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FREE PLURIHARMONIC FUNCTIONS ON NONCOMMUTATIVE POLYBALLS

GELU POPESCU

We study free k-pluriharmonic functions on the noncommutative regular polyball B,, n=(ni, ..., n;) e N,
which is an analogue of the scalar polyball (C"1); x - - - x (C");. The regular polyball has a universal model
S :={8; j} consisting of left creation operators acting on the tensor product F 2(H,,l) QX --QF 2(an) of
full Fock spaces. We introduce the class T, of k-multi-Toeplitz operators on this tensor product and prove
that 7, = span{.A}.A,} ST, where A, is the noncommutative polyball algebra generated by S and the
identity. We show that the bounded free k-pluriharmonic functions on B, are precisely the noncommutative
Berezin transforms of k-multi-Toeplitz operators. The Dirichlet extension problem on regular polyballs
is also solved. It is proved that a free k-pluriharmonic function has continuous extension to the closed
polyball B, if and only if it is the noncommutative Berezin transform of a k-multi-Toeplitz operator in
span{A*.A,} Il

We provide a Naimark-type dilation theorem for direct products U:jl X oo X U:jk of unital free semigroups,
and use it to obtain a structure theorem which characterizes the positive free k-pluriharmonic functions
on the regular polyball with operator-valued coefficients. We define the noncommutative Berezin (resp.
Poisson) transform of a completely bounded linear map on C*(S), the C*-algebra generated by S; ;, and
give necessary and sufficient conditions for a function to be the Poisson transform of a completely bounded
(resp. completely positive) map. In the last section of the paper, we obtain Herglotz—Riesz representation
theorems for free holomorphic functions on regular polyballs with positive real parts, extending the classical
result as well as the Kordnyi—Pukdnszky version in scalar polydisks.
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Introduction

A multivariable operator model theory and a theory of free holomorphic functions on polydomains which
admit universal operator models have been recently developed in [Popescu 2013; 2016]. An important
feature of these theories is that they are related, via noncommutative Berezin transforms, to the study of
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the operator algebras generated by the universal models as well as to the theory of functions in several
complex variables. These results played a crucial role in our work on the curvature invariant [Popescu
2015a], the Euler characteristic [Popescu 2014], and the group of free holomorphic automorphisms on
noncommutative regular polyballs [Popescu 2015b].

The main goal of the present paper is to continue our investigation along these lines and to study the
class of free k-pluriharmonic functions of the form

F(X) = Z Z Z Aa:p) X101 “Xk,akXT,ﬁl‘ "X/t,ﬁk’ aw;p) €C,
meZ myeZ a,-,ﬂ,-e[F,J{,
ot |=m;", |/3i\l=m,'+

where the series converge in the operator norm topology for any X = {X; ;} in the regular polyball
B, () and any Hilbert space H. The results of this paper will play an important role in the hyperbolic
geometry of noncommutative polyballs [Popescu > 2016]. To present our results we need some notation
and preliminaries on regular polyballs and their universal models.

Throughout this paper, B(#) stands for the algebra of all bounded linear operators on a Hilbert space H.
We let B(H)™ X+ X B(H)"™, where n; € N:={1,2, ...}, be the set of all tuples X := (X1, ..., Xx)

in B(H)" x ---x B(#H)" with the property that the entries of X, := (X; 1, ..., X;,,) commute with the
entries of X; := (X;,1,..., X;n,) forany s, t € {1, ..., k}, s # t. Note that the operators X; 1, ..., X »,
do not necessarily commute. Let n := (ny, ..., nt) and define the polyball

Py(H) :=[B(H)"' 11 X+ ¢ [BH)™]4,
where
[BAO =Xy, Xo) € BAD" 1 IXi XT 4+ X Xpl < 1), neN.

If A is a positive invertible operator, we write A > 0. The regular polyball on the Hilbert space H is
defined by
B,(H) :={X € P,(H) : Ax(I) > 0},

where the defect mapping Ax : B(H) — B(H) is given by
AX = (id— CDXI)O- : 'o(id— (ka)

and Py, : B(H) — B(H) is the completely positive linear map defined by

n
Oy, (Y):=> Xi;YX}, YeBH).
Jj=1

Note that if kK = 1 then B, (*) coincides with the noncommutative unit ball [B(#)"'];. We remark
that the scalar representation of the (abstract) regular polyball B, := {B,(H) : H is a Hilbert space} is
B, (C) = Py (C) = (C")1 x -+ - x (C™)y.

Let Hy, be an n;-dimensional complex Hilbert space with orthonormal basis e, ..., e;i. We consider
the full Fock space of Hy,, defined by F*(H,,) :=Cl1 & @, Hy.". where Hy," is the (Hilbert) tensor
product of p copies of H,,. Let [Fj[l, be the unital free semigroup on n; generators g’i, ey gfl[ and the
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identity gé. Set efx = e}l Q- -- ®ej‘fp ifa = gj.l- . g;l € [F;Z_ and eg :=1 € C. The length of o € [Fj[[, is
defined by |a| :=0 if o _gé and o] :=pifa _gjI gj with ji, ..., jp € {1 , n;}. We define the
left creation operator §; ; acting on the Fock space F 2(H ) by setting S; je,, := eg, , o€ [F+’_, and the

operator S; ; acting on the Hilbert tensor product F?(H,,)®---® F?(H,,) by settlng

Siji=19---QI”S5;I®---QI,
= = = =
i — 1 times k — i times

wherei e {l,...,k}and j € {1,...,n;}. We define S := (S, ..., Sx), where S; :=(S;1,..., Sin), Or
write S := {5, ;}. The noncommutative Hardy algebra F;° (resp. the polyball algebra A,,) is the weakly
closed (resp. norm closed) nonselfadjoint algebra generated by {S; ;} and the identity Similarly, we
define the right creation operator R; ; : . F? (Hp,) — FZ(H ;) by setting R; ]e = ey, fora € [I:Jr and
the corresponding operator R; ; acting on F?(H,)® - ® F*(H,,). The polyball algebra R, is the
norm closed nonselfadjoint algebra generated by {R; ;} and the identity.

We proved in [Popescu 2016] (in a more general setting) that X € B(H)"' x - -- x B(H)"™ is a pure
element in the regular polyball B,(H)™, i.e., limy, o CI)?E,_ (I) = 0 in the weak operator topology, if
and only if there is a Hilbert space D and a subspace M C F 2(Hn1) QK --QF 2(an) ® D invariant
under each operator S; ; ® I such that X7 = (S; ; ® I)| 42, under an appropriate identification of H
with M+, The k-tuple S := (81, ..., Sk), where S; := (S;.1,..., Sis,), is an element in the regular
polyball B, (®'_, F2(H,))" and plays the role of left universal model for the abstract polyball B, :=
{B,(H)~ : H is a Hilbert space}. The existence of the universal model will play an important role in this
paper, since it will make the connection between noncommutative function theory, operator algebras, and
complex function theory in several variables.

Brown and Halmos [1963] showed that a bounded linear operator T on the Hardy space H?(D) is
a Toeplitz operator if and only if S*TS = T, where § is the unilateral shift. Expanding on this idea,
a study of noncommutative multi-Toeplitz operators on the full Fock space with n generators F2(H,,)
was initiated in [Popescu 1989; 1995] and has had an important impact in multivariable operator theory
and the structure of free semigroup algebras (see [Davidson and Pitts 1998; Davidson et al. 2001; 2005;
Popescu 2006; 2009; Kennedy 2011; 2013]).

In Section 1, we introduce and study the class T,, n:= (1, ..., ni) € N, of k-multi-Toeplitz operators.
A bounded linear operator T on the tensor product F 2(H,,l) Q- --QF 2(an) of full Fock spaces is called
a k-multi-Toeplitz operator with respect to the right universal model R = {R; ;} if

R TR;; =5uT, s,te{l,....n},

forevery i € {1, ..., k}. We associate with each k-multi-Toeplitz operator T a formal power series in
several variables and show that we can recapture 7 from its noncommutative “Fourier series”. Moreover,
we characterize the noncommutative formal power series which are Fourier series of k-multi-Toeplitz
operators (see Theorems 1.5 and 1.6). Using these results, we prove that the set of all k-multi-Toeplitz
operators on ®f:1 F?(H,,) coincides with

Span{A;An}_SOT = span{A;i.An}'WOT,
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where A, is the noncommutative polyball algebra.

In Section 2, we characterize the bounded free k-pluriharmonic functions on regular polyballs. We prove
that a function F : B,(H) — B(H) is a bounded free k-pluriharmonic function if and only if there is a k-
multi-Toeplitz operator A € T, such that F(X) =By[A] for X € B,,(#), where By is the noncommutative
Berezin transform at X (see Section 1 for the definition). In this case, A = SOT-lim,_,{ F(rS) and there
is a completely isometric isomorphism of operator spaces

®:PH®(B,) —> Tn, O(F):=A4,

where PH* (B,,) is the operator space of all bounded free k-pluriharmonic functions on the polyball.
The Dirichlet extension problem [Hoffman 1962] on noncommutative regular polyballs is solved.
We show that a mapping F : B,(H) — B(H) is a free k-pluriharmonic function which has continuous
extension (in the operator norm topology) to the closed polyball B,(H)~, and write F € PH (B,,), if
and only if there exists a k-multi-Toeplitz operator A € span{.A%.A,} "I such that F(X) = Bx[A] for
X € B,,(H). In this case, A =lim,_,| F (rS), where the convergence is in the operator norm, and the map

@ : PH(B,) — span{A: A, )1l &(F):=A,

is a completely isometric isomorphism of operator spaces.

In Section 3, we provide a Naimark-type dilation theorem [1943] for direct products F, := I]:;f1 XX [F;“k
of free semigroups. We show that a map K : F, x F,” — B(£) is a positive semidefinite left k-multi-
Toeplitz kernel on F, if and only if there exists a k-tuple of commuting row isometries V.= (Vi, ..., Vi),
Vi=(Vi1,..., Vi), onaHilbert space K D £ —i.e., the nonselfadjoint algebra Alg(V;) commutes with
Alg(V;y) for any i, s € {1, ..., k} with i # s —such that

K(o,w)= PV, V,

& a,weF,f,

and K =V, ri+ Vo&. In this case, the minimal dilation is unique up to isomorphism. Here, we use the
notation Vo := Vi 5y Vig, if 6 = (01,...,00) € F,f,and V; 5, :=V; j,--- Vi if 0 = g§.1 . -gj.p ekt
and V; . := I. For more information on kernels in various noncommutative settings we refer the reader
to the work of Ball and Vinnikov [2003] (see also [Ball et al. 2016] and the references therein).

We prove a Schur-type result [1918], which states that a free k-pluriharmonic function F on the
polyball B, is positive if and only if a certain right k-multi-Toeplitz kernel I'f, associated with the
mapping S — F(rS) is positive semidefinite for any r € [0, 1). Our Naimark-type result for positive
semidefinite right k-multi-Toeplitz kernels on F," is used to provide a structure theorem for positive free
k-pluriharmonic functions. We show that a free k-pluriharmonic function F : B, (H) — B(E) ®min B(H)
with F(0) = [ is positive if and only if it has the form

F(X)= Z PeViVs|. ® Xo X,
(@.B)eR

where V = (Vy, ..., Vi) is a k-tuple of commuting row isometries on a space K O & and &« = (1, . . ., &) is
the reverse of ¢ = (cxy, ..., ag), i.e., &; = gl’fk . gfl ifo; = gl’fl . gl’fke [F,J{i. The general case, when F (0) >0,
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is also considered. As a consequence of these results, we obtain a structure theorem for positive k-harmonic
functions on the regular polydisk included in [B(H)]; X¢- - - X [B(#H)]1, which extends the corresponding
classical result in scalar polydisks [Rudin 1969].

In Section 4, we define the free pluriharmonic Poisson kernel on the regular polyball B,, by setting

PR, X) := ZZ Z ta R R g R g ®Xia Xea X g Xi g
mieZ my€l o;,Bief) iefl,... .k}
o=, |8y =
for any X € B,, (), where the convergence is in the operator norm topology. Given a completely bounded
linear map w : span{R;R,} — B(E), we introduce the noncommutative Poisson transform of p to be the
map Pu : B,(H) = B(E) Qmin B(H) defined by

(Puw)(X) :=alP(R, X)l, X € B.(H),
where the completely bounded linear map
fi=pn®id: span{Ri R} @pin B(H) = B(E) ®min B(H)

is uniquely defined by 1(A®Y) := u(A)®Y for any A € span{R;R,} and Y € B(#). We remark that,
in the particular case whenn; =---=n, =1, H=K=C, X =(Xy,..., Xp) € D, and W 1s a complex
Borel measure on TX (which can be seen as a bounded linear functional on C(T¥)), we have that the
noncommutative Poisson transform of u coincides with the classical Poisson transform of y [Rudin 1969].

In Section 4, we give necessary and sufficient conditions for a function F : B,(H) — B(E) Qmin B(H)
to be the noncommutative Poisson transform of a completely bounded linear map p : C*(R) — B(E),
where C*(R) is the C*-algebra generated by the operators R; ;. In this case, we show that there exist a
k-tuple V.=(Vi,..., Vi), Vi=(Vi1,..., Vi), of doubly commuting row isometries acting on a Hilbert
space K, i.e., C*(V;) commutes with C*(V;) if i # j, and bounded linear operators Wi, W, : £ — K
such that

F(X)=Wi@D[Cx(V)*Cx(V)IW2®1), X € B,(H),
where '
Cx(V)=UAx(D'H][U = Via ® X} =+ = Vi, @ X7, )7\
i=1

In particular, we obtain necessary and sufficient conditions for a function F : B,(H) — B(E) Qmin B(H)
to be the noncommutative Poisson transform of a completely positive linear map w : C*(R) — B(E). In
this case, we have the representation

FX)=W*"®@ DICx(V)"Cx(V)IW®I), Xe&By(H).
In Section 5, we introduce the noncommutative Herglotz—Riesz transform of a completely positive

linear map w : span{R;R,} — B(E) as the map Hu : B,(H) — B(E) @min B(#H) defined by

k
(HW)(X) = /1(2 [[0-R i ©@Xii— =R, ©Xin) ™ = 1)
i=1



1190 GELU POPESCU

for X := (Xy,..., X)) € B,(H). The main result of this section provides necessary and sufficient
conditions for a function f from the polyball B, () to B(£) ®min B(H) to admit a Herglotz—Riesz-type
representation [Herglotz 1911; Riesz 1911}, i.e.,

fX)=Hw)(X)+iJf0), XeB,(H),

where p : C*(R) — B(&) is a completely positive linear map with the property that u(R;Rg) =0
if RyRg is not equal to R, or R), for some y € F;". In this case, we show that there exist a k-tuple
V=W...,V), Vi=(Vi1,..., Viy), of doubly commuting row isometries on a Hilbert space }C and
a bounded linear operator W : £ — I such that

k
f(X)=W* @1)(2 ]_[(1 -Vi®Xii—--- =V, ® Xin) ' — I)(W®I) +i3f(0)
i=1

and W*VyVgW =0 if R} Rg is not equal to R, or R} for some y € F,’.

We remark that, in the particular case when n| = - - - = ny = 1, we obtain an operator-valued extension
of the integral representation for holomorphic functions with positive real parts in polydisks [Koranyi and
Pukanszky 1963].

1. k-multi-Toeplitz operators on tensor products of full Fock spaces

In this section, we introduce the class T, of k-multi-Toeplitz operators on tensor products of full Fock
spaces. We associate with each k-multi-Toeplitz operator T a formal power series in several variables
and show that we can recapture 7' from its noncommutative Fourier series. Moreover, we characterize the
noncommutative formal power series which are Fourier series of k-multi-Toeplitz operators and prove
that T, = span{.A*.A,} 5T, where A, is the noncommutative polyball algebra.

