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TIME-PERIODIC APPROXIMATIONS OF THE EULER–POISSON SYSTEM
NEAR LANE–EMDEN STARS

JUHI JANG

We show a long-time validity of the time-periodic linear approximations to the gravitational Euler–
Poisson system near Lane–Emden equilibria for all relevant adiabatic exponents. To prove the result, we
reformulate the problem in Lagrangian coordinates and use the weighted energy estimates together with
Hardy inequalities.

1. Introduction and formulation

One of the simplest fundamental hydrodynamical models for describing the motion of self-gravitating
Newtonian inviscid gaseous stars is the compressible Euler–Poisson equations:

∂tρ+∇ · (ρu)= 0,

ρ(∂t u+ u · ∇u)+∇ p =−ρ∇8,

18= 4πρ,

(1-1)

where (t, x) ∈ R+ × R3 and ρ, u and p denote respectively the density, velocity and pressure of gas.
8 is the gravitational potential and it is related to the gas through the Poisson equation. We consider
polytropic gases with equation of state given by

p = Kργ , (1-2)

where K is an entropy constant and γ > 1 is the adiabatic gas exponent. There are many interesting
works available on the Euler–Poisson system (1-1); for instance, see [Luo et al. 2014; Makino and Ukai
1987; Nishida 1986] for the existence theory, [Makino 1992] for a nonexistence result and blowup, and
[Deng et al. 2002; Jang 2008; 2014; Luo and Smoller 2008; 2009; Rein 2003] for the stability and
instability theory. However, some important questions are still waiting to be answered. In this paper, we
are interested in long-time radial solutions to (1-1) around the Lane–Emden equilibrium stars.
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The spherically symmetric solutions to the system (1-1) — ρ(t, x)= ρ(t, r) and u(t, x)= u(t, r)x/r ,
where r = |x |— satisfy the equations

ρt +
1
r2 (r

2ρu)r = 0,

ρut + ρuur + pr +
4πρ
r2

∫ r

0
ρs2 ds = 0.

(1-3)

Static solutions (ρ0(r), u0 = 0) of (1-3) satisfy the ordinary differential equation

dp
dr
+

4πρ
r2

∫ r

0
ρs2 ds = 0, (1-4)

which can be transformed into the famous Lane–Emden equation [Chandrasekhar 1938]. Nonnegative
solutions of (1-4) can be characterized according to γ as follows [Chandrasekhar 1938; Lin 1997]:
Letting M(ρ) ≡

∫
4πs2ρ(s) ds be the total mass of a star, if γ > 6

5 and M > 0 then there exists at
least one compactly supported solution ρ such that M(ρ)= M . For γ > 4

3 , every solution is compactly
supported and unique. If γ = 6

5 and M>0, there is a unique solution ρ with infinite support. If 1<γ < 6
5 ,

there are no stationary solutions with finite total mass. The compactly supported equilibria for 6
5 <γ < 2

are called the Lane–Emden stars; see also Section 1B.
It is well known [Chandrasekhar 1938; Lin 1997] that the boundary behavior of compactly supported

Lane–Emden solutions is characterized as follows:

ρ̄(r)∼ (R− r)1/(γ−1) for r ∼ R. (1-5)

This boundary behavior is often referred to as physical vacuum [Liu and Yang 2000]. As far as the
full dynamics of compressible flows involving physical vacuum is concerned, the degeneracy and the
interaction with nonlinearity make the analysis nontrivial. Despite its physical importance, even local-in-
time well-posedness of compressible Euler equations in the presence of physical vacuum was established
only recently [Coutand and Shkoller 2012; Jang and Masmoudi 2009; 2015]. For more discussion on
physical vacuum, we refer to [Jang and Masmoudi 2011] and for other problems involving vacuum see
[Jang and Masmoudi 2012; Liu 1996; Liu and Yang 1997; Makino et al. 1986; Sideris 2014].

The goal of this article is to investigate a detailed structure of the solutions to (1-3) near the compactly
supported Lane–Emden stars beyond the local existence. More specifically, we will construct the time-
periodic linearized solutions and show the validity of such linear approximations in the fully nonlinear
setting for large times for all 6

5 < γ < 2. To this end, we will first introduce suitable Lagrangian
coordinates in accordance with the recent advancement of physical vacuum, and formulate the problem
in such Lagrangian coordinates.

1A. Lagrangian coordinates. Let η(t, x) be the position of the gas particle x at time t , so that

ηt = u(t, η(t, x)) for t > 0 and η(0, x)= η0 in �. (1-6)

Here � is a compact smooth domain and η0 : � → � is a diffeomorphism with positive Jacobian
determinant. For the purpose of this article, we take � as a ball, which corresponds to the support of a
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Lane–Emden solution and the initial density. Our choice of η0 will depend on the initial density profile
and in fact, in our setup, the identity map will correspond to the equilibrium state. The following are the
Lagrangian quantities:

v(t, x)≡ u(t, η(t, x)), %(t, x)≡ ρ(t, η(t, x)), 9(t, x)≡8(t, η(t, x)),

A ≡ (Dη)−1, J ≡ det Dη, a ≡ J A.

We use Einstein’s summation convention and the notation F,k to denote the k-th partial derivative of F .
In this subsection, we use i , j , k, l, r , s to denote 1, 2, 3. The Euler–Poisson equations (1-1) read as

%t + %A j
i v

i , j = 0,

%vi
t + K Ak

i %
γ ,k =−%Ak

i9,k ,

Ak
i (A

l
i9,l ),k = 4π%.

(1-7)

Since Jt = J A j
i v

i , j we find that %J = ρ(0)J (0) = ρin det Dη0, where ρin is a given initial density
function. For ρin exhibiting the same boundary behavior as ρ̄ such that ρin/ρ̄ is a smooth positive
function, we choose η0 so that

%J = ρin det Dη0 = ρ̄, (1-8)

where ρ̄ is the equilibrium density profile of the Lane–Emden star given by (1-4). Existence of such
an η0 follows from the Dacorogna–Moser theorem [1990].

By using the relation Ak
i = J−1ak

i , we see that the system (1-7) is reduced to

ρ̄vi
t + K ak

i (ρ̄
γ J−γ ),k =−ρ̄Ak

i9,k ,

Ak
i (A

l
i9,l ),k = 4πρ̄ J−1,

(1-9)

along with

ηi
t = v

i . (1-10)

Now we introduce the equilibrium enthalpy

w ≡ K ρ̄γ−1. (1-11)

We will work with the enthalpy w rather than the density ρ̄, since w behaves like a distance function
near the boundary regardless of the values of γ under the physical vacuum condition (1-5). This w will
be treated as the weight function. By using the Piola identity ak

i ,k = 0, we see that the system (1-9) takes
the form

wαvi
t + (w

1+α Ak
i J−1/α),k =−w

αAk
i9,k ,

Ak
i (A

l
i9,l ),k = 4πK−αwα J−1,

(1-12)

where

α ≡
1

γ − 1
. (1-13)
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Here α has been introduced for notational convenience. We will use both α and γ , which are related
through (1-13), in the equations and the estimates throughout the article. For instance, the range of the
adiabatic exponents of our interest reads in terms of α as

6
5 < γ < 2 ⇐⇒ 1< α < 5.

For the spherically symmetric Euler–Poisson flows, it is convenient to introduce the expansion and
contraction variable ξ as

η(t, x)≡ ξ(t, r)x, (1-14)

where r = |x |. Since ηt = ξt x = v, we have v(t, r)= r ξt . Since ∂i = (x i/r)∂r , we can write

J = ξ 2(ξ + ξrr) and (Dη)−1
=

1
ξ

I −
ξr

ξ(ξ + ξrr)r
(x i x j ) (1-15)

and hence Ak
i is given by

Ak
i =

δk
i

ξ
−

ξr xk x i

ξ(ξ + ξrr)r
. (1-16)

Now, for spherically symmetric functions, the gradient Ak
i ∂k is given by

Ak
i ∂k =

x i

r(ξ + ξrr)
∂r

and the Laplacian Ak
i ∂k(Al

i∂l) is given by

Ak
i ∂k(Al

i∂l)=
1

(ξ + ξrr)(ξr)2
∂r

(
(ξr)2

ξ + ξrr
∂r

)
.

Thus the Poisson equation in (1-12) for spherically symmetric flows takes the form

1
(ξ + ξrr)(ξr)2

∂r

(
(ξr)2

ξ + ξrr
9r

)
= 4πK−αwα J−1. (1-17)

Based on (1-14), (1-23) and (1-16), we see that the momentum equation in (1-12) for spherically sym-
metric flows can be written as an equation for ξ :

wαξt t +
ξ 2

r
∂r
(
w1+α(ξ 2(ξ + ξrr))−γ

)
+

wα

r(ξ + ξrr)
9r = 0 (1-18)

for t ≥ 0 and 0 ≤ r ≤ R, where R is the radius of the Lane–Emden star. We remark that no boundary
conditions are necessary to construct smooth solutions for (1-18) due to the degenerate weights [Coutand
and Shkoller 2012; Jang and Masmoudi 2015]. More detail on the Lagrangian formulation described in
the above can be found in [Jang 2014].

Note that from (1-17) the potential term can be also written as

wα

r(ξ + ξrr)
9r =

wα

ξ 2 r3

∫ r

0

4π
K α
wαs2 ds =

wα

ξ 2 r3

∫
B(0,r)

ρ̄ dx .
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This potential term has the right weight wα and it is of lower order with respect to the differential
structure. It looks harmless. However, the potential term plays an important role in the stability theory,
as shown in [Jang 2014; Rein 2003]. Not surprisingly, we will show that it also has an impact on the
validity time of the time-periodic linear approximations.

1B. Lane–Emden star configuration in the Lagrangian formulation. In this subsection, we will iden-
tify the Lane–Emden stars satisfying (1-4) in our Langrangian formulation. The static equilibria of the
Euler–Poisson system under spherical symmetry governed by (1-18) can be found by setting ξ ≡ 1. It is
clear that w satisfies the ordinary differential equation

1
r
∂r (w

1+α)+
wα

r3

∫ r

0

4π
K α
wαs2 ds = 0, (1-19)

or equivalently

wrr +
2
r
wr +

4π
(1+α)K α

wα = 0. (1-20)

This is the so-called Lane–Emden equation, which has been studied extensively. In particular, we recall
the well-known existence result from [Chandrasekhar 1938; Lin 1997]: supplemented with the normal-
ized boundary conditions

w(0)= 1 and wr (0)= 0

for a given finite total mass M , there exist a ball-type solution w to the Lane–Emden equation (1-20)
and a finite radius R when 1 < α < 5, or equivalently 6

5 < γ < 2, such that (i) w > 0 for 0 < r < R
and w(R) = 0; (ii) −∞ < wr < 0 for 0 < r < R; (iii) w satisfies the physical vacuum condition (1-5).
The Lane–Emden configuration w enjoys better regularity. The regularity results of w are summarized
in Section 2A.

We next write (1-18) in a perturbation form around the equilibrium state given by ξ = 1 and ξt = 0.
Letting ξ ≡ 1+ ζ with |ζ | � 1, we obtain the equation for ζ as

wαζt t +
(1+ ζ )2

r
∂r
(
w1+α((1+ ζ )2(1+ ζ + ζrr))−γ

)
+

wα

(1+ ζ )2 r3

∫ r

0

4π
K α
wαs2 ds = 0. (1-21)

1C. ψ formulation. We further introduce a variable ψ whose equation displays a better structure for
the pressure gradient term in our coordinates. Let

ψ ≡ ζ + ζ 2
+

1
3ζ

3. (1-22)

Then, since dψ/dζ = 1+ 2ζ + ζ 2 > 0, by the inverse function theorem ζ = ζ(ψ) can be regarded as a
smooth function of ψ . Notice that

J = (1+ ζ )2(1+ ζ + ζrr)= 1+
1
r2

(
r3(ζ + ζ 2

+
1
3ζ

3))
r = 1+

1
r2 (r

3ψ)r (1-23)

and

ζt =
ψt

(1+ ζ )2
and ζt t =

ψt t

(1+ ζ )2
−

2ψ2
t

(1+ ζ )5
. (1-24)
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Thus (1-21) can be written in terms of ψ as

wαr4ψt t

(1+ ζ )4
−

2wαr4ψ2
t

(1+ ζ )7
+ r3∂r

(
w1+α

((
1+

1
r2 (r

3ψ)r

)−γ
− 1

))
+

1− (1+ ζ )4

(1+ ζ )4
wαr

∫ r

0

4π
K α
wαs2 ds = 0. (1-25)

Notice that (1-25) relies on the Lane–Emden equation (1-19).
Throughout the paper, we will use A -B to denote that A ≤ CB for a generic constant C > 0. We

will use big O notation to describe the leading order of small quantities.

