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ASYMPTOTIC STABILITY IN ENERGY SPACE FOR DARK SOLITONS
OF THE LANDAU–LIFSHITZ EQUATION

YAKINE BAHRI

We prove the asymptotic stability in energy space of nonzero speed solitons for the one-dimensional
Landau–Lifshitz equation with an easy-plane anisotropy

∂t m+m× (∂xx m−m3e3)= 0

for a map m = (m1,m2,m3) : R× R→ S2, where e3 = (0, 0, 1). More precisely, we show that any
solution corresponding to an initial datum close to a soliton with nonzero speed is weakly convergent
in energy space as time goes to infinity to a soliton with a possible different nonzero speed, up to the
invariances of the equation. Our analysis relies on the ideas developed by Martel and Merle for the
generalized Korteweg–de Vries equations. We use the Madelung transform to study the problem in the
hydrodynamical framework. In this framework, we rely on the orbital stability of the solitons and the
weak continuity of the flow in order to construct a limit profile. We next derive a monotonicity formula
for the momentum, which gives the localization of the limit profile. Its smoothness and exponential decay
then follow from a smoothing result for the localized solutions of the Schrödinger equations. Finally,
we prove a Liouville type theorem, which shows that only the solitons enjoy these properties in their
neighbourhoods.

1. Introduction

We consider the one-dimensional Landau–Lifshitz equation

∂t m+m× (∂xx m+ λm3e3)= 0 (LL)

for a map m= (m1,m2,m3) :R×R→S2, where e3= (0, 0, 1) and λ∈R. This equation was introduced by
Landau and Lifshitz [1935]. It describes the dynamics of magnetization in a one-dimensional ferromagnetic
material, for example in CsNiF3 or TMNC (see, e.g., [Kosevich et al. 1990; Hubert and Schäfer 1998]
and the references therein). The parameter λ accounts for the anisotropy of the material. The choices
λ > 0 and λ < 0 correspond respectively to an easy-axis and an easy-plane anisotropy. In the isotropic
case λ = 0, the equation is exactly the one-dimensional Schrödinger map equation, which has been
intensively studied (see, e.g., [Guo and Ding 2008; Jerrard and Smets 2012]). In this paper, we study the
Landau–Lifshitz equation with an easy-plane anisotropy (λ < 0). Performing, if necessary, a suitable
scaling argument on the map m, we assume from now on that λ = −1. Our main goal is to prove the
asymptotic stability for the solitons of this equation (see Theorem 1.1 below).

MSC2010: 35Q51, 35Q60, 37K40.
Keywords: asymptotic stability, solitons, Landau–Lifshitz equation, travelling waves.

645

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2016.9-3
http://msp.org


646 YAKINE BAHRI

The Landau–Lifshitz equation is Hamiltonian. Its Hamiltonian, the so-called Landau–Lifshitz energy,
is given by

E(m) := 1
2

∫
R

(
|∂x m|2+m2

3
)
.

In the sequel, we restrict our attention to the Hamiltonian framework in which the solutions m to (LL)
have finite Landau–Lifshitz energy, i.e., belong to energy space

E(R) := {υ : R→ S2
| υ ′ ∈ L2(R) and υ3 ∈ L2(R)}.

A soliton with speed c is a travelling-wave solution of (LL) having the form

m(x, t) := u(x − ct).

Its profile u is a solution to the ordinary differential equation

u′′+ |u′|2u+ u2
3u− u3e3+ cu× u′ = 0. (TWE)

The solutions of this equation are explicit. When |c| ≥ 1, the only solutions with finite Landau–Lifshitz
energy are the constant vectors in S1

×{0}. In contrast, when |c|< 1, there exist nonconstant solutions
uc to (TWE), which are given by the formulae

[uc]1(x)=
c

cosh((1−c2)1/2x)
, [uc]2(x)= tanh((1− c2)1/2x), [uc]3(x)=

(1−c2)1/2

cosh((1−c2)1/2x)
,

up to the invariances of the problem, i.e., translations, rotations around the axis x3 and orthogonal
symmetries with respect to the plane x3 = 0 (see [de Laire 2014] for more details).

Our goal is to study the asymptotic behaviour for solutions of (LL) which are initially close to a soliton
in energy space. We endow E(R) with the metric structure corresponding to the distance introduced by
de Laire and Gravejat [2015],

dE( f, g) := | f̌ (0)− ǧ(0)| + ‖ f ′− g′‖L2(R)+‖ f3− g3‖L2(R),

where f = ( f1, f2, f3) and f̌ = f1 + i f2 (and similarly for g). The Cauchy problem and the orbital
stability of the travelling waves have been solved by de Laire and Gravejat [2015]. We are concerned
with the asymptotic stability of travelling waves. The following theorem is our main result.

Theorem 1.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number δc, depending only on c, such that, if

dE
(
m0, uc

)
≤ δc,

then there exist a number c∗ ∈ (−1, 1) \ {0}, and two functions b ∈ C1(R,R) and θ ∈ C1(R,R) such that

b′(t)→ c∗ and θ ′(t)→ 0

as t→+∞, and for which the map

mθ := (cos(θ)m1− sin(θ)m2, sin(θ)m1+ cos(θ)m2,m3),
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satisfies the convergences

∂x mθ(t)( · + b(t), t) ⇀ ∂x uc∗ in L2(R),

mθ(t)( · + b(t), t)→ uc∗ in L∞loc(R),

m3( · + b(t), t) ⇀ [uc∗]3 in L2(R)

as t→+∞.

Remarks. (i) Note that the case c = 0 — that is, black solitons — is excluded from the statement of
Theorem 1.1. In this case, the map ǔ0 vanishes and we cannot apply the Madelung transform and the
subsequent arguments. Orbital and asymptotic stability remain open problems for this case. Note that, to
our knowledge, there is currently no available proof of the local well-posedness of (LL) in energy space,
when u0 vanishes and so the hydrodynamical framework can no longer be used.

(ii) Here, we state a weak convergence result and not a local strong convergence one, like the results
given by Martel and Merle [2008a; 2008b] for the Korteweg–de Vries equation. In their situation, they
can use two monotonicity formulae for the L2 norm and the energy. This heuristically originates in the
property that dispersion has negative speed in the context of the Korteweg–de Vries equation. In contrast,
the possible group velocities for the dispersion of the Landau–Lifshitz equation are given by

vg(k)=±
1+2k2
√

1+k2
,

where k is the wave number. Dispersion has both negative and positive speeds. A monotonicity formula
remains for the momentum due to the existence of a gap in the possible group velocities, which satisfy
the condition |vg(k)| ≥ 1. However, there is no evidence that one can establish a monotonicity formula
for the energy.

Similar results were stated by Soffer and Weinstein [1989; 1990; 1992]. They provided the asymptotic
stability of ground states for the nonlinear Schrödinger equation with a potential in a regime for which
the nonlinear ground-state is a close continuation of the linear one. They rely on dispersive estimates
for the linearized equation around the ground state in suitable weighted spaces, and they apply a fixed
point argument. This strategy was successfully extended in particular by Buslaev, Perelman, C. Sulem
and Cuccagna to the nonlinear Schrödinger equations without potential (see, e.g., [Buslaev and Perelman
1993; 1995; Buslaev and Sulem 2003; Cuccagna 2001]) and with a potential (see, e.g., [Gang and Sigal
2007]). We refer to the detailed historical survey by Cuccagna [2003] for more details. Later, Cuccagna
[2011] proved a stronger result for the ground state satisfying the sufficient conditions for orbital stability
of M. Weinstein, for seemingly generic nonlinear Schrödinger equation which has a smooth short range
nonlinearity with the presence of a very short range and smooth linear potential. In addition, asymptotic
stability in spaces of exponentially localized perturbations was studied by Pego and Weinstein [1994]
(see also [Mizumachi 2001] for perturbations with algebraic decay).
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Our strategy for establishing the asymptotic stability result in Theorem 1.1 is reminiscent of ideas
developed by Martel and Merle [2006; 2008a; 2008b] for the Korteweg–de Vries equation, and successfully
adapted by Béthuel, Gravejat and Smets in [Béthuel et al. 2014] for the Gross–Pitaevskii equation.

The main steps of the proof are similar to the ones for the Gross–Pitaevskii equation in [Béthuel et al.
2015]. Indeed, the solitons of the Landau–Lifshitz equation share many properties with the solitons of
the Gross–Pitaevskii equation. In fact, the stereographic variable ψ defined by

ψ =
u1+iu2
1+u3

satisfies the equation

∂xxψ +
1−|ψ |2

1+|ψ |2
ψ − ic∂xψ =

2ψ
1+|ψ |2

(∂xψ)
2,

which can be seen as a perturbation of the equation for the travelling waves of the Gross–Pitaevskii
equation, namely

∂xx9 + (1− |9|2)9 − ic∂x9 = 0.

However, the analysis of the Landau–Lifshitz equation is much more difficult. Indeed, we rely on a
Hasimoto like transform in order to relate the Landau–Lifshitz equation with a nonlinear Schrödinger
equation. Doing so, we lose some regularity. We have to deal with a nonlinear equation at the L2-level
and not at the H 1-level as in the case of the Gross–Pitaevskii equation. This leads to important technical
difficulties.

Returning to the proof of Theorem 1.1, we first translate the problem into the hydrodynamical for-
mulation. Then, we prove the asymptotic stability in that framework. In fact, we begin by refining the
orbital stability. Next, we construct a limit profile, which is smooth and localized. For the proof of the
exponential decay of the limit profile, we cannot rely on the Sobolev embedding H 1 into L∞ as was done
in [Béthuel et al. 2015]. We use instead the results of Kenig, Ponce and Vega in [Kenig et al. 2003], and
the Gagliardo–Nirenberg inequality (see the proof of Proposition 2.9 for more details). We also have to
deal with the weak continuity of the flow in order to construct the limit profile. For the Gross–Pitaevskii
equation, this property relies on the uniqueness in a weaker space (see [Béthuel et al. 2015]). There is
no similar result at the L2-level. Instead, we use the Kato smoothing effect. The asymptotic stability in
the hydrodynamical variables then follows from a Liouville type theorem. It shows that the only smooth
and localized solutions in the neighbourhood of the solitons are the solitons. Finally, we deduce the
asymptotic stability in the original setting from the result in the hydrodynamical framework.

In Section 2 below, we explain the main tools and different steps for the proof. First, we introduce the
hydrodynamical framework. Then, we state the orbital stability of the solitons under a new orthogonality
condition. Next, we sketch the proof of the asymptotic stability for the hydrodynamical system and we
state the main propositions. We finally complete the proof of Theorem 1.1.

In Sections 3 to 5, we give the proofs of the results stated in Section 2. In Section 3, we deal with
the orbital stability in the hydrodynamical framework. In Section 4, we prove the localization and the
smoothness of the limit profile. In the last section, we prove a Liouville type theorem. In a separate
appendix, we show some facts used in the proofs, in particular the weak continuity of the (HLL) flow.
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2. Main steps for the proof of Theorem 1.1

The hydrodynamical framework. We introduce the map m̌ :=m1+ im2. Since m3 belongs to H 1(R), it
follows from the Sobolev embedding theorem that

|m̌(x)| = (1−m2
3(x))

1/2
→ 1

as x→±∞. As a consequence, the Landau–Lifshitz equation shares many properties with the Gross–
Pitaevskii equation (see, e.g., [Béthuel et al. 2008]). One of these properties is the existence of a
hydrodynamical framework for the Landau–Lifshitz equation. In terms of the maps m̌ and m3, this
equation may be written as {

i∂t m̌−m3∂xx m̌+ m̌∂xx m3− m̌m3 = 0,

∂t m3+ ∂x 〈i m̌, ∂x m̌〉C = 0.

When the map m̌ does not vanish, one can write it as m̌ = (1−m2
3)

1/2 exp iϕ. The hydrodynamical
variables v := m3 and w := ∂xϕ satisfy the system{

∂tv = ∂x((v
2
− 1)w),

∂tw = ∂x

(
∂xxv

1−v2 + v
(∂xv)

2

(1−v2)2
+ v(w2

− 1)
)
.

(HLL)

This system is similar to the hydrodynamical Gross–Pitaevskii equation (see, e.g., [Béthuel et al. 2015]).1

We first study the asymptotic stability in the hydrodynamical framework.
In this framework, the Landau–Lifshitz energy is expressed as

E(v) :=
∫

R

e(v) := 1
2

∫
R

(
(v′)2

1−v2 + (1− v
2)w2
+ v2

)
, (2-1)

where v := (v,w) denotes the hydrodynamical pair. The momentum P , defined by

P(v) :=
∫

R

vw, (2-2)

is also conserved by the Landau–Lifshitz flow. The momentum P and the Landau–Lifshitz energy E play
an important role in the study of the asymptotic stability of the solitons. When c 6= 0, the function ǔc

does not vanish. The hydrodynamical pair Qc := (vc, wc) is given by

vc(x)=
(1−c2)1/2

cosh((1−c2)1/2x)
and wc(x)=

cvc(x)
1−vc(x)2

=
c(1−c2)1/2 cosh((1−c2)1/2x)

sinh((1−c2)1/2x)2+c2 . (2-3)

The only invariances of (HLL) are translations and the opposite map (v,w) 7→ (−v,−w). We restrict
our attention to the translation invariances. All the analysis developed below applies when the opposite
map is also taken into account. For a ∈ R, we define

Qc,a(x) := Qc(x − a) := (vc(x − a), wc(x − a)),

1The hydrodynamical terminology originates in the fact that the hydrodynamical Gross–Pitaevskii equation is similar to the
Euler equation for an irrotational fluid (see, e.g., [Béthuel et al. 2014]).
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a nonconstant soliton with speed c. We also set

NV(R) :=
{
v= (v,w) ∈ H 1(R)× L2(R) |max

R
|v|< 1

}
.

This nonvanishing space is endowed in the sequel with the metric structure provided by the norm

‖v‖H1×L2 :=
(
‖v‖2H1 +‖w‖

2
L2

)1/2
.

Orbital stability. A perturbation of a soliton is provided by another soliton with a slightly different
speed. This property follows from the existence of a continuum of solitons with different speeds. A
solution corresponding to such a perturbation at initial time diverges from the soliton due to the different
speeds of propagation, so that the standard notion of stability does not apply to solitons. The notion of
orbital stability is tailored to deal with such situations. The orbital stability theorem below shows that a
perturbation of a soliton at initial time remains a perturbation of the soliton, up to translations, for all time.

The following theorem is a variant of the result by de Laire and Gravejat [2015] concerning sums of
solitons. It is useful for the proof of the asymptotic stability.

Theorem 2.1. Let c ∈ (−1, 1) \ {0}. There exists a positive number αc, depending only on c, with the
following properties. Given any (v0, w0) ∈ X (R) := H 1(R)× L2(R) such that

α0 := ‖(v0, w0)− Qc,a‖X (R) ≤ αc (2-4)

for some a ∈ R, there exist a unique global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum
(v0, w0), and two maps c ∈ C1(R, (−1, 1) \ {0}) and a ∈ C1(R,R) such that the function ε defined by

ε( · , t) :=
(
v( · + a(t), t), w( · + a(t), t)

)
− Qc(t) (2-5)

satisfies the orthogonality conditions

〈ε( · , t), ∂x Qc(t)〉L2(R)2 = 〈ε( · , t), χc(t)〉L2(R)2 = 0 (2-6)

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and continuously
on c, such that

max
x∈R

v(x, t)≤ 1− σc, (2-7)

‖ε( · , t)‖X (R)+ |c(t)− c| ≤ Acα
0, (2-8)

|c′(t)| + |a′(t)− c(t)| ≤ Ac‖ε( · , t)‖X (R), (2-9)

for any t ∈ R.

Remark. In this statement, the function χc is a normalized eigenfunction associated to the unique negative
eigenvalue of the linear operator

Hc := E ′′(Qc)+ cP ′′(Qc).
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The operator Hc is self-adjoint on L2(R)× L2(R), with domain Dom(Hc) := H 2(R)× L2(R) (see (A-42)
for its explicit formula). It has a unique negative simple eigenvalue −λ̃c, and its kernel is given by

Ker(Hc)= Span(∂x Qc). (2-10)

Our statement of orbital stability relies on a different decomposition from that proposed by Grillakis,
Shatah and Strauss in [Grillakis et al. 1987]. This modification is related to the proof of asymptotic
stability. A key ingredient in the proof is the coercivity of the quadratic form Gc, which is defined in
(2-46), under a suitable orthogonality condition. In case we use the orthogonality conditions in [Grillakis
et al. 1987], the corresponding orthogonality condition for Gc is provided by the function v−1

c S∂c Qc (see
(2-40) for the definition of S), which does not belong to L2(R). In order to bypass this difficulty, we use
the second orthogonality condition in (2-6) for which the corresponding orthogonality condition for Gc

is given by the function v−1
c Sχc, which does belong to L2(R) (see the appendix for more details). This

alternative decomposition is inspired by the one used by Martel and Merle [2008a].
Concerning the proof of Theorem 2.1, we first establish an orbital stability theorem with the classical

decomposition of Grillakis, Shatah and Strauss [Grillakis et al. 1987]. This appears as a particular case of
the orbital stability theorem in [de Laire and Gravejat 2015] for sums of solitons. We next show that if
we have orbital stability for some decomposition and orthogonality conditions, then we also have it for
different decomposition and orthogonality conditions (see Section 2 for the detailed proof of Theorem 2.1).