First, we recall (see [Popescu 1999; 2016]) some basic properties for a class of noncommutative
Berezin-type transforms [1972] associated with regular polyballs. Let X = (X1, ..., Xi) € B,(H)~ with
Xi=(Xi1,..., Xin). Weuse the notation X; o, :=X; j,--- X ;, if :g;1 .- -g;p € [F,;Li and Xl.’g(;) =1.
The noncommutative Berezin kernel associated with any element X in the noncommutative polyball
B, (H)~ is the operator

Kx:H— FX(H,)®---® F*(Hy,) ® Ax(I)(H)
defined by

Kxh:= > e, ® @y @Ax(D'?X] 5 Xiph, hek,
where the defect operator Ax (/) was defined in the introduction. A very important property of the

Berezin kernel is that KXX?jj = (S;fj QI)Kx foranyi € {1,...,k}and j € {1, ..., n;}. The Berezin
transform at X € By () is the map By : B(Q}_, F*(Hy,,)) — B(H) defined by

k
Bxlgl:=Kx(e® 1) fKx, g¢ B(® FZ(Hn,-)).
i=1
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If g is in the C*-algebra C*(S) generated by S; 1, ..., S;,,, where i € {1, ..., k}, we define the Berezin
transform at X € B, (H)~ by

Bxlg]:= lim Kx(g®LK.x, geC*(S),

where the limit is in the operator norm topology. In this case, the Berezin transform at X is a unital
completely positive linear map such that

BX(SaS;):XaX;;, ot,ﬂel]:;:'lx...x[[?"

ng’

where Sy := 814, Sk if 0 :=(a1,..., ) € E{l X - X [F,J{k.

The Berezin transform will play an important role in this paper. More properties concerning non-
commutative Berezin transforms and multivariable operator theory on noncommutative balls and poly-
domains can be found in [Popescu 1999; 2013; 2016]. For basic results on completely positive and
completely bounded maps we refer the reader to [Paulsen 1986; Pisier 2001; Effros and Ruan 2000].

Definition 1.1. Let £ be a Hilbert space. A bounded linear operator A € B (5 ® (X)f:l F*(H, i)) is called
k-multi-Toeplitz with respect to the universal model R := (R, ..., Ry), where R; ;= (R; 1, ..., R; ;,), if

(I£®R;‘jg)A(I€®Rl,Z)=6SIAs s’t€{17~~'ani}’

forevery i € {1, ..., k}.

A few more notations are necessary. If @, y € F,\", we say that y <, w if there is o € F, \ {go} such
that w = oy. In this case, we set w \, y := o. Similarly, we say that y <; w if there is o € F; \ {go}
such that @ = yo and set w \; y := 0. We denote by & the reverse of « € F;}', i.e., @ = g;, -+ - g, if
=g g, €F’. Notice that y <, w if and only if 7 <; @. In this case we have (0 \,y)~ =@ \; 7. We
say that w is right comparable with y, and write w ~ y, if any one of the conditions w <, y, y <, w or
w = y holds. In this case, we define

f r ’ — r f ’

cj(w,y)::{w\ry ify < o and Cr(w’y):{y\w if o<y
80 if w<,y orw=y, 80 if y<,worow=y.
Letw=(wq,...,wr)andy =(y1, ..., &) bein [F:[I X+ X [F,J{k. We say that @ and y are right comparable,
and write @ ~ y, if for each i € {1, ..., k}, any one of the conditions w; <, ¥;, ¥; <, w; Or W; = ¥;

holds. In this case, we define

f (@, y) = (cf (@1, 1), ... (@, ) and ¢ (@,y):=(c; (@1, ), ..., ¢ (@, y).  (1-1)

Similarly, we say that @ and y are left comparable, and write @ ~1c y, if @ ~. y. The definitions of
c;r (@, y) and ¢; (@, y) are now clear. Note that

Hw,y)" =¢(@,7) and ¢ (@, p) =c¢ (@, 7).

For each m € Z, we set m™ := max{m, 0} and m~ := max{—m, 0}.
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Lemma 1.2. Leta=(ay, ..., ) and B=(B1, ..., Bi) be k-tuples in F;} x- - - xF} such that a;, p; e[F,J{[
fori e{l,...,k} with |o;| =m;, |B;l =ml.+ andm; € 2. If y = (y1, ..., y) and w = (w1, . .., wy) are

k-tuples in ¥ x - x [, then the inner product

(Sl,ozl' .. Sk,akSik,ﬂl. . 'S;:,ﬂk(e)l/l ® . .®e)lik)’ eLIUl ® . .®e§)k>
is different from zero if and only if @ ~. y and (a1, ..., ox; B, - .., Br) = (¢ (@, ¥); ¢ (@, p)).

Proof. Under the conditions of the lemma, S; 4, S}k’ﬂj = S}k’ﬂj Sio forany i, jef{l,....k}, a; € [F,J[l,
and B; € [F:[j. Note that the inner product is different from zero if and only if f;w; = «;y; for any
i€{l,..., k}. Letm; € Z and assume that |o;| =m; > 0. Then B; = g; and, consequently, w; = «;y;.
This shows that y; <, wj, c;L (i, yi)) =0a; and ¢, (w;, ¥;) = gé. In the case when |8;| = m:r > (, we have
o = gf) and B;w; = y;. Consequently, w; <, ¥, cjr (wi, Vi) = g(i) and ¢, (w;, ;) = Bi. Wheno; =8, = gé,
we have w; = y;. Therefore, the scalar product above is different from zero if and only if @ ~. ¥y and
@1,y Bra e B = (€ (@, 9): ¢ (@, p)). O

If B;, y; € B} and, foreachi € {1,...,k}, Bi <¢yi or i = y;, then we write 8 <, .

Lemma 1.3. Given a k-tuple y = (y1, ..., y) € Ff x -« x F} , the sequence

ni?
(S Sk,aksik,ﬁl‘ .. SZ,ﬂk(e;lxr ®--- ®€f’k)}

consists of orthonormal vectors if «;, B; € I]:,Ti, iefl,....k} withm; € Z, || =m;, |Bi| = mf
and B < y.

Proof. First, note that Sy 4, - - Sk,akST’ﬂl- . S’jﬁk (e)l/1 Q- - ®e ) 7 0 if and only if S ﬂ (e .) 7 0 for each
i €{1,...,k}, which is equivalent to 8; <, y; or B; = y;. Therefore B <[ Y.

Fixie{l,...,k}and y; € [FJr We prove that the sequence {S; o, S; 5 y} consists of orthonormal
vectors if o;, f; € [F,J{,_ have the followrng properties:

(1) If |a;| > O then B; = gé, and if |B;| > O then «; = gé.
(i) Bi <¢vi-

Indeed, let (a4, B;) and (o, B)) be two distinct pairs with the above-mentioned properties. First, we
consider the case when gé # B <¢ ;. Then o; = gé and, consequently, S; 4, 7 5 y = e;'/[\z B Similarly,
if g, # B; <¢ vi then = g; and, consequently, Si,a,‘S;ﬁ;e;/,- = e;i\“gi Since (oz,f Bi) # (af, B)), we
must have Bi # Bi, which implies ei,i\z 5 L ei,l_\l Bl On the other hand, if 8] = g then «; € [F,J{i and
Ay /S* ,e = eyey, Let VB It follows that S; a/S*ﬁ/e’ LS O/S*ﬂ/e’

The second case is when B; = gO Then «o; € [F+ and S; o, S* ﬁ y = eq;ey,. As we saw above,
Si.al S ﬂ,e is equal to erther eq)ey, (when B = go) or ey\ B (when g, # B; <¢ ¥;). In each case, we have
Si.a! S LSSt

LB Vi i.B] V >
complete the proof of the lemma. O

e which completes the proof of our assertion. Using this result one can easily
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We associate with each k-multi-Toeplitz operator A € B(S ® ®f:1 F 2(H,,,.)) a formal power series

ZIOED DD Y Arwmibip) ®Star SeaStp Sihp,
m€Z my €l ai,ﬂiE[F,Ti,iE{l ..... k}

loj |=m;, |Bi|=m
where the coefficients are given by
<A((¥1,---,Olk§ﬁl ..... ﬁk)h,g) = (A(h ®x),€®y), h,ﬁ ES, (1-2)

andx =x1 Q- Qxk, y=y1 ®- - ® y with

xi=¢ey, and y; =1 if m; >0,
{l ﬁ, yl | A (1_3)

x;=1 and y,-:ef;li if m; <O,
foreveryi € {1, ..., k}.

The next result shows that a k-multi-Toeplitz operator is uniquely determined by is Fourier series.
Theorem 1.4. If A, B are k-multi-Toeplitz operators on £ Q ®f:1 F2(Hn,.), then A = B if and only if
the corresponding formal Fourier series @4 (S) and ¢p(S) are equal. Moreover, Aq = ¢4 (8S)q for any
vector-valued polynomial

1 k
q= Z h(wl ,,,,, wk)®ew1®'”®ewk’
a),'e[F,fi,ie{l ..... k}
lwi|<pi
where hy, . o) €€ and (p1, ..., pr) € Nk,
Proof. Let @ = (wy, ..., w;) and y = (y1, ..., ¥x) be k-tuples in [F,J{l X e X [F;fk, and let h, b’ € £. Since

A is a k-multi-Toeplitz operator on £ ® ®f: W F (H,,), we have
(Ah®e, ® - ®¢€). h'®e, @+ ®el,)
=(AUc®R1 5 Rij)(h®1), I @ Ry 45, Ri.p ) (W @ 1))

_ Aoy @t W) if @~y
0 otherwise,

where ¢ (w, ) and ¢ (w, y) are defined by (1-1). Consequently,

1 kN _ 1 k
Ah® €y ® ®e)/k) - Z A(cr*(w,}');c?(w,y))h Qe & - ®e,
w=(w1,..., wk)e[Ff{l ><-~~><[F;rk
W™~y
is a vector in £ ® ®f:1 F?(H,,). Hence, we deduce that, for each y = (y1, ..., ) € Ffox-ox [F,J{k,
the series
k
Y Aty Act @i @ (1-4)
wel) x-
@~y
is WOT-convergent. Due to Lemma 1.3, given ¥y = (y1,..., ¥x) € [F,J{1 X -0 X [F,J{k, the sequence

(Star St S, St g (el ® - @ ek )}, where az, f; € FLi € {1,..., k) withm; € Z, |oy| =my,
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|Bi| = m:r and B <y y, consists of orthonormal vectors. Note that, in this case, we also have & ~;. 8 and,
consequently, A, B = At (. B):cr (@.p))- Hence, and taking into account that the series (1-4)

is WOT-convergent, we deduce that

PaS)(h®e) @ ®e},)
= Z Z Z A(al ----- ak:ﬂl,---,ﬁk)h@)slym' . Sk,aksik,ﬂf"slj,ﬂk(e)l/. ®"'®e)]ik)

meZ mrel q; Bie [|:Jr i€ k}

lexi | =m; |/31| m

is a convergent series in £ ® (X)i-‘:1 FZ(H,,,.). Lety =1, ..., ) and w = (w1, ..., w) be k-tuples in
Ft x---xFf. According to Lemma 1.2, the inner product

(Sl,()(]' .. Sk,aksik,ﬁl' . 'S;:,ng(e)l/l ® . .®e§k)’ ei}l ® . .®e§)k)

is different from zero if and only if @ ~. ¥y and («y, ..., a, B1, ..., Bx) = (cjr(w, V)¢, (@,y)). Now,
using (1-4), one can see that

(paS)(h®ey ®--®efy). h' ®e), ®---®el, )

= Z Z Z <A(0l1 ----- ag; By ﬁk)h’h/>

VA Z o B;eFt. i
e e al,ﬂléFni,tE{l,...,k} X (Sl,al' : ‘Sk,ozksik,ﬁl' ’ 'S;:,ﬁk(e)l/l ®-- '®e)]ik ’ ec{n Q- '®e£k>

loi|=m; ", |Bi|=m;
_ A wyia @t i) if @~y
0 otherwise,
- (A(h®e)1,l ®"'®e)€k)’h/®ei)1 ®...®e§)k)

forany h, " € £, and y = (y1, ..., ¥) and @ = (w1, ..., ;) in [F,J[1 X - X [F,J{k, which shows that
Ag = ¢4 (S)q for any vector-valued polynomial in £ ® ®f: W F 2(H,,). Therefore, if the formal Fourier
series g4 (S) and @p(S) are equal, then A = B. Il

When G is a Hilbert space, C(4.5) € B(G), and the series

> Y Cup and Tpi= ) Y. Cwp

meZ,m<0 a,ﬂe[F: meZ,m=>0 a,ﬂe[F,‘l*'
la|=m~, |Bl=m* la|l=m~, |Bl=m*

are convergent in the operator topology, we say that the series

Y Y Cap=Ei+

me”Z a, ,BEEF:[
loe|=m~, |Bl=m~
is convergent in the operator topology. In what follows, we show how we can recapture the k-multi-Toeplitz
operators from their Fourier series. Moreover, we characterize the formal series which are Fourier series
of k-multi-Toeplitz operators. Let P denote the set of all vector-valued polynomials in £ ® ®f.‘:1 F2(H,),
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i.e., each p € P has the form
1 k
4= ) e ®, ® e,
wie[F,J{l_,ie{l ..... k}

where Ay, w) € € and (p1, ..., pr) € NX.

.....

Theorem 1.5. Let {A(q,,...ap:B:....50) } be a family of operators in B(E), where a;, B; € F+
|Bil =m, mi e Zandie{l,..., k}. Then

P8 = > Z AraiiBro ) @ St Sk ST g Sk g,

mieZ myel w;, ﬁ,e[F* ie{

e il =m;,

i |= m; |/31‘ m;r

is the formal Fourier series of a k-multi-Toeplitz operator on £EQ ®f=1 F 2(H,,l.) if and only if the following
conditions are satisfied:

(i) Foreachy = (y1,...,y) €} x--- xF} the series

ng’

*
Z A(c, T (@.9):cr (o, y))A(Cr (@,);¢r (@,7))

weﬂfl X ><[F+

W~y

is WOT-convergent.
(ii) If P is the set of all vector-valued polynomials in € @ ®f:1 F 2(Hnl. ), then

sup  sup [le(rS)pll < oo.
rel0,1) peP,|Ipli<1

Moreover, if there is a k-multi-Toeplitz operator A € B(S ® ®f:1 FZ(H,,,.)) such that ¢ (S) = @ (S), then
the following statements hold:

k . .
@ @)= Y D Aoy O TS o S ST S
m€Z mkela,-,ﬂ,-e[ﬁji,ie{l ..... k}

loj |=m;, |Bi|=m;

is convergent in the operator norm topology, and its sum, which does not depend on the order of the
series, is an operator in

span{f*g : f. g € B(E) @min Aa} 1l
where A, is the polyball algebra.
(b) A =SOT-lim,_; ¢(rS) and

1A= sup [lo(rS)ll = lim flp(rS)[ = sup llp(S)ql.
rel0,1) q€P,llqlI<1

Proof. First, we assume that A € B (8 ® ®f:  F 2(Hn,. )) is a k-multi-Toeplitz operator and ¢ (S) = ¢4 (S),
where the coefficients A, .. :8,.....5) are given by (1-2) and (1-3). Note that (i) follows from the proof
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of Theorem 1.4. Moreover, from the same proof and Lemma 1.3 we have ¢4 (S)(h ® e},l ® e)/ik) and,
consequently, 4 (rS)(h ® ejl,1 R ® e';k), r €10, 1), are vectors in £ ® ®f:1 FZ(H,H) and

lim ¢4 (r$)(h ®ey, @ - @e’;k) =pa(S)(h®e), ® - ®ey)=Ah®e, ®@---®ey) (15

forany y = (y1, ..., ¥) in [F % [F,J[k and i € £. Note also that, due to (i) and Lemma 1.3, we have
0a(r1 Sy, ..., reSp)(h ®e ® ®e ) € 5®®le FZ(H,,I.) for any r; € [0, 1), i € {1, ..., k}. Now,
we show that the series

k
lovi [+18i
ORI Awl,...,ak;ﬂl,...,m@(nr;* St Sy 81
i=1

meZ myel w;, ﬂlel]:Jr ie{l,..., k}

lovj |=m; Iﬁz\ m;

is convergent in the operator norm topology and its sum is in span{f*g : f, g € B(E) Qmin An} 1,
where A, is the polyball algebra. We denote the series above by @4 (r1Si, ..., 7 S;). Since A is a
k-multi-Toeplitz operator, it is also a 1-multi-Toeplitz operator with respect to Ry := (Rk.1, ..., Rk n,), the
right creation operators on the Fock space F?(H,,). Applying Theorem 1.4 to 1-multi-Toeplitz operators,
we deduce that A has a unique Fourier representation

