2-29)

for any real numbers t0 ≤ t1.

For the limit profile (v∗, w∗), we set I ∗R(t) := I (v
∗,w∗)

R (t) for any R ∈ R and any t ∈ R.

Proposition 2.5 [Béthuel et al. 2015]. Given any positive number δ, there exists a positive number Rδ,
depending only on δ, such that we have

|I ∗R(t)| ≤ δ ∀R ≥ Rδ,

|I ∗R(t)− P(v∗, w∗)| ≤ δ ∀R ≤−Rδ

for any t ∈ R.

The proof of Proposition 2.5 is the same as that of Proposition 3 in [Béthuel et al. 2015].
From Propositions 2.4 and 2.5, as in [Béthuel et al. 2015] we derive:

Proposition 2.6 [Béthuel et al. 2015]. Let t ∈ R. There exists a positive constant Ac such that∫ t+1

t

∫
R

[
(∂xv

∗)2+ (v∗)2+ (w∗)2
]
(x + a∗(s), s)e2νc|x | dx ds ≤Ac.

We next consider the following map, which was introduced by de Laire and Gravejat [2015]:

9 :=
1
2

(
∂xv

(1−v2)1/2
+ i(1− v2)1/2w

)
exp iθ, (2-30)

where

θ(x, t) := −
∫ x

−∞

v(y, t)w(y, t) dy. (2-31)

The map 9 solves the nonlinear Schrödinger equation

i∂t9 + ∂xx9 + 2|9|29 + 1
2v

29 −Re
(
9(1− 2F(v,9))

)
(1− 2F(v,9))= 0, (2-32)

with

F(v,9)(x, t) :=
∫ x

−∞

v(y, t)9(y, t) dy, (2-33)

while the function v satisfies the two equations{
∂tv = 2∂x Im

(
9(2F(v,9)− 1)

)
,

∂xv = 2 Re
(
9(1− 2F(v,9))

)
.

(2-34)

The local Cauchy problem for (2-32)–(2-34) was analyzed by de Laire and Gravejat [2015]. We recall the
following proposition which shows the continuous dependence with respect to the initial datum of the
solutions to the system of equations (2-32)–(2-34) (see [de Laire and Gravejat 2015] for the proof).
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Proposition 2.7 [de Laire and Gravejat 2015]. Suppose that the pairs (v0, 90) ∈ H 1(R)× L2(R) and
(ṽ0, 9̃0) ∈ H 1(R)× L2(R) are such that

∂xv
0
= 2 Re

(
90(1− 2F

(
v0, 90

)))
and ∂x ṽ

0
= 2 Re

(
9̃0(1− 2F

(
ṽ0, 9̃0

)))
.

Given two solutions (v,9) and (ṽ, 9̃) in C0([0, T∗], H 1(R)×L2(R)), with (9, 9̃)∈ L4([0, T∗], L∞(R))2,
to (2-32)–(2-34) with initial data (v0, 90) and (ṽ0, 9̃0) respectively, for some positive time T∗, there exist
a positive number τ , depending only on ‖v0

‖L2 , ‖ṽ0
‖L2 , ‖90

‖L2 and ‖9̃0
‖L2 , and a universal constant A

such that we have

‖v− ṽ‖C0([0,T ],L2)+‖9 − 9̃‖C0([0,T ],L2)+‖9 − 9̃‖L4([0,T ],L∞)

≤ A
(
‖v0
− ṽ0
‖L2 +‖90

− 9̃0
‖L2
)

(2-35)

for any T ∈ [0,min{τ, T∗}]. In addition, there exists a positive number B, depending only on ‖v0
‖L2 ,

‖ṽ0
‖L2 , ‖90

‖L2 and ‖9̃0
‖L2 , such that

‖∂xv− ∂x ṽ‖C0([0,T ],L2) ≤ B
(
‖v0
− ṽ0
‖L2 +‖90

− 9̃0
‖L2
)

(2-36)

for any T ∈ [0,min{τ, T∗}].

This proposition plays an important role in the proof of not only the smoothing of the limit profile, but
also the weak continuity of the hydrodynamical Landau–Lifshitz flow.

In order to prove the smoothness of the limit profile, we rely on the following smoothing type estimate
for localized solutions of the linear Schrödinger equation (see [Béthuel et al. 2015; Escauriaza et al. 2008]
for the proof of Proposition 2.8).

Proposition 2.8 [Béthuel et al. 2015; Escauriaza et al. 2008]. Let λ ∈ R, and consider a solution
u ∈ C0(R, L2(R)) to the linear Schrödinger equation

i∂t u+ ∂xx u = F, (LS)

with F ∈ L2(R, L2(R)). Then there exists a positive constant Kλ, depending only on λ, such that

λ2
∫ T

−T

∫
R

|∂x u(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2+ |F(x, t)|2

)
eλx dx dt (2-37)

for any positive number T .

We apply Proposition 2.8 to 9∗ as well as all its derivatives, where 9∗ is the solution to (2-32)
associated to the solution (v∗, w∗) of (HLL), and then express the result in terms of (v∗, w∗) to obtain:

Proposition 2.9. The pair (v∗, w∗) is indefinitely smooth and exponentially decaying on R×R. Moreover,
given any k ∈ N, there exists a positive constant Ak,c, depending only on k and c, such that∫

R

[
(∂k+1

x v∗)2+ (∂k
x v
∗)2+ (∂k

xw
∗)2
]
(x + a∗(t), t)eνc|x | dx ≤ Ak,c (2-38)

for any t ∈ R.
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The Liouville type theorem. We next establish a Liouville type theorem, which guarantees that the limit
profile constructed above is exactly a soliton. In particular, we will show that ε∗0 ≡ 0.

The pair ε∗ satisfies the equation

∂tε
∗
= JHc∗(t)(ε

∗)+ JRc∗(t)ε
∗
+ (a∗′(t)− c∗(t))(∂x Qc∗(t)+ ∂xε

∗)− c∗′(t)∂c Qc∗(t), (2-39)

where J is the symplectic operator

J =−2S∂x :=

(
0 −2∂x

−2∂x 0

)
, (2-40)

and the remainder term Rc∗(t)ε
∗ is given by

Rc∗(t)ε
∗
:= E ′(Qc∗(t)+ ε

∗)− E ′(Qc∗(t))− E ′′(Qc∗(t))(ε
∗).

We rely on the strategy developed by Martel and Merle [2008a] (see also [Martel 2006]), and then applied
by Béthuel, Gravejat and Smets in [Béthuel et al. 2015] to the Gross–Pitaevskii equation. We define the
pair

u∗( · , t) := SHc∗(t)(ε
∗( · , t)). (2-41)

Since SHc∗(t)(∂x Qc∗(t))= 0, we deduce from (2-39) that

∂t u∗ =Hc∗(t)(J Su∗)+ SHc∗(t)(JRc∗(t)ε
∗)− (c∗)′(t)SHc∗(t)(∂c Qc∗(t))

+ (c∗)′(t)S∂cHc∗(t)(ε
∗)+ ((a∗)′(t)− c∗(t))SHc∗(t)(∂xε

∗). (2-42)

Decreasing further the value of βc if necessary, we have:

Proposition 2.10. There exist two positive numbers A∗ and R∗, depending only on c, such that we have2

d
dt

(∫
R

xu∗1(x, t)u∗2(x, t) dx
)
≥

1−c2

16
‖u∗( · , t)‖2X (R)− A∗‖u∗( · , t)‖2X (B(0,R∗)) (2-43)

for any t ∈ R.

We give a second monotonicity type formula to dispose of the nonpositive local term ‖u∗(·, t)‖2X (B(0,R∗))
on the right-hand side of (2-43). If M is a smooth, bounded, two-by-two symmetric matrix-valued function,
then

d
dt
〈Mu∗, u∗〉L2(R)2 = 2〈SMu∗,Hc∗(−2∂x u∗)〉L2(R)2 + “superquadratic terms”, (2-44)

where S is the matrix

S :=
(

0 1
1 0

)
.

2In (2-43), we use the notation

‖( f, g)‖2X (�) :=
∫
�
((∂x f )2+ f 2

+ g2),

in which � denotes a measurable subset of R.
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For c ∈ (−1, 1) \ {0}, let Mc be given by

Mc :=

−
2cvc∂xvc
(1−vc)2

−
∂xvc
vc

−
∂xvc
vc

0

 . (2-45)

We have the following lemma.

Lemma 2.11. Let c ∈ (−1, 1) \ {0} and u ∈ X3(R). Then

Gc(u) := 2〈SMcu,Hc(−2∂x u)〉L2(R)2

= 2
∫

R

µc

(
u2−

cv2
c

µc
u1−

2cvc∂xvc
µc(1−v2

c )
∂x u1

)2
+ 3

∫
R

v4
c
µc

(
∂x u1−

∂xvc
vc

u1

)2
, (2-46)

where

µc = 2(∂xvc)
2
+ v2

c (1− v
2
c ) > 0. (2-47)

The functional Gc is a nonnegative quadratic form, and

Ker(Gc)= Span(Qc). (2-48)

We have indeed chosen the matrix Mc such that Mc Qc = ∂x Qc to obtain (2-48). Since Qc does not
vanish, we deduce from standard Sturm–Liouville theory that Gc is nonnegative, which is confirmed by
the computation in Lemma 2.11.

By the second orthogonality condition in (2-20) and the fact that Hc∗(χc∗)=−λ̃c∗χc∗ , we have

0= 〈Hc∗(χc∗), ε
∗
〉L2(R)2 = 〈Hc∗(ε

∗), χc∗〉L2(R)2 = 〈u
∗, Sχc∗〉L2(R)2 . (2-49)

On the other hand, we know that

〈Qc∗, Sχc∗〉 = P ′(Qc∗)(χc∗) 6= 0, (2-50)

so that the pair u∗ is not proportional to Qc∗ under the orthogonality condition in (2-49). We claim the
following coercivity property of Gc under this orthogonality condition.

Proposition 2.12. Let c ∈ (−1, 1) \ {0}. There exists a positive number 3c, depending only and continu-
ously on c, such that

Gc(u)≥3c

∫
R

[(∂x u1)
2
+ (u1)

2
+ (u2)

2
](x)e−2|x | dx, (2-51)

for any pair u ∈ X (R) verifying

〈u, Sχc〉L2(R)2 = 0. (2-52)

Coming back to (2-44), we can prove the next proposition.
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Proposition 2.13. There exists a positive number B∗, depending only on c, such that

d
dt
(
〈Mc∗(t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥

1
B∗

∫
R

[(∂x u∗1)
2
+ (u∗1)

2
+ (u∗2)

2
](x, t)e−2|x | dx

− B∗‖ε∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R) (2-53)

for any t ∈ R.

Propositions 2.10 and 2.13 have the following corollary.

Corollary 2.14. Set

N (t) := 1
2

(
0 x
x 0

)
+ A∗B∗e2R∗Mc∗(t).

There exists a positive constant Ac such that we have

d
dt
(
〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥Ac‖u∗( · , t)‖2X (R) (2-54)

for any t ∈ R. Since ∫
+∞

−∞

‖u∗( · , t)‖2X (R) dt <+∞, (2-55)

there exists a sequence (t∗k )k∈N such that

lim
k→+∞

‖u∗( · , t∗k )‖
2
X (R) = 0. (2-56)

In view of (2-20), (2-41) and the bound for Hc∗ in (A-43), we have

‖ε∗( · , t)‖X (R) ≤ Ac‖u∗( · , t)‖X (R), (2-57)

Hence, we can apply (2-56) and (2-57) in order to obtain

lim
k→+∞

‖ε∗( · , t∗k )‖
2
X (R) = 0. (2-58)

By (2-58) and the orbital stability in Theorem 2.1, this yields:

Corollary 2.15. ε∗0 ≡ 0.

At this stage we obtain (2-11) for some subsequence. We should extend this result for any sequence.
The proof is exactly the same as the one done by Béthuel, Gravejat and Smets in [Béthuel et al. 2015]
(see Subsection 1.3.4 in [Béthuel et al. 2015] for the details).

Proof of Theorem 1.1. We choose a positive number δc such that ‖(v0, w0)− Qc‖X (R) ≤ βc, whenever
dE(m0, uc) ≤ δc. We next apply Theorem 2.2 to the solution (v,w) ∈ C0(R,NV(R)) to (HLL) corre-
sponding to the solution m to (LL). This yields the existence of a speed c∗ and a position function
b such that the convergences in Theorem 2.2 hold. In particular, since the weak convergence for
m3 is satisfied by Theorem 2.2, it is sufficient to show the existence of a phase function θ such that
exp(iθ(t))∂x m̌( · + b(t), t) is weakly convergent to ∂x ǔc∗ in L2(R) as t → ∞. The locally uniform
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convergence of exp(iθ(t))m̌( · + b(t), t) towards ǔc∗ then follows from the Sobolev embedding theorem.
We begin by constructing this phase function.

We fix a nonzero function χ ∈ C∞c (R, [0, 1]) such that χ is even. Using the explicit formula of ǔc∗ , we
have ∫

R

ǔc∗(x)χ(x) dx = 2c∗
∫

R

χ(x)

cosh
(√

1− (c∗)2x
) dx 6= 0. (2-59)

Decreasing the value of βc if needed, we deduce from the orbital stability in [de Laire and Gravejat 2015]
that ∣∣∣∣∫

R

m̌(x + b(t), t)χ(x) dx
∣∣∣∣≥ |c∗| ∫

R

χ(x)

cosh
(√

1− (c∗)2x
) dx 6= 0 (2-60)

for any t ∈ R.
Let ϒ : R2

→ R be the C1 function defined by

ϒ(t, θ) := Im
(

e−iθ
∫

R

m̌(x + b(t), t)χ(x) dx
)
.

From (2-60) we can find a number θ0 such that ϒ(0, θ0)= 0 and ∂θϒ(0, θ0) > 0. Then, using the implicit
function theorem, there exists a C1 function θ : R→ R such that ϒ(t, θ(t))= 0. In addition, using (2-60)
another time, we can fix the choice of θ so that there exists a positive constant Ac∗ such that

∂θϒ(t, θ(t))= Re
(

e−iθ(t)
∫

R

m̌(x + b(t), t)χ(x) dx
)
≥ Ac∗ > 0. (2-61)

Differentiating the identity ϒ(t, θ(t))= 0 with respect to t , this implies that

|θ ′(t)| =
∣∣∣ ∂tϒ(t, θ(t))
∂θϒ(t, θ(t))

∣∣∣≤ 1
Ac∗
|∂tϒ(t, θ(t))| (2-62)

for all t ∈ R. Now, we differentiate the function ϒ with respect to t , and we use the equation of m̌ to
obtain

∂tϒ(t, θ(t))= Im
(

e−iθ
∫

R

χ(x)
(
∂x m̌(x + b(t), t)b′(t)− im3(x + b(t), t)∂xx m̌(x + b(t), t)

+ i m̌(x + b(t), t)∂xx m3(x + b(t), t)− im3(x + b(t), t)m̌(x + b(t), t)
)

dx
)
. (2-63)

Since b ∈ C1
b(R,R), and since both ∂x m̌ and ∂t m̌ belong to C0

b(R, H−1(R)), it follows that the derivative
θ ′ is bounded on R.

We denote by ϕ the phase function defined by

ϕ(x + b(t), t) := ϕ(b(t), t)+
∫ x

0
w(y+ b(t), t) dy,

with ϕ(b(t), t) ∈ [0, 2π ], which is associated to the function m̌(x+b(t), t) for any (x, t) ∈R2 in the way
that

m̌(x + b(t), t)= (1−m2
3(x + b(t), t))1/2 exp(iϕ(x + b(t), t)).
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It is sufficient to prove that
exp

(
i(ϕ(b(t), t)− θ(t))

)
→ 1 (2-64)

as t→∞ to obtain

exp
(
i(ϕ( · + b(t), t)− θ(t))

)
→ exp(iϕc∗( · )) := exp

(
i
∫
·

0
wc∗(y) dy

)
in L∞loc(R)

as t→∞. This implies, using Theorem 2.2 once again as well as the Sobolev embedding theorem, that

e−iθ(t)∂x m̌( · + b(t), t) ⇀ ∂x ǔc∗ in L2(R),

e−iθ(t)m̌( · + b(t), t)→ ǔc∗ in L∞loc(R)
(2-65)

as t→∞. Now let us prove (2-64). We have

e−iθ(t)
∫

R

m̌(x + b(t), t)χ(x) dx

= exp
(
i[ϕ(b(t), t)− θ(t)]

)∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx .

We use the fact that ϒ(t, θ(t))= 0 to obtain

cos(ϕ(b(t), t)− θ(t)) Im
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
+ sin(ϕ(b(t), t)− θ(t))Re

(∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
= 0.

On the other hand, by (2-61), we have

cos(ϕ(b(t), t)− θ(t))Re
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
− sin(ϕ(b(t), t)− θ(t)) Im

(∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
> 0.

We derive from Theorem 2.2 and (2-59) that

Im
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
→ Im

(∫
R

ǔc∗(x)χ(x) dx
)
= 0,

and

Re
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
→ Re

(∫
R

ǔc∗(x)χ(x) dx
)
> 0.

This is enough to derive (2-64).
Finally, we claim that θ ′(t)→ 0 as t→∞. Indeed, we can introduce (2-65) into (2-63), and we then

obtain, using the equation satisfied by ǔc∗ , that

∂tϒ(t, θ(t))→ 0

as t→∞. By (2-62), this yields θ ′(t)→ 0 as t→∞, which finishes the proof of Theorem 1.1. �
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3. Proof of the orbital stability

First, we recall the orbital stability theorem, which was established in [de Laire and Gravejat 2015] (see
Corollary 2 and Propositions 2 and 4 in [de Laire and Gravejat 2015]).

Theorem 3.1. Let c ∈ (−1, 1)\{0} and (v0, w0)∈ X (R) satisfying (2-4). There exist a unique global solu-
tion (v,w)∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0), and two maps c1 ∈ C1(R, (−1, 1) \ {0})
and a1 ∈ C1(R,R) such that the function ε1, defined by (2-5), satisfies the orthogonality conditions

〈ε1( · , t), ∂x Qc1(t)〉L2(R)2 = P ′(Qc1(t))(ε1( · , t))= 0 (3-1)

for any t ∈ R. Moreover, ε1( · , t), c1(t) and a1(t) satisfy (2-7), (2-8) and (2-9) for any t ∈ R.

With Theorem 3.1 at hand, we can provide the proof of Theorem 2.1.

Proof of Theorem 2.1. We consider the map

4((v,w), σ, b) :=
(
〈∂x Qσ,b, ε〉L2×L2, 〈χσ,b, ε〉L2×L2

)
,

where we have set ε = (v,w)− Qσ,b, and χσ,b = χσ ( · − b) (we recall that χσ is the eigenfunction
associated to the unique negative eigenvalue −λ̃σ of the operator Hσ ). The map 4 is well-defined for,
and depends smoothly on, (v,w) ∈ H 1(R)× L2(R), σ ∈ (−1, 1) \ {0} and b ∈ R.

We fix t ∈ R. In order to simplify the notation, we substitute (c1(t), a1(t)) by (c1, a1). We check that

4(Qc1,a1, c1, a1)= 0,

and we compute {
∂σ41(Qc1,a1, c1, a1)= 0,
∂σ42(Qc1,a1, c1, a1)=−〈χc1,a1, ∂σ Qc1,a1〉L2×L2 .

Let c ∈ (−1, 1) \ {0} and suppose towards a contradiction that

〈χc, ∂c Qc〉L2×L2 = 0.

Using the fact that Hc(∂c Qc)= P ′(Qc), this gives

0= 〈χc, ∂c Qc〉L2×L2 =−
1
λ̃c
〈χc,Hc(∂c Qc)〉L2×L2 =−

1
λ̃c
〈χc, P ′(Qc)〉L2×L2 .

Since Hc is self-adjoint, we also have

〈χc, ∂x Qc〉L2×L2 = 0.

By Proposition 1 in [de Laire and Gravejat 2015], we infer that

0>−λ̃c‖χc‖
2
L2×L2 = 〈χc,Hc(χc)〉L2×L2 ≥3c‖χc‖

2
L2×L2 > 0,

which provides the contradiction and shows that

〈χc, ∂c Qc〉L2×L2 6= 0 (3-2)
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for all c ∈ (−1, 1) \ {0}. In addition, we have{
∂b41(Qc1,a1, c1, a1)= ‖∂x Qc1‖

2
L2 = 2(1− c2

1)
1/2 > 0,

∂b42(Qc1,a1, c1, a1)= 0.

Therefore, the matrix

dσ,b4(Qc1,a1, c1, a1)=

(
0 〈χc1,a1, ∂σ Qc1,a1〉L2×L2

2(1− c2
1)

1/2 0

)

is an isomorphism from R2 to R2.
Then, we can apply the version of the implicit function theorem in [Béthuel et al. 2014] in order to

find a neighbourhood V of Qc1,a1 , a neighbourhood U of (c1, a1), and a map γc1,a1 : U→ V such that

4((v,w), σ, b)= 0⇔ (c(v,w), a(v,w)) := (σ, b)= γc,a(v,w) ∀(v,w) ∈ V, ∀(σ, b) ∈ U .

In addition, there exists a positive constant 3, depending only on c1, such that

‖ε(t)‖X + |c(t)− c1(t)| + |a(t)− a1(t)| ≤3‖ε1(t)‖X ≤3c1 Acα0, (3-3)

where c(t) := c(v(t), w(t)), a(t) := a(v(t), w(t)) and ε(t) := (v(t), w(t))−Qc(t),a(t), for any fixed t ∈R.
Using the fact that (v(t), w(t)) stays in a neighbourhood of Qc1(t),a1(t) for all t ∈ R by Theorem 3.1, and
also the fact that c1 satisfies (2-8), we are led to the following lemma.

Lemma 3.2. Under the assumptions of Theorem 3.1, there exists a unique pair (a, c) of functions in
C0
(
R,R2

)
such that

ε(t) := (v(t), w(t))− Qc(t),a(t)

satisfies the orthogonality conditions

〈ε(t), ∂x Qc(t),a(t)〉L2×L2 = 〈χc(t),a(t), ε(t)〉L2×L2 = 0. (3-4)

Moreover, we have (2-8).

This completes the proof of orbital stability. Now, let us prove the continuous differentiability of the
functions a and c, as well as the inequality

|c′(t)| + |a′(t)− c(t)| ≤ Ac‖ε( · , t)‖X (R), (3-5)

for all t ∈ R. The C1 nature of a and c can be derived from a standard density argument as in [de Laire
and Gravejat 2015]. Concerning (3-5), we can write the equations satisfied by ε, namely

∂tεv =
(
(a′(t)− c(t))∂xvc,a − c′(t)∂cvc,a

)
+ ∂x

(
((vc,a + εv)

2
− 1)(vc,a + εw)− (v

2
c,a − 1)wc,a

)
(3-6)
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and

∂tεw = (a′(t)− c(t))∂xwc,a − c′(t)∂cwc,a

+ ∂x

(
∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
+ (vc,a + εv)

(∂xvc,a + ∂xεv)
2

(1− (vc,a + εv)2)2
−
∂xxvc,a

1− v2
c,a
− vc,a

(∂xvc,a)
2

(1− v2
c,a)

2

)
+ ∂x

(
(vc,a + εv)((wc,a + εw)

2
− 1)− vc,a(w

2
c,a − 1)

)
. (3-7)

We differentiate with respect to time the orthogonality conditions in (2-6) and we invoke equations (3-6)
and (3-7) to write the identity

M
(

c′

a′− c

)
=

(
Y
Z

)
. (3-8)

Here, M refers to the matrix of size 2 given by

M1,1 = 〈∂c Qc, χc〉L2×L2 +〈∂cχc,a, ε〉L2×L2,

M1,2 = 〈χc, ∂x Qc〉L2×L2 −〈∂xχc,a, ε〉L2×L2,

M2,1 =−〈∂x Qc, ∂c Qc〉L2×L2 +〈∂c∂x Qc,a, ε〉L2×L2,

M2,2 = ‖∂x Qc‖
2
L2×L2 −〈∂xx Qc,a, ε〉L2×L2 .

The vectors Y and Z are defined by

Y =
〈
∂xwc,a, ((vc,a + εv)

2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

+
〈
∂xvc,a, ((wc,a + εw)

2
− 1)(vc,a + εv)− (w

2
c,a − 1)vc,a

〉
L2

−

〈
∂xxvc,a,

∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
−
∂xxvc,a

1− v2
c,a

〉
L2
+ c〈∂xχc,a, ε〉L2×L2

and

Z =
〈
∂xxvc,a, ((vc,a + εv)

2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

+
〈
∂xxwc,a, ((wc,a + εw)

2
− 1)(vc,a + εv)− (w

2
c,a − 1)vc,a

〉
L2

−

〈
∂xxxwc,a,

∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
−
∂xxvc,a

1− v2
c,a

〉
L2
+ c〈∂xx Qc,a, ε〉L2×L2 .

We next decompose the matrix M as M = D + H , where D is the diagonal matrix of size 2 with
diagonal coefficients

D1,1 = 〈∂c Qc, χc〉L2×L2 6= 0,

by (3-2), and

D2,2 = ‖∂x Qc(t)‖
2
L2 = 2(1− c(t)2)1/2,

so that D is invertible. Concerning the matrix H , we check that

〈P ′(Qc), ∂x Qc〉L2×L2 = 〈∂x Qc, ∂c Qc〉L2×L2 = 0.
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Then,

H =

(
〈∂cχc,a, ε〉L2×L2 −〈∂xχc,a, ε〉L2×L2

〈∂c∂x Qc,a, ε〉L2×L2 −〈∂xx Qc,a, ε〉L2×L2

)
.

It follows from the exponential decay of Qc,a and its derivatives that

|H | ≤ Ac‖ε‖L2×L2 .

We can make a further choice of the positive number αc, such that the operator norm of the matrix D−1 H
is less than 1/2. In this case, the matrix M is invertible and the operator norm of its inverse is uniformly
bounded with respect to t . Coming back to (3-8), we are led to the estimate

|c′(t)| + |a′(t)− c(t)| ≤ Ac(|Y (t)| + |Z(t)|). (3-9)

It remains to estimate the quantities Y and Z . We write∣∣〈∂xwc,a, ((vc,a + εv)
2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

∣∣
=
∣∣〈∂xwc,a, (ε

2
v + 2vc,aεv)wc,a + εw((εv + vc,a)

2
− 1)

〉
L2

∣∣
≤ Ac‖ε‖L2×L2 .

Arguing in the same way for the other terms in Y and Z , we obtain

|Y | + |Z | =O(‖ε‖L2×L2),

which is enough to deduce (3-5) from (3-9).
To complete the proof, we show (2-7). Using the Sobolev embedding theorem of H 1(R) into C0(R),

we can write

max
x∈R

v(x, t)≤ ‖vc(t)‖L∞(R)+‖v( · , t)− vc(t),a(t)‖L∞(R) ≤ ‖vc(t)‖L∞(R)+‖ε(t)‖X (R).

By (2-3), ‖vc‖L∞(R) < 1, so that (2-8) implies that there exists a small positive number γc such that
‖vc(t)‖L∞(R) ≤ 1− γc. We obtain

max
x∈R

v(x, t)≤ 1− γc+‖ε(t)‖X (R) ≤ 1− γc+αc.

For αc small enough, the estimate (2-7) follows, with σc := −αc+ γc. �

4. Proofs of localization and smoothness of the limit profile

Proof of Proposition 2.4. The proof relies on the conservation law for the density of momentum vw. Let
R and t be two real numbers, and recall that

IR(t)≡ I (v,w)R (t) := 1
2

∫
R

[vw](x + a(t), t)8(x − R) dx,

where 8 is the function defined on R by

8(x) := 1
2(1+ th(νcx)),
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with νc :=
√

1− c2/8. First, we deduce from the conservation law for vw (see Lemma 3.1 in [de Laire
and Gravejat 2015] for more details) the identity

d
dt
[IR+σ t(t)] = −(a′(t)+ σ)

∫
R

[vw](x + a(t), t)8′(x − R− σ t) dx

+

∫
R

[
v2
+w2

− 3v2w2
+

3−v2

(1−v2)2
(∂xv)

2
]
(x + a(t), t)8′(x − R− σ t) dx

+

∫
R

[ln(1− v2)](x + a(t), t)8′′′(x − R− σ t) dx . (4-1)

Our goal is to provide a lower bound for the integrands on the right-hand side of (4-1).
Notice that the function 8 satisfies the inequality

|8′′′| ≤ 4ν2
c8
′. (4-2)

In view of the bound (2-14) on a′(t) and the definition of σc, we obtain that

|a′(t)+ σ |2 ≤ 9+7c2

8
. (4-3)

Hence, we deduce

d
dt
[IR+σ t(t)] ≥

∫
R

[
4ν2

c ln(1− v2)+ v2
+w2

− 3v2w2

+ (∂xv)
2
−

√
9+7c2

8
|vw|

]
(x + a(t), t)8′(x − R− σ t) dx =: J1+ J2. (4-4)

At this step, we decompose the real line into two domains, [−R0, R0] and its complement, where R0 is to
be defined below, and we denote by J1 and J2 the value of the integral on the right-hand side of (4-4) on
each region. On R \ [−R0, R0], we bound the integrand pointwise from below by a positive quadratic
form in (v,w). Exponentially small error terms arise from integration on [−R0, R0].

For |x | ≥ R0, using Theorem 2.1 and the Sobolev embedding theorem, and choosing α0 small enough
and R0 large enough, we obtain

|v(x + a(t), t)| ≤ |εv(x, t)| + |vc(t)(x)| ≤ Ac

(
α0+ exp

(
−

√
1− c2 R0

))
≤

1
12 (4-5)

for any t ∈ R. Using the fact that ln(1− s) ≥ −2s for all s ∈
[
0, 1

2

]
and introducing (4-5) in (4-4), we

obtain

J1 ≥
1−c2

8

∫
|x |≥R0

[v2
+w2

+ (∂xv)
2
](x + a(t), t)8′(x − R− σ t) dx . (4-6)

We next consider the case x ∈ [−R0, R0]. In that region, we have

|x − R− σ t | ≥ −R0+ |R+ σ t |.

Hence,
8′(x − R− σ t)≤ 2νce2νcR0e−2νc|R+σ t |. (4-7)
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Since the function | ln( · )| is decreasing on (0, 1], in view of (2-7) and (4-4),

|J2| ≤ Ac

∫
|x |≤R0

[v2
+w2

+ (∂xv)
2
](x + a(t), t)8′(x − R− σ t) dx .

Then, by (4-7) and the control on the norm of (v,w) in X (R) provided by the conservation of the energy,
we obtain

|J2| ≤ Bce−2νc|R+σ t |.

This finishes the proof of (2-28). It remains to prove (2-29). For that, we distinguish two cases. If R ≥ 0,
we integrate (2-28) from t = t0 to t = (t0 + t1)/2, choosing σ = σc and R = R − σct0, and then from
t = (t0+ t1)/2 to t = t1 choosing σ =−σc and R = R+σct1. If R ≤ 0, we use the same arguments for the
reverse choices σ =−σc and σ = σc. This implies (2-29), and finishes the proof of Proposition 2.4. �

Proof of Proposition 2.9. Let 9∗ and v∗ be the solutions of (2-32)–(2-34) expressed in terms of the
hydrodynamical variables (v∗, w∗) as in (2-30). We split the proof into five steps.

Step 1. There exists a positive number Ac, depending only on c, such that∫ t+1

t

∫
R

|∂x9
∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ac (4-8)

for any t ∈ R.

By (2-23) and (2-30),
|9∗| ≤ Ac(|∂xv

∗
| + |w∗|). (4-9)

In view of Proposition 2.6 and the fact that |a∗(t)− a∗(s)| is uniformly bounded for s ∈ [t − 1, t + 2] by
(2-22), this yields ∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac. (4-10)

We define
F∗ := − 1

2(v
∗)29∗+Re

(
9∗(1− 2F(v∗, 9∗))

)
(1− 2F(v∗, 9∗)).

We recall that ‖v∗‖L∞(R×R) < 1− σc by (2-23). Using the Cauchy–Schwarz inequality, the Sobolev
embedding theorem and the control of the norm in X (R) provided by the conservation of energy, we have
F(v∗, 9∗) ∈ L∞(R×R). Hence,

|F∗| ≤ Ac|9
∗
|, (4-11)

where Ac is a positive number depending only on c. Then, by (4-10),∫ t+2

t−1

∫
R

|F∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac (4-12)

for any t ∈ R. Next, by Proposition 2.7, we have

‖9∗‖L4([t−1,t+2],L∞) ≤ Ac. (4-13)
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Indeed, we fix t ∈ R and we denote by

(90
1 , v

0
1) :=

(
9∗( · + a∗(t − 1), t − 1), v∗( · + a∗(t − 1), t − 1)

)
,

(91(s), v1(s)) :=
(
9∗( · + a∗(t − 1), t − 1+ s), v∗( · + a∗(t − 1), t − 1+ s)

)
the corresponding solution to (2-32)–(2-34). Denote also by

(90
2 , v

0
2) := (9c∗(t−1), vc∗(t−1)),

(92(s), v2(s)) :=
(
9c∗(t−1)(x − c∗(t − 1)s), vc∗(t−1)(x − c∗(t − 1)s)

)
the corresponding solution to (2-32)–(2-34), where 9c∗(t) is the solution to (2-32) associated to the
soliton Qc∗(t). We have, by (2-35),

‖91(s)−92(s)‖L4([0,τc],L∞) ≤ A
(
‖v0

1 − v
0
2‖L2 +‖90

1 −9
0
2‖L2

)
.

Using (2-21), we obtain

‖91(s)−92(s)‖L4([0,τc],L∞) ≤ Ac,

where τc= τc
(
‖v0

1‖L2, ‖v0
2‖L2, ‖90

1‖L2, ‖90
2‖L2

)
depend only on c. Since [0, 3] ⊆

⋃
0≤k≤3/τc

[kτc, (k+1)τc],
we can infer (4-13) inductively.

In addition, by (4-9), we have

‖9∗( · + a∗(t), · )‖L∞([t−1,t+2],L2) ≤ Ac. (4-14)

Hence, applying the Cauchy–Schwarz inequality to the integral with respect to the time variable, (4-10),
(4-13) and (4-14),∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|4eνc|x | dx ds

≤

∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|2eνc|x | dx‖9∗(s)‖2L∞(R) ds

≤ ‖9∗( · + a∗(t), · )e(νc/2)| · |‖2L4([t−1,t+2],L2(R))
‖9∗( · + a∗(t), · )‖2L4([t−1,t+2],L∞(R))

≤ ‖9∗( · + a∗(t), · )eνc|·|‖L2([t−1,t+2],L2(R))‖9
∗( · + a∗(t), · )‖L∞([t−1,t+2],L2(R))

‖9∗( · + a∗(t), · )‖2L4([t−1,t+2],L∞(R))

≤ Ac. (4-15)

In order to use Proposition 2.8 on 9∗, it is sufficient to verify

sup
s∈[t−1,t+2]

∫
R

|9∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac. (4-16)
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Indeed, using (4-16) and (4-13), we can write∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|6e2νc|x | dx ds

≤
∥∥9∗( · + a∗(t), · )eνc| · |

∥∥2
L∞([t−1,t+2],L2(R))

‖9∗( · + a∗(t), · )‖4L4([t−1,t+2],L∞(R))

≤ Ac, (4-17)

which proves that 9∗ satisfies the assumptions of Proposition 2.8. Then, we apply Proposition 2.8 with
u :=9∗( ·+a∗(t), ·+ (t+1/2)), T := 1/2, F := |u|2u+ F∗( · , t+1/2) and successively λ := ±νc, and
we use (4-10) and (4-12) to obtain (4-8).

Now let us prove (4-16). First, we recall the next lemma stated by Kenig, Ponce and Vega [Kenig et al.
2003].

Lemma 4.1. Let a ∈ [−2,−1] and b ∈ [2, 3]. Assume that u ∈ C0([a, b] : L2(R)) is a solution of the
inhomogeneous Schrödinger equation

i∂t u+ ∂xx u = H, (4-18)

with H ∈ L1([a, b] : L2(eβx dx)), for some β ∈ R, and

ua ≡ u( · , a), ub ≡ u( · , b) ∈ L2(eβx dx). (4-19)

Then there exists a positive number K such that

sup
a≤t≤b

‖u( · , t)‖L2(eβx dx) ≤ K
(
‖ua‖L2(eβx dx)+‖ub‖L2(eβx dx)+‖H‖L1([a,b],L2(eβx dx))

)
. (4-20)

In order to apply the lemma, we need to verify the existence of numbers a and b such that (4-19)
holds for u :=9∗( · + a∗(t), · + t) and such that H := |u|2u+ F∗( · , · + t) ∈ L1([a, b], L2(eβx dx)) for
β =±νc respectively and any t ∈R. Our first claim is a consequence of (4-10) and the Markov inequality.
Indeed, there exist s0 ∈ [−2,−1] and s1 ∈ [2, 3] such that∫

R

|9∗(x + a∗(t), s j + t)|2e2νc|x | dx ≤ Ac for j = 0, 1.