2. Time-periodic linearized solutions and main result

In this section, we study the linearized Euler–Poisson system around compactly supported Lane–Emden
stars for 6

5 < γ < 2 (i.e., 1 < α < 5). We will first derive the linearized equation of (1-25). Notice that
by Taylor’s theorem, for sufficiently small ψ , the nonlinear pressure term in (1-25) can be written as(

1+
1
r2 (r

3ψ)r

)−γ
= 1−

γ

r2 (r
3ψ)r + h, (2-1)

where h is a smooth function of (1/r2)(r3ψ)r and h = O
(∣∣(1/r2)(r3ψ)r

∣∣2). Also, the ζ -related part of
the last term in (1-25) can be written as

1− (1+ ζ )4

(1+ ζ )4
=
−4ζ − 6ζ 2

− 4ζ 3
− ζ 4

(1+ ζ )4
=
−4ψ − 2ζ 2

−
8
3ζ

3
− ζ 4

(1+ ζ )4
=−4ψ + f, (2-2)

where f is a smooth function of ζ (and hence ψ) and f = O(|ζ |2)= O(|ψ |2) due to (1-22).
Then the linearized equation of (1-25) reads as

wαr4ψt t − γ r3∂r

(
w1+α 1

r2 (r
3ψ)r

)
+ 4r3∂r (w

1+α)ψ = 0, (2-3)

where we have used (1-19). We will denote the last two terms by Lψ . A simple computation shows that

Lψ =−γ r3∂r

(
w1+α 1

r2 (r
3ψ)r

)
+ 4r3∂r (w

1+α)ψ

=−γ (w1+αr4ψr )r + (4− 3γ )r3∂r (w
1+α)ψ. (2-4)

The associated eigenvalue problem is given by

Lψ = λwαr4ψ. (2-5)

Then L is self-adjoint and hence λ is real. In fact, this eigenvalue problem was considered by Eddington
[1918] to explain the luminosity variations of the Cepheid variables and Beyer [1995] studied the spec-
trum for L in L2((0, R), dr), which consists of simple eigenvalues λ1< · · ·<λn <λn+1< · · ·→∞. See
also Proposition 1 in [Makino 2015]. We recall that in [Lin 1997], the stability criterion was introduced
based on the eigenvalues: wα (∼ρ̄) is called neutrally stable if λ> 0 for all eigenvalues λ and unstable if
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λ < 0 for some eigenvalue λ, and it was shown that wα (∼ρ̄) is unstable for any 3<α < 5
( 6

5 < γ <
4
3

)
and stable for 1 < α < 3

( 4
3 < γ < 2

)
in the mass Lagrangian framework. In particular, for 1 < α < 3( 4

3 < γ < 2
)
, the least eigenvalue λ1 is positive.

Now fix a positive eigenvalue λ = λn for some λn > 0 and an associated eigenfunction 9 = 9(r)
of L:

L9 = λwαr49. (2-6)

We take 9 that is bounded near both r ∼ 0 and r ∼ R, in particular 9 ∈ H , where H is a Hilbert space
with the norm

‖9‖2H ≡

∫ R

0
w1+αr4(9r )

2 dr +
∫ R

0
wαr492 dr.

For more discussion on the existence of such 9, see [Makino 2015]. Then, for a given constant θ0,

ψ1(t, r) := sin(
√
λt + θ0)9(r) (2-7)

is a time-periodic solution to the linearized equation (2-3).

2A. The behavior of 9 near the origin and near the boundary. Notice that 9 satisfies

λwαr49 =−γ (w1+αr49 ′)′+ (4− 3γ )(w1+α)′r39. (2-8)

We can deduce the regularity of 9 from (2-8) based on the behavior of the Lane–Emden solution w. In
what follows, we summarize the results from [Jang 2014] regarding w and 9.

Lemma 2.1 (regularity ofw). Let 1<α<5 be given and letw be a ball-type solution to the Lane–Emden
equation (1-20). Then:

(1) w is analytic near the origin. Moreover,

w(r)= 1− br2
+ O(r4), r ∼ 0,

for some positive constant b > 0. Also, (∂2k+1
r w)(0)= 0 for any nonnegative integer k ≥ 0.

(2) ∂ i
rw is uniformly bounded on (0, R) for each 0 ≤ i ≤ α + 2 and also w(k−1)/2∂k+1

r w is uniformly
bounded on (0, R) for each 1≤ k ≤ 2α+ 1. In addition, w enjoys the integral regularity∫ R

0
wα+ jr4

|∂ j+1
r w|2 dr <∞

for each 0≤ j < 3α+ 3.

Lemma 2.2. Let 9 ∈ H be the solution to (2-8). 9 is analytic at r = 0 and, moreover, 9 = a + O(r)
around the origin, where a is a constant.

Lemma 2.3. Let 9 be the solution to (2-8) in H. Then:

(1) 9 has the following integrability: for any 0≤ β ≤ α,∫ R

0
wα−βr492 dr +

∫ R

0
w1+α−βr4(9 ′)2 dr <∞.
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Moreover, for any z > 1, ∫ R

0
wz−2r492 dr <∞.

(2) 9 has the following regularity: for 1≤ k ≤ 2α+ 1,∫ R

0
w1+α+kr4(∂k+1

r 9)2 dr <∞.

The proofs of Lemmas 2.1, 2.2 and 2.3 can be found in [Jang 2014]. Based on the above lemmas, we
deduce that 9 belongs to the function spaces of interest to us, namely it has a finite total initial energy
for 1< α < 5; see (2-12) and (2-14).

2B. Main result. We are interested in solutions (ψ,ψt) of (1-25) with the form

ψ(t, r; ε)= εψ1(t, r)+ ε2ϕ(t, r; ε), (2-9)

where ψ1 is a time-periodic linearized solution given in (2-7) and ε is a small positive parameter. For
given initial data for (ζ, ζt)|t=0 or (ψ,ψt)|t=0 having a finite energy via (2-14), we can construct local-
in-time solutions to (1-21) and hence to (1-25) for 0< t < T , where T is independent of ε, by the local
existence theory [Coutand and Shkoller 2012; Jang and Masmoudi 2015; Luo et al. 2014]. We can set
ε2ϕ(t, r; ε) := ψ(t, r; ε)− εψ1(t, r) to deduce that ε2ϕ is bounded in the corresponding energy norm.
However, ϕ could be very large when ε is small. Our aim is to show that this does not happen, namely
ϕ is bounded for all sufficiently small ε for all 0 < t < T . In order to establish ‖ϕ‖ = O(1), we will
derive the uniform-in-ε estimates of ϕ. Let us first derive the equation for ϕ.

Plugging the ansatz (2-9) into (1-25), using the fact that ψ1 solves (2-3), and also using (2-2), we
obtain

wαr4ϕt t

(1+ ζ )4
+
wαr4(ψ1)t t

ε

(
1

(1+ ζ )4
− 1

)
−

2wαr4
|(ψ1)t + εϕt |

2

(1+ ζ )7

+
r3

ε2 ∂r

(
w1+α

((
1+

1
r2 (r

3(εψ1+ ε
2ϕ))r

)−γ
− 1+ γ

1
r2 (r

3εψ1)r

))
− 4wαr48(r)ϕ+wαr48(r)

f
ε2 = 0,

where 8(r) is the prescribed function defined by

8(r)≡
1
r3

∫ r

0

4π
K α
wαs2 ds =−

(w1+α)r

rwα
=−(1+α)

wr

r
. (2-10)

Notice that 8(r) > 0 for each 0< r < R. By further using (ψ1)t t =−λψ1 as well as (2-2), we arrive at

wαr4ϕt t

(1+ ζ )4
+ 4λwαr4ψ2

1 + 4λεwαr4ψ1ϕ− λw
αr4ψ1

f
ε
−

2wαr4
|(ψ1)t + εϕt |

2

(1+ ζ )7

+
r3

ε2 ∂r

(
w1+α

((
1+

1
r2 (r

3(εψ1+ ε
2ϕ))r

)−γ
− 1+ γ

1
r2 (r

3εψ1)r

))
− 4wαr48(r)ϕ+wαr48(r)

f
ε2 = 0. (2-11)
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We are concerned with the behavior of (ϕ, ϕt)(t, r; ε), the solutions of the initial value problem
of (2-11) with given initial data (ϕ, ϕt)(0, r; ε)= (ϕ0(r), ϕ1(r)). We remark that the appearance of ε in
the denominator of the first and third lines in (2-11) is not harmful because f = f (ψ)=O(|ψ |2)=O(ε2).
For the second line in (2-11) involving the second-order differential operator, at least formally, it is of
order 1 with respect to ε. To make it rigorous, it needs to be treated very carefully. Notice that we have
not decomposed it into the linear and nonlinear parts yet.

Motivated by the work on physical vacuum [Jang 2014; Jang and Masmoudi 2009; 2015], we consider
the weighted energy norms: for j ≥ k ≥ 0,

E j,k
≡

∫ R

0
wα+kr4

|∂
j−k

t ∂k
r ϕt |

2 dr +
∫ R

0
w1+α+kr4

|∂
j−k

t ∂k
r ϕr |

2 dr +
∫ R

0
wα+kr4

|∂
j−k

t ∂k
r ϕ|

2 dr

≡ E j,k
t + E j,k

r + E j,k
0 . (2-12)

Notice that the following relations hold:

E j,k
t = E j,k−1

r for j ≥ k ≥ 1; E j,k
0 = E j−1,k

t for j ≥ 1, j ≥ k ≥ 0. (2-13)

We define the total energy E by

E(t)≡
[α]+4∑

j=0

j∑
k=0

E j,k(t), (2-14)

where [α] =max{N ∈ Z : N ≤ α}, so that 0≤ α− [α]< 1.
We also introduce the energy space

Zα =
{
(ϕ0, ϕ1)

∣∣∣ [α]+5∑
k=0

∫ R

0
wα+kr4

|∂k
r ϕ0|

2 dr +
[α]+4∑
k=0

∫ R

0
wα+kr4

|∂k
r ϕ1|

2 dr <∞
}
.

We are now ready to state our main result.

Theorem 2.4. For given initial data (ϕ0, ϕ1) ∈ Zα independent of ε, let (ϕ, ϕt)= (ϕ, ϕt)(t, r; ε) be the
solution of (2-11) with finite total energy for 0< t ≤ T satisfying (ϕ, ϕt)(0, r; ε)= (ϕ0(r), ϕ1(r)). Then,
if 1 < α < 3

( 4
3 < γ < 2

)
, there exists an ε0 = O(1/T ) > 0 such that sup0<t≤T E(t) = O(1) for all

0< ε ≤ ε0, and, if 3 ≤ α < 5
( 6

5 < γ ≤
4
3

)
, there exists an ε0 = O(1/eκT ) > 0 for some constant κ > 0

such that sup0<t≤T E(t)= O(1) for all 0< ε ≤ ε0.

As a direct consequence of Theorem 2.4, we have ‖ψ − εψ1‖E = O(ε2), which asserts the validity
of the time-periodic linear approximations ψ1 defined in (2-7) for the nonlinear solutions ψ to (1-25)
having the form of (2-9). In fact, Theorem 2.4 recasts a recent work by Makino [2015], in which the
time-periodic linear approximations were shown for γ for which γ /(γ − 1) is an integer and 6

5 < γ < 2
in a suitable weighted Sobolev space. More importantly, our theorem covers all the relevant exponents γ
and it answers an open problem proposed in [Makino 2015]. We take a different approach: while in
[Makino 2015], the Nash–Moser–Hamilton theory was used to prove the result, we use the weighted
energy estimates that have been proven to be useful to study physical vacuum states of compressible
flows [Coutand and Shkoller 2012; Jang and Masmoudi 2015].
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The energy inequalities obtained in this article yield a rather concrete upper bound for the total energy
involving ε, which gives an estimate for an upper bound for ε0 as stated in the theorem. It is noteworthy
to observe the qualitative difference on the upper bound ε0 between 4

3 < γ < 2 and 6
5 < γ ≤ 4

3 . We
recall that 4

3 < γ < 2 corresponds to the stability regime of Lane–Emden stars and 6
5 < γ ≤ 4

3 to the
instability regime [Deng et al. 2002; Jang 2008; 2014; Lin 1997; Rein 2003]. Our result indicates that for
a given large time T , a small expansion (approximation) parameter ε in the instability regime needs to be
taken much smaller than the ε in the stability regime in order to guarantee the validity of the expansion
(approximation) ansatz (2-9). Even if the same λ > 0 is allowed to be chosen in (2-7), the set of small
parameters ε to hold up the validity of such linear approximations could be very different depending on
the value of the adiabatic exponent γ . Of course, this comparison and characterization deduced from the
energy inequalities may not be optimal.