Va0 =Y Y Cappo®SkaSip
me€l oy, prel,

lak |=mp, | Bel=m;f

where Cy:5,) € B(E® ®{<:—11 FZ(H,,i)). Moreover, we can prove that, for any r; € [0, 1),

Ya(reSe) = Y S A G ® Sk i, (1-6)
myeZ ak,ﬂkE[F,Tk
o=y |Bil=m
is convergent in the operator norm topology. Indeed, since ¥4 (Sx) is the Fourier representation of the
1-multi-Toeplitz operator A with respect to Ry := (Rk.1, ..., Rk, ), item (i) implies, in the particular
case when y; = gf, that > w cFi Clu: ) Clap:gty 18 WOT- convergent Since A* is also a 1-multi-Toeplitz

operator, we can similarly deduce that the series Y preFy, C (g ﬂk)C is WOT-convergent. Since

(g6:80)
Sk.1s -+, Sk.n, are isometries with orthogonal ranges, we have
@ 1/2
Ok *
H Z C(Olk§g](§) ® Tk Sk’“k - (ak;gS)C(ahgé) ’
a/‘e[F ok |=m
1/2

’

73] *
H Z C(g o) BTk Sk,ﬂk Z C(gé;ﬁk)c(gg;ﬂk)
BelFs, . |Bel=m ey,

for any m € N. Now, it is clear that the series defining ¥4 (1 Sx) is convergent in the operator norm
topology and, consequently, ¥4 (rSk) belongs to

k—1 -l
spanif*g fig€ B(€®® FZ(Hn,-)) ®minAnk} )

i=1
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where A, is the noncommutative disc algebra generated by Sk 1, ..., Sk.», and the identity. For each
ie{l,....k},weset& :=EQF*(H,)®- - ® F*(Hy,).
The next step in our proof is to show that

1pA(rkSk) = Bf:gk [A] = (ng—l ® K:;{S,\)(A ® IFZ(an))(ng,I ® KrkSk), (1_7)

where K5, : F>(Hy,) — F?(H,,) ® Dy,s, C F>(H,,) ® F*(H,,) is the noncommutative Berezin kernel
defined by

Kusé&= Y e ®Ays (DS} 8 &€ F (Hy),

Brefa,
and D5, := Ap s, (D (F2(Hy). Lety = (y1, ..., ) and @ = (@1, . . . , &) be k-tuples in Ff > - - xFF,
set ¢ := max{|yx/|, |ok|}, and define the operator
Qq = Z Z Clon:p) ® Sk S;ck,ﬂk‘
mreZ,mi|<q (xk,ﬂkE[F,Jfk

o |=mp, | Bel=m}

Since ¥4 (Sk) p = Ap for any polynomial p € P, a careful computation reveals that

(BEG[Al(h®@e), @ ®ek ). W ®el, @ ®ek, )

— ((A ® IFZ(an))(h ®€71/1 R---Q e)k/;;ll () Krksk (e]k/k)), h/ ®€(101 R---Q e];k*}I ® KrkSk (ef()k)>
B <(A ® IFZ(an))( Z h® 6)1/1 Q- ® e)]ik_—ll ® e(])clk Q Apsy (I)l/zs;ck,ak (ellik))’

OtkE[F,Tk
Y H®e, @ @ @ ® A5l >”25Z,ﬂk<eﬁ>k)>

BreFa,

= Z Ah® e)l/l ®--® e)lik_—ll ® egtk) ® ArkSk(I)l/ZSl?,otk (el)ik)’
Olke[F,Tk
X Wael, @0l @dk © 8 ()81

Brela,

o0 o0
LY Y Y ted0-edlad)ned 0 ad od)

m=0 p=0 oy eFy PreF,)

jotgl=m [Bel=p X (Apes (D'2SE o (€8), Ars, (D28} 5 (eh)
q q

=22 2 D (0h®ey, @ @e @eg), h ®ey, ® @ Be)

m=0p=0a,eF;, ik,

lotgl=m [Bel=p X (A, (D285 o, (€5, Ars (D28 5 (eh))

o0 (@]
=22 > D2 {0h®ey @ @ ®e) h ®ey, @ Bey ! @)

=0 =0 0y, fhc,

log|=m |Bel=p X (A5 (D28} o (€5, Ars, (D'2SF 4 (b))
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= ((Qq ® IFZ(an))(h ® ell/l Q- ®ek_l ® Krksk(el}jk))’ h'® E(L] Q- ®e£]j)k_—11 ® Krksk (ef)k))

Vk—1
= (Bf:f?k[Qq](h ® e)lfl Q- ®e]]ik)’ h' ®66101 Q- ®e§)k>
= Z Z <(C(0lk;/3k)®rllcak|+|ﬂklskvak‘g;,ﬂk)(h®e)1/1 ®”'®e)lik)’h/®eclo1 ®- ”®e§)k)
myeZ,|mi|<q Otk,ﬂkéﬂ:;rk

o |=mp, |Bel=m}

=(YarSH(h ®e), @ ®el), W @el, @+ ®ek )

for any h, h’ € £. Consequently, (1-7) holds for any r¢ € [0, 1). Hence, and using the fact the noncommu-
tative Berezin kernel K, g, is an isometry, we deduce that

1Ya(reSOll < |All, e €10, 1).
Moreover, one can show that
A = SOT- lim1 YA (reSy).
Ig—>

Indeed, due to (i) (for 1-multi-Toeplitz operators), we have || 4 (r Sk) p— ¥4 (Sk) pll — 0 as rp — 1 for any
polynomial p € &1 ® FZ(H,,k) with coefficients in & _1. Since ¥4 (Sy)p = Ap and ||[Ya (re Sk) || < || Al
for any ry € [0, 1), an approximation argument proves our assertion.

Now, we prove that the coefficients C(y,.4,) € B (5 ® ®f‘;11 F 2(Hn,.)) of the Fourier series 4 (Sx) are
1-multi-Toeplitz operators with respect to Rx_; := (Rk—1.1, ..., Rk—1.n._,). Foreachi e {1,...,k—1},
s, t € {1,...,n;}, and any vector-valued polynomial p € £ ® ®le F Z(Hn,-) with coefficients in &,
Theorem 1.4 implies

Z Z [(ng—z ® R?js)c(akiﬁk)(lgk—z ®Ri)® Sk,ﬂlk Slt,ﬁk](p)
mpel abﬂkeﬁa

el =i, |Be|=my = (e @ R )Va(S) (e ® Ri 1) (p)
= ® R )A(: ® Ri 1)(p)
=35t A(p) = 85t ¥ a(Si)(p)
=8 Y Y Clonpo ® Sk Sip) (D).

myel Olk,ﬂkE[F,Tk

lo|=my, | Bel=m;
Hence, we deduce that
(g, ® R ) Clayipy gy, ® Riy) = 85 Ciay )

foranyie{l,...,k—1}ands,t €{l,...,n;}, which proves that C(,.,) is a 1-multi-Toeplitz operator
with respect to Ry_1 := (Rk—1,1, ..., Rk—1,n,_,). Consequently, similarly to the first part of the proof,
C (a8 has a Fourier representation
Vi po (Sk1) = Y > Clanor i Bt o) ® Sk—1ax1 Sk—1,p,_, (1-8)
my_1€Z o—1,Br—1€F}

Ng—1
- +
log—11=my_y, | Be—11=my_,
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where C, | 081,80 € B(Ek—2). Moreover, as above, one can prove that, for any r,_; € [0, 1), the
series Y(a,: g0 (k—1Sk—1) is convergent in the operator norm topology, and its limit is an element in

span{f*g : f, g € B(Ek—2) Qmin An,_, )11,

where A4, | is the noncommutative disc algebra generated by Sx_11, ..., Sk—1,,_, and the identity. We
also have

im Vo0 Tk—18k—1) P = Clay:p) P

rr—1—1

for any vector-valued polynomial p € & ® F2(H,,_,). As in the first part of the proof, setting

B,e;itlsk71 [I/l] = (ng,2 ® K:;(—lsk—l)(u ® IFZ(anil))(ngfz ® Krkflskfl)’ ue B(gl’l—l),

one can prove that

Vi Te=15k-1) =B o [Clapn]  and Wi 0 (r—1Sk=D | < 1Ciay 0l (1-9)

for any r,_1 € [0, 1). Moreover, we can also show that

Cloy:p) = SOT_rkl,illgl Yiew: o) Tk—1Sk—1)-
Now, due to (1-6), (1-7), (1-8) and (1-9), we obtain
(B 5, ®idp(r2m, 10 Brs A

_ t loel+18
= Y B o [Clappl @ TS o S g
myel Olk,ﬁke[F;rk

lo|=mp, | Bel=m}

= Z Z Z Z rllcmklrllc’ikfllC(Otkfl,ak;ﬂkfl,ﬂk)

my€el mp_1€Z ak,ﬁke[F,fk ap—1.Br-1€FF

ny_ * *
! ® Sk_lsak—lSk—l,ﬂk,1 ® SksakSk,,Bk’

_ + _
lok|l=my, | Be|l=mj lok—1l=m;_y, 1Bk—1 |:m}:r,1

where the series are convergent in the operator norm topology. Continuing this process, one can prove

that there are some operators Cq,,...a;:8,....5) € B(E) such that the series (181, ..., rcSk) given by

Z e Z Z r/l{mkl . Flml‘c(al,.--,ak;ﬂl ..... 50 ® Sty Sk,akST,ﬁ] e S;,Bk

WIkEZ m1€Z (X,‘,ﬁieﬂ:;,ie{l ..... k}

loi |=m;, | Bil=m;"
is convergent in the operator norm topology and
_ ext . ext : ext
(p(rlSI, ,rkSk) == [BrlSl ®1d3(®£{:2 FZ(H,,I.))]O[BQSZ®1dB(®f:3 Fz(Hni))]O" + O rkSk[A]' (1—10)
Since the noncommutative Berezin kernels K,,s,, i € {1, ..., k}, are isometries, we deduce that

loriSi, ..., eSOl < Al ri €[0, D).
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Note that the coefficients of the k-multi-Toeplitz operator ¢ (7S, ..., r¢Sk) satisfy the relation

M Clr i pohs £) = (0181, . SO (BB X), (£ Y)), (1-11)

where x, y are defined as in (1-3). Since A is a k-multi-Toeplitz operator, so is ¥;, := Bf:gA [A]= Y a(reSk)

and, iterating the argument, we deduce that

. t t
=B, ®idg g o, lo- -0 B [A]

is a k-multi-Toeplitz operator. In particular, Y,, , is a 1-multi-Toeplitz operator with respect to

.....

Ry :=(Ry1,.... Ry ). Applying the first part of the proof to ¥, ., we deduce that

.....

SOT—rlliinl[Bfl"gl ®idpgt  prga, I¥rrd = Yrroy
Continuing this process, we obtain

SOT-lim - - SOT- lim, [B7s, ® gy, pa, I¥ra.n ] = A

ri—1

Consequently, using (1-10), (1-11) and (1-2), we deduce that
(C(Oll ..... ak;ﬂl,...,ﬂk)h’£> = <A(h®x)a£®y> = (A(Oll ..... Olk,ﬂl,...,ﬂk)h5£>v

which shows that @4 (r1S1, ..., 78k) = @(r1 81, ..., rS) for any r; € [0, 1). Hence, we obtain

(PA(FlSl,---,rkSk):Z"'Z Z ”l‘cmk""rlm”

myel mieZ g, /Sleﬂ:+ ief{l,...,k}

Jexi | —m » 1Bil —m

X Ay Bro ) @ Star Sk St Sk i

where the series are convergent in the operator norm topology. Moreover, due to (1-10), we have
loa(riSt, ..., eSO < IIAll, ri €[0, 1).

Due to (1-5), we have

lim Pa(rS)(h®e), ® - ®es)=Ah®e, @ Q).

Since |[@a(rS1, ..., rS;)| < ||A]l, an approximation argument shows that
SOT—lim1 0a(rSy, ..., rS) =A. (1-12)
r—
Let € > 0 and choose a vector-valued polynomial ¢ € P with ||g|| = 1 and ||Ag]|| > ||A|| — €. Due
to (1-12), there is ro € (0, 1) such that |@a(roS1, ..., 708:)q|l > ||All — €. Hence, we deduce that
sup,cjo.ny lea(rSi, ..., rSll = IIAll.
Now, let 1, rp € [0, 1) with r; < rp. We already proved that g(S) := @a(r2S1,...,78) is in

span{f*g : f, g € B(§) ®min An}"I. Due to the von Neumann-type inequality [1951] from [Popescu
2016], we have ||g(rS)|| < ||lg(S)|| for any r € [0, 1). In particular, setting r = r; /rp, we deduce that

loa(riSt, ..., 1S < llga(@2S1, ..., 2801l
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It is clear that lim, | ||@a(rSy1, ..., rSi)|| = ||All. On the other hand, since Ag = @4(S)g for any
vector-valued polynomial g € £ ® ®f:1 FZ(Hn,.), we deduce that [|A|| = sup,ep 4y<1 19(S)gll.

Now we prove the converse of the theorem. Let {A(q, ... a;:4.....5, ) be a family of operators in B(E),
where «;, B; € I]:,J{l_, la;| =m;", |Bi|l = ml.+, m; € Zandi € {l,...,k}, and assume that conditions (i)
and (ii) hold. Note that, due to (i), ¢(S)p and ¢(rS)p, r € [0, 1), are vectors in £ ® ®f:1 FZ(Hnl.) and

rlgr} p(rS)p=9(S)p

for any p € P. Since SUP pep, | pl<1 lo(rS)p|l < oo, there exists a unique bounded linear operator
A, € B(E®Q®'_, F2(H,,)) suchthat A, p=(rS)p forany p e P. If f € EQR'_, F2(Hy,) and {py,} is
a sequence of polynomials p,, € P such that p,, - f as m — 0o, we set A, (f) := limy,— 00 @(rS) pp.
Note that the definition is valid. On the other hand, note that

sup  [lo(S)pll < oo.
PeP.lpli<l

Indeed, this follows from the facts that lim,_{ ¢(rS)p = ¢(S)p and SUP ,ep | pli<1 le(rS)pll < oc.
Consequently, there is a unique operator A € B (5 ® ®f: W F 2(Hnl.)) such that Ap = ¢(S)p for any p € P.
Since lim, 1 A,p = lim,—1 (rS)p = ¢(S)p = Ap and sup, g 1) [|Ar|l < 0o, we deduce that A =
SOT-lim,_, 1 A,.

Now we show that A is a k-multi-Toeplitz operator. First, note that Sy o, - - Sk« ST g~ S¢ g, 18 @
k-multi-Toeplitz operator for any «;, §; € [F,J[i, ie{l,....k}withm; € Z, |a;| =m; and |B;| = mjr Itis
enough to check this on monomials of the form /& ® e}l,1 R --® e’;k. Consequently,

(Is @R Do(r$)Us ® Ri)p =8up(rS)p, s,tefl,... n},

forany p € P andeveryi € {1, ..., k}. Hence, A, has the same property. Taking » — 1, we conclude that
A is a k-multi-Toeplitz operator. On the other hand, if x :=x1 ® - - - Q@ xk, y = y1 ® - - - ® yy satisfy (1-3)
and h, £ € £, we have

(Ah®x),L®Yy) = lil'ri<Ar(h ®x),L®Y)
= 1irr{ (prS)(h®x), LR y)
= IIII}(I’ZL] laiHlﬁilA(al ..... ai; By .Bk)h’ €>

,,,,, a:Bien B £).
Therefore,

¢(8):= Z o Z Z Ay, Bron ) @ Stiar Sk ST,ﬁf o S;:»ﬁk
mieZ myeZ ai,ﬂ,-elF,Ti,ie{l ..... k}

loj |=m, |Bi|l=m;

is the formal Fourier series of the k-multi-Toeplitz operator A on £ ® ®f:1 F2(H,). O
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Theorem 1.6. Let {A,, ..o p....p0)) be a family of operators in B(E), where a;, B; € I]:;Z, ;| =m;,
|Bil =m, mieZandie{l,... k), and let

i

p(S):=y Y > Ay B @ St Sk ST g, Sk g,
mieZ 'nkEZa;,ﬂ;e[Fj,’i,ie{l ..... k}

lai |=m;, |Bi|=m;
1 1

be the associated formal Fourier series. Then ¢(S) is the formal Fourier series of a k-multi-Toeplitz
operator Aon £ Q® ®f: W F Z(Hn,-) if and only if the series defining ¢(rS) is convergent in the operator
norm topology for any r € [0, 1) and

sup lg(rS)|l < oo.
ref0,1)

Moreover, if A is a k-multi-Toeplitz operator on £ @ ®f:1 F2(H,,), then p(rS) = BYS[A] and

SOT-lim B[A] = A, where Bi¥[ul:= (Is @ K}9)u® Iy 2, )(Ie ® Kys). u € BE),

and K, g is the noncommutative Berezin kernel associated withrS € By, (®f:1 F 2(H,,l.)).