Asymptotic stability for the hydrodynamical variables. The following theorem shows the asymptotic
stability result in the hydrodynamical framework.

Theorem 2.2. Let c ∈ (−1, 1) \ {0}. There exists a positive constant βc ≤ αc, depending only on c, with
the following properties. Given any (v0, w0) ∈ X (R) such that

‖(v0, w0)− Qc,a‖X (R) ≤ βc,

for some a ∈ R, there exist a number c∗ ∈ (−1, 1) \ {0} and a map b ∈ C1(R,R) such that the unique
global solution (v,w) ∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0) satisfies(

v( · + b(t), t), w( · + b(t), t)
)
⇀ Qc∗ in X (R), (2-11)

and

b′(t)→ c∗

as t→+∞.

Theorem 2.2 establishes a convergence to some orbit of the soliton. This result is stronger than the one
given by Theorem 2.1 which only shows that the solution stays close to that orbit.

In the next subsections, we explain the main ideas of the proof, which follows the strategy developed
by Martel and Merle [2008a; 2008b] for the Korteweg–de Vries equation.
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Construction of a limit profile. Let c ∈ (−1, 1) \ {0}, and let (v0, w0) ∈ X (R) be any pair satisfying
the assumptions of Theorem 2.2. Since βc ≤ αc in the assumptions of Theorem 2.2, we deduce from
Theorem 2.1 that the unique solution (v,w) to (HLL) with initial datum (v0, w0) is global.

We take an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (2-8) and (2-9), we may
assume, up to a subsequence, that there exist a limit perturbation ε∗0 ∈ X (R) and a limit speed c∗0 ∈ [−1, 1]
such that

ε( ·, tn)=
(
v( · + a(tn), tn), w( · + a(tn), tn)

)
− Qc(tn)⇀ε∗0 in X (R), (2-12)

and
c(tn)→ c∗0 (2-13)

as n→+∞. Our main goal is to show that

ε∗0 ≡ 0

(see Corollary 2.15). For that, we establish smoothness and rigidity properties for the solution of (HLL)
with the initial datum Qc∗0 + ε

∗

0 .
First, we require the constant βc to be sufficiently small so that, when the number α0 which appears in

Theorem 2.1 satisfies α0
≤ βc, then we infer from (2-8) and (2-9) that

min{c(t)2, a′(t)2} ≥ c2

2
, max{c(t)2, a′(t)2} ≤ 1+ c2

2
, (2-14)

and

‖vc( · )− v( · + a(t), t)‖L∞(R) ≤min
{
c2

4
,

1−c2

16

}
(2-15)

for any t ∈ R. This yields, in particular, that c∗0 ∈ (−1, 1) \ {0}, and then, that Qc∗0 is well-defined and
different from the black soliton.

By (2-8), we also have
|c∗0 − c| ≤ Acβc, (2-16)

and, applying again (2-8) well as (2-12) and the weak lower semicontinuity of the norm, we also know
that the function

(v∗0 , w
∗

0) := Qc∗0 + ε
∗

0

satisfies
‖(v∗0 , w

∗

0)− Qc‖X (R) ≤ Acβc+‖Qc− Qc∗0‖X (R). (2-17)

We next impose a supplementary smallness assumption on βc so that

‖(v∗0 , w
∗

0)− Qc‖X (R) ≤ αc. (2-18)

By Theorem 2.1, there exists a unique global solution (v∗, w∗) ∈ C0(R,NV(R)) to (HLL) with initial
datum (v∗0 , w

∗

0), and two maps c∗ ∈ C1(R, (−1, 1) \ {0}) and a∗ ∈ C1(R,R) such that the function ε∗

defined by
ε∗( · , t) :=

(
v∗( · + a∗(t), t), w( · + a∗(t), t)

)
− Qc∗(t) (2-19)
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satisfies the orthogonality conditions

〈ε∗( · , t), ∂x Qc∗(t)〉L2(R)2 = 〈ε
∗( · , t), χc∗(t)〉L2(R)2 = 0, (2-20)

as well as the estimates

‖ε∗( · , t)‖X (R)+ |c∗(t)− c| + |a∗′(t)− c∗(t)| ≤ Ac‖(v
∗

0 , w
∗

0)− Qc‖X (R), (2-21)

for any t ∈ R.
We may take βc small enough such that, combining (2-16) with (2-17) and (2-21), we obtain

min{c∗(t)2, (a∗)′(t)2} ≥ c2

2
, max{c∗(t)2, (a∗)′(t)2} ≤ 1+ c2

2
, (2-22)

and ∥∥vc( · )− v∗( · + a∗(t), t)
∥∥

L∞(R) ≤min
{
c2

4
,

1−c2

16

}
, (2-23)

for any t ∈ R.
Finally, we use the weak continuity of the flow map for the Landau–Lifshitz equation. The proof relies

on Proposition A.1 and follows the lines of the proof of Proposition 1 in [Béthuel et al. 2015].

Proposition 2.3. Let t ∈ R be fixed. Then(
v( · + a(tn), tn + t), w( · + a(tn), tn + t)

)
⇀
(
v∗( · , t), w∗( · , t)

)
in X (R), (2-24)

while

a(tn + t)− a(tn)→ a∗(t) and c(tn + t)→ c∗(t) (2-25)

as n→+∞. In particular, we have

ε( · , tn + t) ⇀ ε∗( · , t) in X (R) (2-26)

as n→+∞.

Localization and smoothness of the limit profile. Our proof of the localization of the limit profile is based
on a monotonicity formula.

Consider a pair (v,w) which satisfies the conclusions of Theorem 2.1 and suppose that (2-14) and
(2-15) are true. Let R and t be two real numbers, and set

IR(t)≡ I (v,w)R (t) := 1
2

∫
R

[vw](x + a(t), t)8(x − R) dx,

where 8 is the function defined on R by

8(x) := 1
2(1+ th(νcx)), (2-27)

with νc :=
√

1− c2/8.
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Proposition 2.4. Let R ∈R, t ∈R and σ ∈ [−σc, σc], with σc :=
√

1− c2/4. Under the above assumptions,
there exists a positive number Bc, depending only on c, such that

d
dt
[IR+σ t(t)] ≥

1−c2

8

∫
R

[
(∂xv)

2
+ v2
+w2](x + a(t), t)8′(x − R− σ t) dx − Bce−2νc|R+σ t |. (2-28)

In particular, we have
IR(t1)≥ IR(t0)− Bce−2νc|R| (2-29)

for any real numbers t0 ≤ t1.

For the limit profile (v∗, w∗), we set I ∗R(t) := I (v
∗,w∗)

R (t) for any R ∈ R and any t ∈ R.

Proposition 2.5 [Béthuel et al. 2015]. Given any positive number δ, there exists a positive number Rδ,
depending only on δ, such that we have

|I ∗R(t)| ≤ δ ∀R ≥ Rδ,

|I ∗R(t)− P(v∗, w∗)| ≤ δ ∀R ≤−Rδ

for any t ∈ R.

The proof of Proposition 2.5 is the same as that of Proposition 3 in [Béthuel et al. 2015].
From Propositions 2.4 and 2.5, as in [Béthuel et al. 2015] we derive:

Proposition 2.6 [Béthuel et al. 2015]. Let t ∈ R. There exists a positive constant Ac such that∫ t+1

t

∫
R

[
(∂xv

∗)2+ (v∗)2+ (w∗)2
]
(x + a∗(s), s)e2νc|x | dx ds ≤Ac.

We next consider the following map, which was introduced by de Laire and Gravejat [2015]:

9 :=
1
2

(
∂xv

(1−v2)1/2
+ i(1− v2)1/2w

)
exp iθ, (2-30)

where

θ(x, t) := −
∫ x

−∞

v(y, t)w(y, t) dy. (2-31)

The map 9 solves the nonlinear Schrödinger equation

i∂t9 + ∂xx9 + 2|9|29 + 1
2v

29 −Re
(
9(1− 2F(v,9))

)
(1− 2F(v,9))= 0, (2-32)

with

F(v,9)(x, t) :=
∫ x

−∞

v(y, t)9(y, t) dy, (2-33)

while the function v satisfies the two equations{
∂tv = 2∂x Im

(
9(2F(v,9)− 1)

)
,

∂xv = 2 Re
(
9(1− 2F(v,9))

)
.

(2-34)

The local Cauchy problem for (2-32)–(2-34) was analyzed by de Laire and Gravejat [2015]. We recall the
following proposition which shows the continuous dependence with respect to the initial datum of the
solutions to the system of equations (2-32)–(2-34) (see [de Laire and Gravejat 2015] for the proof).
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Proposition 2.7 [de Laire and Gravejat 2015]. Suppose that the pairs (v0, 90) ∈ H 1(R)× L2(R) and
(ṽ0, 9̃0) ∈ H 1(R)× L2(R) are such that

∂xv
0
= 2 Re

(
90(1− 2F

(
v0, 90

)))
and ∂x ṽ

0
= 2 Re

(
9̃0(1− 2F

(
ṽ0, 9̃0

)))
.

Given two solutions (v,9) and (ṽ, 9̃) in C0([0, T∗], H 1(R)×L2(R)), with (9, 9̃)∈ L4([0, T∗], L∞(R))2,
to (2-32)–(2-34) with initial data (v0, 90) and (ṽ0, 9̃0) respectively, for some positive time T∗, there exist
a positive number τ , depending only on ‖v0

‖L2 , ‖ṽ0
‖L2 , ‖90

‖L2 and ‖9̃0
‖L2 , and a universal constant A

such that we have

‖v− ṽ‖C0([0,T ],L2)+‖9 − 9̃‖C0([0,T ],L2)+‖9 − 9̃‖L4([0,T ],L∞)

≤ A
(
‖v0
− ṽ0
‖L2 +‖90

− 9̃0
‖L2
)

(2-35)

for any T ∈ [0,min{τ, T∗}]. In addition, there exists a positive number B, depending only on ‖v0
‖L2 ,

‖ṽ0
‖L2 , ‖90

‖L2 and ‖9̃0
‖L2 , such that

‖∂xv− ∂x ṽ‖C0([0,T ],L2) ≤ B
(
‖v0
− ṽ0
‖L2 +‖90

− 9̃0
‖L2
)

(2-36)

for any T ∈ [0,min{τ, T∗}].

This proposition plays an important role in the proof of not only the smoothing of the limit profile, but
also the weak continuity of the hydrodynamical Landau–Lifshitz flow.

In order to prove the smoothness of the limit profile, we rely on the following smoothing type estimate
for localized solutions of the linear Schrödinger equation (see [Béthuel et al. 2015; Escauriaza et al. 2008]
for the proof of Proposition 2.8).

Proposition 2.8 [Béthuel et al. 2015; Escauriaza et al. 2008]. Let λ ∈ R, and consider a solution
u ∈ C0(R, L2(R)) to the linear Schrödinger equation

i∂t u+ ∂xx u = F, (LS)

with F ∈ L2(R, L2(R)). Then there exists a positive constant Kλ, depending only on λ, such that

λ2
∫ T

−T

∫
R

|∂x u(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2+ |F(x, t)|2

)
eλx dx dt (2-37)

for any positive number T .

We apply Proposition 2.8 to 9∗ as well as all its derivatives, where 9∗ is the solution to (2-32)
associated to the solution (v∗, w∗) of (HLL), and then express the result in terms of (v∗, w∗) to obtain:

Proposition 2.9. The pair (v∗, w∗) is indefinitely smooth and exponentially decaying on R×R. Moreover,
given any k ∈ N, there exists a positive constant Ak,c, depending only on k and c, such that∫

R

[
(∂k+1

x v∗)2+ (∂k
x v
∗)2+ (∂k

xw
∗)2
]
(x + a∗(t), t)eνc|x | dx ≤ Ak,c (2-38)

for any t ∈ R.



656 YAKINE BAHRI

The Liouville type theorem. We next establish a Liouville type theorem, which guarantees that the limit
profile constructed above is exactly a soliton. In particular, we will show that ε∗0 ≡ 0.

The pair ε∗ satisfies the equation

∂tε
∗
= JHc∗(t)(ε

∗)+ JRc∗(t)ε
∗
+ (a∗′(t)− c∗(t))(∂x Qc∗(t)+ ∂xε

∗)− c∗′(t)∂c Qc∗(t), (2-39)

where J is the symplectic operator

J =−2S∂x :=

(
0 −2∂x

−2∂x 0

)
, (2-40)

and the remainder term Rc∗(t)ε
∗ is given by

Rc∗(t)ε
∗
:= E ′(Qc∗(t)+ ε

∗)− E ′(Qc∗(t))− E ′′(Qc∗(t))(ε
∗).

We rely on the strategy developed by Martel and Merle [2008a] (see also [Martel 2006]), and then applied
by Béthuel, Gravejat and Smets in [Béthuel et al. 2015] to the Gross–Pitaevskii equation. We define the
pair

u∗( · , t) := SHc∗(t)(ε
∗( · , t)). (2-41)

Since SHc∗(t)(∂x Qc∗(t))= 0, we deduce from (2-39) that

∂t u∗ =Hc∗(t)(J Su∗)+ SHc∗(t)(JRc∗(t)ε
∗)− (c∗)′(t)SHc∗(t)(∂c Qc∗(t))

+ (c∗)′(t)S∂cHc∗(t)(ε
∗)+ ((a∗)′(t)− c∗(t))SHc∗(t)(∂xε

∗). (2-42)

Decreasing further the value of βc if necessary, we have:

Proposition 2.10. There exist two positive numbers A∗ and R∗, depending only on c, such that we have2

d
dt

(∫
R

xu∗1(x, t)u∗2(x, t) dx
)
≥

1−c2

16
‖u∗( · , t)‖2X (R)− A∗‖u∗( · , t)‖2X (B(0,R∗)) (2-43)

for any t ∈ R.

We give a second monotonicity type formula to dispose of the nonpositive local term ‖u∗(·, t)‖2X (B(0,R∗))
on the right-hand side of (2-43). If M is a smooth, bounded, two-by-two symmetric matrix-valued function,
then

d
dt
〈Mu∗, u∗〉L2(R)2 = 2〈SMu∗,Hc∗(−2∂x u∗)〉L2(R)2 + “superquadratic terms”, (2-44)

where S is the matrix

S :=
(

0 1
1 0

)
.

2In (2-43), we use the notation

‖( f, g)‖2X (�) :=
∫
�
((∂x f )2+ f 2

+ g2),

in which � denotes a measurable subset of R.
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For c ∈ (−1, 1) \ {0}, let Mc be given by

Mc :=

−
2cvc∂xvc
(1−vc)2

−
∂xvc
vc

−
∂xvc
vc

0

 . (2-45)

We have the following lemma.

Lemma 2.11. Let c ∈ (−1, 1) \ {0} and u ∈ X3(R). Then

Gc(u) := 2〈SMcu,Hc(−2∂x u)〉L2(R)2

= 2
∫

R

µc

(
u2−

cv2
c

µc
u1−

2cvc∂xvc
µc(1−v2

c )
∂x u1

)2
+ 3

∫
R

v4
c
µc

(
∂x u1−

∂xvc
vc

u1

)2
, (2-46)

where

µc = 2(∂xvc)
2
+ v2

c (1− v
2
c ) > 0. (2-47)

The functional Gc is a nonnegative quadratic form, and

Ker(Gc)= Span(Qc). (2-48)

We have indeed chosen the matrix Mc such that Mc Qc = ∂x Qc to obtain (2-48). Since Qc does not
vanish, we deduce from standard Sturm–Liouville theory that Gc is nonnegative, which is confirmed by
the computation in Lemma 2.11.

By the second orthogonality condition in (2-20) and the fact that Hc∗(χc∗)=−λ̃c∗χc∗ , we have

0= 〈Hc∗(χc∗), ε
∗
〉L2(R)2 = 〈Hc∗(ε

∗), χc∗〉L2(R)2 = 〈u
∗, Sχc∗〉L2(R)2 . (2-49)

On the other hand, we know that

〈Qc∗, Sχc∗〉 = P ′(Qc∗)(χc∗) 6= 0, (2-50)

so that the pair u∗ is not proportional to Qc∗ under the orthogonality condition in (2-49). We claim the
following coercivity property of Gc under this orthogonality condition.