The estimates of ϕ obtained in the subsequent sections can be used to establish the existence of the
solutions ψ to (1-25) of the form (2-9) with the corresponding initial data of the same expansion form
having a finite total energy. We will not pursue this direction in detail in this article, but will make one
comment. In this perspective, one can fix a small parameter ε first and then derive a lower bound on
T = T (ε) that guarantees the existence of the solutions. Then Theorem 2.4 implies that T = O(1/ε) for
γ > 4

3 and T = O(ln(1/ε)) for 6
5 <γ ≤

4
3 . We observe that the lifespan of the solutions having finite total

energy for a given small ε > 0 may depend on whether γ falls into the stability regime or not. Again,
this comparison may not be optimal; it would be an interesting problem to study the optimality of such
lower bounds.

We can also consider the limit of ε→ 0 and the convergence rate. Note that a maximal time T of the
convergence of ψ to 0 (0 corresponds to the Lane–Emden stars) goes to infinity as ε→ 0, namely the
convergence to the equilibrium becomes global. And the rate of convergence may depend on whether
the value of γ is in the stability regime or not. It is interesting to point out that a similar question was
studied in a completely different context, Hilbert expansion from the Boltzmann theory [Guo et al. 2010;
Guo and Jang 2010].

Finally, we remark that by no means does Theorem 2.4 imply a stability result in the usual sense, but it
gives a set of initial data having the form (2-9) of which evolutions for later times stay in the same form.
In particular, it was shown in [Jang 2014] that for 6

5 <γ <
4
3 there exists a family of initial data for (1-21)

leading to a nonlinear instability for the Lane–Emden equilibrium and thus there’s no hope to show the
stability result for general initial data. On the other hand, for γ > 4

3 , [Rein 2003] gives a nonlinear
stability result based on a variational approach. However, the result of [Rein 2003] is conditional, in that
the existence of the desired solutions was assumed without a proof. It still remains an interesting open
problem to prove a complete stability result for the Euler–Poisson system for γ > 4

3 and we hope that
this work provides interesting evidence towards a satisfactory stability theory.

The rest of the paper will be devoted to the proof of Theorem 2.4. The proof consists of three parts.
First we give the L∞ bounds of functions in terms of our energy norms (2-12) by using Hardy inequalities.
Then we derive the energy inequalities for nonlinear instant energies (4-1) by the weighed energy method.
The estimates of the total energy involving spatial and mixed derivatives are obtained by elliptic estimates.
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The embedding results will be used to close the weighted energy estimates as well as the elliptic estimates
for the solutions of (2-11). The final step of the proof, solving differential inequalities, will be given in
Section 7.

3. L∞ bounds and embeddings

The goal of this section is to derive the L∞ bounds of ϕ and its derivatives with suitable weights by using
the energy norms introduced in (2-12) and (2-14). To this end, we will utilize the Hardy inequalities and
embedding inequalities.

3A. Hardy inequalities. We recall the following version of the Hardy inequality:

Lemma 3.1 (Hardy inequality). Let k > 1 be a given real number and let g be a function satisfying∫ 1
0 sk(g2

+ g′2) ds <∞. Then we have∫ 1

0
sk−2g2 ds -

∫ 1

0
sk(g2

+ |g′|2) ds.

For the proof of Lemma 3.1, we refer to [Kufner et al. 2007]. Since our energies involve different
weights near the origin and near the boundary, we will utilize the localized version of the above Hardy
inequalities as in [Jang 2014]. We begin by recalling the following results:

Lemma 3.2 [Jang 2014]. (1) For any function u satisfying
∫ 3R/4

0 r4
|ur |

2 dr +
∫ 3R/4

0 r4
|u|2 dr <∞,∫ R/2

0
r2
|u|2 dr -

∫ 3R/4

0
r4
|ur |

2 dr +
∫ 3R/4

0
r4
|u|2 dr. (3-1)

(2) For any function u satisfying
∫ 3R/4

0 r4
|urr |

2 dr +
∫ 3R/4

0 r4
|ur |

2 dr +
∫ 3R/4

0 r4
|u|2 dr <∞,∫ R/2

0
|u|2 dr -

∫ 3R/4

0
r4
|urr |

2 dr +
∫ 3R/4

0
r4
|ur |

2 dr +
∫ 3R/4

0
r4
|u|2 dr. (3-2)

(3) Let a > 1 be given. For any function v satisfying
∫ R

R/4w
a
|vr |

2 dr +
∫ R

R/4w
a
|v|2 dr <∞,∫ R

R/2
wa−2
|v|2 dr -

∫ R

R/4
wa
|vr |

2 dr +
∫ R

R/4
wa
|v|2 dr. (3-3)

We can now derive Hardy embedding inequalities.

Lemma 3.3. Let m be any nonnegative integer. Then

‖u‖2L1 -
2∑

k=0

∫ 3R/4

0
r4
|∂k

r u|2 dr +
m∑

k=0

∫ R

R/4
wα−[α]+2m

|∂k
r u|2 dr. (3-4)

Proof. Consider ∫ R

0
|u| dr =

∫ R/2

0
|u| dr +

∫ R

R/2
|ur | dr =: (i)+ (ii).
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By Hölder’s inequality and (3-2), we obtain

(i)-
(∫ R/2

0
|u|2 dr

)1
2

-

(∫ 3R/4

0
r4
|u|2 dr +

∫ 3R/4

0
r4
|∂r u|2 dr +

∫ 3R/4

0
r4
|∂2

r u|2 dr
)1

2

.

For (ii), we first apply Hölder’s inequality to get

(ii)≤
(∫ R

R/2
w−α+[α] dr

)1
2
(∫ R

R/2
wα−[α]|u|2 dr

)1
2

.

Notice that
∫ R

R/2w
−α+[α] dr <∞, since 0≤ α− [α]< 1 and w ∼ R− r near r = R. We then apply the

localized Hardy inequality (3-3) to the second term repeatedly to deduce the result. �

Lemma 3.4. Let m be any nonnegative integer. Then

‖u‖2
∞
-

3∑
k=0

∫ 3R/4

0
r4
|∂k

r u|2 dr +
m+1∑
k=0

∫ R

R/4
wα−[α]+2m

|∂k
r u|2 dr. (3-5)

Proof. Notice that, since u is a function on the interval (0, R), u is bounded by the W 1,1-norm:

‖u‖∞ -
∫ R

0
|u| dr +

∫ R

0
|ur | dr.

By applying (3-4) to each term, we obtain the desired result. �

3B. L∞ bounds. A direct consequence of the above Hardy embedding inequalities is the validity of the
boundedness assumption (4-9) within our energy space.

Lemma 3.5. (1) |ϕ| + |ϕt | + |ϕt t | +
[α]+2∑
q=1
|r δ(q)w(q−1)/2∂

q+2
t ϕ|- E1/2

,

where δ(q)= 0 for q ≤ [α], δ(q)= 1 for q = [α] + 1, and δ(q)= 2 for q = [α] + 2.

(2) |ϕr | + |ϕtr | +
[α]+2∑
q=1
|r δ(q)wq/2∂

q+1
t ∂rϕ|- E1/2

,

where δ(q)= 0 for q ≤ [α], δ(q)= 1 for q = [α] + 1, and δ(q)= 2 for q = [α] + 2.

Proof. We will present the details for the terms

∂3
t ϕ, ∂t∂rϕ, r δ(2)w1/2∂4

t ϕ, r2w([α]+2)/2∂
[α]+3
t ∂rϕ.

Other terms can be treated in the same way. To see the boundedness of ∂3
t ϕ, we apply (3-5) for u = ∂3

t ϕ

with m = [α] + 1:

‖∂3
t ϕ‖

2
∞
-

3∑
k=0

∫ 3R/4

0
r4
|∂k

r ∂
3
t ϕ|

2 dr +
[α]+2∑
k=0

∫ R

R/4
wα−[α]+2[α]+2

|∂k
r ∂

3
t ϕ|

2 dr.

Then, since w is bounded from below and above on
(
0, 3

4 R
)

and r is bounded from below and above on( 1
4 R, R

)
, we deduce that the right-hand side is bounded by E .
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To see the boundedness of ∂t∂rϕ, we apply (3-5) for u = ∂t∂rϕ with m = [α] + 2:

‖∂t∂rϕ‖
2
∞
-

3∑
k=0

∫ 3R/4

0
r4
|∂k+1

r ∂tϕ|
2 dr +

[α]+3∑
k=0

∫ R

R/4
wα−[α]+2[α]+4

|∂k+1
r ∂tϕ|

2 dr.

It is easy to see that the right-hand side is bounded by E .
For the boundedness of r δ(2)w1/2∂3

t ϕ, we divide into two cases: 2≤ [α] ≤ 4 and [α] = 1. For the first
case, δ(2)= 0. In this case, it suffices to show the boundedness of w(∂4

t ϕ)
2. By the Sobolev embedding,

‖w(∂4
t ϕ)

2
‖∞ -

∫ R

0
w(∂4

t ϕ)
2 dr +

∫ R

0
|(w(∂4

t ϕ)
2)r | dr.

Since wr is bounded, by using the Cauchy–Schwarz inequality,

‖w(∂4
t ϕ)

2
‖∞ -

∫ R

0
|∂4

t ϕ|
2 dr +

∫ R

0
w2
|∂r∂

4
t ϕ|

2 dr.

We now apply Hardy inequalities (3-2) and (3-3) to obtain

‖w(∂4
t ϕ)

2
‖∞ -

3∑
k=0

∫ 3R/4

0
r4
|∂k

r ∂
4
t ϕ|

2 dr +
[α]+1∑
k=0

∫ R

R/4
w2+2[α]

|∂k
r ∂

4
t ϕ|

2 dr

-
3∑

k=0

∫ 3R/4

0
r4
|∂k

r ∂
4
t ϕ|

2 dr +
[α]+1∑
k=0

∫ R

R/4
wα+k
|∂k

r ∂
4
t ϕ|

2 dr,

where we have used w[α]+1 - wα. Notice that the right-hand side is bounded by E .
When [α] = 1, we have δ(2) = 1. In this case, it suffices to show that r2w(∂4

t ϕ)
2 is bounded by E .

Applying Sobolev embedding, the Cauchy–Schwarz inequality and Hardy inequalities, we obtain

‖r2w(∂4
t ϕ)

2
‖∞ -

∫ R

0
|∂4

t ϕ|
2 dr +

∫ R

0
r4w2
|∂r∂

4
t ϕ|

2 dr -
2∑

k=0

∫ R

0
r4wα+k

|∂k
r ∂

4
t ϕ|

2 dr.

Since [α] = 1, the right-hand side is bounded by E .
To prove the boundedness of r2w([α]+2)/2∂

[α]+3
t ∂rϕ, we first apply Sobolev embedding and use the

boundedness of w and wr to obtain

‖r2w([α]+2)/2∂
[α]+3
t ∂rϕ‖∞ -

∫ R

0
r2w[α]/2|∂

[α]+3
t ∂rϕ| dr

+

∫ R

0
rw([α]+2)/2

|∂
[α]+3
t ∂rϕ| dr +

∫ R

0
r2w([α]+2)/2

|∂2
r ∂
[α]+3
t ϕ| dr.

By Hölder’s inequality,

‖r2w([α]+2)/2∂
[α]+3
t ∂rϕ‖

2
∞
-
∫ R

0
r2wα−[α]+[α]|∂

[α]+3
t ∂rϕ|

2 dr +
∫ R

0
r4wα−[α]+[α]+2

|∂2
r ∂
[α]+3
t ϕ|2 dr.

Notice that the second term in the right-hand side is E [α]+4,1
r . For the first term in the right-hand side we

apply Hardy inequalities (3-1) and (3-3) to ensure that it is bounded by E [α]+3,0
r and E [α]+4,1

r . �
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The results can be extended to other quantities involving more spatial derivatives. In the next lemma,
we present the weighted L∞ bounds of ϕrr and its time derivatives.

Lemma 3.6. We have
[α]+2∑
q=0

|w(q+1)/2r δ(q)∂q
t ∂

2
r ϕ|- E1/2

, (3-6)

where δ(q)= 0 for q ≤ [α], δ(q)= 1 for q = [α] + 1, and δ(q)= 2 for q = [α] + 2.

Proof. The choice of δ(q) is clear because of (3-5). We will focus on the bound near the boundary. So
we will assume that δ(q)= 0 and ϕ is supported in

(1
4 R, R

)
. We will use the W 1,1 bound for the squared

quantity:

‖wq+1(∂
q
t ∂

2
r ϕ)

2
‖∞ ≤

∫ R

0
wq+1(∂

q
t ∂

2
r ϕ)

2 dr +
∫ R

0
|(wq+1(∂

q
t ∂

2
r ϕ)

2)r | dr

-
∫ R

0
wq+1(∂

q
t ∂

2
r ϕ)

2 dr +
∫ R

0
wq(∂

q
t ∂

2
r ϕ)

2 dr +
∫ R

0
wq+1∂

q
t ∂

2
r ϕ∂

q
t ∂

3
r ϕ dr

-
∫ R

0
wq(∂

q
t ∂

2
r ϕ)

2 dr +
∫ R

0
wq+2(∂

q
t ∂

3
r ϕ)

2 dr,

where we have used the Cauchy–Schwarz inequality and the boundedness of w. Applying the Hardy
inequality (3-3), we obtain

‖wq+1(∂
q
t ∂

2
r ϕ)

2
‖∞ -

m+1∑
k=0

∫ R

0
wq+2+2m

|∂
q
t ∂

k+2
r ϕ|2 dr.