Proof. Assume that ¢ () is the formal Fourier series of a k-multi-Toeplitz operator A on £ ®®le F Z(Hn,- ).
Then Theorem 1.5 implies that ¢ (rS) is convergent in the operator norm topology and

IAll= sup [lg(rS)I.
rel0,1)

We recall that the noncommutative Berezin kernel associated with rS € B, (@f: W F 2(Hn,,)) is defined on
Q_, F2(H,,) with values in ®'_, F>(Hy,,) ® D,s C (Q_, F2(Hn)) ® (R, F2(Hy,)), where

k

Dys = Ars(l)(® FZ(Hn,.)).

i=l
Lety =(y1’ --"Vk)’w=(wla ...,CL)k) € [F;:_l Xoees Xl]:r-l_k’ Setq 5=maX{|V]|» |Vk|’ |a)1|’ e |a)k|}’ and
define the operator

Iy = Z T Z Z Ao i) @ SdS;v

mieZ,|mi|<q mreZ,mi|<q oc,',,B,'e[F,Tk,ie{l ..... k}

lovj |[=m7, |Bi|l=m;
1 1

where we use the notation Sg 1= Si,¢; " Sk.o If &€ 1= (21, ...,00) € I]:,J{l X +o0 X I]:,J{k. We also set
ey i= e(}“ Q- ®e§k. Note that

(BE[Al(h®ey), ' Qey)
= (I K[)(A® gy oy, VUe®Krs5)(h®@ey),  ®Deo)

=<(A®1®;<1F2<H,,,.>> Y h®e®A5(D)'S5e). Y. h’®eﬂ®Ars<l>1/zs;<ew>>

acFl, xxF BeF, xxFf,
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= > Y (Ar®e)®Ars(D)'2S(ey). W @ep® Ars(D)'*Sj(ew)

oce[F,J{l ><~-><[Ff{k ﬁe[Ff{] ><-~-><[F,J,rk

= > > (Ah®eq). W ®ep)Ars(1)'7S3(ey). Ars(D)'2 S5 (e0))

acFf, xxFf, BeF!, x-xFi,

= > > Y (T ®eq), W @ep)(Ars(D)!/*Si(ey), Ars(D)'*Sj(ew))
mi€Z,lmi|<q my€Z,|lmg|<q ot,-,ﬁ,-e[Fn*k,ie{l,.“,k}

loi|=m], | Bil=m]
= > Y (Ty(h®@ew). ' ®ep)(Ars(D)' Sk (ey). Ars(1)'/? S5 (ew)
aclf xxFy BeR!, xxFy
={Ie @Kl ) Ty ® gy oy, ) Ue @ Krs)(h®ey), h' ®ea)
= (Bi§[T1(h®ey), h' ®ey)
— Z . Z Z ((Atr,.on i) ®rzf'(=](|(¥i|+|ﬁi|)sas;)(h®ey)’ W ®ey)

mi€Z,|m|<q my€l,Imi|<q a;,ﬁ;e[Fj,’k,ie{l ..... k)

loj |=m7, |Bi|l=m;

=(Qa(rS1,....rS)(hQ@ey), h' ®ey).

Consequently, we obtain
BO[Al = a(rSi,...,rS), rel0,1),

which proves the second part of the theorem.

To prove the converse, assume that {A,..  «:p....4)} 1S a family of operators in B(£), where
o, Bi € I]:,J{t_, lai| =m; ", |Bil = ml.+, m; € Zandi €{l,...,k}, and let ¢(S) be the associated formal
Fourier series. We also assume that ¢(rS) is convergent in the operator norm topology for each r € [0, 1)
and that

M := sup |le@S)| < oo.
rel0,1)

Note that ¢(rS) is a k-multi-Toeplitz operator and

k + -
0(r8)(h®e, ® - -®e), ) = > ri (T DT OIDA s (0 B0, ® B,
w:(wl,...,wk)eIFf{l ><~~-><U:n+k
[Clagi 4
is a vector in £ ® ®f:1 FZ(H,,i). Hence, we deduce that, foreach y = (y1, ..., y%) € [F,J[l X oo X [F:{k,

- - 2017112 2
<rZz=1(C,(w,y)+cr(w,)’)) 3 A;*J(w,ym(w’y))A(cm,ym(w,y))h,h>5||¢(rS)|| k)% < M||h||

+ +
nl><---><|]:nk

O™~y

welF

for any r € [0, 1) and h € £. Taking r — 1, we get condition (i) of Theorem 1.5. Applying Theorem 1.5,
we deduce that ¢(S) is the Fourier series of a k-multi-Toeplitz operator. O
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We remark that, due to Theorem 1.6, the order of the series in the definition of @4 (7 Sy, ..., rS;) (see
Theorem 1.5(a)) is irrelevant.

Theorem 1.7. Let n = (ny, ..., n;) € NK and let T, be the set of all k-multi-Toeplitz operators on
EQR'_, F2(Hy,). Then

Tu=span{f*g: f, g € B(E) ®min Aa) " = span{f*g: f, g € B(E) Omin Au} " ",
where A, is the polyball algebra.

Proof. Let
G:=span{f*g: f, & € B(E) @min An}l "I
According to Theorem 1.5, if A € T, and @4 (S) is its Fourier series, then g4 (rS) € G for any r € [0, 1)

and A = SOT-lim ¢4 (rS). Consequently, T, C GSoT, Conversely, note that each monomial S Sg,

a, B el x---xFl, isak-multi-Toeplitz operator. This shows that, for each Y € G,

Ie@R )Y @ R; ;) =8yY, s,te{l,...,n,

for every i € {1, ..., k}. Consequently, taking SOT-limits, we deduce that G3°T C T;,, which proves
that GSOT = T,.

Now, if T € GWVOT an argument as above shows that T € T, = GSO9T Since GSOT ¢ GWVOT | we conclude
that 7, = GSOT = gWOT, O

Corollary 1.8. The set of all k-multi-Toeplitz operators on ®f:1 F?(H,,) coincides with
span{.A,";.A,,}'SOT = span{.A; A, yWVOT,

where A, is the polyball algebra.

2. Bounded free k-pluriharmonic functions and the Dirichlet extension problem

In this section, we show that the bounded free k-pluriharmonic functions on B,, are precisely the
noncommutative Berezin transforms of k-multi-Toeplitz operators and solve the Dirichlet extension
problem for the regular polyball B,,.

Definition 2.1. A function F with operator-valued coefficients in B(E) is called free k-pluriharmonic on
the polyball B, if it has the form

F(X) = Z Z Z A(Oll ,,,,, ;B ﬂk)®X1,Ol1'"Xk,akXT,ﬂl"'XZ,ﬂk’
meZ myel a,v,,B,ve[Fj,'l_,ie{l,...,k}
laj |=m, | Bil=m
where the series converge in the operator norm topology for any X = (X1, ..., Xi) € B,(#), with
Xi=Xi1,...,Xin), and any Hilbert space H.
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Due to the remark following Theorem 1.6, one can prove that the order of the series in the definition
above is irrelevant. Note that any free holomorphic function on B, is k-pluriharmonic. Indeed, according
to [Popescu 2015b], any free holomorphic function on the polyball B, has the form

fX=>">" > Ao ®Xia Xio,. X €By(H),
mieN myeN a,-e[F;rl_, iefl,....k}
ot |=m;

where the series converge in the operator norm topology. A function F : B,,(H) — B(E ® H) is called

bounded if

[l :== sup [[F(X)| <oo.
XeB,(H)

A free k-pluriharmonic function is bounded if its representation on any Hilbert space is bounded. Denote
by PHZ°(B,,) the set of all bounded free k-pluriharmonic functions on the polyball B, with coefficients
in B(§). Foreachm =1, 2, ..., we define the norms || - ||,, : M,,(PHZ(B,)) — [0, 00) by setting

ILFijImllm := sup [I[F;j (X)Im I,

where the supremum is taken over all n-tuples X € B, (#) and any Hilbert space . It is easy to see that
the norms || - [|,,, m = 1,2, ..., determine an operator space structure on PHZ°(B,), in the sense of Ruan
(see, e.g., [Effros and Ruan 2000]).

Let T, be the set of all k-multi-Toeplitz operators on £ ® ®f:1 F2(H,,). According to Theorem 1.7,
we have

Tu=span{f*g: f, g € B(E) @min An} T,

where A, is the polyball algebra. The main result of this section is the following characterization of
bounded free k-pluriharmonic functions:

Theorem 2.2. If F : B,,(H) = B(E) Qmin B(H), then the following statements are equivalent:
(1) F is a bounded free k-pluriharmonic function;
(i1) there exists A € T, such that
F(X)=BY'[Al'=(Us @ K})(A® 1) (I @ Kx), X € B,(}).
In this case, A = SOT-lim, _, | F(rS). Moreover, the map
®:PHX(B,) — Tu, P(F):=A,
is a completely isometric isomorphism of operator spaces.

Proof. Assume that F is a bounded free k-pluriharmonic function on B,, and has the representation from
Definition 2.1. Then, for any r € [0, 1),

F(rS) € span{f*g: f, g € B() ®min An} "'

and, due to the noncommutative von Neumann inequality [Popescu 1999], we have sup, €[0.1) |F(rS)| =
| Flloo < 00. According to Theorem 1.6, F (S) is the formal Fourier series of a k-multi-Toeplitz operator
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AeB(EQQ;_, F?(Hy,)) and A=SOT-lim,_,; F(rS) € T,. Using the properties of the noncommutative
Berezin kernel on polyballs, we have

F(rX)=:®@ Ky)[F(rS)® Inl(l: ® Kx), X € B,(H).

Since the map Y +— Y ® I, is SOT-continuous on bounded subsets of B(E ®Q,_ F 2(H,,L,.)), we deduce
that
SOT-lim1 F(rX)= s ®@Ky)I[AQ ;]I ® Kx) = BY'[A].

Since F is continuous in the norm topology on B, (#), we have F(r X) — F(X) as r — 1. Consequently,
the relation above implies F(X) = Bg}“[A], which completes the proof that (i) implies (ii).
To prove that (ii) implies (i), let A € T, and F(X) := B}’}“[A] for X € B,,(H). Since A is a k-multi-
Toeplitz operator, Theorem 1.5 shows that it has a formal Fourier series
(p(S) = Z Z Z A(al,...,ak;ﬂl,...,ﬂk)®Sl,a1“'Sk,leS)]k,ﬂl' "S]f,ﬁk

mieZ myel o:,-,,B,-e[F,Tl_,ie{l ..... k)

loi [=m;, | Bil=m
with the property that the series ¢(rS) is convergent in the operator norm topology to an operator in

span{f*g: f, g € B(E) ®min An}""I. Moreover, we have A = SOT-lim,_, | ¢(rS) and

IAll= sup [lg(rS)I.
rel0,1)

Hence, the map X — ¢(X) is a k-pluriharmonic function on B, (#). On the other hand, due to Theorem 1.6,
we have ¢(rS) = BY§[A], where

B = (s @ Ki)U® gy oy Ve ®Kys), € B,

i=1
and K, g is the noncommutative Berezin kernel associated with S € B, (®le F 2(H,,l.)). Note that
p(rX) =B e(rS)] = (s @ KY)[prS) ® In]1(Is ® Kx).
Now, using continuity of ¢ on B, (#) and the fact that A = SOT-lim, | ¢(rS), we deduce that

¢(X) = SOT-lim p(rX) = BY'[Al = F(X), X € B,(H).

To prove the last part of the theorem, let [F;;],, € M,,(PHZ’(B,)) and use the noncommutative von
Neumann inequality to obtain

I[Fijlmll = sup |[F;j(X)]lull = sup |[Fij(rS)]nll-
XeB,(H) rel0,1)

On the other hand, A;; := SOT-lim,_,| F;;(rS) is a k-multi-Toeplitz operator and

FijrS)=(U: @K/ 5)(A;j; ® Iek | r2n, ) Ue ® Krs).
Hence, we obtain

sup [[[F;;(rS)]mll < IAijInll-
ref0,1)
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Since [A;j]n := SOT-lim, [ F;; (rS)],, we deduce that the inequality above is in fact an equality. This
shows that @ is a completely isometric isomorphisms of operator spaces. (|

As a consequence, we can obtain the following Fatou-type result concerning the boundary behaviour
of bounded k-pluriharmonic functions.

Corollary 2.3. If F : B,,(H) = B(E) Qmuin B(H) is a bounded free k-pluriharmonic function and X is a
pure element in B, (H)~, then the limit

SOT—lin} F(rX)
r—
exists.

Proof. If X is a pure element in B, ()™, then the noncommutative Berezin kernel Ky is an isometry
(see [Popescu 2016]). Since F is free k-pluriharmonic function on B,,, we have

F(rS) € span{f*g : f, g € B(E) ®min Aq} "
and F(rS) converges in the operator norm topology. Consequently,
F(rX)= s ®Ky)[F(rS)® Inl(le ® Kx).

Since F is bounded, Theorem 2.2 implies SOT-lim, .| F(rS) = A € T, and sup_, _; | F(rS)|| < oo.
Using these facts in the relation above, we conclude that SOT-lim,_, | F (r X) exists. U

We denote by PHZ(B,) the set of all free k-pluriharmonic functions on B, with operator-valued
coefficients in B(£), which have continuous extensions (in the operator norm topology) to the closed
polyball B, (#)~ for any Hilbert space H. Throughout this section, we assume that # is an infinite-
dimensional Hilbert space. In what follows we solve the Dirichlet extension problem for the regular
polyballs.

Theorem 2.4. If F : B,,(H) — B(E) Qmin B(H), then the following statements are equivalent:

(1) F is a free k-pluriharmonic function on B, (H) such that F (rS) converges in the operator norm
topology as r — 1.

(ii) There exists A € P :=span{f*g: f, g € B(E) @min An} I such that
F(X)=B$'[Al, X € B,(H).

(iii) F is a free k-pluriharmonic function on B, (H) which has a continuous extension (in the operator
norm topology) to the closed ball B,,(H)~.

In this case, A =lim,_,1 F(rS), where the convergence is in the operator norm. Moreover, the map
¢ :PH:(B,) > P, P(F):=A,

is a completely isometric isomorphism of operator spaces.
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Proof. Assume that (i) holds. Then F has a representation

F(X) = Z Z Z A(Oll ~~~~~ ai; By ﬁk)®X1,¢¥1'"Xk,akXT,ﬂl"'Xlt,ﬂk’
mi€Z my€Z ai,ﬁie[F;fi,ie{l,...,k}

loj |=m, |Bi|1=m}

where the series converge in the operator norm topology for any X = (X1, ..., Xy) € B, (#). Since the
series defining F'(rS) converges in the operator topology, we deduce that

A= 1irr} F(rS)eP. (2-1)

On the other hand, we have
BY'[F(rS)]= (¢ ® Ky)[F(rS) ® In](Is ® Kx) = F(rX)
for any r € [0, 1) and X € B, (H). Hence, and using (2-1), we deduce that
BYA]l = rh_l)nl F(rX)=F(X),

which proves (ii). Now we show that (ii) implies (i). Assuming (ii) and taking into account Theorem 1.7,
one can see that A is a k-multi-Toeplitz operator. As in the proof of Theorem 2.2, the map defined by
F(X) :=B$'[A], X € B,(H), is a bounded free k-pluriharmonic function. Moreover, we proved that

F(rS) =BJ%[A]l, rel0,1), (2-2)

F(rS) € P and also that A = SOT-lim,_,; F(rS) and || A| = sup, g 1) | F(rS)||. Since A € P, there is
a sequence of polynomials qm in S, Sg such that g,, — A in norm as m — oo. For any € > 0, let N e N
be such that |A — g, || < e for any m > N. Choose § € (0, 1) such that ||Be’“[qN] gnll < %e for
any r € (8, 1). Note that

IBFSIA] = All < IBSSLA — gnll + IB5§Ian] —anll + llgy — Al S A — gyl + 53¢ <€

for any r € (8, 1). Therefore, lim, | Bf’g‘[A] = A in the norm topology. Hence, and due to (2-2), we deduce
that lim, . F(rS) = A in the norm topology, which shows that (i) holds. Since H is infinite-dimensional,
that (iii) implies (i) is clear.