For the second claim, due to (4-12) and the Cauchy–Schwarz estimate, it is sufficient to show that
|u|2u ∈ L1([−2, 3], L2(eνc|x | dx)). To prove this we use the Cauchy–Schwarz inequality for the time
variable, (4-10) and (4-13),∫ 3

−2

(∫
R

|9∗(x + a∗(t), s+ t)|6e2νc|x | dx
)1/2

ds

≤
∥∥9∗( · + a∗(t), · + t)eνc| · |

∥∥
L2([−2,3],L2)

‖9∗( · + a∗(t), · + t)‖2L4([−2,3],L∞)

≤ Ac.

Now we may apply Lemma 4.1 with a = s0 and b = s1 to deduce (4-16). This finishes the proof of the
first step.
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In the next step, we prove that (4-8) remains true for all the derivatives of 9∗ and v∗.

Step 2. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that∫ t+1

t

∫
R

|∂k
x9
∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ak,c (4-21)

and ∫ t+1

t

∫
R

|∂k
x v
∗(x + a∗(t), s)|2eνc|x | dx ≤ Ak,c (4-22)

for any t ∈ R.

The proof of Step 2 is by induction on k ≥ 1. We are going to differentiate (2-32) k times with respect
to the space variable and write the resulting equation as

i∂t(∂
k
x9
∗)+ ∂xx(∂

k
x9
∗)= Rk(v

∗, 9∗), (4-23)

where Rk(v
∗, 9∗)= ∂k

x (|9
∗
|
29∗)+ ∂k

x F∗. We are going to prove by induction that (4-21), (4-22) and∫ t+1

t

∫
R

|Rk(v
∗, 9∗)(x + a∗(t), s)|2eνc|x | dx ds ≤ Ak,c (4-24)

hold simultaneously for any t ∈ R. Notice that (4-21) implies that ∂k
x9
∗
∈ L2

loc(R, L2(R)), while (4-24)
implies that Rk(v

∗, 9∗) ∈ L2
loc(R, L2(R)). Therefore, if (4-21), (4-22) and (4-24) are established for

some k ≥ 1, then applying Proposition 2.8 to ∂k
x9
∗ can be justified by a standard approximation procedure.

For k = 1, (4-21) is exactly (4-8). Equation (4-22) holds from Proposition 2.6 and the fact that
|a∗(t)− a∗(s)| is uniformly bounded for s ∈ [t − 1, t + 2]. Next, we write

R1(v
∗, 9∗)=−v∗∂xv

∗9∗− 1
2(v
∗)2∂x9

∗
+Re

(
∂x9

∗(1− 2F(v∗, 9∗))
)
(1− 2F(v∗, 9∗))

− 2v∗|9∗|2(1− 2F(v∗, 9∗))− 2v∗9∗ Re
(
9∗(1− 2F(v∗, 9∗))− 2∂x(9

∗
|9∗|2)

)
.

We will show that

9∗ ∈ L∞([t − 1, t + 2], L∞(R)) (4-25)

in order to control the derivative of the cubic nonlinearity by |∂x9
∗
|, and then we will use the fact that

F(v∗, 9∗) ∈ L∞(R×R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2-34) to get

R1(v
∗, 9∗)≤ K

(
|∂x9

∗
| + |∂xv

∗
||9∗| + |9∗|2

)
. (4-26)

Let us prove (4-25). We define the function H on R by

H(s) := 1
2

∫
R

(
|∂x9

∗(x, s)|2− |9∗(x, s)|4
)

dx .



670 YAKINE BAHRI

We differentiate it with respect to s, integrate by parts and use (2-32) to obtain

H ′(s)=−Re
(∫

R

∂s9
∗(x, s)

[
∂xx9∗+ 29∗|9∗|2

]
(x, s) dx

)
= Re

(∫
R

∂s9
∗(x, s)F∗(x, s) dx

)
≤ ‖∂s9

∗(s)‖H−1(R)‖F
∗(s)‖H1(R). (4-27)

We have
|∂x F∗| ≤ K

(
|∂x9

∗
| + |∂xv

∗
||9∗| + |9∗|2

)
,

using the fact that F(v∗, 9∗) ∈ L∞(R×R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2-34).
Hence, by (4-8), (4-10), (4-15) and the fact that |∂xv

∗
| ≤ |9∗| on R×R, we obtain

‖∂x F∗‖L2([t−1,t+2],L2(R)) ≤ Ac. (4-28)

On the other hand, we infer
‖∂s9

∗
‖L2([t−1,t+2],H−1(R)) ≤ Ac (4-29)

from (2-32), (4-8), (4-12) and the fact that 9∗ ∈ L4([t − 1, t + 2], L∞(R))∩ L8([t − 1, t + 2], L4(R)).
Next, we integrate (4-27) between t − 1 and t + 2 and apply the Cauchy–Schwarz inequality to obtain

H ∈W 1,1([t − 1, t + 2]) for all t ∈ R using (4-28) and (4-29). Notice that all these computations can be
justified by a standard approximation procedure. This yields, by the Sobolev embedding theorem, that
H ∈ L∞([t − 1, t + 2]). We conclude that the derivative ∂x9

∗
∈ L∞([t − 1, t + 2], L2(R)). Indeed, we

can use the Gagliardo–Nirenberg inequality and the fact that 9∗ is uniformly bounded in L2(R) by a
positive number to write

H(s)≥ 1
2

∫
R

|∂x9
∗(x, s)|2 dx − A‖9∗(s)‖3L2(R)

‖∂x9
∗( · )‖L2(R)

≥
1
2

∫
R

|∂x9
∗(x, s)|2 dx − AK 3

‖∂x9
∗( · )‖L2(R).

The function x 7→ 1
2 x2
− AM3x diverges to +∞ when x goes to +∞. Since H is bounded, we infer that

‖∂x9
∗( · )‖L2(R) is uniformly bounded on [t − 1, t + 2] for all t ∈ R. This finishes the proof of (4-25) by

the Sobolev embedding theorem. Then, by (4-26), (4-24) for k = 1 is a consequence of (4-8), (4-15) and
the fact that |∂xv

∗
| ≤ |9∗| on R×R.

Assume now that (4-21), (4-22) and (4-24) are satisfied for any integer 1≤ k ≤ k0 and any t ∈R. Let us
prove these three estimates for k=k0+1. We apply Proposition 2.8 with u :=∂k0

x 9
∗( ·+a∗(t), · +(t+1/2)),

T := 1/2 and successively λ := ±νc. In view of (4-21), (4-23), (4-24) and the fact that |a∗(t)− a∗(s)| is
uniformly bounded for s ∈ [t − 1, t + 2], this yields∫ t+1

t

∫
R

|∂k0+1
x 9∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ac, (4-30)

so that (4-21) is satisfied for k = k0+ 1.
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Let k ∈ {1, . . . , k0}. We use the induction hypothesis and (4-30) to infer that

∂k−1
x 9∗ ∈ L2([t, t + 1], H 2(R)).

Also, we have

∂k−1
x 9∗ ∈ H 1([t, t + 1], L2(R))

using (4-23) and (4-24). This yields, by interpolation,

∂k−1
x 9∗ ∈ H 2/3([t, t + 1], H 2/3(R)).

Hence, using the Sobolev embedding theorem, we obtain

∂k−1
x 9∗ ∈ L∞([t, t + 1], L∞(R)) for all t ∈ R. (4-31)

On the other hand, since |∂xv
∗
| ≤ |9∗|, we have, by (4-25), that ∂xv

∗
∈ L∞([t, t + 1], L∞(R)). For

k ∈ {2, . . . , k0}, we differentiate the second equation in (2-34) k times and we use (4-31) to obtain

|∂k
x v
∗
| ≤ K

( k−1∑
j=1

|∂ j
x9
∗
| +

k−2∑
j=0

|∂ j
x v
∗
|

)
, (4-32)

where K is a positive constant. By induction we infer from (4-31) that

∂k
x v
∗
∈ L∞([t, t + 1], L∞(R)) for all t ∈ R, (4-33)

for all k ∈ {2, . . . , k0}. Then, we just compute explicitly Rk0+1(v
∗, 9∗) and we use (4-31) and (4-33) to

obtain

|Rk0+1(v
∗, 9∗)| ≤ Ak0+1,c,K

( k0+1∑
j=0

|∂ j
x9
∗
| +

k0∑
j=1

|∂ j
x v
∗
|

)
.

Hence, by (4-21) for all k ≤ k0, (4-22) and (4-30), we obtain (4-24) for k = k0+ 1. Finally, we introduce
(4-21) for all k ≤ k0+1 and (4-22) for all k ≤ k0 into (4-32) to deduce (4-22) for k = k0+1. This finishes
the proof of this step.

In order to finish the proof of Proposition 2.9, we now turn these L2
loc in time estimates into L∞ in

time estimates, and then into uniform estimates.

Step 3. Let k ≥ 0. There exists a positive number Ak,c, depending only on k and c, such that∫
R

|∂k
x9
∗(x + a∗(t), t)|2eνc|x | dx ≤ Ak,c (4-34)

for any t ∈ R. In particular, we have∥∥∂k
x9
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-35)

for any t ∈ R, and for a possibly different choice of the positive constant Ak,c.
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Here, we use the Sobolev embedding theorem in time and (4-23) for the proof. By the Sobolev
embedding theorem, we have∥∥∂k

x9
∗( · + a∗(t), t)e(νc/2)| · |

∥∥2
L2(R)
≤ K

(∥∥∂s
(
∂k

x9
∗( · + a∗(t), s)e(νc/2)| · |

)∥∥2
L2([t−1,t+1],L2(R))

+
∥∥∂k

x9
∗( · + a∗(t), s)e(νc/2)| · |

∥∥2
L2([t−1,t+1],L2(R))

)
,

while, by (4-23),∥∥∂s
(
∂k

x9
∗( ·+a∗(t), s)e(νc/2)| · |

)∥∥2
L2([t−1,t+1],L2(R))

≤ 2
(∥∥∂k+2

x 9∗( ·+a∗(t), s)e(νc/2)| · |
∥∥2

L2([t−1,t+1],L2(R))

+
∥∥Rk(9

∗)( · + a∗(t), s)e(νc/2)| · |
∥∥2

L2([t−1,t+1],L2(R))

)
,

so that we finally deduce (4-34) from (4-21) and (4-24). The estimate (4-35) follows from applying the
Sobolev embedding theorem to (4-34).

The function v∗ satisfies a similar inequality:

Step 4. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

(
∂k

x v
∗(x + a∗(t), t)

)2eνc|x | dx ≤ Ak,c (4-36)

and ∥∥∂k
x v
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-37)

for any t ∈ R.

The proof is similar to the proof of Step 3 using the first equation in (2-34) instead of (2-32). We use
the Sobolev embedding theorem to write∥∥∂k

x v
∗( · + a∗(t), t)eνc| · |

∥∥2
L2(R)
≤ K

(∥∥∂s
(
∂k

x v
∗( · + a∗(t), s)eνc| · |

)∥∥2
L2([t−1,t+1],L2(R))

+
∥∥∂k

x v
∗( · + a∗(t), s)eνc| · |

∥∥2
L2([t−1,t+1],L2(R))

)
.

By the first equation in (2-34), (4-21), (4-23) and (4-33), we have∥∥∂s
(
∂k

x v
∗( · + a∗(t), s)eνc| · |

)∥∥2
L2([t−1,t+1],L2(R))

≤ Ac.

This leads to (4-36). The uniform bound in (4-37) is then a consequence of the Sobolev embedding
theorem.

Finally, we provide the estimates for the function w∗.

Step 5. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

∣∣∂k
xw
∗(x + a∗(t), t)

∣∣2eνc|x | dx ≤ Ak,c (4-38)

and ∥∥∂k
xw
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-39)

for any t ∈ R.
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The proof relies on the last two steps. First, we write

v∗9∗ =− 1
2∂x((1− (v∗)2)1/2 exp iθ∗).

Since (1− v∗(x, t)2)1/2 exp iθ∗(x, t)→ 1 as x→−∞ for any t ∈ R, we obtain the formula

2F(v∗, 9∗)= 1− (1− (v∗)2)1/2 exp iθ∗. (4-40)

Hence, using (2-30), we have

w∗ = 2 Im
(
9∗(1−2F(v∗, 9∗))

1−(v∗)2
)
. (4-41)

Combining (2-7) and (4-40), we recall that

|1− 2F(v∗, 9∗)|
1− (v∗)2

≤ Ac. (4-42)

Hence, we obtain

|w∗| ≤ Ac|9
∗
|.

Then, (4-38) and (4-39) follow from (4-34) and (4-35) for k = 0. For k ≥ 1, we differentiate (4-41) k
times with respect to the space variable, and using (4-35), (4-37) and (4-42), we are led to

|∂k
xw
∗
| ≤ Ak,c

( k∑
j=0

|∂ j
x9
∗
| +

k−1∑
j=1

|∂ j
x v
∗
|

)
.

We finish the proof of this step using Steps 3 and 4. This completes the proof of Proposition 2.9. �

5. Proof of the Liouville theorem

Proof of Proposition 2.10. First, by (2-38) and the explicit formula for vc and wc in (2-3), there exists a
positive number Ak,c such that∫

R

(
(∂k

x ε
∗

v(x, t))2+ (∂k
x ε
∗

w(x, t))2
)
eνc|x | dx ≤ Ak,c, (5-1)

for any k ∈ N and any t ∈ R. In view of the formulae of Hc in (A-42) and for u∗ in (2-41), a similar
estimate holds for u∗, for a possibly different choice of the constant Ak,c. As a consequence, we are
allowed to differentiate with respect to the time variable the quantity

I∗(t) :=
∫

R

xu∗1(x, t)u∗2(x, t) dx
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on the left-hand side of (2-43). Moreover, we can compute

d
dt
(I∗)=−2

∫
R

µ〈Hc∗(∂x u∗), u∗〉R2 +

∫
R

µ〈Hc∗(JRc∗ε
∗), u∗〉R2

− (c∗)′
∫

R

µ〈Hc∗(∂c Qc∗), u∗〉R2 + (c∗)′
∫

R

µ〈∂cHc∗(ε
∗), u∗〉R2

+ ((a∗)′− c∗)
∫

R

µ〈Hc∗(∂xε
∗), u∗〉R2, (5-2)

where we have set µ(x)= x for any x ∈ R.
At this stage, we split the proof into five steps. The proof of these steps is similar to the proof of

Proposition 7 in [Béthuel et al. 2015].

Step 1. There exist two positive numbers A1 and R1, depending only on c, such that

I∗1 (t) := −2
∫

R

µ〈Hc∗(∂x u∗), u∗〉R2 ≥
1−c2

8
‖u∗( · , t)‖2X (R)− A1‖u∗( · , t)‖2X (B(0,R1))

(5-3)

for any t ∈ R.

We introduce the explicit formula of the operator Hc∗ in the definition of I∗1 (t) to obtain

I∗1 (t)= 2
∫

R

µ∂x

( ∂xx u∗1
1− v2

c∗

)
u∗1− 2

∫
R

µ
(
1− (c∗)2− (5+ (c∗)2)v2

c∗ + 2v4
c∗
) ∂x u∗1
(1− v2

c∗)
2

u∗1

+ 2
∫

R

µc∗
1+ v2

c∗

1− v2
c∗
(∂x u∗2)u

∗

1− 2
∫

R

µ(c∗)2
(1+ v2

c∗)
2

(1− v2
c∗)

3
(∂x u∗1)u

∗

1

+ 2
∫

R

µc∗
1+ v2

c∗

1− v2
c∗
(∂x u∗1)u

∗

2− 2
∫

R

µ(1− v2
c∗)(∂x u∗2)u

∗

2.

Integrating each term by parts, we obtain

I∗1 (t)=
∫

R

ι∗1(x, t) dx,

with

ι∗1 =

(
2

1− v2
c∗
+ 2x

∂xvc∗vc∗

1− v2
c∗

)
(∂x u∗1)

2
− 2c∗

(
1+ v2

c∗

1− v2
c∗
+

4x∂xvc∗vc∗(
1− v2

c∗
)2

)
u∗2u∗1

+ (1− v2
c∗ − 2x∂xvc∗vc∗)(u∗2)

2
+

1+ 2((c∗)2− 3)v2
c∗ + (2(c

∗)2− 3)v4
c∗ − 2v6

c∗

(1− v2
c∗)

3
(u∗1)

2

+ 4x∂xvc∗vc∗
((c∗)2− 3)+ (2(c∗)2− 3)v2

c∗ − 3v4
c∗

(1− v2
c∗)

4
(u∗1)

2.

Let δ be a small positive number. We next use the exponential decay of the function vc and its derivatives
to guarantee the existence of a radius R, depending only on c and δ (in view of the bound on c∗− c in
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(2-21)), such that

ι∗1(x, t)≥ (2− δ)(∂x u∗1)
2(x, t)+

(1−c2

4
− δ

)
((u∗1)

2(x, t)+ (u∗2)
2(x, t))

when |x | ≥ R.
Then, we choose δ small enough and fix the number R1 according to the value of the corresponding R,

to obtain ∫
|x |≥R1

ι∗1(x, t) dx ≥ 1−c2

8

∫
|x |≥R1

(
(∂x u∗1(x, t))2+ u∗1(x, t)2+ u∗2(x, t)2

)
dx . (5-4)

On the other hand, it follows from (2-3), and again (2-8), that∫
|x |≤R1

ι∗1(x, t) dx ≥
(1−c2

8
− A1

) ∫
|x |≤R1

(
(∂x u∗1(x, t))2+ u∗1(x, t)2+ u∗2(x, t)2

)
dx

for a positive number A1 depending only on c. Combining with (5-4), we obtain (5-3).

Step 2. There exist two positive numbers A2 and R2, depending only on c, such that

|I∗2 (t)| :=
∣∣∣∣∫

R

µ〈Hc∗(JRc∗ε
∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A2‖u∗( · , t)‖2X (B(0,R2))

(5-5)

for any t ∈ R.

We refer to the proof of Step 2 in the proof of Proposition 7 in [Béthuel et al. 2015] for more details.
We infer the next step from (2-9), (2-57), the explicit formula of Hc∗ in (A-42) and the exponential

decay of the function ∂c Qc∗ and its derivatives.

Step 3. There exist two positive numbers A3 and R3, depending only on c, such that

|I∗4 (t)| :=
∣∣∣∣(c∗)′∫

R

µ〈Hc∗(∂c Qc∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A3‖u∗( · , t)‖2X (B(0,R3))

(5-6)

for any t ∈ R.

We decompose the real line into two regions, [−R, R] and its complement, for any R > 0. We use the
fact that |x | ≤ eνc|x |/4 for all |x | ≥ R, to write

|I∗4 (t)| ≤ R|(c∗)′(t)|
∫
|x |≤R

∣∣Hc∗(t)(∂c Qc∗(t))(x)
∣∣|u∗(x, t)| dx

+ δ|(c∗)′(t)|
∫
|x |≥R

∣∣Hc∗(t)(∂c Qc∗(t))(x)
∣∣|u∗(x, t)|eνc|x |/4 dx

for any t ∈ R. We deduce from (2-9), the explicit formula of Hc∗ in (A-42) and the exponential decay of
the function ∂c Qc∗ and its derivatives that

|I∗4 (t)| ≤ Ac

(
R‖u∗( · , t)‖X (B(0,R))+ δ‖u∗( · , t)‖X (R)

)
‖ε∗( · , t)‖L2(R)2

for any t ∈ R. Hence, by (2-57),

|I∗4 (t)| ≤ Ac

( R2

δ
‖u∗( · , t)‖2X (B(0,R))+ 2δ‖u∗( · , t)‖2X (R)

)
.
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We choose δ so that 2Acδ ≤ (1− c2)/64, and we denote by R4 the corresponding number R, to obtain
(5-6), with A4 = AcR2

4/δ.
Similarly, we use (2-9), (2-21) and (2-57) to obtain:

Step 4. There exists two positive numbers A4 and R4, depending only on c, such that

|I∗3 (t)| :=
∣∣∣∣(c∗)′∫

R

µ〈∂cHc∗(ε
∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A4‖u∗( · , t)‖2X (B(0,R4))

(5-7)

for any t ∈ R.

The last step follows from an argument as in Step 3.

Step 5. There exist two positive numbers A5 and R5, depending only on c, such that

|I∗5 (t)| :=
∣∣∣∣((a∗)′− c∗)

∫
R

µ〈Hc∗(∂xε
∗), u∗〉R2

∣∣∣∣
≤

1−c2

64
‖u∗( · , t)‖2X (R)+ A5‖u∗( · , t)‖2X (B(0,R5))

(5-8)

for any t ∈ R.

Finally, combining the estimates in Steps 1 to 5 with the identity (5-2), we obtain

d
dt
(I∗(t))≥ 1−c2

16
‖u∗( · , t)‖2X (R)− (A1+ A2+ A3+ A4+ A5)‖u∗( · , t)‖2X (B(0,R∗)),

allowing us to conclude the proof of (2-43) with

R∗ =max{R1, R2, R3, R4, R5},

A∗ = A1+ A2+ A3+ A4+ A5. �

Proof of Lemma 2.11. When u ∈ H 3(R)× H 1(R), the function ∂x u is in the space H 2(R)× L2(R) which
is the domain of Hc. The scalar product on the right-hand side of (2-46) is well-defined in view of (2-45).
Next, we use the formula for Hc in (A-42) to express Gc(u) as

〈SMcu,Hc(−2∂x u)〉L2(R)2

= 2
∫

R

∂xvc

vc

(
1− c2

− (5+ c2)v2
c + 2v4

c

(1− v2
c )

2 + c2 (1+ v
2
c )

2

(1− v2
c )

3 − 2c2 v
2
c (1+ v

2
c )

(1− v2
c )

3

)
u1∂x u1

− 2
∫

R

∂xvc

vc
∂x

(
∂xx u1

1− v2
c

)
+ 2

∫
R

∂xvc(1− v2
c )

vc
u2∂x u2

+ 2c
∫

R

(
2
vc∂xvc

1− v2
c

u1∂x u2−
∂xvc(1+ v2

c )

vc(1− v2
c )
∂x(u1u2)

)
. (5-9)

We recall that vc solves the equation

∂xxvc = (1− c2
− 2v2

c )vc, (5-10)

which leads to

(∂xvc)
2
= (1− c2

− v2
c )v

2
c and ∂x

(
∂xvc

vc

)
=−v2

c . (5-11)
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Then, the third integral on the right-hand side of (5-9) can be written as

2
∫

R

∂xvc(1− v2
c )

vc
u2∂x u2 =

∫
R

µcu2
2, (5-12)

with µc := 2(∂xvc)
2
+ (1− v2

c )v
2
c . Similarly, the last integral is given by∫

R

(
2
vc∂xvc

1− v2
c

u1∂x u2−
∂xvc(1+ v2

c )

vc(1− v2
c )
∂x(u1u2)

)
=−

∫
R

(
v2

c u1u2+ 2
vc∂xvc

1− v2
c

u2∂x u1

)
. (5-13)

Combining (5-12) and (5-13) with (5-9), we obtain the identity

〈SMcu,Hc(−2∂x u)〉L2(R)2 = I +
∫

R

µc

(
u2−

cv2
c

µc
u1−

2cvc∂xvc

µc(1− v2
c )
∂x u1

)2

,

where

I =
∫

R

2
(
∂xvc

vc

(
1− c2

− (5+ c2)v2
c + 2v4

c

(1− v2
c )

2 + c2 1+ v2
c

(1− v2
c )

2

)
− 2c2 v3

c∂xvc

µc(1− v2
c )

)
u1∂x u1

−

∫
R

∂xvc

vc
u1∂x

(
∂xx u1

1− v2
c

)
− c2

∫
R

v4
c

µc
u2

1− 4c2
∫

R

(∂xvc)
2v2

c

µc(1− v2
c )

2 (∂x u1)
2.

Using (5-10) and (5-11), we finally deduce that

I = 3
2

∫
R

v4
c

µc

(
∂x u1−

∂xvc

vc
u1

)2
,

which finishes the proof of (2-46). �

Proof of Proposition 2.12. We first rely on (2-3) and (2-46) to check that the quadratic form Gc is
well-defined and continuous on X (R). Next, setting

v = (vcu1, vcu2), (5-14)

and using (5-10), we can express it as

Gc(u)= Kc(v) :=

∫
R

v2
c

µc

(
∂xv1−

2∂xvc

vc
v1

)2

+

∫
R

µc

v2
c

(
v2+

cλc

µc(1− v2
c )
v1−2

cvc∂xvc

µc(1− v2
c )
∂xv1

)2

, (5-15)

where we have set λc := −µc+ 4(∂xvc)
2. From (2-48) and (5-14) we deduce that

Ker(Kc)= Span(vc Qc). (5-16)

Let w be the pair defined in the following way

w =

(
v1, v2− 2

cvc∂xvc

µc(1− v2
c )
∂xv1

)
.

We compute
Kc(v)= 〈Tc(w),w〉L2(R)2, (5-17)
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with

Tc(w)=
−3∂x

(
v2

c

µc
∂xw1

)
+

(
8v4

c (∂xvc)
2
−2v6

c (1−v
2
c )

µ2
c

+
4(∂xvc)

2

µc
+

c2(2c2
−1+v2

c )
2v2

c

µc(1−v2
c )

2

)
w1−

c(2c2
−1+v2

c )

(1−v2
c )

w2

−
c(2c2

− 1+ v2
c )

(1− v2
c )

w1+
µc

v2
c
w2

. (5-18)

The operator Tc in (5-18) is self-adjoint on L2(R)2, with domain Dom(Tc)= H 2(R)× L2(R). In addition,
combining (5-15) with (5-17) we deduce that Tc is nonnegative, with a kernel equal to

Ker(Tc)= Span
{(
v2

c ,
2cv2

c (∂xvc)
2

µc(1− v2
c )

)}
.

At this stage, we divide the proof into three steps.

Step 1. Let c ∈ (−1, 1) \ {0}. There exists a positive number 31, depending continuously on c, such that

〈Tc(w),w〉L2(R)2 ≥31

∫
R

(w2
1 +w

2
2), (5-19)

for any pair w ∈ X1(R) such that 〈
w,

(
v2

c ,
2cv2

c (∂xvc)
2

µc(1− v2
c )

)〉
L2(R)2

= 0. (5-20)

We claim that the essential spectrum of Tc is given by

σess(Tc)= [τc,+∞), (5-21)

with

τc = τ1,c−
1
2τ

1/2
2,c > 0. (5-22)

Here, we have set

τ1,c =
4(1−c2)+c2(2c2

−1)2

2(3−2c2)
+

3−2c2

2

and

τ2,c =

(4(1−c2)+c2(2c2
−1)2

3−2c2 − (3− 2c2)
)2
+ 4c2(2c2

− 1)2.

In particular, 0 is an isolated eigenvalue in the spectrum of Tc. The inequality (5-19) follows with 31

either equal to τc, or to the smallest positive eigenvalue of Tc. In view of the analytic dependence on c of
the operator Tc, 31 depends continuously on c.

Now, let us prove (5-21). We rely on the Weyl criterion. It follows from (2-47) and (5-10) that

µc(x)
v2

c (x)
→ 3− 2c2 and (∂xvc)

2(x)
µc(x)

→
1−c2

3−2c2
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as x→±∞. Coming back to (5-18), we introduce the operator T∞ given by

T∞(w)=

− 3
3−2c2 ∂xxw1+

4(1−c2)+c2(2c2
−1)2

3−2c2 w1− c(2c2
− 1)w2

−c(2c2
− 1)w1+ (3− 2c2)w2

 .
By the Weyl criterion, the essential spectrum of Tc is equal to the spectrum of T∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the spectrum of T∞
if and only if there exists a complex number ξ such that

λ2
−

( 3
3−2c2 |ξ |

2
+

4(1−c2)+c2(2c2
−1)2

3−2c2 + 3− 2c2
)
λ+ 3|ξ |2+ 4(1− c2)= 0.

This is the case if and only if

λ=
4(1−c2)+c2(2c2

−1)2+3|ξ |2

2(3−2c2)
+

3−2c2

2

±
1
2

((4(1−c2)+c2(2c2
−1)2+3|ξ |2

3−2c2 − (3− 2c2)
)2
+ 4c2(2c2

− 1)2
)1/2

.

This leads to σess(Tc)= σ(T∞)= [τc,+∞), with τc as in (5-22). This completes the proof of Step 1.

Step 2. There exists a positive number 32, depending continuously on c, such that

Kc(v)≥32

∫
R

((∂xv1)
2
+ v2

1 + v
2
2), (5-23)

for any pair v ∈ X1(R) such that

〈v, v−1
c Sχc〉L2(R)2 = 0. (5-24)

We start by improving the estimate in (5-19). Given a pair w ∈ X1(R), we observe that∣∣∣∣〈Tc(w),w〉L2(R)2 − 3
∫

R

v2
c

µc
(∂xw1)

2
∣∣∣∣≤ Ac

∫
R

(w2
1 +w

2
2).

Here and in the sequel, Ac refers to a positive number depending continuously on c. For 0< τ < 1, we
have

〈Tc(w),w〉L2(R)2 ≥ (1− τ)〈Tc(w),w〉L2(R)2 + 3τ
∫

R

v2
c

µc
(∂xw1)

2
− Acτ

∫
R

(w2
1 +w

2
2).

Since v2
c/µc ≥ 1/(3− 2c2), this yields

〈Tc(w),w〉L2(R)2 ≥ ((1− τ)31− Acτ)

∫
R

(w2
1 +w

2
2)+

3τ
3−2c2

∫
R

(∂xw1)
2

under condition (5-20). For τ small enough, this leads to

〈Tc(w),w〉L2(R)2 ≥ Ac

∫
R

(
(∂xw1)

2
+w2

1 +w
2
2
)

(5-25)

when w satisfies condition (5-20).
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Since the pair w depends on the pair v, we can write (5-25) in terms of v. By (5-17), Kc(v) is equal to
the left-hand side of (5-25). We deduce that (5-25) may be expressed as

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1
)
+ Ac

∫
R

(
v2−

2cvc(∂xvc)

µc(1−v2
c )
∂xv1

)2
.

We recall that, given two vectors a and b in a Hilbert space H , we have

‖a− b‖2H ≥ τ‖a‖
2
H −

τ

1−τ
‖b‖2H

for any 0< τ < 1. Then, we deduce that

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1 + τv
2
2
)
−
τ Ac
1−τ

∫
R

(
vc(∂xvc)

µc(1−v2
c )
∂xv1

)2
.

We choose τ small enough so that we can infer from (2-3) that

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1 + v
2
2
)

(5-26)

when w satisfies condition (5-20), i.e., when v is orthogonal to the pair

vc =

(
v2

c − ∂x

(
2cv2

c (∂xvc)
2

µc(1− v2
c )

)
,

2cv2
c (∂xvc)

2

µc(1− v2
c )

)
. (5-27)

Next, we verify that (5-26) remains true, decreasing possibly the value of Ac, when we replace this
orthogonality condition by

〈v, vc Qc〉L2(R)2 = 0. (5-28)

We remark that
〈vc, vc Qc〉L2(R)2 6= 0.

Indeed, we would deduce from (5-26) that

0= Kc(vc Qc)≥ Ac

∫
R

(
(∂xv

2
c )

2
+ v4

c + (vcwc)
2)> 0,

which is impossible. In addition, the number 〈vc, vc Qc〉L2(R)2 depends continuously on c in view of
(5-27). Given a pair ṽ satisfying (5-28), we denote by λ the real number such that v = λvc Qc + ṽ is
orthogonal to vc. Since vc Qc belongs to the kernel of Kc, using (5-26) we obtain

Kc(ṽ)= Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1+ v2
2
)
. (5-29)

On the other hand, since ṽ satisfies (5-28), we have

λ=
〈v, vc Qc〉L2(R)2

‖vc Qc‖
2
L2(R)2

.

Using the Cauchy–Schwarz inequality, this yields

λ2
≤ Ac

(∫
R

(
v4

c + (vcwc)
2))(∫

R

(
v2

1+ v2
2
))
.
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Hence, by (2-3) and (5-29),

λ2
≤ Ac Kc(v)= Ac Kc(ṽ).

Using (5-29), this leads to∫
R

(
(∂x ṽ1)

2
+ ṽ2

1 + ṽ
2
2
)
≤ 2

(
λ2
∫

R

v2
c
(
(∂xvc)

2
+ v2

c +w
2
c
)
+

∫
R

(
(∂xv1)

2
+ v2

1+ v2
2
))
≤ Ac Kc(ṽ).

We finish the proof of this step applying again the same argument. We write v = λvc SQc + ṽ, with
〈ṽ, vc Qc〉L2(R)2 = 0. Since vc Qc belongs to the kernel of Kc, we infer from the same argument that

Kc(v)= Kc(ṽ)≥32

∫
R

(∂x ṽ1)
2
+ ṽ2

1 + ṽ
2
2 . (5-30)

Using the orthogonality condition in (5-24), we obtain

λ=−
〈ṽ, v−1

c Sχc〉L2(R)2

〈Qc, Sχc〉L2(R)2
.

By the Cauchy–Schwarz inequality, we are led to

λ2
≤ Ac‖v

−1
c Sχc‖

2
L2×L2

∫
R

(
ṽ2

1 + ṽ
2
2
)
.

Invoking the exponential decay of χc in (A-46), we deduce

‖v−1
c Sχc‖

2
L2×L2 ≤ Ac.

As a consequence, we can derive from (5-30) that

λ2
≤ Ac Kc(ṽ)= Ac Kc(v).

Combining again with (5-30), we are led to∫
R

(
(∂xv1)

2
+ v2

1 + v
2
2
)
≤ 2

(
λ2
∫

R

v2
c
(
(∂xvc)

2
+ v2

c +w
2
c
)
+

∫
R

(
(∂x ṽ1)

2
+ ṽ2

1 + ṽ
2
2
))
≤ Ac Kc(v).

which completes the proof of Step 2.

Step 3. End of the proof.

Since the pair v depends on the pair u as in (5-14), we can write (5-23) in terms of u. The left-hand
side of (5-23) is equal to Gc(u) by (5-15). Moreover, for the right-hand side, we have∫

R

(
(∂xv1)

2
+ v2

1 + v
2
2
)
=

∫
R

v2
c
(
(∂x u1)

2
+ (2v2

c + c2)u2
1+ u2

2
)
.

We deduce that (5-23) may be written as

Gc(u)≥ Ac

∫
R

v2
c
(
(∂x u1)

2
+ u2

1+ u2
2
)
, (5-31)
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when vcu verifies the orthogonality condition (5-24), which means that u verifies the orthogonality
condition (2-52). We recall that

vc(x)≥ Ace−|x |

by (2-3), which is sufficient to obtain (2-51). This completes the proof of Proposition 2.12. �

Proof of Proposition 2.13. First we check that we are allowed to differentiate the quantity

J ∗(t) := 〈Mc∗(t)u∗( · , t), u∗( · , t)〉L2(R)2 .

Indeed, by (2-41), (5-1) and (A-42), there exists a positive number Ak,c such that∫
R

((
∂k

x u∗1(x, t)
)2
+
(
∂k

x u∗2(x, t)
)2)eνc|x | dx ≤ Ak,c. (5-32)

Next, using (2-42) and (2-45), we obtain

d
dt
(J ∗)= 2〈SMc∗u∗,Hc∗(J Su∗)〉L2(R)2 + 2〈SMc∗u∗,Hc∗(JRc∗ε

∗)〉L2(R)2

+ 2((a∗)′− c∗)〈SMc∗u∗,Hc∗(∂xε
∗)〉L2(R)2 − 2(c∗)′〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2

+ (c∗)′〈∂c Mc∗u∗, u∗〉L2(R)2 + 2(c∗)′〈Mc∗u∗, S∂cHc∗(ε
∗)〉L2(R)2 . (5-33)

The proof of (2-53) is the same as in [Béthuel et al. 2015]. We will give only the main ideas of the
proof. We will estimate all the terms on the right-hand side of (5-33) except the fourth term, which
vanishes.

For the first one, we infer from Proposition 2.12 the following estimate.

Step 1. There exists a positive number B1, depending only on c, such that

J ∗1 (t) := 2〈SMc∗u∗,Hc∗(J Su∗)〉L2(R)2 ≥ B1

∫
R

[
(∂x u∗1)

2
+ (u∗1)

2
+ (u∗2)

2](x, t)e−2|x | dx

for any t ∈ R.

From (2-21), (2-57) and (5-1), we get an estimate for the second term.

Step 2. There exists a positive number B2, depending only on c, such that

|J ∗2 (t)| := 2|〈SMc∗u∗,Hc∗(JRc∗ε
∗)〉L2(R)2 | ≤ B2‖ε

∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R)

for any t ∈ R.

For the third one, we use (2-21) to obtain:

Step 3. There exists a positive number B3, depending only on c, such that

|J ∗3 (t)| := 2|(a∗)′− c∗|
∣∣〈SMc∗u∗,Hc∗(∂xε

∗)〉L2(R)2

∣∣≤ B3‖ε
∗( · , t)‖1/2X (R)‖u

∗( · , t)‖2X (R)

for any t ∈ R.

We now prove the following statement for the fourth term.
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Step 4. We have

J ∗4 (t) := 2(c∗)′〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2 = 0

for any t ∈ R.