Choose m = [α] + 2− q. Then, since w[α]+2 - wα+1 and 0≤ k ≤ [α] + 3− q ,

‖wq+1(∂
q
t ∂

2
r ϕ)

2
‖∞ -

[α]+3−q∑
k=0

∫ R

0
w[α]+2+[α]+4−q

|∂
q
t ∂

k+2
r ϕ|2 dr -

[α]+3−q∑
k=0

Eq+k+1,k+1 - E . �

Remark 3.7. The strengths of the weights appearing for ∂q+2
t ϕ, ∂q+1

t ∂rϕ and ∂q
t ∂

2
r ϕ in the previous

lemmas depend on the number of spatial derivatives as well as the number of time derivatives. This is
due to the energy structure of E .

4. The instant energy

In this section, we will introduce the various energies and establish the equivalence of the temporal
instant energy and the total energy for (ϕ, ϕt).

Let T > 0 be given such that the solutions to (1-21) or (2-11) satisfy the bound

sup
r∈(0,R)

|(ζ ◦ψ)(t, r)| = sup
r∈(0,R)

∣∣ζ(εψ1(t, r)+ ε2ϕ(t, r))
∣∣≤ 1

4 for all 0≤ t ≤ T .
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For each time 0 ≤ t ≤ T , we introduce the following instant energies and the total energy for the
solutions to the ϕ equation (2-11). The higher-order (temporal) instant energy is, for j ≥ 0,

E j
≡

∫ R

0

wαr4
|∂

j
t ϕt |

2

(1+ ζ )4
dr +

∫ R

0
γ
w1+α J−γ−1

|(r3∂
j

t ϕ)r |
2

r2 dr − a(γ )
∫ R

0
4wαr48(r)|∂ j

t ϕ|
2 dr, (4-1)

where J was defined in (1-23), and a(γ )= 1 for γ > 4
3 and a(γ )= 0 otherwise. The total instant energy

is

E(t)≡
[α]+4∑

j=0

E j (t). (4-2)

A simple computation shows — see also the equivalent expressions for L in (2-4) —

−r3∂r

(
w1+α 1

r2 (r
3ψ)r

)
=−(w1+αr4ψr )r − 3r3∂r (w

1+α)ψ. (4-3)

Multiply this identity by ψ and integrate to obtain∫ R

0

w1+α

r2 |(r
3ψ)r |

2 dr =
∫ R

0
w1+αr4

|ψr |
2 dr +

∫ R

0
3wαr48(r)ψ2 dr. (4-4)

We observe that (4-4) gives another expression for the spatial part of the instant energy E j if J = 1
throughout the domain for all time. However, it is not obvious we can guarantee the positiveness of E j

since J varies in time and radius. In the following lemma, we show the positivity of E j and equivalence
of the homogeneous energy E j,0 for all sufficiently small ε > 0.

Lemma 4.1. Suppose that E given in (2-14) is bounded for all 0≤ t ≤ T . Then we have

E j
= E j

+R j , (4-5)

where E j and R j satisfy the estimates

(1) (1+ ε+ ε2E1/2)E j,0 - E j - (1+ ε+ ε2E1/2)E j,0,

(2) |R j
|- (ε+ ε2E1/2)E j,0,

(3) |dR j/dt |- (ε+ ε2E1/2)E j,0,

for all sufficiently small ε > 0.

Proof. To extract the positive part of E j , we will rewrite the spatial part similarly as in (4-4). To this end,
from (4-3) we first obtain

−r3∂r

(
w1+α J−γ−1 1

r2 (r
3ψ)r

)
=−(w1+α J−γ−1r4ψr )r

− 3r3 J−γ−1∂r (w
1+α)ψ − 3r3∂r (J−γ−1)w1+αψ, (4-6)
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which in turn yields the integral identity∫ R

0

w1+α J−γ−1

r2 |(r3ψ)r |
2 dr

=

∫ R

0
w1+α J−γ−1r4

|ψr |
2 dr +

∫ R

0
3wα J−γ−1r48(r)ψ2 dr −

∫ R

0
3r3∂r (J−γ−1)w1+αψ2 dr. (4-7)

By using (4-7), we write E j as E j
≡ E j

+R j , where

E j
=

∫ R

0

wαr4
|∂

j
t ϕt |

2

(1+ ζ )4
dr + γ

∫ R

0
w1+α J−γ−1r4

|∂
j

t ϕr |
2 dr

+ (3γ − 4a(γ ))
∫ R

0
wα J−γ−1r48(r)|∂ j

t ϕ|
2 dr,

R j
=−3γ

∫ R

0
r3∂r (J−γ−1)w1+α

|∂
j

t ϕ|
2 dr + 4a(γ )

∫ R

0
(J−γ−1

− 1)wαr48(r)|∂ j
t ϕ|

2 dr. (4-8)

Since 3γ − 4a(γ ) > 0 for all γ , we now see that E j is positive for all γ . Moreover, by (1-23), (2-9),
Taylor expansion and Lemma 3.5, we deduce the first result, which shows that E j is equivalent to E j,0.
The estimate of R j follows similarly. Here we present the detail for the bound of dR j/dt . We start with
the second term. The time derivative of the second term consists of the two terms∫ R

0
J−γ−2 Jtw

αr48(r)|∂ j
t ϕ|

2 dr,
∫ R

0
(J−γ−1

− 1)wαr48(r)∂ j
t ϕ∂

j
t ϕt dr.

Then, since8(r)<∞ and |J−γ−2 Jt |- ε+ε2E1/2 and |J−γ−1
−1|- ε+ε2E1/2 by Lemmas 3.6 and 3.5,

we obtain the desired bounds in terms of E j,0. On the other hand, the time derivative of the first integral
of R j consists of the two terms∫ R

0
r3∂r∂t(J−γ−1)w1+α

|∂
j

t ϕ|
2 dr,

∫ R

0
r3∂r (J−γ−1)w1+α∂

j
t ϕ∂

j
t ϕt dr.

By Lemmas 3.6 and 3.5, we see that |w∂r∂t(J−γ−1)|- ε+ε2E1/2. Hence, by further using the localized
Hardy inequality (3-1) near the origin, we have∣∣∣∣∫ R

0
r3∂r∂t(J−γ−1)w1+α

|∂
j

t ϕ|
2 dr

∣∣∣∣- (ε+ ε2E1/2)

∫ R

0
r2wα|∂

j
t ϕ|

2 dr - (ε+ ε2E1/2)E j,0.

For the second term, we use |w∂r (J−γ−1)| - ε + ε2E1/2 as well as the Cauchy–Schwarz inequality to
get ∣∣∣∣∫ R

0
r3∂r (J−γ−1)w1+α∂

j
t ϕ∂

j
t ϕt dr

∣∣∣∣- (ε+ ε2E1/2)

(∫ R

0
r2wα|∂

j
t ϕ|

2 dr +
∫ R

0
r4wα|∂

j
t ϕt |

2 dr
)
.

We apply (3-1) to the first integral to obtain the desired bound. �

Lemma 4.1 implies that, if E is bounded, a nonlinear instant energy E j in (4-1) is equivalent to the
homogenous energy E j,0 given in (2-12) for all sufficiently small ε > 0.
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The next goal is to derive the a priori estimates for E and E under the assumption

|ϕ| + |ϕt | + |ϕt t | +

[α]+2∑
q=1

|r δ(q)w(q−1)/2∂
q+2
t ϕ| + |ϕr | + |ϕtr |

+

[α]+2∑
q=1

|r δ(q)wq/2∂
q+1
t ∂rϕ| +

[α]+2∑
q=0

|w(q+1)/2r δ(q)∂q
t ∂

2
r ϕ| ≤ M, (4-9)

where M is a fixed constant. We recall that the validity of this assumption within the total energy E
was provided in Lemmas 3.5 and 3.6. The a priori estimates consist of two parts: the temporal energy
estimates for E , and the elliptic estimates to recover all other terms in E .

We start with the energy estimates of E .

5. Weighted energy estimates

This section is devoted to the proof of this proposition:

Proposition 5.1. Suppose that (ϕ, ϕt) satisfy (2-11) for 0 ≤ t ≤ T and the corresponding total instant
energy E is bounded. Moreover, we assume (4-9). Then E enjoys the energy inequality

d
dt

E -
√
E + (1− a(γ ))E + (ε+ ε2 M)(E +

√
E
√
E), (5-1)

where a(γ )= 1 for γ > 4
3 and a(γ )= 0 otherwise, and ε > 0 is small enough.

Remark 5.2. E is positive for all sufficiently small ε due to Lemma 4.1, Hence
√
E is well defined in

the right-hand side of (5-1).

Lemma 5.3 (E0). Suppose that (ϕ, ϕt) satisfy (2-11) for 0 ≤ t ≤ T and the corresponding total instant
energy E is bounded. Moreover, we assume (4-9). Then

d
dt

E0 -
√

E0+ (1− a(γ ))E0
+ (ε+ ε2 M)(E0

+ E1), (5-2)

where a(γ ) was introduced in the definition of E0.

Proof. We begin by multiplying (2-11) by ϕ and integrating over (0, R):∫ R

0

wαr4ϕt t

(1+ ζ )4
ϕt dr +

∫ R

0

(
4λwαr4ψ2

1 + 4λεwαr4ψ1ϕ− λw
αr4ψ1

f
ε
−

2wαr4
|(ψ1)t + εϕt |

2

(1+ ζ )7

)
ϕt dr

+

∫ R

0

r3

ε2 ∂r

(
w1+α

((
1+

1
r2 (r

3(εψ1+ ε
2ϕ))r

)−γ
− 1+ γ

1
r2 (r

3εψ1)r

))
ϕt dr

−

∫ R

0
4wαr48(r)ϕϕt dr +

∫ R

0
wαr48(r)

f
ε2ϕt dr = 0.

We denote the left-hand side by
∑5

k=1 Ik . The first term I1 can be rewritten as

I1 =
1
2

d
dt

∫ R

0

wαr4
|ϕt |

2

(1+ ζ )4
dr + 2

∫ R

0

wαr4
|ϕt |

2

(1+ ζ )5
(ε(ψ1)t + ε

2ϕt)

(1+ ζ )2
dr,
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where we have used (1-24). For I2, we use the boundedness of (ψ1)t and f = O(|εψ1+ε
2ϕ|2) to deduce

that
|I2|-

√

E0+ εE0
+ ε2 sup |ϕt |E0.

For I3, we integrate by parts and use (2-1):

I3 =−

∫ R

0

w1+α

ε2

((
1+

1
r2 (r

3(εψ1+ ε
2ϕ))r

)−γ
− 1+ γ

1
r2 (r

3εψ1)r

)
(r3ϕt)r dr

=−

∫ R

0
w1+α

(
−
γ

r2 (r
3ϕ)r +

h
ε2

)
(r3ϕt)r dr

=−

∫ R

0
w1+α

(
−
γ

r2 J−γ−1(r3ϕ)r + (J−γ−1
− 1)

γ

r2 (r
3ϕ)r +

h
ε2

)
(r3ϕt)r dr

=
γ

2
d
dt

∫ R

0
w1+α J−γ−1 |(r

3ϕ)r |
2

r2 dr +
γ (γ + 1)

2

∫ R

0
w1+α J−γ−2 Jt

|(r3ϕ)r |
2

r2 dr

−

∫ R

0
w1+α(J−γ−1

− 1)
γ

r2 (r
3ϕ)r (r3ϕt)r dr︸ ︷︷ ︸

I 1
3

−

∫ R

0
w1+α h

ε2 (r
3ϕt)r dr︸ ︷︷ ︸

I 2
3

.

Since Jt = 3ψt+rψtr = 3(ε(ψ1)t+ε
2ϕt)+r(ε(ψ1)tr +ε

2ϕtr ), the commutator involving Jt is bounded
by (ε+ε2 M)E0. Notice that |J−γ−1

−1| = O
(∣∣(1/r2)(r3(εψ1+ε

2ϕ))r
∣∣)- ε+ε2 M , so by the Cauchy–

Schwarz inequality we see that
|I 1

3 |- (ε+ ε
2 M)(E0

+ E1).

Since h = O
(∣∣(1/r2)(r3(εψ1+ ε

2ϕ))r
∣∣2), we have

|I 2
3 |-
√

E1+ ε(E0
+ E1)+ ε2 sup

∣∣∣∣(r3ϕ)r

r2

∣∣∣∣(E0
+ E1).