It remains to prove that (ii) implies (iii). We assume that (ii) holds. Then there exists A € P such
that F(X) = B;’}“[A] for all X € B,(#H). Due to Theorem 2.2, F is a bounded free k-pluriharmonic
function on B, (H). For any Y € B, (H)~, one can show, as in the proof that (ii) implies (i), that
F(Y) :=lim,_, | Be’“[A] exists in the operator norm topology. Since ||Be’“[ ]l < |1A]| for any r € [0, 1),
we deduce that ||F (Y)|| <||A|| for any Y € B,,(H)~. Note also that F is an extension of F. Lastly, we
show that F is continuous on B,,(#)~. To this end, let € > 0 and, due to the equivalence of (ii) and (i),
we can choose ry € [0, 1) such that |[A — F(rgS)|| < %e. Since A — F(r9S) € P, we deduce that

IF(Y) = F(roY)| = | Lim Biy[A] = F(rY)|| < limsup | BSY[A] — F(rY)|| < [A — F(roY) | < 3¢

r—1
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forany Y € B,,(H) ™. Since F is continuous on B, (H), there is § > 0 such that | F (roY) — F(roW)| < %e
for any W € B, (H)~ with |[W — Y| < §. Now note that

IF(Y) = F(W)|| < |F(Y) = FroY)|| + | F(r0Y) — FroW)|| 4+ | F(roW) — FE(W)|| < €

for any W € B,(H)™ with |[W —Y| <. Il

3. Naimark-type dilation theorem for direct products of free semigroups

In this section, we provide a Naimark-type dilation theorem for direct products [F,J{1 XoeeX [F,J[k of unital free
semigroups, and use it to obtain a structure theorem which characterizes the positive free k-pluriharmonic
functions on the regular polyball with operator-valued coefficients.

Consider the unital semigroup F," :=F,| x --- x F} with neutral element g := (g, ..., gb). Let
o=(w,...,op) and y = (1, ..., ¥%) be in [F;f1 X oo X [F,J[k. We say that @ and y are left comparable,
and write @ ~. y, if foreach i € {1, ..., k}, one of the conditions w; <; ¥;, ¥; <; w; or w; = y; holds

(see the definitions preceding Lemma 1.2). In this case, we define

(@, y) = (@1, ), ....c/ (0, %) and ¢ (@, ) :=(¢; (@1, 1), ---, ] (@, Vi),

where

o\iy ify<o, y\ro if o<y,

CT(w,V):={ .
20 if y<jworw=y.

) and ¢; (w,y):= {
80 ifw<y orw=y,

We say that K : F, x F,- — B(€) is a left k-multi-Toeplitz kernel if K (g, g) = Iz and

Ko, w)— {(I)f(cl*(a,w);cl(a,w)) if o~ ®,

otherwise.

The kernel K is positive semidefinite if, for each m € N, any choice of 41, ...h,, € £, and any 0@ :=

(al(i), . a,fi)) € F;f, it satisfies the inequality

m
> (K@, a)h, hi) = 0.
i,j=1

Definition 3.1. Amap K : F," x F, — B(£) has a Naimark dilation if there exists a k-tuple of commuting
row isometries V = (Vy, ..., Vx), Vi=(Vi1, ..., Vi), on a Hilbert space I D &, i.e., the nonselfadjoint
algebra Alg(V;) commutes with Alg(V;) forany i, s € {1, ..., k} with i # s, such that

K(o,®) = P:V}V, o,weF,.

|
The dilation is called minimal if £ = \/we Fi Vo€.

Theorem 3.2. A map K : F,} x F, — B(H) is a positive semidefinite left k-multi-Toeplitz kernel on the
direct product F,| of free semigroups if and only if it admits a Naimark dilation.
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Proof. Let Ky be the vector space of all sums of tensor monomials ) Fies® hg, where {hq} ;. P isa
finitely supported sequence of vectors in H. Define the sesquilinear form (-, - ), on Ko by setting

<Z o®ho. ) ea®h;> = ) (K@ 0ho hyhu, o hy €H.

weF; oeF; Ko w,0cF;

Since K is positive semidefinite, so is (-, - )i,. Set N :={f € Ko: (f, f) =0} and define the Hilbert space
obtained by completing Ko/N with the induced inner product. Foreachi € {1,...,k}and j €{l,..., n;},
define the operator V; ; on Ky by setting

V,-,j( Z e,@h,) = Z e @ ® o | @ ey @ g @ ® o, @ hg.

mEF,fr o=(oy,..., O'k)EF,,Jr

Note that if p € {1, ..., n;} then

(5 woa)o (X ewois)

weF," oeF, Ko
= Z (K(Ol’ ce5 01, gjaia Oitly s Ok W1y« oo, Wi—1, gpa)[, Wity onns a)k)hw, h;—)?—[
w,0cF,
|2 wser (K(o, @h, hy)y if j=p,
0 otherwise.
Hence and using the definition of (-, -)x,, we deduce that, for each i € {1, ..., k}, the operators
Vi1, ..., Vi, can be extended by continuity to isometries on X with orthogonal ranges. Note also that,

ifi,se{l,....k},i#s, je{l,...,n;}andt €{l,...,ng}, then
VijiVii(eo) @ Qeq ®@h) =5 Q@+ Qey_ ®€g;0, Q€ Qe ®és,, Qs & Qes Qh
when i < s. This shows that V;; Vs, = V,;V;;. Since
(eg®h,eg @) = (K(g, g)h, W)y = (h, )3, h,h e,
we can embed H into K by setting & = e, ® h. Note that, for any w, 0 € F, and h, i’ € H, we have
(VIVoh, h')ic = (Voh, Voh') i = (€0 @ h,ee @ h')ic = (K (07, @)h, h')y.

Therefore, K (0, @) = Py V;V,l,, forany o, @ € F,;\. Since any element in Ky is a linear combination
of vectors V;h, where o € F, n+ and h € H, we deduce that I = \/wE Fif Vo H, which proves the minimality
of the Naimark dilation.

Now we prove the converse. Let V = (Vy, ..., V,) and V; =(V; 1, ..., Vi,,) be k-tuples of commuting
row isometries on a Hilbert space K D H. Define K : F, x F,” — B(H) by setting K (0, @) = PV Voly
for any o, @ € F,'. Assume that o, w € F, and 6 ~|c w. Using the commutativity of the row
isometries Vi, ..., Vi, we can assume without loss of generality that there is p € {1, ..., k} such that
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W <[ 01, .., Wp [ 0p, Opi] Sy Wpil, - .., 0k <. Since each V; = (V; 1, ..., Vi 5,) is an isometry, we
have V", V; s = &;1. Consequently, and using the commutativity of the row isometries, we deduce that
<V1,a)1 e Vk,wkh’ vl,al te Vk,Ukh/>

= (Vz,a)z' o Vk,a)kh’ Vl,U]\]CU] V2,02' s Vk,O'kh/>

= (VZ,wz' . Vk,a)kh’ VZ,O'z' . Vk,O'k V],(T| \1w1 hl)

— /
- (VP+1swp+1 T Vkswkh’ Vp“l‘],U]H—l T Vk,U/{ Vlagl\lwl T vagp\lwph >
_ /
- <Vp+1vw1)+l\1(7p+l Vp+2,a)p+2' o Vk»wkh’ Vp+2,o'p+2' o Vkvo'k Vlao'l\lwl e vaap\lwph )

/
= <VP+2,wp+2' Vi Vp+laa)p+l\lap+lh’ VP+2,Up+z' “ Vio Vl,Ul\zwl' e vaap\lwph )

/
= <Vp+1va+1\lap+1 T Vk,wk\ltfkh’ Vlyal\lwl' o Vpﬁp\zwph )

= (Vlfm\]a)l' o ;,ap\zwp Vp+lswp+l\l(7p+l T Vk,wk\lﬁkh’ hl)
for any h, h’ € H. Therefore, for any o, @ € F,f, we have

if 0~ o,

*
Py ch(a,w) Ver@.o |7—l

Ko 0)=Pu¥y VwiH - {O otherwise
_[K(c] (o, @); ¢/ (0,w) if 6~
1o otherwise,

and K (g, g) = I. This shows that K is a left k-multi-Toeplitz kernel on F,. On the other hand, for any
finitely supported sequence {h},cp+ of elements in H, we have

2

Y (K@ 0o he) = Y (PuV;Voluho, he) = H Y Voho| =0.
w,0cF,; w,0cF,; weF,
Therefore, K is a positive semidefinite left k-multi-Toeplitz kernel on F,". 0

We remark that the Naimark dilation provided in Theorem 3.2 is minimal. To prove the uniqueness of
the minimal Naimark dilation, let V' = (V{, ..., V), V/ = (Vl’ rrees Vl/ n;)» b€ @ k-tuple of commuting
row isometries on a Hilbert space X' D H such that K (o, w) = Pf(V;)*VQ/)
with the property that £ =\, Fi V.M. For any x, y € 1, we have

|,, forany o, w € F,} and

(Vox, Vay)e = (K(@, @)x, )y = (P} (V))*V)x, yho = (Vox, Vi ¥

Consequently, the map
W( > V,,ha) =Y Vihs.
ocF;f oeF;f

where {hq},cp+ 1s any finitely supported sequence of vectors in A, is well-defined. Due to the minimality
of the spaces K and K’, the map extends to a unitary operator W from K onto K. Note also that
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WV, ;= X/ifjW foranyi e{l,...,k}and j € {1,...,n;}, which completes the proof of the uniqueness
of the minimal Naimark dilation.

We should mention that there is a dual Naimark-type dilation for positive semidefinite right k-multi-
Toeplitz kernels. A kernel " : F,” x F,” — B(€) is called right k-multi-Toeplitz if T (g, g) = I¢ and

(i (o, w); ¢ (0,w) if 6~ o,

F(a,w):{

0 otherwise,

where ¢ (0, ®), ¢, (0, ®) are defined by (1-1). We say that I" has a Naimark dilation if there exists a
k-tuple W = (Wy, ..., W), W; =W, 1,..., W;p,,), of commuting row isometries on a Hilbert space
K > & such that I'(6, @) = P W:W,|. forany o, w € F,.

Theorem 3.3. Amap I': F, x F,t — B(H) is a positive semidefinite right k-multi-Toeplitz kernel on F,-
if and only if it admits a Naimark dilation. In this case, there is a minimal dilation which is uniquely

determined up to isomorphism.

Proof. We only sketch the proof, which is very similar to that of Theorem 3.2, pointing out the differences.
First, K is the vector space of all sums of tensor monomials ) _ Fl € ®hg, where {hg}, o P is a finitely
supported sequence of vectors in H, while the sesquilinear form (-, - ), on K is defined by setting

< Y ea®ho Y es ®h§,> = Y (T(o, @he. ).
weF,; oeF,f Ko w,0€F,
Foreachi e {l,...,k}and j € {1, ..., n;}, we define the operator W; ; on Ky by setting
W,-,j< > e ®h(,> = ) 5, ® R, Qe 5065, ®®es ®hy.
ocF, o=(01,....01)eF,
Taking into account the relations
o, w) =¢(@,@ and ¢ (0,0 =¢ (0,d),

we deduce that

PHW;WQ,|H _ {PHW;}(U@)WCI(U@)H if o ~1.c w,
0 otherwise,
T (0, ®) ;¢ (0, ®)7) if 0 ~cw,
- {O otherwise,
[(cf(6,®);¢,(6,®)) if 6~ @,
- {O otherwise,
=I(0,®)

for any o, @ € F,". The rest of the proof is similar to that of Theorem 3.2. We leave it to the reader. [J
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Let F be a free k-pluriharmonic on the polyball B, with operator-valued coefficients in B(£) with

representation
FX)=) ) Z Ar.asiproe) ® Xta - XeaXi g X G-D)
mi€Z myel q;, /3,E|]:+ ief k}
|oej |=m;” |ﬂl| m
where the series converge in the operator norm topology for any X = (X1, ..., Xi) € B,(#H), with

Xi:=(Xi1, ..., Xin), and any Hilbert space H. We associate to F the kernel I'r : F, x F,t — B(£)

given by

if 0~ w,

A -
p(o, ®) = {0 (e (0,0);¢7 (0,0) (3-2)

otherwise.
One can easily see that I'p is a right k-multi-Toeplitz kernel on F, . In what follows, we prove a
Schur-type result for positive k-pluriharmonic functions in polyballs.

Theorem 3.4. Let F be a k-pluriharmonic function on the regular polyball B,,, with coefficients in B(E).
Then F is positive on B, if and only if the kernel I'r, is positive semidefinite for any r € [0, 1), where F,
stands for the mapping X — F(rX).

Proof. Forevery y :=(y1, ..., ) € Bl x---xF}  wesete, := e}l,I - -- ®e)’ik and Sy := 81, Sk.y-
Let F be a k- pluriharmonic function with representation (3-1). Taking into account Lemma 1.2, for each
y,a)e[F,J{l x[F;fk, r€[0,1), and h, ' € £, we have

k . .
(FUS)(h®ey) W' ®ea)=Y Y Y (At prpohs B )rEi=1 (S She) ey)

mieZ myeZ (X[,,B[G[F,T,,

k . .
- rz":'(la"ﬂﬂ' <A(cr<w,y>;c:<w,y))h’ W) if @~y
0 otherwise,

= (T (@, y)h, 1.

Hence, we deduce that the kernel I'f, is positive semidefinite for any » € [0, 1) if and only if F(rS) >0
for any r € [0, 1). Now, let X € B,(H) and let r € (0, 1) be such that (1/r)X € B, (). Since the
noncommutative Berezin transform B/, x is continuous in the operator norm and completely positive,
so is id ® B(1/r x. Consequently, we obtain

F(X)=0d®Bu/nx)[F(r$)]1=0, X € B,(H).
Note that if F is positive on B,, then F(rS) > 0 for any r € [0, 1). U

Corollary 3.5. Let f : B,(H) — B(E) Qmin B(H) be a free holomorphic function. Then the following
statements are equivalent:

(1) Nf = 0 on the polyball B,,.
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i) Mf(#S)=0foranyr €[0,1).
(iii) The right k-multi Toeplitz kernel I'y, 1, is positive semidefinite for any r € [0, 1).
Let us define the free k-pluriharmonic Poisson kernel by setting
P, X)i=) ) > Ve Yea i Yes ® Xt XeaXip o Xip

mieZ myel a;,ﬂ;e[ﬂ:,ie{],...,k}

loi|=m", | Bi|=m;
i i

forany X € B,(H) andany ¥ = (Y1,...,Y;) with Y; = (Y;1,...,Y;,,) € B(K)" such that the series
above is convergent in the operator norm topology. Let 2 C F," x F, be the set of all (e, 8) where
a=(ar,...,00), B=(B1,..., fr) € F,} aresuchthata;, B e Ff, |ai| =m;, |Bi| =m;" for some m; € Z.

Theorem 3.6. A map F : B,(H) — B(E) Qumin B(H) with F(0) = I is a positive free k-pluriharmonic
function on the regular polyball if and only if it has the form

F(X)= Y PeV;Vg|, ®XuX},
(o, B)eQ2

where V. = (Vy, ..., Vi) is a k-tuple of commuting row isometries on a space K O & such that

Yo PeViVgl @IS, S5 =0, refo, D),
(o, B)e2

and the series is convergent in the operator topology.