Since Hc∗(∂c Qc∗)= P ′(Qc∗)= SQc∗ and Mc∗Qc∗ = S∂x Qc∗ , we have

〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2 = 〈Mc∗u∗, Qc∗〉L2(R)2 = 〈u
∗, S∂x Qc∗〉L2(R)2

= 〈ε∗,Hc∗(∂x Qc∗)〉L2(R)2 = 0.

This is the reason why we do not need to establish a quadratic dependence of (c∗)′(t) on ε∗.
Next, we use (2-3), (2-9), (2-21) and (2-45) to bound the fifth term.

Step 5. There exists a positive number B5, depending only on c, such that

|J ∗5 (t)| := |(c
∗)′||〈∂c Mc∗u∗, u∗〉L2(R)2 | ≤ B5‖ε

∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R)

for any t ∈ R.

Finally, we acquire a bound on the sixth term in the same way.

Step 6. There exists a positive number B6, depending only on c, such that

|J ∗6 (t)| := |(c
∗)′|
∣∣〈Mc∗u∗, S∂cHc∗(ε

∗)〉L2(R)2

∣∣≤ B6‖ε
∗( · , t)‖1/2X (R)‖u

∗( · , t)‖2X (R)

for any t ∈ R.

We conclude the proof of Proposition 2.13 by combining the six previous steps to obtain (2-53), with
B∗ :=max{1/B1, B2+ B3+ B5+ B6}. �

Proof of Corollary 2.14. Corollary 2.14 is a consequence of Propositions 2.10 and 2.13. We combine the
two estimates (2-43) and (2-53) with the definition of N (t) to obtain

d
dt
(
〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥

(1−c2

16
− A∗B2

∗
e2R∗‖ε∗( · , t)‖1/2X (R)

)
‖u∗( · , t)‖2X (R)

for any t ∈ R. In view of (2-21), we fix the parameter βc such that

‖ε∗( · , t)‖1/2X (R) ≤
1−c2

32A∗B2
∗
e2R∗

for any t ∈ R, to obtain (2-54). In view of (2-3), (2-21) and (2-45), we notice that there exists a positive
number Ac, depending only on c, such that

‖Mc∗(t)‖L∞(R) ≤ Ac (5-34)

for any t ∈R. Moreover, since the map t 7→ 〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2 is uniformly bounded by (5-32)
and (5-34), the estimate (2-55) follows by integrating (2-54) from t =−∞ to t =+∞. Finally, statement
(2-56) is a direct consequence of (2-55). �
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Appendix A. Appendix

Weak continuity of the hydrodynamical flow. In this section, we prove the weak continuity of the
hydrodynamical flow, which is stated in the following proposition.

Proposition A.1. We consider a sequence (vn,0, wn,0)n∈N ∈NV(R)N, and a pair (v0, w0) ∈NV(R) such
that

vn,0 ⇀v0 in H 1(R) and wn,0 ⇀w0 in L2(R) (A-1)

as n→+∞. We denote by (vn, wn) the unique solution to (HLL) with initial datum (vn,0, wn,0) and we
assume that there exists a positive number Tn such that the solutions (vn, wn) are defined on (−Tn, Tn),
and satisfy the condition

sup
n∈N

sup
t∈(−Tn,Tn)

max
x∈R

vn(x, t)≤ 1− σ (A-2)

for a given positive number σ . Then, the unique solution (v,w) to (HLL) with initial datum (v0, w0) is
defined on (−Tmax, Tmax), with3

Tmax = lim inf
n→+∞

Tn,

and for any t ∈ (−Tmax, Tmax), we have

vn(t) ⇀ v(t) in H 1(R) and wn(t) ⇀ w(t) in L2(R) (A-3)

as n→+∞.

First we prove a weak continuity property of the flow of equations (2-32)–(2-34). Next, we deduce the
weak convergence of wn from (4-41).

More precisely, we consider now a sequence of initial conditions (9n,0, vn,0) ∈ L2(R)× H 1(R), such
that the norms ‖9n,0‖L2 and ‖vn,0‖L2 are uniformly bounded with respect to n, and we assume that

sup
n∈N

‖vn,0‖L∞(R) < 1. (A-4)

Then, there exist two functions 90 ∈ L2(R) and v0 ∈ H 1(R) such that, going possibly to a subsequence,

9n,0 ⇀90 in L2(R), (A-5)

vn,0 ⇀v0 in H 1(R), (A-6)

and, for any compact subset K of R,

vn,0→ v0 in L∞(K ) (A-7)

as n→+∞. We claim that this convergence is conserved along the flow corresponding to equations
(2-32)–(2-34).4

3See Theorem 1 in [de Laire and Gravejat 2015] for more details.
4We only consider here positive time but the proof remains valid for negative time.
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Proposition A.2. We consider two sequences (9n,0)n∈N ∈ L2(R)N and (vn,0)n∈N ∈ H 1(R)N, and two
functions 90 ∈ L2(R) and v0 ∈ H 1(R), such that assumptions (A-4)–(A-7) are satisfied, and we denote by
(9n, vn) and (9, v), respectively, the unique global solutions to (2-32)–(2-34) with initial data (9n,0, vn,0)

and (90, v0), which we assume to be defined on [0, T ] for a positive number T . For any fixed t ∈ [0, T ],
we have

9n( · , t) ⇀ 9( · , t) in L2(R), (A-8)

vn( · , t) ⇀ v( · , t) in H 1(R) (A-9)

when n→+∞.

Proof. We split the proof into four steps.

Step 1. There exist three functions 8 ∈ L2([0, T ], L2(R)) and v ∈ L2([0, T ], H 1(R)) such that, up to a
further subsequence,

9n(t) ⇀8(t) in L2(R), (A-10)

vn( · , t) ⇀ v( · , t) in H 1(R), (A-11)

vn( · , t)→ v( · , t) in L∞loc(R) (A-12)

for all t ∈ [0, T ], and

|9n|
29n ⇀ |8|

28 in L2([0, T ], L2(R)), (A-13)

when n→+∞.

Proof. We recall that there exists a constant M such that

‖9n,0‖L2 ≤ M and ‖vn,0‖H1 ≤ M

uniformly on n. Applying Proposition 2.7 to the pairs (9n, vn) and (0, 0), we obtain

‖9n‖C0
T L2

x
+‖vn‖C0

T H1
x
+‖9n‖L4

T L∞x
≤ A

(
‖9n,0‖L2 +‖vn,0‖H1

)
.

This leads to

‖9n‖L4
T L∞x
≤ 2AM, ‖9n‖L∞T L2

x
≤ 2AM and ‖vn‖L∞T H1

x
≤ 2AM. (A-14)

Hence, there exist two functions8∈ L∞([0, T ], L2(R))∩L4([0, T ], L∞(R)) and v∈ L∞([0, T ], H 1(R))

such that

9n
∗

⇀8 in L∞([0, T ], L2(R)),

vn
∗

⇀ v in L∞([0, T ], H 1(R)).

Let us prove (A-10) and (A-11). We argue as in [Béthuel et al. 2015] and we introduce a cutoff function
χ ∈ C∞c (R) such that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2] ∪ [2,+∞). Set χp( · ) := χ( · /p) for any
integer p∈N∗. By (A-14), the sequences (χp9n)n∈N and (χpvn)n∈N are bounded in C0([0, T ], L2(R)) and
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C0([0, T ], H 1(R)), respectively. In view of the Rellich–Kondrachov theorem, the sets {χp9n(·, t) | n ∈N}

and {χpvn(·, t) |n∈N} are relatively compact in H−2(R) and H−1(R), respectively, for any fixed t ∈[0, T ].
In addition, since the pair (9n, vn) is a solution to (2-32)–(2-34), we have that (∂t9n, ∂tvn) belongs to
C0([0, T ], H−2(R)× H−1(R)) and satisfies

‖∂t9n( · , t)‖H−2(R) ≤ KM and ‖∂tvn( · , t)‖H−1(R) ≤ KM .

This leads to the fact that the pair (χp9n, χpvn) is equicontinuous in C0([0, T ], H−2(R)× H−1(R)).
Then, we apply the Arzelà–Ascoli theorem and the Cantor diagonal argument to find a further subsequence
(independent of p), such that, for each p ∈ N∗,

χp9n→ χp8 in C0([0, T ], H−2(R)), (A-15)

χpvn→ χpv in C0([0, T ], H−1(R)) (A-16)

as n→+∞. Combining this with (A-14) we infer that (A-10) and (A-11) hold. By the Sobolev embedding
theorem, (A-12) is a consequence of (A-11).

Now, let us prove (A-13). Using the Hölder inequality, we infer that∫ T

0

∫
R

|9n(x, t)|6 dx dt ≤ ‖9n‖
2
L∞L2

x
‖9n‖

4
L4

T L∞x
.

By (A-14), we conclude that ∥∥|9n|
29n

∥∥
L2

T L2
x
≤ M. (A-17)

So, there exists a function 81 ∈ L2(R×[0, T ]) such that up to a further subsequence,

|9n|
29n ⇀81 in L2(R×[0, T ]).

Let us prove that 81 ≡ |8|
28. To obtain this it is sufficient to prove that, up to a subsequence,

9n→8 in L2(
[0, T ], L2([−R, R])

)
(A-18)

for any R > 0, i.e., the sequence (9n) is relatively compact in L2([−R, R]× [0, T ]). Indeed, using the
Hölder inequality, we obtain∥∥|9n|

29n − |8|
28
∥∥

L6/5
T,R
=
∥∥(9n −8)(|9n|

2
+ |8|2)+9n8(9n −8)

∥∥
L6/5

T,R

≤ 2
∥∥|9n −8|(|9n|

2
+ |8|2)

∥∥
L6/5

T,R

≤ 2‖9n −8‖L2
T,R

(
‖9n‖

2
L6

T,R
+‖8‖2L6

T,R

)
(A-19)

for any R > 0. By (A-17), (9n) is uniformly bounded in L6(R×[0, T ]) and 8 ∈ L6(R×[0, T ]). Then

|9n|
29n→ |8|

28 in L6/5([−R, R]× [0, T ]),

so that81≡|8|
28. Now, let us prove that the sequence (9n) is relatively compact in L2([−R, R]×[0, T ]).

The main point of the proof is the following claim.
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Claim 1. Let 9 be a solution of (2-32) in

C0([0, T ], L2(R))∩ L4([0, T ], L∞(R)).

Then 9 ∈ L2
(
[0, T ], H 1/2

loc (R)
)
.

Proof. The proof relies on the Kato smoothing effect for the linear Schrödinger group (see [Linares and
Ponce 2009]). Let S(t)= ei t∂xx , and

F(9, v) := 1
2v

29 −Re
(
9(1− 2F(v,9))

)(
1− 2F(v,9)

)
. (A-20)

We recall that there exists a positive constant M such that

sup
x∈R

∫
+∞

−∞

|D1/2
x S(t) f (x)|2 dt ≤ M‖ f ‖2L2 (A-21)

and ∥∥∥∥∫
R

S(−t ′)D1/2
x h( · , t ′) dt ′

∥∥∥∥
L2
≤ M‖h‖L1

x L2
t

(A-22)

when f ∈ L2(R) and h ∈ L1(R, L2(R)) (see [Linares and Ponce 2009] for more details). We prove that
there exists a positive constant M such that

‖D1/2
x 9‖L∞x L2

T
≤ M‖90‖L2 +M‖9‖L2

T,x

(
‖9‖2L6

T,x
+ T 1/2(

‖v‖2L∞T,x
+‖1− 2F(v,9)‖2L∞T,x

))
. (A-23)

The claim is a consequence of this estimate, so that it is sufficient to prove (A-23).
We write

9(x, t)= S(t)90(x)+ i
∫ t

0
S(t − t ′)

(
2(|9|29)(x, t ′)+F(9, v)(x, t ′)

)
dt ′

for all (x, t) ∈ R. First, using (A-21), we obtain

sup
x∈R

∫
+∞

−∞

∣∣D1/2
x S(t)90(x)

∣∣2 dt ≤ M‖90‖
2
L2 .

For the nonlinear term, we can argue as in [Goubet and Molinet 2009] to prove that∥∥∥∥∫ t

0
S(t − t ′)D1/2

x g( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖g‖L1
T L2

x
. (A-24)

Using a duality argument, it is equivalent to prove that for any smooth function h that satisfies ‖h‖L1
x L2

t
≤ 1,

we have ∣∣∣∣∫
R×[0,T ]2

S(t − t ′)D1/2
x g(x, t ′)h̄(x, t) dt ′ dx dt

∣∣∣∣≤ M‖g‖L1
T L2

x
. (A-25)
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Using the Cauchy–Schwarz and Strichartz estimates and (A-22), the left-hand side can be written as∣∣∣∣∫
R

(∫ T

0
S(−t ′)D1/2

x g(x, t ′) dt ′
)(∫ T

0
S(−t)h(x, t) dt

)
dx
∣∣∣∣

=

∣∣∣∣∫
R

(∫ T

0
S(−t ′)g(x, t ′) dt ′

)(∫ T

0
S(−t)D1/2

x h(x, t) dt
)

dx
∣∣∣∣

≤ M
∥∥∥∥∫ T

0
S(−t ′)g(x, t ′) dt ′

∥∥∥∥
L2
≤ M‖g‖L1

T L2
x
.

This achieves the proof of (A-24). Similarly, we have∥∥∥∥∫ t

0
S(t − t ′)D1/2

x g( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖g‖L5/6
T,x
. (A-26)

We next apply (A-24) and (A-26) on the nonlinear terms to obtain, using the Cauchy–Schwarz and Hölder
estimates, ∥∥∥∥∫ t

0
D1/2

x S(t − t ′)(|9|29)( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖93
‖L6/5

T,x
≤ M‖9‖L2

T,x
‖9‖2L6

T,x

and ∥∥∥∥∫ t

0
D1/2

x S(t − t ′)F(9, v)( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖F(9, v)‖L1
T L2

x

≤ M‖9‖L1
T L2

x

(
‖v‖2L∞T,x

+‖1− 2F(v,9)‖2L∞T,x
)

≤ MT 1/2
‖9‖L2

T,x

(
‖v‖2L∞T,x

+‖1− 2F(v,9)‖2L∞T,x
)
.

Since v ∈ L∞([0, T ], H 1(R)) and 9 ∈ L∞([0, T ], L2(R)), we know that 9 ∈ L∞([0, T ], L2(R)) and
F(9, v) ∈ L∞(R×[0, T ]). Using the fact that 9 ∈ L6(R×[0, T ]), we finish the proof of this claim. �

Applying this claim to the sequence (9n) yields that (9n) is uniformly bounded in L2([0, T ], H 1/2
loc (R)).

On the other hand, we have F(9n, vn) ∈ L∞([0, T ], L2(R)), since

vn ∈ L∞([0, T ], H 1(R)), 9n ∈ L∞([0, T ], L2(R)) and F(9n, vn) ∈ L∞(R×[0, T ]).

Then, using (2-32) and (A-17), we obtain that (9n) is uniformly bounded in H 1([0, T ], H−2(R)).
Hence, by interpolation, (9n) ∈ H 1/10([0, T ], H 1/4

loc (R)), so that it converges in L2([−R, R]×[0, T ]) for
any R > 0. This finishes the proofs of (A-18) and of Step 1. �

Step 2. We have

F(9n, vn) ⇀ F(8, v) in L2(R), (A-27)

for any t ∈ [0, T ], and

F(9n, vn)→ F(8, v) in L1([0, T ], L2
loc(R)). (A-28)
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Proof. Let φ ∈ L2(R). We compute∫
R

(v2
n(x, t)9n(x, t)− v2(x, t)8(x, t))φ(x) dx

=

∫
R

(v2
n(x, t)− v2(x, t))9n(x, t)φ(x) dx +

∫
R

(9n(x, t)−8(x, t))v2(x, t)φ(x) dx . (A-29)

The second term on the right-hand side goes to 0 when n goes to +∞, since v2(t)φ ∈ L2(R) for all t on
the one hand and using (A-10) on the other hand. For the first term on the right-hand side, we consider a
cutoff function χ with support in [−1, 1] and let χR(x)= χ(x/R) for all (x, R) ∈ R× (0,+∞). We set

In(t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)φ(x) dx,

I (1)n (t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)χR(x)φ(x) dx,

I (2)n (t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)(1−χR(x))φ(x) dx,

so that In(t)= I (1)n (t)+ I (2)n (t). By the Cauchy–Schwarz inequality, we have

|I (1)n (t)| ≤ ‖9n(t)‖L2(R)‖φ‖L2(R)‖v
2
n(t)− v2(t)‖L∞([−R,R]). (A-30)

Using (A-12) and (A-14), we infer that

I (1)n (t)→ 0 for any t ∈ [0, T ], (A-31)

as n→+∞. Next, we write

|I (2)n (t)| ≤
(
‖vn(t)‖2L∞(R)+‖v(t)‖

2
L∞(R)

)
‖9n(t)‖L2(R)‖(1−χR)φ‖L2(R).

Since φ ∈ L2(R), we have
lim

R→∞
‖(1−χR)φ‖L2(R) = 0.

In view of (A-14), this is sufficient to prove that

In(t)→ 0 (A-32)

as n→+∞, for all t ∈ [0, T ]. This yields

(v2
n9n)(t) ⇀ (v28)(t) in L2(R) (A-33)

for any t ∈ [0, T ]. Now, we prove

v2
n9n→ v28 in L1([0, T ], L2

loc(R)). (A-34)

As in (A-29), we write

‖v2
n9n − v28‖L1

T L2
R
≤ ‖(v2

n − v2)9n‖L1
T L2

R
+‖(9n −8)v

2
‖L1

T L2
R
.
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For the first term on the right-hand side, we infer from the Cauchy–Schwarz inequality that

‖(v2
n − v2)9n‖L1

T L2
R
≤ ‖v2

n − v2
‖L2

T L2
R
‖9n‖L2

T L∞R

≤ ‖vn − v‖L4
T L4

R

(
‖vn‖L4

T L4
R
+‖v‖L4

T L4
R

)
T 1/2
‖9n‖L4

T L∞R
.

On the other hand, by (A-14), vn is uniformly bounded on L2([0, T ], H 1(R)). By the first equation of
(2-34) and (A-14), vn is uniformly bounded in H 1([0, T ], H−1(R)). We deduce that vn is uniformly
bounded in H 1/3([0, T ], H 1/3(R)) and so that vn converges to v in L4([0, T ], L4([−R, R])) as n→+∞.
Hence, using (A-14) once again, we obtain

‖(v2
n − v2)9n‖L1

T L2
R
→ 0

as n→+∞. For the second term we have, by the Cauchy–Schwarz inequality and the Sobolev embedding
theorem,

‖(9n −8)v
2
‖L1

T L2
R
≤ ‖9n −8‖L2

T L2
R
‖v2
‖L2

T L∞R
≤ M2T 1/2

‖9n −8‖L2
T L2

R
.

This yields, using (A-18),
‖(9n −8)v

2
‖L1

T L2
R
→ 0

as n→+∞, which proves (A-34). Next, we set

G(vn, 9n)=9n(1− F(vn, 9n))(1− F(vn, 9n)).

We have, by (2-33),
∂x F(vn, 9n)= vn9n and ∂x F(v,8)= v8.

Using the same arguments as in the proof of (A-32), we obtain

∂x F(vn, 9n) ⇀ ∂x F(v,8) in L2(R))

for any t ∈ [0, T ]. Hence,
F(vn, 9n)→ F(v,8) in L∞loc(R) (A-35)

for any t ∈[0, T ]. Using (A-10), (A-35) and the same arguments as in the proof of (A-33), we conclude that

G(vn, 9n) ⇀ G(v,8) in L2(R) (A-36)

for any t ∈ [0, T ]. Next, we use (A-18) and (A-35) to prove that

G(vn, 9n)→ G(v,8) in L1([0, T ], L2
loc(R)). (A-37)

This finishes the proof of this step. �

Step 3. (8, v) is a weak solution of (2-32)–(2-34).

Proof. By (A-18), we have

i∂t9n→ i∂t8 in D′(R×[0, T ]) and ∂2
xx9n→ ∂2

xx8 in D′(R×[0, T ])
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as n→+∞. It remains to invoke (A-13) and (A-35) and to take the limit n→+∞ in the expression∫ T

0

∫
R

(
i∂t9n + ∂

2
xx9n + 2|9n|

29n +
1
2v

2
n9n −Re

(
9(1− 2F(vn, 9n))

)
(1− 2F(vn, 9n))

)
h̄ = 0,

where h ∈ C∞c (R × [0, T ]), in order to establish that (8, v) is a solution to (2-32) in the sense of
distributions. In addition, using the same arguments as above and (A-35), we prove that (8, v) is a
solution to (2-34) in the sense of distributions. Moreover, we infer from (A-5) that 8( · , 0) = 90 and
from (A-6) that v( · , 0)= v0. �

In order to prove that the function (8, v) coincides with the solution (9, v) in Proposition A.2, it is
sufficient, in view of the uniqueness result given by Proposition 2.7, to establish the following.

Step 4. 8 ∈ C([0, T ], L2(R)) and v ∈ C([0, T ], H 1(R)).

Proof. First, we prove that 8 ∈ C([0, T ], L2(R)). This is a direct consequence of the identity

8(x, t)= S(t)80+

∫ t

0
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′. (A-38)

Indeed, let us define

G(8, v)(t)=
∫ t

0
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′.

Since S(t)80∈C([0, T ], L2(R)), it suffices to show G(8, v)∈C([0, T ], L2(R)). We take (t1, t2)∈[0, T ]2

and write

G(8, v)(t1)−G(8, v)(t2)=
∫ t1

0
(S(t1− t ′)− S(t2− t ′))

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′

−

∫ t2

t1
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′.

For the second term on the right-hand side, we use the Strichartz and Cauchy–Schwarz inequalities to
obtain∥∥∥∥∫ t2

t1
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′
∥∥∥∥

L2

≤ M
∥∥2|8|28+F(8, v)

∥∥
L1([t1,t2],L2(R))

≤ M |t1− t2|1/2‖|8|28‖L2
T,x
+M |t1− t2|‖F(8, v)‖L∞T L2

x
. (A-39)

For the first term, we write

S(t1− t ′)− S(t2− t ′)= S(t1− t ′)(1− S(t2− t1)).

Hence,∥∥∥∥∫ t1

0
(S(t1− t ′)− S(t2− t ′))

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′
∥∥∥∥

L2

= ‖(1− S(t2− t1))G(8, v)(t1)‖L2 . (A-40)
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Taking the limit t2→ t1 in (A-39) and (A-40), we obtain that 8 ∈ C([0, T ], L2(R)).
Now, let us prove (A-38). Denote by 8̃ the function given by the right-hand side of (A-38). We will

prove that

9n(t) ⇀ 8̃(t) in L2(R) (A-41)

for all t ∈ R. This yields 8 ≡ 8̃ by uniqueness of the weak limit. Let R > 0 and denote by χR the
function defined in Step 2. Set

G(1)
n ( · , t)=

∫ t

0
S(t − t ′)χR

(
2(|9n|

29n)( · , t ′)+F(9n, vn)( · , t ′)
)

dt ′,

G(2)
n ( · , t)=

∫ t

0
S(t − t ′)(1−χR)

(
2(|9n|

29n)( · , t ′)+F(9n, vn)( · , t ′)
)

dt ′,

G(1)( · , t)=
∫ t

0
S(t − t ′)χR

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′,

G(2)( · , t)=
∫ t

0
S(t − t ′)(1−χR)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′,

for all t ∈ R, so that G(8, v)= G(1)
+G(2) and G(9n, vn)= G(1)

n +G(2)
n . Since S(t)9n,0 ⇀ S(t)80 in

L2(R) as n→+∞ for all t ∈ R, it is sufficient to show that

G(9n, vn)(t) ⇀ G(8, v)(t) in L2(R)

as n→+∞ for all t ∈ R. Let ϕ ∈ L2(R). We write(
G(9n, vn)(t)−G(8, v)(t), ϕ

)
L2

=

∫
+∞

−∞

[
G(1)

n (x, t)−G(1)(x, t)
]
ϕ(x) dx +

∫
+∞

−∞

[
G(2)

n (x, t)−G(2)(x, t)
]
ϕ(x) dx

= I R
n (t)+ J R

n (t).

For the first integral, using the Cauchy–Schwartz inequality, the Strichartz estimates for the admissible
pairs (6, 6) and (∞, 2), the Hölder inequality and (A-19), there exists a positive constant M such that for
all t ∈ [0, T ] we have

|I R
n (t)| ≤ ‖G

(1)
n (t)−G(1)(t)‖L2‖ϕ‖L2

≤ M‖ϕ‖L2
(∥∥|9n|

29n − |8|
28
∥∥

L6/5
T,R
+‖F(9n, vn)−F(8, v)‖L1

T L2
R

)
≤ M‖ϕ‖L2

(
‖F(9n, vn)−F(8, v)‖L1

T L2
R
+‖9n −8‖L2

T,R

(
‖9n‖

2
L6

T,R
+‖8‖2L6

T,R

))
.

Then, using (A-18) and (A-28), we obtain for all t ∈ R

|I R
n (t)| → 0 as n→∞.
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Next, using the Hölder inequality we have

|J R
n (t)| ≤ 2

(∫ T

0

∫
∞

−∞

∣∣|9n|
29n(x, t ′)− |8|28(x, t ′)

∣∣6/5 dx dt ′
)5/6(∫ T

0

∫
|x |≥R
|S(t − t ′)ϕ|6 dx dt ′

)1/6

+

∫ T

0

(∫
∞

−∞

∣∣F(9n, vn)(x, t ′)−F(8, v)(x, t ′)
∣∣2 dx

)1/2

dt ′ sup
t ′∈[0,T ]

(∫
|x |≥R
|S(t − t ′)ϕ(x)|2 dx

)1/2

.

The terms on the right-hand side are bounded by a constant independent of n. Besides, since (6, 6) and
(∞, 2) are admissible pairs, we have

‖S(t)ϕ‖L6
T,x
≤ M‖ϕ‖L2(R),

‖S(t)ϕ‖L∞T L2(R) ≤ M‖ϕ‖L2(R),

so that, by the dominated convergence theorem and the fact that t 7→ S(t) is uniformly continuous from
[0, T ] to L2(R), we obtain

lim
R→∞

∫ T

0

∫
|x |≥R
|S(t)ϕ|6 dx dt = lim

R→∞
sup

t∈[0,T ]

(∫
|x |≥R
|S(t)ϕ(x)|2 dx

)1/2

= 0.

Hence,

lim
R→∞
|J R

n (t)| = 0 uniformly with respect to n ∈ N

for any t ∈ [0, T ]. This completes the proof of (A-41) and then of (A-38). This leads to the fact that
8 ∈ C0([0, T ], L2(R)).

Now, let us prove that v ∈ C0([0, T ], H 1(R)). Since (8, v) satisfies the first equation in (2-34),
8 ∈ L∞([0, T ], L2(R)) and F(9, v) ∈ L∞([0, T ], L∞(R)), we have v ∈ H 1([0, T ], H−1(R)). This
yields, using the Sobolev embedding theorem, v ∈ C0([0, T ], H−1(R)). Let (t1, t2) ∈ [0, T ]2. We can
write that ∫

R

|v(t1, x)− v(t2, x)|2 dx =
〈
v(t1, x)− v(t2, x), v(t1, x)− v(t2, x)

〉
H−1,H1

≤ ‖v(t1, x)− v(t2, x)‖H−1‖v(t1, x)− v(t2, x)‖H1 .

Since v ∈ C0([0, T ], H−1(R))∩ L∞([0, T ], H 1(R)), we obtain v ∈ C0([0, T ], L2(R)). Next, we write

‖F(v,8)(t1)− F(v,8)(t2)‖L∞(R) ≤ ‖v(t1)− v(t2)‖L2‖8(t1)‖L2 +‖8(t2)−8(t1)‖L2‖v(t2)‖L2 .

Using the fact that 8, v ∈ C0([0, T ], L2(R)), we infer that F(v,8) ∈ C0([0, T ], L∞(R)). Then, by
the second equation in (2-34), v ∈ C0([0, T ], H 1(R)). This finishes the proof of this step, and of
Proposition A.2. �

Finally, we give the proof of Proposition A.1.
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Proof of Proposition A.1. In view of Proposition A.2, it is sufficient to prove the convergence of wn . The
proof follows the arguments in the proof of (A-27). Let φ ∈ L2(R). We rely on (4-41) to write∫

R

[w∗(t, x)−wn(t, x)]φ(x) dx

= 2
∫

R

Im
(
9∗(t, x)(1−2F(v∗, 9∗)(t, x))

1−(v∗)2(t, x)
−
9n(t, x)(1−2F(vn, 9n)(t, x))

1−(vn)2(t, x)

)
φ(x) dx

= 2
∫

R

Im
(

9∗(t, x)
1−(v∗)2(t, x)

−
9n(t, x)

1−(vn)2(t, x)

)
φ(x) dx

− 4
∫

R

Im
(
9∗(t, x)F(v∗, 9∗)(t, x)

1−(v∗)2(t, x)
−
9n(t, x)F(vn, 9n)(t, x)

1−(vn)2(t, x)

)
φ(x) dx

for all t ∈ [0, T ]. Then, we use the same arguments as in the proof of (A-27) to show that the two last
terms on the right-hand side go to 0 when n goes to +∞. This finishes the proof of the proposition. �

Exponential decay of χc. In this subsection, we recall the explicit formula and some useful properties of
the operator Hc, and then study its negative eigenfunction χc. For c ∈ (−1, 1) \ {0}, the operator Hc is
given in explicit terms by

Hc(ε)=


Lc(εv)+ c2 (1+ v

2
c )

2

(1− v2
c )

3 εv − c
1+ v2

c

1− v2
c
εw

−c
1+ v2

c

1− v2
c
εv + (1− v2

c )εw

 , (A-42)

where ε = (εv, εw) and

Lc(εv)=−∂x

(
∂xεv

1− v2
c

)
+
(
1− c2

− (5+ c2)v2
c + 2v4

c
) εv

(1− v2
c )

2 .

In view of (A-42), the operator Hc is an isomorphism from H 2(R) × L2(R) ∩ Span(∂x Qc)
⊥ onto

Span(∂x Qc)
⊥. In addition, there exists a positive number Ac, depending continuously on c, such that

‖H−1
c ( f, g)‖H k+2(R)×H k(R) ≤ Ac‖( f, g)‖H k(R)2 (A-43)

for any ( f, g) ∈ H k(R)2 ∩Span(∂x Qc)
⊥ and any k ∈ N.

The following proposition establishes the coercivity of the quadratic form Hc under suitable orthogo-
nality conditions.

Proposition A.3. Let c ∈ (−1, 1)\{0}. There exists a positive number3c, depending only on c, such that

Hc(ε)≥3c‖ε‖
2
H1×L2 (A-44)

for any pair ε ∈ H 1(R)× L2(R) satisfying the two orthogonality conditions

〈∂x Qc, ε〉L2×L2 = 〈χc, ε〉L2×L2 = 0. (A-45)

Moreover, the map c 7→3c is uniformly bounded from below on any compact subset of (−1, 1) \ {0}.
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The proof relies on standard Sturm–Liouville theory (see, e.g., the proof of Proposition 1 in [de Laire
and Gravejat 2015] for more details).

Now, we turn to the analysis of the pair χc.

Lemma A.4. The pair χc belongs to C∞(R)× C∞(R). In addition, there exist two positive numbers Ac

and ac, depending continuously on c, such that ac >
√

1− c2 and

|∂k
xχc| ≤ Ace−ac|x | on R for k ∈ {0, 1, 2}. (A-46)

Proof. We set χc := (ζc, ξc). Since Hc(χc)=−λ̃cχc, we have the following system

−∂x

(
∂xζc

1− v2
c

)
+
(
1− c2

− (5+ c2)v2
c + 2v4

c
) ζc

(1− v2
c )

2 + c2 (1+ v
2
c )

2

(1− v2
c )

3 ζc− c
1+ v2

c

1− v2
c
ξc =−λ̃cζc, (A-47)

c
1+ v2

c

1− v2
c
ζc = (1− v2

c + λ̃c)ξc. (A-48)

It follows from standard elliptic theory that χc ∈ H 2(R) × L2(R). Since the coefficients in (A-48)
are smooth and bounded from above and below, we infer from a standard bootstrap argument that
χc ∈ C∞(R)× C∞(R). Notice in particular that, by the Sobolev embedding theorem, χc and ∂xχc are
bounded on R. Then, we deduce from the first statement in (5-11) that5

−∂xxζc+ (1+ λ̃c)ζc− cξc =O(v2
c ), (A-49)

ζc =
1+λ̃c

c
ξc+O(v2

c ). (A-50)

Note that we have

Bc exp
(
−

√
1− c2|x |

)
≤ vc(x)≤ Ac exp

(
−

√
1− c2|x |

)
for all x ∈ R, (A-51)

where Bc and Ac are two positive numbers.
In order to prove (A-46), we now introduce (A-50) into (A-49) to obtain

−∂xxζc+ b2
cζc =O

(
exp

(
−2
√

1− c2|x |
))
, (A-52)

ξc =
c

1+λ̃c
ζc+O

(
exp

(
−2
√

1− c2|x |
))
, (A-53)

with b2
c =

1−c2
+2λ̃c+(λ̃c)

2

1+λ̃c
> 1− c2. Next, we set

gc := −∂xxζc+ b2
cζc, (A-54)

so that gc(x)=O
(
exp

(
−2
√

1− c2|x |
))

for all x ∈R. Using the variation of constants method, we obtain,
for all x ∈ R,

ζc(x)= A(x)ebcx
+ Acebcx

+ B(x)e−bcx
+ Bce−bcx ,

5The notation O(v2
c ) refers to a quantity bounded by Acv

2
c (pointwise), where the positive number Ac depends only on c.
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with

A(x)= −1
2bc

∫ x

0
e−bct gc(t) dt

and

B(x)= −1
2bc

∫ x

0
ebct gc(t) dt.

Since ζc ∈ L2(R), this leads to

ζc(x)=O
(
exp

(
−2
√

1− c2|x |
)
+ exp(−bc|x |)

)
.

Hence, we can take ac =min
{
2
√

1− c2, bc
}

and invoke (A-50) to obtain (A-46) for k = 0. Using (5-10),
(5-11), (A-47), (A-48) and (A-51), we extend (A-46) to k ∈ 1, 2. �
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ON THE WELL-POSEDNESS OF
THE GENERALIZED KORTEWEG–DE VRIES EQUATION

IN SCALE-CRITICAL OLr-SPACE

SATOSHI MASAKI AND JUN-ICHI SEGATA

The purpose of this paper is to study local and global well-posedness of the initial value problem for the
generalized Korteweg–de Vries (gKdV) equation in OLr D ff 2 S 0.R/ W kf k OLr D k Of kLr0 <1g. We
show (large-data) local well-posedness, small-data global well-posedness, and small-data scattering for
the gKdV equation in the scale-critical OLr -space. A key ingredient is a Stein–Tomas-type inequality for
the Airy equation, which generalizes the usual Strichartz estimates for OLr -framework.

1. Introduction

We consider the initial value problem for the generalized Korteweg–de Vries (gKdV) equation(
@tuC @

3
xuD �@x.juj

˛�1u/; t; x 2 R;

u.0; x/D u0.x/; x 2 R;
(1-1)

where u W R�R! R is an unknown function, u0 W R! R is a given function, and � 2 Rnf0g and ˛ > 1
are constants. We say that (1-1) is defocusing if � > 0 and focusing if � < 0.

The class of equations (1-1) arises in several fields of physics. Equation (1-1) with ˛D 2 is the notable
Korteweg–de Vries equation [1895], which models long waves propagating in a channel. Equation (1-1)
with ˛ D 3 is also well-known as the modified Korteweg–de Vries equation, which describes a time
evolution for the curvature of certain types of helical space curves [Lamb 1977].

Equation (1-1) has the following scale invariance: if u.t; x/ is a solution to (1-1), then

u�.t; x/ WD �
2
˛�1u.�3t; �x/

is also a solution to (1-1) with initial data u�.0; x/ D �
2
˛�1u0.�x/ for any � > 0. In what follows,

a Banach space for initial data is referred to as a scale-critical space if its norm is invariant under
u0.x/ 7! �

2
˛�1u0.�x/.

The purpose of this paper is to study (large-data) local well-posedness, small-data global well-posedness
and scattering for (1-1) in a scale-critical space yL

˛�1
2 . For r 2 Œ1;1�, the function space yLr is defined by

yLr D yLr.R/ WD
˚
f 2 S 0.R/ W kf kyLr D k Of kLr0 <1

	
;

MSC2010: primary 35Q53, 35B40; secondary 35B30.
Keywords: generalized Korteweg–de Vries equation, scattering problem.
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where Of stands for the Fourier transform of f with respect to the space variable and r 0 denotes the Hölder
conjugate of r . We use the conventions 10 D1 and10 D 1. Our notion of well-posedness consists of
existence, uniqueness, and continuity of the data-to-solution map. We also consider the persistence property
of the solution; that is, the solution describes a continuous curve in the function space X whenever u0 2X .