Proposition 2.12. Let c ∈ (−1, 1) \ {0}. There exists a positive number 3c, depending only and continu-
ously on c, such that

Gc(u)≥3c

∫
R

[(∂x u1)
2
+ (u1)

2
+ (u2)

2
](x)e−2|x | dx, (2-51)

for any pair u ∈ X (R) verifying

〈u, Sχc〉L2(R)2 = 0. (2-52)

Coming back to (2-44), we can prove the next proposition.
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Proposition 2.13. There exists a positive number B∗, depending only on c, such that

d
dt
(
〈Mc∗(t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥

1
B∗

∫
R

[(∂x u∗1)
2
+ (u∗1)

2
+ (u∗2)

2
](x, t)e−2|x | dx

− B∗‖ε∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R) (2-53)

for any t ∈ R.

Propositions 2.10 and 2.13 have the following corollary.

Corollary 2.14. Set

N (t) := 1
2

(
0 x
x 0

)
+ A∗B∗e2R∗Mc∗(t).

There exists a positive constant Ac such that we have

d
dt
(
〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥Ac‖u∗( · , t)‖2X (R) (2-54)

for any t ∈ R. Since ∫
+∞

−∞

‖u∗( · , t)‖2X (R) dt <+∞, (2-55)

there exists a sequence (t∗k )k∈N such that

lim
k→+∞

‖u∗( · , t∗k )‖
2
X (R) = 0. (2-56)

In view of (2-20), (2-41) and the bound for Hc∗ in (A-43), we have

‖ε∗( · , t)‖X (R) ≤ Ac‖u∗( · , t)‖X (R), (2-57)

Hence, we can apply (2-56) and (2-57) in order to obtain

lim
k→+∞

‖ε∗( · , t∗k )‖
2
X (R) = 0. (2-58)

By (2-58) and the orbital stability in Theorem 2.1, this yields:

Corollary 2.15. ε∗0 ≡ 0.

At this stage we obtain (2-11) for some subsequence. We should extend this result for any sequence.
The proof is exactly the same as the one done by Béthuel, Gravejat and Smets in [Béthuel et al. 2015]
(see Subsection 1.3.4 in [Béthuel et al. 2015] for the details).

Proof of Theorem 1.1. We choose a positive number δc such that ‖(v0, w0)− Qc‖X (R) ≤ βc, whenever
dE(m0, uc) ≤ δc. We next apply Theorem 2.2 to the solution (v,w) ∈ C0(R,NV(R)) to (HLL) corre-
sponding to the solution m to (LL). This yields the existence of a speed c∗ and a position function
b such that the convergences in Theorem 2.2 hold. In particular, since the weak convergence for
m3 is satisfied by Theorem 2.2, it is sufficient to show the existence of a phase function θ such that
exp(iθ(t))∂x m̌( · + b(t), t) is weakly convergent to ∂x ǔc∗ in L2(R) as t → ∞. The locally uniform
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convergence of exp(iθ(t))m̌( · + b(t), t) towards ǔc∗ then follows from the Sobolev embedding theorem.
We begin by constructing this phase function.

We fix a nonzero function χ ∈ C∞c (R, [0, 1]) such that χ is even. Using the explicit formula of ǔc∗ , we
have ∫

R

ǔc∗(x)χ(x) dx = 2c∗
∫

R

χ(x)

cosh
(√

1− (c∗)2x
) dx 6= 0. (2-59)

Decreasing the value of βc if needed, we deduce from the orbital stability in [de Laire and Gravejat 2015]
that ∣∣∣∣∫

R

m̌(x + b(t), t)χ(x) dx
∣∣∣∣≥ |c∗| ∫

R

χ(x)

cosh
(√

1− (c∗)2x
) dx 6= 0 (2-60)

for any t ∈ R.
Let ϒ : R2

→ R be the C1 function defined by

ϒ(t, θ) := Im
(

e−iθ
∫

R

m̌(x + b(t), t)χ(x) dx
)
.

From (2-60) we can find a number θ0 such that ϒ(0, θ0)= 0 and ∂θϒ(0, θ0) > 0. Then, using the implicit
function theorem, there exists a C1 function θ : R→ R such that ϒ(t, θ(t))= 0. In addition, using (2-60)
another time, we can fix the choice of θ so that there exists a positive constant Ac∗ such that

∂θϒ(t, θ(t))= Re
(

e−iθ(t)
∫

R

m̌(x + b(t), t)χ(x) dx
)
≥ Ac∗ > 0. (2-61)

Differentiating the identity ϒ(t, θ(t))= 0 with respect to t , this implies that

|θ ′(t)| =
∣∣∣ ∂tϒ(t, θ(t))
∂θϒ(t, θ(t))

∣∣∣≤ 1
Ac∗
|∂tϒ(t, θ(t))| (2-62)

for all t ∈ R. Now, we differentiate the function ϒ with respect to t , and we use the equation of m̌ to
obtain

∂tϒ(t, θ(t))= Im
(

e−iθ
∫

R

χ(x)
(
∂x m̌(x + b(t), t)b′(t)− im3(x + b(t), t)∂xx m̌(x + b(t), t)

+ i m̌(x + b(t), t)∂xx m3(x + b(t), t)− im3(x + b(t), t)m̌(x + b(t), t)
)

dx
)
. (2-63)

Since b ∈ C1
b(R,R), and since both ∂x m̌ and ∂t m̌ belong to C0

b(R, H−1(R)), it follows that the derivative
θ ′ is bounded on R.

We denote by ϕ the phase function defined by

ϕ(x + b(t), t) := ϕ(b(t), t)+
∫ x

0
w(y+ b(t), t) dy,

with ϕ(b(t), t) ∈ [0, 2π ], which is associated to the function m̌(x+b(t), t) for any (x, t) ∈R2 in the way
that

m̌(x + b(t), t)= (1−m2
3(x + b(t), t))1/2 exp(iϕ(x + b(t), t)).
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It is sufficient to prove that
exp

(
i(ϕ(b(t), t)− θ(t))

)
→ 1 (2-64)

as t→∞ to obtain

exp
(
i(ϕ( · + b(t), t)− θ(t))

)
→ exp(iϕc∗( · )) := exp

(
i
∫
·

0
wc∗(y) dy

)
in L∞loc(R)

as t→∞. This implies, using Theorem 2.2 once again as well as the Sobolev embedding theorem, that

e−iθ(t)∂x m̌( · + b(t), t) ⇀ ∂x ǔc∗ in L2(R),

e−iθ(t)m̌( · + b(t), t)→ ǔc∗ in L∞loc(R)
(2-65)

as t→∞. Now let us prove (2-64). We have

e−iθ(t)
∫

R

m̌(x + b(t), t)χ(x) dx

= exp
(
i[ϕ(b(t), t)− θ(t)]

)∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx .

We use the fact that ϒ(t, θ(t))= 0 to obtain

cos(ϕ(b(t), t)− θ(t)) Im
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
+ sin(ϕ(b(t), t)− θ(t))Re

(∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
= 0.

On the other hand, by (2-61), we have

cos(ϕ(b(t), t)− θ(t))Re
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
− sin(ϕ(b(t), t)− θ(t)) Im

(∫
R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
> 0.

We derive from Theorem 2.2 and (2-59) that

Im
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
→ Im

(∫
R

ǔc∗(x)χ(x) dx
)
= 0,

and

Re
(∫

R

(1−m2
3(x + b(t), t))1/2 exp

(
i
∫ x

0
w(y+ b(t), t) dy

)
χ(x) dx

)
→ Re

(∫
R

ǔc∗(x)χ(x) dx
)
> 0.

This is enough to derive (2-64).
Finally, we claim that θ ′(t)→ 0 as t→∞. Indeed, we can introduce (2-65) into (2-63), and we then

obtain, using the equation satisfied by ǔc∗ , that

∂tϒ(t, θ(t))→ 0

as t→∞. By (2-62), this yields θ ′(t)→ 0 as t→∞, which finishes the proof of Theorem 1.1. �
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3. Proof of the orbital stability

First, we recall the orbital stability theorem, which was established in [de Laire and Gravejat 2015] (see
Corollary 2 and Propositions 2 and 4 in [de Laire and Gravejat 2015]).

Theorem 3.1. Let c ∈ (−1, 1)\{0} and (v0, w0)∈ X (R) satisfying (2-4). There exist a unique global solu-
tion (v,w)∈ C0(R,NV(R)) to (HLL) with initial datum (v0, w0), and two maps c1 ∈ C1(R, (−1, 1) \ {0})
and a1 ∈ C1(R,R) such that the function ε1, defined by (2-5), satisfies the orthogonality conditions

〈ε1( · , t), ∂x Qc1(t)〉L2(R)2 = P ′(Qc1(t))(ε1( · , t))= 0 (3-1)

for any t ∈ R. Moreover, ε1( · , t), c1(t) and a1(t) satisfy (2-7), (2-8) and (2-9) for any t ∈ R.

With Theorem 3.1 at hand, we can provide the proof of Theorem 2.1.

Proof of Theorem 2.1. We consider the map

4((v,w), σ, b) :=
(
〈∂x Qσ,b, ε〉L2×L2, 〈χσ,b, ε〉L2×L2

)
,

where we have set ε = (v,w)− Qσ,b, and χσ,b = χσ ( · − b) (we recall that χσ is the eigenfunction
associated to the unique negative eigenvalue −λ̃σ of the operator Hσ ). The map 4 is well-defined for,
and depends smoothly on, (v,w) ∈ H 1(R)× L2(R), σ ∈ (−1, 1) \ {0} and b ∈ R.

We fix t ∈ R. In order to simplify the notation, we substitute (c1(t), a1(t)) by (c1, a1). We check that

4(Qc1,a1, c1, a1)= 0,

and we compute {
∂σ41(Qc1,a1, c1, a1)= 0,
∂σ42(Qc1,a1, c1, a1)=−〈χc1,a1, ∂σ Qc1,a1〉L2×L2 .

Let c ∈ (−1, 1) \ {0} and suppose towards a contradiction that

〈χc, ∂c Qc〉L2×L2 = 0.

Using the fact that Hc(∂c Qc)= P ′(Qc), this gives

0= 〈χc, ∂c Qc〉L2×L2 =−
1
λ̃c
〈χc,Hc(∂c Qc)〉L2×L2 =−

1
λ̃c
〈χc, P ′(Qc)〉L2×L2 .

Since Hc is self-adjoint, we also have

〈χc, ∂x Qc〉L2×L2 = 0.

By Proposition 1 in [de Laire and Gravejat 2015], we infer that

0>−λ̃c‖χc‖
2
L2×L2 = 〈χc,Hc(χc)〉L2×L2 ≥3c‖χc‖

2
L2×L2 > 0,

which provides the contradiction and shows that

〈χc, ∂c Qc〉L2×L2 6= 0 (3-2)
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for all c ∈ (−1, 1) \ {0}. In addition, we have{
∂b41(Qc1,a1, c1, a1)= ‖∂x Qc1‖

2
L2 = 2(1− c2

1)
1/2 > 0,

∂b42(Qc1,a1, c1, a1)= 0.

Therefore, the matrix

dσ,b4(Qc1,a1, c1, a1)=

(
0 〈χc1,a1, ∂σ Qc1,a1〉L2×L2

2(1− c2
1)

1/2 0

)

is an isomorphism from R2 to R2.
Then, we can apply the version of the implicit function theorem in [Béthuel et al. 2014] in order to

find a neighbourhood V of Qc1,a1 , a neighbourhood U of (c1, a1), and a map γc1,a1 : U→ V such that

4((v,w), σ, b)= 0⇔ (c(v,w), a(v,w)) := (σ, b)= γc,a(v,w) ∀(v,w) ∈ V, ∀(σ, b) ∈ U .

In addition, there exists a positive constant 3, depending only on c1, such that

‖ε(t)‖X + |c(t)− c1(t)| + |a(t)− a1(t)| ≤3‖ε1(t)‖X ≤3c1 Acα0, (3-3)

where c(t) := c(v(t), w(t)), a(t) := a(v(t), w(t)) and ε(t) := (v(t), w(t))−Qc(t),a(t), for any fixed t ∈R.
Using the fact that (v(t), w(t)) stays in a neighbourhood of Qc1(t),a1(t) for all t ∈ R by Theorem 3.1, and
also the fact that c1 satisfies (2-8), we are led to the following lemma.

Lemma 3.2. Under the assumptions of Theorem 3.1, there exists a unique pair (a, c) of functions in
C0
(
R,R2

)
such that

ε(t) := (v(t), w(t))− Qc(t),a(t)

satisfies the orthogonality conditions

〈ε(t), ∂x Qc(t),a(t)〉L2×L2 = 〈χc(t),a(t), ε(t)〉L2×L2 = 0. (3-4)

Moreover, we have (2-8).

This completes the proof of orbital stability. Now, let us prove the continuous differentiability of the
functions a and c, as well as the inequality

|c′(t)| + |a′(t)− c(t)| ≤ Ac‖ε( · , t)‖X (R), (3-5)

for all t ∈ R. The C1 nature of a and c can be derived from a standard density argument as in [de Laire
and Gravejat 2015]. Concerning (3-5), we can write the equations satisfied by ε, namely

∂tεv =
(
(a′(t)− c(t))∂xvc,a − c′(t)∂cvc,a

)
+ ∂x

(
((vc,a + εv)

2
− 1)(vc,a + εw)− (v

2
c,a − 1)wc,a

)
(3-6)
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and

∂tεw = (a′(t)− c(t))∂xwc,a − c′(t)∂cwc,a

+ ∂x

(
∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
+ (vc,a + εv)

(∂xvc,a + ∂xεv)
2

(1− (vc,a + εv)2)2
−
∂xxvc,a

1− v2
c,a
− vc,a

(∂xvc,a)
2

(1− v2
c,a)

2

)
+ ∂x

(
(vc,a + εv)((wc,a + εw)

2
− 1)− vc,a(w

2
c,a − 1)

)
. (3-7)

We differentiate with respect to time the orthogonality conditions in (2-6) and we invoke equations (3-6)
and (3-7) to write the identity

M
(

c′

a′− c

)
=

(
Y
Z

)
. (3-8)

Here, M refers to the matrix of size 2 given by

M1,1 = 〈∂c Qc, χc〉L2×L2 +〈∂cχc,a, ε〉L2×L2,

M1,2 = 〈χc, ∂x Qc〉L2×L2 −〈∂xχc,a, ε〉L2×L2,

M2,1 =−〈∂x Qc, ∂c Qc〉L2×L2 +〈∂c∂x Qc,a, ε〉L2×L2,

M2,2 = ‖∂x Qc‖
2
L2×L2 −〈∂xx Qc,a, ε〉L2×L2 .

The vectors Y and Z are defined by

Y =
〈
∂xwc,a, ((vc,a + εv)

2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

+
〈
∂xvc,a, ((wc,a + εw)

2
− 1)(vc,a + εv)− (w

2
c,a − 1)vc,a

〉
L2

−

〈
∂xxvc,a,

∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
−
∂xxvc,a

1− v2
c,a

〉
L2
+ c〈∂xχc,a, ε〉L2×L2

and

Z =
〈
∂xxvc,a, ((vc,a + εv)

2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

+
〈
∂xxwc,a, ((wc,a + εw)

2
− 1)(vc,a + εv)− (w

2
c,a − 1)vc,a

〉
L2

−

〈
∂xxxwc,a,

∂xxvc,a + ∂xxεv

1− (vc,a + εv)2
−
∂xxvc,a

1− v2
c,a

〉
L2
+ c〈∂xx Qc,a, ε〉L2×L2 .

We next decompose the matrix M as M = D + H , where D is the diagonal matrix of size 2 with
diagonal coefficients

D1,1 = 〈∂c Qc, χc〉L2×L2 6= 0,

by (3-2), and

D2,2 = ‖∂x Qc(t)‖
2
L2 = 2(1− c(t)2)1/2,

so that D is invertible. Concerning the matrix H , we check that

〈P ′(Qc), ∂x Qc〉L2×L2 = 〈∂x Qc, ∂c Qc〉L2×L2 = 0.
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Then,

H =

(
〈∂cχc,a, ε〉L2×L2 −〈∂xχc,a, ε〉L2×L2

〈∂c∂x Qc,a, ε〉L2×L2 −〈∂xx Qc,a, ε〉L2×L2

)
.

It follows from the exponential decay of Qc,a and its derivatives that

|H | ≤ Ac‖ε‖L2×L2 .

We can make a further choice of the positive number αc, such that the operator norm of the matrix D−1 H
is less than 1/2. In this case, the matrix M is invertible and the operator norm of its inverse is uniformly
bounded with respect to t . Coming back to (3-8), we are led to the estimate

|c′(t)| + |a′(t)− c(t)| ≤ Ac(|Y (t)| + |Z(t)|). (3-9)

It remains to estimate the quantities Y and Z . We write∣∣〈∂xwc,a, ((vc,a + εv)
2
− 1)(wc,a + εw)− (v

2
c,a − 1)wc,a

〉
L2

∣∣
=
∣∣〈∂xwc,a, (ε

2
v + 2vc,aεv)wc,a + εw((εv + vc,a)

2
− 1)

〉
L2

∣∣
≤ Ac‖ε‖L2×L2 .