It is easy to see that

I4 =−2 d
dt

∫ R

0
wαr48(r)ϕ2 dr (5-3)

and also it satisfies
|I4|- E0. (5-4)

If γ > 4
3 , we will use (5-3) so that I4 contributes to the energy. If γ ≤ 4

3 , then we will use the estimate (5-4),
in which case the contribution of E0 in the right-hand side of the energy inequality will be of order 1.

For the last term, we obtain

|I5|-
√

E0+ εE0
+ ε2 sup |ϕ|E0.

This finishes the proof. �

As Lemma 5.3 indicates, the right-hand side of the energy inequality involves higher-order energy
due to the nonlinearity and degeneracy, and thus the energy estimates cannot be closed at the physical
energy level E0. This motivates us to go beyond E0.
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The time differentiation of (2-11) yields

wαr4ϕt t t

(1+ ζ )4
−

4wαr4ϕt t(ε(ψ1)t + ε
2ϕt)

(1+ ζ )7
+ 8λwαr4ψ1(ψ1)t + 4λεwαr4(ψ1)tϕ+ 4λεwαr4ψ1ϕt

− λwαr4(ψ1)t
f
ε
− λwαr4ψ1

ft

ε
−

4wαr4((ψ1)t + εϕt)((ψ1)t t + εϕt t)

(1+ ζ )7

−
14wαr4((ψ1)t + εϕt)

2(ε(ψ1)t + ε
2ϕt)

(1+ ζ )10

− γ
r3

ε2 ∂r

(
w1+α

(
J−γ−1

(
1
r2

(
r3(ε(ψ1)t + ε

2ϕt)
)

r

)
−

1
r2 (r

3ε(ψ1)t)r

))
− 4wαr48(r)ϕt +w

αr48(r)
ft

ε2 = 0, (5-5)

where we have substituted J for its equivalent expression given in (1-23). We next present the estimates
for E1.

Lemma 5.4 (E1). Suppose that (ϕ, ϕt) satisfy (2-11) for 0 ≤ t ≤ T and the corresponding total instant
energy E is bounded. Moreover, we assume (4-9). Then

d
dt

E1 - (1+ εM)
√

E1+ (1− a(γ ))E1
+ (ε+ ε2 M + ε4 M2)(E0

+ E1)+ ε
√
E1,1
√

E1. (5-6)

Proof. We multiply (5-5) by ϕt t and integrate it over (0, R). We denote each integral by Ik for 1≤ k≤ 12.
We will estimate them term by term. I1 forms an energy plus a commutator and thus I1+ I2 can be written
as

I1+ I2 =
1
2

d
dt

∫ R

0

wαr4
|ϕt t |

2

(1+ ζ )4
dr −

∫ R

0

2wαr4ϕ2
t t(ε(ψ1)t + ε

2ϕt)

(1+ ζ )7
dr,

where we have used (1-24). Note that the second term is bounded by (ε+ε2 M)E1 since (ψ1)t is bounded
and |ϕt | ≤ M due to (4-9).

I3 is a source term and it is easy to see that

|I3|-
√

E1

due to the boundedness of ψ1. For I4 and I5, we apply the Cauchy–Schwarz inequality to obtain

|I4| + |I5|- ε(E0
+ E1).

In order to estimate I6 and I7, we recall (2-2) and that f = O(|εψ1+ε
2ϕ|2). Then f/ε= O(ε|ψ1+εϕ|

2)

and ft/ε = O
(
ε(ψ1+ εϕ)((ψ1)t + εϕt)

)
. Hence we deduce that

|I6| + |I7|- ε
√

E1+ (ε2
+ ε3 M)(E0

+ E1).

I8 and I9 can be similarly estimated:

|I8|-
√

E1+ (ε+ ε2 M)(E0
+ E1) and |I9|- ε

√

E1+ (ε2
+ ε3 M + ε4 M2)(E0

+ E1).
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We next move onto I10, which will give rise to another energy term. We first rewrite the fourth line
in (5-5):

−γ
r3

ε2 ∂r

(
w1+α

(
J−γ−1

(
1
r2

(
r3(ε(ψ1)t + ε

2ϕt)
)

r

)
−

1
r2 (r

3ε(ψ1)t)r

))
=−γ r3∂r

(
w1+α J−γ−1 1

r2 (r
3ϕt)r

)
− γ r3∂r

(
w1+α (J

−γ−1
− 1)

ε

1
r2 (r

3(ψ1)t)r

)
. (5-7)

By replacing the fourth line using (5-7), we have two terms in I10, denoted by I 1
10 and I 2

10. For I 1
10, we

integrate by parts to obtain a perfect time derivative plus a commutator:

I 1
10 =

γ

2
d
dt

∫ R

0
w1+α J−γ−1 1

r2 |(r
3ϕt)r |

2 dr +
γ (γ + 1)

2

∫ R

0
w1+α J−γ−2 Jt

1
r2 |(r

3ϕt)r |
2 dr.

Note that Jt = 3ψt +rψtr = 3(ε(ψ1)t +ε
2ϕt)+r(ε(ψ1)tr +ε

2ϕtr ). Thus the commutator is bounded by
(ε+ ε2 M)E1. For I 2

10, we first rewrite it as

I 2
10 = − γ

∫ R

0
r3ϕt t∂r

(
w1+α J−γ−1

− 1
ε

1
r2 (r

3(ψ1)t)r

)
dr

= − γ

∫ R

0
r3ϕt t(w

1+α)r
J−γ−1

− 1
ε

(3(ψ1)t + r(ψ1)tr ) dr

+ γ (γ + 1)
∫ R

0
r3ϕt tw

1+α J−γ−2 Jr

ε
(3(ψ1)t + r(ψ1)tr ) dr

− γ

∫ R

0
r3ϕt tw

1+α J−γ−1
− 1

ε
(4(ψ1)tr + r(ψ1)trr ) dr ≡ I 2,1

10 + I 2,2
10 + I 2,3

10 .

For I 2,1
10 and I 2,3

10 , we note that (J−γ−1
− 1)/ε = −(γ + 1)((r3(ψ1 + εϕ))r )/r2

+ h̃/ε, where h̃ =
O
(∣∣(r3(εψ1 + ε

2ϕ))r/r2
∣∣2), which yields |(J−γ−1

− 1)/ε| - 1+ εM . Then, from Hölder’s inequality
and the regularity of ψ1,

|I 2,3
10 |- (1+ εM)

(∫ R

0
wαr4ϕ2

t t dr
)1

2
(∫ R

0
wα+2(r2

|(ψ1)tr |
2
+ r4
|(ψ1)trr |

2) dr
)1

2

- (1+ εM)
√

E1.

For I 2,1
10 , since |(w1+α)r | ∼ wα, we apply the Hardy inequality near the boundary. Then, from the

regularity of ψ1, we obtain

|I 2,1
10 |- (1+ εM)

√

E1.

For I 2,2
10 , we first note that Jr/ε = (4ψr + rψrr )/ε = 4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr ). Then, from the

regularity of ψ1,

|I 2,2
10 |-

(∫ R

0
wαr4ϕ2

t t dr
)1

2
(∫ R

0
wα+2(r2

|(ψ1)r |
2
+ r4
|(ψ1)rr |

2) dr
)1

2

+ ε

(∫ R

0
wαr4ϕ2

t t dr
)1

2
(∫ R

0
wα+2(r2

|ϕr |
2
+ r4
|ϕrr |

2) dr
)1

2

- (1+ ε
√
E1,1)
√

E1.
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Next, it is easy to see that

I11 =−2 d
dt

∫ R

0
wαr48(r)ϕ2

t dr and |I11|- E1. (5-8)

If γ > 4
3 , then I11 will contribute to the energy via (5-8). If γ ≤ 4

3 , then we will use the estimate (5-8),
in which case the contribution of E1 in the right-hand side of the energy inequality will be of order 1.

For the last term, since ft/ε
2
= O

(
(ψ1+ εϕ)((ψ1)t + εϕt)

)
, we obtain

|I12|-
√

E1+ (ε+ ε2 M)(E0
+ E1).

This finishes the proof of the lemma. �

Lemmas 5.3 and 5.4 give rise to the energy inequality for E0
+ E1. However, the right-hand side

involves M from the assumption (4-9) as well as E1,1. In order to justify the assumption and to close the
estimates, we will carry out the higher-order estimates.

The equations for ∂ i
t ϕt , 1≤ i ≤ [α] + 4, can be written in the form

wαr4∂ i
t ϕt t

(1+ ζ )4
+

i∑
j=1

c1 jw
αr4∂

i− j
t ϕt t∂

j−1
t

(
−4(ε(ψ1)t + ε

2ϕt)

(1+ ζ )7

)

+ 8λwαr4∂ i−1
t (ψ1(ψ1)t)+

i∑
j=0

c2 j 4λεwαr4∂
i− j
t ψ1∂

j
t ϕ−

i∑
j=0

λwαr4∂
i− j
t ψ1

∂
j

t f
ε

−

i∑
j=0

c2 j 2wαr4∂
i− j
t
(
((ψ1)t + εϕt)

2)∂ j
t

(
1

(1+ ζ )7

)

− γ r3∂r

(
w1+α J−γ−1 1

r2 (r
3∂ i

t ϕ)r

)
− 4wαr48(r)∂ i

t ϕ

−

i−2∑
j=0

c3 jγ r3∂r

(
w1+α∂

i−1− j
t (J−γ−1)

1
r2 (r

3∂
j

t ϕt)r

)

−

i−1∑
j=0

c3 jγ r3∂r

(
w1+α∂

i−1− j
t

(
J−γ−1

− 1
ε

)
1
r2 (r

3(∂
j

t ψ1)t)r

)
+wαr48(r)

∂ i
t f
ε2 = 0, (5-9)

where c1 j , c2 j and c3 j are binomial coefficients. Notice that we have used (5-7) to write the elliptic,
spatial part.

We record the high-order energy inequalities for the solutions to (5-9):

Lemma 5.5 (E i, i ≥ 2). Suppose that (ϕ, ϕt) satisfy (2-11) for 0 ≤ t ≤ T and the corresponding total
instant energy E is bounded. Moreover, we assume (4-9). Then

d
dt

E i - (1+ εM)
√

E i + (1− a(γ ))E i

+

i∑
k=1

(ε+ ε2 M)k
i∑

j=0

E j
+

i∑
k=1

(ε+ ε2 M)k
( i∑

j=0

j∑
l=0

√
E j,l

)
√

E i . (5-10)
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Proof. We multiply (5-9) by ∂ i
t ϕt and integrate it over (0, R). We denote each integral by Jk for 1≤k≤11.

As before, we will estimate them term by term. As in the case of I1 in the previous lemma, the first term
J1 forms an energy plus a commutator:

J1 =
1
2

d
dt

∫ R

0

wαr4
|∂ i

t ϕt |
2

(1+ ζ )4
dr +

∫ R

0

2wαr4
|∂ i

t ϕt |
2(ε(ψ1)t + ε

2ϕt)

(1+ ζ )7
dr,

where we have used (1-24). Note that the second term is bounded by (ε+ε2 M)E i since (ψ1)t is bounded
and |ϕt | ≤ M due to (4-9). For J2, we note that the second factor in the summation of the second term
in the first line of (5-9) has the form

(ε∂
j−k

t (ψ1)t + ε
2∂

j−k
t ϕt)(ε(ψ1)t + ε

2ϕt)
k−1, 1≤ k ≤ j;

thus, since |ζ | ≤ 1
4 , essentially J2 consists of the following terms: for each 1≤ k ≤ j ≤ i ,∫ R

0
wαr4∂ i

t ϕt∂
i− j+1
t ϕt(ε∂

j−k
t (ψ1)t + ε

2∂
j−k

t ϕt)(ε(ψ1)t + ε
2ϕt)

k−1 dr

= ε

∫ R

0
wαr4∂ i

t ϕt∂
i− j+1
t ϕt∂

j−k
t (ψ1)t(ε(ψ1)t + ε

2ϕt)
k−1 dr

+ ε2
∫ R

0
wαr4∂ i

t ϕt∂
i− j+1
t ϕt∂

j−k
t ϕt(ε(ψ1)t + ε

2ϕt)
k−1 dr

= J 1
2 + J 2

2 . (5-11)

For J 1
2 , we recall (ψ1)t t =−λψ1 and hence ∂ j−k

t (ψ1)t is a constant multiple of ψ1 or (ψ1)t . By further
recalling that ψ1 and (ψ1)t are bounded and |ϕt |- M , and by using the Cauchy–Schwarz inequality, we
see that

|J 1
2 |- ε(ε+ ε

2 M)k−1(E i
+ E i− j+1).

For J 2
2 , let 1≤ j ≤

[ i
2

]
+ 1 first. Then

|J 2
2 | = ε

2
∣∣∣∣∫ R

0
wα/2r2∂ i

t ϕtw
(α− j+k+1)/2r2∂

i− j+1
t ϕtw

( j−k−1)/2∂
j−k

t ϕt(ε(ψ1)t + ε
2ϕt)

k−1 dr
∣∣∣∣

≤ ε2 sup
∣∣w( j−k−1)/2∂

j−k
t ϕt

∣∣(ε+ ε2 M)k−1
√

E i

(∫ R

0
wα− j+k+1r4

|∂
i− j+1
t ϕt |

2 dr︸ ︷︷ ︸
J 2,1

2

)1
2

.