Local well-posedness of the initial value problem (1-1) in a scale-subcritical Sobolev space H s.R/,
s > s˛ WD

1
2
�

2
˛�1

, has been studied by many authors [Bourgain 1993; Grünrock 2005b; Guo 2009; Kato
1983; Kenig et al. 1993; 1996; Kishimoto 2009; Molinet and Ribaud 2003], where s˛, a scale-critical
exponent, is the unique number such that PH s˛ becomes scale critical. A fundamental work on local
well-posedness is due to Kenig, Ponce, and Vega [Kenig et al. 1993]. They proved that (1-1) is locally
well-posed in H s.R/ with s > 3

4

�
˛D 2; s2D�

3
2

�
, s > 1

4

�
˛D 3; s3D�

1
2

�
, s > 1

12

�
˛D 4; s4D�

1
6

�
and s > s˛ (˛ > 5). Introducing Fourier restriction norms, Bourgain [1993] obtained local (and global1)
well-posedness of the KdV equation (i.e., (1-1) with ˛ D 2) in L2.R/. In [Kenig et al. 1996], Kenig,
Ponce, and Vega improved the previous results for the KdV equation to H s.R/ with s > �3

4
. Further,

Guo [2009] and Kishimoto [2009] extended the result of Kenig et al. in H�
3
4 .R/. (See also [Buckmaster

and Koch 2015] on the existence of a weak solution to the KdV equation at H�1.) Grünrock [2005b] has
shown local well-posedness of the quartic KdV equation ((1-1) with ˛ D 4) in H s with s > s4. Notice
that all of the above results are based on the contraction mapping principle for the corresponding integral
equation. Hence, a data-solution map associated with (1-1) is Lipschitz continuous.2

Concerning the well-posedness of (1-1) in the scale-critical PH s˛ -space, Kenig et al. [1993] proved
local well-posedness and global well-posedness for small data in the scale-critical space PH s˛ when ˛ > 5.
Since the scale-critical exponent s˛ is negative in the mass-subcritical case ˛ < 5, the well-posedness
of (1-1) in PH s˛ becomes rather a difficult problem. Tao [2007] proved local well-posedness and global
well-posedness for small data for (1-1) with the quartic nonlinearity3 ˛ D 4 in PH s4 . Later on, the above
results were extended to a homogeneous Besov space PBs˛2;1 by Koch and Marzuola [2012] (˛ D 4) and
Strunk [2014] (˛ > 5). As far as we know, local well-posedness and small-data global well-posedness of
(1-1) in PH s˛ for the mass-subcritical case ˛ < 5 were open except for the case ˛ D 4.

Local and global well-posedness for a class of nonlinear dispersive equations is currently being
intensively investigated also in the framework of yLr -space. For the one-dimensional nonlinear Schrödinger
equation, (

i@tv� @
2
xv D �jvj

˛�1v; t; x 2 R;

v.0; x/D v0.x/; x 2 R;
(1-2)

where � 2 Rnf0g, Grünrock [2005a] has shown local and global well-posedness for (1-2) with ˛ D 3
in yLr . Hyakuna and Tsutsumi [2012] extended Grünrock’s result in yLr to all mass-subcritical cases
1 < ˛ < 5. Grünrock and Vega [Grünrock 2004; Grünrock and Vega 2009] proved local well-posedness

1Since (1-1) preserves the L2-norm of a solution in t , local well-posedness in L2 yields global well-posedness in L2 if ˛ < 5.
2In fact, if the nonlinear term is analytic, then the data-solution map associated with (1-1) is analytic.
3Strictly speaking, the local well-posedness is shown not for �@x.juj3u/ but for �@x.u4/. These two are not necessarily

equivalent.
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for the modified KdV equation (i.e., (1-1) with ˛ D 3) in yH r
s , where

yH r
s D

˚
f 2 S 0 W kf k yH r

s
D k.1C �2/

s
2 Of .�/k

Lr
0

�

<1
	
:

However, the above results are not in scale-critical settings.
It would be interesting to compare the scale-critical space yL

˛�1
2 with some other scale-critical spaces in

view of symmetries.4 Other than the scaling, the yL
˛�1
2 -norm is invariant under the three group operations

(i) translation in physical space, .Taf /.x/D f .x� a/, where a 2 R,

(ii) translation in Fourier space, .P�f /.x/D e�ix�f .x/, where � 2 R,

(iii) Airy flow, .Ai.t/f /.x/D e�t@
3
xf .x/, where t 2 R.

The critical Lebesgue spaceL
˛�1
2 is invariant under the former two symmetries but not under the Airy flow.

The critical Sobolev space PH s˛ (or homogeneous Triebel–Lizorkin and homogeneous Besov spaces PAs˛2;q ,
with 1 6 q 61, more generally) is not invariant with respect to P� if s˛ ¤ 0. The critical weighted
Lebesgue space PH 0;�s˛ WD L2.R; jxj�2s˛ dx/ is not invariant with respect to Ta and Ai.t/. Further,
when ˛ D 5, these four spaces coincide with L2, which is invariant under the above three symmetries.
Thus, among the above four critical spaces, yL

˛�1
2 possesses the richest symmetries, and, in some sense,

yL
˛�1
2 is close to L2-space. Inclusion relations between these spaces are summarized in Appendix B.

Local well-posedness. Before we state our main results, we introduce several notations.

Definition 1.1. Let .s; r/ 2 R� Œ1;1�. A pair .s; r/ is said to be acceptable if 1
r
2
�
0; 3
4

�
and

s 2

8<:
�
�
1
2r
; 2
r

�
if 06 1

r
6 1
2
;�

2
r
�
5
4
; 5
2
�
3
r

�
if 1
2
< 1
r
< 3
4
:

For an interval I �R and an acceptable pair .s; r/, we define a function space X.I I s; r/ of space-time
functions with the norm

kf kX.I Is;r/ D


jDxjsf 

Lp.s;r/x .RIL

q.s;r/
t .I //

;

where the exponents in the above norm are given by

2

p.s; r/
C

1

q.s; r/
D
1

r
; �

1

p.s; r/
C

2

q.s; r/
D s; (1-3)

or equivalently,  
1

p.s;r/

1
q.s;r/

!
D

 
�
1
5
2
5

2
5
1
5

! 
s
1
r

!
:

We refer to X.I I s; r/ as an yLr -admissible space.
Our main theorems are as follows.

4Here, a symmetry is an isometric bijection which possesses a group structure. Some of them are also “symmetries of (1-1)”
in such a sense that an image of a solution of (1-1) again solves the equation.



702 SATOSHI MASAKI AND JUN-ICHI SEGATA

Theorem 1.2 (local well-posedness in yL
˛�1
2 ). For 21

5
< ˛ < 23

3
, the problem (1-1) is locally well-posed

in yL
˛�1
2 . Namely, for any u0 2 yL

˛�1
2

x .R/, there exists an interval I D I.u0/ such that a unique solution

u 2 C.I I yL
˛�1
2

x .R//\
\

.s;˛�1
2
/ acceptable

X
�
I I s;

˛�1

2

�
(1-4)

to (1-1) exists. Furthermore, for any given subinterval I 0 � I , there exists a neighborhood V of u0
in yL

˛�1
2

x .R/ such that the map u0 7! u from V into the class defined by (1-4) with I 0 instead of I is
Lipschitz continuous.

Remark 1.3. Theorem 1.2 (and all results below) holds for more general nonlinearity of the form @xG.u/

with G 2 Lip˛. For the precise condition on G, see Remark 3.5.

The proof of Theorem 1.2 is based on a contraction argument, with the help of a space-time estimate
for the Airy equation in yLr . A key ingredient is a Stein–Tomas-type inequality for the Airy equation, a
special case of [Grünrock 2004, Corollary 3.6]:

jDxj 1r e�t@3xf 

Lrt;x.I�R/

6 Ckf k
yL
r
3
; (1-5)

where r 2 .4;1�. This inequality is a generalization of a well-known Strichartz estimate,

jDxj 16 e�t@3xf 

L6t;x.I�R/
6 Ckf kL2 :

Moreover, interpolations between the above Stein–Tomas-type inequality (1-5) and the Kenig–Ruiz
estimate or Kato’s local smoothing effect give us the following generalized Strichartz estimate for the Airy
equation in yLr -framework (Proposition 2.1): if .s; r/ is an acceptable pair then there exists C such that

ke�t@
3
xf kX.RIs;r/ 6 Ckf kyLr (1-6)

for f 2yLr . Furthermore, combining the homogeneous estimate and the Christ–Kiselev lemma (Lemma 2.6),
we also obtain a generalized version of inhomogeneous Strichartz estimates. The estimate (1-5) can be
regarded as a kind of restriction estimate of the Fourier transform, which goes back to Stein [Fefferman
1970] and Tomas [1975] (for more information on the restriction theorem, see, e.g., [Tao et al. 1998]).
It is worth mentioning that the yLr -spaces have naturally come out in this context.

We set S.I I r/ WDX.I I 0; r/. The S.I I r/-norm is the so-called scattering norm. It is understood that
a key for obtaining a closed estimate for the corresponding integral equation, from which local well-
posedness immediately follows, is to bound the scattering norm S

�
I I ˛�1

2

�
. In the proof of Theorem 1.2,

the scattering norm is handled by means of the above generalized Strichartz estimate (1-6). Notice that the
pair

�
0; ˛�1

2

�
is acceptable only if ˛ > 21

5
, which leads to our restriction. For the upper bound on ˛, see

Remark 4.1 below. Alternatively, Sobolev’s embedding also yields a bound on the scattering norm, pro-
vided ˛>5. In such case, we obtain local well-posedness in PH s˛ as in [Kenig et al. 1993] (see Remark 4.4).

Persistence of regularity. We establish two persistence-of-regularity-type results for yL
˛�1
2 -solutions

given in Theorem 1.2. More specifically, we consider persistence of yLr -regularity for r ¤ ˛�1
2

and
PH s-regularity for �1 < s < ˛. These results yield local well-posedness in other yLr -like spaces such as
yLr1 \ yLr2 , where r1 6 ˛�1

2
6 r2, and PH s \ yL

˛�1
2 .



ON THE WELL-POSEDNESS OF THE GENERALIZED KORTEWEG–DE VRIES EQUATION 703

Theorem 1.4 (persistence of yLr -regularity). Assume 21
5
< ˛ < 23

3
. Let u0 2 yL

˛�1
2

x .R/ and let u 2
C.I I yL

˛�1
2 .R// be a corresponding solution given in Theorem 1.2. If u0 2 yL

˛0�1

2
x for some 21

5
<˛0 <

23
3

,
where ˛0 ¤ ˛, then

u 2 C.I I yL
˛0�1

2
x .R//\

\
.s;
˛0�1

2
/ acceptable

X
�
I I s;

˛0�1

2

�
:

Theorem 1.5 (persistence of PH s-regularity). Assume 21
5
< ˛ < 23

3
. Let u0 2 yL

˛�1
2

x .R/ and let u 2
C.I; yL

˛�1
2 .R// be a corresponding solution given in Theorem 1.2. If u0 2 PH�

x .R/ for some �1 < � < ˛,

jDxj
�u 2 C.I IL2.R//\

\
.s;2/ acceptable

X.I I s; 2/:

As a corollary, we obtain the following well-posedness results.

Corollary 1.6. We have the following.

(i) If 21
5
< ˛ < 23

3
then (1-1) is locally well-posed in yLr1 \ yLr2 as long as 8

5
< r1 6 ˛�1

2
6 r2 < 10

3
.

(ii) If 21
5
< ˛ < 5 then (1-1) is locally well-posed in PH s˛ \ yL

˛�1
2 , where s˛ D 1

2
�

2
˛�1

.

Since yL
˛�1
2 � PH s˛ does not hold (see Lemma B.2), the second is weaker than well-posedness in PH s˛ .

Here we remark that an yL
˛�1
2 -solution has conserved quantities, provided the solution has appropriate

regularity. More precisely, when u0 2 yL
˛�1
2 \L2, a solution u.t/ has a conserved mass

MŒu.t/� WD ku.t/k2
L2
:

Similarly, if u0 2 yL
˛�1
2 \ PH 1 then the energy

EŒu.t/� WD 1
2
k@xu.t/k

2
L2
C

�

˛C 1
ku.t/k˛C1

L˛C1

is invariant.

Blowup and scattering. We next consider long time behavior of solutions given in Theorem 1.2. To this
end, we give the definitions of blowup and scattering of (1-1) for the initial data u0 2 yLrx . Set

Tmax W D sup
˚
T > 0 W the solution u to (1-1) can be extended to Œ0; T /

	
;

Tmin W D sup
˚
T > 0 W the solution u to (1-1) can be extended to .�T; 0�

	
:

Denote the lifespan of u.t/ as .�Tmin; Tmax/. We say a solution u.t/ blows up in finite time for positive
(resp. negative) time direction if Tmax < C1 (resp. Tmin < C1). We say a solution u.t/ scatters for
positive time direction if Tmax DC1 and there exists a unique function uC 2 yLrx such that

lim
t!C1

ku.t/� e�t@
3
xuCkyLrx

D 0;

where e�t@
3
xuC is a solution to the Airy equation @tvC@3xvD 0 with initial condition v.0; x/D uC. The

scattering of u for negative time direction is defined in a similar fashion.
Roughly speaking, a solution scatters if a linear dispersion effect dominates the nonlinear interaction.

A typical case is when the data (and the corresponding solution) is small. Here, we state this small-data
scattering for (1-1).
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Theorem 1.7 (small-data scattering). Let 21
5
<˛< 23

3
. There exists "0>0 such that if u02yL

˛�1
2

x .R/ satisfies

ku0kyL.˛�1/=2x
6 "0;

then the solution u.t/ to (1-1) given in Theorem 1.2 is global in time and scatters for both time directions.
Moreover,

kuk
L1t .RI

yL
.˛�1/=2
x /

CkukS.RI˛�1
2
/ 6 2ku0kyL.˛�1/=2x

:

We now give criterion for blowup and scattering.

Theorem 1.8 (blowup criterion). Assume 21
5
< ˛ < 23

3
. Let u0 2 yL

˛�1
2 and let u.t/ be a corresponding

unique solution of (1-1) given in Theorem 1.2. If Tmax <1 then

kukS.Œ0;T /I˛�1
2
/!1

as T " Tmax. A similar statement is true for negative time direction.

Theorem 1.9 (scattering criterion). Assume 21
5
<˛ < 23

3
. Let u0 2 yL

˛�1
2 and let u.t/ be a corresponding

unique solution of (1-1) given in Theorem 1.2. The solution u.t/ scatters forward in time if and only if
Tmax DC1 and kukS.Œ0;1/I˛�1

2
/ <1. A similar statement is true for negative time direction.

Finally, we give a criterion for scattering in terms of the energy. We note that if an yL
˛�1
2 -solution u.t/

scatters (in the yL
˛�1
2 -sense) as t !˙1 and if u0 2 yL

˛0�1

2 (resp. if u0 2 PH� ) then u.t/ scatters as
t !˙1 also in the yL

˛0�1

2 -sense (resp. PH� -sense).

Theorem 1.10. Let 21
5
< ˛ < 23

3
. If u0 2 yL

˛�1
2 \H 1 satisfies u0 ¤ 0 and EŒu0�6 0 then u.t/ does not

scatter as t !˙1.

The rest of the paper is organized as follows. In Section 2, we prove some linear space-time estimates
for solutions to the Airy equation, in yLr -framework. The generalized Strichartz estimates are established
in Propositions 2.1 and 2.5. Section 3 is devoted to several nonlinear estimates. We also introduce several
function spaces to work with in this section. Then, in Section 4, we prove our theorems. In Appendix A,
we prove a fractional chain rule in space-time function space (Lemma 3.7). Finally in Appendix B, we
briefly collect some inclusion relations for yLr .

The following notation will be used throughout this paper: jDxjs D .�@2x/
s
2 and hDxis D .I � @2x/

s
2

denote the Riesz and Bessel potentials of order �s, respectively. For 1 6 p; q 61 and I � R, let us
define a space-time norm

kf kLqt L
p
x .I /
D


kf .t; � /kLpx .R/

Lqt .I /;

kf kLpxL
q
t .I /
D


kf . � ; x/kLqt .I /

Lpx .R/:

2. Linear estimates for the Airy equation

In this section, we consider the space-time estimates of solutions to the Airy equation(
@tuC @

3
xuD F.t; x/; t 2 I; x 2 R;

u.0; x/D f .x/; x 2 R;
(2-1)
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1
q
C

B

AO 1
p

Figure 1. The range of .p; q/ satisfying the assumptions of Proposition 2.1.

where I � R is an interval and F W I �R! R and f W R! R are given functions.
Let fe�t@

3
xgt2R be an isometric isomorphism group in yLr defined by e�t@

3
x D F�1eit�3F , or more

precisely by

.e�t@
3
xf /.x/D

1
p
2�

Z 1
�1

eix�Cit�
3
Of .�/ d�:

Using the group, the solution to (2-1) can be written as

u.t/D e�t@
3
xf C

Z t

0

e�.t�t
0/@3xF.t 0/ dt 0:

We first show a homogeneous estimate associated with (2-1).

Proposition 2.1. Let I be an interval. Let .p; q/ satisfy

06 1

p
<
1

4
; 06 1

q
<
1

2
�
1

p
:

Then, for any f 2 yLr , 

jDxjse�t@3xf 

LpxLqt .I / 6 Ckf kyLr ; (2-2)

where
1

r
D
2

p
C
1

q
; s D�

1

p
C
2

q
;

and the positive constant C depends only on r and s.

Figure 1 shows the range of .p; q/ satisfying the assumptions of Proposition 2.1, where AD
�
1
4
; 0
�
,

B D
�
1
4
; 1
4

�
, and C D

�
0; 1
2

�
. The line segments OA and OC are included, but the other parts of the

border are excluded.
To prove Proposition 2.1, we show three lemmas. The first one is a Stein–Tomas-type estimate.

Lemma 2.2 (Stein–Tomas-type estimate). For any r 2 .4;1�, there exists a positive constantC depending
only on r such that for any f 2 yL

r
3 ,

jDxj 1r e�t@3xf 

Lrt;x.I / 6 Ckf kyLr=3 : (2-3)
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Proof of Lemma 2.2. Although a more general version is proved in [Grünrock 2004, Corollary 3.6], here
we give a direct proof, based on the fact that the exponents for the space variable and time variable on the
left-hand side coincide.

It suffices to prove (2-3) for the case I D R. For notational simplicity, we omit R. The case r D1
follows from the Hausdorff–Young inequality. Let r <1. Squaring both sides, we may show that

ˇ̌jDxj 1r e�t@3xf ˇ̌2

Lr=2t;x 6 Ckf k2yLr=3 : (2-4)

The left-hand side of (2-4) is equal to



“
R2
eix.���/Cit.�

3��3/
j��j

1
r Of .�/ Of .�/ d� d�






L
r=2
t;x

:

Changing variables by aD � � � and b D �3� �3, we have

ˇ̌jDxj 1r e�t@3xf ˇ̌2

Lr=2t;x D




“

R2
eixaCitbj��j

1
r Of .�/ Of .�/

1

3j�2� �2j
da db






L
r=2
t;x

:

We now use the Hausdorff–Young inequality to deduce that

ˇ̌jDxj 1r e�t@3xf j2

Lr=2t;x 6 C

j��j 1r Of .�/ Of .�/j�2� �2j�1

L.r=2/0a;b

D C

�“
R2

j��j
1
r�2 j Of .�/j

r
r�2 j Of .�/j

r
r�2

j� � �j
2
r�2 j�C �j

2
r�2

d� d�

�1� 2
r

: (2-5)

Notice that r
2
> 2. We now split the integral region R2 into f��> 0g and f�� < 0g. We only consider the

first case, since the other can be treated essentially in the same way. For .�; �/ with ��> 0, we have

��6
.�C �/2

4
;

and so“
��>0

j��j
1
r�2 j Of .�/j

r
r�2 j Of .�/j

r
r�2

j� � �j
2
r�2 j�C �j

2
r�2

d� d�6 C
“
��>0

j Of .�/j
r
r�2 j Of .�/j

r
r�2

j� � �j
2
r�2

d� d�: (2-6)

By the Hölder inequality and the Hardy–Littlewood–Sobolev inequality, we have“
��>0

j Of .�/j
r
r�2 j Of .�/j

r
r�2

j� � �j
2
r�2

d� d�6


j Of j rr�2



L.r�2/=.r�3/



.j�j� 2
r�2 � j Of j

r
r�2 /




Lr�2

6 Ck Of k
2r
r�2

L
r=.r�3/ D Ckf k

2r
r�2

yL
r=3
x

(2-7)

as long as 2
r�2

< 1, that is, r > 4. Combining (2-5), (2-6) and (2-7), we obtain the result. �

The second is a Kenig–Ruiz-type estimate [1983].

Lemma 2.3 (Kenig–Ruiz-type estimate). There exists a universal constant C such that for any interval I
and any f 2 L2, 

jDxj� 14 e�t@3xf 

L4xL1t .I / 6 Ckf kL2 : (2-8)
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Proof of Lemma 2.3. See [Kenig et al. 1991, Theorem 2.5]. �

The last estimate is an yLq-version of Kato’s local smoothing effect [1983].

Lemma 2.4 (Kato’s smoothing effect). For any q 2 Œ2;1�, there exists a positive constant C depending
only on q such that for any interval I and for any f 2 yLq ,

jDxj 2q e�t@3xf 

L1x Lqt .I / 6 Ckf kyLq : (2-9)

Proof of Lemma 2.4. We show (2-9) by slightly modifying the argument due to Kenig, Ponce, and Vega
[Kenig et al. 1991, Theorem 2.5]. We prove (2-9) for the case I D R only.

The case qD1 is treated in Lemma 2.2. Hence, we may suppose q <1. A direct computation shows

jDxj
2
q e�t@

3
xf D

1
p
2�

Z
R

eix�Cit�
3

j�j
2
q Of .�/ d�

D
1

3
p
2�

Z
R

eix�
1
3Cit�

j�j
2
3q ��

2
3 Of .�

1
3 / d�;

where we have used a change of variable �D �3 to yield the last line. Take the Lqt -norm and apply the
Hausdorff–Young inequality to obtain

jDxj 2q e�t@3xf 

Lqt 6 C

eix� 13 j�j 2�q3q Of .� 13 /

Lq0� 6 Ck Of kLq0 D Ckf kyLq :
Since the right-hand side is independent of x, we obtain (2-9). �

Proof of Proposition 2.1. Interpolating (2-3), (2-8), and (2-9), we obtain (2-2). �

Next we show an inhomogeneous estimate associated with (2-1).

Proposition 2.5. Let 4
3
< r < 4 and let .pj ; qj / (j D 1; 2) satisfy

06 1

pj
<
1

4
; 06 1

qj
<
1

2
�
1

pj
:

Then, the inequalities



Z t

0

e�.t�t
0/@3xF.t 0/ dt 0






L1t .I I

yLrx/

6 C1


jDxj�s2F 



L
p0
2
x L

q0
2
t .I /

(2-10)

and 



jDxjs1 Z t

0

e�.t�t
0/@3xF.t 0/ dt 0






L
p1
x L

q1
t .I /

6 C2


jDxj�s2F 



L
p0
2
x L

q0
2
t .I /

(2-11)

hold for any F satisfying jDxj�s2F 2 L
p02
x L

q02
t , where

1

r
D

2

p1
C
1

q1
; s1 D�

1

p1
C
2

q1

1

r 0
D

2

p2
C
1

q2
; s2 D�

1

p2
C
2

q2
;

and where the constant C1 depends on r , s1 and I , and the constant C2 depends on r , s2 and I .

To prove Proposition 2.5, we employ the following lemma, which is essentially due to Christ and
Kiselev [2001]. The version of this lemma that we use is the one presented in [Molinet and Ribaud 2004].
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Lemma 2.6. Let I � R be an interval and let K W S.I �R/! C.R3/. Assume that



Z
I

K.t; t 0/F.t 0/ dt 0





L
p1
x L

q1
t .I /

6 CkF k
L
p2
x L

q2
t .I /

for some 16 p1; p2; q1; q2 61 with min.p1; q1/ >max.p2; q2/. Then



Z t

0

K.t; t 0/F.t 0/ dt 0





L
p1
x L

q1
t .I /

6 CkF k
L
p2
x L

q2
t .I /

:

Moreover, the case q1 D1 and p2; q2 <1 is allowed.

Proof of Lemma 2.6. See [Molinet and Ribaud 2004, Lemma 2]. �

Proof of Proposition 2.5. We first prove the inequality (2-10). Since the group fe�t@
3
xgt2R is isometric

in yLr , the duality argument and Proposition 2.1 yield



Z t

0

e�.t�t
0/@3xF.t 0/ dt 0






yLrx

D





Z t

0

et
0@3xF.t 0/ dt 0






yLrx

D sup
kgk
yLr
0
x
D1

�Z 1
�1

�Z t

0

et
0@3xF.t 0; x/ dt 0

�
g.x/ dx

�

D sup
kgk
yLr
0
x
D1

�Z t

0

Z 1
�1

jDxj
�s2F.t 0; x/jDxj

s2e�t
0@3xg.x/ dt 0 dx

�
6 sup
kgk
yLr
0
x
D1



jDxj�s2F 


L
p0
2
x L

q0
2
t .I /



jDxjs2e�t 0@3xg

Lp2x L
q2
t .I /

6 C sup
kgk
yLr
0
x
D1



jDxj�s2F 


L
p0
2
x L

q0
2
t .I /
kgkyLr0x

D C


jDxj�s2F 



L
p0
2
x L

q0
2
t .I /

; (2-12)

where the constant C is independent of t . Hence we have (2-10).
Next we prove the inequality (2-11). Since the case r D 2 was already proved in [Kenig et al. 1993],

we consider the case where r ¤ 2. To prove (2-11), it suffices to show



jDxjs1 Z
I

e�.t�t
0/@3xF.t 0/ dt 0






L
p1
x L

q1
t .I /

6 C


jDxj�s2F 



L
p0
2
x L

q0
2
t .I /

: (2-13)

Indeed, since min.p1; q1/ >max.p02; q
0
2/ follows from

min.p1; q1/D

(
r
r�1

if 4
3
< r < 2;

r if 2 < r < 4;
max.p02; q

0
2/D

(
r if 4

3
< r < 2;

r
r�1

if 2 < r < 4;
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we see that the combination of the Christ–Kiselev lemma (Lemma 2.6) with (2-13) implies (2-11).
Therefore we concentrate our attention on proving (2-13). By Proposition 2.1,



jDxjs1 Z

I

e�.t�t
0/@3xF.t 0/ dt 0






L
p1
x L

q1
t .I /

D





jDxjs1e�t@3x Z
I

et
0@3xF.t 0/ dt 0






L
p1
x L

q1
t .I /

6 C




Z
I

et
0@3xF.t 0/ dt 0






yLrx

: (2-14)

By the duality argument similar to (2-12), we obtain



Z
I

et
0@3xF.t 0/ dt 0






yLrx

6 C


jDxj�s2F 



L
p0
2
x L

q0
2
t .I /

: (2-15)

Combining (2-14) and (2-15), we obtain (2-13). �

3. Nonlinear estimates

In this section, we prove several nonlinear estimates which are used to prove main theorems. We introduce
several function spaces. Let us recall that a pair .s; r/2R�Œ1;1� is said to be acceptable if 1

r
2
�
0; 3
4

�
and

s 2

(�
�
1
2r
; 2
r

�
if 06 1

r
6 1
2
;�

2
r
�
5
4
; 5
2
�
3
r

�
if 1
2
< 1
r
< 3
4
:

Definition 3.1. Let .s; r/ 2 R� Œ1;1�. A pair .s; r/ is said to be conjugate-acceptable if .1� s; r 0/ is
acceptable, where 1

r 0
D 1� 1

r
2 Œ0; 1�.

Figure 2 shows the ranges of acceptable pairs (quadrangle OABC ) and conjugate-acceptable pairs
(quadrangle DEFG). Here, O D .0; 0/, AD

�
1
2
;�1

4

�
, B D

�
3
4
; 1
4

�
, C D

�
1
2
; 1
�
, D D .1; 1/, E D

�
1
2
; 5
4

�
,

F D
�
1
4
; 3
4

�
, and G D

�
1
2
; 0
�
.

A

B

C
D

E

F

GO

s

1
r

Figure 2. The ranges of acceptable pairs (quadrangle OABC ) and conjugate-acceptable
pairs (quadrangle DEFG).
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For an interval I � R and a conjugate-acceptable pair .s; r/, we define a function space Y.I I s; r/ by

kf kY.I Is;r/ D


jDxjsf 

L Qp.s;r/x .RIL

Qq.s;r/
t .I //

;

where the exponents are given by

2

Qp.s; r/
C

1

Qq.s; r/
D 2C

1

r
; �

1

Qp.s; r/
C

2

Qq.s; r/
D s; (3-1)

or equivalently,  
1
Qp.s;r/

1
Qq.s;r/

!
D

 
�
1
5
2
5

2
5
1
5

!�
s

2C 1
r

�
D

 
1

p.s;r/

1
q.s;r/

!
C

 
4
5

2
5

!
:

With this terminology, Propositions 2.1 and 2.5 can be reformulated as follows:

Proposition 3.2. Let I be an interval.

(i) Let .s; r/ be an acceptable pair. Then, there exists a positive constant C depending only on s and r
such that

ke�t@
3
xf k

L1.RI yLr /
Cke�t@

3
xf kX.RIs;r/ 6 Cs;rkf kyLr

for any f 2 yLr .

(ii) Let .s1; r/ be an acceptable pair and let .s2; r/ be a conjugate-acceptable pair. Then, there exists a
positive constant depending only on si and r such that for any t0 2 I � R and any F 2 Y.I I s2; r/,



Z t

t0

e�.t�t
0/@3x@xF.t

0/ dt 0





L1t .I I

yLrx/\X.I Is1;r/

6 CkF kY.I Is2;r/:

To handle X.I I s; r/- and Y.I I s; r/-spaces, the following lemma is useful.

Lemma 3.3. Let 1 < pi ; qi <1 and si 2 R for i D 1; 2. Let p; q and s satisfy

1

p
D

�

p1
C
1��

p2
;

1

q
D
�

q1
C
1��

q2
; s D �s1C .1� �/s2

for some � 2 .0; 1/. Then, there exists a positive constant C , depending on p1; p2; q1; q2; s1; s2 and � ,
such that 

jDxjsf 

LpxLqt 6 C

jDxjs1f 

�Lp1x L

q1
t



jDxjs2f 

1��L
p2
x L

q2
t

holds for any f such that jDxjs1f 2 L
p1
x L

q1
t and jDxjs2f 2 L

p2
x L

q2
t .

Proof of Lemma 3.3. For z 2C, define an operator Tz D jDxjzs1C.1�z/s2 . Let g.t/ and h.x/ be R-valued
simple functions and Gz.t/ and Hz.x/ be extensions of these functions defined by

Gz.t/ WD jg.t/j
1�.z=q1C.1�z/=q2/

1�1=q signg.t/

and

Hz.x/ WD jh.x/j
1�.z=p1C.1�z/=p2/

1�1=p sign h.x/;
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respectively, for z 2 C with 06 Re z 6 1. Put

‰.z/ WD

“
R2
Tzf .t; x/Gz.t/Hz.x/ dt dx:

By density and duality, it suffices to show

j‰.�/j6 C


jDxjs1f 

�Lp1x L

q1
t



jDxjs2f 

1��L
p2
x L

q2
t

(3-2)

for any f 2 S.R2/ with compact Fourier support and any simple functions g.t/ and h.x/ such that
kgk

L
q0

t

Dkhk
L
p0

x
D 1.

Let us now prove (3-2). It is easy to see that ‰.z/ is analytic in 0 < Re z < 1 and continuous in
0 6 Re z 6 1. By a variant of the multiplier theorem by Fernandez [1987, Theorem 6.4], we see that
jDxj

iy is a bounded operator in Lp1x L
q1
t with norm C.1Cjyj/. Therefore, for any y 2 R,

j‰.1C iy/j6


jDxjiy.s1�s2/.jDxjs1f /

Lp1x L

q1
t
kG1CiyH1Ciyk

L
p0
1
x L

q0
1
t

6 C.1Cjy.s1� s2/j/


jDxjs1f 

Lp1x L

q1
t
kgk

L
q0

t

khk
L
p0

x

6 C.1Cjy.s1� s2/j/


jDxjs1f 

Lp1x L

q1
t
: (3-3)

The same argument yields

j‰.iy/j6 C.1Cjy.s1� s2/j/


jDxjs2f 

Lp2x L

q2
t
: (3-4)

From (3-3), (3-4) and Hirschman’s lemma [1952], we obtain (3-2) (see also [Stein 1956]). �

Estimates on nonlinearity. In this subsection, we establish an estimate on nonlinearity. For this, we
introduce a Lipschitz �-norm (� > 0) as follows. Write �D N Cˇ with N 2 Z and ˇ 2 .0; 1�. For a
function G W C! C, we define

kGkLip� WD

NX
jD0

sup
z2Rnf0g

jG.j /.z/j

jzj��j
C sup
x¤y

jG.N/.x/�G.N/.y/j

jx�yjˇ
;

where G.j / is j -th derivative of G. We say G 2 Lip� if G 2 CN .R/ and kGkLip� <1.
The main estimate of this subsection is as follows:

Lemma 3.4. Suppose that G.z/ 2 Lip˛ for some 21
5
< ˛ < 23

3
. Let .s; r/ be a pair which is acceptable

and conjugate-acceptable. Then, the following two assertions hold:

(i) If u 2 S
�
I I ˛�1

2

�
\X.I I s; r/ then G.u/ 2 Y.I I s; r/. Moreover, there exists a constant C such that

kG.u/kY.I Is;r/ 6 Ckuk˛�1S.I I˛�1
2
/
kukX.I Is;r/

for any u 2 S
�
I I ˛�1

2

�
\X.I I s; r/.

(ii) There exists a constant C such that

kG.u/�G.v/kY.I Is;r/6C
�
kukX.I Is;r/CkvkX.I Is;r/

��
kukS.I I˛�1

2
/CkvkS.I I˛�1

2
/

�˛�2
ku�vkS.I I˛�1

2
/

CC
�
kukS.I I˛�1

2
/CkvkS.I I˛�1

2
/

�˛�1
ku�vkX.I Is;r/

for any u; v 2 S
�
I I ˛�1

2

�
\X.I I s; r/.
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Remark 3.5. It is easy to see that jzj˛�1z 2Lip˛. The validity of the above lemma is the only assumption
on the nonlinearity that we need. Hence, the all results of this article hold for an equation with generalized
nonlinearity @tuC @3xuD @x.G.u//, provided G.z/ 2 Lip˛.

To prove the above lemma, we recall the following two lemmas.

Lemma 3.6. Let I be an interval. Assume that s > 0. Let p; q; pi ; qi ;2 .1;1/ (i D 1; 2; 3; 4). Then,

jDxjs.fg/

LpxLqt .I / 6 C �

jDxjsf 

Lp1x L
q1
t .I /

kgk
L
p2
x L

q2
t .I /

Ckf k
L
p3
x L

q3
t .I /



jDxjsg

Lp4x L
q4
t .I /

�
;

provided that
1

p
D

1

p1
C

1

p2
D

1

p3
C

1

p4
;

1

q
D
1

q1
C
1

q2
D
1

q3
C
1

q4
;

where the constant C is independent of I and f .

Proof of Lemma 3.6. If s 2 Z then (the classical) Leibniz rule, Hölder’s inequality, and Lemma 3.3 give
us the result. By a similar argument, it suffices to consider the case 0 < s < 1 to handle the general case.
However, that case follows from [Kenig et al. 1993, Theorem A.8] and Lemma 3.3. �

Lemma 3.7. Suppose that � > 1 and s 2 .0; �/. Let G 2 Lip�. If p; p1; p2; q; q1; q2 2 .1;1/ satisfy

1

p
D
�� 1

p1
C

1

p2
;

1

q
D
�� 1

q1
C
1

q2
;

then there exists a positive constant C depending on �; s; p1; p2; q1; q2 and I such that

jDxjsG.f /

LpxLqt .I / 6 CkGkLip� kf k
��1

L
p1
x L

q1
t .I /



jDxjsf 

Lp2x L
q2
t .I /

holds for any f satisfying f 2 Lp1x L
q1
t .I / and jDxjsf 2 L

p2
x L

q2
t .I /.

Although Lemma 3.7 is essentially the same as [Kenig et al. 1993, Theorem A.6; Christ and Weinstein
1991, Proposition 3.1], we give the proof of this lemma in Appendix A for self-containedness and in
order to clarify the necessity of the assumption G 2 Lip�.

Proof of Lemma 3.4. We prove the second assertion since the first immediately follows from the second
by letting v D 0. For simplicity, we name S D S

�
I I ˛�1

2

�
, LDX.I I s; r/, and N D Y.I I s; r/.