Arguing in the same way for the other terms in Y and Z , we obtain

|Y | + |Z | =O(‖ε‖L2×L2),

which is enough to deduce (3-5) from (3-9).
To complete the proof, we show (2-7). Using the Sobolev embedding theorem of H 1(R) into C0(R),

we can write

max
x∈R

v(x, t)≤ ‖vc(t)‖L∞(R)+‖v( · , t)− vc(t),a(t)‖L∞(R) ≤ ‖vc(t)‖L∞(R)+‖ε(t)‖X (R).

By (2-3), ‖vc‖L∞(R) < 1, so that (2-8) implies that there exists a small positive number γc such that
‖vc(t)‖L∞(R) ≤ 1− γc. We obtain

max
x∈R

v(x, t)≤ 1− γc+‖ε(t)‖X (R) ≤ 1− γc+αc.

For αc small enough, the estimate (2-7) follows, with σc := −αc+ γc. �

4. Proofs of localization and smoothness of the limit profile

Proof of Proposition 2.4. The proof relies on the conservation law for the density of momentum vw. Let
R and t be two real numbers, and recall that

IR(t)≡ I (v,w)R (t) := 1
2

∫
R

[vw](x + a(t), t)8(x − R) dx,

where 8 is the function defined on R by

8(x) := 1
2(1+ th(νcx)),
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with νc :=
√

1− c2/8. First, we deduce from the conservation law for vw (see Lemma 3.1 in [de Laire
and Gravejat 2015] for more details) the identity

d
dt
[IR+σ t(t)] = −(a′(t)+ σ)

∫
R

[vw](x + a(t), t)8′(x − R− σ t) dx

+

∫
R

[
v2
+w2

− 3v2w2
+

3−v2

(1−v2)2
(∂xv)

2
]
(x + a(t), t)8′(x − R− σ t) dx

+

∫
R

[ln(1− v2)](x + a(t), t)8′′′(x − R− σ t) dx . (4-1)

Our goal is to provide a lower bound for the integrands on the right-hand side of (4-1).
Notice that the function 8 satisfies the inequality

|8′′′| ≤ 4ν2
c8
′. (4-2)

In view of the bound (2-14) on a′(t) and the definition of σc, we obtain that

|a′(t)+ σ |2 ≤ 9+7c2

8
. (4-3)

Hence, we deduce

d
dt
[IR+σ t(t)] ≥

∫
R

[
4ν2

c ln(1− v2)+ v2
+w2

− 3v2w2

+ (∂xv)
2
−

√
9+7c2

8
|vw|

]
(x + a(t), t)8′(x − R− σ t) dx =: J1+ J2. (4-4)

At this step, we decompose the real line into two domains, [−R0, R0] and its complement, where R0 is to
be defined below, and we denote by J1 and J2 the value of the integral on the right-hand side of (4-4) on
each region. On R \ [−R0, R0], we bound the integrand pointwise from below by a positive quadratic
form in (v,w). Exponentially small error terms arise from integration on [−R0, R0].

For |x | ≥ R0, using Theorem 2.1 and the Sobolev embedding theorem, and choosing α0 small enough
and R0 large enough, we obtain

|v(x + a(t), t)| ≤ |εv(x, t)| + |vc(t)(x)| ≤ Ac

(
α0+ exp

(
−

√
1− c2 R0

))
≤

1
12 (4-5)

for any t ∈ R. Using the fact that ln(1− s) ≥ −2s for all s ∈
[
0, 1

2

]
and introducing (4-5) in (4-4), we

obtain

J1 ≥
1−c2

8

∫
|x |≥R0

[v2
+w2

+ (∂xv)
2
](x + a(t), t)8′(x − R− σ t) dx . (4-6)

We next consider the case x ∈ [−R0, R0]. In that region, we have

|x − R− σ t | ≥ −R0+ |R+ σ t |.

Hence,
8′(x − R− σ t)≤ 2νce2νcR0e−2νc|R+σ t |. (4-7)
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Since the function | ln( · )| is decreasing on (0, 1], in view of (2-7) and (4-4),

|J2| ≤ Ac

∫
|x |≤R0

[v2
+w2

+ (∂xv)
2
](x + a(t), t)8′(x − R− σ t) dx .

Then, by (4-7) and the control on the norm of (v,w) in X (R) provided by the conservation of the energy,
we obtain

|J2| ≤ Bce−2νc|R+σ t |.

This finishes the proof of (2-28). It remains to prove (2-29). For that, we distinguish two cases. If R ≥ 0,
we integrate (2-28) from t = t0 to t = (t0 + t1)/2, choosing σ = σc and R = R − σct0, and then from
t = (t0+ t1)/2 to t = t1 choosing σ =−σc and R = R+σct1. If R ≤ 0, we use the same arguments for the
reverse choices σ =−σc and σ = σc. This implies (2-29), and finishes the proof of Proposition 2.4. �

Proof of Proposition 2.9. Let 9∗ and v∗ be the solutions of (2-32)–(2-34) expressed in terms of the
hydrodynamical variables (v∗, w∗) as in (2-30). We split the proof into five steps.

Step 1. There exists a positive number Ac, depending only on c, such that∫ t+1

t

∫
R

|∂x9
∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ac (4-8)

for any t ∈ R.

By (2-23) and (2-30),
|9∗| ≤ Ac(|∂xv

∗
| + |w∗|). (4-9)

In view of Proposition 2.6 and the fact that |a∗(t)− a∗(s)| is uniformly bounded for s ∈ [t − 1, t + 2] by
(2-22), this yields ∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac. (4-10)

We define
F∗ := − 1

2(v
∗)29∗+Re

(
9∗(1− 2F(v∗, 9∗))

)
(1− 2F(v∗, 9∗)).

We recall that ‖v∗‖L∞(R×R) < 1− σc by (2-23). Using the Cauchy–Schwarz inequality, the Sobolev
embedding theorem and the control of the norm in X (R) provided by the conservation of energy, we have
F(v∗, 9∗) ∈ L∞(R×R). Hence,

|F∗| ≤ Ac|9
∗
|, (4-11)

where Ac is a positive number depending only on c. Then, by (4-10),∫ t+2

t−1

∫
R

|F∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac (4-12)

for any t ∈ R. Next, by Proposition 2.7, we have

‖9∗‖L4([t−1,t+2],L∞) ≤ Ac. (4-13)



ASYMPTOTIC STABILITY FOR DARK SOLITONS OF THE LANDAU–LIFSHITZ EQUATION 667

Indeed, we fix t ∈ R and we denote by

(90
1 , v

0
1) :=

(
9∗( · + a∗(t − 1), t − 1), v∗( · + a∗(t − 1), t − 1)

)
,

(91(s), v1(s)) :=
(
9∗( · + a∗(t − 1), t − 1+ s), v∗( · + a∗(t − 1), t − 1+ s)

)
the corresponding solution to (2-32)–(2-34). Denote also by

(90
2 , v

0
2) := (9c∗(t−1), vc∗(t−1)),

(92(s), v2(s)) :=
(
9c∗(t−1)(x − c∗(t − 1)s), vc∗(t−1)(x − c∗(t − 1)s)

)
the corresponding solution to (2-32)–(2-34), where 9c∗(t) is the solution to (2-32) associated to the
soliton Qc∗(t). We have, by (2-35),

‖91(s)−92(s)‖L4([0,τc],L∞) ≤ A
(
‖v0

1 − v
0
2‖L2 +‖90

1 −9
0
2‖L2

)
.

Using (2-21), we obtain

‖91(s)−92(s)‖L4([0,τc],L∞) ≤ Ac,

where τc= τc
(
‖v0

1‖L2, ‖v0
2‖L2, ‖90

1‖L2, ‖90
2‖L2

)
depend only on c. Since [0, 3] ⊆

⋃
0≤k≤3/τc

[kτc, (k+1)τc],
we can infer (4-13) inductively.

In addition, by (4-9), we have

‖9∗( · + a∗(t), · )‖L∞([t−1,t+2],L2) ≤ Ac. (4-14)

Hence, applying the Cauchy–Schwarz inequality to the integral with respect to the time variable, (4-10),
(4-13) and (4-14),∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|4eνc|x | dx ds

≤

∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|2eνc|x | dx‖9∗(s)‖2L∞(R) ds

≤ ‖9∗( · + a∗(t), · )e(νc/2)| · |‖2L4([t−1,t+2],L2(R))
‖9∗( · + a∗(t), · )‖2L4([t−1,t+2],L∞(R))

≤ ‖9∗( · + a∗(t), · )eνc|·|‖L2([t−1,t+2],L2(R))‖9
∗( · + a∗(t), · )‖L∞([t−1,t+2],L2(R))

‖9∗( · + a∗(t), · )‖2L4([t−1,t+2],L∞(R))

≤ Ac. (4-15)

In order to use Proposition 2.8 on 9∗, it is sufficient to verify

sup
s∈[t−1,t+2]

∫
R

|9∗(x + a∗(t), s)|2e2νc|x | dx ds ≤ Ac. (4-16)
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Indeed, using (4-16) and (4-13), we can write∫ t+2

t−1

∫
R

|9∗(x + a∗(t), s)|6e2νc|x | dx ds

≤
∥∥9∗( · + a∗(t), · )eνc| · |

∥∥2
L∞([t−1,t+2],L2(R))

‖9∗( · + a∗(t), · )‖4L4([t−1,t+2],L∞(R))

≤ Ac, (4-17)

which proves that 9∗ satisfies the assumptions of Proposition 2.8. Then, we apply Proposition 2.8 with
u :=9∗( ·+a∗(t), ·+ (t+1/2)), T := 1/2, F := |u|2u+ F∗( · , t+1/2) and successively λ := ±νc, and
we use (4-10) and (4-12) to obtain (4-8).

Now let us prove (4-16). First, we recall the next lemma stated by Kenig, Ponce and Vega [Kenig et al.
2003].

Lemma 4.1. Let a ∈ [−2,−1] and b ∈ [2, 3]. Assume that u ∈ C0([a, b] : L2(R)) is a solution of the
inhomogeneous Schrödinger equation

i∂t u+ ∂xx u = H, (4-18)

with H ∈ L1([a, b] : L2(eβx dx)), for some β ∈ R, and

ua ≡ u( · , a), ub ≡ u( · , b) ∈ L2(eβx dx). (4-19)

Then there exists a positive number K such that

sup
a≤t≤b

‖u( · , t)‖L2(eβx dx) ≤ K
(
‖ua‖L2(eβx dx)+‖ub‖L2(eβx dx)+‖H‖L1([a,b],L2(eβx dx))

)
. (4-20)

In order to apply the lemma, we need to verify the existence of numbers a and b such that (4-19)
holds for u :=9∗( · + a∗(t), · + t) and such that H := |u|2u+ F∗( · , · + t) ∈ L1([a, b], L2(eβx dx)) for
β =±νc respectively and any t ∈R. Our first claim is a consequence of (4-10) and the Markov inequality.
Indeed, there exist s0 ∈ [−2,−1] and s1 ∈ [2, 3] such that∫

R

|9∗(x + a∗(t), s j + t)|2e2νc|x | dx ≤ Ac for j = 0, 1.

For the second claim, due to (4-12) and the Cauchy–Schwarz estimate, it is sufficient to show that
|u|2u ∈ L1([−2, 3], L2(eνc|x | dx)). To prove this we use the Cauchy–Schwarz inequality for the time
variable, (4-10) and (4-13),∫ 3

−2

(∫
R

|9∗(x + a∗(t), s+ t)|6e2νc|x | dx
)1/2

ds

≤
∥∥9∗( · + a∗(t), · + t)eνc| · |

∥∥
L2([−2,3],L2)

‖9∗( · + a∗(t), · + t)‖2L4([−2,3],L∞)

≤ Ac.

Now we may apply Lemma 4.1 with a = s0 and b = s1 to deduce (4-16). This finishes the proof of the
first step.
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In the next step, we prove that (4-8) remains true for all the derivatives of 9∗ and v∗.

Step 2. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that∫ t+1

t

∫
R

|∂k
x9
∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ak,c (4-21)

and ∫ t+1

t

∫
R

|∂k
x v
∗(x + a∗(t), s)|2eνc|x | dx ≤ Ak,c (4-22)

for any t ∈ R.

The proof of Step 2 is by induction on k ≥ 1. We are going to differentiate (2-32) k times with respect
to the space variable and write the resulting equation as

i∂t(∂
k
x9
∗)+ ∂xx(∂

k
x9
∗)= Rk(v

∗, 9∗), (4-23)

where Rk(v
∗, 9∗)= ∂k

x (|9
∗
|
29∗)+ ∂k

x F∗. We are going to prove by induction that (4-21), (4-22) and∫ t+1

t

∫
R

|Rk(v
∗, 9∗)(x + a∗(t), s)|2eνc|x | dx ds ≤ Ak,c (4-24)

hold simultaneously for any t ∈ R. Notice that (4-21) implies that ∂k
x9
∗
∈ L2

loc(R, L2(R)), while (4-24)
implies that Rk(v

∗, 9∗) ∈ L2
loc(R, L2(R)). Therefore, if (4-21), (4-22) and (4-24) are established for

some k ≥ 1, then applying Proposition 2.8 to ∂k
x9
∗ can be justified by a standard approximation procedure.

For k = 1, (4-21) is exactly (4-8). Equation (4-22) holds from Proposition 2.6 and the fact that
|a∗(t)− a∗(s)| is uniformly bounded for s ∈ [t − 1, t + 2]. Next, we write

R1(v
∗, 9∗)=−v∗∂xv

∗9∗− 1
2(v
∗)2∂x9

∗
+Re

(
∂x9

∗(1− 2F(v∗, 9∗))
)
(1− 2F(v∗, 9∗))

− 2v∗|9∗|2(1− 2F(v∗, 9∗))− 2v∗9∗ Re
(
9∗(1− 2F(v∗, 9∗))− 2∂x(9

∗
|9∗|2)

)
.

We will show that

9∗ ∈ L∞([t − 1, t + 2], L∞(R)) (4-25)

in order to control the derivative of the cubic nonlinearity by |∂x9
∗
|, and then we will use the fact that

F(v∗, 9∗) ∈ L∞(R×R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2-34) to get

R1(v
∗, 9∗)≤ K

(
|∂x9

∗
| + |∂xv

∗
||9∗| + |9∗|2

)
. (4-26)

Let us prove (4-25). We define the function H on R by

H(s) := 1
2

∫
R

(
|∂x9

∗(x, s)|2− |9∗(x, s)|4
)

dx .
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We differentiate it with respect to s, integrate by parts and use (2-32) to obtain

H ′(s)=−Re
(∫

R

∂s9
∗(x, s)

[
∂xx9∗+ 29∗|9∗|2

]
(x, s) dx

)
= Re

(∫
R

∂s9
∗(x, s)F∗(x, s) dx

)
≤ ‖∂s9

∗(s)‖H−1(R)‖F
∗(s)‖H1(R). (4-27)

We have
|∂x F∗| ≤ K

(
|∂x9

∗
| + |∂xv

∗
||9∗| + |9∗|2

)
,

using the fact that F(v∗, 9∗) ∈ L∞(R×R), ‖v∗‖L∞(R×R) < 1 and the second equation in (2-34).
Hence, by (4-8), (4-10), (4-15) and the fact that |∂xv

∗
| ≤ |9∗| on R×R, we obtain

‖∂x F∗‖L2([t−1,t+2],L2(R)) ≤ Ac. (4-28)

On the other hand, we infer
‖∂s9

∗
‖L2([t−1,t+2],H−1(R)) ≤ Ac (4-29)

from (2-32), (4-8), (4-12) and the fact that 9∗ ∈ L4([t − 1, t + 2], L∞(R))∩ L8([t − 1, t + 2], L4(R)).
Next, we integrate (4-27) between t − 1 and t + 2 and apply the Cauchy–Schwarz inequality to obtain

H ∈W 1,1([t − 1, t + 2]) for all t ∈ R using (4-28) and (4-29). Notice that all these computations can be
justified by a standard approximation procedure. This yields, by the Sobolev embedding theorem, that
H ∈ L∞([t − 1, t + 2]). We conclude that the derivative ∂x9

∗
∈ L∞([t − 1, t + 2], L2(R)). Indeed, we

can use the Gagliardo–Nirenberg inequality and the fact that 9∗ is uniformly bounded in L2(R) by a
positive number to write

H(s)≥ 1
2

∫
R

|∂x9
∗(x, s)|2 dx − A‖9∗(s)‖3L2(R)

‖∂x9
∗( · )‖L2(R)

≥
1
2

∫
R

|∂x9
∗(x, s)|2 dx − AK 3

‖∂x9
∗( · )‖L2(R).