By (4-9), sup
∣∣w( j−k−1)/2∂

j−k
t ϕt

∣∣ ≤ M . To estimate J 2,1
2 , since k ≥ 1 we first observe that J 2,1

2 - E i

when j = 1, and J 2,1
2 - E i−1 when j = 2. Now, when 2≤ j ≤

[ i
2

]
+1 we apply the Hardy inequality (3-3)

near the boundary j − 2 times to obtain∫ R

0
wα− j+k+1r4

|∂
i− j+1
t ϕt |

2 dr -
j−2∑
l=0

∫ R

0
wα− j+k+1+2( j−2)r4

|∂
i− j+1
t ∂ l

rϕt |
2 dr -

j−2∑
l=0

E i− j+1+l,l .
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Now, for J 2
2 , when there exist i and j such that

[ i
2

]
+ 2≤ j ≤ i we write

|J 2
2 | = ε

2
∣∣∣∣∫ R

0
wα/2r2∂ i

t ϕtw
(i− j)/2∂

i− j+1
t ϕtw

(α−i+ j)/2r2∂
j−k

t ϕt(ε(ψ1)t + ε
2ϕt)

k−1 dr
∣∣∣∣

≤ ε2 sup
∣∣w(i− j)/2∂

i− j+1
t ϕt

∣∣(ε+ ε2 M)k−1
√

E i

(∫ R

0
wα−i+ jr4

|∂
j−k

t ϕt |
2 dr

)1
2

.

Note that sup
∣∣w(i− j)/2∂

i− j+1
t ϕt

∣∣≤M due to (4-9). Let J 2,2
2 be the integral in the last term; we apply (3-3)

i − j times to get

J 2,2
2 -

i− j∑
l=0

∫ R

0
wα−i+ j+2(i− j)r4

|∂
j−k

t ∂ l
rϕt |

2 dr -
i− j∑
l=0

E j−k+l,l .

We summarize the above estimates for J2:

|J2|-
∑

1≤k, j≤i

(ε+ ε2 M)kE j
+

√

E i
∑

1≤k≤i

ε2 M(ε+ ε2 M)k−1
( ∑

0≤l≤ j≤i

E j,l
)1

2

.

Next, by using (ψ1)t t =−λψ1 and the boundedness of ψ1 and (ψ1)t , we easily deduce that

|J3|-
√

E i .

Likewise, ∂ i− j
t ψ1 in J4 is a constant multiple of ψ1 or (ψ1)t and hence, by the Cauchy–Schwarz inequal-

ity, we obtain

|J4|- ε
i∑

j=0

E j .

To estimate J5, we observe that ∂ j
t f/ε consists of terms like

ε(∂
j−k

t ψ1+ ε∂
j−k

t ϕ)(∂k
t ψ1+ ε∂

k
t ϕ)

for 0 ≤ k ≤ j ≤ i . The contribution coming from ∂
j−k

t ψ1 · ∂
k
t ψ1, ∂ j−k

t ϕ · ∂k
t ψ1 or ∂ j−k

t ψ1 · ∂
k
t ϕ can be

bounded by ε
√
E i+ε2∑i

j=0 E
j . The remaining nonlinear part can be controlled similarly as done for J2

by using L∞ bounds and Hardy inequalities. By the boundedness of ∂ i− j
t ψ1, it would suffice to estimate

ε3
∫ R

0
wαr4∂ i

t ϕt∂
j−k

t ϕ∂k
t ϕ dr.

By symmetry of indices, we may assume 0≤ k ≤
[ j

2

]
. If k is 0 or 1, then by (4-9) the integral is bounded

by ε3 M(E i
+ E j−k−1) with the understanding that E−1

= E0. Suppose 2≤ k ≤
[ j

2

]
. Then we get

ε3
∫ R

0
wαr4∂ i

t ϕt∂
j−k

t ϕ∂k
t ϕ dr = ε3

∫ R

0
wα/2r2∂ i

t ϕtw
(α−k+2)/2r2∂

j−k
t ϕw(k−2)/2∂k

t ϕ dr

- ε3 sup
∣∣w(k−2)/2∂k

t ϕ
∣∣√E i

(∫ R

0
wα−k+2r4

|∂
j−k

t ϕ|2 dr︸ ︷︷ ︸
J 1

5

)1
2

.
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Due to (4-9), sup
∣∣w(k−2)/2∂k

t ϕ
∣∣≤ M . For J 1

5 , we apply the Hardy inequality (3-3) k− 2 times to obtain

J 1
5 -

k−2∑
l=0

∫ R

0
wα−k+2+2(k−2)r4

|∂
j−k

t ∂ l
rϕ|

2 dr -
k−2∑
l=0

E j−k−1+l,l .

We have derived the estimate of J5 as

|J5|- ε
√

E i + ε2
i∑

j=0

E j
+ ε3 M

( i∑
j=0

E j
+

√

E i

( ∑
0≤l≤ j≤i−3

E j,l
)1

2
)
.

We next estimate J6. First let j = 0. Then the third line of (5-9) essentially takes the following form

wαr4(∂ i−k
t (ψ1)t + ε∂

i−k
t ϕt)(∂

k
t (ψ1)t + ε∂

k
t ϕt), 0≤ k ≤ i.

We may assume 0 ≤ k ≤
[ i

2

]
. As before, it is easy to see that the contribution coming from ψ1 related

terms is bounded by
√
E i + ε

∑i
j=0 E

j . The remaining nonlinear part can be controlled similarly as in
the previous case by using (4-9) and Hardy inequality:

ε2
∫ R

0
wαr4∂ i

t ϕt∂
i−k
t ϕt∂

k
t ϕt dr - ε2 M

√

E i

( k−1∑
l=0

E i−k+l,l
)1

2

.

Now let 1≤ j ≤ i . Then the second time-differentiated term ∂
j

t ((1+ ζ )−7) consists of the terms

(ε∂
j−m

t (ψ1)t + ε
2∂

j−m
t ϕt)(ε(ψ1)t + ε

2ϕt)
m−1, 1≤ m ≤ j.

The term ε∂
j−m

t (ψ1)t(ε(ψ1)t+ε
2ϕt)

m−1 is bounded by ε(ε+ε2 M)m−1 and thus, by the same argument
as in the previous case, the corresponding integral in J6 is bounded by

ε(ε+ ε2 M)m−1
∫ R

0
wαr4∂ i

t ϕt(∂
i− j−k
t (ψ1)t + ε∂

i− j−k
t ϕt)(∂

k
t (ψ1)t + ε∂

k
t ϕt) dr

- ε(ε+ ε2 M)m−1
(
√

E i + ε(Ek
+ E i− j−k)+ ε2

∫ R

0
wαr4∂ i

t ϕt∂
i− j−k
t ϕt∂

k
t ϕt dr

)
- ε(ε+ ε2 M)m−1

(
√

E i + ε(Ek
+ E i− j−k)+ ε2 M(

√

E i +
√

E i− j )

( k−1∑
l=0

E i− j−k+l,l
)1

2
)
,

where we have expanded ∂ i− j
t
(
((ψ1)t +εϕt)

2
)

and assumed k ≤
[ 1

2(i− j)
]
. The last case is of the form,

for 1≤ m ≤ j and k ≤ i − j ,

ε2
∫ R

0
wαr4∂ i

t ϕt
(
∂

i− j−k
t (ψ1)t + ε∂

i− j−k
t ϕt

)(
∂k

t (ψ1)t + ε∂
k
t ϕt
)
∂

j−m
t ϕt

(
ε(ψ1)t + ε

2ϕt
)m−1 dr,
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which is bounded by

ε2(ε+ ε2 M)m−1
∫ R

0
wαr4∂ i

t ϕt(∂
i− j−k
t (ψ1)t + ε∂

i− j−k
t ϕt)(∂

k
t (ψ1)t + ε∂

k
t ϕt)∂

j−m
t ϕt dr

- ε2(ε+ ε2 M)m−1
(
E i
+ E j−m

+ ε

∫ R

0
wαr4∂ i

t ϕt(∂
i− j−k
t ϕt + ∂

k
t ϕt)∂

j−m
t ϕt dr︸ ︷︷ ︸

J 1
6

+ ε2
∫ R

0
wαr4∂ i

t ϕt∂
i− j−k
t ϕt∂

k
t ϕt∂

j−m
t ϕt dr︸ ︷︷ ︸

J 2
6

)
,

where we have used the boundedness of ψ1 and (ψ1)t . The estimation of J 1
6 is similar to previous

nonlinear terms. First, if m = j then it is clear that J 1
6 - M(E i

+ E i− j−k
+ Ek). So let 1 ≤ m ≤ j − 1.

If 1 ≤ j ≤
[ i

2

]
+ 1, take the supremum of w( j−m−1)/2∂

j−m
t ϕt and apply the Hardy inequality to deduce

that

J 1
6 - M

√

E i

( j−1∑
l=0

E i− j−k+l,l
+ Ek+l,l

)1
2

.

If
[ i

2

]
+ 2 ≤ j ≤ i , then take the supremum of w(i− j−1)/2(∂

i− j−k
t ϕt + ∂

k
t ϕt) when j < i , the supremum

of ϕt when j = i , and apply the Hardy inequality to obtain J 1
6 - M

√
E i
(∑ j−1

l=0 E i− j−k+l,l
+ Ek+l,l

)1/2.
By the same argument as before, we deduce that

J 1
6 - M

(
E i
+ E j−m

+

√

E i
(i− j−1∑

l=0

E j−m+l,l)1/2)
.

It now remains to estimate J 2
6 . Here, not only j but also k will matter. Let us start with 1≤ j ≤

[ i
2

]
+1.

Due to the symmetry of indices, we can assume that k ≤
[ 1

2(i − j)
]
. Notice that, if m = j or k = 0, then

the last factor or the third factor is bounded by M and thus this reduces to the case that has been treated
before. Let 1≤ m ≤ j − 1 and 1≤ k ≤

[ 1
2(i − j)

]
. We write J 2

6 as

J 2
6 =

∫ R

0
wα/2r2∂ i

t ϕtw
(α−k− j+m+2)/2r2∂

i− j−k
t ϕtw

(k−1)/2∂k
t ϕtw

( j−m−1)/2∂
j−m

t ϕt dr.

Hence by (4-9) we first see that

J 2
6 - M2

√

E i

(∫ R

0
wα−k− j+m+2r4

|∂
i− j−k
t ϕt |

2 dr
)1

2

.

By applying the Hardy inequality (3-3) j + k− 2 times to the last term we obtain

J 2
6 - M2

√

E i

( j+k−2∑
l=0

E i− j−k+l,l
)1

2

.

Now let
[ i

2

]
+ 2 ≤ j ≤ i . If j = i or j = i − 1, then k = 0 or k = 1, and thus J 2

6 - M2(E i
+ E j−m).

If k = 0 or k = i − j , then this reduces to the previous case. So we assume
[ i

2

]
+ 2 ≤ j ≤ i − 2 and
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1≤ k ≤ i − j − 1. In this case, we have

J 2
6 =

∫ R

0
wα/2r2∂ i

t ϕtw
(i− j−k−1)/2∂

i− j−k
t ϕtw

(k−1)/2∂k
t ϕtw

(α−i+ j+2)/2r2∂
j−m

t ϕt dr

- M2
√

E i

( i− j−2∑
l=0

E j−m+l,l
)1

2

.

We next move onto J7, which will contribute to the energy. Integration by parts yields

J7 = γ

∫ R

0
∂r (r3∂ i

t ϕt)w
1+α J−γ−1 1

r2 (r
3∂ i

t ϕ)r dr

=
γ

2
d
dt

∫ R

0
w1+α J−γ−1 1

r2 |(r
3∂ i

t ϕ)r |
2 dr +

γ (γ + 1)
2

∫ R

0
w1+α J−γ−2 Jt

1
r2 |(r

3∂ i
t ϕ)r |

2 dr,

where the commutator is bounded by (ε+ ε2 M)E i .
J8 satisfies

J8 =−2 d
dt

∫ R

0
wαr48(r)|∂ i

t ϕ|
2 dr and |J8|- E i .