Let us write

G.u/�G.v/D .u� v/

Z 1

0

G0.�uC .1� �/v/ d�:

Lemma 3.6 implies that

kG.u/�G.v/kN 6 Cku� vkS
Z 1

0



jDxjs�G0.�uC .1� �/v/�

Lp1x L
q1
t
d�

CCku� vkL

Z 1

0



�G0.�uC .1� �/v/�


L
p2
x L

q2
t
d�

DW I1C I2;

where �
1=p1
1=q1

�
D

�
1= Qp.s; r/

1= Qq.s; r/

�
�

 
1=p

�
0; ˛�1

2

�
1=q

�
0; ˛�1

2

�!D .˛� 2/ 1=p�0; ˛�12 �
1=q

�
0; ˛�1

2

�!C�1=p.s; r/
1=q.s; r/

�
;
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and �
1=p2
1=q2

�
D

�
1= Qp.s; r/

1= Qq.s; r/

�
�

�
1=p.s; r/

1=q.s; r/

�
D .˛� 1/

 
1=p

�
0; ˛�1

2

�
1=q

�
0; ˛�1

2

�! :
It is easy to see that kG0kLip.˛�1/ 6 kGkLip˛ <C1. By the definition of k � kLip.˛�1/, we estimate I2 as

I2 6 Cku� vkL kG0kLip.˛�1/

Z 1

0



j�uC .1� �/vj˛�1


L
p2
x L

q2
t
d�

6 Cku� vkL
Z 1

0

.kukS CkvkS /
˛�1 d�

6 C.kukS CkvkS /˛�1ku� vkL:

On the other hand, we see from Lemma 3.7 that

jDxjs�G0.�uC .1� �/v/�

Lp1x L
q1
t
6 CkG0kLip.˛�1/k�uC .1� �/vk

˛�2
S k�uC .1� �/vkL

for any � 2 .0; 1/. Hence, we find the following estimate on I1:

I1 6 Cku� vkS kG0kLip.˛�1/.kukS CkvkS /
˛�2.kukLCkvkL/:

Collecting the above inequalities, we obtain the result. �

4. Proofs of the main theorems

In this section, we prove the main theorems. Recall the notation S.I I r/ D X.I I 0; r/. Now, take a
number sL.˛/ so that a pair

�
sL.˛/;

˛�1
2

�
is acceptable and conjugate-acceptable. We define L

�
I I ˛�1

2

�
D

X
�
I I sL.˛/;

˛�1
2

�
and N

�
I I ˛�1

2

�
D Y

�
I I sL.˛/;

˛�1
2

�
.

Remark 4.1. If 27
7
<˛ < 23

3
then sL.˛/ with the above property exists. Indeed, sL.˛/D 3

4
�

1
˛�1

works.
Our upper bound on ˛ comes from this point.

Local well-posedness in a scale-critical space. Let us prove Theorem 1.2. To prove this theorem, we
show the following lemma.

Lemma 4.2. Assume 21
5
< ˛ < 23

3
and u0 2 yL

˛�1
2

x . Let t0 2 R and I be an interval with t0 2 I . Then,
there exists a universal constant ı > 0 such that, if a tempered distribution u0 and an interval I 3 t0
satisfy

"D ".I Iu0; t0/ WD ke
�.t�t0/@

3
xu0kS.I I˛�1

2
/Cke

�.t�t0/@
3
xu0kL.I;˛�1

2
/ 6 ı;

then there exists a unique solution u 2 C.I I yL
˛�1
2

x / to the initial value problem(
@tuC @

3
xuD �@x.juj

˛�1u/; t; x 2 R;

u.t0; x/D u0.x/; x 2 R

(in the sense of the corresponding integral equation) that satisfies

kukS.I I˛�1
2
/CkukL.I I˛�1

2
/ 6 2":
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If u0 2 yL
˛�1
2 , in addition, then

kuk
L1.I I yL.˛�1/=2/

6 ku0kyL.˛�1/=2 CC"
˛

holds for some constant C > 0 and u belongs to all yL
˛�1
2 -admissible spaces X

�
I I s; ˛�1

2

�
.

Proof of Lemma 4.2. For R > 0, define a complete metric space

ZR D
˚
u 2 L

�
I I ˛�1

2

�
\S

�
I I ˛�1

2

�
W kukZ 6R

	
;

kukZ WD kukL.I I˛�1
2
/CkukS.I I˛�1

2
/; dZ.u; v/ WD ku� vkZ :

For given tempered distribution u0 with e�.t�t0/@
3
xu0 2Zı and v 2ZR, we define

ˆ.v/.t/ WD e�.t�t0/@
3
xu0C�

Z t

t0

e�.t�t
0/@3x@x.jvj

˛�1v/.t 0/ dt 0:

We show that there exists ı > 0 such that ˆ WZ2"!Z2" is a contraction map for any 0 < "6 ı.
To this end, we prove that there exist constants C1; C2 > 0 such that for any u; v 2ZR,

kˆ.u/kZ 6 ke�.t�t0/@
3
xu0kZ CC1R

˛; (4-1)

dZ.ˆ.u/;ˆ.v//6 C2R˛�1dZ.u; v/: (4-2)

Let u 2ZR. We infer from Proposition 3.2(ii) that

kˆ.u/kZ 6 ke�t@
3
xu0kZ CC



juj˛�1u


N.I I˛�1

2
/
:

We then apply Lemma 3.4(i) with r D ˛�1
2

and sD sL.˛/ to obtain (4-1). A similar argument, employing
Lemma 3.4(ii), shows (4-2).

Now let us choose ı > 0 so that

C1.2ı/
˛�1 6 1

2
; C2.2ı/

˛�1 6 1
2
: (4-3)

Then, we conclude from (4-1), (4-2), and the smallness assumption that ˆ is a contraction map on Z2".
Therefore, the Banach fixed point theorem ensures that there exists a unique solution u 2Z2" to (1-1).

We now suppose that u0 2 yL
˛�1
2 . By means of Proposition 3.2, we have

kuk
L1.I;yL.˛�1/=2/

6 ku0kyL.˛�1/=2 CC"
˛

as in (4-1). The same argument shows u 2X
�
I I s; ˛�1

2

�
for any s such that

�
s; ˛�1

2

�
is acceptable. �

Proof of Theorem 1.2. By Lemma 4.2, we obtain a unique solution

u 2 L1t .Œ�T; T �I
yL
˛�1
2

x /\S
�
Œ�T; T �I ˛�1

2

�
\L

�
Œ�T; T �I ˛�1

2

�
for small T D T .u0/ > 0. We repeat the above argument to extend the solution, and then obtain a solution
which has a maximal lifespan. The regularity property (1-4) and the continuous dependence of solution
on the initial data are shown by a usual way. This completes Theorem 1.2. �
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Blowup criterion and scattering criterion. In this subsection we prove Theorems 1.7, 1.8, and 1.9.

Proof of Theorem 1.8. Assume for contradiction that Tmax <1 and kukS.Œ0;Tmax/I
˛�1
2
/ <1.

Step 1. We first show that the above assumption yields

kukL.Œ0;Tmax/I
˛�1
2
/ <1:

Fix T so that 0<T <Tmax. Let sL.˛/ be as in the previous section (see Remark 4.1). If we take � 2 .0; 1/
so that

�
�sL.˛/;

˛�1
2

�
is conjugate-acceptable then it follows from Proposition 3.2 that

kukL.Œ0;T �I˛�1
2
/ 6 Cku0kyL˛�12 CC



juj˛�1u


Y.Œ0;T �I�sL.˛/;

˛�1
2
/
:

Then, Lemma 3.4(i) with r D ˛�1
2

and Lemma 3.3 give us

kukL.Œ0;T �I˛�1
2
/ 6 Cku0kyL˛�12 CCkuk

˛��

S.Œ0;T �I˛�1
2
/
kuk�

L.Œ0;T �I˛�1
2
/
:

By assumption,
kukS.Œ0;T �I˛�1

2
/ 6 kukS.Œ0;Tmax/I

˛�1
2
/ <C1

for any T 2 .0; Tmax/. Plugging this to the previous estimate, we see that there exist constants A;B > 0
such that

kukL.Œ0;T �I˛�1
2
/ 6 ACBkuk

�

L.Œ0;T �I˛�1
2
/

for any T 2 .0; Tmax/, which gives us the desired bound since � < 1.

Step 2. Let t0 2 .0; Tmax/. Since

u.t/D e�.t�t0/@
3
xu.t0/C�

Z t

t0

e�.t�t
0/@3x@x.juj

˛�1u/.t 0/ dt 0

for t 2 .0; Tmax/, the above estimate yields the following bound on e�.t�t0/@
3
xu0:

ke�.t�t0/@
3
xu.t0/kS.Œt0;Tmax/I

˛�1
2
/\L.Œt0;TmaxI

˛�1
2
/

6 kukS.Œt0;Tmax/I
˛�1
2
/\L.Œt0;TmaxI

˛�1
2
/CCkuk

˛�1

S.Œt0;Tmax/I
˛�1
2
/
kukL.Œt0;Tmax/I

˛�1
2
/ <1:

Step 3. Let us now prove that we can extend the solution beyond Tmax. Let ı be the constant given in
Lemma 4.2. We see from the bound in the previous step that there exists t0 2 .0; Tmax/ such that

ke�.t�t0/@
3
xu.t0/kS.Œt0;Tmax/I

˛�1
2
/Cke

�.t�t0/@
3
xu.t0/kL.Œt0;Tmax/I

˛�1
2
/ 6

1
2
ı:

Hence, one can take � > 0 so that

ke�.t�t0/@
3
xu.t0/kS.Œt0;TmaxC�/I

˛�1
2
/Cke

�.t�t0/@
3
xu.t0/kL.Œt0;TmaxC�/I

˛�1
2
/ 6 ı:

Then, just as in the proof of Theorem 1.2 (or Lemma 4.2), we can construct a solution u.t/ to (1-1) in the
interval .�Tmin; TmaxC �/, which contradicts the definition of Tmax. �

Proof of Theorem 1.9. We first assume that Tmax DC1 and kukS.Œ0;1/I˛�1
2
/ <1. Then, as in the first

step of the proof of Theorem 1.8, one obtains kukL.Œ0;1/I˛�1
2
/ <1. Since fe�t@

3
xgt2R is an isometry
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in yL
˛�1
2 , it suffices to show that fet@

3
xu.t/gt2R is a Cauchy sequence in yL

˛�1
2 as t!1. Let 0 < t1 < t2.

By an argument similar to the proof of (4-2), we obtain

et2@3xu.t2/� et1@3xu.t1/

yL.˛�1/=2 6 C

juj˛�1u

N.Œt1;1/I˛�12 /

6 Ckuk˛�1
S.Œt1;1/I

˛�1
2
/
kukL.Œt1;1/I˛�12 /! 0 as t1!1:

Hence, we find that the solution to (1-1) scatters to a solution of the Airy equation as t !1.
Conversely, if u.t/ scatters forward in time then we can choose T > 0 so that

ke�t@
3
xuCkS.ŒT;1/I˛�1

2
/Cke

�t@3xuCkL.ŒT;1/I˛�1
2
/ 6

1
2
ı;

where uC D limt!1 e
t@3xu.t/ 2 yL

˛�1
2 and ı is the constant given in Lemma 4.2. Moreover, it holds for

sufficiently large t0 2 ŒT;1/ that

e�t@3x .et0@3xu.t0/�uC/

S.ŒT;1/I˛�1
2
/
C


e�t@3x .et0@3xu.t0/�uC/

L.ŒT;1/I˛�1

2
/

6 Cket0@
3
xu.t0/�uCkyL.˛�1/=2 6

1
2
ı

by means of (2-2). We then see that

ke�.t�t0/@xu.t0/kS.ŒT;1/I˛�1
2
/Cke

�.t�t0/@xu.t0/kL.ŒT;1/I˛�1
2
/ 6 ı:

Then, Lemma 4.2 implies that kukS.ŒT;1/I˛�1
2
/ 6 2ı. �

Proof of Theorem 1.7. By (2-2), we have

ke�t@
3
xu0kL.RI˛�1

2
/Cke

�t@3xu0kS.RI˛�1
2
/ 6 C":

Then, in light of Lemma 4.2, we see that u exists globally in time and satisfies kukS 6 2C", provided "
is small compared with the constant ı given in Lemma 4.2. Theorem 1.9 ensures that u scatters for both
time directions. �

Persistence of regularity. In this subsection, we prove Theorems 1.4 and 1.5, and then Theorem 1.10.

Proof of Theorem 1.4. Let us prove that u 2 L
�
I I ˛0�1

2

�
. As in the proof of Lemma 4.2, one deduces

from Proposition 3.2 and Lemma 3.4(i) that

kuk
L.I I

˛0�1

2
/
6 Cku0kyL.˛0�1/=2 CC



juj˛�1u


N.I I

˛0�1

2
/

6 Cku0kyLr0 CCkuk
˛�1

S.I I˛�1
2
/
kuk

L.I I
˛0�1

2
/
:

Since we already know kukS.I I˛�1
2
/ <1 by assumption, we have the desired bound

kuk
L.I I

˛0�1

2
/
6 2Cku0kyL.˛0�1/=2

for a sufficiently short interval I . Then, again by Proposition 3.2,

kuk
L1t .I I

yL
.˛0�1/=2
x /\X.I Is;

˛0�1

2
/
6 Csku0kyL.˛0�1/=2 CCskuk

˛�1

S.I I˛�1
2
/
kuk

L.I I
˛0�1

2
/
<C1

for any acceptable pair
�
s; ˛0�1

2

�
. Finite-time use of this argument yields the result. �
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Proof of Theorem 1.5. Suppose that 0 < � < ˛. Take a number " so that 0 < " < min.1; ˛ � �/.
Since jDxj� commutes with e�t@

3
x and since ."; 2/ is acceptable and conjugate-acceptable, we see from

Proposition 3.2 that

jDxj�u.t/

X.I I";2/ 6 C

jDxj�u0

L2 CC

jDxj� .juj˛�1u/

Y.I I";2/:
Since � C " < ˛, arguing as in the proof of Lemma 3.6, one sees that

jDxj� .juj˛�1u/

Y.I I";2/ D 

jDxj�C".juj˛�1u/

L Qp.";2/x L

Qq.";2/
t .I /

6 Ckuk˛�1
L
p.0;.˛�1/=2/
x L

q.0;.˛�1/=2/
t .I /



jDxj�C"u

Lp.";2/x L
q.";2/
t .I /

D Ckuk˛�1
S.I I˛�1

2
/



jDxj�u

X.I I";2/:
Hence, we obtain an upper bound for



jDxj�u

X.I I";2/ for a small interval. Then, the result follows as
in Theorem 1.4.

Next, let �1 < � < 0. Set "D�� 2 .0; 1/. As in the previous case, we have

jDxj�u.t/

X.I I";2/ 6 C

jDxj�u0

L2 CC

jDxj� .juj˛�1u/

Y.I I";2/
since ."; 2/ is acceptable and conjugate-acceptable. Then,

jDxj� .juj˛�1u/

Y.I I";2/ D 

juj˛�1u

L Qp.";2/x L

Qq.";2/
t .I /

6 kuk˛�1
S.I I˛�1

2
/



jDxj�u

X.I I";2/
by Hölder’s inequality. The rest of the argument is the same. �

Remark 4.3. In the above proposition, the upper bound s < ˛ is natural in view of the regularity that the
nonlinearity juj˛�1u possesses. When ˛ is an odd integer, that is, if ˛ D 5; 7, then the nonlinearity u5 or
u7 is analytic (in u) and so we can remove the upper bound and treat all s > 0. We omit the details.

Remark 4.4. By modifying the proof of Theorem 1.5, we easily reproduce the local well-posedness
in PH s˛ for ˛ > 5. More precisely, by Lemma 3.3,

kukS.I I˛�1
2
/ 6



jDxjs˛u

 8
5.˛�1/

X.I I� 1
4
;2/



jDxj 2.9�˛/
.5˛�13/.˛�1/u



 5˛�135.˛�1/

L
.5˛�13/=2
t;x .I /

:

By Sobolev’s embedding in space and Minkowski’s inequality,

jDxj 2.9�˛/
.5˛�13/.˛�1/u




L
.5˛�13/=2
t;x .I /

6 C


jDxjs˛� 5˛�33

4.5˛�13/u



L
.5˛�13/=2
t L

.4.5˛�13//=.5˛�17/
x .I /

6 C


jDxjs˛u

X.I I� 1

4
C 5
5˛�13

;2/
:

Hence, estimating as in the proof of Theorem 1.5, we obtain a closed estimate in

jDxj
�s˛X.I I "; 2/\ jDxj

�s˛X
�
I I �1

4
C

5
5˛�13

; 2
�
\ jDxj

�s˛X
�
I I �1

4
; 2
�
;

which yields local well-posedness in PH s˛ .5

5 Strictly speaking, we should work with pairs
�
�
1
4 C �1; 2

�
and

�
�
1
4 C

5
5˛�13 � �2; 2

�
for small �j D �j .˛/ > 0 because

the critical case q
�
�
1
4 ; 2

�
D1 is excluded in Lemma 3.3. However, the modification is obvious.
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Proof of Theorem 1.10. We suppose for contradiction that u.t/ scatters to uC 2 yL
˛�1
2 as t !1. Since

u0 2H
1, Theorems 1.4 and 1.5 imply that u.t/ 2 C.RIH 1/. Further, u.t/ scatters also in H 1 and so we

see that k@xu.t/kL2 D k@xe
t@3xu.t/kL2 !kuCk PH1 as t !1.

On the other hand, by the Gagliardo–Nirenberg inequality and mass conservation,

ku.t/k
L
˛C1
x
6 Cku0k

2
˛C1

L2x



jDxj 2
3.˛�1/u.t/



 ˛�1˛C1

L
.3.˛�1//=2
x

:

Since u.t/ scatters as t !1, we see that u 2 X
�
Œ0;1

�
I

2
3.˛�1/

; ˛�1
2
/ as in the proof of Theorem 1.9.

Therefore, we can take a sequence ftngn with tn!1 as n!1 so that ku.tn/kL˛C1 ! 0 as n!1.
Thus, by conservation of energy,

0>EŒu0�DEŒu.tn/�D 1
2
k@xu.tn/k

2
L2
�

�

˛C 1
ku.tn/k

˛C1
L˛C1

!
1
2
kuCk

2
PH1

as n!1. Hence, EŒu0� < 0 yields a contradiction. If EŒu0� D 0 then we see that uC D 0, and so
ku0kL2 D kuCkL2 D 0. This contradicts u0 ¤ 0. �

Appendix A: Proof of Lemma 3.7

In this appendix, we prove Lemma 3.7. To prove this lemma, we need the following space-time bounds
of the maximal function

.Mu/.x/D sup
R>0

1

2R

Z xCR

x�R

ju.y/j dy:

Lemma A.1. Let I be an interval. Assume 1 < p; q <1.

(i) There exists a positive constant C depending on p; q and I such that

kMf kLpxL
q
t .I /
6 Ckf kLpxLqt .I / (A-1)

for any f 2 LpxL
q
t .I /.

(ii) There exists a positive constant C depending on p; q and I such that

kMfkkLpxL
q
t `
2
k
.I / 6 CkfkkLpxLqt `2k.I / (A-2)

for any ffkgk 2 L
p
xL

q
t `
2
k
.I /.

Proof of Lemma A.1. See [Fefferman and Stein 1971] for (A-1) and [Kenig et al. 1993, Lemma A.3(e)]
for (A-2). �

Proof of Lemma 3.7. We follow [Sickel 1989] (see also [Runst and Sickel 1996]). Let f'k.Dx/g1kD�1 be
a Littlewood–Paley decomposition with respect to the x-variable. From [Kenig et al. 1993, Lemma A.3],
we see 

jDxjsf 

LpxLqt � k2sk'k.Dx/f kLpxLqt `2k : (A-3)
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Step 1. Write �DN Cˇ with N 2 Z and ˇ 2 .0; 1�. We remark that N > 1 since � > 1. We first note
that Taylor’s expansion of G gives us

G.z/D

N�1X
lD0

G.l/.a/

`Š
.z� a/l C

Z z

a

.z� v/N�1

.N � 1/Š
G.N/.v/ dv

D

NX
lD0

G.l/.a/

`Š
.z� a/l C

Z z

a

.z� v/N�1

.N � 1/Š

�
G.N/.v/�G.N/.a/

�
dv

D

NX
lD0

lX
jD0

.�1/l�jG.l/.a/al�j

.`� j /Šj Š
zj C

Z z

a

.z� v/N�1

.N � 1/Š

�
G.N/.v/�G.N/.a/

�
dv:

Hence, applying the above expansion with z D f .y/ and aD f .x/,

F�1Œ'kFG.f /�.x/D c
Z

Rn
.F�1'k/.x�y/G.f .y//dy

D c

NX
lD0

lX
jD0

.�1/l�jG.l/.f .x//.f .x//l�j

.`�j /Šj Š

Z
Rn
.F�1'k/.x�y/.f .y//j dy

Cc

Z
Rn
.F�1'k/.x�y/

Z f .y/

f .x/

.f .y/�v/N�1

.N�1/Š

�
G.N/.v/�G.N/.f .x//

�
dvdy

DWT1;kCT2;k : (A-4)

We first estimate T1;k . Since
R
F�1'k.y/ dy D 'k.0/D 0, the summand in T1;k vanishes if j D 0. By

the estimate
jG.l/.f .x//j6 kGkLip� jf .x/j

��l ;

we have

k2skT1;kkLpxL
q
t `
2
k
6 CkGkLip�

NX
jD1



jf j��j 2sk'k.Dx/.f j /j

LpxLqt `2k
6 CkGkLip�

NX
jD1

kf k
��j

L
p1
x L

q1
t



jDxjs.f j /

Lp2;jx L
q2;j
t

;

where
1

p
D
�� j

p1
C

1

p2;j
;

1

q
D
�� j

q1
C

1

q2;j
:

Further, a recursive use of Lemma 3.6 yields

jDxjs.f j /

Lp2;jx L
q2;j
t

6 Cj kf kj�1
L
p1
x L

q1
t



jDxjsf 

Lp2x L
q2
t

for j > 2, which completes the estimate of T1;k .
Next, we estimate T2;k . First note thatˇ̌̌̌Z f .y/

f .x/

.f .y/� v/N�1

.N � 1/Š

�
G.N/.v/�G.N/.f .x//

�
dv

ˇ̌̌̌
6 CkGkLip� jf .x/�f .y/j

�
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by the definition of kGkLip�. Further, for any M > 0, there exists CM such that

j.F�1'k/.x�y/j D 2k
ˇ̌
.F�1'0/.2k.x�y//

ˇ̌
6 CM2k.1C 2kjx�yj/�M :

Therefore,

jT2;kj6 C2kkGkLip�

Z
Rn

jf .x/�f .y/j�

.1C 2kjx�yj/M
dy 6 C

1X
lD0

2k�lM .I
�

k�l
f /.x/;

where

I
�

k
f .x/D

Z
jzj62�k

jf .xC z/�f .x/j� dz D 2�k
Z
jzj61

jf .xC 2�kz/�f .x/j� dz:

We now claim that
k2k.sC1/.I

�

k
f /kLpxL

q
t `
2
k
6 C



jDxj s�f 

�L�px L
�q
t
: (A-5)

This claim completes the proof. Indeed, combining the above estimates, we see that

k2skT2;kkLpxL
q
t `
2
k
6 C

1X
lD0

2l.sC1�M/


2.k�l/.sC1/.I�

k�l
f /



L
p
xL

q
t `
2
k

6 C


jDxj s�f 

�L�px L

�q
t
;

provided we choose M > sC 1. By Lemma 3.3, we conclude that

jDxj s�f 

L�px L
�q
t
6 kf k

1� 1
�

L
p1
x L

q1
t



jDxjsf 

 1�
L
p2
x L

q2
t

:

Step 2. We prove claim (A-5). Let �h be the difference operator �hf .x/D f .xC h/� f .x/. Since
f D

P
m2Z 'kCm.Dx/f for any k 2 Z, one sees that

2k.sC1/.I�

k
f /.x/




L
p
xL

q
t `
2
k

D





2ks Z
jzj61

j�2�kzf .x/j
� dz






L
p
xL

q
t `
2
k

6




2ks Z

jzj61

ˇ̌̌̌
�2�kz

�1X
mD�1

'kCm.D/f .x/

ˇ̌̌̌�
dz






L
p
xL

q
t `
2
k

C





2ks Z
jzj61

ˇ̌̌̌
�2�kz

1X
mD0

'kCm.D/f .x/

ˇ̌̌̌�
dz






L
p
xL

q
t `
2
k

DW ACB:

We estimate A. Take a 2
�
1
�
; 1
�
. Let k 2 Z. If m< 0 and jhj6 2�k then we haveˇ̌

�hF�1Œ'kCmFf �.x/
ˇ̌
6 jhj

ˇ̌
r.F�1Œ'kCmFf �/.xC �h/

ˇ̌
6 2m sup

jyj62�k

ˇ̌̌̌�
rF�1

�
'0F

�
f

�
�

2kCm

����
.2kCm.x�y//

ˇ̌̌̌

6 Ca2m sup
y2R

ˇ̌�
rF�1

�
'0F

�
f
�
�

2kCm

����
.2kCm.x�y//

ˇ̌
1Cj2kCmyja

6 Ca2m sup
y2R

jF�1Œ'kCmFf �.x�y/j
1Cj2kCmyja
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for any x 2 R, where we have used the estimate

sup
y2R

jrF�1Œ'0Ff �.x�y/j
1Cjyja

6 C sup
y2R

jF�1Œ'0Ff �.x�y/j
1Cjyja

(see [Runst and Sickel 1996, Section 2.1.6, Proposition 2(i)]) to obtain the last line. We define the
Peetre–Fefferman–Stein maximal function by

'
�;a
j f .x/ WD sup

y2R

jF�1Œ'jFf �.x�y/j
1Cj2jyja

:

By the above estimates, we have

A6 C




2ks �1X

mD�1

sup
jzj61

ˇ̌
�2�kz'kCm.D/f .x/

ˇ̌�




L
p
xL

q
t `
2
k

6 C
�1X

mD�1

2m�


2k s�'�;a

kCm
f


�
L
�p
x L

�q
t `

2�

k

6 C
�1X

mD�1

2m.��s/


2.kCm/ s�'�;a

kCm
f


�
L
�p
x L

�q
t `

2�

k

6 C


2k s�'�;a

k
f


�
L
�p
x L

�q
t `

2�

k

;

where we used the fact that s < �. Since .'�;a
k
f /.x/ D

�
'
�;a
0 . Q'k.Dx/f /

�
�

2k

��
.2kx/; [Triebel 1983,

Lemma 2.3.6] yields
.'
�;a
k
f /.x/6 C

�
MŒ. Q'k.Dx/f /

1
a �
�a
.x/;

where Q'k D
P1
iD�1 'kCi . Then, (A-2), the embedding `2 ,! `q (2 < q 61), and (A-3) lead us to

2k s�'�;a
k
f



L
�p
x L

�q
t `

2�

k

6 C


2k s

a�MŒ. Q'k.Dx/f /
1
a �


a
L
a�p
x L

a�q
t `

2a�

k

6 C


2k s

a� . Q'k.Dx/f /
1
a



a
L
a�p
x L

a�q
t `2

k

6 C


2k s� Q'k.Dx/f 

L�px L

�q
t `

2=a

k

6 C


jDxj s�f 

L�px L

�q
t

since 1
�
< a < 1.

Let us proceed to the estimate of B . We first note thatZ
jzj61

ˇ̌̌̌
�2�kz

1X
mD0

'kCm.D/f .x/

ˇ̌̌̌�
dz

D

Z
jzj61

ˇ̌̌̌ 1X
mD0

2�
"
�
m2

"
�
m�2�kz'kCm.D/f .x/

ˇ̌̌̌�
dz

6C"
Z
jzj61

1X
mD0

2"m
ˇ̌
�2�kz'kCm.D/f .x/

ˇ̌�
dz

DC"

1X
mD0

2"m
Z
jzj61

ˇ̌
�2�kz'kCm.D/f .x/

ˇ̌�
dz

6C
1X
mD0

2"m
�

sup
jzj61

ˇ̌
�2�kz'kCm.D/f .x/

ˇ̌��.1��/Z
jzj61

ˇ̌
�2�kz'kCm.D/f .x/

ˇ̌��
dz;
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where � 2 .0; 1/. For m> 0 and jhj6 2�k , the triangle inequality gives usˇ̌
�hF�1Œ'kCmFf �.x/

ˇ̌
6 2 sup
jyj62�k

ˇ̌
F�1Œ'kCmFf �.x�y/

ˇ̌
6 C2ma'�;a

kCm
f .x/;

where a 2
�
1
�
; 1
�
. Further,Z
jzj61

ˇ̌
�2�kz'kCm.Dx/f .x/

ˇ̌��
dz 6 CMŒj'kCm.D/xf j

���.x/:

Using these inequalities, one deduces from Hölder’s inequality, the embedding `2 ,! `q (2 < q 61),
(A-2), and (A-3) that

B 6 C




2sk 1X

mD0

2m"MŒj'kCm.Dx/f j
���2ma�.1��/.'

�;a
kCm

f /�.1��/





L
p
xL

q
t `
2
k

6 C
1X
mD0

2m."Ca�.1��//


2skMŒj'kCm.Dx/f j

���.'
�;a
kCm

f /�.1��/



L
p
xL

q
t `
2
k

6 C
1X
mD0

2m."Ca�.1��/�s/


MŒj2

s
�
k'k.Dx/f j

���



L
p=�
x L

q=�
t `

2=�

k



2 s�k'�;a
k
f


�.1��/
L
�p
x L

�q
t `

2�

k

6 C
1X
mD0

2m."Ca�.1��/�s/


jDxj s�f 

�L�px L

�q
t

6


jDxj s�f 

�L�px L

�q
t

as long as "Ca�.1��/�s < 0. Since a 2
�
1
�
; 1
�
, we are able to choose � 2 .0; 1/ and " > 0 suitably. �

Appendix B: Inclusion relations of yLr

In this appendix, we briefly summarize some inclusion relations between yLr and other frequently used
spaces such as Lebesgue spaces or Sobolev spaces. Here, PH 0;sD PH 0;s.R/ stands for a weighted L2-space
with norm kf k PH0;s D



jxjsf 


L2

.

Lemma B.1. We have the following:

(i) Lr ,! yLr if 16 r 6 2 and yLr ,! Lr if 26 r 61.

(ii) PH 0; 1
r
� 1
2 ,! yLr if 1 < r 6 2 and yLr ,! PH 0; 1

r
� 1
2 if 26 r <1.

(iii) yLr ,! PB
1
2
� 1
r

2;r 0 if 16 r 6 2 and PB
1
2
� 1
r

2;r 0 ,!
yLr if 26 r 61.

Proof of Lemma B.1. The first assertion follows from the Hausdorff–Young inequality. The Sobolev
embedding (in the Fourier side) yields the second. We omit the details.

The third is also immediate from the Hölder inequality. Indeed, if 26 r 61 then

k Of kLr0 .f2n6j�j62nC1g/ 6 C2
n. 1
2
� 1
r
/
k Of kL2.f2n6j�j62nC1g/
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for any n 2 Z. Taking the `r
0

n -norm, we obtain the desired embedding. The case 16 r 6 2 follows in the
same way. �

Let PH s D PH s.R/ be a homogeneous Sobolev space with norm

kf k PH s D


j�js Of 



L2
:

Notice that the above inclusions are the same as for PH
1
2
� 1
r . Namely, we can replace yLr with PH

1
2
� 1
r

in Lemma B.1 (except for the endpoint case r D 1;1 in (i)). Indeed, (i) is a Sobolev embedding, (ii)
follows from Hardy’s inequality, and a basic property of Besov spaces gives us (iii). However, there is no
inclusion between yLr and PH

1
2
� 1
r for r ¤ 2.

Lemma B.2. For 16 r 61 (r ¤ 2), yLr 6,! PH
1
2
� 1
r and PH

1
2
� 1
r 6,! yLr .

Proof of Lemma B.2. If 2 < r 61, we have the following counterexamples: Let us define fn.x/ by
yfn.�/D 1 for n6 � 6 nC1 and yfn.�/D 0 elsewhere. Then, fn.x/ satisfies kfnk PH 1

2
� 1r
!1 as n!1,

while kfnkyLrD1. Hence. yLr 6,! PH
1
2
� 1
r . On the other hand, for some p 2

�
1
2
; 1
r 0

�
, take gn.x/ (n> 3) so

that ygn.�/D ��
1
r0 j log �j�p for 1

n
6 � 6 1

2
and ygn.�/D 0 elsewhere. Then, kgnk PH 1

2
� 1r

is bounded but

kgnkyLr !1 as n!1. This shows PH
1
2
� 1
r 6,! yLr .

The case 1 < r < 2 follows by duality.
Let us consider the case r D 1. We note that ı0.x/2 yL1n PH�

1
2 , where ı0.x/ is the Dirac delta function.

Therefore, yL1 6,! PH�
1
2 . On the other hand,

fn.x/D
�
log
�
1C 1

n

���1F�1Œ1
f16�61C 1

n
g
�.x/

is a counterexample for PH�
1
2 6,! yL1. �
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REGULARITY FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
WITH VERY IRREGULAR KERNELS

RUSSELL W. SCHWAB AND LUIS SILVESTRE

We prove Hölder regularity for a general class of parabolic integro-differential equations, which (strictly)
includes many previous results. We present a proof that avoids the use of a convex envelope as well as
give a new covering argument that is better suited to the fractional order setting. Our main result involves
a class of kernels that may contain a singular measure, may vanish at some points, and are not required to
be symmetric. This new generality of integro-differential operators opens the door to further applications
of the theory, including some regularization estimates for the Boltzmann equation.
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1. Introduction

We study the Hölder regularity for solutions of integro-differential equations of the form

ut C b.x; t/ � ru�

Z
Rd

�
u.xC h; t/�u.x; t/

�
K.x; h; t/ dhD f .x; t/: (1-1)

The integral may be singular at the origin and must be interpreted in the appropriate sense. These equations
now appear in many contexts. Most notably, they appear naturally in the study of stochastic processes with
jumps, which traditionally has been the main motivation for their interest. In the same way that pure jump
processes contain the class of diffusions (processes with continuous paths) as particular limiting cases,
(1-1) contains the usual second-order parabolic equations as particular limiting cases. This is due to the fact
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that the integral term becomes a second-order operator aij .x; t/ @iju as the order ˛ (to be defined below)
converges to 2. We note that the simplest choice ofK isK.h/DCd;˛jhj�d�˛ , which results in the equation

ut C .��/
˛=2uD 0;

and converges to the usual heat equation ut ��u D 0 as ˛! 2 (recall that .��/˛=2 is the operator
whose Fourier symbol is j�j˛).

The Hölder estimates that we obtain in this article are an integro-differential version of the celebrated
result by Krylov and Safonov [1980] for parabolic equations with measurable coefficients. There are, in
fact, several versions of these Hölder estimates for integro-differential equations, which were obtained in
the last 10 years, and we briefly review them in Section 1A. Besides the elliptic/parabolic distinction, the
difference between each version of the estimates is in the level of generality in the possible choices of the
kernels K.x; h; t/. In this article, we obtain the estimates for a very generic class of kernels K, including
nearly all previous results of this type.

The most common assumption in the literature is that for all x and t , the kernel K is comparable
pointwise in terms of h to the kernel for the fractional Laplacian. More precisely,

.2�˛/
�

jhjdC˛
�K.x; h; t/� .2�˛/

ƒ

jhjdC˛
: (1-2)

This is often accompanied by the symmetry assumption K.x; h; t/DK.x;�h; t/. It is important for the
applications of these estimates that no regularity condition may be assumed for K with respect to x or t .

In this paper, we only assume a much weaker version of (1-2). The upper bound for K, in (1-2), is
relaxed to hold only in average when we integrate all the values of h on an annulus, and it appears as
assumption (A2). Also, for our work, the lower bound in (1-2) only needs to hold in a subset of values
of h that has positive density, given as assumption (A3). We also make an assumption, (A4), which says
that the odd part of K is under control if ˛ is close to 1. The exact conditions are listed in Section 2. We
prove that solutions of (1-1) are uniformly Hölder continuous, which we state in an informal way here
and revisit more precisely in Section 7.

Theorem 1.1. Let u solve (1-1). Assume that for every x 2 B1 and t 2 Œ�1; 0�, the kernel K.x; � ; t /
satisfies the assumptions (A1), (A2), (A3) and (A4) in Section 2. Assume also that f is bounded, b is
bounded, and for ˛ < 1, we have b � 0. Then for some 
 > 0,

Œu�C
 .Q1=2/ � C.kukL1.Rd�Œ�1;0�/Ckf kL1.Q1//:

The constants C and 
 depend on the constants �, � and ƒ in (A1)–(A4), on the dimension d , on a
lower bound for ˛ (in particular, ˛ can be arbitrarily close to 2), and on kbkL1 .

Our purpose in developing Theorem 1.1 is not merely for the sake of generalization. An estimate with
the level of generality given here can be used to obtain a priori estimates for the homogeneous Boltzmann
equation. This is a novel application. None of the previous Hölder estimates for integral equations are
appropriate to be applied to the Boltzmann equation.