Proof. Assume that F is a positive free k-pluriharmonic function which has the representation (3-1)
and F(0) = I. Due to Theorem 3.4, F(rS) > 0 and the right k-multi-Toeplitz kernel I'f, is positive
semidefinite for any r € [0, 1). Taking limits as r — oo, we deduce that I'r is positive semidefinite
as well. According to Theorem 3.3, I'r has a Naimark-type dilation. Therefore, there is a k-tuple
V =(Vi,..., Vi) of commuting row isometries on a Hilbert space K O € such that I' (¢, @) = Pc V V|,
for any o, w € F,". Using (3-1) and (3-2), we deduce that

FX)= ) PeViVg|, ®XoX},
(o, B)e
where the convergence is in the norm topology. This shows, in particular, that F (rS) is convergent.
To prove the converse, assume that V = (Vq, ..., V;) is a k-tuple of commuting row isometries on a
space C D & such that

D PeViVsl @rtfls,s5 >0, relo, ), (3-3)
(a,p)e2
and the convergence is in the operator norm topology. Let X € B,(#) and let r € (0, 1) be such that
(I/r)X € B,(H). Since the noncommutative Berezin transform B/, x is continuous in the operator
norm and completely positive, so is id ® B(j /- x. Consequently, we obtain

F(X) ::(id®B(1/r)X)( > nggvﬁ|g®r'“'+ﬂlsas;>zo, X € B,(H). O
(o, B)e
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We remark that the condition (3-3) is equivalent to the condition that the kernel defined by the relation
Tv(0,®) = rlotel p vy, | for any o, @ € F," is positive semidefinite. We should also mention
that one can find a version of the theorem above when the condition F(0) = I is dropped. In this case,
F(0)=A® I with A > 0 and we set

Ge =[(A+€le) V?QI(F+ele @ D[(A+€ele) 211, €>0.

Since G, is a positive k-pluriharmonic function with G.(0) = I, we can apply Theorem 3.6 to get a
family V(e) = (Vi (€), ..., Vi(€)) of k-tuples of commuting row isometries on a space K¢ D & such that

FX)=lim Y (A+ele) [PeVi@V(©)|](A+ele)? ® XaX,
(o, B)e

where the convergence is in the operator norm topology.

Definition 3.7. A k-tuple V = (Vj, ..., Vi) of commuting row isometries V; = (V; 1, ..., Vi ;) is called
pluriharmonic if the free k-pluriharmonic Poisson kernel P(V, rS) is a positive operator for any r € [0, 1).

Proposition 3.8. Let V =(Vi,..., Vi), Vi= Vi1, ..., Vin,), be a k-tuple of commuting row isometries.

Then V is pluriharmonic in each of the following cases:
(1) k=1andn; e \.

(ii) V is doubly commuting, i.e., the C*-algebra C*(V;) commutes with C*(Vy) if i, s € {1,...,k}
withi # s.

(i) ny=---=ng = 1.

Proof. 1t is easy to see that V is pluriharmonic if the condition in (i) is satisfied. Under the condition (ii),
the proof that V' is pluriharmonic is similar to the proof of Theorem 4.2(i), when we replace the universal
operator R with V. Now, we assume thatn; =---=ng=1. Then V = (Vy, ..., Vi), where Vi, ..., V;
are commuting isometries on a Hilbert space IC. It is well known [Sz.-Nagy et al. 2010] that there is
a k-tuple U = (Uy, ..., Uy) of commuting unitaries on a Hilbert space G D K such that U;|x = V;
fori e {1, ..., k}. Due to Fuglede’s theorem (see [Douglas 1998]), the unitaries are doubly commuting.
Due to (ii), P(U, rS) is a well-defined positive operator for any r € [0, 1), where the convergence
defining the free k-pluriharmonic Poisson kernel P (U, rS) is in the operator norm topology. On the other
hand, we have
PV, rS) =(PcQDPU, rS)|1C®®f.‘:1 F(H,) >0,

which completes the proof. O

Proposition 3.9. Let V = (Vy, ..., Vi) be a pluriharmonic tuple of commuting row isometries on a
Hilbert space K and let £ C K be a subspace. Then the map

F(X) =P ®@DPWV, X)lggn, X € Bu(H),

is a positive free k-pluriharmonic function on the polyball B, with operator-valued coefficients in B(E)
and F(0) = 1.
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Moreover, in the particular cases (i) and (ii1) of Proposition 3.8, each positive free k-pluriharmonic
function F with F(0) = I has the form above.

Proof. Since V is a tuple of commuting row isometries, the free k-pluriharmonic Poisson kernel P(V, rS)
is a positive operator for any r € [0, 1) and so is the compression (P @ I)P(V, rS>|5®®L1 F2(H,,)" Let
X € B,(H) and let r € (0, 1) be such that (1/r)X € B, (#). Since the noncommutative Berezin transform
id ® B(1,)x 1s continuous in the operator norm and completely positive, we deduce that

F(X):=Pe@DPV, X)|legn 20, X € By(H),

where the convergence of P(V, X) is in the operator norm topology. Therefore, F' is a positive free
k-pluriharmonic function on the polyball B, with operator-valued coefficients in B(£) and F(0) = I.
To prove the second part of this proposition, assume that F is a positive free k-pluriharmonic function
with F(0) = I. According to Theorem 3.6, F has the form

FX)= ) PeViVs| ®XoX},
(a,B)e2

where V = (Vy, ..., Vi) is a k-tuple of commuting row isometries on a space K O £ and the convergence
of the series is in the operator norm topology. Since in the particular cases (i) and (ii) of Proposition 3.8
V is pluriharmonic, one can easily complete the proof. O

We remark that the theorem above contains, in particular, a structure theorem for positive k-harmonic
functions on the regular polydisk included in [B(H)]1 X¢- - - X [B(#H)]1, which extends the corresponding
classical result on scalar polydisks [Rudin 1969]. In the general case of the polyball it is unknown if all
positive free k-pluriharmonic functions F' with F(0) = I have the form of Proposition 3.9.

4. Berezin transforms of completely bounded maps in regular polyballs

We define a class of noncommutative Berezin transforms of completely bounded linear maps and give
necessary and sufficient conditions for a function to be the Poisson transform of a completely bounded or
completely positive map.

Let #H be a Hilbert space and identify the set M,,(B(#)) of m x m matrices with entries from B(#)
with B(H™), where H™ is the direct sum of m copies of H. Thus we have a natural C*-norm
on M,,(B(H)). If X is an operator space, i.e., a closed subspace of B(#), we consider M,,(X) as a
subspace of M,,(B(#)) with the induced norm. Let X, ) be operator spaces and let u : X — ) be a
linear map. Define the map u,, : M, (X) — M,,(Y) by u,, ([x;;]) := [u(x;;)]. We say that u is completely
bounded if [|u|ch :=sup,,>1 |umll < oo. If lullcb < 1 then u is completely contractive; if uy, is an isometry
for any m > 1 then u is completely isometric; and if u,, is positive for all m then u is called completely
positive. For basic results concerning completely bounded maps and operator spaces we refer to [Paulsen
1986; Pisier 2001; Effros and Ruan 2000].
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Let K be a Hilbert space and let u : B(®f:1 F 2(H,,,.)) — B(K) be a completely bounded map. It is
well known (see, e.g., [Paulsen 1986]) that there exists a completely bounded linear map

k
/l = ,u®id: B<® Fz(Hn,-)> ®min B(H) — B(IC) Omin B(H)

i=1

such that A(f ®Y):=u(f)®Y for f e B(@ﬁ;l F%(H,,)) and Y € B(H). Moreover, ||llco = [l it]lcb
and, if u is completely positive, then so is . We introduce the noncommutative Berezin transform
associated with p as the map

k
B, : B(® FZ(Hn,J) x By(H) = B(K) ®min B(H)
i=1
defined by
k

Bu(A, X) = A[CxA® Iy)Cx], Ac B(® FZ(H,,I,)), X € B,(H),
i=1

where the operator Cy € B(®f:1 FZ(H,,I.) ® 7—[) is defined by

k
Cx = (gt o, @ Ax(D"D U~ R @ X — — R, @ X[,

i=1
i=1

and the defect mapping Ay : B(H) — B(#H) is given by
AX = (id—q)Xl)o---o(id—CDXk),

where @y, : B(H) — B(H) is the completely positive linear map defined by

Oy, (Y):=Y X;;YX}, YeBH).

j=1

We need to show that the operator / — R; 1 ® X', — - — R; , ® X;k,n,- is invertible. Let Y = (Yy, ..., Y%)
with ¥; := (Y1, ..., Yi,) € B(H)". We introduce the spectral radius of Y by setting

1
. 2(p1+--+pr)
r(Y):= limsup Z YoY, 1 ‘ ,
(Pro-wPOEZY, ai€Fl, lail=pi
iefl,...k}
where Yy =Yy 4 Vi for o= (a1, ...,a) € K} x - xF} and Yo, := Y- Yij, for a; =

g?l s g;'.p € [F,J{i. We remark that, when k = 1, we recover the spectral radius of an n;-tuple of operators,
. . 1/2
re,r(Y;) = 11mp—>oo“ Zﬂiéﬂ:»fi,lﬁil:p Yip: ifﬁi | / P Note also that

r(Y)=r(Ri1®Y' + -+ Rin,®Y )

and r(Y;) <r(Y) foranyi € {1, ..., k}. Consequently, if 7(¥Y) < 1 then r(¥;) < 1 and the spectrum of
R ® Yi’fl +--+R,® Y:n,- is included in D := {7z € C: |z| < 1}. In particular, when X € B, (), the
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noncommutative von Neumann inequality [Popescu 1999] implies r(X) < r(¢S) =t for some ¢ € (0, 1),
which proves our assertion.

Proposition 4.1. Let B, be the noncommutative Berezin transform associated with a completely bounded
linear map | B(®f.‘:1 F*(H,,)) — B(K).

() If X € B, (H) is fixed, then
k
Bu(-. X): B(® F2<Hn,.>> — B(K) ®min B(H)
i=1
is a completely bounded linear map with ||B, (-, X)|lcb < el Cx 112

(ii) If w is selfadjoint, then B, (A*, X) = B, (A, X)*. Moreover, if u is completely positive then so is
the map B, (-, X).

(iii) If A € B((X)i.‘:1 F*(H,,)) is fixed, then the map
B,(A,-): By(H) = B(K) Qmin B(H)
is continuous and ||B,.(A, X)|| < |ullew|AIICx |I* for any X € Bu(H).

Proof. Parts (i) and (ii) follow easily from the definition of the noncommutative Berezin transform
associated with . To prove (iii), let X, ¥ € B, (#) and note that

1B (A, X) = Bu(A, V)| < InllICx(A® L) (Cx — Cy)ll + Il (Cx — Cy)(A® L)Cy |l
< InlllAINCx = Cy IAICx I + 1ICy [D-

The continuity of the map X +— B, (A, X) will follow once we prove that X + Cy is a continuous map
on B,(#H). Note that

k k k

ICx—=Cyl < IAx (DI JU=Rx) T =[ =Ry |+l Ax (D) 2= Ay (DT U -Rx ™",
i=1 i=1 i=l1

where Ry: :=1 — Ri1 ® X[| —--- — Ri, ® X[, . Since the maps X > ]_[le(l — RX;f)_l and

X — Ax(I)'/? are continuous on B, (#) in the operator norm topology, our assertion follows. The
inequality in (iii) is obvious. U

We remark that the noncommutative Poisson transform introduced in [Popescu 1999] is in fact a
particular case of the noncommutative Berezin transform associated with a linear functional. Indeed, let t
be the linear functional on B((X)f:l FZ(Hni)) defined by 7(A) := (A(1), 1). If X € B, (#) is fixed, then
B:(-,X): B(®f:1 FZ(H,”)) — B(H) is a completely contractive linear map and

(B:(A, X)x,y) =(Cx(A® I1))Cx(1®x),1®y), x,yeH.
Hence, we have
B.(A,X)=Ky(A®I)Ky,
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where K is the noncommutative Berezin kernel at X. Note also that if A € B (®i“:1 F Z(Hn,-)) is fixed,
then B; (A, -): B,(H) — B(#) is a bounded continuous map and ||B; (A, X)|| < ||A| for any X € B, (H).

We mention that, if ny =---=ny =1, H=Cand X =A = (A1, ..., Ax) € D, then we recover the
Berezin transform of a bounded linear operator on the Hardy space H*(D), i.e.,

k
B.(A,2) =] [ = M)Ak k), A € B(H* (DY),

i=1
where k; (z) := ]—[le(l —Xizi)Vandz=(z1, ..., zx) € DX,
Define the set
A:={(o,®w)eF, xF,:0~cwand (6,0) = (¢ (0,),¢ (o,w))}. 4-1)
Set A :={(6,®) : (06, w) € A} and note that
A:={6,®)eF xF :6~.&and (6,0 = (c](6,®),c, (6,))}

Moreover, we have A = A. In the case (0, w) € A, one can easily see that c;r (0,w) = c;“ (0, w) and
¢ (0,w)=c, (0,w).

In what follows, we introduce the noncommutative Poisson transform of a completely positive linear
map on the operator system

Ry Rau:=span{RyRg o, B F x - xFl},

where R := (Ry,..., Ry) and R; := (R; 1, ..., R; ;) is the n;-tuple of right creation operators (see
Section 1). Regard M,,(R;R,) as a subspace of Mm(B((gf-‘:1 Fz(Hnl.))). Let M,,(R;R,) have the
norm structure that it inherits from the (unique) norm structure on the C*-algebra M,, (B (®f~‘:1 F*(H,))).
We remark that

R, R, =span{R Rp : (o, f) € A} = span{R};RB c(a, B) € A},

where A = A is given by (4-1). If p : R, R, — B(E) is a completely bounded linear map, then there
exists a unique completely bounded linear map

f=pn®id: RERy" I @min B(H) > B(E) @min B(H)
such that

AAQY)=u(A)®Y, AcRiR, YcBH).

Moreover, ||t]lcb = |1t llcb and, if u is completely positive, then so is [L.
We define the free pluriharmonic Poisson kernel by setting

P(R,X) := ZZ Z RT,&I'"Rz,dle,ﬁl'“Rk,Bk®X1y0‘1"'Xkﬂk HEREED ¢
mel myel a,-,ﬁ,-e[F;fi,ie{l ..... k)

i |=m;, |Bi|l=m]
1 1
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for any X € B,,(#), where the convergence is in the operator norm topology. We need to show that the

latter convergence holds. Indeed, note that, for each i € {1, ..., k} and r € [0, 1), we have
Wi = Z Z R;k,&i Riﬁi ®r|ai|+|ﬁilsi~°‘f :ﬂi
m;eZ o:,-,ﬁ,-e[F,fl_

loj |=m;, |Bil=m]

:p,.liinoo< DR @rIS + > Ri,,§1®”|’3i|57fﬂi)v

aiEﬂ:ni ﬂien:ni
O<la;|=<pi 0=<IBi|=pi

where the limit is in the operator norm topology. One can easily see that

Wy Wi =P(R,rS)

— 1 “ e 1 “ e *.,... *,, ~ e ~
T plhinoo pl}linoo Z Z Z Lay Rk,ale,ﬁl Rkﬁﬁk
mieZ myel a;,ﬂ[e[F;fi,ie{l,...,k} Zk (il H18:D)
< < K o |+18:
lmil=<p lmi|<px loj|=m, 1By |=m* @ri=laltlbilg .8 .

X Sik’ﬂl“ 'S;{k’ﬂk.

Therefore, the series defining P(R, rS), i.e.,

DIREEDY 3 o REG R G R ® P (A Sy Sy o ST g ST
mieZ myel oy, Bk, iefl,... .k}
|Oli|=m,-i, |Bi|=m;"
are convergent in the operator norm topology. We remark that, due to the fact that the operators Wy, ..., Wi
commute, the order of the limits above is irrelevant. Fix X € B, () and let r € (0, 1) be such that (1/r)X
is in B, (H). Since the noncommutative Berezin transform B/, x is continuous in the operator norm, so
18 id ® B(1/)x. Consequently, applying id ® B/, x to the relation above, we deduce that

(id®B/nx)[P(R,rS)]
=p111_r)noo...pkh_r>noo Z Z Z Ta Ria R g R

meZ mel  o;,BieFt,ie{l,... .k} % %
Imil<pi  Iml<pe M ®X1,a1"'Xk,OlkXLﬂl”.XkuBk’

i |[=m7, |Bil=m;

where the limits are in the operator norm topology. This proves our assertion. Now, we introduce the
noncommutative Poisson transform of a completely bounded linear map u : R; R, — B(E) to be the
map Pu : B,(H) = B(E) Qmin B(H) defined by

(Pw)(X) :=a[P(R, X)], X € B,(H).