If γ > 4
3 , the first expression will be used, so that J8 can contribute to the energy. If γ ≤ 4

3 , then we
will use the estimation, so the contribution of E i in the right-hand side of the energy inequality will be
of order 1.

Next, for J9, by distributing the spatial derivative we write it as

−
J9

γ
=

i−2∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3(w1+α)r∂
i−1− j
t (J−γ−1)

1
r2 (r

3∂
j

t ϕt)r dr

+

i−2∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3w1+α∂
i−1− j
t ∂r (J−γ−1)

1
r2 (r

3∂
j

t ϕt)r dr

+

i−2∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3w1+α∂
i−1− j
t (J−γ−1)(4∂ j

t ∂rϕt + r∂ j
t ∂

2
r ϕt) dr.

We denote the integrals in the above three summations by J 1
9 , J 2

9 , J 3
9 . We start with J 1

9 . Notice that
∂

i−1− j
t (J−γ−1) consists of (∂ i− j−1−k

t J )(Jt)
k for 0≤ k ≤ i − j − 2, where

∂
i− j−1−k
t J = 3

(
ε∂

i− j−1−k
t (ψ1)+ ε

2∂
i− j−1−k
t ϕ

)
+ r

(
ε∂

i− j−1−k
t (ψ1)r + ε

2∂
i− j−1−k
t ϕr

)
. (5-12)

Let j +1≤
[ i

2

]
. Then |w j/2(1/r2)(r3∂

j
t ϕt)r |- M by (4-9), and |Jt |

k - (ε+ ε2 M)k . We also recall that
(w1+α)r =−rwα8(r), where 8(r) is bounded. Thus

|J 1
9 |- (ε+ ε

2 M)k M
√

E i

(∫ R

0
wα− jr4

|∂
i− j−1−k
t J |2 dr

)1
2

.
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From (5-12) we use the regularity of ψ1 and apply the Hardy inequality to obtain∫ R

0
wα− jr4

|∂
i− j−1−k
t J |2 dr - ε2

+ ε4
∫ R

0
wα− jr4

|∂
i− j−1−k
t ϕ|2 dr + ε4

∫ R

0
wα− jr6

|∂
i− j−1−k
t ϕr |

2 dr

- ε2
+ ε4

j+1∑
l=0

E i− j−1−k+l,l . (5-13)

Hence we have |J 1
9 |- ε(ε+ ε

2 M)k M
√
E i
(
1+ ε

(∑ j+1
l=0 E i− j−1−k+l,l

)1/2) for j+1≤
[ i

2

]
. Now suppose[ i

2

]
≤ j ≤ i − 2. Then |w(i− j−2−k)/2∂

i− j−1−k
t J | - ε + ε2 M . Therefore, by further applying the Hardy

inequality,

|J 1
9 |- (ε+ε

2 M)k+1
√

E i

(∫ R

0
wα−i+ j+2+k 1

r2 |(r
3∂

j
t ϕt)r |

2 dr
)1

2

- (ε+ε2 M)k+1
√

E i

( i− j−2∑
l=0

E j+1+l,l
)1

2

.

We next treat J 3
9 . Let j <

[1
2(i − 3)

]
. Then |w( j+2)/2(4∂ j

t ∂rϕt + r∂ j
t ∂

2
r ϕt)|- M by (4-9). Thus

|J 3
9 |- (ε+ ε

2 M)k M
√

E i

(∫ R

0
wα− jr2

|∂
i− j−1−k
t J |2 dr

)1
2

,

where we have used |Jt |
k - (ε + ε2 M)k . Hence, this case is the same as in the previous case of J 1

9
(see (5-13)) except for the factor r2 instead of r4. The weight r4 is recovered by applying the Hardy
inequality (3-1) once. Notice that the Hardy inequality near the boundary is used multiple times in
(5-13) and thus we obtain the same result as in J 1

9 . Now suppose
[ 1

2(i − 3)
]
≤ j ≤ i − 2. Then

|w(i− j−2−k)/2∂
i− j−1−k
t J |- ε+ ε2 M . Therefore, by further applying the Hardy inequality,

|J 3
9 |- (ε+ ε

2 M)k+1 M
√

E i

(∫ R

0
wα−i+ j+4+k(r2

|∂
j

t ∂rϕt |
2
+ r4
|∂

j
t ∂

2
r ϕt |

2) dr
)1

2

- (ε+ ε2 M)k+1 M
√

E i

( i− j−2∑
l=0

E j+2+l,l+1
)1

2

.

Now J 2
9 can be treated similarly to J 3

9 by considering j ≤
[1

2(i−3)
]

and j>
[1

2(i−3)
]
, since the nonlinear

structure and number of spatial derivatives involved are essentially the same. We omit the details.
We next move onto J10. As in J9, we first distribute the spatial derivative to write

−
J10

γ
=

i−1∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3(w1+α)r∂
i−1− j
t

(
J−γ−1

− 1
ε

)
1
r2 (r

3(∂
j

t ψ1)t)r dr

+

i−1∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3w1+α∂
i−1− j
t ∂r

(
J−γ−1

− 1
ε

)
1
r2 (r

3(∂
j

t ψ1)t)r dr

+

i−1∑
j=0

c3 j

∫ R

0
∂ i

t ϕtr3w1+α∂
i−1− j
t

(
J−γ−1

− 1
ε

)
(4∂ j+1

t (ψ1)r + ∂
j+1

t (ψ1)rr ) dr.
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We denote these summands by J 1
10, J 2

10 and J 3
10. Before we discuss further, we remark that, since ∂ j+1

t ψ1

is a constant multiple of ψ1 or (ψ1)t , the last factor in the integral doesn’t lose derivatives at all and it is
just a nice function with a desirable regularity in our weighted spaces. We will treat J 1

10 and J 3
10. Notice

that r3(w1+α)r - r4wα. We first consider j = i−1. Then, by recalling |(J−γ−1
−1)/ε|- 1+εM (see the

estimation of I 2
10 in the previous lemma) and the regularity of ψ1, we deduce that the integral is bounded

by (1+ εM)
√
E i . The same argument yields the same bound for the case j = i − 1 of J 3

10. Now let
0≤ j ≤ i−2. Then ∂ i−1− j

t ((J−γ−1
−1)/ε) consists of (1/ε)(∂ i− j−1−k

t J )(Jt)
k for 0≤ k≤ i− j−2, where

∂
i− j−1−k
t J is given in (5-12). The estimates of J 1

10 and J 3
10 can be obtained in a similar way as in the previ-

ous case. The differences are the presence of 1/ε and that the last factor in the integral is a given function
in this case, which only makes the argument easier. As can be seen in (5-12) and (5-13), ∂ i− j−1−k

t J/ε is
bounded by the total energy and the result will be 1/ε times the corresponding estimates of J 1

9 and J 3
9 .

By the same argument, we can obtain the estimate of J 2
10 as 1/ε times the corresponding estimates of J 2

9 .
In all cases, the leading order of the bounds is

√
E i , while the leading order for J9 is ε(M

√
E i + E i ).

Lastly, J11 can be estimated in the same way as in the case j = i in J5. The difference is the order of ε:

|J11|-
√

E i + ε

i∑
j=0

E j
+ ε2 M

( i∑
j=0

E j
+

√

E i

( ∑
0≤l≤ j≤i−3

E j,l
)1

2
)
.

This finishes the proof of the lemma. �

6. Elliptic estimates

Proposition 6.1. Suppose that (ϕ, ϕt) satisfy (2-11) for 0≤ t ≤ T and the corresponding total energy E
is bounded. Moreover, we assume (4-9). Then E enjoys the estimates

E - 1+ (1+ ε4 M2)E + ε2(M2
+ E + ε2 M2E) (6-1)

for all sufficiently small ε > 0.

Notice that (6-1) is trivially obtained for E j,0 for 0≤ j ≤ [α]+ 4 because E j,0 and E j are equivalent.
Moreover, due to (2-13), it suffices to estimate E j,k

r for 1 ≤ k ≤ j ≤ [α] + 4. We start with the simplest
case j = 1 and k = 1 and then move onto the general case j ≥ 2.

Lemma 6.2 (E1,1). Suppose that (ϕ, ϕt) satisfy (2-11) for 0≤ t ≤ T and the corresponding total instant
energy E is bounded. Moreover, we assume (4-9). Then there exists a constant C > 0 such that

E1,1
r - 1+ (1+ ε4 M2)(E0

+ E1)+ ε2(M2
+ (1+ ε2 M2)E1,1

r ).

Proof. In this case, because of (2-13), we only need to show that
∫ R

0 w2+αr4
|ϕrr |

2 dr is bounded by the
temporal instant energy. By using (2-1) and (4-3), we rewrite (2-11) in the form

γ
(
w1+αr4ϕr

)
r =

wαr4ϕt t

(1+ ζ )4
+ 4λwαr4ψ2

1 + 4λεwαr4ψ1ϕ− λw
αr4ψ1

f
ε
+wαr48(r)

f
ε2

−
2wαr4

|(ψ1)t + εϕt |
2

(1+ ζ )7
+ (3γ − 4)wαr48(r)ϕ+ r3

(
w1+α h

ε2

)
r
. (6-2)
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We will exploit the elliptic structure of the term in the left-hand side of (6-2). Square both sides of (6-2),
divide them by wαr4 and integrate the result over (0, R) to get∫ R

0

γ 2

wαr4 |(w
1+αr4ϕr )r |

2 dr

-
∫ R

0

wαr4
|ϕt t |

2

(1+ ζ )8
dr +

∫ R

0
wαr4ψ4

1 dr + ε2
∫ R

0
wαr4ψ2

1 |ϕ|
2 dr

+

∫ R

0
wαr4ψ2

1

∣∣∣∣ f
ε

∣∣∣∣2 dr +
∫ R

0
wαr4

∣∣∣∣8(r) f
ε2

∣∣∣∣2 dr +
∫ R

0

wαr4
|(ψ1)t + εϕt |

4

(1+ ζ )14 dr

+

∫ R

0
wαr4
|8(r)ϕ|2 dr +

∫ R

0

1
wαr4

∣∣∣∣r3
(
w1+α h

ε2

)
r

∣∣∣∣2 dr . (6-3)

We denote the integral in the left-hand side by I and each integral in the right-hand side by Ik for
1≤ k ≤ 8. It is clear that

I1 - E1, I2 - 1, I3 - ε
2E0. (6-4)

For I4 and I5, we recall that f = O(|εψ1+ε
2ϕ|2). Then, by using the boundedness of ψ1 and 8 as well

as (4-9), we have
I4 - ε

2(1+ ε4 M2E0), I5 - 1+ ε4 M2E0.

Similarly, we obtain
I6 - 1+ ε4 M2E1, I7 - E0.

The last term involves the full derivatives and it needs to be estimated carefully. Recall that

h = h
(

1
r2 (r

3(εψ1+ ε
2ϕ))r

)
= O

(∣∣∣∣ 1
r2 (r

3(εψ1+ ε
2ϕ))r

∣∣∣∣2),
1
r2 (r

3(εψ1+ ε
2ϕ))r = 3(εψ1+ ε

2ϕ)+ r(ε(ψ1)r + ε
2ϕr ).

We then see that

r3
(
w1+α h

ε2

)
r
= r3w1+α h(1)

ε
·
(
4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr )

)
+ r3(w1+α)r

h
ε2 ,

where h(1) means the first derivative of h with respect to the argument. By using the notation 8 given
in (2-10), we write (w1+α)r =−rwα8(r) and, hence, we see that I8 is bounded by

I8 -
∫ R

0
w2+αr2

∣∣∣∣h(1)ε
∣∣∣∣2|(ψ1)r + εϕr |

2 dr +
∫ R

0
w2+αr4

∣∣∣∣h(1)ε
∣∣∣∣2|(ψ1)rr + εϕrr |

2 dr

+

∫ R

0
wαr4
|8(r)|2

∣∣∣∣ h
ε2

∣∣∣∣2 dr = I 1
8 + I 2

8 + I 3
8 .

Notice that |h(1)/ε|- 1+ εM and |h/ε2
|- 1+ ε2 M2. It is easy to see that

I 2
8 - (1+ εM)2(1+ ε2E1,1

r ).
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For I 1
8 and I 3

8 , we further employ the Hardy inequalities near the origin (3-1) and near the boundary (3-3)
respectively to deduce that

I 1
8 + I 3

8 - (1+ ε
2 M2)(1+ ε2(E0

+ E1,1
r )).

We now turn our attention to the integral I in the left-hand side of (6-3). First notice that

(w1+αr4ϕr )r = w
1+αr4ϕrr + 4w1+αr3ϕr + (w

1+α)rr4ϕr = w
1+αr4ϕrr + 4w1+αr3ϕr −w

αr58(r)ϕr .

Then I reads as

I = γ 2
∫ R

0
wαr4

∣∣∣∣wϕrr +
4wϕr

r
− r8(r)ϕr

∣∣∣∣2dr.