The function x 7→ 1
2 x2
− AM3x diverges to +∞ when x goes to +∞. Since H is bounded, we infer that

‖∂x9
∗( · )‖L2(R) is uniformly bounded on [t − 1, t + 2] for all t ∈ R. This finishes the proof of (4-25) by

the Sobolev embedding theorem. Then, by (4-26), (4-24) for k = 1 is a consequence of (4-8), (4-15) and
the fact that |∂xv

∗
| ≤ |9∗| on R×R.

Assume now that (4-21), (4-22) and (4-24) are satisfied for any integer 1≤ k ≤ k0 and any t ∈R. Let us
prove these three estimates for k=k0+1. We apply Proposition 2.8 with u :=∂k0

x 9
∗( ·+a∗(t), · +(t+1/2)),

T := 1/2 and successively λ := ±νc. In view of (4-21), (4-23), (4-24) and the fact that |a∗(t)− a∗(s)| is
uniformly bounded for s ∈ [t − 1, t + 2], this yields∫ t+1

t

∫
R

|∂k0+1
x 9∗(x + a∗(t), s)|2eνc|x | dx ds ≤ Ac, (4-30)

so that (4-21) is satisfied for k = k0+ 1.
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Let k ∈ {1, . . . , k0}. We use the induction hypothesis and (4-30) to infer that

∂k−1
x 9∗ ∈ L2([t, t + 1], H 2(R)).

Also, we have

∂k−1
x 9∗ ∈ H 1([t, t + 1], L2(R))

using (4-23) and (4-24). This yields, by interpolation,

∂k−1
x 9∗ ∈ H 2/3([t, t + 1], H 2/3(R)).

Hence, using the Sobolev embedding theorem, we obtain

∂k−1
x 9∗ ∈ L∞([t, t + 1], L∞(R)) for all t ∈ R. (4-31)

On the other hand, since |∂xv
∗
| ≤ |9∗|, we have, by (4-25), that ∂xv

∗
∈ L∞([t, t + 1], L∞(R)). For

k ∈ {2, . . . , k0}, we differentiate the second equation in (2-34) k times and we use (4-31) to obtain

|∂k
x v
∗
| ≤ K

( k−1∑
j=1

|∂ j
x9
∗
| +

k−2∑
j=0

|∂ j
x v
∗
|

)
, (4-32)

where K is a positive constant. By induction we infer from (4-31) that

∂k
x v
∗
∈ L∞([t, t + 1], L∞(R)) for all t ∈ R, (4-33)

for all k ∈ {2, . . . , k0}. Then, we just compute explicitly Rk0+1(v
∗, 9∗) and we use (4-31) and (4-33) to

obtain

|Rk0+1(v
∗, 9∗)| ≤ Ak0+1,c,K

( k0+1∑
j=0

|∂ j
x9
∗
| +

k0∑
j=1

|∂ j
x v
∗
|

)
.

Hence, by (4-21) for all k ≤ k0, (4-22) and (4-30), we obtain (4-24) for k = k0+ 1. Finally, we introduce
(4-21) for all k ≤ k0+1 and (4-22) for all k ≤ k0 into (4-32) to deduce (4-22) for k = k0+1. This finishes
the proof of this step.

In order to finish the proof of Proposition 2.9, we now turn these L2
loc in time estimates into L∞ in

time estimates, and then into uniform estimates.

Step 3. Let k ≥ 0. There exists a positive number Ak,c, depending only on k and c, such that∫
R

|∂k
x9
∗(x + a∗(t), t)|2eνc|x | dx ≤ Ak,c (4-34)

for any t ∈ R. In particular, we have∥∥∂k
x9
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-35)

for any t ∈ R, and for a possibly different choice of the positive constant Ak,c.
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Here, we use the Sobolev embedding theorem in time and (4-23) for the proof. By the Sobolev
embedding theorem, we have∥∥∂k

x9
∗( · + a∗(t), t)e(νc/2)| · |

∥∥2
L2(R)
≤ K

(∥∥∂s
(
∂k

x9
∗( · + a∗(t), s)e(νc/2)| · |

)∥∥2
L2([t−1,t+1],L2(R))

+
∥∥∂k

x9
∗( · + a∗(t), s)e(νc/2)| · |

∥∥2
L2([t−1,t+1],L2(R))

)
,

while, by (4-23),∥∥∂s
(
∂k

x9
∗( ·+a∗(t), s)e(νc/2)| · |

)∥∥2
L2([t−1,t+1],L2(R))

≤ 2
(∥∥∂k+2

x 9∗( ·+a∗(t), s)e(νc/2)| · |
∥∥2

L2([t−1,t+1],L2(R))

+
∥∥Rk(9

∗)( · + a∗(t), s)e(νc/2)| · |
∥∥2

L2([t−1,t+1],L2(R))

)
,

so that we finally deduce (4-34) from (4-21) and (4-24). The estimate (4-35) follows from applying the
Sobolev embedding theorem to (4-34).

The function v∗ satisfies a similar inequality:

Step 4. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

(
∂k

x v
∗(x + a∗(t), t)

)2eνc|x | dx ≤ Ak,c (4-36)

and ∥∥∂k
x v
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-37)

for any t ∈ R.

The proof is similar to the proof of Step 3 using the first equation in (2-34) instead of (2-32). We use
the Sobolev embedding theorem to write∥∥∂k

x v
∗( · + a∗(t), t)eνc| · |

∥∥2
L2(R)
≤ K

(∥∥∂s
(
∂k

x v
∗( · + a∗(t), s)eνc| · |

)∥∥2
L2([t−1,t+1],L2(R))

+
∥∥∂k

x v
∗( · + a∗(t), s)eνc| · |

∥∥2
L2([t−1,t+1],L2(R))

)
.

By the first equation in (2-34), (4-21), (4-23) and (4-33), we have∥∥∂s
(
∂k

x v
∗( · + a∗(t), s)eνc| · |

)∥∥2
L2([t−1,t+1],L2(R))

≤ Ac.

This leads to (4-36). The uniform bound in (4-37) is then a consequence of the Sobolev embedding
theorem.

Finally, we provide the estimates for the function w∗.

Step 5. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

∣∣∂k
xw
∗(x + a∗(t), t)

∣∣2eνc|x | dx ≤ Ak,c (4-38)

and ∥∥∂k
xw
∗( · + a∗(t), t)e(νc/2)| · |

∥∥
L∞(R) ≤ Ak,c (4-39)

for any t ∈ R.
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The proof relies on the last two steps. First, we write

v∗9∗ =− 1
2∂x((1− (v∗)2)1/2 exp iθ∗).

Since (1− v∗(x, t)2)1/2 exp iθ∗(x, t)→ 1 as x→−∞ for any t ∈ R, we obtain the formula

2F(v∗, 9∗)= 1− (1− (v∗)2)1/2 exp iθ∗. (4-40)

Hence, using (2-30), we have

w∗ = 2 Im
(
9∗(1−2F(v∗, 9∗))

1−(v∗)2
)
. (4-41)

Combining (2-7) and (4-40), we recall that

|1− 2F(v∗, 9∗)|
1− (v∗)2

≤ Ac. (4-42)

Hence, we obtain

|w∗| ≤ Ac|9
∗
|.

Then, (4-38) and (4-39) follow from (4-34) and (4-35) for k = 0. For k ≥ 1, we differentiate (4-41) k
times with respect to the space variable, and using (4-35), (4-37) and (4-42), we are led to

|∂k
xw
∗
| ≤ Ak,c

( k∑
j=0

|∂ j
x9
∗
| +

k−1∑
j=1

|∂ j
x v
∗
|

)
.

We finish the proof of this step using Steps 3 and 4. This completes the proof of Proposition 2.9. �

5. Proof of the Liouville theorem

Proof of Proposition 2.10. First, by (2-38) and the explicit formula for vc and wc in (2-3), there exists a
positive number Ak,c such that∫

R

(
(∂k

x ε
∗

v(x, t))2+ (∂k
x ε
∗

w(x, t))2
)
eνc|x | dx ≤ Ak,c, (5-1)

for any k ∈ N and any t ∈ R. In view of the formulae of Hc in (A-42) and for u∗ in (2-41), a similar
estimate holds for u∗, for a possibly different choice of the constant Ak,c. As a consequence, we are
allowed to differentiate with respect to the time variable the quantity

I∗(t) :=
∫

R

xu∗1(x, t)u∗2(x, t) dx
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on the left-hand side of (2-43). Moreover, we can compute

d
dt
(I∗)=−2

∫
R

µ〈Hc∗(∂x u∗), u∗〉R2 +

∫
R

µ〈Hc∗(JRc∗ε
∗), u∗〉R2

− (c∗)′
∫

R

µ〈Hc∗(∂c Qc∗), u∗〉R2 + (c∗)′
∫

R

µ〈∂cHc∗(ε
∗), u∗〉R2

+ ((a∗)′− c∗)
∫

R

µ〈Hc∗(∂xε
∗), u∗〉R2, (5-2)

where we have set µ(x)= x for any x ∈ R.
At this stage, we split the proof into five steps. The proof of these steps is similar to the proof of

Proposition 7 in [Béthuel et al. 2015].

Step 1. There exist two positive numbers A1 and R1, depending only on c, such that

I∗1 (t) := −2
∫

R

µ〈Hc∗(∂x u∗), u∗〉R2 ≥
1−c2

8
‖u∗( · , t)‖2X (R)− A1‖u∗( · , t)‖2X (B(0,R1))

(5-3)

for any t ∈ R.

We introduce the explicit formula of the operator Hc∗ in the definition of I∗1 (t) to obtain

I∗1 (t)= 2
∫

R

µ∂x

( ∂xx u∗1
1− v2

c∗

)
u∗1− 2

∫
R

µ
(
1− (c∗)2− (5+ (c∗)2)v2

c∗ + 2v4
c∗
) ∂x u∗1
(1− v2

c∗)
2

u∗1

+ 2
∫

R

µc∗
1+ v2

c∗

1− v2
c∗
(∂x u∗2)u

∗

1− 2
∫

R

µ(c∗)2
(1+ v2

c∗)
2

(1− v2
c∗)

3
(∂x u∗1)u

∗

1

+ 2
∫

R

µc∗
1+ v2

c∗

1− v2
c∗
(∂x u∗1)u

∗

2− 2
∫

R

µ(1− v2
c∗)(∂x u∗2)u

∗

2.

Integrating each term by parts, we obtain

I∗1 (t)=
∫

R

ι∗1(x, t) dx,

with

ι∗1 =

(
2

1− v2
c∗
+ 2x

∂xvc∗vc∗

1− v2
c∗

)
(∂x u∗1)

2
− 2c∗

(
1+ v2

c∗

1− v2
c∗
+

4x∂xvc∗vc∗(
1− v2

c∗
)2

)
u∗2u∗1

+ (1− v2
c∗ − 2x∂xvc∗vc∗)(u∗2)

2
+

1+ 2((c∗)2− 3)v2
c∗ + (2(c

∗)2− 3)v4
c∗ − 2v6

c∗

(1− v2
c∗)

3
(u∗1)

2

+ 4x∂xvc∗vc∗
((c∗)2− 3)+ (2(c∗)2− 3)v2

c∗ − 3v4
c∗

(1− v2
c∗)

4
(u∗1)

2.

Let δ be a small positive number. We next use the exponential decay of the function vc and its derivatives
to guarantee the existence of a radius R, depending only on c and δ (in view of the bound on c∗− c in
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(2-21)), such that

ι∗1(x, t)≥ (2− δ)(∂x u∗1)
2(x, t)+

(1−c2

4
− δ

)
((u∗1)

2(x, t)+ (u∗2)
2(x, t))

when |x | ≥ R.
Then, we choose δ small enough and fix the number R1 according to the value of the corresponding R,

to obtain ∫
|x |≥R1

ι∗1(x, t) dx ≥ 1−c2

8

∫
|x |≥R1

(
(∂x u∗1(x, t))2+ u∗1(x, t)2+ u∗2(x, t)2

)
dx . (5-4)

On the other hand, it follows from (2-3), and again (2-8), that∫
|x |≤R1

ι∗1(x, t) dx ≥
(1−c2

8
− A1

) ∫
|x |≤R1

(
(∂x u∗1(x, t))2+ u∗1(x, t)2+ u∗2(x, t)2

)
dx

for a positive number A1 depending only on c. Combining with (5-4), we obtain (5-3).

Step 2. There exist two positive numbers A2 and R2, depending only on c, such that

|I∗2 (t)| :=
∣∣∣∣∫

R

µ〈Hc∗(JRc∗ε
∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A2‖u∗( · , t)‖2X (B(0,R2))

(5-5)

for any t ∈ R.

We refer to the proof of Step 2 in the proof of Proposition 7 in [Béthuel et al. 2015] for more details.
We infer the next step from (2-9), (2-57), the explicit formula of Hc∗ in (A-42) and the exponential

decay of the function ∂c Qc∗ and its derivatives.

Step 3. There exist two positive numbers A3 and R3, depending only on c, such that

|I∗4 (t)| :=
∣∣∣∣(c∗)′∫

R

µ〈Hc∗(∂c Qc∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A3‖u∗( · , t)‖2X (B(0,R3))

(5-6)

for any t ∈ R.

We decompose the real line into two regions, [−R, R] and its complement, for any R > 0. We use the
fact that |x | ≤ eνc|x |/4 for all |x | ≥ R, to write

|I∗4 (t)| ≤ R|(c∗)′(t)|
∫
|x |≤R

∣∣Hc∗(t)(∂c Qc∗(t))(x)
∣∣|u∗(x, t)| dx

+ δ|(c∗)′(t)|
∫
|x |≥R

∣∣Hc∗(t)(∂c Qc∗(t))(x)
∣∣|u∗(x, t)|eνc|x |/4 dx

for any t ∈ R. We deduce from (2-9), the explicit formula of Hc∗ in (A-42) and the exponential decay of
the function ∂c Qc∗ and its derivatives that

|I∗4 (t)| ≤ Ac

(
R‖u∗( · , t)‖X (B(0,R))+ δ‖u∗( · , t)‖X (R)

)
‖ε∗( · , t)‖L2(R)2

for any t ∈ R. Hence, by (2-57),

|I∗4 (t)| ≤ Ac

( R2

δ
‖u∗( · , t)‖2X (B(0,R))+ 2δ‖u∗( · , t)‖2X (R)

)
.
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We choose δ so that 2Acδ ≤ (1− c2)/64, and we denote by R4 the corresponding number R, to obtain
(5-6), with A4 = AcR2

4/δ.
Similarly, we use (2-9), (2-21) and (2-57) to obtain:

Step 4. There exists two positive numbers A4 and R4, depending only on c, such that

|I∗3 (t)| :=
∣∣∣∣(c∗)′∫

R

µ〈∂cHc∗(ε
∗), u∗〉R2

∣∣∣∣≤ 1−c2

64
‖u∗( · , t)‖2X (R)+ A4‖u∗( · , t)‖2X (B(0,R4))

(5-7)

for any t ∈ R.

The last step follows from an argument as in Step 3.

Step 5. There exist two positive numbers A5 and R5, depending only on c, such that

|I∗5 (t)| :=
∣∣∣∣((a∗)′− c∗)

∫
R

µ〈Hc∗(∂xε
∗), u∗〉R2

∣∣∣∣
≤

1−c2

64
‖u∗( · , t)‖2X (R)+ A5‖u∗( · , t)‖2X (B(0,R5))

(5-8)

for any t ∈ R.