The next result contains some of the basic properties of the noncommutative Poisson kernel and the
noncommutative Poisson transform.

Theorem 4.2. Let ju: R, R, — B(E) be a completely bounded linear map.
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(1) The map X — P(R, X) is a positive k-pluriharmonic function on the polyball B,,, with coefficients
in B((gf.‘:1 FZ(H,”)), and has the factorization P(R, X) = CyCx, where

Cx = (g Fz(m@AX(I)W)]'[(I Ri®X; = —Rin ®X;,)7".
i=1

(i1) The noncommutative Poisson transform P is a free k-pluriharmonic function on the regular
polyball B, that coincides with the Berezin transform B,.(1, -).
(iii) If u is a completely positive linear map, then P is a positive free k-pluriharmonic function on B,,.
Proof. The fact that X — P (R, X) is a free k-pluriharmonic function on the polyball B,, with coefficients
in R R, was proved in the remarks preceding the theorem. Setting A; := R; ; ®rS;‘j = —Rip, ®rS*
foreachi € {1, ..., k}, we have
W; = Z Z Ri; R, ; @r“Ibls, , 57,

m;€Z a;,Bi E[F,J{i

loi|l=m;", |Bi|=m;
= —A) =T+ -ADH
= =ADTHT = A) =T = ADUT = A)+ T = ADIT =AD"

#y—1 l * -1
= (I _Al) [1®f=1 FZ(HVL[') ® (I®f=1 Fz(Hn[-) —Zr Sl ]S[ 1)}(1 _Al) .

j=1
Recall that R; ;R;; = R; ;R; ; and R,-,SR;?J = R;‘."tR,;s forany i, j € {1,..., k} with i # j and for any
sefl,...,n;}and r € {1, ..., n;}. Similar commutation relations hold for the universal model S. Since
PR, rS)=W;--- W and Wy, ..., W, are commuting positive operators, we deduce that

k
P(R.rS) = (]‘[(1 ~ R\ ®rSii—--— R, @rs,-,n,.rl)
i=1

k
x(UQAsI)[[U-Rii@rSf = —Ri, ®rS}, )"
i=1
for any r € [0, 1), and P(R, rS) = C’¢C,s > 0. Now, let X € B,(#) and let r € (0, 1) be such that
(I/r)X € B,(H). Since the noncommutative Berezin transform B/, x is continuous in the operator
norm and completely positive, so is id ® B(j /) x. Consequently, applying id ® B(i,-)x to the relations
above, we deduce that

PR, X)= (id®B(]/r)X)['P(R, rS)]

k k
=[[u-R;\®Xi1— - —R}, ®Xin) ' URAx (D) [ [U-R; 1 ®X] | — - -—Ri n, ®X], )"
i=1 i=1
= CxCyx,

which completes the proof of (i).
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Using the results above and the continuity of /i in the operator norm, we deduce that the noncommutative
Berezin transform B, (1, -) associated with u coincides with the Poisson transform P . Indeed, we have

B, X) = (CxCx)

=> ) > WRT 5 Ry o Ry g R ) ® X oy Xeoy X1 g, X5,
meZ my€el ai,ﬂieﬂ:f{i,ie{l ..... k}

Joi | =y, | 1=m
= A(P(R, X))
= (Pi)(X)
for any X € B, (H), where the convergence is in the operator norm topology of B(KX ® H). This proves (ii).

Note also that the Poisson transform P is a free k-pluriharmonic function on B,, with coefficients in B().
If 11 is completely positive, then so is 1. Using the fact that 4 (C3Cx) = (Pu)(X), we deduce (iii). [

Consider the particular case when ny = --- =ny =1, H=K =C, X = (Xy,..., Xy) with
Xj=r jeief € D, and u is a complex Borel measure on TX. Note that & can be seen as a bounded
linear functional on C(T¥). Consequently, there is a u+nique bo+unded linear functional /1 on the operator
system generated by the monomials S;n' cee S,Tk STml . -S;:m" ,Where m,...,myeZ,and Sy, ..., Sk
are the unilateral shifts acting on the Hardy space H2(T*), such that

/jL(S’lnf .. SIT;S;"'”T. .. SZ’”:) = (™. .. oM Php=imier e_iml:r(pk)’ my,...,mgeZ.

Indeed, if p is any polynomial function of the form
"

- - my my —m; m k
p(zls---sZkaZI,--ka):Za(ml ..... mk)Z]I"'Zkkzll"'Zkks (le’zk)E[D)a

where a(y, ... m,) € C, then, due to the noncommutative von Neumann inequality [Popescu 1999], we have

|la/(p(Slv R Sk? ikv sty S;:))| = |/L(p(ei¢lv e ’ei(ﬂk’ e—iwl’ sty e_i(pk))|
< lullip(Sts ooy Sy STo s SO

Therefore, i is a bounded linear functional on the operator system span{.A%.4,}!I"I. Note that the
noncommutative Poisson transform of 1, i.e., B, (1, -), coincides with the classical Poisson transform

of /. Indeed, for any z = (1'%, ..., rre!%) € D¥, we have
- — + +
AP Pr o*D * P
B,(l,z) = Z M(Sll..,pkksl 1"'Sk k)Zfl.”ka
(P15 PR)ELE
= Z M(Elpl...g‘l’k)zfl...zll;k
(P1,.... pr)EZ*
= X ([ )
k
(P1+een pr)EZE T

-/ ( 2. n’”'---rk'”'e"'“(@“*"”~--e”’k<9k‘*"“)dm>= [ Peodue.
Tk Tk

(P1.eer Pr)EZF
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where
P(z,8) =P, (01 —@1) - PG — 1), ¢ =(¥, ..., e%) eTk,

and P.(0 —¢) = (1 —r?)/(1 —2r cos(9—¢) +r?) is the Poisson kernel of the unit disc (see [Rudin 1969]).
We recall that A denotes the set of all pairs (@, B) € F,” x F,7, where F,\ :=F; x--- xF}, with
the property that & ~c 8 and («, B) = (cl+(oz, B).c; (e, B)). We remark that (a, B) € A if and only
if (e, /§) € A. As before, we use the notation & = (&, ..., &) if ¢ = (a1, ..., o) € F}.
Throughout the rest of this section, we assume that £ is a separable Hilbert space.

Lemma 4.3. Let u : R; Ry, — B(E) be a completely bounded linear map. For each r € [0, 1), define the
linear map p, : R, Rn — B(E) by

wr(RyRg) :=r' ™ Pl (RyRg). (@, B) € A,

where |et| ;= |o1| + - -+ o] if ¢ = (a1, ..., ) € Ff. Then
(1) w, is a completely bounded linear map;
(1) lleelleb = supo<p <y lirller = limy— 1 [[1r llebs
(iii) pr(A) = w(A) in the operator norm topology as r — 1 for any A € R, Ry;
@iv) if u is completely positive, then so is u, for any r € [0, 1).
Proof. Let

PR R):= )  awpRiRs aep eC,

(a,B)eA'CA
card(A")<Rg

and 0 < ry < rp < 1. Using the noncommutative von Neumann inequality [Popescu 1999], we deduce that

<l Il p(R*, B

ler (P(R*, R)|| = lu(p(riR*, riR))|| = H Kr, (P(:—;R*v :—;R))

In particular, we have ||, || < ||u]l for any r € [0, 1). Similarly, passing to matrices over R, R,, one
can show that [, b < [[irllco if O <71 < rp <1, and [[rllep < [l for any r € [0, 1). Now,
one can easily see that ,(A) — w(A) in the operator norm topology as r — 1 for any A € R;R,,
and || ulleb = supg<, -1 llrllcb- Hence, and using the fact that the function r — ||u,|[cp IS increasing
for r € [0, 1), we deduce that lim,_, | ||, ||cp €xists and it is equal to || it||cp-

To prove (iv), note that u,(p(R*, R)) = M(BrR[p(S*, S)]). Since the noncommutative Berezin
transform B, g and u are completely positive linear maps and p(R*, R) is unitarily equivalent to p(S™, S),
we deduce that p, is a completely positive linear map for each r € [0, 1). U

Let F be a free k-pluriharmonic function on the polyball B,,, with operator-valued coefficients in B(E),
with representation

F(X)y=) Y Y Awaipropy ® Xia X XT g Xi g,
meZ mkelai,ﬂie[ﬁ‘fi,ie{l ..... k}

loj |=m7, |Bi|=m;
1 13
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We associate to F' and each r € [0, 1) the linear map vr, : R R, — B(£) by setting

vi,(RER) :=r""PIAG,  oip pos (@, B) €A, (4-2)

..........

We remark that vg, is uniquely determined by the radial function r +— F(rS). Indeed, note that, if
X=X1Q - Qxk, y=y1 Q- Q yi satisfy (1-3) and &, £ € £, we have

(Fr$)(h®x),L@y) = (r*MPlAg,  op. . poh, €)= (i, (RERDK, L), (&, B) € A.

In what follows, we denote by C*(R) the C*-algebra generated by the right creation operators R; ;,
wherei € {1,...,k}and j €{l,...,n;}.

Theorem 4.4. Let F : B,,(H) — B(E) ®min B(H) be a free k-pluriharmonic function. Then the following
statements are equivalent:

(1) There exists a completely bounded linear map p : C*(R) — B(E) such that F = P .
(i) The linear maps {vF, },c[0,1) associated with F are completely bounded and supg., _; ||VF, llcb < 00.
(iii) There exist a k-tuple V.= (V1, ..., Vi), Vi= Vi1, ..., Vi), of doubly commuting row isometries
acting on a Hilbert space K and bounded linear operators Wi, W, : £ — K such that
F(X) =W DICx(V)"Cx(V)IW2®1),

where

k
Cx(V)=U@Ax(D'"H][U - Via ® X} =+ = Vi, ® XF, )7\

i,n;
i=1

Moreover, in this case we can choose (i such that ||it|cb = Supg<, -1 |VF, [lcb-

Proof. Assume that (i) holds. Then

F(X)= Z Z Z (R 5 R R G R g)®Xia X X X gy
mieZ myeZ ai,ﬂie[F;rl_,ie{l ..... k}
lej|=m;, |Bi|=m;
for any X € B, (#), where the convergence is in the operator norm topology. Set A q;g) := u(RZ R B-) for
any (a, B) € A. Consequently, for each r € [0, 1), we have

v, (RERg) :=r*PIL(RER;), (a, B) € A.

We recall that (a, B) € A if and only if (a, ﬁ) € A. Applying Lemma 4.3, we deduce that {vg } is a
completely bounded map and

lulrzr, b = sup [|vE, [lcb < 00,
0<r<l1

which proves that (i) implies (ii).
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Now, we prove that (ii) implies (i). Assume that F is a free pluriharmonic function on B, with
coefficients in B(£) and such that condition (ii) holds. Let {g;} be a countable dense subset of R, R.
For instance, we can consider all the operators of the form

p(R*,R) := > a.p) Ry R,

(a,B)eA: |e|<m,|B|<m

where m € N and the coefficients a( g) lie in some countable dense subset of the complex plane. For
each j, we have ||vg, (g;)|| < M||q;| for any r € [0, 1), where M := sup_, _; [|VE, ||cb.

Due to the Banach—Alaoglu theorem [Douglas 1998], the ball [B(£)]), is compact in the w*-topology.
Since £ is a separable Hilbert space, [ B(€)]), is a metric space in the w*-topology which coincides with
the weak operator topology on [B(€)],,. Consequently, the diagonal process guarantees the existence
of a sequence {r,,};_, such that r,, — 1 and WOT-lim,, .| v, (g;) exists for each g;. Fix A € R; R,
and x, y € £ and let us prove that {(vg, (A)x, y)}
so that [lg; — All < €/BM||x|[[y]). Now we choose N so that |((vf, (q;) — v, (q;)x, y)| < %e for
any m, k > N. Due to the fact that

| 1s a Cauchy sequence. Let € > 0 and choose g;

((VE,, (A) =vE, (A)x, y)| < [(vE, (A=g)x, )|+ |((VE,, (@) = vE, @))x, )|+ |(vE, (q;—A)x, )]
<2M| x|yl A=g;ll+[((VE,, (@) = vE, (@), »)|,

we deduce that {((vFrm (A) — VF,, (A))x, y)’ < € form, k > N. Therefore,

CD(.X, )’) = (vFrm (A))C, )7>

lim
m—00
exists for any x, y € £ and defines a functional ® : £ x £ — C which is linear in the first variable and
conjugate linear in the second. Moreover, we have |®(x, y)| < M| A|/|lx]||ly| for any x, y € £. Due to
the Riesz representation theorem, there exists a unique bounded linear operator B(£), which we denote
by v(A), such that ®(x, y) = (v(A)x, y) for x, y € £. Therefore,

V(A) = WOT—rliLn1 vp, (A), A€eR,Ra,
and [[v(A)|| < M||A]. Note that v : R; R, — B(€) is a completely bounded map. Indeed, if [A;;],
is an m x m matrix over R;R,, then [v(A;j)], = WOT-limrkﬁl[vFrk (Aij)Im- Hence, [[[v(A;i)]nll <
M||[A;j]n]l for all m, and so ||[v]|c, < M. Note also that v(R;Rﬁ) = A@:p) for any (e, B) € A, where
A(«:p) are the coefficients of F'. By Wittstock’s extension theorem [1981; 1984], there exists a completely
bounded linear map u : C*(R) — B(E) which extends v such that ||u||cp = [|V|leb. Since F = Pu, the
proof of (i) is complete.

Now, we prove the equivalence of (i) with (iii). If (i) holds, then according to Theorem 8.4 from
[Paulsen 1986] there exist a Hilbert space K, a x-representation 7 : C*(R) — B(K), and bounded operators
Wi, Wy : € — K with ||| = || W1 ||| W2]| such that

w(A) =Win(A)W2, A€ C*(R). (4-3)
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Set V;j .= m(R; ;) fori € {1,...,k} and j € {1,...,n;} and note that V = (V,..., V}), V; =
Vi1, ..., Vin;), 1s a k-tuple of doubly commuting row isometries. Using Theorem 4.2, one can easily
see that the equality F' = Pu implies the one from (iii). Now, we prove that (iii) implies (i). Since
the k-tuple V = (V1, ..., V,), Vi=(Vi1, ..., Vin), consists of doubly commuting row isometries on
a Hilbert space /C, the noncommutative von Neumann inequality [Popescu 1999] implies that the map
7 : C*(R) — B() defined by

(R Rp) :=Vo Vg, a,BeF,,
is a *-representation of C*(R). Define y : C*(R) — B(E) by setting u(A) := Win(A)W,, A € C*(R),
and note that p is a completely bounded linear map. Using the relation
F(X) =W D[Cx(V)*Cx(V)IW,®1)
and the factorization P(V, X) =Cx(V)*Cx (V) (see also Theorem 4.2), we deduce that F(X) =Pu(X)
for X € B,(H). O

We introduce the space PH!(B,) of all free k-pluriharmonic functions F on B,, such that the linear
maps {VF, },e[0,1) associated with F are completely bounded and set || F|[; := supy<, 1 [VF, b < 00. As
a consequence of Theorem 4.4, one can see that || - ||| is a norm on PH!(B,) and (PH'(B,), || |1) is a
Banach space that can be identified with the Banach space CB(R,; R, B(£)) of all completely bounded
linear maps from R R, to B(E).

Corollary 4.5. Let F : B,(H) — B(E) ®min B(H) be a free k-pluriharmonic function. Then the following
statements are equivalent:

(i) There exists a completely positive linear map | : C*(R) — B(E) such that F = P .
(i) The linear maps {VF, }re0.1) associated with F are completely positive.
(iii) There exist a k-tuple V.= (Vi, ..., Vi), Vi= Vi1, ..., Vi), of doubly commuting row isometries
acting on a Hilbert space K D & and a bounded operator W : £ — K such that
F(X)=W*@ D[Cx(V)*Cx(V)IWQI).