By expanding out terms, we see that

I
γ 2 =

∫ R

0
w2+αr4

|ϕrr |
2 dr + 16

∫ R

0
w2+αr2

|ϕr |
2 dr +

∫ R

0
wαr6
|8(r)|2|ϕr |

2 dr

+ 8
∫ R

0
w2+αr3ϕrrϕr dr︸ ︷︷ ︸

I 1

−2
∫ R

0
w1+αr58(r)ϕrrϕr dr︸ ︷︷ ︸

I 2

−8
∫ R

0
w1+αr48(r)|ϕr |

2 dr.

For I 1 and I 2, we integrate by parts to get

I 1
=−4

∫ R

0
(w2+α)rr3

|ϕr |
2 dr − 12

∫ R

0
w2+αr2

|ϕr |
2 dr

= 4
2+α
1+α

∫ R

0
w1+αr48(r)|ϕr |

2 dr − 12
∫ R

0
w2+αr2

|ϕr |
2 dr,

I 2
=−

∫ R

0
wαr6
|8(r)|2|ϕr |

2
+ 5

∫ R

0
w1+αr48(r)|ϕr |

2 dr +
∫ R

0
w1+αr58′(r)|ϕr |

2 dr.

Hence we obtain∫ R

0
w2+αr4

|ϕrr |
2 dr + 4

∫ R

0
w2+αr2

|ϕr |
2 dr

=
I
γ 2 + 3

∫ R

0
w1+αr48(r)|ϕr |

2 dr − 4
2+α
1+α

∫ R

0
w1+αr48(r)|ϕr |

2 dr −
∫ R

0
w1+αr58′(r)|ϕr |

2 dr︸ ︷︷ ︸
-E0

.

It is clear that the last three terms in the right-hand side are bounded by the zeroth-order energy E0.
Combining all the estimates, we deduce the result. This finishes the proof for the case of j = 1 and
k = 1. �

We now turn into the cases [α]+4≥ j ≥ 2. As in the case of j = 1, we will directly use the equation
and take advantage of the elliptic estimates. What is subtle and interesting here is to capture the correct
behavior of solutions in the normal direction ∂r near the boundary.
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Lemma 6.3 (E j,k
r for 1 ≤ k ≤ j , 2 ≤ j). Suppose that (ϕ, ϕt) satisfy (2-11) for 0 ≤ t ≤ T and the

corresponding total instant energy E is bounded. Moreover, we assume (4-9). Then there exists a constant
C > 0 such that

E j,k
r - (1+ ε

4 M2)

j∑
l=0

E l
+ E j−1,k−1

r + ε2
(

M2
+ (1+ ε2 M2)

j∑
m=1

m∑
l=1

Em,l
r

)
.

Proof. Notice that because of (2-13), it suffices to show that each spatial energy term E j,k
r for 1≤ k ≤ j

satisfies the inequality. We will present the detail for j = 2; other cases follow by induction on j , k.
When k = 1, the spatial energy term E 2,1

r contains one temporal derivative and two spatial derivatives.
The time differentiation of (6-2) is the place to start. Notice that the time derivative does not affect the
weights at all since w and r do not change with time. Therefore, following the same procedure for E1,1

r

in the previous lemma, we can deduce that

E 2,1
r - 1+ (1+ ε4 M2)(E0

+ E1
+ E2)+ (1+ ε2 M2)(1+ ε2(E1,1

r + E 2,1
r )).

To deal with E 2,2
r , which contains three spatial derivatives, we will first derive the equation for ϕrrr

from (6-2). By following the idea in [Jang 2014], first divide both sides of (6-2) by r3wα:

γ (wrϕrr + (1+α)wrrϕr + 4wϕr )

=
rϕt t

(1+ ζ )4
+ 4λrψ2

1 + 4λεrψ1ϕ− λrψ1
f
ε
+ r8(r)

f
ε2 −

2r |(ψ1)t + εϕt |
2

(1+ ζ )7
+ (3γ − 4)r8(r)ϕ

+w
h(1)

ε

(
4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr )

)
+ (1+α)wr

h
ε2 .

Then we take ∂r of both sides of the above equation and move the terms involving ϕr into the right-
hand side to get

γ (wrϕrrr + (2+α)wrrϕrr + 5wϕrr )

= − γ ((5+α)wrϕr + (1+α)wrrrϕr )

+

(
rϕt t

(1+ ζ )4

)
r
+ 4λ(rψ2

1 )r + 4λε(rψ1ϕ)r − λ

(
rψ1

f
ε

)
r
+

(
r8(r)

f
ε2

)
r

−

(
2r |(ψ1)t + εϕt |

2

(1+ ζ )7

)
r
+ (3γ − 4)(r8(r)ϕ)r

+

(
w

h(1)

ε

(
4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr )

)
+ (1+α)wr

h
ε2

)
r
. (6-5)

As in the previous lemma, we square both sides of (6-5), multiply by w1+αr2 — here the choice of
the multiplier w1+α has been inspired by the analysis carried out in [Jang and Masmoudi 2015] — and
integrate it over (0, R) to obtain an integral inequality similar to (6-3). We denote the integral in the



1074 JUHI JANG

left-hand side by I and the integrals in the right-hand side by Ik , 1 ≤ k ≤ 9. For I1 we apply the Hardy
inequality near the origin (3-1) to overcome stronger weights near the origin:

I1 -
∫ R

0
w1+αr2(|wr |

2
+ |rwrr |

2)|ϕr |
2 dr - E0

+ E1,1
r .

For I2, we obtain

I2 -
∫ R

0

w1+αr4
|ϕt tr |

2

(1+ ζ )8
dr +

∫ R

0

w1+αr2
|ϕt t |

2

(1+ ζ )8
dr +

∫ R

0

w1+αr4
|ϕt t(ε(ψ1)r + ε

2ϕr )|
2

(1+ ζ )14 dr

- E 2,0
r + (E

1
+ E 2,0

r )+ (ε2
+ ε4 M2)E1,

where we have applied the Hardy inequality (3-1) to the second term. Next, by the regularity of ψ1 and
the Hardy inequality (3-1), we observe that

I3+ I4 - 1+ ε2E0.

For I5 and I6, we note that f = f (εψ1+ε
2ϕ)= O(|εψ1+ε

2ϕ|2) and fr = f (1) ·(ε(ψ1)r+ε
2ϕr ). Hence

I5+ I6 - 1+ ε4 M2E0.

Similarly, by using the Hardy inequality (3-1) and (4-9) we have

I7 - 1+ ε4 M2(E0
+ E1).

Since (r8(r)ϕ)r =8(r)ϕ+ r8(r)′ϕ+ r8(r)ϕr , by (3-1) for the first term again we see that

I8 - E0.

For I9, we note that the last line of (6-5) can be written as follows:

w
h(1)

ε

(
5((ψ1)rr + εϕrr )+ r((ψ1)rrr + εϕrrr )

)
+wh(2)

(
4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr )

)2

+ (2+α)wr
h(1)

ε

(
4((ψ1)r + εϕr )+ r((ψ1)rr + εϕrr )

)
+ (1+α)wrr

h
ε2 ,

where h(2) means the second derivative with respect to the argument. Thus I9 includes ϕrrr , ϕrr , ϕr with
different weights and it can be treated in a similar way as we did for I8 of (6-3) in the previous lemma.
We expand it out and apply the Hardy inequalities both near the origin (3-1) and near the boundary (3-3)
to deduce that

I9 - (1+ εM)2(1+ ε2(E0
+ E1,1

r + E 2,2
r )). (6-6)
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What follows now is the elliptic estimate for I coming from the first term in (6-5), which will give
rise to the term E 2,2

r :

I =
∫ R

0
w1+αr2

|wrϕrrr + (2+α)wrrϕrr + 5wϕrr |
2 dr

=

∫ R

0
w3+αr4

|ϕrrr |
2 dr + (2+α)2

∫ R

0
w1+αr4

|wr |
2
|ϕrr |

2 dr + 25
∫ R

0
w3+αr2

|ϕrr |
2 dr

+ 2(2+α)
∫ R

0
w2+αr4wrϕrrrϕrr dr︸ ︷︷ ︸

I 1

+ 10
∫ R

0
w3+αr3ϕrrrϕrr dr︸ ︷︷ ︸

I 2

+ 10(2+α)
∫ R

0
w2+αr3wr |ϕrr |

2 dr .

For I 1 and I 2, we integrate by parts to get

I 1

2+α
=−

∫ R

0
(w2+α)rr4wr |ϕrr |

2 dr − 4
∫ R

0
w2+αr3wr |ϕrr |

2 dr −
∫ R

0
w2+αr4wrr |ϕrr |

2 dr

=−(2+α)
∫ R

0
w1+αr4

|wr |
2
|ϕrr |

2 dr − 4
∫ R

0
w2+αr3wr |ϕrr |

2 dr −
∫ R

0
w2+αr4wrr |ϕrr |

2 dr,

I 2
=−5(3+α)

∫ R

0
w2+αwrr3

|ϕrr |
2 dr − 15

∫ R

0
w3+αr2

|ϕrr |
2 dr.

Thus we obtain∫ R

0
w3+αr4

|ϕrrr |
2 dr + 10

∫ R

0
w3+αr2

|ϕrr |
2 dr

= I − (α− 3)
∫ R

0
w2+αwrr3

|ϕrr |
2 dr + (2+α)

∫ R

0
w2+αr4wrr |ϕrr |

2 dr.

By noting wr = −r8(r)/(1+ α), we see that the last two terms are bounded by E1,1
r . By combining

with all other estimates, we deduce that

E 2,2
r - 1+ (1+ ε4 M2)(E0

+ E1)+ E2
+ E1,1

r + (1+ ε
2 M2)(1+ ε2(E0

+ E1,1
r + E 2,2

r )).

By the previous lemma, the desired result follows and this finishes the proof of the case j = 2.
Other cases can be done inductively: take ∂r derivatives of (6-5), square it, multiply by appropriate
weights depending on the number of spatial derivatives, and exploit the Hardy inequalities and the elliptic
estimates. The procedure and the estimates are similar to the previous cases and we omit the details. �

The inequality (6-1) in Proposition 6.1 now follows from Lemmas 6.2 and 6.3 by considering a suitable
linear combination of E j,k to absorb E j−1,k−1 and ε2∑ j

m=1
∑m

l=1 E
m,l
r into the left-hand side.
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7. Proof of Theorem 2.4

Since M - E1/2, (6-1) yields
E - 1+ E + ε2E + ε4E 2.

Therefore, for all sufficiently small ε >0, we deduce that the total energy is bounded by the total temporal
energy:

E - 1+ E .

Now from the energy inequality (5-1) in Proposition 5.1, we obtain

d
dt

√
E - 1+ (1− a(γ ))

√
E + (ε+ ε2 M)(

√
E +

√
E)- 1+ (1− a(γ ))

√
E + ε
√
E + (ε

√
E)2. (7-1)

First let γ > 4
3 , in which case a(γ )= 1. So the differential inequality becomes

d
dt

√
E - 1+ ε

√
E + (ε

√
E)2,

which in turn gives rise to
d
dt
(ε
√
E + 1)- ε(ε

√
E + 1)2.

Therefore, by solving this differential inequality, we deduce that

√
E(t)-

√
E(0)+ (ε

√
E(0)+ 1)t

1− ε(ε
√
E(0)+ 1)t

.

Hence, in the case of γ > 4
3 , we conclude that sup0≤t≤T

√
E(t) is bounded for all sufficiently small ε≤ ε0,

where ε0 = O(1/T ).
Next let γ ≤ 4

3 . Then we need to solve

d
dt

√
E - 1+

√
E + ε2(

√
E)2.

Equivalently,
d
dt
(ε2
√
E + 1)- (ε2

√
E + 1)2+ ε2

− 1.

Let k =
√

1− ε2. Then (
1

ε2
√
E + 1− k

−
1

ε2
√
E + 1+ k

)
d
dt
(ε2
√
E + 1)- 2k.

Thus
√
E(t)-

√
E(0)((1+ k)2e2kt

− ε2)+ (1+ k)(e2kt
− 1)

(1+ k)
(
1+ k− (1− k)e2kt − ε2

√
E(0)(e2kt − 1)

) .
Notice that 1+k= 1+

√
1− ε2= O(1) and 1−k= ε2/(1+

√
1− ε2)= O(ε2). Therefore, we conclude,

for γ ≤ 4
3 , that sup0≤t≤T

√
E(t) is bounded for all sufficiently small ε ≤ ε1, where ε1 = O(1/eκT ) for

some κ > 0.

Remark 7.1. If we fix a small ε > 0 in the ansatz (2-9) instead of fixing a time T , then the above results
would imply that (2-9) can be justified up to t ≤ T = O(1/ε) for γ > 4

3 and t ≤ T = O(|ln ε|) for γ ≤ 4
3 .
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