Finally, combining the estimates in Steps 1 to 5 with the identity (5-2), we obtain

d
dt
(I∗(t))≥ 1−c2

16
‖u∗( · , t)‖2X (R)− (A1+ A2+ A3+ A4+ A5)‖u∗( · , t)‖2X (B(0,R∗)),

allowing us to conclude the proof of (2-43) with

R∗ =max{R1, R2, R3, R4, R5},

A∗ = A1+ A2+ A3+ A4+ A5. �

Proof of Lemma 2.11. When u ∈ H 3(R)× H 1(R), the function ∂x u is in the space H 2(R)× L2(R) which
is the domain of Hc. The scalar product on the right-hand side of (2-46) is well-defined in view of (2-45).
Next, we use the formula for Hc in (A-42) to express Gc(u) as

〈SMcu,Hc(−2∂x u)〉L2(R)2

= 2
∫

R

∂xvc

vc

(
1− c2

− (5+ c2)v2
c + 2v4

c

(1− v2
c )

2 + c2 (1+ v
2
c )

2

(1− v2
c )

3 − 2c2 v
2
c (1+ v

2
c )

(1− v2
c )

3

)
u1∂x u1

− 2
∫

R

∂xvc

vc
∂x

(
∂xx u1

1− v2
c

)
+ 2

∫
R

∂xvc(1− v2
c )

vc
u2∂x u2

+ 2c
∫

R

(
2
vc∂xvc

1− v2
c

u1∂x u2−
∂xvc(1+ v2

c )

vc(1− v2
c )
∂x(u1u2)

)
. (5-9)

We recall that vc solves the equation

∂xxvc = (1− c2
− 2v2

c )vc, (5-10)

which leads to

(∂xvc)
2
= (1− c2

− v2
c )v

2
c and ∂x

(
∂xvc

vc

)
=−v2

c . (5-11)
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Then, the third integral on the right-hand side of (5-9) can be written as

2
∫

R

∂xvc(1− v2
c )

vc
u2∂x u2 =

∫
R

µcu2
2, (5-12)

with µc := 2(∂xvc)
2
+ (1− v2

c )v
2
c . Similarly, the last integral is given by∫

R

(
2
vc∂xvc

1− v2
c

u1∂x u2−
∂xvc(1+ v2

c )

vc(1− v2
c )
∂x(u1u2)

)
=−

∫
R

(
v2

c u1u2+ 2
vc∂xvc

1− v2
c

u2∂x u1

)
. (5-13)

Combining (5-12) and (5-13) with (5-9), we obtain the identity

〈SMcu,Hc(−2∂x u)〉L2(R)2 = I +
∫

R

µc

(
u2−

cv2
c

µc
u1−

2cvc∂xvc

µc(1− v2
c )
∂x u1

)2

,

where

I =
∫

R

2
(
∂xvc

vc

(
1− c2

− (5+ c2)v2
c + 2v4

c

(1− v2
c )

2 + c2 1+ v2
c

(1− v2
c )

2

)
− 2c2 v3

c∂xvc

µc(1− v2
c )

)
u1∂x u1

−

∫
R

∂xvc

vc
u1∂x

(
∂xx u1

1− v2
c

)
− c2

∫
R

v4
c

µc
u2

1− 4c2
∫

R

(∂xvc)
2v2

c

µc(1− v2
c )

2 (∂x u1)
2.

Using (5-10) and (5-11), we finally deduce that

I = 3
2

∫
R

v4
c

µc

(
∂x u1−

∂xvc

vc
u1

)2
,

which finishes the proof of (2-46). �

Proof of Proposition 2.12. We first rely on (2-3) and (2-46) to check that the quadratic form Gc is
well-defined and continuous on X (R). Next, setting

v = (vcu1, vcu2), (5-14)

and using (5-10), we can express it as

Gc(u)= Kc(v) :=

∫
R

v2
c

µc

(
∂xv1−

2∂xvc

vc
v1

)2

+

∫
R

µc

v2
c

(
v2+

cλc

µc(1− v2
c )
v1−2

cvc∂xvc

µc(1− v2
c )
∂xv1

)2

, (5-15)

where we have set λc := −µc+ 4(∂xvc)
2. From (2-48) and (5-14) we deduce that

Ker(Kc)= Span(vc Qc). (5-16)

Let w be the pair defined in the following way

w =

(
v1, v2− 2

cvc∂xvc

µc(1− v2
c )
∂xv1

)
.

We compute
Kc(v)= 〈Tc(w),w〉L2(R)2, (5-17)
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with

Tc(w)=
−3∂x

(
v2

c

µc
∂xw1

)
+

(
8v4

c (∂xvc)
2
−2v6

c (1−v
2
c )

µ2
c

+
4(∂xvc)

2

µc
+

c2(2c2
−1+v2

c )
2v2

c

µc(1−v2
c )

2

)
w1−

c(2c2
−1+v2

c )

(1−v2
c )

w2

−
c(2c2

− 1+ v2
c )

(1− v2
c )

w1+
µc

v2
c
w2

. (5-18)

The operator Tc in (5-18) is self-adjoint on L2(R)2, with domain Dom(Tc)= H 2(R)× L2(R). In addition,
combining (5-15) with (5-17) we deduce that Tc is nonnegative, with a kernel equal to

Ker(Tc)= Span
{(
v2

c ,
2cv2

c (∂xvc)
2

µc(1− v2
c )

)}
.

At this stage, we divide the proof into three steps.

Step 1. Let c ∈ (−1, 1) \ {0}. There exists a positive number 31, depending continuously on c, such that

〈Tc(w),w〉L2(R)2 ≥31

∫
R

(w2
1 +w

2
2), (5-19)

for any pair w ∈ X1(R) such that 〈
w,

(
v2

c ,
2cv2

c (∂xvc)
2

µc(1− v2
c )

)〉
L2(R)2

= 0. (5-20)

We claim that the essential spectrum of Tc is given by

σess(Tc)= [τc,+∞), (5-21)

with

τc = τ1,c−
1
2τ

1/2
2,c > 0. (5-22)

Here, we have set

τ1,c =
4(1−c2)+c2(2c2

−1)2

2(3−2c2)
+

3−2c2

2

and

τ2,c =

(4(1−c2)+c2(2c2
−1)2

3−2c2 − (3− 2c2)
)2
+ 4c2(2c2

− 1)2.

In particular, 0 is an isolated eigenvalue in the spectrum of Tc. The inequality (5-19) follows with 31

either equal to τc, or to the smallest positive eigenvalue of Tc. In view of the analytic dependence on c of
the operator Tc, 31 depends continuously on c.

Now, let us prove (5-21). We rely on the Weyl criterion. It follows from (2-47) and (5-10) that

µc(x)
v2

c (x)
→ 3− 2c2 and (∂xvc)

2(x)
µc(x)

→
1−c2

3−2c2
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as x→±∞. Coming back to (5-18), we introduce the operator T∞ given by

T∞(w)=

− 3
3−2c2 ∂xxw1+

4(1−c2)+c2(2c2
−1)2

3−2c2 w1− c(2c2
− 1)w2

−c(2c2
− 1)w1+ (3− 2c2)w2

 .
By the Weyl criterion, the essential spectrum of Tc is equal to the spectrum of T∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the spectrum of T∞
if and only if there exists a complex number ξ such that

λ2
−

( 3
3−2c2 |ξ |

2
+

4(1−c2)+c2(2c2
−1)2

3−2c2 + 3− 2c2
)
λ+ 3|ξ |2+ 4(1− c2)= 0.

This is the case if and only if

λ=
4(1−c2)+c2(2c2

−1)2+3|ξ |2

2(3−2c2)
+

3−2c2

2

±
1
2

((4(1−c2)+c2(2c2
−1)2+3|ξ |2

3−2c2 − (3− 2c2)
)2
+ 4c2(2c2

− 1)2
)1/2

.

This leads to σess(Tc)= σ(T∞)= [τc,+∞), with τc as in (5-22). This completes the proof of Step 1.

Step 2. There exists a positive number 32, depending continuously on c, such that

Kc(v)≥32

∫
R

((∂xv1)
2
+ v2

1 + v
2
2), (5-23)

for any pair v ∈ X1(R) such that

〈v, v−1
c Sχc〉L2(R)2 = 0. (5-24)

We start by improving the estimate in (5-19). Given a pair w ∈ X1(R), we observe that∣∣∣∣〈Tc(w),w〉L2(R)2 − 3
∫

R

v2
c

µc
(∂xw1)

2
∣∣∣∣≤ Ac

∫
R

(w2
1 +w

2
2).

Here and in the sequel, Ac refers to a positive number depending continuously on c. For 0< τ < 1, we
have

〈Tc(w),w〉L2(R)2 ≥ (1− τ)〈Tc(w),w〉L2(R)2 + 3τ
∫

R

v2
c

µc
(∂xw1)

2
− Acτ

∫
R

(w2
1 +w

2
2).

Since v2
c/µc ≥ 1/(3− 2c2), this yields

〈Tc(w),w〉L2(R)2 ≥ ((1− τ)31− Acτ)

∫
R

(w2
1 +w

2
2)+

3τ
3−2c2

∫
R

(∂xw1)
2

under condition (5-20). For τ small enough, this leads to

〈Tc(w),w〉L2(R)2 ≥ Ac

∫
R

(
(∂xw1)

2
+w2

1 +w
2
2
)

(5-25)

when w satisfies condition (5-20).
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Since the pair w depends on the pair v, we can write (5-25) in terms of v. By (5-17), Kc(v) is equal to
the left-hand side of (5-25). We deduce that (5-25) may be expressed as

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1
)
+ Ac

∫
R

(
v2−

2cvc(∂xvc)

µc(1−v2
c )
∂xv1

)2
.

We recall that, given two vectors a and b in a Hilbert space H , we have

‖a− b‖2H ≥ τ‖a‖
2
H −

τ

1−τ
‖b‖2H

for any 0< τ < 1. Then, we deduce that

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1 + τv
2
2
)
−
τ Ac
1−τ

∫
R

(
vc(∂xvc)

µc(1−v2
c )
∂xv1

)2
.

We choose τ small enough so that we can infer from (2-3) that

Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1 + v
2
2
)

(5-26)

when w satisfies condition (5-20), i.e., when v is orthogonal to the pair

vc =

(
v2

c − ∂x

(
2cv2

c (∂xvc)
2

µc(1− v2
c )

)
,

2cv2
c (∂xvc)

2

µc(1− v2
c )

)
. (5-27)

Next, we verify that (5-26) remains true, decreasing possibly the value of Ac, when we replace this
orthogonality condition by

〈v, vc Qc〉L2(R)2 = 0. (5-28)

We remark that
〈vc, vc Qc〉L2(R)2 6= 0.

Indeed, we would deduce from (5-26) that

0= Kc(vc Qc)≥ Ac

∫
R

(
(∂xv

2
c )

2
+ v4

c + (vcwc)
2)> 0,

which is impossible. In addition, the number 〈vc, vc Qc〉L2(R)2 depends continuously on c in view of
(5-27). Given a pair ṽ satisfying (5-28), we denote by λ the real number such that v = λvc Qc + ṽ is
orthogonal to vc. Since vc Qc belongs to the kernel of Kc, using (5-26) we obtain

Kc(ṽ)= Kc(v)≥ Ac

∫
R

(
(∂xv1)

2
+ v2

1+ v2
2
)
. (5-29)

On the other hand, since ṽ satisfies (5-28), we have

λ=
〈v, vc Qc〉L2(R)2

‖vc Qc‖
2
L2(R)2

.

Using the Cauchy–Schwarz inequality, this yields

λ2
≤ Ac

(∫
R

(
v4

c + (vcwc)
2))(∫

R

(
v2

1+ v2
2
))
.
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Hence, by (2-3) and (5-29),

λ2
≤ Ac Kc(v)= Ac Kc(ṽ).

Using (5-29), this leads to∫
R

(
(∂x ṽ1)

2
+ ṽ2

1 + ṽ
2
2
)
≤ 2

(
λ2
∫

R

v2
c
(
(∂xvc)

2
+ v2

c +w
2
c
)
+

∫
R

(
(∂xv1)

2
+ v2

1+ v2
2
))
≤ Ac Kc(ṽ).

We finish the proof of this step applying again the same argument. We write v = λvc SQc + ṽ, with
〈ṽ, vc Qc〉L2(R)2 = 0. Since vc Qc belongs to the kernel of Kc, we infer from the same argument that

Kc(v)= Kc(ṽ)≥32

∫
R

(∂x ṽ1)
2
+ ṽ2

1 + ṽ
2
2 . (5-30)

Using the orthogonality condition in (5-24), we obtain

λ=−
〈ṽ, v−1

c Sχc〉L2(R)2

〈Qc, Sχc〉L2(R)2
.

By the Cauchy–Schwarz inequality, we are led to

λ2
≤ Ac‖v

−1
c Sχc‖

2
L2×L2

∫
R

(
ṽ2

1 + ṽ
2
2
)
.

Invoking the exponential decay of χc in (A-46), we deduce

‖v−1
c Sχc‖

2
L2×L2 ≤ Ac.

As a consequence, we can derive from (5-30) that

λ2
≤ Ac Kc(ṽ)= Ac Kc(v).

Combining again with (5-30), we are led to∫
R

(
(∂xv1)

2
+ v2

1 + v
2
2
)
≤ 2

(
λ2
∫

R

v2
c
(
(∂xvc)

2
+ v2

c +w
2
c
)
+

∫
R

(
(∂x ṽ1)

2
+ ṽ2

1 + ṽ
2
2
))
≤ Ac Kc(v).

which completes the proof of Step 2.

Step 3. End of the proof.

Since the pair v depends on the pair u as in (5-14), we can write (5-23) in terms of u. The left-hand
side of (5-23) is equal to Gc(u) by (5-15). Moreover, for the right-hand side, we have∫

R

(
(∂xv1)

2
+ v2

1 + v
2
2
)
=

∫
R

v2
c
(
(∂x u1)

2
+ (2v2

c + c2)u2
1+ u2

2
)
.

We deduce that (5-23) may be written as

Gc(u)≥ Ac

∫
R

v2
c
(
(∂x u1)

2
+ u2

1+ u2
2
)
, (5-31)
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when vcu verifies the orthogonality condition (5-24), which means that u verifies the orthogonality
condition (2-52). We recall that

vc(x)≥ Ace−|x |

by (2-3), which is sufficient to obtain (2-51). This completes the proof of Proposition 2.12. �

Proof of Proposition 2.13. First we check that we are allowed to differentiate the quantity

J ∗(t) := 〈Mc∗(t)u∗( · , t), u∗( · , t)〉L2(R)2 .

Indeed, by (2-41), (5-1) and (A-42), there exists a positive number Ak,c such that∫
R

((
∂k

x u∗1(x, t)
)2
+
(
∂k

x u∗2(x, t)
)2)eνc|x | dx ≤ Ak,c. (5-32)

Next, using (2-42) and (2-45), we obtain

d
dt
(J ∗)= 2〈SMc∗u∗,Hc∗(J Su∗)〉L2(R)2 + 2〈SMc∗u∗,Hc∗(JRc∗ε

∗)〉L2(R)2

+ 2((a∗)′− c∗)〈SMc∗u∗,Hc∗(∂xε
∗)〉L2(R)2 − 2(c∗)′〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2

+ (c∗)′〈∂c Mc∗u∗, u∗〉L2(R)2 + 2(c∗)′〈Mc∗u∗, S∂cHc∗(ε
∗)〉L2(R)2 . (5-33)

The proof of (2-53) is the same as in [Béthuel et al. 2015]. We will give only the main ideas of the
proof. We will estimate all the terms on the right-hand side of (5-33) except the fourth term, which
vanishes.

For the first one, we infer from Proposition 2.12 the following estimate.

Step 1. There exists a positive number B1, depending only on c, such that

J ∗1 (t) := 2〈SMc∗u∗,Hc∗(J Su∗)〉L2(R)2 ≥ B1

∫
R

[
(∂x u∗1)

2
+ (u∗1)

2
+ (u∗2)

2](x, t)e−2|x | dx

for any t ∈ R.

From (2-21), (2-57) and (5-1), we get an estimate for the second term.

Step 2. There exists a positive number B2, depending only on c, such that

|J ∗2 (t)| := 2|〈SMc∗u∗,Hc∗(JRc∗ε
∗)〉L2(R)2 | ≤ B2‖ε

∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R)

for any t ∈ R.

For the third one, we use (2-21) to obtain:

Step 3. There exists a positive number B3, depending only on c, such that

|J ∗3 (t)| := 2|(a∗)′− c∗|
∣∣〈SMc∗u∗,Hc∗(∂xε

∗)〉L2(R)2

∣∣≤ B3‖ε
∗( · , t)‖1/2X (R)‖u

∗( · , t)‖2X (R)

for any t ∈ R.

We now prove the following statement for the fourth term.
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Step 4. We have

J ∗4 (t) := 2(c∗)′〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2 = 0

for any t ∈ R.

Since Hc∗(∂c Qc∗)= P ′(Qc∗)= SQc∗ and Mc∗Qc∗ = S∂x Qc∗ , we have

〈SMc∗u∗,Hc∗(∂c Qc∗)〉L2(R)2 = 〈Mc∗u∗, Qc∗〉L2(R)2 = 〈u
∗, S∂x Qc∗〉L2(R)2

= 〈ε∗,Hc∗(∂x Qc∗)〉L2(R)2 = 0.

This is the reason why we do not need to establish a quadratic dependence of (c∗)′(t) on ε∗.
Next, we use (2-3), (2-9), (2-21) and (2-45) to bound the fifth term.

Step 5. There exists a positive number B5, depending only on c, such that

|J ∗5 (t)| := |(c
∗)′||〈∂c Mc∗u∗, u∗〉L2(R)2 | ≤ B5‖ε

∗( · , t)‖1/2X (R)‖u
∗( · , t)‖2X (R)

for any t ∈ R.

Finally, we acquire a bound on the sixth term in the same way.

Step 6. There exists a positive number B6, depending only on c, such that

|J ∗6 (t)| := |(c
∗)′|
∣∣〈Mc∗u∗, S∂cHc∗(ε

∗)〉L2(R)2

∣∣≤ B6‖ε
∗( · , t)‖1/2X (R)‖u

∗( · , t)‖2X (R)

for any t ∈ R.