As a byproduct of our proof of Theorem 1.1, we simplify and clarify some of the details regarding para-
bolic covering arguments (see the crawling ink spots of Section 6) as well as present a proof that does not
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invoke a convex envelope. Rather, we circumvent the oft-used gradient mapping of the convex envelope by
using a mapping that associates points via their correspondence through parameters in an inf-convolution,
modeled on the arguments of [Imbert and Silvestre 2013a], originating in [Cabré 1997; Savin 2007].

In Section 8, we apply this result to derive the C 1;˛ regularity for the parabolic Isaacs equation. This is
a rather standard application of Hölder estimates for equations with rough coefficients, as in Theorem 1.1.

1A. Comparison with previous results and some discussion of (1-1). The Hölder estimates for integro-
differential equations that take the form of (1-1) are a fractional-order version of the classical theorem
by Krylov and Safonov [1980]. This is a fundamental result in the study of regularity properties of
parabolic equations in nondivergence form, and has consequences for many aspects of the subsequent
PDE theory. The classical theorem of De Giorgi, Nash and Moser concerns second-order parabolic
equations in divergence form, in contrast with the theorem of Krylov and Safonov. The basic results
for integro-differential equations in divergence form were developed earlier, and a small survey of this
subject can be found in [Kassmann and Schwab 2014].

The simplest case of K would be K.h/D .2�˛/jhj�d�˛ , and this choice gives the operator Lu.x/D
�Cd;˛.��/

˛=2u.x/, which is a multiple of the fractional Laplacian of order ˛ (the operator whose Fourier
symbol is j�j˛). This operator (and its inverse, the Riesz potential of order ˛) have a long history, and have
been fundamental to potential theory for about a century; see, for example, Landkof’s book [1966]. In fact,
the appearance of nonlocal operators similar to the one in (1-1) is in some sense generic among all linear
operators that satisfy the positive global maximum principle (that is, the operator is nonpositive whenever
it is evaluated at a positive maximum of a C 2 function). This has been known since the work of Courrège
[1965]. He proved that any linear operator with the positive maximum principle must be of the form

Lu.x/D�c.x/u.x/Cb.x/�ru.x/CTr
�
A.x/D2u.x/

�
C

Z
Rd

�
u.xCh/�u.x/�1B1.h/ru.x/�h

�
�.x;dh/;

where c � 0 is a function, A � 0 is a matrix, b is a vector, all of A, b, c are bounded, and �.x; � / is a
Lévy measure that satisfies

sup
x

Z
Rd

min.jhj2; 1/�.x; dh/ <C1:

Heuristically from the point of view of jump-diffusion stochastic processes, b records the drift, A records
the local covariance (or

p
A is the diffusion matrix), and � records the jumps.

The first Hölder regularity result for an equation of the form (1-1) was obtained in [Bass and Levin
2002a]. In that paper, the authors consider the elliptic equation (u constant in time), with symmetric
kernels satisfying the pointwise bound (1-2) and without drift. Their proof uses probabilistic techniques
involving a related Markov (pure jump) stochastic process. Other results using probabilistic techniques
were [Bass and Kassmann 2005; Song and Vondraček 2004], where different assumptions on the kernels
are considered. The first purely analytical proof was given in [Silvestre 2006]. This first generation of
results consists only of elliptic problems. They are not robust in the sense that as order approaches 2,
the constants in the estimates blow up (hence they do not recover the known second-order results).
Furthermore, they all require a pointwise bound below for the kernels as in (1-2).
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The first robust Hölder estimate for the elliptic problem was obtained in [Caffarelli and Silvestre 2009],
which means that the estimate they proved has constants that do not blow up as the order ˛ of the equation
goes to 2. In that sense, it is the first true generalization of the theorem of Krylov and Safonov. It was
the first of the series of papers [Caffarelli and Silvestre 2009; 2011a; 2011b] recreating the regularity
theory for fully nonlinear elliptic equations in the nonlocal setting. As above, these results are only for
the elliptic problem, and they require symmetric kernels that satisfy the pointwise assumption (1-2).

The first estimate for parabolic integro-differential equations, in nondivergence form, appeared, to the
best of our knowledge, in [Silvestre 2011] (the divergence case had some earlier results such as [Bass and
Levin 2002b; Chen and Kumagai 2003]). In this case, the kernels are symmetric and satisfy (1-2) with
˛ D 1. The focus of [Silvestre 2011] is on the interaction between the integro-differential part and the
drift term. The proof can easily be extended to arbitrary values of ˛, but the estimate is not robust (it
blows up as ˛! 2), and the details of this proof are explained in the lecture notes by one of the authors
[Silvestre 2012b]. It is even possible to extend this proof to kernels that satisfy the upper bound in average
like in our assumption (A2) below (see [Silvestre 2014b]). However, the estimates are not robust, and the
lower bound in (1-2) is required.

The first robust estimate for parabolic equations appeared in [Chang Lara and Dávila 2014], which is a
parabolic version of the result in [Caffarelli and Silvestre 2009]. The kernels are required to be symmetric
and to satisfy the two pointwise inequalities (1-2) as an assumption.

Elliptic integro-differential equations with nonsymmetric kernels are studied in the articles [Chang Lara
2012; Chang Lara and Dávila 2012]. There, the kernels are decomposed into the sum of their even
(symmetric) and odd parts. The symmetric part is assumed to satisfy (1-2), and there are appropriate
assumptions on the odd part so that the symmetric part of the equations controls the odd part. This
effectively makes the contribution to the equation from the odd part of the kernel a lower-order term.

The only articles where the lower bound in the kernels (1-2) is not required to hold at all points
are [Bjorland et al. 2012; Guillen and Schwab 2012; Kassmann and Mimica 2013a; Kassmann et al.
2014]. These papers concern elliptic equations and the upper bound in (1-2) is still assumed to hold.
It is important to point out that under the conditions in [Bjorland et al. 2012; Kassmann et al. 2014],
the Harnack inequality is not true. There is, in fact, a counterexample in [Bogdan and Sztonyk 2005]
(also discussed in [Kassmann et al. 2014]). The assumption in these works that was made to replace the
pointwise lower bound on the kernels is more restrictive than our assumption (A3) below.

The main result in this article (see Theorems 7.1 and 7.2) generalizes nearly all previous Hölder
estimates (for both elliptic and parabolic equations) for integro-differential equations with rough kernels in
nondivergence form. It strictly contains the Hölder regularity results in [Bass and Levin 2002a; Bjorland
et al. 2012; Caffarelli and Silvestre 2009; Chang Lara 2012; Chang Lara and Dávila 2012; 2014; Guillen
and Schwab 2012; Kassmann et al. 2014]. There is an interesting new result given in [Kassmann and
Mimica 2013b] that allows for kernels with a logarithmic growth at the origin (among other cases),
corresponding in our context to the limit ˛! 0, and it is not contained in the result of this paper.

Our approach draws upon ideas from several previous papers. Moreover, we haven been able to simplify
the ideas substantially, especially how to handle parabolic equations, and we do not follow the method in



REGULARITY FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH VERY IRREGULAR KERNELS 731

[Chang Lara and Dávila 2014]. Our method allows us to make more general assumptions on the class of
possible kernels. We would like to point out that we do not make any assumption for simplicity in this
paper. Extending these results to a more singular family of kernels would require new ideas.

There are two possible directions that we did not pursue in this paper. We did not try to analyze
singularities of the kernels of order more general than a power of jhj, as in [Kassmann and Mimica
2013b]. Also, it might be possible to extend our regularity results for equations with Hölder continuous
drifts and ˛ < 1, as in [Silvestre 2012a]; although, we do point out that this technique does not work right
away with the methods in this paper. We also point out that the results in this paper and all of the others
mentioned (except for [Kassmann and Schwab 2014]), require that the Lévy measure — referred to above
as �.x; dh/— has a nontrivial absolutely continuous part, K dh, with respect to Lebesgue measure (our
work allows for a measure with a density plus some singular part). Verifying the validity of, and finding
a proof for, results similar to Theorem 1.1 in the case when � may not have a density with respect to
Lebesgue measure remains a significant open question in the integro-differential theory.

The importance of not assuming any regularity in x and t for the ingredients of (1-1) — the case of
so-called bounded measurable coefficients — is for much more than simply mathematical generality.
For example, because equations such as (1-1) often lack a “divergence structure” — i.e., admitting a
representation as a weak formulation for functions in an energy space such as H˛=2 — they can usually
only be realized as classical solutions or as viscosity solutions (weak solutions). (We note that uniqueness
for equations related to (1-1) is still an open question for the theory of viscosity solutions of integro-
differential equations, and recent progress has been made in [Mou and Święch 2015].) That means that one
of the few tools available for compactness arguments involving families of solutions are those provided
in the space of continuous functions via Theorem 1.1. This is relevant for both the possibility of proving
the existence of classical solutions as well as for analyzing fully nonlinear equations in a way that doesn’t
depend on the regularity of the coefficients. Indeed, both situations can be viewed as morally equivalent
to studying linear equations with bounded measurable coefficients. For studying regularity of translation
invariant equations, this arises by effectively differentiating the equation, which results in coefficients that
depend upon the solution. In the fully nonlinear case, many situations involve operators that are a min-max
of linear operators, and so the bounded measurable linear coefficients arise from choosing the operators that
achieve the min-max for the given function at each given point — a situation in which you cannot assume
any regular dependence in the x-variable. Such min-max representations turn out to be somewhat generic
for fully nonlinear elliptic equations, as was noted in the recent work [Guillen and Schwab 2014, Section 4].

1B. Application: the homogeneous non-cut-off Boltzmann equation. In this section, we briefly explain
an important application of our main result, which is not possible to obtain with any of the previously
known estimates for integro-differential equations. This result is explained in detail in [Silvestre 2014a].

The Boltzmann equation is a well-known integral equation that models the evolution of the density of
particles in dilute gases. In the space homogeneous case, the equation is

ft DQ.f; f / WD

Z
Rn

Z
@B1

�
f .v0; t /f .v0?; t /�f .v?; t /f .v; t/

�
B.jv� v?j; �/ d� dv?: (1-3)
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Here v0, v0? and � are defined by the relations

r D jv�� vj D jv
0
�� v

0
j; v0 D 1

2
.vC v�/C

1
2
r�;

cos � D � � v��v
jv��vj

; v0�D
1
2
.vC v�/�

1
2
r�:

There are several modeling choices for the cross-section functionB . From some physical considerations,
it makes sense to considerB.r; �/�r
 j� jn�1C˛ , with 
 >�n and ˛2 .0; 2/. Note that this cross sectionB
is never integrable with respect to the variable � 2 @B1. In order to avoid this difficulty, sometimes a (non-
physical) cross section is used that is integrable. This assumption is known as Grad’s cut-off assumption.

Until the middle of the 1990s, most works on the Boltzmann equation used Grad’s cut-off assumption.
The non-cut-off case, despite its relevance for physical applications, was not studied so much due to its
analytical complexity. An important result that caused a better understanding of the non-cut-off case came
with the paper of Alexandre, Desvillettes, Villani, and Wennberg [Alexandre et al. 2000], in which they
obtained a lower bound on the entropy dissipation in terms of the Sobolev norm kf k˛=2loc . All regularity
results for the non-cut-off case that came afterwards are based on a coercivity estimate that is a small
variation of this entropy dissipation argument. So far, this was the only regularization mechanism that
was known for the Boltzmann equation.

It turns our that we can split the right-hand side of the Boltzmann equation, (1-3), in two terms. The
first one is an integro-differential operator, and the second is a lower-order term:

ft DQ1.f; f /CQ2.f; f /

WD

Z
Rn

Z
@B1

f .v0?; t /
�
f .v0; t /�f .v; t/

�
B.jv� v?j; �/ d� dv?

Cf .v; t/

Z
Rn

Z
@B1

�
f .v0?; t /�f .v?; t /

�
B.jv� v?j; �/ d� dv?

D

Z
Rn

�
f .v0; t /�f .v; t/

�
Kf .v; v

0; t / dv0C cf .v; t/Œjvj
 �f �.v/:

The kernelKf depends on f through a complicated change of variables given using the integral identity
above. If one knew that f was a smooth positive function vanishing at infinity, then indeed it could be
proved that Kf .v; v0; t /� jv� v0j�n�˛, and the first term would correspond to an integro-differential
operator of order ˛ in the usual sense satisfying (1-2). Unfortunately, this is not practical for obtaining
basic a priori estimates for (1-3). In fact, there is very little we can assume a priori from the solution f
to the Boltzmann equation, and it is not enough to conclude that Kf satisfies (1-2). Instead, all we
know a priori about f is given by its macroscopic quantities: its mass (the integral of f ), the energy
(its second moment), and its entropy. The first two quantities are constant in time, whereas the third
is monotone decreasing. It can be shown that Kf satisfies the hypotheses (A1), (A2), (A3) and (A4),
depending on these macroscopic quantities only. Therefore, the results in this article can be used to obtain
a priori estimates for solutions of the homogeneous, non-cut-off, Boltzmann equation, which is explained
in [Silvestre 2014a]. It is a new regularization effect for the Boltzmann equation that is not based on
coercivity estimates, as in [Alexandre et al. 2000].
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Interestingly enough, the macroscopic quantities do not give much more information about Kf than
what our assumptions (A1), (A2) and (A3) say. The kernels Kf will be symmetric, so, in fact, (A4)
is redundant. In terms of this generalization, almost the full power of our main result is needed. The
only nonessential points are that the kernels can be assumed to be symmetric, and the robustness of the
estimates does not necessarily play a role.

1C. Notation.
� Our space variable x belongs to Rd .

� The annulus is Rr WD B2r nBr .

� The parabolic cylinder Qr is defined as

Qr WD Br � .�r
˛; 0�; and with a different center, Qr.x; t/DQr C .x; t/:

� The “˛-growth” class is

Growth.˛/D
˚
v W Rd ! R

ˇ̌
jv.x/j � C.1Cjxj/˛�" for some C; " > 0

	
:

� Pointwise C 1;1 is defined as

C 1;1.x/ WD
˚
v WRd!R

ˇ̌
9M.x/ and " so that jv.xCh/�v.x/�rv.x/�hj �M.x/jhj2 for jhj<"

	
;

and over Rd , we have

C 1;1.Rd / WD
˚
v WRd!R

ˇ̌
kvkL1.Rd /<1; krvkL1.Rd /<1;

and v 2C 1;1.x/8x with M.x/ independent of x
	
:

� The difference operator for the different possibilities of ˛ is

ıyu.x/ WD

8<:
u.xCy/�u.x/ if ˛ < 1;
u.xCy/�u.x/�1B1.y/ru.x/ �y if ˛ D 1;
u.xCy/�u.x/�ru.x/ �y if ˛ > 1:

� The class of kernels and corresponding linear operators are

K WD fK W Rd ! R jK satisfies assumptions (A1)–(A4)g;

L WD
�
Lu.x/D

Z
Rd
ıhu.x/K.h/ dh

ˇ̌̌̌
K 2 K

�
:

We will try to stick to the following conventions for constants:

� Large constants will be upper case letters, e.g., C , and small constants will be lower case letters, e.g., c.

� If the value of a constant is not relevant for later arguments, then we will freely use the particular letter
for the constant without regard to whether or not it was used previously or will be used subsequently.

� If the value of a constant is relevant to later arguments (e.g., in determining values of subsequent
constants), then we will label the constant with a subscript, e.g., C0, C1, C2, etc.

Note 1.2. The following observation is useful and applies for all values of ˛: if u.x/D '.x/ and u� '
everywhere, then ıhu.x/ � ıh'.x/ for all h. This implicitly assumes that for ˛ � 1, both u and ' are
differentiable at x.
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2. Classes of kernels and extremal operators

The kernel K.x; h; t/ in (1-1) is not assumed to have any regularity with respect to x or t . The best way
to think about it is that for every value of x and t , we have a kernel (Kx;t .h/DK.x; � ; t /) that belongs
to a certain class. This class of kernels is what we describe below.

2A. Assumptions on K . For each value of �, ƒ, � and ˛, we consider the family of kernelsK WRd!R

satisfying the following assumptions:

(A1) K.h/� 0 for all h 2 Rd .

(A2) For every r > 0, Z
B2rnBr

K.h/ dh� .2�˛/ƒr�˛: (2-1)

(A3) For every r > 0, there exists a set Ar such that

� Ar � B2r nBr ,
� Ar is symmetric in the sense that Ar D�Ar ,
� jAr j � �jB2r nBr j,
� K.h/� .2�˛/�r�d�˛ in Ar .

Equivalently,ˇ̌˚
y 2 B2r nBr jK.h/� .2�˛/�r

�d�˛ and K.�h/� .2�˛/�r�d�˛
	ˇ̌
� �jB2r nBr j: (2-2)

(A4) For all r > 0, ˇ̌̌̌Z
B2rnBr

hK.h/ dh
ˇ̌̌̌
�ƒj1�˛jr1�˛: (2-3)

2B. Discussion of the assumptions. We stress that although our kernels can be zero for large sets of h,
their corresponding integral operators are not rightfully described as “degenerate”. One can draw an
analogy with the second-order case in the context of diffusions. A diffusion process will satisfy uniform
hitting-time estimates for measurable sets of positive measure whenever the diffusion matrix is comparable
to the identity from below and above. In the context of our pure jump processes related to (1-1), these
jump processes will still satisfy such uniform hitting-time estimates even though the kernels can be zero
in many points (meaning that at the occurrence of any one jump, the process will have zero probability of
jumping with certain values of h).

The first assumption, (A1), is unavoidable if one hopes to study examples of (1-1) that satisfy a
comparison principle between sub- and supersolutions.

The second assumption, (A2), is mostly used to estimate an upper bound for the application of the
operator, L, to a smooth test function. It is more general than assuming a pointwise upper bound, as was
done in [Caffarelli and Silvestre 2009; Kassmann et al. 2014] and many others. It is also slightly more
general than a corresponding bound obtained by integrating on spheres asZ

@Br

K.h/ dS.h/� .2�˛/ƒr�1�˛:
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It is, however, a stronger hypothesis thanZ
Br

jhj2K.h/ dh�ƒr2�˛:

It is worth pointing out that (A2) impliesZ
RdnBr

K.h/ dh�
2˛

2˛ � 1
.2�˛/ƒr�˛:

The first factor blows up as ˛! 0 but not as ˛! 2. In fact, the proofs of all our regularity results fail
for ˛� 0 exactly because the tails of the integrals become infinite. The question of what happens as ˛! 0

is interesting for the nonlocal theory, and some results are obtained in [Kassmann and Mimica 2013b]
(note, there they do not use the typical normalization constant as in potential theory, where Cd;˛ � ˛
as ˛! 0, so the limit operator is not a multiple of the identity). We also haveZ

Rd
.1^ jhj2/K.h/ dh� C.˛/ƒ (2-4)

for a constant C.˛/ that stays bounded as ˛! 2, and (2-1) can be thought of as a scale invariant, of
order ˛, version of (2-4).

Note that the assumption (A2) does not preclude the kernel K from containing a singular measure. For
example, the measure given byZ

A

K.h/ dhD
Z
A\fh1Dh2D���Dhd�1D0g

.2�˛/
�

jhnj1C˛
dhd

is a valid kernel K that satisfies (A2) (but not (A3)). In this case, K is a singular measure, but we abuse
notation by writing it as if it was absolutely continuous with a density K.h/.

The example above corresponds to the operator

�

Z
Rd
ıhu.x/K.h/ dhD .�@dd /

˛=2u:

As we mentioned before, this kernel satisfies the assumption (A2) but not (A3). However, the kernel of
the operator

�

Z
Rd
ıhu.x/K.h/ dh WD .�@dd /

˛=2u.x/C .��/˛=2u.x/

would satisfy both (A2) and (A3).
The third assumption, (A3), is stated in a form that does not require the kernel K to be positive along

some prescribed rays or cone-like sets, as was done in [Kassmann et al. 2014]. The relaxation to (A3) from
previous works is important to allow for situations where the positivity set of K may change from radius
to radius. As mentioned above, it is equivalent to (2-2), which is the form we will actually invoke later on.

Finally, note that the assumption (A4) is automatic for symmetric kernels (i.e., when K.h/DK.�h/),
since in that case the left-hand side is identically zero. This assumption is made in order to control the
odd part of the kernels in a fashion that does not require us to split up L into two pieces involving the
even and odd parts of K. It is also worth pointing out that even for ˛ < 1, the kernel K can have some
asymmetry, but it must die out as r!1.
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There are two final facts that are important to point out. The first one is the observation that although
each K may not be such that

Lu.x/D

Z
Rd
ıhu.x/K.h/ dh

results in an operator that is scale invariant, i.e., Lu.r � /.x/D r˛Lu.rx/, the family of K that satisfy
(A1)–(A4) is scale invariant. The second one is that some authors have worked with assumptions where
the lower bound in (1-2) is only required for jhj � 1. This does not effect our overall result because we
can add and subtract the term

f .uI x/ WD .2�˛/

Z
Rd
ıhu.x/1RdnB1

.h/jhj�d�˛ dh

from (1-1). AssumingK satisfies the lower bound of (1-2) only for jhj � 1, this would result in an operator
governed by zK.h/DK.h/C 1RdnB1

.h/jhj�d�˛, and now zK does satisfy the lower bound of (1-2) for
all h. Furthermore, the term f .uI � / is controlled by kukL1 and possibly C jruj (depending on ˛) due
to the fact that 1RdnB1

.h/jhj�d�˛ is integrable, and hence these terms can be absorbed into the equation
as a gradient term and bounded right-hand side. This pertains to, e.g., the results in [Chang Lara 2012].

2C. Extremal operators and useful observations. As mentioned above, L is the class of all integro-
differential operators Lu of the form

Lu.x/D

Z
Rd
ıhu.x/K.h/ dh;

where K is a kernel satisfying the assumptions (A1)–(A4) specified above. Sometimes we wish to refer to
a kernel, K, instead of the operator, L, and so we also use K to denote the collection of all such kernels.
Correspondingly, we define the extremal operators MCL and M�L as in [Caffarelli and Silvestre 2009]:

MCL u.x/D sup
L2L

Lu.x/;

M�L u.x/D inf
L2L

Lu.x/:

In order to avoid notational clutter, we omit the subscript L in the rest of the paper. We note that when
(1-1) holds for some kernel K satisfying the assumptions and with a bounded b and f , this also implies
that the pair of inequalities

ut CC0jruj �M
�u� �C0;

ut �C0jruj �M
Cu� C0

is simultaneously satisfied. The advantage of this new formulation is that it can be understood in the
viscosity sense, whereas the original equation (1-1) only makes sense for classical solutions. Unless
otherwise noted, we use the terms solution, subsolution, and supersolution to be interpreted in the viscosity
sense (made precise below, in Definition 3.2). There may be instances when we need equations to hold in
a classical sense, and in those cases, we will explicitly mention that need.
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Remark 2.1. We emphasize that although (1-1) allows for K that are x-dependent, the class L— and
hence the definition of M˙— contains only those K that are independent of x. The desired inequalities
are obtained because L contains all possible such K, and hence, for each x fixed, K.x; � / 2 L.

It will be useful to know an important feature ofM˙ regarding translations, rotations, and scaling. This
is an important feature to keep in mind in the sense that for any one choice of a kernel to determine (1-1),
K may not have any symmetry or scaling properties on its own. However, it is controlled by an extremal
operator that does enjoy these properties. This is particularly relevant for intuition on what to expect from
solutions of these equations.

Lemma 2.2. MC (and hence M�) obey the following:

(i) If z 2 Rd is fixed, and T u WD u. � C z/, then MCT u.x/DMCu.xC z/ (translation invariance).

(ii) If R is a rotation or reflection on Rd , then MCu.R � /.x/DMCu.Rx/ (rotation invariance).

(iii) If r > 0, then MCu.r � /.x/D r˛MCu.rx/ (scaling).

Proof of Lemma 2.2. Property (i) follows from a direct equality in LTu.x/DLu.xCz/ whenever K 2L
(importantly, note that K 2 L requires K.x; h/DK.h/). Property (ii) follows because L is closed under
composing K with a rotation or reflection. Property (iii) follows from the observation that if K 2 L, then

zK.h/ WD r�d�˛K
�
h

r

�
2 L

as well, combined with the fact that for L, zL corresponding to K, zK, we have Lu.r � /.x/D r˛ zLu.rx/.
It is worth remarking that when ˛D 1, one must be careful with rescaling the integral due to the presence
of 1B1.h/. However, in this case the rescaling still holds because (A4) implies thatZ

B1nBr

hK.h/ dhD 0;

and this allows to keep the term 1B1.h/ fixed in zL without effecting its value. �
In the rest of this section, we make some elementary estimates that give us some bounds on Lu.x/

in terms of bounds for u and its derivatives. These estimates explain the need for the assumptions (2-1)
and (2-3). We start with the following lemma.

Lemma 2.3. LetK be a kernel satisfying assumptions (A2) and (A4). Then the following inequalities hold:Z
Br

jhj2K.h/ dh� Cƒr2�˛; (2-5)ˇ̌̌̌Z
Br

hK.h/ dh
ˇ̌̌̌
� Cƒr1�˛ if ˛ < 1; (2-6)ˇ̌̌̌Z

RdnBr

hK.h/ dh
ˇ̌̌̌
� Cƒr1�˛ if ˛ > 1; (2-7)Z

RdnBr

K.h/ dh� Cƒ2�˛
˛
r�˛: (2-8)

In this lemma, the constant C is independent of all the other constants.
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Proof. The four assertions are all proved in a similar fashion, and they follow from a straightforward
decomposition of the integrals in dyadic rings B2kC1r nB2kr followed by applications of (2-1) and (2-3).
We will only write down explicitly the proof of (2-7) as an example.

Assume ˛ > 1. We use (2-3) and decompose the integral in dyadic rings B2kC1r nB2kr :ˇ̌̌̌Z
RdnBr

hK.h/ dh
ˇ̌̌̌
�

1X
kD0

ˇ̌̌̌Z
B
2kC1r

nB
2kr

hK.h/ dh
ˇ̌̌̌

�

1X
kD0

ƒj1�˛j.2kr/1�˛

�ƒr1�˛
j1�˛j

1� 21�˛
:

Since the last factor on the right is bounded uniformly for ˛ 2 .1; 2/, we have finished the proof. �

Lemma 2.4. Assume ˛ � ˛0. LetK be any kernel that satisfies (2-1) and (2-3). Let u be a function that is
C 2 around the point x and pDru.x/. Moreover, assume that u satisfies the following bounds globally:

D2u� AI; juj � B:

Then, Z
Rd
ıhu.x/K.h/ dh� C

�
B

A

��˛=2�
BC

�
B

A

�1=2
jpj
�
:

Here C is a constant that depends on ƒ and ˛0. Moreover, when ˛ D 1, we can drop the term depending
on p and get Z

Rd
ıhu.x/K.h/ dy � C.AB/1=2:

Proof. Since ıhu.x/ has a different form depending on ˛ > 1, ˛D 1 and ˛ < 1, we must divide the proof
into these three cases.

We start with the case ˛ < 1. In this case ıhu.x/D u.xC h/�u.x/. Let r > 0 be arbitrary. ThenZ
Rd
ıhu.x/K.h/ dy D

Z
Br

ıhu.x/K.h/ dhC
Z

RdnBr

ıhu.x/K.h/ dh

�

Z
Br

.p � hCAjhj2/K.h/dhC
Z

RdnBr

2BK.h/ dh: (2-9)

Using (2-6), (2-5) and (2-8), we get

� C
�
jpjr1�˛CAr2�˛CBr�˛

�
: (2-10)

We finish the proof in the case ˛ < 1 by picking r D .B=A/1=2.
The case ˛ > 1 is similar. In this case ıhu.x/D u.xC h/�u.x/�p � h and we getZ

Rd
ıhu.x/K.h/ dhD

Z
Br

ıhu.x/K.h/ dhC
Z

RdnBr

ıhu.x/K.h/ dh

�

Z
Br

Ajhj2K.h/ dhC
Z

RdnBr

.p � hC 2B/K.h/ dh:
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This time using (2-5), (2-7) and (2-8), we again arrive at (2-10), and conclude by picking the same
r D .B=A/1=2.

We are left with the case ˛ D 1. In this case,

ıhu.x/D u.xC h/�u.x/�p � h 1B1.h/:

For arbitrary r > 0, we haveZ
Rd
ıyu.x/K.h/ dhD

Z
Br

�
u.xC h/�u.x/�p � h

�
K.y/ dh

C

Z
RdnBr

�
u.xC h/�u.x/

�
K.h/ dh˙

Z
B14Br

h �pK.h/ dh:

The last term on the right-hand side is equal to zero because of the assumption (2-3). Therefore, we can
drop this term and use the other two to estimate the integral:Z

Rd
ıhu.x/K.h/ dh�

Z
Br

Ajhj2K.h/ dhC
Z

RdnBr

2BK.h/ dh:

� C.Ar CBr�1/;

where the second inequality follows from (2-5) and (2-8). Picking r D .B=A/1=2, we obtainZ
Rd
ıhu.x/K.h/ dh� C.AB/1=2: �

Remark 2.5. Lemma 2.4 requires an inequality to hold for D2u in the full space Rd . This does not
require the function u to be C 2 globally. What it means is that u.x/� 1

2
Ajxj2 is concave.

Corollary 2.6. Let MCL and M�L be the extremal operators defined above. Let p Dru.x/ and assume
that u satisfies the global bounds

�A�I �D
2u� ACI; juj � B:

Then

MCL u.x/� C
�
B

AC

��˛=2�
BC

�
B

AC

�1=2
jpj
�
;

M�L u.x/� �C
�
B

A�

��˛=2�
BC

�
B

A�

�1=2
jpj
�
:

Moreover, if ˛ D 1, the estimate can be reduced to

MCL u.x/� C.BAC/
1=2;

M�L u.x/� �C.BA�/
1=2:

Proof. The estimate for MCL follows from taking the supremum in K in Lemma 2.4. The estimate for
M�L follows then since

M�L u.x/D�M
C
L Œ�u�.x/: �
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3. Viscosity solutions

We use a standard definition of viscosity solutions for integral equations that is the parabolic version of
the one in [Caffarelli and Silvestre 2009] and equivalent under most conditions to the parabolic version of
[Barles and Imbert 2008].

Definition 3.1 (cf. [Caffarelli and Silvestre 2011b, Definition 21 and (1.2)]). We say I is a nonlocal
operator that is elliptic with respect to the class of operators in this article if Iu.x/ is well-defined for
any function u 2 Growth.˛/ such that u 2 C 2.x/ and moreover,

M�.u1�u2/.x/�C jr.u1�u2/.x/j � Iu1.x/� Iu2.x/�M
C.u1�u2/.x/CC jr.u1�u2/.x/j:

The constant C must be equal to zero if ˛ � 1.
We say that I is translation invariant if I Œu. � � x0/�D Iu. � � x0/.

Note that the operatorsMC andM� in particular are nonlocal operators, uniformly elliptic with respect
to this class. These are the only operators that are needed for the main result in this article (Theorem 1.1).
The main result has implications to nonlinear equations in terms of operators, as in Definition 3.1, which
are given in Section 8.

Definition 3.2 (cf. [Caffarelli and Silvestre 2009, Definition 2.2; Caffarelli and Silvestre 2011b, Def-
inition 25]). Let I be a nonlocal operator as in Definition 3.1. Assume that u 2 Growth.˛/. We say
u W Rd � ŒT1; T2� satisfies the following inequality in the viscosity sense, and also refer to it as a viscosity
supersolution of

ut � Iu� 0 in �� Rd �R

if every time there exist a C 1;1 function ' WD ��! R so that '.x0; t0/D u.x0; t0/ and also u� ' in
D\ft � t0g, then the auxiliary function

v.x/D

�
'.x; t0/ if .x; t0/ 2D;
u.x; t0/ if .x; t0/ …D

satisfies
vt .x0; t0/� Iv.x0; t0/� 0:

One of the most characteristic properties of viscosity solutions is that they obey the comparison
principle. In the context of this article, we state it as follows.

Proposition 3.3. Let I be a translation invariant nonlocal operator that is uniformly elliptic in the sense
of Definition 3.1. Let u; v 2 Rn � Œ0; T � be two continuous functions such that

� for all x 2 Rn, we have u.x; 0/� v.x; 0/,

� for all x 2 Rn nB1 and t 2 Œ0; T �, we have u.x; t/� v.x; t/,

� ut � Iu� 0 and vt � Iv � 0 in B1 � Œ0; T �.

The u.x; t/� v.x; t/ for all x 2 B1 and t 2 Œ0; T �.
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The proof of Proposition 3.3 is by now standard. We refer the reader to [Chang Lara and Dávila
2014, Corollary 3.1; Silvestre 2011, Lemmas 3.2, 3.3; Caffarelli and Silvestre 2009, Theorem 5.2; Barles
and Imbert 2008] for the main ideas. For the purposes of this article, we do not use the full power of
Proposition 3.3. We only use the comparison principle to compare a supersolution u with a special barrier
function constructed in Section 5. This barrier function is explicit and is smooth, except on a sphere
where it has an angle singularity. The comparison principle follows easily from Definition 3.2 when v is
this special barrier function or any smooth subsolution of the equation.

In [Caffarelli and Silvestre 2009], and many subsequent works, it was frequently used that wherever a
viscosity solution u can be touched with a C 2 test function from one side, the equation can be evaluated
classically with the original u at that particular point (a notable departure from the second-order theory!).
This fact plays a role in some measure estimates used to prove the regularity results in those works. With
our current setting, it is not possible to evaluate the equation pointwise in u because of the gradient terms;
however, many possible useful variations on that theme can be shown — similar to [Kassmann et al. 2014,
Appendix 7.2]. In this case, the following lemma is what we will use to obtain pointwise evaluation of
the regularized supersolution.

Lemma 3.4. Assume u satisfies the following inequality in the viscosity sense:

ut CC0jruj �M
�u� �C in �:

Assume also that there is a test function ' W Rd � Œt1; t2� ! R so that '.x0; t0/ D u.x0; t0/ and
'.x; t/� u.x; t/ for all t 2 .t0� "; t0�.

Then, the following inequality holds:

't .x0; t0/CC0jr'.x0; t0/j�M
�'.x0; t0/�inf

�Z
Rd

�
u.xCy; t0/�'.xCy; t0/

�
K.y/dy W K 2K

�
��C:

Proof. We can use ' as the test function for Definition 3.2 in any small domain D DBr.x0/� .t0� "; t0�.
Constructing the auxiliary function v, we observe that

vt .x0; t0/D 't .x0; t0/; rv.x0; t0/Dr'.x0; t0/;

M�v.x0; t0/D inf
�Z

Rd
ıy'.x/K.y/ dyC

Z
RdnBr

�
u.xCy/�'.xCy/

�
K.y/ dy W K 2 K

�
�M�'.x0; t0/C inf

�Z
RdnBr

�
u.xCy/�'.xCy/

�
K.y/ dy W K 2 K

�
:

Observe that the last term is monotone increasing as r! 0.
From Definition 3.2, for any r > 0, we have that vt .x0; t0/CC0jrv.x0; t0/j �M�v.x0; t0/� �C1.

The result of the lemma follows by taking r! 0. �

4. Relating a pointwise value with an estimate in measure: the growth lemma

In order to obtain the Hölder continuity of u, we need to show the following point-to-measure lemma,
which seems to originate in the work of Landis [1971] (in some circles, it is known as the growth lemma).
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It is a cornerstone of regularity theory, it leads to the weak Harnack inequality, and it is one of the few
places where the equation plays a fundamental role.

Lemma 4.1. There exist positive constants A0 and ı0 depending on �, ƒ, d , ˛0 and C0 so that if ˛ > ˛0
and if u W Rd � .�1; 0�! R is a function such that

(1) u� 0 in the whole space Rd � .�1; 0�,

(2) u is a supersolution in Q1, i.e.,

ut CC0jruj �M
�u.x/� 0 in Q1; (4-1)

(3) minQ1=4 u� 1,

then
jfu� A0g\Q1j � ı0:

The following function, q, plays an important role in the proof of Lemma 4.1. It is actually an
inf-convolution of u with a quadratic, and it is defined as

q.x; t/D min
y2B1

u.y; t/C 64jx�yj2: (4-2)

Note that q is a nonnegative function. We will prove a collection of properties of the function q, which
will lead us to the proof of Lemma 4.1.

The next barrier is used to find a bound for the rate at which q can decrease with respect to t .

Lemma 4.2. For a universal constant C1, the function

'.x; t/Dmax.0; f .t/� 64jxj2/

is a subsolution to
't CC0jr'j �M

�' � 0 in Rn � .�1; 0�:

The inequality holds classically at all points where ' > 0.
Here f .t/ is the (unique) positive solution to the (backward) ODE�

f .0/ D 0;

f 0.t/D�C1
�
f .t/1=2Cf .t/1�˛=2

�
;

(4-3)

where C1 is a constant depending on ƒ and ˛0 (such that ˛ � ˛0).