Proof. The proof is similar to that of Theorem 4.4. Note that for (i) implies (ii) we have to use
Lemma 4.3(iv). For the converse, note that if vg., r € [0, 1), are completely positive linear maps then

v lleo = llve, (DI = lve I = 1A gl
where g = (g(l), cee g’é) is the identity element in F,". As in the proof of Theorem 4.4, we find a
completely bounded map v : R, R, — B() such that
v(A) = WOT- lim1 vr, (A), A€eR,Ra.

rlll%
Since vg,, r € [0, 1), are completely positive linear maps, one can easily see that v is completely positive.

Using Arveson’s extension theorem [1969], we find a completely positive map w : C*(R) — C which
extends v and such that || u]|lcb = ||v|lcb. We also have that F' = P u. Now, the proof that (iii) is equivalent
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to (i) uses Stinespring’s representation theorem [1955] and is similar to the same equivalence from
Theorem 4.4. We leave it to the reader. O

An open question remains. Is any positive free k-pluriharmonic function on the regular polyball B,
the Poisson transform of a completely positive linear map? The answer is positive if k = 1 (see [Popescu
2009]) and also when ny = - - - = ny (see Section 3).

5. Herglotz—Riesz representations for free holomorphic functions with positive real parts

In this section, we introduce the noncommutative Herglotz—Riesz transform of a completely positive
linear map ¢ : R, R, — B(€) and obtain Herglotz—Riesz representation theorems for free holomorphic
functions with positive real parts in regular polyballs.

Define the space

RH(B,) :=span{i f : f € Hole(B,)},

where Holg (By,) is the set of all free holomorphic functions in the polyball B,, with coefficients in B().
Let7: B((X)i.‘:1 F*(H,,)) — C be the bounded linear functional defined by 7(A) = (A1, 1). We remark
that the radial function associated with ¢ € RH(B,), i.e., r — ¢ (rR) for r € [0, 1), uniquely determines
the family {v,, },¢[0,1) of linear maps vy, : R, R, — B(£) defined by (4-2). Indeed, note that

Vg, (R) := (1d®@ T)[(I ® RY)@(rR)],

Vg, (Rg) := (iId® 7)[p(rR)(I ® Ry)],
forany & = (a1, ..., ) € F,f := F:{l X oo X [F,J{k, where & = (&1, ..., ) and Ry := Ry 4, - - Ry, , and
vy, (RyRg) = 0 if Ry Ry is different from R, or R} for some y € F,". Consider the space

RHI(B,,) = {(p € RH(B,) : vy, is completely bounded and supg—, _; [V, [lcb < oo}.

If p € RH'(B,,), we define @l := supg<, -1 Vg, llcb- Denote by CBo(R;, Rn, B(E)) the space of all
completely bounded linear maps A : R, R, — B(E) such that A(R; Rg) = 0 if R} Rp is not equal to R,,
or R}, for some y € F,f.

Theorem 5.1. (RH'(B,), |- |l1) is a Banach space which can be identified with the Banach space
CBo(R;Rnu, B(E)). Moreover, if ¢ : By(H) — B(E) ®min B(H) is a function, then the following
statements are equivalent:

() ¢ is in RH'(By).
(ii) There is a unique completely bounded linear map 11, € CBo(R;; Ry, B(E)) such that ¢ = P i,

(iii) There exist a k-tuple V.= (V1, ..., Vi), Vi= Vi1, ..., Vi), of doubly commuting row isometries
on a Hilbert space K and bounded linear operators Wi, W, : € — K such that

p(X) =W DICx(V)"Cx(M(W>® 1)

and WiVyVgWa =0 if R} Rg is not equal to Ry or R} for some y € F,f.
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Proof. Define the map W : CBg (R Ry, B(E)) — RH!(B,) by W (1) :=Pu. To prove the injectivity of ¥,
let 11, o bein CBo (R Ry, B(E)) such that W (1) =W (12). Due to the uniqueness of the representation
of a free k-pluriharmonic function and the definition of the noncommutative Poisson transform of a
completely bounded map on R, R,, we deduce that j11(Ry) = n2(Re) and wi(R;) = n2(R;) for
acFf x---xFf, and u1(RyRg) = j2 (R Rp) = 0if Ry Ry is not equal to R), or R for some y € F,f.
Hence, we deduce that @ = us.

By Theorem 4.4, for any ¢ € RH! (B,) there is a completely bounded linear map p1, e CB(R Ry, B(E))
such that ¢ =P, and ||@|l1 = || it llcb- This proves that the map W is surjective and || Py |l1 = [l itg llch-
Therefore, (i) is equivalent to (ii).

Now, the latter equivalence and Theorem 4.2 imply

P(X) = (Puy)(X) = 1,(CxCx), X € By(H), (5-1)
where
k
Cx =gt pm,)® Ax(D)'?) 1_[(1 —R®X;, — - —Rin,®X/,)7".
i=1
Due to Wittstock’s extension theorem [1984], there exists a completely bounded map @ : C*(R) — B(E)
that extends p, with ||t llco = [|P|lcb. According to Theorem 8.4 from [Paulsen 1986], there exist a

Hilbert space K, a x-representation 7 : C*(R) — B(K), and bounded operators Wi, W, : £ — K with
[ @[l = IW1l[[W2] such that

®(A) = Win(A)W,, AeC*R). (5-2)

Set V; j:=n(R; ;) forie{l,...,k}and j € {l,...,n;} and note that V = (Vi, ..., V) is a k-tuple of
doubly commuting row isometries V; = (V; 1, ..., Vi ). Using (5-1) and (5-2), one can deduce (iii). The
proof that (iii) implies (i) is similar to the proof of the same implication from Theorem 4.4. U

Consider now the subspace of free holomorphic functions H'(B,) := Hol(B,,) N PH'(B,) together
with the norm || - ||;. Using Theorem 5.1, we can obtain the following weak analogue of the F. and
M. Riesz theorem [Hoffman 1962] in our setting.

Corollary 5.2. (H'(B,), || - |l) is a Banach space which can be identified with the annihilator of R, in
CBo (R Rn, B(E)), ie.,

(Ry)* :={u € CBy (RiRu, B(E)) : n(Ry) =0 forall @ € F,", |a| > 1}.

Moreover, for each f € H'(B,), there is a unique completely bounded linear map |1 f € (R such
that f =Puy.

Given a completely bounded linear map u : R; R, — B(E), we introduce the noncommutative
Fantappie transform of pu to be the map Fu : B, (H) — B(E) @min B(H) defined by

k
(F)(X) = ﬁ(]_[(l —R; ®Xi1—---—R}, ®x,-,n,.>—1)
i=1
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for X := (X1, ..., Xx) € B,(H). We remark that the noncommutative Fantappi¢ transform is a linear
map and Fu is a free holomorphic function in the open polyball B, with coefficients in B(E).

Let u: R; R, — B(E) be a completely positive linear map. We introduce the noncommutative
Herglotz—Riesz transform of u on the regular polyball to be the map Hu : B,,(H) — B(E) @min B(H)
defined by

k
(H)(X) := ;l<2 [Ta-R ®@Xii—— R, ©Xin) ™' — 1)
i=1
for X := (X1, ..., Xx) € Bu(H). Note that (Hw)(X) = 2(Fu)(X) — u() ® 1.

Theorem 5.3. Let f be a function from the polyball B, (H) to B(E) Qmin B(H). Then the following
statements are equivalent:

(1) f is a free holomorphic function with R f > 0 and the linear maps {vy, 1, },<[0,1) associated with R f
are completely positive.

(i1) The function [ admits a Herglotz—Riesz representation
F(X) = (Hp)(X)+i3f(0),

where p : C*(R) — B(E) is a completely positive linear map with the property that u(R, Rg) = 0 if
R, Rg is not equal to Ry, or R}, for some y € F,.

(iii) There exist a k-tuple V.= (Vi, ..., Vi), Vi= Vi1, ..., Vi), of doubly commuting row isometries
on a Hilbert space K and a bounded linear operator W : £ — K such that

k
f(X)=W* ®I)(21_[(I -Vi®Xi—--- =V, ® Xin) ' — I)(W@ N+i3f0)
i=1
and W*Vy VgW =0 if R, Rg is not equal to Ry, or R}, for some y € F;.
Proof. We prove that (i) implies (ii). Let f have the representation f(X) =), £ A ® Xo. Due
to Corollary 4.5, there exists a completely positive linear map u : C*(R) — B(E) such that W f = Ppu.
Consequently, we have

) =5(A +A%), wRa) =3A%,), 1R =340 forallaeF,, |a|>1,

and M(RZRg) = 0 if R, Rg is not equal to R, or R}, for some y € F,". Using the definition of the
Herglotz—Riesz transform, we obtain

k
(H)(X) = ﬁ(z [Ta-R ®@Xii—— R, ©Xin) ™' — 1)

i=1

= ) Aw®@Xa+ A ®1 —3(Ag) + A7) @1

acF,
= f(X) = 3(Aly = Ag) ®1
= [(X) =i3 (0.
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which proves (ii). Now we prove that (ii) implies (i). Assume that (ii) holds. Then
FX)=2(Fu)(X) —u) @I —iI f(0)

is a free holomorphic function on the polyball B,,. Taking into account that (R, Rg) =0 if R, Rg is not
equal to R, or R}, for some y € F,", and using Theorem 4.2, we deduce that

S(FX)+ F(X)
= L(Hw)(X) + (Hw)(X)*)
K k
= ll(l_[(l ~ R ®Xii—— R, ®Xin) I+ [0 - R ®X — -~ R, ®X;k’"i)_l>
i1 i=1
= A(P(R, X)) = 0.

Therefore, N f is a free k-pluriharmonic function such that i f = Pu. Due to Corollary 4.5, we deduce
that the linear maps {vy 1, },¢[0,1) associated with ) f are completely positive.

Now, we prove that (ii) implies (iii). Assume that (ii) holds. According to Stinespring’s representation
theorem [1955], there is a Hilbert space K, a *-representation 7 : C*(R) — B(K) and abounded W :£ — K
with ||(D)] = [|W]? such that ©(A) = W*n(A)W for all A € C*(R). Setting V; ; := m(R;;) for all
ie{l,...,k}and je{l,...,n;},itis clear that the k-tuple V = (V1, ..., Vx), Vi=(Vi1, ..., Vi), con-
sists of doubly commuting row isometries. Note that, if R, Rg is not equal to R,, or R}, for some y € F,,
then

W*VVgW = W*n(R:Rp)W = u(R:Rp) =0.

Now, one can easily see that the relation f(X) = (Hu)(X) +iJf(0) leads to the representation in (iii),
which completes the proof.

It remains to prove that (iii) implies (ii). To this end, assume that (iii) holds. Since the k-tuple
V=WVi,...,Vi), Vi=(Vi1,..., Vin,), consists of doubly commuting row isometries on a Hilbert space
IC, the noncommutative von Neumann inequality [Popescu 1999] implies that the map 7 : C*(R) — B(E)
defined by

(R Rp) :=Vo Vg, a,BeF,,
is a x-representation of C*(R). Define i : C*(R) — B(E) by setting w(A) := W*r (A)W. It is clear that
W is a completely positive linear map and (iii) implies

k
f(X)= ﬁ<2 [[0-R @Xii— - R, ®Xin)™' = 1) +i3£(0).
i=1
Note also that

1W(RERg) = W (RERGW = WV VgW =0

if R; Rg is not equal to R,, or R;‘j for some y € F,f . This shows that (ii) holds. O
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In the particular case when n; = - -- = ny = 1, we obtain an operator-valued extension of Koranyi—
Pukanszky integral representation for holomorphic functions with positive real part on polydisks [Kordnyi
and Pukanszky 1963].

In what follows, we say that f has a Herglotz—Riesz representation if Theorem 5.3(ii) is satisfied.

Theorem 5.4. Let f : B,(H) — B(E) Qmin B(H) be a function, where n = (n1, ..., ng) € N, If f admits
a Herglotz—Riesz representation, then f is a free holomorphic function with R f > 0.

Conversely, if f is a free holomorphic function such that R f > 0, then there is a unique completely
positive linear map  : R, + Ry, — B(E) such that

fY)=HnKkY)+iSf0), Ye %Bn(H)-
Moreover,

fX) =2 KuR)@Xa—pn(H®1, X €By(H).

acF,

Proof. The forward implication was proved in Theorem 5.3. We prove the converse. Assume that f has
the representation

fX)=) Aw®Xe, XeBy(H). (5-3)

acF;
First we consider the case when %(A(g) + Az‘g)) = I¢. Since N f > 0 and N f(0) = I, Theorem 3.6 shows
that there is a k-tuple V = (V1, ..., Vi) of commuting row isometries on a space K D £ such that
NfFX)= Y. PeViV|.® XoXj.
(0,w)eF, xF;
The uniqueness of the representation of free k-pluriharmonic functions on B, implies

1Aw ifacF B=g,

PeVi Vgl = %Afﬂ) if Be Ff,a=g, (5-4)
0 otherwise.

Set T; j ;= (1/k)V; j fori e {1,...,k} and j € {1, ..., n;}. According to Proposition 1.9 from [Popescu
2016], the k-tuple T := (11, ..., Ty), T; := (Ti1, ..., T; ), is in the closed polyball B, (K). Using
Theorem 7.2 from [Popescu 2016], we find a k-tuple W := (W, ..., Wy) of doubly commuting row
isometries on a Hilbert space G D K such that Wl.*jj|,C = Tl*] foralli e {1,...,k}and j € {1,...,n;}.
Define the linear map u : C*(R) — B(E) by setting

W(RGRY) = Pe[PcWW| ], « BeF,.

Note that p is a completely positive linear map with the property that p(R /;) = (1/2k'8 |)A;"ﬂ) and
W(RZ) = (1/2k1*N) Ay if o, B € F,;F witha # g and B # g, and (1) = I¢. Consequently, (5-3) and (5-4)
imply

FX)=2)" KR @ Xa —pu(H® 1, X € By(H).

acF;
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Setting Y := (1/k) X, we deduce that

fN) =2 uRY) K™Y, —puh®1

acF,

k
= [L(z ]—[(1 — R\ ®kY;1—- - — R}, ®@kY; )" — 1)
i=1

= (Hp)(kY)

for any Y € (1/k)B,(H), which completes the proof when A ) = Ic. Now, we consider the case when
C = %(A(g) + A’(“g)) > 0. For each € > 0, define the free holomorphic function

ge = (Cioy+e) V[ f+ele @ [](Cq) +el)™'/?

and note that 9ig.(0) = I. Applying the first part of the proof to g., we find a completely positive linear
map e : C*(R) — B(E) with the property that

1 _ _
He(Rp) = 275 (Cig) + €D 2 ATy (Cg) + D)7 /2

and
1

~ 2kl

ifa, B € F,f witha # g and B # g, and (1) = I¢. Setting v (§) := (C(g) +61)1/2[,L€(§')(C(g) +el)'/?
for all £ € C*(R), one can easily see that v, is a completely positive linear map with the property
that ve(Rp) = (1/2k|ﬂ|)Ajﬂ) and ve(R%) = (1/2k1*)A () if @, B € F,” with & # g and B # g, and
Ve(I) = C(g) +€l¢. Following the proofs of Theorem 4.4 and Corollary 4.5, we find a completely positive
linear map v : C*(R) — B(€) such that v(§) = WOT-lim¢,_,¢ v¢, (§) for & € C*(R), where {¢} is a
sequence of positive numbers converging to zero. Consequently, we have v(Rﬁ) = (1/2kIB ‘)Az‘ﬂ) and
V(RY) = (1/2k1¥) A g if &, B € F,S with o # g and B # g, and v(I) = C(g)- As in the first part of this
proof, one can easily see that

e (RE) (Cigy+€l) ' 2A@)(Cigy+el)™/?

F) = (HO)KY) FiSFO). ¥ € LB, (H).
and

FX) =2 KR ®Xe —v()®I, X €By(H). O

acF,
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