We conclude the proof of Proposition 2.13 by combining the six previous steps to obtain (2-53), with
B∗ :=max{1/B1, B2+ B3+ B5+ B6}. �

Proof of Corollary 2.14. Corollary 2.14 is a consequence of Propositions 2.10 and 2.13. We combine the
two estimates (2-43) and (2-53) with the definition of N (t) to obtain

d
dt
(
〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2

)
≥

(1−c2

16
− A∗B2

∗
e2R∗‖ε∗( · , t)‖1/2X (R)

)
‖u∗( · , t)‖2X (R)

for any t ∈ R. In view of (2-21), we fix the parameter βc such that

‖ε∗( · , t)‖1/2X (R) ≤
1−c2

32A∗B2
∗
e2R∗

for any t ∈ R, to obtain (2-54). In view of (2-3), (2-21) and (2-45), we notice that there exists a positive
number Ac, depending only on c, such that

‖Mc∗(t)‖L∞(R) ≤ Ac (5-34)

for any t ∈R. Moreover, since the map t 7→ 〈N (t)u∗( · , t), u∗( · , t)〉L2(R)2 is uniformly bounded by (5-32)
and (5-34), the estimate (2-55) follows by integrating (2-54) from t =−∞ to t =+∞. Finally, statement
(2-56) is a direct consequence of (2-55). �
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Appendix A. Appendix

Weak continuity of the hydrodynamical flow. In this section, we prove the weak continuity of the
hydrodynamical flow, which is stated in the following proposition.

Proposition A.1. We consider a sequence (vn,0, wn,0)n∈N ∈NV(R)N, and a pair (v0, w0) ∈NV(R) such
that

vn,0 ⇀v0 in H 1(R) and wn,0 ⇀w0 in L2(R) (A-1)

as n→+∞. We denote by (vn, wn) the unique solution to (HLL) with initial datum (vn,0, wn,0) and we
assume that there exists a positive number Tn such that the solutions (vn, wn) are defined on (−Tn, Tn),
and satisfy the condition

sup
n∈N

sup
t∈(−Tn,Tn)

max
x∈R

vn(x, t)≤ 1− σ (A-2)

for a given positive number σ . Then, the unique solution (v,w) to (HLL) with initial datum (v0, w0) is
defined on (−Tmax, Tmax), with3

Tmax = lim inf
n→+∞

Tn,

and for any t ∈ (−Tmax, Tmax), we have

vn(t) ⇀ v(t) in H 1(R) and wn(t) ⇀ w(t) in L2(R) (A-3)

as n→+∞.

First we prove a weak continuity property of the flow of equations (2-32)–(2-34). Next, we deduce the
weak convergence of wn from (4-41).

More precisely, we consider now a sequence of initial conditions (9n,0, vn,0) ∈ L2(R)× H 1(R), such
that the norms ‖9n,0‖L2 and ‖vn,0‖L2 are uniformly bounded with respect to n, and we assume that

sup
n∈N

‖vn,0‖L∞(R) < 1. (A-4)

Then, there exist two functions 90 ∈ L2(R) and v0 ∈ H 1(R) such that, going possibly to a subsequence,

9n,0 ⇀90 in L2(R), (A-5)

vn,0 ⇀v0 in H 1(R), (A-6)

and, for any compact subset K of R,

vn,0→ v0 in L∞(K ) (A-7)

as n→+∞. We claim that this convergence is conserved along the flow corresponding to equations
(2-32)–(2-34).4

3See Theorem 1 in [de Laire and Gravejat 2015] for more details.
4We only consider here positive time but the proof remains valid for negative time.
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Proposition A.2. We consider two sequences (9n,0)n∈N ∈ L2(R)N and (vn,0)n∈N ∈ H 1(R)N, and two
functions 90 ∈ L2(R) and v0 ∈ H 1(R), such that assumptions (A-4)–(A-7) are satisfied, and we denote by
(9n, vn) and (9, v), respectively, the unique global solutions to (2-32)–(2-34) with initial data (9n,0, vn,0)

and (90, v0), which we assume to be defined on [0, T ] for a positive number T . For any fixed t ∈ [0, T ],
we have

9n( · , t) ⇀ 9( · , t) in L2(R), (A-8)

vn( · , t) ⇀ v( · , t) in H 1(R) (A-9)

when n→+∞.

Proof. We split the proof into four steps.

Step 1. There exist three functions 8 ∈ L2([0, T ], L2(R)) and v ∈ L2([0, T ], H 1(R)) such that, up to a
further subsequence,

9n(t) ⇀8(t) in L2(R), (A-10)

vn( · , t) ⇀ v( · , t) in H 1(R), (A-11)

vn( · , t)→ v( · , t) in L∞loc(R) (A-12)

for all t ∈ [0, T ], and

|9n|
29n ⇀ |8|

28 in L2([0, T ], L2(R)), (A-13)

when n→+∞.

Proof. We recall that there exists a constant M such that

‖9n,0‖L2 ≤ M and ‖vn,0‖H1 ≤ M

uniformly on n. Applying Proposition 2.7 to the pairs (9n, vn) and (0, 0), we obtain

‖9n‖C0
T L2

x
+‖vn‖C0

T H1
x
+‖9n‖L4

T L∞x
≤ A

(
‖9n,0‖L2 +‖vn,0‖H1

)
.

This leads to

‖9n‖L4
T L∞x
≤ 2AM, ‖9n‖L∞T L2

x
≤ 2AM and ‖vn‖L∞T H1

x
≤ 2AM. (A-14)

Hence, there exist two functions8∈ L∞([0, T ], L2(R))∩L4([0, T ], L∞(R)) and v∈ L∞([0, T ], H 1(R))

such that

9n
∗

⇀8 in L∞([0, T ], L2(R)),

vn
∗

⇀ v in L∞([0, T ], H 1(R)).

Let us prove (A-10) and (A-11). We argue as in [Béthuel et al. 2015] and we introduce a cutoff function
χ ∈ C∞c (R) such that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2] ∪ [2,+∞). Set χp( · ) := χ( · /p) for any
integer p∈N∗. By (A-14), the sequences (χp9n)n∈N and (χpvn)n∈N are bounded in C0([0, T ], L2(R)) and
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C0([0, T ], H 1(R)), respectively. In view of the Rellich–Kondrachov theorem, the sets {χp9n(·, t) | n ∈N}

and {χpvn(·, t) |n∈N} are relatively compact in H−2(R) and H−1(R), respectively, for any fixed t ∈[0, T ].
In addition, since the pair (9n, vn) is a solution to (2-32)–(2-34), we have that (∂t9n, ∂tvn) belongs to
C0([0, T ], H−2(R)× H−1(R)) and satisfies

‖∂t9n( · , t)‖H−2(R) ≤ KM and ‖∂tvn( · , t)‖H−1(R) ≤ KM .

This leads to the fact that the pair (χp9n, χpvn) is equicontinuous in C0([0, T ], H−2(R)× H−1(R)).
Then, we apply the Arzelà–Ascoli theorem and the Cantor diagonal argument to find a further subsequence
(independent of p), such that, for each p ∈ N∗,

χp9n→ χp8 in C0([0, T ], H−2(R)), (A-15)

χpvn→ χpv in C0([0, T ], H−1(R)) (A-16)

as n→+∞. Combining this with (A-14) we infer that (A-10) and (A-11) hold. By the Sobolev embedding
theorem, (A-12) is a consequence of (A-11).

Now, let us prove (A-13). Using the Hölder inequality, we infer that∫ T

0

∫
R

|9n(x, t)|6 dx dt ≤ ‖9n‖
2
L∞L2

x
‖9n‖

4
L4

T L∞x
.

By (A-14), we conclude that ∥∥|9n|
29n

∥∥
L2

T L2
x
≤ M. (A-17)

So, there exists a function 81 ∈ L2(R×[0, T ]) such that up to a further subsequence,

|9n|
29n ⇀81 in L2(R×[0, T ]).

Let us prove that 81 ≡ |8|
28. To obtain this it is sufficient to prove that, up to a subsequence,

9n→8 in L2(
[0, T ], L2([−R, R])

)
(A-18)

for any R > 0, i.e., the sequence (9n) is relatively compact in L2([−R, R]× [0, T ]). Indeed, using the
Hölder inequality, we obtain∥∥|9n|

29n − |8|
28
∥∥

L6/5
T,R
=
∥∥(9n −8)(|9n|

2
+ |8|2)+9n8(9n −8)

∥∥
L6/5

T,R

≤ 2
∥∥|9n −8|(|9n|

2
+ |8|2)

∥∥
L6/5

T,R

≤ 2‖9n −8‖L2
T,R

(
‖9n‖

2
L6

T,R
+‖8‖2L6

T,R

)
(A-19)

for any R > 0. By (A-17), (9n) is uniformly bounded in L6(R×[0, T ]) and 8 ∈ L6(R×[0, T ]). Then

|9n|
29n→ |8|

28 in L6/5([−R, R]× [0, T ]),

so that81≡|8|
28. Now, let us prove that the sequence (9n) is relatively compact in L2([−R, R]×[0, T ]).

The main point of the proof is the following claim.
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Claim 1. Let 9 be a solution of (2-32) in

C0([0, T ], L2(R))∩ L4([0, T ], L∞(R)).

Then 9 ∈ L2
(
[0, T ], H 1/2

loc (R)
)
.

Proof. The proof relies on the Kato smoothing effect for the linear Schrödinger group (see [Linares and
Ponce 2009]). Let S(t)= ei t∂xx , and

F(9, v) := 1
2v

29 −Re
(
9(1− 2F(v,9))

)(
1− 2F(v,9)

)
. (A-20)

We recall that there exists a positive constant M such that

sup
x∈R

∫
+∞

−∞

|D1/2
x S(t) f (x)|2 dt ≤ M‖ f ‖2L2 (A-21)

and ∥∥∥∥∫
R

S(−t ′)D1/2
x h( · , t ′) dt ′

∥∥∥∥
L2
≤ M‖h‖L1

x L2
t

(A-22)

when f ∈ L2(R) and h ∈ L1(R, L2(R)) (see [Linares and Ponce 2009] for more details). We prove that
there exists a positive constant M such that

‖D1/2
x 9‖L∞x L2

T
≤ M‖90‖L2 +M‖9‖L2

T,x

(
‖9‖2L6

T,x
+ T 1/2(

‖v‖2L∞T,x
+‖1− 2F(v,9)‖2L∞T,x

))
. (A-23)

The claim is a consequence of this estimate, so that it is sufficient to prove (A-23).
We write

9(x, t)= S(t)90(x)+ i
∫ t

0
S(t − t ′)

(
2(|9|29)(x, t ′)+F(9, v)(x, t ′)

)
dt ′

for all (x, t) ∈ R. First, using (A-21), we obtain

sup
x∈R

∫
+∞

−∞

∣∣D1/2
x S(t)90(x)

∣∣2 dt ≤ M‖90‖
2
L2 .

For the nonlinear term, we can argue as in [Goubet and Molinet 2009] to prove that∥∥∥∥∫ t

0
S(t − t ′)D1/2

x g( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖g‖L1
T L2

x
. (A-24)

Using a duality argument, it is equivalent to prove that for any smooth function h that satisfies ‖h‖L1
x L2

t
≤ 1,

we have ∣∣∣∣∫
R×[0,T ]2

S(t − t ′)D1/2
x g(x, t ′)h̄(x, t) dt ′ dx dt

∣∣∣∣≤ M‖g‖L1
T L2

x
. (A-25)
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Using the Cauchy–Schwarz and Strichartz estimates and (A-22), the left-hand side can be written as∣∣∣∣∫
R

(∫ T

0
S(−t ′)D1/2

x g(x, t ′) dt ′
)(∫ T

0
S(−t)h(x, t) dt

)
dx
∣∣∣∣

=

∣∣∣∣∫
R

(∫ T

0
S(−t ′)g(x, t ′) dt ′

)(∫ T

0
S(−t)D1/2

x h(x, t) dt
)

dx
∣∣∣∣

≤ M
∥∥∥∥∫ T

0
S(−t ′)g(x, t ′) dt ′

∥∥∥∥
L2
≤ M‖g‖L1

T L2
x
.

This achieves the proof of (A-24). Similarly, we have∥∥∥∥∫ t

0
S(t − t ′)D1/2

x g( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖g‖L5/6
T,x
. (A-26)

We next apply (A-24) and (A-26) on the nonlinear terms to obtain, using the Cauchy–Schwarz and Hölder
estimates, ∥∥∥∥∫ t

0
D1/2

x S(t − t ′)(|9|29)( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖93
‖L6/5

T,x
≤ M‖9‖L2

T,x
‖9‖2L6

T,x

and ∥∥∥∥∫ t

0
D1/2

x S(t − t ′)F(9, v)( · , t ′) dt ′
∥∥∥∥

L∞x L2
T

≤ M‖F(9, v)‖L1
T L2

x

≤ M‖9‖L1
T L2

x

(
‖v‖2L∞T,x

+‖1− 2F(v,9)‖2L∞T,x
)

≤ MT 1/2
‖9‖L2

T,x

(
‖v‖2L∞T,x

+‖1− 2F(v,9)‖2L∞T,x
)
.

Since v ∈ L∞([0, T ], H 1(R)) and 9 ∈ L∞([0, T ], L2(R)), we know that 9 ∈ L∞([0, T ], L2(R)) and
F(9, v) ∈ L∞(R×[0, T ]). Using the fact that 9 ∈ L6(R×[0, T ]), we finish the proof of this claim. �

Applying this claim to the sequence (9n) yields that (9n) is uniformly bounded in L2([0, T ], H 1/2
loc (R)).

On the other hand, we have F(9n, vn) ∈ L∞([0, T ], L2(R)), since

vn ∈ L∞([0, T ], H 1(R)), 9n ∈ L∞([0, T ], L2(R)) and F(9n, vn) ∈ L∞(R×[0, T ]).

Then, using (2-32) and (A-17), we obtain that (9n) is uniformly bounded in H 1([0, T ], H−2(R)).
Hence, by interpolation, (9n) ∈ H 1/10([0, T ], H 1/4

loc (R)), so that it converges in L2([−R, R]×[0, T ]) for
any R > 0. This finishes the proofs of (A-18) and of Step 1. �

Step 2. We have

F(9n, vn) ⇀ F(8, v) in L2(R), (A-27)

for any t ∈ [0, T ], and

F(9n, vn)→ F(8, v) in L1([0, T ], L2
loc(R)). (A-28)
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Proof. Let φ ∈ L2(R). We compute∫
R

(v2
n(x, t)9n(x, t)− v2(x, t)8(x, t))φ(x) dx

=

∫
R

(v2
n(x, t)− v2(x, t))9n(x, t)φ(x) dx +

∫
R

(9n(x, t)−8(x, t))v2(x, t)φ(x) dx . (A-29)

The second term on the right-hand side goes to 0 when n goes to +∞, since v2(t)φ ∈ L2(R) for all t on
the one hand and using (A-10) on the other hand. For the first term on the right-hand side, we consider a
cutoff function χ with support in [−1, 1] and let χR(x)= χ(x/R) for all (x, R) ∈ R× (0,+∞). We set

In(t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)φ(x) dx,

I (1)n (t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)χR(x)φ(x) dx,

I (2)n (t) :=
∫

R

(v2
n(x, t)− v2(x, t))9n(x, t)(1−χR(x))φ(x) dx,

so that In(t)= I (1)n (t)+ I (2)n (t). By the Cauchy–Schwarz inequality, we have

|I (1)n (t)| ≤ ‖9n(t)‖L2(R)‖φ‖L2(R)‖v
2
n(t)− v2(t)‖L∞([−R,R]). (A-30)

Using (A-12) and (A-14), we infer that

I (1)n (t)→ 0 for any t ∈ [0, T ], (A-31)

as n→+∞. Next, we write

|I (2)n (t)| ≤
(
‖vn(t)‖2L∞(R)+‖v(t)‖

2
L∞(R)

)
‖9n(t)‖L2(R)‖(1−χR)φ‖L2(R).

Since φ ∈ L2(R), we have
lim

R→∞
‖(1−χR)φ‖L2(R) = 0.

In view of (A-14), this is sufficient to prove that

In(t)→ 0 (A-32)

as n→+∞, for all t ∈ [0, T ]. This yields

(v2
n9n)(t) ⇀ (v28)(t) in L2(R) (A-33)

for any t ∈ [0, T ]. Now, we prove

v2
n9n→ v28 in L1([0, T ], L2

loc(R)). (A-34)

As in (A-29), we write

‖v2
n9n − v28‖L1

T L2
R
≤ ‖(v2

n − v2)9n‖L1
T L2

R
+‖(9n −8)v

2
‖L1

T L2
R
.
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For the first term on the right-hand side, we infer from the Cauchy–Schwarz inequality that

‖(v2
n − v2)9n‖L1

T L2
R
≤ ‖v2

n − v2
‖L2

T L2
R
‖9n‖L2

T L∞R

≤ ‖vn − v‖L4
T L4

R

(
‖vn‖L4

T L4
R
+‖v‖L4

T L4
R

)
T 1/2
‖9n‖L4

T L∞R
.