Proof. Note that for every fixed value of t 2 .�1; 0�, it holds that

k'kL1 D f .t/; kr'kL1 � C
p
f .t/; and 0�D2' � �128I:

Applying Corollary 2.6,
M�' � �Cf .t/1�˛=2:

Then, at all points where ' > 0, we have

't CC0jr'j �M
�' � f 0.t/CC0Cf .t/

1=2
CCf .t/1�˛=2:

The lemma then follows by choosing C1 so that f 0 dominates the right-hand side. �
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It is worth commenting that the ODE for f in Lemma 4.2 has a unique solution that is strictly positive
for t < 0. This function f is differentiable and locally Lipschitz. The universal constant C2 of the
following result is the Lipschitz constant of f in the interval Œ�T; 0�, where f .T /D�4.

Corollary 4.3. Assume x 2 B1=8 and q.x; t/ < 3. Then there are positive universal constants � and C2
such that for s 2 .t � �; t/, we have q.x; s/� q.x; t/ < C2.t � s/.

Proof. We let x, t , and s be fixed as stated. Let y be the point where the minimum for q.x; t/ is achieved in
(4-2). Using the definition of q, we note that for all values of z 2B1, we have u.z; s/�q.x; s/�64jx�zj2.

The point of the proof is to use the fact that u and ' are respectively super- and subsolutions of (4-1) on
the time interval .s; 0�. In order to invoke a comparison result between them, we will make various choices
involving � and f to enforce ' to be below u at the initial time, s, and on the boundary, which is Rd nB1.

We define the function
N'. Nx; Nt / WD '. Nx� x; Nt � sC t0/;

where t0 is a fixed time, yet to be chosen. We fix the constant � so that

� < f �1.3/�f �1.4/;

and we fix the time t0 < 0 so that
f .t0/Dmin.q.x; s/; 4/:

Checking the boundary condition for Nx 62 B1 and Nt > s, we see that jx� Nxj � 7
8

(as x 2 B1=8), and hence
since f .t0/� 4� 49, we have (note f is decreasing)

N'. Nx; Nt /D '. Nx� x; Nt � sC t0/Dmax
�
0; f .Nt � sC t0/� 64jx� Nxj

2
�
�max.0; f .t0/� 49/� 0:

Checking the initial condition at Nt D s, we have (by the definition of t0)

N'. Nx; s/D '. Nx� x; t0/Dmax.0; f .t0/� 64jx� Nxj2/�max.0; q.x; s/� 64jx� Nxj2/� u. Nx; s/;

from the definition of q.
Comparison therefore tells us that u� N' on B1 � .s; 0/, and, in particular, for Nx D y and Nt D t ,

u.y; t/� '.x�y; t � sC t0/� f .t � sC t0/� 64jx�yj
2:

Hence
q.x; t/D u.y; t/C 64jx�yj2 � f .t � sC t0/;

and we will use
q.x; t/� f .t � sC t0/� f .t0/� jf

0.t0/j.t � s/:

In the case that f .t0/D q.x; s/, we can conclude the corollary with C2 WDmaxff 0.t/ W t 2 .�f �1.4/; 0/g.
However, � was chosen specifically so that it is impossible for f .t0/ < q.x; s/. Indeed we see that if it
occurred that f .t0/D 4 then because f is decreasing and t � s � � , it holds that

3 > q.x; t/� f .t � sC t0/� f .t0/Cf .� C t0/�f .t0/� 4Cf .f
�1.3//� 4D 3;

which is a contradiction. Thus f .t0/D q.x; s/ is the only possibility, and we conclude. �
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Corollary 4.3 should be interpreted as qt � �C2 everywhere. The next lemma gives us a bound above
for qt in a set of positive measure.

Lemma 4.4. Under the assumptions of Lemma 4.1, (but assuming here u.0; 0/D 1) the function q from
(4-2) satisfies jfqt � A1g\Q1j � ı1 > 0, where A1 and ı1 are universal constants.

Proof. Since u.0; 0/D 1, for any x 2 B1=4, we have q.x; 0/� 1C 64jxj2 < 5. Moreover, the minimum
is achieved at some y 2 B1=2 since 1C 64jy � xj2 > 5 if jyj > 1

2
. By similar reasoning, we also have

that for every x 2 B1=8, it holds that q.x; 0/ < 2. Corollary 4.3 implies that for t 2 .��; 0�,

q.x; t/� q.x; 0/CC2jt j< 2CC2jt j:

Thus if we restrict t 2 .�� 0; 0�, where � 0 D 1=C2, then we have that q.x; t/ < 3 and a second application
of Corollary 4.3 shows that q.x; t/CC2t is monotone increasing. Thus qt .x; t/ exists pointwise for
a.e. t 2 .�� 0; 0� and qt exists as a signed measure. Furthermore,

qt .x; t/� �C2 for a.e. t 2 .�� 0; 0�:

Integrating the measure qt .x; t/ and ignoring its singular part shows (note, q � 0 always)

C D 2jB1=8j �

Z
B1=8

q.x; 0/� q.x;�� 0/ dx

�

Z 0

�� 0

Z
B1=8

qt .x; s/ dx ds

� A1
ˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
�C2

ˇ̌�
.�� 0; 0��B1=8

�
n fqt > A1g

ˇ̌
D�C2�

0
jB1=8jC .A1CC2/

ˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
:

Therefore, rearranging shows thatˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
�
C CC2�

0

A1CC2
:

We can make the right-hand side arbitrarily small by choosing A1 large. In particular, we choose A1
sufficiently large (depending only on universal constants) so that we haveˇ̌�

.�� 0; 0��B1=8
�
\fqt � A1g

ˇ̌
�
1
2
� 0jB1=8j DW ı1: �

After Corollary 4.3 and Lemma 4.4, we obtain a set of positive measure where jqt j is bounded. At this
point, we can use ideas from the stationary case to proceed with the rest of the proof.

The next lemma replaces Lemma 8.1 in [Caffarelli and Silvestre 2009]. We, in fact, prove a slightly
modified version of the lemma, which enforces a quadratic growth of ıhu simultaneously on two rings. In
the proofs of Theorem 8.7 and Lemma 10.1 in [Caffarelli and Silvestre 2009], there is a cube decomposition
plus a covering argument. It could be replaced by a double covering argument. In this paper, we will
have a simpler covering argument using Vitali’s lemma only once. This is possible thanks to the stronger
measure estimate in the next lemma (in two simultaneous rings).
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Lemma 4.5. Let � be the constant in (2-2) and c0 < 1 be an arbitrary constant. Let y be the point
in B1=2 where the minimum of (4-2) is achieved and u satisfies (4-1). Assume that x 2 B1=4, q.x; t/ < 3
and qt .x; t/ < A1. Then, for A2 sufficiently large (depending on C1, �1, �, ƒ, c0 and ˛0 but not on ˛),
we have that there exists some r � r0 so that bothˇ̌˚

h 2 B2r nBr W ıhu.y; t/� A2r
2 and ı�hu.y; t/� A2r

2
	ˇ̌
�
1
2
�jB2r nBr j (4-4)

andˇ̌˚
h 2 B2c0r nBc0r W ıhu.y; t/� A2.c0r/

2 and ı�hu.y; t/� A2.c0r/
2
	ˇ̌
�
1
2
�jB2c0r nBc0r j (4-5)

hold simultaneously for r and c0r . Here r0 D 4�1=.2�˛/, and we note that r0! 0 as ˛! 2.

In Lemma 4.5, we abuse notation by writing

ıhu.y; t/D u.yC h; t/�u.y; t/� 128.x�y/ � h;

even though ru.y; t/ may not exist. Note that if u happens to be differentiable at .y; t/, then ru.y; t/D
128.x�y/ because of (4-2). The value of c0 will be selected as a universal constant in Lemma 4.7.

Proof. From the construction of x and y, we have that u.y; t/ D q.x; t/ � 64jx � yj2. Moreover,
u.z; s/ � q.x; s/� 64jx � zj2 for any z 2 Rn and s � t . Since we are assuming that qt .x; t/ < A1 (in
particular, that qt exists at that point), there is an ">0 so that q.x; s/> q.x; t/�A1.t�s/ for s 2 .t�"; t �.
Consequently, u.z; s/� q.x; t/� 64jx� zj2�A1.t � s/ for s 2 .t � "; t �.

Let
'.z; s/ WDmax

�
q.x; t/� 64jx� zj2�A1.t � s/;�256

�
:

The choice of the number �256 is made so that the maximum is always achieved by the paraboloid every
time z 2 B1. From the analysis above, we have that u� ' in Rn � .t � "; t � and u.y; t/D '.y; t/. Note
that since q.x; t/ < 3, we have jr'.y; t/j � 16

p
3. Also, from Lemma 2.4, since D2' � �128I , we

have M�'.y; t/� �C for some universal constant C . We apply Lemma 3.4 and we get

0� 't .y; t/CC0jr'.y; t/j �M
�'.y; t/� inf

�Z
Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
� A1CC0jr'.y; t/j �M

�'.y; t/� inf
�Z

Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
� C � inf

�Z
Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
:

Note that u.yC h; t/�'.yC h; t/� 0 for all values of h 2 Rn. We abuse notation by saying

ıhu.y; t/D u.yC h; t/�u.y; t/� h � r'.y; t/:

Note that
u.yC h; t/�'.yC h; t/D ıhu.y; t/� ıh'.y; t/;

and ıh'.y; t/D�64jhj2 whenever yC h 2 B1.
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Using that the integrand is positive, we can reduce its domain of integration to an arbitrary subset of Rn:

C � inf
�Z
Br0

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
D inf

�Z
Br0

�
ıhu.y; t/C 64jhj

2
�
K.h/ dh WK 2 K

�
:

Let us define

w.h/ WD ıhu.x; t/C 64jhj
2
� 0

for h 2 Br0 . We have that there exists an admissible kernel K such that

C �

Z
Br0

w.h/K.h/ dh: (4-6)

Let r � r0 D 4�1=.2�˛/. From (2-2), we know thatˇ̌˚
h 2 B2r nBr W K.h/ > .2�˛/�r

�d�˛ and K.�h/ > .2�˛/�r�d�˛
	ˇ̌
> �jB2r nBr j: (4-7)

To obtain a contradiction, let us assume that the result of the lemma is false. That is, for all r � r0, eitherˇ̌˚
h 2 B2r nBr W w.h/ > .AC 64/r

2 or w.�h/ > .AC 64/r2
	ˇ̌
>
�
1� 1

2
�
�
jB2r nBr j (4-8)

orˇ̌˚
h2B2c0rnBc0r Ww.h/>.AC64/.c0r/

2 or w.�h/>.AC64/.c0r/2
	ˇ̌
>
�
1�1

2
�
�
jB2c0rnBc0r j: (4-9)

Therefore, the intersection of the set in (4-7) — with r appropriately chosen in each case — with either
of that in (4-8) or (4-9) must have measure at least 1

2
�jB2r nBr j or 1

2
�jB2c0r nBc0r j, depending on which

of the two possibilities occurred. Let us set Qr to be either r or c0r , depending upon whether we will invoke
(4-8) or (4-9). Let us call GQr this intersection between the sets (4-7) and either (4-8) or (4-9). Note that
GQr �B2Qr nBQr andGQr is symmetric (i.e., GQr D�GQr ). Moreover, for all h2GQr , either w.h/> .AC64/ Qr2

and K.h/ > .2�˛/� Qr�d�˛ or w.�h/ > .AC 64/ Qr2 and K.�h/ > .2�˛/� Qr�d�˛. ThereforeZ
B2QrnBQr

w.h/K.h/ dh�
Z
GQr

w.h/K.h/ dh

D
1

2

Z
GQr

w.h/K.h/Cw.�h/K.�h/ dh

�
1

2

Z
GQr

A�.2�˛/ Qr�dC2�˛ dh

� A�.2�˛/ Qr2�˛�!d ;

where !d is a constant depending on dimension only.
We invoke the contradiction assumption for each of the radii rj D 2�j�1r0, with j D 0; 1; 2; : : : . For

each rj , we get the estimates corresponding to Qrj , which is either rj or c0rj , depending on the case of
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the contradiction assumption. Partitioning Br0 , we getZ
Br0

w.h/K.h/ dhD
1X
jD0

Z
B2rj nBrj

w.h/K.h/ dh

�
1

2

1X
jD0

Z
B2Qrj nBQrj

w.h/K.h/ dh

� .AC 64/�.2�˛/�!d

1X
jD0

. Qrj /
2�˛

� .AC 64/�.2�˛/�!d

1X
jD0

.c02
�j�1r0/

2�˛

D C.d/c2�˛0 .AC 64/��
2�˛

1� 2˛�2
:

We get a contradiction with (4-6) if A is large enough. Note that the last factor is bounded away from
zero, independently of ˛ as long as ˛ 2 .0; 2/. Thus the value of AD A2 is independent of ˛, and it is
chosen to obtain this contradiction. �

The following geometric statement about functions will play a role in the proof of Lemma 4.1.

Lemma 4.6. Let u W Rd ! R be a continuous bounded function such that ru.0/ exists. Let q.x/ D
miny2B1 u.y/C 64jx�yj

2. Assume the following conditions hold true:

� There is at least one point x02Rd for which q.x0/Du.0/C64jx0j2Dminy2B1fu.y/C64jx0�yj
2g.

� If we consider the (symmetric) set

G WD
˚
h 2 B2 nB1 W ıhu.0/� A and ı�hu.0/� A

	
;

then jGj � 1
2
�jB2 nB1j. (Here, as in Lemma 4.5, ıhu.y; t/D u.yCh; t/�u.y; t/�128.x�y/ �h.)

Then there are constants c0 and C4 depending on A and � and d so that if for some pair of points
x1, y1 we have

q.x1/D u.y1/C 64jx1�y1j
2;

then jy1j< c0 implies jx1� x0j< C4.

Proof. Assume jy1j< c0. Let p0 and p1 be the quadratic polynomials

p0.z/D q.x0/� 64jx0� zj
2;

p1.z/D q.x1/� 64jx1� zj
2:

From the definition of q, we have that p0.z/ � u.z/ and p1.z/ � u.z/ for all z 2 Rd . Moreover,
p0.y0/D u.y0/ and p1.y1/D u.y1/.

Observe that p1�p0 is the affine function

p1.z/�p0.z/D q.x1/� q.x0/C 64.jx0j
2
� jx1j

2/C 128.x1� x0/ � z:
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Since p1.y1/D u.y1/� p0.y1/, we have

p1.y1C z/�p0.y1C z/� 128.x1� x0/ � z:

Using that u.y1C z/� p1.y1C z/� p0.y1C z/C 128.x1� x0/ � z, we get that

ı.y1Cz/u.0/� ı.y1Cz/p0.0/C 128.x1� x0/ � z

� �64C 128.x1� x0/ � z for z 2 B1:

Let us consider the following set, which is the intersection of a cone (whose vertex is at y1, recall that
jy1j< c0) and the ring B2 nB1:

H D
˚
h 2 B2 nB1 W hD y1C z with z � .x1� x0/ > c0jzjjx1� x0j

	
:

Observe that as c0! 0, the set H approximates the intersection of the ring B2 nB1 with the half-space
fz W z � .x1� x0/ > 0g. More preciselyˇ̌

B2 nB1 nH n�H
ˇ̌
� Cc0

for some constant C depending on dimension only.
Let us choose c0 so that Cc0< 1

2
�jB2nB1j. Then H \G must have a positive measure (also G\�H ,

recall that G is symmetric), and so there exists some h 2H \G. Then

A� ıhu.0/� �64C 128.x1� x0/ � z

> �64C 128c0jx1� x0jjzj

� �64C 64c0jx1� x0j:

Therefore jx1� x0j<
�
1
64
AC 1

�
=c0 DW C4. �

In the proof of Lemma 4.1, we will use the map m W y 7! x, which assigns the point x where the
minimum is achieved in the definition of q. This maps plays the same role as the gradient map of the
convex envelope of u in Br does in an ABP-based proof of the growth lemma. This would be the purpose
of [Caffarelli and Silvestre 2009, Lemma 8.4] or [Bjorland et al. 2012, Lemma 3.6]. In those cases, we
would need to adjust u by a supporting hyperplane and argue using a convex envelope. In our approach,
we work without invoking a convex envelope.

Note that after Corollary 4.3 and Lemma 4.4, where we obtain that jqt j is bounded in a set of positive
measure, the rest of the proof of Lemma 4.1 should be interpreted as a nonlocal version of the method in
[Savin 2007]. It is more flexible, and arguably more natural, than an ABP-based proof.

We are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1. We assume u.0; 0/D 1. The result follows for the assumption minQ1=2 uD 1 by a
simple translation argument.

LetG be the set of points .x; t/2B1=8�.��; 0� so that qt �A1. From Lemma 4.4, we have a universal
lower bound on its measure: jGj> ı1. For each point .x; t/ 2G, there is at least one point y 2 B1 that
realizes the minimum value for q.x; t/ in (4-2). For each fixed value of t , we define the map m W y 7! x.
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This is a well-defined function if u 2 C 1. In general, the function nature of m is not necessary, and we
should think of m as a set mapping that sends values of y into a set of possible values of x (like the
subdifferential of a convex function).

We note that if y 2m�1.G/, we have qt .x; t/� A1 for some x 2G, and we can apply Lemma 4.5,
which was presented above. This gives a ball around y and a collection of points where u does not grow
too much. For example, we can control the set

Ey WD fz 2 Bc0r.y/ W u.z; t/ < A2C 43g: (4-10)

This is possible by starting with the ring from Lemma 4.5 and then noting that r � 1, u.y/ < 3 (since
q.x/ � 3, see first line of the proof of Lemma 4.5), ı˙hu.y/ � A2r2, jhj � 1

2
, jx � yj � 5

8
, and

128jx�yjjhj � 40. Thus from Lemma 4.5, we see that

jEy j D
ˇ̌˚
z 2 Bc0r.y/ W u.z; t/ < A2C 43

	ˇ̌
> ıjBc0r j: (4-11)

Here ı is a constant that depends on dimension and the � from Lemma 4.5. We note that we use the
r2-growth of ıhu from Lemma 4.5 in a very rough fashion at this step. The importance of the r2 comes
later, in relationship to an upper bound on jm.Br/j. We also note that we have used the ball Bc0r instead
of Br . At this stage, both balls have the same estimate regarding the growth of u on a universal proportion
of the set. However, only Bc0r also has the necessary estimate for the size of m.Bc0r/. This choice will
be further illuminated below.

We need to estimate a set where u is not too large, and given the choice of Ey above, we see that a
good candidate is

NL WD
[

y2m�1.G/

Ey :

Thanks to (4-10) and (4-11), the measure of NL can be equivalently estimated via the size of

NLB WD
[

y2m�1.G/

Bc0r.y/.y/;

where Bc0r.y/.y/ is the good ball given in Lemma 4.5. Therefore, the only question is whether or not the
set, NLB , has a measure that is comparable to B1.

If fBj g is a Vitali subcovering of the collection fBr.y/.y/gy2m�1.G/, then we have[
j

5Bj �m
�1.G/;

and hence

m

�[
j

5Bj

�
�m.m�1.G//:

Also by subadditivity, we have that ˇ̌̌̌
m

�[
j

Bj

�ˇ̌̌̌
�

X
j

jm.Bj /j:
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In order to conclude, it would suffice to know that

jm.Bj /j � C3jBj j; (4-12)

which allows us to compare jNLBj back to jGj.
The inequality (4-12) follows from the following lemma.

Lemma 4.7. Under the same conditions as in Lemma 4.5, jm.Bc0r.y//j � C3r
d . Here r is the same

value as in Lemma 4.5, c0 is fixed from Lemma 4.6 and depends only on other universal constants, and C3
depends on c0, C4 (of Lemma 4.6) and the constant A1 of Lemma 4.5.

In order to prove Lemma 4.7, we only use the equation through Lemma 4.5. Indeed, after fixing a
time t and rescaling, it reduces to Lemma 4.6.

We simply sketch the main idea to show how Lemma 4.7 follows from Lemma 4.6.

Sketch of the proof of Lemma 4.7. Assume that u and q are as given in the statements of Lemmas 4.5
and 4.7. After a translation, we can assume that y D 0. We would then define the rescaled functions

Ou.z/D r�2u.rz/ and Oq.z/D r�2q.rz/ for z 2 B2:

We note the definition of Oq will be through a minimum over B1=r , but, in fact, restricting the minimum
to B1 changes nothing since y D 0 is such a point that gives the minimum for OxD x=r . Then Lemma 4.6
is applicable with the functions Ou and Oq, with the point x0 D Ox D x=r , and the set OG D r�1G, with G
being the set arising from the outcome of Lemma 4.5. �

Lemma 4.7 gives (4-12) via the result of Lemma 4.5 and the choice of c0r.y/.
We will use the fact that m maps onto G as well as the fact that by construction of the subcover fBj g,

m�1.G/ is contained in its union. Thus we see that

G Dm.m�1.G//�m

�[
j

Bj

�
D

[
j

m.Bj /;

and hence by the choice of c0r.y/ and the definition of Ey , with Lemmas 4.5 and 4.7, it holds that

jGj �

ˇ̌̌̌[
j

m.Bj /

ˇ̌̌̌
�

X
j

jm.Bj /j �
X
j

C3jBj j �
X
j

C3

ı
jEyj j:

Since the Bj were chosen to be disjoint, so are the corresponding Eyj , and thus we can conclude

jNLj �

ˇ̌̌̌[
j

Eyj

ˇ̌̌̌
D

X
j

jEyj j �
ı

C3
jGj �

ıı1

C3
:

This finishes the proof of Lemma 4.1. �

5. A special barrier function

This section is concerned with the construction of a barrier function that is essential for all of the results
regarding regularity of parabolic (and elliptic) equations in nondivergence form. In principle, one would
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expect our construction to be similar to the one presented in [Chang Lara and Dávila 2014, Lemma 4.2],
but this is not actually the case. We deviate in some significant respects due to the additional generality
allowed by assumptions (A2) and (A3). In this regard, our construction is more accurately described as a
parabolic version of the barrier from [Kassmann et al. 2014, Section 5], where similar lower bounds on
only small sets were allowed. Significant detail is required to carry over the ideas from [loc. cit.] to the
parabolic setting. These additional difficulties involved in the construction of the barrier are, in fact, also
related to the conditions under which the Harnack inequality fails for equations such as (1-1).

Because of the relative strength of the terms jrpj and M�p under rescaling, it is necessary to break
the construction of the special barrier function into two cases: one with ˛ � 1 and the other with ˛ < 1.
For the second case, we must remove the gradient term from the equation.

5A. The main lemmas and the barrier.

Lemma 5.1. Let ˛ 2 Œ1; 2/ and suppose r 2 .0; 1/ is given. There exists "0 > 0, q0 > 0 and a function
p W Rd � .0;1/! R such that for all ˛ � 1,

pt CC0jrpj �M
�p � 0 in

�
B1 � .0;1/

�
n
�
Br � .0; r

˛�
�
; (5-1)

p � 1 in Br � .0; r˛�; (5-2)

p � 0 in
�
Rd nB1

�
� .0;1/ and

�
Rd nBr

�
� f0g; (5-3)

p � "0r
q0e�C5.T�r

˛/ in B3=4 � Œr
˛; T �: (5-4)

The constants "0 and q0 depend only on �, ƒ, �, C0, ˛0 and dimension.

Lemma 5.2. Let ˛ 2 Œ˛0; 2/ and suppose r 2 .0; 1/ is given. Then the same statement of Lemma 5.1
remains true except (5-1) is replaced by

pt �M
�p � 0 in

�
B1 � .0;1/

�
n
�
Br � .0; r

˛�
�
: (5-5)

Remark 5.3. Note that the same constants "0 and q0 can be chosen to work for both Lemmas 5.1 and 5.2.

Remark 5.4. The existence of the barrier is closely related to uniform estimates on hitting times of a
Markov process, which are crucial to the proofs of the weak Harnack inequality and Hölder regularity
in the probabilistic framework. These hitting-time estimates appear in the original work of Krylov and
Safonov [1980; 1979], and they have become a standard technique in the probability literature (see the
presentation in, e.g., the lecture notes [Bass 2004]). In other contexts, there exists an explicit barrier and
this lemma looks deceivingly simple. For nonlocal equations whose kernels are allowed to vanish, this
step is, in fact, highly nontrivial. Lemmas 5.1 and 5.2 have a probabilistic interpretation as the lower
bound for the probability of the process to hit a ball between time 0 and r˛.

The strategy for this construction is to start with a yet-to-be-determined function, ˆ, supported in B1,
and rescale ˆ on the time interval t 2 .0; r˛/ as

p.x; t/D t�q0ˆ

�
rx

t1=˛

�
; (5-6)
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and then to use

p.x; t/D e�C5.t�r
˛/p.x; r˛/D e�C5.t�r

˛/r�˛q0ˆ.x/ (5-7)

for t 2 .r˛;1/. The choice of rx=t1=˛ is to make sure that p will be positive for all jxj< 1 when t � r˛ .
The constants q0 and C5 are there to force the subsolution property in the regions where M�p cannot be
made to be as large as we like. We now make some initial computations to illuminate our subsequent
choices (note the use of Lemma 2.2):

pt D�q0t
�q0�1ˆ

�
rx

t1=˛

�
�
1
˛
t�q0�1=˛�1rˆ

�
rx

t1=˛

�
� rx; (5-8)

rp D rt�q0�1=˛rˆ

�
rx

t1=˛

�
; (5-9)

M�p D t�q0�1r˛M�ˆ

�
rx

t1=˛

�
: (5-10)

We want to satisfy (5-1), which then can be transformed to the new goal (at least for t 2 .0; r˛/):

t�q0�1
�
�q0ˆ

�
rx

t1=˛

�
�
1
˛
t�1=˛rˆ

�
rx

t1=˛

�
�rxCrt1�1=˛C0

ˇ̌̌̌
rˆ

�
rx

t1=˛

�ˇ̌̌̌
�r˛M�ˆ

�
rx

t1=˛

��
� 0:

(5-11)
Switching out variables

z D
rx

t1=˛
;

for an appropriate set of z, we want

t�q0�1
�
�q0ˆ.z/�

1
˛
rˆ.z/ � zC rt1�1=˛C0jrˆ.z/j � r

˛M�ˆ.z/
�
� 0: (5-12)

We can now turn to the requirement for p to satisfy (5-1) when t � r˛ . The computations are similar
to the case of t 2 Œ0; r˛�. Using (5-6),

pt D�C5e
�C5.t�r

˛/r�˛q0ˆ.x/;

rp D r�˛q0e�C5.t�r
˛/
rˆ.x/;

M�p D r�˛q0e�C5.t�r
˛/M�ˆ.x/:

Then the goal (5-12) becomes

e�C5.t�r
˛/r�˛q0

�
�C5ˆ.x/CC0jrˆ.x/j �M

�ˆ.x/
�
� 0: (5-13)

The function ˆ and subsequently p will be built in a many-staged process. One of the key components
is a special bump function, which acts as a barrier in the stationary setting. This construction proceeds
similarly to that of [Kassmann et al. 2014], and we would like to point out that there, just as here, there are
significant challenges for this construction due to the generality of the lower bound assumption in (2-2)
(cf. the bump function in [Caffarelli and Silvestre 2009], where the lower bound on K holds globally).
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b
;q

jyj�q


�q


 1� c1 1� c1
2

Figure 1. The function b
;q .

We start with a two-parameter family of auxiliary functions

b
;q.y/D Ob.jyj/

and

Ob.r/D

8̂<̂
:
r�q if r � 1� c1

2
;

m
;q.r/ if 1� c1 � r � 1� c1
2
;


�q if r � 1� c1;

(5-14)

with m
;q smooth and monotonically decreasing (so there will be a restriction between 
 and c1 both
being small enough), and without loss of generality m
;q will be such that

b
;q.y/�minf
�q; jyj�qg for all y 2 Rd :

See Figure 1 for the graph of b
;q .
The key part of the construction is that there are choices of 
 and q that make b a subsolution in a

given small strip (and a subsequent truncation allows the equation to hold in a large set). We state this
result for the choices of 
 and q, and then we will prove it in Section 5B.

Lemma 5.5. Let C >0 be given. Then there exist a small constant c1 and choices of 
1 and q1 (depending
on C plus all other universal objects) such that

M�b
1;q1.x/� Cq1jxj
�q1�˛ for all 1�

c1

2
� jxj � 1; (5-15)

for all ˛ 2 .˛0; 2/. The constant c1 depends on the lower bound of K in (2-2).

Remark 5.6. Lemma 5.5 provides a subsolution to a stationary problem. It is a generalized version of
[Caffarelli and Silvestre 2009, Corollary 9.2; Bjorland et al. 2012, Lemma 3.10; Kassmann et al. 2014,
Lemmas 5.2 and 5.3] to the more general class of kernels in this article.

Now that we know the details of an equation for b D b
;q , we will continue the calculations, which
will be useful to construct p. For the following, we assume that 1� c1

2
� jzj � 1. We also note that
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1, q1, and C will be determined subsequently:

b.z/D b
1;q1.z/D jzj
�q1 if 1� c1

2
< jzj; (5-16)

rb.z/D�q1zjzj
�q1�2; (5-17)

�
1
˛
rb.z/ � z D 1

˛
q1jzj

�q1 ; (5-18)

C0jrb.z/j D C0q1jzj
�q1�1; (5-19)

�M�b.z/� �Cq1jzj
�q1�˛: (5-20)

Now that we have sorted out the details regarding b
1;q1 , we can proceed with the proof of Lemma 5.1.
Some complications arise from the need to satisfy the boundary conditions in (5-3).

We will give the proof of Lemma 5.1 and then afterwards indicate the few steps that are modified to
prove Lemma 5.2.

Proof of Lemma 5.1. We proceed with defining p in terms of ˆ as described in (5-6) and (5-7). Note that
this construction gives a function p that is unbounded around the origin .0; 0/. To fix that, at the end of
the proof, we have an extra truncation step.

In order to satisfy the boundary conditions (5-3), ˆ will be the following truncated version of b
;q:

ˆ.z/Dmaxfb
;q.z/� b
;q.e1/; 0g:

This function ˆ is zero outside of B1 and strictly positive inside B1. The properties of the function b
will be used to make the value of M�ˆ large in B1 nB1�c2=2.

Recall the variable z,
z D

rx

t1=˛
: (5-21)

We need to verify (5-12) and (5-13) in order to account for the regions t 2 Œ0; r˛� and t 2 .r˛;1/. We
will need to select parameters and constants to work for both ranges of t . But we note that all of the
parameters are such that they can be chosen to satisfy both conditions simultaneously.

Part 1: t 2 Œ0; r˛�.
Note the following relations for z 2 B1:

rˆ.z/Drb.z/;

M�ˆ.z/�M�b.z/:

We need to find parameters so that (5-12) holds. The computation will be different in the three regions
jzj � 1� c1

2
, 1� c1

2
< jzj< 1, and jzj � 1.

Replacing (5-17), (5-18), (5-19) and (5-20) in the left-hand side of (5-12), we get

�q0ˆ.z/�
1
˛
rˆ.z/ � zC rt1�1=˛C0jrˆ.z/j � r

˛M�ˆ.z/

� �q0ˆ.z/�
1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/: (5-22)

For the last inequality, we used that t1�1=˛ � 1. This is because t � r˛ � 1 and ˛ � 1. When ˛ < 1, the
negative power of t cannot be controlled and that is why we assume C0 D 0 in those cases.
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When 1� c1
2
< jzj< 1, we can ignore �q0b.z/, and instead focus on

�
1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/� 0: (5-23)

In light of (5-18), (5-19), (5-20), it will suffice to choose b so that

1
˛
q1jzj

�q1 C rC0q1jzj
�q1�1�Cq1r

˛
jzj�q1�˛ � 0;

or more succinctly

q1jzj
�q1

�
1
˛
C rC0jzj

�1
�Cr˛jzj�˛

�
� 0: (5-24)

After C is chosen to obtain (5-24) (recall jzj � 1), then b D b
1;q1 can be fixed by Lemma 5.5. The
resulting b will be smooth and bounded.

Switching now to the set jzj � 1� c1
2

, inequality (5-22) then follows from�
�q0ˆ.z/�

1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/
�
� 0: (5-25)

The function ˆ is strictly positive in B1 and, in particular, it is bounded below by a positive constant in
B1�c1=2. Since C , 
1, q1 have all been fixed and all of the terms are bounded, we can then choose q0
large enough so that (5-25) will also hold.

We are only left with the case jzj � 1. Note that because of the angle singularity of the function ˆ on
jzjD1, we cannot touch the functionˆ from above with any smooth function at those points. Therefore, the
points jzjD1 play no role inˆ satisfying (5-12) in the viscosity sense. If jzj>1, thenˆ.z/Djrˆ.z/jD0
and M�ˆ.z/� 0 because z will be at a global minimum of ˆ, and so (5-12) trivially holds.

Part 2: t 2 .r˛;1/.
We now need to make sure (5-13) holds. The procedure is similar to the first part.
In the region 1� c1

2
< jxj< 1, using (5-19) and (5-20), we get

�C5ˆ.x/CC0jrˆ.x/j �M
�ˆ.x/D�C5ˆ.x/CC0q1jzj

�q1�1�Cq1jzj
�q1�˛:

We ignore the term �C5ˆ.x/� 0 and use

�C5ˆ.x/CC0jrˆ.x/j �M
�ˆ.x/� q1jxj

�q1.C0jxj
�1
�C jxj�˛/� 0:

The last inequality holds provided that we choose C large enough (which can be done by choosing
appropriate values of 
 and q from Lemma 5.5).

In the region jxj<1� c1
2

, we use that b (note that 
 and q are fixed in the previous step) is a given smooth
function and ˆ.x/�

ˇ̌
1� c1

2

ˇ̌�q
�1 > 0. Therefore, picking a large enough C5, we can make (5-13) hold.

If jxj� 1, then the equation holds just as in the first part of this proof, owing to the fact that z will be at a
global minimum of ˆ. Note that the constant C , which we use for picking 
1 and q1 in Lemma 5.5, needs
to be large enough to satisfy the requirements of both Part 1 (t 2 Œ0; r˛�) and Part 2 (t > r˛) of this proof.

Part 3: The truncation step.
Now there is one last step of truncation. At this stage, the function t�q0ˆ.rx=t1=˛/ has a singularity

at x D 0 and t ! 0, which of course violates requirement (5-2).
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We define the function

Qp.x; t/ WD t�q0ˆ

�
rx

t1=˛

�
;

and p will be defined as a truncation of Qp to be compatible with (5-2). Importantly, in this truncation
we need to not destroy the equation satisfied by our choice of Qp outside of Br � Œ0; r˛�. That means that
we should only truncate at a small enough t so that the support of Qp. � ; t / is contained in Br . This way,
for such x outside of Br , the desired equation is trivially satisfied because the equation will be evaluated
where Qpt D 0 and Qp.x; t/D 0, which is the global minimum for Qp, giving r QpD 0 and M� Qp � 0. Given
the scaling zD rx=t1=˛ and that the support of ˆ is in B1, we see that a convenient choice for truncation
will be when the graph of t D .r jxj/˛ intersects the line jxj D r ; hence at t D r2˛.

Accordingly, we define (note for each t , we know that Qp has its max at x D 0)

p.x; t/D
minf Qp.x; t/; Qp.0; r2˛/g

Qp.0; r2˛/

D .r�2˛q0ˆ.0//�1 minf Qp.x; t/; r�2˛q0ˆ.0/g:

This now gives a complete description of p for t in both .0; r˛/ and Œr˛;1/ via (5-6) and (5-7) respectively.
The inequality (5-4) follows by a direct inspection using the expression (5-7) for Qp. We get that for

t > r˛ and jxj � 3
4

,

p.x; t/D
�
r�2˛q0ˆ.0/

��1
e�C5.t�r

˛/r�˛q0ˆ.x/� r˛q0e�C5.t�r
˛/ min
B3=4

ˆ:

We note that the truncation expression has shown that the choice of q for the lower bound requirement
in (5-4) will be q D ˛q0. The choice of radius 3

4
in (5-4) is irrelevant, since a similar lower bound would

hold if 3
4

is replaced by any other number smaller than 1.
This completes the proof of Lemma 5.1. �

We now mention where the proof of Lemma 5.2 deviates from the previous one.

Proof of Lemma 5.2. One needs to go back and remove the term C0jrpj from all of the calculations.
Note this was the only term affected by the factor t1�˛=2, which would be unbounded if ˛ < 1. �

5B. The proof of Lemma 5.5. Lemma 5.5 will be attained in two stages, Lemmas 5.10 and 5.11. First
we develop some auxiliary results related to b. We begin by making a useful observation about the
behavior of ıhb.

Lemma 5.7. Assume ˛ 2 Œ1; 2/. If b D b
;q is as in (5-14), then for some universal r0 and C.q/, where
jhj � r0 and 1� c1

2
< jxj< 1, we have

ıhb.x/� �q
jhj2

jxjqC2
C q.qC 2/

.h1/
2

jxjqC2
�C.q/jhj3

(this is only relevant, and only invoked, for ˛ > 1; otherwise we would use a different expansion for ˛ < 1).

Proof. This follows from Taylor’s theorem. Note that h is restricted to be in a small set, Br0 , and so
actually b.x/D jxj�q and b.xC h/� jxC hj�q . �
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The next lemma says that our assumptions allow that for all r � r1, the set Ar intersects annuli centered
at �e1 in a uniformly nontrivial fashion. This feature is essential to be able to utilize the lower bounds
on K in (2-2).