On the other hand, by (A-14), vn is uniformly bounded on L2([0, T ], H 1(R)). By the first equation of
(2-34) and (A-14), vn is uniformly bounded in H 1([0, T ], H−1(R)). We deduce that vn is uniformly
bounded in H 1/3([0, T ], H 1/3(R)) and so that vn converges to v in L4([0, T ], L4([−R, R])) as n→+∞.
Hence, using (A-14) once again, we obtain

‖(v2
n − v2)9n‖L1

T L2
R
→ 0

as n→+∞. For the second term we have, by the Cauchy–Schwarz inequality and the Sobolev embedding
theorem,

‖(9n −8)v
2
‖L1

T L2
R
≤ ‖9n −8‖L2

T L2
R
‖v2
‖L2

T L∞R
≤ M2T 1/2

‖9n −8‖L2
T L2

R
.

This yields, using (A-18),
‖(9n −8)v

2
‖L1

T L2
R
→ 0

as n→+∞, which proves (A-34). Next, we set

G(vn, 9n)=9n(1− F(vn, 9n))(1− F(vn, 9n)).

We have, by (2-33),
∂x F(vn, 9n)= vn9n and ∂x F(v,8)= v8.

Using the same arguments as in the proof of (A-32), we obtain

∂x F(vn, 9n) ⇀ ∂x F(v,8) in L2(R))

for any t ∈ [0, T ]. Hence,
F(vn, 9n)→ F(v,8) in L∞loc(R) (A-35)

for any t ∈[0, T ]. Using (A-10), (A-35) and the same arguments as in the proof of (A-33), we conclude that

G(vn, 9n) ⇀ G(v,8) in L2(R) (A-36)

for any t ∈ [0, T ]. Next, we use (A-18) and (A-35) to prove that

G(vn, 9n)→ G(v,8) in L1([0, T ], L2
loc(R)). (A-37)

This finishes the proof of this step. �

Step 3. (8, v) is a weak solution of (2-32)–(2-34).

Proof. By (A-18), we have

i∂t9n→ i∂t8 in D′(R×[0, T ]) and ∂2
xx9n→ ∂2

xx8 in D′(R×[0, T ])
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as n→+∞. It remains to invoke (A-13) and (A-35) and to take the limit n→+∞ in the expression∫ T

0

∫
R

(
i∂t9n + ∂

2
xx9n + 2|9n|

29n +
1
2v

2
n9n −Re

(
9(1− 2F(vn, 9n))

)
(1− 2F(vn, 9n))

)
h̄ = 0,

where h ∈ C∞c (R × [0, T ]), in order to establish that (8, v) is a solution to (2-32) in the sense of
distributions. In addition, using the same arguments as above and (A-35), we prove that (8, v) is a
solution to (2-34) in the sense of distributions. Moreover, we infer from (A-5) that 8( · , 0) = 90 and
from (A-6) that v( · , 0)= v0. �

In order to prove that the function (8, v) coincides with the solution (9, v) in Proposition A.2, it is
sufficient, in view of the uniqueness result given by Proposition 2.7, to establish the following.

Step 4. 8 ∈ C([0, T ], L2(R)) and v ∈ C([0, T ], H 1(R)).

Proof. First, we prove that 8 ∈ C([0, T ], L2(R)). This is a direct consequence of the identity

8(x, t)= S(t)80+

∫ t

0
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′. (A-38)

Indeed, let us define

G(8, v)(t)=
∫ t

0
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′.

Since S(t)80∈C([0, T ], L2(R)), it suffices to show G(8, v)∈C([0, T ], L2(R)). We take (t1, t2)∈[0, T ]2

and write

G(8, v)(t1)−G(8, v)(t2)=
∫ t1

0
(S(t1− t ′)− S(t2− t ′))

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′

−

∫ t2

t1
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′.

For the second term on the right-hand side, we use the Strichartz and Cauchy–Schwarz inequalities to
obtain∥∥∥∥∫ t2

t1
S(t − t ′)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′
∥∥∥∥

L2

≤ M
∥∥2|8|28+F(8, v)

∥∥
L1([t1,t2],L2(R))

≤ M |t1− t2|1/2‖|8|28‖L2
T,x
+M |t1− t2|‖F(8, v)‖L∞T L2

x
. (A-39)

For the first term, we write

S(t1− t ′)− S(t2− t ′)= S(t1− t ′)(1− S(t2− t1)).

Hence,∥∥∥∥∫ t1

0
(S(t1− t ′)− S(t2− t ′))

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′
∥∥∥∥

L2

= ‖(1− S(t2− t1))G(8, v)(t1)‖L2 . (A-40)
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Taking the limit t2→ t1 in (A-39) and (A-40), we obtain that 8 ∈ C([0, T ], L2(R)).
Now, let us prove (A-38). Denote by 8̃ the function given by the right-hand side of (A-38). We will

prove that

9n(t) ⇀ 8̃(t) in L2(R) (A-41)

for all t ∈ R. This yields 8 ≡ 8̃ by uniqueness of the weak limit. Let R > 0 and denote by χR the
function defined in Step 2. Set

G(1)
n ( · , t)=

∫ t

0
S(t − t ′)χR

(
2(|9n|

29n)( · , t ′)+F(9n, vn)( · , t ′)
)

dt ′,

G(2)
n ( · , t)=

∫ t

0
S(t − t ′)(1−χR)

(
2(|9n|

29n)( · , t ′)+F(9n, vn)( · , t ′)
)

dt ′,

G(1)( · , t)=
∫ t

0
S(t − t ′)χR

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′,

G(2)( · , t)=
∫ t

0
S(t − t ′)(1−χR)

(
2(|8|28)( · , t ′)+F(8, v)( · , t ′)

)
dt ′,

for all t ∈ R, so that G(8, v)= G(1)
+G(2) and G(9n, vn)= G(1)

n +G(2)
n . Since S(t)9n,0 ⇀ S(t)80 in

L2(R) as n→+∞ for all t ∈ R, it is sufficient to show that

G(9n, vn)(t) ⇀ G(8, v)(t) in L2(R)

as n→+∞ for all t ∈ R. Let ϕ ∈ L2(R). We write(
G(9n, vn)(t)−G(8, v)(t), ϕ

)
L2

=

∫
+∞

−∞

[
G(1)

n (x, t)−G(1)(x, t)
]
ϕ(x) dx +

∫
+∞

−∞

[
G(2)

n (x, t)−G(2)(x, t)
]
ϕ(x) dx

= I R
n (t)+ J R

n (t).

For the first integral, using the Cauchy–Schwartz inequality, the Strichartz estimates for the admissible
pairs (6, 6) and (∞, 2), the Hölder inequality and (A-19), there exists a positive constant M such that for
all t ∈ [0, T ] we have

|I R
n (t)| ≤ ‖G

(1)
n (t)−G(1)(t)‖L2‖ϕ‖L2

≤ M‖ϕ‖L2
(∥∥|9n|

29n − |8|
28
∥∥

L6/5
T,R
+‖F(9n, vn)−F(8, v)‖L1

T L2
R

)
≤ M‖ϕ‖L2

(
‖F(9n, vn)−F(8, v)‖L1

T L2
R
+‖9n −8‖L2

T,R

(
‖9n‖

2
L6

T,R
+‖8‖2L6

T,R

))
.

Then, using (A-18) and (A-28), we obtain for all t ∈ R

|I R
n (t)| → 0 as n→∞.
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Next, using the Hölder inequality we have

|J R
n (t)| ≤ 2

(∫ T

0

∫
∞

−∞

∣∣|9n|
29n(x, t ′)− |8|28(x, t ′)

∣∣6/5 dx dt ′
)5/6(∫ T

0

∫
|x |≥R
|S(t − t ′)ϕ|6 dx dt ′

)1/6

+

∫ T

0

(∫
∞

−∞

∣∣F(9n, vn)(x, t ′)−F(8, v)(x, t ′)
∣∣2 dx

)1/2

dt ′ sup
t ′∈[0,T ]

(∫
|x |≥R
|S(t − t ′)ϕ(x)|2 dx

)1/2

.

The terms on the right-hand side are bounded by a constant independent of n. Besides, since (6, 6) and
(∞, 2) are admissible pairs, we have

‖S(t)ϕ‖L6
T,x
≤ M‖ϕ‖L2(R),

‖S(t)ϕ‖L∞T L2(R) ≤ M‖ϕ‖L2(R),

so that, by the dominated convergence theorem and the fact that t 7→ S(t) is uniformly continuous from
[0, T ] to L2(R), we obtain

lim
R→∞

∫ T

0

∫
|x |≥R
|S(t)ϕ|6 dx dt = lim

R→∞
sup

t∈[0,T ]

(∫
|x |≥R
|S(t)ϕ(x)|2 dx

)1/2

= 0.

Hence,

lim
R→∞
|J R

n (t)| = 0 uniformly with respect to n ∈ N

for any t ∈ [0, T ]. This completes the proof of (A-41) and then of (A-38). This leads to the fact that
8 ∈ C0([0, T ], L2(R)).

Now, let us prove that v ∈ C0([0, T ], H 1(R)). Since (8, v) satisfies the first equation in (2-34),
8 ∈ L∞([0, T ], L2(R)) and F(9, v) ∈ L∞([0, T ], L∞(R)), we have v ∈ H 1([0, T ], H−1(R)). This
yields, using the Sobolev embedding theorem, v ∈ C0([0, T ], H−1(R)). Let (t1, t2) ∈ [0, T ]2. We can
write that ∫

R

|v(t1, x)− v(t2, x)|2 dx =
〈
v(t1, x)− v(t2, x), v(t1, x)− v(t2, x)

〉
H−1,H1

≤ ‖v(t1, x)− v(t2, x)‖H−1‖v(t1, x)− v(t2, x)‖H1 .

Since v ∈ C0([0, T ], H−1(R))∩ L∞([0, T ], H 1(R)), we obtain v ∈ C0([0, T ], L2(R)). Next, we write

‖F(v,8)(t1)− F(v,8)(t2)‖L∞(R) ≤ ‖v(t1)− v(t2)‖L2‖8(t1)‖L2 +‖8(t2)−8(t1)‖L2‖v(t2)‖L2 .

Using the fact that 8, v ∈ C0([0, T ], L2(R)), we infer that F(v,8) ∈ C0([0, T ], L∞(R)). Then, by
the second equation in (2-34), v ∈ C0([0, T ], H 1(R)). This finishes the proof of this step, and of
Proposition A.2. �

Finally, we give the proof of Proposition A.1.
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Proof of Proposition A.1. In view of Proposition A.2, it is sufficient to prove the convergence of wn . The
proof follows the arguments in the proof of (A-27). Let φ ∈ L2(R). We rely on (4-41) to write∫

R

[w∗(t, x)−wn(t, x)]φ(x) dx

= 2
∫

R

Im
(
9∗(t, x)(1−2F(v∗, 9∗)(t, x))

1−(v∗)2(t, x)
−
9n(t, x)(1−2F(vn, 9n)(t, x))

1−(vn)2(t, x)

)
φ(x) dx

= 2
∫

R

Im
(

9∗(t, x)
1−(v∗)2(t, x)

−
9n(t, x)

1−(vn)2(t, x)

)
φ(x) dx

− 4
∫

R

Im
(
9∗(t, x)F(v∗, 9∗)(t, x)

1−(v∗)2(t, x)
−
9n(t, x)F(vn, 9n)(t, x)

1−(vn)2(t, x)

)
φ(x) dx

for all t ∈ [0, T ]. Then, we use the same arguments as in the proof of (A-27) to show that the two last
terms on the right-hand side go to 0 when n goes to +∞. This finishes the proof of the proposition. �

Exponential decay of χc. In this subsection, we recall the explicit formula and some useful properties of
the operator Hc, and then study its negative eigenfunction χc. For c ∈ (−1, 1) \ {0}, the operator Hc is
given in explicit terms by

Hc(ε)=


Lc(εv)+ c2 (1+ v

2
c )

2

(1− v2
c )

3 εv − c
1+ v2

c

1− v2
c
εw

−c
1+ v2

c

1− v2
c
εv + (1− v2

c )εw

 , (A-42)

where ε = (εv, εw) and

Lc(εv)=−∂x

(
∂xεv

1− v2
c

)
+
(
1− c2

− (5+ c2)v2
c + 2v4

c
) εv

(1− v2
c )

2 .

In view of (A-42), the operator Hc is an isomorphism from H 2(R) × L2(R) ∩ Span(∂x Qc)
⊥ onto

Span(∂x Qc)
⊥. In addition, there exists a positive number Ac, depending continuously on c, such that

‖H−1
c ( f, g)‖H k+2(R)×H k(R) ≤ Ac‖( f, g)‖H k(R)2 (A-43)

for any ( f, g) ∈ H k(R)2 ∩Span(∂x Qc)
⊥ and any k ∈ N.

The following proposition establishes the coercivity of the quadratic form Hc under suitable orthogo-
nality conditions.

Proposition A.3. Let c ∈ (−1, 1)\{0}. There exists a positive number3c, depending only on c, such that

Hc(ε)≥3c‖ε‖
2
H1×L2 (A-44)

for any pair ε ∈ H 1(R)× L2(R) satisfying the two orthogonality conditions

〈∂x Qc, ε〉L2×L2 = 〈χc, ε〉L2×L2 = 0. (A-45)

Moreover, the map c 7→3c is uniformly bounded from below on any compact subset of (−1, 1) \ {0}.
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The proof relies on standard Sturm–Liouville theory (see, e.g., the proof of Proposition 1 in [de Laire
and Gravejat 2015] for more details).

Now, we turn to the analysis of the pair χc.

Lemma A.4. The pair χc belongs to C∞(R)× C∞(R). In addition, there exist two positive numbers Ac

and ac, depending continuously on c, such that ac >
√

1− c2 and

|∂k
xχc| ≤ Ace−ac|x | on R for k ∈ {0, 1, 2}. (A-46)

Proof. We set χc := (ζc, ξc). Since Hc(χc)=−λ̃cχc, we have the following system

−∂x

(
∂xζc

1− v2
c

)
+
(
1− c2

− (5+ c2)v2
c + 2v4

c
) ζc

(1− v2
c )

2 + c2 (1+ v
2
c )

2

(1− v2
c )

3 ζc− c
1+ v2

c

1− v2
c
ξc =−λ̃cζc, (A-47)

c
1+ v2

c

1− v2
c
ζc = (1− v2

c + λ̃c)ξc. (A-48)

It follows from standard elliptic theory that χc ∈ H 2(R) × L2(R). Since the coefficients in (A-48)
are smooth and bounded from above and below, we infer from a standard bootstrap argument that
χc ∈ C∞(R)× C∞(R). Notice in particular that, by the Sobolev embedding theorem, χc and ∂xχc are
bounded on R. Then, we deduce from the first statement in (5-11) that5

−∂xxζc+ (1+ λ̃c)ζc− cξc =O(v2
c ), (A-49)

ζc =
1+λ̃c

c
ξc+O(v2

c ). (A-50)

Note that we have

Bc exp
(
−

√
1− c2|x |

)
≤ vc(x)≤ Ac exp

(
−

√
1− c2|x |

)
for all x ∈ R, (A-51)

where Bc and Ac are two positive numbers.
In order to prove (A-46), we now introduce (A-50) into (A-49) to obtain

−∂xxζc+ b2
cζc =O

(
exp

(
−2
√

1− c2|x |
))
, (A-52)

ξc =
c

1+λ̃c
ζc+O

(
exp

(
−2
√

1− c2|x |
))
, (A-53)

with b2
c =

1−c2
+2λ̃c+(λ̃c)

2

1+λ̃c
> 1− c2. Next, we set

gc := −∂xxζc+ b2
cζc, (A-54)

so that gc(x)=O
(
exp

(
−2
√

1− c2|x |
))

for all x ∈R. Using the variation of constants method, we obtain,
for all x ∈ R,

ζc(x)= A(x)ebcx
+ Acebcx

+ B(x)e−bcx
+ Bce−bcx ,

5The notation O(v2
c ) refers to a quantity bounded by Acv

2
c (pointwise), where the positive number Ac depends only on c.
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with

A(x)= −1
2bc

∫ x

0
e−bct gc(t) dt

and

B(x)= −1
2bc

∫ x

0
ebct gc(t) dt.

Since ζc ∈ L2(R), this leads to

ζc(x)=O
(
exp

(
−2
√

1− c2|x |
)
+ exp(−bc|x |)

)
.

Hence, we can take ac =min
{
2
√

1− c2, bc
}

and invoke (A-50) to obtain (A-46) for k = 0. Using (5-10),
(5-11), (A-47), (A-48) and (A-51), we extend (A-46) to k ∈ 1, 2. �
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