Lemma 5.8. There exist constants c1, c2 and r1 (all small), so that

(i) for any x so that 1� c1 < jxj< 1,ˇ̌
Ar1 \B1�c1.�x/

ˇ̌
�
1
4
�
ˇ̌
B2r1 nBr1

ˇ̌
;

(ii) for all r , ˇ̌
Ar \fh W .h1/

2
� c2jhj

2
g
ˇ̌
�
1
2
�
ˇ̌
B2r nBr

ˇ̌
:

Proof. We first note that by the symmetry of Ar ,ˇ̌
Ar \ .B2r nBr/\fh W h � x � 0g

ˇ̌
�
1
2
�
ˇ̌
B2r nBr

ˇ̌
: (5-26)

Now we will establish (i). We first choose r1 small enough so thatˇ̌�
.B2r1 nBr1/\fh W h � x � 0g

�
nBjxj.�x/

ˇ̌
�
1
8
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
:

Note that this choice of r1 can be done uniformly for all 1� c1 < jxj< 1.
Let us define the failed set where Ar cannot reach B1�c1.�x/ as

F WD
�
.B2r1 nBr1/\fh W h � x � 0g

�
nB1�c1.�x/:

With r1 fixed, we can choose c1 small enough so that

jF j � 1
4
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
: (5-27)

This is possible because

jF j �
ˇ̌�
.B2r1 nBr1/\fh W h � x � 0g

�
nBjxj.�x/

ˇ̌
C
ˇ̌
Bjxj nB1�c1

ˇ̌
�
1
8
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
CC.1� .1� c1/

d /:

Finally, combining (5-26) with (5-27) we obtain (i).
To establish (ii), we note thatˇ̌

Ar \fh W .h1/
2
� c2jhj

2
g
ˇ̌
� jAr j �

ˇ̌
fh 2 B2r nBr W h

2
1 < c2jhj

2
g
ˇ̌

� .��Cc2/jB2r nBr j

for a universal constant C . Thus, we simply take c2 small enough so that .��Cc2/� 1
2
�. �

Note 5.9. If 
1 < 
2 and q is fixed, then for all y,

b
1;q.y/� b
2;q.y/;

and the two functions are equal when jyj � 1� c1
2

; hence

M�b
1;q.x/�M
�b
2;q.x/

for all jxj � 1� c1
2

.
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Next we make the first choice of parameter for b. It is the selection of the exponent, q, and it only
uses the information about the family K for ˛ very close to 2.

Lemma 5.10. Let 
 � 
0 D 1
4

be fixed. Let C > 0 be given. Then, there exist a q1 � 1 and an ˛1,
depending only on C , 
0, C0, �, d , �, ƒ, such that

M�b
;q1.x/� Cq1jxj
�q1�˛ for all 1� c1

2
< jxj< 1;

for all orders, ˛ 2 .˛1; 2/ and for all 
 � 
0.

Then once the q has been chosen, we can finish the definition of b by fixing the truncation height, 
�q ,
to be large enough (so 
 small enough). This allows us to fix one function that satisfies the special
subsolution property for all ˛ 2 Œ˛0; 2/.

Lemma 5.11. Let C > 0 and q1 be as in Lemma 5.10. Then there exists a 
1 � 
0 D 1
4

such that

M�b
1;q1.x/� Cq1jxj
�q1�˛ for all 1� c1

2
< jxj< 1;

for all orders, ˛ 2 .˛0; ˛1�.

First we give the proof of Lemma 5.10.

Proof of Lemma 5.10 . Let x be any point such that 1� c1
2
< jxj< 1. We begin with a few simplifying

observations. First of all, there is no loss of generality in assuming ˛ > 1 for this lemma — indeed the
end of the proof culminates with a choice of ˛1 that is sufficiently close to 2 (hence ıhb.x/ uses only one
case for ˛ > 1). Second, to simplify notation, we drop the 
; q dependence and denote b
;q by b.

To obtain the bound we want, we only need the contribution of ıhb.x/ to M�b.x/ in a small ball,
h 2 Br2 , for some r2 fixed with, say, r2 Dmin

˚
r0;

c1
2

	
, where r0 originates in Lemma 5.7 and c1 comes

from Lemma 5.8. This is because the large curvature of the graph of b in the h1-direction can be used to
dominate the integral at the expense of all the other terms.

We also note that for h 2 Rd nBr2 , we have

ıhb.x/� inf
h2RdnBr2

�
b.xC h/� b.x/� qjxj�q�2x � h

�
� �Cq

�
1C

x

jxj
� h
�
:

Here Cq Dmax
�
q
�
1� c1

2

��q�1
;
�
1� c1

2

��q�.
Therefore, by Lemma 2.3, we see thatZ

RdnBr2

ıhb.x/K.h/ dh� �.2�˛/Cqƒ
�
r�˛2
˛
C r1�˛2

�
: (5-28)

Furthermore, combining Lemmas 5.8 and 5.7, we see that on each ring, B2�kr nB2�k�1r , we can enhance
the positive contribution to M�f .x/ by manipulating the term

q.qC 2/

jxjqC2

Z
B
2�kr

nB
2�k�1r

.h1/
2K.h/ dh:
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By Lemma 5.8 and assumption (A3), we see thatZ
B
2�kr

nB
2�k�1r

.h1/
2K.h/ dh�

Z
A
2�k�1r

.h1/
2K.h/ dh

�

Z
A
2�k�1r

\fhW.h1/2�c2jhj2g

c2jhj
2K.h/ dh

� c2.2
�k�1r/2�.2�˛/.2�k�1r/�d�˛

ˇ̌
A2�k�1r\

˚
h W .h1/

2
� c2jhj

2
	ˇ̌

� c2.2
�k�1r/2�.2�˛/.2�k�1r/�d�˛ 1

2
�
ˇ̌
B2�krnB2�k�1r

ˇ̌
D c2�.2�˛/�2c.d/r

2�˛2�k.˛�2/;

where c.d/ is a purely dimensional constant that we use temporarily during this proof. Hence adding up
the contribution along all of the rings, we seeZ

Br2

.h1/
2K.h/ dhD

1X
kD0

Z
B
2�kr2

nB
2�k�1r2

.h1/
2K.h/ dh�

�
��c2c.d/

�
r2�˛2 ; (5-29)

where we have collected various dimensional constants into c.d/ in such a way that is uniform for
˛ 2 .0; 2/. Note that

1X
kD0

.2�˛/2k.˛�2/ D
2�˛

1� 2˛�2
� 2

for all ˛ 2 .1; 2/.
We also estimate the following integral using assumption (A2):Z

Br2

jhj3K.h/ dhD
X
k

Z
B
2�kr2

nB
2�k�1r1

jhj3K.h/ dh�
.2�˛/2˛

1� 2˛�3
r3�˛2 ƒ: (5-30)

Now we need to put all of the pieces together. We will use Lemma 5.7 to balance the terms of different
orders in both jhj and q. We will be invoking Lemma 2.3 as well as the bounds from (5-28)–(5-30):Z

Rd
ıhb.x/K.h/dh

D

Z
Br2

ıhb.x/K.h/dhC
Z

RdnBr2

ıhb.x/K.h/dh

�
q.qC2/

jxjqC2

Z
Br2

.h1/
2K.h/dh�

q

jxjqC2

Z
Br2

jhj2K.h/dh�C.q/
Z
Br2

jhj3K.h/dhC
Z

RdnBr2

ıhf .x/K.h/dh

�
q

jxjqC2

�
.qC2/.��c2c.d//�Cdƒ

�
r2�˛2 �.2�˛/

�
Cqƒ

�
r�˛2
˛
Cr1�˛2

�
�C.q/

2˛

1�2˛�3
r3�˛2 ƒ

�
:

(5-31)
At this point, we note that the first term is the one that does not have the factor .2�˛/ in front. We will
first choose q large to control the sign of this term. Hence we can choose qD q1 large enough, depending
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only on the given constant C and the universal parameters, so that (recall C , with no subscript, was the
parameter given in the statement of this lemma and jxj< 1)

q

jxjqC2

�
.qC 2/.��c2c.d//�Cdƒ

�
r2�˛2 � 3Cqjxj�q�˛r2�˛2 :

Once q1 has been fixed, we can now choose ˛1 close enough to 2 so that the rest of the expression in
(5-31) is small:

.2�˛/

�
Cqƒ

�
r�˛2
˛
C r1�˛2

�
�C.q/

2˛

1� 2˛�3
r3�˛2 ƒ

�
� Cq1jxj

�q1�˛r2�˛2 :

(Recall that r2 Dmin
˚
r0;

c1
2

	
.) Thus we have achievedZ

Rd
ıhb.x/K.h/ dh� 2Cq1jxj�q1�˛r2�˛2 :

The chosen value of ˛ is sufficiently close to 2. We may choose ˛ even closer to 2 so that r2�˛2 > 1
2

andZ
Rd
ıhb.x/K.h/ dh� Cq1jxj�q1�˛:

Taking an infimum over K yields the result. �

Remark 5.12. The underlying reason why the previous proof works is because if we fix the values of
ƒ, � and �, the following limit holds:

lim
˛!2

M�b.x/DM�
Q�; Qƒ
.D2b.x//;

where M� is the classical minimal Pucci operator of order 2 and Q�, Qƒ are ellipticity constants that depend
on �, ƒ, � and dimension. The proof of this fact goes along the same lines as the proof of Lemma 5.10.

Remark 5.13. We note that the statement and proof of Lemma 5.10 here, combined with step 1 of the
proof of Lemma 5.1, corrects an error in the construction of the similar barrier used in [Kassmann et al.
2014, Section 5], where the truncation step should have been done first, not at the end of the construction.

Now we can conclude this section with the proof of Lemma 5.11.

Proof of Lemma 5.11. Let x be any point such that 1� c1
2
< jxj< 1. First of all, we note that q1 has been

fixed already, so we will drop it from the notation. Since we will be manipulating the choice of 
 to
obtain the desired bound on M�b
;q1.x/, it will be convenient to have bounds that transparently do not
depend on 
 . Therefore, as above, we keep 
0 D 1

4
fixed and we will use an auxiliary function to make

some of the estimates. Let ' be any function in C 2.Rd / such that

0� ' � b
0;q1 in Rd ;

and
'.x/D jxj�q1 8 jxj � 1� c1

2
:

We note that these definitions imply k'kC2 can be chosen to be independent of 
 (depending on universal
parameters plus 
0, q1).
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We now estimate the contributions from the positive and negative parts of .ıhb.x//˙ separately. The
first estimate below is simply a use of the fact that by construction, ' touches b from below at x, and the
second one uses (5-28):Z

Rd
.ıhf .x//

�K.h/ dh�
Z
Br1

C.d/
�
k'kC1;1.B1=2.x//

�
jhj2K.h/ dhC

Z
RdnBr1

.ıhf .x//
�K.h/ dh

� CdC.d/k'kC1;1.B1=2.x//ƒr
2�˛
1 CCd

ƒ

˛
r�˛1 C q0Cdƒr

1�˛
1 : (5-32)

Now we move to .ıhb.x//C. Here we will use Lemma 5.8(i), the important feature being that there is
at least one good ring where .ıhb.x//C will see the influence of the value of b on the set B1�c2 . We
alert the reader to a strange term in line (5-33) below, which arises simply as a worst case scenario of the
three definitions of ıh, and, for example, if ˛ < 1, the term would not even be necessary. It does not harm
the computation, and so we leave it there for any of the possible three cases of ıh via ˛. Finally we note
the important feature that we may only integrate on the set h 2 B1�c1.�x/, which allows us to avoid the
singularity of K at hD 0. Also note if h 2 B1�c1.�x/, then jhj � 2:Z

Rd
.ıhf .x//

CK.h/dh

�

Z
Ar1\B1�c1 .�x/

.ıhf .x//
CK.h/dh

�

Z
Ar1\B1�c1 .�x/

.
�q1�jxj�q1/K.h/dh�q1jxj�q1�1
Z
B1�c1 .�x/

jhjK.h/dh (5-33)

�
�

�q1�

�
1�c1

2

��q1�.2�˛/�Z
Ar1\B1�c1 .�e1/

jhj�d�˛ dh�q1
�
1�c1

2

��q1�1Z
B1�c1 .�e1/

2K.h/dh

(5-34)

�
�

�q1�

�
1�c1

2

��q1�.2�˛/�r�d�˛1
1
4
�
ˇ̌
B2r1nBr1

ˇ̌
�q1

�
1�c1

2

��q1�1.2�˛/C.d;˛0/: (5-35)

We note the use of (2-8) in the transition between the last two lines.
Recall that the values of c1 and q1 were fixed in Lemmas 5.8 and 5.10. In order to conclude the proof,

we see that we can choose 
 D 
1 large enough so that when we add together the contributions from (5-32)
and (5-35), the final estimate becomes greater than C >q1 for all ˛ 2 .˛0; ˛1/. We note that it is crucial to
have ˛ � ˛1 < 2 in this case in order to keep ˛ uniformly away from 2, which would cause problems. �

6. An estimate in L"— the weak Harnack inequality

The purpose of this section is to combine the point-to-measure estimate with the special barrier to prove
the L" estimate, also called the weak Harnack inequality.

Theorem 6.1 (the L" estimate). Assume ˛ � ˛0 > 0. Let u be a function such that

u� 0 in Rd � Œ�1; 0�;

ut CC0jruj �M
�u� C in Q1;
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and for the case ˛ < 1, further assume C0 D 0. Then there are constants C6 and " such that�Z
B1=4�Œ�1;�2�˛�

u"dx dt
�1="
� C6. inf

Q1=4
uCC/:

The constants C6 and " depend on ˛0, �, ƒ, C0, d and �.

Note that the L" norm of u is computed in the cylinder B1=4� Œ�1;�2�˛�. This cylinder lies earlier in
time than the cylinder Q1=2, where the infimum is taken in the right-hand side of the inequality. This is
natural due to the causality effect of parabolic equations. What should be noted in this case is that, due to
the scaling of the equation, the size of these cylinders varies. Indeed, if ˛ 2 .1; 2/, then the time interval
Œ�1;�2�˛� is longer than 1

2
and certainly longer than Œ�4�˛; 0�, which is the time span ofQ1=4. However,

for small values of ˛, the length of Œ�1;�2�˛� becomes arbitrarily small and the time span of Q1=4 is
almost 1. We still have uniform choices of the constants C and " because of the assumption ˛ � ˛0 > 0.

The basic building block of this proof is Lemma 4.1, which needs to be combined with Lemmas 5.1
and 5.2 as well as a covering argument. Since the work of Krylov and Safonov [1980], it is known that
these ingredients lead to Theorem 6.1. However, there are several ways to organize the proof and there
are some subtleties that we want to point out. Thus, we describe the full proof explicitly. We start with
some preparatory lemmas.

The following lemma plays the role of Corollary 4.26 in [Imbert and Silvestre 2013b], which the
reader can compare with [Chang Lara and Dávila 2014, Corollary 5.2]. Recall the notation Qr.x; t/D
Br.x/� Œt � r

˛; t �. We now define a time shift of the cylinder Q, which we call Qm. For any positive
number m, we write Qm to denote

Qm D Br.x/� .t; t Cmr
˛/:

The cylinder Qm starts exactly where Q ends (see Figure 3). Moreover, its time span is enlarged by a
factor m. Because of the order of causality, the information we have about the solution u in Q propagates
to Qm. This is reflected in the following lemma.

Lemma 6.2 (stacked point estimate). Letm be a positive integer. There exist ı2 >0 andN >0 depending
only on �, ƒ, d , ˛0 and m such that if for some cylinder QDQ�.x0; t0/�Q1, we have

u� 0 in Rd � Œ�1; 0�; (6-1)

ut CC0jruj �M
�u� 0 in Q1; (6-2)ˇ̌

fu�N g\Q�.x0; t0/
ˇ̌
� .1� ı2/jQ�j; (6-3)

B2�.x0/� Œt0� �
˛; t0Cm�

˛��Q1; (6-4)

then u� 1 in Qm D B�.x0/� Œt0; t0Cm�˛�.

Proof. Let Qu be the scaled function

Qu.x; t/D
A0

N
u.�xC x0; �

˛t C t0/;

where A0 is the constant from Lemma 4.1.
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Q1

Q1=4

B1=4 � Œ�1;�2
�˛�

Q1

Q1=4

B1=4 � Œ�1;�2
�˛�

Figure 2. The cylinders Q1=4 and B1=4 � Œ�1;�2�˛� with large ˛ (left) and small ˛ (right).

Both u and Qu satisfy (6-2). From our assumption (6-3), we have thatˇ̌
f Qu > A0g\Q1

ˇ̌
� .1� ı2/jQ1j:

Applying the contrapositive of Lemma 4.1, we obtain that Qu� 1 in Q1=4. Thus,

u�
N

A0
in Q�=4.x0; t0/:

Recall that u is a supersolution in Q1 and u� 0 everywhere. We apply Lemmas 5.1 or 5.2 with r D 1
2

to obtain the subsolution, p, and we can compare the functions Qu and p. Writing this in terms of u gives

u.x; t/�
N

M
p

�
.x� x0/

�
;
.t � t0C .�=4/

˛/

�˛

�
:

The conclusion follows from taking N large enough, combined with the lower bound for p given in
Lemma 5.1. �

The point of the previous lemma is that it can be combined with the crawling ink spots theorem. This
is a covering argument that can be used as an alternative to the Calderón–Zygmund decomposition, and it
is close to the original argument by Krylov and Safonov in [1980]. It has the cosmetic advantage that it
does not use cubes but only balls. Moreover, the Calderón–Zygmund decomposition uses that we can tile
the space with cubes, which is only true for ˛ D 1. In [Chang Lara and Dávila 2014], this difficulty is
overcome by a special tiling with variable scaling, which is explained by the beginning of Section 4.2. It
is a cumbersome construction to define rigorously. The use of the crawling ink spots theorem completely
avoids this difficulty.

QDQ�.x0; t0/

Qm D B�.x0/� Œt0; t0Cm�
˛�

Q1

Figure 3. The cylinders involved in Lemma 6.2.
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Theorem 6.3 (crawling ink spots). Let E � F � B1=2 �R. We make the following two assumptions:

� For every point .x; t/2F , there exists a cylinderQ�B1�R so that .x; t/2Q and jE\Qj� .1��/jQj.

� For every cylinder Q � B1 �R such that jE \Qj> .1��/jQj, we have Qm � F .

Then
jEj �

mC1

m
.1� c�/jF j:

Here c is an absolute constant depending on dimension only.

The proof of Theorem 6.3 will be presented in the Appendix. The crawling ink spots theorem is used
with a value of m sufficiently large so that mC1

m
.1� cı/ < 1. In order to prove the L" estimate, we would

want to apply Theorem 6.3 with

E D fu�N kC1
g\B1=2\ .�1;�2

�˛/ and F D fu�N k
g\B1=2\ .�1;�2

�˛/:

The problem is that the assumption of Theorem 6.3 is not implied by Lemma 6.2 because there is no way
to ensure that t Cmr˛ � �2�˛ . This is a difficulty that is nonexistent in the elliptic setting. Because of
the time shift in all the point estimates, the conclusion of the crawling ink spots theorem may be spilling
outside of the time interval Œ�1;�2�˛�. There is no trivial workaround for this.

The purpose of the following lemma is to show that the cylinders Q�.x0; �0/ that satisfy the condition
of the crawling ink spots theorem are necessarily small, and consequently the amount of measure that
leaks outside the cylinder B1=4 � Œ�1;�2�˛� will decay exponentially.

Lemma 6.4. Assume that
inf
Q1=4

u� 1;

u� 0 in Rd � Œ�1; 0�;

ut CC0jruj �M
�u� 0 in Q1;

and that there is a cylinder Q�.x0; t0/ such that

Q�.x0; t0/� B1=4 � Œ�1;�2
�˛�;ˇ̌

fu�N g\Q�.x0; t0/
ˇ̌
� .1� ı2/jQ�j:

Then � < C N�
 for some universal 
 > 0 and C > 0.

Proof. Applying Lemma 4.1 rescaled to Q�.x0; t0/, we obtain that u�N=M in Q�=4.x0; t0/. Just as in
the proof of Lemma 6.2, we get

u.x; t/�
N

M
p
�
4
3
.x� x0/;

�
4
3

�˛�
t � t0C

�
1
4
�
�˛��

;

where p is the function from Lemmas 5.1 or 5.2 with r D 1
3
�. The reason for the factor 4

3
is that since

x0 2 B1=4, we know that B3=4.x0/� B1.
We have that x0 2B1=4, t0 2 Œ�1;�2�˛� and ��min

�
1
4
; .1�2�˛/1=˛

�
. Since infQ1=4 u� 1, we have

M

N
� inf

˚
p.x; t/ W x 2 B2=3 ^ t 2

�
.3�˛.2˛ � 1/C

�
1
3
�
�˛
;
�
4
3

�˛
C
�
1
3
�
�˛�	
� c�q;
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which holds by (5-4) in Lemmas 5.1 and 5.2. Therefore � < CN�
 , where 
 D 1
q

and q is the exponent
from Lemma 5.1 or 5.2. �

Proof of Theorem 6.1. We start by noting that we can assume C D 0. Otherwise we consider Qu.x; t/D
u.x; t/�Ct instead. For every positive integer k, let

Ak WD fu > N
k
g\ .B1=4 � .�1;�2

�˛//;

where N is the constant from Lemma 6.2. We apply Theorem 6.3 with

E D fu�N kC1
g\

�
B1=4� .�1;�2

�˛/
�

and F D fu�N k
g\

�
B1=4� .�1;�2

�˛
CCmN�
˛k/

�
;

where C and 
 are the constants from Lemma 6.4.
Let us verify that both assumptions of Theorem 6.3 are satisfied. The first assumption in Theorem 6.3

is implied by Lemma 6.4 (at least when N and/or k are large). Indeed, any point

.x; t/ 2 B1=4 � .�1;�2
�˛
CmN�
˛k/

is contained in some cylinderQr.x0; t0/ with large enough � so that �>CN�k
 . Because of Lemma 6.2,
whenever there is a cylinder Q such that jAkC1 \Qj � .1� ı/jQj, we know that Qm � fu > N kg.
Moreover, because of Lemma 6.4, the length in time of Qm is less than mCN�
k . Therefore Qm � F .
Thus, the second assumption of Theorem 6.3 holds as well.

Note that we allow the result of the crawling ink spots theorem to spill to the time interval

Œ�2�˛;�2�˛CCmN�
˛k�:

Therefore,

jAkC1j �
mC1

m
.1� cı/

�
jAkjCCmN

�
˛k
�
:

We first pick m sufficiently large so that

mC1

m
.1� cı/ WD 1�� < 1:

Thus, we have
jAkC1j � .1��/

�
jAkjCCmN

�
˛k
�
:

This already implies an exponential decay on jAkj, which proves the theorem. �

7. Hölder continuity of solutions

We first state a Hölder continuity for parabolic integral equations without drift. In this case, ˛ 2 .0; 2/
can be arbitrarily small, although the estimates depend on its lower bound ˛0.

Theorem 7.1 (Hölder estimates without drift). Assume ˛ � ˛0 > 0. Let u be a bounded function in
Rd � Œ�1; 0� such that

ut �M
Cu� C in Q1;

ut �M
�u� �C in Q1:
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Then there are constants C7 and 
 , depending on n, �, ƒ and ˛0, such that

kukC
 .Q1=2/ � C7
�
kukL1.Rd�Œ�1;0�/CC

�
:

We can also include a drift term in the equation when ˛ � 1. This is stated in the next result.

Theorem 7.2 (Hölder estimates with drift). Assume ˛ � 1. Let u be a bounded function in Rd � Œ�1; 0�

such that
ut �C0jruj �M

Cu� C in Q1;

ut CC0jruj �M
�u� �C in Q1:

Then there are constants C7 and 
 , depending on n, �, ƒ, C0, such that

kukC
 .Q1=2/ � C7
�
kukL1.Rd�Œ�1;0�/CC

�
:

The proofs of these two theorems are essentially the same. The only difference is that when ˛ � 1,
we can include a nonzero drift term in Theorem 6.1. Because of this, we write the proof only once, for
Theorem 7.2, which applies to both theorems.

Proof of Theorem 7.2. We start by observing that we can reduce to the case C � "0 and kukL1 � 1
2

by
considering the function

1

C="0C 2kukL1
u.x; t/:

We choose "0 sufficiently small, which will be specified below.
Our objective is to prove that for some 
 > 0, which will also be specified below,

osc
Qr
u� 2r
 (7-1)

for all r 2 .0; 1/. This proves the desired modulus of continuity at the point .0; 0/. Since there is nothing
special about the origin, we obtain the result of the theorem at every point in Q1=2 using a standard
scaling and translation argument. Note that since kukL1 � 1

2
, we know a priori that (7-1) holds for all

r < 2�1=
 . We can make this threshold arbitrarily small by choosing a small value of 
 .
In order to prove that (7-1) holds for all values of r 2 .0; 1/, we use induction. We assume that it holds

for all r � 8�k and we show that it then holds for all r � 8�.kC1/. Because of the observation in the
previous paragraph, we can guarantee this inequality for the first few values of k by choosing a small
value of 
 . Thus, we are left to prove the inductive step.

Let

Qu.x; t/D
1

2

1

8
.k�1/
u

�
8�.k�1/

2
x;
8�˛.k�1/

2˛
t

�
:

This function Qu is a scaled version of u so that the values of Qu in Q2 correspond to the values of u
in Q8�kC1 . Moreover, since (7-1) holds for r � 8�k , we have that

osc
Q2r
Qu�min.r
 ; 1/ for all r � 1

8
: (7-2)

Since oscQ2 Qu� 1, for all .x; t/ 2Q2, we have that Qu.x; t/�maxQ2 Qu�
1
2

or Qu.x; t/�minQ2 QuC
1
2

.
There may be points where both inequalities hold. The important thing is that at least one of the two in-
equalities holds at every point .x; t/2Q2. Therefore, one of the two inequalities will hold in at least half of
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the points (in measure) of the cylinder B1=4�Œ�1;�2�˛�. Without loss of generality, let us assume it is the
first of these inequalities that holds for most points (a similar argument works otherwise). That is, we haveˇ̌˚

Qu�max
Q2
Qu� 1

2

	
\
�
B1=4 � Œ�1;�2

�˛�
�ˇ̌
�
1
2
jB1=4j � .1� 2

�˛/:

Let v be the truncated function

v.x; t/ WD
�
Qu.x; t/�max

Q2
QuC 1

�C
:

Note that v � 0 everywhere and v D Qu.x; t/�maxQ2 QuC 1 in Q2. If x … B2 and t 2 Œ�1; 0�, it can
happen that v.x; t/ > Qu.x; t/�maxQ2 QuC 1. We can estimate their difference using (7-2):

v.x; t/�
�
Qu.x; t/�max

Q2
QuC 1

�
� osc
Bjxj�Œ�1;0�

Qu� 1�

�
jxj

2

�

� 1 for any x … B2; t 2 Œ�1; 0�: (7-3)

Note that for any fixed R, the right-hand side converges to zero uniformly for 2� jxj �R as 
 ! 0.
Inside Q1, the function v satisfies the equation

vt CC0jrvj �M
�v � Qut CC0jr Quj �M

�
QuCM�. Qu� v/

� �"0CM
�. Qu� v/

D�"0CM
�
�
. Qu�max QuC 1/� v

�
� �"0� c.
/:

Here c.
/D�minQ1M
�
�
. Qu�max QuC1/�v

�
DmaxQ1M

C
�
v�. Qu�max QuC1/

�
. We can estimate c.
/

using (7-3) and assumption (A2), because

L
�
v� . Qu�max QuC 1/

�
.x/D

Z
Rd
ıh
�
v� . Qu�max QuC 1/

�
.x/K.h/ dh

D

Z
jhj�2

�
v� . Qu�max QuC 1/

�
.h/K.h/ dh

� C

Z
2�jhj�R

.jhj
 � 1/K.h/ dhC
Z
jhj�R

2k QukL1K.h/ dh; (7-4)

where we note the use of the fact that v � . Qu�max QuC 1/ � 0 and also r
�
v � . Qu�max QuC 1/

�
� 0

in Q2. Thus given any �, we can make c.
/ < � by first choosing R large enough so that the tails of K
are negligible outside of BR — hence controlling the second term of (7-4) — and then choosing 
 small
enough so that second term of (7-4) is small enough. Since none of these choices depend upon the
kernel, K, they hold for MC, and hence c.
/, as well.

Applying Theorem 6.1,

min
Q1=4

vC "0C c.
/�
1

C6

�Z
B1=4�Œ�1;�2�˛�

v"dx dt
�1="

�
1

C6

�
1

2
jB1=4j.1� 2

�˛/
�1=" 1

2
:

Let us choose "0 > 0 and 
 > 0 sufficiently small so that

ı WD
1

C6

�
1

2
jB1=4j.1� 2

�˛/
�1=" 1

2
� "0� c.
/ > 0:
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Therefore, we obtained minQ1=4 v � ı, which implies that oscQ1=4 Qu � 1� ı. In terms of the original
variables, this means that

osc
Q
8�k

u� 2� 8�
.k�1/.1� ı/:

Consequently, for any r 2 .8�k�1; 8�k/,

osc
Qr
u� 2� 8�
.k�1/.1� ı/:

Choosing 
 sufficiently small so that
8�2
 � .1� ı/

implies that (7-1) holds for all r > 2�k�1. This finishes the inductive step, and hence the proof.
Note that there is no circular dependence between the constants 
 and "0. All conditions required

in the proof are satisfied for any smaller value. We choose "0 and 
 sufficiently small so that all these
conditions are met. �

8. C 1;
 regularity for nonlinear equations

It is by now standard that a Hölder regularity result as in Theorem 1.1 for kernels K that have rough
dependence in x and t implies a C 1;˛ estimate for solutions to nonlinear equations. The following is a
more precise statement.

Theorem 8.1. Assume ˛0 > 1, ˛ 2 Œ˛0; 2� and I is a translation-invariant nonlocal operator that
is uniformly elliptic with respect to the class of kernels that satisfy (A1), (A2), (A3) and (A4). Let
u W Rn � Œ�T; 0�! R be a bounded viscosity solution of the equation

ut � IuD f in B1 � Œ�T; 0�:

Then u. � ; t / 2 C 1C
 .B1=2/ for all t 2 Œ�T=2; 0� and u.x; � / 2 C .1C
/=˛.Œ�T=2; 0�/ for all x 2 B1=2.
Moreover, the following regularity estimate holds:

sup
t2Œ�T=2;0�

ku. � ; t /kC1C
 .B1=2/C sup
x2B1=2

ku.x; � /kC .1C
/=˛.Œ�T=2;0�/

� C
�
kukL1.Rn�Œ�T;0�/Ckf kL1.B1�Œ�T;0�/C I

�
:

The constants C and 
 depend only on �, ƒ, �, n and ˛0. Here 
 > 0 is the minimum between ˛0 � 1
and the constant 
 from Theorem 1.1 (or Theorem 7.2).

The proof of Theorem 8.1 is given in [Serra 2015] for the smaller class of symmetric kernels satisfying
(1-2). His proof uses the main result in [Chang Lara and Dávila 2014], and the proof of Theorem 8.1
follows simply by replacing it with Theorem 7.2 in this paper. There is only one comment that needs to be
made. In [Serra 2015], the following quantity is used a few times to control the tail of an integral operator

kukL1.Rn;!0/ WD

Z
Rn
u.x/.1Cjxj/�n�˛0 dx:

Because of our assumption (2-1), this quantity is not sufficient and needs to be replaced by

max
˚
x 2 Rn W .1Cjxj/"�˛0u.x/
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for some arbitrary small " > 0. After this small modification, the proof in [Serra 2015] straightforwardly
applies to prove Theorem 8.1 using Theorem 7.2.

The main example of a nonlinear integral operator I is the Isaacs operator from stochastic games:

Iu.x/D inf
i

sup
j

Z
Rn
ıhu.x; t/K

ij .h/ dh:

Here, the kernels Kij must satisfy the hypotheses (A1), (A2), (A3) and (A4) uniformly in i and j .
The result can also be extended to kernels Kij .x; h; t/ that are not translation-invariant provided that

they are continuous with respect to x and t . See [Serra 2015] for a discussion on this extension.

Appendix: The crawling ink spots theorem

We prove a version of the crawling ink spots theorem for fractional parabolic equations, which is a covering
argument that first appeared in the original work of Krylov and Safonov [1979]. There it is indicated that the
result was previously known by Landis, and it was Landis himself who came up with its suggestive name.

Let d˛ be the parabolic distance of order ˛. By definition, it is

d˛
�
.x0; t0/; .x1; t1/

�
Dmax

�
.2jt1� t2j/

1=˛; jx1� x2j
�
:

The parabolic cylinders Qr.x; t/ are balls of radius r centered at
�
x; t � 1

2
r˛
�

with respect to the
distance d˛ . The importance of this characterization is that it allows us to use the Vitali covering lemma,
since this result is valid in arbitrary metric spaces.

Lemma A.1. Let �> 0 and E �F �B1�R be two open sets that satisfy the following two assumptions:

� For every point .x; t/2F , there exists a cylinderQ�B1�R so that .x; t/2Q and jE\Qj� .1��/jQj.

� For every cylinder Q � B1 �R such that jE \Qj> .1��/jQj, we have Q � F .

Then jEj � .1� c�/jF j, where c is a constant depending on dimension only.

Proof. For every point .x; t/2F , letQ0 be the cylinder such that .x; t/2Q0 and jE\Q0j<.1��/jQ0j.
Recall that F is an open set. Let us choose a maximal cylinder Q.x;t/ such that .x; t/ 2 Q.x;t/,

Q.x;t/ �Q0 and Q.x;t/ �F . Two things may happen; either Q.x;t/DQ0, in which case jQ.x;t/\Ej<
.1��/jQ.x;t/j; or for any larger cylinderQ.x;t/�Q�Q0, we would haveQ 6�F . In the latter case, we
would have jE\Qj� .1��/jQj for any cylinderQ so thatQ.x;t/�Q�Q0. In particular, the inequality
holds for a decreasing sequence converging to Q.x;t/ and therefore jE \Q.x;t/j � .1��/jQ.x;t/j:

In any case, we have constructed a cover Q.x;t/ of the set F so that for all .x; t/ 2 F ,

� .x; t/ 2Q.x;t/,

� Q.x;t/ � F ,

� jQ.x;t/\Ej � .1��/jQ.x;t/j.

Using the Vitali covering lemma, we can select a countable subcollection of cylinders Qj such that
F �

S1
jD1 5Qj . Here each Qj is one of the cylinders Q.x;t/. We write 5Qj to denote the cylinder

expanded as a ball with respect to the metric d˛ with the same center and five times the radius.
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Since Qj � F and jE \Qj j � .1��/jQj j, we have jQj \ .F nE/j � �jQj j. Therefore,

jF nEj �

1X
jD1

jQj \ .F nE/j

�

1X
jD1

�jQj j

D 5�d�˛�

1X
jD1

j5Qj j � 5
�d�˛�jF j:

The lemma follows with c D 5�d�˛. �

Lemma A.1 is not applicable directly to parabolic equations. What we need is a covering lemma so
that if jE \Qj � .1��/jQj, then a time-shift of the cylinder Q is included in F instead of Q itself.
This time-shift is given by the cylinders Qm, which we defined in Section 6.

We now give the proof of the crawling ink spots theorem.

Proof of Theorem 6.3. Let Q be the collection of cylindersQ�B1�R such that jE\Qj>.1��/jQj. Let
GD

S
Q2QQ. By construction, E and G satisfy the assumptions of Lemma A.1; thus jEj � .1�c�/jGj.

In order to prove this theorem, we are left to show that jGj � .mC 1/=mjF j. For that, we will see thatˇ̌̌̌ [
Q2Q

Qm
ˇ̌̌̌
�

m

mC1

ˇ̌̌̌ [
Q2Q

Q[Qm
ˇ̌̌̌
�

m

mC1
jGj:

The second inequality above is trivial by the inclusion of the sets. The first inequality is not obvious since
the cylinders may overlap. We justify this first inequality below.

From Fubini’s theorem, the measure of any set A 2 B1 �R is given by

jAj D

Z
B1

L1.A\ .fxg �R// dx;

where L1 stands for the one-dimensional Lebesgue measure.
We finish the proof applying Fubini’s theorem and noticing that for all x 2 B1,

L1
� [
Q2Q

Qm\ .fxg �R/

�
�

m

mC1
L1
� [
Q2Q

.Q[Qm/\ .fxg �R/

�
:

This inequality follows from Lemma A.2, which is described below. �

The following lemma is copied directly from [Imbert and Silvestre 2013b, Lemma 2.4.25]. An
elementary proof is given there, which is independent of the rest of the text.

Lemma A.2. Consider two (possibly infinite) sequences of real numbers .ak/NkD1 and .hk/NkD1 for
N 2 N[f1g with hk > 0 for k D 1; : : : ; N . Thenˇ̌̌̌ N[

kD1

.ak; akC .mC 1/hk/

ˇ̌̌̌
�

m

mC1

ˇ̌̌̌ N[
kD1

.akC hk; akC .mC 1/hk/

ˇ̌̌̌
:
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